1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(
64         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
65   } else {
66     LeftoverTy = LLT::scalar(LeftoverSize);
67   }
68 
69   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
70   return std::make_pair(NumParts, NumLeftover);
71 }
72 
73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
74 
75   if (!Ty.isScalar())
76     return nullptr;
77 
78   switch (Ty.getSizeInBits()) {
79   case 16:
80     return Type::getHalfTy(Ctx);
81   case 32:
82     return Type::getFloatTy(Ctx);
83   case 64:
84     return Type::getDoubleTy(Ctx);
85   case 80:
86     return Type::getX86_FP80Ty(Ctx);
87   case 128:
88     return Type::getFP128Ty(Ctx);
89   default:
90     return nullptr;
91   }
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &Builder)
97     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
98       LI(*MF.getSubtarget().getLegalizerInfo()),
99       TLI(*MF.getSubtarget().getTargetLowering()) { }
100 
101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
102                                  GISelChangeObserver &Observer,
103                                  MachineIRBuilder &B)
104   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
105     TLI(*MF.getSubtarget().getTargetLowering()) { }
106 
107 LegalizerHelper::LegalizeResult
108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
109                                    LostDebugLocObserver &LocObserver) {
110   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
111 
112   MIRBuilder.setInstrAndDebugLoc(MI);
113 
114   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
115       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
116     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
117   auto Step = LI.getAction(MI, MRI);
118   switch (Step.Action) {
119   case Legal:
120     LLVM_DEBUG(dbgs() << ".. Already legal\n");
121     return AlreadyLegal;
122   case Libcall:
123     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
124     return libcall(MI, LocObserver);
125   case NarrowScalar:
126     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
127     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
128   case WidenScalar:
129     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
130     return widenScalar(MI, Step.TypeIdx, Step.NewType);
131   case Bitcast:
132     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
133     return bitcast(MI, Step.TypeIdx, Step.NewType);
134   case Lower:
135     LLVM_DEBUG(dbgs() << ".. Lower\n");
136     return lower(MI, Step.TypeIdx, Step.NewType);
137   case FewerElements:
138     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
139     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case MoreElements:
141     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
142     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
143   case Custom:
144     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
145     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
146   default:
147     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
148     return UnableToLegalize;
149   }
150 }
151 
152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
153                                    SmallVectorImpl<Register> &VRegs) {
154   for (int i = 0; i < NumParts; ++i)
155     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
156   MIRBuilder.buildUnmerge(VRegs, Reg);
157 }
158 
159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
160                                    LLT MainTy, LLT &LeftoverTy,
161                                    SmallVectorImpl<Register> &VRegs,
162                                    SmallVectorImpl<Register> &LeftoverRegs) {
163   assert(!LeftoverTy.isValid() && "this is an out argument");
164 
165   unsigned RegSize = RegTy.getSizeInBits();
166   unsigned MainSize = MainTy.getSizeInBits();
167   unsigned NumParts = RegSize / MainSize;
168   unsigned LeftoverSize = RegSize - NumParts * MainSize;
169 
170   // Use an unmerge when possible.
171   if (LeftoverSize == 0) {
172     for (unsigned I = 0; I < NumParts; ++I)
173       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
174     MIRBuilder.buildUnmerge(VRegs, Reg);
175     return true;
176   }
177 
178   if (MainTy.isVector()) {
179     unsigned EltSize = MainTy.getScalarSizeInBits();
180     if (LeftoverSize % EltSize != 0)
181       return false;
182     LeftoverTy = LLT::scalarOrVector(
183         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
184   } else {
185     LeftoverTy = LLT::scalar(LeftoverSize);
186   }
187 
188   // For irregular sizes, extract the individual parts.
189   for (unsigned I = 0; I != NumParts; ++I) {
190     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
191     VRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
193   }
194 
195   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
196        Offset += LeftoverSize) {
197     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
198     LeftoverRegs.push_back(NewReg);
199     MIRBuilder.buildExtract(NewReg, Reg, Offset);
200   }
201 
202   return true;
203 }
204 
205 void LegalizerHelper::insertParts(Register DstReg,
206                                   LLT ResultTy, LLT PartTy,
207                                   ArrayRef<Register> PartRegs,
208                                   LLT LeftoverTy,
209                                   ArrayRef<Register> LeftoverRegs) {
210   if (!LeftoverTy.isValid()) {
211     assert(LeftoverRegs.empty());
212 
213     if (!ResultTy.isVector()) {
214       MIRBuilder.buildMerge(DstReg, PartRegs);
215       return;
216     }
217 
218     if (PartTy.isVector())
219       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
220     else
221       MIRBuilder.buildBuildVector(DstReg, PartRegs);
222     return;
223   }
224 
225   SmallVector<Register> GCDRegs;
226   LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
227   for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
228     extractGCDType(GCDRegs, GCDTy, PartReg);
229   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
230   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
231 }
232 
233 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
234 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
235                               const MachineInstr &MI) {
236   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
237 
238   const int StartIdx = Regs.size();
239   const int NumResults = MI.getNumOperands() - 1;
240   Regs.resize(Regs.size() + NumResults);
241   for (int I = 0; I != NumResults; ++I)
242     Regs[StartIdx + I] = MI.getOperand(I).getReg();
243 }
244 
245 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
246                                      LLT GCDTy, Register SrcReg) {
247   LLT SrcTy = MRI.getType(SrcReg);
248   if (SrcTy == GCDTy) {
249     // If the source already evenly divides the result type, we don't need to do
250     // anything.
251     Parts.push_back(SrcReg);
252   } else {
253     // Need to split into common type sized pieces.
254     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
255     getUnmergeResults(Parts, *Unmerge);
256   }
257 }
258 
259 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
260                                     LLT NarrowTy, Register SrcReg) {
261   LLT SrcTy = MRI.getType(SrcReg);
262   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
263   extractGCDType(Parts, GCDTy, SrcReg);
264   return GCDTy;
265 }
266 
267 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
268                                          SmallVectorImpl<Register> &VRegs,
269                                          unsigned PadStrategy) {
270   LLT LCMTy = getLCMType(DstTy, NarrowTy);
271 
272   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
273   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
274   int NumOrigSrc = VRegs.size();
275 
276   Register PadReg;
277 
278   // Get a value we can use to pad the source value if the sources won't evenly
279   // cover the result type.
280   if (NumOrigSrc < NumParts * NumSubParts) {
281     if (PadStrategy == TargetOpcode::G_ZEXT)
282       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
283     else if (PadStrategy == TargetOpcode::G_ANYEXT)
284       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
285     else {
286       assert(PadStrategy == TargetOpcode::G_SEXT);
287 
288       // Shift the sign bit of the low register through the high register.
289       auto ShiftAmt =
290         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
291       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
292     }
293   }
294 
295   // Registers for the final merge to be produced.
296   SmallVector<Register, 4> Remerge(NumParts);
297 
298   // Registers needed for intermediate merges, which will be merged into a
299   // source for Remerge.
300   SmallVector<Register, 4> SubMerge(NumSubParts);
301 
302   // Once we've fully read off the end of the original source bits, we can reuse
303   // the same high bits for remaining padding elements.
304   Register AllPadReg;
305 
306   // Build merges to the LCM type to cover the original result type.
307   for (int I = 0; I != NumParts; ++I) {
308     bool AllMergePartsArePadding = true;
309 
310     // Build the requested merges to the requested type.
311     for (int J = 0; J != NumSubParts; ++J) {
312       int Idx = I * NumSubParts + J;
313       if (Idx >= NumOrigSrc) {
314         SubMerge[J] = PadReg;
315         continue;
316       }
317 
318       SubMerge[J] = VRegs[Idx];
319 
320       // There are meaningful bits here we can't reuse later.
321       AllMergePartsArePadding = false;
322     }
323 
324     // If we've filled up a complete piece with padding bits, we can directly
325     // emit the natural sized constant if applicable, rather than a merge of
326     // smaller constants.
327     if (AllMergePartsArePadding && !AllPadReg) {
328       if (PadStrategy == TargetOpcode::G_ANYEXT)
329         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
330       else if (PadStrategy == TargetOpcode::G_ZEXT)
331         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
332 
333       // If this is a sign extension, we can't materialize a trivial constant
334       // with the right type and have to produce a merge.
335     }
336 
337     if (AllPadReg) {
338       // Avoid creating additional instructions if we're just adding additional
339       // copies of padding bits.
340       Remerge[I] = AllPadReg;
341       continue;
342     }
343 
344     if (NumSubParts == 1)
345       Remerge[I] = SubMerge[0];
346     else
347       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
348 
349     // In the sign extend padding case, re-use the first all-signbit merge.
350     if (AllMergePartsArePadding && !AllPadReg)
351       AllPadReg = Remerge[I];
352   }
353 
354   VRegs = std::move(Remerge);
355   return LCMTy;
356 }
357 
358 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
359                                                ArrayRef<Register> RemergeRegs) {
360   LLT DstTy = MRI.getType(DstReg);
361 
362   // Create the merge to the widened source, and extract the relevant bits into
363   // the result.
364 
365   if (DstTy == LCMTy) {
366     MIRBuilder.buildMerge(DstReg, RemergeRegs);
367     return;
368   }
369 
370   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
371   if (DstTy.isScalar() && LCMTy.isScalar()) {
372     MIRBuilder.buildTrunc(DstReg, Remerge);
373     return;
374   }
375 
376   if (LCMTy.isVector()) {
377     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
378     SmallVector<Register, 8> UnmergeDefs(NumDefs);
379     UnmergeDefs[0] = DstReg;
380     for (unsigned I = 1; I != NumDefs; ++I)
381       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
382 
383     MIRBuilder.buildUnmerge(UnmergeDefs,
384                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
385     return;
386   }
387 
388   llvm_unreachable("unhandled case");
389 }
390 
391 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
392 #define RTLIBCASE_INT(LibcallPrefix)                                           \
393   do {                                                                         \
394     switch (Size) {                                                            \
395     case 32:                                                                   \
396       return RTLIB::LibcallPrefix##32;                                         \
397     case 64:                                                                   \
398       return RTLIB::LibcallPrefix##64;                                         \
399     case 128:                                                                  \
400       return RTLIB::LibcallPrefix##128;                                        \
401     default:                                                                   \
402       llvm_unreachable("unexpected size");                                     \
403     }                                                                          \
404   } while (0)
405 
406 #define RTLIBCASE(LibcallPrefix)                                               \
407   do {                                                                         \
408     switch (Size) {                                                            \
409     case 32:                                                                   \
410       return RTLIB::LibcallPrefix##32;                                         \
411     case 64:                                                                   \
412       return RTLIB::LibcallPrefix##64;                                         \
413     case 80:                                                                   \
414       return RTLIB::LibcallPrefix##80;                                         \
415     case 128:                                                                  \
416       return RTLIB::LibcallPrefix##128;                                        \
417     default:                                                                   \
418       llvm_unreachable("unexpected size");                                     \
419     }                                                                          \
420   } while (0)
421 
422   switch (Opcode) {
423   case TargetOpcode::G_SDIV:
424     RTLIBCASE_INT(SDIV_I);
425   case TargetOpcode::G_UDIV:
426     RTLIBCASE_INT(UDIV_I);
427   case TargetOpcode::G_SREM:
428     RTLIBCASE_INT(SREM_I);
429   case TargetOpcode::G_UREM:
430     RTLIBCASE_INT(UREM_I);
431   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
432     RTLIBCASE_INT(CTLZ_I);
433   case TargetOpcode::G_FADD:
434     RTLIBCASE(ADD_F);
435   case TargetOpcode::G_FSUB:
436     RTLIBCASE(SUB_F);
437   case TargetOpcode::G_FMUL:
438     RTLIBCASE(MUL_F);
439   case TargetOpcode::G_FDIV:
440     RTLIBCASE(DIV_F);
441   case TargetOpcode::G_FEXP:
442     RTLIBCASE(EXP_F);
443   case TargetOpcode::G_FEXP2:
444     RTLIBCASE(EXP2_F);
445   case TargetOpcode::G_FREM:
446     RTLIBCASE(REM_F);
447   case TargetOpcode::G_FPOW:
448     RTLIBCASE(POW_F);
449   case TargetOpcode::G_FMA:
450     RTLIBCASE(FMA_F);
451   case TargetOpcode::G_FSIN:
452     RTLIBCASE(SIN_F);
453   case TargetOpcode::G_FCOS:
454     RTLIBCASE(COS_F);
455   case TargetOpcode::G_FLOG10:
456     RTLIBCASE(LOG10_F);
457   case TargetOpcode::G_FLOG:
458     RTLIBCASE(LOG_F);
459   case TargetOpcode::G_FLOG2:
460     RTLIBCASE(LOG2_F);
461   case TargetOpcode::G_FCEIL:
462     RTLIBCASE(CEIL_F);
463   case TargetOpcode::G_FFLOOR:
464     RTLIBCASE(FLOOR_F);
465   case TargetOpcode::G_FMINNUM:
466     RTLIBCASE(FMIN_F);
467   case TargetOpcode::G_FMAXNUM:
468     RTLIBCASE(FMAX_F);
469   case TargetOpcode::G_FSQRT:
470     RTLIBCASE(SQRT_F);
471   case TargetOpcode::G_FRINT:
472     RTLIBCASE(RINT_F);
473   case TargetOpcode::G_FNEARBYINT:
474     RTLIBCASE(NEARBYINT_F);
475   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
476     RTLIBCASE(ROUNDEVEN_F);
477   }
478   llvm_unreachable("Unknown libcall function");
479 }
480 
481 /// True if an instruction is in tail position in its caller. Intended for
482 /// legalizing libcalls as tail calls when possible.
483 static bool isLibCallInTailPosition(MachineInstr &MI,
484                                     const TargetInstrInfo &TII,
485                                     MachineRegisterInfo &MRI) {
486   MachineBasicBlock &MBB = *MI.getParent();
487   const Function &F = MBB.getParent()->getFunction();
488 
489   // Conservatively require the attributes of the call to match those of
490   // the return. Ignore NoAlias and NonNull because they don't affect the
491   // call sequence.
492   AttributeList CallerAttrs = F.getAttributes();
493   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
494           .removeAttribute(Attribute::NoAlias)
495           .removeAttribute(Attribute::NonNull)
496           .hasAttributes())
497     return false;
498 
499   // It's not safe to eliminate the sign / zero extension of the return value.
500   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
501       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
502     return false;
503 
504   // Only tail call if the following instruction is a standard return or if we
505   // have a `thisreturn` callee, and a sequence like:
506   //
507   //   G_MEMCPY %0, %1, %2
508   //   $x0 = COPY %0
509   //   RET_ReallyLR implicit $x0
510   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
511   if (Next != MBB.instr_end() && Next->isCopy()) {
512     switch (MI.getOpcode()) {
513     default:
514       llvm_unreachable("unsupported opcode");
515     case TargetOpcode::G_BZERO:
516       return false;
517     case TargetOpcode::G_MEMCPY:
518     case TargetOpcode::G_MEMMOVE:
519     case TargetOpcode::G_MEMSET:
520       break;
521     }
522 
523     Register VReg = MI.getOperand(0).getReg();
524     if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
525       return false;
526 
527     Register PReg = Next->getOperand(0).getReg();
528     if (!PReg.isPhysical())
529       return false;
530 
531     auto Ret = next_nodbg(Next, MBB.instr_end());
532     if (Ret == MBB.instr_end() || !Ret->isReturn())
533       return false;
534 
535     if (Ret->getNumImplicitOperands() != 1)
536       return false;
537 
538     if (PReg != Ret->getOperand(0).getReg())
539       return false;
540 
541     // Skip over the COPY that we just validated.
542     Next = Ret;
543   }
544 
545   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
546     return false;
547 
548   return true;
549 }
550 
551 LegalizerHelper::LegalizeResult
552 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
553                     const CallLowering::ArgInfo &Result,
554                     ArrayRef<CallLowering::ArgInfo> Args,
555                     const CallingConv::ID CC) {
556   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
557 
558   CallLowering::CallLoweringInfo Info;
559   Info.CallConv = CC;
560   Info.Callee = MachineOperand::CreateES(Name);
561   Info.OrigRet = Result;
562   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
563   if (!CLI.lowerCall(MIRBuilder, Info))
564     return LegalizerHelper::UnableToLegalize;
565 
566   return LegalizerHelper::Legalized;
567 }
568 
569 LegalizerHelper::LegalizeResult
570 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
571                     const CallLowering::ArgInfo &Result,
572                     ArrayRef<CallLowering::ArgInfo> Args) {
573   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
574   const char *Name = TLI.getLibcallName(Libcall);
575   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
576   return createLibcall(MIRBuilder, Name, Result, Args, CC);
577 }
578 
579 // Useful for libcalls where all operands have the same type.
580 static LegalizerHelper::LegalizeResult
581 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
582               Type *OpType) {
583   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
584 
585   // FIXME: What does the original arg index mean here?
586   SmallVector<CallLowering::ArgInfo, 3> Args;
587   for (unsigned i = 1; i < MI.getNumOperands(); i++)
588     Args.push_back({MI.getOperand(i).getReg(), OpType, 0});
589   return createLibcall(MIRBuilder, Libcall,
590                        {MI.getOperand(0).getReg(), OpType, 0}, Args);
591 }
592 
593 LegalizerHelper::LegalizeResult
594 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
595                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
596   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
597 
598   SmallVector<CallLowering::ArgInfo, 3> Args;
599   // Add all the args, except for the last which is an imm denoting 'tail'.
600   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
601     Register Reg = MI.getOperand(i).getReg();
602 
603     // Need derive an IR type for call lowering.
604     LLT OpLLT = MRI.getType(Reg);
605     Type *OpTy = nullptr;
606     if (OpLLT.isPointer())
607       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
608     else
609       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
610     Args.push_back({Reg, OpTy, 0});
611   }
612 
613   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
614   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
615   RTLIB::Libcall RTLibcall;
616   unsigned Opc = MI.getOpcode();
617   switch (Opc) {
618   case TargetOpcode::G_BZERO:
619     RTLibcall = RTLIB::BZERO;
620     break;
621   case TargetOpcode::G_MEMCPY:
622     RTLibcall = RTLIB::MEMCPY;
623     Args[0].Flags[0].setReturned();
624     break;
625   case TargetOpcode::G_MEMMOVE:
626     RTLibcall = RTLIB::MEMMOVE;
627     Args[0].Flags[0].setReturned();
628     break;
629   case TargetOpcode::G_MEMSET:
630     RTLibcall = RTLIB::MEMSET;
631     Args[0].Flags[0].setReturned();
632     break;
633   default:
634     llvm_unreachable("unsupported opcode");
635   }
636   const char *Name = TLI.getLibcallName(RTLibcall);
637 
638   // Unsupported libcall on the target.
639   if (!Name) {
640     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
641                       << MIRBuilder.getTII().getName(Opc) << "\n");
642     return LegalizerHelper::UnableToLegalize;
643   }
644 
645   CallLowering::CallLoweringInfo Info;
646   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
647   Info.Callee = MachineOperand::CreateES(Name);
648   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
649   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
650                     isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI);
651 
652   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
653   if (!CLI.lowerCall(MIRBuilder, Info))
654     return LegalizerHelper::UnableToLegalize;
655 
656   if (Info.LoweredTailCall) {
657     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
658 
659     // Check debug locations before removing the return.
660     LocObserver.checkpoint(true);
661 
662     // We must have a return following the call (or debug insts) to get past
663     // isLibCallInTailPosition.
664     do {
665       MachineInstr *Next = MI.getNextNode();
666       assert(Next &&
667              (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
668              "Expected instr following MI to be return or debug inst?");
669       // We lowered a tail call, so the call is now the return from the block.
670       // Delete the old return.
671       Next->eraseFromParent();
672     } while (MI.getNextNode());
673 
674     // We expect to lose the debug location from the return.
675     LocObserver.checkpoint(false);
676   }
677 
678   return LegalizerHelper::Legalized;
679 }
680 
681 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
682                                        Type *FromType) {
683   auto ToMVT = MVT::getVT(ToType);
684   auto FromMVT = MVT::getVT(FromType);
685 
686   switch (Opcode) {
687   case TargetOpcode::G_FPEXT:
688     return RTLIB::getFPEXT(FromMVT, ToMVT);
689   case TargetOpcode::G_FPTRUNC:
690     return RTLIB::getFPROUND(FromMVT, ToMVT);
691   case TargetOpcode::G_FPTOSI:
692     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
693   case TargetOpcode::G_FPTOUI:
694     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
695   case TargetOpcode::G_SITOFP:
696     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
697   case TargetOpcode::G_UITOFP:
698     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
699   }
700   llvm_unreachable("Unsupported libcall function");
701 }
702 
703 static LegalizerHelper::LegalizeResult
704 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
705                   Type *FromType) {
706   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
707   return createLibcall(MIRBuilder, Libcall,
708                        {MI.getOperand(0).getReg(), ToType, 0},
709                        {{MI.getOperand(1).getReg(), FromType, 0}});
710 }
711 
712 LegalizerHelper::LegalizeResult
713 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
714   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
715   unsigned Size = LLTy.getSizeInBits();
716   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
717 
718   switch (MI.getOpcode()) {
719   default:
720     return UnableToLegalize;
721   case TargetOpcode::G_SDIV:
722   case TargetOpcode::G_UDIV:
723   case TargetOpcode::G_SREM:
724   case TargetOpcode::G_UREM:
725   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
726     Type *HLTy = IntegerType::get(Ctx, Size);
727     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
728     if (Status != Legalized)
729       return Status;
730     break;
731   }
732   case TargetOpcode::G_FADD:
733   case TargetOpcode::G_FSUB:
734   case TargetOpcode::G_FMUL:
735   case TargetOpcode::G_FDIV:
736   case TargetOpcode::G_FMA:
737   case TargetOpcode::G_FPOW:
738   case TargetOpcode::G_FREM:
739   case TargetOpcode::G_FCOS:
740   case TargetOpcode::G_FSIN:
741   case TargetOpcode::G_FLOG10:
742   case TargetOpcode::G_FLOG:
743   case TargetOpcode::G_FLOG2:
744   case TargetOpcode::G_FEXP:
745   case TargetOpcode::G_FEXP2:
746   case TargetOpcode::G_FCEIL:
747   case TargetOpcode::G_FFLOOR:
748   case TargetOpcode::G_FMINNUM:
749   case TargetOpcode::G_FMAXNUM:
750   case TargetOpcode::G_FSQRT:
751   case TargetOpcode::G_FRINT:
752   case TargetOpcode::G_FNEARBYINT:
753   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
754     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
755     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
756       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
757       return UnableToLegalize;
758     }
759     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
760     if (Status != Legalized)
761       return Status;
762     break;
763   }
764   case TargetOpcode::G_FPEXT:
765   case TargetOpcode::G_FPTRUNC: {
766     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
767     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
768     if (!FromTy || !ToTy)
769       return UnableToLegalize;
770     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
771     if (Status != Legalized)
772       return Status;
773     break;
774   }
775   case TargetOpcode::G_FPTOSI:
776   case TargetOpcode::G_FPTOUI: {
777     // FIXME: Support other types
778     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
779     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
780     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
781       return UnableToLegalize;
782     LegalizeResult Status = conversionLibcall(
783         MI, MIRBuilder,
784         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
785         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
786     if (Status != Legalized)
787       return Status;
788     break;
789   }
790   case TargetOpcode::G_SITOFP:
791   case TargetOpcode::G_UITOFP: {
792     // FIXME: Support other types
793     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
794     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
795     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
796       return UnableToLegalize;
797     LegalizeResult Status = conversionLibcall(
798         MI, MIRBuilder,
799         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
800         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
801     if (Status != Legalized)
802       return Status;
803     break;
804   }
805   case TargetOpcode::G_BZERO:
806   case TargetOpcode::G_MEMCPY:
807   case TargetOpcode::G_MEMMOVE:
808   case TargetOpcode::G_MEMSET: {
809     LegalizeResult Result =
810         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
811     if (Result != Legalized)
812       return Result;
813     MI.eraseFromParent();
814     return Result;
815   }
816   }
817 
818   MI.eraseFromParent();
819   return Legalized;
820 }
821 
822 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
823                                                               unsigned TypeIdx,
824                                                               LLT NarrowTy) {
825   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
826   uint64_t NarrowSize = NarrowTy.getSizeInBits();
827 
828   switch (MI.getOpcode()) {
829   default:
830     return UnableToLegalize;
831   case TargetOpcode::G_IMPLICIT_DEF: {
832     Register DstReg = MI.getOperand(0).getReg();
833     LLT DstTy = MRI.getType(DstReg);
834 
835     // If SizeOp0 is not an exact multiple of NarrowSize, emit
836     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
837     // FIXME: Although this would also be legal for the general case, it causes
838     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
839     //  combines not being hit). This seems to be a problem related to the
840     //  artifact combiner.
