1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 67 if (OrigTy.isVector() && TargetTy.isVector()) { 68 assert(OrigTy.getElementType() == TargetTy.getElementType()); 69 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 70 TargetTy.getNumElements()); 71 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 72 } 73 74 if (OrigTy.isVector() && !TargetTy.isVector()) { 75 assert(OrigTy.getElementType() == TargetTy); 76 return TargetTy; 77 } 78 79 assert(!OrigTy.isVector() && !TargetTy.isVector() && 80 "GCD type of vector and scalar not implemented"); 81 82 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 83 TargetTy.getSizeInBits()); 84 return LLT::scalar(GCD); 85 } 86 87 static LLT getLCMType(LLT Ty0, LLT Ty1) { 88 if (!Ty0.isVector() && !Ty1.isVector()) { 89 unsigned Mul = Ty0.getSizeInBits() * Ty1.getSizeInBits(); 90 int GCDSize = greatestCommonDivisor(Ty0.getSizeInBits(), 91 Ty1.getSizeInBits()); 92 return LLT::scalar(Mul / GCDSize); 93 } 94 95 if (Ty0.isVector() && !Ty1.isVector()) { 96 assert(Ty0.getElementType() == Ty1 && "not yet handled"); 97 return Ty0; 98 } 99 100 if (Ty1.isVector() && !Ty0.isVector()) { 101 assert(Ty1.getElementType() == Ty0 && "not yet handled"); 102 return Ty1; 103 } 104 105 if (Ty0.isVector() && Ty1.isVector()) { 106 assert(Ty0.getElementType() == Ty1.getElementType() && "not yet handled"); 107 108 int GCDElts = greatestCommonDivisor(Ty0.getNumElements(), 109 Ty1.getNumElements()); 110 111 int Mul = Ty0.getNumElements() * Ty1.getNumElements(); 112 return LLT::vector(Mul / GCDElts, Ty0.getElementType()); 113 } 114 115 llvm_unreachable("not yet handled"); 116 } 117 118 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 119 GISelChangeObserver &Observer, 120 MachineIRBuilder &Builder) 121 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 122 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 123 MIRBuilder.setMF(MF); 124 MIRBuilder.setChangeObserver(Observer); 125 } 126 127 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 128 GISelChangeObserver &Observer, 129 MachineIRBuilder &B) 130 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 131 MIRBuilder.setMF(MF); 132 MIRBuilder.setChangeObserver(Observer); 133 } 134 LegalizerHelper::LegalizeResult 135 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 136 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 137 138 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 139 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 140 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 141 : UnableToLegalize; 142 auto Step = LI.getAction(MI, MRI); 143 switch (Step.Action) { 144 case Legal: 145 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 146 return AlreadyLegal; 147 case Libcall: 148 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 149 return libcall(MI); 150 case NarrowScalar: 151 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 152 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 153 case WidenScalar: 154 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 155 return widenScalar(MI, Step.TypeIdx, Step.NewType); 156 case Lower: 157 LLVM_DEBUG(dbgs() << ".. Lower\n"); 158 return lower(MI, Step.TypeIdx, Step.NewType); 159 case FewerElements: 160 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 161 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 162 case MoreElements: 163 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 164 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 165 case Custom: 166 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 167 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 168 : UnableToLegalize; 169 default: 170 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 171 return UnableToLegalize; 172 } 173 } 174 175 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 176 SmallVectorImpl<Register> &VRegs) { 177 for (int i = 0; i < NumParts; ++i) 178 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 179 MIRBuilder.buildUnmerge(VRegs, Reg); 180 } 181 182 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 183 LLT MainTy, LLT &LeftoverTy, 184 SmallVectorImpl<Register> &VRegs, 185 SmallVectorImpl<Register> &LeftoverRegs) { 186 assert(!LeftoverTy.isValid() && "this is an out argument"); 187 188 unsigned RegSize = RegTy.getSizeInBits(); 189 unsigned MainSize = MainTy.getSizeInBits(); 190 unsigned NumParts = RegSize / MainSize; 191 unsigned LeftoverSize = RegSize - NumParts * MainSize; 192 193 // Use an unmerge when possible. 194 if (LeftoverSize == 0) { 195 for (unsigned I = 0; I < NumParts; ++I) 196 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 197 MIRBuilder.buildUnmerge(VRegs, Reg); 198 return true; 199 } 200 201 if (MainTy.isVector()) { 202 unsigned EltSize = MainTy.getScalarSizeInBits(); 203 if (LeftoverSize % EltSize != 0) 204 return false; 205 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 206 } else { 207 LeftoverTy = LLT::scalar(LeftoverSize); 208 } 209 210 // For irregular sizes, extract the individual parts. 211 for (unsigned I = 0; I != NumParts; ++I) { 212 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 213 VRegs.push_back(NewReg); 214 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 215 } 216 217 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 218 Offset += LeftoverSize) { 219 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 220 LeftoverRegs.push_back(NewReg); 221 MIRBuilder.buildExtract(NewReg, Reg, Offset); 222 } 223 224 return true; 225 } 226 227 void LegalizerHelper::insertParts(Register DstReg, 228 LLT ResultTy, LLT PartTy, 229 ArrayRef<Register> PartRegs, 230 LLT LeftoverTy, 231 ArrayRef<Register> LeftoverRegs) { 232 if (!LeftoverTy.isValid()) { 233 assert(LeftoverRegs.empty()); 234 235 if (!ResultTy.isVector()) { 236 MIRBuilder.buildMerge(DstReg, PartRegs); 237 return; 238 } 239 240 if (PartTy.isVector()) 241 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 242 else 243 MIRBuilder.buildBuildVector(DstReg, PartRegs); 244 return; 245 } 246 247 unsigned PartSize = PartTy.getSizeInBits(); 248 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 249 250 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 251 MIRBuilder.buildUndef(CurResultReg); 252 253 unsigned Offset = 0; 254 for (Register PartReg : PartRegs) { 255 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 256 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 257 CurResultReg = NewResultReg; 258 Offset += PartSize; 259 } 260 261 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 262 // Use the original output register for the final insert to avoid a copy. 263 Register NewResultReg = (I + 1 == E) ? 264 DstReg : MRI.createGenericVirtualRegister(ResultTy); 265 266 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 267 CurResultReg = NewResultReg; 268 Offset += LeftoverPartSize; 269 } 270 } 271 272 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 273 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 274 const MachineInstr &MI) { 275 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 276 277 const int NumResults = MI.getNumOperands() - 1; 278 Regs.resize(NumResults); 279 for (int I = 0; I != NumResults; ++I) 280 Regs[I] = MI.getOperand(I).getReg(); 281 } 282 283 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 284 LLT NarrowTy, Register SrcReg) { 285 LLT SrcTy = MRI.getType(SrcReg); 286 287 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 288 if (SrcTy == GCDTy) { 289 // If the source already evenly divides the result type, we don't need to do 290 // anything. 291 Parts.push_back(SrcReg); 292 } else { 293 // Need to split into common type sized pieces. 294 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 295 getUnmergeResults(Parts, *Unmerge); 296 } 297 298 return GCDTy; 299 } 300 301 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 302 SmallVectorImpl<Register> &VRegs, 303 unsigned PadStrategy) { 304 LLT LCMTy = getLCMType(DstTy, NarrowTy); 305 306 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 307 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 308 int NumOrigSrc = VRegs.size(); 309 310 Register PadReg; 311 312 // Get a value we can use to pad the source value if the sources won't evenly 313 // cover the result type. 314 if (NumOrigSrc < NumParts * NumSubParts) { 315 if (PadStrategy == TargetOpcode::G_ZEXT) 316 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 317 else if (PadStrategy == TargetOpcode::G_ANYEXT) 318 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 319 else { 320 assert(PadStrategy == TargetOpcode::G_SEXT); 321 322 // Shift the sign bit of the low register through the high register. 323 auto ShiftAmt = 324 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 325 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 326 } 327 } 328 329 // Registers for the final merge to be produced. 330 SmallVector<Register, 4> Remerge(NumParts); 331 332 // Registers needed for intermediate merges, which will be merged into a 333 // source for Remerge. 334 SmallVector<Register, 4> SubMerge(NumSubParts); 335 336 // Once we've fully read off the end of the original source bits, we can reuse 337 // the same high bits for remaining padding elements. 338 Register AllPadReg; 339 340 // Build merges to the LCM type to cover the original result type. 341 for (int I = 0; I != NumParts; ++I) { 342 bool AllMergePartsArePadding = true; 343 344 // Build the requested merges to the requested type. 345 for (int J = 0; J != NumSubParts; ++J) { 346 int Idx = I * NumSubParts + J; 347 if (Idx >= NumOrigSrc) { 348 SubMerge[J] = PadReg; 349 continue; 350 } 351 352 SubMerge[J] = VRegs[Idx]; 353 354 // There are meaningful bits here we can't reuse later. 355 AllMergePartsArePadding = false; 356 } 357 358 // If we've filled up a complete piece with padding bits, we can directly 359 // emit the natural sized constant if applicable, rather than a merge of 360 // smaller constants. 361 if (AllMergePartsArePadding && !AllPadReg) { 362 if (PadStrategy == TargetOpcode::G_ANYEXT) 363 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 364 else if (PadStrategy == TargetOpcode::G_ZEXT) 365 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 366 367 // If this is a sign extension, we can't materialize a trivial constant 368 // with the right type and have to produce a merge. 369 } 370 371 if (AllPadReg) { 372 // Avoid creating additional instructions if we're just adding additional 373 // copies of padding bits. 374 Remerge[I] = AllPadReg; 375 continue; 376 } 377 378 if (NumSubParts == 1) 379 Remerge[I] = SubMerge[0]; 380 else 381 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 382 383 // In the sign extend padding case, re-use the first all-signbit merge. 384 if (AllMergePartsArePadding && !AllPadReg) 385 AllPadReg = Remerge[I]; 386 } 387 388 VRegs = std::move(Remerge); 389 return LCMTy; 390 } 391 392 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 393 ArrayRef<Register> RemergeRegs) { 394 LLT DstTy = MRI.getType(DstReg); 395 396 // Create the merge to the widened source, and extract the relevant bits into 397 // the result. 398 399 if (DstTy == LCMTy) { 400 MIRBuilder.buildMerge(DstReg, RemergeRegs); 401 return; 402 } 403 404 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 405 if (DstTy.isScalar() && LCMTy.isScalar()) { 406 MIRBuilder.buildTrunc(DstReg, Remerge); 407 return; 408 } 409 410 if (LCMTy.isVector()) { 411 MIRBuilder.buildExtract(DstReg, Remerge, 0); 412 return; 413 } 414 415 llvm_unreachable("unhandled case"); 416 } 417 418 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 419 switch (Opcode) { 420 case TargetOpcode::G_SDIV: 421 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 422 switch (Size) { 423 case 32: 424 return RTLIB::SDIV_I32; 425 case 64: 426 return RTLIB::SDIV_I64; 427 case 128: 428 return RTLIB::SDIV_I128; 429 default: 430 llvm_unreachable("unexpected size"); 431 } 432 case TargetOpcode::G_UDIV: 433 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 434 switch (Size) { 435 case 32: 436 return RTLIB::UDIV_I32; 437 case 64: 438 return RTLIB::UDIV_I64; 439 case 128: 440 return RTLIB::UDIV_I128; 441 default: 442 llvm_unreachable("unexpected size"); 443 } 444 case TargetOpcode::G_SREM: 445 assert((Size == 32 || Size == 64) && "Unsupported size"); 446 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 447 case TargetOpcode::G_UREM: 448 assert((Size == 32 || Size == 64) && "Unsupported size"); 449 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 450 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 451 assert(Size == 32 && "Unsupported size"); 452 return RTLIB::CTLZ_I32; 453 case TargetOpcode::G_FADD: 454 assert((Size == 32 || Size == 64) && "Unsupported size"); 455 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 456 case TargetOpcode::G_FSUB: 457 assert((Size == 32 || Size == 64) && "Unsupported size"); 458 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 459 case TargetOpcode::G_FMUL: 460 assert((Size == 32 || Size == 64) && "Unsupported size"); 461 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 462 case TargetOpcode::G_FDIV: 463 assert((Size == 32 || Size == 64) && "Unsupported size"); 464 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 465 case TargetOpcode::G_FEXP: 466 assert((Size == 32 || Size == 64) && "Unsupported size"); 467 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 468 case TargetOpcode::G_FEXP2: 469 assert((Size == 32 || Size == 64) && "Unsupported size"); 470 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 471 case TargetOpcode::G_FREM: 472 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 473 case TargetOpcode::G_FPOW: 474 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 475 case TargetOpcode::G_FMA: 476 assert((Size == 32 || Size == 64) && "Unsupported size"); 477 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 478 case TargetOpcode::G_FSIN: 479 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 480 return Size == 128 ? RTLIB::SIN_F128 481 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 482 case TargetOpcode::G_FCOS: 483 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 484 return Size == 128 ? RTLIB::COS_F128 485 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 486 case TargetOpcode::G_FLOG10: 487 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 488 return Size == 128 ? RTLIB::LOG10_F128 489 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 490 case TargetOpcode::G_FLOG: 491 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 492 return Size == 128 ? RTLIB::LOG_F128 493 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 494 case TargetOpcode::G_FLOG2: 495 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 496 return Size == 128 ? RTLIB::LOG2_F128 497 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 498 case TargetOpcode::G_FCEIL: 499 assert((Size == 32 || Size == 64) && "Unsupported size"); 500 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 501 case TargetOpcode::G_FFLOOR: 502 assert((Size == 32 || Size == 64) && "Unsupported size"); 503 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 504 } 505 llvm_unreachable("Unknown libcall function"); 506 } 507 508 /// True if an instruction is in tail position in its caller. Intended for 509 /// legalizing libcalls as tail calls when possible. 510 static bool isLibCallInTailPosition(MachineInstr &MI) { 511 const Function &F = MI.getParent()->getParent()->getFunction(); 512 513 // Conservatively require the attributes of the call to match those of 514 // the return. Ignore NoAlias and NonNull because they don't affect the 515 // call sequence. 516 AttributeList CallerAttrs = F.getAttributes(); 517 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 518 .removeAttribute(Attribute::NoAlias) 519 .removeAttribute(Attribute::NonNull) 520 .hasAttributes()) 521 return false; 522 523 // It's not safe to eliminate the sign / zero extension of the return value. 524 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 525 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 526 return false; 527 528 // Only tail call if the following instruction is a standard return. 529 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 530 MachineInstr *Next = MI.getNextNode(); 531 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 532 return false; 533 534 return true; 535 } 536 537 LegalizerHelper::LegalizeResult 538 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 539 const CallLowering::ArgInfo &Result, 540 ArrayRef<CallLowering::ArgInfo> Args) { 541 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 542 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 543 const char *Name = TLI.getLibcallName(Libcall); 544 545 CallLowering::CallLoweringInfo Info; 546 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 547 Info.Callee = MachineOperand::CreateES(Name); 548 Info.OrigRet = Result; 549 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 550 if (!CLI.lowerCall(MIRBuilder, Info)) 551 return LegalizerHelper::UnableToLegalize; 552 553 return LegalizerHelper::Legalized; 554 } 555 556 // Useful for libcalls where all operands have the same type. 557 static LegalizerHelper::LegalizeResult 558 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 559 Type *OpType) { 560 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 561 562 SmallVector<CallLowering::ArgInfo, 3> Args; 563 for (unsigned i = 1; i < MI.getNumOperands(); i++) 564 Args.push_back({MI.getOperand(i).getReg(), OpType}); 565 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 566 Args); 567 } 568 569 LegalizerHelper::LegalizeResult 570 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 571 MachineInstr &MI) { 572 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 573 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 574 575 SmallVector<CallLowering::ArgInfo, 3> Args; 576 // Add all the args, except for the last which is an imm denoting 'tail'. 577 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 578 Register Reg = MI.getOperand(i).getReg(); 579 580 // Need derive an IR type for call lowering. 581 LLT OpLLT = MRI.getType(Reg); 582 Type *OpTy = nullptr; 583 if (OpLLT.isPointer()) 584 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 585 else 586 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 587 Args.push_back({Reg, OpTy}); 588 } 589 590 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 591 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 592 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 593 RTLIB::Libcall RTLibcall; 594 switch (ID) { 595 case Intrinsic::memcpy: 596 RTLibcall = RTLIB::MEMCPY; 597 break; 598 case Intrinsic::memset: 599 RTLibcall = RTLIB::MEMSET; 600 break; 601 case Intrinsic::memmove: 602 RTLibcall = RTLIB::MEMMOVE; 603 break; 604 default: 605 return LegalizerHelper::UnableToLegalize; 606 } 607 const char *Name = TLI.getLibcallName(RTLibcall); 608 609 MIRBuilder.setInstr(MI); 610 611 CallLowering::CallLoweringInfo Info; 612 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 613 Info.Callee = MachineOperand::CreateES(Name); 614 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 615 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 616 isLibCallInTailPosition(MI); 617 618 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 619 if (!CLI.lowerCall(MIRBuilder, Info)) 620 return LegalizerHelper::UnableToLegalize; 621 622 if (Info.LoweredTailCall) { 623 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 624 // We must have a return following the call to get past 625 // isLibCallInTailPosition. 626 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 627 "Expected instr following MI to be a return?"); 628 629 // We lowered a tail call, so the call is now the return from the block. 630 // Delete the old return. 