1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/Utils.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetFrameLowering.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 #define DEBUG_TYPE "legalizer" 34 35 using namespace llvm; 36 using namespace LegalizeActions; 37 using namespace MIPatternMatch; 38 39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 40 /// 41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 42 /// with any leftover piece as type \p LeftoverTy 43 /// 44 /// Returns -1 in the first element of the pair if the breakdown is not 45 /// satisfiable. 46 static std::pair<int, int> 47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 48 assert(!LeftoverTy.isValid() && "this is an out argument"); 49 50 unsigned Size = OrigTy.getSizeInBits(); 51 unsigned NarrowSize = NarrowTy.getSizeInBits(); 52 unsigned NumParts = Size / NarrowSize; 53 unsigned LeftoverSize = Size - NumParts * NarrowSize; 54 assert(Size > NarrowSize); 55 56 if (LeftoverSize == 0) 57 return {NumParts, 0}; 58 59 if (NarrowTy.isVector()) { 60 unsigned EltSize = OrigTy.getScalarSizeInBits(); 61 if (LeftoverSize % EltSize != 0) 62 return {-1, -1}; 63 LeftoverTy = LLT::scalarOrVector( 64 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 65 } else { 66 LeftoverTy = LLT::scalar(LeftoverSize); 67 } 68 69 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 70 return std::make_pair(NumParts, NumLeftover); 71 } 72 73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 74 75 if (!Ty.isScalar()) 76 return nullptr; 77 78 switch (Ty.getSizeInBits()) { 79 case 16: 80 return Type::getHalfTy(Ctx); 81 case 32: 82 return Type::getFloatTy(Ctx); 83 case 64: 84 return Type::getDoubleTy(Ctx); 85 case 80: 86 return Type::getX86_FP80Ty(Ctx); 87 case 128: 88 return Type::getFP128Ty(Ctx); 89 default: 90 return nullptr; 91 } 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &Builder) 97 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 98 LI(*MF.getSubtarget().getLegalizerInfo()), 99 TLI(*MF.getSubtarget().getTargetLowering()) { } 100 101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 102 GISelChangeObserver &Observer, 103 MachineIRBuilder &B) 104 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 105 TLI(*MF.getSubtarget().getTargetLowering()) { } 106 107 LegalizerHelper::LegalizeResult 108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 109 LostDebugLocObserver &LocObserver) { 110 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 111 112 MIRBuilder.setInstrAndDebugLoc(MI); 113 114 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 115 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 116 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 117 auto Step = LI.getAction(MI, MRI); 118 switch (Step.Action) { 119 case Legal: 120 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 121 return AlreadyLegal; 122 case Libcall: 123 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 124 return libcall(MI, LocObserver); 125 case NarrowScalar: 126 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 127 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 128 case WidenScalar: 129 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 130 return widenScalar(MI, Step.TypeIdx, Step.NewType); 131 case Bitcast: 132 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 133 return bitcast(MI, Step.TypeIdx, Step.NewType); 134 case Lower: 135 LLVM_DEBUG(dbgs() << ".. Lower\n"); 136 return lower(MI, Step.TypeIdx, Step.NewType); 137 case FewerElements: 138 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 139 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 140 case MoreElements: 141 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 142 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 143 case Custom: 144 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 145 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 146 default: 147 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 148 return UnableToLegalize; 149 } 150 } 151 152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 153 SmallVectorImpl<Register> &VRegs) { 154 for (int i = 0; i < NumParts; ++i) 155 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 156 MIRBuilder.buildUnmerge(VRegs, Reg); 157 } 158 159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 160 LLT MainTy, LLT &LeftoverTy, 161 SmallVectorImpl<Register> &VRegs, 162 SmallVectorImpl<Register> &LeftoverRegs) { 163 assert(!LeftoverTy.isValid() && "this is an out argument"); 164 165 unsigned RegSize = RegTy.getSizeInBits(); 166 unsigned MainSize = MainTy.getSizeInBits(); 167 unsigned NumParts = RegSize / MainSize; 168 unsigned LeftoverSize = RegSize - NumParts * MainSize; 169 170 // Use an unmerge when possible. 171 if (LeftoverSize == 0) { 172 for (unsigned I = 0; I < NumParts; ++I) 173 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 174 MIRBuilder.buildUnmerge(VRegs, Reg); 175 return true; 176 } 177 178 if (MainTy.isVector()) { 179 unsigned EltSize = MainTy.getScalarSizeInBits(); 180 if (LeftoverSize % EltSize != 0) 181 return false; 182 LeftoverTy = LLT::scalarOrVector( 183 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 184 } else { 185 LeftoverTy = LLT::scalar(LeftoverSize); 186 } 187 188 // For irregular sizes, extract the individual parts. 189 for (unsigned I = 0; I != NumParts; ++I) { 190 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 191 VRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 193 } 194 195 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 196 Offset += LeftoverSize) { 197 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 198 LeftoverRegs.push_back(NewReg); 199 MIRBuilder.buildExtract(NewReg, Reg, Offset); 200 } 201 202 return true; 203 } 204 205 void LegalizerHelper::insertParts(Register DstReg, 206 LLT ResultTy, LLT PartTy, 207 ArrayRef<Register> PartRegs, 208 LLT LeftoverTy, 209 ArrayRef<Register> LeftoverRegs) { 210 if (!LeftoverTy.isValid()) { 211 assert(LeftoverRegs.empty()); 212 213 if (!ResultTy.isVector()) { 214 MIRBuilder.buildMerge(DstReg, PartRegs); 215 return; 216 } 217 218 if (PartTy.isVector()) 219 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 220 else 221 MIRBuilder.buildBuildVector(DstReg, PartRegs); 222 return; 223 } 224 225 SmallVector<Register> GCDRegs; 226 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 227 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 228 extractGCDType(GCDRegs, GCDTy, PartReg); 229 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 230 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 231 } 232 233 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 234 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 235 const MachineInstr &MI) { 236 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 237 238 const int StartIdx = Regs.size(); 239 const int NumResults = MI.getNumOperands() - 1; 240 Regs.resize(Regs.size() + NumResults); 241 for (int I = 0; I != NumResults; ++I) 242 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 243 } 244 245 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 246 LLT GCDTy, Register SrcReg) { 247 LLT SrcTy = MRI.getType(SrcReg); 248 if (SrcTy == GCDTy) { 249 // If the source already evenly divides the result type, we don't need to do 250 // anything. 251 Parts.push_back(SrcReg); 252 } else { 253 // Need to split into common type sized pieces. 254 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 255 getUnmergeResults(Parts, *Unmerge); 256 } 257 } 258 259 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 260 LLT NarrowTy, Register SrcReg) { 261 LLT SrcTy = MRI.getType(SrcReg); 262 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 263 extractGCDType(Parts, GCDTy, SrcReg); 264 return GCDTy; 265 } 266 267 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 268 SmallVectorImpl<Register> &VRegs, 269 unsigned PadStrategy) { 270 LLT LCMTy = getLCMType(DstTy, NarrowTy); 271 272 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 273 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 274 int NumOrigSrc = VRegs.size(); 275 276 Register PadReg; 277 278 // Get a value we can use to pad the source value if the sources won't evenly 279 // cover the result type. 280 if (NumOrigSrc < NumParts * NumSubParts) { 281 if (PadStrategy == TargetOpcode::G_ZEXT) 282 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 283 else if (PadStrategy == TargetOpcode::G_ANYEXT) 284 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 285 else { 286 assert(PadStrategy == TargetOpcode::G_SEXT); 287 288 // Shift the sign bit of the low register through the high register. 289 auto ShiftAmt = 290 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 291 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 292 } 293 } 294 295 // Registers for the final merge to be produced. 296 SmallVector<Register, 4> Remerge(NumParts); 297 298 // Registers needed for intermediate merges, which will be merged into a 299 // source for Remerge. 300 SmallVector<Register, 4> SubMerge(NumSubParts); 301 302 // Once we've fully read off the end of the original source bits, we can reuse 303 // the same high bits for remaining padding elements. 304 Register AllPadReg; 305 306 // Build merges to the LCM type to cover the original result type. 307 for (int I = 0; I != NumParts; ++I) { 308 bool AllMergePartsArePadding = true; 309 310 // Build the requested merges to the requested type. 311 for (int J = 0; J != NumSubParts; ++J) { 312 int Idx = I * NumSubParts + J; 313 if (Idx >= NumOrigSrc) { 314 SubMerge[J] = PadReg; 315 continue; 316 } 317 318 SubMerge[J] = VRegs[Idx]; 319 320 // There are meaningful bits here we can't reuse later. 321 AllMergePartsArePadding = false; 322 } 323 324 // If we've filled up a complete piece with padding bits, we can directly 325 // emit the natural sized constant if applicable, rather than a merge of 326 // smaller constants. 327 if (AllMergePartsArePadding && !AllPadReg) { 328 if (PadStrategy == TargetOpcode::G_ANYEXT) 329 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 330 else if (PadStrategy == TargetOpcode::G_ZEXT) 331 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 332 333 // If this is a sign extension, we can't materialize a trivial constant 334 // with the right type and have to produce a merge. 335 } 336 337 if (AllPadReg) { 338 // Avoid creating additional instructions if we're just adding additional 339 // copies of padding bits. 340 Remerge[I] = AllPadReg; 341 continue; 342 } 343 344 if (NumSubParts == 1) 345 Remerge[I] = SubMerge[0]; 346 else 347 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 348 349 // In the sign extend padding case, re-use the first all-signbit merge. 350 if (AllMergePartsArePadding && !AllPadReg) 351 AllPadReg = Remerge[I]; 352 } 353 354 VRegs = std::move(Remerge); 355 return LCMTy; 356 } 357 358 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 359 ArrayRef<Register> RemergeRegs) { 360 LLT DstTy = MRI.getType(DstReg); 361 362 // Create the merge to the widened source, and extract the relevant bits into 363 // the result. 364 365 if (DstTy == LCMTy) { 366 MIRBuilder.buildMerge(DstReg, RemergeRegs); 367 return; 368 } 369 370 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 371 if (DstTy.isScalar() && LCMTy.isScalar()) { 372 MIRBuilder.buildTrunc(DstReg, Remerge); 373 return; 374 } 375 376 if (LCMTy.isVector()) { 377 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 378 SmallVector<Register, 8> UnmergeDefs(NumDefs); 379 UnmergeDefs[0] = DstReg; 380 for (unsigned I = 1; I != NumDefs; ++I) 381 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 382 383 MIRBuilder.buildUnmerge(UnmergeDefs, 384 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 385 return; 386 } 387 388 llvm_unreachable("unhandled case"); 389 } 390 391 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 392 #define RTLIBCASE_INT(LibcallPrefix) \ 393 do { \ 394 switch (Size) { \ 395 case 32: \ 396 return RTLIB::LibcallPrefix##32; \ 397 case 64: \ 398 return RTLIB::LibcallPrefix##64; \ 399 case 128: \ 400 return RTLIB::LibcallPrefix##128; \ 401 default: \ 402 llvm_unreachable("unexpected size"); \ 403 } \ 404 } while (0) 405 406 #define RTLIBCASE(LibcallPrefix) \ 407 do { \ 408 switch (Size) { \ 409 case 32: \ 410 return RTLIB::LibcallPrefix##32; \ 411 case 64: \ 412 return RTLIB::LibcallPrefix##64; \ 413 case 80: \ 414 return RTLIB::LibcallPrefix##80; \ 415 case 128: \ 416 return RTLIB::LibcallPrefix##128; \ 417 default: \ 418 llvm_unreachable("unexpected size"); \ 419 } \ 420 } while (0) 421 422 switch (Opcode) { 423 case TargetOpcode::G_SDIV: 424 RTLIBCASE_INT(SDIV_I); 425 case TargetOpcode::G_UDIV: 426 RTLIBCASE_INT(UDIV_I); 427 case TargetOpcode::G_SREM: 428 RTLIBCASE_INT(SREM_I); 429 case TargetOpcode::G_UREM: 430 RTLIBCASE_INT(UREM_I); 431 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 432 RTLIBCASE_INT(CTLZ_I); 433 case TargetOpcode::G_FADD: 434 RTLIBCASE(ADD_F); 435 case TargetOpcode::G_FSUB: 436 RTLIBCASE(SUB_F); 437 case TargetOpcode::G_FMUL: 438 RTLIBCASE(MUL_F); 439 case TargetOpcode::G_FDIV: 440 RTLIBCASE(DIV_F); 441 case TargetOpcode::G_FEXP: 442 RTLIBCASE(EXP_F); 443 case TargetOpcode::G_FEXP2: 444 RTLIBCASE(EXP2_F); 445 case TargetOpcode::G_FREM: 446 RTLIBCASE(REM_F); 447 case TargetOpcode::G_FPOW: 448 RTLIBCASE(POW_F); 449 case TargetOpcode::G_FMA: 450 RTLIBCASE(FMA_F); 451 case TargetOpcode::G_FSIN: 452 RTLIBCASE(SIN_F); 453 case TargetOpcode::G_FCOS: 454 RTLIBCASE(COS_F); 455 case TargetOpcode::G_FLOG10: 456 RTLIBCASE(LOG10_F); 457 case TargetOpcode::G_FLOG: 458 RTLIBCASE(LOG_F); 459 case TargetOpcode::G_FLOG2: 460 RTLIBCASE(LOG2_F); 461 case TargetOpcode::G_FCEIL: 462 RTLIBCASE(CEIL_F); 463 case TargetOpcode::G_FFLOOR: 464 RTLIBCASE(FLOOR_F); 465 case TargetOpcode::G_FMINNUM: 466 RTLIBCASE(FMIN_F); 467 case TargetOpcode::G_FMAXNUM: 468 RTLIBCASE(FMAX_F); 469 case TargetOpcode::G_FSQRT: 470 RTLIBCASE(SQRT_F); 471 case TargetOpcode::G_FRINT: 472 RTLIBCASE(RINT_F); 473 case TargetOpcode::G_FNEARBYINT: 474 RTLIBCASE(NEARBYINT_F); 475 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 476 RTLIBCASE(ROUNDEVEN_F); 477 } 478 llvm_unreachable("Unknown libcall function"); 479 } 480 481 /// True if an instruction is in tail position in its caller. Intended for 482 /// legalizing libcalls as tail calls when possible. 483 static bool isLibCallInTailPosition(MachineInstr &MI, 484 const TargetInstrInfo &TII, 485 MachineRegisterInfo &MRI) { 486 MachineBasicBlock &MBB = *MI.getParent(); 487 const Function &F = MBB.getParent()->getFunction(); 488 489 // Conservatively require the attributes of the call to match those of 490 // the return. Ignore NoAlias and NonNull because they don't affect the 491 // call sequence. 492 AttributeList CallerAttrs = F.getAttributes(); 493 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 494 .removeAttribute(Attribute::NoAlias) 495 .removeAttribute(Attribute::NonNull) 496 .hasAttributes()) 497 return false; 498 499 // It's not safe to eliminate the sign / zero extension of the return value. 500 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 501 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 502 return false; 503 504 // Only tail call if the following instruction is a standard return or if we 505 // have a `thisreturn` callee, and a sequence like: 506 // 507 // G_MEMCPY %0, %1, %2 508 // $x0 = COPY %0 509 // RET_ReallyLR implicit $x0 510 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 511 if (Next != MBB.instr_end() && Next->isCopy()) { 512 switch (MI.getOpcode()) { 513 default: 514 llvm_unreachable("unsupported opcode"); 515 case TargetOpcode::G_BZERO: 516 return false; 517 case TargetOpcode::G_MEMCPY: 518 case TargetOpcode::G_MEMMOVE: 519 case TargetOpcode::G_MEMSET: 520 break; 521 } 522 523 Register VReg = MI.getOperand(0).getReg(); 524 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 525 return false; 526 527 Register PReg = Next->getOperand(0).getReg(); 528 if (!PReg.isPhysical()) 529 return false; 530 531 auto Ret = next_nodbg(Next, MBB.instr_end()); 532 if (Ret == MBB.instr_end() || !Ret->isReturn()) 533 return false; 534 535 if (Ret->getNumImplicitOperands() != 1) 536 return false; 537 538 if (PReg != Ret->getOperand(0).getReg()) 539 return false; 540 541 // Skip over the COPY that we just validated. 542 Next = Ret; 543 } 544 545 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 546 return false; 547 548 return true; 549 } 550 551 LegalizerHelper::LegalizeResult 552 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 553 const CallLowering::ArgInfo &Result, 554 ArrayRef<CallLowering::ArgInfo> Args, 555 const CallingConv::ID CC) { 556 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 557 558 CallLowering::CallLoweringInfo Info; 559 Info.CallConv = CC; 560 Info.Callee = MachineOperand::CreateES(Name); 561 Info.OrigRet = Result; 562 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 563 if (!CLI.lowerCall(MIRBuilder, Info)) 564 return LegalizerHelper::UnableToLegalize; 565 566 return LegalizerHelper::Legalized; 567 } 568 569 LegalizerHelper::LegalizeResult 570 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 571 const CallLowering::ArgInfo &Result, 572 ArrayRef<CallLowering::ArgInfo> Args) { 573 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 574 const char *Name = TLI.getLibcallName(Libcall); 575 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 576 return createLibcall(MIRBuilder, Name, Result, Args, CC); 577 } 578 579 // Useful for libcalls where all operands have the same type. 580 static LegalizerHelper::LegalizeResult 581 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 582 Type *OpType) { 583 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 584 585 // FIXME: What does the original arg index mean here? 586 SmallVector<CallLowering::ArgInfo, 3> Args; 587 for (unsigned i = 1; i < MI.getNumOperands(); i++) 588 Args.push_back({MI.getOperand(i).getReg(), OpType, 0}); 589 return createLibcall(MIRBuilder, Libcall, 590 {MI.getOperand(0).getReg(), OpType, 0}, Args); 591 } 592 593 LegalizerHelper::LegalizeResult 594 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 595 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 596 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 597 598 SmallVector<CallLowering::ArgInfo, 3> Args; 599 // Add all the args, except for the last which is an imm denoting 'tail'. 600 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 601 Register Reg = MI.getOperand(i).getReg(); 602 603 // Need derive an IR type for call lowering. 604 LLT OpLLT = MRI.getType(Reg); 605 Type *OpTy = nullptr; 606 if (OpLLT.isPointer()) 607 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 608 else 609 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 610 Args.push_back({Reg, OpTy, 0}); 611 } 612 613 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 614 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 615 RTLIB::Libcall RTLibcall; 616 unsigned Opc = MI.getOpcode(); 617 switch (Opc) { 618 case TargetOpcode::G_BZERO: 619 RTLibcall = RTLIB::BZERO; 620 break; 621 case TargetOpcode::G_MEMCPY: 622 RTLibcall = RTLIB::MEMCPY; 623 Args[0].Flags[0].setReturned(); 624 break; 625 case TargetOpcode::G_MEMMOVE: 626 RTLibcall = RTLIB::MEMMOVE; 627 Args[0].Flags[0].setReturned(); 628 break; 629 case TargetOpcode::G_MEMSET: 630 RTLibcall = RTLIB::MEMSET; 631 Args[0].Flags[0].setReturned(); 632 break; 633 default: 634 llvm_unreachable("unsupported opcode"); 635 } 636 const char *Name = TLI.getLibcallName(RTLibcall); 637 638 // Unsupported libcall on the target. 639 if (!Name) { 640 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 641 << MIRBuilder.getTII().getName(Opc) << "\n"); 642 return LegalizerHelper::UnableToLegalize; 643 } 644 645 CallLowering::CallLoweringInfo Info; 646 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 647 Info.Callee = MachineOperand::CreateES(Name); 648 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 649 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 650 isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI); 651 652 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 653 if (!CLI.lowerCall(MIRBuilder, Info)) 654 return LegalizerHelper::UnableToLegalize; 655 656 if (Info.LoweredTailCall) { 657 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 658 659 // Check debug locations before removing the return. 660 LocObserver.checkpoint(true); 661 662 // We must have a return following the call (or debug insts) to get past 663 // isLibCallInTailPosition. 664 do { 665 MachineInstr *Next = MI.getNextNode(); 666 assert(Next && 667 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 668 "Expected instr following MI to be return or debug inst?"); 669 // We lowered a tail call, so the call is now the return from the block. 670 // Delete the old return. 671 Next->eraseFromParent(); 672 } while (MI.getNextNode()); 673 674 // We expect to lose the debug location from the return. 675 LocObserver.checkpoint(false); 676 } 677 678 return LegalizerHelper::Legalized; 679 } 680 681 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 682 Type *FromType) { 683 auto ToMVT = MVT::getVT(ToType); 684 auto FromMVT = MVT::getVT(FromType); 685 686 switch (Opcode) { 687 case TargetOpcode::G_FPEXT: 688 return RTLIB::getFPEXT(FromMVT, ToMVT); 689 case TargetOpcode::G_FPTRUNC: 690 return RTLIB::getFPROUND(FromMVT, ToMVT); 691 case TargetOpcode::G_FPTOSI: 692 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 693 case TargetOpcode::G_FPTOUI: 694 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 695 case TargetOpcode::G_SITOFP: 696 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 697 case TargetOpcode::G_UITOFP: 698 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 699 } 700 llvm_unreachable("Unsupported libcall function"); 701 } 702 703 static LegalizerHelper::LegalizeResult 704 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 705 Type *FromType) { 706 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 707 return createLibcall(MIRBuilder, Libcall, 708 {MI.getOperand(0).getReg(), ToType, 0}, 709 {{MI.getOperand(1).getReg(), FromType, 0}}); 710 } 711 712 LegalizerHelper::LegalizeResult 713 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 714 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 715 unsigned Size = LLTy.getSizeInBits(); 716 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 717 718 switch (MI.getOpcode()) { 719 default: 720 return UnableToLegalize; 721 case TargetOpcode::G_SDIV: 722 case TargetOpcode::G_UDIV: 723 case TargetOpcode::G_SREM: 724 case TargetOpcode::G_UREM: 725 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 726 Type *HLTy = IntegerType::get(Ctx, Size); 727 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 728 if (Status != Legalized) 729 return Status; 730 break; 731 } 732 case TargetOpcode::G_FADD: 733 case TargetOpcode::G_FSUB: 734 case TargetOpcode::G_FMUL: 735 case TargetOpcode::G_FDIV: 736 case TargetOpcode::G_FMA: 737 case TargetOpcode::G_FPOW: 738 case TargetOpcode::G_FREM: 739 case TargetOpcode::G_FCOS: 740 case TargetOpcode::G_FSIN: 741 case TargetOpcode::G_FLOG10: 742 case TargetOpcode::G_FLOG: 743 case TargetOpcode::G_FLOG2: 744 case TargetOpcode::G_FEXP: 745 case TargetOpcode::G_FEXP2: 746 case TargetOpcode::G_FCEIL: 747 case TargetOpcode::G_FFLOOR: 748 case TargetOpcode::G_FMINNUM: 749 case TargetOpcode::G_FMAXNUM: 750 case TargetOpcode::G_FSQRT: 751 case TargetOpcode::G_FRINT: 752 case TargetOpcode::G_FNEARBYINT: 753 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 754 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 755 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 756 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 757 return UnableToLegalize; 758 } 759 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 760 if (Status != Legalized) 761 return Status; 762 break; 763 } 764 case TargetOpcode::G_FPEXT: 765 case TargetOpcode::G_FPTRUNC: { 766 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 767 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 768 if (!FromTy || !ToTy) 769 return UnableToLegalize; 770 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 771 if (Status != Legalized) 772 return Status; 773 break; 774 } 775 case TargetOpcode::G_FPTOSI: 776 case TargetOpcode::G_FPTOUI: { 777 // FIXME: Support other types 778 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 779 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 780 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 781 return UnableToLegalize; 782 LegalizeResult Status = conversionLibcall( 783 MI, MIRBuilder, 784 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 785 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 786 if (Status != Legalized) 787 return Status; 788 break; 789 } 790 case TargetOpcode::G_SITOFP: 791 case TargetOpcode::G_UITOFP: { 792 // FIXME: Support other types 793 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 794 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 795 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 796 return UnableToLegalize; 797 LegalizeResult Status = conversionLibcall( 798 MI, MIRBuilder, 799 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 800 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 801 if (Status != Legalized) 802 return Status; 803 break; 804 } 805 case TargetOpcode::G_BZERO: 806 case TargetOpcode::G_MEMCPY: 807 case TargetOpcode::G_MEMMOVE: 808 case TargetOpcode::G_MEMSET: { 809 LegalizeResult Result = 810 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 811 if (Result != Legalized) 812 return Result; 813 MI.eraseFromParent(); 814 return Result; 815 } 816 } 817 818 MI.eraseFromParent(); 819 return Legalized; 820 } 821 822 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 823 unsigned TypeIdx, 824 LLT NarrowTy) { 825 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 826 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 827 828 switch (MI.getOpcode()) { 829 default: 830 return UnableToLegalize; 831 case TargetOpcode::G_IMPLICIT_DEF: { 832 Register DstReg = MI.getOperand(0).getReg(); 833 LLT DstTy = MRI.getType(DstReg); 834 835 // If SizeOp0 is not an exact multiple of NarrowSize, emit 836 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 837 // FIXME: Although this would also be legal for the general case, it causes 838 // a lot of regressions in the emitted code (superfluous COPYs, artifact 839 // combines not being hit). This seems to be a problem related to the 840 // artifact combiner. 841 if (SizeOp0 % NarrowSize != 0) { 842 LLT ImplicitTy = NarrowTy; 843 if (DstTy.isVector()) 844 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 845 846 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 847 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 848 849 MI.eraseFromParent(); 850 return Legalized; 851 } 852 853 int NumParts = SizeOp0 / NarrowSize; 854 855 SmallVector<Register, 2> DstRegs; 856 for (int i = 0; i < NumParts; ++i) 857 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 858 859 if (DstTy.isVector()) 860 MIRBuilder.buildBuildVector(DstReg, DstRegs); 861 else 862 MIRBuilder.buildMerge(DstReg, DstRegs); 863 MI.eraseFromParent(); 864 return Legalized; 865 } 866 case TargetOpcode::G_CONSTANT: { 867 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 868 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 869 unsigned TotalSize = Ty.getSizeInBits(); 870 unsigned NarrowSize = NarrowTy.getSizeInBits(); 871 int NumParts = TotalSize / NarrowSize; 872 873 SmallVector<Register, 4> PartRegs; 874 for (int I = 0; I != NumParts; ++I) { 875 unsigned Offset = I * NarrowSize; 876 auto K = MIRBuilder.buildConstant(NarrowTy, 877 Val.lshr(Offset).trunc(NarrowSize)); 878 PartRegs.push_back(K.getReg(0)); 879 } 880 881 LLT LeftoverTy; 882 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 883 SmallVector<Register, 1> LeftoverRegs; 884 if (LeftoverBits != 0) { 885 LeftoverTy = LLT::scalar(LeftoverBits); 886 auto K = MIRBuilder.buildConstant( 887 LeftoverTy, 888 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 889 LeftoverRegs.push_back(K.getReg(0)); 890 } 891 892 insertParts(MI.getOperand(0).getReg(), 893 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 894 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 case TargetOpcode::G_SEXT: 899 case TargetOpcode::G_ZEXT: 900 case TargetOpcode::G_ANYEXT: 901 return narrowScalarExt(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_TRUNC: { 903 if (TypeIdx != 1) 904 return UnableToLegalize; 905 906 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 907 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 908 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 909 return UnableToLegalize; 910 } 911 912 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 913 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 914 MI.eraseFromParent(); 915 return Legalized; 916 } 917 918 case TargetOpcode::G_FREEZE: 919 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 920 case TargetOpcode::G_ADD: 921 case TargetOpcode::G_SUB: 922 case TargetOpcode::G_SADDO: 923 case TargetOpcode::G_SSUBO: 924 case TargetOpcode::G_SADDE: 925 case TargetOpcode::G_SSUBE: 926 case TargetOpcode::G_UADDO: 927 case TargetOpcode::G_USUBO: 928 case TargetOpcode::G_UADDE: 929 case TargetOpcode::G_USUBE: 930 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 931 case TargetOpcode::G_MUL: 932 case TargetOpcode::G_UMULH: 933 return narrowScalarMul(MI, NarrowTy); 934 case TargetOpcode::G_EXTRACT: 935 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 936 case TargetOpcode::G_INSERT: 937 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 938 case TargetOpcode::G_LOAD: { 939 auto &LoadMI = cast<GLoad>(MI); 940 Register DstReg = LoadMI.getDstReg(); 941 LLT DstTy = MRI.getType(DstReg); 942 if (DstTy.isVector()) 943 return UnableToLegalize; 944 945 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { 946 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 947 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 948 MIRBuilder.buildAnyExt(DstReg, TmpReg); 949 LoadMI.eraseFromParent(); 950 return Legalized; 951 } 952 953 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 954 } 955 case TargetOpcode::G_ZEXTLOAD: 956 case TargetOpcode::G_SEXTLOAD: { 957 auto &LoadMI = cast<GExtLoad>(MI); 958 Register DstReg = LoadMI.getDstReg(); 959 Register PtrReg = LoadMI.getPointerReg(); 960 961 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 962 auto &MMO = LoadMI.getMMO(); 963 unsigned MemSize = MMO.getSizeInBits(); 964 965 if (MemSize == NarrowSize) { 966 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 967 } else if (MemSize < NarrowSize) { 968 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 969 } else if (MemSize > NarrowSize) { 970 // FIXME: Need to split the load. 971 return UnableToLegalize; 972 } 973 974 if (isa<GZExtLoad>(LoadMI)) 975 MIRBuilder.buildZExt(DstReg, TmpReg); 976 else 977 MIRBuilder.buildSExt(DstReg, TmpReg); 978 979 LoadMI.eraseFromParent(); 980 return Legalized; 981 } 982 case TargetOpcode::G_STORE: { 983 auto &StoreMI = cast<GStore>(MI); 984 985 Register SrcReg = StoreMI.getValueReg(); 986 LLT SrcTy = MRI.getType(SrcReg); 987 if (SrcTy.isVector()) 988 return UnableToLegalize; 989 990 int NumParts = SizeOp0 / NarrowSize; 991 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 992 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 993 if (SrcTy.isVector() && LeftoverBits != 0) 994 return UnableToLegalize; 995 996 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { 997 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 998 MIRBuilder.buildTrunc(TmpReg, SrcReg); 999 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1000 StoreMI.eraseFromParent(); 1001 return Legalized; 1002 } 1003 1004 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1005 } 1006 case TargetOpcode::G_SELECT: 1007 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1008 case TargetOpcode::G_AND: 1009 case TargetOpcode::G_OR: 1010 case TargetOpcode::G_XOR: { 1011 // Legalize bitwise operation: 1012 // A = BinOp<Ty> B, C 1013 // into: 1014 // B1, ..., BN = G_UNMERGE_VALUES B 1015 // C1, ..., CN = G_UNMERGE_VALUES C 1016 // A1 = BinOp<Ty/N> B1, C2 1017 // ... 