1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) {
95   MIRBuilder.setChangeObserver(Observer);
96 }
97 
98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
99                                  GISelChangeObserver &Observer,
100                                  MachineIRBuilder &B)
101   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
102     TLI(*MF.getSubtarget().getTargetLowering()) {
103   MIRBuilder.setChangeObserver(Observer);
104 }
105 LegalizerHelper::LegalizeResult
106 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
107   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
108 
109   MIRBuilder.setInstrAndDebugLoc(MI);
110 
111   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
112       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
113     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
114   auto Step = LI.getAction(MI, MRI);
115   switch (Step.Action) {
116   case Legal:
117     LLVM_DEBUG(dbgs() << ".. Already legal\n");
118     return AlreadyLegal;
119   case Libcall:
120     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
121     return libcall(MI);
122   case NarrowScalar:
123     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
124     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
125   case WidenScalar:
126     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
127     return widenScalar(MI, Step.TypeIdx, Step.NewType);
128   case Bitcast:
129     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
130     return bitcast(MI, Step.TypeIdx, Step.NewType);
131   case Lower:
132     LLVM_DEBUG(dbgs() << ".. Lower\n");
133     return lower(MI, Step.TypeIdx, Step.NewType);
134   case FewerElements:
135     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
136     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case MoreElements:
138     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
139     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case Custom:
141     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
142     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
143   default:
144     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
145     return UnableToLegalize;
146   }
147 }
148 
149 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
150                                    SmallVectorImpl<Register> &VRegs) {
151   for (int i = 0; i < NumParts; ++i)
152     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
153   MIRBuilder.buildUnmerge(VRegs, Reg);
154 }
155 
156 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
157                                    LLT MainTy, LLT &LeftoverTy,
158                                    SmallVectorImpl<Register> &VRegs,
159                                    SmallVectorImpl<Register> &LeftoverRegs) {
160   assert(!LeftoverTy.isValid() && "this is an out argument");
161 
162   unsigned RegSize = RegTy.getSizeInBits();
163   unsigned MainSize = MainTy.getSizeInBits();
164   unsigned NumParts = RegSize / MainSize;
165   unsigned LeftoverSize = RegSize - NumParts * MainSize;
166 
167   // Use an unmerge when possible.
168   if (LeftoverSize == 0) {
169     for (unsigned I = 0; I < NumParts; ++I)
170       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
171     MIRBuilder.buildUnmerge(VRegs, Reg);
172     return true;
173   }
174 
175   if (MainTy.isVector()) {
176     unsigned EltSize = MainTy.getScalarSizeInBits();
177     if (LeftoverSize % EltSize != 0)
178       return false;
179     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
180   } else {
181     LeftoverTy = LLT::scalar(LeftoverSize);
182   }
183 
184   // For irregular sizes, extract the individual parts.
185   for (unsigned I = 0; I != NumParts; ++I) {
186     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
187     VRegs.push_back(NewReg);
188     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
189   }
190 
191   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
192        Offset += LeftoverSize) {
193     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
194     LeftoverRegs.push_back(NewReg);
195     MIRBuilder.buildExtract(NewReg, Reg, Offset);
196   }
197 
198   return true;
199 }
200 
201 void LegalizerHelper::insertParts(Register DstReg,
202                                   LLT ResultTy, LLT PartTy,
203                                   ArrayRef<Register> PartRegs,
204                                   LLT LeftoverTy,
205                                   ArrayRef<Register> LeftoverRegs) {
206   if (!LeftoverTy.isValid()) {
207     assert(LeftoverRegs.empty());
208 
209     if (!ResultTy.isVector()) {
210       MIRBuilder.buildMerge(DstReg, PartRegs);
211       return;
212     }
213 
214     if (PartTy.isVector())
215       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
216     else
217       MIRBuilder.buildBuildVector(DstReg, PartRegs);
218     return;
219   }
220 
221   unsigned PartSize = PartTy.getSizeInBits();
222   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
223 
224   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
225   MIRBuilder.buildUndef(CurResultReg);
226 
227   unsigned Offset = 0;
228   for (Register PartReg : PartRegs) {
229     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
230     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
231     CurResultReg = NewResultReg;
232     Offset += PartSize;
233   }
234 
235   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
236     // Use the original output register for the final insert to avoid a copy.
237     Register NewResultReg = (I + 1 == E) ?
238       DstReg : MRI.createGenericVirtualRegister(ResultTy);
239 
240     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
241     CurResultReg = NewResultReg;
242     Offset += LeftoverPartSize;
243   }
244 }
245 
246 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
247 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
248                               const MachineInstr &MI) {
249   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
250 
251   const int NumResults = MI.getNumOperands() - 1;
252   Regs.resize(NumResults);
253   for (int I = 0; I != NumResults; ++I)
254     Regs[I] = MI.getOperand(I).getReg();
255 }
256 
257 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
258                                     LLT NarrowTy, Register SrcReg) {
259   LLT SrcTy = MRI.getType(SrcReg);
260 
261   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
262   if (SrcTy == GCDTy) {
263     // If the source already evenly divides the result type, we don't need to do
264     // anything.
265     Parts.push_back(SrcReg);
266   } else {
267     // Need to split into common type sized pieces.
268     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
269     getUnmergeResults(Parts, *Unmerge);
270   }
271 
272   return GCDTy;
273 }
274 
275 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
276                                          SmallVectorImpl<Register> &VRegs,
277                                          unsigned PadStrategy) {
278   LLT LCMTy = getLCMType(DstTy, NarrowTy);
279 
280   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
281   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
282   int NumOrigSrc = VRegs.size();
283 
284   Register PadReg;
285 
286   // Get a value we can use to pad the source value if the sources won't evenly
287   // cover the result type.
288   if (NumOrigSrc < NumParts * NumSubParts) {
289     if (PadStrategy == TargetOpcode::G_ZEXT)
290       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
291     else if (PadStrategy == TargetOpcode::G_ANYEXT)
292       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
293     else {
294       assert(PadStrategy == TargetOpcode::G_SEXT);
295 
296       // Shift the sign bit of the low register through the high register.
297       auto ShiftAmt =
298         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
299       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
300     }
301   }
302 
303   // Registers for the final merge to be produced.
304   SmallVector<Register, 4> Remerge(NumParts);
305 
306   // Registers needed for intermediate merges, which will be merged into a
307   // source for Remerge.
308   SmallVector<Register, 4> SubMerge(NumSubParts);
309 
310   // Once we've fully read off the end of the original source bits, we can reuse
311   // the same high bits for remaining padding elements.
312   Register AllPadReg;
313 
314   // Build merges to the LCM type to cover the original result type.
315   for (int I = 0; I != NumParts; ++I) {
316     bool AllMergePartsArePadding = true;
317 
318     // Build the requested merges to the requested type.
319     for (int J = 0; J != NumSubParts; ++J) {
320       int Idx = I * NumSubParts + J;
321       if (Idx >= NumOrigSrc) {
322         SubMerge[J] = PadReg;
323         continue;
324       }
325 
326       SubMerge[J] = VRegs[Idx];
327 
328       // There are meaningful bits here we can't reuse later.
329       AllMergePartsArePadding = false;
330     }
331 
332     // If we've filled up a complete piece with padding bits, we can directly
333     // emit the natural sized constant if applicable, rather than a merge of
334     // smaller constants.
335     if (AllMergePartsArePadding && !AllPadReg) {
336       if (PadStrategy == TargetOpcode::G_ANYEXT)
337         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
338       else if (PadStrategy == TargetOpcode::G_ZEXT)
339         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
340 
341       // If this is a sign extension, we can't materialize a trivial constant
342       // with the right type and have to produce a merge.
343     }
344 
345     if (AllPadReg) {
346       // Avoid creating additional instructions if we're just adding additional
347       // copies of padding bits.
348       Remerge[I] = AllPadReg;
349       continue;
350     }
351 
352     if (NumSubParts == 1)
353       Remerge[I] = SubMerge[0];
354     else
355       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
356 
357     // In the sign extend padding case, re-use the first all-signbit merge.
358     if (AllMergePartsArePadding && !AllPadReg)
359       AllPadReg = Remerge[I];
360   }
361 
362   VRegs = std::move(Remerge);
363   return LCMTy;
364 }
365 
366 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
367                                                ArrayRef<Register> RemergeRegs) {
368   LLT DstTy = MRI.getType(DstReg);
369 
370   // Create the merge to the widened source, and extract the relevant bits into
371   // the result.
372 
373   if (DstTy == LCMTy) {
374     MIRBuilder.buildMerge(DstReg, RemergeRegs);
375     return;
376   }
377 
378   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
379   if (DstTy.isScalar() && LCMTy.isScalar()) {
380     MIRBuilder.buildTrunc(DstReg, Remerge);
381     return;
382   }
383 
384   if (LCMTy.isVector()) {
385     MIRBuilder.buildExtract(DstReg, Remerge, 0);
386     return;
387   }
388 
389   llvm_unreachable("unhandled case");
390 }
391 
392 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
393 #define RTLIBCASE_INT(LibcallPrefix)                                           \
394   do {                                                                         \
395     switch (Size) {                                                            \
396     case 32:                                                                   \
397       return RTLIB::LibcallPrefix##32;                                         \
398     case 64:                                                                   \
399       return RTLIB::LibcallPrefix##64;                                         \
400     case 128:                                                                  \
401       return RTLIB::LibcallPrefix##128;                                        \
402     default:                                                                   \
403       llvm_unreachable("unexpected size");                                     \
404     }                                                                          \
405   } while (0)
406 
407 #define RTLIBCASE(LibcallPrefix)                                               \
408   do {                                                                         \
409     switch (Size) {                                                            \
410     case 32:                                                                   \
411       return RTLIB::LibcallPrefix##32;                                         \
412     case 64:                                                                   \
413       return RTLIB::LibcallPrefix##64;                                         \
414     case 80:                                                                   \
415       return RTLIB::LibcallPrefix##80;                                         \
416     case 128:                                                                  \
417       return RTLIB::LibcallPrefix##128;                                        \
418     default:                                                                   \
419       llvm_unreachable("unexpected size");                                     \
420     }                                                                          \
421   } while (0)
422 
423   switch (Opcode) {
424   case TargetOpcode::G_SDIV:
425     RTLIBCASE_INT(SDIV_I);
426   case TargetOpcode::G_UDIV:
427     RTLIBCASE_INT(UDIV_I);
428   case TargetOpcode::G_SREM:
429     RTLIBCASE_INT(SREM_I);
430   case TargetOpcode::G_UREM:
431     RTLIBCASE_INT(UREM_I);
432   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
433     RTLIBCASE_INT(CTLZ_I);
434   case TargetOpcode::G_FADD:
435     RTLIBCASE(ADD_F);
436   case TargetOpcode::G_FSUB:
437     RTLIBCASE(SUB_F);
438   case TargetOpcode::G_FMUL:
439     RTLIBCASE(MUL_F);
440   case TargetOpcode::G_FDIV:
441     RTLIBCASE(DIV_F);
442   case TargetOpcode::G_FEXP:
443     RTLIBCASE(EXP_F);
444   case TargetOpcode::G_FEXP2:
445     RTLIBCASE(EXP2_F);
446   case TargetOpcode::G_FREM:
447     RTLIBCASE(REM_F);
448   case TargetOpcode::G_FPOW:
449     RTLIBCASE(POW_F);
450   case TargetOpcode::G_FMA:
451     RTLIBCASE(FMA_F);
452   case TargetOpcode::G_FSIN:
453     RTLIBCASE(SIN_F);
454   case TargetOpcode::G_FCOS:
455     RTLIBCASE(COS_F);
456   case TargetOpcode::G_FLOG10:
457     RTLIBCASE(LOG10_F);
458   case TargetOpcode::G_FLOG:
459     RTLIBCASE(LOG_F);
460   case TargetOpcode::G_FLOG2:
461     RTLIBCASE(LOG2_F);
462   case TargetOpcode::G_FCEIL:
463     RTLIBCASE(CEIL_F);
464   case TargetOpcode::G_FFLOOR:
465     RTLIBCASE(FLOOR_F);
466   case TargetOpcode::G_FMINNUM:
467     RTLIBCASE(FMIN_F);
468   case TargetOpcode::G_FMAXNUM:
469     RTLIBCASE(FMAX_F);
470   case TargetOpcode::G_FSQRT:
471     RTLIBCASE(SQRT_F);
472   case TargetOpcode::G_FRINT:
473     RTLIBCASE(RINT_F);
474   case TargetOpcode::G_FNEARBYINT:
475     RTLIBCASE(NEARBYINT_F);
476   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
477     RTLIBCASE(ROUNDEVEN_F);
478   }
479   llvm_unreachable("Unknown libcall function");
480 }
481 
482 /// True if an instruction is in tail position in its caller. Intended for
483 /// legalizing libcalls as tail calls when possible.
484 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
485                                     MachineInstr &MI) {
486   MachineBasicBlock &MBB = *MI.getParent();
487   const Function &F = MBB.getParent()->getFunction();
488 
489   // Conservatively require the attributes of the call to match those of
490   // the return. Ignore NoAlias and NonNull because they don't affect the
491   // call sequence.
492   AttributeList CallerAttrs = F.getAttributes();
493   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
494           .removeAttribute(Attribute::NoAlias)
495           .removeAttribute(Attribute::NonNull)
496           .hasAttributes())
497     return false;
498 
499   // It's not safe to eliminate the sign / zero extension of the return value.
500   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
501       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
502     return false;
503 
504   // Only tail call if the following instruction is a standard return.
505   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
506   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
507     return false;
508 
509   return true;
510 }
511 
512 LegalizerHelper::LegalizeResult
513 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
514                     const CallLowering::ArgInfo &Result,
515                     ArrayRef<CallLowering::ArgInfo> Args,
516                     const CallingConv::ID CC) {
517   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
518 
519   CallLowering::CallLoweringInfo Info;
520   Info.CallConv = CC;
521   Info.Callee = MachineOperand::CreateES(Name);
522   Info.OrigRet = Result;
523   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
524   if (!CLI.lowerCall(MIRBuilder, Info))
525     return LegalizerHelper::UnableToLegalize;
526 
527   return LegalizerHelper::Legalized;
528 }
529 
530 LegalizerHelper::LegalizeResult
531 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
532                     const CallLowering::ArgInfo &Result,
533                     ArrayRef<CallLowering::ArgInfo> Args) {
534   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
535   const char *Name = TLI.getLibcallName(Libcall);
536   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
537   return createLibcall(MIRBuilder, Name, Result, Args, CC);
538 }
539 
540 // Useful for libcalls where all operands have the same type.
541 static LegalizerHelper::LegalizeResult
542 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
543               Type *OpType) {
544   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
545 
546   SmallVector<CallLowering::ArgInfo, 3> Args;
547   for (unsigned i = 1; i < MI.getNumOperands(); i++)
548     Args.push_back({MI.getOperand(i).getReg(), OpType});
549   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
550                        Args);
551 }
552 
553 LegalizerHelper::LegalizeResult
554 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
555                        MachineInstr &MI) {
556   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
557   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
558 
559   SmallVector<CallLowering::ArgInfo, 3> Args;
560   // Add all the args, except for the last which is an imm denoting 'tail'.
561   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
562     Register Reg = MI.getOperand(i).getReg();
563 
564     // Need derive an IR type for call lowering.
565     LLT OpLLT = MRI.getType(Reg);
566     Type *OpTy = nullptr;
567     if (OpLLT.isPointer())
568       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
569     else
570       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
571     Args.push_back({Reg, OpTy});
572   }
573 
574   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
575   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
576   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
577   RTLIB::Libcall RTLibcall;
578   switch (ID) {
579   case Intrinsic::memcpy:
580     RTLibcall = RTLIB::MEMCPY;
581     break;
582   case Intrinsic::memset:
583     RTLibcall = RTLIB::MEMSET;
584     break;
585   case Intrinsic::memmove:
586     RTLibcall = RTLIB::MEMMOVE;
587     break;
588   default:
589     return LegalizerHelper::UnableToLegalize;
590   }
591   const char *Name = TLI.getLibcallName(RTLibcall);
592 
593   MIRBuilder.setInstrAndDebugLoc(MI);
594 
595   CallLowering::CallLoweringInfo Info;
596   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
597   Info.Callee = MachineOperand::CreateES(Name);
598   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
599   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
600                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
601 
602   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
603   if (!CLI.lowerCall(MIRBuilder, Info))
604     return LegalizerHelper::UnableToLegalize;
605 
606   if (Info.LoweredTailCall) {
607     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
608     // We must have a return following the call (or debug insts) to get past
609     // isLibCallInTailPosition.
610     do {
611       MachineInstr *Next = MI.getNextNode();
612       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
613              "Expected instr following MI to be return or debug inst?");
614       // We lowered a tail call, so the call is now the return from the block.
615       // Delete the old return.
616       Next->eraseFromParent();
617     } while (MI.getNextNode());
618   }
619 
620   return LegalizerHelper::Legalized;
621 }
622 
623 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
624                                        Type *FromType) {
625   auto ToMVT = MVT::getVT(ToType);
626   auto FromMVT = MVT::getVT(FromType);
627 
628   switch (Opcode) {
629   case TargetOpcode::G_FPEXT:
630     return RTLIB::getFPEXT(FromMVT, ToMVT);
631   case TargetOpcode::G_FPTRUNC:
632     return RTLIB::getFPROUND(FromMVT, ToMVT);
633   case TargetOpcode::G_FPTOSI:
634     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
635   case TargetOpcode::G_FPTOUI:
636     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
637   case TargetOpcode::G_SITOFP:
638     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
639   case TargetOpcode::G_UITOFP:
640     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
641   }
642   llvm_unreachable("Unsupported libcall function");
643 }
644 
645 static LegalizerHelper::LegalizeResult
646 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
647                   Type *FromType) {
648   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
649   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
650                        {{MI.getOperand(1).getReg(), FromType}});
651 }
652 
653 LegalizerHelper::LegalizeResult
654 LegalizerHelper::libcall(MachineInstr &MI) {
655   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
656   unsigned Size = LLTy.getSizeInBits();
657   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
658 
659   switch (MI.getOpcode()) {
660   default:
661     return UnableToLegalize;
662   case TargetOpcode::G_SDIV:
663   case TargetOpcode::G_UDIV:
664   case TargetOpcode::G_SREM:
665   case TargetOpcode::G_UREM:
666   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
667     Type *HLTy = IntegerType::get(Ctx, Size);
668     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
669     if (Status != Legalized)
670       return Status;
671     break;
672   }
673   case TargetOpcode::G_FADD:
674   case TargetOpcode::G_FSUB:
675   case TargetOpcode::G_FMUL:
676   case TargetOpcode::G_FDIV:
677   case TargetOpcode::G_FMA:
678   case TargetOpcode::G_FPOW:
679   case TargetOpcode::G_FREM:
680   case TargetOpcode::G_FCOS:
681   case TargetOpcode::G_FSIN:
682   case TargetOpcode::G_FLOG10:
683   case TargetOpcode::G_FLOG:
684   case TargetOpcode::G_FLOG2:
685   case TargetOpcode::G_FEXP:
686   case TargetOpcode::G_FEXP2:
687   case TargetOpcode::G_FCEIL:
688   case TargetOpcode::G_FFLOOR:
689   case TargetOpcode::G_FMINNUM:
690   case TargetOpcode::G_FMAXNUM:
691   case TargetOpcode::G_FSQRT:
692   case TargetOpcode::G_FRINT:
693   case TargetOpcode::G_FNEARBYINT:
694   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
695     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
696     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
697       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
698       return UnableToLegalize;
699     }
700     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
701     if (Status != Legalized)
702       return Status;
703     break;
704   }
705   case TargetOpcode::G_FPEXT:
706   case TargetOpcode::G_FPTRUNC: {
707     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
708     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
709     if (!FromTy || !ToTy)
710       return UnableToLegalize;
711     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
712     if (Status != Legalized)
713       return Status;
714     break;
715   }
716   case TargetOpcode::G_FPTOSI:
717   case TargetOpcode::G_FPTOUI: {
718     // FIXME: Support other types
719     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
720     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
721     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
722       return UnableToLegalize;
723     LegalizeResult Status = conversionLibcall(
724         MI, MIRBuilder,
725         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
726         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
727     if (Status != Legalized)
728       return Status;
729     break;
730   }
731   case TargetOpcode::G_SITOFP:
732   case TargetOpcode::G_UITOFP: {
733     // FIXME: Support other types
734     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
735     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
736     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
737       return UnableToLegalize;
738     LegalizeResult Status = conversionLibcall(
739         MI, MIRBuilder,
740         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
741         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
742     if (Status != Legalized)
743       return Status;
744     break;
745   }
746   }
747 
748   MI.eraseFromParent();
749   return Legalized;
750 }
751 
752 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
753                                                               unsigned TypeIdx,
754                                                               LLT NarrowTy) {
755   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
756   uint64_t NarrowSize = NarrowTy.getSizeInBits();
757 
758   switch (MI.getOpcode()) {
759   default:
760     return UnableToLegalize;
761   case TargetOpcode::G_IMPLICIT_DEF: {
762     Register DstReg = MI.getOperand(0).getReg();
763     LLT DstTy = MRI.getType(DstReg);
764 
765     // If SizeOp0 is not an exact multiple of NarrowSize, emit
766     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
767     // FIXME: Although this would also be legal for the general case, it causes
768     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
769     //  combines not being hit). This seems to be a problem related to the
770     //  artifact combiner.
