1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetFrameLowering.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 #define DEBUG_TYPE "legalizer" 31 32 using namespace llvm; 33 using namespace LegalizeActions; 34 using namespace MIPatternMatch; 35 36 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 37 /// 38 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 39 /// with any leftover piece as type \p LeftoverTy 40 /// 41 /// Returns -1 in the first element of the pair if the breakdown is not 42 /// satisfiable. 43 static std::pair<int, int> 44 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 45 assert(!LeftoverTy.isValid() && "this is an out argument"); 46 47 unsigned Size = OrigTy.getSizeInBits(); 48 unsigned NarrowSize = NarrowTy.getSizeInBits(); 49 unsigned NumParts = Size / NarrowSize; 50 unsigned LeftoverSize = Size - NumParts * NarrowSize; 51 assert(Size > NarrowSize); 52 53 if (LeftoverSize == 0) 54 return {NumParts, 0}; 55 56 if (NarrowTy.isVector()) { 57 unsigned EltSize = OrigTy.getScalarSizeInBits(); 58 if (LeftoverSize % EltSize != 0) 59 return {-1, -1}; 60 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 61 } else { 62 LeftoverTy = LLT::scalar(LeftoverSize); 63 } 64 65 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 66 return std::make_pair(NumParts, NumLeftover); 67 } 68 69 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 70 71 if (!Ty.isScalar()) 72 return nullptr; 73 74 switch (Ty.getSizeInBits()) { 75 case 16: 76 return Type::getHalfTy(Ctx); 77 case 32: 78 return Type::getFloatTy(Ctx); 79 case 64: 80 return Type::getDoubleTy(Ctx); 81 case 80: 82 return Type::getX86_FP80Ty(Ctx); 83 case 128: 84 return Type::getFP128Ty(Ctx); 85 default: 86 return nullptr; 87 } 88 } 89 90 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 91 GISelChangeObserver &Observer, 92 MachineIRBuilder &Builder) 93 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 94 LI(*MF.getSubtarget().getLegalizerInfo()), 95 TLI(*MF.getSubtarget().getTargetLowering()) { } 96 97 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 98 GISelChangeObserver &Observer, 99 MachineIRBuilder &B) 100 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 101 TLI(*MF.getSubtarget().getTargetLowering()) { } 102 103 LegalizerHelper::LegalizeResult 104 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 105 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 106 107 MIRBuilder.setInstrAndDebugLoc(MI); 108 109 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 110 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 111 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 112 auto Step = LI.getAction(MI, MRI); 113 switch (Step.Action) { 114 case Legal: 115 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 116 return AlreadyLegal; 117 case Libcall: 118 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 119 return libcall(MI); 120 case NarrowScalar: 121 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 122 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 123 case WidenScalar: 124 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 125 return widenScalar(MI, Step.TypeIdx, Step.NewType); 126 case Bitcast: 127 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 128 return bitcast(MI, Step.TypeIdx, Step.NewType); 129 case Lower: 130 LLVM_DEBUG(dbgs() << ".. Lower\n"); 131 return lower(MI, Step.TypeIdx, Step.NewType); 132 case FewerElements: 133 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 134 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case MoreElements: 136 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 137 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 138 case Custom: 139 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 140 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 141 default: 142 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 143 return UnableToLegalize; 144 } 145 } 146 147 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 148 SmallVectorImpl<Register> &VRegs) { 149 for (int i = 0; i < NumParts; ++i) 150 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 151 MIRBuilder.buildUnmerge(VRegs, Reg); 152 } 153 154 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 155 LLT MainTy, LLT &LeftoverTy, 156 SmallVectorImpl<Register> &VRegs, 157 SmallVectorImpl<Register> &LeftoverRegs) { 158 assert(!LeftoverTy.isValid() && "this is an out argument"); 159 160 unsigned RegSize = RegTy.getSizeInBits(); 161 unsigned MainSize = MainTy.getSizeInBits(); 162 unsigned NumParts = RegSize / MainSize; 163 unsigned LeftoverSize = RegSize - NumParts * MainSize; 164 165 // Use an unmerge when possible. 166 if (LeftoverSize == 0) { 167 for (unsigned I = 0; I < NumParts; ++I) 168 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 169 MIRBuilder.buildUnmerge(VRegs, Reg); 170 return true; 171 } 172 173 if (MainTy.isVector()) { 174 unsigned EltSize = MainTy.getScalarSizeInBits(); 175 if (LeftoverSize % EltSize != 0) 176 return false; 177 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 178 } else { 179 LeftoverTy = LLT::scalar(LeftoverSize); 180 } 181 182 // For irregular sizes, extract the individual parts. 183 for (unsigned I = 0; I != NumParts; ++I) { 184 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 185 VRegs.push_back(NewReg); 186 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 187 } 188 189 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 190 Offset += LeftoverSize) { 191 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 192 LeftoverRegs.push_back(NewReg); 193 MIRBuilder.buildExtract(NewReg, Reg, Offset); 194 } 195 196 return true; 197 } 198 199 void LegalizerHelper::insertParts(Register DstReg, 200 LLT ResultTy, LLT PartTy, 201 ArrayRef<Register> PartRegs, 202 LLT LeftoverTy, 203 ArrayRef<Register> LeftoverRegs) { 204 if (!LeftoverTy.isValid()) { 205 assert(LeftoverRegs.empty()); 206 207 if (!ResultTy.isVector()) { 208 MIRBuilder.buildMerge(DstReg, PartRegs); 209 return; 210 } 211 212 if (PartTy.isVector()) 213 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 214 else 215 MIRBuilder.buildBuildVector(DstReg, PartRegs); 216 return; 217 } 218 219 unsigned PartSize = PartTy.getSizeInBits(); 220 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 221 222 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 223 MIRBuilder.buildUndef(CurResultReg); 224 225 unsigned Offset = 0; 226 for (Register PartReg : PartRegs) { 227 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 228 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 229 CurResultReg = NewResultReg; 230 Offset += PartSize; 231 } 232 233 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 234 // Use the original output register for the final insert to avoid a copy. 235 Register NewResultReg = (I + 1 == E) ? 236 DstReg : MRI.createGenericVirtualRegister(ResultTy); 237 238 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 239 CurResultReg = NewResultReg; 240 Offset += LeftoverPartSize; 241 } 242 } 243 244 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 245 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 246 const MachineInstr &MI) { 247 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 248 249 const int StartIdx = Regs.size(); 250 const int NumResults = MI.getNumOperands() - 1; 251 Regs.resize(Regs.size() + NumResults); 252 for (int I = 0; I != NumResults; ++I) 253 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 254 } 255 256 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 257 LLT GCDTy, Register SrcReg) { 258 LLT SrcTy = MRI.getType(SrcReg); 259 if (SrcTy == GCDTy) { 260 // If the source already evenly divides the result type, we don't need to do 261 // anything. 262 Parts.push_back(SrcReg); 263 } else { 264 // Need to split into common type sized pieces. 265 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 266 getUnmergeResults(Parts, *Unmerge); 267 } 268 } 269 270 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 271 LLT NarrowTy, Register SrcReg) { 272 LLT SrcTy = MRI.getType(SrcReg); 273 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 274 extractGCDType(Parts, GCDTy, SrcReg); 275 return GCDTy; 276 } 277 278 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 279 SmallVectorImpl<Register> &VRegs, 280 unsigned PadStrategy) { 281 LLT LCMTy = getLCMType(DstTy, NarrowTy); 282 283 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 284 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 285 int NumOrigSrc = VRegs.size(); 286 287 Register PadReg; 288 289 // Get a value we can use to pad the source value if the sources won't evenly 290 // cover the result type. 291 if (NumOrigSrc < NumParts * NumSubParts) { 292 if (PadStrategy == TargetOpcode::G_ZEXT) 293 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 294 else if (PadStrategy == TargetOpcode::G_ANYEXT) 295 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 296 else { 297 assert(PadStrategy == TargetOpcode::G_SEXT); 298 299 // Shift the sign bit of the low register through the high register. 300 auto ShiftAmt = 301 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 302 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 303 } 304 } 305 306 // Registers for the final merge to be produced. 307 SmallVector<Register, 4> Remerge(NumParts); 308 309 // Registers needed for intermediate merges, which will be merged into a 310 // source for Remerge. 311 SmallVector<Register, 4> SubMerge(NumSubParts); 312 313 // Once we've fully read off the end of the original source bits, we can reuse 314 // the same high bits for remaining padding elements. 315 Register AllPadReg; 316 317 // Build merges to the LCM type to cover the original result type. 318 for (int I = 0; I != NumParts; ++I) { 319 bool AllMergePartsArePadding = true; 320 321 // Build the requested merges to the requested type. 322 for (int J = 0; J != NumSubParts; ++J) { 323 int Idx = I * NumSubParts + J; 324 if (Idx >= NumOrigSrc) { 325 SubMerge[J] = PadReg; 326 continue; 327 } 328 329 SubMerge[J] = VRegs[Idx]; 330 331 // There are meaningful bits here we can't reuse later. 332 AllMergePartsArePadding = false; 333 } 334 335 // If we've filled up a complete piece with padding bits, we can directly 336 // emit the natural sized constant if applicable, rather than a merge of 337 // smaller constants. 338 if (AllMergePartsArePadding && !AllPadReg) { 339 if (PadStrategy == TargetOpcode::G_ANYEXT) 340 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 341 else if (PadStrategy == TargetOpcode::G_ZEXT) 342 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 343 344 // If this is a sign extension, we can't materialize a trivial constant 345 // with the right type and have to produce a merge. 346 } 347 348 if (AllPadReg) { 349 // Avoid creating additional instructions if we're just adding additional 350 // copies of padding bits. 351 Remerge[I] = AllPadReg; 352 continue; 353 } 354 355 if (NumSubParts == 1) 356 Remerge[I] = SubMerge[0]; 357 else 358 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 359 360 // In the sign extend padding case, re-use the first all-signbit merge. 361 if (AllMergePartsArePadding && !AllPadReg) 362 AllPadReg = Remerge[I]; 363 } 364 365 VRegs = std::move(Remerge); 366 return LCMTy; 367 } 368 369 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 370 ArrayRef<Register> RemergeRegs) { 371 LLT DstTy = MRI.getType(DstReg); 372 373 // Create the merge to the widened source, and extract the relevant bits into 374 // the result. 375 376 if (DstTy == LCMTy) { 377 MIRBuilder.buildMerge(DstReg, RemergeRegs); 378 return; 379 } 380 381 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 382 if (DstTy.isScalar() && LCMTy.isScalar()) { 383 MIRBuilder.buildTrunc(DstReg, Remerge); 384 return; 385 } 386 387 if (LCMTy.isVector()) { 388 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 389 SmallVector<Register, 8> UnmergeDefs(NumDefs); 390 UnmergeDefs[0] = DstReg; 391 for (unsigned I = 1; I != NumDefs; ++I) 392 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 393 394 MIRBuilder.buildUnmerge(UnmergeDefs, 395 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 396 return; 397 } 398 399 llvm_unreachable("unhandled case"); 400 } 401 402 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 403 #define RTLIBCASE_INT(LibcallPrefix) \ 404 do { \ 405 switch (Size) { \ 406 case 32: \ 407 return RTLIB::LibcallPrefix##32; \ 408 case 64: \ 409 return RTLIB::LibcallPrefix##64; \ 410 case 128: \ 411 return RTLIB::LibcallPrefix##128; \ 412 default: \ 413 llvm_unreachable("unexpected size"); \ 414 } \ 415 } while (0) 416 417 #define RTLIBCASE(LibcallPrefix) \ 418 do { \ 419 switch (Size) { \ 420 case 32: \ 421 return RTLIB::LibcallPrefix##32; \ 422 case 64: \ 423 return RTLIB::LibcallPrefix##64; \ 424 case 80: \ 425 return RTLIB::LibcallPrefix##80; \ 426 case 128: \ 427 return RTLIB::LibcallPrefix##128; \ 428 default: \ 429 llvm_unreachable("unexpected size"); \ 430 } \ 431 } while (0) 432 433 switch (Opcode) { 434 case TargetOpcode::G_SDIV: 435 RTLIBCASE_INT(SDIV_I); 436 case TargetOpcode::G_UDIV: 437 RTLIBCASE_INT(UDIV_I); 438 case TargetOpcode::G_SREM: 439 RTLIBCASE_INT(SREM_I); 440 case TargetOpcode::G_UREM: 441 RTLIBCASE_INT(UREM_I); 442 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 443 RTLIBCASE_INT(CTLZ_I); 444 case TargetOpcode::G_FADD: 445 RTLIBCASE(ADD_F); 446 case TargetOpcode::G_FSUB: 447 RTLIBCASE(SUB_F); 448 case TargetOpcode::G_FMUL: 449 RTLIBCASE(MUL_F); 450 case TargetOpcode::G_FDIV: 451 RTLIBCASE(DIV_F); 452 case TargetOpcode::G_FEXP: 453 RTLIBCASE(EXP_F); 454 case TargetOpcode::G_FEXP2: 455 RTLIBCASE(EXP2_F); 456 case TargetOpcode::G_FREM: 457 RTLIBCASE(REM_F); 458 case TargetOpcode::G_FPOW: 459 RTLIBCASE(POW_F); 460 case TargetOpcode::G_FMA: 461 RTLIBCASE(FMA_F); 462 case TargetOpcode::G_FSIN: 463 RTLIBCASE(SIN_F); 464 case TargetOpcode::G_FCOS: 465 RTLIBCASE(COS_F); 466 case TargetOpcode::G_FLOG10: 467 RTLIBCASE(LOG10_F); 468 case TargetOpcode::G_FLOG: 469 RTLIBCASE(LOG_F); 470 case TargetOpcode::G_FLOG2: 471 RTLIBCASE(LOG2_F); 472 case TargetOpcode::G_FCEIL: 473 RTLIBCASE(CEIL_F); 474 case TargetOpcode::G_FFLOOR: 475 RTLIBCASE(FLOOR_F); 476 case TargetOpcode::G_FMINNUM: 477 RTLIBCASE(FMIN_F); 478 case TargetOpcode::G_FMAXNUM: 479 RTLIBCASE(FMAX_F); 480 case TargetOpcode::G_FSQRT: 481 RTLIBCASE(SQRT_F); 482 case TargetOpcode::G_FRINT: 483 RTLIBCASE(RINT_F); 484 case TargetOpcode::G_FNEARBYINT: 485 RTLIBCASE(NEARBYINT_F); 486 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 487 RTLIBCASE(ROUNDEVEN_F); 488 } 489 llvm_unreachable("Unknown libcall function"); 490 } 491 492 /// True if an instruction is in tail position in its caller. Intended for 493 /// legalizing libcalls as tail calls when possible. 494 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 495 MachineInstr &MI) { 496 MachineBasicBlock &MBB = *MI.getParent(); 497 const Function &F = MBB.getParent()->getFunction(); 498 499 // Conservatively require the attributes of the call to match those of 500 // the return. Ignore NoAlias and NonNull because they don't affect the 501 // call sequence. 502 AttributeList CallerAttrs = F.getAttributes(); 503 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 504 .removeAttribute(Attribute::NoAlias) 505 .removeAttribute(Attribute::NonNull) 506 .hasAttributes()) 507 return false; 508 509 // It's not safe to eliminate the sign / zero extension of the return value. 510 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 511 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 512 return false; 513 514 // Only tail call if the following instruction is a standard return. 515 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 516 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 517 return false; 518 519 return true; 520 } 521 522 LegalizerHelper::LegalizeResult 523 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 524 const CallLowering::ArgInfo &Result, 525 ArrayRef<CallLowering::ArgInfo> Args, 526 const CallingConv::ID CC) { 527 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 528 529 CallLowering::CallLoweringInfo Info; 530 Info.CallConv = CC; 531 Info.Callee = MachineOperand::CreateES(Name); 532 Info.OrigRet = Result; 533 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 534 if (!CLI.lowerCall(MIRBuilder, Info)) 535 return LegalizerHelper::UnableToLegalize; 536 537 return LegalizerHelper::Legalized; 538 } 539 540 LegalizerHelper::LegalizeResult 541 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 542 const CallLowering::ArgInfo &Result, 543 ArrayRef<CallLowering::ArgInfo> Args) { 544 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 545 const char *Name = TLI.getLibcallName(Libcall); 546 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 547 return createLibcall(MIRBuilder, Name, Result, Args, CC); 548 } 549 550 // Useful for libcalls where all operands have the same type. 551 static LegalizerHelper::LegalizeResult 552 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 553 Type *OpType) { 554 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 555 556 SmallVector<CallLowering::ArgInfo, 3> Args; 557 for (unsigned i = 1; i < MI.getNumOperands(); i++) 558 Args.push_back({MI.getOperand(i).getReg(), OpType}); 559 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 560 Args); 561 } 562 563 LegalizerHelper::LegalizeResult 564 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 565 MachineInstr &MI) { 566 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 567 568 SmallVector<CallLowering::ArgInfo, 3> Args; 569 // Add all the args, except for the last which is an imm denoting 'tail'. 570 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 571 Register Reg = MI.getOperand(i).getReg(); 572 573 // Need derive an IR type for call lowering. 574 LLT OpLLT = MRI.getType(Reg); 575 Type *OpTy = nullptr; 576 if (OpLLT.isPointer()) 577 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 578 else 579 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 580 Args.push_back({Reg, OpTy}); 581 } 582 583 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 584 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 585 RTLIB::Libcall RTLibcall; 586 unsigned Opc = MI.getOpcode(); 587 switch (Opc) { 588 case TargetOpcode::G_BZERO: 589 RTLibcall = RTLIB::BZERO; 590 break; 591 case TargetOpcode::G_MEMCPY: 592 RTLibcall = RTLIB::MEMCPY; 593 break; 594 case TargetOpcode::G_MEMMOVE: 595 RTLibcall = RTLIB::MEMMOVE; 596 break; 597 case TargetOpcode::G_MEMSET: 598 RTLibcall = RTLIB::MEMSET; 599 break; 600 default: 601 return LegalizerHelper::UnableToLegalize; 602 } 603 const char *Name = TLI.getLibcallName(RTLibcall); 604 605 // Unsupported libcall on the target. 606 if (!Name) { 607 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 608 << MIRBuilder.getTII().getName(Opc) << "\n"); 609 return LegalizerHelper::UnableToLegalize; 610 } 611 612 CallLowering::CallLoweringInfo Info; 613 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 614 Info.Callee = MachineOperand::CreateES(Name); 615 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 616 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 617 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 618 619 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 620 if (!CLI.lowerCall(MIRBuilder, Info)) 621 return LegalizerHelper::UnableToLegalize; 622 623 if (Info.LoweredTailCall) { 624 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 625 // We must have a return following the call (or debug insts) to get past 626 // isLibCallInTailPosition. 627 do { 628 MachineInstr *Next = MI.getNextNode(); 629 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 630 "Expected instr following MI to be return or debug inst?"); 631 // We lowered a tail call, so the call is now the return from the block. 632 // Delete the old return. 633 Next->eraseFromParent(); 634 } while (MI.getNextNode()); 635 } 636 637 return LegalizerHelper::Legalized; 638 } 639 640 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 641 Type *FromType) { 642 auto ToMVT = MVT::getVT(ToType); 643 auto FromMVT = MVT::getVT(FromType); 644 645 switch (Opcode) { 646 case TargetOpcode::G_FPEXT: 647 return RTLIB::getFPEXT(FromMVT, ToMVT); 648 case TargetOpcode::G_FPTRUNC: 649 return RTLIB::getFPROUND(FromMVT, ToMVT); 650 case TargetOpcode::G_FPTOSI: 651 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 652 case TargetOpcode::G_FPTOUI: 653 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 654 case TargetOpcode::G_SITOFP: 655 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 656 case TargetOpcode::G_UITOFP: 657 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 658 } 659 llvm_unreachable("Unsupported libcall function"); 660 } 661 662 static LegalizerHelper::LegalizeResult 663 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 664 Type *FromType) { 665 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 666 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 667 {{MI.getOperand(1).getReg(), FromType}}); 668 } 669 670 LegalizerHelper::LegalizeResult 671 LegalizerHelper::libcall(MachineInstr &MI) { 672 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 673 unsigned Size = LLTy.getSizeInBits(); 674 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 675 676 switch (MI.getOpcode()) { 677 default: 678 return UnableToLegalize; 679 case TargetOpcode::G_SDIV: 680 case TargetOpcode::G_UDIV: 681 case TargetOpcode::G_SREM: 682 case TargetOpcode::G_UREM: 683 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 684 Type *HLTy = IntegerType::get(Ctx, Size); 685 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 686 if (Status != Legalized) 687 return Status; 688 break; 689 } 690 case TargetOpcode::G_FADD: 691 case TargetOpcode::G_FSUB: 692 case TargetOpcode::G_FMUL: 693 case TargetOpcode::G_FDIV: 694 case TargetOpcode::G_FMA: 695 case TargetOpcode::G_FPOW: 696 case TargetOpcode::G_FREM: 697 case TargetOpcode::G_FCOS: 698 case TargetOpcode::G_FSIN: 699 case TargetOpcode::G_FLOG10: 700 case TargetOpcode::G_FLOG: 701 case TargetOpcode::G_FLOG2: 702 case TargetOpcode::G_FEXP: 703 case TargetOpcode::G_FEXP2: 704 case TargetOpcode::G_FCEIL: 705 case TargetOpcode::G_FFLOOR: 706 case TargetOpcode::G_FMINNUM: 707 case TargetOpcode::G_FMAXNUM: 708 case TargetOpcode::G_FSQRT: 709 case TargetOpcode::G_FRINT: 710 case TargetOpcode::G_FNEARBYINT: 711 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 712 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 713 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 714 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 715 return UnableToLegalize; 716 } 717 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 718 if (Status != Legalized) 719 return Status; 720 break; 721 } 722 case TargetOpcode::G_FPEXT: 723 case TargetOpcode::G_FPTRUNC: { 724 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 725 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 726 if (!FromTy || !ToTy) 727 return UnableToLegalize; 728 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 729 if (Status != Legalized) 730 return Status; 731 break; 732 } 733 case TargetOpcode::G_FPTOSI: 734 case TargetOpcode::G_FPTOUI: { 735 // FIXME: Support other types 736 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 737 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 738 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 739 return UnableToLegalize; 740 LegalizeResult Status = conversionLibcall( 741 MI, MIRBuilder, 742 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 743 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 744 if (Status != Legalized) 745 return Status; 746 break; 747 } 748 case TargetOpcode::G_SITOFP: 749 case TargetOpcode::G_UITOFP: { 750 // FIXME: Support other types 751 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 752 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 753 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 754 return UnableToLegalize; 755 LegalizeResult Status = conversionLibcall( 756 MI, MIRBuilder, 757 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 758 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 759 if (Status != Legalized) 760 return Status; 761 break; 762 } 763 case TargetOpcode::G_BZERO: 764 case TargetOpcode::G_MEMCPY: 765 case TargetOpcode::G_MEMMOVE: 766 case TargetOpcode::G_MEMSET: { 767 LegalizeResult Result = 768 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); 769 if (Result != Legalized) 770 return Result; 771 MI.eraseFromParent(); 772 return Result; 773 } 774 } 775 776 MI.eraseFromParent(); 777 return Legalized; 778 } 779 780 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 781 unsigned TypeIdx, 782 LLT NarrowTy) { 783 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 784 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 785 786 switch (MI.getOpcode()) { 787 default: 788 return UnableToLegalize; 789 case TargetOpcode::G_IMPLICIT_DEF: { 790 Register DstReg = MI.getOperand(0).getReg(); 791 LLT DstTy = MRI.getType(DstReg); 792 793 // If SizeOp0 is not an exact multiple of NarrowSize, emit 794 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 795 // FIXME: Although this would also be legal for the general case, it causes 796 // a lot of regressions in the emitted code (superfluous COPYs, artifact 797 // combines not being hit). This seems to be a problem related to the 798 // artifact combiner. 799 if (SizeOp0 % NarrowSize != 0) { 800 LLT ImplicitTy = NarrowTy; 801 if (DstTy.isVector()) 802 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 803 804 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 805 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 806 807 MI.eraseFromParent(); 808 return Legalized; 809 } 810 811 int NumParts = SizeOp0 / NarrowSize; 812 813 SmallVector<Register, 2> DstRegs; 814 for (int i = 0; i < NumParts; ++i) 815 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 816 817 if (DstTy.isVector()) 818 MIRBuilder.buildBuildVector(DstReg, DstRegs); 819 else 820 MIRBuilder.buildMerge(DstReg, DstRegs); 821 MI.eraseFromParent(); 822 return Legalized; 823 } 824 case TargetOpcode::G_CONSTANT: { 825 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 826 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 827 unsigned TotalSize = Ty.getSizeInBits(); 828 unsigned NarrowSize = NarrowTy.getSizeInBits(); 829 int NumParts = TotalSize / NarrowSize; 830 831 SmallVector<Register, 4> PartRegs; 832 for (int I = 0; I != NumParts; ++I) { 833 unsigned Offset = I * NarrowSize; 834 auto K = MIRBuilder.buildConstant(NarrowTy, 835 Val.lshr(Offset).trunc(NarrowSize)); 836 PartRegs.push_back(K.getReg(0)); 837 } 838 839 LLT LeftoverTy; 840 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 841 SmallVector<Register, 1> LeftoverRegs; 842 if (LeftoverBits != 0) { 843 LeftoverTy = LLT::scalar(LeftoverBits); 844 auto K = MIRBuilder.buildConstant( 845 LeftoverTy, 846 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 847 LeftoverRegs.push_back(K.getReg(0)); 848 } 849 850 insertParts(MI.getOperand(0).getReg(), 851 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 852 853 MI.eraseFromParent(); 854 return Legalized; 855 } 856 case TargetOpcode::G_SEXT: 857 case TargetOpcode::G_ZEXT: 858 case TargetOpcode::G_ANYEXT: 859 return narrowScalarExt(MI, TypeIdx, NarrowTy); 860 case TargetOpcode::G_TRUNC: { 861 if (TypeIdx != 1) 862 return UnableToLegalize; 863 864 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 865 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 866 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 867 return UnableToLegalize; 868 } 869 870 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 871 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 872 MI.eraseFromParent(); 873 return Legalized; 874 } 875 876 case TargetOpcode::G_FREEZE: 877 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 878 case TargetOpcode::G_ADD: 879 case TargetOpcode::G_SUB: 880 case TargetOpcode::G_SADDO: 881 case TargetOpcode::G_SSUBO: 882 case TargetOpcode::G_SADDE: 883 case TargetOpcode::G_SSUBE: 884 case TargetOpcode::G_UADDO: 885 case TargetOpcode::G_USUBO: 886 case TargetOpcode::G_UADDE: 887 case TargetOpcode::G_USUBE: 888 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 889 case TargetOpcode::G_MUL: 890 case TargetOpcode::G_UMULH: 891 return narrowScalarMul(MI, NarrowTy); 892 case TargetOpcode::G_EXTRACT: 893 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 894 case TargetOpcode::G_INSERT: 895 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 896 case TargetOpcode::G_LOAD: { 897 auto &MMO = **MI.memoperands_begin(); 898 Register DstReg = MI.getOperand(0).getReg(); 899 LLT DstTy = MRI.getType(DstReg); 900 if (DstTy.isVector()) 901 return UnableToLegalize; 902 903 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 904 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 905 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 906 MIRBuilder.buildAnyExt(DstReg, TmpReg); 907 MI.eraseFromParent(); 908 return Legalized; 909 } 910 911 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 912 } 913 case TargetOpcode::G_ZEXTLOAD: 914 case TargetOpcode::G_SEXTLOAD: { 915 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 916 Register DstReg = MI.getOperand(0).getReg(); 917 Register PtrReg = MI.getOperand(1).getReg(); 918 919 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 920 auto &MMO = **MI.memoperands_begin(); 921 unsigned MemSize = MMO.getSizeInBits(); 922 923 if (MemSize == NarrowSize) { 924 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 925 } else if (MemSize < NarrowSize) { 926 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 927 } else if (MemSize > NarrowSize) { 928 // FIXME: Need to split the load. 929 return UnableToLegalize; 930 } 931 932 if (ZExt) 933 MIRBuilder.buildZExt(DstReg, TmpReg); 934 else 935 MIRBuilder.buildSExt(DstReg, TmpReg); 936 937 MI.eraseFromParent(); 938 return Legalized; 939 } 940 case TargetOpcode::G_STORE: { 941 const auto &MMO = **MI.memoperands_begin(); 942 943 Register SrcReg = MI.getOperand(0).getReg(); 944 LLT SrcTy = MRI.getType(SrcReg); 945 if (SrcTy.isVector()) 946 return UnableToLegalize; 947 948 int NumParts = SizeOp0 / NarrowSize; 949 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 950 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 951 if (SrcTy.isVector() && LeftoverBits != 0) 952 return UnableToLegalize; 953 954 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 955 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 956 auto &MMO = **MI.memoperands_begin(); 957 MIRBuilder.buildTrunc(TmpReg, SrcReg); 958 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 959 MI.eraseFromParent(); 960 return Legalized; 961 } 962 963 return reduceLoadStoreWidth(MI, 0, NarrowTy); 964 } 965 case TargetOpcode::G_SELECT: 966 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 967 case TargetOpcode::G_AND: 968 case TargetOpcode::G_OR: 969 case TargetOpcode::G_XOR: { 970 // Legalize bitwise operation: 971 // A = BinOp<Ty> B, C 972 // into: 973 // B1, ..., BN = G_UNMERGE_VALUES B 974 // C1, ..., CN = G_UNMERGE_VALUES C 975 // A1 = BinOp<Ty/N> B1, C2 976 // ... 