1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()) { 90 MIRBuilder.setChangeObserver(Observer); 91 } 92 93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 94 GISelChangeObserver &Observer, 95 MachineIRBuilder &B) 96 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) { 97 MIRBuilder.setChangeObserver(Observer); 98 } 99 LegalizerHelper::LegalizeResult 100 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 101 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 102 103 MIRBuilder.setInstrAndDebugLoc(MI); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 108 auto Step = LI.getAction(MI, MRI); 109 switch (Step.Action) { 110 case Legal: 111 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 112 return AlreadyLegal; 113 case Libcall: 114 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 115 return libcall(MI); 116 case NarrowScalar: 117 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 118 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 119 case WidenScalar: 120 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 121 return widenScalar(MI, Step.TypeIdx, Step.NewType); 122 case Bitcast: 123 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 124 return bitcast(MI, Step.TypeIdx, Step.NewType); 125 case Lower: 126 LLVM_DEBUG(dbgs() << ".. Lower\n"); 127 return lower(MI, Step.TypeIdx, Step.NewType); 128 case FewerElements: 129 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 130 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 131 case MoreElements: 132 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 133 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case Custom: 135 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 136 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 137 default: 138 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 139 return UnableToLegalize; 140 } 141 } 142 143 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 144 SmallVectorImpl<Register> &VRegs) { 145 for (int i = 0; i < NumParts; ++i) 146 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 147 MIRBuilder.buildUnmerge(VRegs, Reg); 148 } 149 150 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 151 LLT MainTy, LLT &LeftoverTy, 152 SmallVectorImpl<Register> &VRegs, 153 SmallVectorImpl<Register> &LeftoverRegs) { 154 assert(!LeftoverTy.isValid() && "this is an out argument"); 155 156 unsigned RegSize = RegTy.getSizeInBits(); 157 unsigned MainSize = MainTy.getSizeInBits(); 158 unsigned NumParts = RegSize / MainSize; 159 unsigned LeftoverSize = RegSize - NumParts * MainSize; 160 161 // Use an unmerge when possible. 162 if (LeftoverSize == 0) { 163 for (unsigned I = 0; I < NumParts; ++I) 164 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 165 MIRBuilder.buildUnmerge(VRegs, Reg); 166 return true; 167 } 168 169 if (MainTy.isVector()) { 170 unsigned EltSize = MainTy.getScalarSizeInBits(); 171 if (LeftoverSize % EltSize != 0) 172 return false; 173 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 174 } else { 175 LeftoverTy = LLT::scalar(LeftoverSize); 176 } 177 178 // For irregular sizes, extract the individual parts. 179 for (unsigned I = 0; I != NumParts; ++I) { 180 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 181 VRegs.push_back(NewReg); 182 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 183 } 184 185 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 186 Offset += LeftoverSize) { 187 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 188 LeftoverRegs.push_back(NewReg); 189 MIRBuilder.buildExtract(NewReg, Reg, Offset); 190 } 191 192 return true; 193 } 194 195 void LegalizerHelper::insertParts(Register DstReg, 196 LLT ResultTy, LLT PartTy, 197 ArrayRef<Register> PartRegs, 198 LLT LeftoverTy, 199 ArrayRef<Register> LeftoverRegs) { 200 if (!LeftoverTy.isValid()) { 201 assert(LeftoverRegs.empty()); 202 203 if (!ResultTy.isVector()) { 204 MIRBuilder.buildMerge(DstReg, PartRegs); 205 return; 206 } 207 208 if (PartTy.isVector()) 209 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 210 else 211 MIRBuilder.buildBuildVector(DstReg, PartRegs); 212 return; 213 } 214 215 unsigned PartSize = PartTy.getSizeInBits(); 216 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 217 218 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 219 MIRBuilder.buildUndef(CurResultReg); 220 221 unsigned Offset = 0; 222 for (Register PartReg : PartRegs) { 223 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 224 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 225 CurResultReg = NewResultReg; 226 Offset += PartSize; 227 } 228 229 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 230 // Use the original output register for the final insert to avoid a copy. 231 Register NewResultReg = (I + 1 == E) ? 232 DstReg : MRI.createGenericVirtualRegister(ResultTy); 233 234 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 235 CurResultReg = NewResultReg; 236 Offset += LeftoverPartSize; 237 } 238 } 239 240 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 241 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 242 const MachineInstr &MI) { 243 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 244 245 const int NumResults = MI.getNumOperands() - 1; 246 Regs.resize(NumResults); 247 for (int I = 0; I != NumResults; ++I) 248 Regs[I] = MI.getOperand(I).getReg(); 249 } 250 251 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 252 LLT NarrowTy, Register SrcReg) { 253 LLT SrcTy = MRI.getType(SrcReg); 254 255 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 256 if (SrcTy == GCDTy) { 257 // If the source already evenly divides the result type, we don't need to do 258 // anything. 259 Parts.push_back(SrcReg); 260 } else { 261 // Need to split into common type sized pieces. 262 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 263 getUnmergeResults(Parts, *Unmerge); 264 } 265 266 return GCDTy; 267 } 268 269 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 270 SmallVectorImpl<Register> &VRegs, 271 unsigned PadStrategy) { 272 LLT LCMTy = getLCMType(DstTy, NarrowTy); 273 274 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 275 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 276 int NumOrigSrc = VRegs.size(); 277 278 Register PadReg; 279 280 // Get a value we can use to pad the source value if the sources won't evenly 281 // cover the result type. 282 if (NumOrigSrc < NumParts * NumSubParts) { 283 if (PadStrategy == TargetOpcode::G_ZEXT) 284 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 285 else if (PadStrategy == TargetOpcode::G_ANYEXT) 286 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 287 else { 288 assert(PadStrategy == TargetOpcode::G_SEXT); 289 290 // Shift the sign bit of the low register through the high register. 291 auto ShiftAmt = 292 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 293 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 294 } 295 } 296 297 // Registers for the final merge to be produced. 298 SmallVector<Register, 4> Remerge(NumParts); 299 300 // Registers needed for intermediate merges, which will be merged into a 301 // source for Remerge. 302 SmallVector<Register, 4> SubMerge(NumSubParts); 303 304 // Once we've fully read off the end of the original source bits, we can reuse 305 // the same high bits for remaining padding elements. 306 Register AllPadReg; 307 308 // Build merges to the LCM type to cover the original result type. 309 for (int I = 0; I != NumParts; ++I) { 310 bool AllMergePartsArePadding = true; 311 312 // Build the requested merges to the requested type. 313 for (int J = 0; J != NumSubParts; ++J) { 314 int Idx = I * NumSubParts + J; 315 if (Idx >= NumOrigSrc) { 316 SubMerge[J] = PadReg; 317 continue; 318 } 319 320 SubMerge[J] = VRegs[Idx]; 321 322 // There are meaningful bits here we can't reuse later. 323 AllMergePartsArePadding = false; 324 } 325 326 // If we've filled up a complete piece with padding bits, we can directly 327 // emit the natural sized constant if applicable, rather than a merge of 328 // smaller constants. 329 if (AllMergePartsArePadding && !AllPadReg) { 330 if (PadStrategy == TargetOpcode::G_ANYEXT) 331 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 332 else if (PadStrategy == TargetOpcode::G_ZEXT) 333 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 334 335 // If this is a sign extension, we can't materialize a trivial constant 336 // with the right type and have to produce a merge. 337 } 338 339 if (AllPadReg) { 340 // Avoid creating additional instructions if we're just adding additional 341 // copies of padding bits. 342 Remerge[I] = AllPadReg; 343 continue; 344 } 345 346 if (NumSubParts == 1) 347 Remerge[I] = SubMerge[0]; 348 else 349 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 350 351 // In the sign extend padding case, re-use the first all-signbit merge. 352 if (AllMergePartsArePadding && !AllPadReg) 353 AllPadReg = Remerge[I]; 354 } 355 356 VRegs = std::move(Remerge); 357 return LCMTy; 358 } 359 360 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 361 ArrayRef<Register> RemergeRegs) { 362 LLT DstTy = MRI.getType(DstReg); 363 364 // Create the merge to the widened source, and extract the relevant bits into 365 // the result. 366 367 if (DstTy == LCMTy) { 368 MIRBuilder.buildMerge(DstReg, RemergeRegs); 369 return; 370 } 371 372 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 373 if (DstTy.isScalar() && LCMTy.isScalar()) { 374 MIRBuilder.buildTrunc(DstReg, Remerge); 375 return; 376 } 377 378 if (LCMTy.isVector()) { 379 MIRBuilder.buildExtract(DstReg, Remerge, 0); 380 return; 381 } 382 383 llvm_unreachable("unhandled case"); 384 } 385 386 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 387 #define RTLIBCASE(LibcallPrefix) \ 388 do { \ 389 switch (Size) { \ 390 case 32: \ 391 return RTLIB::LibcallPrefix##32; \ 392 case 64: \ 393 return RTLIB::LibcallPrefix##64; \ 394 case 128: \ 395 return RTLIB::LibcallPrefix##128; \ 396 default: \ 397 llvm_unreachable("unexpected size"); \ 398 } \ 399 } while (0) 400 401 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 402 403 switch (Opcode) { 404 case TargetOpcode::G_SDIV: 405 RTLIBCASE(SDIV_I); 406 case TargetOpcode::G_UDIV: 407 RTLIBCASE(UDIV_I); 408 case TargetOpcode::G_SREM: 409 RTLIBCASE(SREM_I); 410 case TargetOpcode::G_UREM: 411 RTLIBCASE(UREM_I); 412 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 413 RTLIBCASE(CTLZ_I); 414 case TargetOpcode::G_FADD: 415 RTLIBCASE(ADD_F); 416 case TargetOpcode::G_FSUB: 417 RTLIBCASE(SUB_F); 418 case TargetOpcode::G_FMUL: 419 RTLIBCASE(MUL_F); 420 case TargetOpcode::G_FDIV: 421 RTLIBCASE(DIV_F); 422 case TargetOpcode::G_FEXP: 423 RTLIBCASE(EXP_F); 424 case TargetOpcode::G_FEXP2: 425 RTLIBCASE(EXP2_F); 426 case TargetOpcode::G_FREM: 427 RTLIBCASE(REM_F); 428 case TargetOpcode::G_FPOW: 429 RTLIBCASE(POW_F); 430 case TargetOpcode::G_FMA: 431 RTLIBCASE(FMA_F); 432 case TargetOpcode::G_FSIN: 433 RTLIBCASE(SIN_F); 434 case TargetOpcode::G_FCOS: 435 RTLIBCASE(COS_F); 436 case TargetOpcode::G_FLOG10: 437 RTLIBCASE(LOG10_F); 438 case TargetOpcode::G_FLOG: 439 RTLIBCASE(LOG_F); 440 case TargetOpcode::G_FLOG2: 441 RTLIBCASE(LOG2_F); 442 case TargetOpcode::G_FCEIL: 443 RTLIBCASE(CEIL_F); 444 case TargetOpcode::G_FFLOOR: 445 RTLIBCASE(FLOOR_F); 446 case TargetOpcode::G_FMINNUM: 447 RTLIBCASE(FMIN_F); 448 case TargetOpcode::G_FMAXNUM: 449 RTLIBCASE(FMAX_F); 450 case TargetOpcode::G_FSQRT: 451 RTLIBCASE(SQRT_F); 452 case TargetOpcode::G_FRINT: 453 RTLIBCASE(RINT_F); 454 case TargetOpcode::G_FNEARBYINT: 455 RTLIBCASE(NEARBYINT_F); 456 } 457 llvm_unreachable("Unknown libcall function"); 458 } 459 460 /// True if an instruction is in tail position in its caller. Intended for 461 /// legalizing libcalls as tail calls when possible. 462 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 463 MachineInstr &MI) { 464 MachineBasicBlock &MBB = *MI.getParent(); 465 const Function &F = MBB.getParent()->getFunction(); 466 467 // Conservatively require the attributes of the call to match those of 468 // the return. Ignore NoAlias and NonNull because they don't affect the 469 // call sequence. 470 AttributeList CallerAttrs = F.getAttributes(); 471 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 472 .removeAttribute(Attribute::NoAlias) 473 .removeAttribute(Attribute::NonNull) 474 .hasAttributes()) 475 return false; 476 477 // It's not safe to eliminate the sign / zero extension of the return value. 478 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 479 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 480 return false; 481 482 // Only tail call if the following instruction is a standard return. 483 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 484 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 485 return false; 486 487 return true; 488 } 489 490 LegalizerHelper::LegalizeResult 491 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 492 const CallLowering::ArgInfo &Result, 493 ArrayRef<CallLowering::ArgInfo> Args, 494 const CallingConv::ID CC) { 495 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 496 497 CallLowering::CallLoweringInfo Info; 498 Info.CallConv = CC; 499 Info.Callee = MachineOperand::CreateES(Name); 500 Info.OrigRet = Result; 501 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 502 if (!CLI.lowerCall(MIRBuilder, Info)) 503 return LegalizerHelper::UnableToLegalize; 504 505 return LegalizerHelper::Legalized; 506 } 507 508 LegalizerHelper::LegalizeResult 509 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 510 const CallLowering::ArgInfo &Result, 511 ArrayRef<CallLowering::ArgInfo> Args) { 512 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 513 const char *Name = TLI.getLibcallName(Libcall); 514 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 515 return createLibcall(MIRBuilder, Name, Result, Args, CC); 516 } 517 518 // Useful for libcalls where all operands have the same type. 519 static LegalizerHelper::LegalizeResult 520 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 521 Type *OpType) { 522 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 523 524 SmallVector<CallLowering::ArgInfo, 3> Args; 525 for (unsigned i = 1; i < MI.getNumOperands(); i++) 526 Args.push_back({MI.getOperand(i).getReg(), OpType}); 527 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 528 Args); 529 } 530 531 LegalizerHelper::LegalizeResult 532 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 533 MachineInstr &MI) { 534 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 535 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 536 537 SmallVector<CallLowering::ArgInfo, 3> Args; 538 // Add all the args, except for the last which is an imm denoting 'tail'. 539 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 540 Register Reg = MI.getOperand(i).getReg(); 541 542 // Need derive an IR type for call lowering. 543 LLT OpLLT = MRI.getType(Reg); 544 Type *OpTy = nullptr; 545 if (OpLLT.isPointer()) 546 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 547 else 548 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 549 Args.push_back({Reg, OpTy}); 550 } 551 552 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 553 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 554 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 555 RTLIB::Libcall RTLibcall; 556 switch (ID) { 557 case Intrinsic::memcpy: 558 RTLibcall = RTLIB::MEMCPY; 559 break; 560 case Intrinsic::memset: 561 RTLibcall = RTLIB::MEMSET; 562 break; 563 case Intrinsic::memmove: 564 RTLibcall = RTLIB::MEMMOVE; 565 break; 566 default: 567 return LegalizerHelper::UnableToLegalize; 568 } 569 const char *Name = TLI.getLibcallName(RTLibcall); 570 571 MIRBuilder.setInstrAndDebugLoc(MI); 572 573 CallLowering::CallLoweringInfo Info; 574 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 575 Info.Callee = MachineOperand::CreateES(Name); 576 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 577 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 578 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 579 580 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 581 if (!CLI.lowerCall(MIRBuilder, Info)) 582 return LegalizerHelper::UnableToLegalize; 583 584 if (Info.LoweredTailCall) { 585 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 586 // We must have a return following the call (or debug insts) to get past 587 // isLibCallInTailPosition. 588 do { 589 MachineInstr *Next = MI.getNextNode(); 590 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 591 "Expected instr following MI to be return or debug inst?"); 592 // We lowered a tail call, so the call is now the return from the block. 593 // Delete the old return. 594 Next->eraseFromParent(); 595 } while (MI.getNextNode()); 596 } 597 598 return LegalizerHelper::Legalized; 599 } 600 601 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 602 Type *FromType) { 603 auto ToMVT = MVT::getVT(ToType); 604 auto FromMVT = MVT::getVT(FromType); 605 606 switch (Opcode) { 607 case TargetOpcode::G_FPEXT: 608 return RTLIB::getFPEXT(FromMVT, ToMVT); 609 case TargetOpcode::G_FPTRUNC: 610 return RTLIB::getFPROUND(FromMVT, ToMVT); 611 case TargetOpcode::G_FPTOSI: 612 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 613 case TargetOpcode::G_FPTOUI: 614 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 615 case TargetOpcode::G_SITOFP: 616 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 617 case TargetOpcode::G_UITOFP: 618 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 619 } 620 llvm_unreachable("Unsupported libcall function"); 621 } 622 623 static LegalizerHelper::LegalizeResult 624 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 625 Type *FromType) { 626 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 627 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 628 {{MI.getOperand(1).getReg(), FromType}}); 629 } 630 631 LegalizerHelper::LegalizeResult 632 LegalizerHelper::libcall(MachineInstr &MI) { 633 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 634 unsigned Size = LLTy.getSizeInBits(); 635 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 636 637 switch (MI.getOpcode()) { 638 default: 639 return UnableToLegalize; 640 case TargetOpcode::G_SDIV: 641 case TargetOpcode::G_UDIV: 642 case TargetOpcode::G_SREM: 643 case TargetOpcode::G_UREM: 644 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 645 Type *HLTy = IntegerType::get(Ctx, Size); 646 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 647 if (Status != Legalized) 648 return Status; 649 break; 650 } 651 case TargetOpcode::G_FADD: 652 case TargetOpcode::G_FSUB: 653 case TargetOpcode::G_FMUL: 654 case TargetOpcode::G_FDIV: 655 case TargetOpcode::G_FMA: 656 case TargetOpcode::G_FPOW: 657 case TargetOpcode::G_FREM: 658 case TargetOpcode::G_FCOS: 659 case TargetOpcode::G_FSIN: 660 case TargetOpcode::G_FLOG10: 661 case TargetOpcode::G_FLOG: 662 case TargetOpcode::G_FLOG2: 663 case TargetOpcode::G_FEXP: 664 case TargetOpcode::G_FEXP2: 665 case TargetOpcode::G_FCEIL: 666 case TargetOpcode::G_FFLOOR: 667 case TargetOpcode::G_FMINNUM: 668 case TargetOpcode::G_FMAXNUM: 669 case TargetOpcode::G_FSQRT: 670 case TargetOpcode::G_FRINT: 671 case TargetOpcode::G_FNEARBYINT: { 672 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 673 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 674 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 675 return UnableToLegalize; 676 } 677 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 678 if (Status != Legalized) 679 return Status; 680 break; 681 } 682 case TargetOpcode::G_FPEXT: 683 case TargetOpcode::G_FPTRUNC: { 684 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 685 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 686 if (!FromTy || !ToTy) 687 return UnableToLegalize; 688 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 689 if (Status != Legalized) 690 return Status; 691 break; 692 } 693 case TargetOpcode::G_FPTOSI: 694 case TargetOpcode::G_FPTOUI: { 695 // FIXME: Support other types 696 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 697 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 698 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 699 return UnableToLegalize; 700 LegalizeResult Status = conversionLibcall( 701 MI, MIRBuilder, 702 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 703 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 704 if (Status != Legalized) 705 return Status; 706 break; 707 } 708 case TargetOpcode::G_SITOFP: 709 case TargetOpcode::G_UITOFP: { 710 // FIXME: Support other types 711 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 712 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 713 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 714 return UnableToLegalize; 715 LegalizeResult Status = conversionLibcall( 716 MI, MIRBuilder, 717 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 718 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 719 if (Status != Legalized) 720 return Status; 721 break; 722 } 723 } 724 725 MI.eraseFromParent(); 726 return Legalized; 727 } 728 729 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 730 unsigned TypeIdx, 731 LLT NarrowTy) { 732 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 733 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 734 735 switch (MI.getOpcode()) { 736 default: 737 return UnableToLegalize; 738 case TargetOpcode::G_IMPLICIT_DEF: { 739 Register DstReg = MI.getOperand(0).getReg(); 740 LLT DstTy = MRI.getType(DstReg); 741 742 // If SizeOp0 is not an exact multiple of NarrowSize, emit 743 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 744 // FIXME: Although this would also be legal for the general case, it causes 745 // a lot of regressions in the emitted code (superfluous COPYs, artifact 746 // combines not being hit). This seems to be a problem related to the 747 // artifact combiner. 748 if (SizeOp0 % NarrowSize != 0) { 749 LLT ImplicitTy = NarrowTy; 750 if (DstTy.isVector()) 751 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 752 753 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 754 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 755 756 MI.eraseFromParent(); 757 return Legalized; 758 } 759 760 int NumParts = SizeOp0 / NarrowSize; 761 762 SmallVector<Register, 2> DstRegs; 763 for (int i = 0; i < NumParts; ++i) 764 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 765 766 if (DstTy.isVector()) 767 MIRBuilder.buildBuildVector(DstReg, DstRegs); 768 else 769 MIRBuilder.buildMerge(DstReg, DstRegs); 770 MI.eraseFromParent(); 771 return Legalized; 772 } 773 case TargetOpcode::G_CONSTANT: { 774 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 775 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 776 unsigned TotalSize = Ty.getSizeInBits(); 777 unsigned NarrowSize = NarrowTy.getSizeInBits(); 778 int NumParts = TotalSize / NarrowSize; 779 780 SmallVector<Register, 4> PartRegs; 781 for (int I = 0; I != NumParts; ++I) { 782 unsigned Offset = I * NarrowSize; 783 auto K = MIRBuilder.buildConstant(NarrowTy, 784 Val.lshr(Offset).trunc(NarrowSize)); 785 PartRegs.push_back(K.getReg(0)); 786 } 787 788 LLT LeftoverTy; 789 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 790 SmallVector<Register, 1> LeftoverRegs; 791 if (LeftoverBits != 0) { 792 LeftoverTy = LLT::scalar(LeftoverBits); 793 auto K = MIRBuilder.buildConstant( 794 LeftoverTy, 795 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 796 LeftoverRegs.push_back(K.getReg(0)); 797 } 798 799 insertParts(MI.getOperand(0).getReg(), 800 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 801 802 MI.eraseFromParent(); 803 return Legalized; 804 } 805 case TargetOpcode::G_SEXT: 806 case TargetOpcode::G_ZEXT: 807 case TargetOpcode::G_ANYEXT: 808 return narrowScalarExt(MI, TypeIdx, NarrowTy); 809 case TargetOpcode::G_TRUNC: { 810 if (TypeIdx != 1) 811 return UnableToLegalize; 812 813 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 814 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 815 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 816 return UnableToLegalize; 817 } 818 819 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 820 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 821 MI.eraseFromParent(); 822 return Legalized; 823 } 824 825 case TargetOpcode::G_FREEZE: 826 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 827 828 case TargetOpcode::G_ADD: { 829 // FIXME: add support for when SizeOp0 isn't an exact multiple of 830 // NarrowSize. 