631 MI.getNextNode()->eraseFromParent(); 632 } 633 634 return LegalizerHelper::Legalized; 635 } 636 637 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 638 Type *FromType) { 639 auto ToMVT = MVT::getVT(ToType); 640 auto FromMVT = MVT::getVT(FromType); 641 642 switch (Opcode) { 643 case TargetOpcode::G_FPEXT: 644 return RTLIB::getFPEXT(FromMVT, ToMVT); 645 case TargetOpcode::G_FPTRUNC: 646 return RTLIB::getFPROUND(FromMVT, ToMVT); 647 case TargetOpcode::G_FPTOSI: 648 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 649 case TargetOpcode::G_FPTOUI: 650 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 651 case TargetOpcode::G_SITOFP: 652 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 653 case TargetOpcode::G_UITOFP: 654 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 655 } 656 llvm_unreachable("Unsupported libcall function"); 657 } 658 659 static LegalizerHelper::LegalizeResult 660 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 661 Type *FromType) { 662 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 663 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 664 {{MI.getOperand(1).getReg(), FromType}}); 665 } 666 667 LegalizerHelper::LegalizeResult 668 LegalizerHelper::libcall(MachineInstr &MI) { 669 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 670 unsigned Size = LLTy.getSizeInBits(); 671 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 672 673 MIRBuilder.setInstr(MI); 674 675 switch (MI.getOpcode()) { 676 default: 677 return UnableToLegalize; 678 case TargetOpcode::G_SDIV: 679 case TargetOpcode::G_UDIV: 680 case TargetOpcode::G_SREM: 681 case TargetOpcode::G_UREM: 682 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 683 Type *HLTy = IntegerType::get(Ctx, Size); 684 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 685 if (Status != Legalized) 686 return Status; 687 break; 688 } 689 case TargetOpcode::G_FADD: 690 case TargetOpcode::G_FSUB: 691 case TargetOpcode::G_FMUL: 692 case TargetOpcode::G_FDIV: 693 case TargetOpcode::G_FMA: 694 case TargetOpcode::G_FPOW: 695 case TargetOpcode::G_FREM: 696 case TargetOpcode::G_FCOS: 697 case TargetOpcode::G_FSIN: 698 case TargetOpcode::G_FLOG10: 699 case TargetOpcode::G_FLOG: 700 case TargetOpcode::G_FLOG2: 701 case TargetOpcode::G_FEXP: 702 case TargetOpcode::G_FEXP2: 703 case TargetOpcode::G_FCEIL: 704 case TargetOpcode::G_FFLOOR: { 705 if (Size > 64) { 706 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 707 return UnableToLegalize; 708 } 709 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 710 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 711 if (Status != Legalized) 712 return Status; 713 break; 714 } 715 case TargetOpcode::G_FPEXT: { 716 // FIXME: Support other floating point types (half, fp128 etc) 717 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 718 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 719 if (ToSize != 64 || FromSize != 32) 720 return UnableToLegalize; 721 LegalizeResult Status = conversionLibcall( 722 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 723 if (Status != Legalized) 724 return Status; 725 break; 726 } 727 case TargetOpcode::G_FPTRUNC: { 728 // FIXME: Support other floating point types (half, fp128 etc) 729 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 730 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 731 if (ToSize != 32 || FromSize != 64) 732 return UnableToLegalize; 733 LegalizeResult Status = conversionLibcall( 734 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 735 if (Status != Legalized) 736 return Status; 737 break; 738 } 739 case TargetOpcode::G_FPTOSI: 740 case TargetOpcode::G_FPTOUI: { 741 // FIXME: Support other types 742 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 743 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 744 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 745 return UnableToLegalize; 746 LegalizeResult Status = conversionLibcall( 747 MI, MIRBuilder, 748 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 749 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 750 if (Status != Legalized) 751 return Status; 752 break; 753 } 754 case TargetOpcode::G_SITOFP: 755 case TargetOpcode::G_UITOFP: { 756 // FIXME: Support other types 757 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 758 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 759 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 760 return UnableToLegalize; 761 LegalizeResult Status = conversionLibcall( 762 MI, MIRBuilder, 763 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 764 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 765 if (Status != Legalized) 766 return Status; 767 break; 768 } 769 } 770 771 MI.eraseFromParent(); 772 return Legalized; 773 } 774 775 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 776 unsigned TypeIdx, 777 LLT NarrowTy) { 778 MIRBuilder.setInstr(MI); 779 780 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 781 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 782 783 switch (MI.getOpcode()) { 784 default: 785 return UnableToLegalize; 786 case TargetOpcode::G_IMPLICIT_DEF: { 787 // FIXME: add support for when SizeOp0 isn't an exact multiple of 788 // NarrowSize. 789 if (SizeOp0 % NarrowSize != 0) 790 return UnableToLegalize; 791 int NumParts = SizeOp0 / NarrowSize; 792 793 SmallVector<Register, 2> DstRegs; 794 for (int i = 0; i < NumParts; ++i) 795 DstRegs.push_back( 796 MIRBuilder.buildUndef(NarrowTy).getReg(0)); 797 798 Register DstReg = MI.getOperand(0).getReg(); 799 if(MRI.getType(DstReg).isVector()) 800 MIRBuilder.buildBuildVector(DstReg, DstRegs); 801 else 802 MIRBuilder.buildMerge(DstReg, DstRegs); 803 MI.eraseFromParent(); 804 return Legalized; 805 } 806 case TargetOpcode::G_CONSTANT: { 807 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 808 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 809 unsigned TotalSize = Ty.getSizeInBits(); 810 unsigned NarrowSize = NarrowTy.getSizeInBits(); 811 int NumParts = TotalSize / NarrowSize; 812 813 SmallVector<Register, 4> PartRegs; 814 for (int I = 0; I != NumParts; ++I) { 815 unsigned Offset = I * NarrowSize; 816 auto K = MIRBuilder.buildConstant(NarrowTy, 817 Val.lshr(Offset).trunc(NarrowSize)); 818 PartRegs.push_back(K.getReg(0)); 819 } 820 821 LLT LeftoverTy; 822 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 823 SmallVector<Register, 1> LeftoverRegs; 824 if (LeftoverBits != 0) { 825 LeftoverTy = LLT::scalar(LeftoverBits); 826 auto K = MIRBuilder.buildConstant( 827 LeftoverTy, 828 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 829 LeftoverRegs.push_back(K.getReg(0)); 830 } 831 832 insertParts(MI.getOperand(0).getReg(), 833 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 834 835 MI.eraseFromParent(); 836 return Legalized; 837 } 838 case TargetOpcode::G_SEXT: 839 case TargetOpcode::G_ZEXT: 840 case TargetOpcode::G_ANYEXT: 841 return narrowScalarExt(MI, TypeIdx, NarrowTy); 842 case TargetOpcode::G_TRUNC: { 843 if (TypeIdx != 1) 844 return UnableToLegalize; 845 846 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 847 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 848 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 849 return UnableToLegalize; 850 } 851 852 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 853 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 854 MI.eraseFromParent(); 855 return Legalized; 856 } 857 858 case TargetOpcode::G_ADD: { 859 // FIXME: add support for when SizeOp0 isn't an exact multiple of 860 // NarrowSize. 861 if (SizeOp0 % NarrowSize != 0) 862 return UnableToLegalize; 863 // Expand in terms of carry-setting/consuming G_ADDE instructions. 864 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 865 866 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 867 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 868 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 869 870 Register CarryIn; 871 for (int i = 0; i < NumParts; ++i) { 872 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 873 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 874 875 if (i == 0) 876 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 877 else { 878 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 879 Src2Regs[i], CarryIn); 880 } 881 882 DstRegs.push_back(DstReg); 883 CarryIn = CarryOut; 884 } 885 Register DstReg = MI.getOperand(0).getReg(); 886 if(MRI.getType(DstReg).isVector()) 887 MIRBuilder.buildBuildVector(DstReg, DstRegs); 888 else 889 MIRBuilder.buildMerge(DstReg, DstRegs); 890 MI.eraseFromParent(); 891 return Legalized; 892 } 893 case TargetOpcode::G_SUB: { 894 // FIXME: add support for when SizeOp0 isn't an exact multiple of 895 // NarrowSize. 896 if (SizeOp0 % NarrowSize != 0) 897 return UnableToLegalize; 898 899 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 900 901 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 902 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 903 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 904 905 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 906 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 907 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 908 {Src1Regs[0], Src2Regs[0]}); 909 DstRegs.push_back(DstReg); 910 Register BorrowIn = BorrowOut; 911 for (int i = 1; i < NumParts; ++i) { 912 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 913 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 914 915 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 916 {Src1Regs[i], Src2Regs[i], BorrowIn}); 917 918 DstRegs.push_back(DstReg); 919 BorrowIn = BorrowOut; 920 } 921 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 922 MI.eraseFromParent(); 923 return Legalized; 924 } 925 case TargetOpcode::G_MUL: 926 case TargetOpcode::G_UMULH: 927 return narrowScalarMul(MI, NarrowTy); 928 case TargetOpcode::G_EXTRACT: 929 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 930 case TargetOpcode::G_INSERT: 931 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 932 case TargetOpcode::G_LOAD: { 933 const auto &MMO = **MI.memoperands_begin(); 934 Register DstReg = MI.getOperand(0).getReg(); 935 LLT DstTy = MRI.getType(DstReg); 936 if (DstTy.isVector()) 937 return UnableToLegalize; 938 939 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 940 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 941 auto &MMO = **MI.memoperands_begin(); 942 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 943 MIRBuilder.buildAnyExt(DstReg, TmpReg); 944 MI.eraseFromParent(); 945 return Legalized; 946 } 947 948 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 949 } 950 case TargetOpcode::G_ZEXTLOAD: 951 case TargetOpcode::G_SEXTLOAD: { 952 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 953 Register DstReg = MI.getOperand(0).getReg(); 954 Register PtrReg = MI.getOperand(1).getReg(); 955 956 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 957 auto &MMO = **MI.memoperands_begin(); 958 if (MMO.getSizeInBits() == NarrowSize) { 959 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 960 } else { 961 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 962 } 963 964 if (ZExt) 965 MIRBuilder.buildZExt(DstReg, TmpReg); 966 else 967 MIRBuilder.buildSExt(DstReg, TmpReg); 968 969 MI.eraseFromParent(); 970 return Legalized; 971 } 972 case TargetOpcode::G_STORE: { 973 const auto &MMO = **MI.memoperands_begin(); 974 975 Register SrcReg = MI.getOperand(0).getReg(); 976 LLT SrcTy = MRI.getType(SrcReg); 977 if (SrcTy.isVector()) 978 return UnableToLegalize; 979 980 int NumParts = SizeOp0 / NarrowSize; 981 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 982 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 983 if (SrcTy.isVector() && LeftoverBits != 0) 984 return UnableToLegalize; 985 986 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 987 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 988 auto &MMO = **MI.memoperands_begin(); 989 MIRBuilder.buildTrunc(TmpReg, SrcReg); 990 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 991 MI.eraseFromParent(); 992 return Legalized; 993 } 994 995 return reduceLoadStoreWidth(MI, 0, NarrowTy); 996 } 997 case TargetOpcode::G_SELECT: 998 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 999 case TargetOpcode::G_AND: 1000 case TargetOpcode::G_OR: 1001 case TargetOpcode::G_XOR: { 1002 // Legalize bitwise operation: 1003 // A = BinOp<Ty> B, C 1004 // into: 1005 // B1, ..., BN = G_UNMERGE_VALUES B 1006 // C1, ..., CN = G_UNMERGE_VALUES C 1007 // A1 = BinOp<Ty/N> B1, C2 1008 // ... 1009 // AN = BinOp<Ty/N> BN, CN 1010 // A = G_MERGE_VALUES A1, ..., AN 1011 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1012 } 1013 case TargetOpcode::G_SHL: 1014 case TargetOpcode::G_LSHR: 1015 case TargetOpcode::G_ASHR: 1016 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1017 case TargetOpcode::G_CTLZ: 1018 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1019 case TargetOpcode::G_CTTZ: 1020 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1021 case TargetOpcode::G_CTPOP: 1022 if (TypeIdx == 1) 1023 switch (MI.getOpcode()) { 1024 case TargetOpcode::G_CTLZ: 1025 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_CTTZ: 1027 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1028 case TargetOpcode::G_CTPOP: 1029 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1030 default: 1031 return UnableToLegalize; 1032 } 1033 1034 Observer.changingInstr(MI); 1035 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1036 Observer.changedInstr(MI); 1037 return Legalized; 1038 case TargetOpcode::G_INTTOPTR: 1039 if (TypeIdx != 1) 1040 return UnableToLegalize; 1041 1042 Observer.changingInstr(MI); 1043 narrowScalarSrc(MI, NarrowTy, 1); 1044 Observer.changedInstr(MI); 1045 return Legalized; 1046 case TargetOpcode::G_PTRTOINT: 1047 if (TypeIdx != 0) 1048 return UnableToLegalize; 1049 1050 Observer.changingInstr(MI); 1051 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1052 Observer.changedInstr(MI); 1053 return Legalized; 1054 case TargetOpcode::G_PHI: { 1055 unsigned NumParts = SizeOp0 / NarrowSize; 1056 SmallVector<Register, 2> DstRegs(NumParts); 1057 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1058 Observer.changingInstr(MI); 1059 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1060 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1061 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1062 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1063 SrcRegs[i / 2]); 1064 } 1065 MachineBasicBlock &MBB = *MI.getParent(); 1066 MIRBuilder.setInsertPt(MBB, MI); 1067 for (unsigned i = 0; i < NumParts; ++i) { 1068 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1069 MachineInstrBuilder MIB = 1070 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1071 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1072 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1073 } 1074 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1075 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1076 Observer.changedInstr(MI); 1077 MI.eraseFromParent(); 1078 return Legalized; 1079 } 1080 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1081 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1082 if (TypeIdx != 2) 1083 return UnableToLegalize; 1084 1085 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1086 Observer.changingInstr(MI); 1087 narrowScalarSrc(MI, NarrowTy, OpIdx); 1088 Observer.changedInstr(MI); 1089 return Legalized; 1090 } 1091 case TargetOpcode::G_ICMP: { 1092 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1093 if (NarrowSize * 2 != SrcSize) 1094 return UnableToLegalize; 1095 1096 Observer.changingInstr(MI); 1097 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1098 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1099 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1100 1101 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1102 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1103 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1104 1105 CmpInst::Predicate Pred = 1106 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1107 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1108 1109 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1110 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1111 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1112 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1113 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1114 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1115 } else { 1116 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1117 MachineInstrBuilder CmpHEQ = 1118 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1119 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1120 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1121 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1122 } 1123 Observer.changedInstr(MI); 1124 MI.eraseFromParent(); 1125 return Legalized; 1126 } 1127 case TargetOpcode::G_SEXT_INREG: { 1128 if (TypeIdx != 0) 1129 return UnableToLegalize; 1130 1131 int64_t SizeInBits = MI.getOperand(2).getImm(); 1132 1133 // So long as the new type has more bits than the bits we're extending we 1134 // don't need to break it apart. 1135 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1136 Observer.changingInstr(MI); 1137 // We don't lose any non-extension bits by truncating the src and 1138 // sign-extending the dst. 1139 MachineOperand &MO1 = MI.getOperand(1); 1140 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1141 MO1.setReg(TruncMIB.getReg(0)); 1142 1143 MachineOperand &MO2 = MI.getOperand(0); 1144 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1145 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1146 MIRBuilder.buildSExt(MO2, DstExt); 1147 MO2.setReg(DstExt); 1148 Observer.changedInstr(MI); 1149 return Legalized; 1150 } 1151 1152 // Break it apart. Components below the extension point are unmodified. The 1153 // component containing the extension point becomes a narrower SEXT_INREG. 1154 // Components above it are ashr'd from the component containing the 1155 // extension point. 1156 if (SizeOp0 % NarrowSize != 0) 1157 return UnableToLegalize; 1158 int NumParts = SizeOp0 / NarrowSize; 1159 1160 // List the registers where the destination will be scattered. 1161 SmallVector<Register, 2> DstRegs; 1162 // List the registers where the source will be split. 1163 SmallVector<Register, 2> SrcRegs; 1164 1165 // Create all the temporary registers. 1166 for (int i = 0; i < NumParts; ++i) { 1167 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1168 1169 SrcRegs.push_back(SrcReg); 1170 } 1171 1172 // Explode the big arguments into smaller chunks. 1173 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1174 1175 Register AshrCstReg = 1176 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1177 .getReg(0); 1178 Register FullExtensionReg = 0; 1179 Register PartialExtensionReg = 0; 1180 1181 // Do the operation on each small part. 1182 for (int i = 0; i < NumParts; ++i) { 1183 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1184 DstRegs.push_back(SrcRegs[i]); 1185 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1186 assert(PartialExtensionReg && 1187 "Expected to visit partial extension before full"); 1188 if (FullExtensionReg) { 1189 DstRegs.push_back(FullExtensionReg); 1190 continue; 1191 } 1192 DstRegs.push_back( 1193 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1194 .getReg(0)); 1195 FullExtensionReg = DstRegs.back(); 1196 } else { 1197 DstRegs.push_back( 1198 MIRBuilder 1199 .buildInstr( 1200 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1201 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1202 .getReg(0)); 1203 PartialExtensionReg = DstRegs.back(); 1204 } 1205 } 1206 1207 // Gather the destination registers into the final destination. 1208 Register DstReg = MI.getOperand(0).getReg(); 1209 MIRBuilder.buildMerge(DstReg, DstRegs); 1210 MI.eraseFromParent(); 1211 return Legalized; 1212 } 1213 case TargetOpcode::G_BSWAP: 1214 case TargetOpcode::G_BITREVERSE: { 1215 if (SizeOp0 % NarrowSize != 0) 1216 return UnableToLegalize; 1217 1218 Observer.changingInstr(MI); 1219 SmallVector<Register, 2> SrcRegs, DstRegs; 1220 unsigned NumParts = SizeOp0 / NarrowSize; 1221 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1222 1223 for (unsigned i = 0; i < NumParts; ++i) { 1224 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1225 {SrcRegs[NumParts - 1 - i]}); 1226 DstRegs.push_back(DstPart.getReg(0)); 1227 } 1228 1229 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1230 1231 Observer.changedInstr(MI); 1232 MI.eraseFromParent(); 1233 return Legalized; 1234 } 1235 } 1236 } 1237 1238 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1239 unsigned OpIdx, unsigned ExtOpcode) { 1240 MachineOperand &MO = MI.getOperand(OpIdx); 1241 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1242 MO.setReg(ExtB.getReg(0)); 1243 } 1244 1245 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1246 unsigned OpIdx) { 1247 MachineOperand &MO = MI.getOperand(OpIdx); 1248 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1249 MO.setReg(ExtB.getReg(0)); 1250 } 1251 1252 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1253 unsigned OpIdx, unsigned TruncOpcode) { 1254 MachineOperand &MO = MI.getOperand(OpIdx); 1255 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1256 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1257 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1258 MO.setReg(DstExt); 1259 } 1260 1261 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1262 unsigned OpIdx, unsigned ExtOpcode) { 1263 MachineOperand &MO = MI.getOperand(OpIdx); 1264 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1265 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1266 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1267 MO.setReg(DstTrunc); 1268 } 1269 1270 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1271 unsigned OpIdx) { 1272 MachineOperand &MO = MI.getOperand(OpIdx); 1273 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1274 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1275 MIRBuilder.buildExtract(MO, DstExt, 0); 1276 MO.setReg(DstExt); 1277 } 1278 1279 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1280 unsigned OpIdx) { 1281 MachineOperand &MO = MI.getOperand(OpIdx); 1282 1283 LLT OldTy = MRI.getType(MO.getReg()); 1284 unsigned OldElts = OldTy.getNumElements(); 1285 unsigned NewElts = MoreTy.getNumElements(); 1286 1287 unsigned NumParts = NewElts / OldElts; 1288 1289 // Use concat_vectors if the result is a multiple of the number of elements. 