977 // AN = BinOp<Ty/N> BN, CN 978 // A = G_MERGE_VALUES A1, ..., AN 979 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 980 } 981 case TargetOpcode::G_SHL: 982 case TargetOpcode::G_LSHR: 983 case TargetOpcode::G_ASHR: 984 return narrowScalarShift(MI, TypeIdx, NarrowTy); 985 case TargetOpcode::G_CTLZ: 986 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 987 case TargetOpcode::G_CTTZ: 988 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 989 case TargetOpcode::G_CTPOP: 990 if (TypeIdx == 1) 991 switch (MI.getOpcode()) { 992 case TargetOpcode::G_CTLZ: 993 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 994 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 995 case TargetOpcode::G_CTTZ: 996 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 997 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 998 case TargetOpcode::G_CTPOP: 999 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1000 default: 1001 return UnableToLegalize; 1002 } 1003 1004 Observer.changingInstr(MI); 1005 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1006 Observer.changedInstr(MI); 1007 return Legalized; 1008 case TargetOpcode::G_INTTOPTR: 1009 if (TypeIdx != 1) 1010 return UnableToLegalize; 1011 1012 Observer.changingInstr(MI); 1013 narrowScalarSrc(MI, NarrowTy, 1); 1014 Observer.changedInstr(MI); 1015 return Legalized; 1016 case TargetOpcode::G_PTRTOINT: 1017 if (TypeIdx != 0) 1018 return UnableToLegalize; 1019 1020 Observer.changingInstr(MI); 1021 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1022 Observer.changedInstr(MI); 1023 return Legalized; 1024 case TargetOpcode::G_PHI: { 1025 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1026 // NarrowSize. 1027 if (SizeOp0 % NarrowSize != 0) 1028 return UnableToLegalize; 1029 1030 unsigned NumParts = SizeOp0 / NarrowSize; 1031 SmallVector<Register, 2> DstRegs(NumParts); 1032 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1033 Observer.changingInstr(MI); 1034 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1035 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1036 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1037 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1038 SrcRegs[i / 2]); 1039 } 1040 MachineBasicBlock &MBB = *MI.getParent(); 1041 MIRBuilder.setInsertPt(MBB, MI); 1042 for (unsigned i = 0; i < NumParts; ++i) { 1043 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1044 MachineInstrBuilder MIB = 1045 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1046 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1047 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1048 } 1049 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1050 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1051 Observer.changedInstr(MI); 1052 MI.eraseFromParent(); 1053 return Legalized; 1054 } 1055 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1056 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1057 if (TypeIdx != 2) 1058 return UnableToLegalize; 1059 1060 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1061 Observer.changingInstr(MI); 1062 narrowScalarSrc(MI, NarrowTy, OpIdx); 1063 Observer.changedInstr(MI); 1064 return Legalized; 1065 } 1066 case TargetOpcode::G_ICMP: { 1067 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1068 if (NarrowSize * 2 != SrcSize) 1069 return UnableToLegalize; 1070 1071 Observer.changingInstr(MI); 1072 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1073 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1074 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1075 1076 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1077 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1078 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1079 1080 CmpInst::Predicate Pred = 1081 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1082 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1083 1084 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1085 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1086 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1087 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1088 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1089 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1090 } else { 1091 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1092 MachineInstrBuilder CmpHEQ = 1093 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1094 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1095 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1096 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1097 } 1098 Observer.changedInstr(MI); 1099 MI.eraseFromParent(); 1100 return Legalized; 1101 } 1102 case TargetOpcode::G_SEXT_INREG: { 1103 if (TypeIdx != 0) 1104 return UnableToLegalize; 1105 1106 int64_t SizeInBits = MI.getOperand(2).getImm(); 1107 1108 // So long as the new type has more bits than the bits we're extending we 1109 // don't need to break it apart. 1110 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1111 Observer.changingInstr(MI); 1112 // We don't lose any non-extension bits by truncating the src and 1113 // sign-extending the dst. 1114 MachineOperand &MO1 = MI.getOperand(1); 1115 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1116 MO1.setReg(TruncMIB.getReg(0)); 1117 1118 MachineOperand &MO2 = MI.getOperand(0); 1119 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1120 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1121 MIRBuilder.buildSExt(MO2, DstExt); 1122 MO2.setReg(DstExt); 1123 Observer.changedInstr(MI); 1124 return Legalized; 1125 } 1126 1127 // Break it apart. Components below the extension point are unmodified. The 1128 // component containing the extension point becomes a narrower SEXT_INREG. 1129 // Components above it are ashr'd from the component containing the 1130 // extension point. 1131 if (SizeOp0 % NarrowSize != 0) 1132 return UnableToLegalize; 1133 int NumParts = SizeOp0 / NarrowSize; 1134 1135 // List the registers where the destination will be scattered. 1136 SmallVector<Register, 2> DstRegs; 1137 // List the registers where the source will be split. 1138 SmallVector<Register, 2> SrcRegs; 1139 1140 // Create all the temporary registers. 1141 for (int i = 0; i < NumParts; ++i) { 1142 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1143 1144 SrcRegs.push_back(SrcReg); 1145 } 1146 1147 // Explode the big arguments into smaller chunks. 1148 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1149 1150 Register AshrCstReg = 1151 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1152 .getReg(0); 1153 Register FullExtensionReg = 0; 1154 Register PartialExtensionReg = 0; 1155 1156 // Do the operation on each small part. 1157 for (int i = 0; i < NumParts; ++i) { 1158 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1159 DstRegs.push_back(SrcRegs[i]); 1160 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1161 assert(PartialExtensionReg && 1162 "Expected to visit partial extension before full"); 1163 if (FullExtensionReg) { 1164 DstRegs.push_back(FullExtensionReg); 1165 continue; 1166 } 1167 DstRegs.push_back( 1168 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1169 .getReg(0)); 1170 FullExtensionReg = DstRegs.back(); 1171 } else { 1172 DstRegs.push_back( 1173 MIRBuilder 1174 .buildInstr( 1175 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1176 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1177 .getReg(0)); 1178 PartialExtensionReg = DstRegs.back(); 1179 } 1180 } 1181 1182 // Gather the destination registers into the final destination. 1183 Register DstReg = MI.getOperand(0).getReg(); 1184 MIRBuilder.buildMerge(DstReg, DstRegs); 1185 MI.eraseFromParent(); 1186 return Legalized; 1187 } 1188 case TargetOpcode::G_BSWAP: 1189 case TargetOpcode::G_BITREVERSE: { 1190 if (SizeOp0 % NarrowSize != 0) 1191 return UnableToLegalize; 1192 1193 Observer.changingInstr(MI); 1194 SmallVector<Register, 2> SrcRegs, DstRegs; 1195 unsigned NumParts = SizeOp0 / NarrowSize; 1196 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1197 1198 for (unsigned i = 0; i < NumParts; ++i) { 1199 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1200 {SrcRegs[NumParts - 1 - i]}); 1201 DstRegs.push_back(DstPart.getReg(0)); 1202 } 1203 1204 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1205 1206 Observer.changedInstr(MI); 1207 MI.eraseFromParent(); 1208 return Legalized; 1209 } 1210 case TargetOpcode::G_PTR_ADD: 1211 case TargetOpcode::G_PTRMASK: { 1212 if (TypeIdx != 1) 1213 return UnableToLegalize; 1214 Observer.changingInstr(MI); 1215 narrowScalarSrc(MI, NarrowTy, 2); 1216 Observer.changedInstr(MI); 1217 return Legalized; 1218 } 1219 case TargetOpcode::G_FPTOUI: 1220 case TargetOpcode::G_FPTOSI: 1221 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1222 case TargetOpcode::G_FPEXT: 1223 if (TypeIdx != 0) 1224 return UnableToLegalize; 1225 Observer.changingInstr(MI); 1226 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1227 Observer.changedInstr(MI); 1228 return Legalized; 1229 } 1230 } 1231 1232 Register LegalizerHelper::coerceToScalar(Register Val) { 1233 LLT Ty = MRI.getType(Val); 1234 if (Ty.isScalar()) 1235 return Val; 1236 1237 const DataLayout &DL = MIRBuilder.getDataLayout(); 1238 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1239 if (Ty.isPointer()) { 1240 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1241 return Register(); 1242 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1243 } 1244 1245 Register NewVal = Val; 1246 1247 assert(Ty.isVector()); 1248 LLT EltTy = Ty.getElementType(); 1249 if (EltTy.isPointer()) 1250 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1251 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1252 } 1253 1254 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1255 unsigned OpIdx, unsigned ExtOpcode) { 1256 MachineOperand &MO = MI.getOperand(OpIdx); 1257 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1258 MO.setReg(ExtB.getReg(0)); 1259 } 1260 1261 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1262 unsigned OpIdx) { 1263 MachineOperand &MO = MI.getOperand(OpIdx); 1264 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1265 MO.setReg(ExtB.getReg(0)); 1266 } 1267 1268 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1269 unsigned OpIdx, unsigned TruncOpcode) { 1270 MachineOperand &MO = MI.getOperand(OpIdx); 1271 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1272 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1273 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1274 MO.setReg(DstExt); 1275 } 1276 1277 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1278 unsigned OpIdx, unsigned ExtOpcode) { 1279 MachineOperand &MO = MI.getOperand(OpIdx); 1280 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1281 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1282 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1283 MO.setReg(DstTrunc); 1284 } 1285 1286 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1287 unsigned OpIdx) { 1288 MachineOperand &MO = MI.getOperand(OpIdx); 1289 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1290 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1291 } 1292 1293 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1294 unsigned OpIdx) { 1295 MachineOperand &MO = MI.getOperand(OpIdx); 1296 1297 LLT OldTy = MRI.getType(MO.getReg()); 1298 unsigned OldElts = OldTy.getNumElements(); 1299 unsigned NewElts = MoreTy.getNumElements(); 1300 1301 unsigned NumParts = NewElts / OldElts; 1302 1303 // Use concat_vectors if the result is a multiple of the number of elements. 1304 if (NumParts * OldElts == NewElts) { 1305 SmallVector<Register, 8> Parts; 1306 Parts.push_back(MO.getReg()); 1307 1308 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1309 for (unsigned I = 1; I != NumParts; ++I) 1310 Parts.push_back(ImpDef); 1311 1312 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1313 MO.setReg(Concat.getReg(0)); 1314 return; 1315 } 1316 1317 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1318 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1319 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1320 MO.setReg(MoreReg); 1321 } 1322 1323 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1324 MachineOperand &Op = MI.getOperand(OpIdx); 1325 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1326 } 1327 1328 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1329 MachineOperand &MO = MI.getOperand(OpIdx); 1330 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1331 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1332 MIRBuilder.buildBitcast(MO, CastDst); 1333 MO.setReg(CastDst); 1334 } 1335 1336 LegalizerHelper::LegalizeResult 1337 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1338 LLT WideTy) { 1339 if (TypeIdx != 1) 1340 return UnableToLegalize; 1341 1342 Register DstReg = MI.getOperand(0).getReg(); 1343 LLT DstTy = MRI.getType(DstReg); 1344 if (DstTy.isVector()) 1345 return UnableToLegalize; 1346 1347 Register Src1 = MI.getOperand(1).getReg(); 1348 LLT SrcTy = MRI.getType(Src1); 1349 const int DstSize = DstTy.getSizeInBits(); 1350 const int SrcSize = SrcTy.getSizeInBits(); 1351 const int WideSize = WideTy.getSizeInBits(); 1352 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1353 1354 unsigned NumOps = MI.getNumOperands(); 1355 unsigned NumSrc = MI.getNumOperands() - 1; 1356 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1357 1358 if (WideSize >= DstSize) { 1359 // Directly pack the bits in the target type. 1360 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1361 1362 for (unsigned I = 2; I != NumOps; ++I) { 1363 const unsigned Offset = (I - 1) * PartSize; 1364 1365 Register SrcReg = MI.getOperand(I).getReg(); 1366 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1367 1368 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1369 1370 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1371 MRI.createGenericVirtualRegister(WideTy); 1372 1373 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1374 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1375 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1376 ResultReg = NextResult; 1377 } 1378 1379 if (WideSize > DstSize) 1380 MIRBuilder.buildTrunc(DstReg, ResultReg); 1381 else if (DstTy.isPointer()) 1382 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1383 1384 MI.eraseFromParent(); 1385 return Legalized; 1386 } 1387 1388 // Unmerge the original values to the GCD type, and recombine to the next 1389 // multiple greater than the original type. 1390 // 1391 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1392 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1393 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1394 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1395 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1396 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1397 // %12:_(s12) = G_MERGE_VALUES %10, %11 1398 // 1399 // Padding with undef if necessary: 1400 // 1401 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1402 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1403 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1404 // %7:_(s2) = G_IMPLICIT_DEF 1405 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1406 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1407 // %10:_(s12) = G_MERGE_VALUES %8, %9 1408 1409 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1410 LLT GCDTy = LLT::scalar(GCD); 1411 1412 SmallVector<Register, 8> Parts; 1413 SmallVector<Register, 8> NewMergeRegs; 1414 SmallVector<Register, 8> Unmerges; 1415 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1416 1417 // Decompose the original operands if they don't evenly divide. 1418 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1419 Register SrcReg = MI.getOperand(I).getReg(); 1420 if (GCD == SrcSize) { 1421 Unmerges.push_back(SrcReg); 1422 } else { 1423 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1424 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1425 Unmerges.push_back(Unmerge.getReg(J)); 1426 } 1427 } 1428 1429 // Pad with undef to the next size that is a multiple of the requested size. 1430 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1431 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1432 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1433 Unmerges.push_back(UndefReg); 1434 } 1435 1436 const int PartsPerGCD = WideSize / GCD; 1437 1438 // Build merges of each piece. 1439 ArrayRef<Register> Slicer(Unmerges); 1440 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1441 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1442 NewMergeRegs.push_back(Merge.getReg(0)); 1443 } 1444 1445 // A truncate may be necessary if the requested type doesn't evenly divide the 1446 // original result type. 1447 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1448 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1449 } else { 1450 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1451 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1452 } 1453 1454 MI.eraseFromParent(); 1455 return Legalized; 1456 } 1457 1458 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1459 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1460 LLT OrigTy = MRI.getType(OrigReg); 1461 LLT LCMTy = getLCMType(WideTy, OrigTy); 1462 1463 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1464 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1465 1466 Register UnmergeSrc = WideReg; 1467 1468 // Create a merge to the LCM type, padding with undef 1469 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1470 // => 1471 // %1:_(<4 x s32>) = G_FOO 1472 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1473 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1474 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1475 if (NumMergeParts > 1) { 1476 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1477 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1478 MergeParts[0] = WideReg; 1479 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1480 } 1481 1482 // Unmerge to the original register and pad with dead defs. 1483 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1484 UnmergeResults[0] = OrigReg; 1485 for (int I = 1; I != NumUnmergeParts; ++I) 1486 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1487 1488 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1489 return WideReg; 1490 } 1491 1492 LegalizerHelper::LegalizeResult 1493 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1494 LLT WideTy) { 1495 if (TypeIdx != 0) 1496 return UnableToLegalize; 1497 1498 int NumDst = MI.getNumOperands() - 1; 1499 Register SrcReg = MI.getOperand(NumDst).getReg(); 1500 LLT SrcTy = MRI.getType(SrcReg); 1501 if (SrcTy.isVector()) 1502 return UnableToLegalize; 1503 1504 Register Dst0Reg = MI.getOperand(0).getReg(); 1505 LLT DstTy = MRI.getType(Dst0Reg); 1506 if (!DstTy.isScalar()) 1507 return UnableToLegalize; 1508 1509 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1510 if (SrcTy.isPointer()) { 1511 const DataLayout &DL = MIRBuilder.getDataLayout(); 1512 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1513 LLVM_DEBUG( 1514 dbgs() << "Not casting non-integral address space integer\n"); 1515 return UnableToLegalize; 1516 } 1517 1518 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1519 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1520 } 1521 1522 // Widen SrcTy to WideTy. This does not affect the result, but since the 1523 // user requested this size, it is probably better handled than SrcTy and 1524 // should reduce the total number of legalization artifacts 1525 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1526 SrcTy = WideTy; 1527 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1528 } 1529 1530 // Theres no unmerge type to target. Directly extract the bits from the 1531 // source type 1532 unsigned DstSize = DstTy.getSizeInBits(); 1533 1534 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1535 for (int I = 1; I != NumDst; ++I) { 1536 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1537 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1538 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1539 } 1540 1541 MI.eraseFromParent(); 1542 return Legalized; 1543 } 1544 1545 // Extend the source to a wider type. 1546 LLT LCMTy = getLCMType(SrcTy, WideTy); 1547 1548 Register WideSrc = SrcReg; 1549 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1550 // TODO: If this is an integral address space, cast to integer and anyext. 1551 if (SrcTy.isPointer()) { 1552 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1553 return UnableToLegalize; 1554 } 1555 1556 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1557 } 1558 1559 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1560 1561 // Create a sequence of unmerges and merges to the original results. Since we 1562 // may have widened the source, we will need to pad the results with dead defs 1563 // to cover the source register. 1564 // e.g. widen s48 to s64: 1565 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1566 // 1567 // => 1568 // %4:_(s192) = G_ANYEXT %0:_(s96) 1569 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1570 // ; unpack to GCD type, with extra dead defs 1571 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1572 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1573 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1574 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1575 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1576 const LLT GCDTy = getGCDType(WideTy, DstTy); 1577 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1578 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1579 1580 // Directly unmerge to the destination without going through a GCD type 1581 // if possible 1582 if (PartsPerRemerge == 1) { 1583 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1584 1585 for (int I = 0; I != NumUnmerge; ++I) { 1586 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1587 1588 for (int J = 0; J != PartsPerUnmerge; ++J) { 1589 int Idx = I * PartsPerUnmerge + J; 1590 if (Idx < NumDst) 1591 MIB.addDef(MI.getOperand(Idx).getReg()); 1592 else { 1593 // Create dead def for excess components. 1594 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1595 } 1596 } 1597 1598 MIB.addUse(Unmerge.getReg(I)); 1599 } 1600 } else { 1601 SmallVector<Register, 16> Parts; 1602 for (int J = 0; J != NumUnmerge; ++J) 1603 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1604 1605 SmallVector<Register, 8> RemergeParts; 1606 for (int I = 0; I != NumDst; ++I) { 1607 for (int J = 0; J < PartsPerRemerge; ++J) { 1608 const int Idx = I * PartsPerRemerge + J; 1609 RemergeParts.emplace_back(Parts[Idx]); 1610 } 1611 1612 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1613 RemergeParts.clear(); 1614 } 1615 } 1616 1617 MI.eraseFromParent(); 1618 return Legalized; 1619 } 1620 1621 LegalizerHelper::LegalizeResult 1622 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1623 LLT WideTy) { 1624 Register DstReg = MI.getOperand(0).getReg(); 1625 Register SrcReg = MI.getOperand(1).getReg(); 1626 LLT SrcTy = MRI.getType(SrcReg); 1627 1628 LLT DstTy = MRI.getType(DstReg); 1629 unsigned Offset = MI.getOperand(2).getImm(); 1630 1631 if (TypeIdx == 0) { 1632 if (SrcTy.isVector() || DstTy.isVector()) 1633 return UnableToLegalize; 1634 1635 SrcOp Src(SrcReg); 1636 if (SrcTy.isPointer()) { 1637 // Extracts from pointers can be handled only if they are really just 1638 // simple integers. 1639 const DataLayout &DL = MIRBuilder.getDataLayout(); 1640 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1641 return UnableToLegalize; 1642 1643 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1644 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1645 SrcTy = SrcAsIntTy; 1646 } 1647 1648 if (DstTy.isPointer()) 1649 return UnableToLegalize; 1650 1651 if (Offset == 0) { 1652 // Avoid a shift in the degenerate case. 1653 MIRBuilder.buildTrunc(DstReg, 1654 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1655 MI.eraseFromParent(); 1656 return Legalized; 1657 } 1658 1659 // Do a shift in the source type. 1660 LLT ShiftTy = SrcTy; 1661 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1662 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1663 ShiftTy = WideTy; 1664 } 1665 1666 auto LShr = MIRBuilder.buildLShr( 1667 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1668 MIRBuilder.buildTrunc(DstReg, LShr); 1669 MI.eraseFromParent(); 1670 return Legalized; 1671 } 1672 1673 if (SrcTy.isScalar()) { 1674 Observer.changingInstr(MI); 1675 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1676 Observer.changedInstr(MI); 1677 return Legalized; 1678 } 1679 1680 if (!SrcTy.isVector()) 1681 return UnableToLegalize; 1682 1683 if (DstTy != SrcTy.getElementType()) 1684 return UnableToLegalize; 1685 1686 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1687 return UnableToLegalize; 1688 1689 Observer.changingInstr(MI); 1690 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1691 1692 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1693 Offset); 1694 widenScalarDst(MI, WideTy.getScalarType(), 0); 1695 Observer.changedInstr(MI); 1696 return Legalized; 1697 } 1698 1699 LegalizerHelper::LegalizeResult 1700 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1701 LLT WideTy) { 1702 if (TypeIdx != 0 || WideTy.isVector()) 1703 return UnableToLegalize; 1704 Observer.changingInstr(MI); 1705 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1706 widenScalarDst(MI, WideTy); 1707 Observer.changedInstr(MI); 1708 return Legalized; 1709 } 1710 1711 LegalizerHelper::LegalizeResult 1712 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1713 LLT WideTy) { 1714 if (TypeIdx == 1) 1715 return UnableToLegalize; // TODO 1716 1717 unsigned Opcode; 1718 unsigned ExtOpcode; 1719 Optional<Register> CarryIn = None; 1720 switch (MI.getOpcode()) { 1721 default: 1722 llvm_unreachable("Unexpected opcode!"); 1723 case TargetOpcode::G_SADDO: 1724 Opcode = TargetOpcode::G_ADD; 1725 ExtOpcode = TargetOpcode::G_SEXT; 1726 break; 1727 case TargetOpcode::G_SSUBO: 1728 Opcode = TargetOpcode::G_SUB; 1729 ExtOpcode = TargetOpcode::G_SEXT; 1730 break; 1731 case TargetOpcode::G_UADDO: 1732 Opcode = TargetOpcode::G_ADD; 1733 ExtOpcode = TargetOpcode::G_ZEXT; 1734 break; 1735 case TargetOpcode::G_USUBO: 1736 Opcode = TargetOpcode::G_SUB; 1737 ExtOpcode = TargetOpcode::G_ZEXT; 1738 break; 1739 case TargetOpcode::G_SADDE: 1740 Opcode = TargetOpcode::G_UADDE; 1741 ExtOpcode = TargetOpcode::G_SEXT; 1742 CarryIn = MI.getOperand(4).getReg(); 1743 break; 1744 case TargetOpcode::G_SSUBE: 1745 Opcode = TargetOpcode::G_USUBE; 1746 ExtOpcode = TargetOpcode::G_SEXT; 1747 CarryIn = MI.getOperand(4).getReg(); 1748 break; 1749 case TargetOpcode::G_UADDE: 1750 Opcode = TargetOpcode::G_UADDE; 1751 ExtOpcode = TargetOpcode::G_ZEXT; 1752 CarryIn = MI.getOperand(4).getReg(); 1753 break; 1754 case TargetOpcode::G_USUBE: 1755 Opcode = TargetOpcode::G_USUBE; 1756 ExtOpcode = TargetOpcode::G_ZEXT; 1757 CarryIn = MI.getOperand(4).getReg(); 1758 break; 1759 } 1760 1761 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1762 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1763 // Do the arithmetic in the larger type. 1764 Register NewOp; 1765 if (CarryIn) { 1766 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1767 NewOp = MIRBuilder 1768 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1769 {LHSExt, RHSExt, *CarryIn}) 1770 .getReg(0); 1771 } else { 1772 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1773 } 1774 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1775 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1776 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1777 // There is no overflow if the ExtOp is the same as NewOp. 1778 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1779 // Now trunc the NewOp to the original result. 1780 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1781 MI.eraseFromParent(); 1782 return Legalized; 1783 } 1784 1785 LegalizerHelper::LegalizeResult 1786 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1787 LLT WideTy) { 1788 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1789 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1790 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1791 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1792 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1793 // We can convert this to: 1794 // 1. Any extend iN to iM 1795 // 2. SHL by M-N 1796 // 3. [US][ADD|SUB|SHL]SAT 1797 // 4. L/ASHR by M-N 1798 // 1799 // It may be more efficient to lower this to a min and a max operation in 1800 // the higher precision arithmetic if the promoted operation isn't legal, 1801 // but this decision is up to the target's lowering request. 