1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(
64         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
65   } else {
66     LeftoverTy = LLT::scalar(LeftoverSize);
67   }
68 
69   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
70   return std::make_pair(NumParts, NumLeftover);
71 }
72 
73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
74 
75   if (!Ty.isScalar())
76     return nullptr;
77 
78   switch (Ty.getSizeInBits()) {
79   case 16:
80     return Type::getHalfTy(Ctx);
81   case 32:
82     return Type::getFloatTy(Ctx);
83   case 64:
84     return Type::getDoubleTy(Ctx);
85   case 80:
86     return Type::getX86_FP80Ty(Ctx);
87   case 128:
88     return Type::getFP128Ty(Ctx);
89   default:
90     return nullptr;
91   }
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &Builder)
97     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
98       LI(*MF.getSubtarget().getLegalizerInfo()),
99       TLI(*MF.getSubtarget().getTargetLowering()) { }
100 
101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
102                                  GISelChangeObserver &Observer,
103                                  MachineIRBuilder &B)
104   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
105     TLI(*MF.getSubtarget().getTargetLowering()) { }
106 
107 LegalizerHelper::LegalizeResult
108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
109                                    LostDebugLocObserver &LocObserver) {
110   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
111 
112   MIRBuilder.setInstrAndDebugLoc(MI);
113 
114   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
115       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
116     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
117   auto Step = LI.getAction(MI, MRI);
118   switch (Step.Action) {
119   case Legal:
120     LLVM_DEBUG(dbgs() << ".. Already legal\n");
121     return AlreadyLegal;
122   case Libcall:
123     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
124     return libcall(MI, LocObserver);
125   case NarrowScalar:
126     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
127     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
128   case WidenScalar:
129     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
130     return widenScalar(MI, Step.TypeIdx, Step.NewType);
131   case Bitcast:
132     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
133     return bitcast(MI, Step.TypeIdx, Step.NewType);
134   case Lower:
135     LLVM_DEBUG(dbgs() << ".. Lower\n");
136     return lower(MI, Step.TypeIdx, Step.NewType);
137   case FewerElements:
138     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
139     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case MoreElements:
141     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
142     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
143   case Custom:
144     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
145     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
146   default:
147     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
148     return UnableToLegalize;
149   }
150 }
151 
152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
153                                    SmallVectorImpl<Register> &VRegs) {
154   for (int i = 0; i < NumParts; ++i)
155     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
156   MIRBuilder.buildUnmerge(VRegs, Reg);
157 }
158 
159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
160                                    LLT MainTy, LLT &LeftoverTy,
161                                    SmallVectorImpl<Register> &VRegs,
162                                    SmallVectorImpl<Register> &LeftoverRegs) {
163   assert(!LeftoverTy.isValid() && "this is an out argument");
164 
165   unsigned RegSize = RegTy.getSizeInBits();
166   unsigned MainSize = MainTy.getSizeInBits();
167   unsigned NumParts = RegSize / MainSize;
168   unsigned LeftoverSize = RegSize - NumParts * MainSize;
169 
170   // Use an unmerge when possible.
171   if (LeftoverSize == 0) {
172     for (unsigned I = 0; I < NumParts; ++I)
173       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
174     MIRBuilder.buildUnmerge(VRegs, Reg);
175     return true;
176   }
177 
178   if (MainTy.isVector()) {
179     unsigned EltSize = MainTy.getScalarSizeInBits();
180     if (LeftoverSize % EltSize != 0)
181       return false;
182     LeftoverTy = LLT::scalarOrVector(
183         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
184   } else {
185     LeftoverTy = LLT::scalar(LeftoverSize);
186   }
187 
188   // For irregular sizes, extract the individual parts.
189   for (unsigned I = 0; I != NumParts; ++I) {
190     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
191     VRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
193   }
194 
195   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
196        Offset += LeftoverSize) {
197     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
198     LeftoverRegs.push_back(NewReg);
199     MIRBuilder.buildExtract(NewReg, Reg, Offset);
200   }
201 
202   return true;
203 }
204 
205 void LegalizerHelper::insertParts(Register DstReg,
206                                   LLT ResultTy, LLT PartTy,
207                                   ArrayRef<Register> PartRegs,
208                                   LLT LeftoverTy,
209                                   ArrayRef<Register> LeftoverRegs) {
210   if (!LeftoverTy.isValid()) {
211     assert(LeftoverRegs.empty());
212 
213     if (!ResultTy.isVector()) {
214       MIRBuilder.buildMerge(DstReg, PartRegs);
215       return;
216     }
217 
218     if (PartTy.isVector())
219       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
220     else
221       MIRBuilder.buildBuildVector(DstReg, PartRegs);
222     return;
223   }
224 
225   SmallVector<Register> GCDRegs;
226   LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
227   for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
228     extractGCDType(GCDRegs, GCDTy, PartReg);
229   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
230   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
231 }
232 
233 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
234 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
235                               const MachineInstr &MI) {
236   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
237 
238   const int StartIdx = Regs.size();
239   const int NumResults = MI.getNumOperands() - 1;
240   Regs.resize(Regs.size() + NumResults);
241   for (int I = 0; I != NumResults; ++I)
242     Regs[StartIdx + I] = MI.getOperand(I).getReg();
243 }
244 
245 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
246                                      LLT GCDTy, Register SrcReg) {
247   LLT SrcTy = MRI.getType(SrcReg);
248   if (SrcTy == GCDTy) {
249     // If the source already evenly divides the result type, we don't need to do
250     // anything.
251     Parts.push_back(SrcReg);
252   } else {
253     // Need to split into common type sized pieces.
254     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
255     getUnmergeResults(Parts, *Unmerge);
256   }
257 }
258 
259 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
260                                     LLT NarrowTy, Register SrcReg) {
261   LLT SrcTy = MRI.getType(SrcReg);
262   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
263   extractGCDType(Parts, GCDTy, SrcReg);
264   return GCDTy;
265 }
266 
267 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
268                                          SmallVectorImpl<Register> &VRegs,
269                                          unsigned PadStrategy) {
270   LLT LCMTy = getLCMType(DstTy, NarrowTy);
271 
272   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
273   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
274   int NumOrigSrc = VRegs.size();
275 
276   Register PadReg;
277 
278   // Get a value we can use to pad the source value if the sources won't evenly
279   // cover the result type.
280   if (NumOrigSrc < NumParts * NumSubParts) {
281     if (PadStrategy == TargetOpcode::G_ZEXT)
282       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
283     else if (PadStrategy == TargetOpcode::G_ANYEXT)
284       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
285     else {
286       assert(PadStrategy == TargetOpcode::G_SEXT);
287 
288       // Shift the sign bit of the low register through the high register.
289       auto ShiftAmt =
290         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
291       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
292     }
293   }
294 
295   // Registers for the final merge to be produced.
296   SmallVector<Register, 4> Remerge(NumParts);
297 
298   // Registers needed for intermediate merges, which will be merged into a
299   // source for Remerge.
300   SmallVector<Register, 4> SubMerge(NumSubParts);
301 
302   // Once we've fully read off the end of the original source bits, we can reuse
303   // the same high bits for remaining padding elements.
304   Register AllPadReg;
305 
306   // Build merges to the LCM type to cover the original result type.
307   for (int I = 0; I != NumParts; ++I) {
308     bool AllMergePartsArePadding = true;
309 
310     // Build the requested merges to the requested type.
311     for (int J = 0; J != NumSubParts; ++J) {
312       int Idx = I * NumSubParts + J;
313       if (Idx >= NumOrigSrc) {
314         SubMerge[J] = PadReg;
315         continue;
316       }
317 
318       SubMerge[J] = VRegs[Idx];
319 
320       // There are meaningful bits here we can't reuse later.
321       AllMergePartsArePadding = false;
322     }
323 
324     // If we've filled up a complete piece with padding bits, we can directly
325     // emit the natural sized constant if applicable, rather than a merge of
326     // smaller constants.
327     if (AllMergePartsArePadding && !AllPadReg) {
328       if (PadStrategy == TargetOpcode::G_ANYEXT)
329         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
330       else if (PadStrategy == TargetOpcode::G_ZEXT)
331         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
332 
333       // If this is a sign extension, we can't materialize a trivial constant
334       // with the right type and have to produce a merge.
335     }
336 
337     if (AllPadReg) {
338       // Avoid creating additional instructions if we're just adding additional
339       // copies of padding bits.
340       Remerge[I] = AllPadReg;
341       continue;
342     }
343 
344     if (NumSubParts == 1)
345       Remerge[I] = SubMerge[0];
346     else
347       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
348 
349     // In the sign extend padding case, re-use the first all-signbit merge.
350     if (AllMergePartsArePadding && !AllPadReg)
351       AllPadReg = Remerge[I];
352   }
353 
354   VRegs = std::move(Remerge);
355   return LCMTy;
356 }
357 
358 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
359                                                ArrayRef<Register> RemergeRegs) {
360   LLT DstTy = MRI.getType(DstReg);
361 
362   // Create the merge to the widened source, and extract the relevant bits into
363   // the result.
364 
365   if (DstTy == LCMTy) {
366     MIRBuilder.buildMerge(DstReg, RemergeRegs);
367     return;
368   }
369 
370   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
371   if (DstTy.isScalar() && LCMTy.isScalar()) {
372     MIRBuilder.buildTrunc(DstReg, Remerge);
373     return;
374   }
375 
376   if (LCMTy.isVector()) {
377     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
378     SmallVector<Register, 8> UnmergeDefs(NumDefs);
379     UnmergeDefs[0] = DstReg;
380     for (unsigned I = 1; I != NumDefs; ++I)
381       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
382 
383     MIRBuilder.buildUnmerge(UnmergeDefs,
384                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
385     return;
386   }
387 
388   llvm_unreachable("unhandled case");
389 }
390 
391 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
392 #define RTLIBCASE_INT(LibcallPrefix)                                           \
393   do {                                                                         \
394     switch (Size) {                                                            \
395     case 32:                                                                   \
396       return RTLIB::LibcallPrefix##32;                                         \
397     case 64:                                                                   \
398       return RTLIB::LibcallPrefix##64;                                         \
399     case 128:                                                                  \
400       return RTLIB::LibcallPrefix##128;                                        \
401     default:                                                                   \
402       llvm_unreachable("unexpected size");                                     \
403     }                                                                          \
404   } while (0)
405 
406 #define RTLIBCASE(LibcallPrefix)                                               \
407   do {                                                                         \
408     switch (Size) {                                                            \
409     case 32:                                                                   \
410       return RTLIB::LibcallPrefix##32;                                         \
411     case 64:                                                                   \
412       return RTLIB::LibcallPrefix##64;                                         \
413     case 80:                                                                   \
414       return RTLIB::LibcallPrefix##80;                                         \
415     case 128:                                                                  \
416       return RTLIB::LibcallPrefix##128;                                        \
417     default:                                                                   \
418       llvm_unreachable("unexpected size");                                     \
419     }                                                                          \
420   } while (0)
421 
422   switch (Opcode) {
423   case TargetOpcode::G_SDIV:
424     RTLIBCASE_INT(SDIV_I);
425   case TargetOpcode::G_UDIV:
426     RTLIBCASE_INT(UDIV_I);
427   case TargetOpcode::G_SREM:
428     RTLIBCASE_INT(SREM_I);
429   case TargetOpcode::G_UREM:
430     RTLIBCASE_INT(UREM_I);
431   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
432     RTLIBCASE_INT(CTLZ_I);
433   case TargetOpcode::G_FADD:
434     RTLIBCASE(ADD_F);
435   case TargetOpcode::G_FSUB:
436     RTLIBCASE(SUB_F);
437   case TargetOpcode::G_FMUL:
438     RTLIBCASE(MUL_F);
439   case TargetOpcode::G_FDIV:
440     RTLIBCASE(DIV_F);
441   case TargetOpcode::G_FEXP:
442     RTLIBCASE(EXP_F);
443   case TargetOpcode::G_FEXP2:
444     RTLIBCASE(EXP2_F);
445   case TargetOpcode::G_FREM:
446     RTLIBCASE(REM_F);
447   case TargetOpcode::G_FPOW:
448     RTLIBCASE(POW_F);
449   case TargetOpcode::G_FMA:
450     RTLIBCASE(FMA_F);
451   case TargetOpcode::G_FSIN:
452     RTLIBCASE(SIN_F);
453   case TargetOpcode::G_FCOS:
454     RTLIBCASE(COS_F);
455   case TargetOpcode::G_FLOG10:
456     RTLIBCASE(LOG10_F);
457   case TargetOpcode::G_FLOG:
458     RTLIBCASE(LOG_F);
459   case TargetOpcode::G_FLOG2:
460     RTLIBCASE(LOG2_F);
461   case TargetOpcode::G_FCEIL:
462     RTLIBCASE(CEIL_F);
463   case TargetOpcode::G_FFLOOR:
464     RTLIBCASE(FLOOR_F);
465   case TargetOpcode::G_FMINNUM:
466     RTLIBCASE(FMIN_F);
467   case TargetOpcode::G_FMAXNUM:
468     RTLIBCASE(FMAX_F);
469   case TargetOpcode::G_FSQRT:
470     RTLIBCASE(SQRT_F);
471   case TargetOpcode::G_FRINT:
472     RTLIBCASE(RINT_F);
473   case TargetOpcode::G_FNEARBYINT:
474     RTLIBCASE(NEARBYINT_F);
475   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
476     RTLIBCASE(ROUNDEVEN_F);
477   }
478   llvm_unreachable("Unknown libcall function");
479 }
480 
481 /// True if an instruction is in tail position in its caller. Intended for
482 /// legalizing libcalls as tail calls when possible.
483 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
484                                     MachineInstr &MI) {
485   MachineBasicBlock &MBB = *MI.getParent();
486   const Function &F = MBB.getParent()->getFunction();
487 
488   // Conservatively require the attributes of the call to match those of
489   // the return. Ignore NoAlias and NonNull because they don't affect the
490   // call sequence.
491   AttributeList CallerAttrs = F.getAttributes();
492   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
493           .removeAttribute(Attribute::NoAlias)
494           .removeAttribute(Attribute::NonNull)
495           .hasAttributes())
496     return false;
497 
498   // It's not safe to eliminate the sign / zero extension of the return value.
499   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
500       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
501     return false;
502 
503   // Only tail call if the following instruction is a standard return.
504   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
505   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
506     return false;
507 
508   return true;
509 }
510 
511 LegalizerHelper::LegalizeResult
512 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
513                     const CallLowering::ArgInfo &Result,
514                     ArrayRef<CallLowering::ArgInfo> Args,
515                     const CallingConv::ID CC) {
516   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
517 
518   CallLowering::CallLoweringInfo Info;
519   Info.CallConv = CC;
520   Info.Callee = MachineOperand::CreateES(Name);
521   Info.OrigRet = Result;
522   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
523   if (!CLI.lowerCall(MIRBuilder, Info))
524     return LegalizerHelper::UnableToLegalize;
525 
526   return LegalizerHelper::Legalized;
527 }
528 
529 LegalizerHelper::LegalizeResult
530 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
531                     const CallLowering::ArgInfo &Result,
532                     ArrayRef<CallLowering::ArgInfo> Args) {
533   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
534   const char *Name = TLI.getLibcallName(Libcall);
535   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
536   return createLibcall(MIRBuilder, Name, Result, Args, CC);
537 }
538 
539 // Useful for libcalls where all operands have the same type.
540 static LegalizerHelper::LegalizeResult
541 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
542               Type *OpType) {
543   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
544 
545   // FIXME: What does the original arg index mean here?
546   SmallVector<CallLowering::ArgInfo, 3> Args;
547   for (unsigned i = 1; i < MI.getNumOperands(); i++)
548     Args.push_back({MI.getOperand(i).getReg(), OpType, 0});
549   return createLibcall(MIRBuilder, Libcall,
550                        {MI.getOperand(0).getReg(), OpType, 0}, Args);
551 }
552 
553 LegalizerHelper::LegalizeResult
554 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
555                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
556   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
557 
558   SmallVector<CallLowering::ArgInfo, 3> Args;
559   // Add all the args, except for the last which is an imm denoting 'tail'.
560   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
561     Register Reg = MI.getOperand(i).getReg();
562 
563     // Need derive an IR type for call lowering.
564     LLT OpLLT = MRI.getType(Reg);
565     Type *OpTy = nullptr;
566     if (OpLLT.isPointer())
567       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
568     else
569       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
570     Args.push_back({Reg, OpTy, 0});
571   }
572 
573   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
574   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
575   RTLIB::Libcall RTLibcall;
576   unsigned Opc = MI.getOpcode();
577   switch (Opc) {
578   case TargetOpcode::G_BZERO:
579     RTLibcall = RTLIB::BZERO;
580     break;
581   case TargetOpcode::G_MEMCPY:
582     RTLibcall = RTLIB::MEMCPY;
583     break;
584   case TargetOpcode::G_MEMMOVE:
585     RTLibcall = RTLIB::MEMMOVE;
586     break;
587   case TargetOpcode::G_MEMSET:
588     RTLibcall = RTLIB::MEMSET;
589     break;
590   default:
591     return LegalizerHelper::UnableToLegalize;
592   }
593   const char *Name = TLI.getLibcallName(RTLibcall);
594 
595   // Unsupported libcall on the target.
596   if (!Name) {
597     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
598                       << MIRBuilder.getTII().getName(Opc) << "\n");
599     return LegalizerHelper::UnableToLegalize;
600   }
601 
602   CallLowering::CallLoweringInfo Info;
603   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
604   Info.Callee = MachineOperand::CreateES(Name);
605   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
606   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
607                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
608 
609   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
610   if (!CLI.lowerCall(MIRBuilder, Info))
611     return LegalizerHelper::UnableToLegalize;
612 
613 
614   if (Info.LoweredTailCall) {
615     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
616 
617     // Check debug locations before removing the return.
618     LocObserver.checkpoint(true);
619 
620     // We must have a return following the call (or debug insts) to get past
621     // isLibCallInTailPosition.
622     do {
623       MachineInstr *Next = MI.getNextNode();
624       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
625              "Expected instr following MI to be return or debug inst?");
626       // We lowered a tail call, so the call is now the return from the block.
627       // Delete the old return.
628       Next->eraseFromParent();
629     } while (MI.getNextNode());
630 
631     // We expect to lose the debug location from the return.
632     LocObserver.checkpoint(false);
633   }
634 
635   return LegalizerHelper::Legalized;
636 }
637 
638 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
639                                        Type *FromType) {
640   auto ToMVT = MVT::getVT(ToType);
641   auto FromMVT = MVT::getVT(FromType);
642 
643   switch (Opcode) {
644   case TargetOpcode::G_FPEXT:
645     return RTLIB::getFPEXT(FromMVT, ToMVT);
646   case TargetOpcode::G_FPTRUNC:
647     return RTLIB::getFPROUND(FromMVT, ToMVT);
648   case TargetOpcode::G_FPTOSI:
649     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
650   case TargetOpcode::G_FPTOUI:
651     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
652   case TargetOpcode::G_SITOFP:
653     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
654   case TargetOpcode::G_UITOFP:
655     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
656   }
657   llvm_unreachable("Unsupported libcall function");
658 }
659 
660 static LegalizerHelper::LegalizeResult
661 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
662                   Type *FromType) {
663   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
664   return createLibcall(MIRBuilder, Libcall,
665                        {MI.getOperand(0).getReg(), ToType, 0},
666                        {{MI.getOperand(1).getReg(), FromType, 0}});
667 }
668 
669 LegalizerHelper::LegalizeResult
670 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
671   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
672   unsigned Size = LLTy.getSizeInBits();
673   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
674 
675   switch (MI.getOpcode()) {
676   default:
677     return UnableToLegalize;
678   case TargetOpcode::G_SDIV:
679   case TargetOpcode::G_UDIV:
680   case TargetOpcode::G_SREM:
681   case TargetOpcode::G_UREM:
682   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
683     Type *HLTy = IntegerType::get(Ctx, Size);
684     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
685     if (Status != Legalized)
686       return Status;
687     break;
688   }
689   case TargetOpcode::G_FADD:
690   case TargetOpcode::G_FSUB:
691   case TargetOpcode::G_FMUL:
692   case TargetOpcode::G_FDIV:
693   case TargetOpcode::G_FMA:
694   case TargetOpcode::G_FPOW:
695   case TargetOpcode::G_FREM:
696   case TargetOpcode::G_FCOS:
697   case TargetOpcode::G_FSIN:
698   case TargetOpcode::G_FLOG10:
699   case TargetOpcode::G_FLOG:
700   case TargetOpcode::G_FLOG2:
701   case TargetOpcode::G_FEXP:
702   case TargetOpcode::G_FEXP2:
703   case TargetOpcode::G_FCEIL:
704   case TargetOpcode::G_FFLOOR:
705   case TargetOpcode::G_FMINNUM:
706   case TargetOpcode::G_FMAXNUM:
707   case TargetOpcode::G_FSQRT:
708   case TargetOpcode::G_FRINT:
709   case TargetOpcode::G_FNEARBYINT:
710   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
711     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
712     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
713       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
714       return UnableToLegalize;
715     }
716     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPEXT:
722   case TargetOpcode::G_FPTRUNC: {
723     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
724     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
725     if (!FromTy || !ToTy)
726       return UnableToLegalize;
727     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
728     if (Status != Legalized)
729       return Status;
730     break;
731   }
732   case TargetOpcode::G_FPTOSI:
733   case TargetOpcode::G_FPTOUI: {
734     // FIXME: Support other types
735     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
736     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
737     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
738       return UnableToLegalize;
739     LegalizeResult Status = conversionLibcall(
740         MI, MIRBuilder,
741         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
742         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
743     if (Status != Legalized)
744       return Status;
745     break;
746   }
747   case TargetOpcode::G_SITOFP:
748   case TargetOpcode::G_UITOFP: {
749     // FIXME: Support other types
750     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
751     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
752     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
753       return UnableToLegalize;
754     LegalizeResult Status = conversionLibcall(
755         MI, MIRBuilder,
756         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
757         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
758     if (Status != Legalized)
759       return Status;
760     break;
761   }
762   case TargetOpcode::G_BZERO:
763   case TargetOpcode::G_MEMCPY:
764   case TargetOpcode::G_MEMMOVE:
765   case TargetOpcode::G_MEMSET: {
766     LegalizeResult Result =
767         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
768     if (Result != Legalized)
769       return Result;
770     MI.eraseFromParent();
771     return Result;
772   }
773   }
774 
775   MI.eraseFromParent();
776   return Legalized;
777 }
778 
779 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
780                                                               unsigned TypeIdx,
781                                                               LLT NarrowTy) {
782   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
783   uint64_t NarrowSize = NarrowTy.getSizeInBits();
784 
785   switch (MI.getOpcode()) {
786   default:
787     return UnableToLegalize;
788   case TargetOpcode::G_IMPLICIT_DEF: {
789     Register DstReg = MI.getOperand(0).getReg();
790     LLT DstTy = MRI.getType(DstReg);
791 
792     // If SizeOp0 is not an exact multiple of NarrowSize, emit
793     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
794     // FIXME: Although this would also be legal for the general case, it causes
795     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
796     //  combines not being hit). This seems to be a problem related to the
797     //  artifact combiner.
798     if (SizeOp0 % NarrowSize != 0) {
799       LLT ImplicitTy = NarrowTy;
800       if (DstTy.isVector())
801         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
802 
803       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
804       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
805 
806       MI.eraseFromParent();
807       return Legalized;
808     }
809 
810     int NumParts = SizeOp0 / NarrowSize;
811 
812     SmallVector<Register, 2> DstRegs;
813     for (int i = 0; i < NumParts; ++i)
814       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
815 
816     if (DstTy.isVector())
817       MIRBuilder.buildBuildVector(DstReg, DstRegs);
818     else
819       MIRBuilder.buildMerge(DstReg, DstRegs);
820     MI.eraseFromParent();
821     return Legalized;
822   }
823   case TargetOpcode::G_CONSTANT: {
824     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
825     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
826     unsigned TotalSize = Ty.getSizeInBits();
827     unsigned NarrowSize = NarrowTy.getSizeInBits();
828     int NumParts = TotalSize / NarrowSize;
829 
830     SmallVector<Register, 4> PartRegs;
831     for (int I = 0; I != NumParts; ++I) {
832       unsigned Offset = I * NarrowSize;
833       auto K = MIRBuilder.buildConstant(NarrowTy,
834                                         Val.lshr(Offset).trunc(NarrowSize));
835       PartRegs.push_back(K.getReg(0));
836     }
837 
838     LLT LeftoverTy;
839     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
840     SmallVector<Register, 1> LeftoverRegs;
841     if (LeftoverBits != 0) {
842       LeftoverTy = LLT::scalar(LeftoverBits);
843       auto K = MIRBuilder.buildConstant(
844         LeftoverTy,
845         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
846       LeftoverRegs.push_back(K.getReg(0));
847     }
848 
849     insertParts(MI.getOperand(0).getReg(),
850                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
851 
852     MI.eraseFromParent();
853     return Legalized;
854   }
855   case TargetOpcode::G_SEXT:
856   case TargetOpcode::G_ZEXT:
857   case TargetOpcode::G_ANYEXT:
858     return narrowScalarExt(MI, TypeIdx, NarrowTy);
859   case TargetOpcode::G_TRUNC: {
860     if (TypeIdx != 1)
861       return UnableToLegalize;
862 
863     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
864     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
865       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
866       return UnableToLegalize;
867     }
868 
869     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
870     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
871     MI.eraseFromParent();
872     return Legalized;
873   }
874 
875   case TargetOpcode::G_FREEZE:
876     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
877   case TargetOpcode::G_ADD:
878   case TargetOpcode::G_SUB:
879   case TargetOpcode::G_SADDO:
880   case TargetOpcode::G_SSUBO:
881   case TargetOpcode::G_SADDE:
882   case TargetOpcode::G_SSUBE:
883   case TargetOpcode::G_UADDO:
884   case TargetOpcode::G_USUBO:
885   case TargetOpcode::G_UADDE:
886   case TargetOpcode::G_USUBE:
887     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
888   case TargetOpcode::G_MUL:
889   case TargetOpcode::G_UMULH:
890     return narrowScalarMul(MI, NarrowTy);
891   case TargetOpcode::G_EXTRACT:
892     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
893   case TargetOpcode::G_INSERT:
894     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
895   case TargetOpcode::G_LOAD: {
896     auto &LoadMI = cast<GLoad>(MI);
897     Register DstReg = LoadMI.getDstReg();
898     LLT DstTy = MRI.getType(DstReg);
899     if (DstTy.isVector())
900       return UnableToLegalize;
901 
902     if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
903       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
904       MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
905       MIRBuilder.buildAnyExt(DstReg, TmpReg);
906       LoadMI.eraseFromParent();
907       return Legalized;
908     }
909 
910     return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
911   }
912   case TargetOpcode::G_ZEXTLOAD:
913   case TargetOpcode::G_SEXTLOAD: {
914     auto &LoadMI = cast<GExtLoad>(MI);
915     Register DstReg = LoadMI.getDstReg();
916     Register PtrReg = LoadMI.getPointerReg();
917 
918     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
919     auto &MMO = LoadMI.getMMO();
920     unsigned MemSize = MMO.getSizeInBits();
921 
922     if (MemSize == NarrowSize) {
923       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
924     } else if (MemSize < NarrowSize) {
925       MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
926     } else if (MemSize > NarrowSize) {
927       // FIXME: Need to split the load.