1290 if (NumParts * OldElts == NewElts) { 1291 SmallVector<Register, 8> Parts; 1292 Parts.push_back(MO.getReg()); 1293 1294 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1295 for (unsigned I = 1; I != NumParts; ++I) 1296 Parts.push_back(ImpDef); 1297 1298 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1299 MO.setReg(Concat.getReg(0)); 1300 return; 1301 } 1302 1303 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1304 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1305 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1306 MO.setReg(MoreReg); 1307 } 1308 1309 LegalizerHelper::LegalizeResult 1310 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1311 LLT WideTy) { 1312 if (TypeIdx != 1) 1313 return UnableToLegalize; 1314 1315 Register DstReg = MI.getOperand(0).getReg(); 1316 LLT DstTy = MRI.getType(DstReg); 1317 if (DstTy.isVector()) 1318 return UnableToLegalize; 1319 1320 Register Src1 = MI.getOperand(1).getReg(); 1321 LLT SrcTy = MRI.getType(Src1); 1322 const int DstSize = DstTy.getSizeInBits(); 1323 const int SrcSize = SrcTy.getSizeInBits(); 1324 const int WideSize = WideTy.getSizeInBits(); 1325 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1326 1327 unsigned NumOps = MI.getNumOperands(); 1328 unsigned NumSrc = MI.getNumOperands() - 1; 1329 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1330 1331 if (WideSize >= DstSize) { 1332 // Directly pack the bits in the target type. 1333 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1334 1335 for (unsigned I = 2; I != NumOps; ++I) { 1336 const unsigned Offset = (I - 1) * PartSize; 1337 1338 Register SrcReg = MI.getOperand(I).getReg(); 1339 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1340 1341 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1342 1343 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1344 MRI.createGenericVirtualRegister(WideTy); 1345 1346 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1347 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1348 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1349 ResultReg = NextResult; 1350 } 1351 1352 if (WideSize > DstSize) 1353 MIRBuilder.buildTrunc(DstReg, ResultReg); 1354 else if (DstTy.isPointer()) 1355 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1356 1357 MI.eraseFromParent(); 1358 return Legalized; 1359 } 1360 1361 // Unmerge the original values to the GCD type, and recombine to the next 1362 // multiple greater than the original type. 1363 // 1364 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1365 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1366 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1367 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1368 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1369 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1370 // %12:_(s12) = G_MERGE_VALUES %10, %11 1371 // 1372 // Padding with undef if necessary: 1373 // 1374 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1375 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1376 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1377 // %7:_(s2) = G_IMPLICIT_DEF 1378 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1379 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1380 // %10:_(s12) = G_MERGE_VALUES %8, %9 1381 1382 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1383 LLT GCDTy = LLT::scalar(GCD); 1384 1385 SmallVector<Register, 8> Parts; 1386 SmallVector<Register, 8> NewMergeRegs; 1387 SmallVector<Register, 8> Unmerges; 1388 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1389 1390 // Decompose the original operands if they don't evenly divide. 1391 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1392 Register SrcReg = MI.getOperand(I).getReg(); 1393 if (GCD == SrcSize) { 1394 Unmerges.push_back(SrcReg); 1395 } else { 1396 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1397 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1398 Unmerges.push_back(Unmerge.getReg(J)); 1399 } 1400 } 1401 1402 // Pad with undef to the next size that is a multiple of the requested size. 1403 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1404 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1405 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1406 Unmerges.push_back(UndefReg); 1407 } 1408 1409 const int PartsPerGCD = WideSize / GCD; 1410 1411 // Build merges of each piece. 1412 ArrayRef<Register> Slicer(Unmerges); 1413 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1414 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1415 NewMergeRegs.push_back(Merge.getReg(0)); 1416 } 1417 1418 // A truncate may be necessary if the requested type doesn't evenly divide the 1419 // original result type. 1420 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1421 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1422 } else { 1423 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1424 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1425 } 1426 1427 MI.eraseFromParent(); 1428 return Legalized; 1429 } 1430 1431 LegalizerHelper::LegalizeResult 1432 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1433 LLT WideTy) { 1434 if (TypeIdx != 0) 1435 return UnableToLegalize; 1436 1437 int NumDst = MI.getNumOperands() - 1; 1438 Register SrcReg = MI.getOperand(NumDst).getReg(); 1439 LLT SrcTy = MRI.getType(SrcReg); 1440 if (SrcTy.isVector()) 1441 return UnableToLegalize; 1442 1443 Register Dst0Reg = MI.getOperand(0).getReg(); 1444 LLT DstTy = MRI.getType(Dst0Reg); 1445 if (!DstTy.isScalar()) 1446 return UnableToLegalize; 1447 1448 if (WideTy.getSizeInBits() == SrcTy.getSizeInBits()) { 1449 if (SrcTy.isPointer()) { 1450 const DataLayout &DL = MIRBuilder.getDataLayout(); 1451 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1452 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 1453 return UnableToLegalize; 1454 } 1455 1456 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1457 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1458 } 1459 1460 // Theres no unmerge type to target. Directly extract the bits from the 1461 // source type 1462 unsigned DstSize = DstTy.getSizeInBits(); 1463 1464 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1465 for (int I = 1; I != NumDst; ++I) { 1466 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1467 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1468 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1469 } 1470 1471 MI.eraseFromParent(); 1472 return Legalized; 1473 } 1474 1475 // TODO 1476 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1477 return UnableToLegalize; 1478 1479 // Extend the source to a wider type. 1480 LLT LCMTy = getLCMType(SrcTy, WideTy); 1481 1482 Register WideSrc = SrcReg; 1483 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1484 // TODO: If this is an integral address space, cast to integer and anyext. 1485 if (SrcTy.isPointer()) { 1486 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1487 return UnableToLegalize; 1488 } 1489 1490 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1491 } 1492 1493 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1494 1495 // Create a sequence of unmerges to the original results. since we may have 1496 // widened the source, we will need to pad the results with dead defs to cover 1497 // the source register. 1498 // e.g. widen s16 to s32: 1499 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1500 // 1501 // => 1502 // %4:_(s64) = G_ANYEXT %0:_(s48) 1503 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1504 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1505 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1506 1507 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1508 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1509 1510 for (int I = 0; I != NumUnmerge; ++I) { 1511 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1512 1513 for (int J = 0; J != PartsPerUnmerge; ++J) { 1514 int Idx = I * PartsPerUnmerge + J; 1515 if (Idx < NumDst) 1516 MIB.addDef(MI.getOperand(Idx).getReg()); 1517 else { 1518 // Create dead def for excess components. 1519 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1520 } 1521 } 1522 1523 MIB.addUse(Unmerge.getReg(I)); 1524 } 1525 1526 MI.eraseFromParent(); 1527 return Legalized; 1528 } 1529 1530 LegalizerHelper::LegalizeResult 1531 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1532 LLT WideTy) { 1533 Register DstReg = MI.getOperand(0).getReg(); 1534 Register SrcReg = MI.getOperand(1).getReg(); 1535 LLT SrcTy = MRI.getType(SrcReg); 1536 1537 LLT DstTy = MRI.getType(DstReg); 1538 unsigned Offset = MI.getOperand(2).getImm(); 1539 1540 if (TypeIdx == 0) { 1541 if (SrcTy.isVector() || DstTy.isVector()) 1542 return UnableToLegalize; 1543 1544 SrcOp Src(SrcReg); 1545 if (SrcTy.isPointer()) { 1546 // Extracts from pointers can be handled only if they are really just 1547 // simple integers. 1548 const DataLayout &DL = MIRBuilder.getDataLayout(); 1549 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1550 return UnableToLegalize; 1551 1552 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1553 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1554 SrcTy = SrcAsIntTy; 1555 } 1556 1557 if (DstTy.isPointer()) 1558 return UnableToLegalize; 1559 1560 if (Offset == 0) { 1561 // Avoid a shift in the degenerate case. 1562 MIRBuilder.buildTrunc(DstReg, 1563 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1564 MI.eraseFromParent(); 1565 return Legalized; 1566 } 1567 1568 // Do a shift in the source type. 1569 LLT ShiftTy = SrcTy; 1570 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1571 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1572 ShiftTy = WideTy; 1573 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1574 return UnableToLegalize; 1575 1576 auto LShr = MIRBuilder.buildLShr( 1577 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1578 MIRBuilder.buildTrunc(DstReg, LShr); 1579 MI.eraseFromParent(); 1580 return Legalized; 1581 } 1582 1583 if (SrcTy.isScalar()) { 1584 Observer.changingInstr(MI); 1585 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1586 Observer.changedInstr(MI); 1587 return Legalized; 1588 } 1589 1590 if (!SrcTy.isVector()) 1591 return UnableToLegalize; 1592 1593 if (DstTy != SrcTy.getElementType()) 1594 return UnableToLegalize; 1595 1596 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1597 return UnableToLegalize; 1598 1599 Observer.changingInstr(MI); 1600 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1601 1602 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1603 Offset); 1604 widenScalarDst(MI, WideTy.getScalarType(), 0); 1605 Observer.changedInstr(MI); 1606 return Legalized; 1607 } 1608 1609 LegalizerHelper::LegalizeResult 1610 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1611 LLT WideTy) { 1612 if (TypeIdx != 0) 1613 return UnableToLegalize; 1614 Observer.changingInstr(MI); 1615 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1616 widenScalarDst(MI, WideTy); 1617 Observer.changedInstr(MI); 1618 return Legalized; 1619 } 1620 1621 LegalizerHelper::LegalizeResult 1622 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1623 MIRBuilder.setInstr(MI); 1624 1625 switch (MI.getOpcode()) { 1626 default: 1627 return UnableToLegalize; 1628 case TargetOpcode::G_EXTRACT: 1629 return widenScalarExtract(MI, TypeIdx, WideTy); 1630 case TargetOpcode::G_INSERT: 1631 return widenScalarInsert(MI, TypeIdx, WideTy); 1632 case TargetOpcode::G_MERGE_VALUES: 1633 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1634 case TargetOpcode::G_UNMERGE_VALUES: 1635 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1636 case TargetOpcode::G_UADDO: 1637 case TargetOpcode::G_USUBO: { 1638 if (TypeIdx == 1) 1639 return UnableToLegalize; // TODO 1640 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1641 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1642 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1643 ? TargetOpcode::G_ADD 1644 : TargetOpcode::G_SUB; 1645 // Do the arithmetic in the larger type. 1646 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1647 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1648 APInt Mask = 1649 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1650 auto AndOp = MIRBuilder.buildAnd( 1651 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1652 // There is no overflow if the AndOp is the same as NewOp. 1653 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1654 // Now trunc the NewOp to the original result. 1655 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1656 MI.eraseFromParent(); 1657 return Legalized; 1658 } 1659 case TargetOpcode::G_CTTZ: 1660 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1661 case TargetOpcode::G_CTLZ: 1662 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1663 case TargetOpcode::G_CTPOP: { 1664 if (TypeIdx == 0) { 1665 Observer.changingInstr(MI); 1666 widenScalarDst(MI, WideTy, 0); 1667 Observer.changedInstr(MI); 1668 return Legalized; 1669 } 1670 1671 Register SrcReg = MI.getOperand(1).getReg(); 1672 1673 // First ZEXT the input. 1674 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1675 LLT CurTy = MRI.getType(SrcReg); 1676 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1677 // The count is the same in the larger type except if the original 1678 // value was zero. This can be handled by setting the bit just off 1679 // the top of the original type. 1680 auto TopBit = 1681 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1682 MIBSrc = MIRBuilder.buildOr( 1683 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1684 } 1685 1686 // Perform the operation at the larger size. 1687 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1688 // This is already the correct result for CTPOP and CTTZs 1689 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1690 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1691 // The correct result is NewOp - (Difference in widety and current ty). 1692 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1693 MIBNewOp = MIRBuilder.buildSub( 1694 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1695 } 1696 1697 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1698 MI.eraseFromParent(); 1699 return Legalized; 1700 } 1701 case TargetOpcode::G_BSWAP: { 1702 Observer.changingInstr(MI); 1703 Register DstReg = MI.getOperand(0).getReg(); 1704 1705 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1706 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1707 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1708 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1709 1710 MI.getOperand(0).setReg(DstExt); 1711 1712 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1713 1714 LLT Ty = MRI.getType(DstReg); 1715 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1716 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1717 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1718 1719 MIRBuilder.buildTrunc(DstReg, ShrReg); 1720 Observer.changedInstr(MI); 1721 return Legalized; 1722 } 1723 case TargetOpcode::G_BITREVERSE: { 1724 Observer.changingInstr(MI); 1725 1726 Register DstReg = MI.getOperand(0).getReg(); 1727 LLT Ty = MRI.getType(DstReg); 1728 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1729 1730 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1731 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1732 MI.getOperand(0).setReg(DstExt); 1733 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1734 1735 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1736 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1737 MIRBuilder.buildTrunc(DstReg, Shift); 1738 Observer.changedInstr(MI); 1739 return Legalized; 1740 } 1741 case TargetOpcode::G_ADD: 1742 case TargetOpcode::G_AND: 1743 case TargetOpcode::G_MUL: 1744 case TargetOpcode::G_OR: 1745 case TargetOpcode::G_XOR: 1746 case TargetOpcode::G_SUB: 1747 // Perform operation at larger width (any extension is fines here, high bits 1748 // don't affect the result) and then truncate the result back to the 1749 // original type. 1750 Observer.changingInstr(MI); 1751 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1752 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1753 widenScalarDst(MI, WideTy); 1754 Observer.changedInstr(MI); 1755 return Legalized; 1756 1757 case TargetOpcode::G_SHL: 1758 Observer.changingInstr(MI); 1759 1760 if (TypeIdx == 0) { 1761 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1762 widenScalarDst(MI, WideTy); 1763 } else { 1764 assert(TypeIdx == 1); 1765 // The "number of bits to shift" operand must preserve its value as an 1766 // unsigned integer: 1767 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1768 } 1769 1770 Observer.changedInstr(MI); 1771 return Legalized; 1772 1773 case TargetOpcode::G_SDIV: 1774 case TargetOpcode::G_SREM: 1775 case TargetOpcode::G_SMIN: 1776 case TargetOpcode::G_SMAX: 1777 Observer.changingInstr(MI); 1778 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1779 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1780 widenScalarDst(MI, WideTy); 1781 Observer.changedInstr(MI); 1782 return Legalized; 1783 1784 case TargetOpcode::G_ASHR: 1785 case TargetOpcode::G_LSHR: 1786 Observer.changingInstr(MI); 1787 1788 if (TypeIdx == 0) { 1789 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1790 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1791 1792 widenScalarSrc(MI, WideTy, 1, CvtOp); 1793 widenScalarDst(MI, WideTy); 1794 } else { 1795 assert(TypeIdx == 1); 1796 // The "number of bits to shift" operand must preserve its value as an 1797 // unsigned integer: 1798 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1799 } 1800 1801 Observer.changedInstr(MI); 1802 return Legalized; 1803 case TargetOpcode::G_UDIV: 1804 case TargetOpcode::G_UREM: 1805 case TargetOpcode::G_UMIN: 1806 case TargetOpcode::G_UMAX: 1807 Observer.changingInstr(MI); 1808 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1809 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1810 widenScalarDst(MI, WideTy); 1811 Observer.changedInstr(MI); 1812 return Legalized; 1813 1814 case TargetOpcode::G_SELECT: 1815 Observer.changingInstr(MI); 1816 if (TypeIdx == 0) { 1817 // Perform operation at larger width (any extension is fine here, high 1818 // bits don't affect the result) and then truncate the result back to the 1819 // original type. 1820 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1821 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1822 widenScalarDst(MI, WideTy); 1823 } else { 1824 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1825 // Explicit extension is required here since high bits affect the result. 