841     if (SizeOp0 % NarrowSize != 0) {
842       LLT ImplicitTy = NarrowTy;
843       if (DstTy.isVector())
844         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
845 
846       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
847       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
848 
849       MI.eraseFromParent();
850       return Legalized;
851     }
852 
853     int NumParts = SizeOp0 / NarrowSize;
854 
855     SmallVector<Register, 2> DstRegs;
856     for (int i = 0; i < NumParts; ++i)
857       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
858 
859     if (DstTy.isVector())
860       MIRBuilder.buildBuildVector(DstReg, DstRegs);
861     else
862       MIRBuilder.buildMerge(DstReg, DstRegs);
863     MI.eraseFromParent();
864     return Legalized;
865   }
866   case TargetOpcode::G_CONSTANT: {
867     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
868     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
869     unsigned TotalSize = Ty.getSizeInBits();
870     unsigned NarrowSize = NarrowTy.getSizeInBits();
871     int NumParts = TotalSize / NarrowSize;
872 
873     SmallVector<Register, 4> PartRegs;
874     for (int I = 0; I != NumParts; ++I) {
875       unsigned Offset = I * NarrowSize;
876       auto K = MIRBuilder.buildConstant(NarrowTy,
877                                         Val.lshr(Offset).trunc(NarrowSize));
878       PartRegs.push_back(K.getReg(0));
879     }
880 
881     LLT LeftoverTy;
882     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
883     SmallVector<Register, 1> LeftoverRegs;
884     if (LeftoverBits != 0) {
885       LeftoverTy = LLT::scalar(LeftoverBits);
886       auto K = MIRBuilder.buildConstant(
887         LeftoverTy,
888         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
889       LeftoverRegs.push_back(K.getReg(0));
890     }
891 
892     insertParts(MI.getOperand(0).getReg(),
893                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
894 
895     MI.eraseFromParent();
896     return Legalized;
897   }
898   case TargetOpcode::G_SEXT:
899   case TargetOpcode::G_ZEXT:
900   case TargetOpcode::G_ANYEXT:
901     return narrowScalarExt(MI, TypeIdx, NarrowTy);
902   case TargetOpcode::G_TRUNC: {
903     if (TypeIdx != 1)
904       return UnableToLegalize;
905 
906     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
907     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
908       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
909       return UnableToLegalize;
910     }
911 
912     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
913     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
914     MI.eraseFromParent();
915     return Legalized;
916   }
917 
918   case TargetOpcode::G_FREEZE:
919     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
920   case TargetOpcode::G_ADD:
921   case TargetOpcode::G_SUB:
922   case TargetOpcode::G_SADDO:
923   case TargetOpcode::G_SSUBO:
924   case TargetOpcode::G_SADDE:
925   case TargetOpcode::G_SSUBE:
926   case TargetOpcode::G_UADDO:
927   case TargetOpcode::G_USUBO:
928   case TargetOpcode::G_UADDE:
929   case TargetOpcode::G_USUBE:
930     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
931   case TargetOpcode::G_MUL:
932   case TargetOpcode::G_UMULH:
933     return narrowScalarMul(MI, NarrowTy);
934   case TargetOpcode::G_EXTRACT:
935     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
936   case TargetOpcode::G_INSERT:
937     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
938   case TargetOpcode::G_LOAD: {
939     auto &LoadMI = cast<GLoad>(MI);
940     Register DstReg = LoadMI.getDstReg();
941     LLT DstTy = MRI.getType(DstReg);
942     if (DstTy.isVector())
943       return UnableToLegalize;
944 
945     if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
946       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
947       MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
948       MIRBuilder.buildAnyExt(DstReg, TmpReg);
949       LoadMI.eraseFromParent();
950       return Legalized;
951     }
952 
953     return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
954   }
955   case TargetOpcode::G_ZEXTLOAD:
956   case TargetOpcode::G_SEXTLOAD: {
957     auto &LoadMI = cast<GExtLoad>(MI);
958     Register DstReg = LoadMI.getDstReg();
959     Register PtrReg = LoadMI.getPointerReg();
960 
961     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
962     auto &MMO = LoadMI.getMMO();
963     unsigned MemSize = MMO.getSizeInBits();
964 
965     if (MemSize == NarrowSize) {
966       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
967     } else if (MemSize < NarrowSize) {
968       MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
969     } else if (MemSize > NarrowSize) {
970       // FIXME: Need to split the load.
971       return UnableToLegalize;
972     }
973 
974     if (isa<GZExtLoad>(LoadMI))
975       MIRBuilder.buildZExt(DstReg, TmpReg);
976     else
977       MIRBuilder.buildSExt(DstReg, TmpReg);
978 
979     LoadMI.eraseFromParent();
980     return Legalized;
981   }
982   case TargetOpcode::G_STORE: {
983     auto &StoreMI = cast<GStore>(MI);
984 
985     Register SrcReg = StoreMI.getValueReg();
986     LLT SrcTy = MRI.getType(SrcReg);
987     if (SrcTy.isVector())
988       return UnableToLegalize;
989 
990     int NumParts = SizeOp0 / NarrowSize;
991     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
992     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
993     if (SrcTy.isVector() && LeftoverBits != 0)
994       return UnableToLegalize;
995 
996     if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
997       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
998       MIRBuilder.buildTrunc(TmpReg, SrcReg);
999       MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1000       StoreMI.eraseFromParent();
1001       return Legalized;
1002     }
1003 
1004     return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1005   }
1006   case TargetOpcode::G_SELECT:
1007     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1008   case TargetOpcode::G_AND:
1009   case TargetOpcode::G_OR:
1010   case TargetOpcode::G_XOR: {
1011     // Legalize bitwise operation:
1012     // A = BinOp<Ty> B, C
1013     // into:
1014     // B1, ..., BN = G_UNMERGE_VALUES B
1015     // C1, ..., CN = G_UNMERGE_VALUES C
1016     // A1 = BinOp<Ty/N> B1, C2
1017     // ...
1018     // AN = BinOp<Ty/N> BN, CN
1019     // A = G_MERGE_VALUES A1, ..., AN
1020     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1021   }
1022   case TargetOpcode::G_SHL:
1023   case TargetOpcode::G_LSHR:
1024   case TargetOpcode::G_ASHR:
1025     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_CTLZ:
1027   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1028   case TargetOpcode::G_CTTZ:
1029   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1030   case TargetOpcode::G_CTPOP:
1031     if (TypeIdx == 1)
1032       switch (MI.getOpcode()) {
1033       case TargetOpcode::G_CTLZ:
1034       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1035         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1036       case TargetOpcode::G_CTTZ:
1037       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1038         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1039       case TargetOpcode::G_CTPOP:
1040         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1041       default:
1042         return UnableToLegalize;
1043       }
1044 
1045     Observer.changingInstr(MI);
1046     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   case TargetOpcode::G_INTTOPTR:
1050     if (TypeIdx != 1)
1051       return UnableToLegalize;
1052 
1053     Observer.changingInstr(MI);
1054     narrowScalarSrc(MI, NarrowTy, 1);
1055     Observer.changedInstr(MI);
1056     return Legalized;
1057   case TargetOpcode::G_PTRTOINT:
1058     if (TypeIdx != 0)
1059       return UnableToLegalize;
1060 
1061     Observer.changingInstr(MI);
1062     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   case TargetOpcode::G_PHI: {
1066     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1067     // NarrowSize.
1068     if (SizeOp0 % NarrowSize != 0)
1069       return UnableToLegalize;
1070 
1071     unsigned NumParts = SizeOp0 / NarrowSize;
1072     SmallVector<Register, 2> DstRegs(NumParts);
1073     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1074     Observer.changingInstr(MI);
1075     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1076       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1077       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1078       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1079                    SrcRegs[i / 2]);
1080     }
1081     MachineBasicBlock &MBB = *MI.getParent();
1082     MIRBuilder.setInsertPt(MBB, MI);
1083     for (unsigned i = 0; i < NumParts; ++i) {
1084       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1085       MachineInstrBuilder MIB =
1086           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1087       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1088         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1089     }
1090     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1091     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1092     Observer.changedInstr(MI);
1093     MI.eraseFromParent();
1094     return Legalized;
1095   }
1096   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1097   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1098     if (TypeIdx != 2)
1099       return UnableToLegalize;
1100 
1101     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1102     Observer.changingInstr(MI);
1103     narrowScalarSrc(MI, NarrowTy, OpIdx);
1104     Observer.changedInstr(MI);
1105     return Legalized;
1106   }
1107   case TargetOpcode::G_ICMP: {
1108     Register LHS = MI.getOperand(2).getReg();
1109     LLT SrcTy = MRI.getType(LHS);
1110     uint64_t SrcSize = SrcTy.getSizeInBits();
1111     CmpInst::Predicate Pred =
1112         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1113 
1114     // TODO: Handle the non-equality case for weird sizes.
1115     if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1116       return UnableToLegalize;
1117 
1118     LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1119     SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1120     if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1121                       LHSLeftoverRegs))
1122       return UnableToLegalize;
1123 
1124     LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1125     SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1126     if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1127                       RHSPartRegs, RHSLeftoverRegs))
1128       return UnableToLegalize;
1129 
1130     // We now have the LHS and RHS of the compare split into narrow-type
1131     // registers, plus potentially some leftover type.
1132     Register Dst = MI.getOperand(0).getReg();
1133     LLT ResTy = MRI.getType(Dst);
1134     if (ICmpInst::isEquality(Pred)) {
1135       // For each part on the LHS and RHS, keep track of the result of XOR-ing
1136       // them together. For each equal part, the result should be all 0s. For
1137       // each non-equal part, we'll get at least one 1.
1138       auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1139       SmallVector<Register, 4> Xors;
1140       for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1141         auto LHS = std::get<0>(LHSAndRHS);
1142         auto RHS = std::get<1>(LHSAndRHS);
1143         auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1144         Xors.push_back(Xor);
1145       }
1146 
1147       // Build a G_XOR for each leftover register. Each G_XOR must be widened
1148       // to the desired narrow type so that we can OR them together later.
1149       SmallVector<Register, 4> WidenedXors;
1150       for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1151         auto LHS = std::get<0>(LHSAndRHS);
1152         auto RHS = std::get<1>(LHSAndRHS);
1153         auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1154         LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1155         buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1156                             /* PadStrategy = */ TargetOpcode::G_ZEXT);
1157         Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1158       }
1159 
1160       // Now, for each part we broke up, we know if they are equal/not equal
1161       // based off the G_XOR. We can OR these all together and compare against
1162       // 0 to get the result.
1163       assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1164       auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1165       for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1166         Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1167       MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1168     } else {
1169       // TODO: Handle non-power-of-two types.
1170       assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1171       assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1172       Register LHSL = LHSPartRegs[0];
1173       Register LHSH = LHSPartRegs[1];
1174       Register RHSL = RHSPartRegs[0];
1175       Register RHSH = RHSPartRegs[1];
1176       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1177       MachineInstrBuilder CmpHEQ =
1178           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1179       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1180           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1181       MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1182     }
1183     MI.eraseFromParent();
1184     return Legalized;
1185   }
1186   case TargetOpcode::G_SEXT_INREG: {
1187     if (TypeIdx != 0)
1188       return UnableToLegalize;
1189 
1190     int64_t SizeInBits = MI.getOperand(2).getImm();
1191 
1192     // So long as the new type has more bits than the bits we're extending we
1193     // don't need to break it apart.
1194     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1195       Observer.changingInstr(MI);
1196       // We don't lose any non-extension bits by truncating the src and
1197       // sign-extending the dst.
1198       MachineOperand &MO1 = MI.getOperand(1);
1199       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1200       MO1.setReg(TruncMIB.getReg(0));
1201 
1202       MachineOperand &MO2 = MI.getOperand(0);
1203       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1204       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1205       MIRBuilder.buildSExt(MO2, DstExt);
1206       MO2.setReg(DstExt);
1207       Observer.changedInstr(MI);
1208       return Legalized;
1209     }
1210 
1211     // Break it apart. Components below the extension point are unmodified. The
1212     // component containing the extension point becomes a narrower SEXT_INREG.
1213     // Components above it are ashr'd from the component containing the
1214     // extension point.
1215     if (SizeOp0 % NarrowSize != 0)
1216       return UnableToLegalize;
1217     int NumParts = SizeOp0 / NarrowSize;
1218 
1219     // List the registers where the destination will be scattered.
1220     SmallVector<Register, 2> DstRegs;
1221     // List the registers where the source will be split.
1222     SmallVector<Register, 2> SrcRegs;
1223 
1224     // Create all the temporary registers.
1225     for (int i = 0; i < NumParts; ++i) {
1226       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1227 
1228       SrcRegs.push_back(SrcReg);
1229     }
1230 
1231     // Explode the big arguments into smaller chunks.
1232     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1233 
1234     Register AshrCstReg =
1235         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1236             .getReg(0);
1237     Register FullExtensionReg = 0;
1238     Register PartialExtensionReg = 0;
1239 
1240     // Do the operation on each small part.
1241     for (int i = 0; i < NumParts; ++i) {
1242       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1243         DstRegs.push_back(SrcRegs[i]);
1244       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1245         assert(PartialExtensionReg &&
1246                "Expected to visit partial extension before full");
1247         if (FullExtensionReg) {
1248           DstRegs.push_back(FullExtensionReg);
1249           continue;
1250         }
1251         DstRegs.push_back(
1252             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1253                 .getReg(0));
1254         FullExtensionReg = DstRegs.back();
1255       } else {
1256         DstRegs.push_back(
1257             MIRBuilder
1258                 .buildInstr(
1259                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1260                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1261                 .getReg(0));
1262         PartialExtensionReg = DstRegs.back();
1263       }
1264     }
1265 
1266     // Gather the destination registers into the final destination.
1267     Register DstReg = MI.getOperand(0).getReg();
1268     MIRBuilder.buildMerge(DstReg, DstRegs);
1269     MI.eraseFromParent();
1270     return Legalized;
1271   }
1272   case TargetOpcode::G_BSWAP:
1273   case TargetOpcode::G_BITREVERSE: {
1274     if (SizeOp0 % NarrowSize != 0)
1275       return UnableToLegalize;
1276 
1277     Observer.changingInstr(MI);
1278     SmallVector<Register, 2> SrcRegs, DstRegs;
1279     unsigned NumParts = SizeOp0 / NarrowSize;
1280     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1281 
1282     for (unsigned i = 0; i < NumParts; ++i) {
1283       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1284                                            {SrcRegs[NumParts - 1 - i]});
1285       DstRegs.push_back(DstPart.getReg(0));
1286     }
1287 
1288     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1289 
1290     Observer.changedInstr(MI);
1291     MI.eraseFromParent();
1292     return Legalized;
1293   }
1294   case TargetOpcode::G_PTR_ADD:
1295   case TargetOpcode::G_PTRMASK: {
1296     if (TypeIdx != 1)
1297       return UnableToLegalize;
1298     Observer.changingInstr(MI);
1299     narrowScalarSrc(MI, NarrowTy, 2);
1300     Observer.changedInstr(MI);
1301     return Legalized;
1302   }
1303   case TargetOpcode::G_FPTOUI:
1304   case TargetOpcode::G_FPTOSI:
1305     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1306   case TargetOpcode::G_FPEXT:
1307     if (TypeIdx != 0)
1308       return UnableToLegalize;
1309     Observer.changingInstr(MI);
1310     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1311     Observer.changedInstr(MI);
1312     return Legalized;
1313   }
1314 }
1315 
1316 Register LegalizerHelper::coerceToScalar(Register Val) {
1317   LLT Ty = MRI.getType(Val);
1318   if (Ty.isScalar())
1319     return Val;
1320 
1321   const DataLayout &DL = MIRBuilder.getDataLayout();
1322   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1323   if (Ty.isPointer()) {
1324     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1325       return Register();
1326     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1327   }
1328 
1329   Register NewVal = Val;
1330 
1331   assert(Ty.isVector());
1332   LLT EltTy = Ty.getElementType();
1333   if (EltTy.isPointer())
1334     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1335   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1336 }
1337 
1338 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1339                                      unsigned OpIdx, unsigned ExtOpcode) {
1340   MachineOperand &MO = MI.getOperand(OpIdx);
1341   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1342   MO.setReg(ExtB.getReg(0));
1343 }
1344 
1345 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1346                                       unsigned OpIdx) {
1347   MachineOperand &MO = MI.getOperand(OpIdx);
1348   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1349   MO.setReg(ExtB.getReg(0));
1350 }
1351 
1352 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1353                                      unsigned OpIdx, unsigned TruncOpcode) {
1354   MachineOperand &MO = MI.getOperand(OpIdx);
1355   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1356   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1357   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1358   MO.setReg(DstExt);
1359 }
1360 
1361 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1362                                       unsigned OpIdx, unsigned ExtOpcode) {
1363   MachineOperand &MO = MI.getOperand(OpIdx);
1364   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1365   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1366   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1367   MO.setReg(DstTrunc);
1368 }
1369 
1370 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1371                                             unsigned OpIdx) {
1372   MachineOperand &MO = MI.getOperand(OpIdx);
1373   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1374   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1375 }
1376 
1377 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1378                                             unsigned OpIdx) {
1379   MachineOperand &MO = MI.getOperand(OpIdx);
1380 
1381   LLT OldTy = MRI.getType(MO.getReg());
1382   unsigned OldElts = OldTy.getNumElements();
1383   unsigned NewElts = MoreTy.getNumElements();
1384 
1385   unsigned NumParts = NewElts / OldElts;
1386 
1387   // Use concat_vectors if the result is a multiple of the number of elements.
1388   if (NumParts * OldElts == NewElts) {
1389     SmallVector<Register, 8> Parts;
1390     Parts.push_back(MO.getReg());
1391 
1392     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1393     for (unsigned I = 1; I != NumParts; ++I)
1394       Parts.push_back(ImpDef);
1395 
1396     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1397     MO.setReg(Concat.getReg(0));
1398     return;
1399   }
1400 
1401   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1402   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1403   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1404   MO.setReg(MoreReg);
1405 }
1406 
1407 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1408   MachineOperand &Op = MI.getOperand(OpIdx);
1409   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1410 }
1411 
1412 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1413   MachineOperand &MO = MI.getOperand(OpIdx);
1414   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1415   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1416   MIRBuilder.buildBitcast(MO, CastDst);
1417   MO.setReg(CastDst);
1418 }
1419 
1420 LegalizerHelper::LegalizeResult
1421 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1422                                         LLT WideTy) {
1423   if (TypeIdx != 1)
1424     return UnableToLegalize;
1425 
1426   Register DstReg = MI.getOperand(0).getReg();
1427   LLT DstTy = MRI.getType(DstReg);
1428   if (DstTy.isVector())
1429     return UnableToLegalize;
1430 
1431   Register Src1 = MI.getOperand(1).getReg();
1432   LLT SrcTy = MRI.getType(Src1);
1433   const int DstSize = DstTy.getSizeInBits();
1434   const int SrcSize = SrcTy.getSizeInBits();
1435   const int WideSize = WideTy.getSizeInBits();
1436   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1437 
1438   unsigned NumOps = MI.getNumOperands();
1439   unsigned NumSrc = MI.getNumOperands() - 1;
1440   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1441 
1442   if (WideSize >= DstSize) {
1443     // Directly pack the bits in the target type.
1444     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1445 
1446     for (unsigned I = 2; I != NumOps; ++I) {
1447       const unsigned Offset = (I - 1) * PartSize;
1448 
1449       Register SrcReg = MI.getOperand(I).getReg();
1450       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1451 
1452       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1453 
1454       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1455         MRI.createGenericVirtualRegister(WideTy);
1456 
1457       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1458       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1459       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1460       ResultReg = NextResult;
1461     }
1462 
1463     if (WideSize > DstSize)
1464       MIRBuilder.buildTrunc(DstReg, ResultReg);
1465     else if (DstTy.isPointer())
1466       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1467 
1468     MI.eraseFromParent();
1469     return Legalized;
1470   }
1471 
1472   // Unmerge the original values to the GCD type, and recombine to the next
1473   // multiple greater than the original type.
1474   //
1475   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1476   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1477   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1478   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1479   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1480   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1481   // %12:_(s12) = G_MERGE_VALUES %10, %11
1482   //
1483   // Padding with undef if necessary:
1484   //
1485   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1486   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1487   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1488   // %7:_(s2) = G_IMPLICIT_DEF
1489   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1490   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1491   // %10:_(s12) = G_MERGE_VALUES %8, %9
1492 
1493   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1494   LLT GCDTy = LLT::scalar(GCD);
1495 
1496   SmallVector<Register, 8> Parts;
1497   SmallVector<Register, 8> NewMergeRegs;
1498   SmallVector<Register, 8> Unmerges;
1499   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1500 
1501   // Decompose the original operands if they don't evenly divide.
1502   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1503     Register SrcReg = MI.getOperand(I).getReg();
1504     if (GCD == SrcSize) {
1505       Unmerges.push_back(SrcReg);
1506     } else {
1507       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1508       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1509         Unmerges.push_back(Unmerge.getReg(J));
1510     }
1511   }
1512 
1513   // Pad with undef to the next size that is a multiple of the requested size.
1514   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1515     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1516     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1517       Unmerges.push_back(UndefReg);
1518   }
1519 
1520   const int PartsPerGCD = WideSize / GCD;
1521 
1522   // Build merges of each piece.
1523   ArrayRef<Register> Slicer(Unmerges);
1524   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1525     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1526     NewMergeRegs.push_back(Merge.getReg(0));
1527   }
1528 
1529   // A truncate may be necessary if the requested type doesn't evenly divide the
1530   // original result type.
1531   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1532     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1533   } else {
1534     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1535     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1536   }
1537 
1538   MI.eraseFromParent();
1539   return Legalized;
1540 }
1541 
1542 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1543   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1544   LLT OrigTy = MRI.getType(OrigReg);
1545   LLT LCMTy = getLCMType(WideTy, OrigTy);
1546 
1547   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1548   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1549 
1550   Register UnmergeSrc = WideReg;
1551 
1552   // Create a merge to the LCM type, padding with undef
1553   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1554   // =>
1555   // %1:_(<4 x s32>) = G_FOO
1556   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1557   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1558   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1559   if (NumMergeParts > 1) {
1560     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1561     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1562     MergeParts[0] = WideReg;
1563     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1564   }
1565 
1566   // Unmerge to the original register and pad with dead defs.
1567   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1568   UnmergeResults[0] = OrigReg;
1569   for (int I = 1; I != NumUnmergeParts; ++I)
1570     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1571 
1572   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1573   return WideReg;
1574 }
1575 
1576 LegalizerHelper::LegalizeResult
1577 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1578                                           LLT WideTy) {
1579   if (TypeIdx != 0)
1580     return UnableToLegalize;
1581 
1582   int NumDst = MI.getNumOperands() - 1;
1583   Register SrcReg = MI.getOperand(NumDst).getReg();
1584   LLT SrcTy = MRI.getType(SrcReg);
1585   if (SrcTy.isVector())
1586     return UnableToLegalize;
1587 
1588   Register Dst0Reg = MI.getOperand(0).getReg();
1589   LLT DstTy = MRI.getType(Dst0Reg);
1590   if (!DstTy.isScalar())
1591     return UnableToLegalize;
1592 
1593   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1594     if (SrcTy.isPointer()) {
1595       const DataLayout &DL = MIRBuilder.getDataLayout();
1596       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1597         LLVM_DEBUG(
1598             dbgs() << "Not casting non-integral address space integer\n");
1599         return UnableToLegalize;
1600       }
1601 
1602       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1603       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1604     }
1605 
1606     // Widen SrcTy to WideTy. This does not affect the result, but since the
1607     // user requested this size, it is probably better handled than SrcTy and
1608     // should reduce the total number of legalization artifacts
1609     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1610       SrcTy = WideTy;
1611       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1612     }
1613 
1614     // Theres no unmerge type to target. Directly extract the bits from the
1615     // source type
1616     unsigned DstSize = DstTy.getSizeInBits();
1617 
1618     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1619     for (int I = 1; I != NumDst; ++I) {
1620       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1621       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1622       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1623     }
1624 
1625     MI.eraseFromParent();
1626     return Legalized;
1627   }
1628 
1629   // Extend the source to a wider type.
1630   LLT LCMTy = getLCMType(SrcTy, WideTy);
1631 
1632   Register WideSrc = SrcReg;
1633   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1634     // TODO: If this is an integral address space, cast to integer and anyext.
1635     if (SrcTy.isPointer()) {
1636       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1637       return UnableToLegalize;
1638     }
1639 
1640     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1641   }
1642 
1643   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1644 
1645   // Create a sequence of unmerges and merges to the original results. Since we
1646   // may have widened the source, we will need to pad the results with dead defs
1647   // to cover the source register.
1648   // e.g. widen s48 to s64:
1649   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1650   //
1651   // =>
1652   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1653   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1654   //  ; unpack to GCD type, with extra dead defs
1655   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1656   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1657   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1658   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1659   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1660   const LLT GCDTy = getGCDType(WideTy, DstTy);
1661   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1662   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1663 
1664   // Directly unmerge to the destination without going through a GCD type
1665   // if possible
1666   if (PartsPerRemerge == 1) {
1667     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1668 
1669     for (int I = 0; I != NumUnmerge; ++I) {
1670       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1671 
1672       for (int J = 0; J != PartsPerUnmerge; ++J) {
1673         int Idx = I * PartsPerUnmerge + J;
1674         if (Idx < NumDst)
1675           MIB.addDef(MI.getOperand(Idx).getReg());
1676         else {
1677           // Create dead def for excess components.
1678           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1679         }
1680       }
1681 
1682       MIB.addUse(Unmerge.getReg(I));
1683     }
1684   } else {
1685     SmallVector<Register, 16> Parts;
1686     for (int J = 0; J != NumUnmerge; ++J)
1687       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1688 
1689     SmallVector<Register, 8> RemergeParts;
1690     for (int I = 0; I != NumDst; ++I) {
1691       for (int J = 0; J < PartsPerRemerge; ++J) {
1692         const int Idx = I * PartsPerRemerge + J;
1693         RemergeParts.emplace_back(Parts[Idx]);
1694       }
1695 
1696       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1697       RemergeParts.clear();
1698     }
1699   }
1700 
1701   MI.eraseFromParent();
1702   return Legalized;
1703 }
1704 
1705 LegalizerHelper::LegalizeResult
1706 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1707                                     LLT WideTy) {
1708   Register DstReg = MI.getOperand(0).getReg();
1709   Register SrcReg = MI.getOperand(1).getReg();
1710   LLT SrcTy = MRI.getType(SrcReg);
1711 
1712   LLT DstTy = MRI.getType(DstReg);
1713   unsigned Offset = MI.getOperand(2).getImm();
1714 
1715   if (TypeIdx == 0) {
1716     if (SrcTy.isVector() || DstTy.isVector())
1717       return UnableToLegalize;
1718 
1719     SrcOp Src(SrcReg);
1720     if (SrcTy.isPointer()) {
1721       // Extracts from pointers can be handled only if they are really just
1722       // simple integers.