1802 Register DstReg = MI.getOperand(0).getReg(); 1803 1804 unsigned NewBits = WideTy.getScalarSizeInBits(); 1805 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1806 1807 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1808 // must not left shift the RHS to preserve the shift amount. 1809 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1810 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1811 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1812 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1813 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1814 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1815 1816 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1817 {ShiftL, ShiftR}, MI.getFlags()); 1818 1819 // Use a shift that will preserve the number of sign bits when the trunc is 1820 // folded away. 1821 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1822 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1823 1824 MIRBuilder.buildTrunc(DstReg, Result); 1825 MI.eraseFromParent(); 1826 return Legalized; 1827 } 1828 1829 LegalizerHelper::LegalizeResult 1830 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1831 LLT WideTy) { 1832 if (TypeIdx == 1) 1833 return UnableToLegalize; 1834 1835 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1836 Register Result = MI.getOperand(0).getReg(); 1837 Register OriginalOverflow = MI.getOperand(1).getReg(); 1838 Register LHS = MI.getOperand(2).getReg(); 1839 Register RHS = MI.getOperand(3).getReg(); 1840 LLT SrcTy = MRI.getType(LHS); 1841 LLT OverflowTy = MRI.getType(OriginalOverflow); 1842 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1843 1844 // To determine if the result overflowed in the larger type, we extend the 1845 // input to the larger type, do the multiply (checking if it overflows), 1846 // then also check the high bits of the result to see if overflow happened 1847 // there. 1848 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1849 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 1850 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 1851 1852 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 1853 {LeftOperand, RightOperand}); 1854 auto Mul = Mulo->getOperand(0); 1855 MIRBuilder.buildTrunc(Result, Mul); 1856 1857 MachineInstrBuilder ExtResult; 1858 // Overflow occurred if it occurred in the larger type, or if the high part 1859 // of the result does not zero/sign-extend the low part. Check this second 1860 // possibility first. 1861 if (IsSigned) { 1862 // For signed, overflow occurred when the high part does not sign-extend 1863 // the low part. 1864 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 1865 } else { 1866 // Unsigned overflow occurred when the high part does not zero-extend the 1867 // low part. 1868 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 1869 } 1870 1871 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 1872 // so we don't need to check the overflow result of larger type Mulo. 1873 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 1874 auto Overflow = 1875 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 1876 // Finally check if the multiplication in the larger type itself overflowed. 1877 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 1878 } else { 1879 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 1880 } 1881 MI.eraseFromParent(); 1882 return Legalized; 1883 } 1884 1885 LegalizerHelper::LegalizeResult 1886 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1887 switch (MI.getOpcode()) { 1888 default: 1889 return UnableToLegalize; 1890 case TargetOpcode::G_EXTRACT: 1891 return widenScalarExtract(MI, TypeIdx, WideTy); 1892 case TargetOpcode::G_INSERT: 1893 return widenScalarInsert(MI, TypeIdx, WideTy); 1894 case TargetOpcode::G_MERGE_VALUES: 1895 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1896 case TargetOpcode::G_UNMERGE_VALUES: 1897 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1898 case TargetOpcode::G_SADDO: 1899 case TargetOpcode::G_SSUBO: 1900 case TargetOpcode::G_UADDO: 1901 case TargetOpcode::G_USUBO: 1902 case TargetOpcode::G_SADDE: 1903 case TargetOpcode::G_SSUBE: 1904 case TargetOpcode::G_UADDE: 1905 case TargetOpcode::G_USUBE: 1906 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 1907 case TargetOpcode::G_UMULO: 1908 case TargetOpcode::G_SMULO: 1909 return widenScalarMulo(MI, TypeIdx, WideTy); 1910 case TargetOpcode::G_SADDSAT: 1911 case TargetOpcode::G_SSUBSAT: 1912 case TargetOpcode::G_SSHLSAT: 1913 case TargetOpcode::G_UADDSAT: 1914 case TargetOpcode::G_USUBSAT: 1915 case TargetOpcode::G_USHLSAT: 1916 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1917 case TargetOpcode::G_CTTZ: 1918 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1919 case TargetOpcode::G_CTLZ: 1920 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1921 case TargetOpcode::G_CTPOP: { 1922 if (TypeIdx == 0) { 1923 Observer.changingInstr(MI); 1924 widenScalarDst(MI, WideTy, 0); 1925 Observer.changedInstr(MI); 1926 return Legalized; 1927 } 1928 1929 Register SrcReg = MI.getOperand(1).getReg(); 1930 1931 // First ZEXT the input. 1932 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1933 LLT CurTy = MRI.getType(SrcReg); 1934 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1935 // The count is the same in the larger type except if the original 1936 // value was zero. This can be handled by setting the bit just off 1937 // the top of the original type. 1938 auto TopBit = 1939 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1940 MIBSrc = MIRBuilder.buildOr( 1941 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1942 } 1943 1944 // Perform the operation at the larger size. 1945 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1946 // This is already the correct result for CTPOP and CTTZs 1947 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1948 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1949 // The correct result is NewOp - (Difference in widety and current ty). 1950 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1951 MIBNewOp = MIRBuilder.buildSub( 1952 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1953 } 1954 1955 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1956 MI.eraseFromParent(); 1957 return Legalized; 1958 } 1959 case TargetOpcode::G_BSWAP: { 1960 Observer.changingInstr(MI); 1961 Register DstReg = MI.getOperand(0).getReg(); 1962 1963 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1964 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1965 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1966 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1967 1968 MI.getOperand(0).setReg(DstExt); 1969 1970 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1971 1972 LLT Ty = MRI.getType(DstReg); 1973 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1974 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1975 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1976 1977 MIRBuilder.buildTrunc(DstReg, ShrReg); 1978 Observer.changedInstr(MI); 1979 return Legalized; 1980 } 1981 case TargetOpcode::G_BITREVERSE: { 1982 Observer.changingInstr(MI); 1983 1984 Register DstReg = MI.getOperand(0).getReg(); 1985 LLT Ty = MRI.getType(DstReg); 1986 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1987 1988 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1989 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1990 MI.getOperand(0).setReg(DstExt); 1991 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1992 1993 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1994 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1995 MIRBuilder.buildTrunc(DstReg, Shift); 1996 Observer.changedInstr(MI); 1997 return Legalized; 1998 } 1999 case TargetOpcode::G_FREEZE: 2000 Observer.changingInstr(MI); 2001 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2002 widenScalarDst(MI, WideTy); 2003 Observer.changedInstr(MI); 2004 return Legalized; 2005 2006 case TargetOpcode::G_ADD: 2007 case TargetOpcode::G_AND: 2008 case TargetOpcode::G_MUL: 2009 case TargetOpcode::G_OR: 2010 case TargetOpcode::G_XOR: 2011 case TargetOpcode::G_SUB: 2012 // Perform operation at larger width (any extension is fines here, high bits 2013 // don't affect the result) and then truncate the result back to the 2014 // original type. 2015 Observer.changingInstr(MI); 2016 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2017 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2018 widenScalarDst(MI, WideTy); 2019 Observer.changedInstr(MI); 2020 return Legalized; 2021 2022 case TargetOpcode::G_SHL: 2023 Observer.changingInstr(MI); 2024 2025 if (TypeIdx == 0) { 2026 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2027 widenScalarDst(MI, WideTy); 2028 } else { 2029 assert(TypeIdx == 1); 2030 // The "number of bits to shift" operand must preserve its value as an 2031 // unsigned integer: 2032 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2033 } 2034 2035 Observer.changedInstr(MI); 2036 return Legalized; 2037 2038 case TargetOpcode::G_SDIV: 2039 case TargetOpcode::G_SREM: 2040 case TargetOpcode::G_SMIN: 2041 case TargetOpcode::G_SMAX: 2042 Observer.changingInstr(MI); 2043 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2044 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2045 widenScalarDst(MI, WideTy); 2046 Observer.changedInstr(MI); 2047 return Legalized; 2048 2049 case TargetOpcode::G_SDIVREM: 2050 Observer.changingInstr(MI); 2051 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2052 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2053 widenScalarDst(MI, WideTy); 2054 widenScalarDst(MI, WideTy, 1); 2055 Observer.changedInstr(MI); 2056 return Legalized; 2057 2058 case TargetOpcode::G_ASHR: 2059 case TargetOpcode::G_LSHR: 2060 Observer.changingInstr(MI); 2061 2062 if (TypeIdx == 0) { 2063 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2064 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2065 2066 widenScalarSrc(MI, WideTy, 1, CvtOp); 2067 widenScalarDst(MI, WideTy); 2068 } else { 2069 assert(TypeIdx == 1); 2070 // The "number of bits to shift" operand must preserve its value as an 2071 // unsigned integer: 2072 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2073 } 2074 2075 Observer.changedInstr(MI); 2076 return Legalized; 2077 case TargetOpcode::G_UDIV: 2078 case TargetOpcode::G_UREM: 2079 case TargetOpcode::G_UMIN: 2080 case TargetOpcode::G_UMAX: 2081 Observer.changingInstr(MI); 2082 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2083 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2084 widenScalarDst(MI, WideTy); 2085 Observer.changedInstr(MI); 2086 return Legalized; 2087 2088 case TargetOpcode::G_UDIVREM: 2089 Observer.changingInstr(MI); 2090 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2091 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2092 widenScalarDst(MI, WideTy); 2093 widenScalarDst(MI, WideTy, 1); 2094 Observer.changedInstr(MI); 2095 return Legalized; 2096 2097 case TargetOpcode::G_SELECT: 2098 Observer.changingInstr(MI); 2099 if (TypeIdx == 0) { 2100 // Perform operation at larger width (any extension is fine here, high 2101 // bits don't affect the result) and then truncate the result back to the 2102 // original type. 2103 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2104 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2105 widenScalarDst(MI, WideTy); 2106 } else { 2107 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2108 // Explicit extension is required here since high bits affect the result. 2109 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2110 } 2111 Observer.changedInstr(MI); 2112 return Legalized; 2113 2114 case TargetOpcode::G_FPTOSI: 2115 case TargetOpcode::G_FPTOUI: 2116 Observer.changingInstr(MI); 2117 2118 if (TypeIdx == 0) 2119 widenScalarDst(MI, WideTy); 2120 else 2121 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2122 2123 Observer.changedInstr(MI); 2124 return Legalized; 2125 case TargetOpcode::G_SITOFP: 2126 Observer.changingInstr(MI); 2127 2128 if (TypeIdx == 0) 2129 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2130 else 2131 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2132 2133 Observer.changedInstr(MI); 2134 return Legalized; 2135 case TargetOpcode::G_UITOFP: 2136 Observer.changingInstr(MI); 2137 2138 if (TypeIdx == 0) 2139 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2140 else 2141 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2142 2143 Observer.changedInstr(MI); 2144 return Legalized; 2145 case TargetOpcode::G_LOAD: 2146 case TargetOpcode::G_SEXTLOAD: 2147 case TargetOpcode::G_ZEXTLOAD: 2148 Observer.changingInstr(MI); 2149 widenScalarDst(MI, WideTy); 2150 Observer.changedInstr(MI); 2151 return Legalized; 2152 2153 case TargetOpcode::G_STORE: { 2154 if (TypeIdx != 0) 2155 return UnableToLegalize; 2156 2157 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2158 if (!Ty.isScalar()) 2159 return UnableToLegalize; 2160 2161 Observer.changingInstr(MI); 2162 2163 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2164 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2165 widenScalarSrc(MI, WideTy, 0, ExtType); 2166 2167 Observer.changedInstr(MI); 2168 return Legalized; 2169 } 2170 case TargetOpcode::G_CONSTANT: { 2171 MachineOperand &SrcMO = MI.getOperand(1); 2172 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2173 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2174 MRI.getType(MI.getOperand(0).getReg())); 2175 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2176 ExtOpc == TargetOpcode::G_ANYEXT) && 2177 "Illegal Extend"); 2178 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2179 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2180 ? SrcVal.sext(WideTy.getSizeInBits()) 2181 : SrcVal.zext(WideTy.getSizeInBits()); 2182 Observer.changingInstr(MI); 2183 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2184 2185 widenScalarDst(MI, WideTy); 2186 Observer.changedInstr(MI); 2187 return Legalized; 2188 } 2189 case TargetOpcode::G_FCONSTANT: { 2190 MachineOperand &SrcMO = MI.getOperand(1); 2191 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2192 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2193 bool LosesInfo; 2194 switch (WideTy.getSizeInBits()) { 2195 case 32: 2196 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2197 &LosesInfo); 2198 break; 2199 case 64: 2200 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2201 &LosesInfo); 2202 break; 2203 default: 2204 return UnableToLegalize; 2205 } 2206 2207 assert(!LosesInfo && "extend should always be lossless"); 2208 2209 Observer.changingInstr(MI); 2210 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2211 2212 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2213 Observer.changedInstr(MI); 2214 return Legalized; 2215 } 2216 case TargetOpcode::G_IMPLICIT_DEF: { 2217 Observer.changingInstr(MI); 2218 widenScalarDst(MI, WideTy); 2219 Observer.changedInstr(MI); 2220 return Legalized; 2221 } 2222 case TargetOpcode::G_BRCOND: 2223 Observer.changingInstr(MI); 2224 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2225 Observer.changedInstr(MI); 2226 return Legalized; 2227 2228 case TargetOpcode::G_FCMP: 2229 Observer.changingInstr(MI); 2230 if (TypeIdx == 0) 2231 widenScalarDst(MI, WideTy); 2232 else { 2233 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2234 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2235 } 2236 Observer.changedInstr(MI); 2237 return Legalized; 2238 2239 case TargetOpcode::G_ICMP: 2240 Observer.changingInstr(MI); 2241 if (TypeIdx == 0) 2242 widenScalarDst(MI, WideTy); 2243 else { 2244 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2245 MI.getOperand(1).getPredicate())) 2246 ? TargetOpcode::G_SEXT 2247 : TargetOpcode::G_ZEXT; 2248 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2249 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2250 } 2251 Observer.changedInstr(MI); 2252 return Legalized; 2253 2254 case TargetOpcode::G_PTR_ADD: 2255 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2256 Observer.changingInstr(MI); 2257 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2258 Observer.changedInstr(MI); 2259 return Legalized; 2260 2261 case TargetOpcode::G_PHI: { 2262 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2263 2264 Observer.changingInstr(MI); 2265 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2266 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2267 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2268 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2269 } 2270 2271 MachineBasicBlock &MBB = *MI.getParent(); 2272 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2273 widenScalarDst(MI, WideTy); 2274 Observer.changedInstr(MI); 2275 return Legalized; 2276 } 2277 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2278 if (TypeIdx == 0) { 2279 Register VecReg = MI.getOperand(1).getReg(); 2280 LLT VecTy = MRI.getType(VecReg); 2281 Observer.changingInstr(MI); 2282 2283 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2284 WideTy.getSizeInBits()), 2285 1, TargetOpcode::G_SEXT); 2286 2287 widenScalarDst(MI, WideTy, 0); 2288 Observer.changedInstr(MI); 2289 return Legalized; 2290 } 2291 2292 if (TypeIdx != 2) 2293 return UnableToLegalize; 2294 Observer.changingInstr(MI); 2295 // TODO: Probably should be zext 2296 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2297 Observer.changedInstr(MI); 2298 return Legalized; 2299 } 2300 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2301 if (TypeIdx == 1) { 2302 Observer.changingInstr(MI); 2303 2304 Register VecReg = MI.getOperand(1).getReg(); 2305 LLT VecTy = MRI.getType(VecReg); 2306 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2307 2308 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2309 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2310 widenScalarDst(MI, WideVecTy, 0); 2311 Observer.changedInstr(MI); 2312 return Legalized; 2313 } 2314 2315 if (TypeIdx == 2) { 2316 Observer.changingInstr(MI); 2317 // TODO: Probably should be zext 2318 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2319 Observer.changedInstr(MI); 2320 return Legalized; 2321 } 2322 2323 return UnableToLegalize; 2324 } 2325 case TargetOpcode::G_FADD: 2326 case TargetOpcode::G_FMUL: 2327 case TargetOpcode::G_FSUB: 2328 case TargetOpcode::G_FMA: 2329 case TargetOpcode::G_FMAD: 2330 case TargetOpcode::G_FNEG: 2331 case TargetOpcode::G_FABS: 2332 case TargetOpcode::G_FCANONICALIZE: 2333 case TargetOpcode::G_FMINNUM: 2334 case TargetOpcode::G_FMAXNUM: 2335 case TargetOpcode::G_FMINNUM_IEEE: 2336 case TargetOpcode::G_FMAXNUM_IEEE: 2337 case TargetOpcode::G_FMINIMUM: 2338 case TargetOpcode::G_FMAXIMUM: 2339 case TargetOpcode::G_FDIV: 2340 case TargetOpcode::G_FREM: 2341 case TargetOpcode::G_FCEIL: 2342 case TargetOpcode::G_FFLOOR: 2343 case TargetOpcode::G_FCOS: 2344 case TargetOpcode::G_FSIN: 2345 case TargetOpcode::G_FLOG10: 2346 case TargetOpcode::G_FLOG: 2347 case TargetOpcode::G_FLOG2: 2348 case TargetOpcode::G_FRINT: 2349 case TargetOpcode::G_FNEARBYINT: 2350 case TargetOpcode::G_FSQRT: 2351 case TargetOpcode::G_FEXP: 2352 case TargetOpcode::G_FEXP2: 2353 case TargetOpcode::G_FPOW: 2354 case TargetOpcode::G_INTRINSIC_TRUNC: 2355 case TargetOpcode::G_INTRINSIC_ROUND: 2356 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2357 assert(TypeIdx == 0); 2358 Observer.changingInstr(MI); 2359 2360 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2361 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2362 2363 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2364 Observer.changedInstr(MI); 2365 return Legalized; 2366 case TargetOpcode::G_FPOWI: { 2367 if (TypeIdx != 0) 2368 return UnableToLegalize; 2369 Observer.changingInstr(MI); 2370 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2371 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2372 Observer.changedInstr(MI); 2373 return Legalized; 2374 } 2375 case TargetOpcode::G_INTTOPTR: 2376 if (TypeIdx != 1) 2377 return UnableToLegalize; 2378 2379 Observer.changingInstr(MI); 2380 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2381 Observer.changedInstr(MI); 2382 return Legalized; 2383 case TargetOpcode::G_PTRTOINT: 2384 if (TypeIdx != 0) 2385 return UnableToLegalize; 2386 2387 Observer.changingInstr(MI); 2388 widenScalarDst(MI, WideTy, 0); 2389 Observer.changedInstr(MI); 2390 return Legalized; 2391 case TargetOpcode::G_BUILD_VECTOR: { 2392 Observer.changingInstr(MI); 2393 2394 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2395 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2396 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2397 2398 // Avoid changing the result vector type if the source element type was 2399 // requested. 2400 if (TypeIdx == 1) { 2401 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2402 } else { 2403 widenScalarDst(MI, WideTy, 0); 2404 } 2405 2406 Observer.changedInstr(MI); 2407 return Legalized; 2408 } 2409 case TargetOpcode::G_SEXT_INREG: 2410 if (TypeIdx != 0) 2411 return UnableToLegalize; 2412 2413 Observer.changingInstr(MI); 2414 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2415 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2416 Observer.changedInstr(MI); 2417 return Legalized; 2418 case TargetOpcode::G_PTRMASK: { 2419 if (TypeIdx != 1) 2420 return UnableToLegalize; 2421 Observer.changingInstr(MI); 2422 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2423 Observer.changedInstr(MI); 2424 return Legalized; 2425 } 2426 } 2427 } 2428 2429 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2430 MachineIRBuilder &B, Register Src, LLT Ty) { 2431 auto Unmerge = B.buildUnmerge(Ty, Src); 2432 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2433 Pieces.push_back(Unmerge.getReg(I)); 2434 } 2435 2436 LegalizerHelper::LegalizeResult 2437 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2438 Register Dst = MI.getOperand(0).getReg(); 2439 Register Src = MI.getOperand(1).getReg(); 2440 LLT DstTy = MRI.getType(Dst); 2441 LLT SrcTy = MRI.getType(Src); 2442 2443 if (SrcTy.isVector()) { 2444 LLT SrcEltTy = SrcTy.getElementType(); 2445 SmallVector<Register, 8> SrcRegs; 2446 2447 if (DstTy.isVector()) { 2448 int NumDstElt = DstTy.getNumElements(); 2449 int NumSrcElt = SrcTy.getNumElements(); 2450 2451 LLT DstEltTy = DstTy.getElementType(); 2452 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2453 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2454 2455 // If there's an element size mismatch, insert intermediate casts to match 2456 // the result element type. 2457 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2458 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2459 // 2460 // => 2461 // 2462 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2463 // %3:_(<2 x s8>) = G_BITCAST %2 2464 // %4:_(<2 x s8>) = G_BITCAST %3 2465 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2466 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2467 SrcPartTy = SrcEltTy; 2468 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2469 // 2470 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2471 // 2472 // => 2473 // 2474 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2475 // %3:_(s16) = G_BITCAST %2 2476 // %4:_(s16) = G_BITCAST %3 2477 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2478 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2479 DstCastTy = DstEltTy; 2480 } 2481 2482 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2483 for (Register &SrcReg : SrcRegs) 2484 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2485 } else 2486 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2487 2488 MIRBuilder.buildMerge(Dst, SrcRegs); 2489 MI.eraseFromParent(); 2490 return Legalized; 2491 } 2492 2493 if (DstTy.isVector()) { 2494 SmallVector<Register, 8> SrcRegs; 2495 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2496 MIRBuilder.buildMerge(Dst, SrcRegs); 2497 MI.eraseFromParent(); 2498 return Legalized; 2499 } 2500 2501 return UnableToLegalize; 2502 } 2503 2504 /// Figure out the bit offset into a register when coercing a vector index for 2505 /// the wide element type. This is only for the case when promoting vector to 2506 /// one with larger elements. 2507 // 2508 /// 2509 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2510 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2511 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2512 Register Idx, 2513 unsigned NewEltSize, 2514 unsigned OldEltSize) { 2515 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2516 LLT IdxTy = B.getMRI()->getType(Idx); 2517 2518 // Now figure out the amount we need to shift to get the target bits. 2519 auto OffsetMask = B.buildConstant( 2520 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2521 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2522 return B.buildShl(IdxTy, OffsetIdx, 2523 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2524 } 2525 2526 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2527 /// is casting to a vector with a smaller element size, perform multiple element 2528 /// extracts and merge the results. If this is coercing to a vector with larger 2529 /// elements, index the bitcasted vector and extract the target element with bit 2530 /// operations. This is intended to force the indexing in the native register 2531 /// size for architectures that can dynamically index the register file. 2532 LegalizerHelper::LegalizeResult 2533 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2534 LLT CastTy) { 2535 if (TypeIdx != 1) 2536 return UnableToLegalize; 2537 2538 Register Dst = MI.getOperand(0).getReg(); 2539 Register SrcVec = MI.getOperand(1).getReg(); 2540 Register Idx = MI.getOperand(2).getReg(); 2541 LLT SrcVecTy = MRI.getType(SrcVec); 2542 LLT IdxTy = MRI.getType(Idx); 2543 2544 LLT SrcEltTy = SrcVecTy.getElementType(); 2545 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2546 unsigned OldNumElts = SrcVecTy.getNumElements(); 2547 2548 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2549 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2550 2551 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2552 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2553 if (NewNumElts > OldNumElts) { 2554 // Decreasing the vector element size 2555 // 2556 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2557 // => 2558 // v4i32:castx = bitcast x:v2i64 2559 // 2560 // i64 = bitcast 2561 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2562 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2563 // 2564 if (NewNumElts % OldNumElts != 0) 2565 return UnableToLegalize; 2566 2567 // Type of the intermediate result vector. 2568 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2569 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2570 2571 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2572 2573 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2574 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2575 2576 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2577 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2578 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2579 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2580 NewOps[I] = Elt.getReg(0); 2581 } 2582 2583 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2584 MIRBuilder.buildBitcast(Dst, NewVec); 2585 MI.eraseFromParent(); 2586 return Legalized; 2587 } 2588 2589 if (NewNumElts < OldNumElts) { 2590 if (NewEltSize % OldEltSize != 0) 2591 return UnableToLegalize; 2592 2593 // This only depends on powers of 2 because we use bit tricks to figure out 2594 // the bit offset we need to shift to get the target element. A general 2595 // expansion could emit division/multiply. 2596 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2597 return UnableToLegalize; 2598 2599 // Increasing the vector element size. 2600 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2601 // 2602 // => 2603 // 2604 // %cast = G_BITCAST %vec 2605 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2606 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2607 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2608 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2609 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2610 // %elt = G_TRUNC %elt_bits 2611 2612 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2613 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2614 2615 // Divide to get the index in the wider element type. 2616 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2617 2618 Register WideElt = CastVec; 2619 if (CastTy.isVector()) { 2620 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2621 ScaledIdx).getReg(0); 2622 } 2623 2624 // Compute the bit offset into the register of the target element. 2625 Register OffsetBits = getBitcastWiderVectorElementOffset( 2626 MIRBuilder, Idx, NewEltSize, OldEltSize); 2627 2628 // Shift the wide element to get the target element. 2629 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2630 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2631 MI.eraseFromParent(); 2632 return Legalized; 2633 } 2634 2635 return UnableToLegalize; 2636 } 2637 2638 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2639 /// TargetReg, while preserving other bits in \p TargetReg. 