1826 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1827 } 1828 Observer.changedInstr(MI); 1829 return Legalized; 1830 1831 case TargetOpcode::G_FPTOSI: 1832 case TargetOpcode::G_FPTOUI: 1833 Observer.changingInstr(MI); 1834 1835 if (TypeIdx == 0) 1836 widenScalarDst(MI, WideTy); 1837 else 1838 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1839 1840 Observer.changedInstr(MI); 1841 return Legalized; 1842 case TargetOpcode::G_SITOFP: 1843 if (TypeIdx != 1) 1844 return UnableToLegalize; 1845 Observer.changingInstr(MI); 1846 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1847 Observer.changedInstr(MI); 1848 return Legalized; 1849 1850 case TargetOpcode::G_UITOFP: 1851 if (TypeIdx != 1) 1852 return UnableToLegalize; 1853 Observer.changingInstr(MI); 1854 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1855 Observer.changedInstr(MI); 1856 return Legalized; 1857 1858 case TargetOpcode::G_LOAD: 1859 case TargetOpcode::G_SEXTLOAD: 1860 case TargetOpcode::G_ZEXTLOAD: 1861 Observer.changingInstr(MI); 1862 widenScalarDst(MI, WideTy); 1863 Observer.changedInstr(MI); 1864 return Legalized; 1865 1866 case TargetOpcode::G_STORE: { 1867 if (TypeIdx != 0) 1868 return UnableToLegalize; 1869 1870 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1871 if (!isPowerOf2_32(Ty.getSizeInBits())) 1872 return UnableToLegalize; 1873 1874 Observer.changingInstr(MI); 1875 1876 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1877 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1878 widenScalarSrc(MI, WideTy, 0, ExtType); 1879 1880 Observer.changedInstr(MI); 1881 return Legalized; 1882 } 1883 case TargetOpcode::G_CONSTANT: { 1884 MachineOperand &SrcMO = MI.getOperand(1); 1885 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1886 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1887 MRI.getType(MI.getOperand(0).getReg())); 1888 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1889 ExtOpc == TargetOpcode::G_ANYEXT) && 1890 "Illegal Extend"); 1891 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1892 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1893 ? SrcVal.sext(WideTy.getSizeInBits()) 1894 : SrcVal.zext(WideTy.getSizeInBits()); 1895 Observer.changingInstr(MI); 1896 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1897 1898 widenScalarDst(MI, WideTy); 1899 Observer.changedInstr(MI); 1900 return Legalized; 1901 } 1902 case TargetOpcode::G_FCONSTANT: { 1903 MachineOperand &SrcMO = MI.getOperand(1); 1904 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1905 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1906 bool LosesInfo; 1907 switch (WideTy.getSizeInBits()) { 1908 case 32: 1909 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1910 &LosesInfo); 1911 break; 1912 case 64: 1913 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1914 &LosesInfo); 1915 break; 1916 default: 1917 return UnableToLegalize; 1918 } 1919 1920 assert(!LosesInfo && "extend should always be lossless"); 1921 1922 Observer.changingInstr(MI); 1923 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1924 1925 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1926 Observer.changedInstr(MI); 1927 return Legalized; 1928 } 1929 case TargetOpcode::G_IMPLICIT_DEF: { 1930 Observer.changingInstr(MI); 1931 widenScalarDst(MI, WideTy); 1932 Observer.changedInstr(MI); 1933 return Legalized; 1934 } 1935 case TargetOpcode::G_BRCOND: 1936 Observer.changingInstr(MI); 1937 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1938 Observer.changedInstr(MI); 1939 return Legalized; 1940 1941 case TargetOpcode::G_FCMP: 1942 Observer.changingInstr(MI); 1943 if (TypeIdx == 0) 1944 widenScalarDst(MI, WideTy); 1945 else { 1946 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1947 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1948 } 1949 Observer.changedInstr(MI); 1950 return Legalized; 1951 1952 case TargetOpcode::G_ICMP: 1953 Observer.changingInstr(MI); 1954 if (TypeIdx == 0) 1955 widenScalarDst(MI, WideTy); 1956 else { 1957 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1958 MI.getOperand(1).getPredicate())) 1959 ? TargetOpcode::G_SEXT 1960 : TargetOpcode::G_ZEXT; 1961 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1962 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1963 } 1964 Observer.changedInstr(MI); 1965 return Legalized; 1966 1967 case TargetOpcode::G_PTR_ADD: 1968 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1969 Observer.changingInstr(MI); 1970 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1971 Observer.changedInstr(MI); 1972 return Legalized; 1973 1974 case TargetOpcode::G_PHI: { 1975 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1976 1977 Observer.changingInstr(MI); 1978 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1979 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1980 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1981 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1982 } 1983 1984 MachineBasicBlock &MBB = *MI.getParent(); 1985 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1986 widenScalarDst(MI, WideTy); 1987 Observer.changedInstr(MI); 1988 return Legalized; 1989 } 1990 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1991 if (TypeIdx == 0) { 1992 Register VecReg = MI.getOperand(1).getReg(); 1993 LLT VecTy = MRI.getType(VecReg); 1994 Observer.changingInstr(MI); 1995 1996 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1997 WideTy.getSizeInBits()), 1998 1, TargetOpcode::G_SEXT); 1999 2000 widenScalarDst(MI, WideTy, 0); 2001 Observer.changedInstr(MI); 2002 return Legalized; 2003 } 2004 2005 if (TypeIdx != 2) 2006 return UnableToLegalize; 2007 Observer.changingInstr(MI); 2008 // TODO: Probably should be zext 2009 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2010 Observer.changedInstr(MI); 2011 return Legalized; 2012 } 2013 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2014 if (TypeIdx == 1) { 2015 Observer.changingInstr(MI); 2016 2017 Register VecReg = MI.getOperand(1).getReg(); 2018 LLT VecTy = MRI.getType(VecReg); 2019 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2020 2021 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2022 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2023 widenScalarDst(MI, WideVecTy, 0); 2024 Observer.changedInstr(MI); 2025 return Legalized; 2026 } 2027 2028 if (TypeIdx == 2) { 2029 Observer.changingInstr(MI); 2030 // TODO: Probably should be zext 2031 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2032 Observer.changedInstr(MI); 2033 } 2034 2035 return Legalized; 2036 } 2037 case TargetOpcode::G_FADD: 2038 case TargetOpcode::G_FMUL: 2039 case TargetOpcode::G_FSUB: 2040 case TargetOpcode::G_FMA: 2041 case TargetOpcode::G_FMAD: 2042 case TargetOpcode::G_FNEG: 2043 case TargetOpcode::G_FABS: 2044 case TargetOpcode::G_FCANONICALIZE: 2045 case TargetOpcode::G_FMINNUM: 2046 case TargetOpcode::G_FMAXNUM: 2047 case TargetOpcode::G_FMINNUM_IEEE: 2048 case TargetOpcode::G_FMAXNUM_IEEE: 2049 case TargetOpcode::G_FMINIMUM: 2050 case TargetOpcode::G_FMAXIMUM: 2051 case TargetOpcode::G_FDIV: 2052 case TargetOpcode::G_FREM: 2053 case TargetOpcode::G_FCEIL: 2054 case TargetOpcode::G_FFLOOR: 2055 case TargetOpcode::G_FCOS: 2056 case TargetOpcode::G_FSIN: 2057 case TargetOpcode::G_FLOG10: 2058 case TargetOpcode::G_FLOG: 2059 case TargetOpcode::G_FLOG2: 2060 case TargetOpcode::G_FRINT: 2061 case TargetOpcode::G_FNEARBYINT: 2062 case TargetOpcode::G_FSQRT: 2063 case TargetOpcode::G_FEXP: 2064 case TargetOpcode::G_FEXP2: 2065 case TargetOpcode::G_FPOW: 2066 case TargetOpcode::G_INTRINSIC_TRUNC: 2067 case TargetOpcode::G_INTRINSIC_ROUND: 2068 assert(TypeIdx == 0); 2069 Observer.changingInstr(MI); 2070 2071 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2072 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2073 2074 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2075 Observer.changedInstr(MI); 2076 return Legalized; 2077 case TargetOpcode::G_INTTOPTR: 2078 if (TypeIdx != 1) 2079 return UnableToLegalize; 2080 2081 Observer.changingInstr(MI); 2082 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2083 Observer.changedInstr(MI); 2084 return Legalized; 2085 case TargetOpcode::G_PTRTOINT: 2086 if (TypeIdx != 0) 2087 return UnableToLegalize; 2088 2089 Observer.changingInstr(MI); 2090 widenScalarDst(MI, WideTy, 0); 2091 Observer.changedInstr(MI); 2092 return Legalized; 2093 case TargetOpcode::G_BUILD_VECTOR: { 2094 Observer.changingInstr(MI); 2095 2096 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2097 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2098 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2099 2100 // Avoid changing the result vector type if the source element type was 2101 // requested. 2102 if (TypeIdx == 1) { 2103 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2104 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2105 } else { 2106 widenScalarDst(MI, WideTy, 0); 2107 } 2108 2109 Observer.changedInstr(MI); 2110 return Legalized; 2111 } 2112 case TargetOpcode::G_SEXT_INREG: 2113 if (TypeIdx != 0) 2114 return UnableToLegalize; 2115 2116 Observer.changingInstr(MI); 2117 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2118 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2119 Observer.changedInstr(MI); 2120 return Legalized; 2121 } 2122 } 2123 2124 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2125 MachineIRBuilder &B, Register Src, LLT Ty) { 2126 auto Unmerge = B.buildUnmerge(Ty, Src); 2127 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2128 Pieces.push_back(Unmerge.getReg(I)); 2129 } 2130 2131 LegalizerHelper::LegalizeResult 2132 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2133 Register Dst = MI.getOperand(0).getReg(); 2134 Register Src = MI.getOperand(1).getReg(); 2135 LLT DstTy = MRI.getType(Dst); 2136 LLT SrcTy = MRI.getType(Src); 2137 2138 if (SrcTy.isVector() && !DstTy.isVector()) { 2139 SmallVector<Register, 8> SrcRegs; 2140 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2141 MIRBuilder.buildMerge(Dst, SrcRegs); 2142 MI.eraseFromParent(); 2143 return Legalized; 2144 } 2145 2146 if (DstTy.isVector() && !SrcTy.isVector()) { 2147 SmallVector<Register, 8> SrcRegs; 2148 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2149 MIRBuilder.buildMerge(Dst, SrcRegs); 2150 MI.eraseFromParent(); 2151 return Legalized; 2152 } 2153 2154 return UnableToLegalize; 2155 } 2156 2157 LegalizerHelper::LegalizeResult 2158 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2159 using namespace TargetOpcode; 2160 MIRBuilder.setInstr(MI); 2161 2162 switch(MI.getOpcode()) { 2163 default: 2164 return UnableToLegalize; 2165 case TargetOpcode::G_BITCAST: 2166 return lowerBitcast(MI); 2167 case TargetOpcode::G_SREM: 2168 case TargetOpcode::G_UREM: { 2169 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 2170 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {QuotReg}, 2171 {MI.getOperand(1), MI.getOperand(2)}); 2172 2173 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 2174 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2)); 2175 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), ProdReg); 2176 MI.eraseFromParent(); 2177 return Legalized; 2178 } 2179 case TargetOpcode::G_SADDO: 2180 case TargetOpcode::G_SSUBO: 2181 return lowerSADDO_SSUBO(MI); 2182 case TargetOpcode::G_SMULO: 2183 case TargetOpcode::G_UMULO: { 2184 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2185 // result. 2186 Register Res = MI.getOperand(0).getReg(); 2187 Register Overflow = MI.getOperand(1).getReg(); 2188 Register LHS = MI.getOperand(2).getReg(); 2189 Register RHS = MI.getOperand(3).getReg(); 2190 2191 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2192 ? TargetOpcode::G_SMULH 2193 : TargetOpcode::G_UMULH; 2194 2195 Observer.changingInstr(MI); 2196 const auto &TII = MIRBuilder.getTII(); 2197 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2198 MI.RemoveOperand(1); 2199 Observer.changedInstr(MI); 2200 2201 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2202 2203 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2204 2205 Register Zero = MRI.createGenericVirtualRegister(Ty); 2206 MIRBuilder.buildConstant(Zero, 0); 2207 2208 // For *signed* multiply, overflow is detected by checking: 2209 // (hi != (lo >> bitwidth-1)) 2210 if (Opcode == TargetOpcode::G_SMULH) { 2211 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2212 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2213 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2214 } else { 2215 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2216 } 2217 return Legalized; 2218 } 2219 case TargetOpcode::G_FNEG: { 2220 // TODO: Handle vector types once we are able to 2221 // represent them. 2222 if (Ty.isVector()) 2223 return UnableToLegalize; 2224 Register Res = MI.getOperand(0).getReg(); 2225 Type *ZeroTy; 2226 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2227 switch (Ty.getSizeInBits()) { 2228 case 16: 2229 ZeroTy = Type::getHalfTy(Ctx); 2230 break; 2231 case 32: 2232 ZeroTy = Type::getFloatTy(Ctx); 2233 break; 2234 case 64: 2235 ZeroTy = Type::getDoubleTy(Ctx); 2236 break; 2237 case 128: 2238 ZeroTy = Type::getFP128Ty(Ctx); 2239 break; 2240 default: 2241 llvm_unreachable("unexpected floating-point type"); 2242 } 2243 ConstantFP &ZeroForNegation = 2244 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2245 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2246 Register SubByReg = MI.getOperand(1).getReg(); 2247 Register ZeroReg = Zero.getReg(0); 2248 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2249 MI.eraseFromParent(); 2250 return Legalized; 2251 } 2252 case TargetOpcode::G_FSUB: { 2253 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2254 // First, check if G_FNEG is marked as Lower. If so, we may 2255 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2256 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2257 return UnableToLegalize; 2258 Register Res = MI.getOperand(0).getReg(); 2259 Register LHS = MI.getOperand(1).getReg(); 2260 Register RHS = MI.getOperand(2).getReg(); 2261 Register Neg = MRI.createGenericVirtualRegister(Ty); 2262 MIRBuilder.buildFNeg(Neg, RHS); 2263 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2264 MI.eraseFromParent(); 2265 return Legalized; 2266 } 2267 case TargetOpcode::G_FMAD: 2268 return lowerFMad(MI); 2269 case TargetOpcode::G_INTRINSIC_ROUND: 2270 return lowerIntrinsicRound(MI); 2271 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2272 Register OldValRes = MI.getOperand(0).getReg(); 2273 Register SuccessRes = MI.getOperand(1).getReg(); 2274 Register Addr = MI.getOperand(2).getReg(); 2275 Register CmpVal = MI.getOperand(3).getReg(); 2276 Register NewVal = MI.getOperand(4).getReg(); 2277 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2278 **MI.memoperands_begin()); 2279 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2280 MI.eraseFromParent(); 2281 return Legalized; 2282 } 2283 case TargetOpcode::G_LOAD: 2284 case TargetOpcode::G_SEXTLOAD: 2285 case TargetOpcode::G_ZEXTLOAD: { 2286 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2287 Register DstReg = MI.getOperand(0).getReg(); 2288 Register PtrReg = MI.getOperand(1).getReg(); 2289 LLT DstTy = MRI.getType(DstReg); 2290 auto &MMO = **MI.memoperands_begin(); 2291 2292 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2293 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2294 // This load needs splitting into power of 2 sized loads. 2295 if (DstTy.isVector()) 2296 return UnableToLegalize; 2297 if (isPowerOf2_32(DstTy.getSizeInBits())) 2298 return UnableToLegalize; // Don't know what we're being asked to do. 2299 2300 // Our strategy here is to generate anyextending loads for the smaller 2301 // types up to next power-2 result type, and then combine the two larger 2302 // result values together, before truncating back down to the non-pow-2 2303 // type. 2304 // E.g. v1 = i24 load => 2305 // v2 = i32 load (2 byte) 2306 // v3 = i32 load (1 byte) 2307 // v4 = i32 shl v3, 16 2308 // v5 = i32 or v4, v2 2309 // v1 = i24 trunc v5 2310 // By doing this we generate the correct truncate which should get 2311 // combined away as an artifact with a matching extend. 2312 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2313 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2314 2315 MachineFunction &MF = MIRBuilder.getMF(); 2316 MachineMemOperand *LargeMMO = 2317 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2318 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2319 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2320 2321 LLT PtrTy = MRI.getType(PtrReg); 2322 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2323 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2324 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2325 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2326 auto LargeLoad = 2327 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); 2328 2329 auto OffsetCst = MIRBuilder.buildConstant( 2330 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2331 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2332 auto SmallPtr = 2333 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2334 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2335 *SmallMMO); 2336 2337 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2338 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2339 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2340 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2341 MI.eraseFromParent(); 2342 return Legalized; 2343 } 2344 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2345 MI.eraseFromParent(); 2346 return Legalized; 2347 } 2348 2349 if (DstTy.isScalar()) { 2350 Register TmpReg = 2351 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2352 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2353 switch (MI.getOpcode()) { 2354 default: 2355 llvm_unreachable("Unexpected opcode"); 2356 case TargetOpcode::G_LOAD: 2357 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2358 break; 2359 case TargetOpcode::G_SEXTLOAD: 2360 MIRBuilder.buildSExt(DstReg, TmpReg); 2361 break; 2362 case TargetOpcode::G_ZEXTLOAD: 2363 MIRBuilder.buildZExt(DstReg, TmpReg); 2364 break; 2365 } 2366 MI.eraseFromParent(); 2367 return Legalized; 2368 } 2369 2370 return UnableToLegalize; 2371 } 2372 case TargetOpcode::G_STORE: { 2373 // Lower a non-power of 2 store into multiple pow-2 stores. 2374 // E.g. split an i24 store into an i16 store + i8 store. 2375 // We do this by first extending the stored value to the next largest power 2376 // of 2 type, and then using truncating stores to store the components. 2377 // By doing this, likewise with G_LOAD, generate an extend that can be 2378 // artifact-combined away instead of leaving behind extracts. 2379 Register SrcReg = MI.getOperand(0).getReg(); 2380 Register PtrReg = MI.getOperand(1).getReg(); 2381 LLT SrcTy = MRI.getType(SrcReg); 2382 MachineMemOperand &MMO = **MI.memoperands_begin(); 2383 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2384 return UnableToLegalize; 2385 if (SrcTy.isVector()) 2386 return UnableToLegalize; 2387 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2388 return UnableToLegalize; // Don't know what we're being asked to do. 2389 2390 // Extend to the next pow-2. 2391 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2392 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2393 2394 // Obtain the smaller value by shifting away the larger value. 2395 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2396 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2397 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2398 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2399 2400 // Generate the PtrAdd and truncating stores. 2401 LLT PtrTy = MRI.getType(PtrReg); 2402 auto OffsetCst = MIRBuilder.buildConstant( 2403 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2404 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2405 auto SmallPtr = 2406 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2407 2408 MachineFunction &MF = MIRBuilder.getMF(); 2409 MachineMemOperand *LargeMMO = 2410 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2411 MachineMemOperand *SmallMMO = 2412 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2413 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2414 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2415 MI.eraseFromParent(); 2416 return Legalized; 2417 } 2418 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2419 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2420 case TargetOpcode::G_CTLZ: 2421 case TargetOpcode::G_CTTZ: 2422 case TargetOpcode::G_CTPOP: 2423 return lowerBitCount(MI, TypeIdx, Ty); 2424 case G_UADDO: { 2425 Register Res = MI.getOperand(0).getReg(); 2426 Register CarryOut = MI.getOperand(1).getReg(); 2427 Register LHS = MI.getOperand(2).getReg(); 2428 Register RHS = MI.getOperand(3).getReg(); 2429 2430 MIRBuilder.buildAdd(Res, LHS, RHS); 2431 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2432 2433 MI.eraseFromParent(); 2434 return Legalized; 2435 } 2436 case G_UADDE: { 2437 Register Res = MI.getOperand(0).getReg(); 2438 Register CarryOut = MI.getOperand(1).getReg(); 2439 Register LHS = MI.getOperand(2).getReg(); 2440 Register RHS = MI.getOperand(3).getReg(); 2441 Register CarryIn = MI.getOperand(4).getReg(); 2442 2443 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2444 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2445 2446 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2447 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2448 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2449 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2450 2451 MI.eraseFromParent(); 2452 return Legalized; 2453 } 2454 case G_USUBO: { 2455 Register Res = MI.getOperand(0).getReg(); 2456 Register BorrowOut = MI.getOperand(1).getReg(); 2457 Register LHS = MI.getOperand(2).getReg(); 2458 Register RHS = MI.getOperand(3).getReg(); 2459 2460 MIRBuilder.buildSub(Res, LHS, RHS); 2461 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2462 2463 MI.eraseFromParent(); 2464 return Legalized; 2465 } 2466 case G_USUBE: { 2467 Register Res = MI.getOperand(0).getReg(); 2468 Register BorrowOut = MI.getOperand(1).getReg(); 2469 Register LHS = MI.getOperand(2).getReg(); 2470 Register RHS = MI.getOperand(3).getReg(); 2471 Register BorrowIn = MI.getOperand(4).getReg(); 2472 2473 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2474 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2475 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2476 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2477 2478 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2479 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2480 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2481 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2482 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2483 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2484 2485 MI.eraseFromParent(); 2486 return Legalized; 2487 } 2488 case G_UITOFP: 2489 return lowerUITOFP(MI, TypeIdx, Ty); 2490 case G_SITOFP: 2491 return lowerSITOFP(MI, TypeIdx, Ty); 2492 case G_FPTOUI: 2493 return lowerFPTOUI(MI, TypeIdx, Ty); 2494 case G_FPTOSI: 2495 return lowerFPTOSI(MI); 2496 case G_SMIN: 2497 case G_SMAX: 2498 case G_UMIN: 2499 case G_UMAX: 2500 return lowerMinMax(MI, TypeIdx, Ty); 2501 case G_FCOPYSIGN: 2502 return lowerFCopySign(MI, TypeIdx, Ty); 2503 case G_FMINNUM: 2504 case G_FMAXNUM: 2505 return lowerFMinNumMaxNum(MI); 2506 case G_UNMERGE_VALUES: 2507 return lowerUnmergeValues(MI); 2508 case TargetOpcode::G_SEXT_INREG: { 2509 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2510 int64_t SizeInBits = MI.getOperand(2).getImm(); 2511 2512 Register DstReg = MI.getOperand(0).getReg(); 2513 Register SrcReg = MI.getOperand(1).getReg(); 2514 LLT DstTy = MRI.getType(DstReg); 2515 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2516 2517 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2518 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2519 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2520 MI.eraseFromParent(); 2521 return Legalized; 2522 } 2523 case G_SHUFFLE_VECTOR: 2524 return lowerShuffleVector(MI); 2525 case G_DYN_STACKALLOC: 2526 return lowerDynStackAlloc(MI); 2527 case G_EXTRACT: 2528 return lowerExtract(MI); 2529 case G_INSERT: 2530 return lowerInsert(MI); 2531 case G_BSWAP: 2532 return lowerBswap(MI); 2533 case G_BITREVERSE: 2534 return lowerBitreverse(MI); 2535 case G_READ_REGISTER: 2536 case G_WRITE_REGISTER: 2537 return lowerReadWriteRegister(MI); 2538 } 2539 } 2540 2541 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2542 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2543 SmallVector<Register, 2> DstRegs; 2544 2545 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2546 Register DstReg = MI.getOperand(0).getReg(); 2547 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2548 int NumParts = Size / NarrowSize; 2549 // FIXME: Don't know how to handle the situation where the small vectors 2550 // aren't all the same size yet. 2551 if (Size % NarrowSize != 0) 2552 return UnableToLegalize; 2553 2554 for (int i = 0; i < NumParts; ++i) { 2555 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2556 MIRBuilder.buildUndef(TmpReg); 2557 DstRegs.push_back(TmpReg); 2558 } 2559 2560 if (NarrowTy.isVector()) 2561 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2562 else 2563 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2564 2565 MI.eraseFromParent(); 2566 return Legalized; 2567 } 2568 2569 LegalizerHelper::LegalizeResult 2570 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2571 LLT NarrowTy) { 2572 const unsigned Opc = MI.getOpcode(); 2573 const unsigned NumOps = MI.getNumOperands() - 1; 2574 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2575 const Register DstReg = MI.getOperand(0).getReg(); 2576 const unsigned Flags = MI.getFlags(); 2577 const LLT DstTy = MRI.getType(DstReg); 2578 const unsigned Size = DstTy.getSizeInBits(); 2579 const int NumParts = Size / NarrowSize; 2580 const LLT EltTy = DstTy.getElementType(); 2581 const unsigned EltSize = EltTy.getSizeInBits(); 2582 const unsigned BitsForNumParts = NarrowSize * NumParts; 2583 2584 // Check if we have any leftovers. If we do, then only handle the case where 2585 // the leftover is one element. 