1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/GlobalISel/Utils.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 #define DEBUG_TYPE "legalizer"
31 
32 using namespace llvm;
33 using namespace LegalizeActions;
34 using namespace MIPatternMatch;
35 
36 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
37 ///
38 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
39 /// with any leftover piece as type \p LeftoverTy
40 ///
41 /// Returns -1 in the first element of the pair if the breakdown is not
42 /// satisfiable.
43 static std::pair<int, int>
44 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
45   assert(!LeftoverTy.isValid() && "this is an out argument");
46 
47   unsigned Size = OrigTy.getSizeInBits();
48   unsigned NarrowSize = NarrowTy.getSizeInBits();
49   unsigned NumParts = Size / NarrowSize;
50   unsigned LeftoverSize = Size - NumParts * NarrowSize;
51   assert(Size > NarrowSize);
52 
53   if (LeftoverSize == 0)
54     return {NumParts, 0};
55 
56   if (NarrowTy.isVector()) {
57     unsigned EltSize = OrigTy.getScalarSizeInBits();
58     if (LeftoverSize % EltSize != 0)
59       return {-1, -1};
60     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
61   } else {
62     LeftoverTy = LLT::scalar(LeftoverSize);
63   }
64 
65   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
66   return std::make_pair(NumParts, NumLeftover);
67 }
68 
69 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
70 
71   if (!Ty.isScalar())
72     return nullptr;
73 
74   switch (Ty.getSizeInBits()) {
75   case 16:
76     return Type::getHalfTy(Ctx);
77   case 32:
78     return Type::getFloatTy(Ctx);
79   case 64:
80     return Type::getDoubleTy(Ctx);
81   case 80:
82     return Type::getX86_FP80Ty(Ctx);
83   case 128:
84     return Type::getFP128Ty(Ctx);
85   default:
86     return nullptr;
87   }
88 }
89 
90 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
91                                  GISelChangeObserver &Observer,
92                                  MachineIRBuilder &Builder)
93     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
94       LI(*MF.getSubtarget().getLegalizerInfo()),
95       TLI(*MF.getSubtarget().getTargetLowering()) { }
96 
97 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
98                                  GISelChangeObserver &Observer,
99                                  MachineIRBuilder &B)
100   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
101     TLI(*MF.getSubtarget().getTargetLowering()) { }
102 
103 LegalizerHelper::LegalizeResult
104 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
105   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
106 
107   MIRBuilder.setInstrAndDebugLoc(MI);
108 
109   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
110       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
111     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
112   auto Step = LI.getAction(MI, MRI);
113   switch (Step.Action) {
114   case Legal:
115     LLVM_DEBUG(dbgs() << ".. Already legal\n");
116     return AlreadyLegal;
117   case Libcall:
118     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
119     return libcall(MI);
120   case NarrowScalar:
121     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
122     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
123   case WidenScalar:
124     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
125     return widenScalar(MI, Step.TypeIdx, Step.NewType);
126   case Bitcast:
127     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
128     return bitcast(MI, Step.TypeIdx, Step.NewType);
129   case Lower:
130     LLVM_DEBUG(dbgs() << ".. Lower\n");
131     return lower(MI, Step.TypeIdx, Step.NewType);
132   case FewerElements:
133     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
134     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case MoreElements:
136     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
137     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
138   case Custom:
139     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
140     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
141   default:
142     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
143     return UnableToLegalize;
144   }
145 }
146 
147 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
148                                    SmallVectorImpl<Register> &VRegs) {
149   for (int i = 0; i < NumParts; ++i)
150     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
151   MIRBuilder.buildUnmerge(VRegs, Reg);
152 }
153 
154 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
155                                    LLT MainTy, LLT &LeftoverTy,
156                                    SmallVectorImpl<Register> &VRegs,
157                                    SmallVectorImpl<Register> &LeftoverRegs) {
158   assert(!LeftoverTy.isValid() && "this is an out argument");
159 
160   unsigned RegSize = RegTy.getSizeInBits();
161   unsigned MainSize = MainTy.getSizeInBits();
162   unsigned NumParts = RegSize / MainSize;
163   unsigned LeftoverSize = RegSize - NumParts * MainSize;
164 
165   // Use an unmerge when possible.
166   if (LeftoverSize == 0) {
167     for (unsigned I = 0; I < NumParts; ++I)
168       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
169     MIRBuilder.buildUnmerge(VRegs, Reg);
170     return true;
171   }
172 
173   if (MainTy.isVector()) {
174     unsigned EltSize = MainTy.getScalarSizeInBits();
175     if (LeftoverSize % EltSize != 0)
176       return false;
177     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
178   } else {
179     LeftoverTy = LLT::scalar(LeftoverSize);
180   }
181 
182   // For irregular sizes, extract the individual parts.
183   for (unsigned I = 0; I != NumParts; ++I) {
184     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
185     VRegs.push_back(NewReg);
186     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
187   }
188 
189   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
190        Offset += LeftoverSize) {
191     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
192     LeftoverRegs.push_back(NewReg);
193     MIRBuilder.buildExtract(NewReg, Reg, Offset);
194   }
195 
196   return true;
197 }
198 
199 void LegalizerHelper::insertParts(Register DstReg,
200                                   LLT ResultTy, LLT PartTy,
201                                   ArrayRef<Register> PartRegs,
202                                   LLT LeftoverTy,
203                                   ArrayRef<Register> LeftoverRegs) {
204   if (!LeftoverTy.isValid()) {
205     assert(LeftoverRegs.empty());
206 
207     if (!ResultTy.isVector()) {
208       MIRBuilder.buildMerge(DstReg, PartRegs);
209       return;
210     }
211 
212     if (PartTy.isVector())
213       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
214     else
215       MIRBuilder.buildBuildVector(DstReg, PartRegs);
216     return;
217   }
218 
219   unsigned PartSize = PartTy.getSizeInBits();
220   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
221 
222   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
223   MIRBuilder.buildUndef(CurResultReg);
224 
225   unsigned Offset = 0;
226   for (Register PartReg : PartRegs) {
227     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
228     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
229     CurResultReg = NewResultReg;
230     Offset += PartSize;
231   }
232 
233   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
234     // Use the original output register for the final insert to avoid a copy.
235     Register NewResultReg = (I + 1 == E) ?
236       DstReg : MRI.createGenericVirtualRegister(ResultTy);
237 
238     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
239     CurResultReg = NewResultReg;
240     Offset += LeftoverPartSize;
241   }
242 }
243 
244 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
245 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
246                               const MachineInstr &MI) {
247   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
248 
249   const int StartIdx = Regs.size();
250   const int NumResults = MI.getNumOperands() - 1;
251   Regs.resize(Regs.size() + NumResults);
252   for (int I = 0; I != NumResults; ++I)
253     Regs[StartIdx + I] = MI.getOperand(I).getReg();
254 }
255 
256 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
257                                      LLT GCDTy, Register SrcReg) {
258   LLT SrcTy = MRI.getType(SrcReg);
259   if (SrcTy == GCDTy) {
260     // If the source already evenly divides the result type, we don't need to do
261     // anything.
262     Parts.push_back(SrcReg);
263   } else {
264     // Need to split into common type sized pieces.
265     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
266     getUnmergeResults(Parts, *Unmerge);
267   }
268 }
269 
270 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
271                                     LLT NarrowTy, Register SrcReg) {
272   LLT SrcTy = MRI.getType(SrcReg);
273   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
274   extractGCDType(Parts, GCDTy, SrcReg);
275   return GCDTy;
276 }
277 
278 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
279                                          SmallVectorImpl<Register> &VRegs,
280                                          unsigned PadStrategy) {
281   LLT LCMTy = getLCMType(DstTy, NarrowTy);
282 
283   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
284   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
285   int NumOrigSrc = VRegs.size();
286 
287   Register PadReg;
288 
289   // Get a value we can use to pad the source value if the sources won't evenly
290   // cover the result type.
291   if (NumOrigSrc < NumParts * NumSubParts) {
292     if (PadStrategy == TargetOpcode::G_ZEXT)
293       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
294     else if (PadStrategy == TargetOpcode::G_ANYEXT)
295       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
296     else {
297       assert(PadStrategy == TargetOpcode::G_SEXT);
298 
299       // Shift the sign bit of the low register through the high register.
300       auto ShiftAmt =
301         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
302       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
303     }
304   }
305 
306   // Registers for the final merge to be produced.
307   SmallVector<Register, 4> Remerge(NumParts);
308 
309   // Registers needed for intermediate merges, which will be merged into a
310   // source for Remerge.
311   SmallVector<Register, 4> SubMerge(NumSubParts);
312 
313   // Once we've fully read off the end of the original source bits, we can reuse
314   // the same high bits for remaining padding elements.
315   Register AllPadReg;
316 
317   // Build merges to the LCM type to cover the original result type.
318   for (int I = 0; I != NumParts; ++I) {
319     bool AllMergePartsArePadding = true;
320 
321     // Build the requested merges to the requested type.
322     for (int J = 0; J != NumSubParts; ++J) {
323       int Idx = I * NumSubParts + J;
324       if (Idx >= NumOrigSrc) {
325         SubMerge[J] = PadReg;
326         continue;
327       }
328 
329       SubMerge[J] = VRegs[Idx];
330 
331       // There are meaningful bits here we can't reuse later.
332       AllMergePartsArePadding = false;
333     }
334 
335     // If we've filled up a complete piece with padding bits, we can directly
336     // emit the natural sized constant if applicable, rather than a merge of
337     // smaller constants.
338     if (AllMergePartsArePadding && !AllPadReg) {
339       if (PadStrategy == TargetOpcode::G_ANYEXT)
340         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
341       else if (PadStrategy == TargetOpcode::G_ZEXT)
342         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
343 
344       // If this is a sign extension, we can't materialize a trivial constant
345       // with the right type and have to produce a merge.
346     }
347 
348     if (AllPadReg) {
349       // Avoid creating additional instructions if we're just adding additional
350       // copies of padding bits.
351       Remerge[I] = AllPadReg;
352       continue;
353     }
354 
355     if (NumSubParts == 1)
356       Remerge[I] = SubMerge[0];
357     else
358       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
359 
360     // In the sign extend padding case, re-use the first all-signbit merge.
361     if (AllMergePartsArePadding && !AllPadReg)
362       AllPadReg = Remerge[I];
363   }
364 
365   VRegs = std::move(Remerge);
366   return LCMTy;
367 }
368 
369 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
370                                                ArrayRef<Register> RemergeRegs) {
371   LLT DstTy = MRI.getType(DstReg);
372 
373   // Create the merge to the widened source, and extract the relevant bits into
374   // the result.
375 
376   if (DstTy == LCMTy) {
377     MIRBuilder.buildMerge(DstReg, RemergeRegs);
378     return;
379   }
380 
381   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
382   if (DstTy.isScalar() && LCMTy.isScalar()) {
383     MIRBuilder.buildTrunc(DstReg, Remerge);
384     return;
385   }
386 
387   if (LCMTy.isVector()) {
388     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
389     SmallVector<Register, 8> UnmergeDefs(NumDefs);
390     UnmergeDefs[0] = DstReg;
391     for (unsigned I = 1; I != NumDefs; ++I)
392       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
393 
394     MIRBuilder.buildUnmerge(UnmergeDefs,
395                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
396     return;
397   }
398 
399   llvm_unreachable("unhandled case");
400 }
401 
402 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
403 #define RTLIBCASE_INT(LibcallPrefix)                                           \
404   do {                                                                         \
405     switch (Size) {                                                            \
406     case 32:                                                                   \
407       return RTLIB::LibcallPrefix##32;                                         \
408     case 64:                                                                   \
409       return RTLIB::LibcallPrefix##64;                                         \
410     case 128:                                                                  \
411       return RTLIB::LibcallPrefix##128;                                        \
412     default:                                                                   \
413       llvm_unreachable("unexpected size");                                     \
414     }                                                                          \
415   } while (0)
416 
417 #define RTLIBCASE(LibcallPrefix)                                               \
418   do {                                                                         \
419     switch (Size) {                                                            \
420     case 32:                                                                   \
421       return RTLIB::LibcallPrefix##32;                                         \
422     case 64:                                                                   \
423       return RTLIB::LibcallPrefix##64;                                         \
424     case 80:                                                                   \
425       return RTLIB::LibcallPrefix##80;                                         \
426     case 128:                                                                  \
427       return RTLIB::LibcallPrefix##128;                                        \
428     default:                                                                   \
429       llvm_unreachable("unexpected size");                                     \
430     }                                                                          \
431   } while (0)
432 
433   switch (Opcode) {
434   case TargetOpcode::G_SDIV:
435     RTLIBCASE_INT(SDIV_I);
436   case TargetOpcode::G_UDIV:
437     RTLIBCASE_INT(UDIV_I);
438   case TargetOpcode::G_SREM:
439     RTLIBCASE_INT(SREM_I);
440   case TargetOpcode::G_UREM:
441     RTLIBCASE_INT(UREM_I);
442   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
443     RTLIBCASE_INT(CTLZ_I);
444   case TargetOpcode::G_FADD:
445     RTLIBCASE(ADD_F);
446   case TargetOpcode::G_FSUB:
447     RTLIBCASE(SUB_F);
448   case TargetOpcode::G_FMUL:
449     RTLIBCASE(MUL_F);
450   case TargetOpcode::G_FDIV:
451     RTLIBCASE(DIV_F);
452   case TargetOpcode::G_FEXP:
453     RTLIBCASE(EXP_F);
454   case TargetOpcode::G_FEXP2:
455     RTLIBCASE(EXP2_F);
456   case TargetOpcode::G_FREM:
457     RTLIBCASE(REM_F);
458   case TargetOpcode::G_FPOW:
459     RTLIBCASE(POW_F);
460   case TargetOpcode::G_FMA:
461     RTLIBCASE(FMA_F);
462   case TargetOpcode::G_FSIN:
463     RTLIBCASE(SIN_F);
464   case TargetOpcode::G_FCOS:
465     RTLIBCASE(COS_F);
466   case TargetOpcode::G_FLOG10:
467     RTLIBCASE(LOG10_F);
468   case TargetOpcode::G_FLOG:
469     RTLIBCASE(LOG_F);
470   case TargetOpcode::G_FLOG2:
471     RTLIBCASE(LOG2_F);
472   case TargetOpcode::G_FCEIL:
473     RTLIBCASE(CEIL_F);
474   case TargetOpcode::G_FFLOOR:
475     RTLIBCASE(FLOOR_F);
476   case TargetOpcode::G_FMINNUM:
477     RTLIBCASE(FMIN_F);
478   case TargetOpcode::G_FMAXNUM:
479     RTLIBCASE(FMAX_F);
480   case TargetOpcode::G_FSQRT:
481     RTLIBCASE(SQRT_F);
482   case TargetOpcode::G_FRINT:
483     RTLIBCASE(RINT_F);
484   case TargetOpcode::G_FNEARBYINT:
485     RTLIBCASE(NEARBYINT_F);
486   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
487     RTLIBCASE(ROUNDEVEN_F);
488   }
489   llvm_unreachable("Unknown libcall function");
490 }
491 
492 /// True if an instruction is in tail position in its caller. Intended for
493 /// legalizing libcalls as tail calls when possible.
494 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
495                                     MachineInstr &MI) {
496   MachineBasicBlock &MBB = *MI.getParent();
497   const Function &F = MBB.getParent()->getFunction();
498 
499   // Conservatively require the attributes of the call to match those of
500   // the return. Ignore NoAlias and NonNull because they don't affect the
501   // call sequence.
502   AttributeList CallerAttrs = F.getAttributes();
503   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
504           .removeAttribute(Attribute::NoAlias)
505           .removeAttribute(Attribute::NonNull)
506           .hasAttributes())
507     return false;
508 
509   // It's not safe to eliminate the sign / zero extension of the return value.
510   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
511       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
512     return false;
513 
514   // Only tail call if the following instruction is a standard return.
515   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
516   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
517     return false;
518 
519   return true;
520 }
521 
522 LegalizerHelper::LegalizeResult
523 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
524                     const CallLowering::ArgInfo &Result,
525                     ArrayRef<CallLowering::ArgInfo> Args,
526                     const CallingConv::ID CC) {
527   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
528 
529   CallLowering::CallLoweringInfo Info;
530   Info.CallConv = CC;
531   Info.Callee = MachineOperand::CreateES(Name);
532   Info.OrigRet = Result;
533   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
534   if (!CLI.lowerCall(MIRBuilder, Info))
535     return LegalizerHelper::UnableToLegalize;
536 
537   return LegalizerHelper::Legalized;
538 }
539 
540 LegalizerHelper::LegalizeResult
541 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
542                     const CallLowering::ArgInfo &Result,
543                     ArrayRef<CallLowering::ArgInfo> Args) {
544   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
545   const char *Name = TLI.getLibcallName(Libcall);
546   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
547   return createLibcall(MIRBuilder, Name, Result, Args, CC);
548 }
549 
550 // Useful for libcalls where all operands have the same type.
551 static LegalizerHelper::LegalizeResult
552 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
553               Type *OpType) {
554   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
555 
556   SmallVector<CallLowering::ArgInfo, 3> Args;
557   for (unsigned i = 1; i < MI.getNumOperands(); i++)
558     Args.push_back({MI.getOperand(i).getReg(), OpType});
559   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
560                        Args);
561 }
562 
563 LegalizerHelper::LegalizeResult
564 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
565                        MachineInstr &MI) {
566   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
567 
568   SmallVector<CallLowering::ArgInfo, 3> Args;
569   // Add all the args, except for the last which is an imm denoting 'tail'.
570   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
571     Register Reg = MI.getOperand(i).getReg();
572 
573     // Need derive an IR type for call lowering.
574     LLT OpLLT = MRI.getType(Reg);
575     Type *OpTy = nullptr;
576     if (OpLLT.isPointer())
577       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
578     else
579       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
580     Args.push_back({Reg, OpTy});
581   }
582 
583   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
584   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
585   RTLIB::Libcall RTLibcall;
586   unsigned Opc = MI.getOpcode();
587   switch (Opc) {
588   case TargetOpcode::G_BZERO:
589     RTLibcall = RTLIB::BZERO;
590     break;
591   case TargetOpcode::G_MEMCPY:
592     RTLibcall = RTLIB::MEMCPY;
593     break;
594   case TargetOpcode::G_MEMMOVE:
595     RTLibcall = RTLIB::MEMMOVE;
596     break;
597   case TargetOpcode::G_MEMSET:
598     RTLibcall = RTLIB::MEMSET;
599     break;
600   default:
601     return LegalizerHelper::UnableToLegalize;
602   }
603   const char *Name = TLI.getLibcallName(RTLibcall);
604 
605   // Unsupported libcall on the target.
606   if (!Name) {
607     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
608                       << MIRBuilder.getTII().getName(Opc) << "\n");
609     return LegalizerHelper::UnableToLegalize;
610   }
611 
612   CallLowering::CallLoweringInfo Info;
613   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
614   Info.Callee = MachineOperand::CreateES(Name);
615   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
616   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
617                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
618 
619   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
620   if (!CLI.lowerCall(MIRBuilder, Info))
621     return LegalizerHelper::UnableToLegalize;
622 
623   if (Info.LoweredTailCall) {
624     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
625     // We must have a return following the call (or debug insts) to get past
626     // isLibCallInTailPosition.
627     do {
628       MachineInstr *Next = MI.getNextNode();
629       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
630              "Expected instr following MI to be return or debug inst?");
631       // We lowered a tail call, so the call is now the return from the block.
632       // Delete the old return.
633       Next->eraseFromParent();
634     } while (MI.getNextNode());
635   }
636 
637   return LegalizerHelper::Legalized;
638 }
639 
640 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
641                                        Type *FromType) {
642   auto ToMVT = MVT::getVT(ToType);
643   auto FromMVT = MVT::getVT(FromType);
644 
645   switch (Opcode) {
646   case TargetOpcode::G_FPEXT:
647     return RTLIB::getFPEXT(FromMVT, ToMVT);
648   case TargetOpcode::G_FPTRUNC:
649     return RTLIB::getFPROUND(FromMVT, ToMVT);
650   case TargetOpcode::G_FPTOSI:
651     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
652   case TargetOpcode::G_FPTOUI:
653     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
654   case TargetOpcode::G_SITOFP:
655     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
656   case TargetOpcode::G_UITOFP:
657     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
658   }
659   llvm_unreachable("Unsupported libcall function");
660 }
661 
662 static LegalizerHelper::LegalizeResult
663 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
664                   Type *FromType) {
665   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
666   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
667                        {{MI.getOperand(1).getReg(), FromType}});
668 }
669 
670 LegalizerHelper::LegalizeResult
671 LegalizerHelper::libcall(MachineInstr &MI) {
672   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
673   unsigned Size = LLTy.getSizeInBits();
674   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
675 
676   switch (MI.getOpcode()) {
677   default:
678     return UnableToLegalize;
679   case TargetOpcode::G_SDIV:
680   case TargetOpcode::G_UDIV:
681   case TargetOpcode::G_SREM:
682   case TargetOpcode::G_UREM:
683   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
684     Type *HLTy = IntegerType::get(Ctx, Size);
685     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
686     if (Status != Legalized)
687       return Status;
688     break;
689   }
690   case TargetOpcode::G_FADD:
691   case TargetOpcode::G_FSUB:
692   case TargetOpcode::G_FMUL:
693   case TargetOpcode::G_FDIV:
694   case TargetOpcode::G_FMA:
695   case TargetOpcode::G_FPOW:
696   case TargetOpcode::G_FREM:
697   case TargetOpcode::G_FCOS:
698   case TargetOpcode::G_FSIN:
699   case TargetOpcode::G_FLOG10:
700   case TargetOpcode::G_FLOG:
701   case TargetOpcode::G_FLOG2:
702   case TargetOpcode::G_FEXP:
703   case TargetOpcode::G_FEXP2:
704   case TargetOpcode::G_FCEIL:
705   case TargetOpcode::G_FFLOOR:
706   case TargetOpcode::G_FMINNUM:
707   case TargetOpcode::G_FMAXNUM:
708   case TargetOpcode::G_FSQRT:
709   case TargetOpcode::G_FRINT:
710   case TargetOpcode::G_FNEARBYINT:
711   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
712     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
713     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
714       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
715       return UnableToLegalize;
716     }
717     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
718     if (Status != Legalized)
719       return Status;
720     break;
721   }
722   case TargetOpcode::G_FPEXT:
723   case TargetOpcode::G_FPTRUNC: {
724     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
725     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
726     if (!FromTy || !ToTy)
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
729     if (Status != Legalized)
730       return Status;
731     break;
732   }
733   case TargetOpcode::G_FPTOSI:
734   case TargetOpcode::G_FPTOUI: {
735     // FIXME: Support other types
736     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
737     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
738     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
739       return UnableToLegalize;
740     LegalizeResult Status = conversionLibcall(
741         MI, MIRBuilder,
742         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
743         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
744     if (Status != Legalized)
745       return Status;
746     break;
747   }
748   case TargetOpcode::G_SITOFP:
749   case TargetOpcode::G_UITOFP: {
750     // FIXME: Support other types
751     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
752     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
753     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
754       return UnableToLegalize;
755     LegalizeResult Status = conversionLibcall(
756         MI, MIRBuilder,
757         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
758         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
759     if (Status != Legalized)
760       return Status;
761     break;
762   }
763   case TargetOpcode::G_BZERO:
764   case TargetOpcode::G_MEMCPY:
765   case TargetOpcode::G_MEMMOVE:
766   case TargetOpcode::G_MEMSET: {
767     LegalizeResult Result =
768         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
769     if (Result != Legalized)
770       return Result;
771     MI.eraseFromParent();
772     return Result;
773   }
774   }
775 
776   MI.eraseFromParent();
777   return Legalized;
778 }
779 
780 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
781                                                               unsigned TypeIdx,
782                                                               LLT NarrowTy) {
783   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
784   uint64_t NarrowSize = NarrowTy.getSizeInBits();
785 
786   switch (MI.getOpcode()) {
787   default:
788     return UnableToLegalize;
789   case TargetOpcode::G_IMPLICIT_DEF: {
790     Register DstReg = MI.getOperand(0).getReg();
791     LLT DstTy = MRI.getType(DstReg);
792 
793     // If SizeOp0 is not an exact multiple of NarrowSize, emit
794     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
795     // FIXME: Although this would also be legal for the general case, it causes
796     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
797     //  combines not being hit). This seems to be a problem related to the
798     //  artifact combiner.