2640 /// 2641 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2642 static Register buildBitFieldInsert(MachineIRBuilder &B, 2643 Register TargetReg, Register InsertReg, 2644 Register OffsetBits) { 2645 LLT TargetTy = B.getMRI()->getType(TargetReg); 2646 LLT InsertTy = B.getMRI()->getType(InsertReg); 2647 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2648 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2649 2650 // Produce a bitmask of the value to insert 2651 auto EltMask = B.buildConstant( 2652 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2653 InsertTy.getSizeInBits())); 2654 // Shift it into position 2655 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2656 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2657 2658 // Clear out the bits in the wide element 2659 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2660 2661 // The value to insert has all zeros already, so stick it into the masked 2662 // wide element. 2663 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2664 } 2665 2666 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2667 /// is increasing the element size, perform the indexing in the target element 2668 /// type, and use bit operations to insert at the element position. This is 2669 /// intended for architectures that can dynamically index the register file and 2670 /// want to force indexing in the native register size. 2671 LegalizerHelper::LegalizeResult 2672 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2673 LLT CastTy) { 2674 if (TypeIdx != 0) 2675 return UnableToLegalize; 2676 2677 Register Dst = MI.getOperand(0).getReg(); 2678 Register SrcVec = MI.getOperand(1).getReg(); 2679 Register Val = MI.getOperand(2).getReg(); 2680 Register Idx = MI.getOperand(3).getReg(); 2681 2682 LLT VecTy = MRI.getType(Dst); 2683 LLT IdxTy = MRI.getType(Idx); 2684 2685 LLT VecEltTy = VecTy.getElementType(); 2686 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2687 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2688 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2689 2690 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2691 unsigned OldNumElts = VecTy.getNumElements(); 2692 2693 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2694 if (NewNumElts < OldNumElts) { 2695 if (NewEltSize % OldEltSize != 0) 2696 return UnableToLegalize; 2697 2698 // This only depends on powers of 2 because we use bit tricks to figure out 2699 // the bit offset we need to shift to get the target element. A general 2700 // expansion could emit division/multiply. 2701 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2702 return UnableToLegalize; 2703 2704 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2705 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2706 2707 // Divide to get the index in the wider element type. 2708 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2709 2710 Register ExtractedElt = CastVec; 2711 if (CastTy.isVector()) { 2712 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2713 ScaledIdx).getReg(0); 2714 } 2715 2716 // Compute the bit offset into the register of the target element. 2717 Register OffsetBits = getBitcastWiderVectorElementOffset( 2718 MIRBuilder, Idx, NewEltSize, OldEltSize); 2719 2720 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2721 Val, OffsetBits); 2722 if (CastTy.isVector()) { 2723 InsertedElt = MIRBuilder.buildInsertVectorElement( 2724 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2725 } 2726 2727 MIRBuilder.buildBitcast(Dst, InsertedElt); 2728 MI.eraseFromParent(); 2729 return Legalized; 2730 } 2731 2732 return UnableToLegalize; 2733 } 2734 2735 LegalizerHelper::LegalizeResult 2736 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2737 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2738 Register DstReg = MI.getOperand(0).getReg(); 2739 Register PtrReg = MI.getOperand(1).getReg(); 2740 LLT DstTy = MRI.getType(DstReg); 2741 auto &MMO = **MI.memoperands_begin(); 2742 2743 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2744 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2745 // This load needs splitting into power of 2 sized loads. 2746 if (DstTy.isVector()) 2747 return UnableToLegalize; 2748 if (isPowerOf2_32(DstTy.getSizeInBits())) 2749 return UnableToLegalize; // Don't know what we're being asked to do. 2750 2751 // Our strategy here is to generate anyextending loads for the smaller 2752 // types up to next power-2 result type, and then combine the two larger 2753 // result values together, before truncating back down to the non-pow-2 2754 // type. 2755 // E.g. v1 = i24 load => 2756 // v2 = i32 zextload (2 byte) 2757 // v3 = i32 load (1 byte) 2758 // v4 = i32 shl v3, 16 2759 // v5 = i32 or v4, v2 2760 // v1 = i24 trunc v5 2761 // By doing this we generate the correct truncate which should get 2762 // combined away as an artifact with a matching extend. 2763 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2764 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2765 2766 MachineFunction &MF = MIRBuilder.getMF(); 2767 MachineMemOperand *LargeMMO = 2768 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2769 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2770 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2771 2772 LLT PtrTy = MRI.getType(PtrReg); 2773 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2774 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2775 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2776 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2777 auto LargeLoad = MIRBuilder.buildLoadInstr( 2778 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2779 2780 auto OffsetCst = MIRBuilder.buildConstant( 2781 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2782 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2783 auto SmallPtr = 2784 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2785 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2786 *SmallMMO); 2787 2788 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2789 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2790 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2791 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2792 MI.eraseFromParent(); 2793 return Legalized; 2794 } 2795 2796 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2797 MI.eraseFromParent(); 2798 return Legalized; 2799 } 2800 2801 if (DstTy.isScalar()) { 2802 Register TmpReg = 2803 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2804 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2805 switch (MI.getOpcode()) { 2806 default: 2807 llvm_unreachable("Unexpected opcode"); 2808 case TargetOpcode::G_LOAD: 2809 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2810 break; 2811 case TargetOpcode::G_SEXTLOAD: 2812 MIRBuilder.buildSExt(DstReg, TmpReg); 2813 break; 2814 case TargetOpcode::G_ZEXTLOAD: 2815 MIRBuilder.buildZExt(DstReg, TmpReg); 2816 break; 2817 } 2818 2819 MI.eraseFromParent(); 2820 return Legalized; 2821 } 2822 2823 return UnableToLegalize; 2824 } 2825 2826 LegalizerHelper::LegalizeResult 2827 LegalizerHelper::lowerStore(MachineInstr &MI) { 2828 // Lower a non-power of 2 store into multiple pow-2 stores. 2829 // E.g. split an i24 store into an i16 store + i8 store. 2830 // We do this by first extending the stored value to the next largest power 2831 // of 2 type, and then using truncating stores to store the components. 2832 // By doing this, likewise with G_LOAD, generate an extend that can be 2833 // artifact-combined away instead of leaving behind extracts. 2834 Register SrcReg = MI.getOperand(0).getReg(); 2835 Register PtrReg = MI.getOperand(1).getReg(); 2836 LLT SrcTy = MRI.getType(SrcReg); 2837 MachineMemOperand &MMO = **MI.memoperands_begin(); 2838 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2839 return UnableToLegalize; 2840 if (SrcTy.isVector()) 2841 return UnableToLegalize; 2842 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2843 return UnableToLegalize; // Don't know what we're being asked to do. 2844 2845 // Extend to the next pow-2. 2846 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2847 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2848 2849 // Obtain the smaller value by shifting away the larger value. 2850 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2851 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2852 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2853 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2854 2855 // Generate the PtrAdd and truncating stores. 2856 LLT PtrTy = MRI.getType(PtrReg); 2857 auto OffsetCst = MIRBuilder.buildConstant( 2858 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2859 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2860 auto SmallPtr = 2861 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2862 2863 MachineFunction &MF = MIRBuilder.getMF(); 2864 MachineMemOperand *LargeMMO = 2865 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2866 MachineMemOperand *SmallMMO = 2867 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2868 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2869 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2870 MI.eraseFromParent(); 2871 return Legalized; 2872 } 2873 2874 LegalizerHelper::LegalizeResult 2875 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2876 switch (MI.getOpcode()) { 2877 case TargetOpcode::G_LOAD: { 2878 if (TypeIdx != 0) 2879 return UnableToLegalize; 2880 2881 Observer.changingInstr(MI); 2882 bitcastDst(MI, CastTy, 0); 2883 Observer.changedInstr(MI); 2884 return Legalized; 2885 } 2886 case TargetOpcode::G_STORE: { 2887 if (TypeIdx != 0) 2888 return UnableToLegalize; 2889 2890 Observer.changingInstr(MI); 2891 bitcastSrc(MI, CastTy, 0); 2892 Observer.changedInstr(MI); 2893 return Legalized; 2894 } 2895 case TargetOpcode::G_SELECT: { 2896 if (TypeIdx != 0) 2897 return UnableToLegalize; 2898 2899 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2900 LLVM_DEBUG( 2901 dbgs() << "bitcast action not implemented for vector select\n"); 2902 return UnableToLegalize; 2903 } 2904 2905 Observer.changingInstr(MI); 2906 bitcastSrc(MI, CastTy, 2); 2907 bitcastSrc(MI, CastTy, 3); 2908 bitcastDst(MI, CastTy, 0); 2909 Observer.changedInstr(MI); 2910 return Legalized; 2911 } 2912 case TargetOpcode::G_AND: 2913 case TargetOpcode::G_OR: 2914 case TargetOpcode::G_XOR: { 2915 Observer.changingInstr(MI); 2916 bitcastSrc(MI, CastTy, 1); 2917 bitcastSrc(MI, CastTy, 2); 2918 bitcastDst(MI, CastTy, 0); 2919 Observer.changedInstr(MI); 2920 return Legalized; 2921 } 2922 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2923 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2924 case TargetOpcode::G_INSERT_VECTOR_ELT: 2925 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2926 default: 2927 return UnableToLegalize; 2928 } 2929 } 2930 2931 // Legalize an instruction by changing the opcode in place. 2932 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2933 Observer.changingInstr(MI); 2934 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2935 Observer.changedInstr(MI); 2936 } 2937 2938 LegalizerHelper::LegalizeResult 2939 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2940 using namespace TargetOpcode; 2941 2942 switch(MI.getOpcode()) { 2943 default: 2944 return UnableToLegalize; 2945 case TargetOpcode::G_BITCAST: 2946 return lowerBitcast(MI); 2947 case TargetOpcode::G_SREM: 2948 case TargetOpcode::G_UREM: { 2949 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2950 auto Quot = 2951 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2952 {MI.getOperand(1), MI.getOperand(2)}); 2953 2954 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2955 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2956 MI.eraseFromParent(); 2957 return Legalized; 2958 } 2959 case TargetOpcode::G_SADDO: 2960 case TargetOpcode::G_SSUBO: 2961 return lowerSADDO_SSUBO(MI); 2962 case TargetOpcode::G_UMULH: 2963 case TargetOpcode::G_SMULH: 2964 return lowerSMULH_UMULH(MI); 2965 case TargetOpcode::G_SMULO: 2966 case TargetOpcode::G_UMULO: { 2967 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2968 // result. 2969 Register Res = MI.getOperand(0).getReg(); 2970 Register Overflow = MI.getOperand(1).getReg(); 2971 Register LHS = MI.getOperand(2).getReg(); 2972 Register RHS = MI.getOperand(3).getReg(); 2973 LLT Ty = MRI.getType(Res); 2974 2975 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2976 ? TargetOpcode::G_SMULH 2977 : TargetOpcode::G_UMULH; 2978 2979 Observer.changingInstr(MI); 2980 const auto &TII = MIRBuilder.getTII(); 2981 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2982 MI.RemoveOperand(1); 2983 Observer.changedInstr(MI); 2984 2985 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2986 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2987 2988 // Move insert point forward so we can use the Res register if needed. 2989 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2990 2991 // For *signed* multiply, overflow is detected by checking: 2992 // (hi != (lo >> bitwidth-1)) 2993 if (Opcode == TargetOpcode::G_SMULH) { 2994 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2995 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2996 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2997 } else { 2998 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2999 } 3000 return Legalized; 3001 } 3002 case TargetOpcode::G_FNEG: { 3003 Register Res = MI.getOperand(0).getReg(); 3004 LLT Ty = MRI.getType(Res); 3005 3006 // TODO: Handle vector types once we are able to 3007 // represent them. 3008 if (Ty.isVector()) 3009 return UnableToLegalize; 3010 auto SignMask = 3011 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3012 Register SubByReg = MI.getOperand(1).getReg(); 3013 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3014 MI.eraseFromParent(); 3015 return Legalized; 3016 } 3017 case TargetOpcode::G_FSUB: { 3018 Register Res = MI.getOperand(0).getReg(); 3019 LLT Ty = MRI.getType(Res); 3020 3021 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3022 // First, check if G_FNEG is marked as Lower. If so, we may 3023 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3024 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3025 return UnableToLegalize; 3026 Register LHS = MI.getOperand(1).getReg(); 3027 Register RHS = MI.getOperand(2).getReg(); 3028 Register Neg = MRI.createGenericVirtualRegister(Ty); 3029 MIRBuilder.buildFNeg(Neg, RHS); 3030 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3031 MI.eraseFromParent(); 3032 return Legalized; 3033 } 3034 case TargetOpcode::G_FMAD: 3035 return lowerFMad(MI); 3036 case TargetOpcode::G_FFLOOR: 3037 return lowerFFloor(MI); 3038 case TargetOpcode::G_INTRINSIC_ROUND: 3039 return lowerIntrinsicRound(MI); 3040 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3041 // Since round even is the assumed rounding mode for unconstrained FP 3042 // operations, rint and roundeven are the same operation. 3043 changeOpcode(MI, TargetOpcode::G_FRINT); 3044 return Legalized; 3045 } 3046 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3047 Register OldValRes = MI.getOperand(0).getReg(); 3048 Register SuccessRes = MI.getOperand(1).getReg(); 3049 Register Addr = MI.getOperand(2).getReg(); 3050 Register CmpVal = MI.getOperand(3).getReg(); 3051 Register NewVal = MI.getOperand(4).getReg(); 3052 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3053 **MI.memoperands_begin()); 3054 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3055 MI.eraseFromParent(); 3056 return Legalized; 3057 } 3058 case TargetOpcode::G_LOAD: 3059 case TargetOpcode::G_SEXTLOAD: 3060 case TargetOpcode::G_ZEXTLOAD: 3061 return lowerLoad(MI); 3062 case TargetOpcode::G_STORE: 3063 return lowerStore(MI); 3064 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3065 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3066 case TargetOpcode::G_CTLZ: 3067 case TargetOpcode::G_CTTZ: 3068 case TargetOpcode::G_CTPOP: 3069 return lowerBitCount(MI); 3070 case G_UADDO: { 3071 Register Res = MI.getOperand(0).getReg(); 3072 Register CarryOut = MI.getOperand(1).getReg(); 3073 Register LHS = MI.getOperand(2).getReg(); 3074 Register RHS = MI.getOperand(3).getReg(); 3075 3076 MIRBuilder.buildAdd(Res, LHS, RHS); 3077 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3078 3079 MI.eraseFromParent(); 3080 return Legalized; 3081 } 3082 case G_UADDE: { 3083 Register Res = MI.getOperand(0).getReg(); 3084 Register CarryOut = MI.getOperand(1).getReg(); 3085 Register LHS = MI.getOperand(2).getReg(); 3086 Register RHS = MI.getOperand(3).getReg(); 3087 Register CarryIn = MI.getOperand(4).getReg(); 3088 LLT Ty = MRI.getType(Res); 3089 3090 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3091 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3092 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3093 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3094 3095 MI.eraseFromParent(); 3096 return Legalized; 3097 } 3098 case G_USUBO: { 3099 Register Res = MI.getOperand(0).getReg(); 3100 Register BorrowOut = MI.getOperand(1).getReg(); 3101 Register LHS = MI.getOperand(2).getReg(); 3102 Register RHS = MI.getOperand(3).getReg(); 3103 3104 MIRBuilder.buildSub(Res, LHS, RHS); 3105 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3106 3107 MI.eraseFromParent(); 3108 return Legalized; 3109 } 3110 case G_USUBE: { 3111 Register Res = MI.getOperand(0).getReg(); 3112 Register BorrowOut = MI.getOperand(1).getReg(); 3113 Register LHS = MI.getOperand(2).getReg(); 3114 Register RHS = MI.getOperand(3).getReg(); 3115 Register BorrowIn = MI.getOperand(4).getReg(); 3116 const LLT CondTy = MRI.getType(BorrowOut); 3117 const LLT Ty = MRI.getType(Res); 3118 3119 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3120 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3121 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3122 3123 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3124 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3125 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3126 3127 MI.eraseFromParent(); 3128 return Legalized; 3129 } 3130 case G_UITOFP: 3131 return lowerUITOFP(MI); 3132 case G_SITOFP: 3133 return lowerSITOFP(MI); 3134 case G_FPTOUI: 3135 return lowerFPTOUI(MI); 3136 case G_FPTOSI: 3137 return lowerFPTOSI(MI); 3138 case G_FPTRUNC: 3139 return lowerFPTRUNC(MI); 3140 case G_FPOWI: 3141 return lowerFPOWI(MI); 3142 case G_SMIN: 3143 case G_SMAX: 3144 case G_UMIN: 3145 case G_UMAX: 3146 return lowerMinMax(MI); 3147 case G_FCOPYSIGN: 3148 return lowerFCopySign(MI); 3149 case G_FMINNUM: 3150 case G_FMAXNUM: 3151 return lowerFMinNumMaxNum(MI); 3152 case G_MERGE_VALUES: 3153 return lowerMergeValues(MI); 3154 case G_UNMERGE_VALUES: 3155 return lowerUnmergeValues(MI); 3156 case TargetOpcode::G_SEXT_INREG: { 3157 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3158 int64_t SizeInBits = MI.getOperand(2).getImm(); 3159 3160 Register DstReg = MI.getOperand(0).getReg(); 3161 Register SrcReg = MI.getOperand(1).getReg(); 3162 LLT DstTy = MRI.getType(DstReg); 3163 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3164 3165 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3166 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3167 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3168 MI.eraseFromParent(); 3169 return Legalized; 3170 } 3171 case G_EXTRACT_VECTOR_ELT: 3172 case G_INSERT_VECTOR_ELT: 3173 return lowerExtractInsertVectorElt(MI); 3174 case G_SHUFFLE_VECTOR: 3175 return lowerShuffleVector(MI); 3176 case G_DYN_STACKALLOC: 3177 return lowerDynStackAlloc(MI); 3178 case G_EXTRACT: 3179 return lowerExtract(MI); 3180 case G_INSERT: 3181 return lowerInsert(MI); 3182 case G_BSWAP: 3183 return lowerBswap(MI); 3184 case G_BITREVERSE: 3185 return lowerBitreverse(MI); 3186 case G_READ_REGISTER: 3187 case G_WRITE_REGISTER: 3188 return lowerReadWriteRegister(MI); 3189 case G_UADDSAT: 3190 case G_USUBSAT: { 3191 // Try to make a reasonable guess about which lowering strategy to use. The 3192 // target can override this with custom lowering and calling the 3193 // implementation functions. 3194 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3195 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3196 return lowerAddSubSatToMinMax(MI); 3197 return lowerAddSubSatToAddoSubo(MI); 3198 } 3199 case G_SADDSAT: 3200 case G_SSUBSAT: { 3201 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3202 3203 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3204 // since it's a shorter expansion. However, we would need to figure out the 3205 // preferred boolean type for the carry out for the query. 3206 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3207 return lowerAddSubSatToMinMax(MI); 3208 return lowerAddSubSatToAddoSubo(MI); 3209 } 3210 case G_SSHLSAT: 3211 case G_USHLSAT: 3212 return lowerShlSat(MI); 3213 case G_ABS: { 3214 // Expand %res = G_ABS %a into: 3215 // %v1 = G_ASHR %a, scalar_size-1 3216 // %v2 = G_ADD %a, %v1 3217 // %res = G_XOR %v2, %v1 3218 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3219 Register OpReg = MI.getOperand(1).getReg(); 3220 auto ShiftAmt = 3221 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3222 auto Shift = 3223 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3224 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3225 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3226 MI.eraseFromParent(); 3227 return Legalized; 3228 } 3229 case G_SELECT: 3230 return lowerSelect(MI); 3231 case G_SDIVREM: 3232 case G_UDIVREM: 3233 return lowerDIVREM(MI); 3234 case G_FSHL: 3235 case G_FSHR: 3236 return lowerFunnelShift(MI); 3237 case G_ROTL: 3238 case G_ROTR: 3239 return lowerRotate(MI); 3240 } 3241 } 3242 3243 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3244 Align MinAlign) const { 3245 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3246 // datalayout for the preferred alignment. Also there should be a target hook 3247 // for this to allow targets to reduce the alignment and ignore the 3248 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3249 // the type. 3250 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3251 } 3252 3253 MachineInstrBuilder 3254 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3255 MachinePointerInfo &PtrInfo) { 3256 MachineFunction &MF = MIRBuilder.getMF(); 3257 const DataLayout &DL = MIRBuilder.getDataLayout(); 3258 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3259 3260 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3261 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3262 3263 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3264 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3265 } 3266 3267 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3268 LLT VecTy) { 3269 int64_t IdxVal; 3270 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3271 return IdxReg; 3272 3273 LLT IdxTy = B.getMRI()->getType(IdxReg); 3274 unsigned NElts = VecTy.getNumElements(); 3275 if (isPowerOf2_32(NElts)) { 3276 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3277 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3278 } 3279 3280 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3281 .getReg(0); 3282 } 3283 3284 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3285 Register Index) { 3286 LLT EltTy = VecTy.getElementType(); 3287 3288 // Calculate the element offset and add it to the pointer. 3289 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3290 assert(EltSize * 8 == EltTy.getSizeInBits() && 3291 "Converting bits to bytes lost precision"); 3292 3293 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3294 3295 LLT IdxTy = MRI.getType(Index); 3296 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3297 MIRBuilder.buildConstant(IdxTy, EltSize)); 3298 3299 LLT PtrTy = MRI.getType(VecPtr); 3300 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3301 } 3302 3303 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3304 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3305 Register DstReg = MI.getOperand(0).getReg(); 3306 LLT DstTy = MRI.getType(DstReg); 3307 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3308 3309 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3310 3311 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3312 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3313 3314 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3315 MI.eraseFromParent(); 3316 return Legalized; 3317 } 3318 3319 // Handle splitting vector operations which need to have the same number of 3320 // elements in each type index, but each type index may have a different element 3321 // type. 3322 // 3323 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3324 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3325 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3326 // 3327 // Also handles some irregular breakdown cases, e.g. 3328 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3329 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3330 // s64 = G_SHL s64, s32 3331 LegalizerHelper::LegalizeResult 3332 LegalizerHelper::fewerElementsVectorMultiEltType( 3333 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3334 if (TypeIdx != 0) 3335 return UnableToLegalize; 3336 3337 const LLT NarrowTy0 = NarrowTyArg; 3338 const unsigned NewNumElts = 3339 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3340 3341 const Register DstReg = MI.getOperand(0).getReg(); 3342 LLT DstTy = MRI.getType(DstReg); 3343 LLT LeftoverTy0; 3344 3345 // All of the operands need to have the same number of elements, so if we can 3346 // determine a type breakdown for the result type, we can for all of the 3347 // source types. 3348 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3349 if (NumParts < 0) 3350 return UnableToLegalize; 3351 3352 SmallVector<MachineInstrBuilder, 4> NewInsts; 3353 3354 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3355 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3356 3357 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3358 Register SrcReg = MI.getOperand(I).getReg(); 3359 LLT SrcTyI = MRI.getType(SrcReg); 3360 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3361 LLT LeftoverTyI; 3362 3363 // Split this operand into the requested typed registers, and any leftover 3364 // required to reproduce the original type. 3365 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3366 LeftoverRegs)) 3367 return UnableToLegalize; 3368 3369 if (I == 1) { 3370 // For the first operand, create an instruction for each part and setup 3371 // the result. 3372 for (Register PartReg : PartRegs) { 3373 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3374 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3375 .addDef(PartDstReg) 3376 .addUse(PartReg)); 3377 DstRegs.push_back(PartDstReg); 3378 } 3379 3380 for (Register LeftoverReg : LeftoverRegs) { 3381 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3382 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3383 .addDef(PartDstReg) 3384 .addUse(LeftoverReg)); 3385 LeftoverDstRegs.push_back(PartDstReg); 3386 } 3387 } else { 3388 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3389 3390 // Add the newly created operand splits to the existing instructions. The 3391 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3392 // pieces. 3393 unsigned InstCount = 0; 3394 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3395 NewInsts[InstCount++].addUse(PartRegs[J]); 3396 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3397 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3398 } 3399 3400 PartRegs.clear(); 3401 LeftoverRegs.clear(); 3402 } 3403 3404 // Insert the newly built operations and rebuild the result register. 3405 for (auto &MIB : NewInsts) 3406 MIRBuilder.insertInstr(MIB); 3407 3408 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3409 3410 MI.eraseFromParent(); 3411 return Legalized; 3412 } 3413 3414 LegalizerHelper::LegalizeResult 3415 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3416 LLT NarrowTy) { 3417 if (TypeIdx != 0) 3418 return UnableToLegalize; 3419 3420 Register DstReg = MI.getOperand(0).getReg(); 3421 Register SrcReg = MI.getOperand(1).getReg(); 3422 LLT DstTy = MRI.getType(DstReg); 3423 LLT SrcTy = MRI.getType(SrcReg); 3424 3425 LLT NarrowTy0 = NarrowTy; 3426 LLT NarrowTy1; 3427 unsigned NumParts; 3428 3429 if (NarrowTy.isVector()) { 3430 // Uneven breakdown not handled. 3431 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3432 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3433 return UnableToLegalize; 3434 3435 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3436 } else { 3437 NumParts = DstTy.getNumElements(); 3438 NarrowTy1 = SrcTy.getElementType(); 3439 } 3440 3441 SmallVector<Register, 4> SrcRegs, DstRegs; 3442 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3443 3444 for (unsigned I = 0; I < NumParts; ++I) { 3445 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3446 MachineInstr *NewInst = 3447 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3448 3449 NewInst->setFlags(MI.getFlags()); 3450 DstRegs.push_back(DstReg); 3451 } 3452 3453 if (NarrowTy.isVector()) 3454 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3455 else 3456 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3457 3458 MI.eraseFromParent(); 3459 return Legalized; 3460 } 3461 3462 LegalizerHelper::LegalizeResult 3463 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3464 LLT NarrowTy) { 3465 Register DstReg = MI.getOperand(0).getReg(); 3466 Register Src0Reg = MI.getOperand(2).getReg(); 3467 LLT DstTy = MRI.getType(DstReg); 3468 LLT SrcTy = MRI.getType(Src0Reg); 3469 3470 unsigned NumParts; 3471 LLT NarrowTy0, NarrowTy1; 3472 3473 if (TypeIdx == 0) { 3474 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3475 unsigned OldElts = DstTy.getNumElements(); 3476 3477 NarrowTy0 = NarrowTy; 3478 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3479 NarrowTy1 = NarrowTy.isVector() ? 