2586 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2587 return UnableToLegalize; 2588 2589 if (BitsForNumParts != Size) { 2590 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2591 MIRBuilder.buildUndef(AccumDstReg); 2592 2593 // Handle the pieces which evenly divide into the requested type with 2594 // extract/op/insert sequence. 2595 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2596 SmallVector<SrcOp, 4> SrcOps; 2597 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2598 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2599 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), Offset); 2600 SrcOps.push_back(PartOpReg); 2601 } 2602 2603 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2604 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2605 2606 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2607 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2608 AccumDstReg = PartInsertReg; 2609 } 2610 2611 // Handle the remaining element sized leftover piece. 2612 SmallVector<SrcOp, 4> SrcOps; 2613 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2614 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2615 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), BitsForNumParts); 2616 SrcOps.push_back(PartOpReg); 2617 } 2618 2619 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2620 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2621 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2622 MI.eraseFromParent(); 2623 2624 return Legalized; 2625 } 2626 2627 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2628 2629 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2630 2631 if (NumOps >= 2) 2632 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2633 2634 if (NumOps >= 3) 2635 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2636 2637 for (int i = 0; i < NumParts; ++i) { 2638 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2639 2640 if (NumOps == 1) 2641 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2642 else if (NumOps == 2) { 2643 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2644 } else if (NumOps == 3) { 2645 MIRBuilder.buildInstr(Opc, {DstReg}, 2646 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2647 } 2648 2649 DstRegs.push_back(DstReg); 2650 } 2651 2652 if (NarrowTy.isVector()) 2653 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2654 else 2655 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2656 2657 MI.eraseFromParent(); 2658 return Legalized; 2659 } 2660 2661 // Handle splitting vector operations which need to have the same number of 2662 // elements in each type index, but each type index may have a different element 2663 // type. 2664 // 2665 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2666 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2667 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2668 // 2669 // Also handles some irregular breakdown cases, e.g. 2670 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2671 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2672 // s64 = G_SHL s64, s32 2673 LegalizerHelper::LegalizeResult 2674 LegalizerHelper::fewerElementsVectorMultiEltType( 2675 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2676 if (TypeIdx != 0) 2677 return UnableToLegalize; 2678 2679 const LLT NarrowTy0 = NarrowTyArg; 2680 const unsigned NewNumElts = 2681 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2682 2683 const Register DstReg = MI.getOperand(0).getReg(); 2684 LLT DstTy = MRI.getType(DstReg); 2685 LLT LeftoverTy0; 2686 2687 // All of the operands need to have the same number of elements, so if we can 2688 // determine a type breakdown for the result type, we can for all of the 2689 // source types. 2690 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2691 if (NumParts < 0) 2692 return UnableToLegalize; 2693 2694 SmallVector<MachineInstrBuilder, 4> NewInsts; 2695 2696 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2697 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2698 2699 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2700 LLT LeftoverTy; 2701 Register SrcReg = MI.getOperand(I).getReg(); 2702 LLT SrcTyI = MRI.getType(SrcReg); 2703 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2704 LLT LeftoverTyI; 2705 2706 // Split this operand into the requested typed registers, and any leftover 2707 // required to reproduce the original type. 2708 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2709 LeftoverRegs)) 2710 return UnableToLegalize; 2711 2712 if (I == 1) { 2713 // For the first operand, create an instruction for each part and setup 2714 // the result. 2715 for (Register PartReg : PartRegs) { 2716 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2717 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2718 .addDef(PartDstReg) 2719 .addUse(PartReg)); 2720 DstRegs.push_back(PartDstReg); 2721 } 2722 2723 for (Register LeftoverReg : LeftoverRegs) { 2724 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2725 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2726 .addDef(PartDstReg) 2727 .addUse(LeftoverReg)); 2728 LeftoverDstRegs.push_back(PartDstReg); 2729 } 2730 } else { 2731 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2732 2733 // Add the newly created operand splits to the existing instructions. The 2734 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2735 // pieces. 2736 unsigned InstCount = 0; 2737 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2738 NewInsts[InstCount++].addUse(PartRegs[J]); 2739 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2740 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2741 } 2742 2743 PartRegs.clear(); 2744 LeftoverRegs.clear(); 2745 } 2746 2747 // Insert the newly built operations and rebuild the result register. 2748 for (auto &MIB : NewInsts) 2749 MIRBuilder.insertInstr(MIB); 2750 2751 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2752 2753 MI.eraseFromParent(); 2754 return Legalized; 2755 } 2756 2757 LegalizerHelper::LegalizeResult 2758 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2759 LLT NarrowTy) { 2760 if (TypeIdx != 0) 2761 return UnableToLegalize; 2762 2763 Register DstReg = MI.getOperand(0).getReg(); 2764 Register SrcReg = MI.getOperand(1).getReg(); 2765 LLT DstTy = MRI.getType(DstReg); 2766 LLT SrcTy = MRI.getType(SrcReg); 2767 2768 LLT NarrowTy0 = NarrowTy; 2769 LLT NarrowTy1; 2770 unsigned NumParts; 2771 2772 if (NarrowTy.isVector()) { 2773 // Uneven breakdown not handled. 2774 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2775 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2776 return UnableToLegalize; 2777 2778 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2779 } else { 2780 NumParts = DstTy.getNumElements(); 2781 NarrowTy1 = SrcTy.getElementType(); 2782 } 2783 2784 SmallVector<Register, 4> SrcRegs, DstRegs; 2785 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2786 2787 for (unsigned I = 0; I < NumParts; ++I) { 2788 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2789 MachineInstr *NewInst = 2790 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2791 2792 NewInst->setFlags(MI.getFlags()); 2793 DstRegs.push_back(DstReg); 2794 } 2795 2796 if (NarrowTy.isVector()) 2797 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2798 else 2799 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2800 2801 MI.eraseFromParent(); 2802 return Legalized; 2803 } 2804 2805 LegalizerHelper::LegalizeResult 2806 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2807 LLT NarrowTy) { 2808 Register DstReg = MI.getOperand(0).getReg(); 2809 Register Src0Reg = MI.getOperand(2).getReg(); 2810 LLT DstTy = MRI.getType(DstReg); 2811 LLT SrcTy = MRI.getType(Src0Reg); 2812 2813 unsigned NumParts; 2814 LLT NarrowTy0, NarrowTy1; 2815 2816 if (TypeIdx == 0) { 2817 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2818 unsigned OldElts = DstTy.getNumElements(); 2819 2820 NarrowTy0 = NarrowTy; 2821 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2822 NarrowTy1 = NarrowTy.isVector() ? 2823 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2824 SrcTy.getElementType(); 2825 2826 } else { 2827 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2828 unsigned OldElts = SrcTy.getNumElements(); 2829 2830 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2831 NarrowTy.getNumElements(); 2832 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2833 DstTy.getScalarSizeInBits()); 2834 NarrowTy1 = NarrowTy; 2835 } 2836 2837 // FIXME: Don't know how to handle the situation where the small vectors 2838 // aren't all the same size yet. 2839 if (NarrowTy1.isVector() && 2840 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2841 return UnableToLegalize; 2842 2843 CmpInst::Predicate Pred 2844 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2845 2846 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2847 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2848 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2849 2850 for (unsigned I = 0; I < NumParts; ++I) { 2851 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2852 DstRegs.push_back(DstReg); 2853 2854 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2855 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2856 else { 2857 MachineInstr *NewCmp 2858 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2859 NewCmp->setFlags(MI.getFlags()); 2860 } 2861 } 2862 2863 if (NarrowTy1.isVector()) 2864 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2865 else 2866 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2867 2868 MI.eraseFromParent(); 2869 return Legalized; 2870 } 2871 2872 LegalizerHelper::LegalizeResult 2873 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2874 LLT NarrowTy) { 2875 Register DstReg = MI.getOperand(0).getReg(); 2876 Register CondReg = MI.getOperand(1).getReg(); 2877 2878 unsigned NumParts = 0; 2879 LLT NarrowTy0, NarrowTy1; 2880 2881 LLT DstTy = MRI.getType(DstReg); 2882 LLT CondTy = MRI.getType(CondReg); 2883 unsigned Size = DstTy.getSizeInBits(); 2884 2885 assert(TypeIdx == 0 || CondTy.isVector()); 2886 2887 if (TypeIdx == 0) { 2888 NarrowTy0 = NarrowTy; 2889 NarrowTy1 = CondTy; 2890 2891 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2892 // FIXME: Don't know how to handle the situation where the small vectors 2893 // aren't all the same size yet. 2894 if (Size % NarrowSize != 0) 2895 return UnableToLegalize; 2896 2897 NumParts = Size / NarrowSize; 2898 2899 // Need to break down the condition type 2900 if (CondTy.isVector()) { 2901 if (CondTy.getNumElements() == NumParts) 2902 NarrowTy1 = CondTy.getElementType(); 2903 else 2904 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2905 CondTy.getScalarSizeInBits()); 2906 } 2907 } else { 2908 NumParts = CondTy.getNumElements(); 2909 if (NarrowTy.isVector()) { 2910 // TODO: Handle uneven breakdown. 2911 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2912 return UnableToLegalize; 2913 2914 return UnableToLegalize; 2915 } else { 2916 NarrowTy0 = DstTy.getElementType(); 2917 NarrowTy1 = NarrowTy; 2918 } 2919 } 2920 2921 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2922 if (CondTy.isVector()) 2923 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2924 2925 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2926 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2927 2928 for (unsigned i = 0; i < NumParts; ++i) { 2929 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2930 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2931 Src1Regs[i], Src2Regs[i]); 2932 DstRegs.push_back(DstReg); 2933 } 2934 2935 if (NarrowTy0.isVector()) 2936 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2937 else 2938 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2939 2940 MI.eraseFromParent(); 2941 return Legalized; 2942 } 2943 2944 LegalizerHelper::LegalizeResult 2945 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2946 LLT NarrowTy) { 2947 const Register DstReg = MI.getOperand(0).getReg(); 2948 LLT PhiTy = MRI.getType(DstReg); 2949 LLT LeftoverTy; 2950 2951 // All of the operands need to have the same number of elements, so if we can 2952 // determine a type breakdown for the result type, we can for all of the 2953 // source types. 2954 int NumParts, NumLeftover; 2955 std::tie(NumParts, NumLeftover) 2956 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2957 if (NumParts < 0) 2958 return UnableToLegalize; 2959 2960 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2961 SmallVector<MachineInstrBuilder, 4> NewInsts; 2962 2963 const int TotalNumParts = NumParts + NumLeftover; 2964 2965 // Insert the new phis in the result block first. 2966 for (int I = 0; I != TotalNumParts; ++I) { 2967 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2968 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2969 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2970 .addDef(PartDstReg)); 2971 if (I < NumParts) 2972 DstRegs.push_back(PartDstReg); 2973 else 2974 LeftoverDstRegs.push_back(PartDstReg); 2975 } 2976 2977 MachineBasicBlock *MBB = MI.getParent(); 2978 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2979 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2980 2981 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2982 2983 // Insert code to extract the incoming values in each predecessor block. 2984 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2985 PartRegs.clear(); 2986 LeftoverRegs.clear(); 2987 2988 Register SrcReg = MI.getOperand(I).getReg(); 2989 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2990 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2991 2992 LLT Unused; 2993 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2994 LeftoverRegs)) 2995 return UnableToLegalize; 2996 2997 // Add the newly created operand splits to the existing instructions. The 2998 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2999 // pieces. 3000 for (int J = 0; J != TotalNumParts; ++J) { 3001 MachineInstrBuilder MIB = NewInsts[J]; 3002 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3003 MIB.addMBB(&OpMBB); 3004 } 3005 } 3006 3007 MI.eraseFromParent(); 3008 return Legalized; 3009 } 3010 3011 LegalizerHelper::LegalizeResult 3012 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3013 unsigned TypeIdx, 3014 LLT NarrowTy) { 3015 if (TypeIdx != 1) 3016 return UnableToLegalize; 3017 3018 const int NumDst = MI.getNumOperands() - 1; 3019 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3020 LLT SrcTy = MRI.getType(SrcReg); 3021 3022 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3023 3024 // TODO: Create sequence of extracts. 3025 if (DstTy == NarrowTy) 3026 return UnableToLegalize; 3027 3028 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3029 if (DstTy == GCDTy) { 3030 // This would just be a copy of the same unmerge. 3031 // TODO: Create extracts, pad with undef and create intermediate merges. 3032 return UnableToLegalize; 3033 } 3034 3035 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3036 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3037 const int PartsPerUnmerge = NumDst / NumUnmerge; 3038 3039 for (int I = 0; I != NumUnmerge; ++I) { 3040 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3041 3042 for (int J = 0; J != PartsPerUnmerge; ++J) 3043 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3044 MIB.addUse(Unmerge.getReg(I)); 3045 } 3046 3047 MI.eraseFromParent(); 3048 return Legalized; 3049 } 3050 3051 LegalizerHelper::LegalizeResult 3052 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3053 unsigned TypeIdx, 3054 LLT NarrowTy) { 3055 assert(TypeIdx == 0 && "not a vector type index"); 3056 Register DstReg = MI.getOperand(0).getReg(); 3057 LLT DstTy = MRI.getType(DstReg); 3058 LLT SrcTy = DstTy.getElementType(); 3059 3060 int DstNumElts = DstTy.getNumElements(); 3061 int NarrowNumElts = NarrowTy.getNumElements(); 3062 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3063 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3064 3065 SmallVector<Register, 8> ConcatOps; 3066 SmallVector<Register, 8> SubBuildVector; 3067 3068 Register UndefReg; 3069 if (WidenedDstTy != DstTy) 3070 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3071 3072 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3073 // necessary. 3074 // 3075 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3076 // -> <2 x s16> 3077 // 3078 // %4:_(s16) = G_IMPLICIT_DEF 3079 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3080 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3081 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3082 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3083 for (int I = 0; I != NumConcat; ++I) { 3084 for (int J = 0; J != NarrowNumElts; ++J) { 3085 int SrcIdx = NarrowNumElts * I + J; 3086 3087 if (SrcIdx < DstNumElts) { 3088 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3089 SubBuildVector.push_back(SrcReg); 3090 } else 3091 SubBuildVector.push_back(UndefReg); 3092 } 3093 3094 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3095 ConcatOps.push_back(BuildVec.getReg(0)); 3096 SubBuildVector.clear(); 3097 } 3098 3099 if (DstTy == WidenedDstTy) 3100 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3101 else { 3102 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3103 MIRBuilder.buildExtract(DstReg, Concat, 0); 3104 } 3105 3106 MI.eraseFromParent(); 3107 return Legalized; 3108 } 3109 3110 LegalizerHelper::LegalizeResult 3111 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3112 LLT NarrowTy) { 3113 // FIXME: Don't know how to handle secondary types yet. 3114 if (TypeIdx != 0) 3115 return UnableToLegalize; 3116 3117 MachineMemOperand *MMO = *MI.memoperands_begin(); 3118 3119 // This implementation doesn't work for atomics. Give up instead of doing 3120 // something invalid. 3121 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3122 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3123 return UnableToLegalize; 3124 3125 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3126 Register ValReg = MI.getOperand(0).getReg(); 3127 Register AddrReg = MI.getOperand(1).getReg(); 3128 LLT ValTy = MRI.getType(ValReg); 3129 3130 int NumParts = -1; 3131 int NumLeftover = -1; 3132 LLT LeftoverTy; 3133 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3134 if (IsLoad) { 3135 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3136 } else { 3137 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3138 NarrowLeftoverRegs)) { 3139 NumParts = NarrowRegs.size(); 3140 NumLeftover = NarrowLeftoverRegs.size(); 3141 } 3142 } 3143 3144 if (NumParts == -1) 3145 return UnableToLegalize; 3146 3147 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3148 3149 unsigned TotalSize = ValTy.getSizeInBits(); 3150 3151 // Split the load/store into PartTy sized pieces starting at Offset. If this 3152 // is a load, return the new registers in ValRegs. For a store, each elements 3153 // of ValRegs should be PartTy. Returns the next offset that needs to be 3154 // handled. 