799     if (SizeOp0 % NarrowSize != 0) {
800       LLT ImplicitTy = NarrowTy;
801       if (DstTy.isVector())
802         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
803 
804       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
805       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
806 
807       MI.eraseFromParent();
808       return Legalized;
809     }
810 
811     int NumParts = SizeOp0 / NarrowSize;
812 
813     SmallVector<Register, 2> DstRegs;
814     for (int i = 0; i < NumParts; ++i)
815       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
816 
817     if (DstTy.isVector())
818       MIRBuilder.buildBuildVector(DstReg, DstRegs);
819     else
820       MIRBuilder.buildMerge(DstReg, DstRegs);
821     MI.eraseFromParent();
822     return Legalized;
823   }
824   case TargetOpcode::G_CONSTANT: {
825     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
826     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
827     unsigned TotalSize = Ty.getSizeInBits();
828     unsigned NarrowSize = NarrowTy.getSizeInBits();
829     int NumParts = TotalSize / NarrowSize;
830 
831     SmallVector<Register, 4> PartRegs;
832     for (int I = 0; I != NumParts; ++I) {
833       unsigned Offset = I * NarrowSize;
834       auto K = MIRBuilder.buildConstant(NarrowTy,
835                                         Val.lshr(Offset).trunc(NarrowSize));
836       PartRegs.push_back(K.getReg(0));
837     }
838 
839     LLT LeftoverTy;
840     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
841     SmallVector<Register, 1> LeftoverRegs;
842     if (LeftoverBits != 0) {
843       LeftoverTy = LLT::scalar(LeftoverBits);
844       auto K = MIRBuilder.buildConstant(
845         LeftoverTy,
846         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
847       LeftoverRegs.push_back(K.getReg(0));
848     }
849 
850     insertParts(MI.getOperand(0).getReg(),
851                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
852 
853     MI.eraseFromParent();
854     return Legalized;
855   }
856   case TargetOpcode::G_SEXT:
857   case TargetOpcode::G_ZEXT:
858   case TargetOpcode::G_ANYEXT:
859     return narrowScalarExt(MI, TypeIdx, NarrowTy);
860   case TargetOpcode::G_TRUNC: {
861     if (TypeIdx != 1)
862       return UnableToLegalize;
863 
864     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
865     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
866       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
867       return UnableToLegalize;
868     }
869 
870     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
871     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
872     MI.eraseFromParent();
873     return Legalized;
874   }
875 
876   case TargetOpcode::G_FREEZE:
877     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
878   case TargetOpcode::G_ADD:
879   case TargetOpcode::G_SUB:
880   case TargetOpcode::G_SADDO:
881   case TargetOpcode::G_SSUBO:
882   case TargetOpcode::G_SADDE:
883   case TargetOpcode::G_SSUBE:
884   case TargetOpcode::G_UADDO:
885   case TargetOpcode::G_USUBO:
886   case TargetOpcode::G_UADDE:
887   case TargetOpcode::G_USUBE:
888     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
889   case TargetOpcode::G_MUL:
890   case TargetOpcode::G_UMULH:
891     return narrowScalarMul(MI, NarrowTy);
892   case TargetOpcode::G_EXTRACT:
893     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
894   case TargetOpcode::G_INSERT:
895     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
896   case TargetOpcode::G_LOAD: {
897     auto &MMO = **MI.memoperands_begin();
898     Register DstReg = MI.getOperand(0).getReg();
899     LLT DstTy = MRI.getType(DstReg);
900     if (DstTy.isVector())
901       return UnableToLegalize;
902 
903     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
904       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
905       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
906       MIRBuilder.buildAnyExt(DstReg, TmpReg);
907       MI.eraseFromParent();
908       return Legalized;
909     }
910 
911     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
912   }
913   case TargetOpcode::G_ZEXTLOAD:
914   case TargetOpcode::G_SEXTLOAD: {
915     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
916     Register DstReg = MI.getOperand(0).getReg();
917     Register PtrReg = MI.getOperand(1).getReg();
918 
919     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
920     auto &MMO = **MI.memoperands_begin();
921     unsigned MemSize = MMO.getSizeInBits();
922 
923     if (MemSize == NarrowSize) {
924       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
925     } else if (MemSize < NarrowSize) {
926       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
927     } else if (MemSize > NarrowSize) {
928       // FIXME: Need to split the load.
929       return UnableToLegalize;
930     }
931 
932     if (ZExt)
933       MIRBuilder.buildZExt(DstReg, TmpReg);
934     else
935       MIRBuilder.buildSExt(DstReg, TmpReg);
936 
937     MI.eraseFromParent();
938     return Legalized;
939   }
940   case TargetOpcode::G_STORE: {
941     const auto &MMO = **MI.memoperands_begin();
942 
943     Register SrcReg = MI.getOperand(0).getReg();
944     LLT SrcTy = MRI.getType(SrcReg);
945     if (SrcTy.isVector())
946       return UnableToLegalize;
947 
948     int NumParts = SizeOp0 / NarrowSize;
949     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
950     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
951     if (SrcTy.isVector() && LeftoverBits != 0)
952       return UnableToLegalize;
953 
954     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
955       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
956       auto &MMO = **MI.memoperands_begin();
957       MIRBuilder.buildTrunc(TmpReg, SrcReg);
958       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
959       MI.eraseFromParent();
960       return Legalized;
961     }
962 
963     return reduceLoadStoreWidth(MI, 0, NarrowTy);
964   }
965   case TargetOpcode::G_SELECT:
966     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
967   case TargetOpcode::G_AND:
968   case TargetOpcode::G_OR:
969   case TargetOpcode::G_XOR: {
970     // Legalize bitwise operation:
971     // A = BinOp<Ty> B, C
972     // into:
973     // B1, ..., BN = G_UNMERGE_VALUES B
974     // C1, ..., CN = G_UNMERGE_VALUES C
975     // A1 = BinOp<Ty/N> B1, C2
976     // ...
977     // AN = BinOp<Ty/N> BN, CN
978     // A = G_MERGE_VALUES A1, ..., AN
979     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
980   }
981   case TargetOpcode::G_SHL:
982   case TargetOpcode::G_LSHR:
983   case TargetOpcode::G_ASHR:
984     return narrowScalarShift(MI, TypeIdx, NarrowTy);
985   case TargetOpcode::G_CTLZ:
986   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
987   case TargetOpcode::G_CTTZ:
988   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
989   case TargetOpcode::G_CTPOP:
990     if (TypeIdx == 1)
991       switch (MI.getOpcode()) {
992       case TargetOpcode::G_CTLZ:
993       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
994         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
995       case TargetOpcode::G_CTTZ:
996       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
997         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
998       case TargetOpcode::G_CTPOP:
999         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1000       default:
1001         return UnableToLegalize;
1002       }
1003 
1004     Observer.changingInstr(MI);
1005     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1006     Observer.changedInstr(MI);
1007     return Legalized;
1008   case TargetOpcode::G_INTTOPTR:
1009     if (TypeIdx != 1)
1010       return UnableToLegalize;
1011 
1012     Observer.changingInstr(MI);
1013     narrowScalarSrc(MI, NarrowTy, 1);
1014     Observer.changedInstr(MI);
1015     return Legalized;
1016   case TargetOpcode::G_PTRTOINT:
1017     if (TypeIdx != 0)
1018       return UnableToLegalize;
1019 
1020     Observer.changingInstr(MI);
1021     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1022     Observer.changedInstr(MI);
1023     return Legalized;
1024   case TargetOpcode::G_PHI: {
1025     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1026     // NarrowSize.
1027     if (SizeOp0 % NarrowSize != 0)
1028       return UnableToLegalize;
1029 
1030     unsigned NumParts = SizeOp0 / NarrowSize;
1031     SmallVector<Register, 2> DstRegs(NumParts);
1032     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1033     Observer.changingInstr(MI);
1034     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1035       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1036       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1037       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1038                    SrcRegs[i / 2]);
1039     }
1040     MachineBasicBlock &MBB = *MI.getParent();
1041     MIRBuilder.setInsertPt(MBB, MI);
1042     for (unsigned i = 0; i < NumParts; ++i) {
1043       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1044       MachineInstrBuilder MIB =
1045           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1046       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1047         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1048     }
1049     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1050     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1051     Observer.changedInstr(MI);
1052     MI.eraseFromParent();
1053     return Legalized;
1054   }
1055   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1056   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1057     if (TypeIdx != 2)
1058       return UnableToLegalize;
1059 
1060     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1061     Observer.changingInstr(MI);
1062     narrowScalarSrc(MI, NarrowTy, OpIdx);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   }
1066   case TargetOpcode::G_ICMP: {
1067     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1068     if (NarrowSize * 2 != SrcSize)
1069       return UnableToLegalize;
1070 
1071     Observer.changingInstr(MI);
1072     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1073     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1074     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1075 
1076     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1077     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1078     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1079 
1080     CmpInst::Predicate Pred =
1081         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1082     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1083 
1084     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1085       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1086       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1087       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1088       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1089       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1090     } else {
1091       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1092       MachineInstrBuilder CmpHEQ =
1093           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1094       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1095           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1096       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1097     }
1098     Observer.changedInstr(MI);
1099     MI.eraseFromParent();
1100     return Legalized;
1101   }
1102   case TargetOpcode::G_SEXT_INREG: {
1103     if (TypeIdx != 0)
1104       return UnableToLegalize;
1105 
1106     int64_t SizeInBits = MI.getOperand(2).getImm();
1107 
1108     // So long as the new type has more bits than the bits we're extending we
1109     // don't need to break it apart.
1110     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1111       Observer.changingInstr(MI);
1112       // We don't lose any non-extension bits by truncating the src and
1113       // sign-extending the dst.
1114       MachineOperand &MO1 = MI.getOperand(1);
1115       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1116       MO1.setReg(TruncMIB.getReg(0));
1117 
1118       MachineOperand &MO2 = MI.getOperand(0);
1119       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1120       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1121       MIRBuilder.buildSExt(MO2, DstExt);
1122       MO2.setReg(DstExt);
1123       Observer.changedInstr(MI);
1124       return Legalized;
1125     }
1126 
1127     // Break it apart. Components below the extension point are unmodified. The
1128     // component containing the extension point becomes a narrower SEXT_INREG.
1129     // Components above it are ashr'd from the component containing the
1130     // extension point.
1131     if (SizeOp0 % NarrowSize != 0)
1132       return UnableToLegalize;
1133     int NumParts = SizeOp0 / NarrowSize;
1134 
1135     // List the registers where the destination will be scattered.
1136     SmallVector<Register, 2> DstRegs;
1137     // List the registers where the source will be split.
1138     SmallVector<Register, 2> SrcRegs;
1139 
1140     // Create all the temporary registers.
1141     for (int i = 0; i < NumParts; ++i) {
1142       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1143 
1144       SrcRegs.push_back(SrcReg);
1145     }
1146 
1147     // Explode the big arguments into smaller chunks.
1148     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1149 
1150     Register AshrCstReg =
1151         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1152             .getReg(0);
1153     Register FullExtensionReg = 0;
1154     Register PartialExtensionReg = 0;
1155 
1156     // Do the operation on each small part.
1157     for (int i = 0; i < NumParts; ++i) {
1158       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1159         DstRegs.push_back(SrcRegs[i]);
1160       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1161         assert(PartialExtensionReg &&
1162                "Expected to visit partial extension before full");
1163         if (FullExtensionReg) {
1164           DstRegs.push_back(FullExtensionReg);
1165           continue;
1166         }
1167         DstRegs.push_back(
1168             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1169                 .getReg(0));
1170         FullExtensionReg = DstRegs.back();
1171       } else {
1172         DstRegs.push_back(
1173             MIRBuilder
1174                 .buildInstr(
1175                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1176                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1177                 .getReg(0));
1178         PartialExtensionReg = DstRegs.back();
1179       }
1180     }
1181 
1182     // Gather the destination registers into the final destination.
1183     Register DstReg = MI.getOperand(0).getReg();
1184     MIRBuilder.buildMerge(DstReg, DstRegs);
1185     MI.eraseFromParent();
1186     return Legalized;
1187   }
1188   case TargetOpcode::G_BSWAP:
1189   case TargetOpcode::G_BITREVERSE: {
1190     if (SizeOp0 % NarrowSize != 0)
1191       return UnableToLegalize;
1192 
1193     Observer.changingInstr(MI);
1194     SmallVector<Register, 2> SrcRegs, DstRegs;
1195     unsigned NumParts = SizeOp0 / NarrowSize;
1196     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1197 
1198     for (unsigned i = 0; i < NumParts; ++i) {
1199       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1200                                            {SrcRegs[NumParts - 1 - i]});
1201       DstRegs.push_back(DstPart.getReg(0));
1202     }
1203 
1204     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1205 
1206     Observer.changedInstr(MI);
1207     MI.eraseFromParent();
1208     return Legalized;
1209   }
1210   case TargetOpcode::G_PTR_ADD:
1211   case TargetOpcode::G_PTRMASK: {
1212     if (TypeIdx != 1)
1213       return UnableToLegalize;
1214     Observer.changingInstr(MI);
1215     narrowScalarSrc(MI, NarrowTy, 2);
1216     Observer.changedInstr(MI);
1217     return Legalized;
1218   }
1219   case TargetOpcode::G_FPTOUI:
1220   case TargetOpcode::G_FPTOSI:
1221     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1222   case TargetOpcode::G_FPEXT:
1223     if (TypeIdx != 0)
1224       return UnableToLegalize;
1225     Observer.changingInstr(MI);
1226     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1227     Observer.changedInstr(MI);
1228     return Legalized;
1229   }
1230 }
1231 
1232 Register LegalizerHelper::coerceToScalar(Register Val) {
1233   LLT Ty = MRI.getType(Val);
1234   if (Ty.isScalar())
1235     return Val;
1236 
1237   const DataLayout &DL = MIRBuilder.getDataLayout();
1238   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1239   if (Ty.isPointer()) {
1240     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1241       return Register();
1242     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1243   }
1244 
1245   Register NewVal = Val;
1246 
1247   assert(Ty.isVector());
1248   LLT EltTy = Ty.getElementType();
1249   if (EltTy.isPointer())
1250     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1251   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1252 }
1253 
1254 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1255                                      unsigned OpIdx, unsigned ExtOpcode) {
1256   MachineOperand &MO = MI.getOperand(OpIdx);
1257   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1258   MO.setReg(ExtB.getReg(0));
1259 }
1260 
1261 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1262                                       unsigned OpIdx) {
1263   MachineOperand &MO = MI.getOperand(OpIdx);
1264   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1265   MO.setReg(ExtB.getReg(0));
1266 }
1267 
1268 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1269                                      unsigned OpIdx, unsigned TruncOpcode) {
1270   MachineOperand &MO = MI.getOperand(OpIdx);
1271   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1272   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1273   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1274   MO.setReg(DstExt);
1275 }
1276 
1277 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1278                                       unsigned OpIdx, unsigned ExtOpcode) {
1279   MachineOperand &MO = MI.getOperand(OpIdx);
1280   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1281   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1282   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1283   MO.setReg(DstTrunc);
1284 }
1285 
1286 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1287                                             unsigned OpIdx) {
1288   MachineOperand &MO = MI.getOperand(OpIdx);
1289   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1290   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1291 }
1292 
1293 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1294                                             unsigned OpIdx) {
1295   MachineOperand &MO = MI.getOperand(OpIdx);
1296 
1297   LLT OldTy = MRI.getType(MO.getReg());
1298   unsigned OldElts = OldTy.getNumElements();
1299   unsigned NewElts = MoreTy.getNumElements();
1300 
1301   unsigned NumParts = NewElts / OldElts;
1302 
1303   // Use concat_vectors if the result is a multiple of the number of elements.
1304   if (NumParts * OldElts == NewElts) {
1305     SmallVector<Register, 8> Parts;
1306     Parts.push_back(MO.getReg());
1307 
1308     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1309     for (unsigned I = 1; I != NumParts; ++I)
1310       Parts.push_back(ImpDef);
1311 
1312     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1313     MO.setReg(Concat.getReg(0));
1314     return;
1315   }
1316 
1317   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1318   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1319   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1320   MO.setReg(MoreReg);
1321 }
1322 
1323 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1324   MachineOperand &Op = MI.getOperand(OpIdx);
1325   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1326 }
1327 
1328 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1329   MachineOperand &MO = MI.getOperand(OpIdx);
1330   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1331   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1332   MIRBuilder.buildBitcast(MO, CastDst);
1333   MO.setReg(CastDst);
1334 }
1335 
1336 LegalizerHelper::LegalizeResult
1337 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1338                                         LLT WideTy) {
1339   if (TypeIdx != 1)
1340     return UnableToLegalize;
1341 
1342   Register DstReg = MI.getOperand(0).getReg();
1343   LLT DstTy = MRI.getType(DstReg);
1344   if (DstTy.isVector())
1345     return UnableToLegalize;
1346 
1347   Register Src1 = MI.getOperand(1).getReg();
1348   LLT SrcTy = MRI.getType(Src1);
1349   const int DstSize = DstTy.getSizeInBits();
1350   const int SrcSize = SrcTy.getSizeInBits();
1351   const int WideSize = WideTy.getSizeInBits();
1352   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1353 
1354   unsigned NumOps = MI.getNumOperands();
1355   unsigned NumSrc = MI.getNumOperands() - 1;
1356   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1357 
1358   if (WideSize >= DstSize) {
1359     // Directly pack the bits in the target type.
1360     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1361 
1362     for (unsigned I = 2; I != NumOps; ++I) {
1363       const unsigned Offset = (I - 1) * PartSize;
1364 
1365       Register SrcReg = MI.getOperand(I).getReg();
1366       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1367 
1368       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1369 
1370       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1371         MRI.createGenericVirtualRegister(WideTy);
1372 
1373       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1374       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1375       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1376       ResultReg = NextResult;
1377     }
1378 
1379     if (WideSize > DstSize)
1380       MIRBuilder.buildTrunc(DstReg, ResultReg);
1381     else if (DstTy.isPointer())
1382       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1383 
1384     MI.eraseFromParent();
1385     return Legalized;
1386   }
1387 
1388   // Unmerge the original values to the GCD type, and recombine to the next
1389   // multiple greater than the original type.
1390   //
1391   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1392   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1393   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1394   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1395   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1396   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1397   // %12:_(s12) = G_MERGE_VALUES %10, %11
1398   //
1399   // Padding with undef if necessary:
1400   //
1401   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1402   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1403   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1404   // %7:_(s2) = G_IMPLICIT_DEF
1405   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1406   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1407   // %10:_(s12) = G_MERGE_VALUES %8, %9
1408 
1409   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1410   LLT GCDTy = LLT::scalar(GCD);
1411 
1412   SmallVector<Register, 8> Parts;
1413   SmallVector<Register, 8> NewMergeRegs;
1414   SmallVector<Register, 8> Unmerges;
1415   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1416 
1417   // Decompose the original operands if they don't evenly divide.
1418   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1419     Register SrcReg = MI.getOperand(I).getReg();
1420     if (GCD == SrcSize) {
1421       Unmerges.push_back(SrcReg);
1422     } else {
1423       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1424       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1425         Unmerges.push_back(Unmerge.getReg(J));
1426     }
1427   }
1428 
1429   // Pad with undef to the next size that is a multiple of the requested size.
1430   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1431     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1432     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1433       Unmerges.push_back(UndefReg);
1434   }
1435 
1436   const int PartsPerGCD = WideSize / GCD;
1437 
1438   // Build merges of each piece.
1439   ArrayRef<Register> Slicer(Unmerges);
1440   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1441     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1442     NewMergeRegs.push_back(Merge.getReg(0));
1443   }
1444 
1445   // A truncate may be necessary if the requested type doesn't evenly divide the
1446   // original result type.
1447   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1448     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1449   } else {
1450     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1451     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1452   }
1453 
1454   MI.eraseFromParent();
1455   return Legalized;
1456 }
1457 
1458 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1459   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1460   LLT OrigTy = MRI.getType(OrigReg);
1461   LLT LCMTy = getLCMType(WideTy, OrigTy);
1462 
1463   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1464   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1465 
1466   Register UnmergeSrc = WideReg;
1467 
1468   // Create a merge to the LCM type, padding with undef
1469   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1470   // =>
1471   // %1:_(<4 x s32>) = G_FOO
1472   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1473   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1474   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1475   if (NumMergeParts > 1) {
1476     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1477     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1478     MergeParts[0] = WideReg;
1479     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1480   }
1481 
1482   // Unmerge to the original register and pad with dead defs.
1483   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1484   UnmergeResults[0] = OrigReg;
1485   for (int I = 1; I != NumUnmergeParts; ++I)
1486     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1487 
1488   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1489   return WideReg;
1490 }
1491 
1492 LegalizerHelper::LegalizeResult
1493 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1494                                           LLT WideTy) {
1495   if (TypeIdx != 0)
1496     return UnableToLegalize;
1497 
1498   int NumDst = MI.getNumOperands() - 1;
1499   Register SrcReg = MI.getOperand(NumDst).getReg();
1500   LLT SrcTy = MRI.getType(SrcReg);
1501   if (SrcTy.isVector())
1502     return UnableToLegalize;
1503 
1504   Register Dst0Reg = MI.getOperand(0).getReg();
1505   LLT DstTy = MRI.getType(Dst0Reg);
1506   if (!DstTy.isScalar())
1507     return UnableToLegalize;
1508 
1509   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1510     if (SrcTy.isPointer()) {
1511       const DataLayout &DL = MIRBuilder.getDataLayout();
1512       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1513         LLVM_DEBUG(
1514             dbgs() << "Not casting non-integral address space integer\n");
1515         return UnableToLegalize;
1516       }
1517 
1518       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1519       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1520     }
1521 
1522     // Widen SrcTy to WideTy. This does not affect the result, but since the
1523     // user requested this size, it is probably better handled than SrcTy and
1524     // should reduce the total number of legalization artifacts
1525     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1526       SrcTy = WideTy;
1527       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1528     }
1529 
1530     // Theres no unmerge type to target. Directly extract the bits from the
1531     // source type
1532     unsigned DstSize = DstTy.getSizeInBits();
1533 
1534     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1535     for (int I = 1; I != NumDst; ++I) {
1536       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1537       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1538       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1539     }
1540 
1541     MI.eraseFromParent();
1542     return Legalized;
1543   }
1544 
1545   // Extend the source to a wider type.
1546   LLT LCMTy = getLCMType(SrcTy, WideTy);
1547 
1548   Register WideSrc = SrcReg;
1549   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1550     // TODO: If this is an integral address space, cast to integer and anyext.
1551     if (SrcTy.isPointer()) {
1552       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1553       return UnableToLegalize;
1554     }
1555 
1556     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1557   }
1558 
1559   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1560 
1561   // Create a sequence of unmerges and merges to the original results. Since we
1562   // may have widened the source, we will need to pad the results with dead defs
1563   // to cover the source register.
1564   // e.g. widen s48 to s64:
1565   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1566   //
1567   // =>
1568   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1569   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1570   //  ; unpack to GCD type, with extra dead defs
1571   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1572   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1573   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1574   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1575   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1576   const LLT GCDTy = getGCDType(WideTy, DstTy);
1577   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1578   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1579 
1580   // Directly unmerge to the destination without going through a GCD type
1581   // if possible
1582   if (PartsPerRemerge == 1) {
1583     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1584 
1585     for (int I = 0; I != NumUnmerge; ++I) {
1586       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1587 
1588       for (int J = 0; J != PartsPerUnmerge; ++J) {
1589         int Idx = I * PartsPerUnmerge + J;
1590         if (Idx < NumDst)
1591           MIB.addDef(MI.getOperand(Idx).getReg());
1592         else {
1593           // Create dead def for excess components.
1594           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1595         }
1596       }
1597 
1598       MIB.addUse(Unmerge.getReg(I));
1599     }
1600   } else {
1601     SmallVector<Register, 16> Parts;
1602     for (int J = 0; J != NumUnmerge; ++J)
1603       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1604 
1605     SmallVector<Register, 8> RemergeParts;
1606     for (int I = 0; I != NumDst; ++I) {
1607       for (int J = 0; J < PartsPerRemerge; ++J) {
1608         const int Idx = I * PartsPerRemerge + J;
1609         RemergeParts.emplace_back(Parts[Idx]);
1610       }
1611 
1612       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1613       RemergeParts.clear();
1614     }
1615   }
1616 
1617   MI.eraseFromParent();
1618   return Legalized;
1619 }
1620 
1621 LegalizerHelper::LegalizeResult
1622 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1623                                     LLT WideTy) {
1624   Register DstReg = MI.getOperand(0).getReg();
1625   Register SrcReg = MI.getOperand(1).getReg();
1626   LLT SrcTy = MRI.getType(SrcReg);
1627 
1628   LLT DstTy = MRI.getType(DstReg);
1629   unsigned Offset = MI.getOperand(2).getImm();
1630 
1631   if (TypeIdx == 0) {
1632     if (SrcTy.isVector() || DstTy.isVector())
1633       return UnableToLegalize;
1634 
1635     SrcOp Src(SrcReg);
1636     if (SrcTy.isPointer()) {
1637       // Extracts from pointers can be handled only if they are really just
1638       // simple integers.
1639       const DataLayout &DL = MIRBuilder.getDataLayout();
1640       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1641         return UnableToLegalize;
1642 
1643       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1644       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1645       SrcTy = SrcAsIntTy;
1646     }
1647 
1648     if (DstTy.isPointer())
1649       return UnableToLegalize;
1650 
1651     if (Offset == 0) {
1652       // Avoid a shift in the degenerate case.
1653       MIRBuilder.buildTrunc(DstReg,
1654                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1655       MI.eraseFromParent();
1656       return Legalized;
1657     }
1658 
1659     // Do a shift in the source type.