3480 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3481 SrcTy.getElementType(); 3482 3483 } else { 3484 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3485 unsigned OldElts = SrcTy.getNumElements(); 3486 3487 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3488 NarrowTy.getNumElements(); 3489 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3490 DstTy.getScalarSizeInBits()); 3491 NarrowTy1 = NarrowTy; 3492 } 3493 3494 // FIXME: Don't know how to handle the situation where the small vectors 3495 // aren't all the same size yet. 3496 if (NarrowTy1.isVector() && 3497 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3498 return UnableToLegalize; 3499 3500 CmpInst::Predicate Pred 3501 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3502 3503 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3504 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3505 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3506 3507 for (unsigned I = 0; I < NumParts; ++I) { 3508 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3509 DstRegs.push_back(DstReg); 3510 3511 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3512 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3513 else { 3514 MachineInstr *NewCmp 3515 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3516 NewCmp->setFlags(MI.getFlags()); 3517 } 3518 } 3519 3520 if (NarrowTy1.isVector()) 3521 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3522 else 3523 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3524 3525 MI.eraseFromParent(); 3526 return Legalized; 3527 } 3528 3529 LegalizerHelper::LegalizeResult 3530 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3531 LLT NarrowTy) { 3532 Register DstReg = MI.getOperand(0).getReg(); 3533 Register CondReg = MI.getOperand(1).getReg(); 3534 3535 unsigned NumParts = 0; 3536 LLT NarrowTy0, NarrowTy1; 3537 3538 LLT DstTy = MRI.getType(DstReg); 3539 LLT CondTy = MRI.getType(CondReg); 3540 unsigned Size = DstTy.getSizeInBits(); 3541 3542 assert(TypeIdx == 0 || CondTy.isVector()); 3543 3544 if (TypeIdx == 0) { 3545 NarrowTy0 = NarrowTy; 3546 NarrowTy1 = CondTy; 3547 3548 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3549 // FIXME: Don't know how to handle the situation where the small vectors 3550 // aren't all the same size yet. 3551 if (Size % NarrowSize != 0) 3552 return UnableToLegalize; 3553 3554 NumParts = Size / NarrowSize; 3555 3556 // Need to break down the condition type 3557 if (CondTy.isVector()) { 3558 if (CondTy.getNumElements() == NumParts) 3559 NarrowTy1 = CondTy.getElementType(); 3560 else 3561 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3562 CondTy.getScalarSizeInBits()); 3563 } 3564 } else { 3565 NumParts = CondTy.getNumElements(); 3566 if (NarrowTy.isVector()) { 3567 // TODO: Handle uneven breakdown. 3568 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3569 return UnableToLegalize; 3570 3571 return UnableToLegalize; 3572 } else { 3573 NarrowTy0 = DstTy.getElementType(); 3574 NarrowTy1 = NarrowTy; 3575 } 3576 } 3577 3578 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3579 if (CondTy.isVector()) 3580 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3581 3582 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3583 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3584 3585 for (unsigned i = 0; i < NumParts; ++i) { 3586 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3587 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3588 Src1Regs[i], Src2Regs[i]); 3589 DstRegs.push_back(DstReg); 3590 } 3591 3592 if (NarrowTy0.isVector()) 3593 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3594 else 3595 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3596 3597 MI.eraseFromParent(); 3598 return Legalized; 3599 } 3600 3601 LegalizerHelper::LegalizeResult 3602 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3603 LLT NarrowTy) { 3604 const Register DstReg = MI.getOperand(0).getReg(); 3605 LLT PhiTy = MRI.getType(DstReg); 3606 LLT LeftoverTy; 3607 3608 // All of the operands need to have the same number of elements, so if we can 3609 // determine a type breakdown for the result type, we can for all of the 3610 // source types. 3611 int NumParts, NumLeftover; 3612 std::tie(NumParts, NumLeftover) 3613 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3614 if (NumParts < 0) 3615 return UnableToLegalize; 3616 3617 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3618 SmallVector<MachineInstrBuilder, 4> NewInsts; 3619 3620 const int TotalNumParts = NumParts + NumLeftover; 3621 3622 // Insert the new phis in the result block first. 3623 for (int I = 0; I != TotalNumParts; ++I) { 3624 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3625 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3626 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3627 .addDef(PartDstReg)); 3628 if (I < NumParts) 3629 DstRegs.push_back(PartDstReg); 3630 else 3631 LeftoverDstRegs.push_back(PartDstReg); 3632 } 3633 3634 MachineBasicBlock *MBB = MI.getParent(); 3635 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3636 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3637 3638 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3639 3640 // Insert code to extract the incoming values in each predecessor block. 3641 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3642 PartRegs.clear(); 3643 LeftoverRegs.clear(); 3644 3645 Register SrcReg = MI.getOperand(I).getReg(); 3646 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3647 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3648 3649 LLT Unused; 3650 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3651 LeftoverRegs)) 3652 return UnableToLegalize; 3653 3654 // Add the newly created operand splits to the existing instructions. The 3655 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3656 // pieces. 3657 for (int J = 0; J != TotalNumParts; ++J) { 3658 MachineInstrBuilder MIB = NewInsts[J]; 3659 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3660 MIB.addMBB(&OpMBB); 3661 } 3662 } 3663 3664 MI.eraseFromParent(); 3665 return Legalized; 3666 } 3667 3668 LegalizerHelper::LegalizeResult 3669 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3670 unsigned TypeIdx, 3671 LLT NarrowTy) { 3672 if (TypeIdx != 1) 3673 return UnableToLegalize; 3674 3675 const int NumDst = MI.getNumOperands() - 1; 3676 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3677 LLT SrcTy = MRI.getType(SrcReg); 3678 3679 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3680 3681 // TODO: Create sequence of extracts. 3682 if (DstTy == NarrowTy) 3683 return UnableToLegalize; 3684 3685 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3686 if (DstTy == GCDTy) { 3687 // This would just be a copy of the same unmerge. 3688 // TODO: Create extracts, pad with undef and create intermediate merges. 3689 return UnableToLegalize; 3690 } 3691 3692 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3693 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3694 const int PartsPerUnmerge = NumDst / NumUnmerge; 3695 3696 for (int I = 0; I != NumUnmerge; ++I) { 3697 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3698 3699 for (int J = 0; J != PartsPerUnmerge; ++J) 3700 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3701 MIB.addUse(Unmerge.getReg(I)); 3702 } 3703 3704 MI.eraseFromParent(); 3705 return Legalized; 3706 } 3707 3708 LegalizerHelper::LegalizeResult 3709 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx, 3710 LLT NarrowTy) { 3711 Register Result = MI.getOperand(0).getReg(); 3712 Register Overflow = MI.getOperand(1).getReg(); 3713 Register LHS = MI.getOperand(2).getReg(); 3714 Register RHS = MI.getOperand(3).getReg(); 3715 3716 LLT SrcTy = MRI.getType(LHS); 3717 if (!SrcTy.isVector()) 3718 return UnableToLegalize; 3719 3720 LLT ElementType = SrcTy.getElementType(); 3721 LLT OverflowElementTy = MRI.getType(Overflow).getElementType(); 3722 const int NumResult = SrcTy.getNumElements(); 3723 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3724 3725 // Unmerge the operands to smaller parts of GCD type. 3726 auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS); 3727 auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS); 3728 3729 const int NumOps = UnmergeLHS->getNumOperands() - 1; 3730 const int PartsPerUnmerge = NumResult / NumOps; 3731 LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy); 3732 LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType); 3733 3734 // Perform the operation over unmerged parts. 3735 SmallVector<Register, 8> ResultParts; 3736 SmallVector<Register, 8> OverflowParts; 3737 for (int I = 0; I != NumOps; ++I) { 3738 Register Operand1 = UnmergeLHS->getOperand(I).getReg(); 3739 Register Operand2 = UnmergeRHS->getOperand(I).getReg(); 3740 auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy}, 3741 {Operand1, Operand2}); 3742 ResultParts.push_back(PartMul->getOperand(0).getReg()); 3743 OverflowParts.push_back(PartMul->getOperand(1).getReg()); 3744 } 3745 3746 LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts); 3747 LLT OverflowLCMTy = 3748 LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy); 3749 3750 // Recombine the pieces to the original result and overflow registers. 3751 buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts); 3752 buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts); 3753 MI.eraseFromParent(); 3754 return Legalized; 3755 } 3756 3757 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3758 // a vector 3759 // 3760 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3761 // undef as necessary. 3762 // 3763 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3764 // -> <2 x s16> 3765 // 3766 // %4:_(s16) = G_IMPLICIT_DEF 3767 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3768 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3769 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3770 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3771 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3772 LegalizerHelper::LegalizeResult 3773 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3774 LLT NarrowTy) { 3775 Register DstReg = MI.getOperand(0).getReg(); 3776 LLT DstTy = MRI.getType(DstReg); 3777 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3778 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3779 3780 // Break into a common type 3781 SmallVector<Register, 16> Parts; 3782 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3783 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3784 3785 // Build the requested new merge, padding with undef. 3786 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3787 TargetOpcode::G_ANYEXT); 3788 3789 // Pack into the original result register. 3790 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3791 3792 MI.eraseFromParent(); 3793 return Legalized; 3794 } 3795 3796 LegalizerHelper::LegalizeResult 3797 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3798 unsigned TypeIdx, 3799 LLT NarrowVecTy) { 3800 Register DstReg = MI.getOperand(0).getReg(); 3801 Register SrcVec = MI.getOperand(1).getReg(); 3802 Register InsertVal; 3803 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3804 3805 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3806 if (IsInsert) 3807 InsertVal = MI.getOperand(2).getReg(); 3808 3809 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3810 3811 // TODO: Handle total scalarization case. 3812 if (!NarrowVecTy.isVector()) 3813 return UnableToLegalize; 3814 3815 LLT VecTy = MRI.getType(SrcVec); 3816 3817 // If the index is a constant, we can really break this down as you would 3818 // expect, and index into the target size pieces. 3819 int64_t IdxVal; 3820 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3821 // Avoid out of bounds indexing the pieces. 3822 if (IdxVal >= VecTy.getNumElements()) { 3823 MIRBuilder.buildUndef(DstReg); 3824 MI.eraseFromParent(); 3825 return Legalized; 3826 } 3827 3828 SmallVector<Register, 8> VecParts; 3829 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3830 3831 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3832 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3833 TargetOpcode::G_ANYEXT); 3834 3835 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3836 3837 LLT IdxTy = MRI.getType(Idx); 3838 int64_t PartIdx = IdxVal / NewNumElts; 3839 auto NewIdx = 3840 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3841 3842 if (IsInsert) { 3843 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3844 3845 // Use the adjusted index to insert into one of the subvectors. 3846 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3847 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3848 VecParts[PartIdx] = InsertPart.getReg(0); 3849 3850 // Recombine the inserted subvector with the others to reform the result 3851 // vector. 3852 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3853 } else { 3854 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3855 } 3856 3857 MI.eraseFromParent(); 3858 return Legalized; 3859 } 3860 3861 // With a variable index, we can't perform the operation in a smaller type, so 3862 // we're forced to expand this. 3863 // 3864 // TODO: We could emit a chain of compare/select to figure out which piece to 3865 // index. 3866 return lowerExtractInsertVectorElt(MI); 3867 } 3868 3869 LegalizerHelper::LegalizeResult 3870 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3871 LLT NarrowTy) { 3872 // FIXME: Don't know how to handle secondary types yet. 3873 if (TypeIdx != 0) 3874 return UnableToLegalize; 3875 3876 MachineMemOperand *MMO = *MI.memoperands_begin(); 3877 3878 // This implementation doesn't work for atomics. Give up instead of doing 3879 // something invalid. 3880 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3881 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3882 return UnableToLegalize; 3883 3884 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3885 Register ValReg = MI.getOperand(0).getReg(); 3886 Register AddrReg = MI.getOperand(1).getReg(); 3887 LLT ValTy = MRI.getType(ValReg); 3888 3889 // FIXME: Do we need a distinct NarrowMemory legalize action? 3890 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3891 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3892 return UnableToLegalize; 3893 } 3894 3895 int NumParts = -1; 3896 int NumLeftover = -1; 3897 LLT LeftoverTy; 3898 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3899 if (IsLoad) { 3900 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3901 } else { 3902 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3903 NarrowLeftoverRegs)) { 3904 NumParts = NarrowRegs.size(); 3905 NumLeftover = NarrowLeftoverRegs.size(); 3906 } 3907 } 3908 3909 if (NumParts == -1) 3910 return UnableToLegalize; 3911 3912 LLT PtrTy = MRI.getType(AddrReg); 3913 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3914 3915 unsigned TotalSize = ValTy.getSizeInBits(); 3916 3917 // Split the load/store into PartTy sized pieces starting at Offset. If this 3918 // is a load, return the new registers in ValRegs. For a store, each elements 3919 // of ValRegs should be PartTy. Returns the next offset that needs to be 3920 // handled. 3921 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3922 unsigned Offset) -> unsigned { 3923 MachineFunction &MF = MIRBuilder.getMF(); 3924 unsigned PartSize = PartTy.getSizeInBits(); 3925 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3926 Offset += PartSize, ++Idx) { 3927 unsigned ByteSize = PartSize / 8; 3928 unsigned ByteOffset = Offset / 8; 3929 Register NewAddrReg; 3930 3931 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3932 3933 MachineMemOperand *NewMMO = 3934 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3935 3936 if (IsLoad) { 3937 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3938 ValRegs.push_back(Dst); 3939 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3940 } else { 3941 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3942 } 3943 } 3944 3945 return Offset; 3946 }; 3947 3948 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3949 3950 // Handle the rest of the register if this isn't an even type breakdown. 3951 if (LeftoverTy.isValid()) 3952 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3953 3954 if (IsLoad) { 3955 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3956 LeftoverTy, NarrowLeftoverRegs); 3957 } 3958 3959 MI.eraseFromParent(); 3960 return Legalized; 3961 } 3962 3963 LegalizerHelper::LegalizeResult 3964 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3965 LLT NarrowTy) { 3966 assert(TypeIdx == 0 && "only one type index expected"); 3967 3968 const unsigned Opc = MI.getOpcode(); 3969 const int NumDefOps = MI.getNumExplicitDefs(); 3970 const int NumSrcOps = MI.getNumOperands() - NumDefOps; 3971 const unsigned Flags = MI.getFlags(); 3972 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3973 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3974 3975 assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 " 3976 "result and 1-3 sources or 2 results and " 3977 "1-2 sources"); 3978 3979 SmallVector<Register, 2> DstRegs; 3980 for (int I = 0; I < NumDefOps; ++I) 3981 DstRegs.push_back(MI.getOperand(I).getReg()); 3982 3983 // First of all check whether we are narrowing (changing the element type) 3984 // or reducing the vector elements 3985 const LLT DstTy = MRI.getType(DstRegs[0]); 3986 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3987 3988 SmallVector<Register, 8> ExtractedRegs[3]; 3989 SmallVector<Register, 8> Parts; 3990 3991 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3992 3993 // Break down all the sources into NarrowTy pieces we can operate on. This may 3994 // involve creating merges to a wider type, padded with undef. 3995 for (int I = 0; I != NumSrcOps; ++I) { 3996 Register SrcReg = MI.getOperand(I + NumDefOps).getReg(); 3997 LLT SrcTy = MRI.getType(SrcReg); 3998 3999 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 4000 // For fewerElements, this is a smaller vector with the same element type. 4001 LLT OpNarrowTy; 4002 if (IsNarrow) { 4003 OpNarrowTy = NarrowScalarTy; 4004 4005 // In case of narrowing, we need to cast vectors to scalars for this to 4006 // work properly 4007 // FIXME: Can we do without the bitcast here if we're narrowing? 4008 if (SrcTy.isVector()) { 4009 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 4010 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 4011 } 4012 } else { 4013 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 4014 } 4015 4016 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 4017 4018 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 4019 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 4020 TargetOpcode::G_ANYEXT); 4021 } 4022 4023 SmallVector<Register, 8> ResultRegs[2]; 4024 4025 // Input operands for each sub-instruction. 4026 SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register()); 4027 4028 int NumParts = ExtractedRegs[0].size(); 4029 const unsigned DstSize = DstTy.getSizeInBits(); 4030 const LLT DstScalarTy = LLT::scalar(DstSize); 4031 4032 // Narrowing needs to use scalar types 4033 LLT DstLCMTy, NarrowDstTy; 4034 if (IsNarrow) { 4035 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 4036 NarrowDstTy = NarrowScalarTy; 4037 } else { 4038 DstLCMTy = getLCMType(DstTy, NarrowTy); 4039 NarrowDstTy = NarrowTy; 4040 } 4041 4042 // We widened the source registers to satisfy merge/unmerge size 4043 // constraints. We'll have some extra fully undef parts. 4044 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 4045 4046 for (int I = 0; I != NumRealParts; ++I) { 4047 // Emit this instruction on each of the split pieces. 4048 for (int J = 0; J != NumSrcOps; ++J) 4049 InputRegs[J] = ExtractedRegs[J][I]; 4050 4051 MachineInstrBuilder Inst; 4052 if (NumDefOps == 1) 4053 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 4054 else 4055 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs, 4056 Flags); 4057 4058 for (int J = 0; J != NumDefOps; ++J) 4059 ResultRegs[J].push_back(Inst.getReg(J)); 4060 } 4061 4062 // Fill out the widened result with undef instead of creating instructions 4063 // with undef inputs. 4064 int NumUndefParts = NumParts - NumRealParts; 4065 if (NumUndefParts != 0) { 4066 Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0); 4067 for (int I = 0; I != NumDefOps; ++I) 4068 ResultRegs[I].append(NumUndefParts, Undef); 4069 } 4070 4071 // Extract the possibly padded result. Use a scratch register if we need to do 4072 // a final bitcast, otherwise use the original result register. 4073 Register MergeDstReg; 4074 for (int I = 0; I != NumDefOps; ++I) { 4075 if (IsNarrow && DstTy.isVector()) 4076 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 4077 else 4078 MergeDstReg = DstRegs[I]; 4079 4080 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]); 4081 4082 // Recast to vector if we narrowed a vector 4083 if (IsNarrow && DstTy.isVector()) 4084 MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg); 4085 } 4086 4087 MI.eraseFromParent(); 4088 return Legalized; 4089 } 4090 4091 LegalizerHelper::LegalizeResult 4092 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 4093 LLT NarrowTy) { 4094 Register DstReg = MI.getOperand(0).getReg(); 4095 Register SrcReg = MI.getOperand(1).getReg(); 4096 int64_t Imm = MI.getOperand(2).getImm(); 4097 4098 LLT DstTy = MRI.getType(DstReg); 4099 4100 SmallVector<Register, 8> Parts; 4101 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4102 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 4103 4104 for (Register &R : Parts) 4105 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 4106 4107 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4108 4109 MI.eraseFromParent(); 4110 return Legalized; 4111 } 4112 4113 LegalizerHelper::LegalizeResult 4114 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4115 LLT NarrowTy) { 4116 using namespace TargetOpcode; 4117 4118 switch (MI.getOpcode()) { 4119 case G_IMPLICIT_DEF: 4120 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 4121 case G_TRUNC: 4122 case G_AND: 4123 case G_OR: 4124 case G_XOR: 4125 case G_ADD: 4126 case G_SUB: 4127 case G_MUL: 4128 case G_PTR_ADD: 4129 case G_SMULH: 4130 case G_UMULH: 4131 case G_FADD: 4132 case G_FMUL: 4133 case G_FSUB: 4134 case G_FNEG: 4135 case G_FABS: 4136 case G_FCANONICALIZE: 4137 case G_FDIV: 4138 case G_FREM: 4139 case G_FMA: 4140 case G_FMAD: 4141 case G_FPOW: 4142 case G_FEXP: 4143 case G_FEXP2: 4144 case G_FLOG: 4145 case G_FLOG2: 4146 case G_FLOG10: 4147 case G_FNEARBYINT: 4148 case G_FCEIL: 4149 case G_FFLOOR: 4150 case G_FRINT: 4151 case G_INTRINSIC_ROUND: 4152 case G_INTRINSIC_ROUNDEVEN: 4153 case G_INTRINSIC_TRUNC: 4154 case G_FCOS: 4155 case G_FSIN: 4156 case G_FSQRT: 4157 case G_BSWAP: 4158 case G_BITREVERSE: 4159 case G_SDIV: 4160 case G_UDIV: 4161 case G_SREM: 4162 case G_UREM: 4163 case G_SDIVREM: 4164 case G_UDIVREM: 4165 case G_SMIN: 4166 case G_SMAX: 4167 case G_UMIN: 4168 case G_UMAX: 4169 case G_FMINNUM: 4170 case G_FMAXNUM: 4171 case G_FMINNUM_IEEE: 4172 case G_FMAXNUM_IEEE: 4173 case G_FMINIMUM: 4174 case G_FMAXIMUM: 4175 case G_FSHL: 4176 case G_FSHR: 4177 case G_FREEZE: 4178 case G_SADDSAT: 4179 case G_SSUBSAT: 4180 case G_UADDSAT: 4181 case G_USUBSAT: 4182 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4183 case G_UMULO: 4184 case G_SMULO: 4185 return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy); 4186 case G_SHL: 4187 case G_LSHR: 4188 case G_ASHR: 4189 case G_SSHLSAT: 4190 case G_USHLSAT: 4191 case G_CTLZ: 4192 case G_CTLZ_ZERO_UNDEF: 4193 case G_CTTZ: 4194 case G_CTTZ_ZERO_UNDEF: 4195 case G_CTPOP: 4196 case G_FCOPYSIGN: 4197 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4198 case G_ZEXT: 4199 case G_SEXT: 4200 case G_ANYEXT: 4201 case G_FPEXT: 4202 case G_FPTRUNC: 4203 case G_SITOFP: 4204 case G_UITOFP: 4205 case G_FPTOSI: 4206 case G_FPTOUI: 4207 case G_INTTOPTR: 4208 case G_PTRTOINT: 4209 case G_ADDRSPACE_CAST: 4210 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4211 case G_ICMP: 4212 case G_FCMP: 4213 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4214 case G_SELECT: 4215 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4216 case G_PHI: 4217 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4218 case G_UNMERGE_VALUES: 4219 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4220 case G_BUILD_VECTOR: 4221 assert(TypeIdx == 0 && "not a vector type index"); 4222 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4223 case G_CONCAT_VECTORS: 4224 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4225 return UnableToLegalize; 4226 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4227 case G_EXTRACT_VECTOR_ELT: 4228 case G_INSERT_VECTOR_ELT: 4229 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4230 case G_LOAD: 4231 case G_STORE: 4232 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4233 case G_SEXT_INREG: 4234 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4235 GISEL_VECREDUCE_CASES_NONSEQ 4236 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4237 default: 4238 return UnableToLegalize; 4239 } 4240 } 4241 4242 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4243 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4244 unsigned Opc = MI.getOpcode(); 4245 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4246 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4247 "Sequential reductions not expected"); 4248 4249 if (TypeIdx != 1) 4250 return UnableToLegalize; 4251 4252 // The semantics of the normal non-sequential reductions allow us to freely 4253 // re-associate the operation. 4254 Register SrcReg = MI.getOperand(1).getReg(); 4255 LLT SrcTy = MRI.getType(SrcReg); 4256 Register DstReg = MI.getOperand(0).getReg(); 4257 LLT DstTy = MRI.getType(DstReg); 4258 4259 if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0) 4260 return UnableToLegalize; 4261 4262 SmallVector<Register> SplitSrcs; 4263 const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements(); 4264 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4265 SmallVector<Register> PartialReductions; 4266 for (unsigned Part = 0; Part < NumParts; ++Part) { 4267 PartialReductions.push_back( 4268 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4269 } 4270 4271 unsigned ScalarOpc; 4272 switch (Opc) { 4273 case TargetOpcode::G_VECREDUCE_FADD: 4274 ScalarOpc = TargetOpcode::G_FADD; 4275 break; 4276 case TargetOpcode::G_VECREDUCE_FMUL: 4277 ScalarOpc = TargetOpcode::G_FMUL; 4278 break; 4279 case TargetOpcode::G_VECREDUCE_FMAX: 4280 ScalarOpc = TargetOpcode::G_FMAXNUM; 4281 break; 4282 case TargetOpcode::G_VECREDUCE_FMIN: 4283 ScalarOpc = TargetOpcode::G_FMINNUM; 4284 break; 4285 case TargetOpcode::G_VECREDUCE_ADD: 4286 ScalarOpc = TargetOpcode::G_ADD; 4287 break; 4288 case TargetOpcode::G_VECREDUCE_MUL: 4289 ScalarOpc = TargetOpcode::G_MUL; 4290 break; 4291 case TargetOpcode::G_VECREDUCE_AND: 4292 ScalarOpc = TargetOpcode::G_AND; 4293 break; 4294 case TargetOpcode::G_VECREDUCE_OR: 4295 ScalarOpc = TargetOpcode::G_OR; 4296 break; 4297 case TargetOpcode::G_VECREDUCE_XOR: 4298 ScalarOpc = TargetOpcode::G_XOR; 4299 break; 4300 case TargetOpcode::G_VECREDUCE_SMAX: 4301 ScalarOpc = TargetOpcode::G_SMAX; 4302 break; 4303 case TargetOpcode::G_VECREDUCE_SMIN: 4304 ScalarOpc = TargetOpcode::G_SMIN; 4305 break; 4306 case TargetOpcode::G_VECREDUCE_UMAX: 4307 ScalarOpc = TargetOpcode::G_UMAX; 4308 break; 4309 case TargetOpcode::G_VECREDUCE_UMIN: 4310 ScalarOpc = TargetOpcode::G_UMIN; 4311 break; 4312 default: 4313 LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n"); 4314 return UnableToLegalize; 4315 } 4316 4317 // If the types involved are powers of 2, we can generate intermediate vector 4318 // ops, before generating a final reduction operation. 4319 if (isPowerOf2_32(SrcTy.getNumElements()) && 4320 isPowerOf2_32(NarrowTy.getNumElements())) { 4321 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4322 } 4323 4324 Register Acc = PartialReductions[0]; 4325 for (unsigned Part = 1; Part < NumParts; ++Part) { 4326 if (Part == NumParts - 1) { 4327 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4328 {Acc, PartialReductions[Part]}); 4329 } else { 4330 Acc = MIRBuilder 4331 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4332 .getReg(0); 4333 } 4334 } 4335 MI.eraseFromParent(); 4336 return Legalized; 4337 } 4338 4339 LegalizerHelper::LegalizeResult 4340 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4341 LLT SrcTy, LLT NarrowTy, 4342 unsigned ScalarOpc) { 4343 SmallVector<Register> SplitSrcs; 4344 // Split the sources into NarrowTy size pieces. 4345 extractParts(SrcReg, NarrowTy, 4346 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4347 // We're going to do a tree reduction using vector operations until we have 4348 // one NarrowTy size value left. 4349 while (SplitSrcs.size() > 1) { 4350 SmallVector<Register> PartialRdxs; 4351 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4352 Register LHS = SplitSrcs[Idx]; 4353 Register RHS = SplitSrcs[Idx + 1]; 4354 // Create the intermediate vector op. 4355 Register Res = 4356 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4357 PartialRdxs.push_back(Res); 4358 } 4359 SplitSrcs = std::move(PartialRdxs); 4360 } 4361 // Finally generate the requested NarrowTy based reduction. 