771     if (SizeOp0 % NarrowSize != 0) {
772       LLT ImplicitTy = NarrowTy;
773       if (DstTy.isVector())
774         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
775 
776       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
777       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
778 
779       MI.eraseFromParent();
780       return Legalized;
781     }
782 
783     int NumParts = SizeOp0 / NarrowSize;
784 
785     SmallVector<Register, 2> DstRegs;
786     for (int i = 0; i < NumParts; ++i)
787       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
788 
789     if (DstTy.isVector())
790       MIRBuilder.buildBuildVector(DstReg, DstRegs);
791     else
792       MIRBuilder.buildMerge(DstReg, DstRegs);
793     MI.eraseFromParent();
794     return Legalized;
795   }
796   case TargetOpcode::G_CONSTANT: {
797     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
798     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
799     unsigned TotalSize = Ty.getSizeInBits();
800     unsigned NarrowSize = NarrowTy.getSizeInBits();
801     int NumParts = TotalSize / NarrowSize;
802 
803     SmallVector<Register, 4> PartRegs;
804     for (int I = 0; I != NumParts; ++I) {
805       unsigned Offset = I * NarrowSize;
806       auto K = MIRBuilder.buildConstant(NarrowTy,
807                                         Val.lshr(Offset).trunc(NarrowSize));
808       PartRegs.push_back(K.getReg(0));
809     }
810 
811     LLT LeftoverTy;
812     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
813     SmallVector<Register, 1> LeftoverRegs;
814     if (LeftoverBits != 0) {
815       LeftoverTy = LLT::scalar(LeftoverBits);
816       auto K = MIRBuilder.buildConstant(
817         LeftoverTy,
818         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
819       LeftoverRegs.push_back(K.getReg(0));
820     }
821 
822     insertParts(MI.getOperand(0).getReg(),
823                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
824 
825     MI.eraseFromParent();
826     return Legalized;
827   }
828   case TargetOpcode::G_SEXT:
829   case TargetOpcode::G_ZEXT:
830   case TargetOpcode::G_ANYEXT:
831     return narrowScalarExt(MI, TypeIdx, NarrowTy);
832   case TargetOpcode::G_TRUNC: {
833     if (TypeIdx != 1)
834       return UnableToLegalize;
835 
836     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
837     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
838       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
839       return UnableToLegalize;
840     }
841 
842     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
843     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
844     MI.eraseFromParent();
845     return Legalized;
846   }
847 
848   case TargetOpcode::G_FREEZE:
849     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
850 
851   case TargetOpcode::G_ADD: {
852     // FIXME: add support for when SizeOp0 isn't an exact multiple of
853     // NarrowSize.
854     if (SizeOp0 % NarrowSize != 0)
855       return UnableToLegalize;
856     // Expand in terms of carry-setting/consuming G_ADDE instructions.
857     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
858 
859     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
860     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
861     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
862 
863     Register CarryIn;
864     for (int i = 0; i < NumParts; ++i) {
865       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
866       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
867 
868       if (i == 0)
869         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
870       else {
871         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
872                               Src2Regs[i], CarryIn);
873       }
874 
875       DstRegs.push_back(DstReg);
876       CarryIn = CarryOut;
877     }
878     Register DstReg = MI.getOperand(0).getReg();
879     if(MRI.getType(DstReg).isVector())
880       MIRBuilder.buildBuildVector(DstReg, DstRegs);
881     else
882       MIRBuilder.buildMerge(DstReg, DstRegs);
883     MI.eraseFromParent();
884     return Legalized;
885   }
886   case TargetOpcode::G_SUB: {
887     // FIXME: add support for when SizeOp0 isn't an exact multiple of
888     // NarrowSize.
889     if (SizeOp0 % NarrowSize != 0)
890       return UnableToLegalize;
891 
892     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
893 
894     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
895     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
896     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
897 
898     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
899     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
900     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
901                           {Src1Regs[0], Src2Regs[0]});
902     DstRegs.push_back(DstReg);
903     Register BorrowIn = BorrowOut;
904     for (int i = 1; i < NumParts; ++i) {
905       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
906       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
907 
908       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
909                             {Src1Regs[i], Src2Regs[i], BorrowIn});
910 
911       DstRegs.push_back(DstReg);
912       BorrowIn = BorrowOut;
913     }
914     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
915     MI.eraseFromParent();
916     return Legalized;
917   }
918   case TargetOpcode::G_MUL:
919   case TargetOpcode::G_UMULH:
920     return narrowScalarMul(MI, NarrowTy);
921   case TargetOpcode::G_EXTRACT:
922     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
923   case TargetOpcode::G_INSERT:
924     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
925   case TargetOpcode::G_LOAD: {
926     auto &MMO = **MI.memoperands_begin();
927     Register DstReg = MI.getOperand(0).getReg();
928     LLT DstTy = MRI.getType(DstReg);
929     if (DstTy.isVector())
930       return UnableToLegalize;
931 
932     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
933       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
934       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
935       MIRBuilder.buildAnyExt(DstReg, TmpReg);
936       MI.eraseFromParent();
937       return Legalized;
938     }
939 
940     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
941   }
942   case TargetOpcode::G_ZEXTLOAD:
943   case TargetOpcode::G_SEXTLOAD: {
944     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
945     Register DstReg = MI.getOperand(0).getReg();
946     Register PtrReg = MI.getOperand(1).getReg();
947 
948     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
949     auto &MMO = **MI.memoperands_begin();
950     if (MMO.getSizeInBits() == NarrowSize) {
951       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
952     } else {
953       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
954     }
955 
956     if (ZExt)
957       MIRBuilder.buildZExt(DstReg, TmpReg);
958     else
959       MIRBuilder.buildSExt(DstReg, TmpReg);
960 
961     MI.eraseFromParent();
962     return Legalized;
963   }
964   case TargetOpcode::G_STORE: {
965     const auto &MMO = **MI.memoperands_begin();
966 
967     Register SrcReg = MI.getOperand(0).getReg();
968     LLT SrcTy = MRI.getType(SrcReg);
969     if (SrcTy.isVector())
970       return UnableToLegalize;
971 
972     int NumParts = SizeOp0 / NarrowSize;
973     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
974     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
975     if (SrcTy.isVector() && LeftoverBits != 0)
976       return UnableToLegalize;
977 
978     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
979       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
980       auto &MMO = **MI.memoperands_begin();
981       MIRBuilder.buildTrunc(TmpReg, SrcReg);
982       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
983       MI.eraseFromParent();
984       return Legalized;
985     }
986 
987     return reduceLoadStoreWidth(MI, 0, NarrowTy);
988   }
989   case TargetOpcode::G_SELECT:
990     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
991   case TargetOpcode::G_AND:
992   case TargetOpcode::G_OR:
993   case TargetOpcode::G_XOR: {
994     // Legalize bitwise operation:
995     // A = BinOp<Ty> B, C
996     // into:
997     // B1, ..., BN = G_UNMERGE_VALUES B
998     // C1, ..., CN = G_UNMERGE_VALUES C
999     // A1 = BinOp<Ty/N> B1, C2
1000     // ...
1001     // AN = BinOp<Ty/N> BN, CN
1002     // A = G_MERGE_VALUES A1, ..., AN
1003     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1004   }
1005   case TargetOpcode::G_SHL:
1006   case TargetOpcode::G_LSHR:
1007   case TargetOpcode::G_ASHR:
1008     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1009   case TargetOpcode::G_CTLZ:
1010   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1011   case TargetOpcode::G_CTTZ:
1012   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1013   case TargetOpcode::G_CTPOP:
1014     if (TypeIdx == 1)
1015       switch (MI.getOpcode()) {
1016       case TargetOpcode::G_CTLZ:
1017       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1018         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1019       case TargetOpcode::G_CTTZ:
1020       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1021         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1022       case TargetOpcode::G_CTPOP:
1023         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1024       default:
1025         return UnableToLegalize;
1026       }
1027 
1028     Observer.changingInstr(MI);
1029     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1030     Observer.changedInstr(MI);
1031     return Legalized;
1032   case TargetOpcode::G_INTTOPTR:
1033     if (TypeIdx != 1)
1034       return UnableToLegalize;
1035 
1036     Observer.changingInstr(MI);
1037     narrowScalarSrc(MI, NarrowTy, 1);
1038     Observer.changedInstr(MI);
1039     return Legalized;
1040   case TargetOpcode::G_PTRTOINT:
1041     if (TypeIdx != 0)
1042       return UnableToLegalize;
1043 
1044     Observer.changingInstr(MI);
1045     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1046     Observer.changedInstr(MI);
1047     return Legalized;
1048   case TargetOpcode::G_PHI: {
1049     unsigned NumParts = SizeOp0 / NarrowSize;
1050     SmallVector<Register, 2> DstRegs(NumParts);
1051     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1052     Observer.changingInstr(MI);
1053     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1054       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1055       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1056       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1057                    SrcRegs[i / 2]);
1058     }
1059     MachineBasicBlock &MBB = *MI.getParent();
1060     MIRBuilder.setInsertPt(MBB, MI);
1061     for (unsigned i = 0; i < NumParts; ++i) {
1062       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1063       MachineInstrBuilder MIB =
1064           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1065       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1066         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1067     }
1068     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1069     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1070     Observer.changedInstr(MI);
1071     MI.eraseFromParent();
1072     return Legalized;
1073   }
1074   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1075   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1076     if (TypeIdx != 2)
1077       return UnableToLegalize;
1078 
1079     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1080     Observer.changingInstr(MI);
1081     narrowScalarSrc(MI, NarrowTy, OpIdx);
1082     Observer.changedInstr(MI);
1083     return Legalized;
1084   }
1085   case TargetOpcode::G_ICMP: {
1086     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1087     if (NarrowSize * 2 != SrcSize)
1088       return UnableToLegalize;
1089 
1090     Observer.changingInstr(MI);
1091     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1092     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1093     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1094 
1095     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1096     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1097     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1098 
1099     CmpInst::Predicate Pred =
1100         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1101     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1102 
1103     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1104       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1105       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1106       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1107       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1108       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1109     } else {
1110       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1111       MachineInstrBuilder CmpHEQ =
1112           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1113       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1114           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1115       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1116     }
1117     Observer.changedInstr(MI);
1118     MI.eraseFromParent();
1119     return Legalized;
1120   }
1121   case TargetOpcode::G_SEXT_INREG: {
1122     if (TypeIdx != 0)
1123       return UnableToLegalize;
1124 
1125     int64_t SizeInBits = MI.getOperand(2).getImm();
1126 
1127     // So long as the new type has more bits than the bits we're extending we
1128     // don't need to break it apart.
1129     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1130       Observer.changingInstr(MI);
1131       // We don't lose any non-extension bits by truncating the src and
1132       // sign-extending the dst.
1133       MachineOperand &MO1 = MI.getOperand(1);
1134       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1135       MO1.setReg(TruncMIB.getReg(0));
1136 
1137       MachineOperand &MO2 = MI.getOperand(0);
1138       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1139       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1140       MIRBuilder.buildSExt(MO2, DstExt);
1141       MO2.setReg(DstExt);
1142       Observer.changedInstr(MI);
1143       return Legalized;
1144     }
1145 
1146     // Break it apart. Components below the extension point are unmodified. The
1147     // component containing the extension point becomes a narrower SEXT_INREG.
1148     // Components above it are ashr'd from the component containing the
1149     // extension point.
1150     if (SizeOp0 % NarrowSize != 0)
1151       return UnableToLegalize;
1152     int NumParts = SizeOp0 / NarrowSize;
1153 
1154     // List the registers where the destination will be scattered.
1155     SmallVector<Register, 2> DstRegs;
1156     // List the registers where the source will be split.
1157     SmallVector<Register, 2> SrcRegs;
1158 
1159     // Create all the temporary registers.
1160     for (int i = 0; i < NumParts; ++i) {
1161       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1162 
1163       SrcRegs.push_back(SrcReg);
1164     }
1165 
1166     // Explode the big arguments into smaller chunks.
1167     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1168 
1169     Register AshrCstReg =
1170         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1171             .getReg(0);
1172     Register FullExtensionReg = 0;
1173     Register PartialExtensionReg = 0;
1174 
1175     // Do the operation on each small part.
1176     for (int i = 0; i < NumParts; ++i) {
1177       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1178         DstRegs.push_back(SrcRegs[i]);
1179       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1180         assert(PartialExtensionReg &&
1181                "Expected to visit partial extension before full");
1182         if (FullExtensionReg) {
1183           DstRegs.push_back(FullExtensionReg);
1184           continue;
1185         }
1186         DstRegs.push_back(
1187             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1188                 .getReg(0));
1189         FullExtensionReg = DstRegs.back();
1190       } else {
1191         DstRegs.push_back(
1192             MIRBuilder
1193                 .buildInstr(
1194                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1195                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1196                 .getReg(0));
1197         PartialExtensionReg = DstRegs.back();
1198       }
1199     }
1200 
1201     // Gather the destination registers into the final destination.
1202     Register DstReg = MI.getOperand(0).getReg();
1203     MIRBuilder.buildMerge(DstReg, DstRegs);
1204     MI.eraseFromParent();
1205     return Legalized;
1206   }
1207   case TargetOpcode::G_BSWAP:
1208   case TargetOpcode::G_BITREVERSE: {
1209     if (SizeOp0 % NarrowSize != 0)
1210       return UnableToLegalize;
1211 
1212     Observer.changingInstr(MI);
1213     SmallVector<Register, 2> SrcRegs, DstRegs;
1214     unsigned NumParts = SizeOp0 / NarrowSize;
1215     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1216 
1217     for (unsigned i = 0; i < NumParts; ++i) {
1218       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1219                                            {SrcRegs[NumParts - 1 - i]});
1220       DstRegs.push_back(DstPart.getReg(0));
1221     }
1222 
1223     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1224 
1225     Observer.changedInstr(MI);
1226     MI.eraseFromParent();
1227     return Legalized;
1228   }
1229   case TargetOpcode::G_PTR_ADD:
1230   case TargetOpcode::G_PTRMASK: {
1231     if (TypeIdx != 1)
1232       return UnableToLegalize;
1233     Observer.changingInstr(MI);
1234     narrowScalarSrc(MI, NarrowTy, 2);
1235     Observer.changedInstr(MI);
1236     return Legalized;
1237   }
1238   case TargetOpcode::G_FPTOUI: {
1239     if (TypeIdx != 0)
1240       return UnableToLegalize;
1241     Observer.changingInstr(MI);
1242     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1243     Observer.changedInstr(MI);
1244     return Legalized;
1245   }
1246   case TargetOpcode::G_FPTOSI: {
1247     if (TypeIdx != 0)
1248       return UnableToLegalize;
1249     Observer.changingInstr(MI);
1250     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1251     Observer.changedInstr(MI);
1252     return Legalized;
1253   }
1254   case TargetOpcode::G_FPEXT:
1255     if (TypeIdx != 0)
1256       return UnableToLegalize;
1257     Observer.changingInstr(MI);
1258     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1259     Observer.changedInstr(MI);
1260     return Legalized;
1261   }
1262 }
1263 
1264 Register LegalizerHelper::coerceToScalar(Register Val) {
1265   LLT Ty = MRI.getType(Val);
1266   if (Ty.isScalar())
1267     return Val;
1268 
1269   const DataLayout &DL = MIRBuilder.getDataLayout();
1270   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1271   if (Ty.isPointer()) {
1272     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1273       return Register();
1274     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1275   }
1276 
1277   Register NewVal = Val;
1278 
1279   assert(Ty.isVector());
1280   LLT EltTy = Ty.getElementType();
1281   if (EltTy.isPointer())
1282     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1283   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1284 }
1285 
1286 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1287                                      unsigned OpIdx, unsigned ExtOpcode) {
1288   MachineOperand &MO = MI.getOperand(OpIdx);
1289   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1290   MO.setReg(ExtB.getReg(0));
1291 }
1292 
1293 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1294                                       unsigned OpIdx) {
1295   MachineOperand &MO = MI.getOperand(OpIdx);
1296   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1297   MO.setReg(ExtB.getReg(0));
1298 }
1299 
1300 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1301                                      unsigned OpIdx, unsigned TruncOpcode) {
1302   MachineOperand &MO = MI.getOperand(OpIdx);
1303   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1304   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1305   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1306   MO.setReg(DstExt);
1307 }
1308 
1309 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1310                                       unsigned OpIdx, unsigned ExtOpcode) {
1311   MachineOperand &MO = MI.getOperand(OpIdx);
1312   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1313   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1314   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1315   MO.setReg(DstTrunc);
1316 }
1317 
1318 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1319                                             unsigned OpIdx) {
1320   MachineOperand &MO = MI.getOperand(OpIdx);
1321   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1322   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1323 }
1324 
1325 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1326                                             unsigned OpIdx) {
1327   MachineOperand &MO = MI.getOperand(OpIdx);
1328 
1329   LLT OldTy = MRI.getType(MO.getReg());
1330   unsigned OldElts = OldTy.getNumElements();
1331   unsigned NewElts = MoreTy.getNumElements();
1332 
1333   unsigned NumParts = NewElts / OldElts;
1334 
1335   // Use concat_vectors if the result is a multiple of the number of elements.
1336   if (NumParts * OldElts == NewElts) {
1337     SmallVector<Register, 8> Parts;
1338     Parts.push_back(MO.getReg());
1339 
1340     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1341     for (unsigned I = 1; I != NumParts; ++I)
1342       Parts.push_back(ImpDef);
1343 
1344     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1345     MO.setReg(Concat.getReg(0));
1346     return;
1347   }
1348 
1349   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1350   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1351   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1352   MO.setReg(MoreReg);
1353 }
1354 
1355 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1356   MachineOperand &Op = MI.getOperand(OpIdx);
1357   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1358 }
1359 
1360 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1361   MachineOperand &MO = MI.getOperand(OpIdx);
1362   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1363   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1364   MIRBuilder.buildBitcast(MO, CastDst);
1365   MO.setReg(CastDst);
1366 }
1367 
1368 LegalizerHelper::LegalizeResult
1369 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1370                                         LLT WideTy) {
1371   if (TypeIdx != 1)
1372     return UnableToLegalize;
1373 
1374   Register DstReg = MI.getOperand(0).getReg();
1375   LLT DstTy = MRI.getType(DstReg);
1376   if (DstTy.isVector())
1377     return UnableToLegalize;
1378 
1379   Register Src1 = MI.getOperand(1).getReg();
1380   LLT SrcTy = MRI.getType(Src1);
1381   const int DstSize = DstTy.getSizeInBits();
1382   const int SrcSize = SrcTy.getSizeInBits();
1383   const int WideSize = WideTy.getSizeInBits();
1384   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1385 
1386   unsigned NumOps = MI.getNumOperands();
1387   unsigned NumSrc = MI.getNumOperands() - 1;
1388   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1389 
1390   if (WideSize >= DstSize) {
1391     // Directly pack the bits in the target type.
1392     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1393 
1394     for (unsigned I = 2; I != NumOps; ++I) {
1395       const unsigned Offset = (I - 1) * PartSize;
1396 
1397       Register SrcReg = MI.getOperand(I).getReg();
1398       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1399 
1400       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1401 
1402       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1403         MRI.createGenericVirtualRegister(WideTy);
1404 
1405       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1406       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1407       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1408       ResultReg = NextResult;
1409     }
1410 
1411     if (WideSize > DstSize)
1412       MIRBuilder.buildTrunc(DstReg, ResultReg);
1413     else if (DstTy.isPointer())
1414       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1415 
1416     MI.eraseFromParent();
1417     return Legalized;
1418   }
1419 
1420   // Unmerge the original values to the GCD type, and recombine to the next
1421   // multiple greater than the original type.
1422   //
1423   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1424   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1425   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1426   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1427   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1428   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1429   // %12:_(s12) = G_MERGE_VALUES %10, %11
1430   //
1431   // Padding with undef if necessary:
1432   //
1433   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1434   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1435   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1436   // %7:_(s2) = G_IMPLICIT_DEF
1437   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1438   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1439   // %10:_(s12) = G_MERGE_VALUES %8, %9
1440 
1441   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1442   LLT GCDTy = LLT::scalar(GCD);
1443 
1444   SmallVector<Register, 8> Parts;
1445   SmallVector<Register, 8> NewMergeRegs;
1446   SmallVector<Register, 8> Unmerges;
1447   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1448 
1449   // Decompose the original operands if they don't evenly divide.
1450   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1451     Register SrcReg = MI.getOperand(I).getReg();
1452     if (GCD == SrcSize) {
1453       Unmerges.push_back(SrcReg);
1454     } else {
1455       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1456       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1457         Unmerges.push_back(Unmerge.getReg(J));
1458     }
1459   }
1460 
1461   // Pad with undef to the next size that is a multiple of the requested size.
1462   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1463     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1464     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1465       Unmerges.push_back(UndefReg);
1466   }
1467 
1468   const int PartsPerGCD = WideSize / GCD;
1469 
1470   // Build merges of each piece.
1471   ArrayRef<Register> Slicer(Unmerges);
1472   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1473     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1474     NewMergeRegs.push_back(Merge.getReg(0));
1475   }
1476 
1477   // A truncate may be necessary if the requested type doesn't evenly divide the
1478   // original result type.
1479   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1480     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1481   } else {
1482     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1483     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1484   }
1485 
1486   MI.eraseFromParent();
1487   return Legalized;
1488 }
1489 
1490 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1491   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1492   LLT OrigTy = MRI.getType(OrigReg);
1493   LLT LCMTy = getLCMType(WideTy, OrigTy);
1494 
1495   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1496   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1497 
1498   Register UnmergeSrc = WideReg;
1499 
1500   // Create a merge to the LCM type, padding with undef
1501   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1502   // =>
1503   // %1:_(<4 x s32>) = G_FOO
1504   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1505   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1506   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1507   if (NumMergeParts > 1) {
1508     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1509     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1510     MergeParts[0] = WideReg;
1511     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1512   }
1513 
1514   // Unmerge to the original register and pad with dead defs.
1515   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1516   UnmergeResults[0] = OrigReg;
1517   for (int I = 1; I != NumUnmergeParts; ++I)
1518     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1519 
1520   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1521   return WideReg;
1522 }
1523 
1524 LegalizerHelper::LegalizeResult
1525 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1526                                           LLT WideTy) {
1527   if (TypeIdx != 0)
1528     return UnableToLegalize;
1529 
1530   int NumDst = MI.getNumOperands() - 1;
1531   Register SrcReg = MI.getOperand(NumDst).getReg();
1532   LLT SrcTy = MRI.getType(SrcReg);
1533   if (SrcTy.isVector())
1534     return UnableToLegalize;
1535 
1536   Register Dst0Reg = MI.getOperand(0).getReg();
1537   LLT DstTy = MRI.getType(Dst0Reg);
1538   if (!DstTy.isScalar())
1539     return UnableToLegalize;
1540 
1541   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1542     if (SrcTy.isPointer()) {
1543       const DataLayout &DL = MIRBuilder.getDataLayout();
1544       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1545         LLVM_DEBUG(
1546             dbgs() << "Not casting non-integral address space integer\n");
1547         return UnableToLegalize;
1548       }
1549 
1550       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1551       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1552     }
1553 
1554     // Widen SrcTy to WideTy. This does not affect the result, but since the
1555     // user requested this size, it is probably better handled than SrcTy and
1556     // should reduce the total number of legalization artifacts
1557     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1558       SrcTy = WideTy;
1559       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1560     }
1561 
1562     // Theres no unmerge type to target. Directly extract the bits from the
1563     // source type
1564     unsigned DstSize = DstTy.getSizeInBits();
1565 
1566     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1567     for (int I = 1; I != NumDst; ++I) {
1568       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1569       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1570       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1571     }
1572 
1573     MI.eraseFromParent();
1574     return Legalized;
1575   }
1576 
1577   // Extend the source to a wider type.