1018 // AN = BinOp<Ty/N> BN, CN 1019 // A = G_MERGE_VALUES A1, ..., AN 1020 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1021 } 1022 case TargetOpcode::G_SHL: 1023 case TargetOpcode::G_LSHR: 1024 case TargetOpcode::G_ASHR: 1025 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_CTLZ: 1027 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1028 case TargetOpcode::G_CTTZ: 1029 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1030 case TargetOpcode::G_CTPOP: 1031 if (TypeIdx == 1) 1032 switch (MI.getOpcode()) { 1033 case TargetOpcode::G_CTLZ: 1034 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1035 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1036 case TargetOpcode::G_CTTZ: 1037 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1038 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1039 case TargetOpcode::G_CTPOP: 1040 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1041 default: 1042 return UnableToLegalize; 1043 } 1044 1045 Observer.changingInstr(MI); 1046 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1047 Observer.changedInstr(MI); 1048 return Legalized; 1049 case TargetOpcode::G_INTTOPTR: 1050 if (TypeIdx != 1) 1051 return UnableToLegalize; 1052 1053 Observer.changingInstr(MI); 1054 narrowScalarSrc(MI, NarrowTy, 1); 1055 Observer.changedInstr(MI); 1056 return Legalized; 1057 case TargetOpcode::G_PTRTOINT: 1058 if (TypeIdx != 0) 1059 return UnableToLegalize; 1060 1061 Observer.changingInstr(MI); 1062 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1063 Observer.changedInstr(MI); 1064 return Legalized; 1065 case TargetOpcode::G_PHI: { 1066 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1067 // NarrowSize. 1068 if (SizeOp0 % NarrowSize != 0) 1069 return UnableToLegalize; 1070 1071 unsigned NumParts = SizeOp0 / NarrowSize; 1072 SmallVector<Register, 2> DstRegs(NumParts); 1073 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1074 Observer.changingInstr(MI); 1075 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1076 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1077 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1078 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1079 SrcRegs[i / 2]); 1080 } 1081 MachineBasicBlock &MBB = *MI.getParent(); 1082 MIRBuilder.setInsertPt(MBB, MI); 1083 for (unsigned i = 0; i < NumParts; ++i) { 1084 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1085 MachineInstrBuilder MIB = 1086 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1087 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1088 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1089 } 1090 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1091 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1092 Observer.changedInstr(MI); 1093 MI.eraseFromParent(); 1094 return Legalized; 1095 } 1096 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1097 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1098 if (TypeIdx != 2) 1099 return UnableToLegalize; 1100 1101 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1102 Observer.changingInstr(MI); 1103 narrowScalarSrc(MI, NarrowTy, OpIdx); 1104 Observer.changedInstr(MI); 1105 return Legalized; 1106 } 1107 case TargetOpcode::G_ICMP: { 1108 Register LHS = MI.getOperand(2).getReg(); 1109 LLT SrcTy = MRI.getType(LHS); 1110 uint64_t SrcSize = SrcTy.getSizeInBits(); 1111 CmpInst::Predicate Pred = 1112 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1113 1114 // TODO: Handle the non-equality case for weird sizes. 1115 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1116 return UnableToLegalize; 1117 1118 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1119 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1120 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1121 LHSLeftoverRegs)) 1122 return UnableToLegalize; 1123 1124 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1125 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1126 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1127 RHSPartRegs, RHSLeftoverRegs)) 1128 return UnableToLegalize; 1129 1130 // We now have the LHS and RHS of the compare split into narrow-type 1131 // registers, plus potentially some leftover type. 1132 Register Dst = MI.getOperand(0).getReg(); 1133 LLT ResTy = MRI.getType(Dst); 1134 if (ICmpInst::isEquality(Pred)) { 1135 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1136 // them together. For each equal part, the result should be all 0s. For 1137 // each non-equal part, we'll get at least one 1. 1138 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1139 SmallVector<Register, 4> Xors; 1140 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1141 auto LHS = std::get<0>(LHSAndRHS); 1142 auto RHS = std::get<1>(LHSAndRHS); 1143 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1144 Xors.push_back(Xor); 1145 } 1146 1147 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1148 // to the desired narrow type so that we can OR them together later. 1149 SmallVector<Register, 4> WidenedXors; 1150 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1151 auto LHS = std::get<0>(LHSAndRHS); 1152 auto RHS = std::get<1>(LHSAndRHS); 1153 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1154 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1155 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1156 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1157 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1158 } 1159 1160 // Now, for each part we broke up, we know if they are equal/not equal 1161 // based off the G_XOR. We can OR these all together and compare against 1162 // 0 to get the result. 1163 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1164 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1165 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1166 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1167 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1168 } else { 1169 // TODO: Handle non-power-of-two types. 1170 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1171 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1172 Register LHSL = LHSPartRegs[0]; 1173 Register LHSH = LHSPartRegs[1]; 1174 Register RHSL = RHSPartRegs[0]; 1175 Register RHSH = RHSPartRegs[1]; 1176 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1177 MachineInstrBuilder CmpHEQ = 1178 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1179 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1180 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1181 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1182 } 1183 MI.eraseFromParent(); 1184 return Legalized; 1185 } 1186 case TargetOpcode::G_SEXT_INREG: { 1187 if (TypeIdx != 0) 1188 return UnableToLegalize; 1189 1190 int64_t SizeInBits = MI.getOperand(2).getImm(); 1191 1192 // So long as the new type has more bits than the bits we're extending we 1193 // don't need to break it apart. 1194 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1195 Observer.changingInstr(MI); 1196 // We don't lose any non-extension bits by truncating the src and 1197 // sign-extending the dst. 1198 MachineOperand &MO1 = MI.getOperand(1); 1199 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1200 MO1.setReg(TruncMIB.getReg(0)); 1201 1202 MachineOperand &MO2 = MI.getOperand(0); 1203 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1204 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1205 MIRBuilder.buildSExt(MO2, DstExt); 1206 MO2.setReg(DstExt); 1207 Observer.changedInstr(MI); 1208 return Legalized; 1209 } 1210 1211 // Break it apart. Components below the extension point are unmodified. The 1212 // component containing the extension point becomes a narrower SEXT_INREG. 1213 // Components above it are ashr'd from the component containing the 1214 // extension point. 1215 if (SizeOp0 % NarrowSize != 0) 1216 return UnableToLegalize; 1217 int NumParts = SizeOp0 / NarrowSize; 1218 1219 // List the registers where the destination will be scattered. 1220 SmallVector<Register, 2> DstRegs; 1221 // List the registers where the source will be split. 1222 SmallVector<Register, 2> SrcRegs; 1223 1224 // Create all the temporary registers. 1225 for (int i = 0; i < NumParts; ++i) { 1226 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1227 1228 SrcRegs.push_back(SrcReg); 1229 } 1230 1231 // Explode the big arguments into smaller chunks. 1232 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1233 1234 Register AshrCstReg = 1235 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1236 .getReg(0); 1237 Register FullExtensionReg = 0; 1238 Register PartialExtensionReg = 0; 1239 1240 // Do the operation on each small part. 1241 for (int i = 0; i < NumParts; ++i) { 1242 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1243 DstRegs.push_back(SrcRegs[i]); 1244 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1245 assert(PartialExtensionReg && 1246 "Expected to visit partial extension before full"); 1247 if (FullExtensionReg) { 1248 DstRegs.push_back(FullExtensionReg); 1249 continue; 1250 } 1251 DstRegs.push_back( 1252 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1253 .getReg(0)); 1254 FullExtensionReg = DstRegs.back(); 1255 } else { 1256 DstRegs.push_back( 1257 MIRBuilder 1258 .buildInstr( 1259 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1260 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1261 .getReg(0)); 1262 PartialExtensionReg = DstRegs.back(); 1263 } 1264 } 1265 1266 // Gather the destination registers into the final destination. 1267 Register DstReg = MI.getOperand(0).getReg(); 1268 MIRBuilder.buildMerge(DstReg, DstRegs); 1269 MI.eraseFromParent(); 1270 return Legalized; 1271 } 1272 case TargetOpcode::G_BSWAP: 1273 case TargetOpcode::G_BITREVERSE: { 1274 if (SizeOp0 % NarrowSize != 0) 1275 return UnableToLegalize; 1276 1277 Observer.changingInstr(MI); 1278 SmallVector<Register, 2> SrcRegs, DstRegs; 1279 unsigned NumParts = SizeOp0 / NarrowSize; 1280 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1281 1282 for (unsigned i = 0; i < NumParts; ++i) { 1283 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1284 {SrcRegs[NumParts - 1 - i]}); 1285 DstRegs.push_back(DstPart.getReg(0)); 1286 } 1287 1288 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1289 1290 Observer.changedInstr(MI); 1291 MI.eraseFromParent(); 1292 return Legalized; 1293 } 1294 case TargetOpcode::G_PTR_ADD: 1295 case TargetOpcode::G_PTRMASK: { 1296 if (TypeIdx != 1) 1297 return UnableToLegalize; 1298 Observer.changingInstr(MI); 1299 narrowScalarSrc(MI, NarrowTy, 2); 1300 Observer.changedInstr(MI); 1301 return Legalized; 1302 } 1303 case TargetOpcode::G_FPTOUI: 1304 case TargetOpcode::G_FPTOSI: 1305 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1306 case TargetOpcode::G_FPEXT: 1307 if (TypeIdx != 0) 1308 return UnableToLegalize; 1309 Observer.changingInstr(MI); 1310 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1311 Observer.changedInstr(MI); 1312 return Legalized; 1313 } 1314 } 1315 1316 Register LegalizerHelper::coerceToScalar(Register Val) { 1317 LLT Ty = MRI.getType(Val); 1318 if (Ty.isScalar()) 1319 return Val; 1320 1321 const DataLayout &DL = MIRBuilder.getDataLayout(); 1322 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1323 if (Ty.isPointer()) { 1324 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1325 return Register(); 1326 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1327 } 1328 1329 Register NewVal = Val; 1330 1331 assert(Ty.isVector()); 1332 LLT EltTy = Ty.getElementType(); 1333 if (EltTy.isPointer()) 1334 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1335 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1336 } 1337 1338 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1339 unsigned OpIdx, unsigned ExtOpcode) { 1340 MachineOperand &MO = MI.getOperand(OpIdx); 1341 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1342 MO.setReg(ExtB.getReg(0)); 1343 } 1344 1345 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1346 unsigned OpIdx) { 1347 MachineOperand &MO = MI.getOperand(OpIdx); 1348 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1349 MO.setReg(ExtB.getReg(0)); 1350 } 1351 1352 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1353 unsigned OpIdx, unsigned TruncOpcode) { 1354 MachineOperand &MO = MI.getOperand(OpIdx); 1355 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1356 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1357 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1358 MO.setReg(DstExt); 1359 } 1360 1361 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1362 unsigned OpIdx, unsigned ExtOpcode) { 1363 MachineOperand &MO = MI.getOperand(OpIdx); 1364 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1365 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1366 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1367 MO.setReg(DstTrunc); 1368 } 1369 1370 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1371 unsigned OpIdx) { 1372 MachineOperand &MO = MI.getOperand(OpIdx); 1373 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1374 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1375 } 1376 1377 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1378 unsigned OpIdx) { 1379 MachineOperand &MO = MI.getOperand(OpIdx); 1380 1381 LLT OldTy = MRI.getType(MO.getReg()); 1382 unsigned OldElts = OldTy.getNumElements(); 1383 unsigned NewElts = MoreTy.getNumElements(); 1384 1385 unsigned NumParts = NewElts / OldElts; 1386 1387 // Use concat_vectors if the result is a multiple of the number of elements. 1388 if (NumParts * OldElts == NewElts) { 1389 SmallVector<Register, 8> Parts; 1390 Parts.push_back(MO.getReg()); 1391 1392 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1393 for (unsigned I = 1; I != NumParts; ++I) 1394 Parts.push_back(ImpDef); 1395 1396 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1397 MO.setReg(Concat.getReg(0)); 1398 return; 1399 } 1400 1401 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1402 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1403 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1404 MO.setReg(MoreReg); 1405 } 1406 1407 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1408 MachineOperand &Op = MI.getOperand(OpIdx); 1409 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1410 } 1411 1412 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1413 MachineOperand &MO = MI.getOperand(OpIdx); 1414 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1415 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1416 MIRBuilder.buildBitcast(MO, CastDst); 1417 MO.setReg(CastDst); 1418 } 1419 1420 LegalizerHelper::LegalizeResult 1421 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1422 LLT WideTy) { 1423 if (TypeIdx != 1) 1424 return UnableToLegalize; 1425 1426 Register DstReg = MI.getOperand(0).getReg(); 1427 LLT DstTy = MRI.getType(DstReg); 1428 if (DstTy.isVector()) 1429 return UnableToLegalize; 1430 1431 Register Src1 = MI.getOperand(1).getReg(); 1432 LLT SrcTy = MRI.getType(Src1); 1433 const int DstSize = DstTy.getSizeInBits(); 1434 const int SrcSize = SrcTy.getSizeInBits(); 1435 const int WideSize = WideTy.getSizeInBits(); 1436 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1437 1438 unsigned NumOps = MI.getNumOperands(); 1439 unsigned NumSrc = MI.getNumOperands() - 1; 1440 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1441 1442 if (WideSize >= DstSize) { 1443 // Directly pack the bits in the target type. 1444 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1445 1446 for (unsigned I = 2; I != NumOps; ++I) { 1447 const unsigned Offset = (I - 1) * PartSize; 1448 1449 Register SrcReg = MI.getOperand(I).getReg(); 1450 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1451 1452 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1453 1454 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1455 MRI.createGenericVirtualRegister(WideTy); 1456 1457 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1458 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1459 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1460 ResultReg = NextResult; 1461 } 1462 1463 if (WideSize > DstSize) 1464 MIRBuilder.buildTrunc(DstReg, ResultReg); 1465 else if (DstTy.isPointer()) 1466 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1467 1468 MI.eraseFromParent(); 1469 return Legalized; 1470 } 1471 1472 // Unmerge the original values to the GCD type, and recombine to the next 1473 // multiple greater than the original type. 1474 // 1475 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1476 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1477 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1478 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1479 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1480 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1481 // %12:_(s12) = G_MERGE_VALUES %10, %11 1482 // 1483 // Padding with undef if necessary: 1484 // 1485 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1486 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1487 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1488 // %7:_(s2) = G_IMPLICIT_DEF 1489 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1490 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1491 // %10:_(s12) = G_MERGE_VALUES %8, %9 1492 1493 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1494 LLT GCDTy = LLT::scalar(GCD); 1495 1496 SmallVector<Register, 8> Parts; 1497 SmallVector<Register, 8> NewMergeRegs; 1498 SmallVector<Register, 8> Unmerges; 1499 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1500 1501 // Decompose the original operands if they don't evenly divide. 1502 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1503 Register SrcReg = MI.getOperand(I).getReg(); 1504 if (GCD == SrcSize) { 1505 Unmerges.push_back(SrcReg); 1506 } else { 1507 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1508 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1509 Unmerges.push_back(Unmerge.getReg(J)); 1510 } 1511 } 1512 1513 // Pad with undef to the next size that is a multiple of the requested size. 1514 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1515 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1516 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1517 Unmerges.push_back(UndefReg); 1518 } 1519 1520 const int PartsPerGCD = WideSize / GCD; 1521 1522 // Build merges of each piece. 1523 ArrayRef<Register> Slicer(Unmerges); 1524 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1525 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1526 NewMergeRegs.push_back(Merge.getReg(0)); 1527 } 1528 1529 // A truncate may be necessary if the requested type doesn't evenly divide the 1530 // original result type. 1531 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1532 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1533 } else { 1534 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1535 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1536 } 1537 1538 MI.eraseFromParent(); 1539 return Legalized; 1540 } 1541 1542 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1543 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1544 LLT OrigTy = MRI.getType(OrigReg); 1545 LLT LCMTy = getLCMType(WideTy, OrigTy); 1546 1547 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1548 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1549 1550 Register UnmergeSrc = WideReg; 1551 1552 // Create a merge to the LCM type, padding with undef 1553 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1554 // => 1555 // %1:_(<4 x s32>) = G_FOO 1556 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1557 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1558 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1559 if (NumMergeParts > 1) { 1560 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1561 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1562 MergeParts[0] = WideReg; 1563 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1564 } 1565 1566 // Unmerge to the original register and pad with dead defs. 1567 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1568 UnmergeResults[0] = OrigReg; 1569 for (int I = 1; I != NumUnmergeParts; ++I) 1570 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1571 1572 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1573 return WideReg; 1574 } 1575 1576 LegalizerHelper::LegalizeResult 1577 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1578 LLT WideTy) { 1579 if (TypeIdx != 0) 1580 return UnableToLegalize; 1581 1582 int NumDst = MI.getNumOperands() - 1; 1583 Register SrcReg = MI.getOperand(NumDst).getReg(); 1584 LLT SrcTy = MRI.getType(SrcReg); 1585 if (SrcTy.isVector()) 1586 return UnableToLegalize; 1587 1588 Register Dst0Reg = MI.getOperand(0).getReg(); 1589 LLT DstTy = MRI.getType(Dst0Reg); 1590 if (!DstTy.isScalar()) 1591 return UnableToLegalize; 1592 1593 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1594 if (SrcTy.isPointer()) { 1595 const DataLayout &DL = MIRBuilder.getDataLayout(); 1596 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1597 LLVM_DEBUG( 1598 dbgs() << "Not casting non-integral address space integer\n"); 1599 return UnableToLegalize; 1600 } 1601 1602 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1603 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1604 } 1605 1606 // Widen SrcTy to WideTy. This does not affect the result, but since the 1607 // user requested this size, it is probably better handled than SrcTy and 1608 // should reduce the total number of legalization artifacts 1609 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1610 SrcTy = WideTy; 1611 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1612 } 1613 1614 // Theres no unmerge type to target. Directly extract the bits from the 1615 // source type 1616 unsigned DstSize = DstTy.getSizeInBits(); 1617 1618 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1619 for (int I = 1; I != NumDst; ++I) { 1620 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1621 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1622 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1623 } 1624 1625 MI.eraseFromParent(); 1626 return Legalized; 1627 } 1628 1629 // Extend the source to a wider type. 1630 LLT LCMTy = getLCMType(SrcTy, WideTy); 1631 1632 Register WideSrc = SrcReg; 1633 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1634 // TODO: If this is an integral address space, cast to integer and anyext. 1635 if (SrcTy.isPointer()) { 1636 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1637 return UnableToLegalize; 1638 } 1639 1640 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1641 } 1642 1643 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1644 1645 // Create a sequence of unmerges and merges to the original results. Since we 1646 // may have widened the source, we will need to pad the results with dead defs 1647 // to cover the source register. 1648 // e.g. widen s48 to s64: 1649 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1650 // 1651 // => 1652 // %4:_(s192) = G_ANYEXT %0:_(s96) 1653 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1654 // ; unpack to GCD type, with extra dead defs 1655 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1656 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1657 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1658 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1659 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1660 const LLT GCDTy = getGCDType(WideTy, DstTy); 1661 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1662 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1663 1664 // Directly unmerge to the destination without going through a GCD type 1665 // if possible 1666 if (PartsPerRemerge == 1) { 1667 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1668 1669 for (int I = 0; I != NumUnmerge; ++I) { 1670 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1671 1672 for (int J = 0; J != PartsPerUnmerge; ++J) { 1673 int Idx = I * PartsPerUnmerge + J; 1674 if (Idx < NumDst) 1675 MIB.addDef(MI.getOperand(Idx).getReg()); 1676 else { 1677 // Create dead def for excess components. 1678 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1679 } 1680 } 1681 1682 MIB.addUse(Unmerge.getReg(I)); 1683 } 1684 } else { 1685 SmallVector<Register, 16> Parts; 1686 for (int J = 0; J != NumUnmerge; ++J) 1687 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1688 1689 SmallVector<Register, 8> RemergeParts; 1690 for (int I = 0; I != NumDst; ++I) { 1691 for (int J = 0; J < PartsPerRemerge; ++J) { 1692 const int Idx = I * PartsPerRemerge + J; 1693 RemergeParts.emplace_back(Parts[Idx]); 1694 } 1695 1696 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1697 RemergeParts.clear(); 1698 } 1699 } 1700 1701 MI.eraseFromParent(); 1702 return Legalized; 1703 } 1704 1705 LegalizerHelper::LegalizeResult 1706 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1707 LLT WideTy) { 1708 Register DstReg = MI.getOperand(0).getReg(); 1709 Register SrcReg = MI.getOperand(1).getReg(); 1710 LLT SrcTy = MRI.getType(SrcReg); 1711 1712 LLT DstTy = MRI.getType(DstReg); 1713 unsigned Offset = MI.getOperand(2).getImm(); 1714 1715 if (TypeIdx == 0) { 1716 if (SrcTy.isVector() || DstTy.isVector()) 1717 return UnableToLegalize; 1718 1719 SrcOp Src(SrcReg); 1720 if (SrcTy.isPointer()) { 1721 // Extracts from pointers can be handled only if they are really just 1722 // simple integers. 1723 const DataLayout &DL = MIRBuilder.getDataLayout(); 1724 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1725 return UnableToLegalize; 1726 1727 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1728 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1729 SrcTy = SrcAsIntTy; 1730 } 1731 1732 if (DstTy.isPointer()) 1733 return UnableToLegalize; 1734 1735 if (Offset == 0) { 1736 // Avoid a shift in the degenerate case. 1737 MIRBuilder.buildTrunc(DstReg, 1738 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1739 MI.eraseFromParent(); 1740 return Legalized; 1741 } 1742 1743 // Do a shift in the source type. 1744 LLT ShiftTy = SrcTy; 1745 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1746 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1747 ShiftTy = WideTy; 1748 } 1749 1750 auto LShr = MIRBuilder.buildLShr( 1751 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1752 MIRBuilder.buildTrunc(DstReg, LShr); 1753 MI.eraseFromParent(); 1754 return Legalized; 1755 } 1756 1757 if (SrcTy.isScalar()) { 1758 Observer.changingInstr(MI); 1759 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1760 Observer.changedInstr(MI); 1761 return Legalized; 1762 } 1763 1764 if (!SrcTy.isVector()) 1765 return UnableToLegalize; 1766 1767 if (DstTy != SrcTy.getElementType()) 1768 return UnableToLegalize; 1769 1770 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1771 return UnableToLegalize; 1772 1773 Observer.changingInstr(MI); 1774 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1775 1776 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1777 Offset); 1778 widenScalarDst(MI, WideTy.getScalarType(), 0); 1779 Observer.changedInstr(MI); 1780 return Legalized; 1781 } 1782 1783 LegalizerHelper::LegalizeResult 1784 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1785 LLT WideTy) { 1786 if (TypeIdx != 0 || WideTy.isVector()) 1787 return UnableToLegalize; 1788 Observer.changingInstr(MI); 1789 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1790 widenScalarDst(MI, WideTy); 1791 Observer.changedInstr(MI); 1792 return Legalized; 1793 } 1794 1795 LegalizerHelper::LegalizeResult 1796 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1797 LLT WideTy) { 1798 if (TypeIdx == 1) 1799 return UnableToLegalize; // TODO 1800 1801 unsigned Opcode; 1802 unsigned ExtOpcode; 1803 Optional<Register> CarryIn = None; 1804 switch (MI.getOpcode()) { 1805 default: 1806 llvm_unreachable("Unexpected opcode!"); 1807 case TargetOpcode::G_SADDO: 1808 Opcode = TargetOpcode::G_ADD; 1809 ExtOpcode = TargetOpcode::G_SEXT; 1810 break; 1811 case TargetOpcode::G_SSUBO: 1812 Opcode = TargetOpcode::G_SUB; 1813 ExtOpcode = TargetOpcode::G_SEXT; 1814 break; 1815 case TargetOpcode::G_UADDO: 1816 Opcode = TargetOpcode::G_ADD; 1817 ExtOpcode = TargetOpcode::G_ZEXT; 1818 break; 1819 case TargetOpcode::G_USUBO: 1820 Opcode = TargetOpcode::G_SUB; 1821 ExtOpcode = TargetOpcode::G_ZEXT; 1822 break; 1823 case TargetOpcode::G_SADDE: 1824 Opcode = TargetOpcode::G_UADDE; 1825 ExtOpcode = TargetOpcode::G_SEXT; 1826 CarryIn = MI.getOperand(4).getReg(); 1827 break; 1828 case TargetOpcode::G_SSUBE: 1829 Opcode = TargetOpcode::G_USUBE; 1830 ExtOpcode = TargetOpcode::G_SEXT; 1831 CarryIn = MI.getOperand(4).getReg(); 1832 break; 1833 case TargetOpcode::G_UADDE: 1834 Opcode = TargetOpcode::G_UADDE; 1835 ExtOpcode = TargetOpcode::G_ZEXT; 1836 CarryIn = MI.getOperand(4).getReg(); 1837 break; 1838 case TargetOpcode::G_USUBE: 1839 Opcode = TargetOpcode::G_USUBE; 1840 ExtOpcode = TargetOpcode::G_ZEXT; 1841 CarryIn = MI.getOperand(4).getReg(); 1842 break; 1843 } 1844 1845 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1846 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1847 // Do the arithmetic in the larger type. 1848 Register NewOp; 1849 if (CarryIn) { 1850 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1851 NewOp = MIRBuilder 1852 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1853 {LHSExt, RHSExt, *CarryIn}) 1854 .getReg(0); 1855 } else { 1856 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1857 } 1858 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1859 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1860 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1861 // There is no overflow if the ExtOp is the same as NewOp. 1862 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1863 // Now trunc the NewOp to the original result. 1864 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1865 MI.eraseFromParent(); 1866 return Legalized; 1867 } 1868 1869 LegalizerHelper::LegalizeResult 1870 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1871 LLT WideTy) { 1872 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1873 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1874 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1875 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1876 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1877 // We can convert this to: 1878 // 1. Any extend iN to iM 1879 // 2. SHL by M-N 1880 // 3. [US][ADD|SUB|SHL]SAT 1881 // 4. L/ASHR by M-N 1882 // 1883 // It may be more efficient to lower this to a min and a max operation in 1884 // the higher precision arithmetic if the promoted operation isn't legal, 1885 // but this decision is up to the target's lowering request. 1886 Register DstReg = MI.getOperand(0).getReg(); 1887 1888 unsigned NewBits = WideTy.getScalarSizeInBits(); 1889 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1890 1891 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1892 // must not left shift the RHS to preserve the shift amount. 