4362 Observer.changingInstr(MI); 4363 MI.getOperand(1).setReg(SplitSrcs[0]); 4364 Observer.changedInstr(MI); 4365 return Legalized; 4366 } 4367 4368 LegalizerHelper::LegalizeResult 4369 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4370 const LLT HalfTy, const LLT AmtTy) { 4371 4372 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4373 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4374 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4375 4376 if (Amt.isNullValue()) { 4377 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4378 MI.eraseFromParent(); 4379 return Legalized; 4380 } 4381 4382 LLT NVT = HalfTy; 4383 unsigned NVTBits = HalfTy.getSizeInBits(); 4384 unsigned VTBits = 2 * NVTBits; 4385 4386 SrcOp Lo(Register(0)), Hi(Register(0)); 4387 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4388 if (Amt.ugt(VTBits)) { 4389 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4390 } else if (Amt.ugt(NVTBits)) { 4391 Lo = MIRBuilder.buildConstant(NVT, 0); 4392 Hi = MIRBuilder.buildShl(NVT, InL, 4393 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4394 } else if (Amt == NVTBits) { 4395 Lo = MIRBuilder.buildConstant(NVT, 0); 4396 Hi = InL; 4397 } else { 4398 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4399 auto OrLHS = 4400 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4401 auto OrRHS = MIRBuilder.buildLShr( 4402 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4403 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4404 } 4405 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4406 if (Amt.ugt(VTBits)) { 4407 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4408 } else if (Amt.ugt(NVTBits)) { 4409 Lo = MIRBuilder.buildLShr(NVT, InH, 4410 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4411 Hi = MIRBuilder.buildConstant(NVT, 0); 4412 } else if (Amt == NVTBits) { 4413 Lo = InH; 4414 Hi = MIRBuilder.buildConstant(NVT, 0); 4415 } else { 4416 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4417 4418 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4419 auto OrRHS = MIRBuilder.buildShl( 4420 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4421 4422 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4423 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4424 } 4425 } else { 4426 if (Amt.ugt(VTBits)) { 4427 Hi = Lo = MIRBuilder.buildAShr( 4428 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4429 } else if (Amt.ugt(NVTBits)) { 4430 Lo = MIRBuilder.buildAShr(NVT, InH, 4431 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4432 Hi = MIRBuilder.buildAShr(NVT, InH, 4433 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4434 } else if (Amt == NVTBits) { 4435 Lo = InH; 4436 Hi = MIRBuilder.buildAShr(NVT, InH, 4437 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4438 } else { 4439 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4440 4441 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4442 auto OrRHS = MIRBuilder.buildShl( 4443 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4444 4445 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4446 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4447 } 4448 } 4449 4450 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4451 MI.eraseFromParent(); 4452 4453 return Legalized; 4454 } 4455 4456 // TODO: Optimize if constant shift amount. 4457 LegalizerHelper::LegalizeResult 4458 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4459 LLT RequestedTy) { 4460 if (TypeIdx == 1) { 4461 Observer.changingInstr(MI); 4462 narrowScalarSrc(MI, RequestedTy, 2); 4463 Observer.changedInstr(MI); 4464 return Legalized; 4465 } 4466 4467 Register DstReg = MI.getOperand(0).getReg(); 4468 LLT DstTy = MRI.getType(DstReg); 4469 if (DstTy.isVector()) 4470 return UnableToLegalize; 4471 4472 Register Amt = MI.getOperand(2).getReg(); 4473 LLT ShiftAmtTy = MRI.getType(Amt); 4474 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4475 if (DstEltSize % 2 != 0) 4476 return UnableToLegalize; 4477 4478 // Ignore the input type. We can only go to exactly half the size of the 4479 // input. If that isn't small enough, the resulting pieces will be further 4480 // legalized. 4481 const unsigned NewBitSize = DstEltSize / 2; 4482 const LLT HalfTy = LLT::scalar(NewBitSize); 4483 const LLT CondTy = LLT::scalar(1); 4484 4485 if (const MachineInstr *KShiftAmt = 4486 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4487 return narrowScalarShiftByConstant( 4488 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4489 } 4490 4491 // TODO: Expand with known bits. 4492 4493 // Handle the fully general expansion by an unknown amount. 4494 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4495 4496 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4497 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4498 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4499 4500 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4501 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4502 4503 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4504 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4505 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4506 4507 Register ResultRegs[2]; 4508 switch (MI.getOpcode()) { 4509 case TargetOpcode::G_SHL: { 4510 // Short: ShAmt < NewBitSize 4511 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4512 4513 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4514 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4515 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4516 4517 // Long: ShAmt >= NewBitSize 4518 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4519 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4520 4521 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4522 auto Hi = MIRBuilder.buildSelect( 4523 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4524 4525 ResultRegs[0] = Lo.getReg(0); 4526 ResultRegs[1] = Hi.getReg(0); 4527 break; 4528 } 4529 case TargetOpcode::G_LSHR: 4530 case TargetOpcode::G_ASHR: { 4531 // Short: ShAmt < NewBitSize 4532 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4533 4534 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4535 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4536 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4537 4538 // Long: ShAmt >= NewBitSize 4539 MachineInstrBuilder HiL; 4540 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4541 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4542 } else { 4543 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4544 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4545 } 4546 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4547 {InH, AmtExcess}); // Lo from Hi part. 4548 4549 auto Lo = MIRBuilder.buildSelect( 4550 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4551 4552 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4553 4554 ResultRegs[0] = Lo.getReg(0); 4555 ResultRegs[1] = Hi.getReg(0); 4556 break; 4557 } 4558 default: 4559 llvm_unreachable("not a shift"); 4560 } 4561 4562 MIRBuilder.buildMerge(DstReg, ResultRegs); 4563 MI.eraseFromParent(); 4564 return Legalized; 4565 } 4566 4567 LegalizerHelper::LegalizeResult 4568 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4569 LLT MoreTy) { 4570 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4571 4572 Observer.changingInstr(MI); 4573 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4574 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4575 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4576 moreElementsVectorSrc(MI, MoreTy, I); 4577 } 4578 4579 MachineBasicBlock &MBB = *MI.getParent(); 4580 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4581 moreElementsVectorDst(MI, MoreTy, 0); 4582 Observer.changedInstr(MI); 4583 return Legalized; 4584 } 4585 4586 LegalizerHelper::LegalizeResult 4587 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4588 LLT MoreTy) { 4589 unsigned Opc = MI.getOpcode(); 4590 switch (Opc) { 4591 case TargetOpcode::G_IMPLICIT_DEF: 4592 case TargetOpcode::G_LOAD: { 4593 if (TypeIdx != 0) 4594 return UnableToLegalize; 4595 Observer.changingInstr(MI); 4596 moreElementsVectorDst(MI, MoreTy, 0); 4597 Observer.changedInstr(MI); 4598 return Legalized; 4599 } 4600 case TargetOpcode::G_STORE: 4601 if (TypeIdx != 0) 4602 return UnableToLegalize; 4603 Observer.changingInstr(MI); 4604 moreElementsVectorSrc(MI, MoreTy, 0); 4605 Observer.changedInstr(MI); 4606 return Legalized; 4607 case TargetOpcode::G_AND: 4608 case TargetOpcode::G_OR: 4609 case TargetOpcode::G_XOR: 4610 case TargetOpcode::G_SMIN: 4611 case TargetOpcode::G_SMAX: 4612 case TargetOpcode::G_UMIN: 4613 case TargetOpcode::G_UMAX: 4614 case TargetOpcode::G_FMINNUM: 4615 case TargetOpcode::G_FMAXNUM: 4616 case TargetOpcode::G_FMINNUM_IEEE: 4617 case TargetOpcode::G_FMAXNUM_IEEE: 4618 case TargetOpcode::G_FMINIMUM: 4619 case TargetOpcode::G_FMAXIMUM: { 4620 Observer.changingInstr(MI); 4621 moreElementsVectorSrc(MI, MoreTy, 1); 4622 moreElementsVectorSrc(MI, MoreTy, 2); 4623 moreElementsVectorDst(MI, MoreTy, 0); 4624 Observer.changedInstr(MI); 4625 return Legalized; 4626 } 4627 case TargetOpcode::G_EXTRACT: 4628 if (TypeIdx != 1) 4629 return UnableToLegalize; 4630 Observer.changingInstr(MI); 4631 moreElementsVectorSrc(MI, MoreTy, 1); 4632 Observer.changedInstr(MI); 4633 return Legalized; 4634 case TargetOpcode::G_INSERT: 4635 case TargetOpcode::G_FREEZE: 4636 if (TypeIdx != 0) 4637 return UnableToLegalize; 4638 Observer.changingInstr(MI); 4639 moreElementsVectorSrc(MI, MoreTy, 1); 4640 moreElementsVectorDst(MI, MoreTy, 0); 4641 Observer.changedInstr(MI); 4642 return Legalized; 4643 case TargetOpcode::G_SELECT: 4644 if (TypeIdx != 0) 4645 return UnableToLegalize; 4646 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4647 return UnableToLegalize; 4648 4649 Observer.changingInstr(MI); 4650 moreElementsVectorSrc(MI, MoreTy, 2); 4651 moreElementsVectorSrc(MI, MoreTy, 3); 4652 moreElementsVectorDst(MI, MoreTy, 0); 4653 Observer.changedInstr(MI); 4654 return Legalized; 4655 case TargetOpcode::G_UNMERGE_VALUES: { 4656 if (TypeIdx != 1) 4657 return UnableToLegalize; 4658 4659 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4660 int NumDst = MI.getNumOperands() - 1; 4661 moreElementsVectorSrc(MI, MoreTy, NumDst); 4662 4663 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4664 for (int I = 0; I != NumDst; ++I) 4665 MIB.addDef(MI.getOperand(I).getReg()); 4666 4667 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4668 for (int I = NumDst; I != NewNumDst; ++I) 4669 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4670 4671 MIB.addUse(MI.getOperand(NumDst).getReg()); 4672 MI.eraseFromParent(); 4673 return Legalized; 4674 } 4675 case TargetOpcode::G_PHI: 4676 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4677 default: 4678 return UnableToLegalize; 4679 } 4680 } 4681 4682 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4683 ArrayRef<Register> Src1Regs, 4684 ArrayRef<Register> Src2Regs, 4685 LLT NarrowTy) { 4686 MachineIRBuilder &B = MIRBuilder; 4687 unsigned SrcParts = Src1Regs.size(); 4688 unsigned DstParts = DstRegs.size(); 4689 4690 unsigned DstIdx = 0; // Low bits of the result. 4691 Register FactorSum = 4692 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4693 DstRegs[DstIdx] = FactorSum; 4694 4695 unsigned CarrySumPrevDstIdx; 4696 SmallVector<Register, 4> Factors; 4697 4698 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4699 // Collect low parts of muls for DstIdx. 4700 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4701 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4702 MachineInstrBuilder Mul = 4703 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4704 Factors.push_back(Mul.getReg(0)); 4705 } 4706 // Collect high parts of muls from previous DstIdx. 4707 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4708 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4709 MachineInstrBuilder Umulh = 4710 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4711 Factors.push_back(Umulh.getReg(0)); 4712 } 4713 // Add CarrySum from additions calculated for previous DstIdx. 4714 if (DstIdx != 1) { 4715 Factors.push_back(CarrySumPrevDstIdx); 4716 } 4717 4718 Register CarrySum; 4719 // Add all factors and accumulate all carries into CarrySum. 4720 if (DstIdx != DstParts - 1) { 4721 MachineInstrBuilder Uaddo = 4722 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4723 FactorSum = Uaddo.getReg(0); 4724 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4725 for (unsigned i = 2; i < Factors.size(); ++i) { 4726 MachineInstrBuilder Uaddo = 4727 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4728 FactorSum = Uaddo.getReg(0); 4729 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4730 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4731 } 4732 } else { 4733 // Since value for the next index is not calculated, neither is CarrySum. 4734 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4735 for (unsigned i = 2; i < Factors.size(); ++i) 4736 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4737 } 4738 4739 CarrySumPrevDstIdx = CarrySum; 4740 DstRegs[DstIdx] = FactorSum; 4741 Factors.clear(); 4742 } 4743 } 4744 4745 LegalizerHelper::LegalizeResult 4746 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 4747 LLT NarrowTy) { 4748 if (TypeIdx != 0) 4749 return UnableToLegalize; 4750 4751 Register DstReg = MI.getOperand(0).getReg(); 4752 LLT DstType = MRI.getType(DstReg); 4753 // FIXME: add support for vector types 4754 if (DstType.isVector()) 4755 return UnableToLegalize; 4756 4757 uint64_t SizeOp0 = DstType.getSizeInBits(); 4758 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4759 4760 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4761 // NarrowSize. 4762 if (SizeOp0 % NarrowSize != 0) 4763 return UnableToLegalize; 4764 4765 // Expand in terms of carry-setting/consuming G_<Op>E instructions. 4766 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 4767 4768 unsigned Opcode = MI.getOpcode(); 4769 unsigned OpO, OpE, OpF; 4770 switch (Opcode) { 4771 case TargetOpcode::G_SADDO: 4772 case TargetOpcode::G_SADDE: 4773 case TargetOpcode::G_UADDO: 4774 case TargetOpcode::G_UADDE: 4775 case TargetOpcode::G_ADD: 4776 OpO = TargetOpcode::G_UADDO; 4777 OpE = TargetOpcode::G_UADDE; 4778 OpF = TargetOpcode::G_UADDE; 4779 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 4780 OpF = TargetOpcode::G_SADDE; 4781 break; 4782 case TargetOpcode::G_SSUBO: 4783 case TargetOpcode::G_SSUBE: 4784 case TargetOpcode::G_USUBO: 4785 case TargetOpcode::G_USUBE: 4786 case TargetOpcode::G_SUB: 4787 OpO = TargetOpcode::G_USUBO; 4788 OpE = TargetOpcode::G_USUBE; 4789 OpF = TargetOpcode::G_USUBE; 4790 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 4791 OpF = TargetOpcode::G_SSUBE; 4792 break; 4793 default: 4794 llvm_unreachable("Unexpected add/sub opcode!"); 4795 } 4796 4797 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 4798 unsigned NumDefs = MI.getNumExplicitDefs(); 4799 Register Src1 = MI.getOperand(NumDefs).getReg(); 4800 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 4801 Register CarryDst; 4802 if (NumDefs == 2) 4803 CarryDst = MI.getOperand(1).getReg(); 4804 Register CarryIn; 4805 if (MI.getNumOperands() == NumDefs + 3) 4806 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 4807 4808 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 4809 extractParts(Src1, NarrowTy, NumParts, Src1Regs); 4810 extractParts(Src2, NarrowTy, NumParts, Src2Regs); 4811 4812 for (int i = 0; i < NumParts; ++i) { 4813 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4814 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 4815 // Forward the final carry-out to the destination register 4816 if (i == NumParts - 1 && CarryDst) 4817 CarryOut = CarryDst; 4818 4819 if (!CarryIn) { 4820 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 4821 {Src1Regs[i], Src2Regs[i]}); 4822 } else if (i == NumParts - 1) { 4823 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 4824 {Src1Regs[i], Src2Regs[i], CarryIn}); 4825 } else { 4826 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 4827 {Src1Regs[i], Src2Regs[i], CarryIn}); 4828 } 4829 4830 DstRegs.push_back(DstReg); 4831 CarryIn = CarryOut; 4832 } 4833 MIRBuilder.buildMerge(DstReg, DstRegs); 4834 MI.eraseFromParent(); 4835 return Legalized; 4836 } 4837 4838 LegalizerHelper::LegalizeResult 4839 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4840 Register DstReg = MI.getOperand(0).getReg(); 4841 Register Src1 = MI.getOperand(1).getReg(); 4842 Register Src2 = MI.getOperand(2).getReg(); 4843 4844 LLT Ty = MRI.getType(DstReg); 4845 if (Ty.isVector()) 4846 return UnableToLegalize; 4847 4848 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4849 unsigned DstSize = Ty.getSizeInBits(); 4850 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4851 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4852 return UnableToLegalize; 4853 4854 unsigned NumDstParts = DstSize / NarrowSize; 4855 unsigned NumSrcParts = SrcSize / NarrowSize; 4856 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4857 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4858 4859 SmallVector<Register, 2> Src1Parts, Src2Parts; 4860 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4861 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4862 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4863 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4864 4865 // Take only high half of registers if this is high mul. 4866 ArrayRef<Register> DstRegs( 4867 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4868 MIRBuilder.buildMerge(DstReg, DstRegs); 4869 MI.eraseFromParent(); 4870 return Legalized; 4871 } 4872 4873 LegalizerHelper::LegalizeResult 4874 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 4875 LLT NarrowTy) { 4876 if (TypeIdx != 0) 4877 return UnableToLegalize; 4878 4879 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 4880 4881 Register Src = MI.getOperand(1).getReg(); 4882 LLT SrcTy = MRI.getType(Src); 4883 4884 // If all finite floats fit into the narrowed integer type, we can just swap 4885 // out the result type. This is practically only useful for conversions from 4886 // half to at least 16-bits, so just handle the one case. 4887 if (SrcTy.getScalarType() != LLT::scalar(16) || 4888 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 4889 return UnableToLegalize; 4890 4891 Observer.changingInstr(MI); 4892 narrowScalarDst(MI, NarrowTy, 0, 4893 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 4894 Observer.changedInstr(MI); 4895 return Legalized; 4896 } 4897 4898 LegalizerHelper::LegalizeResult 4899 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4900 LLT NarrowTy) { 4901 if (TypeIdx != 1) 4902 return UnableToLegalize; 4903 4904 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4905 4906 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4907 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4908 // NarrowSize. 4909 if (SizeOp1 % NarrowSize != 0) 4910 return UnableToLegalize; 4911 int NumParts = SizeOp1 / NarrowSize; 4912 4913 SmallVector<Register, 2> SrcRegs, DstRegs; 4914 SmallVector<uint64_t, 2> Indexes; 4915 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4916 4917 Register OpReg = MI.getOperand(0).getReg(); 4918 uint64_t OpStart = MI.getOperand(2).getImm(); 4919 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4920 for (int i = 0; i < NumParts; ++i) { 4921 unsigned SrcStart = i * NarrowSize; 4922 4923 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4924 // No part of the extract uses this subregister, ignore it. 4925 continue; 4926 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4927 // The entire subregister is extracted, forward the value. 4928 DstRegs.push_back(SrcRegs[i]); 4929 continue; 4930 } 4931 4932 // OpSegStart is where this destination segment would start in OpReg if it 4933 // extended infinitely in both directions. 4934 int64_t ExtractOffset; 4935 uint64_t SegSize; 4936 if (OpStart < SrcStart) { 4937 ExtractOffset = 0; 4938 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4939 } else { 4940 ExtractOffset = OpStart - SrcStart; 4941 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4942 } 4943 4944 Register SegReg = SrcRegs[i]; 4945 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4946 // A genuine extract is needed. 4947 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4948 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4949 } 4950 4951 DstRegs.push_back(SegReg); 4952 } 4953 4954 Register DstReg = MI.getOperand(0).getReg(); 4955 if (MRI.getType(DstReg).isVector()) 4956 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4957 else if (DstRegs.size() > 1) 4958 MIRBuilder.buildMerge(DstReg, DstRegs); 4959 else 4960 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4961 MI.eraseFromParent(); 4962 return Legalized; 4963 } 4964 4965 LegalizerHelper::LegalizeResult 4966 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4967 LLT NarrowTy) { 4968 // FIXME: Don't know how to handle secondary types yet. 4969 if (TypeIdx != 0) 4970 return UnableToLegalize; 4971 4972 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4973 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4974 4975 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4976 // NarrowSize. 4977 if (SizeOp0 % NarrowSize != 0) 4978 return UnableToLegalize; 4979 4980 int NumParts = SizeOp0 / NarrowSize; 4981 4982 SmallVector<Register, 2> SrcRegs, DstRegs; 4983 SmallVector<uint64_t, 2> Indexes; 4984 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4985 4986 Register OpReg = MI.getOperand(2).getReg(); 4987 uint64_t OpStart = MI.getOperand(3).getImm(); 4988 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4989 for (int i = 0; i < NumParts; ++i) { 4990 unsigned DstStart = i * NarrowSize; 4991 4992 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4993 // No part of the insert affects this subregister, forward the original. 4994 DstRegs.push_back(SrcRegs[i]); 4995 continue; 4996 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4997 // The entire subregister is defined by this insert, forward the new 4998 // value. 4999 DstRegs.push_back(OpReg); 5000 continue; 5001 } 5002 5003 // OpSegStart is where this destination segment would start in OpReg if it 5004 // extended infinitely in both directions. 5005 int64_t ExtractOffset, InsertOffset; 5006 uint64_t SegSize; 5007 if (OpStart < DstStart) { 5008 InsertOffset = 0; 5009 ExtractOffset = DstStart - OpStart; 5010 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5011 } else { 5012 InsertOffset = OpStart - DstStart; 5013 ExtractOffset = 0; 5014 SegSize = 5015 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5016 } 5017 5018 Register SegReg = OpReg; 5019 if (ExtractOffset != 0 || SegSize != OpSize) { 5020 // A genuine extract is needed. 5021 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5022 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5023 } 5024 5025 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5026 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 5027 DstRegs.push_back(DstReg); 5028 } 5029 5030 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 5031 Register DstReg = MI.getOperand(0).getReg(); 5032 if(MRI.getType(DstReg).isVector()) 5033 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5034 else 5035 MIRBuilder.buildMerge(DstReg, DstRegs); 5036 MI.eraseFromParent(); 5037 return Legalized; 5038 } 5039 5040 LegalizerHelper::LegalizeResult 5041 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5042 LLT NarrowTy) { 5043 Register DstReg = MI.getOperand(0).getReg(); 5044 LLT DstTy = MRI.getType(DstReg); 5045 5046 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5047 5048 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5049 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5050 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5051 LLT LeftoverTy; 5052 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5053 Src0Regs, Src0LeftoverRegs)) 5054 return UnableToLegalize; 5055 5056 LLT Unused; 5057 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5058 Src1Regs, Src1LeftoverRegs)) 5059 llvm_unreachable("inconsistent extractParts result"); 5060 5061 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5062 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5063 {Src0Regs[I], Src1Regs[I]}); 5064 DstRegs.push_back(Inst.getReg(0)); 5065 } 5066 5067 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5068 auto Inst = MIRBuilder.buildInstr( 5069 MI.getOpcode(), 5070 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5071 DstLeftoverRegs.push_back(Inst.getReg(0)); 5072 } 5073 5074 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5075 LeftoverTy, DstLeftoverRegs); 5076 5077 MI.eraseFromParent(); 5078 return Legalized; 5079 } 5080 5081 LegalizerHelper::LegalizeResult 5082 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5083 LLT NarrowTy) { 5084 if (TypeIdx != 0) 5085 return UnableToLegalize; 5086 5087 Register DstReg = MI.getOperand(0).getReg(); 5088 Register SrcReg = MI.getOperand(1).getReg(); 5089 5090 LLT DstTy = MRI.getType(DstReg); 5091 if (DstTy.isVector()) 5092 return UnableToLegalize; 5093 5094 SmallVector<Register, 8> Parts; 5095 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5096 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5097 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5098 5099 MI.eraseFromParent(); 5100 return Legalized; 5101 } 5102 5103 LegalizerHelper::LegalizeResult 5104 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5105 LLT NarrowTy) { 5106 if (TypeIdx != 0) 5107 return UnableToLegalize; 5108 5109 Register CondReg = MI.getOperand(1).getReg(); 5110 LLT CondTy = MRI.getType(CondReg); 5111 if (CondTy.isVector()) // TODO: Handle vselect 5112 return UnableToLegalize; 5113 5114 Register DstReg = MI.getOperand(0).getReg(); 5115 LLT DstTy = MRI.getType(DstReg); 5116 5117 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5118 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5119 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5120 LLT LeftoverTy; 5121 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5122 Src1Regs, Src1LeftoverRegs)) 5123 return UnableToLegalize; 5124 5125 LLT Unused; 5126 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5127 Src2Regs, Src2LeftoverRegs)) 5128 llvm_unreachable("inconsistent extractParts result"); 5129 5130 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5131 auto Select = MIRBuilder.buildSelect(NarrowTy, 5132 CondReg, Src1Regs[I], Src2Regs[I]); 5133 DstRegs.push_back(Select.getReg(0)); 5134 } 5135 5136 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5137 auto Select = MIRBuilder.buildSelect( 5138 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5139 DstLeftoverRegs.push_back(Select.getReg(0)); 5140 } 5141 5142 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5143 LeftoverTy, DstLeftoverRegs); 5144 5145 MI.eraseFromParent(); 5146 return Legalized; 5147 } 5148 5149 LegalizerHelper::LegalizeResult 5150 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5151 LLT NarrowTy) { 5152 if (TypeIdx != 1) 5153 return UnableToLegalize; 5154 5155 Register DstReg = MI.getOperand(0).getReg(); 5156 Register SrcReg = MI.getOperand(1).getReg(); 5157 LLT DstTy = MRI.getType(DstReg); 5158 LLT SrcTy = MRI.getType(SrcReg); 5159 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5160 5161 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5162 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5163 5164 MachineIRBuilder &B = MIRBuilder; 5165 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5166 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5167 auto C_0 = B.buildConstant(NarrowTy, 0); 5168 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5169 UnmergeSrc.getReg(1), C_0); 5170 auto LoCTLZ = IsUndef ? 5171 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5172 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5173 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5174 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5175 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5176 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5177 5178 MI.eraseFromParent(); 5179 return Legalized; 5180 } 5181 5182 return UnableToLegalize; 5183 } 5184 5185 LegalizerHelper::LegalizeResult 5186 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5187 LLT NarrowTy) { 5188 if (TypeIdx != 1) 5189 return UnableToLegalize; 5190 5191 Register DstReg = MI.getOperand(0).getReg(); 5192 Register SrcReg = MI.getOperand(1).getReg(); 5193 LLT DstTy = MRI.getType(DstReg); 5194 LLT SrcTy = MRI.getType(SrcReg); 5195 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5196 5197 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5198 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5199 5200 MachineIRBuilder &B = MIRBuilder; 5201 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5202 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5203 auto C_0 = B.buildConstant(NarrowTy, 0); 5204 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5205 UnmergeSrc.getReg(0), C_0); 5206 auto HiCTTZ = IsUndef ? 