1578   LLT LCMTy = getLCMType(SrcTy, WideTy);
1579 
1580   Register WideSrc = SrcReg;
1581   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1582     // TODO: If this is an integral address space, cast to integer and anyext.
1583     if (SrcTy.isPointer()) {
1584       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1585       return UnableToLegalize;
1586     }
1587 
1588     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1589   }
1590 
1591   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1592 
1593   // Create a sequence of unmerges to the original results. since we may have
1594   // widened the source, we will need to pad the results with dead defs to cover
1595   // the source register.
1596   // e.g. widen s16 to s32:
1597   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1598   //
1599   // =>
1600   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1601   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1602   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1603   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1604 
1605   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1606   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1607 
1608   for (int I = 0; I != NumUnmerge; ++I) {
1609     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1610 
1611     for (int J = 0; J != PartsPerUnmerge; ++J) {
1612       int Idx = I * PartsPerUnmerge + J;
1613       if (Idx < NumDst)
1614         MIB.addDef(MI.getOperand(Idx).getReg());
1615       else {
1616         // Create dead def for excess components.
1617         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1618       }
1619     }
1620 
1621     MIB.addUse(Unmerge.getReg(I));
1622   }
1623 
1624   MI.eraseFromParent();
1625   return Legalized;
1626 }
1627 
1628 LegalizerHelper::LegalizeResult
1629 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1630                                     LLT WideTy) {
1631   Register DstReg = MI.getOperand(0).getReg();
1632   Register SrcReg = MI.getOperand(1).getReg();
1633   LLT SrcTy = MRI.getType(SrcReg);
1634 
1635   LLT DstTy = MRI.getType(DstReg);
1636   unsigned Offset = MI.getOperand(2).getImm();
1637 
1638   if (TypeIdx == 0) {
1639     if (SrcTy.isVector() || DstTy.isVector())
1640       return UnableToLegalize;
1641 
1642     SrcOp Src(SrcReg);
1643     if (SrcTy.isPointer()) {
1644       // Extracts from pointers can be handled only if they are really just
1645       // simple integers.
1646       const DataLayout &DL = MIRBuilder.getDataLayout();
1647       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1648         return UnableToLegalize;
1649 
1650       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1651       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1652       SrcTy = SrcAsIntTy;
1653     }
1654 
1655     if (DstTy.isPointer())
1656       return UnableToLegalize;
1657 
1658     if (Offset == 0) {
1659       // Avoid a shift in the degenerate case.
1660       MIRBuilder.buildTrunc(DstReg,
1661                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1662       MI.eraseFromParent();
1663       return Legalized;
1664     }
1665 
1666     // Do a shift in the source type.
1667     LLT ShiftTy = SrcTy;
1668     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1669       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1670       ShiftTy = WideTy;
1671     }
1672 
1673     auto LShr = MIRBuilder.buildLShr(
1674       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1675     MIRBuilder.buildTrunc(DstReg, LShr);
1676     MI.eraseFromParent();
1677     return Legalized;
1678   }
1679 
1680   if (SrcTy.isScalar()) {
1681     Observer.changingInstr(MI);
1682     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1683     Observer.changedInstr(MI);
1684     return Legalized;
1685   }
1686 
1687   if (!SrcTy.isVector())
1688     return UnableToLegalize;
1689 
1690   if (DstTy != SrcTy.getElementType())
1691     return UnableToLegalize;
1692 
1693   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1694     return UnableToLegalize;
1695 
1696   Observer.changingInstr(MI);
1697   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1698 
1699   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1700                           Offset);
1701   widenScalarDst(MI, WideTy.getScalarType(), 0);
1702   Observer.changedInstr(MI);
1703   return Legalized;
1704 }
1705 
1706 LegalizerHelper::LegalizeResult
1707 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1708                                    LLT WideTy) {
1709   if (TypeIdx != 0 || WideTy.isVector())
1710     return UnableToLegalize;
1711   Observer.changingInstr(MI);
1712   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1713   widenScalarDst(MI, WideTy);
1714   Observer.changedInstr(MI);
1715   return Legalized;
1716 }
1717 
1718 LegalizerHelper::LegalizeResult
1719 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1720                                          LLT WideTy) {
1721   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1722                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1723                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1724   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1725                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1726   // We can convert this to:
1727   //   1. Any extend iN to iM
1728   //   2. SHL by M-N
1729   //   3. [US][ADD|SUB|SHL]SAT
1730   //   4. L/ASHR by M-N
1731   //
1732   // It may be more efficient to lower this to a min and a max operation in
1733   // the higher precision arithmetic if the promoted operation isn't legal,
1734   // but this decision is up to the target's lowering request.
1735   Register DstReg = MI.getOperand(0).getReg();
1736 
1737   unsigned NewBits = WideTy.getScalarSizeInBits();
1738   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1739 
1740   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1741   // must not left shift the RHS to preserve the shift amount.
1742   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1743   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1744                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1745   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1746   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1747   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1748 
1749   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1750                                         {ShiftL, ShiftR}, MI.getFlags());
1751 
1752   // Use a shift that will preserve the number of sign bits when the trunc is
1753   // folded away.
1754   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1755                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1756 
1757   MIRBuilder.buildTrunc(DstReg, Result);
1758   MI.eraseFromParent();
1759   return Legalized;
1760 }
1761 
1762 LegalizerHelper::LegalizeResult
1763 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1764   switch (MI.getOpcode()) {
1765   default:
1766     return UnableToLegalize;
1767   case TargetOpcode::G_EXTRACT:
1768     return widenScalarExtract(MI, TypeIdx, WideTy);
1769   case TargetOpcode::G_INSERT:
1770     return widenScalarInsert(MI, TypeIdx, WideTy);
1771   case TargetOpcode::G_MERGE_VALUES:
1772     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1773   case TargetOpcode::G_UNMERGE_VALUES:
1774     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1775   case TargetOpcode::G_UADDO:
1776   case TargetOpcode::G_USUBO: {
1777     if (TypeIdx == 1)
1778       return UnableToLegalize; // TODO
1779     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1780     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1781     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1782                           ? TargetOpcode::G_ADD
1783                           : TargetOpcode::G_SUB;
1784     // Do the arithmetic in the larger type.
1785     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1786     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1787     APInt Mask =
1788         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1789     auto AndOp = MIRBuilder.buildAnd(
1790         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1791     // There is no overflow if the AndOp is the same as NewOp.
1792     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1793     // Now trunc the NewOp to the original result.
1794     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1795     MI.eraseFromParent();
1796     return Legalized;
1797   }
1798   case TargetOpcode::G_SADDSAT:
1799   case TargetOpcode::G_SSUBSAT:
1800   case TargetOpcode::G_SSHLSAT:
1801   case TargetOpcode::G_UADDSAT:
1802   case TargetOpcode::G_USUBSAT:
1803   case TargetOpcode::G_USHLSAT:
1804     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1805   case TargetOpcode::G_CTTZ:
1806   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1807   case TargetOpcode::G_CTLZ:
1808   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1809   case TargetOpcode::G_CTPOP: {
1810     if (TypeIdx == 0) {
1811       Observer.changingInstr(MI);
1812       widenScalarDst(MI, WideTy, 0);
1813       Observer.changedInstr(MI);
1814       return Legalized;
1815     }
1816 
1817     Register SrcReg = MI.getOperand(1).getReg();
1818 
1819     // First ZEXT the input.
1820     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1821     LLT CurTy = MRI.getType(SrcReg);
1822     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1823       // The count is the same in the larger type except if the original
1824       // value was zero.  This can be handled by setting the bit just off
1825       // the top of the original type.
1826       auto TopBit =
1827           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1828       MIBSrc = MIRBuilder.buildOr(
1829         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1830     }
1831 
1832     // Perform the operation at the larger size.
1833     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1834     // This is already the correct result for CTPOP and CTTZs
1835     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1836         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1837       // The correct result is NewOp - (Difference in widety and current ty).
1838       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1839       MIBNewOp = MIRBuilder.buildSub(
1840           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1841     }
1842 
1843     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1844     MI.eraseFromParent();
1845     return Legalized;
1846   }
1847   case TargetOpcode::G_BSWAP: {
1848     Observer.changingInstr(MI);
1849     Register DstReg = MI.getOperand(0).getReg();
1850 
1851     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1852     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1853     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1854     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1855 
1856     MI.getOperand(0).setReg(DstExt);
1857 
1858     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1859 
1860     LLT Ty = MRI.getType(DstReg);
1861     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1862     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1863     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1864 
1865     MIRBuilder.buildTrunc(DstReg, ShrReg);
1866     Observer.changedInstr(MI);
1867     return Legalized;
1868   }
1869   case TargetOpcode::G_BITREVERSE: {
1870     Observer.changingInstr(MI);
1871 
1872     Register DstReg = MI.getOperand(0).getReg();
1873     LLT Ty = MRI.getType(DstReg);
1874     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1875 
1876     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1877     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1878     MI.getOperand(0).setReg(DstExt);
1879     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1880 
1881     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1882     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1883     MIRBuilder.buildTrunc(DstReg, Shift);
1884     Observer.changedInstr(MI);
1885     return Legalized;
1886   }
1887   case TargetOpcode::G_FREEZE:
1888     Observer.changingInstr(MI);
1889     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1890     widenScalarDst(MI, WideTy);
1891     Observer.changedInstr(MI);
1892     return Legalized;
1893 
1894   case TargetOpcode::G_ADD:
1895   case TargetOpcode::G_AND:
1896   case TargetOpcode::G_MUL:
1897   case TargetOpcode::G_OR:
1898   case TargetOpcode::G_XOR:
1899   case TargetOpcode::G_SUB:
1900     // Perform operation at larger width (any extension is fines here, high bits
1901     // don't affect the result) and then truncate the result back to the
1902     // original type.
1903     Observer.changingInstr(MI);
1904     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1905     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1906     widenScalarDst(MI, WideTy);
1907     Observer.changedInstr(MI);
1908     return Legalized;
1909 
1910   case TargetOpcode::G_SHL:
1911     Observer.changingInstr(MI);
1912 
1913     if (TypeIdx == 0) {
1914       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1915       widenScalarDst(MI, WideTy);
1916     } else {
1917       assert(TypeIdx == 1);
1918       // The "number of bits to shift" operand must preserve its value as an
1919       // unsigned integer:
1920       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1921     }
1922 
1923     Observer.changedInstr(MI);
1924     return Legalized;
1925 
1926   case TargetOpcode::G_SDIV:
1927   case TargetOpcode::G_SREM:
1928   case TargetOpcode::G_SMIN:
1929   case TargetOpcode::G_SMAX:
1930     Observer.changingInstr(MI);
1931     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1932     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1933     widenScalarDst(MI, WideTy);
1934     Observer.changedInstr(MI);
1935     return Legalized;
1936 
1937   case TargetOpcode::G_ASHR:
1938   case TargetOpcode::G_LSHR:
1939     Observer.changingInstr(MI);
1940 
1941     if (TypeIdx == 0) {
1942       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1943         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1944 
1945       widenScalarSrc(MI, WideTy, 1, CvtOp);
1946       widenScalarDst(MI, WideTy);
1947     } else {
1948       assert(TypeIdx == 1);
1949       // The "number of bits to shift" operand must preserve its value as an
1950       // unsigned integer:
1951       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1952     }
1953 
1954     Observer.changedInstr(MI);
1955     return Legalized;
1956   case TargetOpcode::G_UDIV:
1957   case TargetOpcode::G_UREM:
1958   case TargetOpcode::G_UMIN:
1959   case TargetOpcode::G_UMAX:
1960     Observer.changingInstr(MI);
1961     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1962     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1963     widenScalarDst(MI, WideTy);
1964     Observer.changedInstr(MI);
1965     return Legalized;
1966 
1967   case TargetOpcode::G_SELECT:
1968     Observer.changingInstr(MI);
1969     if (TypeIdx == 0) {
1970       // Perform operation at larger width (any extension is fine here, high
1971       // bits don't affect the result) and then truncate the result back to the
1972       // original type.
1973       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1974       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1975       widenScalarDst(MI, WideTy);
1976     } else {
1977       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1978       // Explicit extension is required here since high bits affect the result.
1979       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1980     }
1981     Observer.changedInstr(MI);
1982     return Legalized;
1983 
1984   case TargetOpcode::G_FPTOSI:
1985   case TargetOpcode::G_FPTOUI:
1986     Observer.changingInstr(MI);
1987 
1988     if (TypeIdx == 0)
1989       widenScalarDst(MI, WideTy);
1990     else
1991       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1992 
1993     Observer.changedInstr(MI);
1994     return Legalized;
1995   case TargetOpcode::G_SITOFP:
1996     Observer.changingInstr(MI);
1997 
1998     if (TypeIdx == 0)
1999       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2000     else
2001       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2002 
2003     Observer.changedInstr(MI);
2004     return Legalized;
2005   case TargetOpcode::G_UITOFP:
2006     Observer.changingInstr(MI);
2007 
2008     if (TypeIdx == 0)
2009       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2010     else
2011       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2012 
2013     Observer.changedInstr(MI);
2014     return Legalized;
2015   case TargetOpcode::G_LOAD:
2016   case TargetOpcode::G_SEXTLOAD:
2017   case TargetOpcode::G_ZEXTLOAD:
2018     Observer.changingInstr(MI);
2019     widenScalarDst(MI, WideTy);
2020     Observer.changedInstr(MI);
2021     return Legalized;
2022 
2023   case TargetOpcode::G_STORE: {
2024     if (TypeIdx != 0)
2025       return UnableToLegalize;
2026 
2027     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2028     if (!isPowerOf2_32(Ty.getSizeInBits()))
2029       return UnableToLegalize;
2030 
2031     Observer.changingInstr(MI);
2032 
2033     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2034       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2035     widenScalarSrc(MI, WideTy, 0, ExtType);
2036 
2037     Observer.changedInstr(MI);
2038     return Legalized;
2039   }
2040   case TargetOpcode::G_CONSTANT: {
2041     MachineOperand &SrcMO = MI.getOperand(1);
2042     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2043     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2044         MRI.getType(MI.getOperand(0).getReg()));
2045     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2046             ExtOpc == TargetOpcode::G_ANYEXT) &&
2047            "Illegal Extend");
2048     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2049     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2050                            ? SrcVal.sext(WideTy.getSizeInBits())
2051                            : SrcVal.zext(WideTy.getSizeInBits());
2052     Observer.changingInstr(MI);
2053     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2054 
2055     widenScalarDst(MI, WideTy);
2056     Observer.changedInstr(MI);
2057     return Legalized;
2058   }
2059   case TargetOpcode::G_FCONSTANT: {
2060     MachineOperand &SrcMO = MI.getOperand(1);
2061     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2062     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2063     bool LosesInfo;
2064     switch (WideTy.getSizeInBits()) {
2065     case 32:
2066       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2067                   &LosesInfo);
2068       break;
2069     case 64:
2070       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2071                   &LosesInfo);
2072       break;
2073     default:
2074       return UnableToLegalize;
2075     }
2076 
2077     assert(!LosesInfo && "extend should always be lossless");
2078 
2079     Observer.changingInstr(MI);
2080     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2081 
2082     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2083     Observer.changedInstr(MI);
2084     return Legalized;
2085   }
2086   case TargetOpcode::G_IMPLICIT_DEF: {
2087     Observer.changingInstr(MI);
2088     widenScalarDst(MI, WideTy);
2089     Observer.changedInstr(MI);
2090     return Legalized;
2091   }
2092   case TargetOpcode::G_BRCOND:
2093     Observer.changingInstr(MI);
2094     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2095     Observer.changedInstr(MI);
2096     return Legalized;
2097 
2098   case TargetOpcode::G_FCMP:
2099     Observer.changingInstr(MI);
2100     if (TypeIdx == 0)
2101       widenScalarDst(MI, WideTy);
2102     else {
2103       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2104       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2105     }
2106     Observer.changedInstr(MI);
2107     return Legalized;
2108 
2109   case TargetOpcode::G_ICMP:
2110     Observer.changingInstr(MI);
2111     if (TypeIdx == 0)
2112       widenScalarDst(MI, WideTy);
2113     else {
2114       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2115                                MI.getOperand(1).getPredicate()))
2116                                ? TargetOpcode::G_SEXT
2117                                : TargetOpcode::G_ZEXT;
2118       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2119       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2120     }
2121     Observer.changedInstr(MI);
2122     return Legalized;
2123 
2124   case TargetOpcode::G_PTR_ADD:
2125     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2126     Observer.changingInstr(MI);
2127     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2128     Observer.changedInstr(MI);
2129     return Legalized;
2130 
2131   case TargetOpcode::G_PHI: {
2132     assert(TypeIdx == 0 && "Expecting only Idx 0");
2133 
2134     Observer.changingInstr(MI);
2135     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2136       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2137       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2138       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2139     }
2140 
2141     MachineBasicBlock &MBB = *MI.getParent();
2142     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2143     widenScalarDst(MI, WideTy);
2144     Observer.changedInstr(MI);
2145     return Legalized;
2146   }
2147   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2148     if (TypeIdx == 0) {
2149       Register VecReg = MI.getOperand(1).getReg();
2150       LLT VecTy = MRI.getType(VecReg);
2151       Observer.changingInstr(MI);
2152 
2153       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2154                                      WideTy.getSizeInBits()),
2155                      1, TargetOpcode::G_SEXT);
2156 
2157       widenScalarDst(MI, WideTy, 0);
2158       Observer.changedInstr(MI);
2159       return Legalized;
2160     }
2161 
2162     if (TypeIdx != 2)
2163       return UnableToLegalize;
2164     Observer.changingInstr(MI);
2165     // TODO: Probably should be zext
2166     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2167     Observer.changedInstr(MI);
2168     return Legalized;
2169   }
2170   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2171     if (TypeIdx == 1) {
2172       Observer.changingInstr(MI);
2173 
2174       Register VecReg = MI.getOperand(1).getReg();
2175       LLT VecTy = MRI.getType(VecReg);
2176       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2177 
2178       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2179       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2180       widenScalarDst(MI, WideVecTy, 0);
2181       Observer.changedInstr(MI);
2182       return Legalized;
2183     }
2184 
2185     if (TypeIdx == 2) {
2186       Observer.changingInstr(MI);
2187       // TODO: Probably should be zext
2188       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2189       Observer.changedInstr(MI);
2190       return Legalized;
2191     }
2192 
2193     return UnableToLegalize;
2194   }
2195   case TargetOpcode::G_FADD:
2196   case TargetOpcode::G_FMUL:
2197   case TargetOpcode::G_FSUB:
2198   case TargetOpcode::G_FMA:
2199   case TargetOpcode::G_FMAD:
2200   case TargetOpcode::G_FNEG:
2201   case TargetOpcode::G_FABS:
2202   case TargetOpcode::G_FCANONICALIZE:
2203   case TargetOpcode::G_FMINNUM:
2204   case TargetOpcode::G_FMAXNUM:
2205   case TargetOpcode::G_FMINNUM_IEEE:
2206   case TargetOpcode::G_FMAXNUM_IEEE:
2207   case TargetOpcode::G_FMINIMUM:
2208   case TargetOpcode::G_FMAXIMUM:
2209   case TargetOpcode::G_FDIV:
2210   case TargetOpcode::G_FREM:
2211   case TargetOpcode::G_FCEIL:
2212   case TargetOpcode::G_FFLOOR:
2213   case TargetOpcode::G_FCOS:
2214   case TargetOpcode::G_FSIN:
2215   case TargetOpcode::G_FLOG10:
2216   case TargetOpcode::G_FLOG:
2217   case TargetOpcode::G_FLOG2:
2218   case TargetOpcode::G_FRINT:
2219   case TargetOpcode::G_FNEARBYINT:
2220   case TargetOpcode::G_FSQRT:
2221   case TargetOpcode::G_FEXP:
2222   case TargetOpcode::G_FEXP2:
2223   case TargetOpcode::G_FPOW:
2224   case TargetOpcode::G_INTRINSIC_TRUNC:
2225   case TargetOpcode::G_INTRINSIC_ROUND:
2226   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2227     assert(TypeIdx == 0);
2228     Observer.changingInstr(MI);
2229 
2230     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2231       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2232 
2233     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2234     Observer.changedInstr(MI);
2235     return Legalized;
2236   case TargetOpcode::G_FPOWI: {
2237     if (TypeIdx != 0)
2238       return UnableToLegalize;
2239     Observer.changingInstr(MI);
2240     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2241     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2242     Observer.changedInstr(MI);
2243     return Legalized;
2244   }
2245   case TargetOpcode::G_INTTOPTR:
2246     if (TypeIdx != 1)
2247       return UnableToLegalize;
2248 
2249     Observer.changingInstr(MI);
2250     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2251     Observer.changedInstr(MI);
2252     return Legalized;
2253   case TargetOpcode::G_PTRTOINT:
2254     if (TypeIdx != 0)
2255       return UnableToLegalize;
2256 
2257     Observer.changingInstr(MI);
2258     widenScalarDst(MI, WideTy, 0);
2259     Observer.changedInstr(MI);
2260     return Legalized;
2261   case TargetOpcode::G_BUILD_VECTOR: {
2262     Observer.changingInstr(MI);
2263 
2264     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2265     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2266       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2267 
2268     // Avoid changing the result vector type if the source element type was
2269     // requested.
2270     if (TypeIdx == 1) {
2271       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2272     } else {
2273       widenScalarDst(MI, WideTy, 0);
2274     }
2275 
2276     Observer.changedInstr(MI);
2277     return Legalized;
2278   }
2279   case TargetOpcode::G_SEXT_INREG:
2280     if (TypeIdx != 0)
2281       return UnableToLegalize;
2282 
2283     Observer.changingInstr(MI);
2284     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2285     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2286     Observer.changedInstr(MI);
2287     return Legalized;
2288   case TargetOpcode::G_PTRMASK: {
2289     if (TypeIdx != 1)
2290       return UnableToLegalize;
2291     Observer.changingInstr(MI);
2292     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2293     Observer.changedInstr(MI);
2294     return Legalized;
2295   }
2296   }
2297 }
2298 
2299 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2300                              MachineIRBuilder &B, Register Src, LLT Ty) {
2301   auto Unmerge = B.buildUnmerge(Ty, Src);
2302   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2303     Pieces.push_back(Unmerge.getReg(I));
2304 }
2305 
2306 LegalizerHelper::LegalizeResult
2307 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2308   Register Dst = MI.getOperand(0).getReg();
2309   Register Src = MI.getOperand(1).getReg();
2310   LLT DstTy = MRI.getType(Dst);
2311   LLT SrcTy = MRI.getType(Src);
2312 
2313   if (SrcTy.isVector()) {
2314     LLT SrcEltTy = SrcTy.getElementType();
2315     SmallVector<Register, 8> SrcRegs;
2316 
2317     if (DstTy.isVector()) {
2318       int NumDstElt = DstTy.getNumElements();
2319       int NumSrcElt = SrcTy.getNumElements();
2320 
2321       LLT DstEltTy = DstTy.getElementType();
2322       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2323       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2324 
2325       // If there's an element size mismatch, insert intermediate casts to match
2326       // the result element type.