928       return UnableToLegalize;
929     }
930 
931     if (isa<GZExtLoad>(LoadMI))
932       MIRBuilder.buildZExt(DstReg, TmpReg);
933     else
934       MIRBuilder.buildSExt(DstReg, TmpReg);
935 
936     LoadMI.eraseFromParent();
937     return Legalized;
938   }
939   case TargetOpcode::G_STORE: {
940     auto &StoreMI = cast<GStore>(MI);
941 
942     Register SrcReg = StoreMI.getValueReg();
943     LLT SrcTy = MRI.getType(SrcReg);
944     if (SrcTy.isVector())
945       return UnableToLegalize;
946 
947     int NumParts = SizeOp0 / NarrowSize;
948     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
949     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
950     if (SrcTy.isVector() && LeftoverBits != 0)
951       return UnableToLegalize;
952 
953     if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
954       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
955       MIRBuilder.buildTrunc(TmpReg, SrcReg);
956       MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
957       StoreMI.eraseFromParent();
958       return Legalized;
959     }
960 
961     return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
962   }
963   case TargetOpcode::G_SELECT:
964     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
965   case TargetOpcode::G_AND:
966   case TargetOpcode::G_OR:
967   case TargetOpcode::G_XOR: {
968     // Legalize bitwise operation:
969     // A = BinOp<Ty> B, C
970     // into:
971     // B1, ..., BN = G_UNMERGE_VALUES B
972     // C1, ..., CN = G_UNMERGE_VALUES C
973     // A1 = BinOp<Ty/N> B1, C2
974     // ...
975     // AN = BinOp<Ty/N> BN, CN
976     // A = G_MERGE_VALUES A1, ..., AN
977     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
978   }
979   case TargetOpcode::G_SHL:
980   case TargetOpcode::G_LSHR:
981   case TargetOpcode::G_ASHR:
982     return narrowScalarShift(MI, TypeIdx, NarrowTy);
983   case TargetOpcode::G_CTLZ:
984   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
985   case TargetOpcode::G_CTTZ:
986   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
987   case TargetOpcode::G_CTPOP:
988     if (TypeIdx == 1)
989       switch (MI.getOpcode()) {
990       case TargetOpcode::G_CTLZ:
991       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
992         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
993       case TargetOpcode::G_CTTZ:
994       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
995         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
996       case TargetOpcode::G_CTPOP:
997         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
998       default:
999         return UnableToLegalize;
1000       }
1001 
1002     Observer.changingInstr(MI);
1003     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1004     Observer.changedInstr(MI);
1005     return Legalized;
1006   case TargetOpcode::G_INTTOPTR:
1007     if (TypeIdx != 1)
1008       return UnableToLegalize;
1009 
1010     Observer.changingInstr(MI);
1011     narrowScalarSrc(MI, NarrowTy, 1);
1012     Observer.changedInstr(MI);
1013     return Legalized;
1014   case TargetOpcode::G_PTRTOINT:
1015     if (TypeIdx != 0)
1016       return UnableToLegalize;
1017 
1018     Observer.changingInstr(MI);
1019     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1020     Observer.changedInstr(MI);
1021     return Legalized;
1022   case TargetOpcode::G_PHI: {
1023     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1024     // NarrowSize.
1025     if (SizeOp0 % NarrowSize != 0)
1026       return UnableToLegalize;
1027 
1028     unsigned NumParts = SizeOp0 / NarrowSize;
1029     SmallVector<Register, 2> DstRegs(NumParts);
1030     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1031     Observer.changingInstr(MI);
1032     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1033       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1034       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1035       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1036                    SrcRegs[i / 2]);
1037     }
1038     MachineBasicBlock &MBB = *MI.getParent();
1039     MIRBuilder.setInsertPt(MBB, MI);
1040     for (unsigned i = 0; i < NumParts; ++i) {
1041       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1042       MachineInstrBuilder MIB =
1043           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1044       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1045         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1046     }
1047     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1048     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1049     Observer.changedInstr(MI);
1050     MI.eraseFromParent();
1051     return Legalized;
1052   }
1053   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1054   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1055     if (TypeIdx != 2)
1056       return UnableToLegalize;
1057 
1058     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1059     Observer.changingInstr(MI);
1060     narrowScalarSrc(MI, NarrowTy, OpIdx);
1061     Observer.changedInstr(MI);
1062     return Legalized;
1063   }
1064   case TargetOpcode::G_ICMP: {
1065     Register LHS = MI.getOperand(2).getReg();
1066     LLT SrcTy = MRI.getType(LHS);
1067     uint64_t SrcSize = SrcTy.getSizeInBits();
1068     CmpInst::Predicate Pred =
1069         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1070 
1071     // TODO: Handle the non-equality case for weird sizes.
1072     if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1073       return UnableToLegalize;
1074 
1075     LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1076     SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1077     if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1078                       LHSLeftoverRegs))
1079       return UnableToLegalize;
1080 
1081     LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1082     SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1083     if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1084                       RHSPartRegs, RHSLeftoverRegs))
1085       return UnableToLegalize;
1086 
1087     // We now have the LHS and RHS of the compare split into narrow-type
1088     // registers, plus potentially some leftover type.
1089     Register Dst = MI.getOperand(0).getReg();
1090     LLT ResTy = MRI.getType(Dst);
1091     if (ICmpInst::isEquality(Pred)) {
1092       // For each part on the LHS and RHS, keep track of the result of XOR-ing
1093       // them together. For each equal part, the result should be all 0s. For
1094       // each non-equal part, we'll get at least one 1.
1095       auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1096       SmallVector<Register, 4> Xors;
1097       for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1098         auto LHS = std::get<0>(LHSAndRHS);
1099         auto RHS = std::get<1>(LHSAndRHS);
1100         auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1101         Xors.push_back(Xor);
1102       }
1103 
1104       // Build a G_XOR for each leftover register. Each G_XOR must be widened
1105       // to the desired narrow type so that we can OR them together later.
1106       SmallVector<Register, 4> WidenedXors;
1107       for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1108         auto LHS = std::get<0>(LHSAndRHS);
1109         auto RHS = std::get<1>(LHSAndRHS);
1110         auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1111         LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1112         buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1113                             /* PadStrategy = */ TargetOpcode::G_ZEXT);
1114         Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1115       }
1116 
1117       // Now, for each part we broke up, we know if they are equal/not equal
1118       // based off the G_XOR. We can OR these all together and compare against
1119       // 0 to get the result.
1120       assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1121       auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1122       for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1123         Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1124       MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1125     } else {
1126       // TODO: Handle non-power-of-two types.
1127       assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1128       assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1129       Register LHSL = LHSPartRegs[0];
1130       Register LHSH = LHSPartRegs[1];
1131       Register RHSL = RHSPartRegs[0];
1132       Register RHSH = RHSPartRegs[1];
1133       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1134       MachineInstrBuilder CmpHEQ =
1135           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1136       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1137           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1138       MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1139     }
1140     MI.eraseFromParent();
1141     return Legalized;
1142   }
1143   case TargetOpcode::G_SEXT_INREG: {
1144     if (TypeIdx != 0)
1145       return UnableToLegalize;
1146 
1147     int64_t SizeInBits = MI.getOperand(2).getImm();
1148 
1149     // So long as the new type has more bits than the bits we're extending we
1150     // don't need to break it apart.
1151     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1152       Observer.changingInstr(MI);
1153       // We don't lose any non-extension bits by truncating the src and
1154       // sign-extending the dst.
1155       MachineOperand &MO1 = MI.getOperand(1);
1156       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1157       MO1.setReg(TruncMIB.getReg(0));
1158 
1159       MachineOperand &MO2 = MI.getOperand(0);
1160       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1161       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1162       MIRBuilder.buildSExt(MO2, DstExt);
1163       MO2.setReg(DstExt);
1164       Observer.changedInstr(MI);
1165       return Legalized;
1166     }
1167 
1168     // Break it apart. Components below the extension point are unmodified. The
1169     // component containing the extension point becomes a narrower SEXT_INREG.
1170     // Components above it are ashr'd from the component containing the
1171     // extension point.
1172     if (SizeOp0 % NarrowSize != 0)
1173       return UnableToLegalize;
1174     int NumParts = SizeOp0 / NarrowSize;
1175 
1176     // List the registers where the destination will be scattered.
1177     SmallVector<Register, 2> DstRegs;
1178     // List the registers where the source will be split.
1179     SmallVector<Register, 2> SrcRegs;
1180 
1181     // Create all the temporary registers.
1182     for (int i = 0; i < NumParts; ++i) {
1183       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1184 
1185       SrcRegs.push_back(SrcReg);
1186     }
1187 
1188     // Explode the big arguments into smaller chunks.
1189     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1190 
1191     Register AshrCstReg =
1192         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1193             .getReg(0);
1194     Register FullExtensionReg = 0;
1195     Register PartialExtensionReg = 0;
1196 
1197     // Do the operation on each small part.
1198     for (int i = 0; i < NumParts; ++i) {
1199       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1200         DstRegs.push_back(SrcRegs[i]);
1201       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1202         assert(PartialExtensionReg &&
1203                "Expected to visit partial extension before full");
1204         if (FullExtensionReg) {
1205           DstRegs.push_back(FullExtensionReg);
1206           continue;
1207         }
1208         DstRegs.push_back(
1209             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1210                 .getReg(0));
1211         FullExtensionReg = DstRegs.back();
1212       } else {
1213         DstRegs.push_back(
1214             MIRBuilder
1215                 .buildInstr(
1216                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1217                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1218                 .getReg(0));
1219         PartialExtensionReg = DstRegs.back();
1220       }
1221     }
1222 
1223     // Gather the destination registers into the final destination.
1224     Register DstReg = MI.getOperand(0).getReg();
1225     MIRBuilder.buildMerge(DstReg, DstRegs);
1226     MI.eraseFromParent();
1227     return Legalized;
1228   }
1229   case TargetOpcode::G_BSWAP:
1230   case TargetOpcode::G_BITREVERSE: {
1231     if (SizeOp0 % NarrowSize != 0)
1232       return UnableToLegalize;
1233 
1234     Observer.changingInstr(MI);
1235     SmallVector<Register, 2> SrcRegs, DstRegs;
1236     unsigned NumParts = SizeOp0 / NarrowSize;
1237     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1238 
1239     for (unsigned i = 0; i < NumParts; ++i) {
1240       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1241                                            {SrcRegs[NumParts - 1 - i]});
1242       DstRegs.push_back(DstPart.getReg(0));
1243     }
1244 
1245     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1246 
1247     Observer.changedInstr(MI);
1248     MI.eraseFromParent();
1249     return Legalized;
1250   }
1251   case TargetOpcode::G_PTR_ADD:
1252   case TargetOpcode::G_PTRMASK: {
1253     if (TypeIdx != 1)
1254       return UnableToLegalize;
1255     Observer.changingInstr(MI);
1256     narrowScalarSrc(MI, NarrowTy, 2);
1257     Observer.changedInstr(MI);
1258     return Legalized;
1259   }
1260   case TargetOpcode::G_FPTOUI:
1261   case TargetOpcode::G_FPTOSI:
1262     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1263   case TargetOpcode::G_FPEXT:
1264     if (TypeIdx != 0)
1265       return UnableToLegalize;
1266     Observer.changingInstr(MI);
1267     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1268     Observer.changedInstr(MI);
1269     return Legalized;
1270   }
1271 }
1272 
1273 Register LegalizerHelper::coerceToScalar(Register Val) {
1274   LLT Ty = MRI.getType(Val);
1275   if (Ty.isScalar())
1276     return Val;
1277 
1278   const DataLayout &DL = MIRBuilder.getDataLayout();
1279   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1280   if (Ty.isPointer()) {
1281     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1282       return Register();
1283     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1284   }
1285 
1286   Register NewVal = Val;
1287 
1288   assert(Ty.isVector());
1289   LLT EltTy = Ty.getElementType();
1290   if (EltTy.isPointer())
1291     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1292   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1293 }
1294 
1295 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1296                                      unsigned OpIdx, unsigned ExtOpcode) {
1297   MachineOperand &MO = MI.getOperand(OpIdx);
1298   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1299   MO.setReg(ExtB.getReg(0));
1300 }
1301 
1302 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1303                                       unsigned OpIdx) {
1304   MachineOperand &MO = MI.getOperand(OpIdx);
1305   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1306   MO.setReg(ExtB.getReg(0));
1307 }
1308 
1309 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1310                                      unsigned OpIdx, unsigned TruncOpcode) {
1311   MachineOperand &MO = MI.getOperand(OpIdx);
1312   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1313   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1314   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1315   MO.setReg(DstExt);
1316 }
1317 
1318 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1319                                       unsigned OpIdx, unsigned ExtOpcode) {
1320   MachineOperand &MO = MI.getOperand(OpIdx);
1321   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1322   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1323   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1324   MO.setReg(DstTrunc);
1325 }
1326 
1327 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1328                                             unsigned OpIdx) {
1329   MachineOperand &MO = MI.getOperand(OpIdx);
1330   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1331   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1332 }
1333 
1334 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1335                                             unsigned OpIdx) {
1336   MachineOperand &MO = MI.getOperand(OpIdx);
1337 
1338   LLT OldTy = MRI.getType(MO.getReg());
1339   unsigned OldElts = OldTy.getNumElements();
1340   unsigned NewElts = MoreTy.getNumElements();
1341 
1342   unsigned NumParts = NewElts / OldElts;
1343 
1344   // Use concat_vectors if the result is a multiple of the number of elements.
1345   if (NumParts * OldElts == NewElts) {
1346     SmallVector<Register, 8> Parts;
1347     Parts.push_back(MO.getReg());
1348 
1349     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1350     for (unsigned I = 1; I != NumParts; ++I)
1351       Parts.push_back(ImpDef);
1352 
1353     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1354     MO.setReg(Concat.getReg(0));
1355     return;
1356   }
1357 
1358   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1359   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1360   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1361   MO.setReg(MoreReg);
1362 }
1363 
1364 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1365   MachineOperand &Op = MI.getOperand(OpIdx);
1366   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1367 }
1368 
1369 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1370   MachineOperand &MO = MI.getOperand(OpIdx);
1371   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1372   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1373   MIRBuilder.buildBitcast(MO, CastDst);
1374   MO.setReg(CastDst);
1375 }
1376 
1377 LegalizerHelper::LegalizeResult
1378 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1379                                         LLT WideTy) {
1380   if (TypeIdx != 1)
1381     return UnableToLegalize;
1382 
1383   Register DstReg = MI.getOperand(0).getReg();
1384   LLT DstTy = MRI.getType(DstReg);
1385   if (DstTy.isVector())
1386     return UnableToLegalize;
1387 
1388   Register Src1 = MI.getOperand(1).getReg();
1389   LLT SrcTy = MRI.getType(Src1);
1390   const int DstSize = DstTy.getSizeInBits();
1391   const int SrcSize = SrcTy.getSizeInBits();
1392   const int WideSize = WideTy.getSizeInBits();
1393   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1394 
1395   unsigned NumOps = MI.getNumOperands();
1396   unsigned NumSrc = MI.getNumOperands() - 1;
1397   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1398 
1399   if (WideSize >= DstSize) {
1400     // Directly pack the bits in the target type.
1401     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1402 
1403     for (unsigned I = 2; I != NumOps; ++I) {
1404       const unsigned Offset = (I - 1) * PartSize;
1405 
1406       Register SrcReg = MI.getOperand(I).getReg();
1407       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1408 
1409       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1410 
1411       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1412         MRI.createGenericVirtualRegister(WideTy);
1413 
1414       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1415       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1416       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1417       ResultReg = NextResult;
1418     }
1419 
1420     if (WideSize > DstSize)
1421       MIRBuilder.buildTrunc(DstReg, ResultReg);
1422     else if (DstTy.isPointer())
1423       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1424 
1425     MI.eraseFromParent();
1426     return Legalized;
1427   }
1428 
1429   // Unmerge the original values to the GCD type, and recombine to the next
1430   // multiple greater than the original type.
1431   //
1432   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1433   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1434   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1435   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1436   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1437   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1438   // %12:_(s12) = G_MERGE_VALUES %10, %11
1439   //
1440   // Padding with undef if necessary:
1441   //
1442   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1443   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1444   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1445   // %7:_(s2) = G_IMPLICIT_DEF
1446   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1447   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1448   // %10:_(s12) = G_MERGE_VALUES %8, %9
1449 
1450   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1451   LLT GCDTy = LLT::scalar(GCD);
1452 
1453   SmallVector<Register, 8> Parts;
1454   SmallVector<Register, 8> NewMergeRegs;
1455   SmallVector<Register, 8> Unmerges;
1456   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1457 
1458   // Decompose the original operands if they don't evenly divide.
1459   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1460     Register SrcReg = MI.getOperand(I).getReg();
1461     if (GCD == SrcSize) {
1462       Unmerges.push_back(SrcReg);
1463     } else {
1464       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1465       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1466         Unmerges.push_back(Unmerge.getReg(J));
1467     }
1468   }
1469 
1470   // Pad with undef to the next size that is a multiple of the requested size.
1471   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1472     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1473     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1474       Unmerges.push_back(UndefReg);
1475   }
1476 
1477   const int PartsPerGCD = WideSize / GCD;
1478 
1479   // Build merges of each piece.
1480   ArrayRef<Register> Slicer(Unmerges);
1481   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1482     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1483     NewMergeRegs.push_back(Merge.getReg(0));
1484   }
1485 
1486   // A truncate may be necessary if the requested type doesn't evenly divide the
1487   // original result type.
1488   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1489     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1490   } else {
1491     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1492     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1493   }
1494 
1495   MI.eraseFromParent();
1496   return Legalized;
1497 }
1498 
1499 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1500   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1501   LLT OrigTy = MRI.getType(OrigReg);
1502   LLT LCMTy = getLCMType(WideTy, OrigTy);
1503 
1504   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1505   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1506 
1507   Register UnmergeSrc = WideReg;
1508 
1509   // Create a merge to the LCM type, padding with undef
1510   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1511   // =>
1512   // %1:_(<4 x s32>) = G_FOO
1513   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1514   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1515   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1516   if (NumMergeParts > 1) {
1517     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1518     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1519     MergeParts[0] = WideReg;
1520     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1521   }
1522 
1523   // Unmerge to the original register and pad with dead defs.
1524   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1525   UnmergeResults[0] = OrigReg;
1526   for (int I = 1; I != NumUnmergeParts; ++I)
1527     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1528 
1529   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1530   return WideReg;
1531 }
1532 
1533 LegalizerHelper::LegalizeResult
1534 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1535                                           LLT WideTy) {
1536   if (TypeIdx != 0)
1537     return UnableToLegalize;
1538 
1539   int NumDst = MI.getNumOperands() - 1;
1540   Register SrcReg = MI.getOperand(NumDst).getReg();
1541   LLT SrcTy = MRI.getType(SrcReg);
1542   if (SrcTy.isVector())
1543     return UnableToLegalize;
1544 
1545   Register Dst0Reg = MI.getOperand(0).getReg();
1546   LLT DstTy = MRI.getType(Dst0Reg);
1547   if (!DstTy.isScalar())
1548     return UnableToLegalize;
1549 
1550   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1551     if (SrcTy.isPointer()) {
1552       const DataLayout &DL = MIRBuilder.getDataLayout();
1553       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1554         LLVM_DEBUG(
1555             dbgs() << "Not casting non-integral address space integer\n");
1556         return UnableToLegalize;
1557       }
1558 
1559       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1560       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1561     }
1562 
1563     // Widen SrcTy to WideTy. This does not affect the result, but since the
1564     // user requested this size, it is probably better handled than SrcTy and
1565     // should reduce the total number of legalization artifacts
1566     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1567       SrcTy = WideTy;
1568       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1569     }
1570 
1571     // Theres no unmerge type to target. Directly extract the bits from the
1572     // source type
1573     unsigned DstSize = DstTy.getSizeInBits();
1574 
1575     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1576     for (int I = 1; I != NumDst; ++I) {
1577       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1578       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1579       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1580     }
1581 
1582     MI.eraseFromParent();
1583     return Legalized;
1584   }
1585 
1586   // Extend the source to a wider type.
1587   LLT LCMTy = getLCMType(SrcTy, WideTy);
1588 
1589   Register WideSrc = SrcReg;
1590   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1591     // TODO: If this is an integral address space, cast to integer and anyext.
1592     if (SrcTy.isPointer()) {
1593       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1594       return UnableToLegalize;
1595     }
1596 
1597     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1598   }
1599 
1600   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1601 
1602   // Create a sequence of unmerges and merges to the original results. Since we
1603   // may have widened the source, we will need to pad the results with dead defs
1604   // to cover the source register.
1605   // e.g. widen s48 to s64:
1606   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1607   //
1608   // =>
1609   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1610   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1611   //  ; unpack to GCD type, with extra dead defs
1612   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1613   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1614   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1615   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1616   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1617   const LLT GCDTy = getGCDType(WideTy, DstTy);
1618   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1619   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1620 
1621   // Directly unmerge to the destination without going through a GCD type
1622   // if possible
1623   if (PartsPerRemerge == 1) {
1624     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1625 
1626     for (int I = 0; I != NumUnmerge; ++I) {
1627       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1628 
1629       for (int J = 0; J != PartsPerUnmerge; ++J) {
1630         int Idx = I * PartsPerUnmerge + J;
1631         if (Idx < NumDst)
1632           MIB.addDef(MI.getOperand(Idx).getReg());
1633         else {
1634           // Create dead def for excess components.
1635           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1636         }
1637       }
1638 
1639       MIB.addUse(Unmerge.getReg(I));
1640     }
1641   } else {
1642     SmallVector<Register, 16> Parts;
1643     for (int J = 0; J != NumUnmerge; ++J)
1644       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1645 
1646     SmallVector<Register, 8> RemergeParts;
1647     for (int I = 0; I != NumDst; ++I) {
1648       for (int J = 0; J < PartsPerRemerge; ++J) {
1649         const int Idx = I * PartsPerRemerge + J;
1650         RemergeParts.emplace_back(Parts[Idx]);
1651       }
1652 
1653       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1654       RemergeParts.clear();
1655     }
1656   }
1657 
1658   MI.eraseFromParent();
1659   return Legalized;
1660 }
1661 
1662 LegalizerHelper::LegalizeResult
1663 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1664                                     LLT WideTy) {
1665   Register DstReg = MI.getOperand(0).getReg();
1666   Register SrcReg = MI.getOperand(1).getReg();
1667   LLT SrcTy = MRI.getType(SrcReg);
1668 
1669   LLT DstTy = MRI.getType(DstReg);
1670   unsigned Offset = MI.getOperand(2).getImm();
1671 
1672   if (TypeIdx == 0) {
1673     if (SrcTy.isVector() || DstTy.isVector())
1674       return UnableToLegalize;
1675 
1676     SrcOp Src(SrcReg);
1677     if (SrcTy.isPointer()) {
1678       // Extracts from pointers can be handled only if they are really just
1679       // simple integers.
1680       const DataLayout &DL = MIRBuilder.getDataLayout();
1681       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1682         return UnableToLegalize;
1683 
1684       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1685       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1686       SrcTy = SrcAsIntTy;
1687     }
1688 
1689     if (DstTy.isPointer())
1690       return UnableToLegalize;
1691 
1692     if (Offset == 0) {
1693       // Avoid a shift in the degenerate case.
1694       MIRBuilder.buildTrunc(DstReg,
1695                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1696       MI.eraseFromParent();
1697       return Legalized;
1698     }
1699 
1700     // Do a shift in the source type.
1701     LLT ShiftTy = SrcTy;
1702     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1703       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1704       ShiftTy = WideTy;
1705     }
1706 
1707     auto LShr = MIRBuilder.buildLShr(
1708       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1709     MIRBuilder.buildTrunc(DstReg, LShr);
1710     MI.eraseFromParent();
1711     return Legalized;
1712   }
1713 
1714   if (SrcTy.isScalar()) {
1715     Observer.changingInstr(MI);
1716     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1717     Observer.changedInstr(MI);
1718     return Legalized;
1719   }
1720 
1721   if (!SrcTy.isVector())
1722     return UnableToLegalize;
1723 
1724   if (DstTy != SrcTy.getElementType())
1725     return UnableToLegalize;
1726 
1727   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1728     return UnableToLegalize;
1729 
1730   Observer.changingInstr(MI);
1731   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1732 
1733   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1734                           Offset);
1735   widenScalarDst(MI, WideTy.getScalarType(), 0);
1736   Observer.changedInstr(MI);
1737   return Legalized;
1738 }
1739 
1740 LegalizerHelper::LegalizeResult
1741 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1742                                    LLT WideTy) {
1743   if (TypeIdx != 0 || WideTy.isVector())
1744     return UnableToLegalize;
1745   Observer.changingInstr(MI);
1746   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1747   widenScalarDst(MI, WideTy);
1748   Observer.changedInstr(MI);
1749   return Legalized;
1750 }
1751 
1752 LegalizerHelper::LegalizeResult
1753 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1754                                            LLT WideTy) {
1755   if (TypeIdx == 1)
1756     return UnableToLegalize; // TODO
1757 
1758   unsigned Opcode;
1759   unsigned ExtOpcode;
1760   Optional<Register> CarryIn = None;
1761   switch (MI.getOpcode()) {
1762   default:
1763     llvm_unreachable("Unexpected opcode!");
1764   case TargetOpcode::G_SADDO:
1765     Opcode = TargetOpcode::G_ADD;
1766     ExtOpcode = TargetOpcode::G_SEXT;
1767     break;
1768   case TargetOpcode::G_SSUBO:
1769     Opcode = TargetOpcode::G_SUB;
1770     ExtOpcode = TargetOpcode::G_SEXT;
1771     break;
1772   case TargetOpcode::G_UADDO:
1773     Opcode = TargetOpcode::G_ADD;
1774     ExtOpcode = TargetOpcode::G_ZEXT;
1775     break;
1776   case TargetOpcode::G_USUBO:
1777     Opcode = TargetOpcode::G_SUB;
1778     ExtOpcode = TargetOpcode::G_ZEXT;
1779     break;
1780   case TargetOpcode::G_SADDE:
1781     Opcode = TargetOpcode::G_UADDE;
1782     ExtOpcode = TargetOpcode::G_SEXT;
1783     CarryIn = MI.getOperand(4).getReg();
1784     break;
1785   case TargetOpcode::G_SSUBE:
1786     Opcode = TargetOpcode::G_USUBE;
1787     ExtOpcode = TargetOpcode::G_SEXT;
1788     CarryIn = MI.getOperand(4).getReg();
1789     break;
1790   case TargetOpcode::G_UADDE:
1791     Opcode = TargetOpcode::G_UADDE;
1792     ExtOpcode = TargetOpcode::G_ZEXT;
1793     CarryIn = MI.getOperand(4).getReg();
1794     break;
1795   case TargetOpcode::G_USUBE:
1796     Opcode = TargetOpcode::G_USUBE;
1797     ExtOpcode = TargetOpcode::G_ZEXT;
1798     CarryIn = MI.getOperand(4).getReg();
1799     break;
1800   }
1801 
1802   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1803   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1804   // Do the arithmetic in the larger type.