1893 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1894 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1895 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1896 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1897 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1898 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1899 1900 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1901 {ShiftL, ShiftR}, MI.getFlags()); 1902 1903 // Use a shift that will preserve the number of sign bits when the trunc is 1904 // folded away. 1905 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1906 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1907 1908 MIRBuilder.buildTrunc(DstReg, Result); 1909 MI.eraseFromParent(); 1910 return Legalized; 1911 } 1912 1913 LegalizerHelper::LegalizeResult 1914 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1915 LLT WideTy) { 1916 if (TypeIdx == 1) 1917 return UnableToLegalize; 1918 1919 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1920 Register Result = MI.getOperand(0).getReg(); 1921 Register OriginalOverflow = MI.getOperand(1).getReg(); 1922 Register LHS = MI.getOperand(2).getReg(); 1923 Register RHS = MI.getOperand(3).getReg(); 1924 LLT SrcTy = MRI.getType(LHS); 1925 LLT OverflowTy = MRI.getType(OriginalOverflow); 1926 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1927 1928 // To determine if the result overflowed in the larger type, we extend the 1929 // input to the larger type, do the multiply (checking if it overflows), 1930 // then also check the high bits of the result to see if overflow happened 1931 // there. 1932 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1933 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 1934 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 1935 1936 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 1937 {LeftOperand, RightOperand}); 1938 auto Mul = Mulo->getOperand(0); 1939 MIRBuilder.buildTrunc(Result, Mul); 1940 1941 MachineInstrBuilder ExtResult; 1942 // Overflow occurred if it occurred in the larger type, or if the high part 1943 // of the result does not zero/sign-extend the low part. Check this second 1944 // possibility first. 1945 if (IsSigned) { 1946 // For signed, overflow occurred when the high part does not sign-extend 1947 // the low part. 1948 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 1949 } else { 1950 // Unsigned overflow occurred when the high part does not zero-extend the 1951 // low part. 1952 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 1953 } 1954 1955 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 1956 // so we don't need to check the overflow result of larger type Mulo. 1957 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 1958 auto Overflow = 1959 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 1960 // Finally check if the multiplication in the larger type itself overflowed. 1961 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 1962 } else { 1963 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 1964 } 1965 MI.eraseFromParent(); 1966 return Legalized; 1967 } 1968 1969 LegalizerHelper::LegalizeResult 1970 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1971 switch (MI.getOpcode()) { 1972 default: 1973 return UnableToLegalize; 1974 case TargetOpcode::G_ATOMICRMW_XCHG: 1975 case TargetOpcode::G_ATOMICRMW_ADD: 1976 case TargetOpcode::G_ATOMICRMW_SUB: 1977 case TargetOpcode::G_ATOMICRMW_AND: 1978 case TargetOpcode::G_ATOMICRMW_OR: 1979 case TargetOpcode::G_ATOMICRMW_XOR: 1980 case TargetOpcode::G_ATOMICRMW_MIN: 1981 case TargetOpcode::G_ATOMICRMW_MAX: 1982 case TargetOpcode::G_ATOMICRMW_UMIN: 1983 case TargetOpcode::G_ATOMICRMW_UMAX: 1984 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 1985 Observer.changingInstr(MI); 1986 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1987 widenScalarDst(MI, WideTy, 0); 1988 Observer.changedInstr(MI); 1989 return Legalized; 1990 case TargetOpcode::G_ATOMIC_CMPXCHG: 1991 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 1992 Observer.changingInstr(MI); 1993 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1994 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1995 widenScalarDst(MI, WideTy, 0); 1996 Observer.changedInstr(MI); 1997 return Legalized; 1998 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 1999 if (TypeIdx == 0) { 2000 Observer.changingInstr(MI); 2001 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2002 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2003 widenScalarDst(MI, WideTy, 0); 2004 Observer.changedInstr(MI); 2005 return Legalized; 2006 } 2007 assert(TypeIdx == 1 && 2008 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2009 Observer.changingInstr(MI); 2010 widenScalarDst(MI, WideTy, 1); 2011 Observer.changedInstr(MI); 2012 return Legalized; 2013 case TargetOpcode::G_EXTRACT: 2014 return widenScalarExtract(MI, TypeIdx, WideTy); 2015 case TargetOpcode::G_INSERT: 2016 return widenScalarInsert(MI, TypeIdx, WideTy); 2017 case TargetOpcode::G_MERGE_VALUES: 2018 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2019 case TargetOpcode::G_UNMERGE_VALUES: 2020 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2021 case TargetOpcode::G_SADDO: 2022 case TargetOpcode::G_SSUBO: 2023 case TargetOpcode::G_UADDO: 2024 case TargetOpcode::G_USUBO: 2025 case TargetOpcode::G_SADDE: 2026 case TargetOpcode::G_SSUBE: 2027 case TargetOpcode::G_UADDE: 2028 case TargetOpcode::G_USUBE: 2029 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2030 case TargetOpcode::G_UMULO: 2031 case TargetOpcode::G_SMULO: 2032 return widenScalarMulo(MI, TypeIdx, WideTy); 2033 case TargetOpcode::G_SADDSAT: 2034 case TargetOpcode::G_SSUBSAT: 2035 case TargetOpcode::G_SSHLSAT: 2036 case TargetOpcode::G_UADDSAT: 2037 case TargetOpcode::G_USUBSAT: 2038 case TargetOpcode::G_USHLSAT: 2039 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2040 case TargetOpcode::G_CTTZ: 2041 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2042 case TargetOpcode::G_CTLZ: 2043 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2044 case TargetOpcode::G_CTPOP: { 2045 if (TypeIdx == 0) { 2046 Observer.changingInstr(MI); 2047 widenScalarDst(MI, WideTy, 0); 2048 Observer.changedInstr(MI); 2049 return Legalized; 2050 } 2051 2052 Register SrcReg = MI.getOperand(1).getReg(); 2053 2054 // First ZEXT the input. 2055 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 2056 LLT CurTy = MRI.getType(SrcReg); 2057 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 2058 // The count is the same in the larger type except if the original 2059 // value was zero. This can be handled by setting the bit just off 2060 // the top of the original type. 2061 auto TopBit = 2062 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2063 MIBSrc = MIRBuilder.buildOr( 2064 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2065 } 2066 2067 // Perform the operation at the larger size. 2068 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 2069 // This is already the correct result for CTPOP and CTTZs 2070 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 2071 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2072 // The correct result is NewOp - (Difference in widety and current ty). 2073 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2074 MIBNewOp = MIRBuilder.buildSub( 2075 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2076 } 2077 2078 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2079 MI.eraseFromParent(); 2080 return Legalized; 2081 } 2082 case TargetOpcode::G_BSWAP: { 2083 Observer.changingInstr(MI); 2084 Register DstReg = MI.getOperand(0).getReg(); 2085 2086 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2087 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2088 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2089 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2090 2091 MI.getOperand(0).setReg(DstExt); 2092 2093 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2094 2095 LLT Ty = MRI.getType(DstReg); 2096 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2097 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2098 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2099 2100 MIRBuilder.buildTrunc(DstReg, ShrReg); 2101 Observer.changedInstr(MI); 2102 return Legalized; 2103 } 2104 case TargetOpcode::G_BITREVERSE: { 2105 Observer.changingInstr(MI); 2106 2107 Register DstReg = MI.getOperand(0).getReg(); 2108 LLT Ty = MRI.getType(DstReg); 2109 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2110 2111 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2112 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2113 MI.getOperand(0).setReg(DstExt); 2114 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2115 2116 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2117 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2118 MIRBuilder.buildTrunc(DstReg, Shift); 2119 Observer.changedInstr(MI); 2120 return Legalized; 2121 } 2122 case TargetOpcode::G_FREEZE: 2123 Observer.changingInstr(MI); 2124 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2125 widenScalarDst(MI, WideTy); 2126 Observer.changedInstr(MI); 2127 return Legalized; 2128 2129 case TargetOpcode::G_ABS: 2130 Observer.changingInstr(MI); 2131 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2132 widenScalarDst(MI, WideTy); 2133 Observer.changedInstr(MI); 2134 return Legalized; 2135 2136 case TargetOpcode::G_ADD: 2137 case TargetOpcode::G_AND: 2138 case TargetOpcode::G_MUL: 2139 case TargetOpcode::G_OR: 2140 case TargetOpcode::G_XOR: 2141 case TargetOpcode::G_SUB: 2142 // Perform operation at larger width (any extension is fines here, high bits 2143 // don't affect the result) and then truncate the result back to the 2144 // original type. 2145 Observer.changingInstr(MI); 2146 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2147 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2148 widenScalarDst(MI, WideTy); 2149 Observer.changedInstr(MI); 2150 return Legalized; 2151 2152 case TargetOpcode::G_SBFX: 2153 case TargetOpcode::G_UBFX: 2154 Observer.changingInstr(MI); 2155 2156 if (TypeIdx == 0) { 2157 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2158 widenScalarDst(MI, WideTy); 2159 } else { 2160 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2161 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2162 } 2163 2164 Observer.changedInstr(MI); 2165 return Legalized; 2166 2167 case TargetOpcode::G_SHL: 2168 Observer.changingInstr(MI); 2169 2170 if (TypeIdx == 0) { 2171 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2172 widenScalarDst(MI, WideTy); 2173 } else { 2174 assert(TypeIdx == 1); 2175 // The "number of bits to shift" operand must preserve its value as an 2176 // unsigned integer: 2177 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2178 } 2179 2180 Observer.changedInstr(MI); 2181 return Legalized; 2182 2183 case TargetOpcode::G_SDIV: 2184 case TargetOpcode::G_SREM: 2185 case TargetOpcode::G_SMIN: 2186 case TargetOpcode::G_SMAX: 2187 Observer.changingInstr(MI); 2188 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2189 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2190 widenScalarDst(MI, WideTy); 2191 Observer.changedInstr(MI); 2192 return Legalized; 2193 2194 case TargetOpcode::G_SDIVREM: 2195 Observer.changingInstr(MI); 2196 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2197 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2198 widenScalarDst(MI, WideTy); 2199 widenScalarDst(MI, WideTy, 1); 2200 Observer.changedInstr(MI); 2201 return Legalized; 2202 2203 case TargetOpcode::G_ASHR: 2204 case TargetOpcode::G_LSHR: 2205 Observer.changingInstr(MI); 2206 2207 if (TypeIdx == 0) { 2208 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2209 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2210 2211 widenScalarSrc(MI, WideTy, 1, CvtOp); 2212 widenScalarDst(MI, WideTy); 2213 } else { 2214 assert(TypeIdx == 1); 2215 // The "number of bits to shift" operand must preserve its value as an 2216 // unsigned integer: 2217 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2218 } 2219 2220 Observer.changedInstr(MI); 2221 return Legalized; 2222 case TargetOpcode::G_UDIV: 2223 case TargetOpcode::G_UREM: 2224 case TargetOpcode::G_UMIN: 2225 case TargetOpcode::G_UMAX: 2226 Observer.changingInstr(MI); 2227 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2228 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2229 widenScalarDst(MI, WideTy); 2230 Observer.changedInstr(MI); 2231 return Legalized; 2232 2233 case TargetOpcode::G_UDIVREM: 2234 Observer.changingInstr(MI); 2235 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2236 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2237 widenScalarDst(MI, WideTy); 2238 widenScalarDst(MI, WideTy, 1); 2239 Observer.changedInstr(MI); 2240 return Legalized; 2241 2242 case TargetOpcode::G_SELECT: 2243 Observer.changingInstr(MI); 2244 if (TypeIdx == 0) { 2245 // Perform operation at larger width (any extension is fine here, high 2246 // bits don't affect the result) and then truncate the result back to the 2247 // original type. 2248 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2249 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2250 widenScalarDst(MI, WideTy); 2251 } else { 2252 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2253 // Explicit extension is required here since high bits affect the result. 2254 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2255 } 2256 Observer.changedInstr(MI); 2257 return Legalized; 2258 2259 case TargetOpcode::G_FPTOSI: 2260 case TargetOpcode::G_FPTOUI: 2261 Observer.changingInstr(MI); 2262 2263 if (TypeIdx == 0) 2264 widenScalarDst(MI, WideTy); 2265 else 2266 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2267 2268 Observer.changedInstr(MI); 2269 return Legalized; 2270 case TargetOpcode::G_SITOFP: 2271 Observer.changingInstr(MI); 2272 2273 if (TypeIdx == 0) 2274 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2275 else 2276 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2277 2278 Observer.changedInstr(MI); 2279 return Legalized; 2280 case TargetOpcode::G_UITOFP: 2281 Observer.changingInstr(MI); 2282 2283 if (TypeIdx == 0) 2284 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2285 else 2286 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2287 2288 Observer.changedInstr(MI); 2289 return Legalized; 2290 case TargetOpcode::G_LOAD: 2291 case TargetOpcode::G_SEXTLOAD: 2292 case TargetOpcode::G_ZEXTLOAD: 2293 Observer.changingInstr(MI); 2294 widenScalarDst(MI, WideTy); 2295 Observer.changedInstr(MI); 2296 return Legalized; 2297 2298 case TargetOpcode::G_STORE: { 2299 if (TypeIdx != 0) 2300 return UnableToLegalize; 2301 2302 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2303 if (!Ty.isScalar()) 2304 return UnableToLegalize; 2305 2306 Observer.changingInstr(MI); 2307 2308 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2309 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2310 widenScalarSrc(MI, WideTy, 0, ExtType); 2311 2312 Observer.changedInstr(MI); 2313 return Legalized; 2314 } 2315 case TargetOpcode::G_CONSTANT: { 2316 MachineOperand &SrcMO = MI.getOperand(1); 2317 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2318 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2319 MRI.getType(MI.getOperand(0).getReg())); 2320 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2321 ExtOpc == TargetOpcode::G_ANYEXT) && 2322 "Illegal Extend"); 2323 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2324 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2325 ? SrcVal.sext(WideTy.getSizeInBits()) 2326 : SrcVal.zext(WideTy.getSizeInBits()); 2327 Observer.changingInstr(MI); 2328 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2329 2330 widenScalarDst(MI, WideTy); 2331 Observer.changedInstr(MI); 2332 return Legalized; 2333 } 2334 case TargetOpcode::G_FCONSTANT: { 2335 MachineOperand &SrcMO = MI.getOperand(1); 2336 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2337 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2338 bool LosesInfo; 2339 switch (WideTy.getSizeInBits()) { 2340 case 32: 2341 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2342 &LosesInfo); 2343 break; 2344 case 64: 2345 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2346 &LosesInfo); 2347 break; 2348 default: 2349 return UnableToLegalize; 2350 } 2351 2352 assert(!LosesInfo && "extend should always be lossless"); 2353 2354 Observer.changingInstr(MI); 2355 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2356 2357 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2358 Observer.changedInstr(MI); 2359 return Legalized; 2360 } 2361 case TargetOpcode::G_IMPLICIT_DEF: { 2362 Observer.changingInstr(MI); 2363 widenScalarDst(MI, WideTy); 2364 Observer.changedInstr(MI); 2365 return Legalized; 2366 } 2367 case TargetOpcode::G_BRCOND: 2368 Observer.changingInstr(MI); 2369 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2370 Observer.changedInstr(MI); 2371 return Legalized; 2372 2373 case TargetOpcode::G_FCMP: 2374 Observer.changingInstr(MI); 2375 if (TypeIdx == 0) 2376 widenScalarDst(MI, WideTy); 2377 else { 2378 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2379 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2380 } 2381 Observer.changedInstr(MI); 2382 return Legalized; 2383 2384 case TargetOpcode::G_ICMP: 2385 Observer.changingInstr(MI); 2386 if (TypeIdx == 0) 2387 widenScalarDst(MI, WideTy); 2388 else { 2389 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2390 MI.getOperand(1).getPredicate())) 2391 ? TargetOpcode::G_SEXT 2392 : TargetOpcode::G_ZEXT; 2393 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2394 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2395 } 2396 Observer.changedInstr(MI); 2397 return Legalized; 2398 2399 case TargetOpcode::G_PTR_ADD: 2400 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2401 Observer.changingInstr(MI); 2402 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2403 Observer.changedInstr(MI); 2404 return Legalized; 2405 2406 case TargetOpcode::G_PHI: { 2407 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2408 2409 Observer.changingInstr(MI); 2410 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2411 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2412 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2413 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2414 } 2415 2416 MachineBasicBlock &MBB = *MI.getParent(); 2417 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2418 widenScalarDst(MI, WideTy); 2419 Observer.changedInstr(MI); 2420 return Legalized; 2421 } 2422 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2423 if (TypeIdx == 0) { 2424 Register VecReg = MI.getOperand(1).getReg(); 2425 LLT VecTy = MRI.getType(VecReg); 2426 Observer.changingInstr(MI); 2427 2428 widenScalarSrc( 2429 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2430 TargetOpcode::G_SEXT); 2431 2432 widenScalarDst(MI, WideTy, 0); 2433 Observer.changedInstr(MI); 2434 return Legalized; 2435 } 2436 2437 if (TypeIdx != 2) 2438 return UnableToLegalize; 2439 Observer.changingInstr(MI); 2440 // TODO: Probably should be zext 2441 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2442 Observer.changedInstr(MI); 2443 return Legalized; 2444 } 2445 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2446 if (TypeIdx == 1) { 2447 Observer.changingInstr(MI); 2448 2449 Register VecReg = MI.getOperand(1).getReg(); 2450 LLT VecTy = MRI.getType(VecReg); 2451 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2452 2453 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2454 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2455 widenScalarDst(MI, WideVecTy, 0); 2456 Observer.changedInstr(MI); 2457 return Legalized; 2458 } 2459 2460 if (TypeIdx == 2) { 2461 Observer.changingInstr(MI); 2462 // TODO: Probably should be zext 2463 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2464 Observer.changedInstr(MI); 2465 return Legalized; 2466 } 2467 2468 return UnableToLegalize; 2469 } 2470 case TargetOpcode::G_FADD: 2471 case TargetOpcode::G_FMUL: 2472 case TargetOpcode::G_FSUB: 2473 case TargetOpcode::G_FMA: 2474 case TargetOpcode::G_FMAD: 2475 case TargetOpcode::G_FNEG: 2476 case TargetOpcode::G_FABS: 2477 case TargetOpcode::G_FCANONICALIZE: 2478 case TargetOpcode::G_FMINNUM: 2479 case TargetOpcode::G_FMAXNUM: 2480 case TargetOpcode::G_FMINNUM_IEEE: 2481 case TargetOpcode::G_FMAXNUM_IEEE: 2482 case TargetOpcode::G_FMINIMUM: 2483 case TargetOpcode::G_FMAXIMUM: 2484 case TargetOpcode::G_FDIV: 2485 case TargetOpcode::G_FREM: 2486 case TargetOpcode::G_FCEIL: 2487 case TargetOpcode::G_FFLOOR: 2488 case TargetOpcode::G_FCOS: 2489 case TargetOpcode::G_FSIN: 2490 case TargetOpcode::G_FLOG10: 2491 case TargetOpcode::G_FLOG: 2492 case TargetOpcode::G_FLOG2: 2493 case TargetOpcode::G_FRINT: 2494 case TargetOpcode::G_FNEARBYINT: 2495 case TargetOpcode::G_FSQRT: 2496 case TargetOpcode::G_FEXP: 2497 case TargetOpcode::G_FEXP2: 2498 case TargetOpcode::G_FPOW: 2499 case TargetOpcode::G_INTRINSIC_TRUNC: 2500 case TargetOpcode::G_INTRINSIC_ROUND: 2501 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2502 assert(TypeIdx == 0); 2503 Observer.changingInstr(MI); 2504 2505 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2506 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2507 2508 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2509 Observer.changedInstr(MI); 2510 return Legalized; 2511 case TargetOpcode::G_FPOWI: { 2512 if (TypeIdx != 0) 2513 return UnableToLegalize; 2514 Observer.changingInstr(MI); 2515 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2516 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2517 Observer.changedInstr(MI); 2518 return Legalized; 2519 } 2520 case TargetOpcode::G_INTTOPTR: 2521 if (TypeIdx != 1) 2522 return UnableToLegalize; 2523 2524 Observer.changingInstr(MI); 2525 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2526 Observer.changedInstr(MI); 2527 return Legalized; 2528 case TargetOpcode::G_PTRTOINT: 2529 if (TypeIdx != 0) 2530 return UnableToLegalize; 2531 2532 Observer.changingInstr(MI); 2533 widenScalarDst(MI, WideTy, 0); 2534 Observer.changedInstr(MI); 2535 return Legalized; 2536 case TargetOpcode::G_BUILD_VECTOR: { 2537 Observer.changingInstr(MI); 2538 2539 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2540 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2541 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2542 2543 // Avoid changing the result vector type if the source element type was 2544 // requested. 2545 if (TypeIdx == 1) { 2546 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2547 } else { 2548 widenScalarDst(MI, WideTy, 0); 2549 } 2550 2551 Observer.changedInstr(MI); 2552 return Legalized; 2553 } 2554 case TargetOpcode::G_SEXT_INREG: 2555 if (TypeIdx != 0) 2556 return UnableToLegalize; 2557 2558 Observer.changingInstr(MI); 2559 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2560 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2561 Observer.changedInstr(MI); 2562 return Legalized; 2563 case TargetOpcode::G_PTRMASK: { 2564 if (TypeIdx != 1) 2565 return UnableToLegalize; 2566 Observer.changingInstr(MI); 2567 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2568 Observer.changedInstr(MI); 2569 return Legalized; 2570 } 2571 } 2572 } 2573 2574 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2575 MachineIRBuilder &B, Register Src, LLT Ty) { 2576 auto Unmerge = B.buildUnmerge(Ty, Src); 2577 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2578 Pieces.push_back(Unmerge.getReg(I)); 2579 } 2580 2581 LegalizerHelper::LegalizeResult 2582 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2583 Register Dst = MI.getOperand(0).getReg(); 2584 Register Src = MI.getOperand(1).getReg(); 2585 LLT DstTy = MRI.getType(Dst); 2586 LLT SrcTy = MRI.getType(Src); 2587 2588 if (SrcTy.isVector()) { 2589 LLT SrcEltTy = SrcTy.getElementType(); 2590 SmallVector<Register, 8> SrcRegs; 2591 2592 if (DstTy.isVector()) { 2593 int NumDstElt = DstTy.getNumElements(); 2594 int NumSrcElt = SrcTy.getNumElements(); 2595 2596 LLT DstEltTy = DstTy.getElementType(); 2597 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2598 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2599 2600 // If there's an element size mismatch, insert intermediate casts to match 2601 // the result element type. 2602 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2603 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2604 // 2605 // => 2606 // 2607 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2608 // %3:_(<2 x s8>) = G_BITCAST %2 2609 // %4:_(<2 x s8>) = G_BITCAST %3 2610 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2611 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2612 SrcPartTy = SrcEltTy; 2613 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2614 // 2615 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2616 // 2617 // => 2618 // 2619 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2620 // %3:_(s16) = G_BITCAST %2 2621 // %4:_(s16) = G_BITCAST %3 2622 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2623 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2624 DstCastTy = DstEltTy; 2625 } 2626 2627 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2628 for (Register &SrcReg : SrcRegs) 2629 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2630 } else 2631 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2632 2633 MIRBuilder.buildMerge(Dst, SrcRegs); 2634 MI.eraseFromParent(); 2635 return Legalized; 2636 } 2637 2638 if (DstTy.isVector()) { 2639 SmallVector<Register, 8> SrcRegs; 2640 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2641 MIRBuilder.buildMerge(Dst, SrcRegs); 2642 MI.eraseFromParent(); 2643 return Legalized; 2644 } 2645 2646 return UnableToLegalize; 2647 } 2648 2649 /// Figure out the bit offset into a register when coercing a vector index for 2650 /// the wide element type. This is only for the case when promoting vector to 2651 /// one with larger elements. 2652 // 2653 /// 2654 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2655 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2656 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2657 Register Idx, 2658 unsigned NewEltSize, 2659 unsigned OldEltSize) { 2660 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2661 LLT IdxTy = B.getMRI()->getType(Idx); 2662 2663 // Now figure out the amount we need to shift to get the target bits. 2664 auto OffsetMask = B.buildConstant( 2665 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2666 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2667 return B.buildShl(IdxTy, OffsetIdx, 2668 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2669 } 2670 2671 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2672 /// is casting to a vector with a smaller element size, perform multiple element 2673 /// extracts and merge the results. If this is coercing to a vector with larger 2674 /// elements, index the bitcasted vector and extract the target element with bit 2675 /// operations. This is intended to force the indexing in the native register 2676 /// size for architectures that can dynamically index the register file. 2677 LegalizerHelper::LegalizeResult 2678 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2679 LLT CastTy) { 2680 if (TypeIdx != 1) 2681 return UnableToLegalize; 2682 2683 Register Dst = MI.getOperand(0).getReg(); 2684 Register SrcVec = MI.getOperand(1).getReg(); 2685 Register Idx = MI.getOperand(2).getReg(); 2686 LLT SrcVecTy = MRI.getType(SrcVec); 2687 LLT IdxTy = MRI.getType(Idx); 2688 2689 LLT SrcEltTy = SrcVecTy.getElementType(); 2690 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2691 unsigned OldNumElts = SrcVecTy.getNumElements(); 2692 2693 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2694 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2695 2696 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2697 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2698 if (NewNumElts > OldNumElts) { 2699 // Decreasing the vector element size 2700 // 2701 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2702 // => 2703 // v4i32:castx = bitcast x:v2i64 2704 // 2705 // i64 = bitcast 2706 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2707 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2708 // 2709 if (NewNumElts % OldNumElts != 0) 2710 return UnableToLegalize; 2711 2712 // Type of the intermediate result vector. 2713 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2714 LLT MidTy = 2715 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2716 2717 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2718 2719 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2720 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2721 2722 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2723 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2724 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2725 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2726 NewOps[I] = Elt.getReg(0); 2727 } 2728 2729 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2730 MIRBuilder.buildBitcast(Dst, NewVec); 2731 MI.eraseFromParent(); 2732 return Legalized; 2733 } 2734 2735 if (NewNumElts < OldNumElts) { 2736 if (NewEltSize % OldEltSize != 0) 2737 return UnableToLegalize; 2738 2739 // This only depends on powers of 2 because we use bit tricks to figure out 2740 // the bit offset we need to shift to get the target element. A general 2741 // expansion could emit division/multiply. 2742 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2743 return UnableToLegalize; 2744 2745 // Increasing the vector element size. 2746 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2747 // 2748 // => 2749 // 2750 // %cast = G_BITCAST %vec 2751 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2752 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2753 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2754 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2755 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2756 // %elt = G_TRUNC %elt_bits 2757 2758 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2759 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2760 2761 // Divide to get the index in the wider element type. 2762 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2763 2764 Register WideElt = CastVec; 2765 if (CastTy.isVector()) { 2766 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2767 ScaledIdx).getReg(0); 2768 } 2769 2770 // Compute the bit offset into the register of the target element. 2771 Register OffsetBits = getBitcastWiderVectorElementOffset( 2772 MIRBuilder, Idx, NewEltSize, OldEltSize); 2773 2774 // Shift the wide element to get the target element. 2775 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2776 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2777 MI.eraseFromParent(); 2778 return Legalized; 2779 } 2780 2781 return UnableToLegalize; 2782 } 2783 2784 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2785 /// TargetReg, while preserving other bits in \p TargetReg. 2786 /// 2787 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2788 static Register buildBitFieldInsert(MachineIRBuilder &B, 2789 Register TargetReg, Register InsertReg, 2790 Register OffsetBits) { 2791 LLT TargetTy = B.getMRI()->getType(TargetReg); 2792 LLT InsertTy = B.getMRI()->getType(InsertReg); 2793 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2794 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2795 2796 // Produce a bitmask of the value to insert 2797 auto EltMask = B.buildConstant( 2798 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2799 InsertTy.getSizeInBits())); 2800 // Shift it into position 2801 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2802 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2803 2804 // Clear out the bits in the wide element 2805 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2806 2807 // The value to insert has all zeros already, so stick it into the masked 2808 // wide element. 