1660     LLT ShiftTy = SrcTy;
1661     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1662       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1663       ShiftTy = WideTy;
1664     }
1665 
1666     auto LShr = MIRBuilder.buildLShr(
1667       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1668     MIRBuilder.buildTrunc(DstReg, LShr);
1669     MI.eraseFromParent();
1670     return Legalized;
1671   }
1672 
1673   if (SrcTy.isScalar()) {
1674     Observer.changingInstr(MI);
1675     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1676     Observer.changedInstr(MI);
1677     return Legalized;
1678   }
1679 
1680   if (!SrcTy.isVector())
1681     return UnableToLegalize;
1682 
1683   if (DstTy != SrcTy.getElementType())
1684     return UnableToLegalize;
1685 
1686   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1687     return UnableToLegalize;
1688 
1689   Observer.changingInstr(MI);
1690   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1691 
1692   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1693                           Offset);
1694   widenScalarDst(MI, WideTy.getScalarType(), 0);
1695   Observer.changedInstr(MI);
1696   return Legalized;
1697 }
1698 
1699 LegalizerHelper::LegalizeResult
1700 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1701                                    LLT WideTy) {
1702   if (TypeIdx != 0 || WideTy.isVector())
1703     return UnableToLegalize;
1704   Observer.changingInstr(MI);
1705   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1706   widenScalarDst(MI, WideTy);
1707   Observer.changedInstr(MI);
1708   return Legalized;
1709 }
1710 
1711 LegalizerHelper::LegalizeResult
1712 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1713                                            LLT WideTy) {
1714   if (TypeIdx == 1)
1715     return UnableToLegalize; // TODO
1716 
1717   unsigned Opcode;
1718   unsigned ExtOpcode;
1719   Optional<Register> CarryIn = None;
1720   switch (MI.getOpcode()) {
1721   default:
1722     llvm_unreachable("Unexpected opcode!");
1723   case TargetOpcode::G_SADDO:
1724     Opcode = TargetOpcode::G_ADD;
1725     ExtOpcode = TargetOpcode::G_SEXT;
1726     break;
1727   case TargetOpcode::G_SSUBO:
1728     Opcode = TargetOpcode::G_SUB;
1729     ExtOpcode = TargetOpcode::G_SEXT;
1730     break;
1731   case TargetOpcode::G_UADDO:
1732     Opcode = TargetOpcode::G_ADD;
1733     ExtOpcode = TargetOpcode::G_ZEXT;
1734     break;
1735   case TargetOpcode::G_USUBO:
1736     Opcode = TargetOpcode::G_SUB;
1737     ExtOpcode = TargetOpcode::G_ZEXT;
1738     break;
1739   case TargetOpcode::G_SADDE:
1740     Opcode = TargetOpcode::G_UADDE;
1741     ExtOpcode = TargetOpcode::G_SEXT;
1742     CarryIn = MI.getOperand(4).getReg();
1743     break;
1744   case TargetOpcode::G_SSUBE:
1745     Opcode = TargetOpcode::G_USUBE;
1746     ExtOpcode = TargetOpcode::G_SEXT;
1747     CarryIn = MI.getOperand(4).getReg();
1748     break;
1749   case TargetOpcode::G_UADDE:
1750     Opcode = TargetOpcode::G_UADDE;
1751     ExtOpcode = TargetOpcode::G_ZEXT;
1752     CarryIn = MI.getOperand(4).getReg();
1753     break;
1754   case TargetOpcode::G_USUBE:
1755     Opcode = TargetOpcode::G_USUBE;
1756     ExtOpcode = TargetOpcode::G_ZEXT;
1757     CarryIn = MI.getOperand(4).getReg();
1758     break;
1759   }
1760 
1761   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1762   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1763   // Do the arithmetic in the larger type.
1764   Register NewOp;
1765   if (CarryIn) {
1766     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1767     NewOp = MIRBuilder
1768                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1769                             {LHSExt, RHSExt, *CarryIn})
1770                 .getReg(0);
1771   } else {
1772     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1773   }
1774   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1775   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1776   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1777   // There is no overflow if the ExtOp is the same as NewOp.
1778   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1779   // Now trunc the NewOp to the original result.
1780   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1781   MI.eraseFromParent();
1782   return Legalized;
1783 }
1784 
1785 LegalizerHelper::LegalizeResult
1786 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1787                                          LLT WideTy) {
1788   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1789                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1790                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1791   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1792                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1793   // We can convert this to:
1794   //   1. Any extend iN to iM
1795   //   2. SHL by M-N
1796   //   3. [US][ADD|SUB|SHL]SAT
1797   //   4. L/ASHR by M-N
1798   //
1799   // It may be more efficient to lower this to a min and a max operation in
1800   // the higher precision arithmetic if the promoted operation isn't legal,
1801   // but this decision is up to the target's lowering request.
1802   Register DstReg = MI.getOperand(0).getReg();
1803 
1804   unsigned NewBits = WideTy.getScalarSizeInBits();
1805   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1806 
1807   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1808   // must not left shift the RHS to preserve the shift amount.
1809   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1810   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1811                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1812   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1813   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1814   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1815 
1816   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1817                                         {ShiftL, ShiftR}, MI.getFlags());
1818 
1819   // Use a shift that will preserve the number of sign bits when the trunc is
1820   // folded away.
1821   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1822                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1823 
1824   MIRBuilder.buildTrunc(DstReg, Result);
1825   MI.eraseFromParent();
1826   return Legalized;
1827 }
1828 
1829 LegalizerHelper::LegalizeResult
1830 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1831                                  LLT WideTy) {
1832   if (TypeIdx == 1)
1833     return UnableToLegalize;
1834 
1835   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1836   Register Result = MI.getOperand(0).getReg();
1837   Register OriginalOverflow = MI.getOperand(1).getReg();
1838   Register LHS = MI.getOperand(2).getReg();
1839   Register RHS = MI.getOperand(3).getReg();
1840   LLT SrcTy = MRI.getType(LHS);
1841   LLT OverflowTy = MRI.getType(OriginalOverflow);
1842   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1843 
1844   // To determine if the result overflowed in the larger type, we extend the
1845   // input to the larger type, do the multiply (checking if it overflows),
1846   // then also check the high bits of the result to see if overflow happened
1847   // there.
1848   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1849   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1850   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1851 
1852   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1853                                     {LeftOperand, RightOperand});
1854   auto Mul = Mulo->getOperand(0);
1855   MIRBuilder.buildTrunc(Result, Mul);
1856 
1857   MachineInstrBuilder ExtResult;
1858   // Overflow occurred if it occurred in the larger type, or if the high part
1859   // of the result does not zero/sign-extend the low part.  Check this second
1860   // possibility first.
1861   if (IsSigned) {
1862     // For signed, overflow occurred when the high part does not sign-extend
1863     // the low part.
1864     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1865   } else {
1866     // Unsigned overflow occurred when the high part does not zero-extend the
1867     // low part.
1868     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1869   }
1870 
1871   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1872   // so we don't need to check the overflow result of larger type Mulo.
1873   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1874     auto Overflow =
1875         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1876     // Finally check if the multiplication in the larger type itself overflowed.
1877     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1878   } else {
1879     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1880   }
1881   MI.eraseFromParent();
1882   return Legalized;
1883 }
1884 
1885 LegalizerHelper::LegalizeResult
1886 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1887   switch (MI.getOpcode()) {
1888   default:
1889     return UnableToLegalize;
1890   case TargetOpcode::G_EXTRACT:
1891     return widenScalarExtract(MI, TypeIdx, WideTy);
1892   case TargetOpcode::G_INSERT:
1893     return widenScalarInsert(MI, TypeIdx, WideTy);
1894   case TargetOpcode::G_MERGE_VALUES:
1895     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1896   case TargetOpcode::G_UNMERGE_VALUES:
1897     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1898   case TargetOpcode::G_SADDO:
1899   case TargetOpcode::G_SSUBO:
1900   case TargetOpcode::G_UADDO:
1901   case TargetOpcode::G_USUBO:
1902   case TargetOpcode::G_SADDE:
1903   case TargetOpcode::G_SSUBE:
1904   case TargetOpcode::G_UADDE:
1905   case TargetOpcode::G_USUBE:
1906     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1907   case TargetOpcode::G_UMULO:
1908   case TargetOpcode::G_SMULO:
1909     return widenScalarMulo(MI, TypeIdx, WideTy);
1910   case TargetOpcode::G_SADDSAT:
1911   case TargetOpcode::G_SSUBSAT:
1912   case TargetOpcode::G_SSHLSAT:
1913   case TargetOpcode::G_UADDSAT:
1914   case TargetOpcode::G_USUBSAT:
1915   case TargetOpcode::G_USHLSAT:
1916     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1917   case TargetOpcode::G_CTTZ:
1918   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1919   case TargetOpcode::G_CTLZ:
1920   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1921   case TargetOpcode::G_CTPOP: {
1922     if (TypeIdx == 0) {
1923       Observer.changingInstr(MI);
1924       widenScalarDst(MI, WideTy, 0);
1925       Observer.changedInstr(MI);
1926       return Legalized;
1927     }
1928 
1929     Register SrcReg = MI.getOperand(1).getReg();
1930 
1931     // First ZEXT the input.
1932     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1933     LLT CurTy = MRI.getType(SrcReg);
1934     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1935       // The count is the same in the larger type except if the original
1936       // value was zero.  This can be handled by setting the bit just off
1937       // the top of the original type.
1938       auto TopBit =
1939           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1940       MIBSrc = MIRBuilder.buildOr(
1941         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1942     }
1943 
1944     // Perform the operation at the larger size.
1945     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1946     // This is already the correct result for CTPOP and CTTZs
1947     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1948         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1949       // The correct result is NewOp - (Difference in widety and current ty).
1950       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1951       MIBNewOp = MIRBuilder.buildSub(
1952           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1953     }
1954 
1955     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1956     MI.eraseFromParent();
1957     return Legalized;
1958   }
1959   case TargetOpcode::G_BSWAP: {
1960     Observer.changingInstr(MI);
1961     Register DstReg = MI.getOperand(0).getReg();
1962 
1963     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1964     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1965     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1966     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1967 
1968     MI.getOperand(0).setReg(DstExt);
1969 
1970     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1971 
1972     LLT Ty = MRI.getType(DstReg);
1973     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1974     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1975     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1976 
1977     MIRBuilder.buildTrunc(DstReg, ShrReg);
1978     Observer.changedInstr(MI);
1979     return Legalized;
1980   }
1981   case TargetOpcode::G_BITREVERSE: {
1982     Observer.changingInstr(MI);
1983 
1984     Register DstReg = MI.getOperand(0).getReg();
1985     LLT Ty = MRI.getType(DstReg);
1986     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1987 
1988     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1989     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1990     MI.getOperand(0).setReg(DstExt);
1991     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1992 
1993     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1994     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1995     MIRBuilder.buildTrunc(DstReg, Shift);
1996     Observer.changedInstr(MI);
1997     return Legalized;
1998   }
1999   case TargetOpcode::G_FREEZE:
2000     Observer.changingInstr(MI);
2001     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2002     widenScalarDst(MI, WideTy);
2003     Observer.changedInstr(MI);
2004     return Legalized;
2005 
2006   case TargetOpcode::G_ADD:
2007   case TargetOpcode::G_AND:
2008   case TargetOpcode::G_MUL:
2009   case TargetOpcode::G_OR:
2010   case TargetOpcode::G_XOR:
2011   case TargetOpcode::G_SUB:
2012     // Perform operation at larger width (any extension is fines here, high bits
2013     // don't affect the result) and then truncate the result back to the
2014     // original type.
2015     Observer.changingInstr(MI);
2016     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2017     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2018     widenScalarDst(MI, WideTy);
2019     Observer.changedInstr(MI);
2020     return Legalized;
2021 
2022   case TargetOpcode::G_SHL:
2023     Observer.changingInstr(MI);
2024 
2025     if (TypeIdx == 0) {
2026       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2027       widenScalarDst(MI, WideTy);
2028     } else {
2029       assert(TypeIdx == 1);
2030       // The "number of bits to shift" operand must preserve its value as an
2031       // unsigned integer:
2032       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2033     }
2034 
2035     Observer.changedInstr(MI);
2036     return Legalized;
2037 
2038   case TargetOpcode::G_SDIV:
2039   case TargetOpcode::G_SREM:
2040   case TargetOpcode::G_SMIN:
2041   case TargetOpcode::G_SMAX:
2042     Observer.changingInstr(MI);
2043     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2044     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2045     widenScalarDst(MI, WideTy);
2046     Observer.changedInstr(MI);
2047     return Legalized;
2048 
2049   case TargetOpcode::G_SDIVREM:
2050     Observer.changingInstr(MI);
2051     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2052     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2053     widenScalarDst(MI, WideTy);
2054     widenScalarDst(MI, WideTy, 1);
2055     Observer.changedInstr(MI);
2056     return Legalized;
2057 
2058   case TargetOpcode::G_ASHR:
2059   case TargetOpcode::G_LSHR:
2060     Observer.changingInstr(MI);
2061 
2062     if (TypeIdx == 0) {
2063       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2064         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2065 
2066       widenScalarSrc(MI, WideTy, 1, CvtOp);
2067       widenScalarDst(MI, WideTy);
2068     } else {
2069       assert(TypeIdx == 1);
2070       // The "number of bits to shift" operand must preserve its value as an
2071       // unsigned integer:
2072       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2073     }
2074 
2075     Observer.changedInstr(MI);
2076     return Legalized;
2077   case TargetOpcode::G_UDIV:
2078   case TargetOpcode::G_UREM:
2079   case TargetOpcode::G_UMIN:
2080   case TargetOpcode::G_UMAX:
2081     Observer.changingInstr(MI);
2082     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2083     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2084     widenScalarDst(MI, WideTy);
2085     Observer.changedInstr(MI);
2086     return Legalized;
2087 
2088   case TargetOpcode::G_UDIVREM:
2089     Observer.changingInstr(MI);
2090     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2091     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2092     widenScalarDst(MI, WideTy);
2093     widenScalarDst(MI, WideTy, 1);
2094     Observer.changedInstr(MI);
2095     return Legalized;
2096 
2097   case TargetOpcode::G_SELECT:
2098     Observer.changingInstr(MI);
2099     if (TypeIdx == 0) {
2100       // Perform operation at larger width (any extension is fine here, high
2101       // bits don't affect the result) and then truncate the result back to the
2102       // original type.
2103       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2104       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2105       widenScalarDst(MI, WideTy);
2106     } else {
2107       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2108       // Explicit extension is required here since high bits affect the result.
2109       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2110     }
2111     Observer.changedInstr(MI);
2112     return Legalized;
2113 
2114   case TargetOpcode::G_FPTOSI:
2115   case TargetOpcode::G_FPTOUI:
2116     Observer.changingInstr(MI);
2117 
2118     if (TypeIdx == 0)
2119       widenScalarDst(MI, WideTy);
2120     else
2121       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2122 
2123     Observer.changedInstr(MI);
2124     return Legalized;
2125   case TargetOpcode::G_SITOFP:
2126     Observer.changingInstr(MI);
2127 
2128     if (TypeIdx == 0)
2129       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2130     else
2131       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2132 
2133     Observer.changedInstr(MI);
2134     return Legalized;
2135   case TargetOpcode::G_UITOFP:
2136     Observer.changingInstr(MI);
2137 
2138     if (TypeIdx == 0)
2139       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2140     else
2141       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2142 
2143     Observer.changedInstr(MI);
2144     return Legalized;
2145   case TargetOpcode::G_LOAD:
2146   case TargetOpcode::G_SEXTLOAD:
2147   case TargetOpcode::G_ZEXTLOAD:
2148     Observer.changingInstr(MI);
2149     widenScalarDst(MI, WideTy);
2150     Observer.changedInstr(MI);
2151     return Legalized;
2152 
2153   case TargetOpcode::G_STORE: {
2154     if (TypeIdx != 0)
2155       return UnableToLegalize;
2156 
2157     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2158     if (!Ty.isScalar())
2159       return UnableToLegalize;
2160 
2161     Observer.changingInstr(MI);
2162 
2163     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2164       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2165     widenScalarSrc(MI, WideTy, 0, ExtType);
2166 
2167     Observer.changedInstr(MI);
2168     return Legalized;
2169   }
2170   case TargetOpcode::G_CONSTANT: {
2171     MachineOperand &SrcMO = MI.getOperand(1);
2172     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2173     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2174         MRI.getType(MI.getOperand(0).getReg()));
2175     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2176             ExtOpc == TargetOpcode::G_ANYEXT) &&
2177            "Illegal Extend");
2178     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2179     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2180                            ? SrcVal.sext(WideTy.getSizeInBits())
2181                            : SrcVal.zext(WideTy.getSizeInBits());
2182     Observer.changingInstr(MI);
2183     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2184 
2185     widenScalarDst(MI, WideTy);
2186     Observer.changedInstr(MI);
2187     return Legalized;
2188   }
2189   case TargetOpcode::G_FCONSTANT: {
2190     MachineOperand &SrcMO = MI.getOperand(1);
2191     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2192     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2193     bool LosesInfo;
2194     switch (WideTy.getSizeInBits()) {
2195     case 32:
2196       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2197                   &LosesInfo);
2198       break;
2199     case 64:
2200       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2201                   &LosesInfo);
2202       break;
2203     default:
2204       return UnableToLegalize;
2205     }
2206 
2207     assert(!LosesInfo && "extend should always be lossless");
2208 
2209     Observer.changingInstr(MI);
2210     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2211 
2212     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2213     Observer.changedInstr(MI);
2214     return Legalized;
2215   }
2216   case TargetOpcode::G_IMPLICIT_DEF: {
2217     Observer.changingInstr(MI);
2218     widenScalarDst(MI, WideTy);
2219     Observer.changedInstr(MI);
2220     return Legalized;
2221   }
2222   case TargetOpcode::G_BRCOND:
2223     Observer.changingInstr(MI);
2224     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2225     Observer.changedInstr(MI);
2226     return Legalized;
2227 
2228   case TargetOpcode::G_FCMP:
2229     Observer.changingInstr(MI);
2230     if (TypeIdx == 0)
2231       widenScalarDst(MI, WideTy);
2232     else {
2233       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2234       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2235     }
2236     Observer.changedInstr(MI);
2237     return Legalized;
2238 
2239   case TargetOpcode::G_ICMP:
2240     Observer.changingInstr(MI);
2241     if (TypeIdx == 0)
2242       widenScalarDst(MI, WideTy);
2243     else {
2244       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2245                                MI.getOperand(1).getPredicate()))
2246                                ? TargetOpcode::G_SEXT
2247                                : TargetOpcode::G_ZEXT;
2248       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2249       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2250     }
2251     Observer.changedInstr(MI);
2252     return Legalized;
2253 
2254   case TargetOpcode::G_PTR_ADD:
2255     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2256     Observer.changingInstr(MI);
2257     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2258     Observer.changedInstr(MI);
2259     return Legalized;
2260 
2261   case TargetOpcode::G_PHI: {
2262     assert(TypeIdx == 0 && "Expecting only Idx 0");
2263 
2264     Observer.changingInstr(MI);
2265     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2266       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2267       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2268       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2269     }
2270 
2271     MachineBasicBlock &MBB = *MI.getParent();
2272     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2273     widenScalarDst(MI, WideTy);
2274     Observer.changedInstr(MI);
2275     return Legalized;
2276   }
2277   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2278     if (TypeIdx == 0) {
2279       Register VecReg = MI.getOperand(1).getReg();
2280       LLT VecTy = MRI.getType(VecReg);
2281       Observer.changingInstr(MI);
2282 
2283       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2284                                      WideTy.getSizeInBits()),
2285                      1, TargetOpcode::G_SEXT);
2286 
2287       widenScalarDst(MI, WideTy, 0);
2288       Observer.changedInstr(MI);
2289       return Legalized;
2290     }
2291 
2292     if (TypeIdx != 2)
2293       return UnableToLegalize;
2294     Observer.changingInstr(MI);
2295     // TODO: Probably should be zext
2296     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2297     Observer.changedInstr(MI);
2298     return Legalized;
2299   }
2300   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2301     if (TypeIdx == 1) {
2302       Observer.changingInstr(MI);
2303 
2304       Register VecReg = MI.getOperand(1).getReg();
2305       LLT VecTy = MRI.getType(VecReg);
2306       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2307 
2308       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2309       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2310       widenScalarDst(MI, WideVecTy, 0);
2311       Observer.changedInstr(MI);
2312       return Legalized;
2313     }
2314 
2315     if (TypeIdx == 2) {
2316       Observer.changingInstr(MI);
2317       // TODO: Probably should be zext
2318       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2319       Observer.changedInstr(MI);
2320       return Legalized;
2321     }
2322 
2323     return UnableToLegalize;
2324   }
2325   case TargetOpcode::G_FADD:
2326   case TargetOpcode::G_FMUL:
2327   case TargetOpcode::G_FSUB:
2328   case TargetOpcode::G_FMA:
2329   case TargetOpcode::G_FMAD:
2330   case TargetOpcode::G_FNEG:
2331   case TargetOpcode::G_FABS:
2332   case TargetOpcode::G_FCANONICALIZE:
2333   case TargetOpcode::G_FMINNUM:
2334   case TargetOpcode::G_FMAXNUM:
2335   case TargetOpcode::G_FMINNUM_IEEE:
2336   case TargetOpcode::G_FMAXNUM_IEEE:
2337   case TargetOpcode::G_FMINIMUM:
2338   case TargetOpcode::G_FMAXIMUM:
2339   case TargetOpcode::G_FDIV:
2340   case TargetOpcode::G_FREM:
2341   case TargetOpcode::G_FCEIL:
2342   case TargetOpcode::G_FFLOOR:
2343   case TargetOpcode::G_FCOS:
2344   case TargetOpcode::G_FSIN:
2345   case TargetOpcode::G_FLOG10:
2346   case TargetOpcode::G_FLOG:
2347   case TargetOpcode::G_FLOG2:
2348   case TargetOpcode::G_FRINT:
2349   case TargetOpcode::G_FNEARBYINT:
2350   case TargetOpcode::G_FSQRT:
2351   case TargetOpcode::G_FEXP:
2352   case TargetOpcode::G_FEXP2:
2353   case TargetOpcode::G_FPOW:
2354   case TargetOpcode::G_INTRINSIC_TRUNC:
2355   case TargetOpcode::G_INTRINSIC_ROUND:
2356   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2357     assert(TypeIdx == 0);
2358     Observer.changingInstr(MI);
2359 
2360     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2361       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2362 
2363     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2364     Observer.changedInstr(MI);
2365     return Legalized;
2366   case TargetOpcode::G_FPOWI: {
2367     if (TypeIdx != 0)
2368       return UnableToLegalize;
2369     Observer.changingInstr(MI);
2370     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2371     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2372     Observer.changedInstr(MI);
2373     return Legalized;
2374   }
2375   case TargetOpcode::G_INTTOPTR:
2376     if (TypeIdx != 1)
2377       return UnableToLegalize;
2378 
2379     Observer.changingInstr(MI);
2380     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2381     Observer.changedInstr(MI);
2382     return Legalized;
2383   case TargetOpcode::G_PTRTOINT:
2384     if (TypeIdx != 0)
2385       return UnableToLegalize;
2386 
2387     Observer.changingInstr(MI);
2388     widenScalarDst(MI, WideTy, 0);
2389     Observer.changedInstr(MI);
2390     return Legalized;
2391   case TargetOpcode::G_BUILD_VECTOR: {
2392     Observer.changingInstr(MI);
2393 
2394     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2395     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2396       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2397 
2398     // Avoid changing the result vector type if the source element type was
2399     // requested.
2400     if (TypeIdx == 1) {
2401       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2402     } else {
2403       widenScalarDst(MI, WideTy, 0);
2404     }
2405 
2406     Observer.changedInstr(MI);
2407     return Legalized;
2408   }
2409   case TargetOpcode::G_SEXT_INREG:
2410     if (TypeIdx != 0)
2411       return UnableToLegalize;
2412 
2413     Observer.changingInstr(MI);
2414     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2415     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2416     Observer.changedInstr(MI);
2417     return Legalized;
2418   case TargetOpcode::G_PTRMASK: {
2419     if (TypeIdx != 1)
2420       return UnableToLegalize;
2421     Observer.changingInstr(MI);
2422     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2423     Observer.changedInstr(MI);
2424     return Legalized;
2425   }
2426   }
2427 }
2428 
2429 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2430                              MachineIRBuilder &B, Register Src, LLT Ty) {
2431   auto Unmerge = B.buildUnmerge(Ty, Src);
2432   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2433     Pieces.push_back(Unmerge.getReg(I));
2434 }
2435 
2436 LegalizerHelper::LegalizeResult
2437 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2438   Register Dst = MI.getOperand(0).getReg();
2439   Register Src = MI.getOperand(1).getReg();
2440   LLT DstTy = MRI.getType(Dst);
2441   LLT SrcTy = MRI.getType(Src);
2442 
2443   if (SrcTy.isVector()) {
2444     LLT SrcEltTy = SrcTy.getElementType();
2445     SmallVector<Register, 8> SrcRegs;
2446 
2447     if (DstTy.isVector()) {
2448       int NumDstElt = DstTy.getNumElements();
2449       int NumSrcElt = SrcTy.getNumElements();
2450 
2451       LLT DstEltTy = DstTy.getElementType();
2452       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2453       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2454 
2455       // If there's an element size mismatch, insert intermediate casts to match
2456       // the result element type.
2457       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2458         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2459         //
2460         // =>
2461         //
2462         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2463         // %3:_(<2 x s8>) = G_BITCAST %2
2464         // %4:_(<2 x s8>) = G_BITCAST %3
2465         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2466         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2467         SrcPartTy = SrcEltTy;
2468       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2469         //
2470         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2471         //
2472         // =>
2473         //
2474         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2475         // %3:_(s16) = G_BITCAST %2
2476         // %4:_(s16) = G_BITCAST %3
2477         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2478         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2479         DstCastTy = DstEltTy;
2480       }
2481 
2482       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2483       for (Register &SrcReg : SrcRegs)
2484         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2485     } else
2486       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2487 
2488     MIRBuilder.buildMerge(Dst, SrcRegs);
2489     MI.eraseFromParent();
2490     return Legalized;
2491   }
2492 
2493   if (DstTy.isVector()) {
2494     SmallVector<Register, 8> SrcRegs;
2495     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2496     MIRBuilder.buildMerge(Dst, SrcRegs);
2497     MI.eraseFromParent();
2498     return Legalized;
2499   }
2500 
2501   return UnableToLegalize;
2502 }
2503 
2504 /// Figure out the bit offset into a register when coercing a vector index for
2505 /// the wide element type. This is only for the case when promoting vector to
2506 /// one with larger elements.
2507 //
2508 ///
2509 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2510 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2511 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2512                                                    Register Idx,
2513                                                    unsigned NewEltSize,
2514                                                    unsigned OldEltSize) {
2515   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2516   LLT IdxTy = B.getMRI()->getType(Idx);
2517 
2518   // Now figure out the amount we need to shift to get the target bits.
2519   auto OffsetMask = B.buildConstant(
2520     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2521   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2522   return B.buildShl(IdxTy, OffsetIdx,
2523                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2524 }
2525 
2526 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2527 /// is casting to a vector with a smaller element size, perform multiple element
2528 /// extracts and merge the results. If this is coercing to a vector with larger
2529 /// elements, index the bitcasted vector and extract the target element with bit
2530 /// operations. This is intended to force the indexing in the native register
2531 /// size for architectures that can dynamically index the register file.