1805   Register NewOp;
1806   if (CarryIn) {
1807     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1808     NewOp = MIRBuilder
1809                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1810                             {LHSExt, RHSExt, *CarryIn})
1811                 .getReg(0);
1812   } else {
1813     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1814   }
1815   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1816   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1817   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1818   // There is no overflow if the ExtOp is the same as NewOp.
1819   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1820   // Now trunc the NewOp to the original result.
1821   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1822   MI.eraseFromParent();
1823   return Legalized;
1824 }
1825 
1826 LegalizerHelper::LegalizeResult
1827 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1828                                          LLT WideTy) {
1829   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1830                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1831                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1832   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1833                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1834   // We can convert this to:
1835   //   1. Any extend iN to iM
1836   //   2. SHL by M-N
1837   //   3. [US][ADD|SUB|SHL]SAT
1838   //   4. L/ASHR by M-N
1839   //
1840   // It may be more efficient to lower this to a min and a max operation in
1841   // the higher precision arithmetic if the promoted operation isn't legal,
1842   // but this decision is up to the target's lowering request.
1843   Register DstReg = MI.getOperand(0).getReg();
1844 
1845   unsigned NewBits = WideTy.getScalarSizeInBits();
1846   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1847 
1848   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1849   // must not left shift the RHS to preserve the shift amount.
1850   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1851   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1852                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1853   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1854   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1855   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1856 
1857   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1858                                         {ShiftL, ShiftR}, MI.getFlags());
1859 
1860   // Use a shift that will preserve the number of sign bits when the trunc is
1861   // folded away.
1862   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1863                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1864 
1865   MIRBuilder.buildTrunc(DstReg, Result);
1866   MI.eraseFromParent();
1867   return Legalized;
1868 }
1869 
1870 LegalizerHelper::LegalizeResult
1871 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1872                                  LLT WideTy) {
1873   if (TypeIdx == 1)
1874     return UnableToLegalize;
1875 
1876   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1877   Register Result = MI.getOperand(0).getReg();
1878   Register OriginalOverflow = MI.getOperand(1).getReg();
1879   Register LHS = MI.getOperand(2).getReg();
1880   Register RHS = MI.getOperand(3).getReg();
1881   LLT SrcTy = MRI.getType(LHS);
1882   LLT OverflowTy = MRI.getType(OriginalOverflow);
1883   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1884 
1885   // To determine if the result overflowed in the larger type, we extend the
1886   // input to the larger type, do the multiply (checking if it overflows),
1887   // then also check the high bits of the result to see if overflow happened
1888   // there.
1889   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1890   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1891   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1892 
1893   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1894                                     {LeftOperand, RightOperand});
1895   auto Mul = Mulo->getOperand(0);
1896   MIRBuilder.buildTrunc(Result, Mul);
1897 
1898   MachineInstrBuilder ExtResult;
1899   // Overflow occurred if it occurred in the larger type, or if the high part
1900   // of the result does not zero/sign-extend the low part.  Check this second
1901   // possibility first.
1902   if (IsSigned) {
1903     // For signed, overflow occurred when the high part does not sign-extend
1904     // the low part.
1905     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1906   } else {
1907     // Unsigned overflow occurred when the high part does not zero-extend the
1908     // low part.
1909     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1910   }
1911 
1912   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1913   // so we don't need to check the overflow result of larger type Mulo.
1914   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1915     auto Overflow =
1916         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1917     // Finally check if the multiplication in the larger type itself overflowed.
1918     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1919   } else {
1920     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1921   }
1922   MI.eraseFromParent();
1923   return Legalized;
1924 }
1925 
1926 LegalizerHelper::LegalizeResult
1927 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1928   switch (MI.getOpcode()) {
1929   default:
1930     return UnableToLegalize;
1931   case TargetOpcode::G_EXTRACT:
1932     return widenScalarExtract(MI, TypeIdx, WideTy);
1933   case TargetOpcode::G_INSERT:
1934     return widenScalarInsert(MI, TypeIdx, WideTy);
1935   case TargetOpcode::G_MERGE_VALUES:
1936     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1937   case TargetOpcode::G_UNMERGE_VALUES:
1938     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1939   case TargetOpcode::G_SADDO:
1940   case TargetOpcode::G_SSUBO:
1941   case TargetOpcode::G_UADDO:
1942   case TargetOpcode::G_USUBO:
1943   case TargetOpcode::G_SADDE:
1944   case TargetOpcode::G_SSUBE:
1945   case TargetOpcode::G_UADDE:
1946   case TargetOpcode::G_USUBE:
1947     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1948   case TargetOpcode::G_UMULO:
1949   case TargetOpcode::G_SMULO:
1950     return widenScalarMulo(MI, TypeIdx, WideTy);
1951   case TargetOpcode::G_SADDSAT:
1952   case TargetOpcode::G_SSUBSAT:
1953   case TargetOpcode::G_SSHLSAT:
1954   case TargetOpcode::G_UADDSAT:
1955   case TargetOpcode::G_USUBSAT:
1956   case TargetOpcode::G_USHLSAT:
1957     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1958   case TargetOpcode::G_CTTZ:
1959   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1960   case TargetOpcode::G_CTLZ:
1961   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1962   case TargetOpcode::G_CTPOP: {
1963     if (TypeIdx == 0) {
1964       Observer.changingInstr(MI);
1965       widenScalarDst(MI, WideTy, 0);
1966       Observer.changedInstr(MI);
1967       return Legalized;
1968     }
1969 
1970     Register SrcReg = MI.getOperand(1).getReg();
1971 
1972     // First ZEXT the input.
1973     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1974     LLT CurTy = MRI.getType(SrcReg);
1975     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1976       // The count is the same in the larger type except if the original
1977       // value was zero.  This can be handled by setting the bit just off
1978       // the top of the original type.
1979       auto TopBit =
1980           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1981       MIBSrc = MIRBuilder.buildOr(
1982         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1983     }
1984 
1985     // Perform the operation at the larger size.
1986     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1987     // This is already the correct result for CTPOP and CTTZs
1988     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1989         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1990       // The correct result is NewOp - (Difference in widety and current ty).
1991       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1992       MIBNewOp = MIRBuilder.buildSub(
1993           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1994     }
1995 
1996     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1997     MI.eraseFromParent();
1998     return Legalized;
1999   }
2000   case TargetOpcode::G_BSWAP: {
2001     Observer.changingInstr(MI);
2002     Register DstReg = MI.getOperand(0).getReg();
2003 
2004     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2005     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2006     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2007     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2008 
2009     MI.getOperand(0).setReg(DstExt);
2010 
2011     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2012 
2013     LLT Ty = MRI.getType(DstReg);
2014     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2015     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2016     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2017 
2018     MIRBuilder.buildTrunc(DstReg, ShrReg);
2019     Observer.changedInstr(MI);
2020     return Legalized;
2021   }
2022   case TargetOpcode::G_BITREVERSE: {
2023     Observer.changingInstr(MI);
2024 
2025     Register DstReg = MI.getOperand(0).getReg();
2026     LLT Ty = MRI.getType(DstReg);
2027     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2028 
2029     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2030     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2031     MI.getOperand(0).setReg(DstExt);
2032     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2033 
2034     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2035     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2036     MIRBuilder.buildTrunc(DstReg, Shift);
2037     Observer.changedInstr(MI);
2038     return Legalized;
2039   }
2040   case TargetOpcode::G_FREEZE:
2041     Observer.changingInstr(MI);
2042     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2043     widenScalarDst(MI, WideTy);
2044     Observer.changedInstr(MI);
2045     return Legalized;
2046 
2047   case TargetOpcode::G_ABS:
2048     Observer.changingInstr(MI);
2049     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2050     widenScalarDst(MI, WideTy);
2051     Observer.changedInstr(MI);
2052     return Legalized;
2053 
2054   case TargetOpcode::G_ADD:
2055   case TargetOpcode::G_AND:
2056   case TargetOpcode::G_MUL:
2057   case TargetOpcode::G_OR:
2058   case TargetOpcode::G_XOR:
2059   case TargetOpcode::G_SUB:
2060     // Perform operation at larger width (any extension is fines here, high bits
2061     // don't affect the result) and then truncate the result back to the
2062     // original type.
2063     Observer.changingInstr(MI);
2064     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2065     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2066     widenScalarDst(MI, WideTy);
2067     Observer.changedInstr(MI);
2068     return Legalized;
2069 
2070   case TargetOpcode::G_SBFX:
2071   case TargetOpcode::G_UBFX:
2072     Observer.changingInstr(MI);
2073 
2074     if (TypeIdx == 0) {
2075       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2076       widenScalarDst(MI, WideTy);
2077     } else {
2078       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2079       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2080     }
2081 
2082     Observer.changedInstr(MI);
2083     return Legalized;
2084 
2085   case TargetOpcode::G_SHL:
2086     Observer.changingInstr(MI);
2087 
2088     if (TypeIdx == 0) {
2089       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2090       widenScalarDst(MI, WideTy);
2091     } else {
2092       assert(TypeIdx == 1);
2093       // The "number of bits to shift" operand must preserve its value as an
2094       // unsigned integer:
2095       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2096     }
2097 
2098     Observer.changedInstr(MI);
2099     return Legalized;
2100 
2101   case TargetOpcode::G_SDIV:
2102   case TargetOpcode::G_SREM:
2103   case TargetOpcode::G_SMIN:
2104   case TargetOpcode::G_SMAX:
2105     Observer.changingInstr(MI);
2106     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2107     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2108     widenScalarDst(MI, WideTy);
2109     Observer.changedInstr(MI);
2110     return Legalized;
2111 
2112   case TargetOpcode::G_SDIVREM:
2113     Observer.changingInstr(MI);
2114     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2115     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2116     widenScalarDst(MI, WideTy);
2117     widenScalarDst(MI, WideTy, 1);
2118     Observer.changedInstr(MI);
2119     return Legalized;
2120 
2121   case TargetOpcode::G_ASHR:
2122   case TargetOpcode::G_LSHR:
2123     Observer.changingInstr(MI);
2124 
2125     if (TypeIdx == 0) {
2126       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2127         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2128 
2129       widenScalarSrc(MI, WideTy, 1, CvtOp);
2130       widenScalarDst(MI, WideTy);
2131     } else {
2132       assert(TypeIdx == 1);
2133       // The "number of bits to shift" operand must preserve its value as an
2134       // unsigned integer:
2135       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2136     }
2137 
2138     Observer.changedInstr(MI);
2139     return Legalized;
2140   case TargetOpcode::G_UDIV:
2141   case TargetOpcode::G_UREM:
2142   case TargetOpcode::G_UMIN:
2143   case TargetOpcode::G_UMAX:
2144     Observer.changingInstr(MI);
2145     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2146     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2147     widenScalarDst(MI, WideTy);
2148     Observer.changedInstr(MI);
2149     return Legalized;
2150 
2151   case TargetOpcode::G_UDIVREM:
2152     Observer.changingInstr(MI);
2153     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2154     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2155     widenScalarDst(MI, WideTy);
2156     widenScalarDst(MI, WideTy, 1);
2157     Observer.changedInstr(MI);
2158     return Legalized;
2159 
2160   case TargetOpcode::G_SELECT:
2161     Observer.changingInstr(MI);
2162     if (TypeIdx == 0) {
2163       // Perform operation at larger width (any extension is fine here, high
2164       // bits don't affect the result) and then truncate the result back to the
2165       // original type.
2166       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2167       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2168       widenScalarDst(MI, WideTy);
2169     } else {
2170       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2171       // Explicit extension is required here since high bits affect the result.
2172       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2173     }
2174     Observer.changedInstr(MI);
2175     return Legalized;
2176 
2177   case TargetOpcode::G_FPTOSI:
2178   case TargetOpcode::G_FPTOUI:
2179     Observer.changingInstr(MI);
2180 
2181     if (TypeIdx == 0)
2182       widenScalarDst(MI, WideTy);
2183     else
2184       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2185 
2186     Observer.changedInstr(MI);
2187     return Legalized;
2188   case TargetOpcode::G_SITOFP:
2189     Observer.changingInstr(MI);
2190 
2191     if (TypeIdx == 0)
2192       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2193     else
2194       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2195 
2196     Observer.changedInstr(MI);
2197     return Legalized;
2198   case TargetOpcode::G_UITOFP:
2199     Observer.changingInstr(MI);
2200 
2201     if (TypeIdx == 0)
2202       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2203     else
2204       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2205 
2206     Observer.changedInstr(MI);
2207     return Legalized;
2208   case TargetOpcode::G_LOAD:
2209   case TargetOpcode::G_SEXTLOAD:
2210   case TargetOpcode::G_ZEXTLOAD:
2211     Observer.changingInstr(MI);
2212     widenScalarDst(MI, WideTy);
2213     Observer.changedInstr(MI);
2214     return Legalized;
2215 
2216   case TargetOpcode::G_STORE: {
2217     if (TypeIdx != 0)
2218       return UnableToLegalize;
2219 
2220     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2221     if (!Ty.isScalar())
2222       return UnableToLegalize;
2223 
2224     Observer.changingInstr(MI);
2225 
2226     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2227       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2228     widenScalarSrc(MI, WideTy, 0, ExtType);
2229 
2230     Observer.changedInstr(MI);
2231     return Legalized;
2232   }
2233   case TargetOpcode::G_CONSTANT: {
2234     MachineOperand &SrcMO = MI.getOperand(1);
2235     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2236     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2237         MRI.getType(MI.getOperand(0).getReg()));
2238     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2239             ExtOpc == TargetOpcode::G_ANYEXT) &&
2240            "Illegal Extend");
2241     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2242     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2243                            ? SrcVal.sext(WideTy.getSizeInBits())
2244                            : SrcVal.zext(WideTy.getSizeInBits());
2245     Observer.changingInstr(MI);
2246     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2247 
2248     widenScalarDst(MI, WideTy);
2249     Observer.changedInstr(MI);
2250     return Legalized;
2251   }
2252   case TargetOpcode::G_FCONSTANT: {
2253     MachineOperand &SrcMO = MI.getOperand(1);
2254     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2255     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2256     bool LosesInfo;
2257     switch (WideTy.getSizeInBits()) {
2258     case 32:
2259       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2260                   &LosesInfo);
2261       break;
2262     case 64:
2263       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2264                   &LosesInfo);
2265       break;
2266     default:
2267       return UnableToLegalize;
2268     }
2269 
2270     assert(!LosesInfo && "extend should always be lossless");
2271 
2272     Observer.changingInstr(MI);
2273     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2274 
2275     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2276     Observer.changedInstr(MI);
2277     return Legalized;
2278   }
2279   case TargetOpcode::G_IMPLICIT_DEF: {
2280     Observer.changingInstr(MI);
2281     widenScalarDst(MI, WideTy);
2282     Observer.changedInstr(MI);
2283     return Legalized;
2284   }
2285   case TargetOpcode::G_BRCOND:
2286     Observer.changingInstr(MI);
2287     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2288     Observer.changedInstr(MI);
2289     return Legalized;
2290 
2291   case TargetOpcode::G_FCMP:
2292     Observer.changingInstr(MI);
2293     if (TypeIdx == 0)
2294       widenScalarDst(MI, WideTy);
2295     else {
2296       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2297       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2298     }
2299     Observer.changedInstr(MI);
2300     return Legalized;
2301 
2302   case TargetOpcode::G_ICMP:
2303     Observer.changingInstr(MI);
2304     if (TypeIdx == 0)
2305       widenScalarDst(MI, WideTy);
2306     else {
2307       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2308                                MI.getOperand(1).getPredicate()))
2309                                ? TargetOpcode::G_SEXT
2310                                : TargetOpcode::G_ZEXT;
2311       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2312       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2313     }
2314     Observer.changedInstr(MI);
2315     return Legalized;
2316 
2317   case TargetOpcode::G_PTR_ADD:
2318     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2319     Observer.changingInstr(MI);
2320     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2321     Observer.changedInstr(MI);
2322     return Legalized;
2323 
2324   case TargetOpcode::G_PHI: {
2325     assert(TypeIdx == 0 && "Expecting only Idx 0");
2326 
2327     Observer.changingInstr(MI);
2328     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2329       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2330       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2331       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2332     }
2333 
2334     MachineBasicBlock &MBB = *MI.getParent();
2335     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2336     widenScalarDst(MI, WideTy);
2337     Observer.changedInstr(MI);
2338     return Legalized;
2339   }
2340   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2341     if (TypeIdx == 0) {
2342       Register VecReg = MI.getOperand(1).getReg();
2343       LLT VecTy = MRI.getType(VecReg);
2344       Observer.changingInstr(MI);
2345 
2346       widenScalarSrc(
2347           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2348           TargetOpcode::G_SEXT);
2349 
2350       widenScalarDst(MI, WideTy, 0);
2351       Observer.changedInstr(MI);
2352       return Legalized;
2353     }
2354 
2355     if (TypeIdx != 2)
2356       return UnableToLegalize;
2357     Observer.changingInstr(MI);
2358     // TODO: Probably should be zext
2359     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2360     Observer.changedInstr(MI);
2361     return Legalized;
2362   }
2363   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2364     if (TypeIdx == 1) {
2365       Observer.changingInstr(MI);
2366 
2367       Register VecReg = MI.getOperand(1).getReg();
2368       LLT VecTy = MRI.getType(VecReg);
2369       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2370 
2371       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2372       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2373       widenScalarDst(MI, WideVecTy, 0);
2374       Observer.changedInstr(MI);
2375       return Legalized;
2376     }
2377 
2378     if (TypeIdx == 2) {
2379       Observer.changingInstr(MI);
2380       // TODO: Probably should be zext
2381       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2382       Observer.changedInstr(MI);
2383       return Legalized;
2384     }
2385 
2386     return UnableToLegalize;
2387   }
2388   case TargetOpcode::G_FADD:
2389   case TargetOpcode::G_FMUL:
2390   case TargetOpcode::G_FSUB:
2391   case TargetOpcode::G_FMA:
2392   case TargetOpcode::G_FMAD:
2393   case TargetOpcode::G_FNEG:
2394   case TargetOpcode::G_FABS:
2395   case TargetOpcode::G_FCANONICALIZE:
2396   case TargetOpcode::G_FMINNUM:
2397   case TargetOpcode::G_FMAXNUM:
2398   case TargetOpcode::G_FMINNUM_IEEE:
2399   case TargetOpcode::G_FMAXNUM_IEEE:
2400   case TargetOpcode::G_FMINIMUM:
2401   case TargetOpcode::G_FMAXIMUM:
2402   case TargetOpcode::G_FDIV:
2403   case TargetOpcode::G_FREM:
2404   case TargetOpcode::G_FCEIL:
2405   case TargetOpcode::G_FFLOOR:
2406   case TargetOpcode::G_FCOS:
2407   case TargetOpcode::G_FSIN:
2408   case TargetOpcode::G_FLOG10:
2409   case TargetOpcode::G_FLOG:
2410   case TargetOpcode::G_FLOG2:
2411   case TargetOpcode::G_FRINT:
2412   case TargetOpcode::G_FNEARBYINT:
2413   case TargetOpcode::G_FSQRT:
2414   case TargetOpcode::G_FEXP:
2415   case TargetOpcode::G_FEXP2:
2416   case TargetOpcode::G_FPOW:
2417   case TargetOpcode::G_INTRINSIC_TRUNC:
2418   case TargetOpcode::G_INTRINSIC_ROUND:
2419   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2420     assert(TypeIdx == 0);
2421     Observer.changingInstr(MI);
2422 
2423     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2424       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2425 
2426     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2427     Observer.changedInstr(MI);
2428     return Legalized;
2429   case TargetOpcode::G_FPOWI: {
2430     if (TypeIdx != 0)
2431       return UnableToLegalize;
2432     Observer.changingInstr(MI);
2433     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2434     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2435     Observer.changedInstr(MI);
2436     return Legalized;
2437   }
2438   case TargetOpcode::G_INTTOPTR:
2439     if (TypeIdx != 1)
2440       return UnableToLegalize;
2441 
2442     Observer.changingInstr(MI);
2443     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2444     Observer.changedInstr(MI);
2445     return Legalized;
2446   case TargetOpcode::G_PTRTOINT:
2447     if (TypeIdx != 0)
2448       return UnableToLegalize;
2449 
2450     Observer.changingInstr(MI);
2451     widenScalarDst(MI, WideTy, 0);
2452     Observer.changedInstr(MI);
2453     return Legalized;
2454   case TargetOpcode::G_BUILD_VECTOR: {
2455     Observer.changingInstr(MI);
2456 
2457     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2458     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2459       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2460 
2461     // Avoid changing the result vector type if the source element type was
2462     // requested.
2463     if (TypeIdx == 1) {
2464       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2465     } else {
2466       widenScalarDst(MI, WideTy, 0);
2467     }
2468 
2469     Observer.changedInstr(MI);
2470     return Legalized;
2471   }
2472   case TargetOpcode::G_SEXT_INREG:
2473     if (TypeIdx != 0)
2474       return UnableToLegalize;
2475 
2476     Observer.changingInstr(MI);
2477     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2478     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2479     Observer.changedInstr(MI);
2480     return Legalized;
2481   case TargetOpcode::G_PTRMASK: {
2482     if (TypeIdx != 1)
2483       return UnableToLegalize;
2484     Observer.changingInstr(MI);
2485     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2486     Observer.changedInstr(MI);
2487     return Legalized;
2488   }
2489   }
2490 }
2491 
2492 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2493                              MachineIRBuilder &B, Register Src, LLT Ty) {
2494   auto Unmerge = B.buildUnmerge(Ty, Src);
2495   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2496     Pieces.push_back(Unmerge.getReg(I));
2497 }
2498 
2499 LegalizerHelper::LegalizeResult
2500 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2501   Register Dst = MI.getOperand(0).getReg();
2502   Register Src = MI.getOperand(1).getReg();
2503   LLT DstTy = MRI.getType(Dst);
2504   LLT SrcTy = MRI.getType(Src);
2505 
2506   if (SrcTy.isVector()) {
2507     LLT SrcEltTy = SrcTy.getElementType();
2508     SmallVector<Register, 8> SrcRegs;
2509 
2510     if (DstTy.isVector()) {
2511       int NumDstElt = DstTy.getNumElements();
2512       int NumSrcElt = SrcTy.getNumElements();
2513 
2514       LLT DstEltTy = DstTy.getElementType();
2515       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2516       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2517 
2518       // If there's an element size mismatch, insert intermediate casts to match
2519       // the result element type.
2520       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2521         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2522         //
2523         // =>
2524         //
2525         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2526         // %3:_(<2 x s8>) = G_BITCAST %2
2527         // %4:_(<2 x s8>) = G_BITCAST %3
2528         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2529         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2530         SrcPartTy = SrcEltTy;
2531       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2532         //
2533         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2534         //
2535         // =>
2536         //
2537         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2538         // %3:_(s16) = G_BITCAST %2
2539         // %4:_(s16) = G_BITCAST %3
2540         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2541         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2542         DstCastTy = DstEltTy;
2543       }
2544 
2545       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2546       for (Register &SrcReg : SrcRegs)
2547         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2548     } else
2549       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2550 
2551     MIRBuilder.buildMerge(Dst, SrcRegs);
2552     MI.eraseFromParent();
2553     return Legalized;
2554   }
2555 
2556   if (DstTy.isVector()) {
2557     SmallVector<Register, 8> SrcRegs;
2558     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2559     MIRBuilder.buildMerge(Dst, SrcRegs);
2560     MI.eraseFromParent();
2561     return Legalized;
2562   }
2563 
2564   return UnableToLegalize;
2565 }
2566 
2567 /// Figure out the bit offset into a register when coercing a vector index for
2568 /// the wide element type. This is only for the case when promoting vector to
2569 /// one with larger elements.
2570 //
2571 ///
2572 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2573 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2574 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2575                                                    Register Idx,
2576                                                    unsigned NewEltSize,
2577                                                    unsigned OldEltSize) {
2578   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2579   LLT IdxTy = B.getMRI()->getType(Idx);
2580 
2581   // Now figure out the amount we need to shift to get the target bits.
2582   auto OffsetMask = B.buildConstant(
2583     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2584   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2585   return B.buildShl(IdxTy, OffsetIdx,
2586                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2587 }
2588 
2589 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2590 /// is casting to a vector with a smaller element size, perform multiple element
2591 /// extracts and merge the results. If this is coercing to a vector with larger
2592 /// elements, index the bitcasted vector and extract the target element with bit
2593 /// operations. This is intended to force the indexing in the native register
2594 /// size for architectures that can dynamically index the register file.
2595 LegalizerHelper::LegalizeResult
2596 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2597                                          LLT CastTy) {
2598   if (TypeIdx != 1)
2599     return UnableToLegalize;
2600 
2601   Register Dst = MI.getOperand(0).getReg();
2602   Register SrcVec = MI.getOperand(1).getReg();
2603   Register Idx = MI.getOperand(2).getReg();
2604   LLT SrcVecTy = MRI.getType(SrcVec);
2605   LLT IdxTy = MRI.getType(Idx);
2606 
2607   LLT SrcEltTy = SrcVecTy.getElementType();
2608   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2609   unsigned OldNumElts = SrcVecTy.getNumElements();
2610 
2611   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2612   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2613 
2614   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2615   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2616   if (NewNumElts > OldNumElts) {
2617     // Decreasing the vector element size
2618     //
2619     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2620     //  =>
2621     //  v4i32:castx = bitcast x:v2i64
2622     //
2623     // i64 = bitcast
2624     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2625     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2626     //
2627     if (NewNumElts % OldNumElts != 0)
2628       return UnableToLegalize;
2629 
2630     // Type of the intermediate result vector.
2631     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2632     LLT MidTy =
2633         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2634 
2635     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2636 
2637     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2638     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2639 
2640     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2641       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2642       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2643       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2644       NewOps[I] = Elt.getReg(0);
2645     }
2646 
2647     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2648     MIRBuilder.buildBitcast(Dst, NewVec);
2649     MI.eraseFromParent();
2650     return Legalized;
2651   }
2652 
2653   if (NewNumElts < OldNumElts) {
2654     if (NewEltSize % OldEltSize != 0)
2655       return UnableToLegalize;
2656 
2657     // This only depends on powers of 2 because we use bit tricks to figure out
2658     // the bit offset we need to shift to get the target element. A general
2659     // expansion could emit division/multiply.
2660     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2661       return UnableToLegalize;
2662 
2663     // Increasing the vector element size.
2664     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2665     //
2666     //   =>
2667     //
2668     // %cast = G_BITCAST %vec
2669     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2670     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2671     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2672     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2673     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2674     // %elt = G_TRUNC %elt_bits
2675 
2676     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2677     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2678 
2679     // Divide to get the index in the wider element type.
2680     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2681 
2682     Register WideElt = CastVec;
2683     if (CastTy.isVector()) {
2684       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2685                                                      ScaledIdx).getReg(0);
2686     }
2687 
2688     // Compute the bit offset into the register of the target element.
2689     Register OffsetBits = getBitcastWiderVectorElementOffset(
2690       MIRBuilder, Idx, NewEltSize, OldEltSize);
2691 
2692     // Shift the wide element to get the target element.
2693     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2694     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2695     MI.eraseFromParent();
2696     return Legalized;
2697   }
2698 
2699   return UnableToLegalize;
2700 }
2701 
2702 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2703 /// TargetReg, while preserving other bits in \p TargetReg.