831 if (SizeOp0 % NarrowSize != 0) 832 return UnableToLegalize; 833 // Expand in terms of carry-setting/consuming G_ADDE instructions. 834 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 835 836 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 837 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 838 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 839 840 Register CarryIn; 841 for (int i = 0; i < NumParts; ++i) { 842 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 843 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 844 845 if (i == 0) 846 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 847 else { 848 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 849 Src2Regs[i], CarryIn); 850 } 851 852 DstRegs.push_back(DstReg); 853 CarryIn = CarryOut; 854 } 855 Register DstReg = MI.getOperand(0).getReg(); 856 if(MRI.getType(DstReg).isVector()) 857 MIRBuilder.buildBuildVector(DstReg, DstRegs); 858 else 859 MIRBuilder.buildMerge(DstReg, DstRegs); 860 MI.eraseFromParent(); 861 return Legalized; 862 } 863 case TargetOpcode::G_SUB: { 864 // FIXME: add support for when SizeOp0 isn't an exact multiple of 865 // NarrowSize. 866 if (SizeOp0 % NarrowSize != 0) 867 return UnableToLegalize; 868 869 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 870 871 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 872 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 873 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 874 875 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 876 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 877 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 878 {Src1Regs[0], Src2Regs[0]}); 879 DstRegs.push_back(DstReg); 880 Register BorrowIn = BorrowOut; 881 for (int i = 1; i < NumParts; ++i) { 882 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 883 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 884 885 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 886 {Src1Regs[i], Src2Regs[i], BorrowIn}); 887 888 DstRegs.push_back(DstReg); 889 BorrowIn = BorrowOut; 890 } 891 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 892 MI.eraseFromParent(); 893 return Legalized; 894 } 895 case TargetOpcode::G_MUL: 896 case TargetOpcode::G_UMULH: 897 return narrowScalarMul(MI, NarrowTy); 898 case TargetOpcode::G_EXTRACT: 899 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 900 case TargetOpcode::G_INSERT: 901 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_LOAD: { 903 const auto &MMO = **MI.memoperands_begin(); 904 Register DstReg = MI.getOperand(0).getReg(); 905 LLT DstTy = MRI.getType(DstReg); 906 if (DstTy.isVector()) 907 return UnableToLegalize; 908 909 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 910 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 911 auto &MMO = **MI.memoperands_begin(); 912 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 913 MIRBuilder.buildAnyExt(DstReg, TmpReg); 914 MI.eraseFromParent(); 915 return Legalized; 916 } 917 918 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 919 } 920 case TargetOpcode::G_ZEXTLOAD: 921 case TargetOpcode::G_SEXTLOAD: { 922 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 923 Register DstReg = MI.getOperand(0).getReg(); 924 Register PtrReg = MI.getOperand(1).getReg(); 925 926 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 927 auto &MMO = **MI.memoperands_begin(); 928 if (MMO.getSizeInBits() == NarrowSize) { 929 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 930 } else { 931 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 932 } 933 934 if (ZExt) 935 MIRBuilder.buildZExt(DstReg, TmpReg); 936 else 937 MIRBuilder.buildSExt(DstReg, TmpReg); 938 939 MI.eraseFromParent(); 940 return Legalized; 941 } 942 case TargetOpcode::G_STORE: { 943 const auto &MMO = **MI.memoperands_begin(); 944 945 Register SrcReg = MI.getOperand(0).getReg(); 946 LLT SrcTy = MRI.getType(SrcReg); 947 if (SrcTy.isVector()) 948 return UnableToLegalize; 949 950 int NumParts = SizeOp0 / NarrowSize; 951 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 952 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 953 if (SrcTy.isVector() && LeftoverBits != 0) 954 return UnableToLegalize; 955 956 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 957 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 958 auto &MMO = **MI.memoperands_begin(); 959 MIRBuilder.buildTrunc(TmpReg, SrcReg); 960 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 961 MI.eraseFromParent(); 962 return Legalized; 963 } 964 965 return reduceLoadStoreWidth(MI, 0, NarrowTy); 966 } 967 case TargetOpcode::G_SELECT: 968 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 969 case TargetOpcode::G_AND: 970 case TargetOpcode::G_OR: 971 case TargetOpcode::G_XOR: { 972 // Legalize bitwise operation: 973 // A = BinOp<Ty> B, C 974 // into: 975 // B1, ..., BN = G_UNMERGE_VALUES B 976 // C1, ..., CN = G_UNMERGE_VALUES C 977 // A1 = BinOp<Ty/N> B1, C2 978 // ... 979 // AN = BinOp<Ty/N> BN, CN 980 // A = G_MERGE_VALUES A1, ..., AN 981 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 982 } 983 case TargetOpcode::G_SHL: 984 case TargetOpcode::G_LSHR: 985 case TargetOpcode::G_ASHR: 986 return narrowScalarShift(MI, TypeIdx, NarrowTy); 987 case TargetOpcode::G_CTLZ: 988 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 989 case TargetOpcode::G_CTTZ: 990 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 991 case TargetOpcode::G_CTPOP: 992 if (TypeIdx == 1) 993 switch (MI.getOpcode()) { 994 case TargetOpcode::G_CTLZ: 995 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 996 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 997 case TargetOpcode::G_CTTZ: 998 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 999 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1000 case TargetOpcode::G_CTPOP: 1001 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1002 default: 1003 return UnableToLegalize; 1004 } 1005 1006 Observer.changingInstr(MI); 1007 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1008 Observer.changedInstr(MI); 1009 return Legalized; 1010 case TargetOpcode::G_INTTOPTR: 1011 if (TypeIdx != 1) 1012 return UnableToLegalize; 1013 1014 Observer.changingInstr(MI); 1015 narrowScalarSrc(MI, NarrowTy, 1); 1016 Observer.changedInstr(MI); 1017 return Legalized; 1018 case TargetOpcode::G_PTRTOINT: 1019 if (TypeIdx != 0) 1020 return UnableToLegalize; 1021 1022 Observer.changingInstr(MI); 1023 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1024 Observer.changedInstr(MI); 1025 return Legalized; 1026 case TargetOpcode::G_PHI: { 1027 unsigned NumParts = SizeOp0 / NarrowSize; 1028 SmallVector<Register, 2> DstRegs(NumParts); 1029 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1030 Observer.changingInstr(MI); 1031 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1032 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1033 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1034 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1035 SrcRegs[i / 2]); 1036 } 1037 MachineBasicBlock &MBB = *MI.getParent(); 1038 MIRBuilder.setInsertPt(MBB, MI); 1039 for (unsigned i = 0; i < NumParts; ++i) { 1040 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1041 MachineInstrBuilder MIB = 1042 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1043 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1044 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1045 } 1046 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1047 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1048 Observer.changedInstr(MI); 1049 MI.eraseFromParent(); 1050 return Legalized; 1051 } 1052 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1053 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1054 if (TypeIdx != 2) 1055 return UnableToLegalize; 1056 1057 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1058 Observer.changingInstr(MI); 1059 narrowScalarSrc(MI, NarrowTy, OpIdx); 1060 Observer.changedInstr(MI); 1061 return Legalized; 1062 } 1063 case TargetOpcode::G_ICMP: { 1064 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1065 if (NarrowSize * 2 != SrcSize) 1066 return UnableToLegalize; 1067 1068 Observer.changingInstr(MI); 1069 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1070 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1071 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1072 1073 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1074 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1075 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1076 1077 CmpInst::Predicate Pred = 1078 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1079 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1080 1081 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1082 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1083 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1084 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1085 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1086 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1087 } else { 1088 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1089 MachineInstrBuilder CmpHEQ = 1090 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1091 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1092 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1093 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1094 } 1095 Observer.changedInstr(MI); 1096 MI.eraseFromParent(); 1097 return Legalized; 1098 } 1099 case TargetOpcode::G_SEXT_INREG: { 1100 if (TypeIdx != 0) 1101 return UnableToLegalize; 1102 1103 int64_t SizeInBits = MI.getOperand(2).getImm(); 1104 1105 // So long as the new type has more bits than the bits we're extending we 1106 // don't need to break it apart. 1107 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1108 Observer.changingInstr(MI); 1109 // We don't lose any non-extension bits by truncating the src and 1110 // sign-extending the dst. 1111 MachineOperand &MO1 = MI.getOperand(1); 1112 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1113 MO1.setReg(TruncMIB.getReg(0)); 1114 1115 MachineOperand &MO2 = MI.getOperand(0); 1116 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1117 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1118 MIRBuilder.buildSExt(MO2, DstExt); 1119 MO2.setReg(DstExt); 1120 Observer.changedInstr(MI); 1121 return Legalized; 1122 } 1123 1124 // Break it apart. Components below the extension point are unmodified. The 1125 // component containing the extension point becomes a narrower SEXT_INREG. 1126 // Components above it are ashr'd from the component containing the 1127 // extension point. 1128 if (SizeOp0 % NarrowSize != 0) 1129 return UnableToLegalize; 1130 int NumParts = SizeOp0 / NarrowSize; 1131 1132 // List the registers where the destination will be scattered. 1133 SmallVector<Register, 2> DstRegs; 1134 // List the registers where the source will be split. 1135 SmallVector<Register, 2> SrcRegs; 1136 1137 // Create all the temporary registers. 1138 for (int i = 0; i < NumParts; ++i) { 1139 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1140 1141 SrcRegs.push_back(SrcReg); 1142 } 1143 1144 // Explode the big arguments into smaller chunks. 1145 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1146 1147 Register AshrCstReg = 1148 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1149 .getReg(0); 1150 Register FullExtensionReg = 0; 1151 Register PartialExtensionReg = 0; 1152 1153 // Do the operation on each small part. 1154 for (int i = 0; i < NumParts; ++i) { 1155 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1156 DstRegs.push_back(SrcRegs[i]); 1157 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1158 assert(PartialExtensionReg && 1159 "Expected to visit partial extension before full"); 1160 if (FullExtensionReg) { 1161 DstRegs.push_back(FullExtensionReg); 1162 continue; 1163 } 1164 DstRegs.push_back( 1165 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1166 .getReg(0)); 1167 FullExtensionReg = DstRegs.back(); 1168 } else { 1169 DstRegs.push_back( 1170 MIRBuilder 1171 .buildInstr( 1172 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1173 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1174 .getReg(0)); 1175 PartialExtensionReg = DstRegs.back(); 1176 } 1177 } 1178 1179 // Gather the destination registers into the final destination. 1180 Register DstReg = MI.getOperand(0).getReg(); 1181 MIRBuilder.buildMerge(DstReg, DstRegs); 1182 MI.eraseFromParent(); 1183 return Legalized; 1184 } 1185 case TargetOpcode::G_BSWAP: 1186 case TargetOpcode::G_BITREVERSE: { 1187 if (SizeOp0 % NarrowSize != 0) 1188 return UnableToLegalize; 1189 1190 Observer.changingInstr(MI); 1191 SmallVector<Register, 2> SrcRegs, DstRegs; 1192 unsigned NumParts = SizeOp0 / NarrowSize; 1193 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1194 1195 for (unsigned i = 0; i < NumParts; ++i) { 1196 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1197 {SrcRegs[NumParts - 1 - i]}); 1198 DstRegs.push_back(DstPart.getReg(0)); 1199 } 1200 1201 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1202 1203 Observer.changedInstr(MI); 1204 MI.eraseFromParent(); 1205 return Legalized; 1206 } 1207 case TargetOpcode::G_PTR_ADD: 1208 case TargetOpcode::G_PTRMASK: { 1209 if (TypeIdx != 1) 1210 return UnableToLegalize; 1211 Observer.changingInstr(MI); 1212 narrowScalarSrc(MI, NarrowTy, 2); 1213 Observer.changedInstr(MI); 1214 return Legalized; 1215 } 1216 case TargetOpcode::G_FPTOUI: { 1217 if (TypeIdx != 0) 1218 return UnableToLegalize; 1219 Observer.changingInstr(MI); 1220 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1221 Observer.changedInstr(MI); 1222 return Legalized; 1223 } 1224 case TargetOpcode::G_FPTOSI: { 1225 if (TypeIdx != 0) 1226 return UnableToLegalize; 1227 Observer.changingInstr(MI); 1228 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1229 Observer.changedInstr(MI); 1230 return Legalized; 1231 } 1232 case TargetOpcode::G_FPEXT: 1233 if (TypeIdx != 0) 1234 return UnableToLegalize; 1235 Observer.changingInstr(MI); 1236 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1237 Observer.changedInstr(MI); 1238 return Legalized; 1239 } 1240 } 1241 1242 Register LegalizerHelper::coerceToScalar(Register Val) { 1243 LLT Ty = MRI.getType(Val); 1244 if (Ty.isScalar()) 1245 return Val; 1246 1247 const DataLayout &DL = MIRBuilder.getDataLayout(); 1248 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1249 if (Ty.isPointer()) { 1250 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1251 return Register(); 1252 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1253 } 1254 1255 Register NewVal = Val; 1256 1257 assert(Ty.isVector()); 1258 LLT EltTy = Ty.getElementType(); 1259 if (EltTy.isPointer()) 1260 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1261 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1262 } 1263 1264 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1265 unsigned OpIdx, unsigned ExtOpcode) { 1266 MachineOperand &MO = MI.getOperand(OpIdx); 1267 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1268 MO.setReg(ExtB.getReg(0)); 1269 } 1270 1271 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1272 unsigned OpIdx) { 1273 MachineOperand &MO = MI.getOperand(OpIdx); 1274 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1275 MO.setReg(ExtB.getReg(0)); 1276 } 1277 1278 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1279 unsigned OpIdx, unsigned TruncOpcode) { 1280 MachineOperand &MO = MI.getOperand(OpIdx); 1281 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1282 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1283 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1284 MO.setReg(DstExt); 1285 } 1286 1287 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1288 unsigned OpIdx, unsigned ExtOpcode) { 1289 MachineOperand &MO = MI.getOperand(OpIdx); 1290 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1291 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1292 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1293 MO.setReg(DstTrunc); 1294 } 1295 1296 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1297 unsigned OpIdx) { 1298 MachineOperand &MO = MI.getOperand(OpIdx); 1299 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1300 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1301 MIRBuilder.buildExtract(MO, DstExt, 0); 1302 MO.setReg(DstExt); 1303 } 1304 1305 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1306 unsigned OpIdx) { 1307 MachineOperand &MO = MI.getOperand(OpIdx); 1308 1309 LLT OldTy = MRI.getType(MO.getReg()); 1310 unsigned OldElts = OldTy.getNumElements(); 1311 unsigned NewElts = MoreTy.getNumElements(); 1312 1313 unsigned NumParts = NewElts / OldElts; 1314 1315 // Use concat_vectors if the result is a multiple of the number of elements. 1316 if (NumParts * OldElts == NewElts) { 1317 SmallVector<Register, 8> Parts; 1318 Parts.push_back(MO.getReg()); 1319 1320 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1321 for (unsigned I = 1; I != NumParts; ++I) 1322 Parts.push_back(ImpDef); 1323 1324 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1325 MO.setReg(Concat.getReg(0)); 1326 return; 1327 } 1328 1329 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1330 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1331 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1332 MO.setReg(MoreReg); 1333 } 1334 1335 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1336 MachineOperand &Op = MI.getOperand(OpIdx); 1337 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1338 } 1339 1340 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1341 MachineOperand &MO = MI.getOperand(OpIdx); 1342 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1343 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1344 MIRBuilder.buildBitcast(MO, CastDst); 1345 MO.setReg(CastDst); 1346 } 1347 1348 LegalizerHelper::LegalizeResult 1349 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1350 LLT WideTy) { 1351 if (TypeIdx != 1) 1352 return UnableToLegalize; 1353 1354 Register DstReg = MI.getOperand(0).getReg(); 1355 LLT DstTy = MRI.getType(DstReg); 1356 if (DstTy.isVector()) 1357 return UnableToLegalize; 1358 1359 Register Src1 = MI.getOperand(1).getReg(); 1360 LLT SrcTy = MRI.getType(Src1); 1361 const int DstSize = DstTy.getSizeInBits(); 1362 const int SrcSize = SrcTy.getSizeInBits(); 1363 const int WideSize = WideTy.getSizeInBits(); 1364 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1365 1366 unsigned NumOps = MI.getNumOperands(); 1367 unsigned NumSrc = MI.getNumOperands() - 1; 1368 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1369 1370 if (WideSize >= DstSize) { 1371 // Directly pack the bits in the target type. 1372 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1373 1374 for (unsigned I = 2; I != NumOps; ++I) { 1375 const unsigned Offset = (I - 1) * PartSize; 1376 1377 Register SrcReg = MI.getOperand(I).getReg(); 1378 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1379 1380 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1381 1382 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1383 MRI.createGenericVirtualRegister(WideTy); 1384 1385 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1386 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1387 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1388 ResultReg = NextResult; 1389 } 1390 1391 if (WideSize > DstSize) 1392 MIRBuilder.buildTrunc(DstReg, ResultReg); 1393 else if (DstTy.isPointer()) 1394 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1395 1396 MI.eraseFromParent(); 1397 return Legalized; 1398 } 1399 1400 // Unmerge the original values to the GCD type, and recombine to the next 1401 // multiple greater than the original type. 1402 // 1403 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1404 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1405 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1406 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1407 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1408 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1409 // %12:_(s12) = G_MERGE_VALUES %10, %11 1410 // 1411 // Padding with undef if necessary: 1412 // 1413 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1414 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1415 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1416 // %7:_(s2) = G_IMPLICIT_DEF 1417 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1418 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1419 // %10:_(s12) = G_MERGE_VALUES %8, %9 1420 1421 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1422 LLT GCDTy = LLT::scalar(GCD); 1423 1424 SmallVector<Register, 8> Parts; 1425 SmallVector<Register, 8> NewMergeRegs; 1426 SmallVector<Register, 8> Unmerges; 1427 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1428 1429 // Decompose the original operands if they don't evenly divide. 1430 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1431 Register SrcReg = MI.getOperand(I).getReg(); 1432 if (GCD == SrcSize) { 1433 Unmerges.push_back(SrcReg); 1434 } else { 1435 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1436 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1437 Unmerges.push_back(Unmerge.getReg(J)); 1438 } 1439 } 1440 1441 // Pad with undef to the next size that is a multiple of the requested size. 1442 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1443 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1444 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1445 Unmerges.push_back(UndefReg); 1446 } 1447 1448 const int PartsPerGCD = WideSize / GCD; 1449 1450 // Build merges of each piece. 