1723       const DataLayout &DL = MIRBuilder.getDataLayout();
1724       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1725         return UnableToLegalize;
1726 
1727       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1728       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1729       SrcTy = SrcAsIntTy;
1730     }
1731 
1732     if (DstTy.isPointer())
1733       return UnableToLegalize;
1734 
1735     if (Offset == 0) {
1736       // Avoid a shift in the degenerate case.
1737       MIRBuilder.buildTrunc(DstReg,
1738                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1739       MI.eraseFromParent();
1740       return Legalized;
1741     }
1742 
1743     // Do a shift in the source type.
1744     LLT ShiftTy = SrcTy;
1745     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1746       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1747       ShiftTy = WideTy;
1748     }
1749 
1750     auto LShr = MIRBuilder.buildLShr(
1751       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1752     MIRBuilder.buildTrunc(DstReg, LShr);
1753     MI.eraseFromParent();
1754     return Legalized;
1755   }
1756 
1757   if (SrcTy.isScalar()) {
1758     Observer.changingInstr(MI);
1759     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1760     Observer.changedInstr(MI);
1761     return Legalized;
1762   }
1763 
1764   if (!SrcTy.isVector())
1765     return UnableToLegalize;
1766 
1767   if (DstTy != SrcTy.getElementType())
1768     return UnableToLegalize;
1769 
1770   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1771     return UnableToLegalize;
1772 
1773   Observer.changingInstr(MI);
1774   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1775 
1776   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1777                           Offset);
1778   widenScalarDst(MI, WideTy.getScalarType(), 0);
1779   Observer.changedInstr(MI);
1780   return Legalized;
1781 }
1782 
1783 LegalizerHelper::LegalizeResult
1784 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1785                                    LLT WideTy) {
1786   if (TypeIdx != 0 || WideTy.isVector())
1787     return UnableToLegalize;
1788   Observer.changingInstr(MI);
1789   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1790   widenScalarDst(MI, WideTy);
1791   Observer.changedInstr(MI);
1792   return Legalized;
1793 }
1794 
1795 LegalizerHelper::LegalizeResult
1796 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1797                                            LLT WideTy) {
1798   if (TypeIdx == 1)
1799     return UnableToLegalize; // TODO
1800 
1801   unsigned Opcode;
1802   unsigned ExtOpcode;
1803   Optional<Register> CarryIn = None;
1804   switch (MI.getOpcode()) {
1805   default:
1806     llvm_unreachable("Unexpected opcode!");
1807   case TargetOpcode::G_SADDO:
1808     Opcode = TargetOpcode::G_ADD;
1809     ExtOpcode = TargetOpcode::G_SEXT;
1810     break;
1811   case TargetOpcode::G_SSUBO:
1812     Opcode = TargetOpcode::G_SUB;
1813     ExtOpcode = TargetOpcode::G_SEXT;
1814     break;
1815   case TargetOpcode::G_UADDO:
1816     Opcode = TargetOpcode::G_ADD;
1817     ExtOpcode = TargetOpcode::G_ZEXT;
1818     break;
1819   case TargetOpcode::G_USUBO:
1820     Opcode = TargetOpcode::G_SUB;
1821     ExtOpcode = TargetOpcode::G_ZEXT;
1822     break;
1823   case TargetOpcode::G_SADDE:
1824     Opcode = TargetOpcode::G_UADDE;
1825     ExtOpcode = TargetOpcode::G_SEXT;
1826     CarryIn = MI.getOperand(4).getReg();
1827     break;
1828   case TargetOpcode::G_SSUBE:
1829     Opcode = TargetOpcode::G_USUBE;
1830     ExtOpcode = TargetOpcode::G_SEXT;
1831     CarryIn = MI.getOperand(4).getReg();
1832     break;
1833   case TargetOpcode::G_UADDE:
1834     Opcode = TargetOpcode::G_UADDE;
1835     ExtOpcode = TargetOpcode::G_ZEXT;
1836     CarryIn = MI.getOperand(4).getReg();
1837     break;
1838   case TargetOpcode::G_USUBE:
1839     Opcode = TargetOpcode::G_USUBE;
1840     ExtOpcode = TargetOpcode::G_ZEXT;
1841     CarryIn = MI.getOperand(4).getReg();
1842     break;
1843   }
1844 
1845   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1846   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1847   // Do the arithmetic in the larger type.
1848   Register NewOp;
1849   if (CarryIn) {
1850     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1851     NewOp = MIRBuilder
1852                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1853                             {LHSExt, RHSExt, *CarryIn})
1854                 .getReg(0);
1855   } else {
1856     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1857   }
1858   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1859   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1860   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1861   // There is no overflow if the ExtOp is the same as NewOp.
1862   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1863   // Now trunc the NewOp to the original result.
1864   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1865   MI.eraseFromParent();
1866   return Legalized;
1867 }
1868 
1869 LegalizerHelper::LegalizeResult
1870 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1871                                          LLT WideTy) {
1872   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1873                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1874                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1875   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1876                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1877   // We can convert this to:
1878   //   1. Any extend iN to iM
1879   //   2. SHL by M-N
1880   //   3. [US][ADD|SUB|SHL]SAT
1881   //   4. L/ASHR by M-N
1882   //
1883   // It may be more efficient to lower this to a min and a max operation in
1884   // the higher precision arithmetic if the promoted operation isn't legal,
1885   // but this decision is up to the target's lowering request.
1886   Register DstReg = MI.getOperand(0).getReg();
1887 
1888   unsigned NewBits = WideTy.getScalarSizeInBits();
1889   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1890 
1891   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1892   // must not left shift the RHS to preserve the shift amount.
1893   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1894   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1895                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1896   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1897   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1898   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1899 
1900   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1901                                         {ShiftL, ShiftR}, MI.getFlags());
1902 
1903   // Use a shift that will preserve the number of sign bits when the trunc is
1904   // folded away.
1905   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1906                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1907 
1908   MIRBuilder.buildTrunc(DstReg, Result);
1909   MI.eraseFromParent();
1910   return Legalized;
1911 }
1912 
1913 LegalizerHelper::LegalizeResult
1914 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1915                                  LLT WideTy) {
1916   if (TypeIdx == 1)
1917     return UnableToLegalize;
1918 
1919   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1920   Register Result = MI.getOperand(0).getReg();
1921   Register OriginalOverflow = MI.getOperand(1).getReg();
1922   Register LHS = MI.getOperand(2).getReg();
1923   Register RHS = MI.getOperand(3).getReg();
1924   LLT SrcTy = MRI.getType(LHS);
1925   LLT OverflowTy = MRI.getType(OriginalOverflow);
1926   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1927 
1928   // To determine if the result overflowed in the larger type, we extend the
1929   // input to the larger type, do the multiply (checking if it overflows),
1930   // then also check the high bits of the result to see if overflow happened
1931   // there.
1932   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1933   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1934   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1935 
1936   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1937                                     {LeftOperand, RightOperand});
1938   auto Mul = Mulo->getOperand(0);
1939   MIRBuilder.buildTrunc(Result, Mul);
1940 
1941   MachineInstrBuilder ExtResult;
1942   // Overflow occurred if it occurred in the larger type, or if the high part
1943   // of the result does not zero/sign-extend the low part.  Check this second
1944   // possibility first.
1945   if (IsSigned) {
1946     // For signed, overflow occurred when the high part does not sign-extend
1947     // the low part.
1948     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1949   } else {
1950     // Unsigned overflow occurred when the high part does not zero-extend the
1951     // low part.
1952     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1953   }
1954 
1955   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1956   // so we don't need to check the overflow result of larger type Mulo.
1957   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1958     auto Overflow =
1959         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1960     // Finally check if the multiplication in the larger type itself overflowed.
1961     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1962   } else {
1963     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1964   }
1965   MI.eraseFromParent();
1966   return Legalized;
1967 }
1968 
1969 LegalizerHelper::LegalizeResult
1970 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1971   switch (MI.getOpcode()) {
1972   default:
1973     return UnableToLegalize;
1974   case TargetOpcode::G_ATOMICRMW_XCHG:
1975   case TargetOpcode::G_ATOMICRMW_ADD:
1976   case TargetOpcode::G_ATOMICRMW_SUB:
1977   case TargetOpcode::G_ATOMICRMW_AND:
1978   case TargetOpcode::G_ATOMICRMW_OR:
1979   case TargetOpcode::G_ATOMICRMW_XOR:
1980   case TargetOpcode::G_ATOMICRMW_MIN:
1981   case TargetOpcode::G_ATOMICRMW_MAX:
1982   case TargetOpcode::G_ATOMICRMW_UMIN:
1983   case TargetOpcode::G_ATOMICRMW_UMAX:
1984     assert(TypeIdx == 0 && "atomicrmw with second scalar type");
1985     Observer.changingInstr(MI);
1986     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1987     widenScalarDst(MI, WideTy, 0);
1988     Observer.changedInstr(MI);
1989     return Legalized;
1990   case TargetOpcode::G_ATOMIC_CMPXCHG:
1991     assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
1992     Observer.changingInstr(MI);
1993     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1994     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1995     widenScalarDst(MI, WideTy, 0);
1996     Observer.changedInstr(MI);
1997     return Legalized;
1998   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
1999     if (TypeIdx == 0) {
2000       Observer.changingInstr(MI);
2001       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2002       widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2003       widenScalarDst(MI, WideTy, 0);
2004       Observer.changedInstr(MI);
2005       return Legalized;
2006     }
2007     assert(TypeIdx == 1 &&
2008            "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
2009     Observer.changingInstr(MI);
2010     widenScalarDst(MI, WideTy, 1);
2011     Observer.changedInstr(MI);
2012     return Legalized;
2013   case TargetOpcode::G_EXTRACT:
2014     return widenScalarExtract(MI, TypeIdx, WideTy);
2015   case TargetOpcode::G_INSERT:
2016     return widenScalarInsert(MI, TypeIdx, WideTy);
2017   case TargetOpcode::G_MERGE_VALUES:
2018     return widenScalarMergeValues(MI, TypeIdx, WideTy);
2019   case TargetOpcode::G_UNMERGE_VALUES:
2020     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2021   case TargetOpcode::G_SADDO:
2022   case TargetOpcode::G_SSUBO:
2023   case TargetOpcode::G_UADDO:
2024   case TargetOpcode::G_USUBO:
2025   case TargetOpcode::G_SADDE:
2026   case TargetOpcode::G_SSUBE:
2027   case TargetOpcode::G_UADDE:
2028   case TargetOpcode::G_USUBE:
2029     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2030   case TargetOpcode::G_UMULO:
2031   case TargetOpcode::G_SMULO:
2032     return widenScalarMulo(MI, TypeIdx, WideTy);
2033   case TargetOpcode::G_SADDSAT:
2034   case TargetOpcode::G_SSUBSAT:
2035   case TargetOpcode::G_SSHLSAT:
2036   case TargetOpcode::G_UADDSAT:
2037   case TargetOpcode::G_USUBSAT:
2038   case TargetOpcode::G_USHLSAT:
2039     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2040   case TargetOpcode::G_CTTZ:
2041   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2042   case TargetOpcode::G_CTLZ:
2043   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2044   case TargetOpcode::G_CTPOP: {
2045     if (TypeIdx == 0) {
2046       Observer.changingInstr(MI);
2047       widenScalarDst(MI, WideTy, 0);
2048       Observer.changedInstr(MI);
2049       return Legalized;
2050     }
2051 
2052     Register SrcReg = MI.getOperand(1).getReg();
2053 
2054     // First ZEXT the input.
2055     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
2056     LLT CurTy = MRI.getType(SrcReg);
2057     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
2058       // The count is the same in the larger type except if the original
2059       // value was zero.  This can be handled by setting the bit just off
2060       // the top of the original type.
2061       auto TopBit =
2062           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2063       MIBSrc = MIRBuilder.buildOr(
2064         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2065     }
2066 
2067     // Perform the operation at the larger size.
2068     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
2069     // This is already the correct result for CTPOP and CTTZs
2070     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
2071         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2072       // The correct result is NewOp - (Difference in widety and current ty).
2073       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2074       MIBNewOp = MIRBuilder.buildSub(
2075           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2076     }
2077 
2078     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2079     MI.eraseFromParent();
2080     return Legalized;
2081   }
2082   case TargetOpcode::G_BSWAP: {
2083     Observer.changingInstr(MI);
2084     Register DstReg = MI.getOperand(0).getReg();
2085 
2086     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2087     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2088     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2089     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2090 
2091     MI.getOperand(0).setReg(DstExt);
2092 
2093     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2094 
2095     LLT Ty = MRI.getType(DstReg);
2096     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2097     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2098     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2099 
2100     MIRBuilder.buildTrunc(DstReg, ShrReg);
2101     Observer.changedInstr(MI);
2102     return Legalized;
2103   }
2104   case TargetOpcode::G_BITREVERSE: {
2105     Observer.changingInstr(MI);
2106 
2107     Register DstReg = MI.getOperand(0).getReg();
2108     LLT Ty = MRI.getType(DstReg);
2109     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2110 
2111     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2112     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2113     MI.getOperand(0).setReg(DstExt);
2114     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2115 
2116     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2117     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2118     MIRBuilder.buildTrunc(DstReg, Shift);
2119     Observer.changedInstr(MI);
2120     return Legalized;
2121   }
2122   case TargetOpcode::G_FREEZE:
2123     Observer.changingInstr(MI);
2124     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2125     widenScalarDst(MI, WideTy);
2126     Observer.changedInstr(MI);
2127     return Legalized;
2128 
2129   case TargetOpcode::G_ABS:
2130     Observer.changingInstr(MI);
2131     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2132     widenScalarDst(MI, WideTy);
2133     Observer.changedInstr(MI);
2134     return Legalized;
2135 
2136   case TargetOpcode::G_ADD:
2137   case TargetOpcode::G_AND:
2138   case TargetOpcode::G_MUL:
2139   case TargetOpcode::G_OR:
2140   case TargetOpcode::G_XOR:
2141   case TargetOpcode::G_SUB:
2142     // Perform operation at larger width (any extension is fines here, high bits
2143     // don't affect the result) and then truncate the result back to the
2144     // original type.
2145     Observer.changingInstr(MI);
2146     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2147     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2148     widenScalarDst(MI, WideTy);
2149     Observer.changedInstr(MI);
2150     return Legalized;
2151 
2152   case TargetOpcode::G_SBFX:
2153   case TargetOpcode::G_UBFX:
2154     Observer.changingInstr(MI);
2155 
2156     if (TypeIdx == 0) {
2157       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2158       widenScalarDst(MI, WideTy);
2159     } else {
2160       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2161       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2162     }
2163 
2164     Observer.changedInstr(MI);
2165     return Legalized;
2166 
2167   case TargetOpcode::G_SHL:
2168     Observer.changingInstr(MI);
2169 
2170     if (TypeIdx == 0) {
2171       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2172       widenScalarDst(MI, WideTy);
2173     } else {
2174       assert(TypeIdx == 1);
2175       // The "number of bits to shift" operand must preserve its value as an
2176       // unsigned integer:
2177       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2178     }
2179 
2180     Observer.changedInstr(MI);
2181     return Legalized;
2182 
2183   case TargetOpcode::G_SDIV:
2184   case TargetOpcode::G_SREM:
2185   case TargetOpcode::G_SMIN:
2186   case TargetOpcode::G_SMAX:
2187     Observer.changingInstr(MI);
2188     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2189     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2190     widenScalarDst(MI, WideTy);
2191     Observer.changedInstr(MI);
2192     return Legalized;
2193 
2194   case TargetOpcode::G_SDIVREM:
2195     Observer.changingInstr(MI);
2196     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2197     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2198     widenScalarDst(MI, WideTy);
2199     widenScalarDst(MI, WideTy, 1);
2200     Observer.changedInstr(MI);
2201     return Legalized;
2202 
2203   case TargetOpcode::G_ASHR:
2204   case TargetOpcode::G_LSHR:
2205     Observer.changingInstr(MI);
2206 
2207     if (TypeIdx == 0) {
2208       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2209         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2210 
2211       widenScalarSrc(MI, WideTy, 1, CvtOp);
2212       widenScalarDst(MI, WideTy);
2213     } else {
2214       assert(TypeIdx == 1);
2215       // The "number of bits to shift" operand must preserve its value as an
2216       // unsigned integer:
2217       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2218     }
2219 
2220     Observer.changedInstr(MI);
2221     return Legalized;
2222   case TargetOpcode::G_UDIV:
2223   case TargetOpcode::G_UREM:
2224   case TargetOpcode::G_UMIN:
2225   case TargetOpcode::G_UMAX:
2226     Observer.changingInstr(MI);
2227     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2228     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2229     widenScalarDst(MI, WideTy);
2230     Observer.changedInstr(MI);
2231     return Legalized;
2232 
2233   case TargetOpcode::G_UDIVREM:
2234     Observer.changingInstr(MI);
2235     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2236     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2237     widenScalarDst(MI, WideTy);
2238     widenScalarDst(MI, WideTy, 1);
2239     Observer.changedInstr(MI);
2240     return Legalized;
2241 
2242   case TargetOpcode::G_SELECT:
2243     Observer.changingInstr(MI);
2244     if (TypeIdx == 0) {
2245       // Perform operation at larger width (any extension is fine here, high
2246       // bits don't affect the result) and then truncate the result back to the
2247       // original type.
2248       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2249       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2250       widenScalarDst(MI, WideTy);
2251     } else {
2252       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2253       // Explicit extension is required here since high bits affect the result.
2254       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2255     }
2256     Observer.changedInstr(MI);
2257     return Legalized;
2258 
2259   case TargetOpcode::G_FPTOSI:
2260   case TargetOpcode::G_FPTOUI:
2261     Observer.changingInstr(MI);
2262 
2263     if (TypeIdx == 0)
2264       widenScalarDst(MI, WideTy);
2265     else
2266       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2267 
2268     Observer.changedInstr(MI);
2269     return Legalized;
2270   case TargetOpcode::G_SITOFP:
2271     Observer.changingInstr(MI);
2272 
2273     if (TypeIdx == 0)
2274       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2275     else
2276       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2277 
2278     Observer.changedInstr(MI);
2279     return Legalized;
2280   case TargetOpcode::G_UITOFP:
2281     Observer.changingInstr(MI);
2282 
2283     if (TypeIdx == 0)
2284       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2285     else
2286       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2287 
2288     Observer.changedInstr(MI);
2289     return Legalized;
2290   case TargetOpcode::G_LOAD:
2291   case TargetOpcode::G_SEXTLOAD:
2292   case TargetOpcode::G_ZEXTLOAD:
2293     Observer.changingInstr(MI);
2294     widenScalarDst(MI, WideTy);
2295     Observer.changedInstr(MI);
2296     return Legalized;
2297 
2298   case TargetOpcode::G_STORE: {
2299     if (TypeIdx != 0)
2300       return UnableToLegalize;
2301 
2302     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2303     if (!Ty.isScalar())
2304       return UnableToLegalize;
2305 
2306     Observer.changingInstr(MI);
2307 
2308     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2309       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2310     widenScalarSrc(MI, WideTy, 0, ExtType);
2311 
2312     Observer.changedInstr(MI);
2313     return Legalized;
2314   }
2315   case TargetOpcode::G_CONSTANT: {
2316     MachineOperand &SrcMO = MI.getOperand(1);
2317     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2318     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2319         MRI.getType(MI.getOperand(0).getReg()));
2320     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2321             ExtOpc == TargetOpcode::G_ANYEXT) &&
2322            "Illegal Extend");
2323     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2324     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2325                            ? SrcVal.sext(WideTy.getSizeInBits())
2326                            : SrcVal.zext(WideTy.getSizeInBits());
2327     Observer.changingInstr(MI);
2328     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2329 
2330     widenScalarDst(MI, WideTy);
2331     Observer.changedInstr(MI);
2332     return Legalized;
2333   }
2334   case TargetOpcode::G_FCONSTANT: {
2335     MachineOperand &SrcMO = MI.getOperand(1);
2336     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2337     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2338     bool LosesInfo;
2339     switch (WideTy.getSizeInBits()) {
2340     case 32:
2341       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2342                   &LosesInfo);
2343       break;
2344     case 64:
2345       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2346                   &LosesInfo);
2347       break;
2348     default:
2349       return UnableToLegalize;
2350     }
2351 
2352     assert(!LosesInfo && "extend should always be lossless");
2353 
2354     Observer.changingInstr(MI);
2355     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2356 
2357     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2358     Observer.changedInstr(MI);
2359     return Legalized;
2360   }
2361   case TargetOpcode::G_IMPLICIT_DEF: {
2362     Observer.changingInstr(MI);
2363     widenScalarDst(MI, WideTy);
2364     Observer.changedInstr(MI);
2365     return Legalized;
2366   }
2367   case TargetOpcode::G_BRCOND:
2368     Observer.changingInstr(MI);
2369     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2370     Observer.changedInstr(MI);
2371     return Legalized;
2372 
2373   case TargetOpcode::G_FCMP:
2374     Observer.changingInstr(MI);
2375     if (TypeIdx == 0)
2376       widenScalarDst(MI, WideTy);
2377     else {
2378       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2379       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2380     }
2381     Observer.changedInstr(MI);
2382     return Legalized;
2383 
2384   case TargetOpcode::G_ICMP:
2385     Observer.changingInstr(MI);
2386     if (TypeIdx == 0)
2387       widenScalarDst(MI, WideTy);
2388     else {
2389       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2390                                MI.getOperand(1).getPredicate()))
2391                                ? TargetOpcode::G_SEXT
2392                                : TargetOpcode::G_ZEXT;
2393       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2394       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2395     }
2396     Observer.changedInstr(MI);
2397     return Legalized;
2398 
2399   case TargetOpcode::G_PTR_ADD:
2400     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2401     Observer.changingInstr(MI);
2402     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2403     Observer.changedInstr(MI);
2404     return Legalized;
2405 
2406   case TargetOpcode::G_PHI: {
2407     assert(TypeIdx == 0 && "Expecting only Idx 0");
2408 
2409     Observer.changingInstr(MI);
2410     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2411       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2412       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2413       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2414     }
2415 
2416     MachineBasicBlock &MBB = *MI.getParent();
2417     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2418     widenScalarDst(MI, WideTy);
2419     Observer.changedInstr(MI);
2420     return Legalized;
2421   }
2422   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2423     if (TypeIdx == 0) {
2424       Register VecReg = MI.getOperand(1).getReg();
2425       LLT VecTy = MRI.getType(VecReg);
2426       Observer.changingInstr(MI);
2427 
2428       widenScalarSrc(
2429           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2430           TargetOpcode::G_SEXT);
2431 
2432       widenScalarDst(MI, WideTy, 0);
2433       Observer.changedInstr(MI);
2434       return Legalized;
2435     }
2436 
2437     if (TypeIdx != 2)
2438       return UnableToLegalize;
2439     Observer.changingInstr(MI);
2440     // TODO: Probably should be zext
2441     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2442     Observer.changedInstr(MI);
2443     return Legalized;
2444   }
2445   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2446     if (TypeIdx == 1) {
2447       Observer.changingInstr(MI);
2448 
2449       Register VecReg = MI.getOperand(1).getReg();
2450       LLT VecTy = MRI.getType(VecReg);
2451       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2452 
2453       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2454       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2455       widenScalarDst(MI, WideVecTy, 0);
2456       Observer.changedInstr(MI);
2457       return Legalized;
2458     }
2459 
2460     if (TypeIdx == 2) {
2461       Observer.changingInstr(MI);
2462       // TODO: Probably should be zext
2463       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2464       Observer.changedInstr(MI);
2465       return Legalized;
2466     }
2467 
2468     return UnableToLegalize;
2469   }
2470   case TargetOpcode::G_FADD:
2471   case TargetOpcode::G_FMUL:
2472   case TargetOpcode::G_FSUB:
2473   case TargetOpcode::G_FMA:
2474   case TargetOpcode::G_FMAD:
2475   case TargetOpcode::G_FNEG:
2476   case TargetOpcode::G_FABS:
2477   case TargetOpcode::G_FCANONICALIZE:
2478   case TargetOpcode::G_FMINNUM:
2479   case TargetOpcode::G_FMAXNUM:
2480   case TargetOpcode::G_FMINNUM_IEEE:
2481   case TargetOpcode::G_FMAXNUM_IEEE:
2482   case TargetOpcode::G_FMINIMUM:
2483   case TargetOpcode::G_FMAXIMUM:
2484   case TargetOpcode::G_FDIV:
2485   case TargetOpcode::G_FREM:
2486   case TargetOpcode::G_FCEIL:
2487   case TargetOpcode::G_FFLOOR:
2488   case TargetOpcode::G_FCOS:
2489   case TargetOpcode::G_FSIN:
2490   case TargetOpcode::G_FLOG10:
2491   case TargetOpcode::G_FLOG:
2492   case TargetOpcode::G_FLOG2:
2493   case TargetOpcode::G_FRINT:
2494   case TargetOpcode::G_FNEARBYINT:
2495   case TargetOpcode::G_FSQRT:
2496   case TargetOpcode::G_FEXP:
2497   case TargetOpcode::G_FEXP2:
2498   case TargetOpcode::G_FPOW:
2499   case TargetOpcode::G_INTRINSIC_TRUNC:
2500   case TargetOpcode::G_INTRINSIC_ROUND:
2501   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2502     assert(TypeIdx == 0);
2503     Observer.changingInstr(MI);
2504 
2505     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2506       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2507 
2508     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2509     Observer.changedInstr(MI);
2510     return Legalized;
2511   case TargetOpcode::G_FPOWI: {
2512     if (TypeIdx != 0)
2513       return UnableToLegalize;
2514     Observer.changingInstr(MI);
2515     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2516     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2517     Observer.changedInstr(MI);
2518     return Legalized;
2519   }
2520   case TargetOpcode::G_INTTOPTR:
2521     if (TypeIdx != 1)
2522       return UnableToLegalize;
2523 
2524     Observer.changingInstr(MI);
2525     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2526     Observer.changedInstr(MI);
2527     return Legalized;
2528   case TargetOpcode::G_PTRTOINT:
2529     if (TypeIdx != 0)
2530       return UnableToLegalize;
2531 
2532     Observer.changingInstr(MI);
2533     widenScalarDst(MI, WideTy, 0);
2534     Observer.changedInstr(MI);
2535     return Legalized;
2536   case TargetOpcode::G_BUILD_VECTOR: {
2537     Observer.changingInstr(MI);
2538 
2539     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2540     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2541       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2542 
2543     // Avoid changing the result vector type if the source element type was
2544     // requested.