2809 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2810 } 2811 2812 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2813 /// is increasing the element size, perform the indexing in the target element 2814 /// type, and use bit operations to insert at the element position. This is 2815 /// intended for architectures that can dynamically index the register file and 2816 /// want to force indexing in the native register size. 2817 LegalizerHelper::LegalizeResult 2818 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2819 LLT CastTy) { 2820 if (TypeIdx != 0) 2821 return UnableToLegalize; 2822 2823 Register Dst = MI.getOperand(0).getReg(); 2824 Register SrcVec = MI.getOperand(1).getReg(); 2825 Register Val = MI.getOperand(2).getReg(); 2826 Register Idx = MI.getOperand(3).getReg(); 2827 2828 LLT VecTy = MRI.getType(Dst); 2829 LLT IdxTy = MRI.getType(Idx); 2830 2831 LLT VecEltTy = VecTy.getElementType(); 2832 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2833 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2834 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2835 2836 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2837 unsigned OldNumElts = VecTy.getNumElements(); 2838 2839 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2840 if (NewNumElts < OldNumElts) { 2841 if (NewEltSize % OldEltSize != 0) 2842 return UnableToLegalize; 2843 2844 // This only depends on powers of 2 because we use bit tricks to figure out 2845 // the bit offset we need to shift to get the target element. A general 2846 // expansion could emit division/multiply. 2847 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2848 return UnableToLegalize; 2849 2850 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2851 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2852 2853 // Divide to get the index in the wider element type. 2854 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2855 2856 Register ExtractedElt = CastVec; 2857 if (CastTy.isVector()) { 2858 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2859 ScaledIdx).getReg(0); 2860 } 2861 2862 // Compute the bit offset into the register of the target element. 2863 Register OffsetBits = getBitcastWiderVectorElementOffset( 2864 MIRBuilder, Idx, NewEltSize, OldEltSize); 2865 2866 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2867 Val, OffsetBits); 2868 if (CastTy.isVector()) { 2869 InsertedElt = MIRBuilder.buildInsertVectorElement( 2870 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2871 } 2872 2873 MIRBuilder.buildBitcast(Dst, InsertedElt); 2874 MI.eraseFromParent(); 2875 return Legalized; 2876 } 2877 2878 return UnableToLegalize; 2879 } 2880 2881 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 2882 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2883 Register DstReg = LoadMI.getDstReg(); 2884 Register PtrReg = LoadMI.getPointerReg(); 2885 LLT DstTy = MRI.getType(DstReg); 2886 MachineMemOperand &MMO = LoadMI.getMMO(); 2887 LLT MemTy = MMO.getMemoryType(); 2888 MachineFunction &MF = MIRBuilder.getMF(); 2889 2890 unsigned MemSizeInBits = MemTy.getSizeInBits(); 2891 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2892 2893 if (MemSizeInBits != MemStoreSizeInBits) { 2894 if (MemTy.isVector()) 2895 return UnableToLegalize; 2896 2897 // Promote to a byte-sized load if not loading an integral number of 2898 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2899 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 2900 MachineMemOperand *NewMMO = 2901 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 2902 2903 Register LoadReg = DstReg; 2904 LLT LoadTy = DstTy; 2905 2906 // If this wasn't already an extending load, we need to widen the result 2907 // register to avoid creating a load with a narrower result than the source. 2908 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 2909 LoadTy = WideMemTy; 2910 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 2911 } 2912 2913 if (isa<GSExtLoad>(LoadMI)) { 2914 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2915 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 2916 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) { 2917 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2918 // The extra bits are guaranteed to be zero, since we stored them that 2919 // way. A zext load from Wide thus automatically gives zext from MemVT. 2920 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 2921 } else { 2922 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 2923 } 2924 2925 if (DstTy != LoadTy) 2926 MIRBuilder.buildTrunc(DstReg, LoadReg); 2927 2928 LoadMI.eraseFromParent(); 2929 return Legalized; 2930 } 2931 2932 // Big endian lowering not implemented. 2933 if (MIRBuilder.getDataLayout().isBigEndian()) 2934 return UnableToLegalize; 2935 2936 // This load needs splitting into power of 2 sized loads. 2937 // 2938 // Our strategy here is to generate anyextending loads for the smaller 2939 // types up to next power-2 result type, and then combine the two larger 2940 // result values together, before truncating back down to the non-pow-2 2941 // type. 2942 // E.g. v1 = i24 load => 2943 // v2 = i32 zextload (2 byte) 2944 // v3 = i32 load (1 byte) 2945 // v4 = i32 shl v3, 16 2946 // v5 = i32 or v4, v2 2947 // v1 = i24 trunc v5 2948 // By doing this we generate the correct truncate which should get 2949 // combined away as an artifact with a matching extend. 2950 2951 uint64_t LargeSplitSize, SmallSplitSize; 2952 2953 if (!isPowerOf2_32(MemSizeInBits)) { 2954 // This load needs splitting into power of 2 sized loads. 2955 LargeSplitSize = PowerOf2Floor(MemSizeInBits); 2956 SmallSplitSize = MemSizeInBits - LargeSplitSize; 2957 } else { 2958 // This is already a power of 2, but we still need to split this in half. 2959 // 2960 // Assume we're being asked to decompose an unaligned load. 2961 // TODO: If this requires multiple splits, handle them all at once. 2962 auto &Ctx = MF.getFunction().getContext(); 2963 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 2964 return UnableToLegalize; 2965 2966 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 2967 } 2968 2969 if (MemTy.isVector()) { 2970 // TODO: Handle vector extloads 2971 if (MemTy != DstTy) 2972 return UnableToLegalize; 2973 2974 // TODO: We can do better than scalarizing the vector and at least split it 2975 // in half. 2976 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); 2977 } 2978 2979 MachineMemOperand *LargeMMO = 2980 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2981 MachineMemOperand *SmallMMO = 2982 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2983 2984 LLT PtrTy = MRI.getType(PtrReg); 2985 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 2986 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2987 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 2988 PtrReg, *LargeMMO); 2989 2990 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 2991 LargeSplitSize / 8); 2992 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2993 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 2994 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 2995 SmallPtr, *SmallMMO); 2996 2997 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2998 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2999 3000 if (AnyExtTy == DstTy) 3001 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 3002 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { 3003 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3004 MIRBuilder.buildTrunc(DstReg, {Or}); 3005 } else { 3006 assert(DstTy.isPointer() && "expected pointer"); 3007 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3008 3009 // FIXME: We currently consider this to be illegal for non-integral address 3010 // spaces, but we need still need a way to reinterpret the bits. 3011 MIRBuilder.buildIntToPtr(DstReg, Or); 3012 } 3013 3014 LoadMI.eraseFromParent(); 3015 return Legalized; 3016 } 3017 3018 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 3019 // Lower a non-power of 2 store into multiple pow-2 stores. 3020 // E.g. split an i24 store into an i16 store + i8 store. 3021 // We do this by first extending the stored value to the next largest power 3022 // of 2 type, and then using truncating stores to store the components. 3023 // By doing this, likewise with G_LOAD, generate an extend that can be 3024 // artifact-combined away instead of leaving behind extracts. 3025 Register SrcReg = StoreMI.getValueReg(); 3026 Register PtrReg = StoreMI.getPointerReg(); 3027 LLT SrcTy = MRI.getType(SrcReg); 3028 MachineFunction &MF = MIRBuilder.getMF(); 3029 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 3030 LLT MemTy = MMO.getMemoryType(); 3031 3032 unsigned StoreWidth = MemTy.getSizeInBits(); 3033 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3034 3035 if (StoreWidth != StoreSizeInBits) { 3036 if (SrcTy.isVector()) 3037 return UnableToLegalize; 3038 3039 // Promote to a byte-sized store with upper bits zero if not 3040 // storing an integral number of bytes. For example, promote 3041 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 3042 LLT WideTy = LLT::scalar(StoreSizeInBits); 3043 3044 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 3045 // Avoid creating a store with a narrower source than result. 3046 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 3047 SrcTy = WideTy; 3048 } 3049 3050 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 3051 3052 MachineMemOperand *NewMMO = 3053 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 3054 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 3055 StoreMI.eraseFromParent(); 3056 return Legalized; 3057 } 3058 3059 if (MemTy.isVector()) { 3060 // TODO: Handle vector trunc stores 3061 if (MemTy != SrcTy) 3062 return UnableToLegalize; 3063 3064 // TODO: We can do better than scalarizing the vector and at least split it 3065 // in half. 3066 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); 3067 } 3068 3069 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3070 uint64_t LargeSplitSize, SmallSplitSize; 3071 3072 if (!isPowerOf2_32(MemSizeInBits)) { 3073 LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); 3074 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 3075 } else { 3076 auto &Ctx = MF.getFunction().getContext(); 3077 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3078 return UnableToLegalize; // Don't know what we're being asked to do. 3079 3080 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3081 } 3082 3083 // Extend to the next pow-2. If this store was itself the result of lowering, 3084 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 3085 // that's wider than the stored size. 3086 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); 3087 const LLT NewSrcTy = LLT::scalar(AnyExtSize); 3088 3089 if (SrcTy.isPointer()) { 3090 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); 3091 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); 3092 } 3093 3094 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 3095 3096 // Obtain the smaller value by shifting away the larger value. 3097 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 3098 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 3099 3100 // Generate the PtrAdd and truncating stores. 3101 LLT PtrTy = MRI.getType(PtrReg); 3102 auto OffsetCst = MIRBuilder.buildConstant( 3103 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 3104 auto SmallPtr = 3105 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); 3106 3107 MachineMemOperand *LargeMMO = 3108 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3109 MachineMemOperand *SmallMMO = 3110 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3111 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 3112 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 3113 StoreMI.eraseFromParent(); 3114 return Legalized; 3115 } 3116 3117 LegalizerHelper::LegalizeResult 3118 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 3119 switch (MI.getOpcode()) { 3120 case TargetOpcode::G_LOAD: { 3121 if (TypeIdx != 0) 3122 return UnableToLegalize; 3123 MachineMemOperand &MMO = **MI.memoperands_begin(); 3124 3125 // Not sure how to interpret a bitcast of an extending load. 3126 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3127 return UnableToLegalize; 3128 3129 Observer.changingInstr(MI); 3130 bitcastDst(MI, CastTy, 0); 3131 MMO.setType(CastTy); 3132 Observer.changedInstr(MI); 3133 return Legalized; 3134 } 3135 case TargetOpcode::G_STORE: { 3136 if (TypeIdx != 0) 3137 return UnableToLegalize; 3138 3139 MachineMemOperand &MMO = **MI.memoperands_begin(); 3140 3141 // Not sure how to interpret a bitcast of a truncating store. 3142 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3143 return UnableToLegalize; 3144 3145 Observer.changingInstr(MI); 3146 bitcastSrc(MI, CastTy, 0); 3147 MMO.setType(CastTy); 3148 Observer.changedInstr(MI); 3149 return Legalized; 3150 } 3151 case TargetOpcode::G_SELECT: { 3152 if (TypeIdx != 0) 3153 return UnableToLegalize; 3154 3155 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3156 LLVM_DEBUG( 3157 dbgs() << "bitcast action not implemented for vector select\n"); 3158 return UnableToLegalize; 3159 } 3160 3161 Observer.changingInstr(MI); 3162 bitcastSrc(MI, CastTy, 2); 3163 bitcastSrc(MI, CastTy, 3); 3164 bitcastDst(MI, CastTy, 0); 3165 Observer.changedInstr(MI); 3166 return Legalized; 3167 } 3168 case TargetOpcode::G_AND: 3169 case TargetOpcode::G_OR: 3170 case TargetOpcode::G_XOR: { 3171 Observer.changingInstr(MI); 3172 bitcastSrc(MI, CastTy, 1); 3173 bitcastSrc(MI, CastTy, 2); 3174 bitcastDst(MI, CastTy, 0); 3175 Observer.changedInstr(MI); 3176 return Legalized; 3177 } 3178 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3179 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3180 case TargetOpcode::G_INSERT_VECTOR_ELT: 3181 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3182 default: 3183 return UnableToLegalize; 3184 } 3185 } 3186 3187 // Legalize an instruction by changing the opcode in place. 3188 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3189 Observer.changingInstr(MI); 3190 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3191 Observer.changedInstr(MI); 3192 } 3193 3194 LegalizerHelper::LegalizeResult 3195 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3196 using namespace TargetOpcode; 3197 3198 switch(MI.getOpcode()) { 3199 default: 3200 return UnableToLegalize; 3201 case TargetOpcode::G_BITCAST: 3202 return lowerBitcast(MI); 3203 case TargetOpcode::G_SREM: 3204 case TargetOpcode::G_UREM: { 3205 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3206 auto Quot = 3207 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3208 {MI.getOperand(1), MI.getOperand(2)}); 3209 3210 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3211 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3212 MI.eraseFromParent(); 3213 return Legalized; 3214 } 3215 case TargetOpcode::G_SADDO: 3216 case TargetOpcode::G_SSUBO: 3217 return lowerSADDO_SSUBO(MI); 3218 case TargetOpcode::G_UMULH: 3219 case TargetOpcode::G_SMULH: 3220 return lowerSMULH_UMULH(MI); 3221 case TargetOpcode::G_SMULO: 3222 case TargetOpcode::G_UMULO: { 3223 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3224 // result. 3225 Register Res = MI.getOperand(0).getReg(); 3226 Register Overflow = MI.getOperand(1).getReg(); 3227 Register LHS = MI.getOperand(2).getReg(); 3228 Register RHS = MI.getOperand(3).getReg(); 3229 LLT Ty = MRI.getType(Res); 3230 3231 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3232 ? TargetOpcode::G_SMULH 3233 : TargetOpcode::G_UMULH; 3234 3235 Observer.changingInstr(MI); 3236 const auto &TII = MIRBuilder.getTII(); 3237 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3238 MI.RemoveOperand(1); 3239 Observer.changedInstr(MI); 3240 3241 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3242 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3243 3244 // Move insert point forward so we can use the Res register if needed. 3245 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3246 3247 // For *signed* multiply, overflow is detected by checking: 3248 // (hi != (lo >> bitwidth-1)) 3249 if (Opcode == TargetOpcode::G_SMULH) { 3250 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3251 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3252 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3253 } else { 3254 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3255 } 3256 return Legalized; 3257 } 3258 case TargetOpcode::G_FNEG: { 3259 Register Res = MI.getOperand(0).getReg(); 3260 LLT Ty = MRI.getType(Res); 3261 3262 // TODO: Handle vector types once we are able to 3263 // represent them. 3264 if (Ty.isVector()) 3265 return UnableToLegalize; 3266 auto SignMask = 3267 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3268 Register SubByReg = MI.getOperand(1).getReg(); 3269 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3270 MI.eraseFromParent(); 3271 return Legalized; 3272 } 3273 case TargetOpcode::G_FSUB: { 3274 Register Res = MI.getOperand(0).getReg(); 3275 LLT Ty = MRI.getType(Res); 3276 3277 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3278 // First, check if G_FNEG is marked as Lower. If so, we may 3279 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3280 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3281 return UnableToLegalize; 3282 Register LHS = MI.getOperand(1).getReg(); 3283 Register RHS = MI.getOperand(2).getReg(); 3284 Register Neg = MRI.createGenericVirtualRegister(Ty); 3285 MIRBuilder.buildFNeg(Neg, RHS); 3286 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3287 MI.eraseFromParent(); 3288 return Legalized; 3289 } 3290 case TargetOpcode::G_FMAD: 3291 return lowerFMad(MI); 3292 case TargetOpcode::G_FFLOOR: 3293 return lowerFFloor(MI); 3294 case TargetOpcode::G_INTRINSIC_ROUND: 3295 return lowerIntrinsicRound(MI); 3296 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3297 // Since round even is the assumed rounding mode for unconstrained FP 3298 // operations, rint and roundeven are the same operation. 3299 changeOpcode(MI, TargetOpcode::G_FRINT); 3300 return Legalized; 3301 } 3302 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3303 Register OldValRes = MI.getOperand(0).getReg(); 3304 Register SuccessRes = MI.getOperand(1).getReg(); 3305 Register Addr = MI.getOperand(2).getReg(); 3306 Register CmpVal = MI.getOperand(3).getReg(); 3307 Register NewVal = MI.getOperand(4).getReg(); 3308 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3309 **MI.memoperands_begin()); 3310 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3311 MI.eraseFromParent(); 3312 return Legalized; 3313 } 3314 case TargetOpcode::G_LOAD: 3315 case TargetOpcode::G_SEXTLOAD: 3316 case TargetOpcode::G_ZEXTLOAD: 3317 return lowerLoad(cast<GAnyLoad>(MI)); 3318 case TargetOpcode::G_STORE: 3319 return lowerStore(cast<GStore>(MI)); 3320 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3321 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3322 case TargetOpcode::G_CTLZ: 3323 case TargetOpcode::G_CTTZ: 3324 case TargetOpcode::G_CTPOP: 3325 return lowerBitCount(MI); 3326 case G_UADDO: { 3327 Register Res = MI.getOperand(0).getReg(); 3328 Register CarryOut = MI.getOperand(1).getReg(); 3329 Register LHS = MI.getOperand(2).getReg(); 3330 Register RHS = MI.getOperand(3).getReg(); 3331 3332 MIRBuilder.buildAdd(Res, LHS, RHS); 3333 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3334 3335 MI.eraseFromParent(); 3336 return Legalized; 3337 } 3338 case G_UADDE: { 3339 Register Res = MI.getOperand(0).getReg(); 3340 Register CarryOut = MI.getOperand(1).getReg(); 3341 Register LHS = MI.getOperand(2).getReg(); 3342 Register RHS = MI.getOperand(3).getReg(); 3343 Register CarryIn = MI.getOperand(4).getReg(); 3344 LLT Ty = MRI.getType(Res); 3345 3346 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3347 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3348 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3349 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3350 3351 MI.eraseFromParent(); 3352 return Legalized; 3353 } 3354 case G_USUBO: { 3355 Register Res = MI.getOperand(0).getReg(); 3356 Register BorrowOut = MI.getOperand(1).getReg(); 3357 Register LHS = MI.getOperand(2).getReg(); 3358 Register RHS = MI.getOperand(3).getReg(); 3359 3360 MIRBuilder.buildSub(Res, LHS, RHS); 3361 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3362 3363 MI.eraseFromParent(); 3364 return Legalized; 3365 } 3366 case G_USUBE: { 3367 Register Res = MI.getOperand(0).getReg(); 3368 Register BorrowOut = MI.getOperand(1).getReg(); 3369 Register LHS = MI.getOperand(2).getReg(); 3370 Register RHS = MI.getOperand(3).getReg(); 3371 Register BorrowIn = MI.getOperand(4).getReg(); 3372 const LLT CondTy = MRI.getType(BorrowOut); 3373 const LLT Ty = MRI.getType(Res); 3374 3375 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3376 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3377 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3378 3379 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3380 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3381 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3382 3383 MI.eraseFromParent(); 3384 return Legalized; 3385 } 3386 case G_UITOFP: 3387 return lowerUITOFP(MI); 3388 case G_SITOFP: 3389 return lowerSITOFP(MI); 3390 case G_FPTOUI: 3391 return lowerFPTOUI(MI); 3392 case G_FPTOSI: 3393 return lowerFPTOSI(MI); 3394 case G_FPTRUNC: 3395 return lowerFPTRUNC(MI); 3396 case G_FPOWI: 3397 return lowerFPOWI(MI); 3398 case G_SMIN: 3399 case G_SMAX: 3400 case G_UMIN: 3401 case G_UMAX: 3402 return lowerMinMax(MI); 3403 case G_FCOPYSIGN: 3404 return lowerFCopySign(MI); 3405 case G_FMINNUM: 3406 case G_FMAXNUM: 3407 return lowerFMinNumMaxNum(MI); 3408 case G_MERGE_VALUES: 3409 return lowerMergeValues(MI); 3410 case G_UNMERGE_VALUES: 3411 return lowerUnmergeValues(MI); 3412 case TargetOpcode::G_SEXT_INREG: { 3413 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3414 int64_t SizeInBits = MI.getOperand(2).getImm(); 3415 3416 Register DstReg = MI.getOperand(0).getReg(); 3417 Register SrcReg = MI.getOperand(1).getReg(); 3418 LLT DstTy = MRI.getType(DstReg); 3419 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3420 3421 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3422 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3423 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3424 MI.eraseFromParent(); 3425 return Legalized; 3426 } 3427 case G_EXTRACT_VECTOR_ELT: 3428 case G_INSERT_VECTOR_ELT: 3429 return lowerExtractInsertVectorElt(MI); 3430 case G_SHUFFLE_VECTOR: 3431 return lowerShuffleVector(MI); 3432 case G_DYN_STACKALLOC: 3433 return lowerDynStackAlloc(MI); 3434 case G_EXTRACT: 3435 return lowerExtract(MI); 3436 case G_INSERT: 3437 return lowerInsert(MI); 3438 case G_BSWAP: 3439 return lowerBswap(MI); 3440 case G_BITREVERSE: 3441 return lowerBitreverse(MI); 3442 case G_READ_REGISTER: 3443 case G_WRITE_REGISTER: 3444 return lowerReadWriteRegister(MI); 3445 case G_UADDSAT: 3446 case G_USUBSAT: { 3447 // Try to make a reasonable guess about which lowering strategy to use. The 3448 // target can override this with custom lowering and calling the 3449 // implementation functions. 3450 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3451 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3452 return lowerAddSubSatToMinMax(MI); 3453 return lowerAddSubSatToAddoSubo(MI); 3454 } 3455 case G_SADDSAT: 3456 case G_SSUBSAT: { 3457 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3458 3459 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3460 // since it's a shorter expansion. However, we would need to figure out the 3461 // preferred boolean type for the carry out for the query. 3462 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3463 return lowerAddSubSatToMinMax(MI); 3464 return lowerAddSubSatToAddoSubo(MI); 3465 } 3466 case G_SSHLSAT: 3467 case G_USHLSAT: 3468 return lowerShlSat(MI); 3469 case G_ABS: 3470 return lowerAbsToAddXor(MI); 3471 case G_SELECT: 3472 return lowerSelect(MI); 3473 case G_SDIVREM: 3474 case G_UDIVREM: 3475 return lowerDIVREM(MI); 3476 case G_FSHL: 3477 case G_FSHR: 3478 return lowerFunnelShift(MI); 3479 case G_ROTL: 3480 case G_ROTR: 3481 return lowerRotate(MI); 3482 } 3483 } 3484 3485 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3486 Align MinAlign) const { 3487 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3488 // datalayout for the preferred alignment. Also there should be a target hook 3489 // for this to allow targets to reduce the alignment and ignore the 3490 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3491 // the type. 3492 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3493 } 3494 3495 MachineInstrBuilder 3496 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3497 MachinePointerInfo &PtrInfo) { 3498 MachineFunction &MF = MIRBuilder.getMF(); 3499 const DataLayout &DL = MIRBuilder.getDataLayout(); 3500 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3501 3502 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3503 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3504 3505 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3506 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3507 } 3508 3509 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3510 LLT VecTy) { 3511 int64_t IdxVal; 3512 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3513 return IdxReg; 3514 3515 LLT IdxTy = B.getMRI()->getType(IdxReg); 3516 unsigned NElts = VecTy.getNumElements(); 3517 if (isPowerOf2_32(NElts)) { 3518 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3519 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3520 } 3521 3522 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3523 .getReg(0); 3524 } 3525 3526 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3527 Register Index) { 3528 LLT EltTy = VecTy.getElementType(); 3529 3530 // Calculate the element offset and add it to the pointer. 3531 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3532 assert(EltSize * 8 == EltTy.getSizeInBits() && 3533 "Converting bits to bytes lost precision"); 3534 3535 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3536 3537 LLT IdxTy = MRI.getType(Index); 3538 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3539 MIRBuilder.buildConstant(IdxTy, EltSize)); 3540 3541 LLT PtrTy = MRI.getType(VecPtr); 3542 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3543 } 3544 3545 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3546 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3547 Register DstReg = MI.getOperand(0).getReg(); 3548 LLT DstTy = MRI.getType(DstReg); 3549 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3550 3551 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3552 3553 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3554 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3555 3556 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3557 MI.eraseFromParent(); 3558 return Legalized; 3559 } 3560 3561 // Handle splitting vector operations which need to have the same number of 3562 // elements in each type index, but each type index may have a different element 3563 // type. 3564 // 3565 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3566 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3567 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3568 // 3569 // Also handles some irregular breakdown cases, e.g. 3570 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3571 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3572 // s64 = G_SHL s64, s32 3573 LegalizerHelper::LegalizeResult 3574 LegalizerHelper::fewerElementsVectorMultiEltType( 3575 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3576 if (TypeIdx != 0) 3577 return UnableToLegalize; 3578 3579 const LLT NarrowTy0 = NarrowTyArg; 3580 const Register DstReg = MI.getOperand(0).getReg(); 3581 LLT DstTy = MRI.getType(DstReg); 3582 LLT LeftoverTy0; 3583 3584 // All of the operands need to have the same number of elements, so if we can 3585 // determine a type breakdown for the result type, we can for all of the 3586 // source types. 3587 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3588 if (NumParts < 0) 3589 return UnableToLegalize; 3590 3591 SmallVector<MachineInstrBuilder, 4> NewInsts; 3592 3593 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3594 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3595 3596 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3597 Register SrcReg = MI.getOperand(I).getReg(); 3598 LLT SrcTyI = MRI.getType(SrcReg); 3599 const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount() 3600 : ElementCount::getFixed(1); 3601 LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType()); 3602 LLT LeftoverTyI; 3603 3604 // Split this operand into the requested typed registers, and any leftover 3605 // required to reproduce the original type. 3606 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3607 LeftoverRegs)) 3608 return UnableToLegalize; 3609 3610 if (I == 1) { 3611 // For the first operand, create an instruction for each part and setup 3612 // the result. 3613 for (Register PartReg : PartRegs) { 3614 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3615 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3616 .addDef(PartDstReg) 3617 .addUse(PartReg)); 3618 DstRegs.push_back(PartDstReg); 3619 } 3620 3621 for (Register LeftoverReg : LeftoverRegs) { 3622 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3623 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3624 .addDef(PartDstReg) 3625 .addUse(LeftoverReg)); 3626 LeftoverDstRegs.push_back(PartDstReg); 3627 } 3628 } else { 3629 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3630 3631 // Add the newly created operand splits to the existing instructions. The 3632 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3633 // pieces. 3634 unsigned InstCount = 0; 3635 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3636 NewInsts[InstCount++].addUse(PartRegs[J]); 3637 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3638 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3639 } 3640 3641 PartRegs.clear(); 3642 LeftoverRegs.clear(); 3643 } 3644 3645 // Insert the newly built operations and rebuild the result register. 3646 for (auto &MIB : NewInsts) 3647 MIRBuilder.insertInstr(MIB); 3648 3649 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3650 3651 MI.eraseFromParent(); 3652 return Legalized; 3653 } 3654 3655 LegalizerHelper::LegalizeResult 3656 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3657 LLT NarrowTy) { 3658 if (TypeIdx != 0) 3659 return UnableToLegalize; 3660 3661 Register DstReg = MI.getOperand(0).getReg(); 3662 Register SrcReg = MI.getOperand(1).getReg(); 3663 LLT DstTy = MRI.getType(DstReg); 3664 LLT SrcTy = MRI.getType(SrcReg); 3665 3666 LLT NarrowTy0 = NarrowTy; 3667 LLT NarrowTy1; 3668 unsigned NumParts; 3669 3670 if (NarrowTy.isVector()) { 3671 // Uneven breakdown not handled. 