1451 ArrayRef<Register> Slicer(Unmerges); 1452 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1453 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1454 NewMergeRegs.push_back(Merge.getReg(0)); 1455 } 1456 1457 // A truncate may be necessary if the requested type doesn't evenly divide the 1458 // original result type. 1459 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1460 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1461 } else { 1462 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1463 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1464 } 1465 1466 MI.eraseFromParent(); 1467 return Legalized; 1468 } 1469 1470 LegalizerHelper::LegalizeResult 1471 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1472 LLT WideTy) { 1473 if (TypeIdx != 0) 1474 return UnableToLegalize; 1475 1476 int NumDst = MI.getNumOperands() - 1; 1477 Register SrcReg = MI.getOperand(NumDst).getReg(); 1478 LLT SrcTy = MRI.getType(SrcReg); 1479 if (SrcTy.isVector()) 1480 return UnableToLegalize; 1481 1482 Register Dst0Reg = MI.getOperand(0).getReg(); 1483 LLT DstTy = MRI.getType(Dst0Reg); 1484 if (!DstTy.isScalar()) 1485 return UnableToLegalize; 1486 1487 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1488 if (SrcTy.isPointer()) { 1489 const DataLayout &DL = MIRBuilder.getDataLayout(); 1490 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1491 LLVM_DEBUG( 1492 dbgs() << "Not casting non-integral address space integer\n"); 1493 return UnableToLegalize; 1494 } 1495 1496 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1497 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1498 } 1499 1500 // Widen SrcTy to WideTy. This does not affect the result, but since the 1501 // user requested this size, it is probably better handled than SrcTy and 1502 // should reduce the total number of legalization artifacts 1503 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1504 SrcTy = WideTy; 1505 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1506 } 1507 1508 // Theres no unmerge type to target. Directly extract the bits from the 1509 // source type 1510 unsigned DstSize = DstTy.getSizeInBits(); 1511 1512 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1513 for (int I = 1; I != NumDst; ++I) { 1514 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1515 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1516 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1517 } 1518 1519 MI.eraseFromParent(); 1520 return Legalized; 1521 } 1522 1523 // Extend the source to a wider type. 1524 LLT LCMTy = getLCMType(SrcTy, WideTy); 1525 1526 Register WideSrc = SrcReg; 1527 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1528 // TODO: If this is an integral address space, cast to integer and anyext. 1529 if (SrcTy.isPointer()) { 1530 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1531 return UnableToLegalize; 1532 } 1533 1534 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1535 } 1536 1537 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1538 1539 // Create a sequence of unmerges to the original results. since we may have 1540 // widened the source, we will need to pad the results with dead defs to cover 1541 // the source register. 1542 // e.g. widen s16 to s32: 1543 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1544 // 1545 // => 1546 // %4:_(s64) = G_ANYEXT %0:_(s48) 1547 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1548 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1549 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1550 1551 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1552 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1553 1554 for (int I = 0; I != NumUnmerge; ++I) { 1555 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1556 1557 for (int J = 0; J != PartsPerUnmerge; ++J) { 1558 int Idx = I * PartsPerUnmerge + J; 1559 if (Idx < NumDst) 1560 MIB.addDef(MI.getOperand(Idx).getReg()); 1561 else { 1562 // Create dead def for excess components. 1563 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1564 } 1565 } 1566 1567 MIB.addUse(Unmerge.getReg(I)); 1568 } 1569 1570 MI.eraseFromParent(); 1571 return Legalized; 1572 } 1573 1574 LegalizerHelper::LegalizeResult 1575 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1576 LLT WideTy) { 1577 Register DstReg = MI.getOperand(0).getReg(); 1578 Register SrcReg = MI.getOperand(1).getReg(); 1579 LLT SrcTy = MRI.getType(SrcReg); 1580 1581 LLT DstTy = MRI.getType(DstReg); 1582 unsigned Offset = MI.getOperand(2).getImm(); 1583 1584 if (TypeIdx == 0) { 1585 if (SrcTy.isVector() || DstTy.isVector()) 1586 return UnableToLegalize; 1587 1588 SrcOp Src(SrcReg); 1589 if (SrcTy.isPointer()) { 1590 // Extracts from pointers can be handled only if they are really just 1591 // simple integers. 1592 const DataLayout &DL = MIRBuilder.getDataLayout(); 1593 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1594 return UnableToLegalize; 1595 1596 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1597 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1598 SrcTy = SrcAsIntTy; 1599 } 1600 1601 if (DstTy.isPointer()) 1602 return UnableToLegalize; 1603 1604 if (Offset == 0) { 1605 // Avoid a shift in the degenerate case. 1606 MIRBuilder.buildTrunc(DstReg, 1607 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1608 MI.eraseFromParent(); 1609 return Legalized; 1610 } 1611 1612 // Do a shift in the source type. 1613 LLT ShiftTy = SrcTy; 1614 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1615 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1616 ShiftTy = WideTy; 1617 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1618 return UnableToLegalize; 1619 1620 auto LShr = MIRBuilder.buildLShr( 1621 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1622 MIRBuilder.buildTrunc(DstReg, LShr); 1623 MI.eraseFromParent(); 1624 return Legalized; 1625 } 1626 1627 if (SrcTy.isScalar()) { 1628 Observer.changingInstr(MI); 1629 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1630 Observer.changedInstr(MI); 1631 return Legalized; 1632 } 1633 1634 if (!SrcTy.isVector()) 1635 return UnableToLegalize; 1636 1637 if (DstTy != SrcTy.getElementType()) 1638 return UnableToLegalize; 1639 1640 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1641 return UnableToLegalize; 1642 1643 Observer.changingInstr(MI); 1644 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1645 1646 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1647 Offset); 1648 widenScalarDst(MI, WideTy.getScalarType(), 0); 1649 Observer.changedInstr(MI); 1650 return Legalized; 1651 } 1652 1653 LegalizerHelper::LegalizeResult 1654 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1655 LLT WideTy) { 1656 if (TypeIdx != 0 || WideTy.isVector()) 1657 return UnableToLegalize; 1658 Observer.changingInstr(MI); 1659 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1660 widenScalarDst(MI, WideTy); 1661 Observer.changedInstr(MI); 1662 return Legalized; 1663 } 1664 1665 LegalizerHelper::LegalizeResult 1666 LegalizerHelper::widenScalarAddSubSat(MachineInstr &MI, unsigned TypeIdx, 1667 LLT WideTy) { 1668 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1669 MI.getOpcode() == TargetOpcode::G_SSUBSAT; 1670 // We can convert this to: 1671 // 1. Any extend iN to iM 1672 // 2. SHL by M-N 1673 // 3. [US][ADD|SUB]SAT 1674 // 4. L/ASHR by M-N 1675 // 1676 // It may be more efficient to lower this to a min and a max operation in 1677 // the higher precision arithmetic if the promoted operation isn't legal, 1678 // but this decision is up to the target's lowering request. 1679 Register DstReg = MI.getOperand(0).getReg(); 1680 1681 unsigned NewBits = WideTy.getScalarSizeInBits(); 1682 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1683 1684 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1685 auto RHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1686 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1687 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1688 auto ShiftR = MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1689 1690 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1691 {ShiftL, ShiftR}, MI.getFlags()); 1692 1693 // Use a shift that will preserve the number of sign bits when the trunc is 1694 // folded away. 1695 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1696 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1697 1698 MIRBuilder.buildTrunc(DstReg, Result); 1699 MI.eraseFromParent(); 1700 return Legalized; 1701 } 1702 1703 LegalizerHelper::LegalizeResult 1704 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1705 switch (MI.getOpcode()) { 1706 default: 1707 return UnableToLegalize; 1708 case TargetOpcode::G_EXTRACT: 1709 return widenScalarExtract(MI, TypeIdx, WideTy); 1710 case TargetOpcode::G_INSERT: 1711 return widenScalarInsert(MI, TypeIdx, WideTy); 1712 case TargetOpcode::G_MERGE_VALUES: 1713 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1714 case TargetOpcode::G_UNMERGE_VALUES: 1715 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1716 case TargetOpcode::G_UADDO: 1717 case TargetOpcode::G_USUBO: { 1718 if (TypeIdx == 1) 1719 return UnableToLegalize; // TODO 1720 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1721 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1722 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1723 ? TargetOpcode::G_ADD 1724 : TargetOpcode::G_SUB; 1725 // Do the arithmetic in the larger type. 1726 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1727 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1728 APInt Mask = 1729 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1730 auto AndOp = MIRBuilder.buildAnd( 1731 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1732 // There is no overflow if the AndOp is the same as NewOp. 1733 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1734 // Now trunc the NewOp to the original result. 1735 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1736 MI.eraseFromParent(); 1737 return Legalized; 1738 } 1739 case TargetOpcode::G_SADDSAT: 1740 case TargetOpcode::G_SSUBSAT: 1741 case TargetOpcode::G_UADDSAT: 1742 case TargetOpcode::G_USUBSAT: 1743 return widenScalarAddSubSat(MI, TypeIdx, WideTy); 1744 case TargetOpcode::G_CTTZ: 1745 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1746 case TargetOpcode::G_CTLZ: 1747 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1748 case TargetOpcode::G_CTPOP: { 1749 if (TypeIdx == 0) { 1750 Observer.changingInstr(MI); 1751 widenScalarDst(MI, WideTy, 0); 1752 Observer.changedInstr(MI); 1753 return Legalized; 1754 } 1755 1756 Register SrcReg = MI.getOperand(1).getReg(); 1757 1758 // First ZEXT the input. 1759 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1760 LLT CurTy = MRI.getType(SrcReg); 1761 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1762 // The count is the same in the larger type except if the original 1763 // value was zero. This can be handled by setting the bit just off 1764 // the top of the original type. 1765 auto TopBit = 1766 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1767 MIBSrc = MIRBuilder.buildOr( 1768 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1769 } 1770 1771 // Perform the operation at the larger size. 1772 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1773 // This is already the correct result for CTPOP and CTTZs 1774 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1775 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1776 // The correct result is NewOp - (Difference in widety and current ty). 1777 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1778 MIBNewOp = MIRBuilder.buildSub( 1779 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1780 } 1781 1782 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1783 MI.eraseFromParent(); 1784 return Legalized; 1785 } 1786 case TargetOpcode::G_BSWAP: { 1787 Observer.changingInstr(MI); 1788 Register DstReg = MI.getOperand(0).getReg(); 1789 1790 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1791 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1792 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1793 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1794 1795 MI.getOperand(0).setReg(DstExt); 1796 1797 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1798 1799 LLT Ty = MRI.getType(DstReg); 1800 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1801 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1802 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1803 1804 MIRBuilder.buildTrunc(DstReg, ShrReg); 1805 Observer.changedInstr(MI); 1806 return Legalized; 1807 } 1808 case TargetOpcode::G_BITREVERSE: { 1809 Observer.changingInstr(MI); 1810 1811 Register DstReg = MI.getOperand(0).getReg(); 1812 LLT Ty = MRI.getType(DstReg); 1813 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1814 1815 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1816 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1817 MI.getOperand(0).setReg(DstExt); 1818 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1819 1820 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1821 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1822 MIRBuilder.buildTrunc(DstReg, Shift); 1823 Observer.changedInstr(MI); 1824 return Legalized; 1825 } 1826 case TargetOpcode::G_FREEZE: 1827 Observer.changingInstr(MI); 1828 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1829 widenScalarDst(MI, WideTy); 1830 Observer.changedInstr(MI); 1831 return Legalized; 1832 1833 case TargetOpcode::G_ADD: 1834 case TargetOpcode::G_AND: 1835 case TargetOpcode::G_MUL: 1836 case TargetOpcode::G_OR: 1837 case TargetOpcode::G_XOR: 1838 case TargetOpcode::G_SUB: 1839 // Perform operation at larger width (any extension is fines here, high bits 1840 // don't affect the result) and then truncate the result back to the 1841 // original type. 1842 Observer.changingInstr(MI); 1843 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1844 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1845 widenScalarDst(MI, WideTy); 1846 Observer.changedInstr(MI); 1847 return Legalized; 1848 1849 case TargetOpcode::G_SHL: 1850 Observer.changingInstr(MI); 1851 1852 if (TypeIdx == 0) { 1853 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1854 widenScalarDst(MI, WideTy); 1855 } else { 1856 assert(TypeIdx == 1); 1857 // The "number of bits to shift" operand must preserve its value as an 1858 // unsigned integer: 1859 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1860 } 1861 1862 Observer.changedInstr(MI); 1863 return Legalized; 1864 1865 case TargetOpcode::G_SDIV: 1866 case TargetOpcode::G_SREM: 1867 case TargetOpcode::G_SMIN: 1868 case TargetOpcode::G_SMAX: 1869 Observer.changingInstr(MI); 1870 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1871 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1872 widenScalarDst(MI, WideTy); 1873 Observer.changedInstr(MI); 1874 return Legalized; 1875 1876 case TargetOpcode::G_ASHR: 1877 case TargetOpcode::G_LSHR: 1878 Observer.changingInstr(MI); 1879 1880 if (TypeIdx == 0) { 1881 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1882 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1883 1884 widenScalarSrc(MI, WideTy, 1, CvtOp); 1885 widenScalarDst(MI, WideTy); 1886 } else { 1887 assert(TypeIdx == 1); 1888 // The "number of bits to shift" operand must preserve its value as an 1889 // unsigned integer: 1890 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1891 } 1892 1893 Observer.changedInstr(MI); 1894 return Legalized; 1895 case TargetOpcode::G_UDIV: 1896 case TargetOpcode::G_UREM: 1897 case TargetOpcode::G_UMIN: 1898 case TargetOpcode::G_UMAX: 1899 Observer.changingInstr(MI); 1900 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1901 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1902 widenScalarDst(MI, WideTy); 1903 Observer.changedInstr(MI); 1904 return Legalized; 1905 1906 case TargetOpcode::G_SELECT: 1907 Observer.changingInstr(MI); 1908 if (TypeIdx == 0) { 1909 // Perform operation at larger width (any extension is fine here, high 1910 // bits don't affect the result) and then truncate the result back to the 1911 // original type. 1912 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1913 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1914 widenScalarDst(MI, WideTy); 1915 } else { 1916 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1917 // Explicit extension is required here since high bits affect the result. 1918 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1919 } 1920 Observer.changedInstr(MI); 1921 return Legalized; 1922 1923 case TargetOpcode::G_FPTOSI: 1924 case TargetOpcode::G_FPTOUI: 1925 Observer.changingInstr(MI); 1926 1927 if (TypeIdx == 0) 1928 widenScalarDst(MI, WideTy); 1929 else 1930 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1931 1932 Observer.changedInstr(MI); 1933 return Legalized; 1934 case TargetOpcode::G_SITOFP: 1935 Observer.changingInstr(MI); 1936 1937 if (TypeIdx == 0) 1938 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1939 else 1940 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1941 1942 Observer.changedInstr(MI); 1943 return Legalized; 1944 case TargetOpcode::G_UITOFP: 1945 Observer.changingInstr(MI); 1946 1947 if (TypeIdx == 0) 1948 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1949 else 1950 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1951 1952 Observer.changedInstr(MI); 1953 return Legalized; 1954 case TargetOpcode::G_LOAD: 1955 case TargetOpcode::G_SEXTLOAD: 1956 case TargetOpcode::G_ZEXTLOAD: 1957 Observer.changingInstr(MI); 1958 widenScalarDst(MI, WideTy); 1959 Observer.changedInstr(MI); 1960 return Legalized; 1961 1962 case TargetOpcode::G_STORE: { 1963 if (TypeIdx != 0) 1964 return UnableToLegalize; 1965 1966 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1967 if (!isPowerOf2_32(Ty.getSizeInBits())) 1968 return UnableToLegalize; 1969 1970 Observer.changingInstr(MI); 1971 1972 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1973 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1974 widenScalarSrc(MI, WideTy, 0, ExtType); 1975 1976 Observer.changedInstr(MI); 1977 return Legalized; 1978 } 1979 case TargetOpcode::G_CONSTANT: { 1980 MachineOperand &SrcMO = MI.getOperand(1); 1981 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1982 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1983 MRI.getType(MI.getOperand(0).getReg())); 1984 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1985 ExtOpc == TargetOpcode::G_ANYEXT) && 1986 "Illegal Extend"); 1987 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1988 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1989 ? SrcVal.sext(WideTy.getSizeInBits()) 1990 : SrcVal.zext(WideTy.getSizeInBits()); 1991 Observer.changingInstr(MI); 1992 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1993 1994 widenScalarDst(MI, WideTy); 1995 Observer.changedInstr(MI); 1996 return Legalized; 1997 } 1998 case TargetOpcode::G_FCONSTANT: { 1999 MachineOperand &SrcMO = MI.getOperand(1); 2000 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2001 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2002 bool LosesInfo; 2003 switch (WideTy.getSizeInBits()) { 2004 case 32: 2005 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2006 &LosesInfo); 2007 break; 2008 case 64: 2009 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2010 &LosesInfo); 2011 break; 2012 default: 2013 return UnableToLegalize; 2014 } 2015 2016 assert(!LosesInfo && "extend should always be lossless"); 2017 2018 Observer.changingInstr(MI); 2019 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2020 2021 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2022 Observer.changedInstr(MI); 2023 return Legalized; 2024 } 2025 case TargetOpcode::G_IMPLICIT_DEF: { 2026 Observer.changingInstr(MI); 2027 widenScalarDst(MI, WideTy); 2028 Observer.changedInstr(MI); 2029 return Legalized; 2030 } 2031 case TargetOpcode::G_BRCOND: 2032 Observer.changingInstr(MI); 2033 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2034 Observer.changedInstr(MI); 2035 return Legalized; 2036 2037 case TargetOpcode::G_FCMP: 2038 Observer.changingInstr(MI); 2039 if (TypeIdx == 0) 2040 widenScalarDst(MI, WideTy); 2041 else { 2042 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2043 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2044 } 2045 Observer.changedInstr(MI); 2046 return Legalized; 2047 2048 case TargetOpcode::G_ICMP: 2049 Observer.changingInstr(MI); 2050 if (TypeIdx == 0) 2051 widenScalarDst(MI, WideTy); 2052 else { 2053 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2054 MI.getOperand(1).getPredicate())) 2055 ? TargetOpcode::G_SEXT 2056 : TargetOpcode::G_ZEXT; 2057 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2058 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2059 } 2060 Observer.changedInstr(MI); 2061 return Legalized; 2062 2063 case TargetOpcode::G_PTR_ADD: 2064 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2065 Observer.changingInstr(MI); 2066 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2067 Observer.changedInstr(MI); 2068 return Legalized; 2069 2070 case TargetOpcode::G_PHI: { 2071 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2072 2073 Observer.changingInstr(MI); 2074 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2075 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2076 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2077 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2078 } 2079 2080 MachineBasicBlock &MBB = *MI.getParent(); 2081 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2082 widenScalarDst(MI, WideTy); 2083 Observer.changedInstr(MI); 2084 return Legalized; 2085 } 2086 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2087 if (TypeIdx == 0) { 2088 Register VecReg = MI.getOperand(1).getReg(); 2089 LLT VecTy = MRI.getType(VecReg); 2090 Observer.changingInstr(MI); 2091 2092 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2093 WideTy.getSizeInBits()), 2094 1, TargetOpcode::G_SEXT); 2095 2096 widenScalarDst(MI, WideTy, 0); 2097 Observer.changedInstr(MI); 2098 return Legalized; 2099 } 2100 2101 if (TypeIdx != 2) 2102 return UnableToLegalize; 2103 Observer.changingInstr(MI); 2104 // TODO: Probably should be zext 2105 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2106 Observer.changedInstr(MI); 2107 return Legalized; 2108 } 2109 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2110 if (TypeIdx == 1) { 2111 Observer.changingInstr(MI); 2112 2113 Register VecReg = MI.getOperand(1).getReg(); 2114 LLT VecTy = MRI.getType(VecReg); 2115 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2116 2117 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2118 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2119 widenScalarDst(MI, WideVecTy, 0); 2120 Observer.changedInstr(MI); 2121 return Legalized; 2122 } 2123 2124 if (TypeIdx == 2) { 2125 Observer.changingInstr(MI); 2126 // TODO: Probably should be zext 2127 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2128 Observer.changedInstr(MI); 2129 return Legalized; 2130 } 2131 2132 return UnableToLegalize; 2133 } 2134 case TargetOpcode::G_FADD: 2135 case TargetOpcode::G_FMUL: 2136 case TargetOpcode::G_FSUB: 2137 case TargetOpcode::G_FMA: 2138 case TargetOpcode::G_FMAD: 2139 case TargetOpcode::G_FNEG: 2140 case TargetOpcode::G_FABS: 2141 case TargetOpcode::G_FCANONICALIZE: 2142 case TargetOpcode::G_FMINNUM: 2143 case TargetOpcode::G_FMAXNUM: 2144 case TargetOpcode::G_FMINNUM_IEEE: 2145 case TargetOpcode::G_FMAXNUM_IEEE: 2146 case TargetOpcode::G_FMINIMUM: 2147 case TargetOpcode::G_FMAXIMUM: 2148 case TargetOpcode::G_FDIV: 2149 case TargetOpcode::G_FREM: 2150 case TargetOpcode::G_FCEIL: 2151 case TargetOpcode::G_FFLOOR: 2152 case TargetOpcode::G_FCOS: 2153 case TargetOpcode::G_FSIN: 2154 case TargetOpcode::G_FLOG10: 2155 case TargetOpcode::G_FLOG: 2156 case TargetOpcode::G_FLOG2: 2157 case TargetOpcode::G_FRINT: 2158 case TargetOpcode::G_FNEARBYINT: 2159 case TargetOpcode::G_FSQRT: 2160 case TargetOpcode::G_FEXP: 2161 case TargetOpcode::G_FEXP2: 2162 case TargetOpcode::G_FPOW: 2163 case TargetOpcode::G_INTRINSIC_TRUNC: 2164 case TargetOpcode::G_INTRINSIC_ROUND: 2165 assert(TypeIdx == 0); 2166 Observer.changingInstr(MI); 2167 2168 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2169 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2170 2171 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2172 Observer.changedInstr(MI); 2173 return Legalized; 2174 case TargetOpcode::G_FPOWI: { 2175 if (TypeIdx != 0) 2176 return UnableToLegalize; 2177 Observer.changingInstr(MI); 2178 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2179 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2180 Observer.changedInstr(MI); 2181 return Legalized; 2182 } 2183 case TargetOpcode::G_INTTOPTR: 2184 if (TypeIdx != 1) 2185 return UnableToLegalize; 2186 2187 Observer.changingInstr(MI); 2188 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2189 Observer.changedInstr(MI); 2190 return Legalized; 2191 case TargetOpcode::G_PTRTOINT: 2192 if (TypeIdx != 0) 2193 return UnableToLegalize; 2194 2195 Observer.changingInstr(MI); 2196 widenScalarDst(MI, WideTy, 0); 2197 Observer.changedInstr(MI); 2198 return Legalized; 2199 case TargetOpcode::G_BUILD_VECTOR: { 2200 Observer.changingInstr(MI); 2201 2202 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2203 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2204 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2205 2206 // Avoid changing the result vector type if the source element type was 2207 // requested. 