2545     if (TypeIdx == 1) {
2546       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2547     } else {
2548       widenScalarDst(MI, WideTy, 0);
2549     }
2550 
2551     Observer.changedInstr(MI);
2552     return Legalized;
2553   }
2554   case TargetOpcode::G_SEXT_INREG:
2555     if (TypeIdx != 0)
2556       return UnableToLegalize;
2557 
2558     Observer.changingInstr(MI);
2559     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2560     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2561     Observer.changedInstr(MI);
2562     return Legalized;
2563   case TargetOpcode::G_PTRMASK: {
2564     if (TypeIdx != 1)
2565       return UnableToLegalize;
2566     Observer.changingInstr(MI);
2567     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2568     Observer.changedInstr(MI);
2569     return Legalized;
2570   }
2571   }
2572 }
2573 
2574 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2575                              MachineIRBuilder &B, Register Src, LLT Ty) {
2576   auto Unmerge = B.buildUnmerge(Ty, Src);
2577   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2578     Pieces.push_back(Unmerge.getReg(I));
2579 }
2580 
2581 LegalizerHelper::LegalizeResult
2582 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2583   Register Dst = MI.getOperand(0).getReg();
2584   Register Src = MI.getOperand(1).getReg();
2585   LLT DstTy = MRI.getType(Dst);
2586   LLT SrcTy = MRI.getType(Src);
2587 
2588   if (SrcTy.isVector()) {
2589     LLT SrcEltTy = SrcTy.getElementType();
2590     SmallVector<Register, 8> SrcRegs;
2591 
2592     if (DstTy.isVector()) {
2593       int NumDstElt = DstTy.getNumElements();
2594       int NumSrcElt = SrcTy.getNumElements();
2595 
2596       LLT DstEltTy = DstTy.getElementType();
2597       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2598       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2599 
2600       // If there's an element size mismatch, insert intermediate casts to match
2601       // the result element type.
2602       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2603         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2604         //
2605         // =>
2606         //
2607         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2608         // %3:_(<2 x s8>) = G_BITCAST %2
2609         // %4:_(<2 x s8>) = G_BITCAST %3
2610         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2611         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2612         SrcPartTy = SrcEltTy;
2613       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2614         //
2615         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2616         //
2617         // =>
2618         //
2619         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2620         // %3:_(s16) = G_BITCAST %2
2621         // %4:_(s16) = G_BITCAST %3
2622         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2623         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2624         DstCastTy = DstEltTy;
2625       }
2626 
2627       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2628       for (Register &SrcReg : SrcRegs)
2629         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2630     } else
2631       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2632 
2633     MIRBuilder.buildMerge(Dst, SrcRegs);
2634     MI.eraseFromParent();
2635     return Legalized;
2636   }
2637 
2638   if (DstTy.isVector()) {
2639     SmallVector<Register, 8> SrcRegs;
2640     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2641     MIRBuilder.buildMerge(Dst, SrcRegs);
2642     MI.eraseFromParent();
2643     return Legalized;
2644   }
2645 
2646   return UnableToLegalize;
2647 }
2648 
2649 /// Figure out the bit offset into a register when coercing a vector index for
2650 /// the wide element type. This is only for the case when promoting vector to
2651 /// one with larger elements.
2652 //
2653 ///
2654 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2655 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2656 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2657                                                    Register Idx,
2658                                                    unsigned NewEltSize,
2659                                                    unsigned OldEltSize) {
2660   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2661   LLT IdxTy = B.getMRI()->getType(Idx);
2662 
2663   // Now figure out the amount we need to shift to get the target bits.
2664   auto OffsetMask = B.buildConstant(
2665     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2666   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2667   return B.buildShl(IdxTy, OffsetIdx,
2668                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2669 }
2670 
2671 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2672 /// is casting to a vector with a smaller element size, perform multiple element
2673 /// extracts and merge the results. If this is coercing to a vector with larger
2674 /// elements, index the bitcasted vector and extract the target element with bit
2675 /// operations. This is intended to force the indexing in the native register
2676 /// size for architectures that can dynamically index the register file.
2677 LegalizerHelper::LegalizeResult
2678 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2679                                          LLT CastTy) {
2680   if (TypeIdx != 1)
2681     return UnableToLegalize;
2682 
2683   Register Dst = MI.getOperand(0).getReg();
2684   Register SrcVec = MI.getOperand(1).getReg();
2685   Register Idx = MI.getOperand(2).getReg();
2686   LLT SrcVecTy = MRI.getType(SrcVec);
2687   LLT IdxTy = MRI.getType(Idx);
2688 
2689   LLT SrcEltTy = SrcVecTy.getElementType();
2690   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2691   unsigned OldNumElts = SrcVecTy.getNumElements();
2692 
2693   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2694   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2695 
2696   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2697   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2698   if (NewNumElts > OldNumElts) {
2699     // Decreasing the vector element size
2700     //
2701     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2702     //  =>
2703     //  v4i32:castx = bitcast x:v2i64
2704     //
2705     // i64 = bitcast
2706     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2707     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2708     //
2709     if (NewNumElts % OldNumElts != 0)
2710       return UnableToLegalize;
2711 
2712     // Type of the intermediate result vector.
2713     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2714     LLT MidTy =
2715         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2716 
2717     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2718 
2719     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2720     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2721 
2722     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2723       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2724       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2725       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2726       NewOps[I] = Elt.getReg(0);
2727     }
2728 
2729     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2730     MIRBuilder.buildBitcast(Dst, NewVec);
2731     MI.eraseFromParent();
2732     return Legalized;
2733   }
2734 
2735   if (NewNumElts < OldNumElts) {
2736     if (NewEltSize % OldEltSize != 0)
2737       return UnableToLegalize;
2738 
2739     // This only depends on powers of 2 because we use bit tricks to figure out
2740     // the bit offset we need to shift to get the target element. A general
2741     // expansion could emit division/multiply.
2742     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2743       return UnableToLegalize;
2744 
2745     // Increasing the vector element size.
2746     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2747     //
2748     //   =>
2749     //
2750     // %cast = G_BITCAST %vec
2751     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2752     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2753     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2754     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2755     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2756     // %elt = G_TRUNC %elt_bits
2757 
2758     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2759     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2760 
2761     // Divide to get the index in the wider element type.
2762     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2763 
2764     Register WideElt = CastVec;
2765     if (CastTy.isVector()) {
2766       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2767                                                      ScaledIdx).getReg(0);
2768     }
2769 
2770     // Compute the bit offset into the register of the target element.
2771     Register OffsetBits = getBitcastWiderVectorElementOffset(
2772       MIRBuilder, Idx, NewEltSize, OldEltSize);
2773 
2774     // Shift the wide element to get the target element.
2775     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2776     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2777     MI.eraseFromParent();
2778     return Legalized;
2779   }
2780 
2781   return UnableToLegalize;
2782 }
2783 
2784 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2785 /// TargetReg, while preserving other bits in \p TargetReg.
2786 ///
2787 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2788 static Register buildBitFieldInsert(MachineIRBuilder &B,
2789                                     Register TargetReg, Register InsertReg,
2790                                     Register OffsetBits) {
2791   LLT TargetTy = B.getMRI()->getType(TargetReg);
2792   LLT InsertTy = B.getMRI()->getType(InsertReg);
2793   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2794   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2795 
2796   // Produce a bitmask of the value to insert
2797   auto EltMask = B.buildConstant(
2798     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2799                                    InsertTy.getSizeInBits()));
2800   // Shift it into position
2801   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2802   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2803 
2804   // Clear out the bits in the wide element
2805   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2806 
2807   // The value to insert has all zeros already, so stick it into the masked
2808   // wide element.
2809   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2810 }
2811 
2812 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2813 /// is increasing the element size, perform the indexing in the target element
2814 /// type, and use bit operations to insert at the element position. This is
2815 /// intended for architectures that can dynamically index the register file and
2816 /// want to force indexing in the native register size.
2817 LegalizerHelper::LegalizeResult
2818 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2819                                         LLT CastTy) {
2820   if (TypeIdx != 0)
2821     return UnableToLegalize;
2822 
2823   Register Dst = MI.getOperand(0).getReg();
2824   Register SrcVec = MI.getOperand(1).getReg();
2825   Register Val = MI.getOperand(2).getReg();
2826   Register Idx = MI.getOperand(3).getReg();
2827 
2828   LLT VecTy = MRI.getType(Dst);
2829   LLT IdxTy = MRI.getType(Idx);
2830 
2831   LLT VecEltTy = VecTy.getElementType();
2832   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2833   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2834   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2835 
2836   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2837   unsigned OldNumElts = VecTy.getNumElements();
2838 
2839   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2840   if (NewNumElts < OldNumElts) {
2841     if (NewEltSize % OldEltSize != 0)
2842       return UnableToLegalize;
2843 
2844     // This only depends on powers of 2 because we use bit tricks to figure out
2845     // the bit offset we need to shift to get the target element. A general
2846     // expansion could emit division/multiply.
2847     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2848       return UnableToLegalize;
2849 
2850     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2851     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2852 
2853     // Divide to get the index in the wider element type.
2854     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2855 
2856     Register ExtractedElt = CastVec;
2857     if (CastTy.isVector()) {
2858       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2859                                                           ScaledIdx).getReg(0);
2860     }
2861 
2862     // Compute the bit offset into the register of the target element.
2863     Register OffsetBits = getBitcastWiderVectorElementOffset(
2864       MIRBuilder, Idx, NewEltSize, OldEltSize);
2865 
2866     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2867                                                Val, OffsetBits);
2868     if (CastTy.isVector()) {
2869       InsertedElt = MIRBuilder.buildInsertVectorElement(
2870         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2871     }
2872 
2873     MIRBuilder.buildBitcast(Dst, InsertedElt);
2874     MI.eraseFromParent();
2875     return Legalized;
2876   }
2877 
2878   return UnableToLegalize;
2879 }
2880 
2881 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
2882   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2883   Register DstReg = LoadMI.getDstReg();
2884   Register PtrReg = LoadMI.getPointerReg();
2885   LLT DstTy = MRI.getType(DstReg);
2886   MachineMemOperand &MMO = LoadMI.getMMO();
2887   LLT MemTy = MMO.getMemoryType();
2888   MachineFunction &MF = MIRBuilder.getMF();
2889 
2890   unsigned MemSizeInBits = MemTy.getSizeInBits();
2891   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2892 
2893   if (MemSizeInBits != MemStoreSizeInBits) {
2894     if (MemTy.isVector())
2895       return UnableToLegalize;
2896 
2897     // Promote to a byte-sized load if not loading an integral number of
2898     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2899     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2900     MachineMemOperand *NewMMO =
2901         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2902 
2903     Register LoadReg = DstReg;
2904     LLT LoadTy = DstTy;
2905 
2906     // If this wasn't already an extending load, we need to widen the result
2907     // register to avoid creating a load with a narrower result than the source.
2908     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2909       LoadTy = WideMemTy;
2910       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2911     }
2912 
2913     if (isa<GSExtLoad>(LoadMI)) {
2914       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2915       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
2916     } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) {
2917       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2918       // The extra bits are guaranteed to be zero, since we stored them that
2919       // way.  A zext load from Wide thus automatically gives zext from MemVT.
2920       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
2921     } else {
2922       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
2923     }
2924 
2925     if (DstTy != LoadTy)
2926       MIRBuilder.buildTrunc(DstReg, LoadReg);
2927 
2928     LoadMI.eraseFromParent();
2929     return Legalized;
2930   }
2931 
2932   // Big endian lowering not implemented.
2933   if (MIRBuilder.getDataLayout().isBigEndian())
2934     return UnableToLegalize;
2935 
2936   // This load needs splitting into power of 2 sized loads.
2937   //
2938   // Our strategy here is to generate anyextending loads for the smaller
2939   // types up to next power-2 result type, and then combine the two larger
2940   // result values together, before truncating back down to the non-pow-2
2941   // type.
2942   // E.g. v1 = i24 load =>
2943   // v2 = i32 zextload (2 byte)
2944   // v3 = i32 load (1 byte)
2945   // v4 = i32 shl v3, 16
2946   // v5 = i32 or v4, v2
2947   // v1 = i24 trunc v5
2948   // By doing this we generate the correct truncate which should get
2949   // combined away as an artifact with a matching extend.
2950 
2951   uint64_t LargeSplitSize, SmallSplitSize;
2952 
2953   if (!isPowerOf2_32(MemSizeInBits)) {
2954     // This load needs splitting into power of 2 sized loads.
2955     LargeSplitSize = PowerOf2Floor(MemSizeInBits);
2956     SmallSplitSize = MemSizeInBits - LargeSplitSize;
2957   } else {
2958     // This is already a power of 2, but we still need to split this in half.
2959     //
2960     // Assume we're being asked to decompose an unaligned load.
2961     // TODO: If this requires multiple splits, handle them all at once.
2962     auto &Ctx = MF.getFunction().getContext();
2963     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
2964       return UnableToLegalize;
2965 
2966     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
2967   }
2968 
2969   if (MemTy.isVector()) {
2970     // TODO: Handle vector extloads
2971     if (MemTy != DstTy)
2972       return UnableToLegalize;
2973 
2974     // TODO: We can do better than scalarizing the vector and at least split it
2975     // in half.
2976     return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
2977   }
2978 
2979   MachineMemOperand *LargeMMO =
2980       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2981   MachineMemOperand *SmallMMO =
2982       MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2983 
2984   LLT PtrTy = MRI.getType(PtrReg);
2985   unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
2986   LLT AnyExtTy = LLT::scalar(AnyExtSize);
2987   auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
2988                                              PtrReg, *LargeMMO);
2989 
2990   auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
2991                                             LargeSplitSize / 8);
2992   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2993   auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2994   auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
2995                                              SmallPtr, *SmallMMO);
2996 
2997   auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2998   auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2999 
3000   if (AnyExtTy == DstTy)
3001     MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
3002   else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
3003     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3004     MIRBuilder.buildTrunc(DstReg, {Or});
3005   } else {
3006     assert(DstTy.isPointer() && "expected pointer");
3007     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3008 
3009     // FIXME: We currently consider this to be illegal for non-integral address
3010     // spaces, but we need still need a way to reinterpret the bits.
3011     MIRBuilder.buildIntToPtr(DstReg, Or);
3012   }
3013 
3014   LoadMI.eraseFromParent();
3015   return Legalized;
3016 }
3017 
3018 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
3019   // Lower a non-power of 2 store into multiple pow-2 stores.
3020   // E.g. split an i24 store into an i16 store + i8 store.
3021   // We do this by first extending the stored value to the next largest power
3022   // of 2 type, and then using truncating stores to store the components.
3023   // By doing this, likewise with G_LOAD, generate an extend that can be
3024   // artifact-combined away instead of leaving behind extracts.
3025   Register SrcReg = StoreMI.getValueReg();
3026   Register PtrReg = StoreMI.getPointerReg();
3027   LLT SrcTy = MRI.getType(SrcReg);
3028   MachineFunction &MF = MIRBuilder.getMF();
3029   MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3030   LLT MemTy = MMO.getMemoryType();
3031 
3032   unsigned StoreWidth = MemTy.getSizeInBits();
3033   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3034 
3035   if (StoreWidth != StoreSizeInBits) {
3036     if (SrcTy.isVector())
3037       return UnableToLegalize;
3038 
3039     // Promote to a byte-sized store with upper bits zero if not
3040     // storing an integral number of bytes.  For example, promote
3041     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3042     LLT WideTy = LLT::scalar(StoreSizeInBits);
3043 
3044     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3045       // Avoid creating a store with a narrower source than result.
3046       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3047       SrcTy = WideTy;
3048     }
3049 
3050     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3051 
3052     MachineMemOperand *NewMMO =
3053         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3054     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3055     StoreMI.eraseFromParent();
3056     return Legalized;
3057   }
3058 
3059   if (MemTy.isVector()) {
3060     // TODO: Handle vector trunc stores
3061     if (MemTy != SrcTy)
3062       return UnableToLegalize;
3063 
3064     // TODO: We can do better than scalarizing the vector and at least split it
3065     // in half.
3066     return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
3067   }
3068 
3069   unsigned MemSizeInBits = MemTy.getSizeInBits();
3070   uint64_t LargeSplitSize, SmallSplitSize;
3071 
3072   if (!isPowerOf2_32(MemSizeInBits)) {
3073     LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
3074     SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3075   } else {
3076     auto &Ctx = MF.getFunction().getContext();
3077     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3078       return UnableToLegalize; // Don't know what we're being asked to do.
3079 
3080     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3081   }
3082 
3083   // Extend to the next pow-2. If this store was itself the result of lowering,
3084   // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3085   // that's wider than the stored size.
3086   unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
3087   const LLT NewSrcTy = LLT::scalar(AnyExtSize);
3088 
3089   if (SrcTy.isPointer()) {
3090     const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
3091     SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
3092   }
3093 
3094   auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3095 
3096   // Obtain the smaller value by shifting away the larger value.
3097   auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3098   auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3099 
3100   // Generate the PtrAdd and truncating stores.
3101   LLT PtrTy = MRI.getType(PtrReg);
3102   auto OffsetCst = MIRBuilder.buildConstant(
3103     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3104   auto SmallPtr =
3105     MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
3106 
3107   MachineMemOperand *LargeMMO =
3108     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3109   MachineMemOperand *SmallMMO =
3110     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3111   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3112   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3113   StoreMI.eraseFromParent();
3114   return Legalized;
3115 }
3116 
3117 LegalizerHelper::LegalizeResult
3118 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3119   switch (MI.getOpcode()) {
3120   case TargetOpcode::G_LOAD: {
3121     if (TypeIdx != 0)
3122       return UnableToLegalize;
3123     MachineMemOperand &MMO = **MI.memoperands_begin();
3124 
3125     // Not sure how to interpret a bitcast of an extending load.
3126     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3127       return UnableToLegalize;
3128 
3129     Observer.changingInstr(MI);
3130     bitcastDst(MI, CastTy, 0);
3131     MMO.setType(CastTy);
3132     Observer.changedInstr(MI);
3133     return Legalized;
3134   }
3135   case TargetOpcode::G_STORE: {
3136     if (TypeIdx != 0)
3137       return UnableToLegalize;
3138 
3139     MachineMemOperand &MMO = **MI.memoperands_begin();
3140 
3141     // Not sure how to interpret a bitcast of a truncating store.
3142     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3143       return UnableToLegalize;
3144 
3145     Observer.changingInstr(MI);
3146     bitcastSrc(MI, CastTy, 0);
3147     MMO.setType(CastTy);
3148     Observer.changedInstr(MI);
3149     return Legalized;
3150   }
3151   case TargetOpcode::G_SELECT: {
3152     if (TypeIdx != 0)
3153       return UnableToLegalize;
3154 
3155     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3156       LLVM_DEBUG(
3157           dbgs() << "bitcast action not implemented for vector select\n");
3158       return UnableToLegalize;
3159     }
3160 
3161     Observer.changingInstr(MI);
3162     bitcastSrc(MI, CastTy, 2);
3163     bitcastSrc(MI, CastTy, 3);
3164     bitcastDst(MI, CastTy, 0);
3165     Observer.changedInstr(MI);
3166     return Legalized;
3167   }
3168   case TargetOpcode::G_AND:
3169   case TargetOpcode::G_OR:
3170   case TargetOpcode::G_XOR: {
3171     Observer.changingInstr(MI);
3172     bitcastSrc(MI, CastTy, 1);
3173     bitcastSrc(MI, CastTy, 2);
3174     bitcastDst(MI, CastTy, 0);
3175     Observer.changedInstr(MI);
3176     return Legalized;
3177   }
3178   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3179     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3180   case TargetOpcode::G_INSERT_VECTOR_ELT:
3181     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3182   default:
3183     return UnableToLegalize;
3184   }
3185 }
3186 
3187 // Legalize an instruction by changing the opcode in place.
3188 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3189     Observer.changingInstr(MI);
3190     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3191     Observer.changedInstr(MI);
3192 }
3193 
3194 LegalizerHelper::LegalizeResult
3195 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3196   using namespace TargetOpcode;
3197 
3198   switch(MI.getOpcode()) {
3199   default:
3200     return UnableToLegalize;
3201   case TargetOpcode::G_BITCAST:
3202     return lowerBitcast(MI);
3203   case TargetOpcode::G_SREM:
3204   case TargetOpcode::G_UREM: {
3205     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3206     auto Quot =
3207         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3208                               {MI.getOperand(1), MI.getOperand(2)});
3209 
3210     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3211     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3212     MI.eraseFromParent();
3213     return Legalized;
3214   }
3215   case TargetOpcode::G_SADDO:
3216   case TargetOpcode::G_SSUBO:
3217     return lowerSADDO_SSUBO(MI);
3218   case TargetOpcode::G_UMULH:
3219   case TargetOpcode::G_SMULH:
3220     return lowerSMULH_UMULH(MI);
3221   case TargetOpcode::G_SMULO:
3222   case TargetOpcode::G_UMULO: {
3223     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3224     // result.
3225     Register Res = MI.getOperand(0).getReg();
3226     Register Overflow = MI.getOperand(1).getReg();
3227     Register LHS = MI.getOperand(2).getReg();
3228     Register RHS = MI.getOperand(3).getReg();
3229     LLT Ty = MRI.getType(Res);
3230 
3231     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3232                           ? TargetOpcode::G_SMULH
3233                           : TargetOpcode::G_UMULH;
3234 
3235     Observer.changingInstr(MI);
3236     const auto &TII = MIRBuilder.getTII();
3237     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3238     MI.RemoveOperand(1);
3239     Observer.changedInstr(MI);
3240 
3241     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3242     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3243 
3244     // Move insert point forward so we can use the Res register if needed.
3245     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3246 
3247     // For *signed* multiply, overflow is detected by checking:
3248     // (hi != (lo >> bitwidth-1))
3249     if (Opcode == TargetOpcode::G_SMULH) {
3250       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3251       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3252       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3253     } else {
3254       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3255     }
3256     return Legalized;
3257   }
3258   case TargetOpcode::G_FNEG: {
3259     Register Res = MI.getOperand(0).getReg();
3260     LLT Ty = MRI.getType(Res);
3261 
3262     // TODO: Handle vector types once we are able to
3263     // represent them.
3264     if (Ty.isVector())
3265       return UnableToLegalize;
3266     auto SignMask =
3267         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3268     Register SubByReg = MI.getOperand(1).getReg();
3269     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3270     MI.eraseFromParent();
3271     return Legalized;
3272   }
3273   case TargetOpcode::G_FSUB: {
3274     Register Res = MI.getOperand(0).getReg();
3275     LLT Ty = MRI.getType(Res);
3276 
3277     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3278     // First, check if G_FNEG is marked as Lower. If so, we may
3279     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3280     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3281       return UnableToLegalize;
3282     Register LHS = MI.getOperand(1).getReg();
3283     Register RHS = MI.getOperand(2).getReg();
3284     Register Neg = MRI.createGenericVirtualRegister(Ty);
3285     MIRBuilder.buildFNeg(Neg, RHS);
3286     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3287     MI.eraseFromParent();
3288     return Legalized;
3289   }
3290   case TargetOpcode::G_FMAD:
3291     return lowerFMad(MI);
3292   case TargetOpcode::G_FFLOOR:
3293     return lowerFFloor(MI);
3294   case TargetOpcode::G_INTRINSIC_ROUND:
3295     return lowerIntrinsicRound(MI);
3296   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3297     // Since round even is the assumed rounding mode for unconstrained FP
3298     // operations, rint and roundeven are the same operation.