2327       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2328         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2329         //
2330         // =>
2331         //
2332         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2333         // %3:_(<2 x s8>) = G_BITCAST %2
2334         // %4:_(<2 x s8>) = G_BITCAST %3
2335         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2336         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2337         SrcPartTy = SrcEltTy;
2338       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2339         //
2340         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2341         //
2342         // =>
2343         //
2344         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2345         // %3:_(s16) = G_BITCAST %2
2346         // %4:_(s16) = G_BITCAST %3
2347         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2348         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2349         DstCastTy = DstEltTy;
2350       }
2351 
2352       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2353       for (Register &SrcReg : SrcRegs)
2354         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2355     } else
2356       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2357 
2358     MIRBuilder.buildMerge(Dst, SrcRegs);
2359     MI.eraseFromParent();
2360     return Legalized;
2361   }
2362 
2363   if (DstTy.isVector()) {
2364     SmallVector<Register, 8> SrcRegs;
2365     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2366     MIRBuilder.buildMerge(Dst, SrcRegs);
2367     MI.eraseFromParent();
2368     return Legalized;
2369   }
2370 
2371   return UnableToLegalize;
2372 }
2373 
2374 /// Figure out the bit offset into a register when coercing a vector index for
2375 /// the wide element type. This is only for the case when promoting vector to
2376 /// one with larger elements.
2377 //
2378 ///
2379 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2380 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2381 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2382                                                    Register Idx,
2383                                                    unsigned NewEltSize,
2384                                                    unsigned OldEltSize) {
2385   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2386   LLT IdxTy = B.getMRI()->getType(Idx);
2387 
2388   // Now figure out the amount we need to shift to get the target bits.
2389   auto OffsetMask = B.buildConstant(
2390     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2391   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2392   return B.buildShl(IdxTy, OffsetIdx,
2393                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2394 }
2395 
2396 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2397 /// is casting to a vector with a smaller element size, perform multiple element
2398 /// extracts and merge the results. If this is coercing to a vector with larger
2399 /// elements, index the bitcasted vector and extract the target element with bit
2400 /// operations. This is intended to force the indexing in the native register
2401 /// size for architectures that can dynamically index the register file.
2402 LegalizerHelper::LegalizeResult
2403 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2404                                          LLT CastTy) {
2405   if (TypeIdx != 1)
2406     return UnableToLegalize;
2407 
2408   Register Dst = MI.getOperand(0).getReg();
2409   Register SrcVec = MI.getOperand(1).getReg();
2410   Register Idx = MI.getOperand(2).getReg();
2411   LLT SrcVecTy = MRI.getType(SrcVec);
2412   LLT IdxTy = MRI.getType(Idx);
2413 
2414   LLT SrcEltTy = SrcVecTy.getElementType();
2415   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2416   unsigned OldNumElts = SrcVecTy.getNumElements();
2417 
2418   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2419   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2420 
2421   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2422   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2423   if (NewNumElts > OldNumElts) {
2424     // Decreasing the vector element size
2425     //
2426     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2427     //  =>
2428     //  v4i32:castx = bitcast x:v2i64
2429     //
2430     // i64 = bitcast
2431     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2432     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2433     //
2434     if (NewNumElts % OldNumElts != 0)
2435       return UnableToLegalize;
2436 
2437     // Type of the intermediate result vector.
2438     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2439     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2440 
2441     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2442 
2443     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2444     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2445 
2446     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2447       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2448       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2449       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2450       NewOps[I] = Elt.getReg(0);
2451     }
2452 
2453     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2454     MIRBuilder.buildBitcast(Dst, NewVec);
2455     MI.eraseFromParent();
2456     return Legalized;
2457   }
2458 
2459   if (NewNumElts < OldNumElts) {
2460     if (NewEltSize % OldEltSize != 0)
2461       return UnableToLegalize;
2462 
2463     // This only depends on powers of 2 because we use bit tricks to figure out
2464     // the bit offset we need to shift to get the target element. A general
2465     // expansion could emit division/multiply.
2466     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2467       return UnableToLegalize;
2468 
2469     // Increasing the vector element size.
2470     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2471     //
2472     //   =>
2473     //
2474     // %cast = G_BITCAST %vec
2475     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2476     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2477     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2478     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2479     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2480     // %elt = G_TRUNC %elt_bits
2481 
2482     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2483     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2484 
2485     // Divide to get the index in the wider element type.
2486     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2487 
2488     Register WideElt = CastVec;
2489     if (CastTy.isVector()) {
2490       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2491                                                      ScaledIdx).getReg(0);
2492     }
2493 
2494     // Compute the bit offset into the register of the target element.
2495     Register OffsetBits = getBitcastWiderVectorElementOffset(
2496       MIRBuilder, Idx, NewEltSize, OldEltSize);
2497 
2498     // Shift the wide element to get the target element.
2499     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2500     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2501     MI.eraseFromParent();
2502     return Legalized;
2503   }
2504 
2505   return UnableToLegalize;
2506 }
2507 
2508 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2509 /// TargetReg, while preserving other bits in \p TargetReg.
2510 ///
2511 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2512 static Register buildBitFieldInsert(MachineIRBuilder &B,
2513                                     Register TargetReg, Register InsertReg,
2514                                     Register OffsetBits) {
2515   LLT TargetTy = B.getMRI()->getType(TargetReg);
2516   LLT InsertTy = B.getMRI()->getType(InsertReg);
2517   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2518   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2519 
2520   // Produce a bitmask of the value to insert
2521   auto EltMask = B.buildConstant(
2522     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2523                                    InsertTy.getSizeInBits()));
2524   // Shift it into position
2525   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2526   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2527 
2528   // Clear out the bits in the wide element
2529   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2530 
2531   // The value to insert has all zeros already, so stick it into the masked
2532   // wide element.
2533   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2534 }
2535 
2536 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2537 /// is increasing the element size, perform the indexing in the target element
2538 /// type, and use bit operations to insert at the element position. This is
2539 /// intended for architectures that can dynamically index the register file and
2540 /// want to force indexing in the native register size.
2541 LegalizerHelper::LegalizeResult
2542 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2543                                         LLT CastTy) {
2544   if (TypeIdx != 0)
2545     return UnableToLegalize;
2546 
2547   Register Dst = MI.getOperand(0).getReg();
2548   Register SrcVec = MI.getOperand(1).getReg();
2549   Register Val = MI.getOperand(2).getReg();
2550   Register Idx = MI.getOperand(3).getReg();
2551 
2552   LLT VecTy = MRI.getType(Dst);
2553   LLT IdxTy = MRI.getType(Idx);
2554 
2555   LLT VecEltTy = VecTy.getElementType();
2556   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2557   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2558   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2559 
2560   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2561   unsigned OldNumElts = VecTy.getNumElements();
2562 
2563   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2564   if (NewNumElts < OldNumElts) {
2565     if (NewEltSize % OldEltSize != 0)
2566       return UnableToLegalize;
2567 
2568     // This only depends on powers of 2 because we use bit tricks to figure out
2569     // the bit offset we need to shift to get the target element. A general
2570     // expansion could emit division/multiply.
2571     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2572       return UnableToLegalize;
2573 
2574     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2575     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2576 
2577     // Divide to get the index in the wider element type.
2578     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2579 
2580     Register ExtractedElt = CastVec;
2581     if (CastTy.isVector()) {
2582       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2583                                                           ScaledIdx).getReg(0);
2584     }
2585 
2586     // Compute the bit offset into the register of the target element.
2587     Register OffsetBits = getBitcastWiderVectorElementOffset(
2588       MIRBuilder, Idx, NewEltSize, OldEltSize);
2589 
2590     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2591                                                Val, OffsetBits);
2592     if (CastTy.isVector()) {
2593       InsertedElt = MIRBuilder.buildInsertVectorElement(
2594         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2595     }
2596 
2597     MIRBuilder.buildBitcast(Dst, InsertedElt);
2598     MI.eraseFromParent();
2599     return Legalized;
2600   }
2601 
2602   return UnableToLegalize;
2603 }
2604 
2605 LegalizerHelper::LegalizeResult
2606 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2607   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2608   Register DstReg = MI.getOperand(0).getReg();
2609   Register PtrReg = MI.getOperand(1).getReg();
2610   LLT DstTy = MRI.getType(DstReg);
2611   auto &MMO = **MI.memoperands_begin();
2612 
2613   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2614     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2615       // This load needs splitting into power of 2 sized loads.
2616       if (DstTy.isVector())
2617         return UnableToLegalize;
2618       if (isPowerOf2_32(DstTy.getSizeInBits()))
2619         return UnableToLegalize; // Don't know what we're being asked to do.
2620 
2621       // Our strategy here is to generate anyextending loads for the smaller
2622       // types up to next power-2 result type, and then combine the two larger
2623       // result values together, before truncating back down to the non-pow-2
2624       // type.
2625       // E.g. v1 = i24 load =>
2626       // v2 = i32 zextload (2 byte)
2627       // v3 = i32 load (1 byte)
2628       // v4 = i32 shl v3, 16
2629       // v5 = i32 or v4, v2
2630       // v1 = i24 trunc v5
2631       // By doing this we generate the correct truncate which should get
2632       // combined away as an artifact with a matching extend.
2633       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2634       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2635 
2636       MachineFunction &MF = MIRBuilder.getMF();
2637       MachineMemOperand *LargeMMO =
2638         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2639       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2640         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2641 
2642       LLT PtrTy = MRI.getType(PtrReg);
2643       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2644       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2645       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2646       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2647       auto LargeLoad = MIRBuilder.buildLoadInstr(
2648         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2649 
2650       auto OffsetCst = MIRBuilder.buildConstant(
2651         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2652       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2653       auto SmallPtr =
2654         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2655       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2656                                             *SmallMMO);
2657 
2658       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2659       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2660       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2661       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2662       MI.eraseFromParent();
2663       return Legalized;
2664     }
2665 
2666     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2667     MI.eraseFromParent();
2668     return Legalized;
2669   }
2670 
2671   if (DstTy.isScalar()) {
2672     Register TmpReg =
2673       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2674     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2675     switch (MI.getOpcode()) {
2676     default:
2677       llvm_unreachable("Unexpected opcode");
2678     case TargetOpcode::G_LOAD:
2679       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2680       break;
2681     case TargetOpcode::G_SEXTLOAD:
2682       MIRBuilder.buildSExt(DstReg, TmpReg);
2683       break;
2684     case TargetOpcode::G_ZEXTLOAD:
2685       MIRBuilder.buildZExt(DstReg, TmpReg);
2686       break;
2687     }
2688 
2689     MI.eraseFromParent();
2690     return Legalized;
2691   }
2692 
2693   return UnableToLegalize;
2694 }
2695 
2696 LegalizerHelper::LegalizeResult
2697 LegalizerHelper::lowerStore(MachineInstr &MI) {
2698   // Lower a non-power of 2 store into multiple pow-2 stores.
2699   // E.g. split an i24 store into an i16 store + i8 store.
2700   // We do this by first extending the stored value to the next largest power
2701   // of 2 type, and then using truncating stores to store the components.
2702   // By doing this, likewise with G_LOAD, generate an extend that can be
2703   // artifact-combined away instead of leaving behind extracts.
2704   Register SrcReg = MI.getOperand(0).getReg();
2705   Register PtrReg = MI.getOperand(1).getReg();
2706   LLT SrcTy = MRI.getType(SrcReg);
2707   MachineMemOperand &MMO = **MI.memoperands_begin();
2708   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2709     return UnableToLegalize;
2710   if (SrcTy.isVector())
2711     return UnableToLegalize;
2712   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2713     return UnableToLegalize; // Don't know what we're being asked to do.
2714 
2715   // Extend to the next pow-2.
2716   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2717   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2718 
2719   // Obtain the smaller value by shifting away the larger value.
2720   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2721   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2722   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2723   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2724 
2725   // Generate the PtrAdd and truncating stores.
2726   LLT PtrTy = MRI.getType(PtrReg);
2727   auto OffsetCst = MIRBuilder.buildConstant(
2728     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2729   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2730   auto SmallPtr =
2731     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2732 
2733   MachineFunction &MF = MIRBuilder.getMF();
2734   MachineMemOperand *LargeMMO =
2735     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2736   MachineMemOperand *SmallMMO =
2737     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2738   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2739   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2740   MI.eraseFromParent();
2741   return Legalized;
2742 }
2743 
2744 LegalizerHelper::LegalizeResult
2745 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2746   switch (MI.getOpcode()) {
2747   case TargetOpcode::G_LOAD: {
2748     if (TypeIdx != 0)
2749       return UnableToLegalize;
2750 
2751     Observer.changingInstr(MI);
2752     bitcastDst(MI, CastTy, 0);
2753     Observer.changedInstr(MI);
2754     return Legalized;
2755   }
2756   case TargetOpcode::G_STORE: {
2757     if (TypeIdx != 0)
2758       return UnableToLegalize;
2759 
2760     Observer.changingInstr(MI);
2761     bitcastSrc(MI, CastTy, 0);
2762     Observer.changedInstr(MI);
2763     return Legalized;
2764   }
2765   case TargetOpcode::G_SELECT: {
2766     if (TypeIdx != 0)
2767       return UnableToLegalize;
2768 
2769     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2770       LLVM_DEBUG(
2771           dbgs() << "bitcast action not implemented for vector select\n");
2772       return UnableToLegalize;
2773     }
2774 
2775     Observer.changingInstr(MI);
2776     bitcastSrc(MI, CastTy, 2);
2777     bitcastSrc(MI, CastTy, 3);
2778     bitcastDst(MI, CastTy, 0);
2779     Observer.changedInstr(MI);
2780     return Legalized;
2781   }
2782   case TargetOpcode::G_AND:
2783   case TargetOpcode::G_OR:
2784   case TargetOpcode::G_XOR: {
2785     Observer.changingInstr(MI);
2786     bitcastSrc(MI, CastTy, 1);
2787     bitcastSrc(MI, CastTy, 2);
2788     bitcastDst(MI, CastTy, 0);
2789     Observer.changedInstr(MI);
2790     return Legalized;
2791   }
2792   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2793     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2794   case TargetOpcode::G_INSERT_VECTOR_ELT:
2795     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2796   default:
2797     return UnableToLegalize;
2798   }
2799 }
2800 
2801 // Legalize an instruction by changing the opcode in place.
2802 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2803     Observer.changingInstr(MI);
2804     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2805     Observer.changedInstr(MI);
2806 }
2807 
2808 LegalizerHelper::LegalizeResult
2809 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2810   using namespace TargetOpcode;
2811 
2812   switch(MI.getOpcode()) {
2813   default:
2814     return UnableToLegalize;
2815   case TargetOpcode::G_BITCAST:
2816     return lowerBitcast(MI);
2817   case TargetOpcode::G_SREM:
2818   case TargetOpcode::G_UREM: {
2819     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2820     auto Quot =
2821         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2822                               {MI.getOperand(1), MI.getOperand(2)});
2823 
2824     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2825     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2826     MI.eraseFromParent();
2827     return Legalized;
2828   }
2829   case TargetOpcode::G_SADDO:
2830   case TargetOpcode::G_SSUBO:
2831     return lowerSADDO_SSUBO(MI);
2832   case TargetOpcode::G_SMULO:
2833   case TargetOpcode::G_UMULO: {
2834     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2835     // result.
2836     Register Res = MI.getOperand(0).getReg();
2837     Register Overflow = MI.getOperand(1).getReg();
2838     Register LHS = MI.getOperand(2).getReg();
2839     Register RHS = MI.getOperand(3).getReg();
2840     LLT Ty = MRI.getType(Res);
2841 
2842     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2843                           ? TargetOpcode::G_SMULH
2844                           : TargetOpcode::G_UMULH;
2845 
2846     Observer.changingInstr(MI);
2847     const auto &TII = MIRBuilder.getTII();
2848     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2849     MI.RemoveOperand(1);
2850     Observer.changedInstr(MI);
2851 
2852     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2853 
2854     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2855     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2856 
2857     // For *signed* multiply, overflow is detected by checking:
2858     // (hi != (lo >> bitwidth-1))
2859     if (Opcode == TargetOpcode::G_SMULH) {
2860       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2861       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2862       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2863     } else {
2864       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2865     }
2866     return Legalized;
2867   }
2868   case TargetOpcode::G_FNEG: {
2869     Register Res = MI.getOperand(0).getReg();
2870     LLT Ty = MRI.getType(Res);
2871 
2872     // TODO: Handle vector types once we are able to
2873     // represent them.
2874     if (Ty.isVector())
2875       return UnableToLegalize;
2876     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2877     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2878     if (!ZeroTy)
2879       return UnableToLegalize;
2880     ConstantFP &ZeroForNegation =
2881         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2882     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2883     Register SubByReg = MI.getOperand(1).getReg();
2884     Register ZeroReg = Zero.getReg(0);
2885     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2886     MI.eraseFromParent();
2887     return Legalized;
2888   }
2889   case TargetOpcode::G_FSUB: {
2890     Register Res = MI.getOperand(0).getReg();
2891     LLT Ty = MRI.getType(Res);
2892 
2893     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2894     // First, check if G_FNEG is marked as Lower. If so, we may
2895     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2896     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2897       return UnableToLegalize;
2898     Register LHS = MI.getOperand(1).getReg();
2899     Register RHS = MI.getOperand(2).getReg();
2900     Register Neg = MRI.createGenericVirtualRegister(Ty);
2901     MIRBuilder.buildFNeg(Neg, RHS);
2902     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2903     MI.eraseFromParent();
2904     return Legalized;
2905   }
2906   case TargetOpcode::G_FMAD:
2907     return lowerFMad(MI);
2908   case TargetOpcode::G_FFLOOR:
2909     return lowerFFloor(MI);
2910   case TargetOpcode::G_INTRINSIC_ROUND:
2911     return lowerIntrinsicRound(MI);
2912   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2913     // Since round even is the assumed rounding mode for unconstrained FP
2914     // operations, rint and roundeven are the same operation.
2915     changeOpcode(MI, TargetOpcode::G_FRINT);
2916     return Legalized;
2917   }
2918   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2919     Register OldValRes = MI.getOperand(0).getReg();
2920     Register SuccessRes = MI.getOperand(1).getReg();
2921     Register Addr = MI.getOperand(2).getReg();
2922     Register CmpVal = MI.getOperand(3).getReg();
2923     Register NewVal = MI.getOperand(4).getReg();
2924     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2925                                   **MI.memoperands_begin());
2926     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2927     MI.eraseFromParent();
2928     return Legalized;
2929   }
2930   case TargetOpcode::G_LOAD:
2931   case TargetOpcode::G_SEXTLOAD:
2932   case TargetOpcode::G_ZEXTLOAD:
2933     return lowerLoad(MI);
2934   case TargetOpcode::G_STORE:
2935     return lowerStore(MI);
2936   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2937   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2938   case TargetOpcode::G_CTLZ:
2939   case TargetOpcode::G_CTTZ:
2940   case TargetOpcode::G_CTPOP:
2941     return lowerBitCount(MI);
2942   case G_UADDO: {
2943     Register Res = MI.getOperand(0).getReg();
2944     Register CarryOut = MI.getOperand(1).getReg();
2945     Register LHS = MI.getOperand(2).getReg();
2946     Register RHS = MI.getOperand(3).getReg();
2947 
2948     MIRBuilder.buildAdd(Res, LHS, RHS);
2949     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2950 
2951     MI.eraseFromParent();
2952     return Legalized;
2953   }
2954   case G_UADDE: {
2955     Register Res = MI.getOperand(0).getReg();
2956     Register CarryOut = MI.getOperand(1).getReg();
2957     Register LHS = MI.getOperand(2).getReg();
2958     Register RHS = MI.getOperand(3).getReg();
2959     Register CarryIn = MI.getOperand(4).getReg();
2960     LLT Ty = MRI.getType(Res);
2961 
2962     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2963     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2964     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2965     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2966 
2967     MI.eraseFromParent();
2968     return Legalized;
2969   }
2970   case G_USUBO: {
2971     Register Res = MI.getOperand(0).getReg();
2972     Register BorrowOut = MI.getOperand(1).getReg();
2973     Register LHS = MI.getOperand(2).getReg();
2974     Register RHS = MI.getOperand(3).getReg();
2975 
2976     MIRBuilder.buildSub(Res, LHS, RHS);
2977     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2978 
2979     MI.eraseFromParent();
2980     return Legalized;
2981   }
2982   case G_USUBE: {
2983     Register Res = MI.getOperand(0).getReg();
2984     Register BorrowOut = MI.getOperand(1).getReg();
2985     Register LHS = MI.getOperand(2).getReg();
2986     Register RHS = MI.getOperand(3).getReg();
2987     Register BorrowIn = MI.getOperand(4).getReg();
2988     const LLT CondTy = MRI.getType(BorrowOut);
2989     const LLT Ty = MRI.getType(Res);
2990 
2991     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2992     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2993     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2994 
2995     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2996     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2997     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2998 
2999     MI.eraseFromParent();
3000     return Legalized;
3001   }
3002   case G_UITOFP:
3003     return lowerUITOFP(MI);
3004   case G_SITOFP:
3005     return lowerSITOFP(MI);
3006   case G_FPTOUI:
3007     return lowerFPTOUI(MI);
3008   case G_FPTOSI:
3009     return lowerFPTOSI(MI);
3010   case G_FPTRUNC:
3011     return lowerFPTRUNC(MI);
3012   case G_FPOWI:
3013     return lowerFPOWI(MI);
3014   case G_SMIN:
3015   case G_SMAX:
3016   case G_UMIN:
3017   case G_UMAX:
3018     return lowerMinMax(MI);
3019   case G_FCOPYSIGN:
3020     return lowerFCopySign(MI);
3021   case G_FMINNUM:
3022   case G_FMAXNUM:
3023     return lowerFMinNumMaxNum(MI);
3024   case G_MERGE_VALUES:
3025     return lowerMergeValues(MI);
3026   case G_UNMERGE_VALUES:
3027     return lowerUnmergeValues(MI);
3028   case TargetOpcode::G_SEXT_INREG: {
3029     assert(MI.getOperand(2).isImm() && "Expected immediate");
3030     int64_t SizeInBits = MI.getOperand(2).getImm();
3031 
3032     Register DstReg = MI.getOperand(0).getReg();
3033     Register SrcReg = MI.getOperand(1).getReg();
3034     LLT DstTy = MRI.getType(DstReg);
3035     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3036 
3037     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3038     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3039     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3040     MI.eraseFromParent();
3041     return Legalized;
3042   }
3043   case G_EXTRACT_VECTOR_ELT:
3044   case G_INSERT_VECTOR_ELT:
3045     return lowerExtractInsertVectorElt(MI);
3046   case G_SHUFFLE_VECTOR:
3047     return lowerShuffleVector(MI);
3048   case G_DYN_STACKALLOC:
3049     return lowerDynStackAlloc(MI);
3050   case G_EXTRACT:
3051     return lowerExtract(MI);
3052   case G_INSERT:
3053     return lowerInsert(MI);
3054   case G_BSWAP:
3055     return lowerBswap(MI);
3056   case G_BITREVERSE:
3057     return lowerBitreverse(MI);
3058   case G_READ_REGISTER:
3059   case G_WRITE_REGISTER:
3060     return lowerReadWriteRegister(MI);
3061   case G_UADDSAT:
3062   case G_USUBSAT: {
3063     // Try to make a reasonable guess about which lowering strategy to use. The
3064     // target can override this with custom lowering and calling the
3065     // implementation functions.