2208 if (TypeIdx == 1) { 2209 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2210 } else { 2211 widenScalarDst(MI, WideTy, 0); 2212 } 2213 2214 Observer.changedInstr(MI); 2215 return Legalized; 2216 } 2217 case TargetOpcode::G_SEXT_INREG: 2218 if (TypeIdx != 0) 2219 return UnableToLegalize; 2220 2221 Observer.changingInstr(MI); 2222 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2223 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2224 Observer.changedInstr(MI); 2225 return Legalized; 2226 case TargetOpcode::G_PTRMASK: { 2227 if (TypeIdx != 1) 2228 return UnableToLegalize; 2229 Observer.changingInstr(MI); 2230 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2231 Observer.changedInstr(MI); 2232 return Legalized; 2233 } 2234 } 2235 } 2236 2237 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2238 MachineIRBuilder &B, Register Src, LLT Ty) { 2239 auto Unmerge = B.buildUnmerge(Ty, Src); 2240 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2241 Pieces.push_back(Unmerge.getReg(I)); 2242 } 2243 2244 LegalizerHelper::LegalizeResult 2245 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2246 Register Dst = MI.getOperand(0).getReg(); 2247 Register Src = MI.getOperand(1).getReg(); 2248 LLT DstTy = MRI.getType(Dst); 2249 LLT SrcTy = MRI.getType(Src); 2250 2251 if (SrcTy.isVector()) { 2252 LLT SrcEltTy = SrcTy.getElementType(); 2253 SmallVector<Register, 8> SrcRegs; 2254 2255 if (DstTy.isVector()) { 2256 int NumDstElt = DstTy.getNumElements(); 2257 int NumSrcElt = SrcTy.getNumElements(); 2258 2259 LLT DstEltTy = DstTy.getElementType(); 2260 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2261 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2262 2263 // If there's an element size mismatch, insert intermediate casts to match 2264 // the result element type. 2265 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2266 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2267 // 2268 // => 2269 // 2270 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2271 // %3:_(<2 x s8>) = G_BITCAST %2 2272 // %4:_(<2 x s8>) = G_BITCAST %3 2273 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2274 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2275 SrcPartTy = SrcEltTy; 2276 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2277 // 2278 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2279 // 2280 // => 2281 // 2282 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2283 // %3:_(s16) = G_BITCAST %2 2284 // %4:_(s16) = G_BITCAST %3 2285 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2286 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2287 DstCastTy = DstEltTy; 2288 } 2289 2290 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2291 for (Register &SrcReg : SrcRegs) 2292 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2293 } else 2294 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2295 2296 MIRBuilder.buildMerge(Dst, SrcRegs); 2297 MI.eraseFromParent(); 2298 return Legalized; 2299 } 2300 2301 if (DstTy.isVector()) { 2302 SmallVector<Register, 8> SrcRegs; 2303 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2304 MIRBuilder.buildMerge(Dst, SrcRegs); 2305 MI.eraseFromParent(); 2306 return Legalized; 2307 } 2308 2309 return UnableToLegalize; 2310 } 2311 2312 LegalizerHelper::LegalizeResult 2313 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2314 switch (MI.getOpcode()) { 2315 case TargetOpcode::G_LOAD: { 2316 if (TypeIdx != 0) 2317 return UnableToLegalize; 2318 2319 Observer.changingInstr(MI); 2320 bitcastDst(MI, CastTy, 0); 2321 Observer.changedInstr(MI); 2322 return Legalized; 2323 } 2324 case TargetOpcode::G_STORE: { 2325 if (TypeIdx != 0) 2326 return UnableToLegalize; 2327 2328 Observer.changingInstr(MI); 2329 bitcastSrc(MI, CastTy, 0); 2330 Observer.changedInstr(MI); 2331 return Legalized; 2332 } 2333 case TargetOpcode::G_SELECT: { 2334 if (TypeIdx != 0) 2335 return UnableToLegalize; 2336 2337 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2338 LLVM_DEBUG( 2339 dbgs() << "bitcast action not implemented for vector select\n"); 2340 return UnableToLegalize; 2341 } 2342 2343 Observer.changingInstr(MI); 2344 bitcastSrc(MI, CastTy, 2); 2345 bitcastSrc(MI, CastTy, 3); 2346 bitcastDst(MI, CastTy, 0); 2347 Observer.changedInstr(MI); 2348 return Legalized; 2349 } 2350 case TargetOpcode::G_AND: 2351 case TargetOpcode::G_OR: 2352 case TargetOpcode::G_XOR: { 2353 Observer.changingInstr(MI); 2354 bitcastSrc(MI, CastTy, 1); 2355 bitcastSrc(MI, CastTy, 2); 2356 bitcastDst(MI, CastTy, 0); 2357 Observer.changedInstr(MI); 2358 return Legalized; 2359 } 2360 default: 2361 return UnableToLegalize; 2362 } 2363 } 2364 2365 LegalizerHelper::LegalizeResult 2366 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2367 using namespace TargetOpcode; 2368 2369 switch(MI.getOpcode()) { 2370 default: 2371 return UnableToLegalize; 2372 case TargetOpcode::G_BITCAST: 2373 return lowerBitcast(MI); 2374 case TargetOpcode::G_SREM: 2375 case TargetOpcode::G_UREM: { 2376 auto Quot = 2377 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2378 {MI.getOperand(1), MI.getOperand(2)}); 2379 2380 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2381 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2382 MI.eraseFromParent(); 2383 return Legalized; 2384 } 2385 case TargetOpcode::G_SADDO: 2386 case TargetOpcode::G_SSUBO: 2387 return lowerSADDO_SSUBO(MI); 2388 case TargetOpcode::G_SMULO: 2389 case TargetOpcode::G_UMULO: { 2390 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2391 // result. 2392 Register Res = MI.getOperand(0).getReg(); 2393 Register Overflow = MI.getOperand(1).getReg(); 2394 Register LHS = MI.getOperand(2).getReg(); 2395 Register RHS = MI.getOperand(3).getReg(); 2396 2397 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2398 ? TargetOpcode::G_SMULH 2399 : TargetOpcode::G_UMULH; 2400 2401 Observer.changingInstr(MI); 2402 const auto &TII = MIRBuilder.getTII(); 2403 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2404 MI.RemoveOperand(1); 2405 Observer.changedInstr(MI); 2406 2407 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2408 2409 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2410 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2411 2412 // For *signed* multiply, overflow is detected by checking: 2413 // (hi != (lo >> bitwidth-1)) 2414 if (Opcode == TargetOpcode::G_SMULH) { 2415 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2416 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2417 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2418 } else { 2419 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2420 } 2421 return Legalized; 2422 } 2423 case TargetOpcode::G_FNEG: { 2424 // TODO: Handle vector types once we are able to 2425 // represent them. 2426 if (Ty.isVector()) 2427 return UnableToLegalize; 2428 Register Res = MI.getOperand(0).getReg(); 2429 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2430 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2431 if (!ZeroTy) 2432 return UnableToLegalize; 2433 ConstantFP &ZeroForNegation = 2434 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2435 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2436 Register SubByReg = MI.getOperand(1).getReg(); 2437 Register ZeroReg = Zero.getReg(0); 2438 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2439 MI.eraseFromParent(); 2440 return Legalized; 2441 } 2442 case TargetOpcode::G_FSUB: { 2443 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2444 // First, check if G_FNEG is marked as Lower. If so, we may 2445 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2446 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2447 return UnableToLegalize; 2448 Register Res = MI.getOperand(0).getReg(); 2449 Register LHS = MI.getOperand(1).getReg(); 2450 Register RHS = MI.getOperand(2).getReg(); 2451 Register Neg = MRI.createGenericVirtualRegister(Ty); 2452 MIRBuilder.buildFNeg(Neg, RHS); 2453 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2454 MI.eraseFromParent(); 2455 return Legalized; 2456 } 2457 case TargetOpcode::G_FMAD: 2458 return lowerFMad(MI); 2459 case TargetOpcode::G_FFLOOR: 2460 return lowerFFloor(MI); 2461 case TargetOpcode::G_INTRINSIC_ROUND: 2462 return lowerIntrinsicRound(MI); 2463 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2464 Register OldValRes = MI.getOperand(0).getReg(); 2465 Register SuccessRes = MI.getOperand(1).getReg(); 2466 Register Addr = MI.getOperand(2).getReg(); 2467 Register CmpVal = MI.getOperand(3).getReg(); 2468 Register NewVal = MI.getOperand(4).getReg(); 2469 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2470 **MI.memoperands_begin()); 2471 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2472 MI.eraseFromParent(); 2473 return Legalized; 2474 } 2475 case TargetOpcode::G_LOAD: 2476 case TargetOpcode::G_SEXTLOAD: 2477 case TargetOpcode::G_ZEXTLOAD: { 2478 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2479 Register DstReg = MI.getOperand(0).getReg(); 2480 Register PtrReg = MI.getOperand(1).getReg(); 2481 LLT DstTy = MRI.getType(DstReg); 2482 auto &MMO = **MI.memoperands_begin(); 2483 2484 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2485 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2486 // This load needs splitting into power of 2 sized loads. 2487 if (DstTy.isVector()) 2488 return UnableToLegalize; 2489 if (isPowerOf2_32(DstTy.getSizeInBits())) 2490 return UnableToLegalize; // Don't know what we're being asked to do. 2491 2492 // Our strategy here is to generate anyextending loads for the smaller 2493 // types up to next power-2 result type, and then combine the two larger 2494 // result values together, before truncating back down to the non-pow-2 2495 // type. 2496 // E.g. v1 = i24 load => 2497 // v2 = i32 zextload (2 byte) 2498 // v3 = i32 load (1 byte) 2499 // v4 = i32 shl v3, 16 2500 // v5 = i32 or v4, v2 2501 // v1 = i24 trunc v5 2502 // By doing this we generate the correct truncate which should get 2503 // combined away as an artifact with a matching extend. 2504 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2505 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2506 2507 MachineFunction &MF = MIRBuilder.getMF(); 2508 MachineMemOperand *LargeMMO = 2509 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2510 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2511 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2512 2513 LLT PtrTy = MRI.getType(PtrReg); 2514 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2515 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2516 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2517 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2518 auto LargeLoad = MIRBuilder.buildLoadInstr( 2519 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2520 2521 auto OffsetCst = MIRBuilder.buildConstant( 2522 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2523 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2524 auto SmallPtr = 2525 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2526 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2527 *SmallMMO); 2528 2529 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2530 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2531 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2532 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2533 MI.eraseFromParent(); 2534 return Legalized; 2535 } 2536 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2537 MI.eraseFromParent(); 2538 return Legalized; 2539 } 2540 2541 if (DstTy.isScalar()) { 2542 Register TmpReg = 2543 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2544 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2545 switch (MI.getOpcode()) { 2546 default: 2547 llvm_unreachable("Unexpected opcode"); 2548 case TargetOpcode::G_LOAD: 2549 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2550 break; 2551 case TargetOpcode::G_SEXTLOAD: 2552 MIRBuilder.buildSExt(DstReg, TmpReg); 2553 break; 2554 case TargetOpcode::G_ZEXTLOAD: 2555 MIRBuilder.buildZExt(DstReg, TmpReg); 2556 break; 2557 } 2558 MI.eraseFromParent(); 2559 return Legalized; 2560 } 2561 2562 return UnableToLegalize; 2563 } 2564 case TargetOpcode::G_STORE: { 2565 // Lower a non-power of 2 store into multiple pow-2 stores. 2566 // E.g. split an i24 store into an i16 store + i8 store. 2567 // We do this by first extending the stored value to the next largest power 2568 // of 2 type, and then using truncating stores to store the components. 2569 // By doing this, likewise with G_LOAD, generate an extend that can be 2570 // artifact-combined away instead of leaving behind extracts. 2571 Register SrcReg = MI.getOperand(0).getReg(); 2572 Register PtrReg = MI.getOperand(1).getReg(); 2573 LLT SrcTy = MRI.getType(SrcReg); 2574 MachineMemOperand &MMO = **MI.memoperands_begin(); 2575 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2576 return UnableToLegalize; 2577 if (SrcTy.isVector()) 2578 return UnableToLegalize; 2579 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2580 return UnableToLegalize; // Don't know what we're being asked to do. 2581 2582 // Extend to the next pow-2. 2583 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2584 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2585 2586 // Obtain the smaller value by shifting away the larger value. 2587 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2588 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2589 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2590 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2591 2592 // Generate the PtrAdd and truncating stores. 2593 LLT PtrTy = MRI.getType(PtrReg); 2594 auto OffsetCst = MIRBuilder.buildConstant( 2595 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2596 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2597 auto SmallPtr = 2598 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2599 2600 MachineFunction &MF = MIRBuilder.getMF(); 2601 MachineMemOperand *LargeMMO = 2602 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2603 MachineMemOperand *SmallMMO = 2604 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2605 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2606 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2607 MI.eraseFromParent(); 2608 return Legalized; 2609 } 2610 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2611 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2612 case TargetOpcode::G_CTLZ: 2613 case TargetOpcode::G_CTTZ: 2614 case TargetOpcode::G_CTPOP: 2615 return lowerBitCount(MI, TypeIdx, Ty); 2616 case G_UADDO: { 2617 Register Res = MI.getOperand(0).getReg(); 2618 Register CarryOut = MI.getOperand(1).getReg(); 2619 Register LHS = MI.getOperand(2).getReg(); 2620 Register RHS = MI.getOperand(3).getReg(); 2621 2622 MIRBuilder.buildAdd(Res, LHS, RHS); 2623 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2624 2625 MI.eraseFromParent(); 2626 return Legalized; 2627 } 2628 case G_UADDE: { 2629 Register Res = MI.getOperand(0).getReg(); 2630 Register CarryOut = MI.getOperand(1).getReg(); 2631 Register LHS = MI.getOperand(2).getReg(); 2632 Register RHS = MI.getOperand(3).getReg(); 2633 Register CarryIn = MI.getOperand(4).getReg(); 2634 LLT Ty = MRI.getType(Res); 2635 2636 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2637 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2638 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2639 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2640 2641 MI.eraseFromParent(); 2642 return Legalized; 2643 } 2644 case G_USUBO: { 2645 Register Res = MI.getOperand(0).getReg(); 2646 Register BorrowOut = MI.getOperand(1).getReg(); 2647 Register LHS = MI.getOperand(2).getReg(); 2648 Register RHS = MI.getOperand(3).getReg(); 2649 2650 MIRBuilder.buildSub(Res, LHS, RHS); 2651 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2652 2653 MI.eraseFromParent(); 2654 return Legalized; 2655 } 2656 case G_USUBE: { 2657 Register Res = MI.getOperand(0).getReg(); 2658 Register BorrowOut = MI.getOperand(1).getReg(); 2659 Register LHS = MI.getOperand(2).getReg(); 2660 Register RHS = MI.getOperand(3).getReg(); 2661 Register BorrowIn = MI.getOperand(4).getReg(); 2662 const LLT CondTy = MRI.getType(BorrowOut); 2663 const LLT Ty = MRI.getType(Res); 2664 2665 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2666 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2667 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2668 2669 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2670 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2671 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2672 2673 MI.eraseFromParent(); 2674 return Legalized; 2675 } 2676 case G_UITOFP: 2677 return lowerUITOFP(MI, TypeIdx, Ty); 2678 case G_SITOFP: 2679 return lowerSITOFP(MI, TypeIdx, Ty); 2680 case G_FPTOUI: 2681 return lowerFPTOUI(MI, TypeIdx, Ty); 2682 case G_FPTOSI: 2683 return lowerFPTOSI(MI); 2684 case G_FPTRUNC: 2685 return lowerFPTRUNC(MI, TypeIdx, Ty); 2686 case G_FPOWI: 2687 return lowerFPOWI(MI); 2688 case G_SMIN: 2689 case G_SMAX: 2690 case G_UMIN: 2691 case G_UMAX: 2692 return lowerMinMax(MI, TypeIdx, Ty); 2693 case G_FCOPYSIGN: 2694 return lowerFCopySign(MI, TypeIdx, Ty); 2695 case G_FMINNUM: 2696 case G_FMAXNUM: 2697 return lowerFMinNumMaxNum(MI); 2698 case G_MERGE_VALUES: 2699 return lowerMergeValues(MI); 2700 case G_UNMERGE_VALUES: 2701 return lowerUnmergeValues(MI); 2702 case TargetOpcode::G_SEXT_INREG: { 2703 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2704 int64_t SizeInBits = MI.getOperand(2).getImm(); 2705 2706 Register DstReg = MI.getOperand(0).getReg(); 2707 Register SrcReg = MI.getOperand(1).getReg(); 2708 LLT DstTy = MRI.getType(DstReg); 2709 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2710 2711 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2712 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2713 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2714 MI.eraseFromParent(); 2715 return Legalized; 2716 } 2717 case G_SHUFFLE_VECTOR: 2718 return lowerShuffleVector(MI); 2719 case G_DYN_STACKALLOC: 2720 return lowerDynStackAlloc(MI); 2721 case G_EXTRACT: 2722 return lowerExtract(MI); 2723 case G_INSERT: 2724 return lowerInsert(MI); 2725 case G_BSWAP: 2726 return lowerBswap(MI); 2727 case G_BITREVERSE: 2728 return lowerBitreverse(MI); 2729 case G_READ_REGISTER: 2730 case G_WRITE_REGISTER: 2731 return lowerReadWriteRegister(MI); 2732 case G_UADDSAT: 2733 case G_USUBSAT: { 2734 // Try to make a reasonable guess about which lowering strategy to use. The 2735 // target can override this with custom lowering and calling the 2736 // implementation functions. 2737 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2738 if (LI.isLegalOrCustom({G_UMIN, Ty})) 2739 return lowerAddSubSatToMinMax(MI); 2740 return lowerAddSubSatToAddoSubo(MI); 2741 } 2742 case G_SADDSAT: 2743 case G_SSUBSAT: { 2744 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2745 2746 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 2747 // since it's a shorter expansion. However, we would need to figure out the 2748 // preferred boolean type for the carry out for the query. 2749 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 2750 return lowerAddSubSatToMinMax(MI); 2751 return lowerAddSubSatToAddoSubo(MI); 2752 } 2753 } 2754 } 2755 2756 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2757 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2758 SmallVector<Register, 2> DstRegs; 2759 2760 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2761 Register DstReg = MI.getOperand(0).getReg(); 2762 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2763 int NumParts = Size / NarrowSize; 2764 // FIXME: Don't know how to handle the situation where the small vectors 2765 // aren't all the same size yet. 2766 if (Size % NarrowSize != 0) 2767 return UnableToLegalize; 2768 2769 for (int i = 0; i < NumParts; ++i) { 2770 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2771 MIRBuilder.buildUndef(TmpReg); 2772 DstRegs.push_back(TmpReg); 2773 } 2774 2775 if (NarrowTy.isVector()) 2776 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2777 else 2778 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2779 2780 MI.eraseFromParent(); 2781 return Legalized; 2782 } 2783 2784 // Handle splitting vector operations which need to have the same number of 2785 // elements in each type index, but each type index may have a different element 2786 // type. 2787 // 2788 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2789 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2790 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2791 // 2792 // Also handles some irregular breakdown cases, e.g. 2793 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2794 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2795 // s64 = G_SHL s64, s32 2796 LegalizerHelper::LegalizeResult 2797 LegalizerHelper::fewerElementsVectorMultiEltType( 2798 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2799 if (TypeIdx != 0) 2800 return UnableToLegalize; 2801 2802 const LLT NarrowTy0 = NarrowTyArg; 2803 const unsigned NewNumElts = 2804 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2805 2806 const Register DstReg = MI.getOperand(0).getReg(); 2807 LLT DstTy = MRI.getType(DstReg); 2808 LLT LeftoverTy0; 2809 2810 // All of the operands need to have the same number of elements, so if we can 2811 // determine a type breakdown for the result type, we can for all of the 2812 // source types. 2813 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2814 if (NumParts < 0) 2815 return UnableToLegalize; 2816 2817 SmallVector<MachineInstrBuilder, 4> NewInsts; 2818 2819 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2820 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2821 2822 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2823 Register SrcReg = MI.getOperand(I).getReg(); 2824 LLT SrcTyI = MRI.getType(SrcReg); 2825 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2826 LLT LeftoverTyI; 2827 2828 // Split this operand into the requested typed registers, and any leftover 2829 // required to reproduce the original type. 2830 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2831 LeftoverRegs)) 2832 return UnableToLegalize; 2833 2834 if (I == 1) { 2835 // For the first operand, create an instruction for each part and setup 2836 // the result. 2837 for (Register PartReg : PartRegs) { 2838 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2839 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2840 .addDef(PartDstReg) 2841 .addUse(PartReg)); 2842 DstRegs.push_back(PartDstReg); 2843 } 2844 2845 for (Register LeftoverReg : LeftoverRegs) { 2846 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2847 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2848 .addDef(PartDstReg) 2849 .addUse(LeftoverReg)); 2850 LeftoverDstRegs.push_back(PartDstReg); 2851 } 2852 } else { 2853 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2854 2855 // Add the newly created operand splits to the existing instructions. The 2856 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2857 // pieces. 