3155 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3156 unsigned Offset) -> unsigned { 3157 MachineFunction &MF = MIRBuilder.getMF(); 3158 unsigned PartSize = PartTy.getSizeInBits(); 3159 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3160 Offset += PartSize, ++Idx) { 3161 unsigned ByteSize = PartSize / 8; 3162 unsigned ByteOffset = Offset / 8; 3163 Register NewAddrReg; 3164 3165 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3166 3167 MachineMemOperand *NewMMO = 3168 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3169 3170 if (IsLoad) { 3171 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3172 ValRegs.push_back(Dst); 3173 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3174 } else { 3175 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3176 } 3177 } 3178 3179 return Offset; 3180 }; 3181 3182 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3183 3184 // Handle the rest of the register if this isn't an even type breakdown. 3185 if (LeftoverTy.isValid()) 3186 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3187 3188 if (IsLoad) { 3189 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3190 LeftoverTy, NarrowLeftoverRegs); 3191 } 3192 3193 MI.eraseFromParent(); 3194 return Legalized; 3195 } 3196 3197 LegalizerHelper::LegalizeResult 3198 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3199 LLT NarrowTy) { 3200 Register DstReg = MI.getOperand(0).getReg(); 3201 Register SrcReg = MI.getOperand(1).getReg(); 3202 int64_t Imm = MI.getOperand(2).getImm(); 3203 3204 LLT DstTy = MRI.getType(DstReg); 3205 3206 SmallVector<Register, 8> Parts; 3207 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3208 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3209 3210 for (Register &R : Parts) 3211 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3212 3213 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3214 3215 MI.eraseFromParent(); 3216 return Legalized; 3217 } 3218 3219 LegalizerHelper::LegalizeResult 3220 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3221 LLT NarrowTy) { 3222 using namespace TargetOpcode; 3223 3224 MIRBuilder.setInstr(MI); 3225 switch (MI.getOpcode()) { 3226 case G_IMPLICIT_DEF: 3227 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3228 case G_AND: 3229 case G_OR: 3230 case G_XOR: 3231 case G_ADD: 3232 case G_SUB: 3233 case G_MUL: 3234 case G_SMULH: 3235 case G_UMULH: 3236 case G_FADD: 3237 case G_FMUL: 3238 case G_FSUB: 3239 case G_FNEG: 3240 case G_FABS: 3241 case G_FCANONICALIZE: 3242 case G_FDIV: 3243 case G_FREM: 3244 case G_FMA: 3245 case G_FMAD: 3246 case G_FPOW: 3247 case G_FEXP: 3248 case G_FEXP2: 3249 case G_FLOG: 3250 case G_FLOG2: 3251 case G_FLOG10: 3252 case G_FNEARBYINT: 3253 case G_FCEIL: 3254 case G_FFLOOR: 3255 case G_FRINT: 3256 case G_INTRINSIC_ROUND: 3257 case G_INTRINSIC_TRUNC: 3258 case G_FCOS: 3259 case G_FSIN: 3260 case G_FSQRT: 3261 case G_BSWAP: 3262 case G_BITREVERSE: 3263 case G_SDIV: 3264 case G_UDIV: 3265 case G_SREM: 3266 case G_UREM: 3267 case G_SMIN: 3268 case G_SMAX: 3269 case G_UMIN: 3270 case G_UMAX: 3271 case G_FMINNUM: 3272 case G_FMAXNUM: 3273 case G_FMINNUM_IEEE: 3274 case G_FMAXNUM_IEEE: 3275 case G_FMINIMUM: 3276 case G_FMAXIMUM: 3277 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3278 case G_SHL: 3279 case G_LSHR: 3280 case G_ASHR: 3281 case G_CTLZ: 3282 case G_CTLZ_ZERO_UNDEF: 3283 case G_CTTZ: 3284 case G_CTTZ_ZERO_UNDEF: 3285 case G_CTPOP: 3286 case G_FCOPYSIGN: 3287 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3288 case G_ZEXT: 3289 case G_SEXT: 3290 case G_ANYEXT: 3291 case G_FPEXT: 3292 case G_FPTRUNC: 3293 case G_SITOFP: 3294 case G_UITOFP: 3295 case G_FPTOSI: 3296 case G_FPTOUI: 3297 case G_INTTOPTR: 3298 case G_PTRTOINT: 3299 case G_ADDRSPACE_CAST: 3300 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3301 case G_ICMP: 3302 case G_FCMP: 3303 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3304 case G_SELECT: 3305 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3306 case G_PHI: 3307 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3308 case G_UNMERGE_VALUES: 3309 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3310 case G_BUILD_VECTOR: 3311 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3312 case G_LOAD: 3313 case G_STORE: 3314 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3315 case G_SEXT_INREG: 3316 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3317 default: 3318 return UnableToLegalize; 3319 } 3320 } 3321 3322 LegalizerHelper::LegalizeResult 3323 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3324 const LLT HalfTy, const LLT AmtTy) { 3325 3326 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3327 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3328 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3329 3330 if (Amt.isNullValue()) { 3331 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3332 MI.eraseFromParent(); 3333 return Legalized; 3334 } 3335 3336 LLT NVT = HalfTy; 3337 unsigned NVTBits = HalfTy.getSizeInBits(); 3338 unsigned VTBits = 2 * NVTBits; 3339 3340 SrcOp Lo(Register(0)), Hi(Register(0)); 3341 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3342 if (Amt.ugt(VTBits)) { 3343 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3344 } else if (Amt.ugt(NVTBits)) { 3345 Lo = MIRBuilder.buildConstant(NVT, 0); 3346 Hi = MIRBuilder.buildShl(NVT, InL, 3347 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3348 } else if (Amt == NVTBits) { 3349 Lo = MIRBuilder.buildConstant(NVT, 0); 3350 Hi = InL; 3351 } else { 3352 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3353 auto OrLHS = 3354 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3355 auto OrRHS = MIRBuilder.buildLShr( 3356 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3357 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3358 } 3359 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3360 if (Amt.ugt(VTBits)) { 3361 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3362 } else if (Amt.ugt(NVTBits)) { 3363 Lo = MIRBuilder.buildLShr(NVT, InH, 3364 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3365 Hi = MIRBuilder.buildConstant(NVT, 0); 3366 } else if (Amt == NVTBits) { 3367 Lo = InH; 3368 Hi = MIRBuilder.buildConstant(NVT, 0); 3369 } else { 3370 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3371 3372 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3373 auto OrRHS = MIRBuilder.buildShl( 3374 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3375 3376 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3377 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3378 } 3379 } else { 3380 if (Amt.ugt(VTBits)) { 3381 Hi = Lo = MIRBuilder.buildAShr( 3382 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3383 } else if (Amt.ugt(NVTBits)) { 3384 Lo = MIRBuilder.buildAShr(NVT, InH, 3385 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3386 Hi = MIRBuilder.buildAShr(NVT, InH, 3387 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3388 } else if (Amt == NVTBits) { 3389 Lo = InH; 3390 Hi = MIRBuilder.buildAShr(NVT, InH, 3391 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3392 } else { 3393 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3394 3395 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3396 auto OrRHS = MIRBuilder.buildShl( 3397 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3398 3399 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3400 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3401 } 3402 } 3403 3404 MIRBuilder.buildMerge(MI.getOperand(0), {Lo.getReg(), Hi.getReg()}); 3405 MI.eraseFromParent(); 3406 3407 return Legalized; 3408 } 3409 3410 // TODO: Optimize if constant shift amount. 3411 LegalizerHelper::LegalizeResult 3412 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3413 LLT RequestedTy) { 3414 if (TypeIdx == 1) { 3415 Observer.changingInstr(MI); 3416 narrowScalarSrc(MI, RequestedTy, 2); 3417 Observer.changedInstr(MI); 3418 return Legalized; 3419 } 3420 3421 Register DstReg = MI.getOperand(0).getReg(); 3422 LLT DstTy = MRI.getType(DstReg); 3423 if (DstTy.isVector()) 3424 return UnableToLegalize; 3425 3426 Register Amt = MI.getOperand(2).getReg(); 3427 LLT ShiftAmtTy = MRI.getType(Amt); 3428 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3429 if (DstEltSize % 2 != 0) 3430 return UnableToLegalize; 3431 3432 // Ignore the input type. We can only go to exactly half the size of the 3433 // input. If that isn't small enough, the resulting pieces will be further 3434 // legalized. 3435 const unsigned NewBitSize = DstEltSize / 2; 3436 const LLT HalfTy = LLT::scalar(NewBitSize); 3437 const LLT CondTy = LLT::scalar(1); 3438 3439 if (const MachineInstr *KShiftAmt = 3440 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3441 return narrowScalarShiftByConstant( 3442 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3443 } 3444 3445 // TODO: Expand with known bits. 3446 3447 // Handle the fully general expansion by an unknown amount. 3448 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3449 3450 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3451 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3452 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3453 3454 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3455 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3456 3457 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3458 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3459 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3460 3461 Register ResultRegs[2]; 3462 switch (MI.getOpcode()) { 3463 case TargetOpcode::G_SHL: { 3464 // Short: ShAmt < NewBitSize 3465 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3466 3467 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3468 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3469 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3470 3471 // Long: ShAmt >= NewBitSize 3472 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3473 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3474 3475 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3476 auto Hi = MIRBuilder.buildSelect( 3477 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3478 3479 ResultRegs[0] = Lo.getReg(0); 3480 ResultRegs[1] = Hi.getReg(0); 3481 break; 3482 } 3483 case TargetOpcode::G_LSHR: 3484 case TargetOpcode::G_ASHR: { 3485 // Short: ShAmt < NewBitSize 3486 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3487 3488 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3489 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3490 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3491 3492 // Long: ShAmt >= NewBitSize 3493 MachineInstrBuilder HiL; 3494 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3495 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3496 } else { 3497 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3498 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3499 } 3500 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3501 {InH, AmtExcess}); // Lo from Hi part. 3502 3503 auto Lo = MIRBuilder.buildSelect( 3504 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3505 3506 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3507 3508 ResultRegs[0] = Lo.getReg(0); 3509 ResultRegs[1] = Hi.getReg(0); 3510 break; 3511 } 3512 default: 3513 llvm_unreachable("not a shift"); 3514 } 3515 3516 MIRBuilder.buildMerge(DstReg, ResultRegs); 3517 MI.eraseFromParent(); 3518 return Legalized; 3519 } 3520 3521 LegalizerHelper::LegalizeResult 3522 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3523 LLT MoreTy) { 3524 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3525 3526 Observer.changingInstr(MI); 3527 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3528 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3529 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3530 moreElementsVectorSrc(MI, MoreTy, I); 3531 } 3532 3533 MachineBasicBlock &MBB = *MI.getParent(); 3534 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3535 moreElementsVectorDst(MI, MoreTy, 0); 3536 Observer.changedInstr(MI); 3537 return Legalized; 3538 } 3539 3540 LegalizerHelper::LegalizeResult 3541 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3542 LLT MoreTy) { 3543 MIRBuilder.setInstr(MI); 3544 unsigned Opc = MI.getOpcode(); 3545 switch (Opc) { 3546 case TargetOpcode::G_IMPLICIT_DEF: 3547 case TargetOpcode::G_LOAD: { 3548 if (TypeIdx != 0) 3549 return UnableToLegalize; 3550 Observer.changingInstr(MI); 3551 moreElementsVectorDst(MI, MoreTy, 0); 3552 Observer.changedInstr(MI); 3553 return Legalized; 3554 } 3555 case TargetOpcode::G_STORE: 3556 if (TypeIdx != 0) 3557 return UnableToLegalize; 3558 Observer.changingInstr(MI); 3559 moreElementsVectorSrc(MI, MoreTy, 0); 3560 Observer.changedInstr(MI); 3561 return Legalized; 3562 case TargetOpcode::G_AND: 3563 case TargetOpcode::G_OR: 3564 case TargetOpcode::G_XOR: 3565 case TargetOpcode::G_SMIN: 3566 case TargetOpcode::G_SMAX: 3567 case TargetOpcode::G_UMIN: 3568 case TargetOpcode::G_UMAX: 3569 case TargetOpcode::G_FMINNUM: 3570 case TargetOpcode::G_FMAXNUM: 3571 case TargetOpcode::G_FMINNUM_IEEE: 3572 case TargetOpcode::G_FMAXNUM_IEEE: 3573 case TargetOpcode::G_FMINIMUM: 3574 case TargetOpcode::G_FMAXIMUM: { 3575 Observer.changingInstr(MI); 3576 moreElementsVectorSrc(MI, MoreTy, 1); 3577 moreElementsVectorSrc(MI, MoreTy, 2); 3578 moreElementsVectorDst(MI, MoreTy, 0); 3579 Observer.changedInstr(MI); 3580 return Legalized; 3581 } 3582 case TargetOpcode::G_EXTRACT: 3583 if (TypeIdx != 1) 3584 return UnableToLegalize; 3585 Observer.changingInstr(MI); 3586 moreElementsVectorSrc(MI, MoreTy, 1); 3587 Observer.changedInstr(MI); 3588 return Legalized; 3589 case TargetOpcode::G_INSERT: 3590 if (TypeIdx != 0) 3591 return UnableToLegalize; 3592 Observer.changingInstr(MI); 3593 moreElementsVectorSrc(MI, MoreTy, 1); 3594 moreElementsVectorDst(MI, MoreTy, 0); 3595 Observer.changedInstr(MI); 3596 return Legalized; 3597 case TargetOpcode::G_SELECT: 3598 if (TypeIdx != 0) 3599 return UnableToLegalize; 3600 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3601 return UnableToLegalize; 3602 3603 Observer.changingInstr(MI); 3604 moreElementsVectorSrc(MI, MoreTy, 2); 3605 moreElementsVectorSrc(MI, MoreTy, 3); 3606 moreElementsVectorDst(MI, MoreTy, 0); 3607 Observer.changedInstr(MI); 3608 return Legalized; 3609 case TargetOpcode::G_UNMERGE_VALUES: { 3610 if (TypeIdx != 1) 3611 return UnableToLegalize; 3612 3613 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3614 int NumDst = MI.getNumOperands() - 1; 3615 moreElementsVectorSrc(MI, MoreTy, NumDst); 3616 3617 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3618 for (int I = 0; I != NumDst; ++I) 3619 MIB.addDef(MI.getOperand(I).getReg()); 3620 3621 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3622 for (int I = NumDst; I != NewNumDst; ++I) 3623 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3624 3625 MIB.addUse(MI.getOperand(NumDst).getReg()); 3626 MI.eraseFromParent(); 3627 return Legalized; 3628 } 3629 case TargetOpcode::G_PHI: 3630 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3631 default: 3632 return UnableToLegalize; 3633 } 3634 } 3635 3636 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3637 ArrayRef<Register> Src1Regs, 3638 ArrayRef<Register> Src2Regs, 3639 LLT NarrowTy) { 3640 MachineIRBuilder &B = MIRBuilder; 3641 unsigned SrcParts = Src1Regs.size(); 3642 unsigned DstParts = DstRegs.size(); 3643 3644 unsigned DstIdx = 0; // Low bits of the result. 3645 Register FactorSum = 3646 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3647 DstRegs[DstIdx] = FactorSum; 3648 3649 unsigned CarrySumPrevDstIdx; 3650 SmallVector<Register, 4> Factors; 3651 3652 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3653 // Collect low parts of muls for DstIdx. 3654 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3655 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3656 MachineInstrBuilder Mul = 3657 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3658 Factors.push_back(Mul.getReg(0)); 3659 } 3660 // Collect high parts of muls from previous DstIdx. 3661 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3662 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3663 MachineInstrBuilder Umulh = 3664 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3665 Factors.push_back(Umulh.getReg(0)); 3666 } 3667 // Add CarrySum from additions calculated for previous DstIdx. 3668 if (DstIdx != 1) { 3669 Factors.push_back(CarrySumPrevDstIdx); 3670 } 3671 3672 Register CarrySum; 3673 // Add all factors and accumulate all carries into CarrySum. 3674 if (DstIdx != DstParts - 1) { 3675 MachineInstrBuilder Uaddo = 3676 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3677 FactorSum = Uaddo.getReg(0); 3678 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3679 for (unsigned i = 2; i < Factors.size(); ++i) { 3680 MachineInstrBuilder Uaddo = 3681 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3682 FactorSum = Uaddo.getReg(0); 3683 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3684 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3685 } 3686 } else { 3687 // Since value for the next index is not calculated, neither is CarrySum. 3688 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3689 for (unsigned i = 2; i < Factors.size(); ++i) 3690 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3691 } 3692 3693 CarrySumPrevDstIdx = CarrySum; 3694 DstRegs[DstIdx] = FactorSum; 3695 Factors.clear(); 3696 } 3697 } 3698 3699 LegalizerHelper::LegalizeResult 3700 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3701 Register DstReg = MI.getOperand(0).getReg(); 3702 Register Src1 = MI.getOperand(1).getReg(); 3703 Register Src2 = MI.getOperand(2).getReg(); 3704 3705 LLT Ty = MRI.getType(DstReg); 3706 if (Ty.isVector()) 3707 return UnableToLegalize; 3708 3709 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3710 unsigned DstSize = Ty.getSizeInBits(); 3711 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3712 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3713 return UnableToLegalize; 3714 3715 unsigned NumDstParts = DstSize / NarrowSize; 3716 unsigned NumSrcParts = SrcSize / NarrowSize; 3717 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3718 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3719 3720 SmallVector<Register, 2> Src1Parts, Src2Parts; 3721 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3722 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3723 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3724 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3725 3726 // Take only high half of registers if this is high mul. 3727 ArrayRef<Register> DstRegs( 3728 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3729 MIRBuilder.buildMerge(DstReg, DstRegs); 3730 MI.eraseFromParent(); 3731 return Legalized; 3732 } 3733 3734 LegalizerHelper::LegalizeResult 3735 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3736 LLT NarrowTy) { 3737 if (TypeIdx != 1) 3738 return UnableToLegalize; 3739 3740 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3741 3742 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3743 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3744 // NarrowSize. 3745 if (SizeOp1 % NarrowSize != 0) 3746 return UnableToLegalize; 3747 int NumParts = SizeOp1 / NarrowSize; 3748 3749 SmallVector<Register, 2> SrcRegs, DstRegs; 3750 SmallVector<uint64_t, 2> Indexes; 3751 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3752 3753 Register OpReg = MI.getOperand(0).getReg(); 3754 uint64_t OpStart = MI.getOperand(2).getImm(); 3755 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3756 for (int i = 0; i < NumParts; ++i) { 3757 unsigned SrcStart = i * NarrowSize; 3758 3759 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3760 // No part of the extract uses this subregister, ignore it. 3761 continue; 3762 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3763 // The entire subregister is extracted, forward the value. 3764 DstRegs.push_back(SrcRegs[i]); 3765 continue; 3766 } 3767 3768 // OpSegStart is where this destination segment would start in OpReg if it 3769 // extended infinitely in both directions. 3770 int64_t ExtractOffset; 3771 uint64_t SegSize; 3772 if (OpStart < SrcStart) { 3773 ExtractOffset = 0; 3774 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3775 } else { 3776 ExtractOffset = OpStart - SrcStart; 3777 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3778 } 3779 3780 Register SegReg = SrcRegs[i]; 3781 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3782 // A genuine extract is needed. 