3066     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3067     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3068       return lowerAddSubSatToMinMax(MI);
3069     return lowerAddSubSatToAddoSubo(MI);
3070   }
3071   case G_SADDSAT:
3072   case G_SSUBSAT: {
3073     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3074 
3075     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3076     // since it's a shorter expansion. However, we would need to figure out the
3077     // preferred boolean type for the carry out for the query.
3078     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3079       return lowerAddSubSatToMinMax(MI);
3080     return lowerAddSubSatToAddoSubo(MI);
3081   }
3082   case G_SSHLSAT:
3083   case G_USHLSAT:
3084     return lowerShlSat(MI);
3085   }
3086 }
3087 
3088 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3089                                                   Align MinAlign) const {
3090   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3091   // datalayout for the preferred alignment. Also there should be a target hook
3092   // for this to allow targets to reduce the alignment and ignore the
3093   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3094   // the type.
3095   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3096 }
3097 
3098 MachineInstrBuilder
3099 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3100                                       MachinePointerInfo &PtrInfo) {
3101   MachineFunction &MF = MIRBuilder.getMF();
3102   const DataLayout &DL = MIRBuilder.getDataLayout();
3103   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3104 
3105   unsigned AddrSpace = DL.getAllocaAddrSpace();
3106   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3107 
3108   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3109   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3110 }
3111 
3112 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3113                                         LLT VecTy) {
3114   int64_t IdxVal;
3115   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3116     return IdxReg;
3117 
3118   LLT IdxTy = B.getMRI()->getType(IdxReg);
3119   unsigned NElts = VecTy.getNumElements();
3120   if (isPowerOf2_32(NElts)) {
3121     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3122     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3123   }
3124 
3125   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3126       .getReg(0);
3127 }
3128 
3129 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3130                                                   Register Index) {
3131   LLT EltTy = VecTy.getElementType();
3132 
3133   // Calculate the element offset and add it to the pointer.
3134   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3135   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3136          "Converting bits to bytes lost precision");
3137 
3138   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3139 
3140   LLT IdxTy = MRI.getType(Index);
3141   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3142                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3143 
3144   LLT PtrTy = MRI.getType(VecPtr);
3145   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3146 }
3147 
3148 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3149     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3150   Register DstReg = MI.getOperand(0).getReg();
3151   LLT DstTy = MRI.getType(DstReg);
3152   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3153 
3154   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3155 
3156   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3157   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3158 
3159   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3160   MI.eraseFromParent();
3161   return Legalized;
3162 }
3163 
3164 // Handle splitting vector operations which need to have the same number of
3165 // elements in each type index, but each type index may have a different element
3166 // type.
3167 //
3168 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3169 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3170 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3171 //
3172 // Also handles some irregular breakdown cases, e.g.
3173 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3174 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3175 //             s64 = G_SHL s64, s32
3176 LegalizerHelper::LegalizeResult
3177 LegalizerHelper::fewerElementsVectorMultiEltType(
3178   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3179   if (TypeIdx != 0)
3180     return UnableToLegalize;
3181 
3182   const LLT NarrowTy0 = NarrowTyArg;
3183   const unsigned NewNumElts =
3184       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3185 
3186   const Register DstReg = MI.getOperand(0).getReg();
3187   LLT DstTy = MRI.getType(DstReg);
3188   LLT LeftoverTy0;
3189 
3190   // All of the operands need to have the same number of elements, so if we can
3191   // determine a type breakdown for the result type, we can for all of the
3192   // source types.
3193   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3194   if (NumParts < 0)
3195     return UnableToLegalize;
3196 
3197   SmallVector<MachineInstrBuilder, 4> NewInsts;
3198 
3199   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3200   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3201 
3202   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3203     Register SrcReg = MI.getOperand(I).getReg();
3204     LLT SrcTyI = MRI.getType(SrcReg);
3205     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3206     LLT LeftoverTyI;
3207 
3208     // Split this operand into the requested typed registers, and any leftover
3209     // required to reproduce the original type.
3210     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3211                       LeftoverRegs))
3212       return UnableToLegalize;
3213 
3214     if (I == 1) {
3215       // For the first operand, create an instruction for each part and setup
3216       // the result.
3217       for (Register PartReg : PartRegs) {
3218         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3219         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3220                                .addDef(PartDstReg)
3221                                .addUse(PartReg));
3222         DstRegs.push_back(PartDstReg);
3223       }
3224 
3225       for (Register LeftoverReg : LeftoverRegs) {
3226         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3227         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3228                                .addDef(PartDstReg)
3229                                .addUse(LeftoverReg));
3230         LeftoverDstRegs.push_back(PartDstReg);
3231       }
3232     } else {
3233       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3234 
3235       // Add the newly created operand splits to the existing instructions. The
3236       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3237       // pieces.
3238       unsigned InstCount = 0;
3239       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3240         NewInsts[InstCount++].addUse(PartRegs[J]);
3241       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3242         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3243     }
3244 
3245     PartRegs.clear();
3246     LeftoverRegs.clear();
3247   }
3248 
3249   // Insert the newly built operations and rebuild the result register.
3250   for (auto &MIB : NewInsts)
3251     MIRBuilder.insertInstr(MIB);
3252 
3253   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3254 
3255   MI.eraseFromParent();
3256   return Legalized;
3257 }
3258 
3259 LegalizerHelper::LegalizeResult
3260 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3261                                           LLT NarrowTy) {
3262   if (TypeIdx != 0)
3263     return UnableToLegalize;
3264 
3265   Register DstReg = MI.getOperand(0).getReg();
3266   Register SrcReg = MI.getOperand(1).getReg();
3267   LLT DstTy = MRI.getType(DstReg);
3268   LLT SrcTy = MRI.getType(SrcReg);
3269 
3270   LLT NarrowTy0 = NarrowTy;
3271   LLT NarrowTy1;
3272   unsigned NumParts;
3273 
3274   if (NarrowTy.isVector()) {
3275     // Uneven breakdown not handled.
3276     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3277     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3278       return UnableToLegalize;
3279 
3280     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
3281   } else {
3282     NumParts = DstTy.getNumElements();
3283     NarrowTy1 = SrcTy.getElementType();
3284   }
3285 
3286   SmallVector<Register, 4> SrcRegs, DstRegs;
3287   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3288 
3289   for (unsigned I = 0; I < NumParts; ++I) {
3290     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3291     MachineInstr *NewInst =
3292         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3293 
3294     NewInst->setFlags(MI.getFlags());
3295     DstRegs.push_back(DstReg);
3296   }
3297 
3298   if (NarrowTy.isVector())
3299     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3300   else
3301     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3302 
3303   MI.eraseFromParent();
3304   return Legalized;
3305 }
3306 
3307 LegalizerHelper::LegalizeResult
3308 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3309                                         LLT NarrowTy) {
3310   Register DstReg = MI.getOperand(0).getReg();
3311   Register Src0Reg = MI.getOperand(2).getReg();
3312   LLT DstTy = MRI.getType(DstReg);
3313   LLT SrcTy = MRI.getType(Src0Reg);
3314 
3315   unsigned NumParts;
3316   LLT NarrowTy0, NarrowTy1;
3317 
3318   if (TypeIdx == 0) {
3319     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3320     unsigned OldElts = DstTy.getNumElements();
3321 
3322     NarrowTy0 = NarrowTy;
3323     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3324     NarrowTy1 = NarrowTy.isVector() ?
3325       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3326       SrcTy.getElementType();
3327 
3328   } else {
3329     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3330     unsigned OldElts = SrcTy.getNumElements();
3331 
3332     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3333       NarrowTy.getNumElements();
3334     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3335                             DstTy.getScalarSizeInBits());
3336     NarrowTy1 = NarrowTy;
3337   }
3338 
3339   // FIXME: Don't know how to handle the situation where the small vectors
3340   // aren't all the same size yet.
3341   if (NarrowTy1.isVector() &&
3342       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3343     return UnableToLegalize;
3344 
3345   CmpInst::Predicate Pred
3346     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3347 
3348   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3349   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3350   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3351 
3352   for (unsigned I = 0; I < NumParts; ++I) {
3353     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3354     DstRegs.push_back(DstReg);
3355 
3356     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3357       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3358     else {
3359       MachineInstr *NewCmp
3360         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3361       NewCmp->setFlags(MI.getFlags());
3362     }
3363   }
3364 
3365   if (NarrowTy1.isVector())
3366     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3367   else
3368     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3369 
3370   MI.eraseFromParent();
3371   return Legalized;
3372 }
3373 
3374 LegalizerHelper::LegalizeResult
3375 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3376                                            LLT NarrowTy) {
3377   Register DstReg = MI.getOperand(0).getReg();
3378   Register CondReg = MI.getOperand(1).getReg();
3379 
3380   unsigned NumParts = 0;
3381   LLT NarrowTy0, NarrowTy1;
3382 
3383   LLT DstTy = MRI.getType(DstReg);
3384   LLT CondTy = MRI.getType(CondReg);
3385   unsigned Size = DstTy.getSizeInBits();
3386 
3387   assert(TypeIdx == 0 || CondTy.isVector());
3388 
3389   if (TypeIdx == 0) {
3390     NarrowTy0 = NarrowTy;
3391     NarrowTy1 = CondTy;
3392 
3393     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3394     // FIXME: Don't know how to handle the situation where the small vectors
3395     // aren't all the same size yet.
3396     if (Size % NarrowSize != 0)
3397       return UnableToLegalize;
3398 
3399     NumParts = Size / NarrowSize;
3400 
3401     // Need to break down the condition type
3402     if (CondTy.isVector()) {
3403       if (CondTy.getNumElements() == NumParts)
3404         NarrowTy1 = CondTy.getElementType();
3405       else
3406         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3407                                 CondTy.getScalarSizeInBits());
3408     }
3409   } else {
3410     NumParts = CondTy.getNumElements();
3411     if (NarrowTy.isVector()) {
3412       // TODO: Handle uneven breakdown.
3413       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3414         return UnableToLegalize;
3415 
3416       return UnableToLegalize;
3417     } else {
3418       NarrowTy0 = DstTy.getElementType();
3419       NarrowTy1 = NarrowTy;
3420     }
3421   }
3422 
3423   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3424   if (CondTy.isVector())
3425     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3426 
3427   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3428   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3429 
3430   for (unsigned i = 0; i < NumParts; ++i) {
3431     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3432     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3433                            Src1Regs[i], Src2Regs[i]);
3434     DstRegs.push_back(DstReg);
3435   }
3436 
3437   if (NarrowTy0.isVector())
3438     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3439   else
3440     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3441 
3442   MI.eraseFromParent();
3443   return Legalized;
3444 }
3445 
3446 LegalizerHelper::LegalizeResult
3447 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3448                                         LLT NarrowTy) {
3449   const Register DstReg = MI.getOperand(0).getReg();
3450   LLT PhiTy = MRI.getType(DstReg);
3451   LLT LeftoverTy;
3452 
3453   // All of the operands need to have the same number of elements, so if we can
3454   // determine a type breakdown for the result type, we can for all of the
3455   // source types.
3456   int NumParts, NumLeftover;
3457   std::tie(NumParts, NumLeftover)
3458     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3459   if (NumParts < 0)
3460     return UnableToLegalize;
3461 
3462   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3463   SmallVector<MachineInstrBuilder, 4> NewInsts;
3464 
3465   const int TotalNumParts = NumParts + NumLeftover;
3466 
3467   // Insert the new phis in the result block first.
3468   for (int I = 0; I != TotalNumParts; ++I) {
3469     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3470     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3471     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3472                        .addDef(PartDstReg));
3473     if (I < NumParts)
3474       DstRegs.push_back(PartDstReg);
3475     else
3476       LeftoverDstRegs.push_back(PartDstReg);
3477   }
3478 
3479   MachineBasicBlock *MBB = MI.getParent();
3480   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3481   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3482 
3483   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3484 
3485   // Insert code to extract the incoming values in each predecessor block.
3486   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3487     PartRegs.clear();
3488     LeftoverRegs.clear();
3489 
3490     Register SrcReg = MI.getOperand(I).getReg();
3491     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3492     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3493 
3494     LLT Unused;
3495     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3496                       LeftoverRegs))
3497       return UnableToLegalize;
3498 
3499     // Add the newly created operand splits to the existing instructions. The
3500     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3501     // pieces.
3502     for (int J = 0; J != TotalNumParts; ++J) {
3503       MachineInstrBuilder MIB = NewInsts[J];
3504       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3505       MIB.addMBB(&OpMBB);
3506     }
3507   }
3508 
3509   MI.eraseFromParent();
3510   return Legalized;
3511 }
3512 
3513 LegalizerHelper::LegalizeResult
3514 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3515                                                   unsigned TypeIdx,
3516                                                   LLT NarrowTy) {
3517   if (TypeIdx != 1)
3518     return UnableToLegalize;
3519 
3520   const int NumDst = MI.getNumOperands() - 1;
3521   const Register SrcReg = MI.getOperand(NumDst).getReg();
3522   LLT SrcTy = MRI.getType(SrcReg);
3523 
3524   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3525 
3526   // TODO: Create sequence of extracts.
3527   if (DstTy == NarrowTy)
3528     return UnableToLegalize;
3529 
3530   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3531   if (DstTy == GCDTy) {
3532     // This would just be a copy of the same unmerge.
3533     // TODO: Create extracts, pad with undef and create intermediate merges.
3534     return UnableToLegalize;
3535   }
3536 
3537   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3538   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3539   const int PartsPerUnmerge = NumDst / NumUnmerge;
3540 
3541   for (int I = 0; I != NumUnmerge; ++I) {
3542     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3543 
3544     for (int J = 0; J != PartsPerUnmerge; ++J)
3545       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3546     MIB.addUse(Unmerge.getReg(I));
3547   }
3548 
3549   MI.eraseFromParent();
3550   return Legalized;
3551 }
3552 
3553 LegalizerHelper::LegalizeResult
3554 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3555                                                 unsigned TypeIdx,
3556                                                 LLT NarrowTy) {
3557   assert(TypeIdx == 0 && "not a vector type index");
3558   Register DstReg = MI.getOperand(0).getReg();
3559   LLT DstTy = MRI.getType(DstReg);
3560   LLT SrcTy = DstTy.getElementType();
3561 
3562   int DstNumElts = DstTy.getNumElements();
3563   int NarrowNumElts = NarrowTy.getNumElements();
3564   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3565   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3566 
3567   SmallVector<Register, 8> ConcatOps;
3568   SmallVector<Register, 8> SubBuildVector;
3569 
3570   Register UndefReg;
3571   if (WidenedDstTy != DstTy)
3572     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3573 
3574   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3575   // necessary.
3576   //
3577   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3578   //   -> <2 x s16>
3579   //
3580   // %4:_(s16) = G_IMPLICIT_DEF
3581   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3582   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3583   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3584   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3585   for (int I = 0; I != NumConcat; ++I) {
3586     for (int J = 0; J != NarrowNumElts; ++J) {
3587       int SrcIdx = NarrowNumElts * I + J;
3588 
3589       if (SrcIdx < DstNumElts) {
3590         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3591         SubBuildVector.push_back(SrcReg);
3592       } else
3593         SubBuildVector.push_back(UndefReg);
3594     }
3595 
3596     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3597     ConcatOps.push_back(BuildVec.getReg(0));
3598     SubBuildVector.clear();
3599   }
3600 
3601   if (DstTy == WidenedDstTy)
3602     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3603   else {
3604     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3605     MIRBuilder.buildExtract(DstReg, Concat, 0);
3606   }
3607 
3608   MI.eraseFromParent();
3609   return Legalized;
3610 }
3611 
3612 LegalizerHelper::LegalizeResult
3613 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3614                                                            unsigned TypeIdx,
3615                                                            LLT NarrowVecTy) {
3616   Register DstReg = MI.getOperand(0).getReg();
3617   Register SrcVec = MI.getOperand(1).getReg();
3618   Register InsertVal;
3619   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3620 
3621   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3622   if (IsInsert)
3623     InsertVal = MI.getOperand(2).getReg();
3624 
3625   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3626 
3627   // TODO: Handle total scalarization case.
3628   if (!NarrowVecTy.isVector())
3629     return UnableToLegalize;
3630 
3631   LLT VecTy = MRI.getType(SrcVec);
3632 
3633   // If the index is a constant, we can really break this down as you would
3634   // expect, and index into the target size pieces.
3635   int64_t IdxVal;
3636   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3637     // Avoid out of bounds indexing the pieces.
3638     if (IdxVal >= VecTy.getNumElements()) {
3639       MIRBuilder.buildUndef(DstReg);
3640       MI.eraseFromParent();
3641       return Legalized;
3642     }
3643 
3644     SmallVector<Register, 8> VecParts;
3645     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3646 
3647     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3648     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3649                                     TargetOpcode::G_ANYEXT);
3650 
3651     unsigned NewNumElts = NarrowVecTy.getNumElements();
3652 
3653     LLT IdxTy = MRI.getType(Idx);
3654     int64_t PartIdx = IdxVal / NewNumElts;
3655     auto NewIdx =
3656         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3657 
3658     if (IsInsert) {
3659       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3660 
3661       // Use the adjusted index to insert into one of the subvectors.
3662       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3663           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3664       VecParts[PartIdx] = InsertPart.getReg(0);
3665 
3666       // Recombine the inserted subvector with the others to reform the result
3667       // vector.
3668       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3669     } else {
3670       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3671     }
3672 
3673     MI.eraseFromParent();
3674     return Legalized;
3675   }
3676 
3677   // With a variable index, we can't perform the operation in a smaller type, so
3678   // we're forced to expand this.
3679   //
3680   // TODO: We could emit a chain of compare/select to figure out which piece to
3681   // index.
3682   return lowerExtractInsertVectorElt(MI);
3683 }
3684 
3685 LegalizerHelper::LegalizeResult
3686 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3687                                       LLT NarrowTy) {
3688   // FIXME: Don't know how to handle secondary types yet.
3689   if (TypeIdx != 0)
3690     return UnableToLegalize;
3691 
3692   MachineMemOperand *MMO = *MI.memoperands_begin();
3693 
3694   // This implementation doesn't work for atomics. Give up instead of doing
3695   // something invalid.
3696   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3697       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3698     return UnableToLegalize;
3699 
3700   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3701   Register ValReg = MI.getOperand(0).getReg();
3702   Register AddrReg = MI.getOperand(1).getReg();
3703   LLT ValTy = MRI.getType(ValReg);
3704 
3705   // FIXME: Do we need a distinct NarrowMemory legalize action?
3706   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3707     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3708     return UnableToLegalize;
3709   }
3710 
3711   int NumParts = -1;
3712   int NumLeftover = -1;
3713   LLT LeftoverTy;
3714   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3715   if (IsLoad) {
3716     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3717   } else {
3718     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3719                      NarrowLeftoverRegs)) {
3720       NumParts = NarrowRegs.size();
3721       NumLeftover = NarrowLeftoverRegs.size();
3722     }
3723   }
3724 
3725   if (NumParts == -1)
3726     return UnableToLegalize;
3727 
3728   LLT PtrTy = MRI.getType(AddrReg);
3729   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3730 
3731   unsigned TotalSize = ValTy.getSizeInBits();
3732 
3733   // Split the load/store into PartTy sized pieces starting at Offset. If this
3734   // is a load, return the new registers in ValRegs. For a store, each elements
3735   // of ValRegs should be PartTy. Returns the next offset that needs to be
3736   // handled.
3737   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3738                              unsigned Offset) -> unsigned {
3739     MachineFunction &MF = MIRBuilder.getMF();
3740     unsigned PartSize = PartTy.getSizeInBits();
3741     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3742          Offset += PartSize, ++Idx) {
3743       unsigned ByteSize = PartSize / 8;
3744       unsigned ByteOffset = Offset / 8;
3745       Register NewAddrReg;
3746 
3747       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3748 
3749       MachineMemOperand *NewMMO =
3750         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3751 
3752       if (IsLoad) {
3753         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3754         ValRegs.push_back(Dst);
3755         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3756       } else {
3757         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3758       }
3759     }
3760 
3761     return Offset;
3762   };
3763 
3764   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3765 
3766   // Handle the rest of the register if this isn't an even type breakdown.
3767   if (LeftoverTy.isValid())
3768     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3769 
3770   if (IsLoad) {
3771     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3772                 LeftoverTy, NarrowLeftoverRegs);
3773   }
3774 
3775   MI.eraseFromParent();
3776   return Legalized;
3777 }
3778 
3779 LegalizerHelper::LegalizeResult
3780 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3781                                       LLT NarrowTy) {
3782   assert(TypeIdx == 0 && "only one type index expected");
3783 
3784   const unsigned Opc = MI.getOpcode();
3785   const int NumOps = MI.getNumOperands() - 1;
3786   const Register DstReg = MI.getOperand(0).getReg();
3787   const unsigned Flags = MI.getFlags();
3788   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3789   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3790 
3791   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3792 
3793   // First of all check whether we are narrowing (changing the element type)
3794   // or reducing the vector elements
3795   const LLT DstTy = MRI.getType(DstReg);
3796   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3797 
3798   SmallVector<Register, 8> ExtractedRegs[3];
3799   SmallVector<Register, 8> Parts;
3800 
3801   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3802 
3803   // Break down all the sources into NarrowTy pieces we can operate on. This may
3804   // involve creating merges to a wider type, padded with undef.
3805   for (int I = 0; I != NumOps; ++I) {
3806     Register SrcReg = MI.getOperand(I + 1).getReg();
3807     LLT SrcTy = MRI.getType(SrcReg);
3808 
3809     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3810     // For fewerElements, this is a smaller vector with the same element type.