2858 unsigned InstCount = 0; 2859 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2860 NewInsts[InstCount++].addUse(PartRegs[J]); 2861 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2862 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2863 } 2864 2865 PartRegs.clear(); 2866 LeftoverRegs.clear(); 2867 } 2868 2869 // Insert the newly built operations and rebuild the result register. 2870 for (auto &MIB : NewInsts) 2871 MIRBuilder.insertInstr(MIB); 2872 2873 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2874 2875 MI.eraseFromParent(); 2876 return Legalized; 2877 } 2878 2879 LegalizerHelper::LegalizeResult 2880 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2881 LLT NarrowTy) { 2882 if (TypeIdx != 0) 2883 return UnableToLegalize; 2884 2885 Register DstReg = MI.getOperand(0).getReg(); 2886 Register SrcReg = MI.getOperand(1).getReg(); 2887 LLT DstTy = MRI.getType(DstReg); 2888 LLT SrcTy = MRI.getType(SrcReg); 2889 2890 LLT NarrowTy0 = NarrowTy; 2891 LLT NarrowTy1; 2892 unsigned NumParts; 2893 2894 if (NarrowTy.isVector()) { 2895 // Uneven breakdown not handled. 2896 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2897 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2898 return UnableToLegalize; 2899 2900 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2901 } else { 2902 NumParts = DstTy.getNumElements(); 2903 NarrowTy1 = SrcTy.getElementType(); 2904 } 2905 2906 SmallVector<Register, 4> SrcRegs, DstRegs; 2907 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2908 2909 for (unsigned I = 0; I < NumParts; ++I) { 2910 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2911 MachineInstr *NewInst = 2912 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2913 2914 NewInst->setFlags(MI.getFlags()); 2915 DstRegs.push_back(DstReg); 2916 } 2917 2918 if (NarrowTy.isVector()) 2919 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2920 else 2921 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2922 2923 MI.eraseFromParent(); 2924 return Legalized; 2925 } 2926 2927 LegalizerHelper::LegalizeResult 2928 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2929 LLT NarrowTy) { 2930 Register DstReg = MI.getOperand(0).getReg(); 2931 Register Src0Reg = MI.getOperand(2).getReg(); 2932 LLT DstTy = MRI.getType(DstReg); 2933 LLT SrcTy = MRI.getType(Src0Reg); 2934 2935 unsigned NumParts; 2936 LLT NarrowTy0, NarrowTy1; 2937 2938 if (TypeIdx == 0) { 2939 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2940 unsigned OldElts = DstTy.getNumElements(); 2941 2942 NarrowTy0 = NarrowTy; 2943 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2944 NarrowTy1 = NarrowTy.isVector() ? 2945 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2946 SrcTy.getElementType(); 2947 2948 } else { 2949 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2950 unsigned OldElts = SrcTy.getNumElements(); 2951 2952 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2953 NarrowTy.getNumElements(); 2954 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2955 DstTy.getScalarSizeInBits()); 2956 NarrowTy1 = NarrowTy; 2957 } 2958 2959 // FIXME: Don't know how to handle the situation where the small vectors 2960 // aren't all the same size yet. 2961 if (NarrowTy1.isVector() && 2962 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2963 return UnableToLegalize; 2964 2965 CmpInst::Predicate Pred 2966 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2967 2968 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2969 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2970 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2971 2972 for (unsigned I = 0; I < NumParts; ++I) { 2973 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2974 DstRegs.push_back(DstReg); 2975 2976 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2977 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2978 else { 2979 MachineInstr *NewCmp 2980 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2981 NewCmp->setFlags(MI.getFlags()); 2982 } 2983 } 2984 2985 if (NarrowTy1.isVector()) 2986 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2987 else 2988 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2989 2990 MI.eraseFromParent(); 2991 return Legalized; 2992 } 2993 2994 LegalizerHelper::LegalizeResult 2995 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2996 LLT NarrowTy) { 2997 Register DstReg = MI.getOperand(0).getReg(); 2998 Register CondReg = MI.getOperand(1).getReg(); 2999 3000 unsigned NumParts = 0; 3001 LLT NarrowTy0, NarrowTy1; 3002 3003 LLT DstTy = MRI.getType(DstReg); 3004 LLT CondTy = MRI.getType(CondReg); 3005 unsigned Size = DstTy.getSizeInBits(); 3006 3007 assert(TypeIdx == 0 || CondTy.isVector()); 3008 3009 if (TypeIdx == 0) { 3010 NarrowTy0 = NarrowTy; 3011 NarrowTy1 = CondTy; 3012 3013 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3014 // FIXME: Don't know how to handle the situation where the small vectors 3015 // aren't all the same size yet. 3016 if (Size % NarrowSize != 0) 3017 return UnableToLegalize; 3018 3019 NumParts = Size / NarrowSize; 3020 3021 // Need to break down the condition type 3022 if (CondTy.isVector()) { 3023 if (CondTy.getNumElements() == NumParts) 3024 NarrowTy1 = CondTy.getElementType(); 3025 else 3026 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3027 CondTy.getScalarSizeInBits()); 3028 } 3029 } else { 3030 NumParts = CondTy.getNumElements(); 3031 if (NarrowTy.isVector()) { 3032 // TODO: Handle uneven breakdown. 3033 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3034 return UnableToLegalize; 3035 3036 return UnableToLegalize; 3037 } else { 3038 NarrowTy0 = DstTy.getElementType(); 3039 NarrowTy1 = NarrowTy; 3040 } 3041 } 3042 3043 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3044 if (CondTy.isVector()) 3045 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3046 3047 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3048 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3049 3050 for (unsigned i = 0; i < NumParts; ++i) { 3051 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3052 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3053 Src1Regs[i], Src2Regs[i]); 3054 DstRegs.push_back(DstReg); 3055 } 3056 3057 if (NarrowTy0.isVector()) 3058 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3059 else 3060 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3061 3062 MI.eraseFromParent(); 3063 return Legalized; 3064 } 3065 3066 LegalizerHelper::LegalizeResult 3067 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3068 LLT NarrowTy) { 3069 const Register DstReg = MI.getOperand(0).getReg(); 3070 LLT PhiTy = MRI.getType(DstReg); 3071 LLT LeftoverTy; 3072 3073 // All of the operands need to have the same number of elements, so if we can 3074 // determine a type breakdown for the result type, we can for all of the 3075 // source types. 3076 int NumParts, NumLeftover; 3077 std::tie(NumParts, NumLeftover) 3078 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3079 if (NumParts < 0) 3080 return UnableToLegalize; 3081 3082 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3083 SmallVector<MachineInstrBuilder, 4> NewInsts; 3084 3085 const int TotalNumParts = NumParts + NumLeftover; 3086 3087 // Insert the new phis in the result block first. 3088 for (int I = 0; I != TotalNumParts; ++I) { 3089 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3090 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3091 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3092 .addDef(PartDstReg)); 3093 if (I < NumParts) 3094 DstRegs.push_back(PartDstReg); 3095 else 3096 LeftoverDstRegs.push_back(PartDstReg); 3097 } 3098 3099 MachineBasicBlock *MBB = MI.getParent(); 3100 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3101 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3102 3103 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3104 3105 // Insert code to extract the incoming values in each predecessor block. 3106 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3107 PartRegs.clear(); 3108 LeftoverRegs.clear(); 3109 3110 Register SrcReg = MI.getOperand(I).getReg(); 3111 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3112 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3113 3114 LLT Unused; 3115 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3116 LeftoverRegs)) 3117 return UnableToLegalize; 3118 3119 // Add the newly created operand splits to the existing instructions. The 3120 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3121 // pieces. 3122 for (int J = 0; J != TotalNumParts; ++J) { 3123 MachineInstrBuilder MIB = NewInsts[J]; 3124 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3125 MIB.addMBB(&OpMBB); 3126 } 3127 } 3128 3129 MI.eraseFromParent(); 3130 return Legalized; 3131 } 3132 3133 LegalizerHelper::LegalizeResult 3134 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3135 unsigned TypeIdx, 3136 LLT NarrowTy) { 3137 if (TypeIdx != 1) 3138 return UnableToLegalize; 3139 3140 const int NumDst = MI.getNumOperands() - 1; 3141 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3142 LLT SrcTy = MRI.getType(SrcReg); 3143 3144 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3145 3146 // TODO: Create sequence of extracts. 3147 if (DstTy == NarrowTy) 3148 return UnableToLegalize; 3149 3150 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3151 if (DstTy == GCDTy) { 3152 // This would just be a copy of the same unmerge. 3153 // TODO: Create extracts, pad with undef and create intermediate merges. 3154 return UnableToLegalize; 3155 } 3156 3157 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3158 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3159 const int PartsPerUnmerge = NumDst / NumUnmerge; 3160 3161 for (int I = 0; I != NumUnmerge; ++I) { 3162 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3163 3164 for (int J = 0; J != PartsPerUnmerge; ++J) 3165 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3166 MIB.addUse(Unmerge.getReg(I)); 3167 } 3168 3169 MI.eraseFromParent(); 3170 return Legalized; 3171 } 3172 3173 LegalizerHelper::LegalizeResult 3174 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3175 unsigned TypeIdx, 3176 LLT NarrowTy) { 3177 assert(TypeIdx == 0 && "not a vector type index"); 3178 Register DstReg = MI.getOperand(0).getReg(); 3179 LLT DstTy = MRI.getType(DstReg); 3180 LLT SrcTy = DstTy.getElementType(); 3181 3182 int DstNumElts = DstTy.getNumElements(); 3183 int NarrowNumElts = NarrowTy.getNumElements(); 3184 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3185 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3186 3187 SmallVector<Register, 8> ConcatOps; 3188 SmallVector<Register, 8> SubBuildVector; 3189 3190 Register UndefReg; 3191 if (WidenedDstTy != DstTy) 3192 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3193 3194 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3195 // necessary. 3196 // 3197 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3198 // -> <2 x s16> 3199 // 3200 // %4:_(s16) = G_IMPLICIT_DEF 3201 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3202 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3203 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3204 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3205 for (int I = 0; I != NumConcat; ++I) { 3206 for (int J = 0; J != NarrowNumElts; ++J) { 3207 int SrcIdx = NarrowNumElts * I + J; 3208 3209 if (SrcIdx < DstNumElts) { 3210 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3211 SubBuildVector.push_back(SrcReg); 3212 } else 3213 SubBuildVector.push_back(UndefReg); 3214 } 3215 3216 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3217 ConcatOps.push_back(BuildVec.getReg(0)); 3218 SubBuildVector.clear(); 3219 } 3220 3221 if (DstTy == WidenedDstTy) 3222 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3223 else { 3224 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3225 MIRBuilder.buildExtract(DstReg, Concat, 0); 3226 } 3227 3228 MI.eraseFromParent(); 3229 return Legalized; 3230 } 3231 3232 LegalizerHelper::LegalizeResult 3233 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3234 LLT NarrowTy) { 3235 // FIXME: Don't know how to handle secondary types yet. 3236 if (TypeIdx != 0) 3237 return UnableToLegalize; 3238 3239 MachineMemOperand *MMO = *MI.memoperands_begin(); 3240 3241 // This implementation doesn't work for atomics. Give up instead of doing 3242 // something invalid. 3243 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3244 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3245 return UnableToLegalize; 3246 3247 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3248 Register ValReg = MI.getOperand(0).getReg(); 3249 Register AddrReg = MI.getOperand(1).getReg(); 3250 LLT ValTy = MRI.getType(ValReg); 3251 3252 // FIXME: Do we need a distinct NarrowMemory legalize action? 3253 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3254 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3255 return UnableToLegalize; 3256 } 3257 3258 int NumParts = -1; 3259 int NumLeftover = -1; 3260 LLT LeftoverTy; 3261 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3262 if (IsLoad) { 3263 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3264 } else { 3265 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3266 NarrowLeftoverRegs)) { 3267 NumParts = NarrowRegs.size(); 3268 NumLeftover = NarrowLeftoverRegs.size(); 3269 } 3270 } 3271 3272 if (NumParts == -1) 3273 return UnableToLegalize; 3274 3275 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3276 3277 unsigned TotalSize = ValTy.getSizeInBits(); 3278 3279 // Split the load/store into PartTy sized pieces starting at Offset. If this 3280 // is a load, return the new registers in ValRegs. For a store, each elements 3281 // of ValRegs should be PartTy. Returns the next offset that needs to be 3282 // handled. 3283 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3284 unsigned Offset) -> unsigned { 3285 MachineFunction &MF = MIRBuilder.getMF(); 3286 unsigned PartSize = PartTy.getSizeInBits(); 3287 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3288 Offset += PartSize, ++Idx) { 3289 unsigned ByteSize = PartSize / 8; 3290 unsigned ByteOffset = Offset / 8; 3291 Register NewAddrReg; 3292 3293 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3294 3295 MachineMemOperand *NewMMO = 3296 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3297 3298 if (IsLoad) { 3299 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3300 ValRegs.push_back(Dst); 3301 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3302 } else { 3303 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3304 } 3305 } 3306 3307 return Offset; 3308 }; 3309 3310 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3311 3312 // Handle the rest of the register if this isn't an even type breakdown. 3313 if (LeftoverTy.isValid()) 3314 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3315 3316 if (IsLoad) { 3317 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3318 LeftoverTy, NarrowLeftoverRegs); 3319 } 3320 3321 MI.eraseFromParent(); 3322 return Legalized; 3323 } 3324 3325 LegalizerHelper::LegalizeResult 3326 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3327 LLT NarrowTy) { 3328 assert(TypeIdx == 0 && "only one type index expected"); 3329 3330 const unsigned Opc = MI.getOpcode(); 3331 const int NumOps = MI.getNumOperands() - 1; 3332 const Register DstReg = MI.getOperand(0).getReg(); 3333 const unsigned Flags = MI.getFlags(); 3334 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3335 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3336 3337 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3338 3339 // First of all check whether we are narrowing (changing the element type) 3340 // or reducing the vector elements 3341 const LLT DstTy = MRI.getType(DstReg); 3342 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3343 3344 SmallVector<Register, 8> ExtractedRegs[3]; 3345 SmallVector<Register, 8> Parts; 3346 3347 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3348 3349 // Break down all the sources into NarrowTy pieces we can operate on. This may 3350 // involve creating merges to a wider type, padded with undef. 3351 for (int I = 0; I != NumOps; ++I) { 3352 Register SrcReg = MI.getOperand(I + 1).getReg(); 3353 LLT SrcTy = MRI.getType(SrcReg); 3354 3355 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3356 // For fewerElements, this is a smaller vector with the same element type. 3357 LLT OpNarrowTy; 3358 if (IsNarrow) { 3359 OpNarrowTy = NarrowScalarTy; 3360 3361 // In case of narrowing, we need to cast vectors to scalars for this to 3362 // work properly 3363 // FIXME: Can we do without the bitcast here if we're narrowing? 3364 if (SrcTy.isVector()) { 3365 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3366 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3367 } 3368 } else { 3369 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3370 } 3371 3372 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3373 3374 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3375 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3376 TargetOpcode::G_ANYEXT); 3377 } 3378 3379 SmallVector<Register, 8> ResultRegs; 3380 3381 // Input operands for each sub-instruction. 3382 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3383 3384 int NumParts = ExtractedRegs[0].size(); 3385 const unsigned DstSize = DstTy.getSizeInBits(); 3386 const LLT DstScalarTy = LLT::scalar(DstSize); 3387 3388 // Narrowing needs to use scalar types 3389 LLT DstLCMTy, NarrowDstTy; 3390 if (IsNarrow) { 3391 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3392 NarrowDstTy = NarrowScalarTy; 3393 } else { 3394 DstLCMTy = getLCMType(DstTy, NarrowTy); 3395 NarrowDstTy = NarrowTy; 3396 } 3397 3398 // We widened the source registers to satisfy merge/unmerge size 3399 // constraints. We'll have some extra fully undef parts. 3400 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3401 3402 for (int I = 0; I != NumRealParts; ++I) { 3403 // Emit this instruction on each of the split pieces. 3404 for (int J = 0; J != NumOps; ++J) 3405 InputRegs[J] = ExtractedRegs[J][I]; 3406 3407 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3408 ResultRegs.push_back(Inst.getReg(0)); 3409 } 3410 3411 // Fill out the widened result with undef instead of creating instructions 3412 // with undef inputs. 3413 int NumUndefParts = NumParts - NumRealParts; 3414 if (NumUndefParts != 0) 3415 ResultRegs.append(NumUndefParts, 3416 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3417 3418 // Extract the possibly padded result. Use a scratch register if we need to do 3419 // a final bitcast, otherwise use the original result register. 3420 Register MergeDstReg; 3421 if (IsNarrow && DstTy.isVector()) 3422 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3423 else 3424 MergeDstReg = DstReg; 3425 3426 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3427 3428 // Recast to vector if we narrowed a vector 3429 if (IsNarrow && DstTy.isVector()) 3430 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3431 3432 MI.eraseFromParent(); 3433 return Legalized; 3434 } 3435 3436 LegalizerHelper::LegalizeResult 3437 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3438 LLT NarrowTy) { 3439 Register DstReg = MI.getOperand(0).getReg(); 3440 Register SrcReg = MI.getOperand(1).getReg(); 3441 int64_t Imm = MI.getOperand(2).getImm(); 3442 3443 LLT DstTy = MRI.getType(DstReg); 3444 3445 SmallVector<Register, 8> Parts; 3446 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3447 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3448 3449 for (Register &R : Parts) 3450 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3451 3452 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3453 3454 MI.eraseFromParent(); 3455 return Legalized; 3456 } 3457 3458 LegalizerHelper::LegalizeResult 3459 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3460 LLT NarrowTy) { 3461 using namespace TargetOpcode; 3462 3463 switch (MI.getOpcode()) { 3464 case G_IMPLICIT_DEF: 3465 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3466 case G_TRUNC: 3467 case G_AND: 3468 case G_OR: 3469 case G_XOR: 3470 case G_ADD: 3471 case G_SUB: 3472 case G_MUL: 3473 case G_PTR_ADD: 3474 case G_SMULH: 3475 case G_UMULH: 3476 case G_FADD: 3477 case G_FMUL: 3478 case G_FSUB: 3479 case G_FNEG: 3480 case G_FABS: 3481 case G_FCANONICALIZE: 3482 case G_FDIV: 3483 case G_FREM: 3484 case G_FMA: 3485 case G_FMAD: 3486 case G_FPOW: 3487 case G_FEXP: 3488 case G_FEXP2: 3489 case G_FLOG: 3490 case G_FLOG2: 3491 case G_FLOG10: 3492 case G_FNEARBYINT: 3493 case G_FCEIL: 3494 case G_FFLOOR: 3495 case G_FRINT: 3496 case G_INTRINSIC_ROUND: 3497 case G_INTRINSIC_TRUNC: 3498 case G_FCOS: 3499 case G_FSIN: 3500 case G_FSQRT: 3501 case G_BSWAP: 3502 case G_BITREVERSE: 3503 case G_SDIV: 3504 case G_UDIV: 3505 case G_SREM: 3506 case G_UREM: 3507 case G_SMIN: 3508 case G_SMAX: 3509 case G_UMIN: 3510 case G_UMAX: 3511 case G_FMINNUM: 3512 case G_FMAXNUM: 3513 case G_FMINNUM_IEEE: 3514 case G_FMAXNUM_IEEE: 3515 case G_FMINIMUM: 3516 case G_FMAXIMUM: 3517 case G_FSHL: 3518 case G_FSHR: 3519 case G_FREEZE: 3520 case G_SADDSAT: 3521 case G_SSUBSAT: 3522 case G_UADDSAT: 3523 case G_USUBSAT: 3524 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3525 case G_SHL: 3526 case G_LSHR: 3527 case G_ASHR: 3528 case G_CTLZ: 3529 case G_CTLZ_ZERO_UNDEF: 3530 case G_CTTZ: 3531 case G_CTTZ_ZERO_UNDEF: 3532 case G_CTPOP: 3533 case G_FCOPYSIGN: 3534 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3535 case G_ZEXT: 3536 case G_SEXT: 3537 case G_ANYEXT: 3538 case G_FPEXT: 3539 case G_FPTRUNC: 3540 case G_SITOFP: 3541 case G_UITOFP: 3542 case G_FPTOSI: 3543 case G_FPTOUI: 3544 case G_INTTOPTR: 3545 case G_PTRTOINT: 3546 case G_ADDRSPACE_CAST: 3547 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3548 case G_ICMP: 3549 case G_FCMP: 3550 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3551 case G_SELECT: 3552 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3553 case G_PHI: 3554 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3555 case G_UNMERGE_VALUES: 3556 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3557 case G_BUILD_VECTOR: 3558 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3559 case G_LOAD: 3560 case G_STORE: 3561 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3562 case G_SEXT_INREG: 3563 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3564 default: 3565 return UnableToLegalize; 3566 } 3567 } 3568 3569 LegalizerHelper::LegalizeResult 3570 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3571 const LLT HalfTy, const LLT AmtTy) { 3572 3573 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3574 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3575 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3576 3577 if (Amt.isNullValue()) { 3578 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3579 MI.eraseFromParent(); 3580 return Legalized; 3581 } 3582 3583 LLT NVT = HalfTy; 3584 unsigned NVTBits = HalfTy.getSizeInBits(); 3585 unsigned VTBits = 2 * NVTBits; 3586 3587 SrcOp Lo(Register(0)), Hi(Register(0)); 3588 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3589 if (Amt.ugt(VTBits)) { 3590 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3591 } else if (Amt.ugt(NVTBits)) { 3592 Lo = MIRBuilder.buildConstant(NVT, 0); 3593 Hi = MIRBuilder.buildShl(NVT, InL, 3594 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3595 } else if (Amt == NVTBits) { 3596 Lo = MIRBuilder.buildConstant(NVT, 0); 3597 Hi = InL; 3598 } else { 3599 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3600 auto OrLHS = 3601 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3602 auto OrRHS = MIRBuilder.buildLShr( 3603 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3604 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3605 } 3606 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3607 if (Amt.ugt(VTBits)) { 3608 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3609 } else if (Amt.ugt(NVTBits)) { 3610 Lo = MIRBuilder.buildLShr(NVT, InH, 3611 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3612 Hi = MIRBuilder.buildConstant(NVT, 0); 3613 } else if (Amt == NVTBits) { 3614 Lo = InH; 3615 Hi = MIRBuilder.buildConstant(NVT, 0); 3616 } else { 3617 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3618 3619 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3620 auto OrRHS = MIRBuilder.buildShl( 3621 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3622 3623 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3624 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3625 } 3626 } else { 3627 if (Amt.ugt(VTBits)) { 3628 Hi = Lo = MIRBuilder.buildAShr( 3629 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3630 } else if (Amt.ugt(NVTBits)) { 3631 Lo = MIRBuilder.buildAShr(NVT, InH, 3632 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3633 Hi = MIRBuilder.buildAShr(NVT, InH, 3634 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3635 } else if (Amt == NVTBits) { 3636 Lo = InH; 3637 Hi = MIRBuilder.buildAShr(NVT, InH, 3638 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3639 } else { 3640 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3641 3642 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3643 auto OrRHS = MIRBuilder.buildShl( 3644 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3645 3646 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3647 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3648 } 3649 } 3650 3651 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3652 MI.eraseFromParent(); 3653 3654 return Legalized; 3655 } 3656 3657 // TODO: Optimize if constant shift amount. 