3672 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3673 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3674 return UnableToLegalize; 3675 3676 NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType()); 3677 } else { 3678 NumParts = DstTy.getNumElements(); 3679 NarrowTy1 = SrcTy.getElementType(); 3680 } 3681 3682 SmallVector<Register, 4> SrcRegs, DstRegs; 3683 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3684 3685 for (unsigned I = 0; I < NumParts; ++I) { 3686 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3687 MachineInstr *NewInst = 3688 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3689 3690 NewInst->setFlags(MI.getFlags()); 3691 DstRegs.push_back(DstReg); 3692 } 3693 3694 if (NarrowTy.isVector()) 3695 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3696 else 3697 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3698 3699 MI.eraseFromParent(); 3700 return Legalized; 3701 } 3702 3703 LegalizerHelper::LegalizeResult 3704 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3705 LLT NarrowTy) { 3706 Register DstReg = MI.getOperand(0).getReg(); 3707 Register Src0Reg = MI.getOperand(2).getReg(); 3708 LLT DstTy = MRI.getType(DstReg); 3709 LLT SrcTy = MRI.getType(Src0Reg); 3710 3711 unsigned NumParts; 3712 LLT NarrowTy0, NarrowTy1; 3713 3714 if (TypeIdx == 0) { 3715 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3716 unsigned OldElts = DstTy.getNumElements(); 3717 3718 NarrowTy0 = NarrowTy; 3719 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3720 NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(), 3721 SrcTy.getScalarSizeInBits()) 3722 : SrcTy.getElementType(); 3723 3724 } else { 3725 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3726 unsigned OldElts = SrcTy.getNumElements(); 3727 3728 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3729 NarrowTy.getNumElements(); 3730 NarrowTy0 = 3731 LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits()); 3732 NarrowTy1 = NarrowTy; 3733 } 3734 3735 // FIXME: Don't know how to handle the situation where the small vectors 3736 // aren't all the same size yet. 3737 if (NarrowTy1.isVector() && 3738 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3739 return UnableToLegalize; 3740 3741 CmpInst::Predicate Pred 3742 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3743 3744 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3745 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3746 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3747 3748 for (unsigned I = 0; I < NumParts; ++I) { 3749 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3750 DstRegs.push_back(DstReg); 3751 3752 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3753 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3754 else { 3755 MachineInstr *NewCmp 3756 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3757 NewCmp->setFlags(MI.getFlags()); 3758 } 3759 } 3760 3761 if (NarrowTy1.isVector()) 3762 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3763 else 3764 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3765 3766 MI.eraseFromParent(); 3767 return Legalized; 3768 } 3769 3770 LegalizerHelper::LegalizeResult 3771 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3772 LLT NarrowTy) { 3773 Register DstReg = MI.getOperand(0).getReg(); 3774 Register CondReg = MI.getOperand(1).getReg(); 3775 3776 unsigned NumParts = 0; 3777 LLT NarrowTy0, NarrowTy1; 3778 3779 LLT DstTy = MRI.getType(DstReg); 3780 LLT CondTy = MRI.getType(CondReg); 3781 unsigned Size = DstTy.getSizeInBits(); 3782 3783 assert(TypeIdx == 0 || CondTy.isVector()); 3784 3785 if (TypeIdx == 0) { 3786 NarrowTy0 = NarrowTy; 3787 NarrowTy1 = CondTy; 3788 3789 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3790 // FIXME: Don't know how to handle the situation where the small vectors 3791 // aren't all the same size yet. 3792 if (Size % NarrowSize != 0) 3793 return UnableToLegalize; 3794 3795 NumParts = Size / NarrowSize; 3796 3797 // Need to break down the condition type 3798 if (CondTy.isVector()) { 3799 if (CondTy.getNumElements() == NumParts) 3800 NarrowTy1 = CondTy.getElementType(); 3801 else 3802 NarrowTy1 = 3803 LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts), 3804 CondTy.getScalarSizeInBits()); 3805 } 3806 } else { 3807 NumParts = CondTy.getNumElements(); 3808 if (NarrowTy.isVector()) { 3809 // TODO: Handle uneven breakdown. 3810 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3811 return UnableToLegalize; 3812 3813 return UnableToLegalize; 3814 } else { 3815 NarrowTy0 = DstTy.getElementType(); 3816 NarrowTy1 = NarrowTy; 3817 } 3818 } 3819 3820 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3821 if (CondTy.isVector()) 3822 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3823 3824 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3825 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3826 3827 for (unsigned i = 0; i < NumParts; ++i) { 3828 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3829 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3830 Src1Regs[i], Src2Regs[i]); 3831 DstRegs.push_back(DstReg); 3832 } 3833 3834 if (NarrowTy0.isVector()) 3835 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3836 else 3837 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3838 3839 MI.eraseFromParent(); 3840 return Legalized; 3841 } 3842 3843 LegalizerHelper::LegalizeResult 3844 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3845 LLT NarrowTy) { 3846 const Register DstReg = MI.getOperand(0).getReg(); 3847 LLT PhiTy = MRI.getType(DstReg); 3848 LLT LeftoverTy; 3849 3850 // All of the operands need to have the same number of elements, so if we can 3851 // determine a type breakdown for the result type, we can for all of the 3852 // source types. 3853 int NumParts, NumLeftover; 3854 std::tie(NumParts, NumLeftover) 3855 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3856 if (NumParts < 0) 3857 return UnableToLegalize; 3858 3859 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3860 SmallVector<MachineInstrBuilder, 4> NewInsts; 3861 3862 const int TotalNumParts = NumParts + NumLeftover; 3863 3864 // Insert the new phis in the result block first. 3865 for (int I = 0; I != TotalNumParts; ++I) { 3866 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3867 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3868 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3869 .addDef(PartDstReg)); 3870 if (I < NumParts) 3871 DstRegs.push_back(PartDstReg); 3872 else 3873 LeftoverDstRegs.push_back(PartDstReg); 3874 } 3875 3876 MachineBasicBlock *MBB = MI.getParent(); 3877 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3878 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3879 3880 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3881 3882 // Insert code to extract the incoming values in each predecessor block. 3883 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3884 PartRegs.clear(); 3885 LeftoverRegs.clear(); 3886 3887 Register SrcReg = MI.getOperand(I).getReg(); 3888 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3889 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3890 3891 LLT Unused; 3892 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3893 LeftoverRegs)) 3894 return UnableToLegalize; 3895 3896 // Add the newly created operand splits to the existing instructions. The 3897 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3898 // pieces. 3899 for (int J = 0; J != TotalNumParts; ++J) { 3900 MachineInstrBuilder MIB = NewInsts[J]; 3901 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3902 MIB.addMBB(&OpMBB); 3903 } 3904 } 3905 3906 MI.eraseFromParent(); 3907 return Legalized; 3908 } 3909 3910 LegalizerHelper::LegalizeResult 3911 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3912 unsigned TypeIdx, 3913 LLT NarrowTy) { 3914 if (TypeIdx != 1) 3915 return UnableToLegalize; 3916 3917 const int NumDst = MI.getNumOperands() - 1; 3918 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3919 LLT SrcTy = MRI.getType(SrcReg); 3920 3921 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3922 3923 // TODO: Create sequence of extracts. 3924 if (DstTy == NarrowTy) 3925 return UnableToLegalize; 3926 3927 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3928 if (DstTy == GCDTy) { 3929 // This would just be a copy of the same unmerge. 3930 // TODO: Create extracts, pad with undef and create intermediate merges. 3931 return UnableToLegalize; 3932 } 3933 3934 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3935 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3936 const int PartsPerUnmerge = NumDst / NumUnmerge; 3937 3938 for (int I = 0; I != NumUnmerge; ++I) { 3939 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3940 3941 for (int J = 0; J != PartsPerUnmerge; ++J) 3942 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3943 MIB.addUse(Unmerge.getReg(I)); 3944 } 3945 3946 MI.eraseFromParent(); 3947 return Legalized; 3948 } 3949 3950 LegalizerHelper::LegalizeResult 3951 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx, 3952 LLT NarrowTy) { 3953 Register Result = MI.getOperand(0).getReg(); 3954 Register Overflow = MI.getOperand(1).getReg(); 3955 Register LHS = MI.getOperand(2).getReg(); 3956 Register RHS = MI.getOperand(3).getReg(); 3957 3958 LLT SrcTy = MRI.getType(LHS); 3959 if (!SrcTy.isVector()) 3960 return UnableToLegalize; 3961 3962 LLT ElementType = SrcTy.getElementType(); 3963 LLT OverflowElementTy = MRI.getType(Overflow).getElementType(); 3964 const ElementCount NumResult = SrcTy.getElementCount(); 3965 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3966 3967 // Unmerge the operands to smaller parts of GCD type. 3968 auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS); 3969 auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS); 3970 3971 const int NumOps = UnmergeLHS->getNumOperands() - 1; 3972 const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps); 3973 LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy); 3974 LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType); 3975 3976 // Perform the operation over unmerged parts. 3977 SmallVector<Register, 8> ResultParts; 3978 SmallVector<Register, 8> OverflowParts; 3979 for (int I = 0; I != NumOps; ++I) { 3980 Register Operand1 = UnmergeLHS->getOperand(I).getReg(); 3981 Register Operand2 = UnmergeRHS->getOperand(I).getReg(); 3982 auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy}, 3983 {Operand1, Operand2}); 3984 ResultParts.push_back(PartMul->getOperand(0).getReg()); 3985 OverflowParts.push_back(PartMul->getOperand(1).getReg()); 3986 } 3987 3988 LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts); 3989 LLT OverflowLCMTy = 3990 LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy); 3991 3992 // Recombine the pieces to the original result and overflow registers. 3993 buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts); 3994 buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts); 3995 MI.eraseFromParent(); 3996 return Legalized; 3997 } 3998 3999 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 4000 // a vector 4001 // 4002 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 4003 // undef as necessary. 4004 // 4005 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 4006 // -> <2 x s16> 4007 // 4008 // %4:_(s16) = G_IMPLICIT_DEF 4009 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 4010 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 4011 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 4012 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 4013 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 4014 LegalizerHelper::LegalizeResult 4015 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 4016 LLT NarrowTy) { 4017 Register DstReg = MI.getOperand(0).getReg(); 4018 LLT DstTy = MRI.getType(DstReg); 4019 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4020 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 4021 4022 // Break into a common type 4023 SmallVector<Register, 16> Parts; 4024 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 4025 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 4026 4027 // Build the requested new merge, padding with undef. 4028 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 4029 TargetOpcode::G_ANYEXT); 4030 4031 // Pack into the original result register. 4032 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4033 4034 MI.eraseFromParent(); 4035 return Legalized; 4036 } 4037 4038 LegalizerHelper::LegalizeResult 4039 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 4040 unsigned TypeIdx, 4041 LLT NarrowVecTy) { 4042 Register DstReg = MI.getOperand(0).getReg(); 4043 Register SrcVec = MI.getOperand(1).getReg(); 4044 Register InsertVal; 4045 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 4046 4047 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 4048 if (IsInsert) 4049 InsertVal = MI.getOperand(2).getReg(); 4050 4051 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 4052 4053 // TODO: Handle total scalarization case. 4054 if (!NarrowVecTy.isVector()) 4055 return UnableToLegalize; 4056 4057 LLT VecTy = MRI.getType(SrcVec); 4058 4059 // If the index is a constant, we can really break this down as you would 4060 // expect, and index into the target size pieces. 4061 int64_t IdxVal; 4062 auto MaybeCst = 4063 getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true, 4064 /*HandleFConstants*/ false); 4065 if (MaybeCst) { 4066 IdxVal = MaybeCst->Value.getSExtValue(); 4067 // Avoid out of bounds indexing the pieces. 4068 if (IdxVal >= VecTy.getNumElements()) { 4069 MIRBuilder.buildUndef(DstReg); 4070 MI.eraseFromParent(); 4071 return Legalized; 4072 } 4073 4074 SmallVector<Register, 8> VecParts; 4075 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 4076 4077 // Build a sequence of NarrowTy pieces in VecParts for this operand. 4078 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 4079 TargetOpcode::G_ANYEXT); 4080 4081 unsigned NewNumElts = NarrowVecTy.getNumElements(); 4082 4083 LLT IdxTy = MRI.getType(Idx); 4084 int64_t PartIdx = IdxVal / NewNumElts; 4085 auto NewIdx = 4086 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 4087 4088 if (IsInsert) { 4089 LLT PartTy = MRI.getType(VecParts[PartIdx]); 4090 4091 // Use the adjusted index to insert into one of the subvectors. 4092 auto InsertPart = MIRBuilder.buildInsertVectorElement( 4093 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 4094 VecParts[PartIdx] = InsertPart.getReg(0); 4095 4096 // Recombine the inserted subvector with the others to reform the result 4097 // vector. 4098 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 4099 } else { 4100 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 4101 } 4102 4103 MI.eraseFromParent(); 4104 return Legalized; 4105 } 4106 4107 // With a variable index, we can't perform the operation in a smaller type, so 4108 // we're forced to expand this. 4109 // 4110 // TODO: We could emit a chain of compare/select to figure out which piece to 4111 // index. 4112 return lowerExtractInsertVectorElt(MI); 4113 } 4114 4115 LegalizerHelper::LegalizeResult 4116 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 4117 LLT NarrowTy) { 4118 // FIXME: Don't know how to handle secondary types yet. 4119 if (TypeIdx != 0) 4120 return UnableToLegalize; 4121 4122 // This implementation doesn't work for atomics. Give up instead of doing 4123 // something invalid. 4124 if (LdStMI.isAtomic()) 4125 return UnableToLegalize; 4126 4127 bool IsLoad = isa<GLoad>(LdStMI); 4128 Register ValReg = LdStMI.getReg(0); 4129 Register AddrReg = LdStMI.getPointerReg(); 4130 LLT ValTy = MRI.getType(ValReg); 4131 4132 // FIXME: Do we need a distinct NarrowMemory legalize action? 4133 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { 4134 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 4135 return UnableToLegalize; 4136 } 4137 4138 int NumParts = -1; 4139 int NumLeftover = -1; 4140 LLT LeftoverTy; 4141 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 4142 if (IsLoad) { 4143 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 4144 } else { 4145 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 4146 NarrowLeftoverRegs)) { 4147 NumParts = NarrowRegs.size(); 4148 NumLeftover = NarrowLeftoverRegs.size(); 4149 } 4150 } 4151 4152 if (NumParts == -1) 4153 return UnableToLegalize; 4154 4155 LLT PtrTy = MRI.getType(AddrReg); 4156 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4157 4158 unsigned TotalSize = ValTy.getSizeInBits(); 4159 4160 // Split the load/store into PartTy sized pieces starting at Offset. If this 4161 // is a load, return the new registers in ValRegs. For a store, each elements 4162 // of ValRegs should be PartTy. Returns the next offset that needs to be 4163 // handled. 4164 auto MMO = LdStMI.getMMO(); 4165 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4166 unsigned Offset) -> unsigned { 4167 MachineFunction &MF = MIRBuilder.getMF(); 4168 unsigned PartSize = PartTy.getSizeInBits(); 4169 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4170 Offset += PartSize, ++Idx) { 4171 unsigned ByteOffset = Offset / 8; 4172 Register NewAddrReg; 4173 4174 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4175 4176 MachineMemOperand *NewMMO = 4177 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 4178 4179 if (IsLoad) { 4180 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4181 ValRegs.push_back(Dst); 4182 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4183 } else { 4184 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4185 } 4186 } 4187 4188 return Offset; 4189 }; 4190 4191 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 4192 4193 // Handle the rest of the register if this isn't an even type breakdown. 4194 if (LeftoverTy.isValid()) 4195 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 4196 4197 if (IsLoad) { 4198 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4199 LeftoverTy, NarrowLeftoverRegs); 4200 } 4201 4202 LdStMI.eraseFromParent(); 4203 return Legalized; 4204 } 4205 4206 LegalizerHelper::LegalizeResult 4207 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 4208 LLT NarrowTy) { 4209 assert(TypeIdx == 0 && "only one type index expected"); 4210 4211 const unsigned Opc = MI.getOpcode(); 4212 const int NumDefOps = MI.getNumExplicitDefs(); 4213 const int NumSrcOps = MI.getNumOperands() - NumDefOps; 4214 const unsigned Flags = MI.getFlags(); 4215 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 4216 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 4217 4218 assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 " 4219 "result and 1-3 sources or 2 results and " 4220 "1-2 sources"); 4221 4222 SmallVector<Register, 2> DstRegs; 4223 for (int I = 0; I < NumDefOps; ++I) 4224 DstRegs.push_back(MI.getOperand(I).getReg()); 4225 4226 // First of all check whether we are narrowing (changing the element type) 4227 // or reducing the vector elements 4228 const LLT DstTy = MRI.getType(DstRegs[0]); 4229 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 4230 4231 SmallVector<Register, 8> ExtractedRegs[3]; 4232 SmallVector<Register, 8> Parts; 4233 4234 // Break down all the sources into NarrowTy pieces we can operate on. This may 4235 // involve creating merges to a wider type, padded with undef. 4236 for (int I = 0; I != NumSrcOps; ++I) { 4237 Register SrcReg = MI.getOperand(I + NumDefOps).getReg(); 4238 LLT SrcTy = MRI.getType(SrcReg); 4239 4240 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 4241 // For fewerElements, this is a smaller vector with the same element type. 4242 LLT OpNarrowTy; 4243 if (IsNarrow) { 4244 OpNarrowTy = NarrowScalarTy; 4245 4246 // In case of narrowing, we need to cast vectors to scalars for this to 4247 // work properly 4248 // FIXME: Can we do without the bitcast here if we're narrowing? 4249 if (SrcTy.isVector()) { 4250 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 4251 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 4252 } 4253 } else { 4254 auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount() 4255 : ElementCount::getFixed(1); 4256 OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType()); 4257 } 4258 4259 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 4260 4261 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 4262 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 4263 TargetOpcode::G_ANYEXT); 4264 } 4265 4266 SmallVector<Register, 8> ResultRegs[2]; 4267 4268 // Input operands for each sub-instruction. 4269 SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register()); 4270 4271 int NumParts = ExtractedRegs[0].size(); 4272 const unsigned DstSize = DstTy.getSizeInBits(); 4273 const LLT DstScalarTy = LLT::scalar(DstSize); 4274 4275 // Narrowing needs to use scalar types 4276 LLT DstLCMTy, NarrowDstTy; 4277 if (IsNarrow) { 4278 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 4279 NarrowDstTy = NarrowScalarTy; 4280 } else { 4281 DstLCMTy = getLCMType(DstTy, NarrowTy); 4282 NarrowDstTy = NarrowTy; 4283 } 4284 4285 // We widened the source registers to satisfy merge/unmerge size 4286 // constraints. We'll have some extra fully undef parts. 4287 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 4288 4289 for (int I = 0; I != NumRealParts; ++I) { 4290 // Emit this instruction on each of the split pieces. 4291 for (int J = 0; J != NumSrcOps; ++J) 4292 InputRegs[J] = ExtractedRegs[J][I]; 4293 4294 MachineInstrBuilder Inst; 4295 if (NumDefOps == 1) 4296 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 4297 else 4298 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs, 4299 Flags); 4300 4301 for (int J = 0; J != NumDefOps; ++J) 4302 ResultRegs[J].push_back(Inst.getReg(J)); 4303 } 4304 4305 // Fill out the widened result with undef instead of creating instructions 4306 // with undef inputs. 4307 int NumUndefParts = NumParts - NumRealParts; 4308 if (NumUndefParts != 0) { 4309 Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0); 4310 for (int I = 0; I != NumDefOps; ++I) 4311 ResultRegs[I].append(NumUndefParts, Undef); 4312 } 4313 4314 // Extract the possibly padded result. Use a scratch register if we need to do 4315 // a final bitcast, otherwise use the original result register. 4316 Register MergeDstReg; 4317 for (int I = 0; I != NumDefOps; ++I) { 4318 if (IsNarrow && DstTy.isVector()) 4319 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 4320 else 4321 MergeDstReg = DstRegs[I]; 4322 4323 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]); 4324 4325 // Recast to vector if we narrowed a vector 4326 if (IsNarrow && DstTy.isVector()) 4327 MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg); 4328 } 4329 4330 MI.eraseFromParent(); 4331 return Legalized; 4332 } 4333 4334 LegalizerHelper::LegalizeResult 4335 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 4336 LLT NarrowTy) { 4337 Register DstReg = MI.getOperand(0).getReg(); 4338 Register SrcReg = MI.getOperand(1).getReg(); 4339 int64_t Imm = MI.getOperand(2).getImm(); 4340 4341 LLT DstTy = MRI.getType(DstReg); 4342 4343 SmallVector<Register, 8> Parts; 4344 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4345 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 4346 4347 for (Register &R : Parts) 4348 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 4349 4350 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4351 4352 MI.eraseFromParent(); 4353 return Legalized; 4354 } 4355 4356 LegalizerHelper::LegalizeResult 4357 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4358 LLT NarrowTy) { 4359 using namespace TargetOpcode; 4360 4361 switch (MI.getOpcode()) { 4362 case G_IMPLICIT_DEF: 4363 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 4364 case G_TRUNC: 4365 case G_AND: 4366 case G_OR: 4367 case G_XOR: 4368 case G_ADD: 4369 case G_SUB: 4370 case G_MUL: 4371 case G_PTR_ADD: 4372 case G_SMULH: 4373 case G_UMULH: 4374 case G_FADD: 4375 case G_FMUL: 4376 case G_FSUB: 4377 case G_FNEG: 4378 case G_FABS: 4379 case G_FCANONICALIZE: 4380 case G_FDIV: 4381 case G_FREM: 4382 case G_FMA: 4383 case G_FMAD: 4384 case G_FPOW: 4385 case G_FEXP: 4386 case G_FEXP2: 4387 case G_FLOG: 4388 case G_FLOG2: 4389 case G_FLOG10: 4390 case G_FNEARBYINT: 4391 case G_FCEIL: 4392 case G_FFLOOR: 4393 case G_FRINT: 4394 case G_INTRINSIC_ROUND: 4395 case G_INTRINSIC_ROUNDEVEN: 4396 case G_INTRINSIC_TRUNC: 4397 case G_FCOS: 4398 case G_FSIN: 4399 case G_FSQRT: 4400 case G_BSWAP: 4401 case G_BITREVERSE: 4402 case G_SDIV: 4403 case G_UDIV: 4404 case G_SREM: 4405 case G_UREM: 4406 case G_SDIVREM: 4407 case G_UDIVREM: 4408 case G_SMIN: 4409 case G_SMAX: 4410 case G_UMIN: 4411 case G_UMAX: 4412 case G_ABS: 4413 case G_FMINNUM: 4414 case G_FMAXNUM: 4415 case G_FMINNUM_IEEE: 4416 case G_FMAXNUM_IEEE: 4417 case G_FMINIMUM: 4418 case G_FMAXIMUM: 4419 case G_FSHL: 4420 case G_FSHR: 4421 case G_FREEZE: 4422 case G_SADDSAT: 4423 case G_SSUBSAT: 4424 case G_UADDSAT: 4425 case G_USUBSAT: 4426 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4427 case G_UMULO: 4428 case G_SMULO: 4429 return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy); 4430 case G_SHL: 4431 case G_LSHR: 4432 case G_ASHR: 4433 case G_SSHLSAT: 4434 case G_USHLSAT: 4435 case G_CTLZ: 4436 case G_CTLZ_ZERO_UNDEF: 4437 case G_CTTZ: 4438 case G_CTTZ_ZERO_UNDEF: 4439 case G_CTPOP: 4440 case G_FCOPYSIGN: 4441 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4442 case G_ZEXT: 4443 case G_SEXT: 4444 case G_ANYEXT: 4445 case G_FPEXT: 4446 case G_FPTRUNC: 4447 case G_SITOFP: 4448 case G_UITOFP: 4449 case G_FPTOSI: 4450 case G_FPTOUI: 4451 case G_INTTOPTR: 4452 case G_PTRTOINT: 4453 case G_ADDRSPACE_CAST: 4454 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4455 case G_ICMP: 4456 case G_FCMP: 4457 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4458 case G_SELECT: 4459 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4460 case G_PHI: 4461 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4462 case G_UNMERGE_VALUES: 4463 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4464 case G_BUILD_VECTOR: 4465 assert(TypeIdx == 0 && "not a vector type index"); 4466 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4467 case G_CONCAT_VECTORS: 4468 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4469 return UnableToLegalize; 4470 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4471 case G_EXTRACT_VECTOR_ELT: 4472 case G_INSERT_VECTOR_ELT: 4473 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4474 case G_LOAD: 4475 case G_STORE: 4476 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 4477 case G_SEXT_INREG: 4478 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4479 GISEL_VECREDUCE_CASES_NONSEQ 4480 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4481 case G_SHUFFLE_VECTOR: 4482 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4483 default: 4484 return UnableToLegalize; 4485 } 4486 } 4487 4488 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4489 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4490 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4491 if (TypeIdx != 0) 4492 return UnableToLegalize; 4493 4494 Register DstReg = MI.getOperand(0).getReg(); 4495 Register Src1Reg = MI.getOperand(1).getReg(); 4496 Register Src2Reg = MI.getOperand(2).getReg(); 4497 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4498 LLT DstTy = MRI.getType(DstReg); 4499 LLT Src1Ty = MRI.getType(Src1Reg); 4500 LLT Src2Ty = MRI.getType(Src2Reg); 4501 // The shuffle should be canonicalized by now. 4502 if (DstTy != Src1Ty) 4503 return UnableToLegalize; 4504 if (DstTy != Src2Ty) 4505 return UnableToLegalize; 4506 4507 if (!isPowerOf2_32(DstTy.getNumElements())) 4508 return UnableToLegalize; 4509 4510 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4511 // Further legalization attempts will be needed to do split further. 4512 NarrowTy = 4513 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4514 unsigned NewElts = NarrowTy.getNumElements(); 4515 4516 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4517 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4518 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4519 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4520 SplitSrc2Regs[1]}; 4521 4522 Register Hi, Lo; 4523 4524 // If Lo or Hi uses elements from at most two of the four input vectors, then 4525 // express it as a vector shuffle of those two inputs. Otherwise extract the 4526 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4527 SmallVector<int, 16> Ops; 4528 for (unsigned High = 0; High < 2; ++High) { 4529 Register &Output = High ? Hi : Lo; 4530 4531 // Build a shuffle mask for the output, discovering on the fly which 4532 // input vectors to use as shuffle operands (recorded in InputUsed). 4533 // If building a suitable shuffle vector proves too hard, then bail 4534 // out with useBuildVector set. 4535 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4536 unsigned FirstMaskIdx = High * NewElts; 4537 bool UseBuildVector = false; 4538 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4539 // The mask element. This indexes into the input. 4540 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4541 4542 // The input vector this mask element indexes into. 4543 unsigned Input = (unsigned)Idx / NewElts; 4544 4545 if (Input >= array_lengthof(Inputs)) { 4546 // The mask element does not index into any input vector. 4547 Ops.push_back(-1); 4548 continue; 4549 } 4550 4551 // Turn the index into an offset from the start of the input vector. 4552 Idx -= Input * NewElts; 4553 4554 // Find or create a shuffle vector operand to hold this input. 4555 unsigned OpNo; 4556 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4557 if (InputUsed[OpNo] == Input) { 4558 // This input vector is already an operand. 4559 break; 4560 } else if (InputUsed[OpNo] == -1U) { 4561 // Create a new operand for this input vector. 4562 InputUsed[OpNo] = Input; 4563 break; 4564 } 4565 } 4566 4567 if (OpNo >= array_lengthof(InputUsed)) { 4568 // More than two input vectors used! Give up on trying to create a 4569 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4570 UseBuildVector = true; 4571 break; 4572 } 4573 4574 // Add the mask index for the new shuffle vector. 4575 Ops.push_back(Idx + OpNo * NewElts); 4576 } 4577 4578 if (UseBuildVector) { 4579 LLT EltTy = NarrowTy.getElementType(); 4580 SmallVector<Register, 16> SVOps; 4581 4582 // Extract the input elements by hand. 4583 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4584 // The mask element. This indexes into the input. 4585 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4586 4587 // The input vector this mask element indexes into. 4588 unsigned Input = (unsigned)Idx / NewElts; 4589 4590 if (Input >= array_lengthof(Inputs)) { 4591 // The mask element is "undef" or indexes off the end of the input. 4592 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4593 continue; 4594 } 4595 4596 // Turn the index into an offset from the start of the input vector. 4597 Idx -= Input * NewElts; 4598 4599 // Extract the vector element by hand. 4600 SVOps.push_back(MIRBuilder 4601 .buildExtractVectorElement( 4602 EltTy, Inputs[Input], 4603 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4604 .getReg(0)); 4605 } 4606 4607 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4608 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4609 } else if (InputUsed[0] == -1U) { 4610 // No input vectors were used! The result is undefined. 4611 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4612 } else { 4613 Register Op0 = Inputs[InputUsed[0]]; 4614 // If only one input was used, use an undefined vector for the other. 4615 Register Op1 = InputUsed[1] == -1U 4616 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4617 : Inputs[InputUsed[1]]; 4618 // At least one input vector was used. Create a new shuffle vector. 4619 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4620 } 4621 4622 Ops.clear(); 4623 } 4624 4625 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4626 MI.eraseFromParent(); 4627 return Legalized; 4628 } 4629 4630 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4631 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4632 unsigned Opc = MI.getOpcode(); 4633 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4634 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4635 "Sequential reductions not expected"); 4636 4637 if (TypeIdx != 1) 4638 return UnableToLegalize; 4639 4640 // The semantics of the normal non-sequential reductions allow us to freely 4641 // re-associate the operation. 4642 Register SrcReg = MI.getOperand(1).getReg(); 4643 LLT SrcTy = MRI.getType(SrcReg); 4644 Register DstReg = MI.getOperand(0).getReg(); 4645 LLT DstTy = MRI.getType(DstReg); 4646 4647 if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0) 4648 return UnableToLegalize; 4649 4650 SmallVector<Register> SplitSrcs; 4651 const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements(); 4652 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4653 SmallVector<Register> PartialReductions; 4654 for (unsigned Part = 0; Part < NumParts; ++Part) { 4655 PartialReductions.push_back( 4656 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4657 } 4658 4659 unsigned ScalarOpc; 4660 switch (Opc) { 4661 case TargetOpcode::G_VECREDUCE_FADD: 4662 ScalarOpc = TargetOpcode::G_FADD; 4663 break; 4664 case TargetOpcode::G_VECREDUCE_FMUL: 4665 ScalarOpc = TargetOpcode::G_FMUL; 4666 break; 4667 case TargetOpcode::G_VECREDUCE_FMAX: 4668 ScalarOpc = TargetOpcode::G_FMAXNUM; 4669 break; 4670 case TargetOpcode::G_VECREDUCE_FMIN: 4671 ScalarOpc = TargetOpcode::G_FMINNUM; 4672 break; 4673 case TargetOpcode::G_VECREDUCE_ADD: 4674 ScalarOpc = TargetOpcode::G_ADD; 4675 break; 4676 case TargetOpcode::G_VECREDUCE_MUL: 4677 ScalarOpc = TargetOpcode::G_MUL; 4678 break; 4679 case TargetOpcode::G_VECREDUCE_AND: 4680 ScalarOpc = TargetOpcode::G_AND; 4681 break; 4682 case TargetOpcode::G_VECREDUCE_OR: 4683 ScalarOpc = TargetOpcode::G_OR; 4684 break; 4685 case TargetOpcode::G_VECREDUCE_XOR: 4686 ScalarOpc = TargetOpcode::G_XOR; 4687 break; 4688 case TargetOpcode::G_VECREDUCE_SMAX: 4689 ScalarOpc = TargetOpcode::G_SMAX; 4690 break; 4691 case TargetOpcode::G_VECREDUCE_SMIN: 4692 ScalarOpc = TargetOpcode::G_SMIN; 4693 break; 4694 case TargetOpcode::G_VECREDUCE_UMAX: 4695 ScalarOpc = TargetOpcode::G_UMAX; 4696 break; 4697 case TargetOpcode::G_VECREDUCE_UMIN: 4698 ScalarOpc = TargetOpcode::G_UMIN; 4699 break; 4700 default: 4701 LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n"); 4702 return UnableToLegalize; 4703 } 4704 4705 // If the types involved are powers of 2, we can generate intermediate vector 4706 // ops, before generating a final reduction operation. 