3299     changeOpcode(MI, TargetOpcode::G_FRINT);
3300     return Legalized;
3301   }
3302   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3303     Register OldValRes = MI.getOperand(0).getReg();
3304     Register SuccessRes = MI.getOperand(1).getReg();
3305     Register Addr = MI.getOperand(2).getReg();
3306     Register CmpVal = MI.getOperand(3).getReg();
3307     Register NewVal = MI.getOperand(4).getReg();
3308     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3309                                   **MI.memoperands_begin());
3310     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3311     MI.eraseFromParent();
3312     return Legalized;
3313   }
3314   case TargetOpcode::G_LOAD:
3315   case TargetOpcode::G_SEXTLOAD:
3316   case TargetOpcode::G_ZEXTLOAD:
3317     return lowerLoad(cast<GAnyLoad>(MI));
3318   case TargetOpcode::G_STORE:
3319     return lowerStore(cast<GStore>(MI));
3320   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3321   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3322   case TargetOpcode::G_CTLZ:
3323   case TargetOpcode::G_CTTZ:
3324   case TargetOpcode::G_CTPOP:
3325     return lowerBitCount(MI);
3326   case G_UADDO: {
3327     Register Res = MI.getOperand(0).getReg();
3328     Register CarryOut = MI.getOperand(1).getReg();
3329     Register LHS = MI.getOperand(2).getReg();
3330     Register RHS = MI.getOperand(3).getReg();
3331 
3332     MIRBuilder.buildAdd(Res, LHS, RHS);
3333     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3334 
3335     MI.eraseFromParent();
3336     return Legalized;
3337   }
3338   case G_UADDE: {
3339     Register Res = MI.getOperand(0).getReg();
3340     Register CarryOut = MI.getOperand(1).getReg();
3341     Register LHS = MI.getOperand(2).getReg();
3342     Register RHS = MI.getOperand(3).getReg();
3343     Register CarryIn = MI.getOperand(4).getReg();
3344     LLT Ty = MRI.getType(Res);
3345 
3346     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3347     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3348     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3349     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3350 
3351     MI.eraseFromParent();
3352     return Legalized;
3353   }
3354   case G_USUBO: {
3355     Register Res = MI.getOperand(0).getReg();
3356     Register BorrowOut = MI.getOperand(1).getReg();
3357     Register LHS = MI.getOperand(2).getReg();
3358     Register RHS = MI.getOperand(3).getReg();
3359 
3360     MIRBuilder.buildSub(Res, LHS, RHS);
3361     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3362 
3363     MI.eraseFromParent();
3364     return Legalized;
3365   }
3366   case G_USUBE: {
3367     Register Res = MI.getOperand(0).getReg();
3368     Register BorrowOut = MI.getOperand(1).getReg();
3369     Register LHS = MI.getOperand(2).getReg();
3370     Register RHS = MI.getOperand(3).getReg();
3371     Register BorrowIn = MI.getOperand(4).getReg();
3372     const LLT CondTy = MRI.getType(BorrowOut);
3373     const LLT Ty = MRI.getType(Res);
3374 
3375     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3376     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3377     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3378 
3379     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3380     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3381     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3382 
3383     MI.eraseFromParent();
3384     return Legalized;
3385   }
3386   case G_UITOFP:
3387     return lowerUITOFP(MI);
3388   case G_SITOFP:
3389     return lowerSITOFP(MI);
3390   case G_FPTOUI:
3391     return lowerFPTOUI(MI);
3392   case G_FPTOSI:
3393     return lowerFPTOSI(MI);
3394   case G_FPTRUNC:
3395     return lowerFPTRUNC(MI);
3396   case G_FPOWI:
3397     return lowerFPOWI(MI);
3398   case G_SMIN:
3399   case G_SMAX:
3400   case G_UMIN:
3401   case G_UMAX:
3402     return lowerMinMax(MI);
3403   case G_FCOPYSIGN:
3404     return lowerFCopySign(MI);
3405   case G_FMINNUM:
3406   case G_FMAXNUM:
3407     return lowerFMinNumMaxNum(MI);
3408   case G_MERGE_VALUES:
3409     return lowerMergeValues(MI);
3410   case G_UNMERGE_VALUES:
3411     return lowerUnmergeValues(MI);
3412   case TargetOpcode::G_SEXT_INREG: {
3413     assert(MI.getOperand(2).isImm() && "Expected immediate");
3414     int64_t SizeInBits = MI.getOperand(2).getImm();
3415 
3416     Register DstReg = MI.getOperand(0).getReg();
3417     Register SrcReg = MI.getOperand(1).getReg();
3418     LLT DstTy = MRI.getType(DstReg);
3419     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3420 
3421     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3422     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3423     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3424     MI.eraseFromParent();
3425     return Legalized;
3426   }
3427   case G_EXTRACT_VECTOR_ELT:
3428   case G_INSERT_VECTOR_ELT:
3429     return lowerExtractInsertVectorElt(MI);
3430   case G_SHUFFLE_VECTOR:
3431     return lowerShuffleVector(MI);
3432   case G_DYN_STACKALLOC:
3433     return lowerDynStackAlloc(MI);
3434   case G_EXTRACT:
3435     return lowerExtract(MI);
3436   case G_INSERT:
3437     return lowerInsert(MI);
3438   case G_BSWAP:
3439     return lowerBswap(MI);
3440   case G_BITREVERSE:
3441     return lowerBitreverse(MI);
3442   case G_READ_REGISTER:
3443   case G_WRITE_REGISTER:
3444     return lowerReadWriteRegister(MI);
3445   case G_UADDSAT:
3446   case G_USUBSAT: {
3447     // Try to make a reasonable guess about which lowering strategy to use. The
3448     // target can override this with custom lowering and calling the
3449     // implementation functions.
3450     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3451     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3452       return lowerAddSubSatToMinMax(MI);
3453     return lowerAddSubSatToAddoSubo(MI);
3454   }
3455   case G_SADDSAT:
3456   case G_SSUBSAT: {
3457     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3458 
3459     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3460     // since it's a shorter expansion. However, we would need to figure out the
3461     // preferred boolean type for the carry out for the query.
3462     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3463       return lowerAddSubSatToMinMax(MI);
3464     return lowerAddSubSatToAddoSubo(MI);
3465   }
3466   case G_SSHLSAT:
3467   case G_USHLSAT:
3468     return lowerShlSat(MI);
3469   case G_ABS:
3470     return lowerAbsToAddXor(MI);
3471   case G_SELECT:
3472     return lowerSelect(MI);
3473   case G_SDIVREM:
3474   case G_UDIVREM:
3475     return lowerDIVREM(MI);
3476   case G_FSHL:
3477   case G_FSHR:
3478     return lowerFunnelShift(MI);
3479   case G_ROTL:
3480   case G_ROTR:
3481     return lowerRotate(MI);
3482   }
3483 }
3484 
3485 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3486                                                   Align MinAlign) const {
3487   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3488   // datalayout for the preferred alignment. Also there should be a target hook
3489   // for this to allow targets to reduce the alignment and ignore the
3490   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3491   // the type.
3492   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3493 }
3494 
3495 MachineInstrBuilder
3496 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3497                                       MachinePointerInfo &PtrInfo) {
3498   MachineFunction &MF = MIRBuilder.getMF();
3499   const DataLayout &DL = MIRBuilder.getDataLayout();
3500   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3501 
3502   unsigned AddrSpace = DL.getAllocaAddrSpace();
3503   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3504 
3505   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3506   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3507 }
3508 
3509 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3510                                         LLT VecTy) {
3511   int64_t IdxVal;
3512   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3513     return IdxReg;
3514 
3515   LLT IdxTy = B.getMRI()->getType(IdxReg);
3516   unsigned NElts = VecTy.getNumElements();
3517   if (isPowerOf2_32(NElts)) {
3518     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3519     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3520   }
3521 
3522   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3523       .getReg(0);
3524 }
3525 
3526 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3527                                                   Register Index) {
3528   LLT EltTy = VecTy.getElementType();
3529 
3530   // Calculate the element offset and add it to the pointer.
3531   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3532   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3533          "Converting bits to bytes lost precision");
3534 
3535   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3536 
3537   LLT IdxTy = MRI.getType(Index);
3538   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3539                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3540 
3541   LLT PtrTy = MRI.getType(VecPtr);
3542   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3543 }
3544 
3545 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3546     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3547   Register DstReg = MI.getOperand(0).getReg();
3548   LLT DstTy = MRI.getType(DstReg);
3549   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3550 
3551   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3552 
3553   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3554   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3555 
3556   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3557   MI.eraseFromParent();
3558   return Legalized;
3559 }
3560 
3561 // Handle splitting vector operations which need to have the same number of
3562 // elements in each type index, but each type index may have a different element
3563 // type.
3564 //
3565 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3566 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3567 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3568 //
3569 // Also handles some irregular breakdown cases, e.g.
3570 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3571 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3572 //             s64 = G_SHL s64, s32
3573 LegalizerHelper::LegalizeResult
3574 LegalizerHelper::fewerElementsVectorMultiEltType(
3575   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3576   if (TypeIdx != 0)
3577     return UnableToLegalize;
3578 
3579   const LLT NarrowTy0 = NarrowTyArg;
3580   const Register DstReg = MI.getOperand(0).getReg();
3581   LLT DstTy = MRI.getType(DstReg);
3582   LLT LeftoverTy0;
3583 
3584   // All of the operands need to have the same number of elements, so if we can
3585   // determine a type breakdown for the result type, we can for all of the
3586   // source types.
3587   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3588   if (NumParts < 0)
3589     return UnableToLegalize;
3590 
3591   SmallVector<MachineInstrBuilder, 4> NewInsts;
3592 
3593   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3594   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3595 
3596   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3597     Register SrcReg = MI.getOperand(I).getReg();
3598     LLT SrcTyI = MRI.getType(SrcReg);
3599     const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount()
3600                                             : ElementCount::getFixed(1);
3601     LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType());
3602     LLT LeftoverTyI;
3603 
3604     // Split this operand into the requested typed registers, and any leftover
3605     // required to reproduce the original type.
3606     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3607                       LeftoverRegs))
3608       return UnableToLegalize;
3609 
3610     if (I == 1) {
3611       // For the first operand, create an instruction for each part and setup
3612       // the result.
3613       for (Register PartReg : PartRegs) {
3614         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3615         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3616                                .addDef(PartDstReg)
3617                                .addUse(PartReg));
3618         DstRegs.push_back(PartDstReg);
3619       }
3620 
3621       for (Register LeftoverReg : LeftoverRegs) {
3622         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3623         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3624                                .addDef(PartDstReg)
3625                                .addUse(LeftoverReg));
3626         LeftoverDstRegs.push_back(PartDstReg);
3627       }
3628     } else {
3629       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3630 
3631       // Add the newly created operand splits to the existing instructions. The
3632       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3633       // pieces.
3634       unsigned InstCount = 0;
3635       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3636         NewInsts[InstCount++].addUse(PartRegs[J]);
3637       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3638         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3639     }
3640 
3641     PartRegs.clear();
3642     LeftoverRegs.clear();
3643   }
3644 
3645   // Insert the newly built operations and rebuild the result register.
3646   for (auto &MIB : NewInsts)
3647     MIRBuilder.insertInstr(MIB);
3648 
3649   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3650 
3651   MI.eraseFromParent();
3652   return Legalized;
3653 }
3654 
3655 LegalizerHelper::LegalizeResult
3656 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3657                                           LLT NarrowTy) {
3658   if (TypeIdx != 0)
3659     return UnableToLegalize;
3660 
3661   Register DstReg = MI.getOperand(0).getReg();
3662   Register SrcReg = MI.getOperand(1).getReg();
3663   LLT DstTy = MRI.getType(DstReg);
3664   LLT SrcTy = MRI.getType(SrcReg);
3665 
3666   LLT NarrowTy0 = NarrowTy;
3667   LLT NarrowTy1;
3668   unsigned NumParts;
3669 
3670   if (NarrowTy.isVector()) {
3671     // Uneven breakdown not handled.
3672     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3673     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3674       return UnableToLegalize;
3675 
3676     NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType());
3677   } else {
3678     NumParts = DstTy.getNumElements();
3679     NarrowTy1 = SrcTy.getElementType();
3680   }
3681 
3682   SmallVector<Register, 4> SrcRegs, DstRegs;
3683   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3684 
3685   for (unsigned I = 0; I < NumParts; ++I) {
3686     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3687     MachineInstr *NewInst =
3688         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3689 
3690     NewInst->setFlags(MI.getFlags());
3691     DstRegs.push_back(DstReg);
3692   }
3693 
3694   if (NarrowTy.isVector())
3695     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3696   else
3697     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3698 
3699   MI.eraseFromParent();
3700   return Legalized;
3701 }
3702 
3703 LegalizerHelper::LegalizeResult
3704 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3705                                         LLT NarrowTy) {
3706   Register DstReg = MI.getOperand(0).getReg();
3707   Register Src0Reg = MI.getOperand(2).getReg();
3708   LLT DstTy = MRI.getType(DstReg);
3709   LLT SrcTy = MRI.getType(Src0Reg);
3710 
3711   unsigned NumParts;
3712   LLT NarrowTy0, NarrowTy1;
3713 
3714   if (TypeIdx == 0) {
3715     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3716     unsigned OldElts = DstTy.getNumElements();
3717 
3718     NarrowTy0 = NarrowTy;
3719     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3720     NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(),
3721                                                   SrcTy.getScalarSizeInBits())
3722                                     : SrcTy.getElementType();
3723 
3724   } else {
3725     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3726     unsigned OldElts = SrcTy.getNumElements();
3727 
3728     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3729       NarrowTy.getNumElements();
3730     NarrowTy0 =
3731         LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits());
3732     NarrowTy1 = NarrowTy;
3733   }
3734 
3735   // FIXME: Don't know how to handle the situation where the small vectors
3736   // aren't all the same size yet.
3737   if (NarrowTy1.isVector() &&
3738       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3739     return UnableToLegalize;
3740 
3741   CmpInst::Predicate Pred
3742     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3743 
3744   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3745   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3746   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3747 
3748   for (unsigned I = 0; I < NumParts; ++I) {
3749     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3750     DstRegs.push_back(DstReg);
3751 
3752     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3753       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3754     else {
3755       MachineInstr *NewCmp
3756         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3757       NewCmp->setFlags(MI.getFlags());
3758     }
3759   }
3760 
3761   if (NarrowTy1.isVector())
3762     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3763   else
3764     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3765 
3766   MI.eraseFromParent();
3767   return Legalized;
3768 }
3769 
3770 LegalizerHelper::LegalizeResult
3771 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3772                                            LLT NarrowTy) {
3773   Register DstReg = MI.getOperand(0).getReg();
3774   Register CondReg = MI.getOperand(1).getReg();
3775 
3776   unsigned NumParts = 0;
3777   LLT NarrowTy0, NarrowTy1;
3778 
3779   LLT DstTy = MRI.getType(DstReg);
3780   LLT CondTy = MRI.getType(CondReg);
3781   unsigned Size = DstTy.getSizeInBits();
3782 
3783   assert(TypeIdx == 0 || CondTy.isVector());
3784 
3785   if (TypeIdx == 0) {
3786     NarrowTy0 = NarrowTy;
3787     NarrowTy1 = CondTy;
3788 
3789     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3790     // FIXME: Don't know how to handle the situation where the small vectors
3791     // aren't all the same size yet.
3792     if (Size % NarrowSize != 0)
3793       return UnableToLegalize;
3794 
3795     NumParts = Size / NarrowSize;
3796 
3797     // Need to break down the condition type
3798     if (CondTy.isVector()) {
3799       if (CondTy.getNumElements() == NumParts)
3800         NarrowTy1 = CondTy.getElementType();
3801       else
3802         NarrowTy1 =
3803             LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts),
3804                         CondTy.getScalarSizeInBits());
3805     }
3806   } else {
3807     NumParts = CondTy.getNumElements();
3808     if (NarrowTy.isVector()) {
3809       // TODO: Handle uneven breakdown.
3810       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3811         return UnableToLegalize;
3812 
3813       return UnableToLegalize;
3814     } else {
3815       NarrowTy0 = DstTy.getElementType();
3816       NarrowTy1 = NarrowTy;
3817     }
3818   }
3819 
3820   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3821   if (CondTy.isVector())
3822     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3823 
3824   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3825   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3826 
3827   for (unsigned i = 0; i < NumParts; ++i) {
3828     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3829     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3830                            Src1Regs[i], Src2Regs[i]);
3831     DstRegs.push_back(DstReg);
3832   }
3833 
3834   if (NarrowTy0.isVector())
3835     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3836   else
3837     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3838 
3839   MI.eraseFromParent();
3840   return Legalized;
3841 }
3842 
3843 LegalizerHelper::LegalizeResult
3844 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3845                                         LLT NarrowTy) {
3846   const Register DstReg = MI.getOperand(0).getReg();
3847   LLT PhiTy = MRI.getType(DstReg);
3848   LLT LeftoverTy;
3849 
3850   // All of the operands need to have the same number of elements, so if we can
3851   // determine a type breakdown for the result type, we can for all of the
3852   // source types.
3853   int NumParts, NumLeftover;
3854   std::tie(NumParts, NumLeftover)
3855     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3856   if (NumParts < 0)
3857     return UnableToLegalize;
3858 
3859   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3860   SmallVector<MachineInstrBuilder, 4> NewInsts;
3861 
3862   const int TotalNumParts = NumParts + NumLeftover;
3863 
3864   // Insert the new phis in the result block first.
3865   for (int I = 0; I != TotalNumParts; ++I) {
3866     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3867     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3868     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3869                        .addDef(PartDstReg));
3870     if (I < NumParts)
3871       DstRegs.push_back(PartDstReg);
3872     else
3873       LeftoverDstRegs.push_back(PartDstReg);
3874   }
3875 
3876   MachineBasicBlock *MBB = MI.getParent();
3877   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3878   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3879 
3880   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3881 
3882   // Insert code to extract the incoming values in each predecessor block.
3883   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3884     PartRegs.clear();
3885     LeftoverRegs.clear();
3886 
3887     Register SrcReg = MI.getOperand(I).getReg();
3888     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3889     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3890 
3891     LLT Unused;
3892     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3893                       LeftoverRegs))
3894       return UnableToLegalize;
3895 
3896     // Add the newly created operand splits to the existing instructions. The
3897     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3898     // pieces.
3899     for (int J = 0; J != TotalNumParts; ++J) {
3900       MachineInstrBuilder MIB = NewInsts[J];
3901       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3902       MIB.addMBB(&OpMBB);
3903     }
3904   }
3905 
3906   MI.eraseFromParent();
3907   return Legalized;
3908 }
3909 
3910 LegalizerHelper::LegalizeResult
3911 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3912                                                   unsigned TypeIdx,
3913                                                   LLT NarrowTy) {
3914   if (TypeIdx != 1)
3915     return UnableToLegalize;
3916 
3917   const int NumDst = MI.getNumOperands() - 1;
3918   const Register SrcReg = MI.getOperand(NumDst).getReg();
3919   LLT SrcTy = MRI.getType(SrcReg);
3920 
3921   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3922 
3923   // TODO: Create sequence of extracts.
3924   if (DstTy == NarrowTy)
3925     return UnableToLegalize;
3926 
3927   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3928   if (DstTy == GCDTy) {
3929     // This would just be a copy of the same unmerge.
3930     // TODO: Create extracts, pad with undef and create intermediate merges.
3931     return UnableToLegalize;
3932   }
3933 
3934   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3935   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3936   const int PartsPerUnmerge = NumDst / NumUnmerge;
3937 
3938   for (int I = 0; I != NumUnmerge; ++I) {
3939     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3940 
3941     for (int J = 0; J != PartsPerUnmerge; ++J)
3942       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3943     MIB.addUse(Unmerge.getReg(I));
3944   }
3945 
3946   MI.eraseFromParent();
3947   return Legalized;
3948 }
3949 
3950 LegalizerHelper::LegalizeResult
3951 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3952                                          LLT NarrowTy) {
3953   Register Result = MI.getOperand(0).getReg();
3954   Register Overflow = MI.getOperand(1).getReg();
3955   Register LHS = MI.getOperand(2).getReg();
3956   Register RHS = MI.getOperand(3).getReg();
3957 
3958   LLT SrcTy = MRI.getType(LHS);
3959   if (!SrcTy.isVector())
3960     return UnableToLegalize;
3961 
3962   LLT ElementType = SrcTy.getElementType();
3963   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3964   const ElementCount NumResult = SrcTy.getElementCount();
3965   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3966 
3967   // Unmerge the operands to smaller parts of GCD type.
3968   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3969   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3970 
3971   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3972   const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps);
3973   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3974   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3975 
3976   // Perform the operation over unmerged parts.
3977   SmallVector<Register, 8> ResultParts;
3978   SmallVector<Register, 8> OverflowParts;
3979   for (int I = 0; I != NumOps; ++I) {
3980     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3981     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3982     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3983                                          {Operand1, Operand2});
3984     ResultParts.push_back(PartMul->getOperand(0).getReg());
3985     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3986   }
3987 
3988   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3989   LLT OverflowLCMTy =
3990       LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy);
3991 
3992   // Recombine the pieces to the original result and overflow registers.
3993   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3994   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3995   MI.eraseFromParent();
3996   return Legalized;
3997 }
3998 
3999 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
4000 // a vector
4001 //
4002 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
4003 // undef as necessary.
4004 //
4005 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
4006 //   -> <2 x s16>
4007 //
4008 // %4:_(s16) = G_IMPLICIT_DEF
4009 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
4010 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
4011 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
4012 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
4013 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
4014 LegalizerHelper::LegalizeResult
4015 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
4016                                           LLT NarrowTy) {
4017   Register DstReg = MI.getOperand(0).getReg();
4018   LLT DstTy = MRI.getType(DstReg);
4019   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4020   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
4021 
4022   // Break into a common type
4023   SmallVector<Register, 16> Parts;
4024   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
4025     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
4026 
4027   // Build the requested new merge, padding with undef.
4028   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
4029                                   TargetOpcode::G_ANYEXT);
4030 
4031   // Pack into the original result register.
4032   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4033 
4034   MI.eraseFromParent();
4035   return Legalized;
4036 }
4037 
4038 LegalizerHelper::LegalizeResult
4039 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
4040                                                            unsigned TypeIdx,
4041                                                            LLT NarrowVecTy) {
4042   Register DstReg = MI.getOperand(0).getReg();
4043   Register SrcVec = MI.getOperand(1).getReg();
4044   Register InsertVal;
4045   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
4046 
4047   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
4048   if (IsInsert)
4049     InsertVal = MI.getOperand(2).getReg();
4050 
4051   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
4052 
4053   // TODO: Handle total scalarization case.
4054   if (!NarrowVecTy.isVector())
4055     return UnableToLegalize;
4056 
4057   LLT VecTy = MRI.getType(SrcVec);
4058 
4059   // If the index is a constant, we can really break this down as you would
4060   // expect, and index into the target size pieces.
4061   int64_t IdxVal;
4062   auto MaybeCst =
4063       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
4064                                         /*HandleFConstants*/ false);
4065   if (MaybeCst) {
4066     IdxVal = MaybeCst->Value.getSExtValue();
4067     // Avoid out of bounds indexing the pieces.
4068     if (IdxVal >= VecTy.getNumElements()) {
4069       MIRBuilder.buildUndef(DstReg);
4070       MI.eraseFromParent();
4071       return Legalized;
4072     }
4073 
4074     SmallVector<Register, 8> VecParts;
4075     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
4076 
4077     // Build a sequence of NarrowTy pieces in VecParts for this operand.
4078     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
4079                                     TargetOpcode::G_ANYEXT);
4080 
4081     unsigned NewNumElts = NarrowVecTy.getNumElements();
4082 
4083     LLT IdxTy = MRI.getType(Idx);
4084     int64_t PartIdx = IdxVal / NewNumElts;
4085     auto NewIdx =
4086         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4087 
4088     if (IsInsert) {
4089       LLT PartTy = MRI.getType(VecParts[PartIdx]);
4090 
4091       // Use the adjusted index to insert into one of the subvectors.
4092       auto InsertPart = MIRBuilder.buildInsertVectorElement(
4093           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4094       VecParts[PartIdx] = InsertPart.getReg(0);
4095 
4096       // Recombine the inserted subvector with the others to reform the result
4097       // vector.
4098       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4099     } else {
4100       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4101     }
4102 
4103     MI.eraseFromParent();
4104     return Legalized;
4105   }
4106 
4107   // With a variable index, we can't perform the operation in a smaller type, so
4108   // we're forced to expand this.
4109   //
4110   // TODO: We could emit a chain of compare/select to figure out which piece to
4111   // index.
4112   return lowerExtractInsertVectorElt(MI);
4113 }
4114 
4115 LegalizerHelper::LegalizeResult
4116 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4117                                       LLT NarrowTy) {
4118   // FIXME: Don't know how to handle secondary types yet.
4119   if (TypeIdx != 0)
4120     return UnableToLegalize;
4121 
4122   // This implementation doesn't work for atomics. Give up instead of doing
4123   // something invalid.
4124   if (LdStMI.isAtomic())
4125     return UnableToLegalize;
4126 
4127   bool IsLoad = isa<GLoad>(LdStMI);
4128   Register ValReg = LdStMI.getReg(0);
4129   Register AddrReg = LdStMI.getPointerReg();
4130   LLT ValTy = MRI.getType(ValReg);
4131 
4132   // FIXME: Do we need a distinct NarrowMemory legalize action?
4133   if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
4134     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
4135     return UnableToLegalize;
4136   }
4137 
4138   int NumParts = -1;
4139   int NumLeftover = -1;
4140   LLT LeftoverTy;
4141   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4142   if (IsLoad) {
4143     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4144   } else {
4145     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4146                      NarrowLeftoverRegs)) {
4147       NumParts = NarrowRegs.size();
4148       NumLeftover = NarrowLeftoverRegs.size();
4149     }
4150   }
4151 
4152   if (NumParts == -1)
4153     return UnableToLegalize;
4154 
4155   LLT PtrTy = MRI.getType(AddrReg);
4156   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4157 
4158   unsigned TotalSize = ValTy.getSizeInBits();
4159 
4160   // Split the load/store into PartTy sized pieces starting at Offset. If this
4161   // is a load, return the new registers in ValRegs. For a store, each elements
4162   // of ValRegs should be PartTy. Returns the next offset that needs to be
4163   // handled.