3658 LegalizerHelper::LegalizeResult 3659 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3660 LLT RequestedTy) { 3661 if (TypeIdx == 1) { 3662 Observer.changingInstr(MI); 3663 narrowScalarSrc(MI, RequestedTy, 2); 3664 Observer.changedInstr(MI); 3665 return Legalized; 3666 } 3667 3668 Register DstReg = MI.getOperand(0).getReg(); 3669 LLT DstTy = MRI.getType(DstReg); 3670 if (DstTy.isVector()) 3671 return UnableToLegalize; 3672 3673 Register Amt = MI.getOperand(2).getReg(); 3674 LLT ShiftAmtTy = MRI.getType(Amt); 3675 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3676 if (DstEltSize % 2 != 0) 3677 return UnableToLegalize; 3678 3679 // Ignore the input type. We can only go to exactly half the size of the 3680 // input. If that isn't small enough, the resulting pieces will be further 3681 // legalized. 3682 const unsigned NewBitSize = DstEltSize / 2; 3683 const LLT HalfTy = LLT::scalar(NewBitSize); 3684 const LLT CondTy = LLT::scalar(1); 3685 3686 if (const MachineInstr *KShiftAmt = 3687 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3688 return narrowScalarShiftByConstant( 3689 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3690 } 3691 3692 // TODO: Expand with known bits. 3693 3694 // Handle the fully general expansion by an unknown amount. 3695 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3696 3697 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3698 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3699 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3700 3701 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3702 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3703 3704 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3705 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3706 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3707 3708 Register ResultRegs[2]; 3709 switch (MI.getOpcode()) { 3710 case TargetOpcode::G_SHL: { 3711 // Short: ShAmt < NewBitSize 3712 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3713 3714 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3715 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3716 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3717 3718 // Long: ShAmt >= NewBitSize 3719 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3720 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3721 3722 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3723 auto Hi = MIRBuilder.buildSelect( 3724 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3725 3726 ResultRegs[0] = Lo.getReg(0); 3727 ResultRegs[1] = Hi.getReg(0); 3728 break; 3729 } 3730 case TargetOpcode::G_LSHR: 3731 case TargetOpcode::G_ASHR: { 3732 // Short: ShAmt < NewBitSize 3733 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3734 3735 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3736 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3737 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3738 3739 // Long: ShAmt >= NewBitSize 3740 MachineInstrBuilder HiL; 3741 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3742 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3743 } else { 3744 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3745 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3746 } 3747 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3748 {InH, AmtExcess}); // Lo from Hi part. 3749 3750 auto Lo = MIRBuilder.buildSelect( 3751 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3752 3753 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3754 3755 ResultRegs[0] = Lo.getReg(0); 3756 ResultRegs[1] = Hi.getReg(0); 3757 break; 3758 } 3759 default: 3760 llvm_unreachable("not a shift"); 3761 } 3762 3763 MIRBuilder.buildMerge(DstReg, ResultRegs); 3764 MI.eraseFromParent(); 3765 return Legalized; 3766 } 3767 3768 LegalizerHelper::LegalizeResult 3769 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3770 LLT MoreTy) { 3771 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3772 3773 Observer.changingInstr(MI); 3774 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3775 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3776 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3777 moreElementsVectorSrc(MI, MoreTy, I); 3778 } 3779 3780 MachineBasicBlock &MBB = *MI.getParent(); 3781 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3782 moreElementsVectorDst(MI, MoreTy, 0); 3783 Observer.changedInstr(MI); 3784 return Legalized; 3785 } 3786 3787 LegalizerHelper::LegalizeResult 3788 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3789 LLT MoreTy) { 3790 unsigned Opc = MI.getOpcode(); 3791 switch (Opc) { 3792 case TargetOpcode::G_IMPLICIT_DEF: 3793 case TargetOpcode::G_LOAD: { 3794 if (TypeIdx != 0) 3795 return UnableToLegalize; 3796 Observer.changingInstr(MI); 3797 moreElementsVectorDst(MI, MoreTy, 0); 3798 Observer.changedInstr(MI); 3799 return Legalized; 3800 } 3801 case TargetOpcode::G_STORE: 3802 if (TypeIdx != 0) 3803 return UnableToLegalize; 3804 Observer.changingInstr(MI); 3805 moreElementsVectorSrc(MI, MoreTy, 0); 3806 Observer.changedInstr(MI); 3807 return Legalized; 3808 case TargetOpcode::G_AND: 3809 case TargetOpcode::G_OR: 3810 case TargetOpcode::G_XOR: 3811 case TargetOpcode::G_SMIN: 3812 case TargetOpcode::G_SMAX: 3813 case TargetOpcode::G_UMIN: 3814 case TargetOpcode::G_UMAX: 3815 case TargetOpcode::G_FMINNUM: 3816 case TargetOpcode::G_FMAXNUM: 3817 case TargetOpcode::G_FMINNUM_IEEE: 3818 case TargetOpcode::G_FMAXNUM_IEEE: 3819 case TargetOpcode::G_FMINIMUM: 3820 case TargetOpcode::G_FMAXIMUM: { 3821 Observer.changingInstr(MI); 3822 moreElementsVectorSrc(MI, MoreTy, 1); 3823 moreElementsVectorSrc(MI, MoreTy, 2); 3824 moreElementsVectorDst(MI, MoreTy, 0); 3825 Observer.changedInstr(MI); 3826 return Legalized; 3827 } 3828 case TargetOpcode::G_EXTRACT: 3829 if (TypeIdx != 1) 3830 return UnableToLegalize; 3831 Observer.changingInstr(MI); 3832 moreElementsVectorSrc(MI, MoreTy, 1); 3833 Observer.changedInstr(MI); 3834 return Legalized; 3835 case TargetOpcode::G_INSERT: 3836 case TargetOpcode::G_FREEZE: 3837 if (TypeIdx != 0) 3838 return UnableToLegalize; 3839 Observer.changingInstr(MI); 3840 moreElementsVectorSrc(MI, MoreTy, 1); 3841 moreElementsVectorDst(MI, MoreTy, 0); 3842 Observer.changedInstr(MI); 3843 return Legalized; 3844 case TargetOpcode::G_SELECT: 3845 if (TypeIdx != 0) 3846 return UnableToLegalize; 3847 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3848 return UnableToLegalize; 3849 3850 Observer.changingInstr(MI); 3851 moreElementsVectorSrc(MI, MoreTy, 2); 3852 moreElementsVectorSrc(MI, MoreTy, 3); 3853 moreElementsVectorDst(MI, MoreTy, 0); 3854 Observer.changedInstr(MI); 3855 return Legalized; 3856 case TargetOpcode::G_UNMERGE_VALUES: { 3857 if (TypeIdx != 1) 3858 return UnableToLegalize; 3859 3860 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3861 int NumDst = MI.getNumOperands() - 1; 3862 moreElementsVectorSrc(MI, MoreTy, NumDst); 3863 3864 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3865 for (int I = 0; I != NumDst; ++I) 3866 MIB.addDef(MI.getOperand(I).getReg()); 3867 3868 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3869 for (int I = NumDst; I != NewNumDst; ++I) 3870 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3871 3872 MIB.addUse(MI.getOperand(NumDst).getReg()); 3873 MI.eraseFromParent(); 3874 return Legalized; 3875 } 3876 case TargetOpcode::G_PHI: 3877 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3878 default: 3879 return UnableToLegalize; 3880 } 3881 } 3882 3883 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3884 ArrayRef<Register> Src1Regs, 3885 ArrayRef<Register> Src2Regs, 3886 LLT NarrowTy) { 3887 MachineIRBuilder &B = MIRBuilder; 3888 unsigned SrcParts = Src1Regs.size(); 3889 unsigned DstParts = DstRegs.size(); 3890 3891 unsigned DstIdx = 0; // Low bits of the result. 3892 Register FactorSum = 3893 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3894 DstRegs[DstIdx] = FactorSum; 3895 3896 unsigned CarrySumPrevDstIdx; 3897 SmallVector<Register, 4> Factors; 3898 3899 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3900 // Collect low parts of muls for DstIdx. 3901 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3902 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3903 MachineInstrBuilder Mul = 3904 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3905 Factors.push_back(Mul.getReg(0)); 3906 } 3907 // Collect high parts of muls from previous DstIdx. 3908 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3909 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3910 MachineInstrBuilder Umulh = 3911 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3912 Factors.push_back(Umulh.getReg(0)); 3913 } 3914 // Add CarrySum from additions calculated for previous DstIdx. 3915 if (DstIdx != 1) { 3916 Factors.push_back(CarrySumPrevDstIdx); 3917 } 3918 3919 Register CarrySum; 3920 // Add all factors and accumulate all carries into CarrySum. 3921 if (DstIdx != DstParts - 1) { 3922 MachineInstrBuilder Uaddo = 3923 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3924 FactorSum = Uaddo.getReg(0); 3925 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3926 for (unsigned i = 2; i < Factors.size(); ++i) { 3927 MachineInstrBuilder Uaddo = 3928 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3929 FactorSum = Uaddo.getReg(0); 3930 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3931 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3932 } 3933 } else { 3934 // Since value for the next index is not calculated, neither is CarrySum. 3935 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3936 for (unsigned i = 2; i < Factors.size(); ++i) 3937 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3938 } 3939 3940 CarrySumPrevDstIdx = CarrySum; 3941 DstRegs[DstIdx] = FactorSum; 3942 Factors.clear(); 3943 } 3944 } 3945 3946 LegalizerHelper::LegalizeResult 3947 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3948 Register DstReg = MI.getOperand(0).getReg(); 3949 Register Src1 = MI.getOperand(1).getReg(); 3950 Register Src2 = MI.getOperand(2).getReg(); 3951 3952 LLT Ty = MRI.getType(DstReg); 3953 if (Ty.isVector()) 3954 return UnableToLegalize; 3955 3956 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3957 unsigned DstSize = Ty.getSizeInBits(); 3958 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3959 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3960 return UnableToLegalize; 3961 3962 unsigned NumDstParts = DstSize / NarrowSize; 3963 unsigned NumSrcParts = SrcSize / NarrowSize; 3964 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3965 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3966 3967 SmallVector<Register, 2> Src1Parts, Src2Parts; 3968 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3969 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3970 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3971 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3972 3973 // Take only high half of registers if this is high mul. 3974 ArrayRef<Register> DstRegs( 3975 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3976 MIRBuilder.buildMerge(DstReg, DstRegs); 3977 MI.eraseFromParent(); 3978 return Legalized; 3979 } 3980 3981 LegalizerHelper::LegalizeResult 3982 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3983 LLT NarrowTy) { 3984 if (TypeIdx != 1) 3985 return UnableToLegalize; 3986 3987 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3988 3989 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3990 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3991 // NarrowSize. 3992 if (SizeOp1 % NarrowSize != 0) 3993 return UnableToLegalize; 3994 int NumParts = SizeOp1 / NarrowSize; 3995 3996 SmallVector<Register, 2> SrcRegs, DstRegs; 3997 SmallVector<uint64_t, 2> Indexes; 3998 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3999 4000 Register OpReg = MI.getOperand(0).getReg(); 4001 uint64_t OpStart = MI.getOperand(2).getImm(); 4002 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4003 for (int i = 0; i < NumParts; ++i) { 4004 unsigned SrcStart = i * NarrowSize; 4005 4006 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4007 // No part of the extract uses this subregister, ignore it. 4008 continue; 4009 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4010 // The entire subregister is extracted, forward the value. 4011 DstRegs.push_back(SrcRegs[i]); 4012 continue; 4013 } 4014 4015 // OpSegStart is where this destination segment would start in OpReg if it 4016 // extended infinitely in both directions. 4017 int64_t ExtractOffset; 4018 uint64_t SegSize; 4019 if (OpStart < SrcStart) { 4020 ExtractOffset = 0; 4021 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4022 } else { 4023 ExtractOffset = OpStart - SrcStart; 4024 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4025 } 4026 4027 Register SegReg = SrcRegs[i]; 4028 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4029 // A genuine extract is needed. 4030 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4031 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4032 } 4033 4034 DstRegs.push_back(SegReg); 4035 } 4036 4037 Register DstReg = MI.getOperand(0).getReg(); 4038 if (MRI.getType(DstReg).isVector()) 4039 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4040 else if (DstRegs.size() > 1) 4041 MIRBuilder.buildMerge(DstReg, DstRegs); 4042 else 4043 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4044 MI.eraseFromParent(); 4045 return Legalized; 4046 } 4047 4048 LegalizerHelper::LegalizeResult 4049 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4050 LLT NarrowTy) { 4051 // FIXME: Don't know how to handle secondary types yet. 4052 if (TypeIdx != 0) 4053 return UnableToLegalize; 4054 4055 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4056 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4057 4058 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4059 // NarrowSize. 4060 if (SizeOp0 % NarrowSize != 0) 4061 return UnableToLegalize; 4062 4063 int NumParts = SizeOp0 / NarrowSize; 4064 4065 SmallVector<Register, 2> SrcRegs, DstRegs; 4066 SmallVector<uint64_t, 2> Indexes; 4067 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4068 4069 Register OpReg = MI.getOperand(2).getReg(); 4070 uint64_t OpStart = MI.getOperand(3).getImm(); 4071 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4072 for (int i = 0; i < NumParts; ++i) { 4073 unsigned DstStart = i * NarrowSize; 4074 4075 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4076 // No part of the insert affects this subregister, forward the original. 4077 DstRegs.push_back(SrcRegs[i]); 4078 continue; 4079 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4080 // The entire subregister is defined by this insert, forward the new 4081 // value. 4082 DstRegs.push_back(OpReg); 4083 continue; 4084 } 4085 4086 // OpSegStart is where this destination segment would start in OpReg if it 4087 // extended infinitely in both directions. 4088 int64_t ExtractOffset, InsertOffset; 4089 uint64_t SegSize; 4090 if (OpStart < DstStart) { 4091 InsertOffset = 0; 4092 ExtractOffset = DstStart - OpStart; 4093 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4094 } else { 4095 InsertOffset = OpStart - DstStart; 4096 ExtractOffset = 0; 4097 SegSize = 4098 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4099 } 4100 4101 Register SegReg = OpReg; 4102 if (ExtractOffset != 0 || SegSize != OpSize) { 4103 // A genuine extract is needed. 4104 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4105 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4106 } 4107 4108 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4109 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4110 DstRegs.push_back(DstReg); 4111 } 4112 4113 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4114 Register DstReg = MI.getOperand(0).getReg(); 4115 if(MRI.getType(DstReg).isVector()) 4116 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4117 else 4118 MIRBuilder.buildMerge(DstReg, DstRegs); 4119 MI.eraseFromParent(); 4120 return Legalized; 4121 } 4122 4123 LegalizerHelper::LegalizeResult 4124 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4125 LLT NarrowTy) { 4126 Register DstReg = MI.getOperand(0).getReg(); 4127 LLT DstTy = MRI.getType(DstReg); 4128 4129 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4130 4131 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4132 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4133 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4134 LLT LeftoverTy; 4135 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4136 Src0Regs, Src0LeftoverRegs)) 4137 return UnableToLegalize; 4138 4139 LLT Unused; 4140 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4141 Src1Regs, Src1LeftoverRegs)) 4142 llvm_unreachable("inconsistent extractParts result"); 4143 4144 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4145 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4146 {Src0Regs[I], Src1Regs[I]}); 4147 DstRegs.push_back(Inst.getReg(0)); 4148 } 4149 4150 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4151 auto Inst = MIRBuilder.buildInstr( 4152 MI.getOpcode(), 4153 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4154 DstLeftoverRegs.push_back(Inst.getReg(0)); 4155 } 4156 4157 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4158 LeftoverTy, DstLeftoverRegs); 4159 4160 MI.eraseFromParent(); 4161 return Legalized; 4162 } 4163 4164 LegalizerHelper::LegalizeResult 4165 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4166 LLT NarrowTy) { 4167 if (TypeIdx != 0) 4168 return UnableToLegalize; 4169 4170 Register DstReg = MI.getOperand(0).getReg(); 4171 Register SrcReg = MI.getOperand(1).getReg(); 4172 4173 LLT DstTy = MRI.getType(DstReg); 4174 if (DstTy.isVector()) 4175 return UnableToLegalize; 4176 4177 SmallVector<Register, 8> Parts; 4178 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4179 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4180 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4181 4182 MI.eraseFromParent(); 4183 return Legalized; 4184 } 4185 4186 LegalizerHelper::LegalizeResult 4187 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4188 LLT NarrowTy) { 4189 if (TypeIdx != 0) 4190 return UnableToLegalize; 4191 4192 Register CondReg = MI.getOperand(1).getReg(); 4193 LLT CondTy = MRI.getType(CondReg); 4194 if (CondTy.isVector()) // TODO: Handle vselect 4195 return UnableToLegalize; 4196 4197 Register DstReg = MI.getOperand(0).getReg(); 4198 LLT DstTy = MRI.getType(DstReg); 4199 4200 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4201 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4202 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4203 LLT LeftoverTy; 4204 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4205 Src1Regs, Src1LeftoverRegs)) 4206 return UnableToLegalize; 4207 4208 LLT Unused; 4209 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4210 Src2Regs, Src2LeftoverRegs)) 4211 llvm_unreachable("inconsistent extractParts result"); 4212 4213 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4214 auto Select = MIRBuilder.buildSelect(NarrowTy, 4215 CondReg, Src1Regs[I], Src2Regs[I]); 4216 DstRegs.push_back(Select.getReg(0)); 4217 } 4218 4219 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4220 auto Select = MIRBuilder.buildSelect( 4221 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4222 DstLeftoverRegs.push_back(Select.getReg(0)); 4223 } 4224 4225 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4226 LeftoverTy, DstLeftoverRegs); 4227 4228 MI.eraseFromParent(); 4229 return Legalized; 4230 } 4231 4232 LegalizerHelper::LegalizeResult 4233 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4234 LLT NarrowTy) { 4235 if (TypeIdx != 1) 4236 return UnableToLegalize; 4237 4238 Register DstReg = MI.getOperand(0).getReg(); 4239 Register SrcReg = MI.getOperand(1).getReg(); 4240 LLT DstTy = MRI.getType(DstReg); 4241 LLT SrcTy = MRI.getType(SrcReg); 4242 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4243 4244 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4245 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4246 4247 MachineIRBuilder &B = MIRBuilder; 4248 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4249 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4250 auto C_0 = B.buildConstant(NarrowTy, 0); 4251 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4252 UnmergeSrc.getReg(1), C_0); 4253 auto LoCTLZ = IsUndef ? 4254 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4255 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4256 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4257 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4258 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4259 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4260 4261 MI.eraseFromParent(); 4262 return Legalized; 4263 } 4264 4265 return UnableToLegalize; 4266 } 4267 4268 LegalizerHelper::LegalizeResult 4269 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4270 LLT NarrowTy) { 4271 if (TypeIdx != 1) 4272 return UnableToLegalize; 4273 4274 Register DstReg = MI.getOperand(0).getReg(); 4275 Register SrcReg = MI.getOperand(1).getReg(); 4276 LLT DstTy = MRI.getType(DstReg); 4277 LLT SrcTy = MRI.getType(SrcReg); 4278 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4279 4280 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4281 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4282 4283 MachineIRBuilder &B = MIRBuilder; 4284 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4285 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4286 auto C_0 = B.buildConstant(NarrowTy, 0); 4287 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4288 UnmergeSrc.getReg(0), C_0); 4289 auto HiCTTZ = IsUndef ? 