4707 if (isPowerOf2_32(SrcTy.getNumElements()) && 4708 isPowerOf2_32(NarrowTy.getNumElements())) { 4709 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4710 } 4711 4712 Register Acc = PartialReductions[0]; 4713 for (unsigned Part = 1; Part < NumParts; ++Part) { 4714 if (Part == NumParts - 1) { 4715 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4716 {Acc, PartialReductions[Part]}); 4717 } else { 4718 Acc = MIRBuilder 4719 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4720 .getReg(0); 4721 } 4722 } 4723 MI.eraseFromParent(); 4724 return Legalized; 4725 } 4726 4727 LegalizerHelper::LegalizeResult 4728 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4729 LLT SrcTy, LLT NarrowTy, 4730 unsigned ScalarOpc) { 4731 SmallVector<Register> SplitSrcs; 4732 // Split the sources into NarrowTy size pieces. 4733 extractParts(SrcReg, NarrowTy, 4734 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4735 // We're going to do a tree reduction using vector operations until we have 4736 // one NarrowTy size value left. 4737 while (SplitSrcs.size() > 1) { 4738 SmallVector<Register> PartialRdxs; 4739 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4740 Register LHS = SplitSrcs[Idx]; 4741 Register RHS = SplitSrcs[Idx + 1]; 4742 // Create the intermediate vector op. 4743 Register Res = 4744 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4745 PartialRdxs.push_back(Res); 4746 } 4747 SplitSrcs = std::move(PartialRdxs); 4748 } 4749 // Finally generate the requested NarrowTy based reduction. 4750 Observer.changingInstr(MI); 4751 MI.getOperand(1).setReg(SplitSrcs[0]); 4752 Observer.changedInstr(MI); 4753 return Legalized; 4754 } 4755 4756 LegalizerHelper::LegalizeResult 4757 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4758 const LLT HalfTy, const LLT AmtTy) { 4759 4760 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4761 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4762 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4763 4764 if (Amt.isNullValue()) { 4765 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4766 MI.eraseFromParent(); 4767 return Legalized; 4768 } 4769 4770 LLT NVT = HalfTy; 4771 unsigned NVTBits = HalfTy.getSizeInBits(); 4772 unsigned VTBits = 2 * NVTBits; 4773 4774 SrcOp Lo(Register(0)), Hi(Register(0)); 4775 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4776 if (Amt.ugt(VTBits)) { 4777 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4778 } else if (Amt.ugt(NVTBits)) { 4779 Lo = MIRBuilder.buildConstant(NVT, 0); 4780 Hi = MIRBuilder.buildShl(NVT, InL, 4781 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4782 } else if (Amt == NVTBits) { 4783 Lo = MIRBuilder.buildConstant(NVT, 0); 4784 Hi = InL; 4785 } else { 4786 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4787 auto OrLHS = 4788 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4789 auto OrRHS = MIRBuilder.buildLShr( 4790 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4791 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4792 } 4793 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4794 if (Amt.ugt(VTBits)) { 4795 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4796 } else if (Amt.ugt(NVTBits)) { 4797 Lo = MIRBuilder.buildLShr(NVT, InH, 4798 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4799 Hi = MIRBuilder.buildConstant(NVT, 0); 4800 } else if (Amt == NVTBits) { 4801 Lo = InH; 4802 Hi = MIRBuilder.buildConstant(NVT, 0); 4803 } else { 4804 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4805 4806 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4807 auto OrRHS = MIRBuilder.buildShl( 4808 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4809 4810 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4811 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4812 } 4813 } else { 4814 if (Amt.ugt(VTBits)) { 4815 Hi = Lo = MIRBuilder.buildAShr( 4816 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4817 } else if (Amt.ugt(NVTBits)) { 4818 Lo = MIRBuilder.buildAShr(NVT, InH, 4819 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4820 Hi = MIRBuilder.buildAShr(NVT, InH, 4821 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4822 } else if (Amt == NVTBits) { 4823 Lo = InH; 4824 Hi = MIRBuilder.buildAShr(NVT, InH, 4825 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4826 } else { 4827 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4828 4829 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4830 auto OrRHS = MIRBuilder.buildShl( 4831 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4832 4833 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4834 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4835 } 4836 } 4837 4838 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4839 MI.eraseFromParent(); 4840 4841 return Legalized; 4842 } 4843 4844 // TODO: Optimize if constant shift amount. 4845 LegalizerHelper::LegalizeResult 4846 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4847 LLT RequestedTy) { 4848 if (TypeIdx == 1) { 4849 Observer.changingInstr(MI); 4850 narrowScalarSrc(MI, RequestedTy, 2); 4851 Observer.changedInstr(MI); 4852 return Legalized; 4853 } 4854 4855 Register DstReg = MI.getOperand(0).getReg(); 4856 LLT DstTy = MRI.getType(DstReg); 4857 if (DstTy.isVector()) 4858 return UnableToLegalize; 4859 4860 Register Amt = MI.getOperand(2).getReg(); 4861 LLT ShiftAmtTy = MRI.getType(Amt); 4862 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4863 if (DstEltSize % 2 != 0) 4864 return UnableToLegalize; 4865 4866 // Ignore the input type. We can only go to exactly half the size of the 4867 // input. If that isn't small enough, the resulting pieces will be further 4868 // legalized. 4869 const unsigned NewBitSize = DstEltSize / 2; 4870 const LLT HalfTy = LLT::scalar(NewBitSize); 4871 const LLT CondTy = LLT::scalar(1); 4872 4873 if (const MachineInstr *KShiftAmt = 4874 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4875 return narrowScalarShiftByConstant( 4876 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4877 } 4878 4879 // TODO: Expand with known bits. 4880 4881 // Handle the fully general expansion by an unknown amount. 4882 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4883 4884 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4885 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4886 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4887 4888 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4889 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4890 4891 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4892 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4893 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4894 4895 Register ResultRegs[2]; 4896 switch (MI.getOpcode()) { 4897 case TargetOpcode::G_SHL: { 4898 // Short: ShAmt < NewBitSize 4899 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4900 4901 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4902 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4903 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4904 4905 // Long: ShAmt >= NewBitSize 4906 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4907 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4908 4909 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4910 auto Hi = MIRBuilder.buildSelect( 4911 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4912 4913 ResultRegs[0] = Lo.getReg(0); 4914 ResultRegs[1] = Hi.getReg(0); 4915 break; 4916 } 4917 case TargetOpcode::G_LSHR: 4918 case TargetOpcode::G_ASHR: { 4919 // Short: ShAmt < NewBitSize 4920 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4921 4922 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4923 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4924 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4925 4926 // Long: ShAmt >= NewBitSize 4927 MachineInstrBuilder HiL; 4928 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4929 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4930 } else { 4931 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4932 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4933 } 4934 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4935 {InH, AmtExcess}); // Lo from Hi part. 4936 4937 auto Lo = MIRBuilder.buildSelect( 4938 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4939 4940 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4941 4942 ResultRegs[0] = Lo.getReg(0); 4943 ResultRegs[1] = Hi.getReg(0); 4944 break; 4945 } 4946 default: 4947 llvm_unreachable("not a shift"); 4948 } 4949 4950 MIRBuilder.buildMerge(DstReg, ResultRegs); 4951 MI.eraseFromParent(); 4952 return Legalized; 4953 } 4954 4955 LegalizerHelper::LegalizeResult 4956 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4957 LLT MoreTy) { 4958 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4959 4960 Observer.changingInstr(MI); 4961 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4962 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4963 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4964 moreElementsVectorSrc(MI, MoreTy, I); 4965 } 4966 4967 MachineBasicBlock &MBB = *MI.getParent(); 4968 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4969 moreElementsVectorDst(MI, MoreTy, 0); 4970 Observer.changedInstr(MI); 4971 return Legalized; 4972 } 4973 4974 LegalizerHelper::LegalizeResult 4975 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4976 LLT MoreTy) { 4977 unsigned Opc = MI.getOpcode(); 4978 switch (Opc) { 4979 case TargetOpcode::G_IMPLICIT_DEF: 4980 case TargetOpcode::G_LOAD: { 4981 if (TypeIdx != 0) 4982 return UnableToLegalize; 4983 Observer.changingInstr(MI); 4984 moreElementsVectorDst(MI, MoreTy, 0); 4985 Observer.changedInstr(MI); 4986 return Legalized; 4987 } 4988 case TargetOpcode::G_STORE: 4989 if (TypeIdx != 0) 4990 return UnableToLegalize; 4991 Observer.changingInstr(MI); 4992 moreElementsVectorSrc(MI, MoreTy, 0); 4993 Observer.changedInstr(MI); 4994 return Legalized; 4995 case TargetOpcode::G_AND: 4996 case TargetOpcode::G_OR: 4997 case TargetOpcode::G_XOR: 4998 case TargetOpcode::G_SMIN: 4999 case TargetOpcode::G_SMAX: 5000 case TargetOpcode::G_UMIN: 5001 case TargetOpcode::G_UMAX: 5002 case TargetOpcode::G_FMINNUM: 5003 case TargetOpcode::G_FMAXNUM: 5004 case TargetOpcode::G_FMINNUM_IEEE: 5005 case TargetOpcode::G_FMAXNUM_IEEE: 5006 case TargetOpcode::G_FMINIMUM: 5007 case TargetOpcode::G_FMAXIMUM: { 5008 Observer.changingInstr(MI); 5009 moreElementsVectorSrc(MI, MoreTy, 1); 5010 moreElementsVectorSrc(MI, MoreTy, 2); 5011 moreElementsVectorDst(MI, MoreTy, 0); 5012 Observer.changedInstr(MI); 5013 return Legalized; 5014 } 5015 case TargetOpcode::G_EXTRACT: 5016 if (TypeIdx != 1) 5017 return UnableToLegalize; 5018 Observer.changingInstr(MI); 5019 moreElementsVectorSrc(MI, MoreTy, 1); 5020 Observer.changedInstr(MI); 5021 return Legalized; 5022 case TargetOpcode::G_INSERT: 5023 case TargetOpcode::G_FREEZE: 5024 if (TypeIdx != 0) 5025 return UnableToLegalize; 5026 Observer.changingInstr(MI); 5027 moreElementsVectorSrc(MI, MoreTy, 1); 5028 moreElementsVectorDst(MI, MoreTy, 0); 5029 Observer.changedInstr(MI); 5030 return Legalized; 5031 case TargetOpcode::G_SELECT: 5032 if (TypeIdx != 0) 5033 return UnableToLegalize; 5034 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 5035 return UnableToLegalize; 5036 5037 Observer.changingInstr(MI); 5038 moreElementsVectorSrc(MI, MoreTy, 2); 5039 moreElementsVectorSrc(MI, MoreTy, 3); 5040 moreElementsVectorDst(MI, MoreTy, 0); 5041 Observer.changedInstr(MI); 5042 return Legalized; 5043 case TargetOpcode::G_UNMERGE_VALUES: { 5044 if (TypeIdx != 1) 5045 return UnableToLegalize; 5046 5047 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5048 int NumDst = MI.getNumOperands() - 1; 5049 moreElementsVectorSrc(MI, MoreTy, NumDst); 5050 5051 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 5052 for (int I = 0; I != NumDst; ++I) 5053 MIB.addDef(MI.getOperand(I).getReg()); 5054 5055 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 5056 for (int I = NumDst; I != NewNumDst; ++I) 5057 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 5058 5059 MIB.addUse(MI.getOperand(NumDst).getReg()); 5060 MI.eraseFromParent(); 5061 return Legalized; 5062 } 5063 case TargetOpcode::G_PHI: 5064 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 5065 case TargetOpcode::G_SHUFFLE_VECTOR: 5066 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 5067 default: 5068 return UnableToLegalize; 5069 } 5070 } 5071 5072 LegalizerHelper::LegalizeResult 5073 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 5074 unsigned int TypeIdx, LLT MoreTy) { 5075 if (TypeIdx != 0) 5076 return UnableToLegalize; 5077 5078 Register DstReg = MI.getOperand(0).getReg(); 5079 Register Src1Reg = MI.getOperand(1).getReg(); 5080 Register Src2Reg = MI.getOperand(2).getReg(); 5081 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5082 LLT DstTy = MRI.getType(DstReg); 5083 LLT Src1Ty = MRI.getType(Src1Reg); 5084 LLT Src2Ty = MRI.getType(Src2Reg); 5085 unsigned NumElts = DstTy.getNumElements(); 5086 unsigned WidenNumElts = MoreTy.getNumElements(); 5087 5088 // Expect a canonicalized shuffle. 5089 if (DstTy != Src1Ty || DstTy != Src2Ty) 5090 return UnableToLegalize; 5091 5092 moreElementsVectorSrc(MI, MoreTy, 1); 5093 moreElementsVectorSrc(MI, MoreTy, 2); 5094 5095 // Adjust mask based on new input vector length. 5096 SmallVector<int, 16> NewMask; 5097 for (unsigned I = 0; I != NumElts; ++I) { 5098 int Idx = Mask[I]; 5099 if (Idx < static_cast<int>(NumElts)) 5100 NewMask.push_back(Idx); 5101 else 5102 NewMask.push_back(Idx - NumElts + WidenNumElts); 5103 } 5104 for (unsigned I = NumElts; I != WidenNumElts; ++I) 5105 NewMask.push_back(-1); 5106 moreElementsVectorDst(MI, MoreTy, 0); 5107 MIRBuilder.setInstrAndDebugLoc(MI); 5108 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 5109 MI.getOperand(1).getReg(), 5110 MI.getOperand(2).getReg(), NewMask); 5111 MI.eraseFromParent(); 5112 return Legalized; 5113 } 5114 5115 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 5116 ArrayRef<Register> Src1Regs, 5117 ArrayRef<Register> Src2Regs, 5118 LLT NarrowTy) { 5119 MachineIRBuilder &B = MIRBuilder; 5120 unsigned SrcParts = Src1Regs.size(); 5121 unsigned DstParts = DstRegs.size(); 5122 5123 unsigned DstIdx = 0; // Low bits of the result. 5124 Register FactorSum = 5125 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 5126 DstRegs[DstIdx] = FactorSum; 5127 5128 unsigned CarrySumPrevDstIdx; 5129 SmallVector<Register, 4> Factors; 5130 5131 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 5132 // Collect low parts of muls for DstIdx. 5133 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 5134 i <= std::min(DstIdx, SrcParts - 1); ++i) { 5135 MachineInstrBuilder Mul = 5136 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 5137 Factors.push_back(Mul.getReg(0)); 5138 } 5139 // Collect high parts of muls from previous DstIdx. 5140 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 5141 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 5142 MachineInstrBuilder Umulh = 5143 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 5144 Factors.push_back(Umulh.getReg(0)); 5145 } 5146 // Add CarrySum from additions calculated for previous DstIdx. 5147 if (DstIdx != 1) { 5148 Factors.push_back(CarrySumPrevDstIdx); 5149 } 5150 5151 Register CarrySum; 5152 // Add all factors and accumulate all carries into CarrySum. 5153 if (DstIdx != DstParts - 1) { 5154 MachineInstrBuilder Uaddo = 5155 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5156 FactorSum = Uaddo.getReg(0); 5157 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5158 for (unsigned i = 2; i < Factors.size(); ++i) { 5159 MachineInstrBuilder Uaddo = 5160 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5161 FactorSum = Uaddo.getReg(0); 5162 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5163 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5164 } 5165 } else { 5166 // Since value for the next index is not calculated, neither is CarrySum. 5167 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5168 for (unsigned i = 2; i < Factors.size(); ++i) 5169 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5170 } 5171 5172 CarrySumPrevDstIdx = CarrySum; 5173 DstRegs[DstIdx] = FactorSum; 5174 Factors.clear(); 5175 } 5176 } 5177 5178 LegalizerHelper::LegalizeResult 5179 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5180 LLT NarrowTy) { 5181 if (TypeIdx != 0) 5182 return UnableToLegalize; 5183 5184 Register DstReg = MI.getOperand(0).getReg(); 5185 LLT DstType = MRI.getType(DstReg); 5186 // FIXME: add support for vector types 5187 if (DstType.isVector()) 5188 return UnableToLegalize; 5189 5190 unsigned Opcode = MI.getOpcode(); 5191 unsigned OpO, OpE, OpF; 5192 switch (Opcode) { 5193 case TargetOpcode::G_SADDO: 5194 case TargetOpcode::G_SADDE: 5195 case TargetOpcode::G_UADDO: 5196 case TargetOpcode::G_UADDE: 5197 case TargetOpcode::G_ADD: 5198 OpO = TargetOpcode::G_UADDO; 5199 OpE = TargetOpcode::G_UADDE; 5200 OpF = TargetOpcode::G_UADDE; 5201 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5202 OpF = TargetOpcode::G_SADDE; 5203 break; 5204 case TargetOpcode::G_SSUBO: 5205 case TargetOpcode::G_SSUBE: 5206 case TargetOpcode::G_USUBO: 5207 case TargetOpcode::G_USUBE: 5208 case TargetOpcode::G_SUB: 5209 OpO = TargetOpcode::G_USUBO; 5210 OpE = TargetOpcode::G_USUBE; 5211 OpF = TargetOpcode::G_USUBE; 5212 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5213 OpF = TargetOpcode::G_SSUBE; 5214 break; 5215 default: 5216 llvm_unreachable("Unexpected add/sub opcode!"); 5217 } 5218 5219 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5220 unsigned NumDefs = MI.getNumExplicitDefs(); 5221 Register Src1 = MI.getOperand(NumDefs).getReg(); 5222 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5223 Register CarryDst, CarryIn; 5224 if (NumDefs == 2) 5225 CarryDst = MI.getOperand(1).getReg(); 5226 if (MI.getNumOperands() == NumDefs + 3) 5227 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5228 5229 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5230 LLT LeftoverTy, DummyTy; 5231 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5232 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 5233 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5234 5235 int NarrowParts = Src1Regs.size(); 5236 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5237 Src1Regs.push_back(Src1Left[I]); 5238 Src2Regs.push_back(Src2Left[I]); 5239 } 5240 DstRegs.reserve(Src1Regs.size()); 5241 5242 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5243 Register DstReg = 5244 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5245 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5246 // Forward the final carry-out to the destination register 5247 if (i == e - 1 && CarryDst) 5248 CarryOut = CarryDst; 5249 5250 if (!CarryIn) { 5251 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5252 {Src1Regs[i], Src2Regs[i]}); 5253 } else if (i == e - 1) { 5254 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5255 {Src1Regs[i], Src2Regs[i], CarryIn}); 5256 } else { 5257 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5258 {Src1Regs[i], Src2Regs[i], CarryIn}); 5259 } 5260 5261 DstRegs.push_back(DstReg); 5262 CarryIn = CarryOut; 5263 } 5264 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5265 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5266 makeArrayRef(DstRegs).drop_front(NarrowParts)); 5267 5268 MI.eraseFromParent(); 5269 return Legalized; 5270 } 5271 5272 LegalizerHelper::LegalizeResult 5273 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5274 Register DstReg = MI.getOperand(0).getReg(); 5275 Register Src1 = MI.getOperand(1).getReg(); 5276 Register Src2 = MI.getOperand(2).getReg(); 5277 5278 LLT Ty = MRI.getType(DstReg); 5279 if (Ty.isVector()) 5280 return UnableToLegalize; 5281 5282 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 5283 unsigned DstSize = Ty.getSizeInBits(); 5284 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5285 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 5286 return UnableToLegalize; 5287 5288 unsigned NumDstParts = DstSize / NarrowSize; 5289 unsigned NumSrcParts = SrcSize / NarrowSize; 5290 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5291 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 5292 5293 SmallVector<Register, 2> Src1Parts, Src2Parts; 5294 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5295 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 5296 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 5297 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5298 5299 // Take only high half of registers if this is high mul. 5300 ArrayRef<Register> DstRegs( 5301 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 5302 MIRBuilder.buildMerge(DstReg, DstRegs); 5303 MI.eraseFromParent(); 5304 return Legalized; 5305 } 5306 5307 LegalizerHelper::LegalizeResult 5308 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5309 LLT NarrowTy) { 5310 if (TypeIdx != 0) 5311 return UnableToLegalize; 5312 5313 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5314 5315 Register Src = MI.getOperand(1).getReg(); 5316 LLT SrcTy = MRI.getType(Src); 5317 5318 // If all finite floats fit into the narrowed integer type, we can just swap 5319 // out the result type. This is practically only useful for conversions from 5320 // half to at least 16-bits, so just handle the one case. 5321 if (SrcTy.getScalarType() != LLT::scalar(16) || 5322 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5323 return UnableToLegalize; 5324 5325 Observer.changingInstr(MI); 5326 narrowScalarDst(MI, NarrowTy, 0, 5327 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5328 Observer.changedInstr(MI); 5329 return Legalized; 5330 } 5331 5332 LegalizerHelper::LegalizeResult 5333 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5334 LLT NarrowTy) { 5335 if (TypeIdx != 1) 5336 return UnableToLegalize; 5337 5338 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5339 5340 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5341 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5342 // NarrowSize. 5343 if (SizeOp1 % NarrowSize != 0) 5344 return UnableToLegalize; 5345 int NumParts = SizeOp1 / NarrowSize; 5346 5347 SmallVector<Register, 2> SrcRegs, DstRegs; 5348 SmallVector<uint64_t, 2> Indexes; 5349 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5350 5351 Register OpReg = MI.getOperand(0).getReg(); 5352 uint64_t OpStart = MI.getOperand(2).getImm(); 5353 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5354 for (int i = 0; i < NumParts; ++i) { 5355 unsigned SrcStart = i * NarrowSize; 5356 5357 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5358 // No part of the extract uses this subregister, ignore it. 5359 continue; 5360 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5361 // The entire subregister is extracted, forward the value. 5362 DstRegs.push_back(SrcRegs[i]); 5363 continue; 5364 } 5365 5366 // OpSegStart is where this destination segment would start in OpReg if it 5367 // extended infinitely in both directions. 5368 int64_t ExtractOffset; 5369 uint64_t SegSize; 5370 if (OpStart < SrcStart) { 5371 ExtractOffset = 0; 5372 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5373 } else { 5374 ExtractOffset = OpStart - SrcStart; 5375 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5376 } 5377 5378 Register SegReg = SrcRegs[i]; 5379 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5380 // A genuine extract is needed. 5381 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5382 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5383 } 5384 5385 DstRegs.push_back(SegReg); 5386 } 5387 5388 Register DstReg = MI.getOperand(0).getReg(); 5389 if (MRI.getType(DstReg).isVector()) 5390 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5391 else if (DstRegs.size() > 1) 5392 MIRBuilder.buildMerge(DstReg, DstRegs); 5393 else 5394 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5395 MI.eraseFromParent(); 5396 return Legalized; 5397 } 5398 5399 LegalizerHelper::LegalizeResult 5400 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5401 LLT NarrowTy) { 5402 // FIXME: Don't know how to handle secondary types yet. 5403 if (TypeIdx != 0) 5404 return UnableToLegalize; 5405 5406 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5407 SmallVector<uint64_t, 2> Indexes; 5408 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5409 LLT LeftoverTy; 5410 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5411 LeftoverRegs); 5412 5413 for (Register Reg : LeftoverRegs) 5414 SrcRegs.push_back(Reg); 5415 5416 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5417 Register OpReg = MI.getOperand(2).getReg(); 5418 uint64_t OpStart = MI.getOperand(3).getImm(); 5419 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5420 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5421 unsigned DstStart = I * NarrowSize; 5422 5423 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5424 // The entire subregister is defined by this insert, forward the new 5425 // value. 5426 DstRegs.push_back(OpReg); 5427 continue; 5428 } 5429 5430 Register SrcReg = SrcRegs[I]; 5431 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5432 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5433 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5434 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5435 } 5436 5437 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5438 // No part of the insert affects this subregister, forward the original. 5439 DstRegs.push_back(SrcReg); 5440 continue; 5441 } 5442 5443 // OpSegStart is where this destination segment would start in OpReg if it 5444 // extended infinitely in both directions. 5445 int64_t ExtractOffset, InsertOffset; 5446 uint64_t SegSize; 5447 if (OpStart < DstStart) { 5448 InsertOffset = 0; 5449 ExtractOffset = DstStart - OpStart; 5450 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5451 } else { 5452 InsertOffset = OpStart - DstStart; 5453 ExtractOffset = 0; 5454 SegSize = 5455 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5456 } 5457 5458 Register SegReg = OpReg; 5459 if (ExtractOffset != 0 || SegSize != OpSize) { 5460 // A genuine extract is needed. 5461 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5462 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5463 } 5464 5465 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5466 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5467 DstRegs.push_back(DstReg); 5468 } 5469 5470 uint64_t WideSize = DstRegs.size() * NarrowSize; 5471 Register DstReg = MI.getOperand(0).getReg(); 5472 if (WideSize > RegTy.getSizeInBits()) { 5473 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5474 MIRBuilder.buildMerge(MergeReg, DstRegs); 5475 MIRBuilder.buildTrunc(DstReg, MergeReg); 5476 } else 5477 MIRBuilder.buildMerge(DstReg, DstRegs); 5478 5479 MI.eraseFromParent(); 5480 return Legalized; 5481 } 5482 5483 LegalizerHelper::LegalizeResult 5484 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5485 LLT NarrowTy) { 5486 Register DstReg = MI.getOperand(0).getReg(); 5487 LLT DstTy = MRI.getType(DstReg); 5488 5489 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5490 5491 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5492 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5493 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5494 LLT LeftoverTy; 5495 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5496 Src0Regs, Src0LeftoverRegs)) 5497 return UnableToLegalize; 5498 5499 LLT Unused; 5500 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5501 Src1Regs, Src1LeftoverRegs)) 5502 llvm_unreachable("inconsistent extractParts result"); 5503 5504 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5505 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5506 {Src0Regs[I], Src1Regs[I]}); 5507 DstRegs.push_back(Inst.getReg(0)); 5508 } 5509 5510 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5511 auto Inst = MIRBuilder.buildInstr( 5512 MI.getOpcode(), 5513 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5514 DstLeftoverRegs.push_back(Inst.getReg(0)); 5515 } 5516 5517 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5518 LeftoverTy, DstLeftoverRegs); 5519 5520 MI.eraseFromParent(); 5521 return Legalized; 5522 } 5523 5524 LegalizerHelper::LegalizeResult 5525 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5526 LLT NarrowTy) { 5527 if (TypeIdx != 0) 5528 return UnableToLegalize; 5529 5530 Register DstReg = MI.getOperand(0).getReg(); 5531 Register SrcReg = MI.getOperand(1).getReg(); 5532 5533 LLT DstTy = MRI.getType(DstReg); 5534 if (DstTy.isVector()) 5535 return UnableToLegalize; 5536 5537 SmallVector<Register, 8> Parts; 5538 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5539 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5540 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5541 5542 MI.eraseFromParent(); 5543 return Legalized; 5544 } 5545 5546 LegalizerHelper::LegalizeResult 5547 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5548 LLT NarrowTy) { 5549 if (TypeIdx != 0) 5550 return UnableToLegalize; 5551 5552 Register CondReg = MI.getOperand(1).getReg(); 5553 LLT CondTy = MRI.getType(CondReg); 5554 if (CondTy.isVector()) // TODO: Handle vselect 5555 return UnableToLegalize; 5556 5557 Register DstReg = MI.getOperand(0).getReg(); 5558 LLT DstTy = MRI.getType(DstReg); 5559 5560 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5561 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5562 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5563 LLT LeftoverTy; 5564 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5565 Src1Regs, Src1LeftoverRegs)) 5566 return UnableToLegalize; 5567 5568 LLT Unused; 5569 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5570 Src2Regs, Src2LeftoverRegs)) 5571 llvm_unreachable("inconsistent extractParts result"); 5572 5573 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5574 auto Select = MIRBuilder.buildSelect(NarrowTy, 5575 CondReg, Src1Regs[I], Src2Regs[I]); 5576 DstRegs.push_back(Select.getReg(0)); 5577 } 5578 5579 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5580 auto Select = MIRBuilder.buildSelect( 5581 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5582 DstLeftoverRegs.push_back(Select.getReg(0)); 5583 } 5584 5585 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5586 LeftoverTy, DstLeftoverRegs); 5587 5588 MI.eraseFromParent(); 5589 return Legalized; 5590 } 5591 5592 LegalizerHelper::LegalizeResult 5593 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5594 LLT NarrowTy) { 5595 if (TypeIdx != 1) 5596 return UnableToLegalize; 5597 5598 Register DstReg = MI.getOperand(0).getReg(); 5599 Register SrcReg = MI.getOperand(1).getReg(); 5600 LLT DstTy = MRI.getType(DstReg); 5601 LLT SrcTy = MRI.getType(SrcReg); 5602 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5603 5604 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5605 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5606 5607 MachineIRBuilder &B = MIRBuilder; 5608 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5609 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5610 auto C_0 = B.buildConstant(NarrowTy, 0); 5611 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5612 UnmergeSrc.getReg(1), C_0); 5613 auto LoCTLZ = IsUndef ? 