3811     LLT OpNarrowTy;
3812     if (IsNarrow) {
3813       OpNarrowTy = NarrowScalarTy;
3814 
3815       // In case of narrowing, we need to cast vectors to scalars for this to
3816       // work properly
3817       // FIXME: Can we do without the bitcast here if we're narrowing?
3818       if (SrcTy.isVector()) {
3819         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3820         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3821       }
3822     } else {
3823       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3824     }
3825 
3826     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3827 
3828     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3829     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3830                         TargetOpcode::G_ANYEXT);
3831   }
3832 
3833   SmallVector<Register, 8> ResultRegs;
3834 
3835   // Input operands for each sub-instruction.
3836   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3837 
3838   int NumParts = ExtractedRegs[0].size();
3839   const unsigned DstSize = DstTy.getSizeInBits();
3840   const LLT DstScalarTy = LLT::scalar(DstSize);
3841 
3842   // Narrowing needs to use scalar types
3843   LLT DstLCMTy, NarrowDstTy;
3844   if (IsNarrow) {
3845     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3846     NarrowDstTy = NarrowScalarTy;
3847   } else {
3848     DstLCMTy = getLCMType(DstTy, NarrowTy);
3849     NarrowDstTy = NarrowTy;
3850   }
3851 
3852   // We widened the source registers to satisfy merge/unmerge size
3853   // constraints. We'll have some extra fully undef parts.
3854   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3855 
3856   for (int I = 0; I != NumRealParts; ++I) {
3857     // Emit this instruction on each of the split pieces.
3858     for (int J = 0; J != NumOps; ++J)
3859       InputRegs[J] = ExtractedRegs[J][I];
3860 
3861     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3862     ResultRegs.push_back(Inst.getReg(0));
3863   }
3864 
3865   // Fill out the widened result with undef instead of creating instructions
3866   // with undef inputs.
3867   int NumUndefParts = NumParts - NumRealParts;
3868   if (NumUndefParts != 0)
3869     ResultRegs.append(NumUndefParts,
3870                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3871 
3872   // Extract the possibly padded result. Use a scratch register if we need to do
3873   // a final bitcast, otherwise use the original result register.
3874   Register MergeDstReg;
3875   if (IsNarrow && DstTy.isVector())
3876     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3877   else
3878     MergeDstReg = DstReg;
3879 
3880   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3881 
3882   // Recast to vector if we narrowed a vector
3883   if (IsNarrow && DstTy.isVector())
3884     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3885 
3886   MI.eraseFromParent();
3887   return Legalized;
3888 }
3889 
3890 LegalizerHelper::LegalizeResult
3891 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3892                                               LLT NarrowTy) {
3893   Register DstReg = MI.getOperand(0).getReg();
3894   Register SrcReg = MI.getOperand(1).getReg();
3895   int64_t Imm = MI.getOperand(2).getImm();
3896 
3897   LLT DstTy = MRI.getType(DstReg);
3898 
3899   SmallVector<Register, 8> Parts;
3900   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3901   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3902 
3903   for (Register &R : Parts)
3904     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3905 
3906   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3907 
3908   MI.eraseFromParent();
3909   return Legalized;
3910 }
3911 
3912 LegalizerHelper::LegalizeResult
3913 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3914                                      LLT NarrowTy) {
3915   using namespace TargetOpcode;
3916 
3917   switch (MI.getOpcode()) {
3918   case G_IMPLICIT_DEF:
3919     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3920   case G_TRUNC:
3921   case G_AND:
3922   case G_OR:
3923   case G_XOR:
3924   case G_ADD:
3925   case G_SUB:
3926   case G_MUL:
3927   case G_PTR_ADD:
3928   case G_SMULH:
3929   case G_UMULH:
3930   case G_FADD:
3931   case G_FMUL:
3932   case G_FSUB:
3933   case G_FNEG:
3934   case G_FABS:
3935   case G_FCANONICALIZE:
3936   case G_FDIV:
3937   case G_FREM:
3938   case G_FMA:
3939   case G_FMAD:
3940   case G_FPOW:
3941   case G_FEXP:
3942   case G_FEXP2:
3943   case G_FLOG:
3944   case G_FLOG2:
3945   case G_FLOG10:
3946   case G_FNEARBYINT:
3947   case G_FCEIL:
3948   case G_FFLOOR:
3949   case G_FRINT:
3950   case G_INTRINSIC_ROUND:
3951   case G_INTRINSIC_ROUNDEVEN:
3952   case G_INTRINSIC_TRUNC:
3953   case G_FCOS:
3954   case G_FSIN:
3955   case G_FSQRT:
3956   case G_BSWAP:
3957   case G_BITREVERSE:
3958   case G_SDIV:
3959   case G_UDIV:
3960   case G_SREM:
3961   case G_UREM:
3962   case G_SMIN:
3963   case G_SMAX:
3964   case G_UMIN:
3965   case G_UMAX:
3966   case G_FMINNUM:
3967   case G_FMAXNUM:
3968   case G_FMINNUM_IEEE:
3969   case G_FMAXNUM_IEEE:
3970   case G_FMINIMUM:
3971   case G_FMAXIMUM:
3972   case G_FSHL:
3973   case G_FSHR:
3974   case G_FREEZE:
3975   case G_SADDSAT:
3976   case G_SSUBSAT:
3977   case G_UADDSAT:
3978   case G_USUBSAT:
3979     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3980   case G_SHL:
3981   case G_LSHR:
3982   case G_ASHR:
3983   case G_SSHLSAT:
3984   case G_USHLSAT:
3985   case G_CTLZ:
3986   case G_CTLZ_ZERO_UNDEF:
3987   case G_CTTZ:
3988   case G_CTTZ_ZERO_UNDEF:
3989   case G_CTPOP:
3990   case G_FCOPYSIGN:
3991     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3992   case G_ZEXT:
3993   case G_SEXT:
3994   case G_ANYEXT:
3995   case G_FPEXT:
3996   case G_FPTRUNC:
3997   case G_SITOFP:
3998   case G_UITOFP:
3999   case G_FPTOSI:
4000   case G_FPTOUI:
4001   case G_INTTOPTR:
4002   case G_PTRTOINT:
4003   case G_ADDRSPACE_CAST:
4004     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4005   case G_ICMP:
4006   case G_FCMP:
4007     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4008   case G_SELECT:
4009     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4010   case G_PHI:
4011     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4012   case G_UNMERGE_VALUES:
4013     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4014   case G_BUILD_VECTOR:
4015     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
4016   case G_EXTRACT_VECTOR_ELT:
4017   case G_INSERT_VECTOR_ELT:
4018     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4019   case G_LOAD:
4020   case G_STORE:
4021     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4022   case G_SEXT_INREG:
4023     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4024   default:
4025     return UnableToLegalize;
4026   }
4027 }
4028 
4029 LegalizerHelper::LegalizeResult
4030 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4031                                              const LLT HalfTy, const LLT AmtTy) {
4032 
4033   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4034   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4035   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4036 
4037   if (Amt.isNullValue()) {
4038     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4039     MI.eraseFromParent();
4040     return Legalized;
4041   }
4042 
4043   LLT NVT = HalfTy;
4044   unsigned NVTBits = HalfTy.getSizeInBits();
4045   unsigned VTBits = 2 * NVTBits;
4046 
4047   SrcOp Lo(Register(0)), Hi(Register(0));
4048   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4049     if (Amt.ugt(VTBits)) {
4050       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4051     } else if (Amt.ugt(NVTBits)) {
4052       Lo = MIRBuilder.buildConstant(NVT, 0);
4053       Hi = MIRBuilder.buildShl(NVT, InL,
4054                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4055     } else if (Amt == NVTBits) {
4056       Lo = MIRBuilder.buildConstant(NVT, 0);
4057       Hi = InL;
4058     } else {
4059       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4060       auto OrLHS =
4061           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4062       auto OrRHS = MIRBuilder.buildLShr(
4063           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4064       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4065     }
4066   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4067     if (Amt.ugt(VTBits)) {
4068       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4069     } else if (Amt.ugt(NVTBits)) {
4070       Lo = MIRBuilder.buildLShr(NVT, InH,
4071                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4072       Hi = MIRBuilder.buildConstant(NVT, 0);
4073     } else if (Amt == NVTBits) {
4074       Lo = InH;
4075       Hi = MIRBuilder.buildConstant(NVT, 0);
4076     } else {
4077       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4078 
4079       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4080       auto OrRHS = MIRBuilder.buildShl(
4081           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4082 
4083       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4084       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4085     }
4086   } else {
4087     if (Amt.ugt(VTBits)) {
4088       Hi = Lo = MIRBuilder.buildAShr(
4089           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4090     } else if (Amt.ugt(NVTBits)) {
4091       Lo = MIRBuilder.buildAShr(NVT, InH,
4092                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4093       Hi = MIRBuilder.buildAShr(NVT, InH,
4094                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4095     } else if (Amt == NVTBits) {
4096       Lo = InH;
4097       Hi = MIRBuilder.buildAShr(NVT, InH,
4098                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4099     } else {
4100       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4101 
4102       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4103       auto OrRHS = MIRBuilder.buildShl(
4104           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4105 
4106       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4107       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4108     }
4109   }
4110 
4111   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4112   MI.eraseFromParent();
4113 
4114   return Legalized;
4115 }
4116 
4117 // TODO: Optimize if constant shift amount.
4118 LegalizerHelper::LegalizeResult
4119 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4120                                    LLT RequestedTy) {
4121   if (TypeIdx == 1) {
4122     Observer.changingInstr(MI);
4123     narrowScalarSrc(MI, RequestedTy, 2);
4124     Observer.changedInstr(MI);
4125     return Legalized;
4126   }
4127 
4128   Register DstReg = MI.getOperand(0).getReg();
4129   LLT DstTy = MRI.getType(DstReg);
4130   if (DstTy.isVector())
4131     return UnableToLegalize;
4132 
4133   Register Amt = MI.getOperand(2).getReg();
4134   LLT ShiftAmtTy = MRI.getType(Amt);
4135   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4136   if (DstEltSize % 2 != 0)
4137     return UnableToLegalize;
4138 
4139   // Ignore the input type. We can only go to exactly half the size of the
4140   // input. If that isn't small enough, the resulting pieces will be further
4141   // legalized.
4142   const unsigned NewBitSize = DstEltSize / 2;
4143   const LLT HalfTy = LLT::scalar(NewBitSize);
4144   const LLT CondTy = LLT::scalar(1);
4145 
4146   if (const MachineInstr *KShiftAmt =
4147           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4148     return narrowScalarShiftByConstant(
4149         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4150   }
4151 
4152   // TODO: Expand with known bits.
4153 
4154   // Handle the fully general expansion by an unknown amount.
4155   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4156 
4157   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4158   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4159   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4160 
4161   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4162   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4163 
4164   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4165   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4166   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4167 
4168   Register ResultRegs[2];
4169   switch (MI.getOpcode()) {
4170   case TargetOpcode::G_SHL: {
4171     // Short: ShAmt < NewBitSize
4172     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4173 
4174     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4175     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4176     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4177 
4178     // Long: ShAmt >= NewBitSize
4179     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4180     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4181 
4182     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4183     auto Hi = MIRBuilder.buildSelect(
4184         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4185 
4186     ResultRegs[0] = Lo.getReg(0);
4187     ResultRegs[1] = Hi.getReg(0);
4188     break;
4189   }
4190   case TargetOpcode::G_LSHR:
4191   case TargetOpcode::G_ASHR: {
4192     // Short: ShAmt < NewBitSize
4193     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4194 
4195     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4196     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4197     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4198 
4199     // Long: ShAmt >= NewBitSize
4200     MachineInstrBuilder HiL;
4201     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4202       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4203     } else {
4204       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4205       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4206     }
4207     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4208                                      {InH, AmtExcess});     // Lo from Hi part.
4209 
4210     auto Lo = MIRBuilder.buildSelect(
4211         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4212 
4213     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4214 
4215     ResultRegs[0] = Lo.getReg(0);
4216     ResultRegs[1] = Hi.getReg(0);
4217     break;
4218   }
4219   default:
4220     llvm_unreachable("not a shift");
4221   }
4222 
4223   MIRBuilder.buildMerge(DstReg, ResultRegs);
4224   MI.eraseFromParent();
4225   return Legalized;
4226 }
4227 
4228 LegalizerHelper::LegalizeResult
4229 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4230                                        LLT MoreTy) {
4231   assert(TypeIdx == 0 && "Expecting only Idx 0");
4232 
4233   Observer.changingInstr(MI);
4234   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4235     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4236     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4237     moreElementsVectorSrc(MI, MoreTy, I);
4238   }
4239 
4240   MachineBasicBlock &MBB = *MI.getParent();
4241   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4242   moreElementsVectorDst(MI, MoreTy, 0);
4243   Observer.changedInstr(MI);
4244   return Legalized;
4245 }
4246 
4247 LegalizerHelper::LegalizeResult
4248 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4249                                     LLT MoreTy) {
4250   unsigned Opc = MI.getOpcode();
4251   switch (Opc) {
4252   case TargetOpcode::G_IMPLICIT_DEF:
4253   case TargetOpcode::G_LOAD: {
4254     if (TypeIdx != 0)
4255       return UnableToLegalize;
4256     Observer.changingInstr(MI);
4257     moreElementsVectorDst(MI, MoreTy, 0);
4258     Observer.changedInstr(MI);
4259     return Legalized;
4260   }
4261   case TargetOpcode::G_STORE:
4262     if (TypeIdx != 0)
4263       return UnableToLegalize;
4264     Observer.changingInstr(MI);
4265     moreElementsVectorSrc(MI, MoreTy, 0);
4266     Observer.changedInstr(MI);
4267     return Legalized;
4268   case TargetOpcode::G_AND:
4269   case TargetOpcode::G_OR:
4270   case TargetOpcode::G_XOR:
4271   case TargetOpcode::G_SMIN:
4272   case TargetOpcode::G_SMAX:
4273   case TargetOpcode::G_UMIN:
4274   case TargetOpcode::G_UMAX:
4275   case TargetOpcode::G_FMINNUM:
4276   case TargetOpcode::G_FMAXNUM:
4277   case TargetOpcode::G_FMINNUM_IEEE:
4278   case TargetOpcode::G_FMAXNUM_IEEE:
4279   case TargetOpcode::G_FMINIMUM:
4280   case TargetOpcode::G_FMAXIMUM: {
4281     Observer.changingInstr(MI);
4282     moreElementsVectorSrc(MI, MoreTy, 1);
4283     moreElementsVectorSrc(MI, MoreTy, 2);
4284     moreElementsVectorDst(MI, MoreTy, 0);
4285     Observer.changedInstr(MI);
4286     return Legalized;
4287   }
4288   case TargetOpcode::G_EXTRACT:
4289     if (TypeIdx != 1)
4290       return UnableToLegalize;
4291     Observer.changingInstr(MI);
4292     moreElementsVectorSrc(MI, MoreTy, 1);
4293     Observer.changedInstr(MI);
4294     return Legalized;
4295   case TargetOpcode::G_INSERT:
4296   case TargetOpcode::G_FREEZE:
4297     if (TypeIdx != 0)
4298       return UnableToLegalize;
4299     Observer.changingInstr(MI);
4300     moreElementsVectorSrc(MI, MoreTy, 1);
4301     moreElementsVectorDst(MI, MoreTy, 0);
4302     Observer.changedInstr(MI);
4303     return Legalized;
4304   case TargetOpcode::G_SELECT:
4305     if (TypeIdx != 0)
4306       return UnableToLegalize;
4307     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4308       return UnableToLegalize;
4309 
4310     Observer.changingInstr(MI);
4311     moreElementsVectorSrc(MI, MoreTy, 2);
4312     moreElementsVectorSrc(MI, MoreTy, 3);
4313     moreElementsVectorDst(MI, MoreTy, 0);
4314     Observer.changedInstr(MI);
4315     return Legalized;
4316   case TargetOpcode::G_UNMERGE_VALUES: {
4317     if (TypeIdx != 1)
4318       return UnableToLegalize;
4319 
4320     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4321     int NumDst = MI.getNumOperands() - 1;
4322     moreElementsVectorSrc(MI, MoreTy, NumDst);
4323 
4324     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4325     for (int I = 0; I != NumDst; ++I)
4326       MIB.addDef(MI.getOperand(I).getReg());
4327 
4328     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4329     for (int I = NumDst; I != NewNumDst; ++I)
4330       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4331 
4332     MIB.addUse(MI.getOperand(NumDst).getReg());
4333     MI.eraseFromParent();
4334     return Legalized;
4335   }
4336   case TargetOpcode::G_PHI:
4337     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4338   default:
4339     return UnableToLegalize;
4340   }
4341 }
4342 
4343 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4344                                         ArrayRef<Register> Src1Regs,
4345                                         ArrayRef<Register> Src2Regs,
4346                                         LLT NarrowTy) {
4347   MachineIRBuilder &B = MIRBuilder;
4348   unsigned SrcParts = Src1Regs.size();
4349   unsigned DstParts = DstRegs.size();
4350 
4351   unsigned DstIdx = 0; // Low bits of the result.
4352   Register FactorSum =
4353       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4354   DstRegs[DstIdx] = FactorSum;
4355 
4356   unsigned CarrySumPrevDstIdx;
4357   SmallVector<Register, 4> Factors;
4358 
4359   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4360     // Collect low parts of muls for DstIdx.
4361     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4362          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4363       MachineInstrBuilder Mul =
4364           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4365       Factors.push_back(Mul.getReg(0));
4366     }
4367     // Collect high parts of muls from previous DstIdx.
4368     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4369          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4370       MachineInstrBuilder Umulh =
4371           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4372       Factors.push_back(Umulh.getReg(0));
4373     }
4374     // Add CarrySum from additions calculated for previous DstIdx.
4375     if (DstIdx != 1) {
4376       Factors.push_back(CarrySumPrevDstIdx);
4377     }
4378 
4379     Register CarrySum;
4380     // Add all factors and accumulate all carries into CarrySum.
4381     if (DstIdx != DstParts - 1) {
4382       MachineInstrBuilder Uaddo =
4383           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4384       FactorSum = Uaddo.getReg(0);
4385       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4386       for (unsigned i = 2; i < Factors.size(); ++i) {
4387         MachineInstrBuilder Uaddo =
4388             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4389         FactorSum = Uaddo.getReg(0);
4390         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4391         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4392       }
4393     } else {
4394       // Since value for the next index is not calculated, neither is CarrySum.
4395       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4396       for (unsigned i = 2; i < Factors.size(); ++i)
4397         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4398     }
4399 
4400     CarrySumPrevDstIdx = CarrySum;
4401     DstRegs[DstIdx] = FactorSum;
4402     Factors.clear();
4403   }
4404 }
4405 
4406 LegalizerHelper::LegalizeResult
4407 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4408   Register DstReg = MI.getOperand(0).getReg();
4409   Register Src1 = MI.getOperand(1).getReg();
4410   Register Src2 = MI.getOperand(2).getReg();
4411 
4412   LLT Ty = MRI.getType(DstReg);
4413   if (Ty.isVector())
4414     return UnableToLegalize;
4415 
4416   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4417   unsigned DstSize = Ty.getSizeInBits();
4418   unsigned NarrowSize = NarrowTy.getSizeInBits();
4419   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4420     return UnableToLegalize;
4421 
4422   unsigned NumDstParts = DstSize / NarrowSize;
4423   unsigned NumSrcParts = SrcSize / NarrowSize;
4424   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4425   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4426 
4427   SmallVector<Register, 2> Src1Parts, Src2Parts;
4428   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4429   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4430   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4431   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4432 
4433   // Take only high half of registers if this is high mul.
4434   ArrayRef<Register> DstRegs(
4435       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4436   MIRBuilder.buildMerge(DstReg, DstRegs);
4437   MI.eraseFromParent();
4438   return Legalized;
4439 }
4440 
4441 LegalizerHelper::LegalizeResult
4442 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4443                                      LLT NarrowTy) {
4444   if (TypeIdx != 1)
4445     return UnableToLegalize;
4446 
4447   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4448 
4449   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4450   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4451   // NarrowSize.
4452   if (SizeOp1 % NarrowSize != 0)
4453     return UnableToLegalize;
4454   int NumParts = SizeOp1 / NarrowSize;
4455 
4456   SmallVector<Register, 2> SrcRegs, DstRegs;
4457   SmallVector<uint64_t, 2> Indexes;
4458   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4459 
4460   Register OpReg = MI.getOperand(0).getReg();
4461   uint64_t OpStart = MI.getOperand(2).getImm();
4462   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4463   for (int i = 0; i < NumParts; ++i) {
4464     unsigned SrcStart = i * NarrowSize;
4465 
4466     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4467       // No part of the extract uses this subregister, ignore it.
4468       continue;
4469     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4470       // The entire subregister is extracted, forward the value.
4471       DstRegs.push_back(SrcRegs[i]);
4472       continue;
4473     }
4474 
4475     // OpSegStart is where this destination segment would start in OpReg if it
4476     // extended infinitely in both directions.
4477     int64_t ExtractOffset;
4478     uint64_t SegSize;
4479     if (OpStart < SrcStart) {
4480       ExtractOffset = 0;
4481       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4482     } else {
4483       ExtractOffset = OpStart - SrcStart;
4484       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4485     }
4486 
4487     Register SegReg = SrcRegs[i];
4488     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4489       // A genuine extract is needed.
4490       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4491       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4492     }
4493 
4494     DstRegs.push_back(SegReg);
4495   }
4496 
4497   Register DstReg = MI.getOperand(0).getReg();
4498   if (MRI.getType(DstReg).isVector())
4499     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4500   else if (DstRegs.size() > 1)
4501     MIRBuilder.buildMerge(DstReg, DstRegs);
4502   else
4503     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4504   MI.eraseFromParent();
4505   return Legalized;
4506 }
4507 
4508 LegalizerHelper::LegalizeResult
4509 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4510                                     LLT NarrowTy) {
4511   // FIXME: Don't know how to handle secondary types yet.
4512   if (TypeIdx != 0)
4513     return UnableToLegalize;
4514 
4515   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4516   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4517 
4518   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4519   // NarrowSize.
4520   if (SizeOp0 % NarrowSize != 0)
4521     return UnableToLegalize;
4522 
4523   int NumParts = SizeOp0 / NarrowSize;
4524 
4525   SmallVector<Register, 2> SrcRegs, DstRegs;
4526   SmallVector<uint64_t, 2> Indexes;
4527   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4528 
4529   Register OpReg = MI.getOperand(2).getReg();
4530   uint64_t OpStart = MI.getOperand(3).getImm();
4531   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4532   for (int i = 0; i < NumParts; ++i) {
4533     unsigned DstStart = i * NarrowSize;
4534 
4535     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4536       // No part of the insert affects this subregister, forward the original.