2704 ///
2705 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2706 static Register buildBitFieldInsert(MachineIRBuilder &B,
2707                                     Register TargetReg, Register InsertReg,
2708                                     Register OffsetBits) {
2709   LLT TargetTy = B.getMRI()->getType(TargetReg);
2710   LLT InsertTy = B.getMRI()->getType(InsertReg);
2711   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2712   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2713 
2714   // Produce a bitmask of the value to insert
2715   auto EltMask = B.buildConstant(
2716     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2717                                    InsertTy.getSizeInBits()));
2718   // Shift it into position
2719   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2720   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2721 
2722   // Clear out the bits in the wide element
2723   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2724 
2725   // The value to insert has all zeros already, so stick it into the masked
2726   // wide element.
2727   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2728 }
2729 
2730 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2731 /// is increasing the element size, perform the indexing in the target element
2732 /// type, and use bit operations to insert at the element position. This is
2733 /// intended for architectures that can dynamically index the register file and
2734 /// want to force indexing in the native register size.
2735 LegalizerHelper::LegalizeResult
2736 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2737                                         LLT CastTy) {
2738   if (TypeIdx != 0)
2739     return UnableToLegalize;
2740 
2741   Register Dst = MI.getOperand(0).getReg();
2742   Register SrcVec = MI.getOperand(1).getReg();
2743   Register Val = MI.getOperand(2).getReg();
2744   Register Idx = MI.getOperand(3).getReg();
2745 
2746   LLT VecTy = MRI.getType(Dst);
2747   LLT IdxTy = MRI.getType(Idx);
2748 
2749   LLT VecEltTy = VecTy.getElementType();
2750   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2751   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2752   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2753 
2754   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2755   unsigned OldNumElts = VecTy.getNumElements();
2756 
2757   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2758   if (NewNumElts < OldNumElts) {
2759     if (NewEltSize % OldEltSize != 0)
2760       return UnableToLegalize;
2761 
2762     // This only depends on powers of 2 because we use bit tricks to figure out
2763     // the bit offset we need to shift to get the target element. A general
2764     // expansion could emit division/multiply.
2765     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2766       return UnableToLegalize;
2767 
2768     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2769     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2770 
2771     // Divide to get the index in the wider element type.
2772     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2773 
2774     Register ExtractedElt = CastVec;
2775     if (CastTy.isVector()) {
2776       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2777                                                           ScaledIdx).getReg(0);
2778     }
2779 
2780     // Compute the bit offset into the register of the target element.
2781     Register OffsetBits = getBitcastWiderVectorElementOffset(
2782       MIRBuilder, Idx, NewEltSize, OldEltSize);
2783 
2784     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2785                                                Val, OffsetBits);
2786     if (CastTy.isVector()) {
2787       InsertedElt = MIRBuilder.buildInsertVectorElement(
2788         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2789     }
2790 
2791     MIRBuilder.buildBitcast(Dst, InsertedElt);
2792     MI.eraseFromParent();
2793     return Legalized;
2794   }
2795 
2796   return UnableToLegalize;
2797 }
2798 
2799 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
2800   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2801   Register DstReg = LoadMI.getDstReg();
2802   Register PtrReg = LoadMI.getPointerReg();
2803   LLT DstTy = MRI.getType(DstReg);
2804   MachineMemOperand &MMO = LoadMI.getMMO();
2805   LLT MemTy = MMO.getMemoryType();
2806   MachineFunction &MF = MIRBuilder.getMF();
2807   if (MemTy.isVector())
2808     return UnableToLegalize;
2809 
2810   unsigned MemSizeInBits = MemTy.getSizeInBits();
2811   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2812 
2813   if (MemSizeInBits != MemStoreSizeInBits) {
2814     // Promote to a byte-sized load if not loading an integral number of
2815     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2816     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2817     MachineMemOperand *NewMMO =
2818         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2819 
2820     Register LoadReg = DstReg;
2821     LLT LoadTy = DstTy;
2822 
2823     // If this wasn't already an extending load, we need to widen the result
2824     // register to avoid creating a load with a narrower result than the source.
2825     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2826       LoadTy = WideMemTy;
2827       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2828     }
2829 
2830     if (isa<GSExtLoad>(LoadMI)) {
2831       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2832       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
2833     } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) {
2834       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2835       // The extra bits are guaranteed to be zero, since we stored them that
2836       // way.  A zext load from Wide thus automatically gives zext from MemVT.
2837       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
2838     } else {
2839       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
2840     }
2841 
2842     if (DstTy != LoadTy)
2843       MIRBuilder.buildTrunc(DstReg, LoadReg);
2844 
2845     LoadMI.eraseFromParent();
2846     return Legalized;
2847   }
2848 
2849   // This load needs splitting into power of 2 sized loads.
2850   if (DstTy.isVector())
2851     return UnableToLegalize;
2852   if (isPowerOf2_32(MemSizeInBits))
2853     return UnableToLegalize; // Don't know what we're being asked to do.
2854 
2855   // Big endian lowering not implemented.
2856   if (MIRBuilder.getDataLayout().isBigEndian())
2857     return UnableToLegalize;
2858 
2859   // Our strategy here is to generate anyextending loads for the smaller
2860   // types up to next power-2 result type, and then combine the two larger
2861   // result values together, before truncating back down to the non-pow-2
2862   // type.
2863   // E.g. v1 = i24 load =>
2864   // v2 = i32 zextload (2 byte)
2865   // v3 = i32 load (1 byte)
2866   // v4 = i32 shl v3, 16
2867   // v5 = i32 or v4, v2
2868   // v1 = i24 trunc v5
2869   // By doing this we generate the correct truncate which should get
2870   // combined away as an artifact with a matching extend.
2871   uint64_t LargeSplitSize = PowerOf2Floor(MemSizeInBits);
2872   uint64_t SmallSplitSize = MemSizeInBits - LargeSplitSize;
2873 
2874   MachineMemOperand *LargeMMO =
2875       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2876   MachineMemOperand *SmallMMO =
2877       MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2878 
2879   LLT PtrTy = MRI.getType(PtrReg);
2880   unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
2881   LLT AnyExtTy = LLT::scalar(AnyExtSize);
2882   auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
2883                                              PtrReg, *LargeMMO);
2884 
2885   auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
2886                                             LargeSplitSize / 8);
2887   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2888   auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2889   auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
2890                                              SmallPtr, *SmallMMO);
2891 
2892   auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2893   auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2894 
2895   if (AnyExtTy == DstTy)
2896     MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
2897   else {
2898     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2899     MIRBuilder.buildTrunc(DstReg, {Or});
2900   }
2901 
2902   LoadMI.eraseFromParent();
2903   return Legalized;
2904 }
2905 
2906 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
2907   // Lower a non-power of 2 store into multiple pow-2 stores.
2908   // E.g. split an i24 store into an i16 store + i8 store.
2909   // We do this by first extending the stored value to the next largest power
2910   // of 2 type, and then using truncating stores to store the components.
2911   // By doing this, likewise with G_LOAD, generate an extend that can be
2912   // artifact-combined away instead of leaving behind extracts.
2913   Register SrcReg = StoreMI.getValueReg();
2914   Register PtrReg = StoreMI.getPointerReg();
2915   LLT SrcTy = MRI.getType(SrcReg);
2916   MachineFunction &MF = MIRBuilder.getMF();
2917   MachineMemOperand &MMO = **StoreMI.memoperands_begin();
2918   LLT MemTy = MMO.getMemoryType();
2919 
2920   if (SrcTy.isVector())
2921     return UnableToLegalize;
2922 
2923   unsigned StoreWidth = MemTy.getSizeInBits();
2924   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
2925 
2926   if (StoreWidth != StoreSizeInBits) {
2927     // Promote to a byte-sized store with upper bits zero if not
2928     // storing an integral number of bytes.  For example, promote
2929     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
2930     LLT WideTy = LLT::scalar(StoreSizeInBits);
2931 
2932     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
2933       // Avoid creating a store with a narrower source than result.
2934       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
2935       SrcTy = WideTy;
2936     }
2937 
2938     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
2939 
2940     MachineMemOperand *NewMMO =
2941         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
2942     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
2943     StoreMI.eraseFromParent();
2944     return Legalized;
2945   }
2946 
2947   if (isPowerOf2_32(MemTy.getSizeInBits()))
2948     return UnableToLegalize; // Don't know what we're being asked to do.
2949 
2950   // Extend to the next pow-2. If this store was itself the result of lowering,
2951   // e.g. an s56 store being broken into s32 + s24, we might have a stored type
2952   // that's wider the stored size.
2953   const LLT NewSrcTy = LLT::scalar(NextPowerOf2(MemTy.getSizeInBits()));
2954   auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
2955 
2956   // Obtain the smaller value by shifting away the larger value.
2957   uint64_t LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
2958   uint64_t SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
2959   auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
2960   auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
2961 
2962   // Generate the PtrAdd and truncating stores.
2963   LLT PtrTy = MRI.getType(PtrReg);
2964   auto OffsetCst = MIRBuilder.buildConstant(
2965     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2966   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2967   auto SmallPtr =
2968     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2969 
2970   MachineMemOperand *LargeMMO =
2971     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2972   MachineMemOperand *SmallMMO =
2973     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2974   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
2975   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
2976   StoreMI.eraseFromParent();
2977   return Legalized;
2978 }
2979 
2980 LegalizerHelper::LegalizeResult
2981 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2982   switch (MI.getOpcode()) {
2983   case TargetOpcode::G_LOAD: {
2984     if (TypeIdx != 0)
2985       return UnableToLegalize;
2986 
2987     Observer.changingInstr(MI);
2988     bitcastDst(MI, CastTy, 0);
2989     Observer.changedInstr(MI);
2990     return Legalized;
2991   }
2992   case TargetOpcode::G_STORE: {
2993     if (TypeIdx != 0)
2994       return UnableToLegalize;
2995 
2996     Observer.changingInstr(MI);
2997     bitcastSrc(MI, CastTy, 0);
2998     Observer.changedInstr(MI);
2999     return Legalized;
3000   }
3001   case TargetOpcode::G_SELECT: {
3002     if (TypeIdx != 0)
3003       return UnableToLegalize;
3004 
3005     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3006       LLVM_DEBUG(
3007           dbgs() << "bitcast action not implemented for vector select\n");
3008       return UnableToLegalize;
3009     }
3010 
3011     Observer.changingInstr(MI);
3012     bitcastSrc(MI, CastTy, 2);
3013     bitcastSrc(MI, CastTy, 3);
3014     bitcastDst(MI, CastTy, 0);
3015     Observer.changedInstr(MI);
3016     return Legalized;
3017   }
3018   case TargetOpcode::G_AND:
3019   case TargetOpcode::G_OR:
3020   case TargetOpcode::G_XOR: {
3021     Observer.changingInstr(MI);
3022     bitcastSrc(MI, CastTy, 1);
3023     bitcastSrc(MI, CastTy, 2);
3024     bitcastDst(MI, CastTy, 0);
3025     Observer.changedInstr(MI);
3026     return Legalized;
3027   }
3028   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3029     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3030   case TargetOpcode::G_INSERT_VECTOR_ELT:
3031     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3032   default:
3033     return UnableToLegalize;
3034   }
3035 }
3036 
3037 // Legalize an instruction by changing the opcode in place.
3038 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3039     Observer.changingInstr(MI);
3040     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3041     Observer.changedInstr(MI);
3042 }
3043 
3044 LegalizerHelper::LegalizeResult
3045 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3046   using namespace TargetOpcode;
3047 
3048   switch(MI.getOpcode()) {
3049   default:
3050     return UnableToLegalize;
3051   case TargetOpcode::G_BITCAST:
3052     return lowerBitcast(MI);
3053   case TargetOpcode::G_SREM:
3054   case TargetOpcode::G_UREM: {
3055     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3056     auto Quot =
3057         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3058                               {MI.getOperand(1), MI.getOperand(2)});
3059 
3060     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3061     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3062     MI.eraseFromParent();
3063     return Legalized;
3064   }
3065   case TargetOpcode::G_SADDO:
3066   case TargetOpcode::G_SSUBO:
3067     return lowerSADDO_SSUBO(MI);
3068   case TargetOpcode::G_UMULH:
3069   case TargetOpcode::G_SMULH:
3070     return lowerSMULH_UMULH(MI);
3071   case TargetOpcode::G_SMULO:
3072   case TargetOpcode::G_UMULO: {
3073     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3074     // result.
3075     Register Res = MI.getOperand(0).getReg();
3076     Register Overflow = MI.getOperand(1).getReg();
3077     Register LHS = MI.getOperand(2).getReg();
3078     Register RHS = MI.getOperand(3).getReg();
3079     LLT Ty = MRI.getType(Res);
3080 
3081     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3082                           ? TargetOpcode::G_SMULH
3083                           : TargetOpcode::G_UMULH;
3084 
3085     Observer.changingInstr(MI);
3086     const auto &TII = MIRBuilder.getTII();
3087     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3088     MI.RemoveOperand(1);
3089     Observer.changedInstr(MI);
3090 
3091     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3092     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3093 
3094     // Move insert point forward so we can use the Res register if needed.
3095     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3096 
3097     // For *signed* multiply, overflow is detected by checking:
3098     // (hi != (lo >> bitwidth-1))
3099     if (Opcode == TargetOpcode::G_SMULH) {
3100       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3101       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3102       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3103     } else {
3104       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3105     }
3106     return Legalized;
3107   }
3108   case TargetOpcode::G_FNEG: {
3109     Register Res = MI.getOperand(0).getReg();
3110     LLT Ty = MRI.getType(Res);
3111 
3112     // TODO: Handle vector types once we are able to
3113     // represent them.
3114     if (Ty.isVector())
3115       return UnableToLegalize;
3116     auto SignMask =
3117         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3118     Register SubByReg = MI.getOperand(1).getReg();
3119     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3120     MI.eraseFromParent();
3121     return Legalized;
3122   }
3123   case TargetOpcode::G_FSUB: {
3124     Register Res = MI.getOperand(0).getReg();
3125     LLT Ty = MRI.getType(Res);
3126 
3127     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3128     // First, check if G_FNEG is marked as Lower. If so, we may
3129     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3130     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3131       return UnableToLegalize;
3132     Register LHS = MI.getOperand(1).getReg();
3133     Register RHS = MI.getOperand(2).getReg();
3134     Register Neg = MRI.createGenericVirtualRegister(Ty);
3135     MIRBuilder.buildFNeg(Neg, RHS);
3136     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3137     MI.eraseFromParent();
3138     return Legalized;
3139   }
3140   case TargetOpcode::G_FMAD:
3141     return lowerFMad(MI);
3142   case TargetOpcode::G_FFLOOR:
3143     return lowerFFloor(MI);
3144   case TargetOpcode::G_INTRINSIC_ROUND:
3145     return lowerIntrinsicRound(MI);
3146   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3147     // Since round even is the assumed rounding mode for unconstrained FP
3148     // operations, rint and roundeven are the same operation.
3149     changeOpcode(MI, TargetOpcode::G_FRINT);
3150     return Legalized;
3151   }
3152   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3153     Register OldValRes = MI.getOperand(0).getReg();
3154     Register SuccessRes = MI.getOperand(1).getReg();
3155     Register Addr = MI.getOperand(2).getReg();
3156     Register CmpVal = MI.getOperand(3).getReg();
3157     Register NewVal = MI.getOperand(4).getReg();
3158     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3159                                   **MI.memoperands_begin());
3160     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3161     MI.eraseFromParent();
3162     return Legalized;
3163   }
3164   case TargetOpcode::G_LOAD:
3165   case TargetOpcode::G_SEXTLOAD:
3166   case TargetOpcode::G_ZEXTLOAD:
3167     return lowerLoad(cast<GAnyLoad>(MI));
3168   case TargetOpcode::G_STORE:
3169     return lowerStore(cast<GStore>(MI));
3170   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3171   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3172   case TargetOpcode::G_CTLZ:
3173   case TargetOpcode::G_CTTZ:
3174   case TargetOpcode::G_CTPOP:
3175     return lowerBitCount(MI);
3176   case G_UADDO: {
3177     Register Res = MI.getOperand(0).getReg();
3178     Register CarryOut = MI.getOperand(1).getReg();
3179     Register LHS = MI.getOperand(2).getReg();
3180     Register RHS = MI.getOperand(3).getReg();
3181 
3182     MIRBuilder.buildAdd(Res, LHS, RHS);
3183     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3184 
3185     MI.eraseFromParent();
3186     return Legalized;
3187   }
3188   case G_UADDE: {
3189     Register Res = MI.getOperand(0).getReg();
3190     Register CarryOut = MI.getOperand(1).getReg();
3191     Register LHS = MI.getOperand(2).getReg();
3192     Register RHS = MI.getOperand(3).getReg();
3193     Register CarryIn = MI.getOperand(4).getReg();
3194     LLT Ty = MRI.getType(Res);
3195 
3196     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3197     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3198     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3199     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3200 
3201     MI.eraseFromParent();
3202     return Legalized;
3203   }
3204   case G_USUBO: {
3205     Register Res = MI.getOperand(0).getReg();
3206     Register BorrowOut = MI.getOperand(1).getReg();
3207     Register LHS = MI.getOperand(2).getReg();
3208     Register RHS = MI.getOperand(3).getReg();
3209 
3210     MIRBuilder.buildSub(Res, LHS, RHS);
3211     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3212 
3213     MI.eraseFromParent();
3214     return Legalized;
3215   }
3216   case G_USUBE: {
3217     Register Res = MI.getOperand(0).getReg();
3218     Register BorrowOut = MI.getOperand(1).getReg();
3219     Register LHS = MI.getOperand(2).getReg();
3220     Register RHS = MI.getOperand(3).getReg();
3221     Register BorrowIn = MI.getOperand(4).getReg();
3222     const LLT CondTy = MRI.getType(BorrowOut);
3223     const LLT Ty = MRI.getType(Res);
3224 
3225     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3226     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3227     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3228 
3229     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3230     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3231     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3232 
3233     MI.eraseFromParent();
3234     return Legalized;
3235   }
3236   case G_UITOFP:
3237     return lowerUITOFP(MI);
3238   case G_SITOFP:
3239     return lowerSITOFP(MI);
3240   case G_FPTOUI:
3241     return lowerFPTOUI(MI);
3242   case G_FPTOSI:
3243     return lowerFPTOSI(MI);
3244   case G_FPTRUNC:
3245     return lowerFPTRUNC(MI);
3246   case G_FPOWI:
3247     return lowerFPOWI(MI);
3248   case G_SMIN:
3249   case G_SMAX:
3250   case G_UMIN:
3251   case G_UMAX:
3252     return lowerMinMax(MI);
3253   case G_FCOPYSIGN:
3254     return lowerFCopySign(MI);
3255   case G_FMINNUM:
3256   case G_FMAXNUM:
3257     return lowerFMinNumMaxNum(MI);
3258   case G_MERGE_VALUES:
3259     return lowerMergeValues(MI);
3260   case G_UNMERGE_VALUES:
3261     return lowerUnmergeValues(MI);
3262   case TargetOpcode::G_SEXT_INREG: {
3263     assert(MI.getOperand(2).isImm() && "Expected immediate");
3264     int64_t SizeInBits = MI.getOperand(2).getImm();
3265 
3266     Register DstReg = MI.getOperand(0).getReg();
3267     Register SrcReg = MI.getOperand(1).getReg();
3268     LLT DstTy = MRI.getType(DstReg);
3269     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3270 
3271     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3272     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3273     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3274     MI.eraseFromParent();
3275     return Legalized;
3276   }
3277   case G_EXTRACT_VECTOR_ELT:
3278   case G_INSERT_VECTOR_ELT:
3279     return lowerExtractInsertVectorElt(MI);
3280   case G_SHUFFLE_VECTOR:
3281     return lowerShuffleVector(MI);
3282   case G_DYN_STACKALLOC:
3283     return lowerDynStackAlloc(MI);
3284   case G_EXTRACT:
3285     return lowerExtract(MI);
3286   case G_INSERT:
3287     return lowerInsert(MI);
3288   case G_BSWAP:
3289     return lowerBswap(MI);
3290   case G_BITREVERSE:
3291     return lowerBitreverse(MI);
3292   case G_READ_REGISTER:
3293   case G_WRITE_REGISTER:
3294     return lowerReadWriteRegister(MI);
3295   case G_UADDSAT:
3296   case G_USUBSAT: {
3297     // Try to make a reasonable guess about which lowering strategy to use. The
3298     // target can override this with custom lowering and calling the
3299     // implementation functions.
3300     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3301     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3302       return lowerAddSubSatToMinMax(MI);
3303     return lowerAddSubSatToAddoSubo(MI);
3304   }
3305   case G_SADDSAT:
3306   case G_SSUBSAT: {
3307     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3308 
3309     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3310     // since it's a shorter expansion. However, we would need to figure out the
3311     // preferred boolean type for the carry out for the query.
3312     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3313       return lowerAddSubSatToMinMax(MI);
3314     return lowerAddSubSatToAddoSubo(MI);
3315   }
3316   case G_SSHLSAT:
3317   case G_USHLSAT:
3318     return lowerShlSat(MI);
3319   case G_ABS:
3320     return lowerAbsToAddXor(MI);
3321   case G_SELECT:
3322     return lowerSelect(MI);
3323   case G_SDIVREM:
3324   case G_UDIVREM:
3325     return lowerDIVREM(MI);
3326   case G_FSHL:
3327   case G_FSHR:
3328     return lowerFunnelShift(MI);
3329   case G_ROTL:
3330   case G_ROTR:
3331     return lowerRotate(MI);
3332   }
3333 }
3334 
3335 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3336                                                   Align MinAlign) const {
3337   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3338   // datalayout for the preferred alignment. Also there should be a target hook
3339   // for this to allow targets to reduce the alignment and ignore the
3340   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3341   // the type.
3342   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3343 }
3344 
3345 MachineInstrBuilder
3346 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3347                                       MachinePointerInfo &PtrInfo) {
3348   MachineFunction &MF = MIRBuilder.getMF();
3349   const DataLayout &DL = MIRBuilder.getDataLayout();
3350   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3351 
3352   unsigned AddrSpace = DL.getAllocaAddrSpace();
3353   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3354 
3355   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3356   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3357 }
3358 
3359 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3360                                         LLT VecTy) {
3361   int64_t IdxVal;
3362   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3363     return IdxReg;
3364 
3365   LLT IdxTy = B.getMRI()->getType(IdxReg);
3366   unsigned NElts = VecTy.getNumElements();
3367   if (isPowerOf2_32(NElts)) {
3368     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3369     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3370   }
3371 
3372   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3373       .getReg(0);
3374 }
3375 
3376 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3377                                                   Register Index) {
3378   LLT EltTy = VecTy.getElementType();
3379 
3380   // Calculate the element offset and add it to the pointer.
3381   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3382   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3383          "Converting bits to bytes lost precision");
3384 
3385   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3386 
3387   LLT IdxTy = MRI.getType(Index);
3388   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3389                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3390 
3391   LLT PtrTy = MRI.getType(VecPtr);
3392   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3393 }
3394 
3395 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3396     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3397   Register DstReg = MI.getOperand(0).getReg();
3398   LLT DstTy = MRI.getType(DstReg);
3399   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3400 
3401   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3402 
3403   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3404   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3405 
3406   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3407   MI.eraseFromParent();
3408   return Legalized;
3409 }
3410 
3411 // Handle splitting vector operations which need to have the same number of
3412 // elements in each type index, but each type index may have a different element
3413 // type.
3414 //
3415 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3416 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3417 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3418 //
3419 // Also handles some irregular breakdown cases, e.g.
3420 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3421 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3422 //             s64 = G_SHL s64, s32
3423 LegalizerHelper::LegalizeResult
3424 LegalizerHelper::fewerElementsVectorMultiEltType(
3425   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3426   if (TypeIdx != 0)
3427     return UnableToLegalize;
3428 
3429   const LLT NarrowTy0 = NarrowTyArg;
3430   const Register DstReg = MI.getOperand(0).getReg();
3431   LLT DstTy = MRI.getType(DstReg);
3432   LLT LeftoverTy0;
3433 
3434   // All of the operands need to have the same number of elements, so if we can
3435   // determine a type breakdown for the result type, we can for all of the
3436   // source types.
3437   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3438   if (NumParts < 0)
3439     return UnableToLegalize;
3440 
3441   SmallVector<MachineInstrBuilder, 4> NewInsts;
3442 
3443   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3444   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3445 
3446   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3447     Register SrcReg = MI.getOperand(I).getReg();
3448     LLT SrcTyI = MRI.getType(SrcReg);
3449     const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount()
3450                                             : ElementCount::getFixed(1);
3451     LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType());
3452     LLT LeftoverTyI;
3453 
3454     // Split this operand into the requested typed registers, and any leftover
3455     // required to reproduce the original type.
3456     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3457                       LeftoverRegs))
3458       return UnableToLegalize;
3459 
3460     if (I == 1) {
3461       // For the first operand, create an instruction for each part and setup
3462       // the result.
3463       for (Register PartReg : PartRegs) {
3464         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3465         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3466                                .addDef(PartDstReg)
3467                                .addUse(PartReg));
3468         DstRegs.push_back(PartDstReg);
3469       }
3470 
3471       for (Register LeftoverReg : LeftoverRegs) {
3472         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3473         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3474                                .addDef(PartDstReg)
3475                                .addUse(LeftoverReg));
3476         LeftoverDstRegs.push_back(PartDstReg);
3477       }
3478     } else {
3479       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3480 
3481       // Add the newly created operand splits to the existing instructions. The
3482       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3483       // pieces.
3484       unsigned InstCount = 0;
3485       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3486         NewInsts[InstCount++].addUse(PartRegs[J]);
3487       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3488         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3489     }
3490 
3491     PartRegs.clear();
3492     LeftoverRegs.clear();
3493   }
3494 
3495   // Insert the newly built operations and rebuild the result register.
3496   for (auto &MIB : NewInsts)
3497     MIRBuilder.insertInstr(MIB);
3498 
3499   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3500 
3501   MI.eraseFromParent();
3502   return Legalized;
3503 }
3504 
3505 LegalizerHelper::LegalizeResult
3506 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3507                                           LLT NarrowTy) {
3508   if (TypeIdx != 0)
3509     return UnableToLegalize;
3510 
3511   Register DstReg = MI.getOperand(0).getReg();
3512   Register SrcReg = MI.getOperand(1).getReg();
3513   LLT DstTy = MRI.getType(DstReg);
3514   LLT SrcTy = MRI.getType(SrcReg);
3515 
3516   LLT NarrowTy0 = NarrowTy;
3517   LLT NarrowTy1;
3518   unsigned NumParts;
3519 
3520   if (NarrowTy.isVector()) {
3521     // Uneven breakdown not handled.