2532 LegalizerHelper::LegalizeResult
2533 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2534                                          LLT CastTy) {
2535   if (TypeIdx != 1)
2536     return UnableToLegalize;
2537 
2538   Register Dst = MI.getOperand(0).getReg();
2539   Register SrcVec = MI.getOperand(1).getReg();
2540   Register Idx = MI.getOperand(2).getReg();
2541   LLT SrcVecTy = MRI.getType(SrcVec);
2542   LLT IdxTy = MRI.getType(Idx);
2543 
2544   LLT SrcEltTy = SrcVecTy.getElementType();
2545   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2546   unsigned OldNumElts = SrcVecTy.getNumElements();
2547 
2548   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2549   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2550 
2551   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2552   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2553   if (NewNumElts > OldNumElts) {
2554     // Decreasing the vector element size
2555     //
2556     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2557     //  =>
2558     //  v4i32:castx = bitcast x:v2i64
2559     //
2560     // i64 = bitcast
2561     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2562     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2563     //
2564     if (NewNumElts % OldNumElts != 0)
2565       return UnableToLegalize;
2566 
2567     // Type of the intermediate result vector.
2568     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2569     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2570 
2571     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2572 
2573     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2574     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2575 
2576     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2577       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2578       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2579       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2580       NewOps[I] = Elt.getReg(0);
2581     }
2582 
2583     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2584     MIRBuilder.buildBitcast(Dst, NewVec);
2585     MI.eraseFromParent();
2586     return Legalized;
2587   }
2588 
2589   if (NewNumElts < OldNumElts) {
2590     if (NewEltSize % OldEltSize != 0)
2591       return UnableToLegalize;
2592 
2593     // This only depends on powers of 2 because we use bit tricks to figure out
2594     // the bit offset we need to shift to get the target element. A general
2595     // expansion could emit division/multiply.
2596     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2597       return UnableToLegalize;
2598 
2599     // Increasing the vector element size.
2600     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2601     //
2602     //   =>
2603     //
2604     // %cast = G_BITCAST %vec
2605     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2606     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2607     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2608     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2609     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2610     // %elt = G_TRUNC %elt_bits
2611 
2612     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2613     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2614 
2615     // Divide to get the index in the wider element type.
2616     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2617 
2618     Register WideElt = CastVec;
2619     if (CastTy.isVector()) {
2620       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2621                                                      ScaledIdx).getReg(0);
2622     }
2623 
2624     // Compute the bit offset into the register of the target element.
2625     Register OffsetBits = getBitcastWiderVectorElementOffset(
2626       MIRBuilder, Idx, NewEltSize, OldEltSize);
2627 
2628     // Shift the wide element to get the target element.
2629     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2630     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2631     MI.eraseFromParent();
2632     return Legalized;
2633   }
2634 
2635   return UnableToLegalize;
2636 }
2637 
2638 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2639 /// TargetReg, while preserving other bits in \p TargetReg.
2640 ///
2641 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2642 static Register buildBitFieldInsert(MachineIRBuilder &B,
2643                                     Register TargetReg, Register InsertReg,
2644                                     Register OffsetBits) {
2645   LLT TargetTy = B.getMRI()->getType(TargetReg);
2646   LLT InsertTy = B.getMRI()->getType(InsertReg);
2647   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2648   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2649 
2650   // Produce a bitmask of the value to insert
2651   auto EltMask = B.buildConstant(
2652     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2653                                    InsertTy.getSizeInBits()));
2654   // Shift it into position
2655   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2656   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2657 
2658   // Clear out the bits in the wide element
2659   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2660 
2661   // The value to insert has all zeros already, so stick it into the masked
2662   // wide element.
2663   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2664 }
2665 
2666 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2667 /// is increasing the element size, perform the indexing in the target element
2668 /// type, and use bit operations to insert at the element position. This is
2669 /// intended for architectures that can dynamically index the register file and
2670 /// want to force indexing in the native register size.
2671 LegalizerHelper::LegalizeResult
2672 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2673                                         LLT CastTy) {
2674   if (TypeIdx != 0)
2675     return UnableToLegalize;
2676 
2677   Register Dst = MI.getOperand(0).getReg();
2678   Register SrcVec = MI.getOperand(1).getReg();
2679   Register Val = MI.getOperand(2).getReg();
2680   Register Idx = MI.getOperand(3).getReg();
2681 
2682   LLT VecTy = MRI.getType(Dst);
2683   LLT IdxTy = MRI.getType(Idx);
2684 
2685   LLT VecEltTy = VecTy.getElementType();
2686   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2687   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2688   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2689 
2690   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2691   unsigned OldNumElts = VecTy.getNumElements();
2692 
2693   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2694   if (NewNumElts < OldNumElts) {
2695     if (NewEltSize % OldEltSize != 0)
2696       return UnableToLegalize;
2697 
2698     // This only depends on powers of 2 because we use bit tricks to figure out
2699     // the bit offset we need to shift to get the target element. A general
2700     // expansion could emit division/multiply.
2701     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2702       return UnableToLegalize;
2703 
2704     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2705     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2706 
2707     // Divide to get the index in the wider element type.
2708     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2709 
2710     Register ExtractedElt = CastVec;
2711     if (CastTy.isVector()) {
2712       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2713                                                           ScaledIdx).getReg(0);
2714     }
2715 
2716     // Compute the bit offset into the register of the target element.
2717     Register OffsetBits = getBitcastWiderVectorElementOffset(
2718       MIRBuilder, Idx, NewEltSize, OldEltSize);
2719 
2720     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2721                                                Val, OffsetBits);
2722     if (CastTy.isVector()) {
2723       InsertedElt = MIRBuilder.buildInsertVectorElement(
2724         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2725     }
2726 
2727     MIRBuilder.buildBitcast(Dst, InsertedElt);
2728     MI.eraseFromParent();
2729     return Legalized;
2730   }
2731 
2732   return UnableToLegalize;
2733 }
2734 
2735 LegalizerHelper::LegalizeResult
2736 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2737   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2738   Register DstReg = MI.getOperand(0).getReg();
2739   Register PtrReg = MI.getOperand(1).getReg();
2740   LLT DstTy = MRI.getType(DstReg);
2741   auto &MMO = **MI.memoperands_begin();
2742 
2743   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2744     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2745       // This load needs splitting into power of 2 sized loads.
2746       if (DstTy.isVector())
2747         return UnableToLegalize;
2748       if (isPowerOf2_32(DstTy.getSizeInBits()))
2749         return UnableToLegalize; // Don't know what we're being asked to do.
2750 
2751       // Our strategy here is to generate anyextending loads for the smaller
2752       // types up to next power-2 result type, and then combine the two larger
2753       // result values together, before truncating back down to the non-pow-2
2754       // type.
2755       // E.g. v1 = i24 load =>
2756       // v2 = i32 zextload (2 byte)
2757       // v3 = i32 load (1 byte)
2758       // v4 = i32 shl v3, 16
2759       // v5 = i32 or v4, v2
2760       // v1 = i24 trunc v5
2761       // By doing this we generate the correct truncate which should get
2762       // combined away as an artifact with a matching extend.
2763       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2764       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2765 
2766       MachineFunction &MF = MIRBuilder.getMF();
2767       MachineMemOperand *LargeMMO =
2768         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2769       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2770         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2771 
2772       LLT PtrTy = MRI.getType(PtrReg);
2773       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2774       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2775       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2776       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2777       auto LargeLoad = MIRBuilder.buildLoadInstr(
2778         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2779 
2780       auto OffsetCst = MIRBuilder.buildConstant(
2781         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2782       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2783       auto SmallPtr =
2784         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2785       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2786                                             *SmallMMO);
2787 
2788       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2789       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2790       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2791       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2792       MI.eraseFromParent();
2793       return Legalized;
2794     }
2795 
2796     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2797     MI.eraseFromParent();
2798     return Legalized;
2799   }
2800 
2801   if (DstTy.isScalar()) {
2802     Register TmpReg =
2803       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2804     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2805     switch (MI.getOpcode()) {
2806     default:
2807       llvm_unreachable("Unexpected opcode");
2808     case TargetOpcode::G_LOAD:
2809       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2810       break;
2811     case TargetOpcode::G_SEXTLOAD:
2812       MIRBuilder.buildSExt(DstReg, TmpReg);
2813       break;
2814     case TargetOpcode::G_ZEXTLOAD:
2815       MIRBuilder.buildZExt(DstReg, TmpReg);
2816       break;
2817     }
2818 
2819     MI.eraseFromParent();
2820     return Legalized;
2821   }
2822 
2823   return UnableToLegalize;
2824 }
2825 
2826 LegalizerHelper::LegalizeResult
2827 LegalizerHelper::lowerStore(MachineInstr &MI) {
2828   // Lower a non-power of 2 store into multiple pow-2 stores.
2829   // E.g. split an i24 store into an i16 store + i8 store.
2830   // We do this by first extending the stored value to the next largest power
2831   // of 2 type, and then using truncating stores to store the components.
2832   // By doing this, likewise with G_LOAD, generate an extend that can be
2833   // artifact-combined away instead of leaving behind extracts.
2834   Register SrcReg = MI.getOperand(0).getReg();
2835   Register PtrReg = MI.getOperand(1).getReg();
2836   LLT SrcTy = MRI.getType(SrcReg);
2837   MachineMemOperand &MMO = **MI.memoperands_begin();
2838   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2839     return UnableToLegalize;
2840   if (SrcTy.isVector())
2841     return UnableToLegalize;
2842   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2843     return UnableToLegalize; // Don't know what we're being asked to do.
2844 
2845   // Extend to the next pow-2.
2846   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2847   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2848 
2849   // Obtain the smaller value by shifting away the larger value.
2850   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2851   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2852   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2853   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2854 
2855   // Generate the PtrAdd and truncating stores.
2856   LLT PtrTy = MRI.getType(PtrReg);
2857   auto OffsetCst = MIRBuilder.buildConstant(
2858     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2859   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2860   auto SmallPtr =
2861     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2862 
2863   MachineFunction &MF = MIRBuilder.getMF();
2864   MachineMemOperand *LargeMMO =
2865     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2866   MachineMemOperand *SmallMMO =
2867     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2868   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2869   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2870   MI.eraseFromParent();
2871   return Legalized;
2872 }
2873 
2874 LegalizerHelper::LegalizeResult
2875 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2876   switch (MI.getOpcode()) {
2877   case TargetOpcode::G_LOAD: {
2878     if (TypeIdx != 0)
2879       return UnableToLegalize;
2880 
2881     Observer.changingInstr(MI);
2882     bitcastDst(MI, CastTy, 0);
2883     Observer.changedInstr(MI);
2884     return Legalized;
2885   }
2886   case TargetOpcode::G_STORE: {
2887     if (TypeIdx != 0)
2888       return UnableToLegalize;
2889 
2890     Observer.changingInstr(MI);
2891     bitcastSrc(MI, CastTy, 0);
2892     Observer.changedInstr(MI);
2893     return Legalized;
2894   }
2895   case TargetOpcode::G_SELECT: {
2896     if (TypeIdx != 0)
2897       return UnableToLegalize;
2898 
2899     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2900       LLVM_DEBUG(
2901           dbgs() << "bitcast action not implemented for vector select\n");
2902       return UnableToLegalize;
2903     }
2904 
2905     Observer.changingInstr(MI);
2906     bitcastSrc(MI, CastTy, 2);
2907     bitcastSrc(MI, CastTy, 3);
2908     bitcastDst(MI, CastTy, 0);
2909     Observer.changedInstr(MI);
2910     return Legalized;
2911   }
2912   case TargetOpcode::G_AND:
2913   case TargetOpcode::G_OR:
2914   case TargetOpcode::G_XOR: {
2915     Observer.changingInstr(MI);
2916     bitcastSrc(MI, CastTy, 1);
2917     bitcastSrc(MI, CastTy, 2);
2918     bitcastDst(MI, CastTy, 0);
2919     Observer.changedInstr(MI);
2920     return Legalized;
2921   }
2922   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2923     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2924   case TargetOpcode::G_INSERT_VECTOR_ELT:
2925     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2926   default:
2927     return UnableToLegalize;
2928   }
2929 }
2930 
2931 // Legalize an instruction by changing the opcode in place.
2932 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2933     Observer.changingInstr(MI);
2934     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2935     Observer.changedInstr(MI);
2936 }
2937 
2938 LegalizerHelper::LegalizeResult
2939 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2940   using namespace TargetOpcode;
2941 
2942   switch(MI.getOpcode()) {
2943   default:
2944     return UnableToLegalize;
2945   case TargetOpcode::G_BITCAST:
2946     return lowerBitcast(MI);
2947   case TargetOpcode::G_SREM:
2948   case TargetOpcode::G_UREM: {
2949     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2950     auto Quot =
2951         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2952                               {MI.getOperand(1), MI.getOperand(2)});
2953 
2954     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2955     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2956     MI.eraseFromParent();
2957     return Legalized;
2958   }
2959   case TargetOpcode::G_SADDO:
2960   case TargetOpcode::G_SSUBO:
2961     return lowerSADDO_SSUBO(MI);
2962   case TargetOpcode::G_UMULH:
2963   case TargetOpcode::G_SMULH:
2964     return lowerSMULH_UMULH(MI);
2965   case TargetOpcode::G_SMULO:
2966   case TargetOpcode::G_UMULO: {
2967     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2968     // result.
2969     Register Res = MI.getOperand(0).getReg();
2970     Register Overflow = MI.getOperand(1).getReg();
2971     Register LHS = MI.getOperand(2).getReg();
2972     Register RHS = MI.getOperand(3).getReg();
2973     LLT Ty = MRI.getType(Res);
2974 
2975     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2976                           ? TargetOpcode::G_SMULH
2977                           : TargetOpcode::G_UMULH;
2978 
2979     Observer.changingInstr(MI);
2980     const auto &TII = MIRBuilder.getTII();
2981     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2982     MI.RemoveOperand(1);
2983     Observer.changedInstr(MI);
2984 
2985     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2986     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2987 
2988     // Move insert point forward so we can use the Res register if needed.
2989     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2990 
2991     // For *signed* multiply, overflow is detected by checking:
2992     // (hi != (lo >> bitwidth-1))
2993     if (Opcode == TargetOpcode::G_SMULH) {
2994       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2995       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2996       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2997     } else {
2998       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2999     }
3000     return Legalized;
3001   }
3002   case TargetOpcode::G_FNEG: {
3003     Register Res = MI.getOperand(0).getReg();
3004     LLT Ty = MRI.getType(Res);
3005 
3006     // TODO: Handle vector types once we are able to
3007     // represent them.
3008     if (Ty.isVector())
3009       return UnableToLegalize;
3010     auto SignMask =
3011         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3012     Register SubByReg = MI.getOperand(1).getReg();
3013     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3014     MI.eraseFromParent();
3015     return Legalized;
3016   }
3017   case TargetOpcode::G_FSUB: {
3018     Register Res = MI.getOperand(0).getReg();
3019     LLT Ty = MRI.getType(Res);
3020 
3021     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3022     // First, check if G_FNEG is marked as Lower. If so, we may
3023     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3024     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3025       return UnableToLegalize;
3026     Register LHS = MI.getOperand(1).getReg();
3027     Register RHS = MI.getOperand(2).getReg();
3028     Register Neg = MRI.createGenericVirtualRegister(Ty);
3029     MIRBuilder.buildFNeg(Neg, RHS);
3030     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3031     MI.eraseFromParent();
3032     return Legalized;
3033   }
3034   case TargetOpcode::G_FMAD:
3035     return lowerFMad(MI);
3036   case TargetOpcode::G_FFLOOR:
3037     return lowerFFloor(MI);
3038   case TargetOpcode::G_INTRINSIC_ROUND:
3039     return lowerIntrinsicRound(MI);
3040   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3041     // Since round even is the assumed rounding mode for unconstrained FP
3042     // operations, rint and roundeven are the same operation.
3043     changeOpcode(MI, TargetOpcode::G_FRINT);
3044     return Legalized;
3045   }
3046   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3047     Register OldValRes = MI.getOperand(0).getReg();
3048     Register SuccessRes = MI.getOperand(1).getReg();
3049     Register Addr = MI.getOperand(2).getReg();
3050     Register CmpVal = MI.getOperand(3).getReg();
3051     Register NewVal = MI.getOperand(4).getReg();
3052     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3053                                   **MI.memoperands_begin());
3054     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3055     MI.eraseFromParent();
3056     return Legalized;
3057   }
3058   case TargetOpcode::G_LOAD:
3059   case TargetOpcode::G_SEXTLOAD:
3060   case TargetOpcode::G_ZEXTLOAD:
3061     return lowerLoad(MI);
3062   case TargetOpcode::G_STORE:
3063     return lowerStore(MI);
3064   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3065   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3066   case TargetOpcode::G_CTLZ:
3067   case TargetOpcode::G_CTTZ:
3068   case TargetOpcode::G_CTPOP:
3069     return lowerBitCount(MI);
3070   case G_UADDO: {
3071     Register Res = MI.getOperand(0).getReg();
3072     Register CarryOut = MI.getOperand(1).getReg();
3073     Register LHS = MI.getOperand(2).getReg();
3074     Register RHS = MI.getOperand(3).getReg();
3075 
3076     MIRBuilder.buildAdd(Res, LHS, RHS);
3077     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3078 
3079     MI.eraseFromParent();
3080     return Legalized;
3081   }
3082   case G_UADDE: {
3083     Register Res = MI.getOperand(0).getReg();
3084     Register CarryOut = MI.getOperand(1).getReg();
3085     Register LHS = MI.getOperand(2).getReg();
3086     Register RHS = MI.getOperand(3).getReg();
3087     Register CarryIn = MI.getOperand(4).getReg();
3088     LLT Ty = MRI.getType(Res);
3089 
3090     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3091     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3092     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3093     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3094 
3095     MI.eraseFromParent();
3096     return Legalized;
3097   }
3098   case G_USUBO: {
3099     Register Res = MI.getOperand(0).getReg();
3100     Register BorrowOut = MI.getOperand(1).getReg();
3101     Register LHS = MI.getOperand(2).getReg();
3102     Register RHS = MI.getOperand(3).getReg();
3103 
3104     MIRBuilder.buildSub(Res, LHS, RHS);
3105     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3106 
3107     MI.eraseFromParent();
3108     return Legalized;
3109   }
3110   case G_USUBE: {
3111     Register Res = MI.getOperand(0).getReg();
3112     Register BorrowOut = MI.getOperand(1).getReg();
3113     Register LHS = MI.getOperand(2).getReg();
3114     Register RHS = MI.getOperand(3).getReg();
3115     Register BorrowIn = MI.getOperand(4).getReg();
3116     const LLT CondTy = MRI.getType(BorrowOut);
3117     const LLT Ty = MRI.getType(Res);
3118 
3119     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3120     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3121     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3122 
3123     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3124     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3125     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3126 
3127     MI.eraseFromParent();
3128     return Legalized;
3129   }
3130   case G_UITOFP:
3131     return lowerUITOFP(MI);
3132   case G_SITOFP:
3133     return lowerSITOFP(MI);
3134   case G_FPTOUI:
3135     return lowerFPTOUI(MI);
3136   case G_FPTOSI:
3137     return lowerFPTOSI(MI);
3138   case G_FPTRUNC:
3139     return lowerFPTRUNC(MI);
3140   case G_FPOWI:
3141     return lowerFPOWI(MI);
3142   case G_SMIN:
3143   case G_SMAX:
3144   case G_UMIN:
3145   case G_UMAX:
3146     return lowerMinMax(MI);
3147   case G_FCOPYSIGN:
3148     return lowerFCopySign(MI);
3149   case G_FMINNUM:
3150   case G_FMAXNUM:
3151     return lowerFMinNumMaxNum(MI);
3152   case G_MERGE_VALUES:
3153     return lowerMergeValues(MI);
3154   case G_UNMERGE_VALUES:
3155     return lowerUnmergeValues(MI);
3156   case TargetOpcode::G_SEXT_INREG: {
3157     assert(MI.getOperand(2).isImm() && "Expected immediate");
3158     int64_t SizeInBits = MI.getOperand(2).getImm();
3159 
3160     Register DstReg = MI.getOperand(0).getReg();
3161     Register SrcReg = MI.getOperand(1).getReg();
3162     LLT DstTy = MRI.getType(DstReg);
3163     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3164 
3165     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3166     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3167     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3168     MI.eraseFromParent();
3169     return Legalized;
3170   }
3171   case G_EXTRACT_VECTOR_ELT:
3172   case G_INSERT_VECTOR_ELT:
3173     return lowerExtractInsertVectorElt(MI);
3174   case G_SHUFFLE_VECTOR:
3175     return lowerShuffleVector(MI);
3176   case G_DYN_STACKALLOC:
3177     return lowerDynStackAlloc(MI);
3178   case G_EXTRACT:
3179     return lowerExtract(MI);
3180   case G_INSERT:
3181     return lowerInsert(MI);
3182   case G_BSWAP:
3183     return lowerBswap(MI);
3184   case G_BITREVERSE:
3185     return lowerBitreverse(MI);
3186   case G_READ_REGISTER:
3187   case G_WRITE_REGISTER:
3188     return lowerReadWriteRegister(MI);
3189   case G_UADDSAT:
3190   case G_USUBSAT: {
3191     // Try to make a reasonable guess about which lowering strategy to use. The
3192     // target can override this with custom lowering and calling the
3193     // implementation functions.
3194     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3195     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3196       return lowerAddSubSatToMinMax(MI);
3197     return lowerAddSubSatToAddoSubo(MI);
3198   }
3199   case G_SADDSAT:
3200   case G_SSUBSAT: {
3201     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3202 
3203     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3204     // since it's a shorter expansion. However, we would need to figure out the
3205     // preferred boolean type for the carry out for the query.
3206     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3207       return lowerAddSubSatToMinMax(MI);
3208     return lowerAddSubSatToAddoSubo(MI);
3209   }
3210   case G_SSHLSAT:
3211   case G_USHLSAT:
3212     return lowerShlSat(MI);
3213   case G_ABS: {
3214     // Expand %res = G_ABS %a into:
3215     // %v1 = G_ASHR %a, scalar_size-1
3216     // %v2 = G_ADD %a, %v1
3217     // %res = G_XOR %v2, %v1
3218     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3219     Register OpReg = MI.getOperand(1).getReg();
3220     auto ShiftAmt =
3221         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3222     auto Shift =
3223         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3224     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3225     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3226     MI.eraseFromParent();
3227     return Legalized;
3228   }
3229   case G_SELECT:
3230     return lowerSelect(MI);
3231   case G_SDIVREM:
3232   case G_UDIVREM:
3233     return lowerDIVREM(MI);
3234   case G_FSHL:
3235   case G_FSHR:
3236     return lowerFunnelShift(MI);
3237   case G_ROTL:
3238   case G_ROTR:
3239     return lowerRotate(MI);
3240   }
3241 }
3242 
3243 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3244                                                   Align MinAlign) const {
3245   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3246   // datalayout for the preferred alignment. Also there should be a target hook
3247   // for this to allow targets to reduce the alignment and ignore the
3248   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3249   // the type.
3250   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3251 }
3252 
3253 MachineInstrBuilder
3254 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3255                                       MachinePointerInfo &PtrInfo) {
3256   MachineFunction &MF = MIRBuilder.getMF();
3257   const DataLayout &DL = MIRBuilder.getDataLayout();
3258   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3259 
3260   unsigned AddrSpace = DL.getAllocaAddrSpace();
3261   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3262 
3263   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3264   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3265 }
3266 
3267 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3268                                         LLT VecTy) {
3269   int64_t IdxVal;
3270   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3271     return IdxReg;
3272 
3273   LLT IdxTy = B.getMRI()->getType(IdxReg);
3274   unsigned NElts = VecTy.getNumElements();
3275   if (isPowerOf2_32(NElts)) {
3276     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3277     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3278   }
3279 
3280   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3281       .getReg(0);
3282 }
3283 
3284 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3285                                                   Register Index) {
3286   LLT EltTy = VecTy.getElementType();
3287 
3288   // Calculate the element offset and add it to the pointer.
3289   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3290   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3291          "Converting bits to bytes lost precision");
3292 
3293   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3294 
3295   LLT IdxTy = MRI.getType(Index);
3296   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3297                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3298 
3299   LLT PtrTy = MRI.getType(VecPtr);
3300   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3301 }
3302 
3303 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3304     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3305   Register DstReg = MI.getOperand(0).getReg();
3306   LLT DstTy = MRI.getType(DstReg);
3307   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3308 
3309   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3310 
3311   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3312   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3313 
3314   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3315   MI.eraseFromParent();
3316   return Legalized;
3317 }
3318 
3319 // Handle splitting vector operations which need to have the same number of
3320 // elements in each type index, but each type index may have a different element
3321 // type.
3322 //
3323 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3324 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3325 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3326 //
3327 // Also handles some irregular breakdown cases, e.g.
3328 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3329 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3330 //             s64 = G_SHL s64, s32
3331 LegalizerHelper::LegalizeResult
3332 LegalizerHelper::fewerElementsVectorMultiEltType(
3333   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3334   if (TypeIdx != 0)
3335     return UnableToLegalize;
3336 
3337   const LLT NarrowTy0 = NarrowTyArg;
3338   const unsigned NewNumElts =
3339       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3340 
3341   const Register DstReg = MI.getOperand(0).getReg();
3342   LLT DstTy = MRI.getType(DstReg);
3343   LLT LeftoverTy0;
3344 
3345   // All of the operands need to have the same number of elements, so if we can
3346   // determine a type breakdown for the result type, we can for all of the
3347   // source types.