5614 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5615 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5616 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5617 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5618 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5619 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5620 5621 MI.eraseFromParent(); 5622 return Legalized; 5623 } 5624 5625 return UnableToLegalize; 5626 } 5627 5628 LegalizerHelper::LegalizeResult 5629 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5630 LLT NarrowTy) { 5631 if (TypeIdx != 1) 5632 return UnableToLegalize; 5633 5634 Register DstReg = MI.getOperand(0).getReg(); 5635 Register SrcReg = MI.getOperand(1).getReg(); 5636 LLT DstTy = MRI.getType(DstReg); 5637 LLT SrcTy = MRI.getType(SrcReg); 5638 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5639 5640 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5641 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5642 5643 MachineIRBuilder &B = MIRBuilder; 5644 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5645 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5646 auto C_0 = B.buildConstant(NarrowTy, 0); 5647 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5648 UnmergeSrc.getReg(0), C_0); 5649 auto HiCTTZ = IsUndef ? 5650 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5651 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5652 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5653 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5654 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5655 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5656 5657 MI.eraseFromParent(); 5658 return Legalized; 5659 } 5660 5661 return UnableToLegalize; 5662 } 5663 5664 LegalizerHelper::LegalizeResult 5665 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5666 LLT NarrowTy) { 5667 if (TypeIdx != 1) 5668 return UnableToLegalize; 5669 5670 Register DstReg = MI.getOperand(0).getReg(); 5671 LLT DstTy = MRI.getType(DstReg); 5672 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5673 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5674 5675 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5676 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5677 5678 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5679 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5680 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5681 5682 MI.eraseFromParent(); 5683 return Legalized; 5684 } 5685 5686 return UnableToLegalize; 5687 } 5688 5689 LegalizerHelper::LegalizeResult 5690 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5691 unsigned Opc = MI.getOpcode(); 5692 const auto &TII = MIRBuilder.getTII(); 5693 auto isSupported = [this](const LegalityQuery &Q) { 5694 auto QAction = LI.getAction(Q).Action; 5695 return QAction == Legal || QAction == Libcall || QAction == Custom; 5696 }; 5697 switch (Opc) { 5698 default: 5699 return UnableToLegalize; 5700 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5701 // This trivially expands to CTLZ. 5702 Observer.changingInstr(MI); 5703 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5704 Observer.changedInstr(MI); 5705 return Legalized; 5706 } 5707 case TargetOpcode::G_CTLZ: { 5708 Register DstReg = MI.getOperand(0).getReg(); 5709 Register SrcReg = MI.getOperand(1).getReg(); 5710 LLT DstTy = MRI.getType(DstReg); 5711 LLT SrcTy = MRI.getType(SrcReg); 5712 unsigned Len = SrcTy.getSizeInBits(); 5713 5714 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5715 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5716 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5717 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5718 auto ICmp = MIRBuilder.buildICmp( 5719 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5720 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5721 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5722 MI.eraseFromParent(); 5723 return Legalized; 5724 } 5725 // for now, we do this: 5726 // NewLen = NextPowerOf2(Len); 5727 // x = x | (x >> 1); 5728 // x = x | (x >> 2); 5729 // ... 5730 // x = x | (x >>16); 5731 // x = x | (x >>32); // for 64-bit input 5732 // Upto NewLen/2 5733 // return Len - popcount(x); 5734 // 5735 // Ref: "Hacker's Delight" by Henry Warren 5736 Register Op = SrcReg; 5737 unsigned NewLen = PowerOf2Ceil(Len); 5738 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5739 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5740 auto MIBOp = MIRBuilder.buildOr( 5741 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5742 Op = MIBOp.getReg(0); 5743 } 5744 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5745 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5746 MIBPop); 5747 MI.eraseFromParent(); 5748 return Legalized; 5749 } 5750 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5751 // This trivially expands to CTTZ. 5752 Observer.changingInstr(MI); 5753 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5754 Observer.changedInstr(MI); 5755 return Legalized; 5756 } 5757 case TargetOpcode::G_CTTZ: { 5758 Register DstReg = MI.getOperand(0).getReg(); 5759 Register SrcReg = MI.getOperand(1).getReg(); 5760 LLT DstTy = MRI.getType(DstReg); 5761 LLT SrcTy = MRI.getType(SrcReg); 5762 5763 unsigned Len = SrcTy.getSizeInBits(); 5764 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5765 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5766 // zero. 5767 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5768 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5769 auto ICmp = MIRBuilder.buildICmp( 5770 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5771 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5772 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5773 MI.eraseFromParent(); 5774 return Legalized; 5775 } 5776 // for now, we use: { return popcount(~x & (x - 1)); } 5777 // unless the target has ctlz but not ctpop, in which case we use: 5778 // { return 32 - nlz(~x & (x-1)); } 5779 // Ref: "Hacker's Delight" by Henry Warren 5780 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5781 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5782 auto MIBTmp = MIRBuilder.buildAnd( 5783 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5784 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5785 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5786 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5787 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5788 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5789 MI.eraseFromParent(); 5790 return Legalized; 5791 } 5792 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5793 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5794 return Legalized; 5795 } 5796 case TargetOpcode::G_CTPOP: { 5797 Register SrcReg = MI.getOperand(1).getReg(); 5798 LLT Ty = MRI.getType(SrcReg); 5799 unsigned Size = Ty.getSizeInBits(); 5800 MachineIRBuilder &B = MIRBuilder; 5801 5802 // Count set bits in blocks of 2 bits. Default approach would be 5803 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5804 // We use following formula instead: 5805 // B2Count = val - { (val >> 1) & 0x55555555 } 5806 // since it gives same result in blocks of 2 with one instruction less. 5807 auto C_1 = B.buildConstant(Ty, 1); 5808 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5809 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5810 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5811 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5812 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5813 5814 // In order to get count in blocks of 4 add values from adjacent block of 2. 5815 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5816 auto C_2 = B.buildConstant(Ty, 2); 5817 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5818 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5819 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5820 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5821 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5822 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5823 5824 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5825 // addition since count value sits in range {0,...,8} and 4 bits are enough 5826 // to hold such binary values. After addition high 4 bits still hold count 5827 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5828 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5829 auto C_4 = B.buildConstant(Ty, 4); 5830 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5831 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5832 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5833 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5834 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5835 5836 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5837 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5838 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5839 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5840 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5841 5842 // Shift count result from 8 high bits to low bits. 5843 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5844 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5845 5846 MI.eraseFromParent(); 5847 return Legalized; 5848 } 5849 } 5850 } 5851 5852 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5853 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5854 Register Reg, unsigned BW) { 5855 return matchUnaryPredicate( 5856 MRI, Reg, 5857 [=](const Constant *C) { 5858 // Null constant here means an undef. 5859 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5860 return !CI || CI->getValue().urem(BW) != 0; 5861 }, 5862 /*AllowUndefs*/ true); 5863 } 5864 5865 LegalizerHelper::LegalizeResult 5866 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5867 Register Dst = MI.getOperand(0).getReg(); 5868 Register X = MI.getOperand(1).getReg(); 5869 Register Y = MI.getOperand(2).getReg(); 5870 Register Z = MI.getOperand(3).getReg(); 5871 LLT Ty = MRI.getType(Dst); 5872 LLT ShTy = MRI.getType(Z); 5873 5874 unsigned BW = Ty.getScalarSizeInBits(); 5875 5876 if (!isPowerOf2_32(BW)) 5877 return UnableToLegalize; 5878 5879 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5880 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5881 5882 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5883 // fshl X, Y, Z -> fshr X, Y, -Z 5884 // fshr X, Y, Z -> fshl X, Y, -Z 5885 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5886 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5887 } else { 5888 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5889 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5890 auto One = MIRBuilder.buildConstant(ShTy, 1); 5891 if (IsFSHL) { 5892 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5893 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5894 } else { 5895 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5896 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5897 } 5898 5899 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5900 } 5901 5902 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5903 MI.eraseFromParent(); 5904 return Legalized; 5905 } 5906 5907 LegalizerHelper::LegalizeResult 5908 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5909 Register Dst = MI.getOperand(0).getReg(); 5910 Register X = MI.getOperand(1).getReg(); 5911 Register Y = MI.getOperand(2).getReg(); 5912 Register Z = MI.getOperand(3).getReg(); 5913 LLT Ty = MRI.getType(Dst); 5914 LLT ShTy = MRI.getType(Z); 5915 5916 const unsigned BW = Ty.getScalarSizeInBits(); 5917 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5918 5919 Register ShX, ShY; 5920 Register ShAmt, InvShAmt; 5921 5922 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5923 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5924 // fshl: X << C | Y >> (BW - C) 5925 // fshr: X << (BW - C) | Y >> C 5926 // where C = Z % BW is not zero 5927 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5928 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5929 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5930 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5931 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5932 } else { 5933 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5934 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5935 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5936 if (isPowerOf2_32(BW)) { 5937 // Z % BW -> Z & (BW - 1) 5938 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5939 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5940 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5941 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5942 } else { 5943 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5944 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5945 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5946 } 5947 5948 auto One = MIRBuilder.buildConstant(ShTy, 1); 5949 if (IsFSHL) { 5950 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5951 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5952 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5953 } else { 5954 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5955 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5956 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5957 } 5958 } 5959 5960 MIRBuilder.buildOr(Dst, ShX, ShY); 5961 MI.eraseFromParent(); 5962 return Legalized; 5963 } 5964 5965 LegalizerHelper::LegalizeResult 5966 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5967 // These operations approximately do the following (while avoiding undefined 5968 // shifts by BW): 5969 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5970 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5971 Register Dst = MI.getOperand(0).getReg(); 5972 LLT Ty = MRI.getType(Dst); 5973 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5974 5975 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5976 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5977 5978 // TODO: Use smarter heuristic that accounts for vector legalization. 5979 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5980 return lowerFunnelShiftAsShifts(MI); 5981 5982 // This only works for powers of 2, fallback to shifts if it fails. 5983 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5984 if (Result == UnableToLegalize) 5985 return lowerFunnelShiftAsShifts(MI); 5986 return Result; 5987 } 5988 5989 LegalizerHelper::LegalizeResult 5990 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5991 Register Dst = MI.getOperand(0).getReg(); 5992 Register Src = MI.getOperand(1).getReg(); 5993 Register Amt = MI.getOperand(2).getReg(); 5994 LLT AmtTy = MRI.getType(Amt); 5995 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5996 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5997 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5998 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5999 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 6000 MI.eraseFromParent(); 6001 return Legalized; 6002 } 6003 6004 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 6005 Register Dst = MI.getOperand(0).getReg(); 6006 Register Src = MI.getOperand(1).getReg(); 6007 Register Amt = MI.getOperand(2).getReg(); 6008 LLT DstTy = MRI.getType(Dst); 6009 LLT SrcTy = MRI.getType(Dst); 6010 LLT AmtTy = MRI.getType(Amt); 6011 6012 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 6013 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 6014 6015 MIRBuilder.setInstrAndDebugLoc(MI); 6016 6017 // If a rotate in the other direction is supported, use it. 6018 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 6019 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 6020 isPowerOf2_32(EltSizeInBits)) 6021 return lowerRotateWithReverseRotate(MI); 6022 6023 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 6024 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 6025 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 6026 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 6027 Register ShVal; 6028 Register RevShiftVal; 6029 if (isPowerOf2_32(EltSizeInBits)) { 6030 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6031 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6032 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 6033 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 6034 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 6035 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 6036 RevShiftVal = 6037 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 6038 } else { 6039 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6040 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6041 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 6042 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 6043 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 6044 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 6045 auto One = MIRBuilder.buildConstant(AmtTy, 1); 6046 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 6047 RevShiftVal = 6048 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 6049 } 6050 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 6051 MI.eraseFromParent(); 6052 return Legalized; 6053 } 6054 6055 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 6056 // representation. 6057 LegalizerHelper::LegalizeResult 6058 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 6059 Register Dst = MI.getOperand(0).getReg(); 6060 Register Src = MI.getOperand(1).getReg(); 6061 const LLT S64 = LLT::scalar(64); 6062 const LLT S32 = LLT::scalar(32); 6063 const LLT S1 = LLT::scalar(1); 6064 6065 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 6066 6067 // unsigned cul2f(ulong u) { 6068 // uint lz = clz(u); 6069 // uint e = (u != 0) ? 127U + 63U - lz : 0; 6070 // u = (u << lz) & 0x7fffffffffffffffUL; 6071 // ulong t = u & 0xffffffffffUL; 6072 // uint v = (e << 23) | (uint)(u >> 40); 6073 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 6074 // return as_float(v + r); 6075 // } 6076 6077 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 6078 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 6079 6080 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 6081 6082 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 6083 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 6084 6085 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 6086 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 6087 6088 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 6089 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 6090 6091 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 6092 6093 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 6094 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 6095 6096 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 6097 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 6098 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 6099 6100 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 6101 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 6102 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 6103 auto One = MIRBuilder.buildConstant(S32, 1); 6104 6105 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 6106 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 6107 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 6108 MIRBuilder.buildAdd(Dst, V, R); 6109 6110 MI.eraseFromParent(); 6111 return Legalized; 6112 } 6113 6114 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 6115 Register Dst = MI.getOperand(0).getReg(); 6116 Register Src = MI.getOperand(1).getReg(); 6117 LLT DstTy = MRI.getType(Dst); 6118 LLT SrcTy = MRI.getType(Src); 6119 6120 if (SrcTy == LLT::scalar(1)) { 6121 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 6122 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6123 MIRBuilder.buildSelect(Dst, Src, True, False); 6124 MI.eraseFromParent(); 6125 return Legalized; 6126 } 6127 6128 if (SrcTy != LLT::scalar(64)) 6129 return UnableToLegalize; 6130 6131 if (DstTy == LLT::scalar(32)) { 6132 // TODO: SelectionDAG has several alternative expansions to port which may 6133 // be more reasonble depending on the available instructions. If a target 6134 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 6135 // intermediate type, this is probably worse. 6136 return lowerU64ToF32BitOps(MI); 6137 } 6138 6139 return UnableToLegalize; 6140 } 6141 6142 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 6143 Register Dst = MI.getOperand(0).getReg(); 6144 Register Src = MI.getOperand(1).getReg(); 6145 LLT DstTy = MRI.getType(Dst); 6146 LLT SrcTy = MRI.getType(Src); 6147 6148 const LLT S64 = LLT::scalar(64); 6149 const LLT S32 = LLT::scalar(32); 6150 const LLT S1 = LLT::scalar(1); 6151 6152 if (SrcTy == S1) { 6153 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6154 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6155 MIRBuilder.buildSelect(Dst, Src, True, False); 6156 MI.eraseFromParent(); 6157 return Legalized; 6158 } 6159 6160 if (SrcTy != S64) 6161 return UnableToLegalize; 6162 6163 if (DstTy == S32) { 6164 // signed cl2f(long l) { 6165 // long s = l >> 63; 6166 // float r = cul2f((l + s) ^ s); 6167 // return s ? -r : r; 6168 // } 6169 Register L = Src; 6170 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6171 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6172 6173 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6174 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6175 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6176 6177 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6178 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6179 MIRBuilder.buildConstant(S64, 0)); 6180 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6181 MI.eraseFromParent(); 6182 return Legalized; 6183 } 6184 6185 return UnableToLegalize; 6186 } 6187 6188 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 6189 Register Dst = MI.getOperand(0).getReg(); 6190 Register Src = MI.getOperand(1).getReg(); 6191 LLT DstTy = MRI.getType(Dst); 6192 LLT SrcTy = MRI.getType(Src); 6193 const LLT S64 = LLT::scalar(64); 6194 const LLT S32 = LLT::scalar(32); 6195 6196 if (SrcTy != S64 && SrcTy != S32) 6197 return UnableToLegalize; 6198 if (DstTy != S32 && DstTy != S64) 6199 return UnableToLegalize; 6200 6201 // FPTOSI gives same result as FPTOUI for positive signed integers. 6202 // FPTOUI needs to deal with fp values that convert to unsigned integers 6203 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 6204 6205 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 6206 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 6207 : APFloat::IEEEdouble(), 6208 APInt::getNullValue(SrcTy.getSizeInBits())); 6209 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 6210 6211 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 6212 6213 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 6214 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 6215 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 6216 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 6217 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 6218 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 6219 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 6220 6221 const LLT S1 = LLT::scalar(1); 6222 6223 MachineInstrBuilder FCMP = 6224 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 6225 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 6226 6227 MI.eraseFromParent(); 6228 return Legalized; 6229 } 6230 6231 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 6232 Register Dst = MI.getOperand(0).getReg(); 6233 Register Src = MI.getOperand(1).getReg(); 6234 LLT DstTy = MRI.getType(Dst); 6235 LLT SrcTy = MRI.getType(Src); 6236 const LLT S64 = LLT::scalar(64); 6237 const LLT S32 = LLT::scalar(32); 6238 6239 // FIXME: Only f32 to i64 conversions are supported. 6240 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6241 return UnableToLegalize; 6242 6243 // Expand f32 -> i64 conversion 6244 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6245 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6246 6247 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6248 6249 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6250 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6251 6252 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6253 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6254 6255 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6256 APInt::getSignMask(SrcEltBits)); 6257 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6258 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6259 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6260 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6261 6262 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6263 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6264 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6265 6266 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6267 R = MIRBuilder.buildZExt(DstTy, R); 6268 6269 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6270 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6271 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6272 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6273 6274 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6275 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6276 6277 const LLT S1 = LLT::scalar(1); 6278 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6279 S1, Exponent, ExponentLoBit); 6280 6281 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6282 6283 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6284 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6285 6286 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6287 6288 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6289 S1, Exponent, ZeroSrcTy); 6290 6291 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6292 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6293 6294 MI.eraseFromParent(); 6295 return Legalized; 6296 } 6297 6298 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6299 LegalizerHelper::LegalizeResult 6300 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6301 Register Dst = MI.getOperand(0).getReg(); 6302 Register Src = MI.getOperand(1).getReg(); 6303 6304 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6305 return UnableToLegalize; 6306 6307 const unsigned ExpMask = 0x7ff; 6308 const unsigned ExpBiasf64 = 1023; 6309 const unsigned ExpBiasf16 = 15; 6310 const LLT S32 = LLT::scalar(32); 6311 const LLT S1 = LLT::scalar(1); 6312 6313 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6314 Register U = Unmerge.getReg(0); 6315 Register UH = Unmerge.getReg(1); 6316 6317 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6318 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6319 6320 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6321 // add the f16 bias (15) to get the biased exponent for the f16 format. 6322 E = MIRBuilder.buildAdd( 6323 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6324 6325 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6326 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6327 6328 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6329 MIRBuilder.buildConstant(S32, 0x1ff)); 6330 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6331 6332 auto Zero = MIRBuilder.buildConstant(S32, 0); 6333 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6334 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6335 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6336 6337 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6338 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6339 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6340 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6341 6342 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6343 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6344 6345 // N = M | (E << 12); 6346 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6347 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6348 6349 // B = clamp(1-E, 0, 13); 6350 auto One = MIRBuilder.buildConstant(S32, 1); 6351 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6352 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6353 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6354 6355 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6356 MIRBuilder.buildConstant(S32, 0x1000)); 6357 6358 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6359 auto D0 = MIRBuilder.buildShl(S32, D, B); 6360 6361 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6362 D0, SigSetHigh); 6363 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6364 D = MIRBuilder.buildOr(S32, D, D1); 6365 6366 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6367 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6368 6369 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6370 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6371 6372 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6373 MIRBuilder.buildConstant(S32, 3)); 6374 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6375 6376 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6377 MIRBuilder.buildConstant(S32, 5)); 6378 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6379 6380 V1 = MIRBuilder.buildOr(S32, V0, V1); 6381 V = MIRBuilder.buildAdd(S32, V, V1); 6382 6383 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6384 E, MIRBuilder.buildConstant(S32, 30)); 6385 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6386 MIRBuilder.buildConstant(S32, 0x7c00), V); 6387 6388 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6389 E, MIRBuilder.buildConstant(S32, 1039)); 6390 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6391 6392 // Extract the sign bit. 6393 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6394 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6395 6396 // Insert the sign bit 6397 V = MIRBuilder.buildOr(S32, Sign, V); 6398 6399 MIRBuilder.buildTrunc(Dst, V); 6400 MI.eraseFromParent(); 6401 return Legalized; 6402 } 6403 6404 LegalizerHelper::LegalizeResult 6405 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6406 Register Dst = MI.getOperand(0).getReg(); 6407 Register Src = MI.getOperand(1).getReg(); 6408 6409 LLT DstTy = MRI.getType(Dst); 6410 LLT SrcTy = MRI.getType(Src); 6411 const LLT S64 = LLT::scalar(64); 6412 const LLT S16 = LLT::scalar(16); 6413 6414 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6415 return lowerFPTRUNC_F64_TO_F16(MI); 6416 6417 return UnableToLegalize; 6418 } 6419 6420 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6421 // multiplication tree. 6422 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6423 Register Dst = MI.getOperand(0).getReg(); 6424 Register Src0 = MI.getOperand(1).getReg(); 6425 Register Src1 = MI.getOperand(2).getReg(); 6426 LLT Ty = MRI.getType(Dst); 6427 6428 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6429 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6430 MI.eraseFromParent(); 6431 return Legalized; 6432 } 6433 6434 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6435 switch (Opc) { 6436 case TargetOpcode::G_SMIN: 6437 return CmpInst::ICMP_SLT; 6438 case TargetOpcode::G_SMAX: 6439 return CmpInst::ICMP_SGT; 6440 case TargetOpcode::G_UMIN: 6441 return CmpInst::ICMP_ULT; 6442 case TargetOpcode::G_UMAX: 6443 return CmpInst::ICMP_UGT; 6444 default: 6445 llvm_unreachable("not in integer min/max"); 6446 } 6447 } 6448 6449 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6450 Register Dst = MI.getOperand(0).getReg(); 6451 Register Src0 = MI.getOperand(1).getReg(); 6452 Register Src1 = MI.getOperand(2).getReg(); 6453 6454 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6455 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6456 6457 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6458 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6459 6460 MI.eraseFromParent(); 6461 return Legalized; 6462 } 6463 6464 LegalizerHelper::LegalizeResult 6465 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6466 Register Dst = MI.getOperand(0).getReg(); 6467 Register Src0 = MI.getOperand(1).getReg(); 6468 Register Src1 = MI.getOperand(2).getReg(); 6469 6470 const LLT Src0Ty = MRI.getType(Src0); 6471 const LLT Src1Ty = MRI.getType(Src1); 6472 6473 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6474 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6475 6476 auto SignBitMask = MIRBuilder.buildConstant( 6477 Src0Ty, APInt::getSignMask(Src0Size)); 6478 6479 auto NotSignBitMask = MIRBuilder.buildConstant( 6480 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6481 6482 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6483 Register And1; 6484 if (Src0Ty == Src1Ty) { 6485 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6486 } else if (Src0Size > Src1Size) { 6487 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6488 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6489 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6490 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6491 } else { 6492 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6493 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6494 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6495 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6496 } 6497 6498 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6499 // constants are a nan and -0.0, but the final result should preserve 6500 // everything. 