3783 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3784 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3785 } 3786 3787 DstRegs.push_back(SegReg); 3788 } 3789 3790 Register DstReg = MI.getOperand(0).getReg(); 3791 if(MRI.getType(DstReg).isVector()) 3792 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3793 else 3794 MIRBuilder.buildMerge(DstReg, DstRegs); 3795 MI.eraseFromParent(); 3796 return Legalized; 3797 } 3798 3799 LegalizerHelper::LegalizeResult 3800 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3801 LLT NarrowTy) { 3802 // FIXME: Don't know how to handle secondary types yet. 3803 if (TypeIdx != 0) 3804 return UnableToLegalize; 3805 3806 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3807 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3808 3809 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3810 // NarrowSize. 3811 if (SizeOp0 % NarrowSize != 0) 3812 return UnableToLegalize; 3813 3814 int NumParts = SizeOp0 / NarrowSize; 3815 3816 SmallVector<Register, 2> SrcRegs, DstRegs; 3817 SmallVector<uint64_t, 2> Indexes; 3818 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3819 3820 Register OpReg = MI.getOperand(2).getReg(); 3821 uint64_t OpStart = MI.getOperand(3).getImm(); 3822 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3823 for (int i = 0; i < NumParts; ++i) { 3824 unsigned DstStart = i * NarrowSize; 3825 3826 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3827 // No part of the insert affects this subregister, forward the original. 3828 DstRegs.push_back(SrcRegs[i]); 3829 continue; 3830 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3831 // The entire subregister is defined by this insert, forward the new 3832 // value. 3833 DstRegs.push_back(OpReg); 3834 continue; 3835 } 3836 3837 // OpSegStart is where this destination segment would start in OpReg if it 3838 // extended infinitely in both directions. 3839 int64_t ExtractOffset, InsertOffset; 3840 uint64_t SegSize; 3841 if (OpStart < DstStart) { 3842 InsertOffset = 0; 3843 ExtractOffset = DstStart - OpStart; 3844 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3845 } else { 3846 InsertOffset = OpStart - DstStart; 3847 ExtractOffset = 0; 3848 SegSize = 3849 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3850 } 3851 3852 Register SegReg = OpReg; 3853 if (ExtractOffset != 0 || SegSize != OpSize) { 3854 // A genuine extract is needed. 3855 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3856 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3857 } 3858 3859 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3860 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3861 DstRegs.push_back(DstReg); 3862 } 3863 3864 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3865 Register DstReg = MI.getOperand(0).getReg(); 3866 if(MRI.getType(DstReg).isVector()) 3867 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3868 else 3869 MIRBuilder.buildMerge(DstReg, DstRegs); 3870 MI.eraseFromParent(); 3871 return Legalized; 3872 } 3873 3874 LegalizerHelper::LegalizeResult 3875 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3876 LLT NarrowTy) { 3877 Register DstReg = MI.getOperand(0).getReg(); 3878 LLT DstTy = MRI.getType(DstReg); 3879 3880 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3881 3882 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3883 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3884 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3885 LLT LeftoverTy; 3886 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3887 Src0Regs, Src0LeftoverRegs)) 3888 return UnableToLegalize; 3889 3890 LLT Unused; 3891 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3892 Src1Regs, Src1LeftoverRegs)) 3893 llvm_unreachable("inconsistent extractParts result"); 3894 3895 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3896 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3897 {Src0Regs[I], Src1Regs[I]}); 3898 DstRegs.push_back(Inst.getReg(0)); 3899 } 3900 3901 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3902 auto Inst = MIRBuilder.buildInstr( 3903 MI.getOpcode(), 3904 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3905 DstLeftoverRegs.push_back(Inst.getReg(0)); 3906 } 3907 3908 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3909 LeftoverTy, DstLeftoverRegs); 3910 3911 MI.eraseFromParent(); 3912 return Legalized; 3913 } 3914 3915 LegalizerHelper::LegalizeResult 3916 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3917 LLT NarrowTy) { 3918 if (TypeIdx != 0) 3919 return UnableToLegalize; 3920 3921 Register DstReg = MI.getOperand(0).getReg(); 3922 Register SrcReg = MI.getOperand(1).getReg(); 3923 3924 LLT DstTy = MRI.getType(DstReg); 3925 if (DstTy.isVector()) 3926 return UnableToLegalize; 3927 3928 SmallVector<Register, 8> Parts; 3929 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3930 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3931 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3932 3933 MI.eraseFromParent(); 3934 return Legalized; 3935 } 3936 3937 LegalizerHelper::LegalizeResult 3938 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3939 LLT NarrowTy) { 3940 if (TypeIdx != 0) 3941 return UnableToLegalize; 3942 3943 Register CondReg = MI.getOperand(1).getReg(); 3944 LLT CondTy = MRI.getType(CondReg); 3945 if (CondTy.isVector()) // TODO: Handle vselect 3946 return UnableToLegalize; 3947 3948 Register DstReg = MI.getOperand(0).getReg(); 3949 LLT DstTy = MRI.getType(DstReg); 3950 3951 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3952 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3953 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3954 LLT LeftoverTy; 3955 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3956 Src1Regs, Src1LeftoverRegs)) 3957 return UnableToLegalize; 3958 3959 LLT Unused; 3960 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3961 Src2Regs, Src2LeftoverRegs)) 3962 llvm_unreachable("inconsistent extractParts result"); 3963 3964 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3965 auto Select = MIRBuilder.buildSelect(NarrowTy, 3966 CondReg, Src1Regs[I], Src2Regs[I]); 3967 DstRegs.push_back(Select.getReg(0)); 3968 } 3969 3970 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3971 auto Select = MIRBuilder.buildSelect( 3972 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3973 DstLeftoverRegs.push_back(Select.getReg(0)); 3974 } 3975 3976 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3977 LeftoverTy, DstLeftoverRegs); 3978 3979 MI.eraseFromParent(); 3980 return Legalized; 3981 } 3982 3983 LegalizerHelper::LegalizeResult 3984 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 3985 LLT NarrowTy) { 3986 if (TypeIdx != 1) 3987 return UnableToLegalize; 3988 3989 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3990 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3991 3992 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 3993 MachineIRBuilder &B = MIRBuilder; 3994 auto UnmergeSrc = B.buildUnmerge(NarrowTy, MI.getOperand(1)); 3995 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 3996 auto C_0 = B.buildConstant(NarrowTy, 0); 3997 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3998 UnmergeSrc.getReg(1), C_0); 3999 auto LoCTLZ = B.buildCTLZ(NarrowTy, UnmergeSrc.getReg(0)); 4000 auto C_NarrowSize = B.buildConstant(NarrowTy, NarrowSize); 4001 auto HiIsZeroCTLZ = B.buildAdd(NarrowTy, LoCTLZ, C_NarrowSize); 4002 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(NarrowTy, UnmergeSrc.getReg(1)); 4003 auto LoOut = B.buildSelect(NarrowTy, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4004 4005 B.buildMerge(MI.getOperand(0), {LoOut.getReg(0), C_0.getReg(0)}); 4006 4007 MI.eraseFromParent(); 4008 return Legalized; 4009 } 4010 4011 return UnableToLegalize; 4012 } 4013 4014 LegalizerHelper::LegalizeResult 4015 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4016 LLT NarrowTy) { 4017 if (TypeIdx != 1) 4018 return UnableToLegalize; 4019 4020 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4021 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4022 4023 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4024 MachineIRBuilder &B = MIRBuilder; 4025 auto UnmergeSrc = B.buildUnmerge(NarrowTy, MI.getOperand(1)); 4026 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4027 auto C_0 = B.buildConstant(NarrowTy, 0); 4028 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4029 UnmergeSrc.getReg(0), C_0); 4030 auto HiCTTZ = B.buildCTTZ(NarrowTy, UnmergeSrc.getReg(1)); 4031 auto C_NarrowSize = B.buildConstant(NarrowTy, NarrowSize); 4032 auto LoIsZeroCTTZ = B.buildAdd(NarrowTy, HiCTTZ, C_NarrowSize); 4033 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(NarrowTy, UnmergeSrc.getReg(0)); 4034 auto LoOut = B.buildSelect(NarrowTy, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4035 4036 B.buildMerge(MI.getOperand(0), {LoOut.getReg(0), C_0.getReg(0)}); 4037 4038 MI.eraseFromParent(); 4039 return Legalized; 4040 } 4041 4042 return UnableToLegalize; 4043 } 4044 4045 LegalizerHelper::LegalizeResult 4046 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4047 LLT NarrowTy) { 4048 if (TypeIdx != 1) 4049 return UnableToLegalize; 4050 4051 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4052 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4053 4054 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4055 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4056 4057 auto LoCTPOP = MIRBuilder.buildCTPOP(NarrowTy, UnmergeSrc.getReg(0)); 4058 auto HiCTPOP = MIRBuilder.buildCTPOP(NarrowTy, UnmergeSrc.getReg(1)); 4059 auto Out = MIRBuilder.buildAdd(NarrowTy, HiCTPOP, LoCTPOP); 4060 MIRBuilder.buildZExt(MI.getOperand(0), Out); 4061 4062 MI.eraseFromParent(); 4063 return Legalized; 4064 } 4065 4066 return UnableToLegalize; 4067 } 4068 4069 LegalizerHelper::LegalizeResult 4070 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4071 unsigned Opc = MI.getOpcode(); 4072 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4073 auto isSupported = [this](const LegalityQuery &Q) { 4074 auto QAction = LI.getAction(Q).Action; 4075 return QAction == Legal || QAction == Libcall || QAction == Custom; 4076 }; 4077 switch (Opc) { 4078 default: 4079 return UnableToLegalize; 4080 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4081 // This trivially expands to CTLZ. 4082 Observer.changingInstr(MI); 4083 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4084 Observer.changedInstr(MI); 4085 return Legalized; 4086 } 4087 case TargetOpcode::G_CTLZ: { 4088 Register SrcReg = MI.getOperand(1).getReg(); 4089 unsigned Len = Ty.getSizeInBits(); 4090 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 4091 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4092 auto MIBCtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(Ty, SrcReg); 4093 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 4094 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 4095 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4096 SrcReg, MIBZero); 4097 MIRBuilder.buildSelect(MI.getOperand(0), MIBICmp, MIBLen, MIBCtlzZU); 4098 MI.eraseFromParent(); 4099 return Legalized; 4100 } 4101 // for now, we do this: 4102 // NewLen = NextPowerOf2(Len); 4103 // x = x | (x >> 1); 4104 // x = x | (x >> 2); 4105 // ... 4106 // x = x | (x >>16); 4107 // x = x | (x >>32); // for 64-bit input 4108 // Upto NewLen/2 4109 // return Len - popcount(x); 4110 // 4111 // Ref: "Hacker's Delight" by Henry Warren 4112 Register Op = SrcReg; 4113 unsigned NewLen = PowerOf2Ceil(Len); 4114 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4115 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 4116 auto MIBOp = 4117 MIRBuilder.buildOr(Ty, Op, MIRBuilder.buildLShr(Ty, Op, MIBShiftAmt)); 4118 Op = MIBOp.getReg(0); 4119 } 4120 auto MIBPop = MIRBuilder.buildCTPOP(Ty, Op); 4121 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(Ty, Len), 4122 MIBPop); 4123 MI.eraseFromParent(); 4124 return Legalized; 4125 } 4126 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4127 // This trivially expands to CTTZ. 4128 Observer.changingInstr(MI); 4129 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4130 Observer.changedInstr(MI); 4131 return Legalized; 4132 } 4133 case TargetOpcode::G_CTTZ: { 4134 Register SrcReg = MI.getOperand(1).getReg(); 4135 unsigned Len = Ty.getSizeInBits(); 4136 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 4137 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4138 // zero. 4139 auto MIBCttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(Ty, SrcReg); 4140 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 4141 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 4142 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4143 SrcReg, MIBZero); 4144 MIRBuilder.buildSelect(MI.getOperand(0), MIBICmp, MIBLen, MIBCttzZU); 4145 MI.eraseFromParent(); 4146 return Legalized; 4147 } 4148 // for now, we use: { return popcount(~x & (x - 1)); } 4149 // unless the target has ctlz but not ctpop, in which case we use: 4150 // { return 32 - nlz(~x & (x-1)); } 4151 // Ref: "Hacker's Delight" by Henry Warren 4152 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4153 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4154 auto MIBTmp = MIRBuilder.buildAnd( 4155 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4156 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4157 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4158 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4159 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4160 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4161 MI.eraseFromParent(); 4162 return Legalized; 4163 } 4164 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4165 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4166 return Legalized; 4167 } 4168 case TargetOpcode::G_CTPOP: { 4169 unsigned Size = Ty.getSizeInBits(); 4170 MachineIRBuilder &B = MIRBuilder; 4171 4172 // Count set bits in blocks of 2 bits. Default approach would be 4173 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4174 // We use following formula instead: 4175 // B2Count = val - { (val >> 1) & 0x55555555 } 4176 // since it gives same result in blocks of 2 with one instruction less. 4177 auto C_1 = B.buildConstant(Ty, 1); 4178 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4179 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4180 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4181 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4182 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4183 4184 // In order to get count in blocks of 4 add values from adjacent block of 2. 4185 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4186 auto C_2 = B.buildConstant(Ty, 2); 4187 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4188 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4189 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4190 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4191 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4192 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4193 4194 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4195 // addition since count value sits in range {0,...,8} and 4 bits are enough 4196 // to hold such binary values. After addition high 4 bits still hold count 4197 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4198 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4199 auto C_4 = B.buildConstant(Ty, 4); 4200 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4201 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4202 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4203 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4204 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4205 4206 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4207 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4208 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4209 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4210 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4211 4212 // Shift count result from 8 high bits to low bits. 4213 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4214 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4215 4216 MI.eraseFromParent(); 4217 return Legalized; 4218 } 4219 } 4220 } 4221 4222 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4223 // representation. 4224 LegalizerHelper::LegalizeResult 4225 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4226 Register Dst = MI.getOperand(0).getReg(); 4227 Register Src = MI.getOperand(1).getReg(); 4228 const LLT S64 = LLT::scalar(64); 4229 const LLT S32 = LLT::scalar(32); 4230 const LLT S1 = LLT::scalar(1); 4231 4232 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4233 4234 // unsigned cul2f(ulong u) { 4235 // uint lz = clz(u); 4236 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4237 // u = (u << lz) & 0x7fffffffffffffffUL; 4238 // ulong t = u & 0xffffffffffUL; 4239 // uint v = (e << 23) | (uint)(u >> 40); 4240 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4241 // return as_float(v + r); 4242 // } 4243 4244 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4245 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4246 4247 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4248 4249 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4250 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4251 4252 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4253 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4254 4255 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4256 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4257 4258 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4259 4260 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4261 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4262 4263 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4264 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4265 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4266 4267 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4268 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4269 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4270 auto One = MIRBuilder.buildConstant(S32, 1); 4271 4272 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4273 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4274 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4275 MIRBuilder.buildAdd(Dst, V, R); 4276 4277 return Legalized; 4278 } 4279 4280 LegalizerHelper::LegalizeResult 4281 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4282 Register Dst = MI.getOperand(0).getReg(); 4283 Register Src = MI.getOperand(1).getReg(); 4284 LLT DstTy = MRI.getType(Dst); 4285 LLT SrcTy = MRI.getType(Src); 4286 4287 if (SrcTy == LLT::scalar(1)) { 4288 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4289 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4290 MIRBuilder.buildSelect(Dst, Src, True, False); 4291 MI.eraseFromParent(); 4292 return Legalized; 4293 } 4294 4295 if (SrcTy != LLT::scalar(64)) 4296 return UnableToLegalize; 4297 4298 if (DstTy == LLT::scalar(32)) { 4299 // TODO: SelectionDAG has several alternative expansions to port which may 4300 // be more reasonble depending on the available instructions. If a target 4301 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4302 // intermediate type, this is probably worse. 4303 return lowerU64ToF32BitOps(MI); 4304 } 4305 4306 return UnableToLegalize; 4307 } 4308 4309 LegalizerHelper::LegalizeResult 4310 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4311 Register Dst = MI.getOperand(0).getReg(); 4312 Register Src = MI.getOperand(1).getReg(); 4313 LLT DstTy = MRI.getType(Dst); 4314 LLT SrcTy = MRI.getType(Src); 4315 4316 const LLT S64 = LLT::scalar(64); 4317 const LLT S32 = LLT::scalar(32); 4318 const LLT S1 = LLT::scalar(1); 4319 4320 if (SrcTy == S1) { 4321 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4322 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4323 MIRBuilder.buildSelect(Dst, Src, True, False); 4324 MI.eraseFromParent(); 4325 return Legalized; 4326 } 4327 4328 if (SrcTy != S64) 4329 return UnableToLegalize; 4330 4331 if (DstTy == S32) { 4332 // signed cl2f(long l) { 4333 // long s = l >> 63; 4334 // float r = cul2f((l + s) ^ s); 4335 // return s ? -r : r; 4336 // } 4337 Register L = Src; 4338 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4339 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4340 4341 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4342 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4343 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4344 4345 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4346 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4347 MIRBuilder.buildConstant(S64, 0)); 4348 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4349 return Legalized; 4350 } 4351 4352 return UnableToLegalize; 4353 } 4354 4355 LegalizerHelper::LegalizeResult 4356 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4357 Register Dst = MI.getOperand(0).getReg(); 4358 Register Src = MI.getOperand(1).getReg(); 4359 LLT DstTy = MRI.getType(Dst); 4360 LLT SrcTy = MRI.getType(Src); 4361 const LLT S64 = LLT::scalar(64); 4362 const LLT S32 = LLT::scalar(32); 4363 4364 if (SrcTy != S64 && SrcTy != S32) 4365 return UnableToLegalize; 4366 if (DstTy != S32 && DstTy != S64) 4367 return UnableToLegalize; 4368 4369 // FPTOSI gives same result as FPTOUI for positive signed integers. 