3348   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3349   if (NumParts < 0)
3350     return UnableToLegalize;
3351 
3352   SmallVector<MachineInstrBuilder, 4> NewInsts;
3353 
3354   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3355   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3356 
3357   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3358     Register SrcReg = MI.getOperand(I).getReg();
3359     LLT SrcTyI = MRI.getType(SrcReg);
3360     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3361     LLT LeftoverTyI;
3362 
3363     // Split this operand into the requested typed registers, and any leftover
3364     // required to reproduce the original type.
3365     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3366                       LeftoverRegs))
3367       return UnableToLegalize;
3368 
3369     if (I == 1) {
3370       // For the first operand, create an instruction for each part and setup
3371       // the result.
3372       for (Register PartReg : PartRegs) {
3373         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3374         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3375                                .addDef(PartDstReg)
3376                                .addUse(PartReg));
3377         DstRegs.push_back(PartDstReg);
3378       }
3379 
3380       for (Register LeftoverReg : LeftoverRegs) {
3381         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3382         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3383                                .addDef(PartDstReg)
3384                                .addUse(LeftoverReg));
3385         LeftoverDstRegs.push_back(PartDstReg);
3386       }
3387     } else {
3388       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3389 
3390       // Add the newly created operand splits to the existing instructions. The
3391       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3392       // pieces.
3393       unsigned InstCount = 0;
3394       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3395         NewInsts[InstCount++].addUse(PartRegs[J]);
3396       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3397         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3398     }
3399 
3400     PartRegs.clear();
3401     LeftoverRegs.clear();
3402   }
3403 
3404   // Insert the newly built operations and rebuild the result register.
3405   for (auto &MIB : NewInsts)
3406     MIRBuilder.insertInstr(MIB);
3407 
3408   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3409 
3410   MI.eraseFromParent();
3411   return Legalized;
3412 }
3413 
3414 LegalizerHelper::LegalizeResult
3415 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3416                                           LLT NarrowTy) {
3417   if (TypeIdx != 0)
3418     return UnableToLegalize;
3419 
3420   Register DstReg = MI.getOperand(0).getReg();
3421   Register SrcReg = MI.getOperand(1).getReg();
3422   LLT DstTy = MRI.getType(DstReg);
3423   LLT SrcTy = MRI.getType(SrcReg);
3424 
3425   LLT NarrowTy0 = NarrowTy;
3426   LLT NarrowTy1;
3427   unsigned NumParts;
3428 
3429   if (NarrowTy.isVector()) {
3430     // Uneven breakdown not handled.
3431     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3432     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3433       return UnableToLegalize;
3434 
3435     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3436   } else {
3437     NumParts = DstTy.getNumElements();
3438     NarrowTy1 = SrcTy.getElementType();
3439   }
3440 
3441   SmallVector<Register, 4> SrcRegs, DstRegs;
3442   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3443 
3444   for (unsigned I = 0; I < NumParts; ++I) {
3445     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3446     MachineInstr *NewInst =
3447         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3448 
3449     NewInst->setFlags(MI.getFlags());
3450     DstRegs.push_back(DstReg);
3451   }
3452 
3453   if (NarrowTy.isVector())
3454     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3455   else
3456     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3457 
3458   MI.eraseFromParent();
3459   return Legalized;
3460 }
3461 
3462 LegalizerHelper::LegalizeResult
3463 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3464                                         LLT NarrowTy) {
3465   Register DstReg = MI.getOperand(0).getReg();
3466   Register Src0Reg = MI.getOperand(2).getReg();
3467   LLT DstTy = MRI.getType(DstReg);
3468   LLT SrcTy = MRI.getType(Src0Reg);
3469 
3470   unsigned NumParts;
3471   LLT NarrowTy0, NarrowTy1;
3472 
3473   if (TypeIdx == 0) {
3474     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3475     unsigned OldElts = DstTy.getNumElements();
3476 
3477     NarrowTy0 = NarrowTy;
3478     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3479     NarrowTy1 = NarrowTy.isVector() ?
3480       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3481       SrcTy.getElementType();
3482 
3483   } else {
3484     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3485     unsigned OldElts = SrcTy.getNumElements();
3486 
3487     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3488       NarrowTy.getNumElements();
3489     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3490                             DstTy.getScalarSizeInBits());
3491     NarrowTy1 = NarrowTy;
3492   }
3493 
3494   // FIXME: Don't know how to handle the situation where the small vectors
3495   // aren't all the same size yet.
3496   if (NarrowTy1.isVector() &&
3497       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3498     return UnableToLegalize;
3499 
3500   CmpInst::Predicate Pred
3501     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3502 
3503   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3504   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3505   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3506 
3507   for (unsigned I = 0; I < NumParts; ++I) {
3508     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3509     DstRegs.push_back(DstReg);
3510 
3511     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3512       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3513     else {
3514       MachineInstr *NewCmp
3515         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3516       NewCmp->setFlags(MI.getFlags());
3517     }
3518   }
3519 
3520   if (NarrowTy1.isVector())
3521     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3522   else
3523     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3524 
3525   MI.eraseFromParent();
3526   return Legalized;
3527 }
3528 
3529 LegalizerHelper::LegalizeResult
3530 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3531                                            LLT NarrowTy) {
3532   Register DstReg = MI.getOperand(0).getReg();
3533   Register CondReg = MI.getOperand(1).getReg();
3534 
3535   unsigned NumParts = 0;
3536   LLT NarrowTy0, NarrowTy1;
3537 
3538   LLT DstTy = MRI.getType(DstReg);
3539   LLT CondTy = MRI.getType(CondReg);
3540   unsigned Size = DstTy.getSizeInBits();
3541 
3542   assert(TypeIdx == 0 || CondTy.isVector());
3543 
3544   if (TypeIdx == 0) {
3545     NarrowTy0 = NarrowTy;
3546     NarrowTy1 = CondTy;
3547 
3548     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3549     // FIXME: Don't know how to handle the situation where the small vectors
3550     // aren't all the same size yet.
3551     if (Size % NarrowSize != 0)
3552       return UnableToLegalize;
3553 
3554     NumParts = Size / NarrowSize;
3555 
3556     // Need to break down the condition type
3557     if (CondTy.isVector()) {
3558       if (CondTy.getNumElements() == NumParts)
3559         NarrowTy1 = CondTy.getElementType();
3560       else
3561         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3562                                 CondTy.getScalarSizeInBits());
3563     }
3564   } else {
3565     NumParts = CondTy.getNumElements();
3566     if (NarrowTy.isVector()) {
3567       // TODO: Handle uneven breakdown.
3568       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3569         return UnableToLegalize;
3570 
3571       return UnableToLegalize;
3572     } else {
3573       NarrowTy0 = DstTy.getElementType();
3574       NarrowTy1 = NarrowTy;
3575     }
3576   }
3577 
3578   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3579   if (CondTy.isVector())
3580     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3581 
3582   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3583   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3584 
3585   for (unsigned i = 0; i < NumParts; ++i) {
3586     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3587     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3588                            Src1Regs[i], Src2Regs[i]);
3589     DstRegs.push_back(DstReg);
3590   }
3591 
3592   if (NarrowTy0.isVector())
3593     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3594   else
3595     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3596 
3597   MI.eraseFromParent();
3598   return Legalized;
3599 }
3600 
3601 LegalizerHelper::LegalizeResult
3602 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3603                                         LLT NarrowTy) {
3604   const Register DstReg = MI.getOperand(0).getReg();
3605   LLT PhiTy = MRI.getType(DstReg);
3606   LLT LeftoverTy;
3607 
3608   // All of the operands need to have the same number of elements, so if we can
3609   // determine a type breakdown for the result type, we can for all of the
3610   // source types.
3611   int NumParts, NumLeftover;
3612   std::tie(NumParts, NumLeftover)
3613     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3614   if (NumParts < 0)
3615     return UnableToLegalize;
3616 
3617   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3618   SmallVector<MachineInstrBuilder, 4> NewInsts;
3619 
3620   const int TotalNumParts = NumParts + NumLeftover;
3621 
3622   // Insert the new phis in the result block first.
3623   for (int I = 0; I != TotalNumParts; ++I) {
3624     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3625     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3626     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3627                        .addDef(PartDstReg));
3628     if (I < NumParts)
3629       DstRegs.push_back(PartDstReg);
3630     else
3631       LeftoverDstRegs.push_back(PartDstReg);
3632   }
3633 
3634   MachineBasicBlock *MBB = MI.getParent();
3635   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3636   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3637 
3638   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3639 
3640   // Insert code to extract the incoming values in each predecessor block.
3641   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3642     PartRegs.clear();
3643     LeftoverRegs.clear();
3644 
3645     Register SrcReg = MI.getOperand(I).getReg();
3646     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3647     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3648 
3649     LLT Unused;
3650     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3651                       LeftoverRegs))
3652       return UnableToLegalize;
3653 
3654     // Add the newly created operand splits to the existing instructions. The
3655     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3656     // pieces.
3657     for (int J = 0; J != TotalNumParts; ++J) {
3658       MachineInstrBuilder MIB = NewInsts[J];
3659       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3660       MIB.addMBB(&OpMBB);
3661     }
3662   }
3663 
3664   MI.eraseFromParent();
3665   return Legalized;
3666 }
3667 
3668 LegalizerHelper::LegalizeResult
3669 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3670                                                   unsigned TypeIdx,
3671                                                   LLT NarrowTy) {
3672   if (TypeIdx != 1)
3673     return UnableToLegalize;
3674 
3675   const int NumDst = MI.getNumOperands() - 1;
3676   const Register SrcReg = MI.getOperand(NumDst).getReg();
3677   LLT SrcTy = MRI.getType(SrcReg);
3678 
3679   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3680 
3681   // TODO: Create sequence of extracts.
3682   if (DstTy == NarrowTy)
3683     return UnableToLegalize;
3684 
3685   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3686   if (DstTy == GCDTy) {
3687     // This would just be a copy of the same unmerge.
3688     // TODO: Create extracts, pad with undef and create intermediate merges.
3689     return UnableToLegalize;
3690   }
3691 
3692   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3693   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3694   const int PartsPerUnmerge = NumDst / NumUnmerge;
3695 
3696   for (int I = 0; I != NumUnmerge; ++I) {
3697     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3698 
3699     for (int J = 0; J != PartsPerUnmerge; ++J)
3700       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3701     MIB.addUse(Unmerge.getReg(I));
3702   }
3703 
3704   MI.eraseFromParent();
3705   return Legalized;
3706 }
3707 
3708 LegalizerHelper::LegalizeResult
3709 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3710                                          LLT NarrowTy) {
3711   Register Result = MI.getOperand(0).getReg();
3712   Register Overflow = MI.getOperand(1).getReg();
3713   Register LHS = MI.getOperand(2).getReg();
3714   Register RHS = MI.getOperand(3).getReg();
3715 
3716   LLT SrcTy = MRI.getType(LHS);
3717   if (!SrcTy.isVector())
3718     return UnableToLegalize;
3719 
3720   LLT ElementType = SrcTy.getElementType();
3721   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3722   const int NumResult = SrcTy.getNumElements();
3723   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3724 
3725   // Unmerge the operands to smaller parts of GCD type.
3726   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3727   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3728 
3729   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3730   const int PartsPerUnmerge = NumResult / NumOps;
3731   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3732   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3733 
3734   // Perform the operation over unmerged parts.
3735   SmallVector<Register, 8> ResultParts;
3736   SmallVector<Register, 8> OverflowParts;
3737   for (int I = 0; I != NumOps; ++I) {
3738     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3739     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3740     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3741                                          {Operand1, Operand2});
3742     ResultParts.push_back(PartMul->getOperand(0).getReg());
3743     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3744   }
3745 
3746   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3747   LLT OverflowLCMTy =
3748       LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy);
3749 
3750   // Recombine the pieces to the original result and overflow registers.
3751   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3752   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3753   MI.eraseFromParent();
3754   return Legalized;
3755 }
3756 
3757 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3758 // a vector
3759 //
3760 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3761 // undef as necessary.
3762 //
3763 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3764 //   -> <2 x s16>
3765 //
3766 // %4:_(s16) = G_IMPLICIT_DEF
3767 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3768 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3769 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3770 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3771 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3772 LegalizerHelper::LegalizeResult
3773 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3774                                           LLT NarrowTy) {
3775   Register DstReg = MI.getOperand(0).getReg();
3776   LLT DstTy = MRI.getType(DstReg);
3777   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3778   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3779 
3780   // Break into a common type
3781   SmallVector<Register, 16> Parts;
3782   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3783     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3784 
3785   // Build the requested new merge, padding with undef.
3786   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3787                                   TargetOpcode::G_ANYEXT);
3788 
3789   // Pack into the original result register.
3790   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3791 
3792   MI.eraseFromParent();
3793   return Legalized;
3794 }
3795 
3796 LegalizerHelper::LegalizeResult
3797 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3798                                                            unsigned TypeIdx,
3799                                                            LLT NarrowVecTy) {
3800   Register DstReg = MI.getOperand(0).getReg();
3801   Register SrcVec = MI.getOperand(1).getReg();
3802   Register InsertVal;
3803   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3804 
3805   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3806   if (IsInsert)
3807     InsertVal = MI.getOperand(2).getReg();
3808 
3809   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3810 
3811   // TODO: Handle total scalarization case.
3812   if (!NarrowVecTy.isVector())
3813     return UnableToLegalize;
3814 
3815   LLT VecTy = MRI.getType(SrcVec);
3816 
3817   // If the index is a constant, we can really break this down as you would
3818   // expect, and index into the target size pieces.
3819   int64_t IdxVal;
3820   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3821     // Avoid out of bounds indexing the pieces.
3822     if (IdxVal >= VecTy.getNumElements()) {
3823       MIRBuilder.buildUndef(DstReg);
3824       MI.eraseFromParent();
3825       return Legalized;
3826     }
3827 
3828     SmallVector<Register, 8> VecParts;
3829     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3830 
3831     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3832     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3833                                     TargetOpcode::G_ANYEXT);
3834 
3835     unsigned NewNumElts = NarrowVecTy.getNumElements();
3836 
3837     LLT IdxTy = MRI.getType(Idx);
3838     int64_t PartIdx = IdxVal / NewNumElts;
3839     auto NewIdx =
3840         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3841 
3842     if (IsInsert) {
3843       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3844 
3845       // Use the adjusted index to insert into one of the subvectors.
3846       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3847           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3848       VecParts[PartIdx] = InsertPart.getReg(0);
3849 
3850       // Recombine the inserted subvector with the others to reform the result
3851       // vector.
3852       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3853     } else {
3854       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3855     }
3856 
3857     MI.eraseFromParent();
3858     return Legalized;
3859   }
3860 
3861   // With a variable index, we can't perform the operation in a smaller type, so
3862   // we're forced to expand this.
3863   //
3864   // TODO: We could emit a chain of compare/select to figure out which piece to
3865   // index.
3866   return lowerExtractInsertVectorElt(MI);
3867 }
3868 
3869 LegalizerHelper::LegalizeResult
3870 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3871                                       LLT NarrowTy) {
3872   // FIXME: Don't know how to handle secondary types yet.
3873   if (TypeIdx != 0)
3874     return UnableToLegalize;
3875 
3876   MachineMemOperand *MMO = *MI.memoperands_begin();
3877 
3878   // This implementation doesn't work for atomics. Give up instead of doing
3879   // something invalid.
3880   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3881       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3882     return UnableToLegalize;
3883 
3884   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3885   Register ValReg = MI.getOperand(0).getReg();
3886   Register AddrReg = MI.getOperand(1).getReg();
3887   LLT ValTy = MRI.getType(ValReg);
3888 
3889   // FIXME: Do we need a distinct NarrowMemory legalize action?
3890   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3891     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3892     return UnableToLegalize;
3893   }
3894 
3895   int NumParts = -1;
3896   int NumLeftover = -1;
3897   LLT LeftoverTy;
3898   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3899   if (IsLoad) {
3900     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3901   } else {
3902     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3903                      NarrowLeftoverRegs)) {
3904       NumParts = NarrowRegs.size();
3905       NumLeftover = NarrowLeftoverRegs.size();
3906     }
3907   }
3908 
3909   if (NumParts == -1)
3910     return UnableToLegalize;
3911 
3912   LLT PtrTy = MRI.getType(AddrReg);
3913   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3914 
3915   unsigned TotalSize = ValTy.getSizeInBits();
3916 
3917   // Split the load/store into PartTy sized pieces starting at Offset. If this
3918   // is a load, return the new registers in ValRegs. For a store, each elements
3919   // of ValRegs should be PartTy. Returns the next offset that needs to be
3920   // handled.
3921   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3922                              unsigned Offset) -> unsigned {
3923     MachineFunction &MF = MIRBuilder.getMF();
3924     unsigned PartSize = PartTy.getSizeInBits();
3925     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3926          Offset += PartSize, ++Idx) {
3927       unsigned ByteSize = PartSize / 8;
3928       unsigned ByteOffset = Offset / 8;
3929       Register NewAddrReg;
3930 
3931       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3932 
3933       MachineMemOperand *NewMMO =
3934         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3935 
3936       if (IsLoad) {
3937         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3938         ValRegs.push_back(Dst);
3939         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3940       } else {
3941         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3942       }
3943     }
3944 
3945     return Offset;
3946   };
3947 
3948   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3949 
3950   // Handle the rest of the register if this isn't an even type breakdown.
3951   if (LeftoverTy.isValid())
3952     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3953 
3954   if (IsLoad) {
3955     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3956                 LeftoverTy, NarrowLeftoverRegs);
3957   }
3958 
3959   MI.eraseFromParent();
3960   return Legalized;
3961 }
3962 
3963 LegalizerHelper::LegalizeResult
3964 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3965                                       LLT NarrowTy) {
3966   assert(TypeIdx == 0 && "only one type index expected");
3967 
3968   const unsigned Opc = MI.getOpcode();
3969   const int NumDefOps = MI.getNumExplicitDefs();
3970   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
3971   const unsigned Flags = MI.getFlags();
3972   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3973   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3974 
3975   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
3976                                      "result and 1-3 sources or 2 results and "
3977                                      "1-2 sources");
3978 
3979   SmallVector<Register, 2> DstRegs;
3980   for (int I = 0; I < NumDefOps; ++I)
3981     DstRegs.push_back(MI.getOperand(I).getReg());
3982 
3983   // First of all check whether we are narrowing (changing the element type)
3984   // or reducing the vector elements
3985   const LLT DstTy = MRI.getType(DstRegs[0]);
3986   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3987 
3988   SmallVector<Register, 8> ExtractedRegs[3];
3989   SmallVector<Register, 8> Parts;
3990 
3991   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3992 
3993   // Break down all the sources into NarrowTy pieces we can operate on. This may
3994   // involve creating merges to a wider type, padded with undef.
3995   for (int I = 0; I != NumSrcOps; ++I) {
3996     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
3997     LLT SrcTy = MRI.getType(SrcReg);
3998 
3999     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
4000     // For fewerElements, this is a smaller vector with the same element type.
4001     LLT OpNarrowTy;
4002     if (IsNarrow) {
4003       OpNarrowTy = NarrowScalarTy;
4004 
4005       // In case of narrowing, we need to cast vectors to scalars for this to
4006       // work properly
4007       // FIXME: Can we do without the bitcast here if we're narrowing?
4008       if (SrcTy.isVector()) {
4009         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
4010         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
4011       }
4012     } else {
4013       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
4014     }
4015 
4016     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4017 
4018     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4019     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4020                         TargetOpcode::G_ANYEXT);
4021   }
4022 
4023   SmallVector<Register, 8> ResultRegs[2];
4024 
4025   // Input operands for each sub-instruction.
4026   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4027 
4028   int NumParts = ExtractedRegs[0].size();
4029   const unsigned DstSize = DstTy.getSizeInBits();
4030   const LLT DstScalarTy = LLT::scalar(DstSize);
4031 
4032   // Narrowing needs to use scalar types
4033   LLT DstLCMTy, NarrowDstTy;
4034   if (IsNarrow) {
4035     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4036     NarrowDstTy = NarrowScalarTy;
4037   } else {
4038     DstLCMTy = getLCMType(DstTy, NarrowTy);
4039     NarrowDstTy = NarrowTy;
4040   }
4041 
4042   // We widened the source registers to satisfy merge/unmerge size
4043   // constraints. We'll have some extra fully undef parts.
4044   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4045 
4046   for (int I = 0; I != NumRealParts; ++I) {
4047     // Emit this instruction on each of the split pieces.
4048     for (int J = 0; J != NumSrcOps; ++J)
4049       InputRegs[J] = ExtractedRegs[J][I];
4050 
4051     MachineInstrBuilder Inst;
4052     if (NumDefOps == 1)
4053       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4054     else
4055       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4056                                    Flags);
4057 
4058     for (int J = 0; J != NumDefOps; ++J)
4059       ResultRegs[J].push_back(Inst.getReg(J));
4060   }
4061 
4062   // Fill out the widened result with undef instead of creating instructions
4063   // with undef inputs.
4064   int NumUndefParts = NumParts - NumRealParts;
4065   if (NumUndefParts != 0) {
4066     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4067     for (int I = 0; I != NumDefOps; ++I)
4068       ResultRegs[I].append(NumUndefParts, Undef);
4069   }
4070 
4071   // Extract the possibly padded result. Use a scratch register if we need to do
4072   // a final bitcast, otherwise use the original result register.
4073   Register MergeDstReg;
4074   for (int I = 0; I != NumDefOps; ++I) {
4075     if (IsNarrow && DstTy.isVector())
4076       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4077     else
4078       MergeDstReg = DstRegs[I];
4079 
4080     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4081 
4082     // Recast to vector if we narrowed a vector
4083     if (IsNarrow && DstTy.isVector())
4084       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4085   }
4086 
4087   MI.eraseFromParent();
4088   return Legalized;
4089 }
4090 
4091 LegalizerHelper::LegalizeResult
4092 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4093                                               LLT NarrowTy) {
4094   Register DstReg = MI.getOperand(0).getReg();
4095   Register SrcReg = MI.getOperand(1).getReg();
4096   int64_t Imm = MI.getOperand(2).getImm();
4097 
4098   LLT DstTy = MRI.getType(DstReg);
4099 
4100   SmallVector<Register, 8> Parts;
4101   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4102   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4103 
4104   for (Register &R : Parts)
4105     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4106 
4107   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4108 
4109   MI.eraseFromParent();
4110   return Legalized;
4111 }
4112 
4113 LegalizerHelper::LegalizeResult
4114 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4115                                      LLT NarrowTy) {
4116   using namespace TargetOpcode;
4117 
4118   switch (MI.getOpcode()) {
4119   case G_IMPLICIT_DEF:
4120     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4121   case G_TRUNC:
4122   case G_AND:
4123   case G_OR:
4124   case G_XOR:
4125   case G_ADD:
4126   case G_SUB:
4127   case G_MUL:
4128   case G_PTR_ADD:
4129   case G_SMULH:
4130   case G_UMULH:
4131   case G_FADD:
4132   case G_FMUL:
4133   case G_FSUB:
4134   case G_FNEG:
4135   case G_FABS:
4136   case G_FCANONICALIZE:
4137   case G_FDIV:
4138   case G_FREM:
4139   case G_FMA:
4140   case G_FMAD:
4141   case G_FPOW:
4142   case G_FEXP:
4143   case G_FEXP2:
4144   case G_FLOG:
4145   case G_FLOG2:
4146   case G_FLOG10:
4147   case G_FNEARBYINT:
4148   case G_FCEIL:
4149   case G_FFLOOR:
4150   case G_FRINT:
4151   case G_INTRINSIC_ROUND:
4152   case G_INTRINSIC_ROUNDEVEN:
4153   case G_INTRINSIC_TRUNC:
4154   case G_FCOS:
4155   case G_FSIN:
4156   case G_FSQRT:
4157   case G_BSWAP:
4158   case G_BITREVERSE:
4159   case G_SDIV:
4160   case G_UDIV:
4161   case G_SREM:
4162   case G_UREM:
4163   case G_SDIVREM:
4164   case G_UDIVREM:
4165   case G_SMIN:
4166   case G_SMAX:
4167   case G_UMIN:
4168   case G_UMAX:
4169   case G_FMINNUM:
4170   case G_FMAXNUM:
4171   case G_FMINNUM_IEEE:
4172   case G_FMAXNUM_IEEE:
4173   case G_FMINIMUM:
4174   case G_FMAXIMUM:
4175   case G_FSHL:
4176   case G_FSHR:
4177   case G_FREEZE:
4178   case G_SADDSAT:
4179   case G_SSUBSAT:
4180   case G_UADDSAT:
4181   case G_USUBSAT:
4182     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4183   case G_UMULO:
4184   case G_SMULO:
4185     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4186   case G_SHL:
4187   case G_LSHR:
4188   case G_ASHR:
4189   case G_SSHLSAT:
4190   case G_USHLSAT:
4191   case G_CTLZ:
4192   case G_CTLZ_ZERO_UNDEF:
4193   case G_CTTZ:
4194   case G_CTTZ_ZERO_UNDEF:
4195   case G_CTPOP:
4196   case G_FCOPYSIGN:
4197     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4198   case G_ZEXT:
4199   case G_SEXT:
4200   case G_ANYEXT:
4201   case G_FPEXT:
4202   case G_FPTRUNC:
4203   case G_SITOFP:
4204   case G_UITOFP:
4205   case G_FPTOSI:
4206   case G_FPTOUI:
4207   case G_INTTOPTR:
4208   case G_PTRTOINT:
4209   case G_ADDRSPACE_CAST:
4210     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4211   case G_ICMP:
4212   case G_FCMP:
4213     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4214   case G_SELECT:
4215     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4216   case G_PHI:
4217     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4218   case G_UNMERGE_VALUES:
4219     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4220   case G_BUILD_VECTOR:
4221     assert(TypeIdx == 0 && "not a vector type index");
4222     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4223   case G_CONCAT_VECTORS:
4224     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4225       return UnableToLegalize;
4226     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4227   case G_EXTRACT_VECTOR_ELT:
4228   case G_INSERT_VECTOR_ELT:
4229     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4230   case G_LOAD:
4231   case G_STORE:
4232     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4233   case G_SEXT_INREG:
4234     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4235   GISEL_VECREDUCE_CASES_NONSEQ
4236     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4237   default:
4238     return UnableToLegalize;
4239   }
4240 }
4241 
4242 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4243     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4244   unsigned Opc = MI.getOpcode();
4245   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4246          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4247          "Sequential reductions not expected");
4248 
4249   if (TypeIdx != 1)
4250     return UnableToLegalize;
4251 
4252   // The semantics of the normal non-sequential reductions allow us to freely
4253   // re-associate the operation.