4537       DstRegs.push_back(SrcRegs[i]);
4538       continue;
4539     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4540       // The entire subregister is defined by this insert, forward the new
4541       // value.
4542       DstRegs.push_back(OpReg);
4543       continue;
4544     }
4545 
4546     // OpSegStart is where this destination segment would start in OpReg if it
4547     // extended infinitely in both directions.
4548     int64_t ExtractOffset, InsertOffset;
4549     uint64_t SegSize;
4550     if (OpStart < DstStart) {
4551       InsertOffset = 0;
4552       ExtractOffset = DstStart - OpStart;
4553       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4554     } else {
4555       InsertOffset = OpStart - DstStart;
4556       ExtractOffset = 0;
4557       SegSize =
4558         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4559     }
4560 
4561     Register SegReg = OpReg;
4562     if (ExtractOffset != 0 || SegSize != OpSize) {
4563       // A genuine extract is needed.
4564       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4565       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4566     }
4567 
4568     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4569     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4570     DstRegs.push_back(DstReg);
4571   }
4572 
4573   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4574   Register DstReg = MI.getOperand(0).getReg();
4575   if(MRI.getType(DstReg).isVector())
4576     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4577   else
4578     MIRBuilder.buildMerge(DstReg, DstRegs);
4579   MI.eraseFromParent();
4580   return Legalized;
4581 }
4582 
4583 LegalizerHelper::LegalizeResult
4584 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4585                                    LLT NarrowTy) {
4586   Register DstReg = MI.getOperand(0).getReg();
4587   LLT DstTy = MRI.getType(DstReg);
4588 
4589   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4590 
4591   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4592   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4593   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4594   LLT LeftoverTy;
4595   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4596                     Src0Regs, Src0LeftoverRegs))
4597     return UnableToLegalize;
4598 
4599   LLT Unused;
4600   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4601                     Src1Regs, Src1LeftoverRegs))
4602     llvm_unreachable("inconsistent extractParts result");
4603 
4604   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4605     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4606                                         {Src0Regs[I], Src1Regs[I]});
4607     DstRegs.push_back(Inst.getReg(0));
4608   }
4609 
4610   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4611     auto Inst = MIRBuilder.buildInstr(
4612       MI.getOpcode(),
4613       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4614     DstLeftoverRegs.push_back(Inst.getReg(0));
4615   }
4616 
4617   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4618               LeftoverTy, DstLeftoverRegs);
4619 
4620   MI.eraseFromParent();
4621   return Legalized;
4622 }
4623 
4624 LegalizerHelper::LegalizeResult
4625 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4626                                  LLT NarrowTy) {
4627   if (TypeIdx != 0)
4628     return UnableToLegalize;
4629 
4630   Register DstReg = MI.getOperand(0).getReg();
4631   Register SrcReg = MI.getOperand(1).getReg();
4632 
4633   LLT DstTy = MRI.getType(DstReg);
4634   if (DstTy.isVector())
4635     return UnableToLegalize;
4636 
4637   SmallVector<Register, 8> Parts;
4638   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4639   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4640   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4641 
4642   MI.eraseFromParent();
4643   return Legalized;
4644 }
4645 
4646 LegalizerHelper::LegalizeResult
4647 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4648                                     LLT NarrowTy) {
4649   if (TypeIdx != 0)
4650     return UnableToLegalize;
4651 
4652   Register CondReg = MI.getOperand(1).getReg();
4653   LLT CondTy = MRI.getType(CondReg);
4654   if (CondTy.isVector()) // TODO: Handle vselect
4655     return UnableToLegalize;
4656 
4657   Register DstReg = MI.getOperand(0).getReg();
4658   LLT DstTy = MRI.getType(DstReg);
4659 
4660   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4661   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4662   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4663   LLT LeftoverTy;
4664   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4665                     Src1Regs, Src1LeftoverRegs))
4666     return UnableToLegalize;
4667 
4668   LLT Unused;
4669   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4670                     Src2Regs, Src2LeftoverRegs))
4671     llvm_unreachable("inconsistent extractParts result");
4672 
4673   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4674     auto Select = MIRBuilder.buildSelect(NarrowTy,
4675                                          CondReg, Src1Regs[I], Src2Regs[I]);
4676     DstRegs.push_back(Select.getReg(0));
4677   }
4678 
4679   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4680     auto Select = MIRBuilder.buildSelect(
4681       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4682     DstLeftoverRegs.push_back(Select.getReg(0));
4683   }
4684 
4685   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4686               LeftoverTy, DstLeftoverRegs);
4687 
4688   MI.eraseFromParent();
4689   return Legalized;
4690 }
4691 
4692 LegalizerHelper::LegalizeResult
4693 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4694                                   LLT NarrowTy) {
4695   if (TypeIdx != 1)
4696     return UnableToLegalize;
4697 
4698   Register DstReg = MI.getOperand(0).getReg();
4699   Register SrcReg = MI.getOperand(1).getReg();
4700   LLT DstTy = MRI.getType(DstReg);
4701   LLT SrcTy = MRI.getType(SrcReg);
4702   unsigned NarrowSize = NarrowTy.getSizeInBits();
4703 
4704   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4705     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4706 
4707     MachineIRBuilder &B = MIRBuilder;
4708     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4709     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4710     auto C_0 = B.buildConstant(NarrowTy, 0);
4711     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4712                                 UnmergeSrc.getReg(1), C_0);
4713     auto LoCTLZ = IsUndef ?
4714       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4715       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4716     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4717     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4718     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4719     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4720 
4721     MI.eraseFromParent();
4722     return Legalized;
4723   }
4724 
4725   return UnableToLegalize;
4726 }
4727 
4728 LegalizerHelper::LegalizeResult
4729 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4730                                   LLT NarrowTy) {
4731   if (TypeIdx != 1)
4732     return UnableToLegalize;
4733 
4734   Register DstReg = MI.getOperand(0).getReg();
4735   Register SrcReg = MI.getOperand(1).getReg();
4736   LLT DstTy = MRI.getType(DstReg);
4737   LLT SrcTy = MRI.getType(SrcReg);
4738   unsigned NarrowSize = NarrowTy.getSizeInBits();
4739 
4740   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4741     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4742 
4743     MachineIRBuilder &B = MIRBuilder;
4744     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4745     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4746     auto C_0 = B.buildConstant(NarrowTy, 0);
4747     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4748                                 UnmergeSrc.getReg(0), C_0);
4749     auto HiCTTZ = IsUndef ?
4750       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4751       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4752     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4753     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4754     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4755     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4756 
4757     MI.eraseFromParent();
4758     return Legalized;
4759   }
4760 
4761   return UnableToLegalize;
4762 }
4763 
4764 LegalizerHelper::LegalizeResult
4765 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4766                                    LLT NarrowTy) {
4767   if (TypeIdx != 1)
4768     return UnableToLegalize;
4769 
4770   Register DstReg = MI.getOperand(0).getReg();
4771   LLT DstTy = MRI.getType(DstReg);
4772   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4773   unsigned NarrowSize = NarrowTy.getSizeInBits();
4774 
4775   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4776     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4777 
4778     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4779     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4780     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4781 
4782     MI.eraseFromParent();
4783     return Legalized;
4784   }
4785 
4786   return UnableToLegalize;
4787 }
4788 
4789 LegalizerHelper::LegalizeResult
4790 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4791   unsigned Opc = MI.getOpcode();
4792   const auto &TII = MIRBuilder.getTII();
4793   auto isSupported = [this](const LegalityQuery &Q) {
4794     auto QAction = LI.getAction(Q).Action;
4795     return QAction == Legal || QAction == Libcall || QAction == Custom;
4796   };
4797   switch (Opc) {
4798   default:
4799     return UnableToLegalize;
4800   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4801     // This trivially expands to CTLZ.
4802     Observer.changingInstr(MI);
4803     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4804     Observer.changedInstr(MI);
4805     return Legalized;
4806   }
4807   case TargetOpcode::G_CTLZ: {
4808     Register DstReg = MI.getOperand(0).getReg();
4809     Register SrcReg = MI.getOperand(1).getReg();
4810     LLT DstTy = MRI.getType(DstReg);
4811     LLT SrcTy = MRI.getType(SrcReg);
4812     unsigned Len = SrcTy.getSizeInBits();
4813 
4814     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4815       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4816       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4817       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4818       auto ICmp = MIRBuilder.buildICmp(
4819           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4820       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4821       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4822       MI.eraseFromParent();
4823       return Legalized;
4824     }
4825     // for now, we do this:
4826     // NewLen = NextPowerOf2(Len);
4827     // x = x | (x >> 1);
4828     // x = x | (x >> 2);
4829     // ...
4830     // x = x | (x >>16);
4831     // x = x | (x >>32); // for 64-bit input
4832     // Upto NewLen/2
4833     // return Len - popcount(x);
4834     //
4835     // Ref: "Hacker's Delight" by Henry Warren
4836     Register Op = SrcReg;
4837     unsigned NewLen = PowerOf2Ceil(Len);
4838     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4839       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4840       auto MIBOp = MIRBuilder.buildOr(
4841           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4842       Op = MIBOp.getReg(0);
4843     }
4844     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4845     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4846                         MIBPop);
4847     MI.eraseFromParent();
4848     return Legalized;
4849   }
4850   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4851     // This trivially expands to CTTZ.
4852     Observer.changingInstr(MI);
4853     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4854     Observer.changedInstr(MI);
4855     return Legalized;
4856   }
4857   case TargetOpcode::G_CTTZ: {
4858     Register DstReg = MI.getOperand(0).getReg();
4859     Register SrcReg = MI.getOperand(1).getReg();
4860     LLT DstTy = MRI.getType(DstReg);
4861     LLT SrcTy = MRI.getType(SrcReg);
4862 
4863     unsigned Len = SrcTy.getSizeInBits();
4864     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4865       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4866       // zero.
4867       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4868       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4869       auto ICmp = MIRBuilder.buildICmp(
4870           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4871       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4872       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4873       MI.eraseFromParent();
4874       return Legalized;
4875     }
4876     // for now, we use: { return popcount(~x & (x - 1)); }
4877     // unless the target has ctlz but not ctpop, in which case we use:
4878     // { return 32 - nlz(~x & (x-1)); }
4879     // Ref: "Hacker's Delight" by Henry Warren
4880     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4881     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4882     auto MIBTmp = MIRBuilder.buildAnd(
4883         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4884     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4885         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4886       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4887       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4888                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4889       MI.eraseFromParent();
4890       return Legalized;
4891     }
4892     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4893     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4894     return Legalized;
4895   }
4896   case TargetOpcode::G_CTPOP: {
4897     Register SrcReg = MI.getOperand(1).getReg();
4898     LLT Ty = MRI.getType(SrcReg);
4899     unsigned Size = Ty.getSizeInBits();
4900     MachineIRBuilder &B = MIRBuilder;
4901 
4902     // Count set bits in blocks of 2 bits. Default approach would be
4903     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4904     // We use following formula instead:
4905     // B2Count = val - { (val >> 1) & 0x55555555 }
4906     // since it gives same result in blocks of 2 with one instruction less.
4907     auto C_1 = B.buildConstant(Ty, 1);
4908     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
4909     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4910     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4911     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4912     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
4913 
4914     // In order to get count in blocks of 4 add values from adjacent block of 2.
4915     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4916     auto C_2 = B.buildConstant(Ty, 2);
4917     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4918     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4919     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4920     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4921     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4922     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4923 
4924     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4925     // addition since count value sits in range {0,...,8} and 4 bits are enough
4926     // to hold such binary values. After addition high 4 bits still hold count
4927     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4928     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4929     auto C_4 = B.buildConstant(Ty, 4);
4930     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4931     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4932     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4933     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4934     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4935 
4936     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4937     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4938     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4939     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4940     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4941 
4942     // Shift count result from 8 high bits to low bits.
4943     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4944     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4945 
4946     MI.eraseFromParent();
4947     return Legalized;
4948   }
4949   }
4950 }
4951 
4952 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4953 // representation.
4954 LegalizerHelper::LegalizeResult
4955 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4956   Register Dst = MI.getOperand(0).getReg();
4957   Register Src = MI.getOperand(1).getReg();
4958   const LLT S64 = LLT::scalar(64);
4959   const LLT S32 = LLT::scalar(32);
4960   const LLT S1 = LLT::scalar(1);
4961 
4962   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4963 
4964   // unsigned cul2f(ulong u) {
4965   //   uint lz = clz(u);
4966   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4967   //   u = (u << lz) & 0x7fffffffffffffffUL;
4968   //   ulong t = u & 0xffffffffffUL;
4969   //   uint v = (e << 23) | (uint)(u >> 40);
4970   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4971   //   return as_float(v + r);
4972   // }
4973 
4974   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4975   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4976 
4977   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4978 
4979   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4980   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4981 
4982   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4983   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4984 
4985   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4986   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4987 
4988   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4989 
4990   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4991   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4992 
4993   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4994   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4995   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4996 
4997   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4998   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4999   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5000   auto One = MIRBuilder.buildConstant(S32, 1);
5001 
5002   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5003   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5004   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5005   MIRBuilder.buildAdd(Dst, V, R);
5006 
5007   MI.eraseFromParent();
5008   return Legalized;
5009 }
5010 
5011 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5012   Register Dst = MI.getOperand(0).getReg();
5013   Register Src = MI.getOperand(1).getReg();
5014   LLT DstTy = MRI.getType(Dst);
5015   LLT SrcTy = MRI.getType(Src);
5016 
5017   if (SrcTy == LLT::scalar(1)) {
5018     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5019     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5020     MIRBuilder.buildSelect(Dst, Src, True, False);
5021     MI.eraseFromParent();
5022     return Legalized;
5023   }
5024 
5025   if (SrcTy != LLT::scalar(64))
5026     return UnableToLegalize;
5027 
5028   if (DstTy == LLT::scalar(32)) {
5029     // TODO: SelectionDAG has several alternative expansions to port which may
5030     // be more reasonble depending on the available instructions. If a target
5031     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5032     // intermediate type, this is probably worse.
5033     return lowerU64ToF32BitOps(MI);
5034   }
5035 
5036   return UnableToLegalize;
5037 }
5038 
5039 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5040   Register Dst = MI.getOperand(0).getReg();
5041   Register Src = MI.getOperand(1).getReg();
5042   LLT DstTy = MRI.getType(Dst);
5043   LLT SrcTy = MRI.getType(Src);
5044 
5045   const LLT S64 = LLT::scalar(64);
5046   const LLT S32 = LLT::scalar(32);
5047   const LLT S1 = LLT::scalar(1);
5048 
5049   if (SrcTy == S1) {
5050     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5051     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5052     MIRBuilder.buildSelect(Dst, Src, True, False);
5053     MI.eraseFromParent();
5054     return Legalized;
5055   }
5056 
5057   if (SrcTy != S64)
5058     return UnableToLegalize;
5059 
5060   if (DstTy == S32) {
5061     // signed cl2f(long l) {
5062     //   long s = l >> 63;
5063     //   float r = cul2f((l + s) ^ s);
5064     //   return s ? -r : r;
5065     // }
5066     Register L = Src;
5067     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5068     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5069 
5070     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5071     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5072     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5073 
5074     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5075     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5076                                             MIRBuilder.buildConstant(S64, 0));
5077     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5078     MI.eraseFromParent();
5079     return Legalized;
5080   }
5081 
5082   return UnableToLegalize;
5083 }
5084 
5085 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5086   Register Dst = MI.getOperand(0).getReg();
5087   Register Src = MI.getOperand(1).getReg();
5088   LLT DstTy = MRI.getType(Dst);
5089   LLT SrcTy = MRI.getType(Src);
5090   const LLT S64 = LLT::scalar(64);
5091   const LLT S32 = LLT::scalar(32);
5092 
5093   if (SrcTy != S64 && SrcTy != S32)
5094     return UnableToLegalize;
5095   if (DstTy != S32 && DstTy != S64)
5096     return UnableToLegalize;
5097 
5098   // FPTOSI gives same result as FPTOUI for positive signed integers.
5099   // FPTOUI needs to deal with fp values that convert to unsigned integers
5100   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5101 
5102   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5103   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5104                                                 : APFloat::IEEEdouble(),
5105                     APInt::getNullValue(SrcTy.getSizeInBits()));
5106   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5107 
5108   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5109 
5110   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5111   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5112   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5113   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5114   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5115   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5116   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5117 
5118   const LLT S1 = LLT::scalar(1);
5119 
5120   MachineInstrBuilder FCMP =
5121       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5122   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5123 
5124   MI.eraseFromParent();
5125   return Legalized;
5126 }
5127 
5128 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5129   Register Dst = MI.getOperand(0).getReg();
5130   Register Src = MI.getOperand(1).getReg();
5131   LLT DstTy = MRI.getType(Dst);
5132   LLT SrcTy = MRI.getType(Src);
5133   const LLT S64 = LLT::scalar(64);
5134   const LLT S32 = LLT::scalar(32);
5135 
5136   // FIXME: Only f32 to i64 conversions are supported.
5137   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5138     return UnableToLegalize;
5139 
5140   // Expand f32 -> i64 conversion
5141   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5142   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5143 
5144   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5145 
5146   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5147   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5148 
5149   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5150   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5151 
5152   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5153                                            APInt::getSignMask(SrcEltBits));
5154   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5155   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5156   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5157   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5158 
5159   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5160   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5161   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5162 
5163   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5164   R = MIRBuilder.buildZExt(DstTy, R);
5165 
5166   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5167   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5168   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5169   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5170 
5171   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5172   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5173 
5174   const LLT S1 = LLT::scalar(1);
5175   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5176                                     S1, Exponent, ExponentLoBit);
5177 
5178   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5179 
5180   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5181   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5182 
5183   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5184 
5185   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5186                                           S1, Exponent, ZeroSrcTy);
5187 
5188   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5189   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5190 
5191   MI.eraseFromParent();
5192   return Legalized;
5193 }
5194 
5195 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5196 LegalizerHelper::LegalizeResult
5197 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5198   Register Dst = MI.getOperand(0).getReg();
5199   Register Src = MI.getOperand(1).getReg();
5200 
5201   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5202     return UnableToLegalize;
5203 
5204   const unsigned ExpMask = 0x7ff;
5205   const unsigned ExpBiasf64 = 1023;
5206   const unsigned ExpBiasf16 = 15;
5207   const LLT S32 = LLT::scalar(32);
5208   const LLT S1 = LLT::scalar(1);
5209 
5210   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5211   Register U = Unmerge.getReg(0);
5212   Register UH = Unmerge.getReg(1);
5213 
5214   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5215   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5216 
5217   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5218   // add the f16 bias (15) to get the biased exponent for the f16 format.
5219   E = MIRBuilder.buildAdd(
5220     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5221 
5222   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5223   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5224 
5225   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5226                                        MIRBuilder.buildConstant(S32, 0x1ff));
5227   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5228 
5229   auto Zero = MIRBuilder.buildConstant(S32, 0);
5230   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5231   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5232   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5233 
5234   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5235   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5236   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5237   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5238 
5239   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5240   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5241 
5242   // N = M | (E << 12);
5243   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5244   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5245 
5246   // B = clamp(1-E, 0, 13);
5247   auto One = MIRBuilder.buildConstant(S32, 1);
5248   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5249   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5250   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5251 
5252   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5253                                        MIRBuilder.buildConstant(S32, 0x1000));
5254 
5255   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5256   auto D0 = MIRBuilder.buildShl(S32, D, B);
5257 
5258   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5259                                              D0, SigSetHigh);
5260   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5261   D = MIRBuilder.buildOr(S32, D, D1);
5262 
5263   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5264   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5265 
5266   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5267   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5268 
5269   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5270                                        MIRBuilder.buildConstant(S32, 3));
5271   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5272 
5273   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5274                                        MIRBuilder.buildConstant(S32, 5));
5275   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5276 
5277   V1 = MIRBuilder.buildOr(S32, V0, V1);
5278   V = MIRBuilder.buildAdd(S32, V, V1);
5279 
5280   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5281                                        E, MIRBuilder.buildConstant(S32, 30));
5282   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5283                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5284 
5285   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5286                                          E, MIRBuilder.buildConstant(S32, 1039));
5287   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5288 
5289   // Extract the sign bit.
5290   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5291   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5292 
5293   // Insert the sign bit
5294   V = MIRBuilder.buildOr(S32, Sign, V);
5295 
5296   MIRBuilder.buildTrunc(Dst, V);
5297   MI.eraseFromParent();
5298   return Legalized;
5299 }
5300 
5301 LegalizerHelper::LegalizeResult
5302 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5303   Register Dst = MI.getOperand(0).getReg();
5304   Register Src = MI.getOperand(1).getReg();
5305 
5306   LLT DstTy = MRI.getType(Dst);
5307   LLT SrcTy = MRI.getType(Src);
5308   const LLT S64 = LLT::scalar(64);
5309   const LLT S16 = LLT::scalar(16);
5310 
5311   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5312     return lowerFPTRUNC_F64_TO_F16(MI);
5313 
5314   return UnableToLegalize;
5315 }
5316 
5317 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5318 // multiplication tree.
5319 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5320   Register Dst = MI.getOperand(0).getReg();
5321   Register Src0 = MI.getOperand(1).getReg();
5322   Register Src1 = MI.getOperand(2).getReg();
5323   LLT Ty = MRI.getType(Dst);
5324 
5325   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5326   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5327   MI.eraseFromParent();
5328   return Legalized;
5329 }
5330 
5331 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5332   switch (Opc) {
5333   case TargetOpcode::G_SMIN:
5334     return CmpInst::ICMP_SLT;
5335   case TargetOpcode::G_SMAX:
5336     return CmpInst::ICMP_SGT;
5337   case TargetOpcode::G_UMIN:
5338     return CmpInst::ICMP_ULT;
5339   case TargetOpcode::G_UMAX:
5340     return CmpInst::ICMP_UGT;
5341   default:
5342     llvm_unreachable("not in integer min/max");
5343   }
5344 }
5345 
5346 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5347   Register Dst = MI.getOperand(0).getReg();
5348   Register Src0 = MI.getOperand(1).getReg();
5349   Register Src1 = MI.getOperand(2).getReg();
5350 
5351   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5352   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5353 
5354   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5355   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5356 
5357   MI.eraseFromParent();
5358   return Legalized;
5359 }
5360 
5361 LegalizerHelper::LegalizeResult
5362 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5363   Register Dst = MI.getOperand(0).getReg();
5364   Register Src0 = MI.getOperand(1).getReg();
5365   Register Src1 = MI.getOperand(2).getReg();
5366 
5367   const LLT Src0Ty = MRI.getType(Src0);
5368   const LLT Src1Ty = MRI.getType(Src1);
5369 
5370   const int Src0Size = Src0Ty.getScalarSizeInBits();
5371   const int Src1Size = Src1Ty.getScalarSizeInBits();
5372 
5373   auto SignBitMask = MIRBuilder.buildConstant(
5374     Src0Ty, APInt::getSignMask(Src0Size));
5375 
5376   auto NotSignBitMask = MIRBuilder.buildConstant(
5377     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5378 
5379   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5380   MachineInstr *Or;
5381 
5382   if (Src0Ty == Src1Ty) {
5383     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5384     Or = MIRBuilder.buildOr(Dst, And0, And1);
5385   } else if (Src0Size > Src1Size) {
5386     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5387     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5388     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5389     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5390     Or = MIRBuilder.buildOr(Dst, And0, And1);
5391   } else {
5392     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5393     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5394     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5395     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5396     Or = MIRBuilder.buildOr(Dst, And0, And1);
5397   }
5398 
5399   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5400   // constants are a nan and -0.0, but the final result should preserve
5401   // everything.