5207 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5208 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5209 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5210 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5211 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5212 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5213 5214 MI.eraseFromParent(); 5215 return Legalized; 5216 } 5217 5218 return UnableToLegalize; 5219 } 5220 5221 LegalizerHelper::LegalizeResult 5222 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5223 LLT NarrowTy) { 5224 if (TypeIdx != 1) 5225 return UnableToLegalize; 5226 5227 Register DstReg = MI.getOperand(0).getReg(); 5228 LLT DstTy = MRI.getType(DstReg); 5229 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5230 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5231 5232 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5233 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5234 5235 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5236 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5237 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5238 5239 MI.eraseFromParent(); 5240 return Legalized; 5241 } 5242 5243 return UnableToLegalize; 5244 } 5245 5246 LegalizerHelper::LegalizeResult 5247 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5248 unsigned Opc = MI.getOpcode(); 5249 const auto &TII = MIRBuilder.getTII(); 5250 auto isSupported = [this](const LegalityQuery &Q) { 5251 auto QAction = LI.getAction(Q).Action; 5252 return QAction == Legal || QAction == Libcall || QAction == Custom; 5253 }; 5254 switch (Opc) { 5255 default: 5256 return UnableToLegalize; 5257 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5258 // This trivially expands to CTLZ. 5259 Observer.changingInstr(MI); 5260 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5261 Observer.changedInstr(MI); 5262 return Legalized; 5263 } 5264 case TargetOpcode::G_CTLZ: { 5265 Register DstReg = MI.getOperand(0).getReg(); 5266 Register SrcReg = MI.getOperand(1).getReg(); 5267 LLT DstTy = MRI.getType(DstReg); 5268 LLT SrcTy = MRI.getType(SrcReg); 5269 unsigned Len = SrcTy.getSizeInBits(); 5270 5271 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5272 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5273 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5274 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5275 auto ICmp = MIRBuilder.buildICmp( 5276 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5277 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5278 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5279 MI.eraseFromParent(); 5280 return Legalized; 5281 } 5282 // for now, we do this: 5283 // NewLen = NextPowerOf2(Len); 5284 // x = x | (x >> 1); 5285 // x = x | (x >> 2); 5286 // ... 5287 // x = x | (x >>16); 5288 // x = x | (x >>32); // for 64-bit input 5289 // Upto NewLen/2 5290 // return Len - popcount(x); 5291 // 5292 // Ref: "Hacker's Delight" by Henry Warren 5293 Register Op = SrcReg; 5294 unsigned NewLen = PowerOf2Ceil(Len); 5295 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5296 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5297 auto MIBOp = MIRBuilder.buildOr( 5298 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5299 Op = MIBOp.getReg(0); 5300 } 5301 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5302 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5303 MIBPop); 5304 MI.eraseFromParent(); 5305 return Legalized; 5306 } 5307 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5308 // This trivially expands to CTTZ. 5309 Observer.changingInstr(MI); 5310 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5311 Observer.changedInstr(MI); 5312 return Legalized; 5313 } 5314 case TargetOpcode::G_CTTZ: { 5315 Register DstReg = MI.getOperand(0).getReg(); 5316 Register SrcReg = MI.getOperand(1).getReg(); 5317 LLT DstTy = MRI.getType(DstReg); 5318 LLT SrcTy = MRI.getType(SrcReg); 5319 5320 unsigned Len = SrcTy.getSizeInBits(); 5321 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5322 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5323 // zero. 5324 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5325 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5326 auto ICmp = MIRBuilder.buildICmp( 5327 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5328 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5329 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5330 MI.eraseFromParent(); 5331 return Legalized; 5332 } 5333 // for now, we use: { return popcount(~x & (x - 1)); } 5334 // unless the target has ctlz but not ctpop, in which case we use: 5335 // { return 32 - nlz(~x & (x-1)); } 5336 // Ref: "Hacker's Delight" by Henry Warren 5337 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5338 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5339 auto MIBTmp = MIRBuilder.buildAnd( 5340 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5341 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5342 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5343 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5344 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5345 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5346 MI.eraseFromParent(); 5347 return Legalized; 5348 } 5349 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5350 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5351 return Legalized; 5352 } 5353 case TargetOpcode::G_CTPOP: { 5354 Register SrcReg = MI.getOperand(1).getReg(); 5355 LLT Ty = MRI.getType(SrcReg); 5356 unsigned Size = Ty.getSizeInBits(); 5357 MachineIRBuilder &B = MIRBuilder; 5358 5359 // Count set bits in blocks of 2 bits. Default approach would be 5360 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5361 // We use following formula instead: 5362 // B2Count = val - { (val >> 1) & 0x55555555 } 5363 // since it gives same result in blocks of 2 with one instruction less. 5364 auto C_1 = B.buildConstant(Ty, 1); 5365 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5366 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5367 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5368 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5369 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5370 5371 // In order to get count in blocks of 4 add values from adjacent block of 2. 5372 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5373 auto C_2 = B.buildConstant(Ty, 2); 5374 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5375 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5376 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5377 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5378 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5379 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5380 5381 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5382 // addition since count value sits in range {0,...,8} and 4 bits are enough 5383 // to hold such binary values. After addition high 4 bits still hold count 5384 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5385 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5386 auto C_4 = B.buildConstant(Ty, 4); 5387 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5388 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5389 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5390 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5391 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5392 5393 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5394 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5395 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5396 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5397 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5398 5399 // Shift count result from 8 high bits to low bits. 5400 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5401 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5402 5403 MI.eraseFromParent(); 5404 return Legalized; 5405 } 5406 } 5407 } 5408 5409 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5410 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5411 Register Reg, unsigned BW) { 5412 return matchUnaryPredicate( 5413 MRI, Reg, 5414 [=](const Constant *C) { 5415 // Null constant here means an undef. 5416 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5417 return !CI || CI->getValue().urem(BW) != 0; 5418 }, 5419 /*AllowUndefs*/ true); 5420 } 5421 5422 LegalizerHelper::LegalizeResult 5423 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5424 Register Dst = MI.getOperand(0).getReg(); 5425 Register X = MI.getOperand(1).getReg(); 5426 Register Y = MI.getOperand(2).getReg(); 5427 Register Z = MI.getOperand(3).getReg(); 5428 LLT Ty = MRI.getType(Dst); 5429 LLT ShTy = MRI.getType(Z); 5430 5431 unsigned BW = Ty.getScalarSizeInBits(); 5432 5433 if (!isPowerOf2_32(BW)) 5434 return UnableToLegalize; 5435 5436 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5437 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5438 5439 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5440 // fshl X, Y, Z -> fshr X, Y, -Z 5441 // fshr X, Y, Z -> fshl X, Y, -Z 5442 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5443 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5444 } else { 5445 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5446 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5447 auto One = MIRBuilder.buildConstant(ShTy, 1); 5448 if (IsFSHL) { 5449 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5450 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5451 } else { 5452 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5453 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5454 } 5455 5456 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5457 } 5458 5459 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5460 MI.eraseFromParent(); 5461 return Legalized; 5462 } 5463 5464 LegalizerHelper::LegalizeResult 5465 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5466 Register Dst = MI.getOperand(0).getReg(); 5467 Register X = MI.getOperand(1).getReg(); 5468 Register Y = MI.getOperand(2).getReg(); 5469 Register Z = MI.getOperand(3).getReg(); 5470 LLT Ty = MRI.getType(Dst); 5471 LLT ShTy = MRI.getType(Z); 5472 5473 const unsigned BW = Ty.getScalarSizeInBits(); 5474 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5475 5476 Register ShX, ShY; 5477 Register ShAmt, InvShAmt; 5478 5479 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5480 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5481 // fshl: X << C | Y >> (BW - C) 5482 // fshr: X << (BW - C) | Y >> C 5483 // where C = Z % BW is not zero 5484 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5485 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5486 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5487 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5488 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5489 } else { 5490 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5491 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5492 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5493 if (isPowerOf2_32(BW)) { 5494 // Z % BW -> Z & (BW - 1) 5495 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5496 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5497 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5498 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5499 } else { 5500 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5501 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5502 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5503 } 5504 5505 auto One = MIRBuilder.buildConstant(ShTy, 1); 5506 if (IsFSHL) { 5507 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5508 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5509 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5510 } else { 5511 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5512 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5513 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5514 } 5515 } 5516 5517 MIRBuilder.buildOr(Dst, ShX, ShY); 5518 MI.eraseFromParent(); 5519 return Legalized; 5520 } 5521 5522 LegalizerHelper::LegalizeResult 5523 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5524 // These operations approximately do the following (while avoiding undefined 5525 // shifts by BW): 5526 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5527 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5528 Register Dst = MI.getOperand(0).getReg(); 5529 LLT Ty = MRI.getType(Dst); 5530 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5531 5532 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5533 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5534 5535 // TODO: Use smarter heuristic that accounts for vector legalization. 5536 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5537 return lowerFunnelShiftAsShifts(MI); 5538 5539 // This only works for powers of 2, fallback to shifts if it fails. 5540 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5541 if (Result == UnableToLegalize) 5542 return lowerFunnelShiftAsShifts(MI); 5543 return Result; 5544 } 5545 5546 LegalizerHelper::LegalizeResult 5547 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5548 Register Dst = MI.getOperand(0).getReg(); 5549 Register Src = MI.getOperand(1).getReg(); 5550 Register Amt = MI.getOperand(2).getReg(); 5551 LLT AmtTy = MRI.getType(Amt); 5552 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5553 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5554 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5555 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5556 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5557 MI.eraseFromParent(); 5558 return Legalized; 5559 } 5560 5561 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5562 Register Dst = MI.getOperand(0).getReg(); 5563 Register Src = MI.getOperand(1).getReg(); 5564 Register Amt = MI.getOperand(2).getReg(); 5565 LLT DstTy = MRI.getType(Dst); 5566 LLT SrcTy = MRI.getType(Dst); 5567 LLT AmtTy = MRI.getType(Amt); 5568 5569 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5570 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5571 5572 MIRBuilder.setInstrAndDebugLoc(MI); 5573 5574 // If a rotate in the other direction is supported, use it. 5575 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5576 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5577 isPowerOf2_32(EltSizeInBits)) 5578 return lowerRotateWithReverseRotate(MI); 5579 5580 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5581 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5582 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5583 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5584 Register ShVal; 5585 Register RevShiftVal; 5586 if (isPowerOf2_32(EltSizeInBits)) { 5587 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5588 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5589 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5590 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5591 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5592 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5593 RevShiftVal = 5594 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5595 } else { 5596 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5597 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5598 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5599 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5600 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5601 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5602 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5603 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5604 RevShiftVal = 5605 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5606 } 5607 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5608 MI.eraseFromParent(); 5609 return Legalized; 5610 } 5611 5612 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5613 // representation. 5614 LegalizerHelper::LegalizeResult 5615 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5616 Register Dst = MI.getOperand(0).getReg(); 5617 Register Src = MI.getOperand(1).getReg(); 5618 const LLT S64 = LLT::scalar(64); 5619 const LLT S32 = LLT::scalar(32); 5620 const LLT S1 = LLT::scalar(1); 5621 5622 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5623 5624 // unsigned cul2f(ulong u) { 5625 // uint lz = clz(u); 5626 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5627 // u = (u << lz) & 0x7fffffffffffffffUL; 5628 // ulong t = u & 0xffffffffffUL; 5629 // uint v = (e << 23) | (uint)(u >> 40); 5630 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5631 // return as_float(v + r); 5632 // } 5633 5634 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5635 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5636 5637 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5638 5639 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5640 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5641 5642 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5643 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5644 5645 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5646 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5647 5648 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5649 5650 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5651 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5652 5653 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5654 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5655 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5656 5657 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5658 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5659 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5660 auto One = MIRBuilder.buildConstant(S32, 1); 5661 5662 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5663 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5664 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5665 MIRBuilder.buildAdd(Dst, V, R); 5666 5667 MI.eraseFromParent(); 5668 return Legalized; 5669 } 5670 5671 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5672 Register Dst = MI.getOperand(0).getReg(); 5673 Register Src = MI.getOperand(1).getReg(); 5674 LLT DstTy = MRI.getType(Dst); 5675 LLT SrcTy = MRI.getType(Src); 5676 5677 if (SrcTy == LLT::scalar(1)) { 5678 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5679 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5680 MIRBuilder.buildSelect(Dst, Src, True, False); 5681 MI.eraseFromParent(); 5682 return Legalized; 5683 } 5684 5685 if (SrcTy != LLT::scalar(64)) 5686 return UnableToLegalize; 5687 5688 if (DstTy == LLT::scalar(32)) { 5689 // TODO: SelectionDAG has several alternative expansions to port which may 5690 // be more reasonble depending on the available instructions. If a target 5691 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5692 // intermediate type, this is probably worse. 5693 return lowerU64ToF32BitOps(MI); 5694 } 5695 5696 return UnableToLegalize; 5697 } 5698 5699 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5700 Register Dst = MI.getOperand(0).getReg(); 5701 Register Src = MI.getOperand(1).getReg(); 5702 LLT DstTy = MRI.getType(Dst); 5703 LLT SrcTy = MRI.getType(Src); 5704 5705 const LLT S64 = LLT::scalar(64); 5706 const LLT S32 = LLT::scalar(32); 5707 const LLT S1 = LLT::scalar(1); 5708 5709 if (SrcTy == S1) { 5710 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5711 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5712 MIRBuilder.buildSelect(Dst, Src, True, False); 5713 MI.eraseFromParent(); 5714 return Legalized; 5715 } 5716 5717 if (SrcTy != S64) 5718 return UnableToLegalize; 5719 5720 if (DstTy == S32) { 5721 // signed cl2f(long l) { 5722 // long s = l >> 63; 5723 // float r = cul2f((l + s) ^ s); 5724 // return s ? -r : r; 5725 // } 5726 Register L = Src; 5727 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5728 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5729 5730 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5731 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5732 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5733 5734 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5735 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5736 MIRBuilder.buildConstant(S64, 0)); 5737 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5738 MI.eraseFromParent(); 5739 return Legalized; 5740 } 5741 5742 return UnableToLegalize; 5743 } 5744 5745 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5746 Register Dst = MI.getOperand(0).getReg(); 5747 Register Src = MI.getOperand(1).getReg(); 5748 LLT DstTy = MRI.getType(Dst); 5749 LLT SrcTy = MRI.getType(Src); 5750 const LLT S64 = LLT::scalar(64); 5751 const LLT S32 = LLT::scalar(32); 5752 5753 if (SrcTy != S64 && SrcTy != S32) 5754 return UnableToLegalize; 5755 if (DstTy != S32 && DstTy != S64) 5756 return UnableToLegalize; 5757 5758 // FPTOSI gives same result as FPTOUI for positive signed integers. 5759 // FPTOUI needs to deal with fp values that convert to unsigned integers 5760 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5761 5762 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5763 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5764 : APFloat::IEEEdouble(), 5765 APInt::getNullValue(SrcTy.getSizeInBits())); 5766 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5767 5768 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5769 5770 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5771 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5772 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5773 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5774 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5775 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5776 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5777 5778 const LLT S1 = LLT::scalar(1); 5779 5780 MachineInstrBuilder FCMP = 5781 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5782 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5783 5784 MI.eraseFromParent(); 5785 return Legalized; 5786 } 5787 5788 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5789 Register Dst = MI.getOperand(0).getReg(); 5790 Register Src = MI.getOperand(1).getReg(); 5791 LLT DstTy = MRI.getType(Dst); 5792 LLT SrcTy = MRI.getType(Src); 5793 const LLT S64 = LLT::scalar(64); 5794 const LLT S32 = LLT::scalar(32); 5795 5796 // FIXME: Only f32 to i64 conversions are supported. 5797 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5798 return UnableToLegalize; 5799 5800 // Expand f32 -> i64 conversion 5801 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5802 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 5803 5804 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5805 5806 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5807 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5808 5809 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5810 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5811 5812 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5813 APInt::getSignMask(SrcEltBits)); 5814 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5815 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5816 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5817 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5818 5819 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5820 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5821 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5822 5823 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5824 R = MIRBuilder.buildZExt(DstTy, R); 5825 5826 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5827 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5828 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5829 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5830 5831 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5832 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5833 5834 const LLT S1 = LLT::scalar(1); 5835 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5836 S1, Exponent, ExponentLoBit); 5837 5838 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5839 5840 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5841 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5842 5843 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5844 5845 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5846 S1, Exponent, ZeroSrcTy); 5847 5848 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5849 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5850 5851 MI.eraseFromParent(); 5852 return Legalized; 5853 } 5854 5855 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5856 LegalizerHelper::LegalizeResult 5857 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5858 Register Dst = MI.getOperand(0).getReg(); 5859 Register Src = MI.getOperand(1).getReg(); 5860 5861 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5862 return UnableToLegalize; 5863 5864 const unsigned ExpMask = 0x7ff; 5865 const unsigned ExpBiasf64 = 1023; 5866 const unsigned ExpBiasf16 = 15; 5867 const LLT S32 = LLT::scalar(32); 5868 const LLT S1 = LLT::scalar(1); 5869 5870 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5871 Register U = Unmerge.getReg(0); 5872 Register UH = Unmerge.getReg(1); 5873 5874 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5875 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5876 5877 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5878 // add the f16 bias (15) to get the biased exponent for the f16 format. 5879 E = MIRBuilder.buildAdd( 5880 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5881 5882 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5883 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5884 5885 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5886 MIRBuilder.buildConstant(S32, 0x1ff)); 5887 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5888 5889 auto Zero = MIRBuilder.buildConstant(S32, 0); 5890 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5891 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5892 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5893 5894 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5895 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5896 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5897 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5898 5899 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5900 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5901 5902 // N = M | (E << 12); 5903 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5904 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5905 5906 // B = clamp(1-E, 0, 13); 5907 auto One = MIRBuilder.buildConstant(S32, 1); 5908 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5909 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5910 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5911 5912 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5913 MIRBuilder.buildConstant(S32, 0x1000)); 5914 5915 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5916 auto D0 = MIRBuilder.buildShl(S32, D, B); 5917 5918 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5919 D0, SigSetHigh); 5920 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5921 D = MIRBuilder.buildOr(S32, D, D1); 5922 5923 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5924 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5925 5926 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5927 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5928 5929 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5930 MIRBuilder.buildConstant(S32, 3)); 5931 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5932 5933 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5934 MIRBuilder.buildConstant(S32, 5)); 5935 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5936 5937 V1 = MIRBuilder.buildOr(S32, V0, V1); 5938 V = MIRBuilder.buildAdd(S32, V, V1); 5939 5940 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5941 E, MIRBuilder.buildConstant(S32, 30)); 5942 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5943 MIRBuilder.buildConstant(S32, 0x7c00), V); 5944 5945 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5946 E, MIRBuilder.buildConstant(S32, 1039)); 5947 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5948 5949 // Extract the sign bit. 5950 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5951 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5952 5953 // Insert the sign bit 5954 V = MIRBuilder.buildOr(S32, Sign, V); 5955 5956 MIRBuilder.buildTrunc(Dst, V); 5957 MI.eraseFromParent(); 5958 return Legalized; 5959 } 5960 5961 LegalizerHelper::LegalizeResult 5962 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5963 Register Dst = MI.getOperand(0).getReg(); 5964 Register Src = MI.getOperand(1).getReg(); 5965 5966 LLT DstTy = MRI.getType(Dst); 5967 LLT SrcTy = MRI.getType(Src); 5968 const LLT S64 = LLT::scalar(64); 5969 const LLT S16 = LLT::scalar(16); 5970 5971 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5972 return lowerFPTRUNC_F64_TO_F16(MI); 5973 5974 return UnableToLegalize; 5975 } 5976 5977 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5978 // multiplication tree. 5979 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5980 Register Dst = MI.getOperand(0).getReg(); 5981 Register Src0 = MI.getOperand(1).getReg(); 5982 Register Src1 = MI.getOperand(2).getReg(); 5983 LLT Ty = MRI.getType(Dst); 5984 5985 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5986 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5987 MI.eraseFromParent(); 5988 return Legalized; 5989 } 5990 5991 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5992 switch (Opc) { 5993 case TargetOpcode::G_SMIN: 5994 return CmpInst::ICMP_SLT; 5995 case TargetOpcode::G_SMAX: 5996 return CmpInst::ICMP_SGT; 5997 case TargetOpcode::G_UMIN: 5998 return CmpInst::ICMP_ULT; 5999 case TargetOpcode::G_UMAX: 6000 return CmpInst::ICMP_UGT; 6001 default: 6002 llvm_unreachable("not in integer min/max"); 6003 } 6004 } 6005 6006 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6007 Register Dst = MI.getOperand(0).getReg(); 6008 Register Src0 = MI.getOperand(1).getReg(); 6009 Register Src1 = MI.getOperand(2).getReg(); 6010 6011 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6012 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6013 6014 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6015 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6016 6017 MI.eraseFromParent(); 6018 return Legalized; 6019 } 6020 6021 LegalizerHelper::LegalizeResult 6022 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6023 Register Dst = MI.getOperand(0).getReg(); 6024 Register Src0 = MI.getOperand(1).getReg(); 6025 Register Src1 = MI.getOperand(2).getReg(); 6026 6027 const LLT Src0Ty = MRI.getType(Src0); 6028 const LLT Src1Ty = MRI.getType(Src1); 6029 6030 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6031 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6032 6033 auto SignBitMask = MIRBuilder.buildConstant( 6034 Src0Ty, APInt::getSignMask(Src0Size)); 6035 6036 auto NotSignBitMask = MIRBuilder.buildConstant( 6037 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6038 6039 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6040 Register And1; 6041 if (Src0Ty == Src1Ty) { 6042 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6043 } else if (Src0Size > Src1Size) { 6044 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6045 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6046 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6047 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6048 } else { 6049 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6050 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6051 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6052 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6053 } 6054 6055 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6056 // constants are a nan and -0.0, but the final result should preserve 6057 // everything. 