4254   Register SrcReg = MI.getOperand(1).getReg();
4255   LLT SrcTy = MRI.getType(SrcReg);
4256   Register DstReg = MI.getOperand(0).getReg();
4257   LLT DstTy = MRI.getType(DstReg);
4258 
4259   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4260     return UnableToLegalize;
4261 
4262   SmallVector<Register> SplitSrcs;
4263   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4264   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4265   SmallVector<Register> PartialReductions;
4266   for (unsigned Part = 0; Part < NumParts; ++Part) {
4267     PartialReductions.push_back(
4268         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4269   }
4270 
4271   unsigned ScalarOpc;
4272   switch (Opc) {
4273   case TargetOpcode::G_VECREDUCE_FADD:
4274     ScalarOpc = TargetOpcode::G_FADD;
4275     break;
4276   case TargetOpcode::G_VECREDUCE_FMUL:
4277     ScalarOpc = TargetOpcode::G_FMUL;
4278     break;
4279   case TargetOpcode::G_VECREDUCE_FMAX:
4280     ScalarOpc = TargetOpcode::G_FMAXNUM;
4281     break;
4282   case TargetOpcode::G_VECREDUCE_FMIN:
4283     ScalarOpc = TargetOpcode::G_FMINNUM;
4284     break;
4285   case TargetOpcode::G_VECREDUCE_ADD:
4286     ScalarOpc = TargetOpcode::G_ADD;
4287     break;
4288   case TargetOpcode::G_VECREDUCE_MUL:
4289     ScalarOpc = TargetOpcode::G_MUL;
4290     break;
4291   case TargetOpcode::G_VECREDUCE_AND:
4292     ScalarOpc = TargetOpcode::G_AND;
4293     break;
4294   case TargetOpcode::G_VECREDUCE_OR:
4295     ScalarOpc = TargetOpcode::G_OR;
4296     break;
4297   case TargetOpcode::G_VECREDUCE_XOR:
4298     ScalarOpc = TargetOpcode::G_XOR;
4299     break;
4300   case TargetOpcode::G_VECREDUCE_SMAX:
4301     ScalarOpc = TargetOpcode::G_SMAX;
4302     break;
4303   case TargetOpcode::G_VECREDUCE_SMIN:
4304     ScalarOpc = TargetOpcode::G_SMIN;
4305     break;
4306   case TargetOpcode::G_VECREDUCE_UMAX:
4307     ScalarOpc = TargetOpcode::G_UMAX;
4308     break;
4309   case TargetOpcode::G_VECREDUCE_UMIN:
4310     ScalarOpc = TargetOpcode::G_UMIN;
4311     break;
4312   default:
4313     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4314     return UnableToLegalize;
4315   }
4316 
4317   // If the types involved are powers of 2, we can generate intermediate vector
4318   // ops, before generating a final reduction operation.
4319   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4320       isPowerOf2_32(NarrowTy.getNumElements())) {
4321     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4322   }
4323 
4324   Register Acc = PartialReductions[0];
4325   for (unsigned Part = 1; Part < NumParts; ++Part) {
4326     if (Part == NumParts - 1) {
4327       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4328                             {Acc, PartialReductions[Part]});
4329     } else {
4330       Acc = MIRBuilder
4331                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4332                 .getReg(0);
4333     }
4334   }
4335   MI.eraseFromParent();
4336   return Legalized;
4337 }
4338 
4339 LegalizerHelper::LegalizeResult
4340 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4341                                         LLT SrcTy, LLT NarrowTy,
4342                                         unsigned ScalarOpc) {
4343   SmallVector<Register> SplitSrcs;
4344   // Split the sources into NarrowTy size pieces.
4345   extractParts(SrcReg, NarrowTy,
4346                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4347   // We're going to do a tree reduction using vector operations until we have
4348   // one NarrowTy size value left.
4349   while (SplitSrcs.size() > 1) {
4350     SmallVector<Register> PartialRdxs;
4351     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4352       Register LHS = SplitSrcs[Idx];
4353       Register RHS = SplitSrcs[Idx + 1];
4354       // Create the intermediate vector op.
4355       Register Res =
4356           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4357       PartialRdxs.push_back(Res);
4358     }
4359     SplitSrcs = std::move(PartialRdxs);
4360   }
4361   // Finally generate the requested NarrowTy based reduction.
4362   Observer.changingInstr(MI);
4363   MI.getOperand(1).setReg(SplitSrcs[0]);
4364   Observer.changedInstr(MI);
4365   return Legalized;
4366 }
4367 
4368 LegalizerHelper::LegalizeResult
4369 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4370                                              const LLT HalfTy, const LLT AmtTy) {
4371 
4372   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4373   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4374   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4375 
4376   if (Amt.isNullValue()) {
4377     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4378     MI.eraseFromParent();
4379     return Legalized;
4380   }
4381 
4382   LLT NVT = HalfTy;
4383   unsigned NVTBits = HalfTy.getSizeInBits();
4384   unsigned VTBits = 2 * NVTBits;
4385 
4386   SrcOp Lo(Register(0)), Hi(Register(0));
4387   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4388     if (Amt.ugt(VTBits)) {
4389       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4390     } else if (Amt.ugt(NVTBits)) {
4391       Lo = MIRBuilder.buildConstant(NVT, 0);
4392       Hi = MIRBuilder.buildShl(NVT, InL,
4393                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4394     } else if (Amt == NVTBits) {
4395       Lo = MIRBuilder.buildConstant(NVT, 0);
4396       Hi = InL;
4397     } else {
4398       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4399       auto OrLHS =
4400           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4401       auto OrRHS = MIRBuilder.buildLShr(
4402           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4403       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4404     }
4405   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4406     if (Amt.ugt(VTBits)) {
4407       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4408     } else if (Amt.ugt(NVTBits)) {
4409       Lo = MIRBuilder.buildLShr(NVT, InH,
4410                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4411       Hi = MIRBuilder.buildConstant(NVT, 0);
4412     } else if (Amt == NVTBits) {
4413       Lo = InH;
4414       Hi = MIRBuilder.buildConstant(NVT, 0);
4415     } else {
4416       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4417 
4418       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4419       auto OrRHS = MIRBuilder.buildShl(
4420           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4421 
4422       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4423       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4424     }
4425   } else {
4426     if (Amt.ugt(VTBits)) {
4427       Hi = Lo = MIRBuilder.buildAShr(
4428           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4429     } else if (Amt.ugt(NVTBits)) {
4430       Lo = MIRBuilder.buildAShr(NVT, InH,
4431                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4432       Hi = MIRBuilder.buildAShr(NVT, InH,
4433                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4434     } else if (Amt == NVTBits) {
4435       Lo = InH;
4436       Hi = MIRBuilder.buildAShr(NVT, InH,
4437                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4438     } else {
4439       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4440 
4441       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4442       auto OrRHS = MIRBuilder.buildShl(
4443           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4444 
4445       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4446       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4447     }
4448   }
4449 
4450   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4451   MI.eraseFromParent();
4452 
4453   return Legalized;
4454 }
4455 
4456 // TODO: Optimize if constant shift amount.
4457 LegalizerHelper::LegalizeResult
4458 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4459                                    LLT RequestedTy) {
4460   if (TypeIdx == 1) {
4461     Observer.changingInstr(MI);
4462     narrowScalarSrc(MI, RequestedTy, 2);
4463     Observer.changedInstr(MI);
4464     return Legalized;
4465   }
4466 
4467   Register DstReg = MI.getOperand(0).getReg();
4468   LLT DstTy = MRI.getType(DstReg);
4469   if (DstTy.isVector())
4470     return UnableToLegalize;
4471 
4472   Register Amt = MI.getOperand(2).getReg();
4473   LLT ShiftAmtTy = MRI.getType(Amt);
4474   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4475   if (DstEltSize % 2 != 0)
4476     return UnableToLegalize;
4477 
4478   // Ignore the input type. We can only go to exactly half the size of the
4479   // input. If that isn't small enough, the resulting pieces will be further
4480   // legalized.
4481   const unsigned NewBitSize = DstEltSize / 2;
4482   const LLT HalfTy = LLT::scalar(NewBitSize);
4483   const LLT CondTy = LLT::scalar(1);
4484 
4485   if (const MachineInstr *KShiftAmt =
4486           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4487     return narrowScalarShiftByConstant(
4488         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4489   }
4490 
4491   // TODO: Expand with known bits.
4492 
4493   // Handle the fully general expansion by an unknown amount.
4494   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4495 
4496   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4497   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4498   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4499 
4500   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4501   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4502 
4503   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4504   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4505   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4506 
4507   Register ResultRegs[2];
4508   switch (MI.getOpcode()) {
4509   case TargetOpcode::G_SHL: {
4510     // Short: ShAmt < NewBitSize
4511     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4512 
4513     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4514     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4515     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4516 
4517     // Long: ShAmt >= NewBitSize
4518     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4519     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4520 
4521     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4522     auto Hi = MIRBuilder.buildSelect(
4523         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4524 
4525     ResultRegs[0] = Lo.getReg(0);
4526     ResultRegs[1] = Hi.getReg(0);
4527     break;
4528   }
4529   case TargetOpcode::G_LSHR:
4530   case TargetOpcode::G_ASHR: {
4531     // Short: ShAmt < NewBitSize
4532     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4533 
4534     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4535     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4536     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4537 
4538     // Long: ShAmt >= NewBitSize
4539     MachineInstrBuilder HiL;
4540     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4541       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4542     } else {
4543       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4544       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4545     }
4546     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4547                                      {InH, AmtExcess});     // Lo from Hi part.
4548 
4549     auto Lo = MIRBuilder.buildSelect(
4550         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4551 
4552     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4553 
4554     ResultRegs[0] = Lo.getReg(0);
4555     ResultRegs[1] = Hi.getReg(0);
4556     break;
4557   }
4558   default:
4559     llvm_unreachable("not a shift");
4560   }
4561 
4562   MIRBuilder.buildMerge(DstReg, ResultRegs);
4563   MI.eraseFromParent();
4564   return Legalized;
4565 }
4566 
4567 LegalizerHelper::LegalizeResult
4568 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4569                                        LLT MoreTy) {
4570   assert(TypeIdx == 0 && "Expecting only Idx 0");
4571 
4572   Observer.changingInstr(MI);
4573   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4574     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4575     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4576     moreElementsVectorSrc(MI, MoreTy, I);
4577   }
4578 
4579   MachineBasicBlock &MBB = *MI.getParent();
4580   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4581   moreElementsVectorDst(MI, MoreTy, 0);
4582   Observer.changedInstr(MI);
4583   return Legalized;
4584 }
4585 
4586 LegalizerHelper::LegalizeResult
4587 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4588                                     LLT MoreTy) {
4589   unsigned Opc = MI.getOpcode();
4590   switch (Opc) {
4591   case TargetOpcode::G_IMPLICIT_DEF:
4592   case TargetOpcode::G_LOAD: {
4593     if (TypeIdx != 0)
4594       return UnableToLegalize;
4595     Observer.changingInstr(MI);
4596     moreElementsVectorDst(MI, MoreTy, 0);
4597     Observer.changedInstr(MI);
4598     return Legalized;
4599   }
4600   case TargetOpcode::G_STORE:
4601     if (TypeIdx != 0)
4602       return UnableToLegalize;
4603     Observer.changingInstr(MI);
4604     moreElementsVectorSrc(MI, MoreTy, 0);
4605     Observer.changedInstr(MI);
4606     return Legalized;
4607   case TargetOpcode::G_AND:
4608   case TargetOpcode::G_OR:
4609   case TargetOpcode::G_XOR:
4610   case TargetOpcode::G_SMIN:
4611   case TargetOpcode::G_SMAX:
4612   case TargetOpcode::G_UMIN:
4613   case TargetOpcode::G_UMAX:
4614   case TargetOpcode::G_FMINNUM:
4615   case TargetOpcode::G_FMAXNUM:
4616   case TargetOpcode::G_FMINNUM_IEEE:
4617   case TargetOpcode::G_FMAXNUM_IEEE:
4618   case TargetOpcode::G_FMINIMUM:
4619   case TargetOpcode::G_FMAXIMUM: {
4620     Observer.changingInstr(MI);
4621     moreElementsVectorSrc(MI, MoreTy, 1);
4622     moreElementsVectorSrc(MI, MoreTy, 2);
4623     moreElementsVectorDst(MI, MoreTy, 0);
4624     Observer.changedInstr(MI);
4625     return Legalized;
4626   }
4627   case TargetOpcode::G_EXTRACT:
4628     if (TypeIdx != 1)
4629       return UnableToLegalize;
4630     Observer.changingInstr(MI);
4631     moreElementsVectorSrc(MI, MoreTy, 1);
4632     Observer.changedInstr(MI);
4633     return Legalized;
4634   case TargetOpcode::G_INSERT:
4635   case TargetOpcode::G_FREEZE:
4636     if (TypeIdx != 0)
4637       return UnableToLegalize;
4638     Observer.changingInstr(MI);
4639     moreElementsVectorSrc(MI, MoreTy, 1);
4640     moreElementsVectorDst(MI, MoreTy, 0);
4641     Observer.changedInstr(MI);
4642     return Legalized;
4643   case TargetOpcode::G_SELECT:
4644     if (TypeIdx != 0)
4645       return UnableToLegalize;
4646     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4647       return UnableToLegalize;
4648 
4649     Observer.changingInstr(MI);
4650     moreElementsVectorSrc(MI, MoreTy, 2);
4651     moreElementsVectorSrc(MI, MoreTy, 3);
4652     moreElementsVectorDst(MI, MoreTy, 0);
4653     Observer.changedInstr(MI);
4654     return Legalized;
4655   case TargetOpcode::G_UNMERGE_VALUES: {
4656     if (TypeIdx != 1)
4657       return UnableToLegalize;
4658 
4659     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4660     int NumDst = MI.getNumOperands() - 1;
4661     moreElementsVectorSrc(MI, MoreTy, NumDst);
4662 
4663     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4664     for (int I = 0; I != NumDst; ++I)
4665       MIB.addDef(MI.getOperand(I).getReg());
4666 
4667     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4668     for (int I = NumDst; I != NewNumDst; ++I)
4669       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4670 
4671     MIB.addUse(MI.getOperand(NumDst).getReg());
4672     MI.eraseFromParent();
4673     return Legalized;
4674   }
4675   case TargetOpcode::G_PHI:
4676     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4677   default:
4678     return UnableToLegalize;
4679   }
4680 }
4681 
4682 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4683                                         ArrayRef<Register> Src1Regs,
4684                                         ArrayRef<Register> Src2Regs,
4685                                         LLT NarrowTy) {
4686   MachineIRBuilder &B = MIRBuilder;
4687   unsigned SrcParts = Src1Regs.size();
4688   unsigned DstParts = DstRegs.size();
4689 
4690   unsigned DstIdx = 0; // Low bits of the result.
4691   Register FactorSum =
4692       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4693   DstRegs[DstIdx] = FactorSum;
4694 
4695   unsigned CarrySumPrevDstIdx;
4696   SmallVector<Register, 4> Factors;
4697 
4698   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4699     // Collect low parts of muls for DstIdx.
4700     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4701          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4702       MachineInstrBuilder Mul =
4703           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4704       Factors.push_back(Mul.getReg(0));
4705     }
4706     // Collect high parts of muls from previous DstIdx.
4707     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4708          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4709       MachineInstrBuilder Umulh =
4710           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4711       Factors.push_back(Umulh.getReg(0));
4712     }
4713     // Add CarrySum from additions calculated for previous DstIdx.
4714     if (DstIdx != 1) {
4715       Factors.push_back(CarrySumPrevDstIdx);
4716     }
4717 
4718     Register CarrySum;
4719     // Add all factors and accumulate all carries into CarrySum.
4720     if (DstIdx != DstParts - 1) {
4721       MachineInstrBuilder Uaddo =
4722           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4723       FactorSum = Uaddo.getReg(0);
4724       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4725       for (unsigned i = 2; i < Factors.size(); ++i) {
4726         MachineInstrBuilder Uaddo =
4727             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4728         FactorSum = Uaddo.getReg(0);
4729         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4730         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4731       }
4732     } else {
4733       // Since value for the next index is not calculated, neither is CarrySum.
4734       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4735       for (unsigned i = 2; i < Factors.size(); ++i)
4736         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4737     }
4738 
4739     CarrySumPrevDstIdx = CarrySum;
4740     DstRegs[DstIdx] = FactorSum;
4741     Factors.clear();
4742   }
4743 }
4744 
4745 LegalizerHelper::LegalizeResult
4746 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4747                                     LLT NarrowTy) {
4748   if (TypeIdx != 0)
4749     return UnableToLegalize;
4750 
4751   Register DstReg = MI.getOperand(0).getReg();
4752   LLT DstType = MRI.getType(DstReg);
4753   // FIXME: add support for vector types
4754   if (DstType.isVector())
4755     return UnableToLegalize;
4756 
4757   uint64_t SizeOp0 = DstType.getSizeInBits();
4758   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4759 
4760   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4761   // NarrowSize.
4762   if (SizeOp0 % NarrowSize != 0)
4763     return UnableToLegalize;
4764 
4765   // Expand in terms of carry-setting/consuming G_<Op>E instructions.
4766   int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
4767 
4768   unsigned Opcode = MI.getOpcode();
4769   unsigned OpO, OpE, OpF;
4770   switch (Opcode) {
4771   case TargetOpcode::G_SADDO:
4772   case TargetOpcode::G_SADDE:
4773   case TargetOpcode::G_UADDO:
4774   case TargetOpcode::G_UADDE:
4775   case TargetOpcode::G_ADD:
4776     OpO = TargetOpcode::G_UADDO;
4777     OpE = TargetOpcode::G_UADDE;
4778     OpF = TargetOpcode::G_UADDE;
4779     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4780       OpF = TargetOpcode::G_SADDE;
4781     break;
4782   case TargetOpcode::G_SSUBO:
4783   case TargetOpcode::G_SSUBE:
4784   case TargetOpcode::G_USUBO:
4785   case TargetOpcode::G_USUBE:
4786   case TargetOpcode::G_SUB:
4787     OpO = TargetOpcode::G_USUBO;
4788     OpE = TargetOpcode::G_USUBE;
4789     OpF = TargetOpcode::G_USUBE;
4790     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4791       OpF = TargetOpcode::G_SSUBE;
4792     break;
4793   default:
4794     llvm_unreachable("Unexpected add/sub opcode!");
4795   }
4796 
4797   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4798   unsigned NumDefs = MI.getNumExplicitDefs();
4799   Register Src1 = MI.getOperand(NumDefs).getReg();
4800   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4801   Register CarryDst;
4802   if (NumDefs == 2)
4803     CarryDst = MI.getOperand(1).getReg();
4804   Register CarryIn;
4805   if (MI.getNumOperands() == NumDefs + 3)
4806     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4807 
4808   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
4809   extractParts(Src1, NarrowTy, NumParts, Src1Regs);
4810   extractParts(Src2, NarrowTy, NumParts, Src2Regs);
4811 
4812   for (int i = 0; i < NumParts; ++i) {
4813     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4814     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4815     // Forward the final carry-out to the destination register
4816     if (i == NumParts - 1 && CarryDst)
4817       CarryOut = CarryDst;
4818 
4819     if (!CarryIn) {
4820       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4821                             {Src1Regs[i], Src2Regs[i]});
4822     } else if (i == NumParts - 1) {
4823       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4824                             {Src1Regs[i], Src2Regs[i], CarryIn});
4825     } else {
4826       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4827                             {Src1Regs[i], Src2Regs[i], CarryIn});
4828     }
4829 
4830     DstRegs.push_back(DstReg);
4831     CarryIn = CarryOut;
4832   }
4833   MIRBuilder.buildMerge(DstReg, DstRegs);
4834   MI.eraseFromParent();
4835   return Legalized;
4836 }
4837 
4838 LegalizerHelper::LegalizeResult
4839 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4840   Register DstReg = MI.getOperand(0).getReg();
4841   Register Src1 = MI.getOperand(1).getReg();
4842   Register Src2 = MI.getOperand(2).getReg();
4843 
4844   LLT Ty = MRI.getType(DstReg);
4845   if (Ty.isVector())
4846     return UnableToLegalize;
4847 
4848   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4849   unsigned DstSize = Ty.getSizeInBits();
4850   unsigned NarrowSize = NarrowTy.getSizeInBits();
4851   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4852     return UnableToLegalize;
4853 
4854   unsigned NumDstParts = DstSize / NarrowSize;
4855   unsigned NumSrcParts = SrcSize / NarrowSize;
4856   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4857   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4858 
4859   SmallVector<Register, 2> Src1Parts, Src2Parts;
4860   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4861   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4862   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4863   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4864 
4865   // Take only high half of registers if this is high mul.
4866   ArrayRef<Register> DstRegs(
4867       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4868   MIRBuilder.buildMerge(DstReg, DstRegs);
4869   MI.eraseFromParent();
4870   return Legalized;
4871 }
4872 
4873 LegalizerHelper::LegalizeResult
4874 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
4875                                    LLT NarrowTy) {
4876   if (TypeIdx != 0)
4877     return UnableToLegalize;
4878 
4879   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
4880 
4881   Register Src = MI.getOperand(1).getReg();
4882   LLT SrcTy = MRI.getType(Src);
4883 
4884   // If all finite floats fit into the narrowed integer type, we can just swap
4885   // out the result type. This is practically only useful for conversions from
4886   // half to at least 16-bits, so just handle the one case.
4887   if (SrcTy.getScalarType() != LLT::scalar(16) ||
4888       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
4889     return UnableToLegalize;
4890 
4891   Observer.changingInstr(MI);
4892   narrowScalarDst(MI, NarrowTy, 0,
4893                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
4894   Observer.changedInstr(MI);
4895   return Legalized;
4896 }
4897 
4898 LegalizerHelper::LegalizeResult
4899 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4900                                      LLT NarrowTy) {
4901   if (TypeIdx != 1)
4902     return UnableToLegalize;
4903 
4904   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4905 
4906   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4907   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4908   // NarrowSize.
4909   if (SizeOp1 % NarrowSize != 0)
4910     return UnableToLegalize;
4911   int NumParts = SizeOp1 / NarrowSize;
4912 
4913   SmallVector<Register, 2> SrcRegs, DstRegs;
4914   SmallVector<uint64_t, 2> Indexes;
4915   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4916 
4917   Register OpReg = MI.getOperand(0).getReg();
4918   uint64_t OpStart = MI.getOperand(2).getImm();
4919   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4920   for (int i = 0; i < NumParts; ++i) {
4921     unsigned SrcStart = i * NarrowSize;
4922 
4923     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4924       // No part of the extract uses this subregister, ignore it.
4925       continue;
4926     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4927       // The entire subregister is extracted, forward the value.
4928       DstRegs.push_back(SrcRegs[i]);
4929       continue;
4930     }
4931 
4932     // OpSegStart is where this destination segment would start in OpReg if it
4933     // extended infinitely in both directions.
4934     int64_t ExtractOffset;
4935     uint64_t SegSize;
4936     if (OpStart < SrcStart) {
4937       ExtractOffset = 0;
4938       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4939     } else {
4940       ExtractOffset = OpStart - SrcStart;
4941       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4942     }
4943 
4944     Register SegReg = SrcRegs[i];
4945     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4946       // A genuine extract is needed.
4947       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4948       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4949     }
4950 
4951     DstRegs.push_back(SegReg);
4952   }
4953 
4954   Register DstReg = MI.getOperand(0).getReg();
4955   if (MRI.getType(DstReg).isVector())
4956     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4957   else if (DstRegs.size() > 1)
4958     MIRBuilder.buildMerge(DstReg, DstRegs);
4959   else
4960     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4961   MI.eraseFromParent();
4962   return Legalized;
4963 }
4964 
4965 LegalizerHelper::LegalizeResult
4966 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4967                                     LLT NarrowTy) {
4968   // FIXME: Don't know how to handle secondary types yet.
4969   if (TypeIdx != 0)
4970     return UnableToLegalize;
4971 
4972   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4973   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4974 
4975   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4976   // NarrowSize.
4977   if (SizeOp0 % NarrowSize != 0)
4978     return UnableToLegalize;
4979 
4980   int NumParts = SizeOp0 / NarrowSize;
4981 
4982   SmallVector<Register, 2> SrcRegs, DstRegs;
4983   SmallVector<uint64_t, 2> Indexes;
4984   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4985 
4986   Register OpReg = MI.getOperand(2).getReg();
4987   uint64_t OpStart = MI.getOperand(3).getImm();
4988   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4989   for (int i = 0; i < NumParts; ++i) {
4990     unsigned DstStart = i * NarrowSize;
4991 
4992     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4993       // No part of the insert affects this subregister, forward the original.
4994       DstRegs.push_back(SrcRegs[i]);
4995       continue;
4996     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4997       // The entire subregister is defined by this insert, forward the new
4998       // value.
4999       DstRegs.push_back(OpReg);
5000       continue;
5001     }
5002 
5003     // OpSegStart is where this destination segment would start in OpReg if it
5004     // extended infinitely in both directions.