4164   auto MMO = LdStMI.getMMO();
4165   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4166                              unsigned Offset) -> unsigned {
4167     MachineFunction &MF = MIRBuilder.getMF();
4168     unsigned PartSize = PartTy.getSizeInBits();
4169     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4170          Offset += PartSize, ++Idx) {
4171       unsigned ByteOffset = Offset / 8;
4172       Register NewAddrReg;
4173 
4174       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4175 
4176       MachineMemOperand *NewMMO =
4177           MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4178 
4179       if (IsLoad) {
4180         Register Dst = MRI.createGenericVirtualRegister(PartTy);
4181         ValRegs.push_back(Dst);
4182         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4183       } else {
4184         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4185       }
4186     }
4187 
4188     return Offset;
4189   };
4190 
4191   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
4192 
4193   // Handle the rest of the register if this isn't an even type breakdown.
4194   if (LeftoverTy.isValid())
4195     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
4196 
4197   if (IsLoad) {
4198     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4199                 LeftoverTy, NarrowLeftoverRegs);
4200   }
4201 
4202   LdStMI.eraseFromParent();
4203   return Legalized;
4204 }
4205 
4206 LegalizerHelper::LegalizeResult
4207 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
4208                                       LLT NarrowTy) {
4209   assert(TypeIdx == 0 && "only one type index expected");
4210 
4211   const unsigned Opc = MI.getOpcode();
4212   const int NumDefOps = MI.getNumExplicitDefs();
4213   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
4214   const unsigned Flags = MI.getFlags();
4215   const unsigned NarrowSize = NarrowTy.getSizeInBits();
4216   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
4217 
4218   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
4219                                      "result and 1-3 sources or 2 results and "
4220                                      "1-2 sources");
4221 
4222   SmallVector<Register, 2> DstRegs;
4223   for (int I = 0; I < NumDefOps; ++I)
4224     DstRegs.push_back(MI.getOperand(I).getReg());
4225 
4226   // First of all check whether we are narrowing (changing the element type)
4227   // or reducing the vector elements
4228   const LLT DstTy = MRI.getType(DstRegs[0]);
4229   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
4230 
4231   SmallVector<Register, 8> ExtractedRegs[3];
4232   SmallVector<Register, 8> Parts;
4233 
4234   // Break down all the sources into NarrowTy pieces we can operate on. This may
4235   // involve creating merges to a wider type, padded with undef.
4236   for (int I = 0; I != NumSrcOps; ++I) {
4237     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
4238     LLT SrcTy = MRI.getType(SrcReg);
4239 
4240     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
4241     // For fewerElements, this is a smaller vector with the same element type.
4242     LLT OpNarrowTy;
4243     if (IsNarrow) {
4244       OpNarrowTy = NarrowScalarTy;
4245 
4246       // In case of narrowing, we need to cast vectors to scalars for this to
4247       // work properly
4248       // FIXME: Can we do without the bitcast here if we're narrowing?
4249       if (SrcTy.isVector()) {
4250         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
4251         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
4252       }
4253     } else {
4254       auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount()
4255                                           : ElementCount::getFixed(1);
4256       OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType());
4257     }
4258 
4259     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4260 
4261     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4262     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4263                         TargetOpcode::G_ANYEXT);
4264   }
4265 
4266   SmallVector<Register, 8> ResultRegs[2];
4267 
4268   // Input operands for each sub-instruction.
4269   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4270 
4271   int NumParts = ExtractedRegs[0].size();
4272   const unsigned DstSize = DstTy.getSizeInBits();
4273   const LLT DstScalarTy = LLT::scalar(DstSize);
4274 
4275   // Narrowing needs to use scalar types
4276   LLT DstLCMTy, NarrowDstTy;
4277   if (IsNarrow) {
4278     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4279     NarrowDstTy = NarrowScalarTy;
4280   } else {
4281     DstLCMTy = getLCMType(DstTy, NarrowTy);
4282     NarrowDstTy = NarrowTy;
4283   }
4284 
4285   // We widened the source registers to satisfy merge/unmerge size
4286   // constraints. We'll have some extra fully undef parts.
4287   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4288 
4289   for (int I = 0; I != NumRealParts; ++I) {
4290     // Emit this instruction on each of the split pieces.
4291     for (int J = 0; J != NumSrcOps; ++J)
4292       InputRegs[J] = ExtractedRegs[J][I];
4293 
4294     MachineInstrBuilder Inst;
4295     if (NumDefOps == 1)
4296       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4297     else
4298       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4299                                    Flags);
4300 
4301     for (int J = 0; J != NumDefOps; ++J)
4302       ResultRegs[J].push_back(Inst.getReg(J));
4303   }
4304 
4305   // Fill out the widened result with undef instead of creating instructions
4306   // with undef inputs.
4307   int NumUndefParts = NumParts - NumRealParts;
4308   if (NumUndefParts != 0) {
4309     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4310     for (int I = 0; I != NumDefOps; ++I)
4311       ResultRegs[I].append(NumUndefParts, Undef);
4312   }
4313 
4314   // Extract the possibly padded result. Use a scratch register if we need to do
4315   // a final bitcast, otherwise use the original result register.
4316   Register MergeDstReg;
4317   for (int I = 0; I != NumDefOps; ++I) {
4318     if (IsNarrow && DstTy.isVector())
4319       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4320     else
4321       MergeDstReg = DstRegs[I];
4322 
4323     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4324 
4325     // Recast to vector if we narrowed a vector
4326     if (IsNarrow && DstTy.isVector())
4327       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4328   }
4329 
4330   MI.eraseFromParent();
4331   return Legalized;
4332 }
4333 
4334 LegalizerHelper::LegalizeResult
4335 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4336                                               LLT NarrowTy) {
4337   Register DstReg = MI.getOperand(0).getReg();
4338   Register SrcReg = MI.getOperand(1).getReg();
4339   int64_t Imm = MI.getOperand(2).getImm();
4340 
4341   LLT DstTy = MRI.getType(DstReg);
4342 
4343   SmallVector<Register, 8> Parts;
4344   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4345   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4346 
4347   for (Register &R : Parts)
4348     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4349 
4350   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4351 
4352   MI.eraseFromParent();
4353   return Legalized;
4354 }
4355 
4356 LegalizerHelper::LegalizeResult
4357 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4358                                      LLT NarrowTy) {
4359   using namespace TargetOpcode;
4360 
4361   switch (MI.getOpcode()) {
4362   case G_IMPLICIT_DEF:
4363     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4364   case G_TRUNC:
4365   case G_AND:
4366   case G_OR:
4367   case G_XOR:
4368   case G_ADD:
4369   case G_SUB:
4370   case G_MUL:
4371   case G_PTR_ADD:
4372   case G_SMULH:
4373   case G_UMULH:
4374   case G_FADD:
4375   case G_FMUL:
4376   case G_FSUB:
4377   case G_FNEG:
4378   case G_FABS:
4379   case G_FCANONICALIZE:
4380   case G_FDIV:
4381   case G_FREM:
4382   case G_FMA:
4383   case G_FMAD:
4384   case G_FPOW:
4385   case G_FEXP:
4386   case G_FEXP2:
4387   case G_FLOG:
4388   case G_FLOG2:
4389   case G_FLOG10:
4390   case G_FNEARBYINT:
4391   case G_FCEIL:
4392   case G_FFLOOR:
4393   case G_FRINT:
4394   case G_INTRINSIC_ROUND:
4395   case G_INTRINSIC_ROUNDEVEN:
4396   case G_INTRINSIC_TRUNC:
4397   case G_FCOS:
4398   case G_FSIN:
4399   case G_FSQRT:
4400   case G_BSWAP:
4401   case G_BITREVERSE:
4402   case G_SDIV:
4403   case G_UDIV:
4404   case G_SREM:
4405   case G_UREM:
4406   case G_SDIVREM:
4407   case G_UDIVREM:
4408   case G_SMIN:
4409   case G_SMAX:
4410   case G_UMIN:
4411   case G_UMAX:
4412   case G_ABS:
4413   case G_FMINNUM:
4414   case G_FMAXNUM:
4415   case G_FMINNUM_IEEE:
4416   case G_FMAXNUM_IEEE:
4417   case G_FMINIMUM:
4418   case G_FMAXIMUM:
4419   case G_FSHL:
4420   case G_FSHR:
4421   case G_FREEZE:
4422   case G_SADDSAT:
4423   case G_SSUBSAT:
4424   case G_UADDSAT:
4425   case G_USUBSAT:
4426     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4427   case G_UMULO:
4428   case G_SMULO:
4429     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4430   case G_SHL:
4431   case G_LSHR:
4432   case G_ASHR:
4433   case G_SSHLSAT:
4434   case G_USHLSAT:
4435   case G_CTLZ:
4436   case G_CTLZ_ZERO_UNDEF:
4437   case G_CTTZ:
4438   case G_CTTZ_ZERO_UNDEF:
4439   case G_CTPOP:
4440   case G_FCOPYSIGN:
4441     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4442   case G_ZEXT:
4443   case G_SEXT:
4444   case G_ANYEXT:
4445   case G_FPEXT:
4446   case G_FPTRUNC:
4447   case G_SITOFP:
4448   case G_UITOFP:
4449   case G_FPTOSI:
4450   case G_FPTOUI:
4451   case G_INTTOPTR:
4452   case G_PTRTOINT:
4453   case G_ADDRSPACE_CAST:
4454     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4455   case G_ICMP:
4456   case G_FCMP:
4457     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4458   case G_SELECT:
4459     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4460   case G_PHI:
4461     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4462   case G_UNMERGE_VALUES:
4463     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4464   case G_BUILD_VECTOR:
4465     assert(TypeIdx == 0 && "not a vector type index");
4466     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4467   case G_CONCAT_VECTORS:
4468     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4469       return UnableToLegalize;
4470     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4471   case G_EXTRACT_VECTOR_ELT:
4472   case G_INSERT_VECTOR_ELT:
4473     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4474   case G_LOAD:
4475   case G_STORE:
4476     return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4477   case G_SEXT_INREG:
4478     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4479   GISEL_VECREDUCE_CASES_NONSEQ
4480     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4481   case G_SHUFFLE_VECTOR:
4482     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4483   default:
4484     return UnableToLegalize;
4485   }
4486 }
4487 
4488 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4489     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4490   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4491   if (TypeIdx != 0)
4492     return UnableToLegalize;
4493 
4494   Register DstReg = MI.getOperand(0).getReg();
4495   Register Src1Reg = MI.getOperand(1).getReg();
4496   Register Src2Reg = MI.getOperand(2).getReg();
4497   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4498   LLT DstTy = MRI.getType(DstReg);
4499   LLT Src1Ty = MRI.getType(Src1Reg);
4500   LLT Src2Ty = MRI.getType(Src2Reg);
4501   // The shuffle should be canonicalized by now.
4502   if (DstTy != Src1Ty)
4503     return UnableToLegalize;
4504   if (DstTy != Src2Ty)
4505     return UnableToLegalize;
4506 
4507   if (!isPowerOf2_32(DstTy.getNumElements()))
4508     return UnableToLegalize;
4509 
4510   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4511   // Further legalization attempts will be needed to do split further.
4512   NarrowTy =
4513       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4514   unsigned NewElts = NarrowTy.getNumElements();
4515 
4516   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4517   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4518   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4519   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4520                         SplitSrc2Regs[1]};
4521 
4522   Register Hi, Lo;
4523 
4524   // If Lo or Hi uses elements from at most two of the four input vectors, then
4525   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4526   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4527   SmallVector<int, 16> Ops;
4528   for (unsigned High = 0; High < 2; ++High) {
4529     Register &Output = High ? Hi : Lo;
4530 
4531     // Build a shuffle mask for the output, discovering on the fly which
4532     // input vectors to use as shuffle operands (recorded in InputUsed).
4533     // If building a suitable shuffle vector proves too hard, then bail
4534     // out with useBuildVector set.
4535     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4536     unsigned FirstMaskIdx = High * NewElts;
4537     bool UseBuildVector = false;
4538     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4539       // The mask element.  This indexes into the input.
4540       int Idx = Mask[FirstMaskIdx + MaskOffset];
4541 
4542       // The input vector this mask element indexes into.
4543       unsigned Input = (unsigned)Idx / NewElts;
4544 
4545       if (Input >= array_lengthof(Inputs)) {
4546         // The mask element does not index into any input vector.
4547         Ops.push_back(-1);
4548         continue;
4549       }
4550 
4551       // Turn the index into an offset from the start of the input vector.
4552       Idx -= Input * NewElts;
4553 
4554       // Find or create a shuffle vector operand to hold this input.
4555       unsigned OpNo;
4556       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4557         if (InputUsed[OpNo] == Input) {
4558           // This input vector is already an operand.
4559           break;
4560         } else if (InputUsed[OpNo] == -1U) {
4561           // Create a new operand for this input vector.
4562           InputUsed[OpNo] = Input;
4563           break;
4564         }
4565       }
4566 
4567       if (OpNo >= array_lengthof(InputUsed)) {
4568         // More than two input vectors used!  Give up on trying to create a
4569         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4570         UseBuildVector = true;
4571         break;
4572       }
4573 
4574       // Add the mask index for the new shuffle vector.
4575       Ops.push_back(Idx + OpNo * NewElts);
4576     }
4577 
4578     if (UseBuildVector) {
4579       LLT EltTy = NarrowTy.getElementType();
4580       SmallVector<Register, 16> SVOps;
4581 
4582       // Extract the input elements by hand.
4583       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4584         // The mask element.  This indexes into the input.
4585         int Idx = Mask[FirstMaskIdx + MaskOffset];
4586 
4587         // The input vector this mask element indexes into.
4588         unsigned Input = (unsigned)Idx / NewElts;
4589 
4590         if (Input >= array_lengthof(Inputs)) {
4591           // The mask element is "undef" or indexes off the end of the input.
4592           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4593           continue;
4594         }
4595 
4596         // Turn the index into an offset from the start of the input vector.
4597         Idx -= Input * NewElts;
4598 
4599         // Extract the vector element by hand.
4600         SVOps.push_back(MIRBuilder
4601                             .buildExtractVectorElement(
4602                                 EltTy, Inputs[Input],
4603                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4604                             .getReg(0));
4605       }
4606 
4607       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4608       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4609     } else if (InputUsed[0] == -1U) {
4610       // No input vectors were used! The result is undefined.
4611       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4612     } else {
4613       Register Op0 = Inputs[InputUsed[0]];
4614       // If only one input was used, use an undefined vector for the other.
4615       Register Op1 = InputUsed[1] == -1U
4616                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4617                          : Inputs[InputUsed[1]];
4618       // At least one input vector was used. Create a new shuffle vector.
4619       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4620     }
4621 
4622     Ops.clear();
4623   }
4624 
4625   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4626   MI.eraseFromParent();
4627   return Legalized;
4628 }
4629 
4630 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4631     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4632   unsigned Opc = MI.getOpcode();
4633   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4634          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4635          "Sequential reductions not expected");
4636 
4637   if (TypeIdx != 1)
4638     return UnableToLegalize;
4639 
4640   // The semantics of the normal non-sequential reductions allow us to freely
4641   // re-associate the operation.
4642   Register SrcReg = MI.getOperand(1).getReg();
4643   LLT SrcTy = MRI.getType(SrcReg);
4644   Register DstReg = MI.getOperand(0).getReg();
4645   LLT DstTy = MRI.getType(DstReg);
4646 
4647   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4648     return UnableToLegalize;
4649 
4650   SmallVector<Register> SplitSrcs;
4651   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4652   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4653   SmallVector<Register> PartialReductions;
4654   for (unsigned Part = 0; Part < NumParts; ++Part) {
4655     PartialReductions.push_back(
4656         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4657   }
4658 
4659   unsigned ScalarOpc;
4660   switch (Opc) {
4661   case TargetOpcode::G_VECREDUCE_FADD:
4662     ScalarOpc = TargetOpcode::G_FADD;
4663     break;
4664   case TargetOpcode::G_VECREDUCE_FMUL:
4665     ScalarOpc = TargetOpcode::G_FMUL;
4666     break;
4667   case TargetOpcode::G_VECREDUCE_FMAX:
4668     ScalarOpc = TargetOpcode::G_FMAXNUM;
4669     break;
4670   case TargetOpcode::G_VECREDUCE_FMIN:
4671     ScalarOpc = TargetOpcode::G_FMINNUM;
4672     break;
4673   case TargetOpcode::G_VECREDUCE_ADD:
4674     ScalarOpc = TargetOpcode::G_ADD;
4675     break;
4676   case TargetOpcode::G_VECREDUCE_MUL:
4677     ScalarOpc = TargetOpcode::G_MUL;
4678     break;
4679   case TargetOpcode::G_VECREDUCE_AND:
4680     ScalarOpc = TargetOpcode::G_AND;
4681     break;
4682   case TargetOpcode::G_VECREDUCE_OR:
4683     ScalarOpc = TargetOpcode::G_OR;
4684     break;
4685   case TargetOpcode::G_VECREDUCE_XOR:
4686     ScalarOpc = TargetOpcode::G_XOR;
4687     break;
4688   case TargetOpcode::G_VECREDUCE_SMAX:
4689     ScalarOpc = TargetOpcode::G_SMAX;
4690     break;
4691   case TargetOpcode::G_VECREDUCE_SMIN:
4692     ScalarOpc = TargetOpcode::G_SMIN;
4693     break;
4694   case TargetOpcode::G_VECREDUCE_UMAX:
4695     ScalarOpc = TargetOpcode::G_UMAX;
4696     break;
4697   case TargetOpcode::G_VECREDUCE_UMIN:
4698     ScalarOpc = TargetOpcode::G_UMIN;
4699     break;
4700   default:
4701     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4702     return UnableToLegalize;
4703   }
4704 
4705   // If the types involved are powers of 2, we can generate intermediate vector
4706   // ops, before generating a final reduction operation.
4707   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4708       isPowerOf2_32(NarrowTy.getNumElements())) {
4709     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4710   }
4711 
4712   Register Acc = PartialReductions[0];
4713   for (unsigned Part = 1; Part < NumParts; ++Part) {
4714     if (Part == NumParts - 1) {
4715       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4716                             {Acc, PartialReductions[Part]});
4717     } else {
4718       Acc = MIRBuilder
4719                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4720                 .getReg(0);
4721     }
4722   }
4723   MI.eraseFromParent();
4724   return Legalized;
4725 }
4726 
4727 LegalizerHelper::LegalizeResult
4728 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4729                                         LLT SrcTy, LLT NarrowTy,
4730                                         unsigned ScalarOpc) {
4731   SmallVector<Register> SplitSrcs;
4732   // Split the sources into NarrowTy size pieces.
4733   extractParts(SrcReg, NarrowTy,
4734                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4735   // We're going to do a tree reduction using vector operations until we have
4736   // one NarrowTy size value left.
4737   while (SplitSrcs.size() > 1) {
4738     SmallVector<Register> PartialRdxs;
4739     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4740       Register LHS = SplitSrcs[Idx];
4741       Register RHS = SplitSrcs[Idx + 1];
4742       // Create the intermediate vector op.
4743       Register Res =
4744           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4745       PartialRdxs.push_back(Res);
4746     }
4747     SplitSrcs = std::move(PartialRdxs);
4748   }
4749   // Finally generate the requested NarrowTy based reduction.
4750   Observer.changingInstr(MI);
4751   MI.getOperand(1).setReg(SplitSrcs[0]);
4752   Observer.changedInstr(MI);
4753   return Legalized;
4754 }
4755 
4756 LegalizerHelper::LegalizeResult
4757 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4758                                              const LLT HalfTy, const LLT AmtTy) {
4759 
4760   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4761   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4762   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4763 
4764   if (Amt.isNullValue()) {
4765     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4766     MI.eraseFromParent();
4767     return Legalized;
4768   }
4769 
4770   LLT NVT = HalfTy;
4771   unsigned NVTBits = HalfTy.getSizeInBits();
4772   unsigned VTBits = 2 * NVTBits;
4773 
4774   SrcOp Lo(Register(0)), Hi(Register(0));
4775   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4776     if (Amt.ugt(VTBits)) {
4777       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4778     } else if (Amt.ugt(NVTBits)) {
4779       Lo = MIRBuilder.buildConstant(NVT, 0);
4780       Hi = MIRBuilder.buildShl(NVT, InL,
4781                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4782     } else if (Amt == NVTBits) {
4783       Lo = MIRBuilder.buildConstant(NVT, 0);
4784       Hi = InL;
4785     } else {
4786       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4787       auto OrLHS =
4788           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4789       auto OrRHS = MIRBuilder.buildLShr(
4790           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4791       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4792     }
4793   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4794     if (Amt.ugt(VTBits)) {
4795       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4796     } else if (Amt.ugt(NVTBits)) {
4797       Lo = MIRBuilder.buildLShr(NVT, InH,
4798                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4799       Hi = MIRBuilder.buildConstant(NVT, 0);
4800     } else if (Amt == NVTBits) {
4801       Lo = InH;
4802       Hi = MIRBuilder.buildConstant(NVT, 0);
4803     } else {
4804       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4805 
4806       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4807       auto OrRHS = MIRBuilder.buildShl(
4808           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4809 
4810       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4811       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4812     }
4813   } else {
4814     if (Amt.ugt(VTBits)) {
4815       Hi = Lo = MIRBuilder.buildAShr(
4816           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4817     } else if (Amt.ugt(NVTBits)) {
4818       Lo = MIRBuilder.buildAShr(NVT, InH,
4819                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4820       Hi = MIRBuilder.buildAShr(NVT, InH,
4821                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4822     } else if (Amt == NVTBits) {
4823       Lo = InH;
4824       Hi = MIRBuilder.buildAShr(NVT, InH,
4825                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4826     } else {
4827       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4828 
4829       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4830       auto OrRHS = MIRBuilder.buildShl(
4831           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4832 
4833       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4834       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4835     }
4836   }
4837 
4838   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4839   MI.eraseFromParent();
4840 
4841   return Legalized;
4842 }
4843 
4844 // TODO: Optimize if constant shift amount.
4845 LegalizerHelper::LegalizeResult
4846 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4847                                    LLT RequestedTy) {
4848   if (TypeIdx == 1) {
4849     Observer.changingInstr(MI);
4850     narrowScalarSrc(MI, RequestedTy, 2);
4851     Observer.changedInstr(MI);
4852     return Legalized;
4853   }
4854 
4855   Register DstReg = MI.getOperand(0).getReg();
4856   LLT DstTy = MRI.getType(DstReg);
4857   if (DstTy.isVector())
4858     return UnableToLegalize;
4859 
4860   Register Amt = MI.getOperand(2).getReg();
4861   LLT ShiftAmtTy = MRI.getType(Amt);
4862   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4863   if (DstEltSize % 2 != 0)
4864     return UnableToLegalize;
4865 
4866   // Ignore the input type. We can only go to exactly half the size of the
4867   // input. If that isn't small enough, the resulting pieces will be further
4868   // legalized.
4869   const unsigned NewBitSize = DstEltSize / 2;
4870   const LLT HalfTy = LLT::scalar(NewBitSize);
4871   const LLT CondTy = LLT::scalar(1);
4872 
4873   if (const MachineInstr *KShiftAmt =
4874           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4875     return narrowScalarShiftByConstant(
4876         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4877   }
4878 
4879   // TODO: Expand with known bits.
4880 
4881   // Handle the fully general expansion by an unknown amount.
4882   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4883 
4884   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4885   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4886   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4887 
4888   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4889   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4890 
4891   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4892   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4893   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4894 
4895   Register ResultRegs[2];
4896   switch (MI.getOpcode()) {
4897   case TargetOpcode::G_SHL: {
4898     // Short: ShAmt < NewBitSize
4899     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4900 
4901     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4902     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4903     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4904 
4905     // Long: ShAmt >= NewBitSize
4906     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4907     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4908 
4909     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4910     auto Hi = MIRBuilder.buildSelect(
4911         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4912 
4913     ResultRegs[0] = Lo.getReg(0);
4914     ResultRegs[1] = Hi.getReg(0);
4915     break;
4916   }
4917   case TargetOpcode::G_LSHR:
4918   case TargetOpcode::G_ASHR: {
4919     // Short: ShAmt < NewBitSize
4920     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4921 
4922     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4923     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4924     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4925 
4926     // Long: ShAmt >= NewBitSize
4927     MachineInstrBuilder HiL;
4928     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4929       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4930     } else {
4931       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4932       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4933     }
4934     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4935                                      {InH, AmtExcess});     // Lo from Hi part.