4290 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4291 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4292 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4293 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4294 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4295 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4296 4297 MI.eraseFromParent(); 4298 return Legalized; 4299 } 4300 4301 return UnableToLegalize; 4302 } 4303 4304 LegalizerHelper::LegalizeResult 4305 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4306 LLT NarrowTy) { 4307 if (TypeIdx != 1) 4308 return UnableToLegalize; 4309 4310 Register DstReg = MI.getOperand(0).getReg(); 4311 LLT DstTy = MRI.getType(DstReg); 4312 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4313 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4314 4315 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4316 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4317 4318 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4319 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4320 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4321 4322 MI.eraseFromParent(); 4323 return Legalized; 4324 } 4325 4326 return UnableToLegalize; 4327 } 4328 4329 LegalizerHelper::LegalizeResult 4330 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4331 unsigned Opc = MI.getOpcode(); 4332 const auto &TII = MIRBuilder.getTII(); 4333 auto isSupported = [this](const LegalityQuery &Q) { 4334 auto QAction = LI.getAction(Q).Action; 4335 return QAction == Legal || QAction == Libcall || QAction == Custom; 4336 }; 4337 switch (Opc) { 4338 default: 4339 return UnableToLegalize; 4340 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4341 // This trivially expands to CTLZ. 4342 Observer.changingInstr(MI); 4343 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4344 Observer.changedInstr(MI); 4345 return Legalized; 4346 } 4347 case TargetOpcode::G_CTLZ: { 4348 Register DstReg = MI.getOperand(0).getReg(); 4349 Register SrcReg = MI.getOperand(1).getReg(); 4350 LLT DstTy = MRI.getType(DstReg); 4351 LLT SrcTy = MRI.getType(SrcReg); 4352 unsigned Len = SrcTy.getSizeInBits(); 4353 4354 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4355 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4356 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4357 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4358 auto ICmp = MIRBuilder.buildICmp( 4359 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4360 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4361 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4362 MI.eraseFromParent(); 4363 return Legalized; 4364 } 4365 // for now, we do this: 4366 // NewLen = NextPowerOf2(Len); 4367 // x = x | (x >> 1); 4368 // x = x | (x >> 2); 4369 // ... 4370 // x = x | (x >>16); 4371 // x = x | (x >>32); // for 64-bit input 4372 // Upto NewLen/2 4373 // return Len - popcount(x); 4374 // 4375 // Ref: "Hacker's Delight" by Henry Warren 4376 Register Op = SrcReg; 4377 unsigned NewLen = PowerOf2Ceil(Len); 4378 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4379 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4380 auto MIBOp = MIRBuilder.buildOr( 4381 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4382 Op = MIBOp.getReg(0); 4383 } 4384 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4385 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4386 MIBPop); 4387 MI.eraseFromParent(); 4388 return Legalized; 4389 } 4390 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4391 // This trivially expands to CTTZ. 4392 Observer.changingInstr(MI); 4393 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4394 Observer.changedInstr(MI); 4395 return Legalized; 4396 } 4397 case TargetOpcode::G_CTTZ: { 4398 Register DstReg = MI.getOperand(0).getReg(); 4399 Register SrcReg = MI.getOperand(1).getReg(); 4400 LLT DstTy = MRI.getType(DstReg); 4401 LLT SrcTy = MRI.getType(SrcReg); 4402 4403 unsigned Len = SrcTy.getSizeInBits(); 4404 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4405 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4406 // zero. 4407 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4408 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4409 auto ICmp = MIRBuilder.buildICmp( 4410 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4411 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4412 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4413 MI.eraseFromParent(); 4414 return Legalized; 4415 } 4416 // for now, we use: { return popcount(~x & (x - 1)); } 4417 // unless the target has ctlz but not ctpop, in which case we use: 4418 // { return 32 - nlz(~x & (x-1)); } 4419 // Ref: "Hacker's Delight" by Henry Warren 4420 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4421 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4422 auto MIBTmp = MIRBuilder.buildAnd( 4423 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4424 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4425 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4426 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4427 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4428 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4429 MI.eraseFromParent(); 4430 return Legalized; 4431 } 4432 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4433 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4434 return Legalized; 4435 } 4436 case TargetOpcode::G_CTPOP: { 4437 unsigned Size = Ty.getSizeInBits(); 4438 MachineIRBuilder &B = MIRBuilder; 4439 4440 // Count set bits in blocks of 2 bits. Default approach would be 4441 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4442 // We use following formula instead: 4443 // B2Count = val - { (val >> 1) & 0x55555555 } 4444 // since it gives same result in blocks of 2 with one instruction less. 4445 auto C_1 = B.buildConstant(Ty, 1); 4446 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4447 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4448 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4449 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4450 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4451 4452 // In order to get count in blocks of 4 add values from adjacent block of 2. 4453 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4454 auto C_2 = B.buildConstant(Ty, 2); 4455 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4456 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4457 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4458 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4459 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4460 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4461 4462 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4463 // addition since count value sits in range {0,...,8} and 4 bits are enough 4464 // to hold such binary values. After addition high 4 bits still hold count 4465 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4466 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4467 auto C_4 = B.buildConstant(Ty, 4); 4468 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4469 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4470 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4471 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4472 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4473 4474 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4475 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4476 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4477 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4478 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4479 4480 // Shift count result from 8 high bits to low bits. 4481 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4482 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4483 4484 MI.eraseFromParent(); 4485 return Legalized; 4486 } 4487 } 4488 } 4489 4490 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4491 // representation. 4492 LegalizerHelper::LegalizeResult 4493 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4494 Register Dst = MI.getOperand(0).getReg(); 4495 Register Src = MI.getOperand(1).getReg(); 4496 const LLT S64 = LLT::scalar(64); 4497 const LLT S32 = LLT::scalar(32); 4498 const LLT S1 = LLT::scalar(1); 4499 4500 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4501 4502 // unsigned cul2f(ulong u) { 4503 // uint lz = clz(u); 4504 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4505 // u = (u << lz) & 0x7fffffffffffffffUL; 4506 // ulong t = u & 0xffffffffffUL; 4507 // uint v = (e << 23) | (uint)(u >> 40); 4508 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4509 // return as_float(v + r); 4510 // } 4511 4512 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4513 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4514 4515 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4516 4517 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4518 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4519 4520 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4521 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4522 4523 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4524 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4525 4526 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4527 4528 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4529 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4530 4531 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4532 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4533 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4534 4535 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4536 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4537 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4538 auto One = MIRBuilder.buildConstant(S32, 1); 4539 4540 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4541 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4542 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4543 MIRBuilder.buildAdd(Dst, V, R); 4544 4545 MI.eraseFromParent(); 4546 return Legalized; 4547 } 4548 4549 LegalizerHelper::LegalizeResult 4550 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4551 Register Dst = MI.getOperand(0).getReg(); 4552 Register Src = MI.getOperand(1).getReg(); 4553 LLT DstTy = MRI.getType(Dst); 4554 LLT SrcTy = MRI.getType(Src); 4555 4556 if (SrcTy == LLT::scalar(1)) { 4557 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4558 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4559 MIRBuilder.buildSelect(Dst, Src, True, False); 4560 MI.eraseFromParent(); 4561 return Legalized; 4562 } 4563 4564 if (SrcTy != LLT::scalar(64)) 4565 return UnableToLegalize; 4566 4567 if (DstTy == LLT::scalar(32)) { 4568 // TODO: SelectionDAG has several alternative expansions to port which may 4569 // be more reasonble depending on the available instructions. If a target 4570 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4571 // intermediate type, this is probably worse. 4572 return lowerU64ToF32BitOps(MI); 4573 } 4574 4575 return UnableToLegalize; 4576 } 4577 4578 LegalizerHelper::LegalizeResult 4579 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4580 Register Dst = MI.getOperand(0).getReg(); 4581 Register Src = MI.getOperand(1).getReg(); 4582 LLT DstTy = MRI.getType(Dst); 4583 LLT SrcTy = MRI.getType(Src); 4584 4585 const LLT S64 = LLT::scalar(64); 4586 const LLT S32 = LLT::scalar(32); 4587 const LLT S1 = LLT::scalar(1); 4588 4589 if (SrcTy == S1) { 4590 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4591 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4592 MIRBuilder.buildSelect(Dst, Src, True, False); 4593 MI.eraseFromParent(); 4594 return Legalized; 4595 } 4596 4597 if (SrcTy != S64) 4598 return UnableToLegalize; 4599 4600 if (DstTy == S32) { 4601 // signed cl2f(long l) { 4602 // long s = l >> 63; 4603 // float r = cul2f((l + s) ^ s); 4604 // return s ? -r : r; 4605 // } 4606 Register L = Src; 4607 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4608 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4609 4610 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4611 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4612 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4613 4614 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4615 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4616 MIRBuilder.buildConstant(S64, 0)); 4617 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4618 MI.eraseFromParent(); 4619 return Legalized; 4620 } 4621 4622 return UnableToLegalize; 4623 } 4624 4625 LegalizerHelper::LegalizeResult 4626 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4627 Register Dst = MI.getOperand(0).getReg(); 4628 Register Src = MI.getOperand(1).getReg(); 4629 LLT DstTy = MRI.getType(Dst); 4630 LLT SrcTy = MRI.getType(Src); 4631 const LLT S64 = LLT::scalar(64); 4632 const LLT S32 = LLT::scalar(32); 4633 4634 if (SrcTy != S64 && SrcTy != S32) 4635 return UnableToLegalize; 4636 if (DstTy != S32 && DstTy != S64) 4637 return UnableToLegalize; 4638 4639 // FPTOSI gives same result as FPTOUI for positive signed integers. 4640 // FPTOUI needs to deal with fp values that convert to unsigned integers 4641 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4642 4643 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4644 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4645 : APFloat::IEEEdouble(), 4646 APInt::getNullValue(SrcTy.getSizeInBits())); 4647 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4648 4649 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4650 4651 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4652 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4653 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4654 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4655 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4656 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4657 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4658 4659 const LLT S1 = LLT::scalar(1); 4660 4661 MachineInstrBuilder FCMP = 4662 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4663 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4664 4665 MI.eraseFromParent(); 4666 return Legalized; 4667 } 4668 4669 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4670 Register Dst = MI.getOperand(0).getReg(); 4671 Register Src = MI.getOperand(1).getReg(); 4672 LLT DstTy = MRI.getType(Dst); 4673 LLT SrcTy = MRI.getType(Src); 4674 const LLT S64 = LLT::scalar(64); 4675 const LLT S32 = LLT::scalar(32); 4676 4677 // FIXME: Only f32 to i64 conversions are supported. 4678 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4679 return UnableToLegalize; 4680 4681 // Expand f32 -> i64 conversion 4682 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4683 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4684 4685 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4686 4687 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4688 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4689 4690 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4691 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4692 4693 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4694 APInt::getSignMask(SrcEltBits)); 4695 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4696 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4697 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4698 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4699 4700 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4701 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4702 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4703 4704 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4705 R = MIRBuilder.buildZExt(DstTy, R); 4706 4707 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4708 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4709 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4710 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4711 4712 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4713 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4714 4715 const LLT S1 = LLT::scalar(1); 4716 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4717 S1, Exponent, ExponentLoBit); 4718 4719 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4720 4721 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4722 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4723 4724 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4725 4726 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4727 S1, Exponent, ZeroSrcTy); 4728 4729 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4730 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4731 4732 MI.eraseFromParent(); 4733 return Legalized; 4734 } 4735 4736 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4737 LegalizerHelper::LegalizeResult 4738 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4739 Register Dst = MI.getOperand(0).getReg(); 4740 Register Src = MI.getOperand(1).getReg(); 4741 4742 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4743 return UnableToLegalize; 4744 4745 const unsigned ExpMask = 0x7ff; 4746 const unsigned ExpBiasf64 = 1023; 4747 const unsigned ExpBiasf16 = 15; 4748 const LLT S32 = LLT::scalar(32); 4749 const LLT S1 = LLT::scalar(1); 4750 4751 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4752 Register U = Unmerge.getReg(0); 4753 Register UH = Unmerge.getReg(1); 4754 4755 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4756 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4757 4758 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4759 // add the f16 bias (15) to get the biased exponent for the f16 format. 4760 E = MIRBuilder.buildAdd( 4761 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4762 4763 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4764 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4765 4766 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4767 MIRBuilder.buildConstant(S32, 0x1ff)); 4768 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4769 4770 auto Zero = MIRBuilder.buildConstant(S32, 0); 4771 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4772 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4773 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4774 4775 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4776 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4777 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4778 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4779 4780 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4781 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4782 4783 // N = M | (E << 12); 4784 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4785 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4786 4787 // B = clamp(1-E, 0, 13); 4788 auto One = MIRBuilder.buildConstant(S32, 1); 4789 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4790 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4791 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4792 4793 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4794 MIRBuilder.buildConstant(S32, 0x1000)); 4795 4796 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4797 auto D0 = MIRBuilder.buildShl(S32, D, B); 4798 4799 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4800 D0, SigSetHigh); 4801 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4802 D = MIRBuilder.buildOr(S32, D, D1); 4803 4804 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4805 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4806 4807 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4808 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4809 4810 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4811 MIRBuilder.buildConstant(S32, 3)); 4812 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4813 4814 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4815 MIRBuilder.buildConstant(S32, 5)); 4816 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4817 4818 V1 = MIRBuilder.buildOr(S32, V0, V1); 4819 V = MIRBuilder.buildAdd(S32, V, V1); 4820 4821 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4822 E, MIRBuilder.buildConstant(S32, 30)); 4823 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4824 MIRBuilder.buildConstant(S32, 0x7c00), V); 4825 4826 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4827 E, MIRBuilder.buildConstant(S32, 1039)); 4828 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4829 4830 // Extract the sign bit. 4831 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4832 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4833 4834 // Insert the sign bit 4835 V = MIRBuilder.buildOr(S32, Sign, V); 4836 4837 MIRBuilder.buildTrunc(Dst, V); 4838 MI.eraseFromParent(); 4839 return Legalized; 4840 } 4841 4842 LegalizerHelper::LegalizeResult 4843 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4844 Register Dst = MI.getOperand(0).getReg(); 4845 Register Src = MI.getOperand(1).getReg(); 4846 4847 LLT DstTy = MRI.getType(Dst); 4848 LLT SrcTy = MRI.getType(Src); 4849 const LLT S64 = LLT::scalar(64); 4850 const LLT S16 = LLT::scalar(16); 4851 4852 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4853 return lowerFPTRUNC_F64_TO_F16(MI); 4854 4855 return UnableToLegalize; 4856 } 4857 4858 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 4859 // multiplication tree. 4860 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 4861 Register Dst = MI.getOperand(0).getReg(); 4862 Register Src0 = MI.getOperand(1).getReg(); 4863 Register Src1 = MI.getOperand(2).getReg(); 4864 LLT Ty = MRI.getType(Dst); 4865 4866 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 4867 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 4868 MI.eraseFromParent(); 4869 return Legalized; 4870 } 4871 4872 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4873 switch (Opc) { 4874 case TargetOpcode::G_SMIN: 4875 return CmpInst::ICMP_SLT; 4876 case TargetOpcode::G_SMAX: 4877 return CmpInst::ICMP_SGT; 4878 case TargetOpcode::G_UMIN: 4879 return CmpInst::ICMP_ULT; 4880 case TargetOpcode::G_UMAX: 4881 return CmpInst::ICMP_UGT; 4882 default: 4883 llvm_unreachable("not in integer min/max"); 4884 } 4885 } 4886 4887 LegalizerHelper::LegalizeResult 4888 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4889 Register Dst = MI.getOperand(0).getReg(); 4890 Register Src0 = MI.getOperand(1).getReg(); 4891 Register Src1 = MI.getOperand(2).getReg(); 4892 4893 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4894 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4895 4896 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4897 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4898 4899 MI.eraseFromParent(); 4900 return Legalized; 4901 } 4902 4903 LegalizerHelper::LegalizeResult 4904 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4905 Register Dst = MI.getOperand(0).getReg(); 4906 Register Src0 = MI.getOperand(1).getReg(); 4907 Register Src1 = MI.getOperand(2).getReg(); 4908 4909 const LLT Src0Ty = MRI.getType(Src0); 4910 const LLT Src1Ty = MRI.getType(Src1); 4911 4912 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4913 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4914 4915 auto SignBitMask = MIRBuilder.buildConstant( 4916 Src0Ty, APInt::getSignMask(Src0Size)); 4917 4918 auto NotSignBitMask = MIRBuilder.buildConstant( 4919 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4920 4921 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4922 MachineInstr *Or; 4923 4924 if (Src0Ty == Src1Ty) { 4925 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4926 Or = MIRBuilder.buildOr(Dst, And0, And1); 4927 } else if (Src0Size > Src1Size) { 4928 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4929 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4930 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4931 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4932 Or = MIRBuilder.buildOr(Dst, And0, And1); 4933 } else { 4934 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4935 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4936 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4937 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4938 Or = MIRBuilder.buildOr(Dst, And0, And1); 4939 } 4940 4941 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4942 // constants are a nan and -0.0, but the final result should preserve 4943 // everything. 