5402   if (unsigned Flags = MI.getFlags())
5403     Or->setFlags(Flags);
5404 
5405   MI.eraseFromParent();
5406   return Legalized;
5407 }
5408 
5409 LegalizerHelper::LegalizeResult
5410 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5411   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5412     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5413 
5414   Register Dst = MI.getOperand(0).getReg();
5415   Register Src0 = MI.getOperand(1).getReg();
5416   Register Src1 = MI.getOperand(2).getReg();
5417   LLT Ty = MRI.getType(Dst);
5418 
5419   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5420     // Insert canonicalizes if it's possible we need to quiet to get correct
5421     // sNaN behavior.
5422 
5423     // Note this must be done here, and not as an optimization combine in the
5424     // absence of a dedicate quiet-snan instruction as we're using an
5425     // omni-purpose G_FCANONICALIZE.
5426     if (!isKnownNeverSNaN(Src0, MRI))
5427       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5428 
5429     if (!isKnownNeverSNaN(Src1, MRI))
5430       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5431   }
5432 
5433   // If there are no nans, it's safe to simply replace this with the non-IEEE
5434   // version.
5435   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5436   MI.eraseFromParent();
5437   return Legalized;
5438 }
5439 
5440 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5441   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5442   Register DstReg = MI.getOperand(0).getReg();
5443   LLT Ty = MRI.getType(DstReg);
5444   unsigned Flags = MI.getFlags();
5445 
5446   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5447                                   Flags);
5448   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5449   MI.eraseFromParent();
5450   return Legalized;
5451 }
5452 
5453 LegalizerHelper::LegalizeResult
5454 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5455   Register DstReg = MI.getOperand(0).getReg();
5456   Register X = MI.getOperand(1).getReg();
5457   const unsigned Flags = MI.getFlags();
5458   const LLT Ty = MRI.getType(DstReg);
5459   const LLT CondTy = Ty.changeElementSize(1);
5460 
5461   // round(x) =>
5462   //  t = trunc(x);
5463   //  d = fabs(x - t);
5464   //  o = copysign(1.0f, x);
5465   //  return t + (d >= 0.5 ? o : 0.0);
5466 
5467   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5468 
5469   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5470   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5471   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5472   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5473   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5474   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5475 
5476   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5477                                   Flags);
5478   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5479 
5480   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5481 
5482   MI.eraseFromParent();
5483   return Legalized;
5484 }
5485 
5486 LegalizerHelper::LegalizeResult
5487 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5488   Register DstReg = MI.getOperand(0).getReg();
5489   Register SrcReg = MI.getOperand(1).getReg();
5490   unsigned Flags = MI.getFlags();
5491   LLT Ty = MRI.getType(DstReg);
5492   const LLT CondTy = Ty.changeElementSize(1);
5493 
5494   // result = trunc(src);
5495   // if (src < 0.0 && src != result)
5496   //   result += -1.0.
5497 
5498   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5499   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5500 
5501   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5502                                   SrcReg, Zero, Flags);
5503   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5504                                       SrcReg, Trunc, Flags);
5505   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5506   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5507 
5508   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5509   MI.eraseFromParent();
5510   return Legalized;
5511 }
5512 
5513 LegalizerHelper::LegalizeResult
5514 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5515   const unsigned NumOps = MI.getNumOperands();
5516   Register DstReg = MI.getOperand(0).getReg();
5517   Register Src0Reg = MI.getOperand(1).getReg();
5518   LLT DstTy = MRI.getType(DstReg);
5519   LLT SrcTy = MRI.getType(Src0Reg);
5520   unsigned PartSize = SrcTy.getSizeInBits();
5521 
5522   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5523   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5524 
5525   for (unsigned I = 2; I != NumOps; ++I) {
5526     const unsigned Offset = (I - 1) * PartSize;
5527 
5528     Register SrcReg = MI.getOperand(I).getReg();
5529     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5530 
5531     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5532       MRI.createGenericVirtualRegister(WideTy);
5533 
5534     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5535     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5536     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5537     ResultReg = NextResult;
5538   }
5539 
5540   if (DstTy.isPointer()) {
5541     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5542           DstTy.getAddressSpace())) {
5543       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5544       return UnableToLegalize;
5545     }
5546 
5547     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5548   }
5549 
5550   MI.eraseFromParent();
5551   return Legalized;
5552 }
5553 
5554 LegalizerHelper::LegalizeResult
5555 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5556   const unsigned NumDst = MI.getNumOperands() - 1;
5557   Register SrcReg = MI.getOperand(NumDst).getReg();
5558   Register Dst0Reg = MI.getOperand(0).getReg();
5559   LLT DstTy = MRI.getType(Dst0Reg);
5560   if (DstTy.isPointer())
5561     return UnableToLegalize; // TODO
5562 
5563   SrcReg = coerceToScalar(SrcReg);
5564   if (!SrcReg)
5565     return UnableToLegalize;
5566 
5567   // Expand scalarizing unmerge as bitcast to integer and shift.
5568   LLT IntTy = MRI.getType(SrcReg);
5569 
5570   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5571 
5572   const unsigned DstSize = DstTy.getSizeInBits();
5573   unsigned Offset = DstSize;
5574   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5575     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5576     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5577     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5578   }
5579 
5580   MI.eraseFromParent();
5581   return Legalized;
5582 }
5583 
5584 /// Lower a vector extract or insert by writing the vector to a stack temporary
5585 /// and reloading the element or vector.
5586 ///
5587 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5588 ///  =>
5589 ///  %stack_temp = G_FRAME_INDEX
5590 ///  G_STORE %vec, %stack_temp
5591 ///  %idx = clamp(%idx, %vec.getNumElements())
5592 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5593 ///  %dst = G_LOAD %element_ptr
5594 LegalizerHelper::LegalizeResult
5595 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5596   Register DstReg = MI.getOperand(0).getReg();
5597   Register SrcVec = MI.getOperand(1).getReg();
5598   Register InsertVal;
5599   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5600     InsertVal = MI.getOperand(2).getReg();
5601 
5602   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5603 
5604   LLT VecTy = MRI.getType(SrcVec);
5605   LLT EltTy = VecTy.getElementType();
5606   if (!EltTy.isByteSized()) { // Not implemented.
5607     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5608     return UnableToLegalize;
5609   }
5610 
5611   unsigned EltBytes = EltTy.getSizeInBytes();
5612   Align VecAlign = getStackTemporaryAlignment(VecTy);
5613   Align EltAlign;
5614 
5615   MachinePointerInfo PtrInfo;
5616   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5617                                         VecAlign, PtrInfo);
5618   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5619 
5620   // Get the pointer to the element, and be sure not to hit undefined behavior
5621   // if the index is out of bounds.
5622   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5623 
5624   int64_t IdxVal;
5625   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5626     int64_t Offset = IdxVal * EltBytes;
5627     PtrInfo = PtrInfo.getWithOffset(Offset);
5628     EltAlign = commonAlignment(VecAlign, Offset);
5629   } else {
5630     // We lose information with a variable offset.
5631     EltAlign = getStackTemporaryAlignment(EltTy);
5632     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5633   }
5634 
5635   if (InsertVal) {
5636     // Write the inserted element
5637     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5638 
5639     // Reload the whole vector.
5640     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5641   } else {
5642     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5643   }
5644 
5645   MI.eraseFromParent();
5646   return Legalized;
5647 }
5648 
5649 LegalizerHelper::LegalizeResult
5650 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5651   Register DstReg = MI.getOperand(0).getReg();
5652   Register Src0Reg = MI.getOperand(1).getReg();
5653   Register Src1Reg = MI.getOperand(2).getReg();
5654   LLT Src0Ty = MRI.getType(Src0Reg);
5655   LLT DstTy = MRI.getType(DstReg);
5656   LLT IdxTy = LLT::scalar(32);
5657 
5658   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5659 
5660   if (DstTy.isScalar()) {
5661     if (Src0Ty.isVector())
5662       return UnableToLegalize;
5663 
5664     // This is just a SELECT.
5665     assert(Mask.size() == 1 && "Expected a single mask element");
5666     Register Val;
5667     if (Mask[0] < 0 || Mask[0] > 1)
5668       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5669     else
5670       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5671     MIRBuilder.buildCopy(DstReg, Val);
5672     MI.eraseFromParent();
5673     return Legalized;
5674   }
5675 
5676   Register Undef;
5677   SmallVector<Register, 32> BuildVec;
5678   LLT EltTy = DstTy.getElementType();
5679 
5680   for (int Idx : Mask) {
5681     if (Idx < 0) {
5682       if (!Undef.isValid())
5683         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5684       BuildVec.push_back(Undef);
5685       continue;
5686     }
5687 
5688     if (Src0Ty.isScalar()) {
5689       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5690     } else {
5691       int NumElts = Src0Ty.getNumElements();
5692       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5693       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5694       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5695       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5696       BuildVec.push_back(Extract.getReg(0));
5697     }
5698   }
5699 
5700   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5701   MI.eraseFromParent();
5702   return Legalized;
5703 }
5704 
5705 LegalizerHelper::LegalizeResult
5706 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5707   const auto &MF = *MI.getMF();
5708   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5709   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5710     return UnableToLegalize;
5711 
5712   Register Dst = MI.getOperand(0).getReg();
5713   Register AllocSize = MI.getOperand(1).getReg();
5714   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5715 
5716   LLT PtrTy = MRI.getType(Dst);
5717   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5718 
5719   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5720   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5721   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5722 
5723   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5724   // have to generate an extra instruction to negate the alloc and then use
5725   // G_PTR_ADD to add the negative offset.
5726   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5727   if (Alignment > Align(1)) {
5728     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5729     AlignMask.negate();
5730     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5731     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5732   }
5733 
5734   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5735   MIRBuilder.buildCopy(SPReg, SPTmp);
5736   MIRBuilder.buildCopy(Dst, SPTmp);
5737 
5738   MI.eraseFromParent();
5739   return Legalized;
5740 }
5741 
5742 LegalizerHelper::LegalizeResult
5743 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5744   Register Dst = MI.getOperand(0).getReg();
5745   Register Src = MI.getOperand(1).getReg();
5746   unsigned Offset = MI.getOperand(2).getImm();
5747 
5748   LLT DstTy = MRI.getType(Dst);
5749   LLT SrcTy = MRI.getType(Src);
5750 
5751   if (DstTy.isScalar() &&
5752       (SrcTy.isScalar() ||
5753        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5754     LLT SrcIntTy = SrcTy;
5755     if (!SrcTy.isScalar()) {
5756       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5757       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5758     }
5759 
5760     if (Offset == 0)
5761       MIRBuilder.buildTrunc(Dst, Src);
5762     else {
5763       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5764       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5765       MIRBuilder.buildTrunc(Dst, Shr);
5766     }
5767 
5768     MI.eraseFromParent();
5769     return Legalized;
5770   }
5771 
5772   return UnableToLegalize;
5773 }
5774 
5775 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5776   Register Dst = MI.getOperand(0).getReg();
5777   Register Src = MI.getOperand(1).getReg();
5778   Register InsertSrc = MI.getOperand(2).getReg();
5779   uint64_t Offset = MI.getOperand(3).getImm();
5780 
5781   LLT DstTy = MRI.getType(Src);
5782   LLT InsertTy = MRI.getType(InsertSrc);
5783 
5784   if (InsertTy.isVector() ||
5785       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5786     return UnableToLegalize;
5787 
5788   const DataLayout &DL = MIRBuilder.getDataLayout();
5789   if ((DstTy.isPointer() &&
5790        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5791       (InsertTy.isPointer() &&
5792        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5793     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5794     return UnableToLegalize;
5795   }
5796 
5797   LLT IntDstTy = DstTy;
5798 
5799   if (!DstTy.isScalar()) {
5800     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5801     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5802   }
5803 
5804   if (!InsertTy.isScalar()) {
5805     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5806     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5807   }
5808 
5809   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5810   if (Offset != 0) {
5811     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5812     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5813   }
5814 
5815   APInt MaskVal = APInt::getBitsSetWithWrap(
5816       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5817 
5818   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5819   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5820   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5821 
5822   MIRBuilder.buildCast(Dst, Or);
5823   MI.eraseFromParent();
5824   return Legalized;
5825 }
5826 
5827 LegalizerHelper::LegalizeResult
5828 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5829   Register Dst0 = MI.getOperand(0).getReg();
5830   Register Dst1 = MI.getOperand(1).getReg();
5831   Register LHS = MI.getOperand(2).getReg();
5832   Register RHS = MI.getOperand(3).getReg();
5833   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5834 
5835   LLT Ty = MRI.getType(Dst0);
5836   LLT BoolTy = MRI.getType(Dst1);
5837 
5838   if (IsAdd)
5839     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5840   else
5841     MIRBuilder.buildSub(Dst0, LHS, RHS);
5842 
5843   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5844 
5845   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5846 
5847   // For an addition, the result should be less than one of the operands (LHS)
5848   // if and only if the other operand (RHS) is negative, otherwise there will
5849   // be overflow.
5850   // For a subtraction, the result should be less than one of the operands
5851   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5852   // otherwise there will be overflow.
5853   auto ResultLowerThanLHS =
5854       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5855   auto ConditionRHS = MIRBuilder.buildICmp(
5856       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5857 
5858   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5859   MI.eraseFromParent();
5860   return Legalized;
5861 }
5862 
5863 LegalizerHelper::LegalizeResult
5864 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5865   Register Res = MI.getOperand(0).getReg();
5866   Register LHS = MI.getOperand(1).getReg();
5867   Register RHS = MI.getOperand(2).getReg();
5868   LLT Ty = MRI.getType(Res);
5869   bool IsSigned;
5870   bool IsAdd;
5871   unsigned BaseOp;
5872   switch (MI.getOpcode()) {
5873   default:
5874     llvm_unreachable("unexpected addsat/subsat opcode");
5875   case TargetOpcode::G_UADDSAT:
5876     IsSigned = false;
5877     IsAdd = true;
5878     BaseOp = TargetOpcode::G_ADD;
5879     break;
5880   case TargetOpcode::G_SADDSAT:
5881     IsSigned = true;
5882     IsAdd = true;
5883     BaseOp = TargetOpcode::G_ADD;
5884     break;
5885   case TargetOpcode::G_USUBSAT:
5886     IsSigned = false;
5887     IsAdd = false;
5888     BaseOp = TargetOpcode::G_SUB;
5889     break;
5890   case TargetOpcode::G_SSUBSAT:
5891     IsSigned = true;
5892     IsAdd = false;
5893     BaseOp = TargetOpcode::G_SUB;
5894     break;
5895   }
5896 
5897   if (IsSigned) {
5898     // sadd.sat(a, b) ->
5899     //   hi = 0x7fffffff - smax(a, 0)
5900     //   lo = 0x80000000 - smin(a, 0)
5901     //   a + smin(smax(lo, b), hi)
5902     // ssub.sat(a, b) ->
5903     //   lo = smax(a, -1) - 0x7fffffff
5904     //   hi = smin(a, -1) - 0x80000000
5905     //   a - smin(smax(lo, b), hi)
5906     // TODO: AMDGPU can use a "median of 3" instruction here:
5907     //   a +/- med3(lo, b, hi)
5908     uint64_t NumBits = Ty.getScalarSizeInBits();
5909     auto MaxVal =
5910         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5911     auto MinVal =
5912         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5913     MachineInstrBuilder Hi, Lo;
5914     if (IsAdd) {
5915       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5916       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5917       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5918     } else {
5919       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5920       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5921                                MaxVal);
5922       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5923                                MinVal);
5924     }
5925     auto RHSClamped =
5926         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5927     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5928   } else {
5929     // uadd.sat(a, b) -> a + umin(~a, b)
5930     // usub.sat(a, b) -> a - umin(a, b)
5931     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5932     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5933     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5934   }
5935 
5936   MI.eraseFromParent();
5937   return Legalized;
5938 }
5939 
5940 LegalizerHelper::LegalizeResult
5941 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
5942   Register Res = MI.getOperand(0).getReg();
5943   Register LHS = MI.getOperand(1).getReg();
5944   Register RHS = MI.getOperand(2).getReg();
5945   LLT Ty = MRI.getType(Res);
5946   LLT BoolTy = Ty.changeElementSize(1);
5947   bool IsSigned;
5948   bool IsAdd;
5949   unsigned OverflowOp;
5950   switch (MI.getOpcode()) {
5951   default:
5952     llvm_unreachable("unexpected addsat/subsat opcode");
5953   case TargetOpcode::G_UADDSAT:
5954     IsSigned = false;
5955     IsAdd = true;
5956     OverflowOp = TargetOpcode::G_UADDO;
5957     break;
5958   case TargetOpcode::G_SADDSAT:
5959     IsSigned = true;
5960     IsAdd = true;
5961     OverflowOp = TargetOpcode::G_SADDO;
5962     break;
5963   case TargetOpcode::G_USUBSAT:
5964     IsSigned = false;
5965     IsAdd = false;
5966     OverflowOp = TargetOpcode::G_USUBO;
5967     break;
5968   case TargetOpcode::G_SSUBSAT:
5969     IsSigned = true;
5970     IsAdd = false;
5971     OverflowOp = TargetOpcode::G_SSUBO;
5972     break;
5973   }
5974 
5975   auto OverflowRes =
5976       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
5977   Register Tmp = OverflowRes.getReg(0);
5978   Register Ov = OverflowRes.getReg(1);
5979   MachineInstrBuilder Clamp;
5980   if (IsSigned) {
5981     // sadd.sat(a, b) ->
5982     //   {tmp, ov} = saddo(a, b)
5983     //   ov ? (tmp >>s 31) + 0x80000000 : r
5984     // ssub.sat(a, b) ->
5985     //   {tmp, ov} = ssubo(a, b)
5986     //   ov ? (tmp >>s 31) + 0x80000000 : r
5987     uint64_t NumBits = Ty.getScalarSizeInBits();
5988     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
5989     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
5990     auto MinVal =
5991         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5992     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
5993   } else {
5994     // uadd.sat(a, b) ->
5995     //   {tmp, ov} = uaddo(a, b)
5996     //   ov ? 0xffffffff : tmp
5997     // usub.sat(a, b) ->
5998     //   {tmp, ov} = usubo(a, b)
5999     //   ov ? 0 : tmp
6000     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6001   }
6002   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6003 
6004   MI.eraseFromParent();
6005   return Legalized;
6006 }
6007 
6008 LegalizerHelper::LegalizeResult
6009 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6010   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6011           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6012          "Expected shlsat opcode!");
6013   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6014   Register Res = MI.getOperand(0).getReg();
6015   Register LHS = MI.getOperand(1).getReg();
6016   Register RHS = MI.getOperand(2).getReg();
6017   LLT Ty = MRI.getType(Res);
6018   LLT BoolTy = Ty.changeElementSize(1);
6019 
6020   unsigned BW = Ty.getScalarSizeInBits();
6021   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6022   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6023                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6024 
6025   MachineInstrBuilder SatVal;
6026   if (IsSigned) {
6027     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6028     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6029     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6030                                     MIRBuilder.buildConstant(Ty, 0));
6031     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6032   } else {
6033     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6034   }
6035   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, Ty, LHS, Orig);
6036   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6037 
6038   MI.eraseFromParent();
6039   return Legalized;
6040 }
6041 
6042 LegalizerHelper::LegalizeResult
6043 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6044   Register Dst = MI.getOperand(0).getReg();
6045   Register Src = MI.getOperand(1).getReg();
6046   const LLT Ty = MRI.getType(Src);
6047   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6048   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6049 
6050   // Swap most and least significant byte, set remaining bytes in Res to zero.
6051   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6052   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6053   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6054   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6055 
6056   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6057   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6058     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6059     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6060     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6061     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6062     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6063     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6064     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6065     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6066     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6067     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6068     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6069     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6070   }
6071   Res.getInstr()->getOperand(0).setReg(Dst);
6072 
6073   MI.eraseFromParent();
6074   return Legalized;
6075 }
6076 
6077 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6078 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6079                                  MachineInstrBuilder Src, APInt Mask) {
6080   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6081   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6082   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6083   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6084   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6085   return B.buildOr(Dst, LHS, RHS);
6086 }
6087 
6088 LegalizerHelper::LegalizeResult
6089 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6090   Register Dst = MI.getOperand(0).getReg();
6091   Register Src = MI.getOperand(1).getReg();
6092   const LLT Ty = MRI.getType(Src);
6093   unsigned Size = Ty.getSizeInBits();
6094 
6095   MachineInstrBuilder BSWAP =
6096       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6097 
6098   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6099   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6100   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6101   MachineInstrBuilder Swap4 =
6102       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6103 
6104   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6105   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6106   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6107   MachineInstrBuilder Swap2 =
6108       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6109 
6110   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6111   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6112   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6113   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6114 
6115   MI.eraseFromParent();
6116   return Legalized;
6117 }
6118 
6119 LegalizerHelper::LegalizeResult
6120 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6121   MachineFunction &MF = MIRBuilder.getMF();
6122 
6123   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6124   int NameOpIdx = IsRead ? 1 : 0;
6125   int ValRegIndex = IsRead ? 0 : 1;
6126 
6127   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6128   const LLT Ty = MRI.getType(ValReg);
6129   const MDString *RegStr = cast<MDString>(
6130     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6131 
6132   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6133   if (!PhysReg.isValid())
6134     return UnableToLegalize;
6135 
6136   if (IsRead)
6137     MIRBuilder.buildCopy(ValReg, PhysReg);
6138   else
6139     MIRBuilder.buildCopy(PhysReg, ValReg);
6140 
6141   MI.eraseFromParent();
6142   return Legalized;
6143 }
6144