4936 
4937     auto Lo = MIRBuilder.buildSelect(
4938         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4939 
4940     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4941 
4942     ResultRegs[0] = Lo.getReg(0);
4943     ResultRegs[1] = Hi.getReg(0);
4944     break;
4945   }
4946   default:
4947     llvm_unreachable("not a shift");
4948   }
4949 
4950   MIRBuilder.buildMerge(DstReg, ResultRegs);
4951   MI.eraseFromParent();
4952   return Legalized;
4953 }
4954 
4955 LegalizerHelper::LegalizeResult
4956 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4957                                        LLT MoreTy) {
4958   assert(TypeIdx == 0 && "Expecting only Idx 0");
4959 
4960   Observer.changingInstr(MI);
4961   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4962     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4963     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4964     moreElementsVectorSrc(MI, MoreTy, I);
4965   }
4966 
4967   MachineBasicBlock &MBB = *MI.getParent();
4968   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4969   moreElementsVectorDst(MI, MoreTy, 0);
4970   Observer.changedInstr(MI);
4971   return Legalized;
4972 }
4973 
4974 LegalizerHelper::LegalizeResult
4975 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4976                                     LLT MoreTy) {
4977   unsigned Opc = MI.getOpcode();
4978   switch (Opc) {
4979   case TargetOpcode::G_IMPLICIT_DEF:
4980   case TargetOpcode::G_LOAD: {
4981     if (TypeIdx != 0)
4982       return UnableToLegalize;
4983     Observer.changingInstr(MI);
4984     moreElementsVectorDst(MI, MoreTy, 0);
4985     Observer.changedInstr(MI);
4986     return Legalized;
4987   }
4988   case TargetOpcode::G_STORE:
4989     if (TypeIdx != 0)
4990       return UnableToLegalize;
4991     Observer.changingInstr(MI);
4992     moreElementsVectorSrc(MI, MoreTy, 0);
4993     Observer.changedInstr(MI);
4994     return Legalized;
4995   case TargetOpcode::G_AND:
4996   case TargetOpcode::G_OR:
4997   case TargetOpcode::G_XOR:
4998   case TargetOpcode::G_SMIN:
4999   case TargetOpcode::G_SMAX:
5000   case TargetOpcode::G_UMIN:
5001   case TargetOpcode::G_UMAX:
5002   case TargetOpcode::G_FMINNUM:
5003   case TargetOpcode::G_FMAXNUM:
5004   case TargetOpcode::G_FMINNUM_IEEE:
5005   case TargetOpcode::G_FMAXNUM_IEEE:
5006   case TargetOpcode::G_FMINIMUM:
5007   case TargetOpcode::G_FMAXIMUM: {
5008     Observer.changingInstr(MI);
5009     moreElementsVectorSrc(MI, MoreTy, 1);
5010     moreElementsVectorSrc(MI, MoreTy, 2);
5011     moreElementsVectorDst(MI, MoreTy, 0);
5012     Observer.changedInstr(MI);
5013     return Legalized;
5014   }
5015   case TargetOpcode::G_EXTRACT:
5016     if (TypeIdx != 1)
5017       return UnableToLegalize;
5018     Observer.changingInstr(MI);
5019     moreElementsVectorSrc(MI, MoreTy, 1);
5020     Observer.changedInstr(MI);
5021     return Legalized;
5022   case TargetOpcode::G_INSERT:
5023   case TargetOpcode::G_FREEZE:
5024     if (TypeIdx != 0)
5025       return UnableToLegalize;
5026     Observer.changingInstr(MI);
5027     moreElementsVectorSrc(MI, MoreTy, 1);
5028     moreElementsVectorDst(MI, MoreTy, 0);
5029     Observer.changedInstr(MI);
5030     return Legalized;
5031   case TargetOpcode::G_SELECT:
5032     if (TypeIdx != 0)
5033       return UnableToLegalize;
5034     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
5035       return UnableToLegalize;
5036 
5037     Observer.changingInstr(MI);
5038     moreElementsVectorSrc(MI, MoreTy, 2);
5039     moreElementsVectorSrc(MI, MoreTy, 3);
5040     moreElementsVectorDst(MI, MoreTy, 0);
5041     Observer.changedInstr(MI);
5042     return Legalized;
5043   case TargetOpcode::G_UNMERGE_VALUES: {
5044     if (TypeIdx != 1)
5045       return UnableToLegalize;
5046 
5047     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5048     int NumDst = MI.getNumOperands() - 1;
5049     moreElementsVectorSrc(MI, MoreTy, NumDst);
5050 
5051     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
5052     for (int I = 0; I != NumDst; ++I)
5053       MIB.addDef(MI.getOperand(I).getReg());
5054 
5055     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
5056     for (int I = NumDst; I != NewNumDst; ++I)
5057       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
5058 
5059     MIB.addUse(MI.getOperand(NumDst).getReg());
5060     MI.eraseFromParent();
5061     return Legalized;
5062   }
5063   case TargetOpcode::G_PHI:
5064     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
5065   case TargetOpcode::G_SHUFFLE_VECTOR:
5066     return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
5067   default:
5068     return UnableToLegalize;
5069   }
5070 }
5071 
5072 LegalizerHelper::LegalizeResult
5073 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
5074                                            unsigned int TypeIdx, LLT MoreTy) {
5075   if (TypeIdx != 0)
5076     return UnableToLegalize;
5077 
5078   Register DstReg = MI.getOperand(0).getReg();
5079   Register Src1Reg = MI.getOperand(1).getReg();
5080   Register Src2Reg = MI.getOperand(2).getReg();
5081   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5082   LLT DstTy = MRI.getType(DstReg);
5083   LLT Src1Ty = MRI.getType(Src1Reg);
5084   LLT Src2Ty = MRI.getType(Src2Reg);
5085   unsigned NumElts = DstTy.getNumElements();
5086   unsigned WidenNumElts = MoreTy.getNumElements();
5087 
5088   // Expect a canonicalized shuffle.
5089   if (DstTy != Src1Ty || DstTy != Src2Ty)
5090     return UnableToLegalize;
5091 
5092   moreElementsVectorSrc(MI, MoreTy, 1);
5093   moreElementsVectorSrc(MI, MoreTy, 2);
5094 
5095   // Adjust mask based on new input vector length.
5096   SmallVector<int, 16> NewMask;
5097   for (unsigned I = 0; I != NumElts; ++I) {
5098     int Idx = Mask[I];
5099     if (Idx < static_cast<int>(NumElts))
5100       NewMask.push_back(Idx);
5101     else
5102       NewMask.push_back(Idx - NumElts + WidenNumElts);
5103   }
5104   for (unsigned I = NumElts; I != WidenNumElts; ++I)
5105     NewMask.push_back(-1);
5106   moreElementsVectorDst(MI, MoreTy, 0);
5107   MIRBuilder.setInstrAndDebugLoc(MI);
5108   MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
5109                                 MI.getOperand(1).getReg(),
5110                                 MI.getOperand(2).getReg(), NewMask);
5111   MI.eraseFromParent();
5112   return Legalized;
5113 }
5114 
5115 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
5116                                         ArrayRef<Register> Src1Regs,
5117                                         ArrayRef<Register> Src2Regs,
5118                                         LLT NarrowTy) {
5119   MachineIRBuilder &B = MIRBuilder;
5120   unsigned SrcParts = Src1Regs.size();
5121   unsigned DstParts = DstRegs.size();
5122 
5123   unsigned DstIdx = 0; // Low bits of the result.
5124   Register FactorSum =
5125       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
5126   DstRegs[DstIdx] = FactorSum;
5127 
5128   unsigned CarrySumPrevDstIdx;
5129   SmallVector<Register, 4> Factors;
5130 
5131   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
5132     // Collect low parts of muls for DstIdx.
5133     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
5134          i <= std::min(DstIdx, SrcParts - 1); ++i) {
5135       MachineInstrBuilder Mul =
5136           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
5137       Factors.push_back(Mul.getReg(0));
5138     }
5139     // Collect high parts of muls from previous DstIdx.
5140     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
5141          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5142       MachineInstrBuilder Umulh =
5143           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5144       Factors.push_back(Umulh.getReg(0));
5145     }
5146     // Add CarrySum from additions calculated for previous DstIdx.
5147     if (DstIdx != 1) {
5148       Factors.push_back(CarrySumPrevDstIdx);
5149     }
5150 
5151     Register CarrySum;
5152     // Add all factors and accumulate all carries into CarrySum.
5153     if (DstIdx != DstParts - 1) {
5154       MachineInstrBuilder Uaddo =
5155           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5156       FactorSum = Uaddo.getReg(0);
5157       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5158       for (unsigned i = 2; i < Factors.size(); ++i) {
5159         MachineInstrBuilder Uaddo =
5160             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5161         FactorSum = Uaddo.getReg(0);
5162         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5163         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5164       }
5165     } else {
5166       // Since value for the next index is not calculated, neither is CarrySum.
5167       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5168       for (unsigned i = 2; i < Factors.size(); ++i)
5169         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5170     }
5171 
5172     CarrySumPrevDstIdx = CarrySum;
5173     DstRegs[DstIdx] = FactorSum;
5174     Factors.clear();
5175   }
5176 }
5177 
5178 LegalizerHelper::LegalizeResult
5179 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5180                                     LLT NarrowTy) {
5181   if (TypeIdx != 0)
5182     return UnableToLegalize;
5183 
5184   Register DstReg = MI.getOperand(0).getReg();
5185   LLT DstType = MRI.getType(DstReg);
5186   // FIXME: add support for vector types
5187   if (DstType.isVector())
5188     return UnableToLegalize;
5189 
5190   unsigned Opcode = MI.getOpcode();
5191   unsigned OpO, OpE, OpF;
5192   switch (Opcode) {
5193   case TargetOpcode::G_SADDO:
5194   case TargetOpcode::G_SADDE:
5195   case TargetOpcode::G_UADDO:
5196   case TargetOpcode::G_UADDE:
5197   case TargetOpcode::G_ADD:
5198     OpO = TargetOpcode::G_UADDO;
5199     OpE = TargetOpcode::G_UADDE;
5200     OpF = TargetOpcode::G_UADDE;
5201     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5202       OpF = TargetOpcode::G_SADDE;
5203     break;
5204   case TargetOpcode::G_SSUBO:
5205   case TargetOpcode::G_SSUBE:
5206   case TargetOpcode::G_USUBO:
5207   case TargetOpcode::G_USUBE:
5208   case TargetOpcode::G_SUB:
5209     OpO = TargetOpcode::G_USUBO;
5210     OpE = TargetOpcode::G_USUBE;
5211     OpF = TargetOpcode::G_USUBE;
5212     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5213       OpF = TargetOpcode::G_SSUBE;
5214     break;
5215   default:
5216     llvm_unreachable("Unexpected add/sub opcode!");
5217   }
5218 
5219   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5220   unsigned NumDefs = MI.getNumExplicitDefs();
5221   Register Src1 = MI.getOperand(NumDefs).getReg();
5222   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5223   Register CarryDst, CarryIn;
5224   if (NumDefs == 2)
5225     CarryDst = MI.getOperand(1).getReg();
5226   if (MI.getNumOperands() == NumDefs + 3)
5227     CarryIn = MI.getOperand(NumDefs + 2).getReg();
5228 
5229   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5230   LLT LeftoverTy, DummyTy;
5231   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5232   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5233   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5234 
5235   int NarrowParts = Src1Regs.size();
5236   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5237     Src1Regs.push_back(Src1Left[I]);
5238     Src2Regs.push_back(Src2Left[I]);
5239   }
5240   DstRegs.reserve(Src1Regs.size());
5241 
5242   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5243     Register DstReg =
5244         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5245     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5246     // Forward the final carry-out to the destination register
5247     if (i == e - 1 && CarryDst)
5248       CarryOut = CarryDst;
5249 
5250     if (!CarryIn) {
5251       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5252                             {Src1Regs[i], Src2Regs[i]});
5253     } else if (i == e - 1) {
5254       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5255                             {Src1Regs[i], Src2Regs[i], CarryIn});
5256     } else {
5257       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5258                             {Src1Regs[i], Src2Regs[i], CarryIn});
5259     }
5260 
5261     DstRegs.push_back(DstReg);
5262     CarryIn = CarryOut;
5263   }
5264   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5265               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5266               makeArrayRef(DstRegs).drop_front(NarrowParts));
5267 
5268   MI.eraseFromParent();
5269   return Legalized;
5270 }
5271 
5272 LegalizerHelper::LegalizeResult
5273 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5274   Register DstReg = MI.getOperand(0).getReg();
5275   Register Src1 = MI.getOperand(1).getReg();
5276   Register Src2 = MI.getOperand(2).getReg();
5277 
5278   LLT Ty = MRI.getType(DstReg);
5279   if (Ty.isVector())
5280     return UnableToLegalize;
5281 
5282   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
5283   unsigned DstSize = Ty.getSizeInBits();
5284   unsigned NarrowSize = NarrowTy.getSizeInBits();
5285   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
5286     return UnableToLegalize;
5287 
5288   unsigned NumDstParts = DstSize / NarrowSize;
5289   unsigned NumSrcParts = SrcSize / NarrowSize;
5290   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5291   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
5292 
5293   SmallVector<Register, 2> Src1Parts, Src2Parts;
5294   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5295   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
5296   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
5297   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5298 
5299   // Take only high half of registers if this is high mul.
5300   ArrayRef<Register> DstRegs(
5301       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
5302   MIRBuilder.buildMerge(DstReg, DstRegs);
5303   MI.eraseFromParent();
5304   return Legalized;
5305 }
5306 
5307 LegalizerHelper::LegalizeResult
5308 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5309                                    LLT NarrowTy) {
5310   if (TypeIdx != 0)
5311     return UnableToLegalize;
5312 
5313   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5314 
5315   Register Src = MI.getOperand(1).getReg();
5316   LLT SrcTy = MRI.getType(Src);
5317 
5318   // If all finite floats fit into the narrowed integer type, we can just swap
5319   // out the result type. This is practically only useful for conversions from
5320   // half to at least 16-bits, so just handle the one case.
5321   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5322       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5323     return UnableToLegalize;
5324 
5325   Observer.changingInstr(MI);
5326   narrowScalarDst(MI, NarrowTy, 0,
5327                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5328   Observer.changedInstr(MI);
5329   return Legalized;
5330 }
5331 
5332 LegalizerHelper::LegalizeResult
5333 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5334                                      LLT NarrowTy) {
5335   if (TypeIdx != 1)
5336     return UnableToLegalize;
5337 
5338   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5339 
5340   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5341   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5342   // NarrowSize.
5343   if (SizeOp1 % NarrowSize != 0)
5344     return UnableToLegalize;
5345   int NumParts = SizeOp1 / NarrowSize;
5346 
5347   SmallVector<Register, 2> SrcRegs, DstRegs;
5348   SmallVector<uint64_t, 2> Indexes;
5349   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5350 
5351   Register OpReg = MI.getOperand(0).getReg();
5352   uint64_t OpStart = MI.getOperand(2).getImm();
5353   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5354   for (int i = 0; i < NumParts; ++i) {
5355     unsigned SrcStart = i * NarrowSize;
5356 
5357     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5358       // No part of the extract uses this subregister, ignore it.
5359       continue;
5360     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5361       // The entire subregister is extracted, forward the value.
5362       DstRegs.push_back(SrcRegs[i]);
5363       continue;
5364     }
5365 
5366     // OpSegStart is where this destination segment would start in OpReg if it
5367     // extended infinitely in both directions.
5368     int64_t ExtractOffset;
5369     uint64_t SegSize;
5370     if (OpStart < SrcStart) {
5371       ExtractOffset = 0;
5372       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5373     } else {
5374       ExtractOffset = OpStart - SrcStart;
5375       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5376     }
5377 
5378     Register SegReg = SrcRegs[i];
5379     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5380       // A genuine extract is needed.
5381       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5382       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5383     }
5384 
5385     DstRegs.push_back(SegReg);
5386   }
5387 
5388   Register DstReg = MI.getOperand(0).getReg();
5389   if (MRI.getType(DstReg).isVector())
5390     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5391   else if (DstRegs.size() > 1)
5392     MIRBuilder.buildMerge(DstReg, DstRegs);
5393   else
5394     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5395   MI.eraseFromParent();
5396   return Legalized;
5397 }
5398 
5399 LegalizerHelper::LegalizeResult
5400 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5401                                     LLT NarrowTy) {
5402   // FIXME: Don't know how to handle secondary types yet.
5403   if (TypeIdx != 0)
5404     return UnableToLegalize;
5405 
5406   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5407   SmallVector<uint64_t, 2> Indexes;
5408   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5409   LLT LeftoverTy;
5410   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5411                LeftoverRegs);
5412 
5413   for (Register Reg : LeftoverRegs)
5414     SrcRegs.push_back(Reg);
5415 
5416   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5417   Register OpReg = MI.getOperand(2).getReg();
5418   uint64_t OpStart = MI.getOperand(3).getImm();
5419   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5420   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5421     unsigned DstStart = I * NarrowSize;
5422 
5423     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5424       // The entire subregister is defined by this insert, forward the new
5425       // value.
5426       DstRegs.push_back(OpReg);
5427       continue;
5428     }
5429 
5430     Register SrcReg = SrcRegs[I];
5431     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5432       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5433       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5434       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5435     }
5436 
5437     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5438       // No part of the insert affects this subregister, forward the original.
5439       DstRegs.push_back(SrcReg);
5440       continue;
5441     }
5442 
5443     // OpSegStart is where this destination segment would start in OpReg if it
5444     // extended infinitely in both directions.
5445     int64_t ExtractOffset, InsertOffset;
5446     uint64_t SegSize;
5447     if (OpStart < DstStart) {
5448       InsertOffset = 0;
5449       ExtractOffset = DstStart - OpStart;
5450       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5451     } else {
5452       InsertOffset = OpStart - DstStart;
5453       ExtractOffset = 0;
5454       SegSize =
5455         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5456     }
5457 
5458     Register SegReg = OpReg;
5459     if (ExtractOffset != 0 || SegSize != OpSize) {
5460       // A genuine extract is needed.
5461       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5462       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5463     }
5464 
5465     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5466     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5467     DstRegs.push_back(DstReg);
5468   }
5469 
5470   uint64_t WideSize = DstRegs.size() * NarrowSize;
5471   Register DstReg = MI.getOperand(0).getReg();
5472   if (WideSize > RegTy.getSizeInBits()) {
5473     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5474     MIRBuilder.buildMerge(MergeReg, DstRegs);
5475     MIRBuilder.buildTrunc(DstReg, MergeReg);
5476   } else
5477     MIRBuilder.buildMerge(DstReg, DstRegs);
5478 
5479   MI.eraseFromParent();
5480   return Legalized;
5481 }
5482 
5483 LegalizerHelper::LegalizeResult
5484 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5485                                    LLT NarrowTy) {
5486   Register DstReg = MI.getOperand(0).getReg();
5487   LLT DstTy = MRI.getType(DstReg);
5488 
5489   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5490 
5491   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5492   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5493   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5494   LLT LeftoverTy;
5495   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5496                     Src0Regs, Src0LeftoverRegs))
5497     return UnableToLegalize;
5498 
5499   LLT Unused;
5500   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5501                     Src1Regs, Src1LeftoverRegs))
5502     llvm_unreachable("inconsistent extractParts result");
5503 
5504   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5505     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5506                                         {Src0Regs[I], Src1Regs[I]});
5507     DstRegs.push_back(Inst.getReg(0));
5508   }
5509 
5510   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5511     auto Inst = MIRBuilder.buildInstr(
5512       MI.getOpcode(),
5513       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5514     DstLeftoverRegs.push_back(Inst.getReg(0));
5515   }
5516 
5517   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5518               LeftoverTy, DstLeftoverRegs);
5519 
5520   MI.eraseFromParent();
5521   return Legalized;
5522 }
5523 
5524 LegalizerHelper::LegalizeResult
5525 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5526                                  LLT NarrowTy) {
5527   if (TypeIdx != 0)
5528     return UnableToLegalize;
5529 
5530   Register DstReg = MI.getOperand(0).getReg();
5531   Register SrcReg = MI.getOperand(1).getReg();
5532 
5533   LLT DstTy = MRI.getType(DstReg);
5534   if (DstTy.isVector())
5535     return UnableToLegalize;
5536 
5537   SmallVector<Register, 8> Parts;
5538   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5539   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5540   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5541 
5542   MI.eraseFromParent();
5543   return Legalized;
5544 }
5545 
5546 LegalizerHelper::LegalizeResult
5547 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5548                                     LLT NarrowTy) {
5549   if (TypeIdx != 0)
5550     return UnableToLegalize;
5551 
5552   Register CondReg = MI.getOperand(1).getReg();
5553   LLT CondTy = MRI.getType(CondReg);
5554   if (CondTy.isVector()) // TODO: Handle vselect
5555     return UnableToLegalize;
5556 
5557   Register DstReg = MI.getOperand(0).getReg();
5558   LLT DstTy = MRI.getType(DstReg);
5559 
5560   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5561   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5562   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5563   LLT LeftoverTy;
5564   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5565                     Src1Regs, Src1LeftoverRegs))
5566     return UnableToLegalize;
5567 
5568   LLT Unused;
5569   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5570                     Src2Regs, Src2LeftoverRegs))
5571     llvm_unreachable("inconsistent extractParts result");
5572 
5573   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5574     auto Select = MIRBuilder.buildSelect(NarrowTy,
5575                                          CondReg, Src1Regs[I], Src2Regs[I]);
5576     DstRegs.push_back(Select.getReg(0));
5577   }
5578 
5579   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5580     auto Select = MIRBuilder.buildSelect(
5581       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5582     DstLeftoverRegs.push_back(Select.getReg(0));
5583   }
5584 
5585   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5586               LeftoverTy, DstLeftoverRegs);
5587 
5588   MI.eraseFromParent();
5589   return Legalized;
5590 }
5591 
5592 LegalizerHelper::LegalizeResult
5593 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5594                                   LLT NarrowTy) {
5595   if (TypeIdx != 1)
5596     return UnableToLegalize;
5597 
5598   Register DstReg = MI.getOperand(0).getReg();
5599   Register SrcReg = MI.getOperand(1).getReg();
5600   LLT DstTy = MRI.getType(DstReg);
5601   LLT SrcTy = MRI.getType(SrcReg);
5602   unsigned NarrowSize = NarrowTy.getSizeInBits();
5603 
5604   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5605     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5606 
5607     MachineIRBuilder &B = MIRBuilder;
5608     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5609     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5610     auto C_0 = B.buildConstant(NarrowTy, 0);
5611     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5612                                 UnmergeSrc.getReg(1), C_0);
5613     auto LoCTLZ = IsUndef ?
5614       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5615       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5616     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5617     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5618     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5619     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5620 
5621     MI.eraseFromParent();
5622     return Legalized;
5623   }
5624 
5625   return UnableToLegalize;
5626 }
5627 
5628 LegalizerHelper::LegalizeResult
5629 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5630                                   LLT NarrowTy) {
5631   if (TypeIdx != 1)
5632     return UnableToLegalize;
5633 
5634   Register DstReg = MI.getOperand(0).getReg();
5635   Register SrcReg = MI.getOperand(1).getReg();
5636   LLT DstTy = MRI.getType(DstReg);
5637   LLT SrcTy = MRI.getType(SrcReg);
5638   unsigned NarrowSize = NarrowTy.getSizeInBits();
5639 
5640   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5641     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5642 
5643     MachineIRBuilder &B = MIRBuilder;
5644     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5645     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5646     auto C_0 = B.buildConstant(NarrowTy, 0);
5647     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5648                                 UnmergeSrc.getReg(0), C_0);
5649     auto HiCTTZ = IsUndef ?
5650       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5651       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5652     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5653     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5654     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5655     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5656 
5657     MI.eraseFromParent();
5658     return Legalized;
5659   }
5660 
5661   return UnableToLegalize;
5662 }
5663 
5664 LegalizerHelper::LegalizeResult
5665 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5666                                    LLT NarrowTy) {
5667   if (TypeIdx != 1)
5668     return UnableToLegalize;
5669 
5670   Register DstReg = MI.getOperand(0).getReg();
5671   LLT DstTy = MRI.getType(DstReg);
5672   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5673   unsigned NarrowSize = NarrowTy.getSizeInBits();
5674 
5675   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5676     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5677 
5678     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5679     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5680     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5681 
5682     MI.eraseFromParent();
5683     return Legalized;
5684   }
5685 
5686   return UnableToLegalize;
5687 }
5688 
5689 LegalizerHelper::LegalizeResult
5690 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5691   unsigned Opc = MI.getOpcode();
5692   const auto &TII = MIRBuilder.getTII();
5693   auto isSupported = [this](const LegalityQuery &Q) {
5694     auto QAction = LI.getAction(Q).Action;
5695     return QAction == Legal || QAction == Libcall || QAction == Custom;
5696   };
5697   switch (Opc) {
5698   default:
5699     return UnableToLegalize;
5700   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5701     // This trivially expands to CTLZ.
5702     Observer.changingInstr(MI);
5703     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5704     Observer.changedInstr(MI);
5705     return Legalized;
5706   }
5707   case TargetOpcode::G_CTLZ: {
5708     Register DstReg = MI.getOperand(0).getReg();
5709     Register SrcReg = MI.getOperand(1).getReg();
5710     LLT DstTy = MRI.getType(DstReg);
5711     LLT SrcTy = MRI.getType(SrcReg);
5712     unsigned Len = SrcTy.getSizeInBits();
5713 
5714     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5715       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5716       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5717       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5718       auto ICmp = MIRBuilder.buildICmp(
5719           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5720       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5721       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5722       MI.eraseFromParent();
5723       return Legalized;
5724     }
5725     // for now, we do this:
5726     // NewLen = NextPowerOf2(Len);
5727     // x = x | (x >> 1);
5728     // x = x | (x >> 2);
5729     // ...
5730     // x = x | (x >>16);
5731     // x = x | (x >>32); // for 64-bit input
5732     // Upto NewLen/2
5733     // return Len - popcount(x);
5734     //
5735     // Ref: "Hacker's Delight" by Henry Warren
5736     Register Op = SrcReg;
5737     unsigned NewLen = PowerOf2Ceil(Len);
5738     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5739       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5740       auto MIBOp = MIRBuilder.buildOr(
5741           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5742       Op = MIBOp.getReg(0);
5743     }
5744     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5745     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5746                         MIBPop);
5747     MI.eraseFromParent();
5748     return Legalized;
5749   }
5750   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5751     // This trivially expands to CTTZ.
5752     Observer.changingInstr(MI);
5753     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5754     Observer.changedInstr(MI);
5755     return Legalized;
5756   }
5757   case TargetOpcode::G_CTTZ: {
5758     Register DstReg = MI.getOperand(0).getReg();
5759     Register SrcReg = MI.getOperand(1).getReg();
5760     LLT DstTy = MRI.getType(DstReg);
5761     LLT SrcTy = MRI.getType(SrcReg);
5762 
5763     unsigned Len = SrcTy.getSizeInBits();
5764     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5765       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5766       // zero.