6058 unsigned Flags = MI.getFlags(); 6059 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6060 6061 MI.eraseFromParent(); 6062 return Legalized; 6063 } 6064 6065 LegalizerHelper::LegalizeResult 6066 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6067 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6068 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6069 6070 Register Dst = MI.getOperand(0).getReg(); 6071 Register Src0 = MI.getOperand(1).getReg(); 6072 Register Src1 = MI.getOperand(2).getReg(); 6073 LLT Ty = MRI.getType(Dst); 6074 6075 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6076 // Insert canonicalizes if it's possible we need to quiet to get correct 6077 // sNaN behavior. 6078 6079 // Note this must be done here, and not as an optimization combine in the 6080 // absence of a dedicate quiet-snan instruction as we're using an 6081 // omni-purpose G_FCANONICALIZE. 6082 if (!isKnownNeverSNaN(Src0, MRI)) 6083 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6084 6085 if (!isKnownNeverSNaN(Src1, MRI)) 6086 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6087 } 6088 6089 // If there are no nans, it's safe to simply replace this with the non-IEEE 6090 // version. 6091 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6092 MI.eraseFromParent(); 6093 return Legalized; 6094 } 6095 6096 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6097 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6098 Register DstReg = MI.getOperand(0).getReg(); 6099 LLT Ty = MRI.getType(DstReg); 6100 unsigned Flags = MI.getFlags(); 6101 6102 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6103 Flags); 6104 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6105 MI.eraseFromParent(); 6106 return Legalized; 6107 } 6108 6109 LegalizerHelper::LegalizeResult 6110 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6111 Register DstReg = MI.getOperand(0).getReg(); 6112 Register X = MI.getOperand(1).getReg(); 6113 const unsigned Flags = MI.getFlags(); 6114 const LLT Ty = MRI.getType(DstReg); 6115 const LLT CondTy = Ty.changeElementSize(1); 6116 6117 // round(x) => 6118 // t = trunc(x); 6119 // d = fabs(x - t); 6120 // o = copysign(1.0f, x); 6121 // return t + (d >= 0.5 ? o : 0.0); 6122 6123 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6124 6125 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6126 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6127 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6128 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6129 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6130 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6131 6132 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6133 Flags); 6134 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6135 6136 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6137 6138 MI.eraseFromParent(); 6139 return Legalized; 6140 } 6141 6142 LegalizerHelper::LegalizeResult 6143 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6144 Register DstReg = MI.getOperand(0).getReg(); 6145 Register SrcReg = MI.getOperand(1).getReg(); 6146 unsigned Flags = MI.getFlags(); 6147 LLT Ty = MRI.getType(DstReg); 6148 const LLT CondTy = Ty.changeElementSize(1); 6149 6150 // result = trunc(src); 6151 // if (src < 0.0 && src != result) 6152 // result += -1.0. 6153 6154 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6155 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6156 6157 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6158 SrcReg, Zero, Flags); 6159 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6160 SrcReg, Trunc, Flags); 6161 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6162 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6163 6164 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6165 MI.eraseFromParent(); 6166 return Legalized; 6167 } 6168 6169 LegalizerHelper::LegalizeResult 6170 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6171 const unsigned NumOps = MI.getNumOperands(); 6172 Register DstReg = MI.getOperand(0).getReg(); 6173 Register Src0Reg = MI.getOperand(1).getReg(); 6174 LLT DstTy = MRI.getType(DstReg); 6175 LLT SrcTy = MRI.getType(Src0Reg); 6176 unsigned PartSize = SrcTy.getSizeInBits(); 6177 6178 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6179 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6180 6181 for (unsigned I = 2; I != NumOps; ++I) { 6182 const unsigned Offset = (I - 1) * PartSize; 6183 6184 Register SrcReg = MI.getOperand(I).getReg(); 6185 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6186 6187 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6188 MRI.createGenericVirtualRegister(WideTy); 6189 6190 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6191 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6192 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6193 ResultReg = NextResult; 6194 } 6195 6196 if (DstTy.isPointer()) { 6197 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6198 DstTy.getAddressSpace())) { 6199 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6200 return UnableToLegalize; 6201 } 6202 6203 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6204 } 6205 6206 MI.eraseFromParent(); 6207 return Legalized; 6208 } 6209 6210 LegalizerHelper::LegalizeResult 6211 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6212 const unsigned NumDst = MI.getNumOperands() - 1; 6213 Register SrcReg = MI.getOperand(NumDst).getReg(); 6214 Register Dst0Reg = MI.getOperand(0).getReg(); 6215 LLT DstTy = MRI.getType(Dst0Reg); 6216 if (DstTy.isPointer()) 6217 return UnableToLegalize; // TODO 6218 6219 SrcReg = coerceToScalar(SrcReg); 6220 if (!SrcReg) 6221 return UnableToLegalize; 6222 6223 // Expand scalarizing unmerge as bitcast to integer and shift. 6224 LLT IntTy = MRI.getType(SrcReg); 6225 6226 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6227 6228 const unsigned DstSize = DstTy.getSizeInBits(); 6229 unsigned Offset = DstSize; 6230 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6231 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6232 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6233 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6234 } 6235 6236 MI.eraseFromParent(); 6237 return Legalized; 6238 } 6239 6240 /// Lower a vector extract or insert by writing the vector to a stack temporary 6241 /// and reloading the element or vector. 6242 /// 6243 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6244 /// => 6245 /// %stack_temp = G_FRAME_INDEX 6246 /// G_STORE %vec, %stack_temp 6247 /// %idx = clamp(%idx, %vec.getNumElements()) 6248 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6249 /// %dst = G_LOAD %element_ptr 6250 LegalizerHelper::LegalizeResult 6251 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6252 Register DstReg = MI.getOperand(0).getReg(); 6253 Register SrcVec = MI.getOperand(1).getReg(); 6254 Register InsertVal; 6255 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6256 InsertVal = MI.getOperand(2).getReg(); 6257 6258 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6259 6260 LLT VecTy = MRI.getType(SrcVec); 6261 LLT EltTy = VecTy.getElementType(); 6262 if (!EltTy.isByteSized()) { // Not implemented. 6263 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6264 return UnableToLegalize; 6265 } 6266 6267 unsigned EltBytes = EltTy.getSizeInBytes(); 6268 Align VecAlign = getStackTemporaryAlignment(VecTy); 6269 Align EltAlign; 6270 6271 MachinePointerInfo PtrInfo; 6272 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6273 VecAlign, PtrInfo); 6274 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6275 6276 // Get the pointer to the element, and be sure not to hit undefined behavior 6277 // if the index is out of bounds. 6278 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6279 6280 int64_t IdxVal; 6281 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6282 int64_t Offset = IdxVal * EltBytes; 6283 PtrInfo = PtrInfo.getWithOffset(Offset); 6284 EltAlign = commonAlignment(VecAlign, Offset); 6285 } else { 6286 // We lose information with a variable offset. 6287 EltAlign = getStackTemporaryAlignment(EltTy); 6288 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6289 } 6290 6291 if (InsertVal) { 6292 // Write the inserted element 6293 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6294 6295 // Reload the whole vector. 6296 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6297 } else { 6298 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6299 } 6300 6301 MI.eraseFromParent(); 6302 return Legalized; 6303 } 6304 6305 LegalizerHelper::LegalizeResult 6306 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6307 Register DstReg = MI.getOperand(0).getReg(); 6308 Register Src0Reg = MI.getOperand(1).getReg(); 6309 Register Src1Reg = MI.getOperand(2).getReg(); 6310 LLT Src0Ty = MRI.getType(Src0Reg); 6311 LLT DstTy = MRI.getType(DstReg); 6312 LLT IdxTy = LLT::scalar(32); 6313 6314 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6315 6316 if (DstTy.isScalar()) { 6317 if (Src0Ty.isVector()) 6318 return UnableToLegalize; 6319 6320 // This is just a SELECT. 6321 assert(Mask.size() == 1 && "Expected a single mask element"); 6322 Register Val; 6323 if (Mask[0] < 0 || Mask[0] > 1) 6324 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6325 else 6326 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6327 MIRBuilder.buildCopy(DstReg, Val); 6328 MI.eraseFromParent(); 6329 return Legalized; 6330 } 6331 6332 Register Undef; 6333 SmallVector<Register, 32> BuildVec; 6334 LLT EltTy = DstTy.getElementType(); 6335 6336 for (int Idx : Mask) { 6337 if (Idx < 0) { 6338 if (!Undef.isValid()) 6339 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6340 BuildVec.push_back(Undef); 6341 continue; 6342 } 6343 6344 if (Src0Ty.isScalar()) { 6345 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6346 } else { 6347 int NumElts = Src0Ty.getNumElements(); 6348 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6349 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6350 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6351 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6352 BuildVec.push_back(Extract.getReg(0)); 6353 } 6354 } 6355 6356 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6357 MI.eraseFromParent(); 6358 return Legalized; 6359 } 6360 6361 LegalizerHelper::LegalizeResult 6362 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6363 const auto &MF = *MI.getMF(); 6364 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6365 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6366 return UnableToLegalize; 6367 6368 Register Dst = MI.getOperand(0).getReg(); 6369 Register AllocSize = MI.getOperand(1).getReg(); 6370 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6371 6372 LLT PtrTy = MRI.getType(Dst); 6373 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6374 6375 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6376 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6377 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6378 6379 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6380 // have to generate an extra instruction to negate the alloc and then use 6381 // G_PTR_ADD to add the negative offset. 6382 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6383 if (Alignment > Align(1)) { 6384 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6385 AlignMask.negate(); 6386 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6387 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6388 } 6389 6390 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6391 MIRBuilder.buildCopy(SPReg, SPTmp); 6392 MIRBuilder.buildCopy(Dst, SPTmp); 6393 6394 MI.eraseFromParent(); 6395 return Legalized; 6396 } 6397 6398 LegalizerHelper::LegalizeResult 6399 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6400 Register Dst = MI.getOperand(0).getReg(); 6401 Register Src = MI.getOperand(1).getReg(); 6402 unsigned Offset = MI.getOperand(2).getImm(); 6403 6404 LLT DstTy = MRI.getType(Dst); 6405 LLT SrcTy = MRI.getType(Src); 6406 6407 if (DstTy.isScalar() && 6408 (SrcTy.isScalar() || 6409 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6410 LLT SrcIntTy = SrcTy; 6411 if (!SrcTy.isScalar()) { 6412 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6413 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6414 } 6415 6416 if (Offset == 0) 6417 MIRBuilder.buildTrunc(Dst, Src); 6418 else { 6419 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6420 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6421 MIRBuilder.buildTrunc(Dst, Shr); 6422 } 6423 6424 MI.eraseFromParent(); 6425 return Legalized; 6426 } 6427 6428 return UnableToLegalize; 6429 } 6430 6431 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6432 Register Dst = MI.getOperand(0).getReg(); 6433 Register Src = MI.getOperand(1).getReg(); 6434 Register InsertSrc = MI.getOperand(2).getReg(); 6435 uint64_t Offset = MI.getOperand(3).getImm(); 6436 6437 LLT DstTy = MRI.getType(Src); 6438 LLT InsertTy = MRI.getType(InsertSrc); 6439 6440 if (InsertTy.isVector() || 6441 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6442 return UnableToLegalize; 6443 6444 const DataLayout &DL = MIRBuilder.getDataLayout(); 6445 if ((DstTy.isPointer() && 6446 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6447 (InsertTy.isPointer() && 6448 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6449 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6450 return UnableToLegalize; 6451 } 6452 6453 LLT IntDstTy = DstTy; 6454 6455 if (!DstTy.isScalar()) { 6456 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6457 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6458 } 6459 6460 if (!InsertTy.isScalar()) { 6461 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6462 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6463 } 6464 6465 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6466 if (Offset != 0) { 6467 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6468 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6469 } 6470 6471 APInt MaskVal = APInt::getBitsSetWithWrap( 6472 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6473 6474 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6475 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6476 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6477 6478 MIRBuilder.buildCast(Dst, Or); 6479 MI.eraseFromParent(); 6480 return Legalized; 6481 } 6482 6483 LegalizerHelper::LegalizeResult 6484 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6485 Register Dst0 = MI.getOperand(0).getReg(); 6486 Register Dst1 = MI.getOperand(1).getReg(); 6487 Register LHS = MI.getOperand(2).getReg(); 6488 Register RHS = MI.getOperand(3).getReg(); 6489 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6490 6491 LLT Ty = MRI.getType(Dst0); 6492 LLT BoolTy = MRI.getType(Dst1); 6493 6494 if (IsAdd) 6495 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6496 else 6497 MIRBuilder.buildSub(Dst0, LHS, RHS); 6498 6499 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6500 6501 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6502 6503 // For an addition, the result should be less than one of the operands (LHS) 6504 // if and only if the other operand (RHS) is negative, otherwise there will 6505 // be overflow. 6506 // For a subtraction, the result should be less than one of the operands 6507 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6508 // otherwise there will be overflow. 6509 auto ResultLowerThanLHS = 6510 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6511 auto ConditionRHS = MIRBuilder.buildICmp( 6512 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6513 6514 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6515 MI.eraseFromParent(); 6516 return Legalized; 6517 } 6518 6519 LegalizerHelper::LegalizeResult 6520 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6521 Register Res = MI.getOperand(0).getReg(); 6522 Register LHS = MI.getOperand(1).getReg(); 6523 Register RHS = MI.getOperand(2).getReg(); 6524 LLT Ty = MRI.getType(Res); 6525 bool IsSigned; 6526 bool IsAdd; 6527 unsigned BaseOp; 6528 switch (MI.getOpcode()) { 6529 default: 6530 llvm_unreachable("unexpected addsat/subsat opcode"); 6531 case TargetOpcode::G_UADDSAT: 6532 IsSigned = false; 6533 IsAdd = true; 6534 BaseOp = TargetOpcode::G_ADD; 6535 break; 6536 case TargetOpcode::G_SADDSAT: 6537 IsSigned = true; 6538 IsAdd = true; 6539 BaseOp = TargetOpcode::G_ADD; 6540 break; 6541 case TargetOpcode::G_USUBSAT: 6542 IsSigned = false; 6543 IsAdd = false; 6544 BaseOp = TargetOpcode::G_SUB; 6545 break; 6546 case TargetOpcode::G_SSUBSAT: 6547 IsSigned = true; 6548 IsAdd = false; 6549 BaseOp = TargetOpcode::G_SUB; 6550 break; 6551 } 6552 6553 if (IsSigned) { 6554 // sadd.sat(a, b) -> 6555 // hi = 0x7fffffff - smax(a, 0) 6556 // lo = 0x80000000 - smin(a, 0) 6557 // a + smin(smax(lo, b), hi) 6558 // ssub.sat(a, b) -> 6559 // lo = smax(a, -1) - 0x7fffffff 6560 // hi = smin(a, -1) - 0x80000000 6561 // a - smin(smax(lo, b), hi) 6562 // TODO: AMDGPU can use a "median of 3" instruction here: 6563 // a +/- med3(lo, b, hi) 6564 uint64_t NumBits = Ty.getScalarSizeInBits(); 6565 auto MaxVal = 6566 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6567 auto MinVal = 6568 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6569 MachineInstrBuilder Hi, Lo; 6570 if (IsAdd) { 6571 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6572 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6573 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6574 } else { 6575 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6576 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6577 MaxVal); 6578 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6579 MinVal); 6580 } 6581 auto RHSClamped = 6582 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6583 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6584 } else { 6585 // uadd.sat(a, b) -> a + umin(~a, b) 6586 // usub.sat(a, b) -> a - umin(a, b) 6587 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6588 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6589 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6590 } 6591 6592 MI.eraseFromParent(); 6593 return Legalized; 6594 } 6595 6596 LegalizerHelper::LegalizeResult 6597 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6598 Register Res = MI.getOperand(0).getReg(); 6599 Register LHS = MI.getOperand(1).getReg(); 6600 Register RHS = MI.getOperand(2).getReg(); 6601 LLT Ty = MRI.getType(Res); 6602 LLT BoolTy = Ty.changeElementSize(1); 6603 bool IsSigned; 6604 bool IsAdd; 6605 unsigned OverflowOp; 6606 switch (MI.getOpcode()) { 6607 default: 6608 llvm_unreachable("unexpected addsat/subsat opcode"); 6609 case TargetOpcode::G_UADDSAT: 6610 IsSigned = false; 6611 IsAdd = true; 6612 OverflowOp = TargetOpcode::G_UADDO; 6613 break; 6614 case TargetOpcode::G_SADDSAT: 6615 IsSigned = true; 6616 IsAdd = true; 6617 OverflowOp = TargetOpcode::G_SADDO; 6618 break; 6619 case TargetOpcode::G_USUBSAT: 6620 IsSigned = false; 6621 IsAdd = false; 6622 OverflowOp = TargetOpcode::G_USUBO; 6623 break; 6624 case TargetOpcode::G_SSUBSAT: 6625 IsSigned = true; 6626 IsAdd = false; 6627 OverflowOp = TargetOpcode::G_SSUBO; 6628 break; 6629 } 6630 6631 auto OverflowRes = 6632 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6633 Register Tmp = OverflowRes.getReg(0); 6634 Register Ov = OverflowRes.getReg(1); 6635 MachineInstrBuilder Clamp; 6636 if (IsSigned) { 6637 // sadd.sat(a, b) -> 6638 // {tmp, ov} = saddo(a, b) 6639 // ov ? (tmp >>s 31) + 0x80000000 : r 6640 // ssub.sat(a, b) -> 6641 // {tmp, ov} = ssubo(a, b) 6642 // ov ? (tmp >>s 31) + 0x80000000 : r 6643 uint64_t NumBits = Ty.getScalarSizeInBits(); 6644 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6645 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6646 auto MinVal = 6647 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6648 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6649 } else { 6650 // uadd.sat(a, b) -> 6651 // {tmp, ov} = uaddo(a, b) 6652 // ov ? 0xffffffff : tmp 6653 // usub.sat(a, b) -> 6654 // {tmp, ov} = usubo(a, b) 6655 // ov ? 0 : tmp 6656 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6657 } 6658 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6659 6660 MI.eraseFromParent(); 6661 return Legalized; 6662 } 6663 6664 LegalizerHelper::LegalizeResult 6665 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6666 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6667 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6668 "Expected shlsat opcode!"); 6669 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6670 Register Res = MI.getOperand(0).getReg(); 6671 Register LHS = MI.getOperand(1).getReg(); 6672 Register RHS = MI.getOperand(2).getReg(); 6673 LLT Ty = MRI.getType(Res); 6674 LLT BoolTy = Ty.changeElementSize(1); 6675 6676 unsigned BW = Ty.getScalarSizeInBits(); 6677 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6678 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6679 : MIRBuilder.buildLShr(Ty, Result, RHS); 6680 6681 MachineInstrBuilder SatVal; 6682 if (IsSigned) { 6683 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6684 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6685 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6686 MIRBuilder.buildConstant(Ty, 0)); 6687 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6688 } else { 6689 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6690 } 6691 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6692 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6693 6694 MI.eraseFromParent(); 6695 return Legalized; 6696 } 6697 6698 LegalizerHelper::LegalizeResult 6699 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6700 Register Dst = MI.getOperand(0).getReg(); 6701 Register Src = MI.getOperand(1).getReg(); 6702 const LLT Ty = MRI.getType(Src); 6703 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6704 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6705 6706 // Swap most and least significant byte, set remaining bytes in Res to zero. 6707 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6708 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6709 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6710 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6711 6712 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6713 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6714 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6715 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6716 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6717 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6718 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6719 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6720 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6721 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6722 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6723 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6724 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6725 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6726 } 6727 Res.getInstr()->getOperand(0).setReg(Dst); 6728 6729 MI.eraseFromParent(); 6730 return Legalized; 6731 } 6732 6733 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6734 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6735 MachineInstrBuilder Src, APInt Mask) { 6736 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6737 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6738 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6739 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6740 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6741 return B.buildOr(Dst, LHS, RHS); 6742 } 6743 6744 LegalizerHelper::LegalizeResult 6745 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6746 Register Dst = MI.getOperand(0).getReg(); 6747 Register Src = MI.getOperand(1).getReg(); 6748 const LLT Ty = MRI.getType(Src); 6749 unsigned Size = Ty.getSizeInBits(); 6750 6751 MachineInstrBuilder BSWAP = 6752 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6753 6754 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6755 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6756 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6757 MachineInstrBuilder Swap4 = 6758 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6759 6760 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6761 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6762 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6763 MachineInstrBuilder Swap2 = 6764 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6765 6766 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6767 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6768 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6769 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6770 6771 MI.eraseFromParent(); 6772 return Legalized; 6773 } 6774 6775 LegalizerHelper::LegalizeResult 6776 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6777 MachineFunction &MF = MIRBuilder.getMF(); 6778 6779 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6780 int NameOpIdx = IsRead ? 1 : 0; 6781 int ValRegIndex = IsRead ? 0 : 1; 6782 6783 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6784 const LLT Ty = MRI.getType(ValReg); 6785 const MDString *RegStr = cast<MDString>( 6786 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6787 6788 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6789 if (!PhysReg.isValid()) 6790 return UnableToLegalize; 6791 6792 if (IsRead) 6793 MIRBuilder.buildCopy(ValReg, PhysReg); 6794 else 6795 MIRBuilder.buildCopy(PhysReg, ValReg); 6796 6797 MI.eraseFromParent(); 6798 return Legalized; 6799 } 6800 6801 LegalizerHelper::LegalizeResult 6802 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6803 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6804 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6805 Register Result = MI.getOperand(0).getReg(); 6806 LLT OrigTy = MRI.getType(Result); 6807 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6808 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6809 6810 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6811 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6812 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6813 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6814 6815 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6816 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6817 MIRBuilder.buildTrunc(Result, Shifted); 6818 6819 MI.eraseFromParent(); 6820 return Legalized; 6821 } 6822 6823 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6824 // Implement vector G_SELECT in terms of XOR, AND, OR. 6825 Register DstReg = MI.getOperand(0).getReg(); 6826 Register MaskReg = MI.getOperand(1).getReg(); 6827 Register Op1Reg = MI.getOperand(2).getReg(); 6828 Register Op2Reg = MI.getOperand(3).getReg(); 6829 LLT DstTy = MRI.getType(DstReg); 6830 LLT MaskTy = MRI.getType(MaskReg); 6831 LLT Op1Ty = MRI.getType(Op1Reg); 6832 if (!DstTy.isVector()) 6833 return UnableToLegalize; 6834 6835 // Vector selects can have a scalar predicate. If so, splat into a vector and 6836 // finish for later legalization attempts to try again. 6837 if (MaskTy.isScalar()) { 6838 Register MaskElt = MaskReg; 6839 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6840 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6841 // Generate a vector splat idiom to be pattern matched later. 6842 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6843 Observer.changingInstr(MI); 6844 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6845 Observer.changedInstr(MI); 6846 return Legalized; 6847 } 6848 6849 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6850 return UnableToLegalize; 6851 } 6852 6853 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6854 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6855 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6856 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6857 MI.eraseFromParent(); 6858 return Legalized; 6859 } 6860 6861 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 6862 // Split DIVREM into individual instructions. 6863 unsigned Opcode = MI.getOpcode(); 6864 6865 MIRBuilder.buildInstr( 6866 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 6867 : TargetOpcode::G_UDIV, 6868 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 6869 MIRBuilder.buildInstr( 6870 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 6871 : TargetOpcode::G_UREM, 6872 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 6873 MI.eraseFromParent(); 6874 return Legalized; 6875 } 6876