4370 // FPTOUI needs to deal with fp values that convert to unsigned integers 4371 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4372 4373 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4374 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4375 : APFloat::IEEEdouble(), 4376 APInt::getNullValue(SrcTy.getSizeInBits())); 4377 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4378 4379 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4380 4381 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4382 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4383 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4384 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4385 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4386 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4387 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4388 4389 const LLT S1 = LLT::scalar(1); 4390 4391 MachineInstrBuilder FCMP = 4392 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4393 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4394 4395 MI.eraseFromParent(); 4396 return Legalized; 4397 } 4398 4399 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4400 Register Dst = MI.getOperand(0).getReg(); 4401 Register Src = MI.getOperand(1).getReg(); 4402 LLT DstTy = MRI.getType(Dst); 4403 LLT SrcTy = MRI.getType(Src); 4404 const LLT S64 = LLT::scalar(64); 4405 const LLT S32 = LLT::scalar(32); 4406 4407 // FIXME: Only f32 to i64 conversions are supported. 4408 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4409 return UnableToLegalize; 4410 4411 // Expand f32 -> i64 conversion 4412 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4413 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4414 4415 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4416 4417 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4418 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4419 4420 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4421 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4422 4423 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4424 APInt::getSignMask(SrcEltBits)); 4425 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4426 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4427 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4428 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4429 4430 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4431 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4432 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4433 4434 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4435 R = MIRBuilder.buildZExt(DstTy, R); 4436 4437 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4438 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4439 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4440 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4441 4442 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4443 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4444 4445 const LLT S1 = LLT::scalar(1); 4446 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4447 S1, Exponent, ExponentLoBit); 4448 4449 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4450 4451 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4452 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4453 4454 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4455 4456 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4457 S1, Exponent, ZeroSrcTy); 4458 4459 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4460 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4461 4462 MI.eraseFromParent(); 4463 return Legalized; 4464 } 4465 4466 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4467 switch (Opc) { 4468 case TargetOpcode::G_SMIN: 4469 return CmpInst::ICMP_SLT; 4470 case TargetOpcode::G_SMAX: 4471 return CmpInst::ICMP_SGT; 4472 case TargetOpcode::G_UMIN: 4473 return CmpInst::ICMP_ULT; 4474 case TargetOpcode::G_UMAX: 4475 return CmpInst::ICMP_UGT; 4476 default: 4477 llvm_unreachable("not in integer min/max"); 4478 } 4479 } 4480 4481 LegalizerHelper::LegalizeResult 4482 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4483 Register Dst = MI.getOperand(0).getReg(); 4484 Register Src0 = MI.getOperand(1).getReg(); 4485 Register Src1 = MI.getOperand(2).getReg(); 4486 4487 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4488 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4489 4490 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4491 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4492 4493 MI.eraseFromParent(); 4494 return Legalized; 4495 } 4496 4497 LegalizerHelper::LegalizeResult 4498 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4499 Register Dst = MI.getOperand(0).getReg(); 4500 Register Src0 = MI.getOperand(1).getReg(); 4501 Register Src1 = MI.getOperand(2).getReg(); 4502 4503 const LLT Src0Ty = MRI.getType(Src0); 4504 const LLT Src1Ty = MRI.getType(Src1); 4505 4506 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4507 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4508 4509 auto SignBitMask = MIRBuilder.buildConstant( 4510 Src0Ty, APInt::getSignMask(Src0Size)); 4511 4512 auto NotSignBitMask = MIRBuilder.buildConstant( 4513 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4514 4515 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4516 MachineInstr *Or; 4517 4518 if (Src0Ty == Src1Ty) { 4519 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4520 Or = MIRBuilder.buildOr(Dst, And0, And1); 4521 } else if (Src0Size > Src1Size) { 4522 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4523 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4524 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4525 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4526 Or = MIRBuilder.buildOr(Dst, And0, And1); 4527 } else { 4528 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4529 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4530 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4531 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4532 Or = MIRBuilder.buildOr(Dst, And0, And1); 4533 } 4534 4535 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4536 // constants are a nan and -0.0, but the final result should preserve 4537 // everything. 4538 if (unsigned Flags = MI.getFlags()) 4539 Or->setFlags(Flags); 4540 4541 MI.eraseFromParent(); 4542 return Legalized; 4543 } 4544 4545 LegalizerHelper::LegalizeResult 4546 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4547 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4548 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4549 4550 Register Dst = MI.getOperand(0).getReg(); 4551 Register Src0 = MI.getOperand(1).getReg(); 4552 Register Src1 = MI.getOperand(2).getReg(); 4553 LLT Ty = MRI.getType(Dst); 4554 4555 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4556 // Insert canonicalizes if it's possible we need to quiet to get correct 4557 // sNaN behavior. 4558 4559 // Note this must be done here, and not as an optimization combine in the 4560 // absence of a dedicate quiet-snan instruction as we're using an 4561 // omni-purpose G_FCANONICALIZE. 4562 if (!isKnownNeverSNaN(Src0, MRI)) 4563 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4564 4565 if (!isKnownNeverSNaN(Src1, MRI)) 4566 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4567 } 4568 4569 // If there are no nans, it's safe to simply replace this with the non-IEEE 4570 // version. 4571 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4572 MI.eraseFromParent(); 4573 return Legalized; 4574 } 4575 4576 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4577 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4578 Register DstReg = MI.getOperand(0).getReg(); 4579 LLT Ty = MRI.getType(DstReg); 4580 unsigned Flags = MI.getFlags(); 4581 4582 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4583 Flags); 4584 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4585 MI.eraseFromParent(); 4586 return Legalized; 4587 } 4588 4589 LegalizerHelper::LegalizeResult 4590 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4591 Register DstReg = MI.getOperand(0).getReg(); 4592 Register SrcReg = MI.getOperand(1).getReg(); 4593 unsigned Flags = MI.getFlags(); 4594 LLT Ty = MRI.getType(DstReg); 4595 const LLT CondTy = Ty.changeElementSize(1); 4596 4597 // result = trunc(src); 4598 // if (src < 0.0 && src != result) 4599 // result += -1.0. 4600 4601 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4602 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4603 4604 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4605 SrcReg, Zero, Flags); 4606 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4607 SrcReg, Trunc, Flags); 4608 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4609 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4610 4611 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal); 4612 MI.eraseFromParent(); 4613 return Legalized; 4614 } 4615 4616 LegalizerHelper::LegalizeResult 4617 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4618 const unsigned NumDst = MI.getNumOperands() - 1; 4619 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4620 LLT SrcTy = MRI.getType(SrcReg); 4621 4622 Register Dst0Reg = MI.getOperand(0).getReg(); 4623 LLT DstTy = MRI.getType(Dst0Reg); 4624 4625 4626 // Expand scalarizing unmerge as bitcast to integer and shift. 4627 if (!DstTy.isVector() && SrcTy.isVector() && 4628 SrcTy.getElementType() == DstTy) { 4629 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4630 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4631 4632 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4633 4634 const unsigned DstSize = DstTy.getSizeInBits(); 4635 unsigned Offset = DstSize; 4636 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4637 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4638 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4639 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4640 } 4641 4642 MI.eraseFromParent(); 4643 return Legalized; 4644 } 4645 4646 return UnableToLegalize; 4647 } 4648 4649 LegalizerHelper::LegalizeResult 4650 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4651 Register DstReg = MI.getOperand(0).getReg(); 4652 Register Src0Reg = MI.getOperand(1).getReg(); 4653 Register Src1Reg = MI.getOperand(2).getReg(); 4654 LLT Src0Ty = MRI.getType(Src0Reg); 4655 LLT DstTy = MRI.getType(DstReg); 4656 LLT IdxTy = LLT::scalar(32); 4657 4658 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4659 4660 if (DstTy.isScalar()) { 4661 if (Src0Ty.isVector()) 4662 return UnableToLegalize; 4663 4664 // This is just a SELECT. 4665 assert(Mask.size() == 1 && "Expected a single mask element"); 4666 Register Val; 4667 if (Mask[0] < 0 || Mask[0] > 1) 4668 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4669 else 4670 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4671 MIRBuilder.buildCopy(DstReg, Val); 4672 MI.eraseFromParent(); 4673 return Legalized; 4674 } 4675 4676 Register Undef; 4677 SmallVector<Register, 32> BuildVec; 4678 LLT EltTy = DstTy.getElementType(); 4679 4680 for (int Idx : Mask) { 4681 if (Idx < 0) { 4682 if (!Undef.isValid()) 4683 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4684 BuildVec.push_back(Undef); 4685 continue; 4686 } 4687 4688 if (Src0Ty.isScalar()) { 4689 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4690 } else { 4691 int NumElts = Src0Ty.getNumElements(); 4692 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4693 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4694 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4695 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4696 BuildVec.push_back(Extract.getReg(0)); 4697 } 4698 } 4699 4700 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4701 MI.eraseFromParent(); 4702 return Legalized; 4703 } 4704 4705 LegalizerHelper::LegalizeResult 4706 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4707 Register Dst = MI.getOperand(0).getReg(); 4708 Register AllocSize = MI.getOperand(1).getReg(); 4709 unsigned Align = MI.getOperand(2).getImm(); 4710 4711 const auto &MF = *MI.getMF(); 4712 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4713 4714 LLT PtrTy = MRI.getType(Dst); 4715 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4716 4717 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4718 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4719 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4720 4721 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4722 // have to generate an extra instruction to negate the alloc and then use 4723 // G_PTR_ADD to add the negative offset. 4724 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4725 if (Align) { 4726 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4727 AlignMask.negate(); 4728 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4729 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4730 } 4731 4732 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4733 MIRBuilder.buildCopy(SPReg, SPTmp); 4734 MIRBuilder.buildCopy(Dst, SPTmp); 4735 4736 MI.eraseFromParent(); 4737 return Legalized; 4738 } 4739 4740 LegalizerHelper::LegalizeResult 4741 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4742 Register Dst = MI.getOperand(0).getReg(); 4743 Register Src = MI.getOperand(1).getReg(); 4744 unsigned Offset = MI.getOperand(2).getImm(); 4745 4746 LLT DstTy = MRI.getType(Dst); 4747 LLT SrcTy = MRI.getType(Src); 4748 4749 if (DstTy.isScalar() && 4750 (SrcTy.isScalar() || 4751 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4752 LLT SrcIntTy = SrcTy; 4753 if (!SrcTy.isScalar()) { 4754 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4755 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4756 } 4757 4758 if (Offset == 0) 4759 MIRBuilder.buildTrunc(Dst, Src); 4760 else { 4761 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4762 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4763 MIRBuilder.buildTrunc(Dst, Shr); 4764 } 4765 4766 MI.eraseFromParent(); 4767 return Legalized; 4768 } 4769 4770 return UnableToLegalize; 4771 } 4772 4773 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4774 Register Dst = MI.getOperand(0).getReg(); 4775 Register Src = MI.getOperand(1).getReg(); 4776 Register InsertSrc = MI.getOperand(2).getReg(); 4777 uint64_t Offset = MI.getOperand(3).getImm(); 4778 4779 LLT DstTy = MRI.getType(Src); 4780 LLT InsertTy = MRI.getType(InsertSrc); 4781 4782 if (InsertTy.isScalar() && 4783 (DstTy.isScalar() || 4784 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4785 LLT IntDstTy = DstTy; 4786 if (!DstTy.isScalar()) { 4787 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4788 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4789 } 4790 4791 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4792 if (Offset != 0) { 4793 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4794 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4795 } 4796 4797 APInt MaskVal = APInt::getBitsSetWithWrap(DstTy.getSizeInBits(), 4798 Offset + InsertTy.getSizeInBits(), 4799 Offset); 4800 4801 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4802 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4803 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4804 4805 MIRBuilder.buildBitcast(Dst, Or); 4806 MI.eraseFromParent(); 4807 return Legalized; 4808 } 4809 4810 return UnableToLegalize; 4811 } 4812 4813 LegalizerHelper::LegalizeResult 4814 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4815 Register Dst0 = MI.getOperand(0).getReg(); 4816 Register Dst1 = MI.getOperand(1).getReg(); 4817 Register LHS = MI.getOperand(2).getReg(); 4818 Register RHS = MI.getOperand(3).getReg(); 4819 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4820 4821 LLT Ty = MRI.getType(Dst0); 4822 LLT BoolTy = MRI.getType(Dst1); 4823 4824 if (IsAdd) 4825 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4826 else 4827 MIRBuilder.buildSub(Dst0, LHS, RHS); 4828 4829 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4830 4831 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4832 4833 // For an addition, the result should be less than one of the operands (LHS) 4834 // if and only if the other operand (RHS) is negative, otherwise there will 4835 // be overflow. 4836 // For a subtraction, the result should be less than one of the operands 4837 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4838 // otherwise there will be overflow. 4839 auto ResultLowerThanLHS = 4840 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4841 auto ConditionRHS = MIRBuilder.buildICmp( 4842 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4843 4844 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4845 MI.eraseFromParent(); 4846 return Legalized; 4847 } 4848 4849 LegalizerHelper::LegalizeResult 4850 LegalizerHelper::lowerBswap(MachineInstr &MI) { 4851 Register Dst = MI.getOperand(0).getReg(); 4852 Register Src = MI.getOperand(1).getReg(); 4853 const LLT Ty = MRI.getType(Src); 4854 unsigned SizeInBytes = Ty.getSizeInBytes(); 4855 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 4856 4857 // Swap most and least significant byte, set remaining bytes in Res to zero. 4858 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 4859 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 4860 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4861 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 4862 4863 // Set i-th high/low byte in Res to i-th low/high byte from Src. 4864 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 4865 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 4866 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 4867 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 4868 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 4869 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 4870 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 4871 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 4872 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 4873 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 4874 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4875 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 4876 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 4877 } 4878 Res.getInstr()->getOperand(0).setReg(Dst); 4879 4880 MI.eraseFromParent(); 4881 return Legalized; 4882 } 4883 4884 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 4885 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 4886 MachineInstrBuilder Src, APInt Mask) { 4887 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 4888 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 4889 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 4890 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 4891 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 4892 return B.buildOr(Dst, LHS, RHS); 4893 } 4894 4895 LegalizerHelper::LegalizeResult 4896 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 4897 Register Dst = MI.getOperand(0).getReg(); 4898 Register Src = MI.getOperand(1).getReg(); 4899 const LLT Ty = MRI.getType(Src); 4900 unsigned Size = Ty.getSizeInBits(); 4901 4902 MachineInstrBuilder BSWAP = 4903 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 4904 4905 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 4906 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 4907 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 4908 MachineInstrBuilder Swap4 = 4909 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 4910 4911 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 4912 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 4913 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 4914 MachineInstrBuilder Swap2 = 4915 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 4916 4917 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 4918 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 4919 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 4920 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 4921 4922 MI.eraseFromParent(); 4923 return Legalized; 4924 } 4925 4926 LegalizerHelper::LegalizeResult 4927 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 4928 MachineFunction &MF = MIRBuilder.getMF(); 4929 const TargetSubtargetInfo &STI = MF.getSubtarget(); 4930 const TargetLowering *TLI = STI.getTargetLowering(); 4931 4932 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 4933 int NameOpIdx = IsRead ? 1 : 0; 4934 int ValRegIndex = IsRead ? 0 : 1; 4935 4936 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 4937 const LLT Ty = MRI.getType(ValReg); 4938 const MDString *RegStr = cast<MDString>( 4939 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 4940 4941 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 4942 if (!PhysReg.isValid()) 4943 return UnableToLegalize; 4944 4945 if (IsRead) 4946 MIRBuilder.buildCopy(ValReg, PhysReg); 4947 else 4948 MIRBuilder.buildCopy(PhysReg, ValReg); 4949 4950 MI.eraseFromParent(); 4951 return Legalized; 4952 } 4953