3522     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3523     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3524       return UnableToLegalize;
3525 
3526     NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType());
3527   } else {
3528     NumParts = DstTy.getNumElements();
3529     NarrowTy1 = SrcTy.getElementType();
3530   }
3531 
3532   SmallVector<Register, 4> SrcRegs, DstRegs;
3533   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3534 
3535   for (unsigned I = 0; I < NumParts; ++I) {
3536     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3537     MachineInstr *NewInst =
3538         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3539 
3540     NewInst->setFlags(MI.getFlags());
3541     DstRegs.push_back(DstReg);
3542   }
3543 
3544   if (NarrowTy.isVector())
3545     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3546   else
3547     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3548 
3549   MI.eraseFromParent();
3550   return Legalized;
3551 }
3552 
3553 LegalizerHelper::LegalizeResult
3554 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3555                                         LLT NarrowTy) {
3556   Register DstReg = MI.getOperand(0).getReg();
3557   Register Src0Reg = MI.getOperand(2).getReg();
3558   LLT DstTy = MRI.getType(DstReg);
3559   LLT SrcTy = MRI.getType(Src0Reg);
3560 
3561   unsigned NumParts;
3562   LLT NarrowTy0, NarrowTy1;
3563 
3564   if (TypeIdx == 0) {
3565     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3566     unsigned OldElts = DstTy.getNumElements();
3567 
3568     NarrowTy0 = NarrowTy;
3569     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3570     NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(),
3571                                                   SrcTy.getScalarSizeInBits())
3572                                     : SrcTy.getElementType();
3573 
3574   } else {
3575     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3576     unsigned OldElts = SrcTy.getNumElements();
3577 
3578     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3579       NarrowTy.getNumElements();
3580     NarrowTy0 =
3581         LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits());
3582     NarrowTy1 = NarrowTy;
3583   }
3584 
3585   // FIXME: Don't know how to handle the situation where the small vectors
3586   // aren't all the same size yet.
3587   if (NarrowTy1.isVector() &&
3588       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3589     return UnableToLegalize;
3590 
3591   CmpInst::Predicate Pred
3592     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3593 
3594   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3595   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3596   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3597 
3598   for (unsigned I = 0; I < NumParts; ++I) {
3599     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3600     DstRegs.push_back(DstReg);
3601 
3602     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3603       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3604     else {
3605       MachineInstr *NewCmp
3606         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3607       NewCmp->setFlags(MI.getFlags());
3608     }
3609   }
3610 
3611   if (NarrowTy1.isVector())
3612     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3613   else
3614     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3615 
3616   MI.eraseFromParent();
3617   return Legalized;
3618 }
3619 
3620 LegalizerHelper::LegalizeResult
3621 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3622                                            LLT NarrowTy) {
3623   Register DstReg = MI.getOperand(0).getReg();
3624   Register CondReg = MI.getOperand(1).getReg();
3625 
3626   unsigned NumParts = 0;
3627   LLT NarrowTy0, NarrowTy1;
3628 
3629   LLT DstTy = MRI.getType(DstReg);
3630   LLT CondTy = MRI.getType(CondReg);
3631   unsigned Size = DstTy.getSizeInBits();
3632 
3633   assert(TypeIdx == 0 || CondTy.isVector());
3634 
3635   if (TypeIdx == 0) {
3636     NarrowTy0 = NarrowTy;
3637     NarrowTy1 = CondTy;
3638 
3639     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3640     // FIXME: Don't know how to handle the situation where the small vectors
3641     // aren't all the same size yet.
3642     if (Size % NarrowSize != 0)
3643       return UnableToLegalize;
3644 
3645     NumParts = Size / NarrowSize;
3646 
3647     // Need to break down the condition type
3648     if (CondTy.isVector()) {
3649       if (CondTy.getNumElements() == NumParts)
3650         NarrowTy1 = CondTy.getElementType();
3651       else
3652         NarrowTy1 =
3653             LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts),
3654                         CondTy.getScalarSizeInBits());
3655     }
3656   } else {
3657     NumParts = CondTy.getNumElements();
3658     if (NarrowTy.isVector()) {
3659       // TODO: Handle uneven breakdown.
3660       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3661         return UnableToLegalize;
3662 
3663       return UnableToLegalize;
3664     } else {
3665       NarrowTy0 = DstTy.getElementType();
3666       NarrowTy1 = NarrowTy;
3667     }
3668   }
3669 
3670   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3671   if (CondTy.isVector())
3672     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3673 
3674   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3675   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3676 
3677   for (unsigned i = 0; i < NumParts; ++i) {
3678     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3679     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3680                            Src1Regs[i], Src2Regs[i]);
3681     DstRegs.push_back(DstReg);
3682   }
3683 
3684   if (NarrowTy0.isVector())
3685     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3686   else
3687     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3688 
3689   MI.eraseFromParent();
3690   return Legalized;
3691 }
3692 
3693 LegalizerHelper::LegalizeResult
3694 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3695                                         LLT NarrowTy) {
3696   const Register DstReg = MI.getOperand(0).getReg();
3697   LLT PhiTy = MRI.getType(DstReg);
3698   LLT LeftoverTy;
3699 
3700   // All of the operands need to have the same number of elements, so if we can
3701   // determine a type breakdown for the result type, we can for all of the
3702   // source types.
3703   int NumParts, NumLeftover;
3704   std::tie(NumParts, NumLeftover)
3705     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3706   if (NumParts < 0)
3707     return UnableToLegalize;
3708 
3709   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3710   SmallVector<MachineInstrBuilder, 4> NewInsts;
3711 
3712   const int TotalNumParts = NumParts + NumLeftover;
3713 
3714   // Insert the new phis in the result block first.
3715   for (int I = 0; I != TotalNumParts; ++I) {
3716     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3717     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3718     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3719                        .addDef(PartDstReg));
3720     if (I < NumParts)
3721       DstRegs.push_back(PartDstReg);
3722     else
3723       LeftoverDstRegs.push_back(PartDstReg);
3724   }
3725 
3726   MachineBasicBlock *MBB = MI.getParent();
3727   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3728   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3729 
3730   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3731 
3732   // Insert code to extract the incoming values in each predecessor block.
3733   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3734     PartRegs.clear();
3735     LeftoverRegs.clear();
3736 
3737     Register SrcReg = MI.getOperand(I).getReg();
3738     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3739     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3740 
3741     LLT Unused;
3742     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3743                       LeftoverRegs))
3744       return UnableToLegalize;
3745 
3746     // Add the newly created operand splits to the existing instructions. The
3747     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3748     // pieces.
3749     for (int J = 0; J != TotalNumParts; ++J) {
3750       MachineInstrBuilder MIB = NewInsts[J];
3751       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3752       MIB.addMBB(&OpMBB);
3753     }
3754   }
3755 
3756   MI.eraseFromParent();
3757   return Legalized;
3758 }
3759 
3760 LegalizerHelper::LegalizeResult
3761 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3762                                                   unsigned TypeIdx,
3763                                                   LLT NarrowTy) {
3764   if (TypeIdx != 1)
3765     return UnableToLegalize;
3766 
3767   const int NumDst = MI.getNumOperands() - 1;
3768   const Register SrcReg = MI.getOperand(NumDst).getReg();
3769   LLT SrcTy = MRI.getType(SrcReg);
3770 
3771   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3772 
3773   // TODO: Create sequence of extracts.
3774   if (DstTy == NarrowTy)
3775     return UnableToLegalize;
3776 
3777   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3778   if (DstTy == GCDTy) {
3779     // This would just be a copy of the same unmerge.
3780     // TODO: Create extracts, pad with undef and create intermediate merges.
3781     return UnableToLegalize;
3782   }
3783 
3784   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3785   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3786   const int PartsPerUnmerge = NumDst / NumUnmerge;
3787 
3788   for (int I = 0; I != NumUnmerge; ++I) {
3789     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3790 
3791     for (int J = 0; J != PartsPerUnmerge; ++J)
3792       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3793     MIB.addUse(Unmerge.getReg(I));
3794   }
3795 
3796   MI.eraseFromParent();
3797   return Legalized;
3798 }
3799 
3800 LegalizerHelper::LegalizeResult
3801 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3802                                          LLT NarrowTy) {
3803   Register Result = MI.getOperand(0).getReg();
3804   Register Overflow = MI.getOperand(1).getReg();
3805   Register LHS = MI.getOperand(2).getReg();
3806   Register RHS = MI.getOperand(3).getReg();
3807 
3808   LLT SrcTy = MRI.getType(LHS);
3809   if (!SrcTy.isVector())
3810     return UnableToLegalize;
3811 
3812   LLT ElementType = SrcTy.getElementType();
3813   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3814   const ElementCount NumResult = SrcTy.getElementCount();
3815   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3816 
3817   // Unmerge the operands to smaller parts of GCD type.
3818   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3819   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3820 
3821   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3822   const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps);
3823   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3824   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3825 
3826   // Perform the operation over unmerged parts.
3827   SmallVector<Register, 8> ResultParts;
3828   SmallVector<Register, 8> OverflowParts;
3829   for (int I = 0; I != NumOps; ++I) {
3830     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3831     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3832     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3833                                          {Operand1, Operand2});
3834     ResultParts.push_back(PartMul->getOperand(0).getReg());
3835     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3836   }
3837 
3838   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3839   LLT OverflowLCMTy =
3840       LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy);
3841 
3842   // Recombine the pieces to the original result and overflow registers.
3843   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3844   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3845   MI.eraseFromParent();
3846   return Legalized;
3847 }
3848 
3849 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3850 // a vector
3851 //
3852 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3853 // undef as necessary.
3854 //
3855 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3856 //   -> <2 x s16>
3857 //
3858 // %4:_(s16) = G_IMPLICIT_DEF
3859 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3860 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3861 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3862 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3863 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3864 LegalizerHelper::LegalizeResult
3865 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3866                                           LLT NarrowTy) {
3867   Register DstReg = MI.getOperand(0).getReg();
3868   LLT DstTy = MRI.getType(DstReg);
3869   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3870   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3871 
3872   // Break into a common type
3873   SmallVector<Register, 16> Parts;
3874   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3875     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3876 
3877   // Build the requested new merge, padding with undef.
3878   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3879                                   TargetOpcode::G_ANYEXT);
3880 
3881   // Pack into the original result register.
3882   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3883 
3884   MI.eraseFromParent();
3885   return Legalized;
3886 }
3887 
3888 LegalizerHelper::LegalizeResult
3889 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3890                                                            unsigned TypeIdx,
3891                                                            LLT NarrowVecTy) {
3892   Register DstReg = MI.getOperand(0).getReg();
3893   Register SrcVec = MI.getOperand(1).getReg();
3894   Register InsertVal;
3895   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3896 
3897   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3898   if (IsInsert)
3899     InsertVal = MI.getOperand(2).getReg();
3900 
3901   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3902 
3903   // TODO: Handle total scalarization case.
3904   if (!NarrowVecTy.isVector())
3905     return UnableToLegalize;
3906 
3907   LLT VecTy = MRI.getType(SrcVec);
3908 
3909   // If the index is a constant, we can really break this down as you would
3910   // expect, and index into the target size pieces.
3911   int64_t IdxVal;
3912   auto MaybeCst =
3913       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
3914                                         /*HandleFConstants*/ false);
3915   if (MaybeCst) {
3916     IdxVal = MaybeCst->Value.getSExtValue();
3917     // Avoid out of bounds indexing the pieces.
3918     if (IdxVal >= VecTy.getNumElements()) {
3919       MIRBuilder.buildUndef(DstReg);
3920       MI.eraseFromParent();
3921       return Legalized;
3922     }
3923 
3924     SmallVector<Register, 8> VecParts;
3925     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3926 
3927     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3928     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3929                                     TargetOpcode::G_ANYEXT);
3930 
3931     unsigned NewNumElts = NarrowVecTy.getNumElements();
3932 
3933     LLT IdxTy = MRI.getType(Idx);
3934     int64_t PartIdx = IdxVal / NewNumElts;
3935     auto NewIdx =
3936         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3937 
3938     if (IsInsert) {
3939       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3940 
3941       // Use the adjusted index to insert into one of the subvectors.
3942       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3943           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3944       VecParts[PartIdx] = InsertPart.getReg(0);
3945 
3946       // Recombine the inserted subvector with the others to reform the result
3947       // vector.
3948       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3949     } else {
3950       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3951     }
3952 
3953     MI.eraseFromParent();
3954     return Legalized;
3955   }
3956 
3957   // With a variable index, we can't perform the operation in a smaller type, so
3958   // we're forced to expand this.
3959   //
3960   // TODO: We could emit a chain of compare/select to figure out which piece to
3961   // index.
3962   return lowerExtractInsertVectorElt(MI);
3963 }
3964 
3965 LegalizerHelper::LegalizeResult
3966 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
3967                                       LLT NarrowTy) {
3968   // FIXME: Don't know how to handle secondary types yet.
3969   if (TypeIdx != 0)
3970     return UnableToLegalize;
3971 
3972   // This implementation doesn't work for atomics. Give up instead of doing
3973   // something invalid.
3974   if (LdStMI.isAtomic())
3975     return UnableToLegalize;
3976 
3977   bool IsLoad = isa<GLoad>(LdStMI);
3978   Register ValReg = LdStMI.getReg(0);
3979   Register AddrReg = LdStMI.getPointerReg();
3980   LLT ValTy = MRI.getType(ValReg);
3981 
3982   // FIXME: Do we need a distinct NarrowMemory legalize action?
3983   if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
3984     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3985     return UnableToLegalize;
3986   }
3987 
3988   int NumParts = -1;
3989   int NumLeftover = -1;
3990   LLT LeftoverTy;
3991   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3992   if (IsLoad) {
3993     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3994   } else {
3995     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3996                      NarrowLeftoverRegs)) {
3997       NumParts = NarrowRegs.size();
3998       NumLeftover = NarrowLeftoverRegs.size();
3999     }
4000   }
4001 
4002   if (NumParts == -1)
4003     return UnableToLegalize;
4004 
4005   LLT PtrTy = MRI.getType(AddrReg);
4006   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4007 
4008   unsigned TotalSize = ValTy.getSizeInBits();
4009 
4010   // Split the load/store into PartTy sized pieces starting at Offset. If this
4011   // is a load, return the new registers in ValRegs. For a store, each elements
4012   // of ValRegs should be PartTy. Returns the next offset that needs to be
4013   // handled.
4014   auto MMO = LdStMI.getMMO();
4015   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4016                              unsigned Offset) -> unsigned {
4017     MachineFunction &MF = MIRBuilder.getMF();
4018     unsigned PartSize = PartTy.getSizeInBits();
4019     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4020          Offset += PartSize, ++Idx) {
4021       unsigned ByteOffset = Offset / 8;
4022       Register NewAddrReg;
4023 
4024       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4025 
4026       MachineMemOperand *NewMMO =
4027           MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4028 
4029       if (IsLoad) {
4030         Register Dst = MRI.createGenericVirtualRegister(PartTy);
4031         ValRegs.push_back(Dst);
4032         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4033       } else {
4034         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4035       }
4036     }
4037 
4038     return Offset;
4039   };
4040 
4041   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
4042 
4043   // Handle the rest of the register if this isn't an even type breakdown.
4044   if (LeftoverTy.isValid())
4045     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
4046 
4047   if (IsLoad) {
4048     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4049                 LeftoverTy, NarrowLeftoverRegs);
4050   }
4051 
4052   LdStMI.eraseFromParent();
4053   return Legalized;
4054 }
4055 
4056 LegalizerHelper::LegalizeResult
4057 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
4058                                       LLT NarrowTy) {
4059   assert(TypeIdx == 0 && "only one type index expected");
4060 
4061   const unsigned Opc = MI.getOpcode();
4062   const int NumDefOps = MI.getNumExplicitDefs();
4063   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
4064   const unsigned Flags = MI.getFlags();
4065   const unsigned NarrowSize = NarrowTy.getSizeInBits();
4066   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
4067 
4068   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
4069                                      "result and 1-3 sources or 2 results and "
4070                                      "1-2 sources");
4071 
4072   SmallVector<Register, 2> DstRegs;
4073   for (int I = 0; I < NumDefOps; ++I)
4074     DstRegs.push_back(MI.getOperand(I).getReg());
4075 
4076   // First of all check whether we are narrowing (changing the element type)
4077   // or reducing the vector elements
4078   const LLT DstTy = MRI.getType(DstRegs[0]);
4079   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
4080 
4081   SmallVector<Register, 8> ExtractedRegs[3];
4082   SmallVector<Register, 8> Parts;
4083 
4084   // Break down all the sources into NarrowTy pieces we can operate on. This may
4085   // involve creating merges to a wider type, padded with undef.
4086   for (int I = 0; I != NumSrcOps; ++I) {
4087     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
4088     LLT SrcTy = MRI.getType(SrcReg);
4089 
4090     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
4091     // For fewerElements, this is a smaller vector with the same element type.
4092     LLT OpNarrowTy;
4093     if (IsNarrow) {
4094       OpNarrowTy = NarrowScalarTy;
4095 
4096       // In case of narrowing, we need to cast vectors to scalars for this to
4097       // work properly
4098       // FIXME: Can we do without the bitcast here if we're narrowing?
4099       if (SrcTy.isVector()) {
4100         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
4101         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
4102       }
4103     } else {
4104       auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount()
4105                                           : ElementCount::getFixed(1);
4106       OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType());
4107     }
4108 
4109     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4110 
4111     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4112     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4113                         TargetOpcode::G_ANYEXT);
4114   }
4115 
4116   SmallVector<Register, 8> ResultRegs[2];
4117 
4118   // Input operands for each sub-instruction.
4119   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4120 
4121   int NumParts = ExtractedRegs[0].size();
4122   const unsigned DstSize = DstTy.getSizeInBits();
4123   const LLT DstScalarTy = LLT::scalar(DstSize);
4124 
4125   // Narrowing needs to use scalar types
4126   LLT DstLCMTy, NarrowDstTy;
4127   if (IsNarrow) {
4128     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4129     NarrowDstTy = NarrowScalarTy;
4130   } else {
4131     DstLCMTy = getLCMType(DstTy, NarrowTy);
4132     NarrowDstTy = NarrowTy;
4133   }
4134 
4135   // We widened the source registers to satisfy merge/unmerge size
4136   // constraints. We'll have some extra fully undef parts.
4137   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4138 
4139   for (int I = 0; I != NumRealParts; ++I) {
4140     // Emit this instruction on each of the split pieces.
4141     for (int J = 0; J != NumSrcOps; ++J)
4142       InputRegs[J] = ExtractedRegs[J][I];
4143 
4144     MachineInstrBuilder Inst;
4145     if (NumDefOps == 1)
4146       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4147     else
4148       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4149                                    Flags);
4150 
4151     for (int J = 0; J != NumDefOps; ++J)
4152       ResultRegs[J].push_back(Inst.getReg(J));
4153   }
4154 
4155   // Fill out the widened result with undef instead of creating instructions
4156   // with undef inputs.
4157   int NumUndefParts = NumParts - NumRealParts;
4158   if (NumUndefParts != 0) {
4159     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4160     for (int I = 0; I != NumDefOps; ++I)
4161       ResultRegs[I].append(NumUndefParts, Undef);
4162   }
4163 
4164   // Extract the possibly padded result. Use a scratch register if we need to do
4165   // a final bitcast, otherwise use the original result register.
4166   Register MergeDstReg;
4167   for (int I = 0; I != NumDefOps; ++I) {
4168     if (IsNarrow && DstTy.isVector())
4169       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4170     else
4171       MergeDstReg = DstRegs[I];
4172 
4173     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4174 
4175     // Recast to vector if we narrowed a vector
4176     if (IsNarrow && DstTy.isVector())
4177       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4178   }
4179 
4180   MI.eraseFromParent();
4181   return Legalized;
4182 }
4183 
4184 LegalizerHelper::LegalizeResult
4185 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4186                                               LLT NarrowTy) {
4187   Register DstReg = MI.getOperand(0).getReg();
4188   Register SrcReg = MI.getOperand(1).getReg();
4189   int64_t Imm = MI.getOperand(2).getImm();
4190 
4191   LLT DstTy = MRI.getType(DstReg);
4192 
4193   SmallVector<Register, 8> Parts;
4194   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4195   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4196 
4197   for (Register &R : Parts)
4198     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4199 
4200   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4201 
4202   MI.eraseFromParent();
4203   return Legalized;
4204 }
4205 
4206 LegalizerHelper::LegalizeResult
4207 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4208                                      LLT NarrowTy) {
4209   using namespace TargetOpcode;
4210 
4211   switch (MI.getOpcode()) {
4212   case G_IMPLICIT_DEF:
4213     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4214   case G_TRUNC:
4215   case G_AND:
4216   case G_OR:
4217   case G_XOR:
4218   case G_ADD:
4219   case G_SUB:
4220   case G_MUL:
4221   case G_PTR_ADD:
4222   case G_SMULH:
4223   case G_UMULH:
4224   case G_FADD:
4225   case G_FMUL:
4226   case G_FSUB:
4227   case G_FNEG:
4228   case G_FABS:
4229   case G_FCANONICALIZE:
4230   case G_FDIV:
4231   case G_FREM:
4232   case G_FMA:
4233   case G_FMAD:
4234   case G_FPOW:
4235   case G_FEXP:
4236   case G_FEXP2:
4237   case G_FLOG:
4238   case G_FLOG2:
4239   case G_FLOG10:
4240   case G_FNEARBYINT:
4241   case G_FCEIL:
4242   case G_FFLOOR:
4243   case G_FRINT:
4244   case G_INTRINSIC_ROUND:
4245   case G_INTRINSIC_ROUNDEVEN:
4246   case G_INTRINSIC_TRUNC:
4247   case G_FCOS:
4248   case G_FSIN:
4249   case G_FSQRT:
4250   case G_BSWAP:
4251   case G_BITREVERSE:
4252   case G_SDIV:
4253   case G_UDIV:
4254   case G_SREM:
4255   case G_UREM:
4256   case G_SDIVREM:
4257   case G_UDIVREM:
4258   case G_SMIN:
4259   case G_SMAX:
4260   case G_UMIN:
4261   case G_UMAX:
4262   case G_ABS:
4263   case G_FMINNUM:
4264   case G_FMAXNUM:
4265   case G_FMINNUM_IEEE:
4266   case G_FMAXNUM_IEEE:
4267   case G_FMINIMUM:
4268   case G_FMAXIMUM:
4269   case G_FSHL:
4270   case G_FSHR:
4271   case G_FREEZE:
4272   case G_SADDSAT:
4273   case G_SSUBSAT:
4274   case G_UADDSAT:
4275   case G_USUBSAT:
4276     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4277   case G_UMULO:
4278   case G_SMULO:
4279     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4280   case G_SHL:
4281   case G_LSHR:
4282   case G_ASHR:
4283   case G_SSHLSAT:
4284   case G_USHLSAT:
4285   case G_CTLZ:
4286   case G_CTLZ_ZERO_UNDEF:
4287   case G_CTTZ:
4288   case G_CTTZ_ZERO_UNDEF:
4289   case G_CTPOP:
4290   case G_FCOPYSIGN:
4291     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4292   case G_ZEXT:
4293   case G_SEXT:
4294   case G_ANYEXT:
4295   case G_FPEXT:
4296   case G_FPTRUNC:
4297   case G_SITOFP:
4298   case G_UITOFP:
4299   case G_FPTOSI:
4300   case G_FPTOUI:
4301   case G_INTTOPTR:
4302   case G_PTRTOINT:
4303   case G_ADDRSPACE_CAST:
4304     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4305   case G_ICMP:
4306   case G_FCMP:
4307     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4308   case G_SELECT:
4309     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4310   case G_PHI:
4311     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4312   case G_UNMERGE_VALUES:
4313     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4314   case G_BUILD_VECTOR:
4315     assert(TypeIdx == 0 && "not a vector type index");
4316     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4317   case G_CONCAT_VECTORS:
4318     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4319       return UnableToLegalize;
4320     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4321   case G_EXTRACT_VECTOR_ELT:
4322   case G_INSERT_VECTOR_ELT:
4323     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4324   case G_LOAD:
4325   case G_STORE:
4326     return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4327   case G_SEXT_INREG:
4328     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4329   GISEL_VECREDUCE_CASES_NONSEQ
4330     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4331   case G_SHUFFLE_VECTOR:
4332     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4333   default:
4334     return UnableToLegalize;
4335   }
4336 }
4337 
4338 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4339     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4340   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4341   if (TypeIdx != 0)
4342     return UnableToLegalize;
4343 
4344   Register DstReg = MI.getOperand(0).getReg();
4345   Register Src1Reg = MI.getOperand(1).getReg();
4346   Register Src2Reg = MI.getOperand(2).getReg();
4347   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4348   LLT DstTy = MRI.getType(DstReg);
4349   LLT Src1Ty = MRI.getType(Src1Reg);
4350   LLT Src2Ty = MRI.getType(Src2Reg);
4351   // The shuffle should be canonicalized by now.
4352   if (DstTy != Src1Ty)
4353     return UnableToLegalize;
4354   if (DstTy != Src2Ty)
4355     return UnableToLegalize;
4356 
4357   if (!isPowerOf2_32(DstTy.getNumElements()))
4358     return UnableToLegalize;
4359 
4360   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4361   // Further legalization attempts will be needed to do split further.
4362   NarrowTy =
4363       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4364   unsigned NewElts = NarrowTy.getNumElements();
4365 
4366   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4367   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4368   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4369   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4370                         SplitSrc2Regs[1]};
4371 
4372   Register Hi, Lo;
4373 
4374   // If Lo or Hi uses elements from at most two of the four input vectors, then
4375   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4376   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4377   SmallVector<int, 16> Ops;
4378   for (unsigned High = 0; High < 2; ++High) {
4379     Register &Output = High ? Hi : Lo;
4380 
4381     // Build a shuffle mask for the output, discovering on the fly which
4382     // input vectors to use as shuffle operands (recorded in InputUsed).
4383     // If building a suitable shuffle vector proves too hard, then bail
4384     // out with useBuildVector set.
4385     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4386     unsigned FirstMaskIdx = High * NewElts;
4387     bool UseBuildVector = false;
4388     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4389       // The mask element.  This indexes into the input.
4390       int Idx = Mask[FirstMaskIdx + MaskOffset];
4391 
4392       // The input vector this mask element indexes into.
4393       unsigned Input = (unsigned)Idx / NewElts;
4394 
4395       if (Input >= array_lengthof(Inputs)) {
4396         // The mask element does not index into any input vector.
4397         Ops.push_back(-1);
4398         continue;
4399       }
4400 
4401       // Turn the index into an offset from the start of the input vector.
4402       Idx -= Input * NewElts;
4403 
4404       // Find or create a shuffle vector operand to hold this input.
4405       unsigned OpNo;
4406       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4407         if (InputUsed[OpNo] == Input) {
4408           // This input vector is already an operand.
4409           break;
4410         } else if (InputUsed[OpNo] == -1U) {
4411           // Create a new operand for this input vector.
4412           InputUsed[OpNo] = Input;
4413           break;
4414         }
4415       }
4416 
4417       if (OpNo >= array_lengthof(InputUsed)) {
4418         // More than two input vectors used!  Give up on trying to create a
4419         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4420         UseBuildVector = true;
4421         break;
4422       }
4423 
4424       // Add the mask index for the new shuffle vector.
4425       Ops.push_back(Idx + OpNo * NewElts);
4426     }
4427 
4428     if (UseBuildVector) {
4429       LLT EltTy = NarrowTy.getElementType();
4430       SmallVector<Register, 16> SVOps;
4431 
4432       // Extract the input elements by hand.
4433       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4434         // The mask element.  This indexes into the input.
4435         int Idx = Mask[FirstMaskIdx + MaskOffset];
4436 
4437         // The input vector this mask element indexes into.