4944 if (unsigned Flags = MI.getFlags()) 4945 Or->setFlags(Flags); 4946 4947 MI.eraseFromParent(); 4948 return Legalized; 4949 } 4950 4951 LegalizerHelper::LegalizeResult 4952 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4953 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4954 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4955 4956 Register Dst = MI.getOperand(0).getReg(); 4957 Register Src0 = MI.getOperand(1).getReg(); 4958 Register Src1 = MI.getOperand(2).getReg(); 4959 LLT Ty = MRI.getType(Dst); 4960 4961 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4962 // Insert canonicalizes if it's possible we need to quiet to get correct 4963 // sNaN behavior. 4964 4965 // Note this must be done here, and not as an optimization combine in the 4966 // absence of a dedicate quiet-snan instruction as we're using an 4967 // omni-purpose G_FCANONICALIZE. 4968 if (!isKnownNeverSNaN(Src0, MRI)) 4969 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4970 4971 if (!isKnownNeverSNaN(Src1, MRI)) 4972 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4973 } 4974 4975 // If there are no nans, it's safe to simply replace this with the non-IEEE 4976 // version. 4977 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4978 MI.eraseFromParent(); 4979 return Legalized; 4980 } 4981 4982 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4983 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4984 Register DstReg = MI.getOperand(0).getReg(); 4985 LLT Ty = MRI.getType(DstReg); 4986 unsigned Flags = MI.getFlags(); 4987 4988 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4989 Flags); 4990 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4991 MI.eraseFromParent(); 4992 return Legalized; 4993 } 4994 4995 LegalizerHelper::LegalizeResult 4996 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4997 Register DstReg = MI.getOperand(0).getReg(); 4998 Register X = MI.getOperand(1).getReg(); 4999 const unsigned Flags = MI.getFlags(); 5000 const LLT Ty = MRI.getType(DstReg); 5001 const LLT CondTy = Ty.changeElementSize(1); 5002 5003 // round(x) => 5004 // t = trunc(x); 5005 // d = fabs(x - t); 5006 // o = copysign(1.0f, x); 5007 // return t + (d >= 0.5 ? o : 0.0); 5008 5009 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5010 5011 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5012 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5013 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5014 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5015 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5016 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5017 5018 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5019 Flags); 5020 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5021 5022 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5023 5024 MI.eraseFromParent(); 5025 return Legalized; 5026 } 5027 5028 LegalizerHelper::LegalizeResult 5029 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5030 Register DstReg = MI.getOperand(0).getReg(); 5031 Register SrcReg = MI.getOperand(1).getReg(); 5032 unsigned Flags = MI.getFlags(); 5033 LLT Ty = MRI.getType(DstReg); 5034 const LLT CondTy = Ty.changeElementSize(1); 5035 5036 // result = trunc(src); 5037 // if (src < 0.0 && src != result) 5038 // result += -1.0. 5039 5040 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5041 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5042 5043 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5044 SrcReg, Zero, Flags); 5045 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5046 SrcReg, Trunc, Flags); 5047 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5048 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5049 5050 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5051 MI.eraseFromParent(); 5052 return Legalized; 5053 } 5054 5055 LegalizerHelper::LegalizeResult 5056 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5057 const unsigned NumOps = MI.getNumOperands(); 5058 Register DstReg = MI.getOperand(0).getReg(); 5059 Register Src0Reg = MI.getOperand(1).getReg(); 5060 LLT DstTy = MRI.getType(DstReg); 5061 LLT SrcTy = MRI.getType(Src0Reg); 5062 unsigned PartSize = SrcTy.getSizeInBits(); 5063 5064 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5065 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5066 5067 for (unsigned I = 2; I != NumOps; ++I) { 5068 const unsigned Offset = (I - 1) * PartSize; 5069 5070 Register SrcReg = MI.getOperand(I).getReg(); 5071 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5072 5073 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5074 MRI.createGenericVirtualRegister(WideTy); 5075 5076 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5077 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5078 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5079 ResultReg = NextResult; 5080 } 5081 5082 if (DstTy.isPointer()) { 5083 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5084 DstTy.getAddressSpace())) { 5085 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5086 return UnableToLegalize; 5087 } 5088 5089 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5090 } 5091 5092 MI.eraseFromParent(); 5093 return Legalized; 5094 } 5095 5096 LegalizerHelper::LegalizeResult 5097 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5098 const unsigned NumDst = MI.getNumOperands() - 1; 5099 Register SrcReg = MI.getOperand(NumDst).getReg(); 5100 Register Dst0Reg = MI.getOperand(0).getReg(); 5101 LLT DstTy = MRI.getType(Dst0Reg); 5102 if (DstTy.isPointer()) 5103 return UnableToLegalize; // TODO 5104 5105 SrcReg = coerceToScalar(SrcReg); 5106 if (!SrcReg) 5107 return UnableToLegalize; 5108 5109 // Expand scalarizing unmerge as bitcast to integer and shift. 5110 LLT IntTy = MRI.getType(SrcReg); 5111 5112 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5113 5114 const unsigned DstSize = DstTy.getSizeInBits(); 5115 unsigned Offset = DstSize; 5116 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5117 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5118 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5119 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5120 } 5121 5122 MI.eraseFromParent(); 5123 return Legalized; 5124 } 5125 5126 LegalizerHelper::LegalizeResult 5127 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5128 Register DstReg = MI.getOperand(0).getReg(); 5129 Register Src0Reg = MI.getOperand(1).getReg(); 5130 Register Src1Reg = MI.getOperand(2).getReg(); 5131 LLT Src0Ty = MRI.getType(Src0Reg); 5132 LLT DstTy = MRI.getType(DstReg); 5133 LLT IdxTy = LLT::scalar(32); 5134 5135 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5136 5137 if (DstTy.isScalar()) { 5138 if (Src0Ty.isVector()) 5139 return UnableToLegalize; 5140 5141 // This is just a SELECT. 5142 assert(Mask.size() == 1 && "Expected a single mask element"); 5143 Register Val; 5144 if (Mask[0] < 0 || Mask[0] > 1) 5145 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5146 else 5147 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5148 MIRBuilder.buildCopy(DstReg, Val); 5149 MI.eraseFromParent(); 5150 return Legalized; 5151 } 5152 5153 Register Undef; 5154 SmallVector<Register, 32> BuildVec; 5155 LLT EltTy = DstTy.getElementType(); 5156 5157 for (int Idx : Mask) { 5158 if (Idx < 0) { 5159 if (!Undef.isValid()) 5160 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5161 BuildVec.push_back(Undef); 5162 continue; 5163 } 5164 5165 if (Src0Ty.isScalar()) { 5166 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5167 } else { 5168 int NumElts = Src0Ty.getNumElements(); 5169 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5170 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5171 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5172 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5173 BuildVec.push_back(Extract.getReg(0)); 5174 } 5175 } 5176 5177 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5178 MI.eraseFromParent(); 5179 return Legalized; 5180 } 5181 5182 LegalizerHelper::LegalizeResult 5183 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5184 const auto &MF = *MI.getMF(); 5185 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5186 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5187 return UnableToLegalize; 5188 5189 Register Dst = MI.getOperand(0).getReg(); 5190 Register AllocSize = MI.getOperand(1).getReg(); 5191 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5192 5193 LLT PtrTy = MRI.getType(Dst); 5194 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5195 5196 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5197 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5198 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5199 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5200 5201 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5202 // have to generate an extra instruction to negate the alloc and then use 5203 // G_PTR_ADD to add the negative offset. 5204 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5205 if (Alignment > Align(1)) { 5206 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5207 AlignMask.negate(); 5208 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5209 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5210 } 5211 5212 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5213 MIRBuilder.buildCopy(SPReg, SPTmp); 5214 MIRBuilder.buildCopy(Dst, SPTmp); 5215 5216 MI.eraseFromParent(); 5217 return Legalized; 5218 } 5219 5220 LegalizerHelper::LegalizeResult 5221 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5222 Register Dst = MI.getOperand(0).getReg(); 5223 Register Src = MI.getOperand(1).getReg(); 5224 unsigned Offset = MI.getOperand(2).getImm(); 5225 5226 LLT DstTy = MRI.getType(Dst); 5227 LLT SrcTy = MRI.getType(Src); 5228 5229 if (DstTy.isScalar() && 5230 (SrcTy.isScalar() || 5231 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5232 LLT SrcIntTy = SrcTy; 5233 if (!SrcTy.isScalar()) { 5234 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5235 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5236 } 5237 5238 if (Offset == 0) 5239 MIRBuilder.buildTrunc(Dst, Src); 5240 else { 5241 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5242 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5243 MIRBuilder.buildTrunc(Dst, Shr); 5244 } 5245 5246 MI.eraseFromParent(); 5247 return Legalized; 5248 } 5249 5250 return UnableToLegalize; 5251 } 5252 5253 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5254 Register Dst = MI.getOperand(0).getReg(); 5255 Register Src = MI.getOperand(1).getReg(); 5256 Register InsertSrc = MI.getOperand(2).getReg(); 5257 uint64_t Offset = MI.getOperand(3).getImm(); 5258 5259 LLT DstTy = MRI.getType(Src); 5260 LLT InsertTy = MRI.getType(InsertSrc); 5261 5262 if (InsertTy.isVector() || 5263 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5264 return UnableToLegalize; 5265 5266 const DataLayout &DL = MIRBuilder.getDataLayout(); 5267 if ((DstTy.isPointer() && 5268 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5269 (InsertTy.isPointer() && 5270 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5271 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5272 return UnableToLegalize; 5273 } 5274 5275 LLT IntDstTy = DstTy; 5276 5277 if (!DstTy.isScalar()) { 5278 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5279 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5280 } 5281 5282 if (!InsertTy.isScalar()) { 5283 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5284 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5285 } 5286 5287 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5288 if (Offset != 0) { 5289 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5290 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5291 } 5292 5293 APInt MaskVal = APInt::getBitsSetWithWrap( 5294 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5295 5296 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5297 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5298 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5299 5300 MIRBuilder.buildCast(Dst, Or); 5301 MI.eraseFromParent(); 5302 return Legalized; 5303 } 5304 5305 LegalizerHelper::LegalizeResult 5306 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5307 Register Dst0 = MI.getOperand(0).getReg(); 5308 Register Dst1 = MI.getOperand(1).getReg(); 5309 Register LHS = MI.getOperand(2).getReg(); 5310 Register RHS = MI.getOperand(3).getReg(); 5311 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5312 5313 LLT Ty = MRI.getType(Dst0); 5314 LLT BoolTy = MRI.getType(Dst1); 5315 5316 if (IsAdd) 5317 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5318 else 5319 MIRBuilder.buildSub(Dst0, LHS, RHS); 5320 5321 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5322 5323 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5324 5325 // For an addition, the result should be less than one of the operands (LHS) 5326 // if and only if the other operand (RHS) is negative, otherwise there will 5327 // be overflow. 5328 // For a subtraction, the result should be less than one of the operands 5329 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5330 // otherwise there will be overflow. 5331 auto ResultLowerThanLHS = 5332 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5333 auto ConditionRHS = MIRBuilder.buildICmp( 5334 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5335 5336 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5337 MI.eraseFromParent(); 5338 return Legalized; 5339 } 5340 5341 LegalizerHelper::LegalizeResult 5342 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5343 Register Res = MI.getOperand(0).getReg(); 5344 Register LHS = MI.getOperand(1).getReg(); 5345 Register RHS = MI.getOperand(2).getReg(); 5346 LLT Ty = MRI.getType(Res); 5347 bool IsSigned; 5348 bool IsAdd; 5349 unsigned BaseOp; 5350 switch (MI.getOpcode()) { 5351 default: 5352 llvm_unreachable("unexpected addsat/subsat opcode"); 5353 case TargetOpcode::G_UADDSAT: 5354 IsSigned = false; 5355 IsAdd = true; 5356 BaseOp = TargetOpcode::G_ADD; 5357 break; 5358 case TargetOpcode::G_SADDSAT: 5359 IsSigned = true; 5360 IsAdd = true; 5361 BaseOp = TargetOpcode::G_ADD; 5362 break; 5363 case TargetOpcode::G_USUBSAT: 5364 IsSigned = false; 5365 IsAdd = false; 5366 BaseOp = TargetOpcode::G_SUB; 5367 break; 5368 case TargetOpcode::G_SSUBSAT: 5369 IsSigned = true; 5370 IsAdd = false; 5371 BaseOp = TargetOpcode::G_SUB; 5372 break; 5373 } 5374 5375 if (IsSigned) { 5376 // sadd.sat(a, b) -> 5377 // hi = 0x7fffffff - smax(a, 0) 5378 // lo = 0x80000000 - smin(a, 0) 5379 // a + smin(smax(lo, b), hi) 5380 // ssub.sat(a, b) -> 5381 // lo = smax(a, -1) - 0x7fffffff 5382 // hi = smin(a, -1) - 0x80000000 5383 // a - smin(smax(lo, b), hi) 5384 // TODO: AMDGPU can use a "median of 3" instruction here: 5385 // a +/- med3(lo, b, hi) 5386 uint64_t NumBits = Ty.getScalarSizeInBits(); 5387 auto MaxVal = 5388 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5389 auto MinVal = 5390 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5391 MachineInstrBuilder Hi, Lo; 5392 if (IsAdd) { 5393 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5394 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5395 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5396 } else { 5397 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5398 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5399 MaxVal); 5400 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5401 MinVal); 5402 } 5403 auto RHSClamped = 5404 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5405 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5406 } else { 5407 // uadd.sat(a, b) -> a + umin(~a, b) 5408 // usub.sat(a, b) -> a - umin(a, b) 5409 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 5410 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 5411 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 5412 } 5413 5414 MI.eraseFromParent(); 5415 return Legalized; 5416 } 5417 5418 LegalizerHelper::LegalizeResult 5419 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 5420 Register Res = MI.getOperand(0).getReg(); 5421 Register LHS = MI.getOperand(1).getReg(); 5422 Register RHS = MI.getOperand(2).getReg(); 5423 LLT Ty = MRI.getType(Res); 5424 LLT BoolTy = Ty.changeElementSize(1); 5425 bool IsSigned; 5426 bool IsAdd; 5427 unsigned OverflowOp; 5428 switch (MI.getOpcode()) { 5429 default: 5430 llvm_unreachable("unexpected addsat/subsat opcode"); 5431 case TargetOpcode::G_UADDSAT: 5432 IsSigned = false; 5433 IsAdd = true; 5434 OverflowOp = TargetOpcode::G_UADDO; 5435 break; 5436 case TargetOpcode::G_SADDSAT: 5437 IsSigned = true; 5438 IsAdd = true; 5439 OverflowOp = TargetOpcode::G_SADDO; 5440 break; 5441 case TargetOpcode::G_USUBSAT: 5442 IsSigned = false; 5443 IsAdd = false; 5444 OverflowOp = TargetOpcode::G_USUBO; 5445 break; 5446 case TargetOpcode::G_SSUBSAT: 5447 IsSigned = true; 5448 IsAdd = false; 5449 OverflowOp = TargetOpcode::G_SSUBO; 5450 break; 5451 } 5452 5453 auto OverflowRes = 5454 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 5455 Register Tmp = OverflowRes.getReg(0); 5456 Register Ov = OverflowRes.getReg(1); 5457 MachineInstrBuilder Clamp; 5458 if (IsSigned) { 5459 // sadd.sat(a, b) -> 5460 // {tmp, ov} = saddo(a, b) 5461 // ov ? (tmp >>s 31) + 0x80000000 : r 5462 // ssub.sat(a, b) -> 5463 // {tmp, ov} = ssubo(a, b) 5464 // ov ? (tmp >>s 31) + 0x80000000 : r 5465 uint64_t NumBits = Ty.getScalarSizeInBits(); 5466 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 5467 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 5468 auto MinVal = 5469 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5470 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 5471 } else { 5472 // uadd.sat(a, b) -> 5473 // {tmp, ov} = uaddo(a, b) 5474 // ov ? 0xffffffff : tmp 5475 // usub.sat(a, b) -> 5476 // {tmp, ov} = usubo(a, b) 5477 // ov ? 0 : tmp 5478 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 5479 } 5480 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 5481 5482 MI.eraseFromParent(); 5483 return Legalized; 5484 } 5485 5486 LegalizerHelper::LegalizeResult 5487 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5488 Register Dst = MI.getOperand(0).getReg(); 5489 Register Src = MI.getOperand(1).getReg(); 5490 const LLT Ty = MRI.getType(Src); 5491 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5492 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5493 5494 // Swap most and least significant byte, set remaining bytes in Res to zero. 5495 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5496 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5497 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5498 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5499 5500 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5501 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5502 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5503 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5504 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5505 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5506 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5507 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5508 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5509 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5510 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5511 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5512 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5513 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5514 } 5515 Res.getInstr()->getOperand(0).setReg(Dst); 5516 5517 MI.eraseFromParent(); 5518 return Legalized; 5519 } 5520 5521 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5522 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5523 MachineInstrBuilder Src, APInt Mask) { 5524 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5525 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5526 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5527 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5528 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5529 return B.buildOr(Dst, LHS, RHS); 5530 } 5531 5532 LegalizerHelper::LegalizeResult 5533 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5534 Register Dst = MI.getOperand(0).getReg(); 5535 Register Src = MI.getOperand(1).getReg(); 5536 const LLT Ty = MRI.getType(Src); 5537 unsigned Size = Ty.getSizeInBits(); 5538 5539 MachineInstrBuilder BSWAP = 5540 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5541 5542 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5543 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5544 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5545 MachineInstrBuilder Swap4 = 5546 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5547 5548 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5549 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5550 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5551 MachineInstrBuilder Swap2 = 5552 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5553 5554 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5555 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5556 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5557 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5558 5559 MI.eraseFromParent(); 5560 return Legalized; 5561 } 5562 5563 LegalizerHelper::LegalizeResult 5564 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5565 MachineFunction &MF = MIRBuilder.getMF(); 5566 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5567 const TargetLowering *TLI = STI.getTargetLowering(); 5568 5569 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5570 int NameOpIdx = IsRead ? 1 : 0; 5571 int ValRegIndex = IsRead ? 0 : 1; 5572 5573 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5574 const LLT Ty = MRI.getType(ValReg); 5575 const MDString *RegStr = cast<MDString>( 5576 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5577 5578 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5579 if (!PhysReg.isValid()) 5580 return UnableToLegalize; 5581 5582 if (IsRead) 5583 MIRBuilder.buildCopy(ValReg, PhysReg); 5584 else 5585 MIRBuilder.buildCopy(PhysReg, ValReg); 5586 5587 MI.eraseFromParent(); 5588 return Legalized; 5589 } 5590