5005     int64_t ExtractOffset, InsertOffset;
5006     uint64_t SegSize;
5007     if (OpStart < DstStart) {
5008       InsertOffset = 0;
5009       ExtractOffset = DstStart - OpStart;
5010       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5011     } else {
5012       InsertOffset = OpStart - DstStart;
5013       ExtractOffset = 0;
5014       SegSize =
5015         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5016     }
5017 
5018     Register SegReg = OpReg;
5019     if (ExtractOffset != 0 || SegSize != OpSize) {
5020       // A genuine extract is needed.
5021       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5022       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5023     }
5024 
5025     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5026     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
5027     DstRegs.push_back(DstReg);
5028   }
5029 
5030   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
5031   Register DstReg = MI.getOperand(0).getReg();
5032   if(MRI.getType(DstReg).isVector())
5033     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5034   else
5035     MIRBuilder.buildMerge(DstReg, DstRegs);
5036   MI.eraseFromParent();
5037   return Legalized;
5038 }
5039 
5040 LegalizerHelper::LegalizeResult
5041 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5042                                    LLT NarrowTy) {
5043   Register DstReg = MI.getOperand(0).getReg();
5044   LLT DstTy = MRI.getType(DstReg);
5045 
5046   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5047 
5048   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5049   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5050   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5051   LLT LeftoverTy;
5052   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5053                     Src0Regs, Src0LeftoverRegs))
5054     return UnableToLegalize;
5055 
5056   LLT Unused;
5057   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5058                     Src1Regs, Src1LeftoverRegs))
5059     llvm_unreachable("inconsistent extractParts result");
5060 
5061   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5062     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5063                                         {Src0Regs[I], Src1Regs[I]});
5064     DstRegs.push_back(Inst.getReg(0));
5065   }
5066 
5067   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5068     auto Inst = MIRBuilder.buildInstr(
5069       MI.getOpcode(),
5070       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5071     DstLeftoverRegs.push_back(Inst.getReg(0));
5072   }
5073 
5074   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5075               LeftoverTy, DstLeftoverRegs);
5076 
5077   MI.eraseFromParent();
5078   return Legalized;
5079 }
5080 
5081 LegalizerHelper::LegalizeResult
5082 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5083                                  LLT NarrowTy) {
5084   if (TypeIdx != 0)
5085     return UnableToLegalize;
5086 
5087   Register DstReg = MI.getOperand(0).getReg();
5088   Register SrcReg = MI.getOperand(1).getReg();
5089 
5090   LLT DstTy = MRI.getType(DstReg);
5091   if (DstTy.isVector())
5092     return UnableToLegalize;
5093 
5094   SmallVector<Register, 8> Parts;
5095   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5096   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5097   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5098 
5099   MI.eraseFromParent();
5100   return Legalized;
5101 }
5102 
5103 LegalizerHelper::LegalizeResult
5104 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5105                                     LLT NarrowTy) {
5106   if (TypeIdx != 0)
5107     return UnableToLegalize;
5108 
5109   Register CondReg = MI.getOperand(1).getReg();
5110   LLT CondTy = MRI.getType(CondReg);
5111   if (CondTy.isVector()) // TODO: Handle vselect
5112     return UnableToLegalize;
5113 
5114   Register DstReg = MI.getOperand(0).getReg();
5115   LLT DstTy = MRI.getType(DstReg);
5116 
5117   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5118   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5119   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5120   LLT LeftoverTy;
5121   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5122                     Src1Regs, Src1LeftoverRegs))
5123     return UnableToLegalize;
5124 
5125   LLT Unused;
5126   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5127                     Src2Regs, Src2LeftoverRegs))
5128     llvm_unreachable("inconsistent extractParts result");
5129 
5130   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5131     auto Select = MIRBuilder.buildSelect(NarrowTy,
5132                                          CondReg, Src1Regs[I], Src2Regs[I]);
5133     DstRegs.push_back(Select.getReg(0));
5134   }
5135 
5136   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5137     auto Select = MIRBuilder.buildSelect(
5138       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5139     DstLeftoverRegs.push_back(Select.getReg(0));
5140   }
5141 
5142   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5143               LeftoverTy, DstLeftoverRegs);
5144 
5145   MI.eraseFromParent();
5146   return Legalized;
5147 }
5148 
5149 LegalizerHelper::LegalizeResult
5150 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5151                                   LLT NarrowTy) {
5152   if (TypeIdx != 1)
5153     return UnableToLegalize;
5154 
5155   Register DstReg = MI.getOperand(0).getReg();
5156   Register SrcReg = MI.getOperand(1).getReg();
5157   LLT DstTy = MRI.getType(DstReg);
5158   LLT SrcTy = MRI.getType(SrcReg);
5159   unsigned NarrowSize = NarrowTy.getSizeInBits();
5160 
5161   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5162     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5163 
5164     MachineIRBuilder &B = MIRBuilder;
5165     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5166     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5167     auto C_0 = B.buildConstant(NarrowTy, 0);
5168     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5169                                 UnmergeSrc.getReg(1), C_0);
5170     auto LoCTLZ = IsUndef ?
5171       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5172       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5173     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5174     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5175     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5176     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5177 
5178     MI.eraseFromParent();
5179     return Legalized;
5180   }
5181 
5182   return UnableToLegalize;
5183 }
5184 
5185 LegalizerHelper::LegalizeResult
5186 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5187                                   LLT NarrowTy) {
5188   if (TypeIdx != 1)
5189     return UnableToLegalize;
5190 
5191   Register DstReg = MI.getOperand(0).getReg();
5192   Register SrcReg = MI.getOperand(1).getReg();
5193   LLT DstTy = MRI.getType(DstReg);
5194   LLT SrcTy = MRI.getType(SrcReg);
5195   unsigned NarrowSize = NarrowTy.getSizeInBits();
5196 
5197   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5198     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5199 
5200     MachineIRBuilder &B = MIRBuilder;
5201     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5202     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5203     auto C_0 = B.buildConstant(NarrowTy, 0);
5204     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5205                                 UnmergeSrc.getReg(0), C_0);
5206     auto HiCTTZ = IsUndef ?
5207       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5208       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5209     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5210     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5211     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5212     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5213 
5214     MI.eraseFromParent();
5215     return Legalized;
5216   }
5217 
5218   return UnableToLegalize;
5219 }
5220 
5221 LegalizerHelper::LegalizeResult
5222 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5223                                    LLT NarrowTy) {
5224   if (TypeIdx != 1)
5225     return UnableToLegalize;
5226 
5227   Register DstReg = MI.getOperand(0).getReg();
5228   LLT DstTy = MRI.getType(DstReg);
5229   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5230   unsigned NarrowSize = NarrowTy.getSizeInBits();
5231 
5232   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5233     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5234 
5235     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5236     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5237     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5238 
5239     MI.eraseFromParent();
5240     return Legalized;
5241   }
5242 
5243   return UnableToLegalize;
5244 }
5245 
5246 LegalizerHelper::LegalizeResult
5247 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5248   unsigned Opc = MI.getOpcode();
5249   const auto &TII = MIRBuilder.getTII();
5250   auto isSupported = [this](const LegalityQuery &Q) {
5251     auto QAction = LI.getAction(Q).Action;
5252     return QAction == Legal || QAction == Libcall || QAction == Custom;
5253   };
5254   switch (Opc) {
5255   default:
5256     return UnableToLegalize;
5257   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5258     // This trivially expands to CTLZ.
5259     Observer.changingInstr(MI);
5260     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5261     Observer.changedInstr(MI);
5262     return Legalized;
5263   }
5264   case TargetOpcode::G_CTLZ: {
5265     Register DstReg = MI.getOperand(0).getReg();
5266     Register SrcReg = MI.getOperand(1).getReg();
5267     LLT DstTy = MRI.getType(DstReg);
5268     LLT SrcTy = MRI.getType(SrcReg);
5269     unsigned Len = SrcTy.getSizeInBits();
5270 
5271     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5272       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5273       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5274       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5275       auto ICmp = MIRBuilder.buildICmp(
5276           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5277       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5278       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5279       MI.eraseFromParent();
5280       return Legalized;
5281     }
5282     // for now, we do this:
5283     // NewLen = NextPowerOf2(Len);
5284     // x = x | (x >> 1);
5285     // x = x | (x >> 2);
5286     // ...
5287     // x = x | (x >>16);
5288     // x = x | (x >>32); // for 64-bit input
5289     // Upto NewLen/2
5290     // return Len - popcount(x);
5291     //
5292     // Ref: "Hacker's Delight" by Henry Warren
5293     Register Op = SrcReg;
5294     unsigned NewLen = PowerOf2Ceil(Len);
5295     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5296       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5297       auto MIBOp = MIRBuilder.buildOr(
5298           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5299       Op = MIBOp.getReg(0);
5300     }
5301     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5302     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5303                         MIBPop);
5304     MI.eraseFromParent();
5305     return Legalized;
5306   }
5307   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5308     // This trivially expands to CTTZ.
5309     Observer.changingInstr(MI);
5310     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5311     Observer.changedInstr(MI);
5312     return Legalized;
5313   }
5314   case TargetOpcode::G_CTTZ: {
5315     Register DstReg = MI.getOperand(0).getReg();
5316     Register SrcReg = MI.getOperand(1).getReg();
5317     LLT DstTy = MRI.getType(DstReg);
5318     LLT SrcTy = MRI.getType(SrcReg);
5319 
5320     unsigned Len = SrcTy.getSizeInBits();
5321     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5322       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5323       // zero.
5324       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5325       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5326       auto ICmp = MIRBuilder.buildICmp(
5327           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5328       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5329       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5330       MI.eraseFromParent();
5331       return Legalized;
5332     }
5333     // for now, we use: { return popcount(~x & (x - 1)); }
5334     // unless the target has ctlz but not ctpop, in which case we use:
5335     // { return 32 - nlz(~x & (x-1)); }
5336     // Ref: "Hacker's Delight" by Henry Warren
5337     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5338     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5339     auto MIBTmp = MIRBuilder.buildAnd(
5340         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5341     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5342         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5343       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5344       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5345                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5346       MI.eraseFromParent();
5347       return Legalized;
5348     }
5349     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5350     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5351     return Legalized;
5352   }
5353   case TargetOpcode::G_CTPOP: {
5354     Register SrcReg = MI.getOperand(1).getReg();
5355     LLT Ty = MRI.getType(SrcReg);
5356     unsigned Size = Ty.getSizeInBits();
5357     MachineIRBuilder &B = MIRBuilder;
5358 
5359     // Count set bits in blocks of 2 bits. Default approach would be
5360     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5361     // We use following formula instead:
5362     // B2Count = val - { (val >> 1) & 0x55555555 }
5363     // since it gives same result in blocks of 2 with one instruction less.
5364     auto C_1 = B.buildConstant(Ty, 1);
5365     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5366     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5367     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5368     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5369     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5370 
5371     // In order to get count in blocks of 4 add values from adjacent block of 2.
5372     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5373     auto C_2 = B.buildConstant(Ty, 2);
5374     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5375     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5376     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5377     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5378     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5379     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5380 
5381     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5382     // addition since count value sits in range {0,...,8} and 4 bits are enough
5383     // to hold such binary values. After addition high 4 bits still hold count
5384     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5385     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5386     auto C_4 = B.buildConstant(Ty, 4);
5387     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5388     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5389     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5390     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5391     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5392 
5393     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5394     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5395     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5396     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5397     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5398 
5399     // Shift count result from 8 high bits to low bits.
5400     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5401     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5402 
5403     MI.eraseFromParent();
5404     return Legalized;
5405   }
5406   }
5407 }
5408 
5409 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5410 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5411                                         Register Reg, unsigned BW) {
5412   return matchUnaryPredicate(
5413       MRI, Reg,
5414       [=](const Constant *C) {
5415         // Null constant here means an undef.
5416         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5417         return !CI || CI->getValue().urem(BW) != 0;
5418       },
5419       /*AllowUndefs*/ true);
5420 }
5421 
5422 LegalizerHelper::LegalizeResult
5423 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5424   Register Dst = MI.getOperand(0).getReg();
5425   Register X = MI.getOperand(1).getReg();
5426   Register Y = MI.getOperand(2).getReg();
5427   Register Z = MI.getOperand(3).getReg();
5428   LLT Ty = MRI.getType(Dst);
5429   LLT ShTy = MRI.getType(Z);
5430 
5431   unsigned BW = Ty.getScalarSizeInBits();
5432 
5433   if (!isPowerOf2_32(BW))
5434     return UnableToLegalize;
5435 
5436   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5437   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5438 
5439   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5440     // fshl X, Y, Z -> fshr X, Y, -Z
5441     // fshr X, Y, Z -> fshl X, Y, -Z
5442     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5443     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5444   } else {
5445     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5446     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5447     auto One = MIRBuilder.buildConstant(ShTy, 1);
5448     if (IsFSHL) {
5449       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5450       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5451     } else {
5452       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5453       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5454     }
5455 
5456     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5457   }
5458 
5459   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5460   MI.eraseFromParent();
5461   return Legalized;
5462 }
5463 
5464 LegalizerHelper::LegalizeResult
5465 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5466   Register Dst = MI.getOperand(0).getReg();
5467   Register X = MI.getOperand(1).getReg();
5468   Register Y = MI.getOperand(2).getReg();
5469   Register Z = MI.getOperand(3).getReg();
5470   LLT Ty = MRI.getType(Dst);
5471   LLT ShTy = MRI.getType(Z);
5472 
5473   const unsigned BW = Ty.getScalarSizeInBits();
5474   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5475 
5476   Register ShX, ShY;
5477   Register ShAmt, InvShAmt;
5478 
5479   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5480   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5481     // fshl: X << C | Y >> (BW - C)
5482     // fshr: X << (BW - C) | Y >> C
5483     // where C = Z % BW is not zero
5484     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5485     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5486     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5487     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5488     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5489   } else {
5490     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5491     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5492     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5493     if (isPowerOf2_32(BW)) {
5494       // Z % BW -> Z & (BW - 1)
5495       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5496       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5497       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5498       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5499     } else {
5500       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5501       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5502       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5503     }
5504 
5505     auto One = MIRBuilder.buildConstant(ShTy, 1);
5506     if (IsFSHL) {
5507       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5508       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5509       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5510     } else {
5511       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5512       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5513       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5514     }
5515   }
5516 
5517   MIRBuilder.buildOr(Dst, ShX, ShY);
5518   MI.eraseFromParent();
5519   return Legalized;
5520 }
5521 
5522 LegalizerHelper::LegalizeResult
5523 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5524   // These operations approximately do the following (while avoiding undefined
5525   // shifts by BW):
5526   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5527   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5528   Register Dst = MI.getOperand(0).getReg();
5529   LLT Ty = MRI.getType(Dst);
5530   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5531 
5532   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5533   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5534 
5535   // TODO: Use smarter heuristic that accounts for vector legalization.
5536   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5537     return lowerFunnelShiftAsShifts(MI);
5538 
5539   // This only works for powers of 2, fallback to shifts if it fails.
5540   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5541   if (Result == UnableToLegalize)
5542     return lowerFunnelShiftAsShifts(MI);
5543   return Result;
5544 }
5545 
5546 LegalizerHelper::LegalizeResult
5547 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5548   Register Dst = MI.getOperand(0).getReg();
5549   Register Src = MI.getOperand(1).getReg();
5550   Register Amt = MI.getOperand(2).getReg();
5551   LLT AmtTy = MRI.getType(Amt);
5552   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5553   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5554   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5555   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5556   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5557   MI.eraseFromParent();
5558   return Legalized;
5559 }
5560 
5561 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5562   Register Dst = MI.getOperand(0).getReg();
5563   Register Src = MI.getOperand(1).getReg();
5564   Register Amt = MI.getOperand(2).getReg();
5565   LLT DstTy = MRI.getType(Dst);
5566   LLT SrcTy = MRI.getType(Dst);
5567   LLT AmtTy = MRI.getType(Amt);
5568 
5569   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5570   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5571 
5572   MIRBuilder.setInstrAndDebugLoc(MI);
5573 
5574   // If a rotate in the other direction is supported, use it.
5575   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5576   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5577       isPowerOf2_32(EltSizeInBits))
5578     return lowerRotateWithReverseRotate(MI);
5579 
5580   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5581   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5582   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5583   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5584   Register ShVal;
5585   Register RevShiftVal;
5586   if (isPowerOf2_32(EltSizeInBits)) {
5587     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5588     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5589     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5590     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5591     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5592     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5593     RevShiftVal =
5594         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5595   } else {
5596     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5597     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5598     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5599     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5600     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5601     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5602     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5603     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5604     RevShiftVal =
5605         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5606   }
5607   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5608   MI.eraseFromParent();
5609   return Legalized;
5610 }
5611 
5612 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5613 // representation.
5614 LegalizerHelper::LegalizeResult
5615 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5616   Register Dst = MI.getOperand(0).getReg();
5617   Register Src = MI.getOperand(1).getReg();
5618   const LLT S64 = LLT::scalar(64);
5619   const LLT S32 = LLT::scalar(32);
5620   const LLT S1 = LLT::scalar(1);
5621 
5622   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5623 
5624   // unsigned cul2f(ulong u) {
5625   //   uint lz = clz(u);
5626   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5627   //   u = (u << lz) & 0x7fffffffffffffffUL;
5628   //   ulong t = u & 0xffffffffffUL;
5629   //   uint v = (e << 23) | (uint)(u >> 40);
5630   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5631   //   return as_float(v + r);
5632   // }
5633 
5634   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5635   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5636 
5637   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5638 
5639   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5640   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5641 
5642   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5643   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5644 
5645   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5646   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5647 
5648   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5649 
5650   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5651   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5652 
5653   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5654   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5655   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5656 
5657   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5658   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5659   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5660   auto One = MIRBuilder.buildConstant(S32, 1);
5661 
5662   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5663   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5664   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5665   MIRBuilder.buildAdd(Dst, V, R);
5666 
5667   MI.eraseFromParent();
5668   return Legalized;
5669 }
5670 
5671 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5672   Register Dst = MI.getOperand(0).getReg();
5673   Register Src = MI.getOperand(1).getReg();
5674   LLT DstTy = MRI.getType(Dst);
5675   LLT SrcTy = MRI.getType(Src);
5676 
5677   if (SrcTy == LLT::scalar(1)) {
5678     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5679     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5680     MIRBuilder.buildSelect(Dst, Src, True, False);
5681     MI.eraseFromParent();
5682     return Legalized;
5683   }
5684 
5685   if (SrcTy != LLT::scalar(64))
5686     return UnableToLegalize;
5687 
5688   if (DstTy == LLT::scalar(32)) {
5689     // TODO: SelectionDAG has several alternative expansions to port which may
5690     // be more reasonble depending on the available instructions. If a target
5691     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5692     // intermediate type, this is probably worse.
5693     return lowerU64ToF32BitOps(MI);
5694   }
5695 
5696   return UnableToLegalize;
5697 }
5698 
5699 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5700   Register Dst = MI.getOperand(0).getReg();
5701   Register Src = MI.getOperand(1).getReg();
5702   LLT DstTy = MRI.getType(Dst);
5703   LLT SrcTy = MRI.getType(Src);
5704 
5705   const LLT S64 = LLT::scalar(64);
5706   const LLT S32 = LLT::scalar(32);
5707   const LLT S1 = LLT::scalar(1);
5708 
5709   if (SrcTy == S1) {
5710     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5711     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5712     MIRBuilder.buildSelect(Dst, Src, True, False);
5713     MI.eraseFromParent();
5714     return Legalized;
5715   }
5716 
5717   if (SrcTy != S64)
5718     return UnableToLegalize;
5719 
5720   if (DstTy == S32) {
5721     // signed cl2f(long l) {
5722     //   long s = l >> 63;
5723     //   float r = cul2f((l + s) ^ s);
5724     //   return s ? -r : r;
5725     // }
5726     Register L = Src;
5727     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5728     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5729 
5730     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5731     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5732     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5733 
5734     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5735     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5736                                             MIRBuilder.buildConstant(S64, 0));
5737     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5738     MI.eraseFromParent();
5739     return Legalized;
5740   }
5741 
5742   return UnableToLegalize;
5743 }
5744 
5745 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5746   Register Dst = MI.getOperand(0).getReg();
5747   Register Src = MI.getOperand(1).getReg();
5748   LLT DstTy = MRI.getType(Dst);
5749   LLT SrcTy = MRI.getType(Src);
5750   const LLT S64 = LLT::scalar(64);
5751   const LLT S32 = LLT::scalar(32);
5752 
5753   if (SrcTy != S64 && SrcTy != S32)
5754     return UnableToLegalize;
5755   if (DstTy != S32 && DstTy != S64)
5756     return UnableToLegalize;
5757 
5758   // FPTOSI gives same result as FPTOUI for positive signed integers.
5759   // FPTOUI needs to deal with fp values that convert to unsigned integers
5760   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5761 
5762   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5763   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5764                                                 : APFloat::IEEEdouble(),
5765                     APInt::getNullValue(SrcTy.getSizeInBits()));
5766   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5767 
5768   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5769 
5770   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5771   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5772   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5773   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5774   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5775   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5776   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5777 
5778   const LLT S1 = LLT::scalar(1);
5779 
5780   MachineInstrBuilder FCMP =
5781       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5782   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5783 
5784   MI.eraseFromParent();
5785   return Legalized;
5786 }
5787 
5788 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5789   Register Dst = MI.getOperand(0).getReg();
5790   Register Src = MI.getOperand(1).getReg();
5791   LLT DstTy = MRI.getType(Dst);
5792   LLT SrcTy = MRI.getType(Src);
5793   const LLT S64 = LLT::scalar(64);
5794   const LLT S32 = LLT::scalar(32);
5795 
5796   // FIXME: Only f32 to i64 conversions are supported.
5797   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5798     return UnableToLegalize;
5799 
5800   // Expand f32 -> i64 conversion
5801   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5802   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5803 
5804   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5805 
5806   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5807   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5808 
5809   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5810   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5811 
5812   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5813                                            APInt::getSignMask(SrcEltBits));
5814   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5815   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5816   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5817   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5818 
5819   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5820   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5821   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5822 
5823   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5824   R = MIRBuilder.buildZExt(DstTy, R);
5825 
5826   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5827   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5828   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5829   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5830 
5831   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5832   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5833 
5834   const LLT S1 = LLT::scalar(1);
5835   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5836                                     S1, Exponent, ExponentLoBit);
5837 
5838   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5839 
5840   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5841   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5842 
5843   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5844 
5845   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5846                                           S1, Exponent, ZeroSrcTy);
5847 
5848   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5849   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5850 
5851   MI.eraseFromParent();
5852   return Legalized;
5853 }
5854 
5855 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5856 LegalizerHelper::LegalizeResult
5857 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5858   Register Dst = MI.getOperand(0).getReg();
5859   Register Src = MI.getOperand(1).getReg();
5860 
5861   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5862     return UnableToLegalize;
5863 
5864   const unsigned ExpMask = 0x7ff;
5865   const unsigned ExpBiasf64 = 1023;
5866   const unsigned ExpBiasf16 = 15;
5867   const LLT S32 = LLT::scalar(32);
5868   const LLT S1 = LLT::scalar(1);
5869 
5870   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5871   Register U = Unmerge.getReg(0);
5872   Register UH = Unmerge.getReg(1);
5873 
5874   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5875   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5876 
5877   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5878   // add the f16 bias (15) to get the biased exponent for the f16 format.
5879   E = MIRBuilder.buildAdd(
5880     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5881 
5882   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5883   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5884 
5885   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5886                                        MIRBuilder.buildConstant(S32, 0x1ff));
5887   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5888 
5889   auto Zero = MIRBuilder.buildConstant(S32, 0);
5890   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5891   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5892   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5893 
5894   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5895   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5896   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5897   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5898 
5899   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5900   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5901 
5902   // N = M | (E << 12);
5903   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5904   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5905 
5906   // B = clamp(1-E, 0, 13);
5907   auto One = MIRBuilder.buildConstant(S32, 1);
5908   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5909   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5910   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5911 
5912   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5913                                        MIRBuilder.buildConstant(S32, 0x1000));
5914 
5915   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5916   auto D0 = MIRBuilder.buildShl(S32, D, B);
5917 
5918   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5919                                              D0, SigSetHigh);
5920   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5921   D = MIRBuilder.buildOr(S32, D, D1);
5922 
5923   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5924   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5925 
5926   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5927   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5928 
5929   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5930                                        MIRBuilder.buildConstant(S32, 3));
5931   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5932 
5933   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5934                                        MIRBuilder.buildConstant(S32, 5));
5935   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5936 
5937   V1 = MIRBuilder.buildOr(S32, V0, V1);
5938   V = MIRBuilder.buildAdd(S32, V, V1);
5939 
5940   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5941                                        E, MIRBuilder.buildConstant(S32, 30));
5942   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5943                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5944 
5945   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5946                                          E, MIRBuilder.buildConstant(S32, 1039));
5947   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5948 
5949   // Extract the sign bit.
5950   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5951   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5952 
5953   // Insert the sign bit
5954   V = MIRBuilder.buildOr(S32, Sign, V);
5955 
5956   MIRBuilder.buildTrunc(Dst, V);
5957   MI.eraseFromParent();
5958   return Legalized;
5959 }
5960 
5961 LegalizerHelper::LegalizeResult
5962 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5963   Register Dst = MI.getOperand(0).getReg();
5964   Register Src = MI.getOperand(1).getReg();
5965 
5966   LLT DstTy = MRI.getType(Dst);
5967   LLT SrcTy = MRI.getType(Src);
5968   const LLT S64 = LLT::scalar(64);
5969   const LLT S16 = LLT::scalar(16);
5970 
5971   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5972     return lowerFPTRUNC_F64_TO_F16(MI);
5973 
5974   return UnableToLegalize;
5975 }
5976 
5977 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5978 // multiplication tree.