4438         unsigned Input = (unsigned)Idx / NewElts;
4439 
4440         if (Input >= array_lengthof(Inputs)) {
4441           // The mask element is "undef" or indexes off the end of the input.
4442           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4443           continue;
4444         }
4445 
4446         // Turn the index into an offset from the start of the input vector.
4447         Idx -= Input * NewElts;
4448 
4449         // Extract the vector element by hand.
4450         SVOps.push_back(MIRBuilder
4451                             .buildExtractVectorElement(
4452                                 EltTy, Inputs[Input],
4453                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4454                             .getReg(0));
4455       }
4456 
4457       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4458       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4459     } else if (InputUsed[0] == -1U) {
4460       // No input vectors were used! The result is undefined.
4461       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4462     } else {
4463       Register Op0 = Inputs[InputUsed[0]];
4464       // If only one input was used, use an undefined vector for the other.
4465       Register Op1 = InputUsed[1] == -1U
4466                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4467                          : Inputs[InputUsed[1]];
4468       // At least one input vector was used. Create a new shuffle vector.
4469       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4470     }
4471 
4472     Ops.clear();
4473   }
4474 
4475   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4476   MI.eraseFromParent();
4477   return Legalized;
4478 }
4479 
4480 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4481     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4482   unsigned Opc = MI.getOpcode();
4483   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4484          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4485          "Sequential reductions not expected");
4486 
4487   if (TypeIdx != 1)
4488     return UnableToLegalize;
4489 
4490   // The semantics of the normal non-sequential reductions allow us to freely
4491   // re-associate the operation.
4492   Register SrcReg = MI.getOperand(1).getReg();
4493   LLT SrcTy = MRI.getType(SrcReg);
4494   Register DstReg = MI.getOperand(0).getReg();
4495   LLT DstTy = MRI.getType(DstReg);
4496 
4497   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4498     return UnableToLegalize;
4499 
4500   SmallVector<Register> SplitSrcs;
4501   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4502   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4503   SmallVector<Register> PartialReductions;
4504   for (unsigned Part = 0; Part < NumParts; ++Part) {
4505     PartialReductions.push_back(
4506         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4507   }
4508 
4509   unsigned ScalarOpc;
4510   switch (Opc) {
4511   case TargetOpcode::G_VECREDUCE_FADD:
4512     ScalarOpc = TargetOpcode::G_FADD;
4513     break;
4514   case TargetOpcode::G_VECREDUCE_FMUL:
4515     ScalarOpc = TargetOpcode::G_FMUL;
4516     break;
4517   case TargetOpcode::G_VECREDUCE_FMAX:
4518     ScalarOpc = TargetOpcode::G_FMAXNUM;
4519     break;
4520   case TargetOpcode::G_VECREDUCE_FMIN:
4521     ScalarOpc = TargetOpcode::G_FMINNUM;
4522     break;
4523   case TargetOpcode::G_VECREDUCE_ADD:
4524     ScalarOpc = TargetOpcode::G_ADD;
4525     break;
4526   case TargetOpcode::G_VECREDUCE_MUL:
4527     ScalarOpc = TargetOpcode::G_MUL;
4528     break;
4529   case TargetOpcode::G_VECREDUCE_AND:
4530     ScalarOpc = TargetOpcode::G_AND;
4531     break;
4532   case TargetOpcode::G_VECREDUCE_OR:
4533     ScalarOpc = TargetOpcode::G_OR;
4534     break;
4535   case TargetOpcode::G_VECREDUCE_XOR:
4536     ScalarOpc = TargetOpcode::G_XOR;
4537     break;
4538   case TargetOpcode::G_VECREDUCE_SMAX:
4539     ScalarOpc = TargetOpcode::G_SMAX;
4540     break;
4541   case TargetOpcode::G_VECREDUCE_SMIN:
4542     ScalarOpc = TargetOpcode::G_SMIN;
4543     break;
4544   case TargetOpcode::G_VECREDUCE_UMAX:
4545     ScalarOpc = TargetOpcode::G_UMAX;
4546     break;
4547   case TargetOpcode::G_VECREDUCE_UMIN:
4548     ScalarOpc = TargetOpcode::G_UMIN;
4549     break;
4550   default:
4551     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4552     return UnableToLegalize;
4553   }
4554 
4555   // If the types involved are powers of 2, we can generate intermediate vector
4556   // ops, before generating a final reduction operation.
4557   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4558       isPowerOf2_32(NarrowTy.getNumElements())) {
4559     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4560   }
4561 
4562   Register Acc = PartialReductions[0];
4563   for (unsigned Part = 1; Part < NumParts; ++Part) {
4564     if (Part == NumParts - 1) {
4565       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4566                             {Acc, PartialReductions[Part]});
4567     } else {
4568       Acc = MIRBuilder
4569                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4570                 .getReg(0);
4571     }
4572   }
4573   MI.eraseFromParent();
4574   return Legalized;
4575 }
4576 
4577 LegalizerHelper::LegalizeResult
4578 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4579                                         LLT SrcTy, LLT NarrowTy,
4580                                         unsigned ScalarOpc) {
4581   SmallVector<Register> SplitSrcs;
4582   // Split the sources into NarrowTy size pieces.
4583   extractParts(SrcReg, NarrowTy,
4584                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4585   // We're going to do a tree reduction using vector operations until we have
4586   // one NarrowTy size value left.
4587   while (SplitSrcs.size() > 1) {
4588     SmallVector<Register> PartialRdxs;
4589     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4590       Register LHS = SplitSrcs[Idx];
4591       Register RHS = SplitSrcs[Idx + 1];
4592       // Create the intermediate vector op.
4593       Register Res =
4594           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4595       PartialRdxs.push_back(Res);
4596     }
4597     SplitSrcs = std::move(PartialRdxs);
4598   }
4599   // Finally generate the requested NarrowTy based reduction.
4600   Observer.changingInstr(MI);
4601   MI.getOperand(1).setReg(SplitSrcs[0]);
4602   Observer.changedInstr(MI);
4603   return Legalized;
4604 }
4605 
4606 LegalizerHelper::LegalizeResult
4607 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4608                                              const LLT HalfTy, const LLT AmtTy) {
4609 
4610   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4611   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4612   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4613 
4614   if (Amt.isNullValue()) {
4615     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4616     MI.eraseFromParent();
4617     return Legalized;
4618   }
4619 
4620   LLT NVT = HalfTy;
4621   unsigned NVTBits = HalfTy.getSizeInBits();
4622   unsigned VTBits = 2 * NVTBits;
4623 
4624   SrcOp Lo(Register(0)), Hi(Register(0));
4625   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4626     if (Amt.ugt(VTBits)) {
4627       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4628     } else if (Amt.ugt(NVTBits)) {
4629       Lo = MIRBuilder.buildConstant(NVT, 0);
4630       Hi = MIRBuilder.buildShl(NVT, InL,
4631                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4632     } else if (Amt == NVTBits) {
4633       Lo = MIRBuilder.buildConstant(NVT, 0);
4634       Hi = InL;
4635     } else {
4636       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4637       auto OrLHS =
4638           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4639       auto OrRHS = MIRBuilder.buildLShr(
4640           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4641       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4642     }
4643   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4644     if (Amt.ugt(VTBits)) {
4645       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4646     } else if (Amt.ugt(NVTBits)) {
4647       Lo = MIRBuilder.buildLShr(NVT, InH,
4648                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4649       Hi = MIRBuilder.buildConstant(NVT, 0);
4650     } else if (Amt == NVTBits) {
4651       Lo = InH;
4652       Hi = MIRBuilder.buildConstant(NVT, 0);
4653     } else {
4654       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4655 
4656       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4657       auto OrRHS = MIRBuilder.buildShl(
4658           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4659 
4660       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4661       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4662     }
4663   } else {
4664     if (Amt.ugt(VTBits)) {
4665       Hi = Lo = MIRBuilder.buildAShr(
4666           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4667     } else if (Amt.ugt(NVTBits)) {
4668       Lo = MIRBuilder.buildAShr(NVT, InH,
4669                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4670       Hi = MIRBuilder.buildAShr(NVT, InH,
4671                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4672     } else if (Amt == NVTBits) {
4673       Lo = InH;
4674       Hi = MIRBuilder.buildAShr(NVT, InH,
4675                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4676     } else {
4677       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4678 
4679       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4680       auto OrRHS = MIRBuilder.buildShl(
4681           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4682 
4683       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4684       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4685     }
4686   }
4687 
4688   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4689   MI.eraseFromParent();
4690 
4691   return Legalized;
4692 }
4693 
4694 // TODO: Optimize if constant shift amount.
4695 LegalizerHelper::LegalizeResult
4696 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4697                                    LLT RequestedTy) {
4698   if (TypeIdx == 1) {
4699     Observer.changingInstr(MI);
4700     narrowScalarSrc(MI, RequestedTy, 2);
4701     Observer.changedInstr(MI);
4702     return Legalized;
4703   }
4704 
4705   Register DstReg = MI.getOperand(0).getReg();
4706   LLT DstTy = MRI.getType(DstReg);
4707   if (DstTy.isVector())
4708     return UnableToLegalize;
4709 
4710   Register Amt = MI.getOperand(2).getReg();
4711   LLT ShiftAmtTy = MRI.getType(Amt);
4712   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4713   if (DstEltSize % 2 != 0)
4714     return UnableToLegalize;
4715 
4716   // Ignore the input type. We can only go to exactly half the size of the
4717   // input. If that isn't small enough, the resulting pieces will be further
4718   // legalized.
4719   const unsigned NewBitSize = DstEltSize / 2;
4720   const LLT HalfTy = LLT::scalar(NewBitSize);
4721   const LLT CondTy = LLT::scalar(1);
4722 
4723   if (const MachineInstr *KShiftAmt =
4724           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4725     return narrowScalarShiftByConstant(
4726         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4727   }
4728 
4729   // TODO: Expand with known bits.
4730 
4731   // Handle the fully general expansion by an unknown amount.
4732   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4733 
4734   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4735   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4736   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4737 
4738   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4739   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4740 
4741   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4742   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4743   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4744 
4745   Register ResultRegs[2];
4746   switch (MI.getOpcode()) {
4747   case TargetOpcode::G_SHL: {
4748     // Short: ShAmt < NewBitSize
4749     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4750 
4751     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4752     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4753     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4754 
4755     // Long: ShAmt >= NewBitSize
4756     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4757     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4758 
4759     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4760     auto Hi = MIRBuilder.buildSelect(
4761         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4762 
4763     ResultRegs[0] = Lo.getReg(0);
4764     ResultRegs[1] = Hi.getReg(0);
4765     break;
4766   }
4767   case TargetOpcode::G_LSHR:
4768   case TargetOpcode::G_ASHR: {
4769     // Short: ShAmt < NewBitSize
4770     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4771 
4772     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4773     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4774     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4775 
4776     // Long: ShAmt >= NewBitSize
4777     MachineInstrBuilder HiL;
4778     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4779       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4780     } else {
4781       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4782       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4783     }
4784     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4785                                      {InH, AmtExcess});     // Lo from Hi part.
4786 
4787     auto Lo = MIRBuilder.buildSelect(
4788         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4789 
4790     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4791 
4792     ResultRegs[0] = Lo.getReg(0);
4793     ResultRegs[1] = Hi.getReg(0);
4794     break;
4795   }
4796   default:
4797     llvm_unreachable("not a shift");
4798   }
4799 
4800   MIRBuilder.buildMerge(DstReg, ResultRegs);
4801   MI.eraseFromParent();
4802   return Legalized;
4803 }
4804 
4805 LegalizerHelper::LegalizeResult
4806 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4807                                        LLT MoreTy) {
4808   assert(TypeIdx == 0 && "Expecting only Idx 0");
4809 
4810   Observer.changingInstr(MI);
4811   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4812     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4813     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4814     moreElementsVectorSrc(MI, MoreTy, I);
4815   }
4816 
4817   MachineBasicBlock &MBB = *MI.getParent();
4818   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4819   moreElementsVectorDst(MI, MoreTy, 0);
4820   Observer.changedInstr(MI);
4821   return Legalized;
4822 }
4823 
4824 LegalizerHelper::LegalizeResult
4825 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4826                                     LLT MoreTy) {
4827   unsigned Opc = MI.getOpcode();
4828   switch (Opc) {
4829   case TargetOpcode::G_IMPLICIT_DEF:
4830   case TargetOpcode::G_LOAD: {
4831     if (TypeIdx != 0)
4832       return UnableToLegalize;
4833     Observer.changingInstr(MI);
4834     moreElementsVectorDst(MI, MoreTy, 0);
4835     Observer.changedInstr(MI);
4836     return Legalized;
4837   }
4838   case TargetOpcode::G_STORE:
4839     if (TypeIdx != 0)
4840       return UnableToLegalize;
4841     Observer.changingInstr(MI);
4842     moreElementsVectorSrc(MI, MoreTy, 0);
4843     Observer.changedInstr(MI);
4844     return Legalized;
4845   case TargetOpcode::G_AND:
4846   case TargetOpcode::G_OR:
4847   case TargetOpcode::G_XOR:
4848   case TargetOpcode::G_SMIN:
4849   case TargetOpcode::G_SMAX:
4850   case TargetOpcode::G_UMIN:
4851   case TargetOpcode::G_UMAX:
4852   case TargetOpcode::G_FMINNUM:
4853   case TargetOpcode::G_FMAXNUM:
4854   case TargetOpcode::G_FMINNUM_IEEE:
4855   case TargetOpcode::G_FMAXNUM_IEEE:
4856   case TargetOpcode::G_FMINIMUM:
4857   case TargetOpcode::G_FMAXIMUM: {
4858     Observer.changingInstr(MI);
4859     moreElementsVectorSrc(MI, MoreTy, 1);
4860     moreElementsVectorSrc(MI, MoreTy, 2);
4861     moreElementsVectorDst(MI, MoreTy, 0);
4862     Observer.changedInstr(MI);
4863     return Legalized;
4864   }
4865   case TargetOpcode::G_EXTRACT:
4866     if (TypeIdx != 1)
4867       return UnableToLegalize;
4868     Observer.changingInstr(MI);
4869     moreElementsVectorSrc(MI, MoreTy, 1);
4870     Observer.changedInstr(MI);
4871     return Legalized;
4872   case TargetOpcode::G_INSERT:
4873   case TargetOpcode::G_FREEZE:
4874     if (TypeIdx != 0)
4875       return UnableToLegalize;
4876     Observer.changingInstr(MI);
4877     moreElementsVectorSrc(MI, MoreTy, 1);
4878     moreElementsVectorDst(MI, MoreTy, 0);
4879     Observer.changedInstr(MI);
4880     return Legalized;
4881   case TargetOpcode::G_SELECT:
4882     if (TypeIdx != 0)
4883       return UnableToLegalize;
4884     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4885       return UnableToLegalize;
4886 
4887     Observer.changingInstr(MI);
4888     moreElementsVectorSrc(MI, MoreTy, 2);
4889     moreElementsVectorSrc(MI, MoreTy, 3);
4890     moreElementsVectorDst(MI, MoreTy, 0);
4891     Observer.changedInstr(MI);
4892     return Legalized;
4893   case TargetOpcode::G_UNMERGE_VALUES: {
4894     if (TypeIdx != 1)
4895       return UnableToLegalize;
4896 
4897     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4898     int NumDst = MI.getNumOperands() - 1;
4899     moreElementsVectorSrc(MI, MoreTy, NumDst);
4900 
4901     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4902     for (int I = 0; I != NumDst; ++I)
4903       MIB.addDef(MI.getOperand(I).getReg());
4904 
4905     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4906     for (int I = NumDst; I != NewNumDst; ++I)
4907       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4908 
4909     MIB.addUse(MI.getOperand(NumDst).getReg());
4910     MI.eraseFromParent();
4911     return Legalized;
4912   }
4913   case TargetOpcode::G_PHI:
4914     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4915   case TargetOpcode::G_SHUFFLE_VECTOR:
4916     return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
4917   default:
4918     return UnableToLegalize;
4919   }
4920 }
4921 
4922 LegalizerHelper::LegalizeResult
4923 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
4924                                            unsigned int TypeIdx, LLT MoreTy) {
4925   if (TypeIdx != 0)
4926     return UnableToLegalize;
4927 
4928   Register DstReg = MI.getOperand(0).getReg();
4929   Register Src1Reg = MI.getOperand(1).getReg();
4930   Register Src2Reg = MI.getOperand(2).getReg();
4931   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4932   LLT DstTy = MRI.getType(DstReg);
4933   LLT Src1Ty = MRI.getType(Src1Reg);
4934   LLT Src2Ty = MRI.getType(Src2Reg);
4935   unsigned NumElts = DstTy.getNumElements();
4936   unsigned WidenNumElts = MoreTy.getNumElements();
4937 
4938   // Expect a canonicalized shuffle.
4939   if (DstTy != Src1Ty || DstTy != Src2Ty)
4940     return UnableToLegalize;
4941 
4942   moreElementsVectorSrc(MI, MoreTy, 1);
4943   moreElementsVectorSrc(MI, MoreTy, 2);
4944 
4945   // Adjust mask based on new input vector length.
4946   SmallVector<int, 16> NewMask;
4947   for (unsigned I = 0; I != NumElts; ++I) {
4948     int Idx = Mask[I];
4949     if (Idx < static_cast<int>(NumElts))
4950       NewMask.push_back(Idx);
4951     else
4952       NewMask.push_back(Idx - NumElts + WidenNumElts);
4953   }
4954   for (unsigned I = NumElts; I != WidenNumElts; ++I)
4955     NewMask.push_back(-1);
4956   moreElementsVectorDst(MI, MoreTy, 0);
4957   MIRBuilder.setInstrAndDebugLoc(MI);
4958   MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
4959                                 MI.getOperand(1).getReg(),
4960                                 MI.getOperand(2).getReg(), NewMask);
4961   MI.eraseFromParent();
4962   return Legalized;
4963 }
4964 
4965 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4966                                         ArrayRef<Register> Src1Regs,
4967                                         ArrayRef<Register> Src2Regs,
4968                                         LLT NarrowTy) {
4969   MachineIRBuilder &B = MIRBuilder;
4970   unsigned SrcParts = Src1Regs.size();
4971   unsigned DstParts = DstRegs.size();
4972 
4973   unsigned DstIdx = 0; // Low bits of the result.
4974   Register FactorSum =
4975       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4976   DstRegs[DstIdx] = FactorSum;
4977 
4978   unsigned CarrySumPrevDstIdx;
4979   SmallVector<Register, 4> Factors;
4980 
4981   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4982     // Collect low parts of muls for DstIdx.
4983     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4984          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4985       MachineInstrBuilder Mul =
4986           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4987       Factors.push_back(Mul.getReg(0));
4988     }
4989     // Collect high parts of muls from previous DstIdx.
4990     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4991          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4992       MachineInstrBuilder Umulh =
4993           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4994       Factors.push_back(Umulh.getReg(0));
4995     }
4996     // Add CarrySum from additions calculated for previous DstIdx.
4997     if (DstIdx != 1) {
4998       Factors.push_back(CarrySumPrevDstIdx);
4999     }
5000 
5001     Register CarrySum;
5002     // Add all factors and accumulate all carries into CarrySum.
5003     if (DstIdx != DstParts - 1) {
5004       MachineInstrBuilder Uaddo =
5005           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5006       FactorSum = Uaddo.getReg(0);
5007       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5008       for (unsigned i = 2; i < Factors.size(); ++i) {
5009         MachineInstrBuilder Uaddo =
5010             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5011         FactorSum = Uaddo.getReg(0);
5012         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5013         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5014       }
5015     } else {
5016       // Since value for the next index is not calculated, neither is CarrySum.
5017       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5018       for (unsigned i = 2; i < Factors.size(); ++i)
5019         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5020     }
5021 
5022     CarrySumPrevDstIdx = CarrySum;
5023     DstRegs[DstIdx] = FactorSum;
5024     Factors.clear();
5025   }
5026 }
5027 
5028 LegalizerHelper::LegalizeResult
5029 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5030                                     LLT NarrowTy) {
5031   if (TypeIdx != 0)
5032     return UnableToLegalize;
5033 
5034   Register DstReg = MI.getOperand(0).getReg();
5035   LLT DstType = MRI.getType(DstReg);
5036   // FIXME: add support for vector types
5037   if (DstType.isVector())
5038     return UnableToLegalize;
5039 
5040   unsigned Opcode = MI.getOpcode();
5041   unsigned OpO, OpE, OpF;
5042   switch (Opcode) {
5043   case TargetOpcode::G_SADDO:
5044   case TargetOpcode::G_SADDE:
5045   case TargetOpcode::G_UADDO:
5046   case TargetOpcode::G_UADDE:
5047   case TargetOpcode::G_ADD:
5048     OpO = TargetOpcode::G_UADDO;
5049     OpE = TargetOpcode::G_UADDE;
5050     OpF = TargetOpcode::G_UADDE;
5051     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5052       OpF = TargetOpcode::G_SADDE;
5053     break;
5054   case TargetOpcode::G_SSUBO:
5055   case TargetOpcode::G_SSUBE:
5056   case TargetOpcode::G_USUBO:
5057   case TargetOpcode::G_USUBE:
5058   case TargetOpcode::G_SUB:
5059     OpO = TargetOpcode::G_USUBO;
5060     OpE = TargetOpcode::G_USUBE;
5061     OpF = TargetOpcode::G_USUBE;
5062     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5063       OpF = TargetOpcode::G_SSUBE;
5064     break;
5065   default:
5066     llvm_unreachable("Unexpected add/sub opcode!");
5067   }
5068 
5069   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5070   unsigned NumDefs = MI.getNumExplicitDefs();
5071   Register Src1 = MI.getOperand(NumDefs).getReg();
5072   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5073   Register CarryDst, CarryIn;
5074   if (NumDefs == 2)
5075     CarryDst = MI.getOperand(1).getReg();
5076   if (MI.getNumOperands() == NumDefs + 3)
5077     CarryIn = MI.getOperand(NumDefs + 2).getReg();
5078 
5079   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5080   LLT LeftoverTy, DummyTy;
5081   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5082   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5083   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5084 
5085   int NarrowParts = Src1Regs.size();
5086   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5087     Src1Regs.push_back(Src1Left[I]);
5088     Src2Regs.push_back(Src2Left[I]);
5089   }
5090   DstRegs.reserve(Src1Regs.size());
5091 
5092   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5093     Register DstReg =
5094         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5095     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5096     // Forward the final carry-out to the destination register
5097     if (i == e - 1 && CarryDst)
5098       CarryOut = CarryDst;
5099 
5100     if (!CarryIn) {
5101       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5102                             {Src1Regs[i], Src2Regs[i]});
5103     } else if (i == e - 1) {
5104       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5105                             {Src1Regs[i], Src2Regs[i], CarryIn});
5106     } else {
5107       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5108                             {Src1Regs[i], Src2Regs[i], CarryIn});
5109     }
5110 
5111     DstRegs.push_back(DstReg);
5112     CarryIn = CarryOut;
5113   }
5114   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5115               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5116               makeArrayRef(DstRegs).drop_front(NarrowParts));
5117 
5118   MI.eraseFromParent();
5119   return Legalized;
5120 }
5121 
5122 LegalizerHelper::LegalizeResult
5123 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5124   Register DstReg = MI.getOperand(0).getReg();
5125   Register Src1 = MI.getOperand(1).getReg();
5126   Register Src2 = MI.getOperand(2).getReg();
5127 
5128   LLT Ty = MRI.getType(DstReg);
5129   if (Ty.isVector())
5130     return UnableToLegalize;
5131 
5132   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
5133   unsigned DstSize = Ty.getSizeInBits();
5134   unsigned NarrowSize = NarrowTy.getSizeInBits();
5135   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
5136     return UnableToLegalize;
5137 
5138   unsigned NumDstParts = DstSize / NarrowSize;
5139   unsigned NumSrcParts = SrcSize / NarrowSize;
5140   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5141   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
5142 
5143   SmallVector<Register, 2> Src1Parts, Src2Parts;
5144   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5145   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
5146   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
5147   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5148 
5149   // Take only high half of registers if this is high mul.
5150   ArrayRef<Register> DstRegs(
5151       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
5152   MIRBuilder.buildMerge(DstReg, DstRegs);
5153   MI.eraseFromParent();
5154   return Legalized;
5155 }
5156 
5157 LegalizerHelper::LegalizeResult
5158 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5159                                    LLT NarrowTy) {
5160   if (TypeIdx != 0)
5161     return UnableToLegalize;
5162 
5163   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5164 
5165   Register Src = MI.getOperand(1).getReg();
5166   LLT SrcTy = MRI.getType(Src);
5167 
5168   // If all finite floats fit into the narrowed integer type, we can just swap
5169   // out the result type. This is practically only useful for conversions from
5170   // half to at least 16-bits, so just handle the one case.
5171   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5172       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5173     return UnableToLegalize;
5174 
5175   Observer.changingInstr(MI);
5176   narrowScalarDst(MI, NarrowTy, 0,
5177                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5178   Observer.changedInstr(MI);
5179   return Legalized;
5180 }
5181 
5182 LegalizerHelper::LegalizeResult
5183 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5184                                      LLT NarrowTy) {
5185   if (TypeIdx != 1)
5186     return UnableToLegalize;
5187 
5188   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5189 
5190   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5191   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5192   // NarrowSize.
5193   if (SizeOp1 % NarrowSize != 0)
5194     return UnableToLegalize;
5195   int NumParts = SizeOp1 / NarrowSize;
5196 
5197   SmallVector<Register, 2> SrcRegs, DstRegs;
5198   SmallVector<uint64_t, 2> Indexes;
5199   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5200 
5201   Register OpReg = MI.getOperand(0).getReg();
5202   uint64_t OpStart = MI.getOperand(2).getImm();
5203   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5204   for (int i = 0; i < NumParts; ++i) {
5205     unsigned SrcStart = i * NarrowSize;
5206 
5207     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5208       // No part of the extract uses this subregister, ignore it.
5209       continue;
5210     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5211       // The entire subregister is extracted, forward the value.
5212       DstRegs.push_back(SrcRegs[i]);
5213       continue;
5214     }
5215 
5216     // OpSegStart is where this destination segment would start in OpReg if it
5217     // extended infinitely in both directions.
5218     int64_t ExtractOffset;
5219     uint64_t SegSize;
5220     if (OpStart < SrcStart) {
5221       ExtractOffset = 0;
5222       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5223     } else {
5224       ExtractOffset = OpStart - SrcStart;
5225       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5226     }
5227 
5228     Register SegReg = SrcRegs[i];
5229     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5230       // A genuine extract is needed.
5231       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5232       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5233     }
5234 
5235     DstRegs.push_back(SegReg);
5236   }
5237 
5238   Register DstReg = MI.getOperand(0).getReg();
5239   if (MRI.getType(DstReg).isVector())
5240     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5241   else if (DstRegs.size() > 1)
5242     MIRBuilder.buildMerge(DstReg, DstRegs);
5243   else
5244     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5245   MI.eraseFromParent();
5246   return Legalized;
5247 }
5248 
5249 LegalizerHelper::LegalizeResult
5250 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5251                                     LLT NarrowTy) {
5252   // FIXME: Don't know how to handle secondary types yet.