6501 unsigned Flags = MI.getFlags(); 6502 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6503 6504 MI.eraseFromParent(); 6505 return Legalized; 6506 } 6507 6508 LegalizerHelper::LegalizeResult 6509 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6510 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6511 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6512 6513 Register Dst = MI.getOperand(0).getReg(); 6514 Register Src0 = MI.getOperand(1).getReg(); 6515 Register Src1 = MI.getOperand(2).getReg(); 6516 LLT Ty = MRI.getType(Dst); 6517 6518 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6519 // Insert canonicalizes if it's possible we need to quiet to get correct 6520 // sNaN behavior. 6521 6522 // Note this must be done here, and not as an optimization combine in the 6523 // absence of a dedicate quiet-snan instruction as we're using an 6524 // omni-purpose G_FCANONICALIZE. 6525 if (!isKnownNeverSNaN(Src0, MRI)) 6526 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6527 6528 if (!isKnownNeverSNaN(Src1, MRI)) 6529 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6530 } 6531 6532 // If there are no nans, it's safe to simply replace this with the non-IEEE 6533 // version. 6534 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6535 MI.eraseFromParent(); 6536 return Legalized; 6537 } 6538 6539 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6540 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6541 Register DstReg = MI.getOperand(0).getReg(); 6542 LLT Ty = MRI.getType(DstReg); 6543 unsigned Flags = MI.getFlags(); 6544 6545 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6546 Flags); 6547 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6548 MI.eraseFromParent(); 6549 return Legalized; 6550 } 6551 6552 LegalizerHelper::LegalizeResult 6553 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6554 Register DstReg = MI.getOperand(0).getReg(); 6555 Register X = MI.getOperand(1).getReg(); 6556 const unsigned Flags = MI.getFlags(); 6557 const LLT Ty = MRI.getType(DstReg); 6558 const LLT CondTy = Ty.changeElementSize(1); 6559 6560 // round(x) => 6561 // t = trunc(x); 6562 // d = fabs(x - t); 6563 // o = copysign(1.0f, x); 6564 // return t + (d >= 0.5 ? o : 0.0); 6565 6566 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6567 6568 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6569 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6570 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6571 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6572 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6573 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6574 6575 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6576 Flags); 6577 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6578 6579 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6580 6581 MI.eraseFromParent(); 6582 return Legalized; 6583 } 6584 6585 LegalizerHelper::LegalizeResult 6586 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6587 Register DstReg = MI.getOperand(0).getReg(); 6588 Register SrcReg = MI.getOperand(1).getReg(); 6589 unsigned Flags = MI.getFlags(); 6590 LLT Ty = MRI.getType(DstReg); 6591 const LLT CondTy = Ty.changeElementSize(1); 6592 6593 // result = trunc(src); 6594 // if (src < 0.0 && src != result) 6595 // result += -1.0. 6596 6597 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6598 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6599 6600 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6601 SrcReg, Zero, Flags); 6602 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6603 SrcReg, Trunc, Flags); 6604 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6605 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6606 6607 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6608 MI.eraseFromParent(); 6609 return Legalized; 6610 } 6611 6612 LegalizerHelper::LegalizeResult 6613 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6614 const unsigned NumOps = MI.getNumOperands(); 6615 Register DstReg = MI.getOperand(0).getReg(); 6616 Register Src0Reg = MI.getOperand(1).getReg(); 6617 LLT DstTy = MRI.getType(DstReg); 6618 LLT SrcTy = MRI.getType(Src0Reg); 6619 unsigned PartSize = SrcTy.getSizeInBits(); 6620 6621 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6622 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6623 6624 for (unsigned I = 2; I != NumOps; ++I) { 6625 const unsigned Offset = (I - 1) * PartSize; 6626 6627 Register SrcReg = MI.getOperand(I).getReg(); 6628 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6629 6630 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6631 MRI.createGenericVirtualRegister(WideTy); 6632 6633 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6634 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6635 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6636 ResultReg = NextResult; 6637 } 6638 6639 if (DstTy.isPointer()) { 6640 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6641 DstTy.getAddressSpace())) { 6642 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6643 return UnableToLegalize; 6644 } 6645 6646 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6647 } 6648 6649 MI.eraseFromParent(); 6650 return Legalized; 6651 } 6652 6653 LegalizerHelper::LegalizeResult 6654 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6655 const unsigned NumDst = MI.getNumOperands() - 1; 6656 Register SrcReg = MI.getOperand(NumDst).getReg(); 6657 Register Dst0Reg = MI.getOperand(0).getReg(); 6658 LLT DstTy = MRI.getType(Dst0Reg); 6659 if (DstTy.isPointer()) 6660 return UnableToLegalize; // TODO 6661 6662 SrcReg = coerceToScalar(SrcReg); 6663 if (!SrcReg) 6664 return UnableToLegalize; 6665 6666 // Expand scalarizing unmerge as bitcast to integer and shift. 6667 LLT IntTy = MRI.getType(SrcReg); 6668 6669 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6670 6671 const unsigned DstSize = DstTy.getSizeInBits(); 6672 unsigned Offset = DstSize; 6673 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6674 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6675 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6676 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6677 } 6678 6679 MI.eraseFromParent(); 6680 return Legalized; 6681 } 6682 6683 /// Lower a vector extract or insert by writing the vector to a stack temporary 6684 /// and reloading the element or vector. 6685 /// 6686 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6687 /// => 6688 /// %stack_temp = G_FRAME_INDEX 6689 /// G_STORE %vec, %stack_temp 6690 /// %idx = clamp(%idx, %vec.getNumElements()) 6691 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6692 /// %dst = G_LOAD %element_ptr 6693 LegalizerHelper::LegalizeResult 6694 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6695 Register DstReg = MI.getOperand(0).getReg(); 6696 Register SrcVec = MI.getOperand(1).getReg(); 6697 Register InsertVal; 6698 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6699 InsertVal = MI.getOperand(2).getReg(); 6700 6701 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6702 6703 LLT VecTy = MRI.getType(SrcVec); 6704 LLT EltTy = VecTy.getElementType(); 6705 if (!EltTy.isByteSized()) { // Not implemented. 6706 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6707 return UnableToLegalize; 6708 } 6709 6710 unsigned EltBytes = EltTy.getSizeInBytes(); 6711 Align VecAlign = getStackTemporaryAlignment(VecTy); 6712 Align EltAlign; 6713 6714 MachinePointerInfo PtrInfo; 6715 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6716 VecAlign, PtrInfo); 6717 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6718 6719 // Get the pointer to the element, and be sure not to hit undefined behavior 6720 // if the index is out of bounds. 6721 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6722 6723 int64_t IdxVal; 6724 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6725 int64_t Offset = IdxVal * EltBytes; 6726 PtrInfo = PtrInfo.getWithOffset(Offset); 6727 EltAlign = commonAlignment(VecAlign, Offset); 6728 } else { 6729 // We lose information with a variable offset. 6730 EltAlign = getStackTemporaryAlignment(EltTy); 6731 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6732 } 6733 6734 if (InsertVal) { 6735 // Write the inserted element 6736 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6737 6738 // Reload the whole vector. 6739 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6740 } else { 6741 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6742 } 6743 6744 MI.eraseFromParent(); 6745 return Legalized; 6746 } 6747 6748 LegalizerHelper::LegalizeResult 6749 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6750 Register DstReg = MI.getOperand(0).getReg(); 6751 Register Src0Reg = MI.getOperand(1).getReg(); 6752 Register Src1Reg = MI.getOperand(2).getReg(); 6753 LLT Src0Ty = MRI.getType(Src0Reg); 6754 LLT DstTy = MRI.getType(DstReg); 6755 LLT IdxTy = LLT::scalar(32); 6756 6757 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6758 6759 if (DstTy.isScalar()) { 6760 if (Src0Ty.isVector()) 6761 return UnableToLegalize; 6762 6763 // This is just a SELECT. 6764 assert(Mask.size() == 1 && "Expected a single mask element"); 6765 Register Val; 6766 if (Mask[0] < 0 || Mask[0] > 1) 6767 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6768 else 6769 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6770 MIRBuilder.buildCopy(DstReg, Val); 6771 MI.eraseFromParent(); 6772 return Legalized; 6773 } 6774 6775 Register Undef; 6776 SmallVector<Register, 32> BuildVec; 6777 LLT EltTy = DstTy.getElementType(); 6778 6779 for (int Idx : Mask) { 6780 if (Idx < 0) { 6781 if (!Undef.isValid()) 6782 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6783 BuildVec.push_back(Undef); 6784 continue; 6785 } 6786 6787 if (Src0Ty.isScalar()) { 6788 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6789 } else { 6790 int NumElts = Src0Ty.getNumElements(); 6791 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6792 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6793 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6794 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6795 BuildVec.push_back(Extract.getReg(0)); 6796 } 6797 } 6798 6799 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6800 MI.eraseFromParent(); 6801 return Legalized; 6802 } 6803 6804 LegalizerHelper::LegalizeResult 6805 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6806 const auto &MF = *MI.getMF(); 6807 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6808 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6809 return UnableToLegalize; 6810 6811 Register Dst = MI.getOperand(0).getReg(); 6812 Register AllocSize = MI.getOperand(1).getReg(); 6813 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6814 6815 LLT PtrTy = MRI.getType(Dst); 6816 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6817 6818 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6819 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6820 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6821 6822 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6823 // have to generate an extra instruction to negate the alloc and then use 6824 // G_PTR_ADD to add the negative offset. 6825 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6826 if (Alignment > Align(1)) { 6827 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6828 AlignMask.negate(); 6829 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6830 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6831 } 6832 6833 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6834 MIRBuilder.buildCopy(SPReg, SPTmp); 6835 MIRBuilder.buildCopy(Dst, SPTmp); 6836 6837 MI.eraseFromParent(); 6838 return Legalized; 6839 } 6840 6841 LegalizerHelper::LegalizeResult 6842 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6843 Register Dst = MI.getOperand(0).getReg(); 6844 Register Src = MI.getOperand(1).getReg(); 6845 unsigned Offset = MI.getOperand(2).getImm(); 6846 6847 LLT DstTy = MRI.getType(Dst); 6848 LLT SrcTy = MRI.getType(Src); 6849 6850 if (DstTy.isScalar() && 6851 (SrcTy.isScalar() || 6852 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6853 LLT SrcIntTy = SrcTy; 6854 if (!SrcTy.isScalar()) { 6855 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6856 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6857 } 6858 6859 if (Offset == 0) 6860 MIRBuilder.buildTrunc(Dst, Src); 6861 else { 6862 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6863 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6864 MIRBuilder.buildTrunc(Dst, Shr); 6865 } 6866 6867 MI.eraseFromParent(); 6868 return Legalized; 6869 } 6870 6871 return UnableToLegalize; 6872 } 6873 6874 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6875 Register Dst = MI.getOperand(0).getReg(); 6876 Register Src = MI.getOperand(1).getReg(); 6877 Register InsertSrc = MI.getOperand(2).getReg(); 6878 uint64_t Offset = MI.getOperand(3).getImm(); 6879 6880 LLT DstTy = MRI.getType(Src); 6881 LLT InsertTy = MRI.getType(InsertSrc); 6882 6883 if (InsertTy.isVector() || 6884 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6885 return UnableToLegalize; 6886 6887 const DataLayout &DL = MIRBuilder.getDataLayout(); 6888 if ((DstTy.isPointer() && 6889 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6890 (InsertTy.isPointer() && 6891 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6892 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6893 return UnableToLegalize; 6894 } 6895 6896 LLT IntDstTy = DstTy; 6897 6898 if (!DstTy.isScalar()) { 6899 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6900 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6901 } 6902 6903 if (!InsertTy.isScalar()) { 6904 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6905 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6906 } 6907 6908 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6909 if (Offset != 0) { 6910 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6911 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6912 } 6913 6914 APInt MaskVal = APInt::getBitsSetWithWrap( 6915 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6916 6917 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6918 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6919 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6920 6921 MIRBuilder.buildCast(Dst, Or); 6922 MI.eraseFromParent(); 6923 return Legalized; 6924 } 6925 6926 LegalizerHelper::LegalizeResult 6927 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6928 Register Dst0 = MI.getOperand(0).getReg(); 6929 Register Dst1 = MI.getOperand(1).getReg(); 6930 Register LHS = MI.getOperand(2).getReg(); 6931 Register RHS = MI.getOperand(3).getReg(); 6932 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6933 6934 LLT Ty = MRI.getType(Dst0); 6935 LLT BoolTy = MRI.getType(Dst1); 6936 6937 if (IsAdd) 6938 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6939 else 6940 MIRBuilder.buildSub(Dst0, LHS, RHS); 6941 6942 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6943 6944 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6945 6946 // For an addition, the result should be less than one of the operands (LHS) 6947 // if and only if the other operand (RHS) is negative, otherwise there will 6948 // be overflow. 6949 // For a subtraction, the result should be less than one of the operands 6950 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6951 // otherwise there will be overflow. 6952 auto ResultLowerThanLHS = 6953 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6954 auto ConditionRHS = MIRBuilder.buildICmp( 6955 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6956 6957 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6958 MI.eraseFromParent(); 6959 return Legalized; 6960 } 6961 6962 LegalizerHelper::LegalizeResult 6963 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6964 Register Res = MI.getOperand(0).getReg(); 6965 Register LHS = MI.getOperand(1).getReg(); 6966 Register RHS = MI.getOperand(2).getReg(); 6967 LLT Ty = MRI.getType(Res); 6968 bool IsSigned; 6969 bool IsAdd; 6970 unsigned BaseOp; 6971 switch (MI.getOpcode()) { 6972 default: 6973 llvm_unreachable("unexpected addsat/subsat opcode"); 6974 case TargetOpcode::G_UADDSAT: 6975 IsSigned = false; 6976 IsAdd = true; 6977 BaseOp = TargetOpcode::G_ADD; 6978 break; 6979 case TargetOpcode::G_SADDSAT: 6980 IsSigned = true; 6981 IsAdd = true; 6982 BaseOp = TargetOpcode::G_ADD; 6983 break; 6984 case TargetOpcode::G_USUBSAT: 6985 IsSigned = false; 6986 IsAdd = false; 6987 BaseOp = TargetOpcode::G_SUB; 6988 break; 6989 case TargetOpcode::G_SSUBSAT: 6990 IsSigned = true; 6991 IsAdd = false; 6992 BaseOp = TargetOpcode::G_SUB; 6993 break; 6994 } 6995 6996 if (IsSigned) { 6997 // sadd.sat(a, b) -> 6998 // hi = 0x7fffffff - smax(a, 0) 6999 // lo = 0x80000000 - smin(a, 0) 7000 // a + smin(smax(lo, b), hi) 7001 // ssub.sat(a, b) -> 7002 // lo = smax(a, -1) - 0x7fffffff 7003 // hi = smin(a, -1) - 0x80000000 7004 // a - smin(smax(lo, b), hi) 7005 // TODO: AMDGPU can use a "median of 3" instruction here: 7006 // a +/- med3(lo, b, hi) 7007 uint64_t NumBits = Ty.getScalarSizeInBits(); 7008 auto MaxVal = 7009 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 7010 auto MinVal = 7011 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7012 MachineInstrBuilder Hi, Lo; 7013 if (IsAdd) { 7014 auto Zero = MIRBuilder.buildConstant(Ty, 0); 7015 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 7016 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 7017 } else { 7018 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 7019 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 7020 MaxVal); 7021 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 7022 MinVal); 7023 } 7024 auto RHSClamped = 7025 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 7026 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 7027 } else { 7028 // uadd.sat(a, b) -> a + umin(~a, b) 7029 // usub.sat(a, b) -> a - umin(a, b) 7030 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 7031 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 7032 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 7033 } 7034 7035 MI.eraseFromParent(); 7036 return Legalized; 7037 } 7038 7039 LegalizerHelper::LegalizeResult 7040 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 7041 Register Res = MI.getOperand(0).getReg(); 7042 Register LHS = MI.getOperand(1).getReg(); 7043 Register RHS = MI.getOperand(2).getReg(); 7044 LLT Ty = MRI.getType(Res); 7045 LLT BoolTy = Ty.changeElementSize(1); 7046 bool IsSigned; 7047 bool IsAdd; 7048 unsigned OverflowOp; 7049 switch (MI.getOpcode()) { 7050 default: 7051 llvm_unreachable("unexpected addsat/subsat opcode"); 7052 case TargetOpcode::G_UADDSAT: 7053 IsSigned = false; 7054 IsAdd = true; 7055 OverflowOp = TargetOpcode::G_UADDO; 7056 break; 7057 case TargetOpcode::G_SADDSAT: 7058 IsSigned = true; 7059 IsAdd = true; 7060 OverflowOp = TargetOpcode::G_SADDO; 7061 break; 7062 case TargetOpcode::G_USUBSAT: 7063 IsSigned = false; 7064 IsAdd = false; 7065 OverflowOp = TargetOpcode::G_USUBO; 7066 break; 7067 case TargetOpcode::G_SSUBSAT: 7068 IsSigned = true; 7069 IsAdd = false; 7070 OverflowOp = TargetOpcode::G_SSUBO; 7071 break; 7072 } 7073 7074 auto OverflowRes = 7075 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 7076 Register Tmp = OverflowRes.getReg(0); 7077 Register Ov = OverflowRes.getReg(1); 7078 MachineInstrBuilder Clamp; 7079 if (IsSigned) { 7080 // sadd.sat(a, b) -> 7081 // {tmp, ov} = saddo(a, b) 7082 // ov ? (tmp >>s 31) + 0x80000000 : r 7083 // ssub.sat(a, b) -> 7084 // {tmp, ov} = ssubo(a, b) 7085 // ov ? (tmp >>s 31) + 0x80000000 : r 7086 uint64_t NumBits = Ty.getScalarSizeInBits(); 7087 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 7088 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 7089 auto MinVal = 7090 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7091 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 7092 } else { 7093 // uadd.sat(a, b) -> 7094 // {tmp, ov} = uaddo(a, b) 7095 // ov ? 0xffffffff : tmp 7096 // usub.sat(a, b) -> 7097 // {tmp, ov} = usubo(a, b) 7098 // ov ? 0 : tmp 7099 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 7100 } 7101 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 7102 7103 MI.eraseFromParent(); 7104 return Legalized; 7105 } 7106 7107 LegalizerHelper::LegalizeResult 7108 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 7109 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 7110 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 7111 "Expected shlsat opcode!"); 7112 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 7113 Register Res = MI.getOperand(0).getReg(); 7114 Register LHS = MI.getOperand(1).getReg(); 7115 Register RHS = MI.getOperand(2).getReg(); 7116 LLT Ty = MRI.getType(Res); 7117 LLT BoolTy = Ty.changeElementSize(1); 7118 7119 unsigned BW = Ty.getScalarSizeInBits(); 7120 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 7121 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 7122 : MIRBuilder.buildLShr(Ty, Result, RHS); 7123 7124 MachineInstrBuilder SatVal; 7125 if (IsSigned) { 7126 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 7127 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 7128 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 7129 MIRBuilder.buildConstant(Ty, 0)); 7130 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 7131 } else { 7132 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 7133 } 7134 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 7135 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 7136 7137 MI.eraseFromParent(); 7138 return Legalized; 7139 } 7140 7141 LegalizerHelper::LegalizeResult 7142 LegalizerHelper::lowerBswap(MachineInstr &MI) { 7143 Register Dst = MI.getOperand(0).getReg(); 7144 Register Src = MI.getOperand(1).getReg(); 7145 const LLT Ty = MRI.getType(Src); 7146 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 7147 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 7148 7149 // Swap most and least significant byte, set remaining bytes in Res to zero. 7150 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 7151 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 7152 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7153 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 7154 7155 // Set i-th high/low byte in Res to i-th low/high byte from Src. 7156 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 7157 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 7158 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 7159 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 7160 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 7161 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 7162 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 7163 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 7164 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 7165 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 7166 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7167 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 7168 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 7169 } 7170 Res.getInstr()->getOperand(0).setReg(Dst); 7171 7172 MI.eraseFromParent(); 7173 return Legalized; 7174 } 7175 7176 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 7177 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 7178 MachineInstrBuilder Src, APInt Mask) { 7179 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 7180 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 7181 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 7182 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 7183 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 7184 return B.buildOr(Dst, LHS, RHS); 7185 } 7186 7187 LegalizerHelper::LegalizeResult 7188 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 7189 Register Dst = MI.getOperand(0).getReg(); 7190 Register Src = MI.getOperand(1).getReg(); 7191 const LLT Ty = MRI.getType(Src); 7192 unsigned Size = Ty.getSizeInBits(); 7193 7194 MachineInstrBuilder BSWAP = 7195 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 7196 7197 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 7198 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 7199 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 7200 MachineInstrBuilder Swap4 = 7201 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 7202 7203 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 7204 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 7205 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 7206 MachineInstrBuilder Swap2 = 7207 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 7208 7209 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 7210 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 7211 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 7212 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 7213 7214 MI.eraseFromParent(); 7215 return Legalized; 7216 } 7217 7218 LegalizerHelper::LegalizeResult 7219 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 7220 MachineFunction &MF = MIRBuilder.getMF(); 7221 7222 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 7223 int NameOpIdx = IsRead ? 1 : 0; 7224 int ValRegIndex = IsRead ? 0 : 1; 7225 7226 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 7227 const LLT Ty = MRI.getType(ValReg); 7228 const MDString *RegStr = cast<MDString>( 7229 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 7230 7231 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 7232 if (!PhysReg.isValid()) 7233 return UnableToLegalize; 7234 7235 if (IsRead) 7236 MIRBuilder.buildCopy(ValReg, PhysReg); 7237 else 7238 MIRBuilder.buildCopy(PhysReg, ValReg); 7239 7240 MI.eraseFromParent(); 7241 return Legalized; 7242 } 7243 7244 LegalizerHelper::LegalizeResult 7245 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7246 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7247 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7248 Register Result = MI.getOperand(0).getReg(); 7249 LLT OrigTy = MRI.getType(Result); 7250 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7251 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7252 7253 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7254 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7255 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7256 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7257 7258 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7259 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7260 MIRBuilder.buildTrunc(Result, Shifted); 7261 7262 MI.eraseFromParent(); 7263 return Legalized; 7264 } 7265 7266 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 7267 // Implement vector G_SELECT in terms of XOR, AND, OR. 7268 Register DstReg = MI.getOperand(0).getReg(); 7269 Register MaskReg = MI.getOperand(1).getReg(); 7270 Register Op1Reg = MI.getOperand(2).getReg(); 7271 Register Op2Reg = MI.getOperand(3).getReg(); 7272 LLT DstTy = MRI.getType(DstReg); 7273 LLT MaskTy = MRI.getType(MaskReg); 7274 LLT Op1Ty = MRI.getType(Op1Reg); 7275 if (!DstTy.isVector()) 7276 return UnableToLegalize; 7277 7278 // Vector selects can have a scalar predicate. If so, splat into a vector and 7279 // finish for later legalization attempts to try again. 7280 if (MaskTy.isScalar()) { 7281 Register MaskElt = MaskReg; 7282 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 7283 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 7284 // Generate a vector splat idiom to be pattern matched later. 7285 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 7286 Observer.changingInstr(MI); 7287 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 7288 Observer.changedInstr(MI); 7289 return Legalized; 7290 } 7291 7292 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 7293 return UnableToLegalize; 7294 } 7295 7296 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 7297 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 7298 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 7299 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 7300 MI.eraseFromParent(); 7301 return Legalized; 7302 } 7303 7304 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7305 // Split DIVREM into individual instructions. 7306 unsigned Opcode = MI.getOpcode(); 7307 7308 MIRBuilder.buildInstr( 7309 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7310 : TargetOpcode::G_UDIV, 7311 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7312 MIRBuilder.buildInstr( 7313 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7314 : TargetOpcode::G_UREM, 7315 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7316 MI.eraseFromParent(); 7317 return Legalized; 7318 } 7319 7320 LegalizerHelper::LegalizeResult 7321 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7322 // Expand %res = G_ABS %a into: 7323 // %v1 = G_ASHR %a, scalar_size-1 7324 // %v2 = G_ADD %a, %v1 7325 // %res = G_XOR %v2, %v1 7326 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7327 Register OpReg = MI.getOperand(1).getReg(); 7328 auto ShiftAmt = 7329 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7330 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7331 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7332 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7333 MI.eraseFromParent(); 7334 return Legalized; 7335 } 7336 7337 LegalizerHelper::LegalizeResult 7338 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7339 // Expand %res = G_ABS %a into: 7340 // %v1 = G_CONSTANT 0 7341 // %v2 = G_SUB %v1, %a 7342 // %res = G_SMAX %a, %v2 7343 Register SrcReg = MI.getOperand(1).getReg(); 7344 LLT Ty = MRI.getType(SrcReg); 7345 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7346 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7347 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7348 MI.eraseFromParent(); 7349 return Legalized; 7350 } 7351