5979 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5980   Register Dst = MI.getOperand(0).getReg();
5981   Register Src0 = MI.getOperand(1).getReg();
5982   Register Src1 = MI.getOperand(2).getReg();
5983   LLT Ty = MRI.getType(Dst);
5984 
5985   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5986   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5987   MI.eraseFromParent();
5988   return Legalized;
5989 }
5990 
5991 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5992   switch (Opc) {
5993   case TargetOpcode::G_SMIN:
5994     return CmpInst::ICMP_SLT;
5995   case TargetOpcode::G_SMAX:
5996     return CmpInst::ICMP_SGT;
5997   case TargetOpcode::G_UMIN:
5998     return CmpInst::ICMP_ULT;
5999   case TargetOpcode::G_UMAX:
6000     return CmpInst::ICMP_UGT;
6001   default:
6002     llvm_unreachable("not in integer min/max");
6003   }
6004 }
6005 
6006 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6007   Register Dst = MI.getOperand(0).getReg();
6008   Register Src0 = MI.getOperand(1).getReg();
6009   Register Src1 = MI.getOperand(2).getReg();
6010 
6011   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6012   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6013 
6014   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6015   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6016 
6017   MI.eraseFromParent();
6018   return Legalized;
6019 }
6020 
6021 LegalizerHelper::LegalizeResult
6022 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6023   Register Dst = MI.getOperand(0).getReg();
6024   Register Src0 = MI.getOperand(1).getReg();
6025   Register Src1 = MI.getOperand(2).getReg();
6026 
6027   const LLT Src0Ty = MRI.getType(Src0);
6028   const LLT Src1Ty = MRI.getType(Src1);
6029 
6030   const int Src0Size = Src0Ty.getScalarSizeInBits();
6031   const int Src1Size = Src1Ty.getScalarSizeInBits();
6032 
6033   auto SignBitMask = MIRBuilder.buildConstant(
6034     Src0Ty, APInt::getSignMask(Src0Size));
6035 
6036   auto NotSignBitMask = MIRBuilder.buildConstant(
6037     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6038 
6039   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6040   Register And1;
6041   if (Src0Ty == Src1Ty) {
6042     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6043   } else if (Src0Size > Src1Size) {
6044     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6045     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6046     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6047     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6048   } else {
6049     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6050     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6051     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6052     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6053   }
6054 
6055   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6056   // constants are a nan and -0.0, but the final result should preserve
6057   // everything.
6058   unsigned Flags = MI.getFlags();
6059   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6060 
6061   MI.eraseFromParent();
6062   return Legalized;
6063 }
6064 
6065 LegalizerHelper::LegalizeResult
6066 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6067   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6068     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6069 
6070   Register Dst = MI.getOperand(0).getReg();
6071   Register Src0 = MI.getOperand(1).getReg();
6072   Register Src1 = MI.getOperand(2).getReg();
6073   LLT Ty = MRI.getType(Dst);
6074 
6075   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6076     // Insert canonicalizes if it's possible we need to quiet to get correct
6077     // sNaN behavior.
6078 
6079     // Note this must be done here, and not as an optimization combine in the
6080     // absence of a dedicate quiet-snan instruction as we're using an
6081     // omni-purpose G_FCANONICALIZE.
6082     if (!isKnownNeverSNaN(Src0, MRI))
6083       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6084 
6085     if (!isKnownNeverSNaN(Src1, MRI))
6086       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6087   }
6088 
6089   // If there are no nans, it's safe to simply replace this with the non-IEEE
6090   // version.
6091   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6092   MI.eraseFromParent();
6093   return Legalized;
6094 }
6095 
6096 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6097   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6098   Register DstReg = MI.getOperand(0).getReg();
6099   LLT Ty = MRI.getType(DstReg);
6100   unsigned Flags = MI.getFlags();
6101 
6102   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6103                                   Flags);
6104   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6105   MI.eraseFromParent();
6106   return Legalized;
6107 }
6108 
6109 LegalizerHelper::LegalizeResult
6110 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6111   Register DstReg = MI.getOperand(0).getReg();
6112   Register X = MI.getOperand(1).getReg();
6113   const unsigned Flags = MI.getFlags();
6114   const LLT Ty = MRI.getType(DstReg);
6115   const LLT CondTy = Ty.changeElementSize(1);
6116 
6117   // round(x) =>
6118   //  t = trunc(x);
6119   //  d = fabs(x - t);
6120   //  o = copysign(1.0f, x);
6121   //  return t + (d >= 0.5 ? o : 0.0);
6122 
6123   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6124 
6125   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6126   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6127   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6128   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6129   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6130   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6131 
6132   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6133                                   Flags);
6134   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6135 
6136   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6137 
6138   MI.eraseFromParent();
6139   return Legalized;
6140 }
6141 
6142 LegalizerHelper::LegalizeResult
6143 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6144   Register DstReg = MI.getOperand(0).getReg();
6145   Register SrcReg = MI.getOperand(1).getReg();
6146   unsigned Flags = MI.getFlags();
6147   LLT Ty = MRI.getType(DstReg);
6148   const LLT CondTy = Ty.changeElementSize(1);
6149 
6150   // result = trunc(src);
6151   // if (src < 0.0 && src != result)
6152   //   result += -1.0.
6153 
6154   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6155   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6156 
6157   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6158                                   SrcReg, Zero, Flags);
6159   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6160                                       SrcReg, Trunc, Flags);
6161   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6162   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6163 
6164   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6165   MI.eraseFromParent();
6166   return Legalized;
6167 }
6168 
6169 LegalizerHelper::LegalizeResult
6170 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6171   const unsigned NumOps = MI.getNumOperands();
6172   Register DstReg = MI.getOperand(0).getReg();
6173   Register Src0Reg = MI.getOperand(1).getReg();
6174   LLT DstTy = MRI.getType(DstReg);
6175   LLT SrcTy = MRI.getType(Src0Reg);
6176   unsigned PartSize = SrcTy.getSizeInBits();
6177 
6178   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6179   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6180 
6181   for (unsigned I = 2; I != NumOps; ++I) {
6182     const unsigned Offset = (I - 1) * PartSize;
6183 
6184     Register SrcReg = MI.getOperand(I).getReg();
6185     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6186 
6187     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6188       MRI.createGenericVirtualRegister(WideTy);
6189 
6190     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6191     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6192     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6193     ResultReg = NextResult;
6194   }
6195 
6196   if (DstTy.isPointer()) {
6197     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6198           DstTy.getAddressSpace())) {
6199       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6200       return UnableToLegalize;
6201     }
6202 
6203     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6204   }
6205 
6206   MI.eraseFromParent();
6207   return Legalized;
6208 }
6209 
6210 LegalizerHelper::LegalizeResult
6211 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6212   const unsigned NumDst = MI.getNumOperands() - 1;
6213   Register SrcReg = MI.getOperand(NumDst).getReg();
6214   Register Dst0Reg = MI.getOperand(0).getReg();
6215   LLT DstTy = MRI.getType(Dst0Reg);
6216   if (DstTy.isPointer())
6217     return UnableToLegalize; // TODO
6218 
6219   SrcReg = coerceToScalar(SrcReg);
6220   if (!SrcReg)
6221     return UnableToLegalize;
6222 
6223   // Expand scalarizing unmerge as bitcast to integer and shift.
6224   LLT IntTy = MRI.getType(SrcReg);
6225 
6226   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6227 
6228   const unsigned DstSize = DstTy.getSizeInBits();
6229   unsigned Offset = DstSize;
6230   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6231     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6232     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6233     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6234   }
6235 
6236   MI.eraseFromParent();
6237   return Legalized;
6238 }
6239 
6240 /// Lower a vector extract or insert by writing the vector to a stack temporary
6241 /// and reloading the element or vector.
6242 ///
6243 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6244 ///  =>
6245 ///  %stack_temp = G_FRAME_INDEX
6246 ///  G_STORE %vec, %stack_temp
6247 ///  %idx = clamp(%idx, %vec.getNumElements())
6248 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6249 ///  %dst = G_LOAD %element_ptr
6250 LegalizerHelper::LegalizeResult
6251 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6252   Register DstReg = MI.getOperand(0).getReg();
6253   Register SrcVec = MI.getOperand(1).getReg();
6254   Register InsertVal;
6255   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6256     InsertVal = MI.getOperand(2).getReg();
6257 
6258   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6259 
6260   LLT VecTy = MRI.getType(SrcVec);
6261   LLT EltTy = VecTy.getElementType();
6262   if (!EltTy.isByteSized()) { // Not implemented.
6263     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6264     return UnableToLegalize;
6265   }
6266 
6267   unsigned EltBytes = EltTy.getSizeInBytes();
6268   Align VecAlign = getStackTemporaryAlignment(VecTy);
6269   Align EltAlign;
6270 
6271   MachinePointerInfo PtrInfo;
6272   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6273                                         VecAlign, PtrInfo);
6274   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6275 
6276   // Get the pointer to the element, and be sure not to hit undefined behavior
6277   // if the index is out of bounds.
6278   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6279 
6280   int64_t IdxVal;
6281   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6282     int64_t Offset = IdxVal * EltBytes;
6283     PtrInfo = PtrInfo.getWithOffset(Offset);
6284     EltAlign = commonAlignment(VecAlign, Offset);
6285   } else {
6286     // We lose information with a variable offset.
6287     EltAlign = getStackTemporaryAlignment(EltTy);
6288     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6289   }
6290 
6291   if (InsertVal) {
6292     // Write the inserted element
6293     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6294 
6295     // Reload the whole vector.
6296     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6297   } else {
6298     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6299   }
6300 
6301   MI.eraseFromParent();
6302   return Legalized;
6303 }
6304 
6305 LegalizerHelper::LegalizeResult
6306 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6307   Register DstReg = MI.getOperand(0).getReg();
6308   Register Src0Reg = MI.getOperand(1).getReg();
6309   Register Src1Reg = MI.getOperand(2).getReg();
6310   LLT Src0Ty = MRI.getType(Src0Reg);
6311   LLT DstTy = MRI.getType(DstReg);
6312   LLT IdxTy = LLT::scalar(32);
6313 
6314   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6315 
6316   if (DstTy.isScalar()) {
6317     if (Src0Ty.isVector())
6318       return UnableToLegalize;
6319 
6320     // This is just a SELECT.
6321     assert(Mask.size() == 1 && "Expected a single mask element");
6322     Register Val;
6323     if (Mask[0] < 0 || Mask[0] > 1)
6324       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6325     else
6326       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6327     MIRBuilder.buildCopy(DstReg, Val);
6328     MI.eraseFromParent();
6329     return Legalized;
6330   }
6331 
6332   Register Undef;
6333   SmallVector<Register, 32> BuildVec;
6334   LLT EltTy = DstTy.getElementType();
6335 
6336   for (int Idx : Mask) {
6337     if (Idx < 0) {
6338       if (!Undef.isValid())
6339         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6340       BuildVec.push_back(Undef);
6341       continue;
6342     }
6343 
6344     if (Src0Ty.isScalar()) {
6345       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6346     } else {
6347       int NumElts = Src0Ty.getNumElements();
6348       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6349       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6350       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6351       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6352       BuildVec.push_back(Extract.getReg(0));
6353     }
6354   }
6355 
6356   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6357   MI.eraseFromParent();
6358   return Legalized;
6359 }
6360 
6361 LegalizerHelper::LegalizeResult
6362 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6363   const auto &MF = *MI.getMF();
6364   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6365   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6366     return UnableToLegalize;
6367 
6368   Register Dst = MI.getOperand(0).getReg();
6369   Register AllocSize = MI.getOperand(1).getReg();
6370   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6371 
6372   LLT PtrTy = MRI.getType(Dst);
6373   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6374 
6375   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6376   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6377   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6378 
6379   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6380   // have to generate an extra instruction to negate the alloc and then use
6381   // G_PTR_ADD to add the negative offset.
6382   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6383   if (Alignment > Align(1)) {
6384     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6385     AlignMask.negate();
6386     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6387     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6388   }
6389 
6390   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6391   MIRBuilder.buildCopy(SPReg, SPTmp);
6392   MIRBuilder.buildCopy(Dst, SPTmp);
6393 
6394   MI.eraseFromParent();
6395   return Legalized;
6396 }
6397 
6398 LegalizerHelper::LegalizeResult
6399 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6400   Register Dst = MI.getOperand(0).getReg();
6401   Register Src = MI.getOperand(1).getReg();
6402   unsigned Offset = MI.getOperand(2).getImm();
6403 
6404   LLT DstTy = MRI.getType(Dst);
6405   LLT SrcTy = MRI.getType(Src);
6406 
6407   if (DstTy.isScalar() &&
6408       (SrcTy.isScalar() ||
6409        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6410     LLT SrcIntTy = SrcTy;
6411     if (!SrcTy.isScalar()) {
6412       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6413       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6414     }
6415 
6416     if (Offset == 0)
6417       MIRBuilder.buildTrunc(Dst, Src);
6418     else {
6419       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6420       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6421       MIRBuilder.buildTrunc(Dst, Shr);
6422     }
6423 
6424     MI.eraseFromParent();
6425     return Legalized;
6426   }
6427 
6428   return UnableToLegalize;
6429 }
6430 
6431 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6432   Register Dst = MI.getOperand(0).getReg();
6433   Register Src = MI.getOperand(1).getReg();
6434   Register InsertSrc = MI.getOperand(2).getReg();
6435   uint64_t Offset = MI.getOperand(3).getImm();
6436 
6437   LLT DstTy = MRI.getType(Src);
6438   LLT InsertTy = MRI.getType(InsertSrc);
6439 
6440   if (InsertTy.isVector() ||
6441       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6442     return UnableToLegalize;
6443 
6444   const DataLayout &DL = MIRBuilder.getDataLayout();
6445   if ((DstTy.isPointer() &&
6446        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6447       (InsertTy.isPointer() &&
6448        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6449     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6450     return UnableToLegalize;
6451   }
6452 
6453   LLT IntDstTy = DstTy;
6454 
6455   if (!DstTy.isScalar()) {
6456     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6457     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6458   }
6459 
6460   if (!InsertTy.isScalar()) {
6461     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6462     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6463   }
6464 
6465   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6466   if (Offset != 0) {
6467     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6468     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6469   }
6470 
6471   APInt MaskVal = APInt::getBitsSetWithWrap(
6472       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6473 
6474   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6475   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6476   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6477 
6478   MIRBuilder.buildCast(Dst, Or);
6479   MI.eraseFromParent();
6480   return Legalized;
6481 }
6482 
6483 LegalizerHelper::LegalizeResult
6484 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6485   Register Dst0 = MI.getOperand(0).getReg();
6486   Register Dst1 = MI.getOperand(1).getReg();
6487   Register LHS = MI.getOperand(2).getReg();
6488   Register RHS = MI.getOperand(3).getReg();
6489   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6490 
6491   LLT Ty = MRI.getType(Dst0);
6492   LLT BoolTy = MRI.getType(Dst1);
6493 
6494   if (IsAdd)
6495     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6496   else
6497     MIRBuilder.buildSub(Dst0, LHS, RHS);
6498 
6499   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6500 
6501   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6502 
6503   // For an addition, the result should be less than one of the operands (LHS)
6504   // if and only if the other operand (RHS) is negative, otherwise there will
6505   // be overflow.
6506   // For a subtraction, the result should be less than one of the operands
6507   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6508   // otherwise there will be overflow.
6509   auto ResultLowerThanLHS =
6510       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6511   auto ConditionRHS = MIRBuilder.buildICmp(
6512       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6513 
6514   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6515   MI.eraseFromParent();
6516   return Legalized;
6517 }
6518 
6519 LegalizerHelper::LegalizeResult
6520 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6521   Register Res = MI.getOperand(0).getReg();
6522   Register LHS = MI.getOperand(1).getReg();
6523   Register RHS = MI.getOperand(2).getReg();
6524   LLT Ty = MRI.getType(Res);
6525   bool IsSigned;
6526   bool IsAdd;
6527   unsigned BaseOp;
6528   switch (MI.getOpcode()) {
6529   default:
6530     llvm_unreachable("unexpected addsat/subsat opcode");
6531   case TargetOpcode::G_UADDSAT:
6532     IsSigned = false;
6533     IsAdd = true;
6534     BaseOp = TargetOpcode::G_ADD;
6535     break;
6536   case TargetOpcode::G_SADDSAT:
6537     IsSigned = true;
6538     IsAdd = true;
6539     BaseOp = TargetOpcode::G_ADD;
6540     break;
6541   case TargetOpcode::G_USUBSAT:
6542     IsSigned = false;
6543     IsAdd = false;
6544     BaseOp = TargetOpcode::G_SUB;
6545     break;
6546   case TargetOpcode::G_SSUBSAT:
6547     IsSigned = true;
6548     IsAdd = false;
6549     BaseOp = TargetOpcode::G_SUB;
6550     break;
6551   }
6552 
6553   if (IsSigned) {
6554     // sadd.sat(a, b) ->
6555     //   hi = 0x7fffffff - smax(a, 0)
6556     //   lo = 0x80000000 - smin(a, 0)
6557     //   a + smin(smax(lo, b), hi)
6558     // ssub.sat(a, b) ->
6559     //   lo = smax(a, -1) - 0x7fffffff
6560     //   hi = smin(a, -1) - 0x80000000
6561     //   a - smin(smax(lo, b), hi)
6562     // TODO: AMDGPU can use a "median of 3" instruction here:
6563     //   a +/- med3(lo, b, hi)
6564     uint64_t NumBits = Ty.getScalarSizeInBits();
6565     auto MaxVal =
6566         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6567     auto MinVal =
6568         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6569     MachineInstrBuilder Hi, Lo;
6570     if (IsAdd) {
6571       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6572       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6573       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6574     } else {
6575       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6576       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6577                                MaxVal);
6578       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6579                                MinVal);
6580     }
6581     auto RHSClamped =
6582         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6583     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6584   } else {
6585     // uadd.sat(a, b) -> a + umin(~a, b)
6586     // usub.sat(a, b) -> a - umin(a, b)
6587     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6588     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6589     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6590   }
6591 
6592   MI.eraseFromParent();
6593   return Legalized;
6594 }
6595 
6596 LegalizerHelper::LegalizeResult
6597 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6598   Register Res = MI.getOperand(0).getReg();
6599   Register LHS = MI.getOperand(1).getReg();
6600   Register RHS = MI.getOperand(2).getReg();
6601   LLT Ty = MRI.getType(Res);
6602   LLT BoolTy = Ty.changeElementSize(1);
6603   bool IsSigned;
6604   bool IsAdd;
6605   unsigned OverflowOp;
6606   switch (MI.getOpcode()) {
6607   default:
6608     llvm_unreachable("unexpected addsat/subsat opcode");
6609   case TargetOpcode::G_UADDSAT:
6610     IsSigned = false;
6611     IsAdd = true;
6612     OverflowOp = TargetOpcode::G_UADDO;
6613     break;
6614   case TargetOpcode::G_SADDSAT:
6615     IsSigned = true;
6616     IsAdd = true;
6617     OverflowOp = TargetOpcode::G_SADDO;
6618     break;
6619   case TargetOpcode::G_USUBSAT:
6620     IsSigned = false;
6621     IsAdd = false;
6622     OverflowOp = TargetOpcode::G_USUBO;
6623     break;
6624   case TargetOpcode::G_SSUBSAT:
6625     IsSigned = true;
6626     IsAdd = false;
6627     OverflowOp = TargetOpcode::G_SSUBO;
6628     break;
6629   }
6630 
6631   auto OverflowRes =
6632       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6633   Register Tmp = OverflowRes.getReg(0);
6634   Register Ov = OverflowRes.getReg(1);
6635   MachineInstrBuilder Clamp;
6636   if (IsSigned) {
6637     // sadd.sat(a, b) ->
6638     //   {tmp, ov} = saddo(a, b)
6639     //   ov ? (tmp >>s 31) + 0x80000000 : r
6640     // ssub.sat(a, b) ->
6641     //   {tmp, ov} = ssubo(a, b)
6642     //   ov ? (tmp >>s 31) + 0x80000000 : r
6643     uint64_t NumBits = Ty.getScalarSizeInBits();
6644     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6645     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6646     auto MinVal =
6647         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6648     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6649   } else {
6650     // uadd.sat(a, b) ->
6651     //   {tmp, ov} = uaddo(a, b)
6652     //   ov ? 0xffffffff : tmp
6653     // usub.sat(a, b) ->
6654     //   {tmp, ov} = usubo(a, b)
6655     //   ov ? 0 : tmp
6656     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6657   }
6658   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6659 
6660   MI.eraseFromParent();
6661   return Legalized;
6662 }
6663 
6664 LegalizerHelper::LegalizeResult
6665 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6666   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6667           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6668          "Expected shlsat opcode!");
6669   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6670   Register Res = MI.getOperand(0).getReg();
6671   Register LHS = MI.getOperand(1).getReg();
6672   Register RHS = MI.getOperand(2).getReg();
6673   LLT Ty = MRI.getType(Res);
6674   LLT BoolTy = Ty.changeElementSize(1);
6675 
6676   unsigned BW = Ty.getScalarSizeInBits();
6677   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6678   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6679                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6680 
6681   MachineInstrBuilder SatVal;
6682   if (IsSigned) {
6683     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6684     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6685     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6686                                     MIRBuilder.buildConstant(Ty, 0));
6687     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6688   } else {
6689     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6690   }
6691   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6692   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6693 
6694   MI.eraseFromParent();
6695   return Legalized;
6696 }
6697 
6698 LegalizerHelper::LegalizeResult
6699 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6700   Register Dst = MI.getOperand(0).getReg();
6701   Register Src = MI.getOperand(1).getReg();
6702   const LLT Ty = MRI.getType(Src);
6703   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6704   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6705 
6706   // Swap most and least significant byte, set remaining bytes in Res to zero.
6707   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6708   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6709   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6710   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6711 
6712   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6713   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6714     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6715     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6716     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6717     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6718     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6719     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6720     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6721     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6722     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6723     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6724     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6725     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6726   }
6727   Res.getInstr()->getOperand(0).setReg(Dst);
6728 
6729   MI.eraseFromParent();
6730   return Legalized;
6731 }
6732 
6733 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6734 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6735                                  MachineInstrBuilder Src, APInt Mask) {
6736   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6737   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6738   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6739   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6740   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6741   return B.buildOr(Dst, LHS, RHS);
6742 }
6743 
6744 LegalizerHelper::LegalizeResult
6745 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6746   Register Dst = MI.getOperand(0).getReg();
6747   Register Src = MI.getOperand(1).getReg();
6748   const LLT Ty = MRI.getType(Src);
6749   unsigned Size = Ty.getSizeInBits();
6750 
6751   MachineInstrBuilder BSWAP =
6752       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6753 
6754   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6755   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6756   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6757   MachineInstrBuilder Swap4 =
6758       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6759 
6760   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6761   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6762   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6763   MachineInstrBuilder Swap2 =
6764       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6765 
6766   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6767   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6768   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6769   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6770 
6771   MI.eraseFromParent();
6772   return Legalized;
6773 }
6774 
6775 LegalizerHelper::LegalizeResult
6776 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6777   MachineFunction &MF = MIRBuilder.getMF();
6778 
6779   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6780   int NameOpIdx = IsRead ? 1 : 0;
6781   int ValRegIndex = IsRead ? 0 : 1;
6782 
6783   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6784   const LLT Ty = MRI.getType(ValReg);
6785   const MDString *RegStr = cast<MDString>(
6786     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6787 
6788   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6789   if (!PhysReg.isValid())
6790     return UnableToLegalize;
6791 
6792   if (IsRead)
6793     MIRBuilder.buildCopy(ValReg, PhysReg);
6794   else
6795     MIRBuilder.buildCopy(PhysReg, ValReg);
6796 
6797   MI.eraseFromParent();
6798   return Legalized;
6799 }
6800 
6801 LegalizerHelper::LegalizeResult
6802 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6803   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6804   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6805   Register Result = MI.getOperand(0).getReg();
6806   LLT OrigTy = MRI.getType(Result);
6807   auto SizeInBits = OrigTy.getScalarSizeInBits();
6808   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6809 
6810   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6811   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6812   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6813   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6814 
6815   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6816   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6817   MIRBuilder.buildTrunc(Result, Shifted);
6818 
6819   MI.eraseFromParent();
6820   return Legalized;
6821 }
6822 
6823 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6824   // Implement vector G_SELECT in terms of XOR, AND, OR.
6825   Register DstReg = MI.getOperand(0).getReg();
6826   Register MaskReg = MI.getOperand(1).getReg();
6827   Register Op1Reg = MI.getOperand(2).getReg();
6828   Register Op2Reg = MI.getOperand(3).getReg();
6829   LLT DstTy = MRI.getType(DstReg);
6830   LLT MaskTy = MRI.getType(MaskReg);
6831   LLT Op1Ty = MRI.getType(Op1Reg);
6832   if (!DstTy.isVector())
6833     return UnableToLegalize;
6834 
6835   // Vector selects can have a scalar predicate. If so, splat into a vector and
6836   // finish for later legalization attempts to try again.
6837   if (MaskTy.isScalar()) {
6838     Register MaskElt = MaskReg;
6839     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6840       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6841     // Generate a vector splat idiom to be pattern matched later.
6842     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6843     Observer.changingInstr(MI);
6844     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6845     Observer.changedInstr(MI);
6846     return Legalized;
6847   }
6848 
6849   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6850     return UnableToLegalize;
6851   }
6852 
6853   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6854   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6855   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6856   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6857   MI.eraseFromParent();
6858   return Legalized;
6859 }
6860 
6861 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
6862   // Split DIVREM into individual instructions.
6863   unsigned Opcode = MI.getOpcode();
6864 
6865   MIRBuilder.buildInstr(
6866       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
6867                                         : TargetOpcode::G_UDIV,
6868       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6869   MIRBuilder.buildInstr(
6870       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
6871                                         : TargetOpcode::G_UREM,
6872       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6873   MI.eraseFromParent();
6874   return Legalized;
6875 }
6876