5253   if (TypeIdx != 0)
5254     return UnableToLegalize;
5255 
5256   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5257   SmallVector<uint64_t, 2> Indexes;
5258   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5259   LLT LeftoverTy;
5260   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5261                LeftoverRegs);
5262 
5263   for (Register Reg : LeftoverRegs)
5264     SrcRegs.push_back(Reg);
5265 
5266   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5267   Register OpReg = MI.getOperand(2).getReg();
5268   uint64_t OpStart = MI.getOperand(3).getImm();
5269   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5270   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5271     unsigned DstStart = I * NarrowSize;
5272 
5273     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5274       // The entire subregister is defined by this insert, forward the new
5275       // value.
5276       DstRegs.push_back(OpReg);
5277       continue;
5278     }
5279 
5280     Register SrcReg = SrcRegs[I];
5281     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5282       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5283       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5284       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5285     }
5286 
5287     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5288       // No part of the insert affects this subregister, forward the original.
5289       DstRegs.push_back(SrcReg);
5290       continue;
5291     }
5292 
5293     // OpSegStart is where this destination segment would start in OpReg if it
5294     // extended infinitely in both directions.
5295     int64_t ExtractOffset, InsertOffset;
5296     uint64_t SegSize;
5297     if (OpStart < DstStart) {
5298       InsertOffset = 0;
5299       ExtractOffset = DstStart - OpStart;
5300       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5301     } else {
5302       InsertOffset = OpStart - DstStart;
5303       ExtractOffset = 0;
5304       SegSize =
5305         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5306     }
5307 
5308     Register SegReg = OpReg;
5309     if (ExtractOffset != 0 || SegSize != OpSize) {
5310       // A genuine extract is needed.
5311       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5312       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5313     }
5314 
5315     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5316     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5317     DstRegs.push_back(DstReg);
5318   }
5319 
5320   uint64_t WideSize = DstRegs.size() * NarrowSize;
5321   Register DstReg = MI.getOperand(0).getReg();
5322   if (WideSize > RegTy.getSizeInBits()) {
5323     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5324     MIRBuilder.buildMerge(MergeReg, DstRegs);
5325     MIRBuilder.buildTrunc(DstReg, MergeReg);
5326   } else
5327     MIRBuilder.buildMerge(DstReg, DstRegs);
5328 
5329   MI.eraseFromParent();
5330   return Legalized;
5331 }
5332 
5333 LegalizerHelper::LegalizeResult
5334 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5335                                    LLT NarrowTy) {
5336   Register DstReg = MI.getOperand(0).getReg();
5337   LLT DstTy = MRI.getType(DstReg);
5338 
5339   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5340 
5341   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5342   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5343   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5344   LLT LeftoverTy;
5345   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5346                     Src0Regs, Src0LeftoverRegs))
5347     return UnableToLegalize;
5348 
5349   LLT Unused;
5350   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5351                     Src1Regs, Src1LeftoverRegs))
5352     llvm_unreachable("inconsistent extractParts result");
5353 
5354   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5355     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5356                                         {Src0Regs[I], Src1Regs[I]});
5357     DstRegs.push_back(Inst.getReg(0));
5358   }
5359 
5360   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5361     auto Inst = MIRBuilder.buildInstr(
5362       MI.getOpcode(),
5363       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5364     DstLeftoverRegs.push_back(Inst.getReg(0));
5365   }
5366 
5367   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5368               LeftoverTy, DstLeftoverRegs);
5369 
5370   MI.eraseFromParent();
5371   return Legalized;
5372 }
5373 
5374 LegalizerHelper::LegalizeResult
5375 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5376                                  LLT NarrowTy) {
5377   if (TypeIdx != 0)
5378     return UnableToLegalize;
5379 
5380   Register DstReg = MI.getOperand(0).getReg();
5381   Register SrcReg = MI.getOperand(1).getReg();
5382 
5383   LLT DstTy = MRI.getType(DstReg);
5384   if (DstTy.isVector())
5385     return UnableToLegalize;
5386 
5387   SmallVector<Register, 8> Parts;
5388   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5389   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5390   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5391 
5392   MI.eraseFromParent();
5393   return Legalized;
5394 }
5395 
5396 LegalizerHelper::LegalizeResult
5397 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5398                                     LLT NarrowTy) {
5399   if (TypeIdx != 0)
5400     return UnableToLegalize;
5401 
5402   Register CondReg = MI.getOperand(1).getReg();
5403   LLT CondTy = MRI.getType(CondReg);
5404   if (CondTy.isVector()) // TODO: Handle vselect
5405     return UnableToLegalize;
5406 
5407   Register DstReg = MI.getOperand(0).getReg();
5408   LLT DstTy = MRI.getType(DstReg);
5409 
5410   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5411   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5412   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5413   LLT LeftoverTy;
5414   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5415                     Src1Regs, Src1LeftoverRegs))
5416     return UnableToLegalize;
5417 
5418   LLT Unused;
5419   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5420                     Src2Regs, Src2LeftoverRegs))
5421     llvm_unreachable("inconsistent extractParts result");
5422 
5423   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5424     auto Select = MIRBuilder.buildSelect(NarrowTy,
5425                                          CondReg, Src1Regs[I], Src2Regs[I]);
5426     DstRegs.push_back(Select.getReg(0));
5427   }
5428 
5429   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5430     auto Select = MIRBuilder.buildSelect(
5431       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5432     DstLeftoverRegs.push_back(Select.getReg(0));
5433   }
5434 
5435   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5436               LeftoverTy, DstLeftoverRegs);
5437 
5438   MI.eraseFromParent();
5439   return Legalized;
5440 }
5441 
5442 LegalizerHelper::LegalizeResult
5443 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5444                                   LLT NarrowTy) {
5445   if (TypeIdx != 1)
5446     return UnableToLegalize;
5447 
5448   Register DstReg = MI.getOperand(0).getReg();
5449   Register SrcReg = MI.getOperand(1).getReg();
5450   LLT DstTy = MRI.getType(DstReg);
5451   LLT SrcTy = MRI.getType(SrcReg);
5452   unsigned NarrowSize = NarrowTy.getSizeInBits();
5453 
5454   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5455     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5456 
5457     MachineIRBuilder &B = MIRBuilder;
5458     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5459     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5460     auto C_0 = B.buildConstant(NarrowTy, 0);
5461     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5462                                 UnmergeSrc.getReg(1), C_0);
5463     auto LoCTLZ = IsUndef ?
5464       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5465       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5466     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5467     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5468     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5469     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5470 
5471     MI.eraseFromParent();
5472     return Legalized;
5473   }
5474 
5475   return UnableToLegalize;
5476 }
5477 
5478 LegalizerHelper::LegalizeResult
5479 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5480                                   LLT NarrowTy) {
5481   if (TypeIdx != 1)
5482     return UnableToLegalize;
5483 
5484   Register DstReg = MI.getOperand(0).getReg();
5485   Register SrcReg = MI.getOperand(1).getReg();
5486   LLT DstTy = MRI.getType(DstReg);
5487   LLT SrcTy = MRI.getType(SrcReg);
5488   unsigned NarrowSize = NarrowTy.getSizeInBits();
5489 
5490   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5491     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5492 
5493     MachineIRBuilder &B = MIRBuilder;
5494     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5495     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5496     auto C_0 = B.buildConstant(NarrowTy, 0);
5497     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5498                                 UnmergeSrc.getReg(0), C_0);
5499     auto HiCTTZ = IsUndef ?
5500       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5501       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5502     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5503     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5504     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5505     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5506 
5507     MI.eraseFromParent();
5508     return Legalized;
5509   }
5510 
5511   return UnableToLegalize;
5512 }
5513 
5514 LegalizerHelper::LegalizeResult
5515 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5516                                    LLT NarrowTy) {
5517   if (TypeIdx != 1)
5518     return UnableToLegalize;
5519 
5520   Register DstReg = MI.getOperand(0).getReg();
5521   LLT DstTy = MRI.getType(DstReg);
5522   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5523   unsigned NarrowSize = NarrowTy.getSizeInBits();
5524 
5525   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5526     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5527 
5528     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5529     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5530     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5531 
5532     MI.eraseFromParent();
5533     return Legalized;
5534   }
5535 
5536   return UnableToLegalize;
5537 }
5538 
5539 LegalizerHelper::LegalizeResult
5540 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5541   unsigned Opc = MI.getOpcode();
5542   const auto &TII = MIRBuilder.getTII();
5543   auto isSupported = [this](const LegalityQuery &Q) {
5544     auto QAction = LI.getAction(Q).Action;
5545     return QAction == Legal || QAction == Libcall || QAction == Custom;
5546   };
5547   switch (Opc) {
5548   default:
5549     return UnableToLegalize;
5550   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5551     // This trivially expands to CTLZ.
5552     Observer.changingInstr(MI);
5553     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5554     Observer.changedInstr(MI);
5555     return Legalized;
5556   }
5557   case TargetOpcode::G_CTLZ: {
5558     Register DstReg = MI.getOperand(0).getReg();
5559     Register SrcReg = MI.getOperand(1).getReg();
5560     LLT DstTy = MRI.getType(DstReg);
5561     LLT SrcTy = MRI.getType(SrcReg);
5562     unsigned Len = SrcTy.getSizeInBits();
5563 
5564     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5565       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5566       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5567       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5568       auto ICmp = MIRBuilder.buildICmp(
5569           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5570       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5571       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5572       MI.eraseFromParent();
5573       return Legalized;
5574     }
5575     // for now, we do this:
5576     // NewLen = NextPowerOf2(Len);
5577     // x = x | (x >> 1);
5578     // x = x | (x >> 2);
5579     // ...
5580     // x = x | (x >>16);
5581     // x = x | (x >>32); // for 64-bit input
5582     // Upto NewLen/2
5583     // return Len - popcount(x);
5584     //
5585     // Ref: "Hacker's Delight" by Henry Warren
5586     Register Op = SrcReg;
5587     unsigned NewLen = PowerOf2Ceil(Len);
5588     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5589       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5590       auto MIBOp = MIRBuilder.buildOr(
5591           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5592       Op = MIBOp.getReg(0);
5593     }
5594     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5595     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5596                         MIBPop);
5597     MI.eraseFromParent();
5598     return Legalized;
5599   }
5600   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5601     // This trivially expands to CTTZ.
5602     Observer.changingInstr(MI);
5603     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5604     Observer.changedInstr(MI);
5605     return Legalized;
5606   }
5607   case TargetOpcode::G_CTTZ: {
5608     Register DstReg = MI.getOperand(0).getReg();
5609     Register SrcReg = MI.getOperand(1).getReg();
5610     LLT DstTy = MRI.getType(DstReg);
5611     LLT SrcTy = MRI.getType(SrcReg);
5612 
5613     unsigned Len = SrcTy.getSizeInBits();
5614     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5615       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5616       // zero.
5617       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5618       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5619       auto ICmp = MIRBuilder.buildICmp(
5620           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5621       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5622       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5623       MI.eraseFromParent();
5624       return Legalized;
5625     }
5626     // for now, we use: { return popcount(~x & (x - 1)); }
5627     // unless the target has ctlz but not ctpop, in which case we use:
5628     // { return 32 - nlz(~x & (x-1)); }
5629     // Ref: "Hacker's Delight" by Henry Warren
5630     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5631     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5632     auto MIBTmp = MIRBuilder.buildAnd(
5633         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5634     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5635         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5636       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5637       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5638                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5639       MI.eraseFromParent();
5640       return Legalized;
5641     }
5642     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5643     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5644     return Legalized;
5645   }
5646   case TargetOpcode::G_CTPOP: {
5647     Register SrcReg = MI.getOperand(1).getReg();
5648     LLT Ty = MRI.getType(SrcReg);
5649     unsigned Size = Ty.getSizeInBits();
5650     MachineIRBuilder &B = MIRBuilder;
5651 
5652     // Count set bits in blocks of 2 bits. Default approach would be
5653     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5654     // We use following formula instead:
5655     // B2Count = val - { (val >> 1) & 0x55555555 }
5656     // since it gives same result in blocks of 2 with one instruction less.
5657     auto C_1 = B.buildConstant(Ty, 1);
5658     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5659     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5660     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5661     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5662     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5663 
5664     // In order to get count in blocks of 4 add values from adjacent block of 2.
5665     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5666     auto C_2 = B.buildConstant(Ty, 2);
5667     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5668     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5669     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5670     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5671     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5672     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5673 
5674     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5675     // addition since count value sits in range {0,...,8} and 4 bits are enough
5676     // to hold such binary values. After addition high 4 bits still hold count
5677     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5678     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5679     auto C_4 = B.buildConstant(Ty, 4);
5680     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5681     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5682     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5683     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5684     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5685 
5686     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5687     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5688     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5689     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5690     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5691 
5692     // Shift count result from 8 high bits to low bits.
5693     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5694     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5695 
5696     MI.eraseFromParent();
5697     return Legalized;
5698   }
5699   }
5700 }
5701 
5702 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5703 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5704                                         Register Reg, unsigned BW) {
5705   return matchUnaryPredicate(
5706       MRI, Reg,
5707       [=](const Constant *C) {
5708         // Null constant here means an undef.
5709         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5710         return !CI || CI->getValue().urem(BW) != 0;
5711       },
5712       /*AllowUndefs*/ true);
5713 }
5714 
5715 LegalizerHelper::LegalizeResult
5716 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5717   Register Dst = MI.getOperand(0).getReg();
5718   Register X = MI.getOperand(1).getReg();
5719   Register Y = MI.getOperand(2).getReg();
5720   Register Z = MI.getOperand(3).getReg();
5721   LLT Ty = MRI.getType(Dst);
5722   LLT ShTy = MRI.getType(Z);
5723 
5724   unsigned BW = Ty.getScalarSizeInBits();
5725 
5726   if (!isPowerOf2_32(BW))
5727     return UnableToLegalize;
5728 
5729   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5730   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5731 
5732   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5733     // fshl X, Y, Z -> fshr X, Y, -Z
5734     // fshr X, Y, Z -> fshl X, Y, -Z
5735     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5736     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5737   } else {
5738     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5739     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5740     auto One = MIRBuilder.buildConstant(ShTy, 1);
5741     if (IsFSHL) {
5742       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5743       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5744     } else {
5745       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5746       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5747     }
5748 
5749     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5750   }
5751 
5752   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5753   MI.eraseFromParent();
5754   return Legalized;
5755 }
5756 
5757 LegalizerHelper::LegalizeResult
5758 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5759   Register Dst = MI.getOperand(0).getReg();
5760   Register X = MI.getOperand(1).getReg();
5761   Register Y = MI.getOperand(2).getReg();
5762   Register Z = MI.getOperand(3).getReg();
5763   LLT Ty = MRI.getType(Dst);
5764   LLT ShTy = MRI.getType(Z);
5765 
5766   const unsigned BW = Ty.getScalarSizeInBits();
5767   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5768 
5769   Register ShX, ShY;
5770   Register ShAmt, InvShAmt;
5771 
5772   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5773   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5774     // fshl: X << C | Y >> (BW - C)
5775     // fshr: X << (BW - C) | Y >> C
5776     // where C = Z % BW is not zero
5777     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5778     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5779     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5780     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5781     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5782   } else {
5783     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5784     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5785     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5786     if (isPowerOf2_32(BW)) {
5787       // Z % BW -> Z & (BW - 1)
5788       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5789       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5790       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5791       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5792     } else {
5793       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5794       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5795       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5796     }
5797 
5798     auto One = MIRBuilder.buildConstant(ShTy, 1);
5799     if (IsFSHL) {
5800       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5801       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5802       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5803     } else {
5804       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5805       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5806       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5807     }
5808   }
5809 
5810   MIRBuilder.buildOr(Dst, ShX, ShY);
5811   MI.eraseFromParent();
5812   return Legalized;
5813 }
5814 
5815 LegalizerHelper::LegalizeResult
5816 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5817   // These operations approximately do the following (while avoiding undefined
5818   // shifts by BW):
5819   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5820   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5821   Register Dst = MI.getOperand(0).getReg();
5822   LLT Ty = MRI.getType(Dst);
5823   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5824 
5825   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5826   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5827 
5828   // TODO: Use smarter heuristic that accounts for vector legalization.
5829   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5830     return lowerFunnelShiftAsShifts(MI);
5831 
5832   // This only works for powers of 2, fallback to shifts if it fails.
5833   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5834   if (Result == UnableToLegalize)
5835     return lowerFunnelShiftAsShifts(MI);
5836   return Result;
5837 }
5838 
5839 LegalizerHelper::LegalizeResult
5840 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5841   Register Dst = MI.getOperand(0).getReg();
5842   Register Src = MI.getOperand(1).getReg();
5843   Register Amt = MI.getOperand(2).getReg();
5844   LLT AmtTy = MRI.getType(Amt);
5845   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5846   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5847   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5848   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5849   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5850   MI.eraseFromParent();
5851   return Legalized;
5852 }
5853 
5854 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5855   Register Dst = MI.getOperand(0).getReg();
5856   Register Src = MI.getOperand(1).getReg();
5857   Register Amt = MI.getOperand(2).getReg();
5858   LLT DstTy = MRI.getType(Dst);
5859   LLT SrcTy = MRI.getType(Dst);
5860   LLT AmtTy = MRI.getType(Amt);
5861 
5862   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5863   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5864 
5865   MIRBuilder.setInstrAndDebugLoc(MI);
5866 
5867   // If a rotate in the other direction is supported, use it.
5868   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5869   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5870       isPowerOf2_32(EltSizeInBits))
5871     return lowerRotateWithReverseRotate(MI);
5872 
5873   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5874   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5875   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5876   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5877   Register ShVal;
5878   Register RevShiftVal;
5879   if (isPowerOf2_32(EltSizeInBits)) {
5880     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5881     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5882     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5883     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5884     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5885     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5886     RevShiftVal =
5887         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5888   } else {
5889     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5890     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5891     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5892     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5893     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5894     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5895     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5896     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5897     RevShiftVal =
5898         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5899   }
5900   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5901   MI.eraseFromParent();
5902   return Legalized;
5903 }
5904 
5905 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5906 // representation.
5907 LegalizerHelper::LegalizeResult
5908 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5909   Register Dst = MI.getOperand(0).getReg();
5910   Register Src = MI.getOperand(1).getReg();
5911   const LLT S64 = LLT::scalar(64);
5912   const LLT S32 = LLT::scalar(32);
5913   const LLT S1 = LLT::scalar(1);
5914 
5915   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5916 
5917   // unsigned cul2f(ulong u) {
5918   //   uint lz = clz(u);
5919   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5920   //   u = (u << lz) & 0x7fffffffffffffffUL;
5921   //   ulong t = u & 0xffffffffffUL;
5922   //   uint v = (e << 23) | (uint)(u >> 40);
5923   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5924   //   return as_float(v + r);
5925   // }
5926 
5927   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5928   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5929 
5930   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5931 
5932   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5933   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5934 
5935   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5936   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5937 
5938   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5939   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5940 
5941   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5942 
5943   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5944   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5945 
5946   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5947   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5948   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5949 
5950   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5951   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5952   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5953   auto One = MIRBuilder.buildConstant(S32, 1);
5954 
5955   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5956   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5957   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5958   MIRBuilder.buildAdd(Dst, V, R);
5959 
5960   MI.eraseFromParent();
5961   return Legalized;
5962 }
5963 
5964 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5965   Register Dst = MI.getOperand(0).getReg();
5966   Register Src = MI.getOperand(1).getReg();
5967   LLT DstTy = MRI.getType(Dst);
5968   LLT SrcTy = MRI.getType(Src);
5969 
5970   if (SrcTy == LLT::scalar(1)) {
5971     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5972     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5973     MIRBuilder.buildSelect(Dst, Src, True, False);
5974     MI.eraseFromParent();
5975     return Legalized;
5976   }
5977 
5978   if (SrcTy != LLT::scalar(64))
5979     return UnableToLegalize;
5980 
5981   if (DstTy == LLT::scalar(32)) {
5982     // TODO: SelectionDAG has several alternative expansions to port which may
5983     // be more reasonble depending on the available instructions. If a target
5984     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5985     // intermediate type, this is probably worse.
5986     return lowerU64ToF32BitOps(MI);
5987   }
5988 
5989   return UnableToLegalize;
5990 }
5991 
5992 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5993   Register Dst = MI.getOperand(0).getReg();
5994   Register Src = MI.getOperand(1).getReg();
5995   LLT DstTy = MRI.getType(Dst);
5996   LLT SrcTy = MRI.getType(Src);
5997 
5998   const LLT S64 = LLT::scalar(64);
5999   const LLT S32 = LLT::scalar(32);
6000   const LLT S1 = LLT::scalar(1);
6001 
6002   if (SrcTy == S1) {
6003     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6004     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6005     MIRBuilder.buildSelect(Dst, Src, True, False);
6006     MI.eraseFromParent();
6007     return Legalized;
6008   }
6009 
6010   if (SrcTy != S64)
6011     return UnableToLegalize;
6012 
6013   if (DstTy == S32) {
6014     // signed cl2f(long l) {
6015     //   long s = l >> 63;
6016     //   float r = cul2f((l + s) ^ s);
6017     //   return s ? -r : r;
6018     // }
6019     Register L = Src;
6020     auto SignBit = MIRBuilder.buildConstant(S64, 63);
6021     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6022 
6023     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6024     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6025     auto R = MIRBuilder.buildUITOFP(S32, Xor);
6026 
6027     auto RNeg = MIRBuilder.buildFNeg(S32, R);
6028     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6029                                             MIRBuilder.buildConstant(S64, 0));
6030     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6031     MI.eraseFromParent();
6032     return Legalized;
6033   }
6034 
6035   return UnableToLegalize;
6036 }
6037 
6038 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6039   Register Dst = MI.getOperand(0).getReg();
6040   Register Src = MI.getOperand(1).getReg();
6041   LLT DstTy = MRI.getType(Dst);
6042   LLT SrcTy = MRI.getType(Src);
6043   const LLT S64 = LLT::scalar(64);
6044   const LLT S32 = LLT::scalar(32);
6045 
6046   if (SrcTy != S64 && SrcTy != S32)
6047     return UnableToLegalize;
6048   if (DstTy != S32 && DstTy != S64)
6049     return UnableToLegalize;
6050 
6051   // FPTOSI gives same result as FPTOUI for positive signed integers.
6052   // FPTOUI needs to deal with fp values that convert to unsigned integers
6053   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6054 
6055   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6056   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6057                                                 : APFloat::IEEEdouble(),
6058                     APInt::getNullValue(SrcTy.getSizeInBits()));
6059   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6060 
6061   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6062 
6063   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6064   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6065   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6066   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6067   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6068   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6069   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6070 
6071   const LLT S1 = LLT::scalar(1);
6072 
6073   MachineInstrBuilder FCMP =
6074       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6075   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6076 
6077   MI.eraseFromParent();
6078   return Legalized;
6079 }
6080 
6081 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6082   Register Dst = MI.getOperand(0).getReg();
6083   Register Src = MI.getOperand(1).getReg();
6084   LLT DstTy = MRI.getType(Dst);
6085   LLT SrcTy = MRI.getType(Src);
6086   const LLT S64 = LLT::scalar(64);
6087   const LLT S32 = LLT::scalar(32);
6088 
6089   // FIXME: Only f32 to i64 conversions are supported.
6090   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6091     return UnableToLegalize;
6092 
6093   // Expand f32 -> i64 conversion
6094   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6095   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6096 
6097   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6098 
6099   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6100   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6101 
6102   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6103   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6104 
6105   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6106                                            APInt::getSignMask(SrcEltBits));
6107   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6108   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6109   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6110   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6111 
6112   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6113   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6114   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6115 
6116   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6117   R = MIRBuilder.buildZExt(DstTy, R);
6118 
6119   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6120   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6121   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6122   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6123 
6124   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6125   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6126 
6127   const LLT S1 = LLT::scalar(1);
6128   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6129                                     S1, Exponent, ExponentLoBit);
6130 
6131   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6132 
6133   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6134   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6135 
6136   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6137 
6138   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6139                                           S1, Exponent, ZeroSrcTy);
6140 
6141   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6142   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6143 
6144   MI.eraseFromParent();
6145   return Legalized;
6146 }
6147 
6148 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6149 LegalizerHelper::LegalizeResult
6150 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6151   Register Dst = MI.getOperand(0).getReg();
6152   Register Src = MI.getOperand(1).getReg();
6153 
6154   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6155     return UnableToLegalize;
6156 
6157   const unsigned ExpMask = 0x7ff;
6158   const unsigned ExpBiasf64 = 1023;
6159   const unsigned ExpBiasf16 = 15;
6160   const LLT S32 = LLT::scalar(32);
6161   const LLT S1 = LLT::scalar(1);
6162 
6163   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6164   Register U = Unmerge.getReg(0);
6165   Register UH = Unmerge.getReg(1);
6166 
6167   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6168   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6169 
6170   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6171   // add the f16 bias (15) to get the biased exponent for the f16 format.
6172   E = MIRBuilder.buildAdd(
6173     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6174 
6175   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6176   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6177 
6178   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6179                                        MIRBuilder.buildConstant(S32, 0x1ff));
6180   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6181 
6182   auto Zero = MIRBuilder.buildConstant(S32, 0);
6183   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6184   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6185   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6186 
6187   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6188   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6189   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6190   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6191 
6192   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6193   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6194 
6195   // N = M | (E << 12);
6196   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6197   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6198 
6199   // B = clamp(1-E, 0, 13);
6200   auto One = MIRBuilder.buildConstant(S32, 1);
6201   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6202   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6203   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6204 
6205   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6206                                        MIRBuilder.buildConstant(S32, 0x1000));
6207 
6208   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6209   auto D0 = MIRBuilder.buildShl(S32, D, B);
6210 
6211   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6212                                              D0, SigSetHigh);
6213   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6214   D = MIRBuilder.buildOr(S32, D, D1);
6215 
6216   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6217   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6218 
6219   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6220   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6221 
6222   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6223                                        MIRBuilder.buildConstant(S32, 3));
6224   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6225 
6226   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6227                                        MIRBuilder.buildConstant(S32, 5));
6228   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6229 
6230   V1 = MIRBuilder.buildOr(S32, V0, V1);
6231   V = MIRBuilder.buildAdd(S32, V, V1);
6232 
6233   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6234                                        E, MIRBuilder.buildConstant(S32, 30));
6235   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6236                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6237 
6238   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6239                                          E, MIRBuilder.buildConstant(S32, 1039));
6240   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6241 
6242   // Extract the sign bit.
6243   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6244   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6245 
6246   // Insert the sign bit
6247   V = MIRBuilder.buildOr(S32, Sign, V);
6248 
6249   MIRBuilder.buildTrunc(Dst, V);
6250   MI.eraseFromParent();
6251   return Legalized;
6252 }
6253 
6254 LegalizerHelper::LegalizeResult
6255 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6256   Register Dst = MI.getOperand(0).getReg();
6257   Register Src = MI.getOperand(1).getReg();
6258 
6259   LLT DstTy = MRI.getType(Dst);
6260   LLT SrcTy = MRI.getType(Src);
6261   const LLT S64 = LLT::scalar(64);
6262   const LLT S16 = LLT::scalar(16);
6263 
6264   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6265     return lowerFPTRUNC_F64_TO_F16(MI);
6266 
6267   return UnableToLegalize;
6268 }
6269 
6270 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6271 // multiplication tree.
6272 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6273   Register Dst = MI.getOperand(0).getReg();
6274   Register Src0 = MI.getOperand(1).getReg();
6275   Register Src1 = MI.getOperand(2).getReg();
6276   LLT Ty = MRI.getType(Dst);
6277 
6278   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6279   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6280   MI.eraseFromParent();
6281   return Legalized;
6282 }
6283 
6284 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6285   switch (Opc) {
6286   case TargetOpcode::G_SMIN:
6287     return CmpInst::ICMP_SLT;
6288   case TargetOpcode::G_SMAX:
6289     return CmpInst::ICMP_SGT;
6290   case TargetOpcode::G_UMIN:
6291     return CmpInst::ICMP_ULT;
6292   case TargetOpcode::G_UMAX:
6293     return CmpInst::ICMP_UGT;
6294   default:
6295     llvm_unreachable("not in integer min/max");
6296   }
6297 }
6298 
6299 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6300   Register Dst = MI.getOperand(0).getReg();
6301   Register Src0 = MI.getOperand(1).getReg();
6302   Register Src1 = MI.getOperand(2).getReg();
6303 
6304   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6305   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6306 
6307   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6308   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6309 
6310   MI.eraseFromParent();
6311   return Legalized;
6312 }
6313 
6314 LegalizerHelper::LegalizeResult
6315 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6316   Register Dst = MI.getOperand(0).getReg();
6317   Register Src0 = MI.getOperand(1).getReg();
6318   Register Src1 = MI.getOperand(2).getReg();
6319 
6320   const LLT Src0Ty = MRI.getType(Src0);
6321   const LLT Src1Ty = MRI.getType(Src1);
6322 
6323   const int Src0Size = Src0Ty.getScalarSizeInBits();
6324   const int Src1Size = Src1Ty.getScalarSizeInBits();
6325 
6326   auto SignBitMask = MIRBuilder.buildConstant(
6327     Src0Ty, APInt::getSignMask(Src0Size));
6328 
6329   auto NotSignBitMask = MIRBuilder.buildConstant(
6330     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6331 
6332   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6333   Register And1;
6334   if (Src0Ty == Src1Ty) {
6335     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6336   } else if (Src0Size > Src1Size) {
6337     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6338     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6339     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6340     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6341   } else {
6342     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6343     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6344     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6345     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6346   }
6347 
6348   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6349   // constants are a nan and -0.0, but the final result should preserve
6350   // everything.
6351   unsigned Flags = MI.getFlags();
6352   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6353 
6354   MI.eraseFromParent();
6355   return Legalized;
6356 }
6357 
6358 LegalizerHelper::LegalizeResult
6359 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6360   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6361     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6362 
6363   Register Dst = MI.getOperand(0).getReg();
6364   Register Src0 = MI.getOperand(1).getReg();
6365   Register Src1 = MI.getOperand(2).getReg();
6366   LLT Ty = MRI.getType(Dst);
6367 
6368   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6369     // Insert canonicalizes if it's possible we need to quiet to get correct
6370     // sNaN behavior.
6371 
6372     // Note this must be done here, and not as an optimization combine in the
6373     // absence of a dedicate quiet-snan instruction as we're using an
6374     // omni-purpose G_FCANONICALIZE.
6375     if (!isKnownNeverSNaN(Src0, MRI))
6376       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6377 
6378     if (!isKnownNeverSNaN(Src1, MRI))
6379       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6380   }
6381 
6382   // If there are no nans, it's safe to simply replace this with the non-IEEE
6383   // version.
6384   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6385   MI.eraseFromParent();
6386   return Legalized;
6387 }
6388 
6389 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6390   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6391   Register DstReg = MI.getOperand(0).getReg();
6392   LLT Ty = MRI.getType(DstReg);
6393   unsigned Flags = MI.getFlags();
6394 
6395   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6396                                   Flags);
6397   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6398   MI.eraseFromParent();
6399   return Legalized;
6400 }
6401 
6402 LegalizerHelper::LegalizeResult
6403 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6404   Register DstReg = MI.getOperand(0).getReg();
6405   Register X = MI.getOperand(1).getReg();
6406   const unsigned Flags = MI.getFlags();
6407   const LLT Ty = MRI.getType(DstReg);
6408   const LLT CondTy = Ty.changeElementSize(1);
6409 
6410   // round(x) =>
6411   //  t = trunc(x);
6412   //  d = fabs(x - t);
6413   //  o = copysign(1.0f, x);
6414   //  return t + (d >= 0.5 ? o : 0.0);
6415 
6416   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6417 
6418   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6419   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6420   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6421   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6422   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6423   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6424 
6425   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6426                                   Flags);
6427   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6428 
6429   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6430 
6431   MI.eraseFromParent();
6432   return Legalized;
6433 }
6434 
6435 LegalizerHelper::LegalizeResult
6436 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6437   Register DstReg = MI.getOperand(0).getReg();
6438   Register SrcReg = MI.getOperand(1).getReg();
6439   unsigned Flags = MI.getFlags();
6440   LLT Ty = MRI.getType(DstReg);
6441   const LLT CondTy = Ty.changeElementSize(1);
6442 
6443   // result = trunc(src);
6444   // if (src < 0.0 && src != result)
6445   //   result += -1.0.
6446 
6447   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6448   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6449 
6450   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6451                                   SrcReg, Zero, Flags);
6452   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6453                                       SrcReg, Trunc, Flags);
6454   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6455   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6456 
6457   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6458   MI.eraseFromParent();
6459   return Legalized;
6460 }
6461 
6462 LegalizerHelper::LegalizeResult
6463 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6464   const unsigned NumOps = MI.getNumOperands();
6465   Register DstReg = MI.getOperand(0).getReg();
6466   Register Src0Reg = MI.getOperand(1).getReg();
6467   LLT DstTy = MRI.getType(DstReg);
6468   LLT SrcTy = MRI.getType(Src0Reg);
6469   unsigned PartSize = SrcTy.getSizeInBits();
6470 
6471   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6472   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6473 
6474   for (unsigned I = 2; I != NumOps; ++I) {
6475     const unsigned Offset = (I - 1) * PartSize;
6476 
6477     Register SrcReg = MI.getOperand(I).getReg();
6478     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6479 
6480     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6481       MRI.createGenericVirtualRegister(WideTy);
6482 
6483     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6484     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6485     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6486     ResultReg = NextResult;
6487   }
6488 
6489   if (DstTy.isPointer()) {
6490     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6491           DstTy.getAddressSpace())) {
6492       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6493       return UnableToLegalize;
6494     }
6495 
6496     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6497   }
6498 
6499   MI.eraseFromParent();
6500   return Legalized;
6501 }
6502 
6503 LegalizerHelper::LegalizeResult
6504 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6505   const unsigned NumDst = MI.getNumOperands() - 1;
6506   Register SrcReg = MI.getOperand(NumDst).getReg();
6507   Register Dst0Reg = MI.getOperand(0).getReg();
6508   LLT DstTy = MRI.getType(Dst0Reg);
6509   if (DstTy.isPointer())
6510     return UnableToLegalize; // TODO
6511 
6512   SrcReg = coerceToScalar(SrcReg);
6513   if (!SrcReg)
6514     return UnableToLegalize;
6515 
6516   // Expand scalarizing unmerge as bitcast to integer and shift.
6517   LLT IntTy = MRI.getType(SrcReg);
6518 
6519   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6520 
6521   const unsigned DstSize = DstTy.getSizeInBits();
6522   unsigned Offset = DstSize;
6523   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6524     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6525     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6526     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6527   }
6528 
6529   MI.eraseFromParent();
6530   return Legalized;
6531 }
6532 
6533 /// Lower a vector extract or insert by writing the vector to a stack temporary
6534 /// and reloading the element or vector.
6535 ///
6536 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6537 ///  =>
6538 ///  %stack_temp = G_FRAME_INDEX
6539 ///  G_STORE %vec, %stack_temp
6540 ///  %idx = clamp(%idx, %vec.getNumElements())
6541 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6542 ///  %dst = G_LOAD %element_ptr
6543 LegalizerHelper::LegalizeResult
6544 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6545   Register DstReg = MI.getOperand(0).getReg();
6546   Register SrcVec = MI.getOperand(1).getReg();
6547   Register InsertVal;
6548   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6549     InsertVal = MI.getOperand(2).getReg();
6550 
6551   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6552 
6553   LLT VecTy = MRI.getType(SrcVec);
6554   LLT EltTy = VecTy.getElementType();
6555   if (!EltTy.isByteSized()) { // Not implemented.
6556     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6557     return UnableToLegalize;
6558   }
6559 
6560   unsigned EltBytes = EltTy.getSizeInBytes();
6561   Align VecAlign = getStackTemporaryAlignment(VecTy);
6562   Align EltAlign;
6563 
6564   MachinePointerInfo PtrInfo;
6565   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6566                                         VecAlign, PtrInfo);
6567   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6568 
6569   // Get the pointer to the element, and be sure not to hit undefined behavior
6570   // if the index is out of bounds.
6571   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6572 
6573   int64_t IdxVal;
6574   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6575     int64_t Offset = IdxVal * EltBytes;
6576     PtrInfo = PtrInfo.getWithOffset(Offset);
6577     EltAlign = commonAlignment(VecAlign, Offset);
6578   } else {
6579     // We lose information with a variable offset.
6580     EltAlign = getStackTemporaryAlignment(EltTy);
6581     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6582   }
6583 
6584   if (InsertVal) {
6585     // Write the inserted element
6586     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6587 
6588     // Reload the whole vector.
6589     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6590   } else {
6591     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6592   }
6593 
6594   MI.eraseFromParent();
6595   return Legalized;
6596 }
6597 
6598 LegalizerHelper::LegalizeResult
6599 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6600   Register DstReg = MI.getOperand(0).getReg();
6601   Register Src0Reg = MI.getOperand(1).getReg();
6602   Register Src1Reg = MI.getOperand(2).getReg();
6603   LLT Src0Ty = MRI.getType(Src0Reg);
6604   LLT DstTy = MRI.getType(DstReg);
6605   LLT IdxTy = LLT::scalar(32);
6606 
6607   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6608 
6609   if (DstTy.isScalar()) {
6610     if (Src0Ty.isVector())
6611       return UnableToLegalize;
6612 
6613     // This is just a SELECT.
6614     assert(Mask.size() == 1 && "Expected a single mask element");
6615     Register Val;
6616     if (Mask[0] < 0 || Mask[0] > 1)
6617       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6618     else
6619       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6620     MIRBuilder.buildCopy(DstReg, Val);
6621     MI.eraseFromParent();
6622     return Legalized;
6623   }
6624 
6625   Register Undef;
6626   SmallVector<Register, 32> BuildVec;
6627   LLT EltTy = DstTy.getElementType();
6628 
6629   for (int Idx : Mask) {
6630     if (Idx < 0) {
6631       if (!Undef.isValid())
6632         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6633       BuildVec.push_back(Undef);
6634       continue;
6635     }
6636 
6637     if (Src0Ty.isScalar()) {
6638       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6639     } else {
6640       int NumElts = Src0Ty.getNumElements();
6641       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6642       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6643       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6644       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6645       BuildVec.push_back(Extract.getReg(0));
6646     }
6647   }
6648 
6649   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6650   MI.eraseFromParent();
6651   return Legalized;
6652 }
6653 
6654 LegalizerHelper::LegalizeResult
6655 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6656   const auto &MF = *MI.getMF();
6657   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6658   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6659     return UnableToLegalize;
6660 
6661   Register Dst = MI.getOperand(0).getReg();
6662   Register AllocSize = MI.getOperand(1).getReg();
6663   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6664 
6665   LLT PtrTy = MRI.getType(Dst);
6666   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6667 
6668   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6669   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6670   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6671 
6672   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6673   // have to generate an extra instruction to negate the alloc and then use
6674   // G_PTR_ADD to add the negative offset.
6675   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6676   if (Alignment > Align(1)) {
6677     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6678     AlignMask.negate();
6679     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6680     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6681   }
6682 
6683   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6684   MIRBuilder.buildCopy(SPReg, SPTmp);
6685   MIRBuilder.buildCopy(Dst, SPTmp);
6686 
6687   MI.eraseFromParent();
6688   return Legalized;
6689 }
6690 
6691 LegalizerHelper::LegalizeResult
6692 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6693   Register Dst = MI.getOperand(0).getReg();
6694   Register Src = MI.getOperand(1).getReg();
6695   unsigned Offset = MI.getOperand(2).getImm();
6696 
6697   LLT DstTy = MRI.getType(Dst);
6698   LLT SrcTy = MRI.getType(Src);
6699 
6700   if (DstTy.isScalar() &&
6701       (SrcTy.isScalar() ||
6702        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6703     LLT SrcIntTy = SrcTy;
6704     if (!SrcTy.isScalar()) {
6705       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6706       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6707     }
6708 
6709     if (Offset == 0)
6710       MIRBuilder.buildTrunc(Dst, Src);
6711     else {
6712       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6713       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6714       MIRBuilder.buildTrunc(Dst, Shr);
6715     }
6716 
6717     MI.eraseFromParent();
6718     return Legalized;
6719   }
6720 
6721   return UnableToLegalize;
6722 }
6723 
6724 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6725   Register Dst = MI.getOperand(0).getReg();
6726   Register Src = MI.getOperand(1).getReg();
6727   Register InsertSrc = MI.getOperand(2).getReg();
6728   uint64_t Offset = MI.getOperand(3).getImm();
6729 
6730   LLT DstTy = MRI.getType(Src);
6731   LLT InsertTy = MRI.getType(InsertSrc);
6732 
6733   if (InsertTy.isVector() ||
6734       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6735     return UnableToLegalize;
6736 
6737   const DataLayout &DL = MIRBuilder.getDataLayout();
6738   if ((DstTy.isPointer() &&
6739        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6740       (InsertTy.isPointer() &&
6741        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6742     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6743     return UnableToLegalize;
6744   }
6745 
6746   LLT IntDstTy = DstTy;
6747 
6748   if (!DstTy.isScalar()) {
6749     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6750     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6751   }
6752 
6753   if (!InsertTy.isScalar()) {
6754     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6755     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6756   }
6757 
6758   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6759   if (Offset != 0) {
6760     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6761     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6762   }
6763 
6764   APInt MaskVal = APInt::getBitsSetWithWrap(
6765       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6766 
6767   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6768   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6769   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6770 
6771   MIRBuilder.buildCast(Dst, Or);
6772   MI.eraseFromParent();
6773   return Legalized;
6774 }
6775 
6776 LegalizerHelper::LegalizeResult
6777 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6778   Register Dst0 = MI.getOperand(0).getReg();
6779   Register Dst1 = MI.getOperand(1).getReg();
6780   Register LHS = MI.getOperand(2).getReg();
6781   Register RHS = MI.getOperand(3).getReg();
6782   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6783 
6784   LLT Ty = MRI.getType(Dst0);
6785   LLT BoolTy = MRI.getType(Dst1);
6786 
6787   if (IsAdd)
6788     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6789   else
6790     MIRBuilder.buildSub(Dst0, LHS, RHS);
6791 
6792   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6793 
6794   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6795 
6796   // For an addition, the result should be less than one of the operands (LHS)
6797   // if and only if the other operand (RHS) is negative, otherwise there will
6798   // be overflow.
6799   // For a subtraction, the result should be less than one of the operands
6800   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6801   // otherwise there will be overflow.
6802   auto ResultLowerThanLHS =
6803       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6804   auto ConditionRHS = MIRBuilder.buildICmp(
6805       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6806 
6807   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6808   MI.eraseFromParent();
6809   return Legalized;
6810 }
6811 
6812 LegalizerHelper::LegalizeResult
6813 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6814   Register Res = MI.getOperand(0).getReg();
6815   Register LHS = MI.getOperand(1).getReg();
6816   Register RHS = MI.getOperand(2).getReg();
6817   LLT Ty = MRI.getType(Res);
6818   bool IsSigned;
6819   bool IsAdd;
6820   unsigned BaseOp;
6821   switch (MI.getOpcode()) {
6822   default:
6823     llvm_unreachable("unexpected addsat/subsat opcode");
6824   case TargetOpcode::G_UADDSAT:
6825     IsSigned = false;
6826     IsAdd = true;
6827     BaseOp = TargetOpcode::G_ADD;
6828     break;
6829   case TargetOpcode::G_SADDSAT:
6830     IsSigned = true;
6831     IsAdd = true;
6832     BaseOp = TargetOpcode::G_ADD;
6833     break;
6834   case TargetOpcode::G_USUBSAT:
6835     IsSigned = false;
6836     IsAdd = false;
6837     BaseOp = TargetOpcode::G_SUB;
6838     break;
6839   case TargetOpcode::G_SSUBSAT:
6840     IsSigned = true;
6841     IsAdd = false;
6842     BaseOp = TargetOpcode::G_SUB;
6843     break;
6844   }
6845 
6846   if (IsSigned) {
6847     // sadd.sat(a, b) ->
6848     //   hi = 0x7fffffff - smax(a, 0)
6849     //   lo = 0x80000000 - smin(a, 0)
6850     //   a + smin(smax(lo, b), hi)
6851     // ssub.sat(a, b) ->
6852     //   lo = smax(a, -1) - 0x7fffffff
6853     //   hi = smin(a, -1) - 0x80000000
6854     //   a - smin(smax(lo, b), hi)
6855     // TODO: AMDGPU can use a "median of 3" instruction here:
6856     //   a +/- med3(lo, b, hi)
6857     uint64_t NumBits = Ty.getScalarSizeInBits();
6858     auto MaxVal =
6859         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6860     auto MinVal =
6861         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6862     MachineInstrBuilder Hi, Lo;
6863     if (IsAdd) {
6864       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6865       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6866       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6867     } else {
6868       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6869       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6870                                MaxVal);
6871       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6872                                MinVal);
6873     }
6874     auto RHSClamped =
6875         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6876     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6877   } else {
6878     // uadd.sat(a, b) -> a + umin(~a, b)
6879     // usub.sat(a, b) -> a - umin(a, b)
6880     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6881     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6882     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6883   }
6884 
6885   MI.eraseFromParent();
6886   return Legalized;
6887 }
6888 
6889 LegalizerHelper::LegalizeResult
6890 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6891   Register Res = MI.getOperand(0).getReg();
6892   Register LHS = MI.getOperand(1).getReg();
6893   Register RHS = MI.getOperand(2).getReg();
6894   LLT Ty = MRI.getType(Res);
6895   LLT BoolTy = Ty.changeElementSize(1);
6896   bool IsSigned;
6897   bool IsAdd;
6898   unsigned OverflowOp;
6899   switch (MI.getOpcode()) {
6900   default:
6901     llvm_unreachable("unexpected addsat/subsat opcode");
6902   case TargetOpcode::G_UADDSAT:
6903     IsSigned = false;
6904     IsAdd = true;
6905     OverflowOp = TargetOpcode::G_UADDO;
6906     break;
6907   case TargetOpcode::G_SADDSAT:
6908     IsSigned = true;
6909     IsAdd = true;
6910     OverflowOp = TargetOpcode::G_SADDO;
6911     break;
6912   case TargetOpcode::G_USUBSAT:
6913     IsSigned = false;
6914     IsAdd = false;
6915     OverflowOp = TargetOpcode::G_USUBO;
6916     break;
6917   case TargetOpcode::G_SSUBSAT:
6918     IsSigned = true;
6919     IsAdd = false;
6920     OverflowOp = TargetOpcode::G_SSUBO;
6921     break;
6922   }
6923 
6924   auto OverflowRes =
6925       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6926   Register Tmp = OverflowRes.getReg(0);
6927   Register Ov = OverflowRes.getReg(1);
6928   MachineInstrBuilder Clamp;
6929   if (IsSigned) {
6930     // sadd.sat(a, b) ->
6931     //   {tmp, ov} = saddo(a, b)
6932     //   ov ? (tmp >>s 31) + 0x80000000 : r
6933     // ssub.sat(a, b) ->
6934     //   {tmp, ov} = ssubo(a, b)
6935     //   ov ? (tmp >>s 31) + 0x80000000 : r
6936     uint64_t NumBits = Ty.getScalarSizeInBits();
6937     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6938     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6939     auto MinVal =
6940         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6941     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6942   } else {
6943     // uadd.sat(a, b) ->
6944     //   {tmp, ov} = uaddo(a, b)
6945     //   ov ? 0xffffffff : tmp
6946     // usub.sat(a, b) ->
6947     //   {tmp, ov} = usubo(a, b)
6948     //   ov ? 0 : tmp
6949     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6950   }
6951   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6952 
6953   MI.eraseFromParent();
6954   return Legalized;
6955 }
6956 
6957 LegalizerHelper::LegalizeResult
6958 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6959   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6960           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6961          "Expected shlsat opcode!");
6962   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6963   Register Res = MI.getOperand(0).getReg();
6964   Register LHS = MI.getOperand(1).getReg();
6965   Register RHS = MI.getOperand(2).getReg();
6966   LLT Ty = MRI.getType(Res);
6967   LLT BoolTy = Ty.changeElementSize(1);
6968 
6969   unsigned BW = Ty.getScalarSizeInBits();
6970   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6971   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6972                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6973 
6974   MachineInstrBuilder SatVal;
6975   if (IsSigned) {
6976     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6977     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6978     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6979                                     MIRBuilder.buildConstant(Ty, 0));
6980     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6981   } else {
6982     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6983   }
6984   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6985   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6986 
6987   MI.eraseFromParent();
6988   return Legalized;
6989 }
6990 
6991 LegalizerHelper::LegalizeResult
6992 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6993   Register Dst = MI.getOperand(0).getReg();
6994   Register Src = MI.getOperand(1).getReg();
6995   const LLT Ty = MRI.getType(Src);
6996   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6997   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6998 
6999   // Swap most and least significant byte, set remaining bytes in Res to zero.
7000   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7001   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7002   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7003   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7004 
7005   // Set i-th high/low byte in Res to i-th low/high byte from Src.
7006   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7007     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7008     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7009     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7010     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7011     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7012     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7013     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7014     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7015     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7016     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7017     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7018     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7019   }
7020   Res.getInstr()->getOperand(0).setReg(Dst);
7021 
7022   MI.eraseFromParent();
7023   return Legalized;
7024 }
7025 
7026 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
7027 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7028                                  MachineInstrBuilder Src, APInt Mask) {
7029   const LLT Ty = Dst.getLLTTy(*B.getMRI());
7030   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7031   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7032   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7033   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7034   return B.buildOr(Dst, LHS, RHS);
7035 }
7036 
7037 LegalizerHelper::LegalizeResult
7038 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7039   Register Dst = MI.getOperand(0).getReg();
7040   Register Src = MI.getOperand(1).getReg();
7041   const LLT Ty = MRI.getType(Src);
7042   unsigned Size = Ty.getSizeInBits();
7043 
7044   MachineInstrBuilder BSWAP =
7045       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7046 
7047   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7048   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7049   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7050   MachineInstrBuilder Swap4 =
7051       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7052 
7053   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7054   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7055   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7056   MachineInstrBuilder Swap2 =
7057       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7058 
7059   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7060   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7061   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7062   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7063 
7064   MI.eraseFromParent();
7065   return Legalized;
7066 }
7067 
7068 LegalizerHelper::LegalizeResult
7069 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7070   MachineFunction &MF = MIRBuilder.getMF();
7071 
7072   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7073   int NameOpIdx = IsRead ? 1 : 0;
7074   int ValRegIndex = IsRead ? 0 : 1;
7075 
7076   Register ValReg = MI.getOperand(ValRegIndex).getReg();
7077   const LLT Ty = MRI.getType(ValReg);
7078   const MDString *RegStr = cast<MDString>(
7079     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7080 
7081   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7082   if (!PhysReg.isValid())
7083     return UnableToLegalize;
7084 
7085   if (IsRead)
7086     MIRBuilder.buildCopy(ValReg, PhysReg);
7087   else
7088     MIRBuilder.buildCopy(PhysReg, ValReg);
7089 
7090   MI.eraseFromParent();
7091   return Legalized;
7092 }
7093 
7094 LegalizerHelper::LegalizeResult
7095 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7096   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7097   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7098   Register Result = MI.getOperand(0).getReg();
7099   LLT OrigTy = MRI.getType(Result);
7100   auto SizeInBits = OrigTy.getScalarSizeInBits();
7101   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7102 
7103   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7104   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7105   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7106   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7107 
7108   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7109   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7110   MIRBuilder.buildTrunc(Result, Shifted);
7111 
7112   MI.eraseFromParent();
7113   return Legalized;
7114 }
7115 
7116 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7117   // Implement vector G_SELECT in terms of XOR, AND, OR.
7118   Register DstReg = MI.getOperand(0).getReg();
7119   Register MaskReg = MI.getOperand(1).getReg();
7120   Register Op1Reg = MI.getOperand(2).getReg();
7121   Register Op2Reg = MI.getOperand(3).getReg();
7122   LLT DstTy = MRI.getType(DstReg);
7123   LLT MaskTy = MRI.getType(MaskReg);
7124   LLT Op1Ty = MRI.getType(Op1Reg);
7125   if (!DstTy.isVector())
7126     return UnableToLegalize;
7127 
7128   // Vector selects can have a scalar predicate. If so, splat into a vector and
7129   // finish for later legalization attempts to try again.
7130   if (MaskTy.isScalar()) {
7131     Register MaskElt = MaskReg;
7132     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
7133       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
7134     // Generate a vector splat idiom to be pattern matched later.
7135     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7136     Observer.changingInstr(MI);
7137     MI.getOperand(1).setReg(ShufSplat.getReg(0));
7138     Observer.changedInstr(MI);
7139     return Legalized;
7140   }
7141 
7142   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
7143     return UnableToLegalize;
7144   }
7145 
7146   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7147   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7148   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7149   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7150   MI.eraseFromParent();
7151   return Legalized;
7152 }
7153 
7154 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7155   // Split DIVREM into individual instructions.
7156   unsigned Opcode = MI.getOpcode();
7157 
7158   MIRBuilder.buildInstr(
7159       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7160                                         : TargetOpcode::G_UDIV,
7161       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7162   MIRBuilder.buildInstr(
7163       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7164                                         : TargetOpcode::G_UREM,
7165       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7166   MI.eraseFromParent();
7167   return Legalized;
7168 }
7169 
7170 LegalizerHelper::LegalizeResult
7171 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7172   // Expand %res = G_ABS %a into:
7173   // %v1 = G_ASHR %a, scalar_size-1
7174   // %v2 = G_ADD %a, %v1
7175   // %res = G_XOR %v2, %v1
7176   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7177   Register OpReg = MI.getOperand(1).getReg();
7178   auto ShiftAmt =
7179       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7180   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7181   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7182   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7183   MI.eraseFromParent();
7184   return Legalized;
7185 }
7186 
7187 LegalizerHelper::LegalizeResult
7188 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7189   // Expand %res = G_ABS %a into:
7190   // %v1 = G_CONSTANT 0
7191   // %v2 = G_SUB %v1, %a
7192   // %res = G_SMAX %a, %v2
7193   Register SrcReg = MI.getOperand(1).getReg();
7194   LLT Ty = MRI.getType(SrcReg);
7195   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7196   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7197   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7198   MI.eraseFromParent();
7199   return Legalized;
7200 }
7201