5767       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5768       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5769       auto ICmp = MIRBuilder.buildICmp(
5770           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5771       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5772       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5773       MI.eraseFromParent();
5774       return Legalized;
5775     }
5776     // for now, we use: { return popcount(~x & (x - 1)); }
5777     // unless the target has ctlz but not ctpop, in which case we use:
5778     // { return 32 - nlz(~x & (x-1)); }
5779     // Ref: "Hacker's Delight" by Henry Warren
5780     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5781     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5782     auto MIBTmp = MIRBuilder.buildAnd(
5783         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5784     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5785         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5786       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5787       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5788                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5789       MI.eraseFromParent();
5790       return Legalized;
5791     }
5792     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5793     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5794     return Legalized;
5795   }
5796   case TargetOpcode::G_CTPOP: {
5797     Register SrcReg = MI.getOperand(1).getReg();
5798     LLT Ty = MRI.getType(SrcReg);
5799     unsigned Size = Ty.getSizeInBits();
5800     MachineIRBuilder &B = MIRBuilder;
5801 
5802     // Count set bits in blocks of 2 bits. Default approach would be
5803     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5804     // We use following formula instead:
5805     // B2Count = val - { (val >> 1) & 0x55555555 }
5806     // since it gives same result in blocks of 2 with one instruction less.
5807     auto C_1 = B.buildConstant(Ty, 1);
5808     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5809     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5810     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5811     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5812     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5813 
5814     // In order to get count in blocks of 4 add values from adjacent block of 2.
5815     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5816     auto C_2 = B.buildConstant(Ty, 2);
5817     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5818     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5819     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5820     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5821     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5822     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5823 
5824     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5825     // addition since count value sits in range {0,...,8} and 4 bits are enough
5826     // to hold such binary values. After addition high 4 bits still hold count
5827     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5828     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5829     auto C_4 = B.buildConstant(Ty, 4);
5830     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5831     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5832     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5833     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5834     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5835 
5836     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5837     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5838     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5839     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5840     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5841 
5842     // Shift count result from 8 high bits to low bits.
5843     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5844     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5845 
5846     MI.eraseFromParent();
5847     return Legalized;
5848   }
5849   }
5850 }
5851 
5852 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5853 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5854                                         Register Reg, unsigned BW) {
5855   return matchUnaryPredicate(
5856       MRI, Reg,
5857       [=](const Constant *C) {
5858         // Null constant here means an undef.
5859         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5860         return !CI || CI->getValue().urem(BW) != 0;
5861       },
5862       /*AllowUndefs*/ true);
5863 }
5864 
5865 LegalizerHelper::LegalizeResult
5866 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5867   Register Dst = MI.getOperand(0).getReg();
5868   Register X = MI.getOperand(1).getReg();
5869   Register Y = MI.getOperand(2).getReg();
5870   Register Z = MI.getOperand(3).getReg();
5871   LLT Ty = MRI.getType(Dst);
5872   LLT ShTy = MRI.getType(Z);
5873 
5874   unsigned BW = Ty.getScalarSizeInBits();
5875 
5876   if (!isPowerOf2_32(BW))
5877     return UnableToLegalize;
5878 
5879   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5880   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5881 
5882   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5883     // fshl X, Y, Z -> fshr X, Y, -Z
5884     // fshr X, Y, Z -> fshl X, Y, -Z
5885     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5886     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5887   } else {
5888     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5889     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5890     auto One = MIRBuilder.buildConstant(ShTy, 1);
5891     if (IsFSHL) {
5892       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5893       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5894     } else {
5895       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5896       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5897     }
5898 
5899     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5900   }
5901 
5902   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5903   MI.eraseFromParent();
5904   return Legalized;
5905 }
5906 
5907 LegalizerHelper::LegalizeResult
5908 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5909   Register Dst = MI.getOperand(0).getReg();
5910   Register X = MI.getOperand(1).getReg();
5911   Register Y = MI.getOperand(2).getReg();
5912   Register Z = MI.getOperand(3).getReg();
5913   LLT Ty = MRI.getType(Dst);
5914   LLT ShTy = MRI.getType(Z);
5915 
5916   const unsigned BW = Ty.getScalarSizeInBits();
5917   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5918 
5919   Register ShX, ShY;
5920   Register ShAmt, InvShAmt;
5921 
5922   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5923   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5924     // fshl: X << C | Y >> (BW - C)
5925     // fshr: X << (BW - C) | Y >> C
5926     // where C = Z % BW is not zero
5927     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5928     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5929     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5930     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5931     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5932   } else {
5933     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5934     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5935     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5936     if (isPowerOf2_32(BW)) {
5937       // Z % BW -> Z & (BW - 1)
5938       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5939       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5940       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5941       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5942     } else {
5943       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5944       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5945       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5946     }
5947 
5948     auto One = MIRBuilder.buildConstant(ShTy, 1);
5949     if (IsFSHL) {
5950       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5951       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5952       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5953     } else {
5954       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5955       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5956       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5957     }
5958   }
5959 
5960   MIRBuilder.buildOr(Dst, ShX, ShY);
5961   MI.eraseFromParent();
5962   return Legalized;
5963 }
5964 
5965 LegalizerHelper::LegalizeResult
5966 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5967   // These operations approximately do the following (while avoiding undefined
5968   // shifts by BW):
5969   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5970   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5971   Register Dst = MI.getOperand(0).getReg();
5972   LLT Ty = MRI.getType(Dst);
5973   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5974 
5975   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5976   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5977 
5978   // TODO: Use smarter heuristic that accounts for vector legalization.
5979   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5980     return lowerFunnelShiftAsShifts(MI);
5981 
5982   // This only works for powers of 2, fallback to shifts if it fails.
5983   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5984   if (Result == UnableToLegalize)
5985     return lowerFunnelShiftAsShifts(MI);
5986   return Result;
5987 }
5988 
5989 LegalizerHelper::LegalizeResult
5990 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5991   Register Dst = MI.getOperand(0).getReg();
5992   Register Src = MI.getOperand(1).getReg();
5993   Register Amt = MI.getOperand(2).getReg();
5994   LLT AmtTy = MRI.getType(Amt);
5995   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5996   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5997   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5998   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5999   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
6000   MI.eraseFromParent();
6001   return Legalized;
6002 }
6003 
6004 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
6005   Register Dst = MI.getOperand(0).getReg();
6006   Register Src = MI.getOperand(1).getReg();
6007   Register Amt = MI.getOperand(2).getReg();
6008   LLT DstTy = MRI.getType(Dst);
6009   LLT SrcTy = MRI.getType(Dst);
6010   LLT AmtTy = MRI.getType(Amt);
6011 
6012   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
6013   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
6014 
6015   MIRBuilder.setInstrAndDebugLoc(MI);
6016 
6017   // If a rotate in the other direction is supported, use it.
6018   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
6019   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
6020       isPowerOf2_32(EltSizeInBits))
6021     return lowerRotateWithReverseRotate(MI);
6022 
6023   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
6024   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
6025   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
6026   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
6027   Register ShVal;
6028   Register RevShiftVal;
6029   if (isPowerOf2_32(EltSizeInBits)) {
6030     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6031     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6032     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
6033     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
6034     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
6035     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
6036     RevShiftVal =
6037         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
6038   } else {
6039     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6040     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6041     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
6042     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
6043     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
6044     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
6045     auto One = MIRBuilder.buildConstant(AmtTy, 1);
6046     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
6047     RevShiftVal =
6048         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
6049   }
6050   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
6051   MI.eraseFromParent();
6052   return Legalized;
6053 }
6054 
6055 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
6056 // representation.
6057 LegalizerHelper::LegalizeResult
6058 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
6059   Register Dst = MI.getOperand(0).getReg();
6060   Register Src = MI.getOperand(1).getReg();
6061   const LLT S64 = LLT::scalar(64);
6062   const LLT S32 = LLT::scalar(32);
6063   const LLT S1 = LLT::scalar(1);
6064 
6065   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
6066 
6067   // unsigned cul2f(ulong u) {
6068   //   uint lz = clz(u);
6069   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
6070   //   u = (u << lz) & 0x7fffffffffffffffUL;
6071   //   ulong t = u & 0xffffffffffUL;
6072   //   uint v = (e << 23) | (uint)(u >> 40);
6073   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
6074   //   return as_float(v + r);
6075   // }
6076 
6077   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
6078   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
6079 
6080   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
6081 
6082   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
6083   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
6084 
6085   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
6086   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
6087 
6088   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
6089   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
6090 
6091   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
6092 
6093   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
6094   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
6095 
6096   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
6097   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
6098   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
6099 
6100   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
6101   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
6102   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
6103   auto One = MIRBuilder.buildConstant(S32, 1);
6104 
6105   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
6106   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
6107   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
6108   MIRBuilder.buildAdd(Dst, V, R);
6109 
6110   MI.eraseFromParent();
6111   return Legalized;
6112 }
6113 
6114 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
6115   Register Dst = MI.getOperand(0).getReg();
6116   Register Src = MI.getOperand(1).getReg();
6117   LLT DstTy = MRI.getType(Dst);
6118   LLT SrcTy = MRI.getType(Src);
6119 
6120   if (SrcTy == LLT::scalar(1)) {
6121     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
6122     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6123     MIRBuilder.buildSelect(Dst, Src, True, False);
6124     MI.eraseFromParent();
6125     return Legalized;
6126   }
6127 
6128   if (SrcTy != LLT::scalar(64))
6129     return UnableToLegalize;
6130 
6131   if (DstTy == LLT::scalar(32)) {
6132     // TODO: SelectionDAG has several alternative expansions to port which may
6133     // be more reasonble depending on the available instructions. If a target
6134     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6135     // intermediate type, this is probably worse.
6136     return lowerU64ToF32BitOps(MI);
6137   }
6138 
6139   return UnableToLegalize;
6140 }
6141 
6142 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6143   Register Dst = MI.getOperand(0).getReg();
6144   Register Src = MI.getOperand(1).getReg();
6145   LLT DstTy = MRI.getType(Dst);
6146   LLT SrcTy = MRI.getType(Src);
6147 
6148   const LLT S64 = LLT::scalar(64);
6149   const LLT S32 = LLT::scalar(32);
6150   const LLT S1 = LLT::scalar(1);
6151 
6152   if (SrcTy == S1) {
6153     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6154     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6155     MIRBuilder.buildSelect(Dst, Src, True, False);
6156     MI.eraseFromParent();
6157     return Legalized;
6158   }
6159 
6160   if (SrcTy != S64)
6161     return UnableToLegalize;
6162 
6163   if (DstTy == S32) {
6164     // signed cl2f(long l) {
6165     //   long s = l >> 63;
6166     //   float r = cul2f((l + s) ^ s);
6167     //   return s ? -r : r;
6168     // }
6169     Register L = Src;
6170     auto SignBit = MIRBuilder.buildConstant(S64, 63);
6171     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6172 
6173     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6174     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6175     auto R = MIRBuilder.buildUITOFP(S32, Xor);
6176 
6177     auto RNeg = MIRBuilder.buildFNeg(S32, R);
6178     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6179                                             MIRBuilder.buildConstant(S64, 0));
6180     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6181     MI.eraseFromParent();
6182     return Legalized;
6183   }
6184 
6185   return UnableToLegalize;
6186 }
6187 
6188 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6189   Register Dst = MI.getOperand(0).getReg();
6190   Register Src = MI.getOperand(1).getReg();
6191   LLT DstTy = MRI.getType(Dst);
6192   LLT SrcTy = MRI.getType(Src);
6193   const LLT S64 = LLT::scalar(64);
6194   const LLT S32 = LLT::scalar(32);
6195 
6196   if (SrcTy != S64 && SrcTy != S32)
6197     return UnableToLegalize;
6198   if (DstTy != S32 && DstTy != S64)
6199     return UnableToLegalize;
6200 
6201   // FPTOSI gives same result as FPTOUI for positive signed integers.
6202   // FPTOUI needs to deal with fp values that convert to unsigned integers
6203   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6204 
6205   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6206   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6207                                                 : APFloat::IEEEdouble(),
6208                     APInt::getNullValue(SrcTy.getSizeInBits()));
6209   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6210 
6211   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6212 
6213   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6214   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6215   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6216   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6217   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6218   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6219   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6220 
6221   const LLT S1 = LLT::scalar(1);
6222 
6223   MachineInstrBuilder FCMP =
6224       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6225   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6226 
6227   MI.eraseFromParent();
6228   return Legalized;
6229 }
6230 
6231 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6232   Register Dst = MI.getOperand(0).getReg();
6233   Register Src = MI.getOperand(1).getReg();
6234   LLT DstTy = MRI.getType(Dst);
6235   LLT SrcTy = MRI.getType(Src);
6236   const LLT S64 = LLT::scalar(64);
6237   const LLT S32 = LLT::scalar(32);
6238 
6239   // FIXME: Only f32 to i64 conversions are supported.
6240   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6241     return UnableToLegalize;
6242 
6243   // Expand f32 -> i64 conversion
6244   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6245   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6246 
6247   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6248 
6249   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6250   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6251 
6252   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6253   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6254 
6255   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6256                                            APInt::getSignMask(SrcEltBits));
6257   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6258   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6259   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6260   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6261 
6262   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6263   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6264   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6265 
6266   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6267   R = MIRBuilder.buildZExt(DstTy, R);
6268 
6269   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6270   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6271   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6272   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6273 
6274   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6275   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6276 
6277   const LLT S1 = LLT::scalar(1);
6278   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6279                                     S1, Exponent, ExponentLoBit);
6280 
6281   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6282 
6283   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6284   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6285 
6286   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6287 
6288   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6289                                           S1, Exponent, ZeroSrcTy);
6290 
6291   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6292   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6293 
6294   MI.eraseFromParent();
6295   return Legalized;
6296 }
6297 
6298 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6299 LegalizerHelper::LegalizeResult
6300 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6301   Register Dst = MI.getOperand(0).getReg();
6302   Register Src = MI.getOperand(1).getReg();
6303 
6304   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6305     return UnableToLegalize;
6306 
6307   const unsigned ExpMask = 0x7ff;
6308   const unsigned ExpBiasf64 = 1023;
6309   const unsigned ExpBiasf16 = 15;
6310   const LLT S32 = LLT::scalar(32);
6311   const LLT S1 = LLT::scalar(1);
6312 
6313   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6314   Register U = Unmerge.getReg(0);
6315   Register UH = Unmerge.getReg(1);
6316 
6317   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6318   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6319 
6320   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6321   // add the f16 bias (15) to get the biased exponent for the f16 format.
6322   E = MIRBuilder.buildAdd(
6323     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6324 
6325   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6326   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6327 
6328   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6329                                        MIRBuilder.buildConstant(S32, 0x1ff));
6330   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6331 
6332   auto Zero = MIRBuilder.buildConstant(S32, 0);
6333   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6334   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6335   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6336 
6337   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6338   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6339   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6340   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6341 
6342   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6343   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6344 
6345   // N = M | (E << 12);
6346   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6347   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6348 
6349   // B = clamp(1-E, 0, 13);
6350   auto One = MIRBuilder.buildConstant(S32, 1);
6351   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6352   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6353   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6354 
6355   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6356                                        MIRBuilder.buildConstant(S32, 0x1000));
6357 
6358   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6359   auto D0 = MIRBuilder.buildShl(S32, D, B);
6360 
6361   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6362                                              D0, SigSetHigh);
6363   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6364   D = MIRBuilder.buildOr(S32, D, D1);
6365 
6366   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6367   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6368 
6369   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6370   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6371 
6372   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6373                                        MIRBuilder.buildConstant(S32, 3));
6374   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6375 
6376   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6377                                        MIRBuilder.buildConstant(S32, 5));
6378   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6379 
6380   V1 = MIRBuilder.buildOr(S32, V0, V1);
6381   V = MIRBuilder.buildAdd(S32, V, V1);
6382 
6383   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6384                                        E, MIRBuilder.buildConstant(S32, 30));
6385   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6386                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6387 
6388   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6389                                          E, MIRBuilder.buildConstant(S32, 1039));
6390   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6391 
6392   // Extract the sign bit.
6393   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6394   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6395 
6396   // Insert the sign bit
6397   V = MIRBuilder.buildOr(S32, Sign, V);
6398 
6399   MIRBuilder.buildTrunc(Dst, V);
6400   MI.eraseFromParent();
6401   return Legalized;
6402 }
6403 
6404 LegalizerHelper::LegalizeResult
6405 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6406   Register Dst = MI.getOperand(0).getReg();
6407   Register Src = MI.getOperand(1).getReg();
6408 
6409   LLT DstTy = MRI.getType(Dst);
6410   LLT SrcTy = MRI.getType(Src);
6411   const LLT S64 = LLT::scalar(64);
6412   const LLT S16 = LLT::scalar(16);
6413 
6414   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6415     return lowerFPTRUNC_F64_TO_F16(MI);
6416 
6417   return UnableToLegalize;
6418 }
6419 
6420 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6421 // multiplication tree.
6422 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6423   Register Dst = MI.getOperand(0).getReg();
6424   Register Src0 = MI.getOperand(1).getReg();
6425   Register Src1 = MI.getOperand(2).getReg();
6426   LLT Ty = MRI.getType(Dst);
6427 
6428   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6429   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6430   MI.eraseFromParent();
6431   return Legalized;
6432 }
6433 
6434 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6435   switch (Opc) {
6436   case TargetOpcode::G_SMIN:
6437     return CmpInst::ICMP_SLT;
6438   case TargetOpcode::G_SMAX:
6439     return CmpInst::ICMP_SGT;
6440   case TargetOpcode::G_UMIN:
6441     return CmpInst::ICMP_ULT;
6442   case TargetOpcode::G_UMAX:
6443     return CmpInst::ICMP_UGT;
6444   default:
6445     llvm_unreachable("not in integer min/max");
6446   }
6447 }
6448 
6449 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6450   Register Dst = MI.getOperand(0).getReg();
6451   Register Src0 = MI.getOperand(1).getReg();
6452   Register Src1 = MI.getOperand(2).getReg();
6453 
6454   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6455   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6456 
6457   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6458   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6459 
6460   MI.eraseFromParent();
6461   return Legalized;
6462 }
6463 
6464 LegalizerHelper::LegalizeResult
6465 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6466   Register Dst = MI.getOperand(0).getReg();
6467   Register Src0 = MI.getOperand(1).getReg();
6468   Register Src1 = MI.getOperand(2).getReg();
6469 
6470   const LLT Src0Ty = MRI.getType(Src0);
6471   const LLT Src1Ty = MRI.getType(Src1);
6472 
6473   const int Src0Size = Src0Ty.getScalarSizeInBits();
6474   const int Src1Size = Src1Ty.getScalarSizeInBits();
6475 
6476   auto SignBitMask = MIRBuilder.buildConstant(
6477     Src0Ty, APInt::getSignMask(Src0Size));
6478 
6479   auto NotSignBitMask = MIRBuilder.buildConstant(
6480     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6481 
6482   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6483   Register And1;
6484   if (Src0Ty == Src1Ty) {
6485     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6486   } else if (Src0Size > Src1Size) {
6487     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6488     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6489     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6490     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6491   } else {
6492     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6493     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6494     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6495     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6496   }
6497 
6498   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6499   // constants are a nan and -0.0, but the final result should preserve
6500   // everything.
6501   unsigned Flags = MI.getFlags();
6502   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6503 
6504   MI.eraseFromParent();
6505   return Legalized;
6506 }
6507 
6508 LegalizerHelper::LegalizeResult
6509 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6510   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6511     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6512 
6513   Register Dst = MI.getOperand(0).getReg();
6514   Register Src0 = MI.getOperand(1).getReg();
6515   Register Src1 = MI.getOperand(2).getReg();
6516   LLT Ty = MRI.getType(Dst);
6517 
6518   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6519     // Insert canonicalizes if it's possible we need to quiet to get correct
6520     // sNaN behavior.
6521 
6522     // Note this must be done here, and not as an optimization combine in the
6523     // absence of a dedicate quiet-snan instruction as we're using an
6524     // omni-purpose G_FCANONICALIZE.
6525     if (!isKnownNeverSNaN(Src0, MRI))
6526       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6527 
6528     if (!isKnownNeverSNaN(Src1, MRI))
6529       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6530   }
6531 
6532   // If there are no nans, it's safe to simply replace this with the non-IEEE
6533   // version.
6534   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6535   MI.eraseFromParent();
6536   return Legalized;
6537 }
6538 
6539 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6540   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6541   Register DstReg = MI.getOperand(0).getReg();
6542   LLT Ty = MRI.getType(DstReg);
6543   unsigned Flags = MI.getFlags();
6544 
6545   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6546                                   Flags);
6547   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6548   MI.eraseFromParent();
6549   return Legalized;
6550 }
6551 
6552 LegalizerHelper::LegalizeResult
6553 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6554   Register DstReg = MI.getOperand(0).getReg();
6555   Register X = MI.getOperand(1).getReg();
6556   const unsigned Flags = MI.getFlags();
6557   const LLT Ty = MRI.getType(DstReg);
6558   const LLT CondTy = Ty.changeElementSize(1);
6559 
6560   // round(x) =>
6561   //  t = trunc(x);
6562   //  d = fabs(x - t);
6563   //  o = copysign(1.0f, x);
6564   //  return t + (d >= 0.5 ? o : 0.0);
6565 
6566   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6567 
6568   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6569   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6570   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6571   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6572   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6573   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6574 
6575   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6576                                   Flags);
6577   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6578 
6579   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6580 
6581   MI.eraseFromParent();
6582   return Legalized;
6583 }
6584 
6585 LegalizerHelper::LegalizeResult
6586 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6587   Register DstReg = MI.getOperand(0).getReg();
6588   Register SrcReg = MI.getOperand(1).getReg();
6589   unsigned Flags = MI.getFlags();
6590   LLT Ty = MRI.getType(DstReg);
6591   const LLT CondTy = Ty.changeElementSize(1);
6592 
6593   // result = trunc(src);
6594   // if (src < 0.0 && src != result)
6595   //   result += -1.0.
6596 
6597   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6598   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6599 
6600   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6601                                   SrcReg, Zero, Flags);
6602   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6603                                       SrcReg, Trunc, Flags);
6604   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6605   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6606 
6607   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6608   MI.eraseFromParent();
6609   return Legalized;
6610 }
6611 
6612 LegalizerHelper::LegalizeResult
6613 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6614   const unsigned NumOps = MI.getNumOperands();
6615   Register DstReg = MI.getOperand(0).getReg();
6616   Register Src0Reg = MI.getOperand(1).getReg();
6617   LLT DstTy = MRI.getType(DstReg);
6618   LLT SrcTy = MRI.getType(Src0Reg);
6619   unsigned PartSize = SrcTy.getSizeInBits();
6620 
6621   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6622   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6623 
6624   for (unsigned I = 2; I != NumOps; ++I) {
6625     const unsigned Offset = (I - 1) * PartSize;
6626 
6627     Register SrcReg = MI.getOperand(I).getReg();
6628     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6629 
6630     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6631       MRI.createGenericVirtualRegister(WideTy);
6632 
6633     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6634     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6635     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6636     ResultReg = NextResult;
6637   }
6638 
6639   if (DstTy.isPointer()) {
6640     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6641           DstTy.getAddressSpace())) {
6642       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6643       return UnableToLegalize;
6644     }
6645 
6646     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6647   }
6648 
6649   MI.eraseFromParent();
6650   return Legalized;
6651 }
6652 
6653 LegalizerHelper::LegalizeResult
6654 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6655   const unsigned NumDst = MI.getNumOperands() - 1;
6656   Register SrcReg = MI.getOperand(NumDst).getReg();
6657   Register Dst0Reg = MI.getOperand(0).getReg();
6658   LLT DstTy = MRI.getType(Dst0Reg);
6659   if (DstTy.isPointer())
6660     return UnableToLegalize; // TODO
6661 
6662   SrcReg = coerceToScalar(SrcReg);
6663   if (!SrcReg)
6664     return UnableToLegalize;
6665 
6666   // Expand scalarizing unmerge as bitcast to integer and shift.
6667   LLT IntTy = MRI.getType(SrcReg);
6668 
6669   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6670 
6671   const unsigned DstSize = DstTy.getSizeInBits();
6672   unsigned Offset = DstSize;
6673   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6674     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6675     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6676     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6677   }
6678 
6679   MI.eraseFromParent();
6680   return Legalized;
6681 }
6682 
6683 /// Lower a vector extract or insert by writing the vector to a stack temporary
6684 /// and reloading the element or vector.
6685 ///
6686 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6687 ///  =>
6688 ///  %stack_temp = G_FRAME_INDEX
6689 ///  G_STORE %vec, %stack_temp
6690 ///  %idx = clamp(%idx, %vec.getNumElements())
6691 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6692 ///  %dst = G_LOAD %element_ptr
6693 LegalizerHelper::LegalizeResult
6694 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6695   Register DstReg = MI.getOperand(0).getReg();
6696   Register SrcVec = MI.getOperand(1).getReg();
6697   Register InsertVal;
6698   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6699     InsertVal = MI.getOperand(2).getReg();
6700 
6701   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6702 
6703   LLT VecTy = MRI.getType(SrcVec);
6704   LLT EltTy = VecTy.getElementType();
6705   if (!EltTy.isByteSized()) { // Not implemented.
6706     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6707     return UnableToLegalize;
6708   }
6709 
6710   unsigned EltBytes = EltTy.getSizeInBytes();
6711   Align VecAlign = getStackTemporaryAlignment(VecTy);
6712   Align EltAlign;
6713 
6714   MachinePointerInfo PtrInfo;
6715   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6716                                         VecAlign, PtrInfo);
6717   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6718 
6719   // Get the pointer to the element, and be sure not to hit undefined behavior
6720   // if the index is out of bounds.
6721   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6722 
6723   int64_t IdxVal;
6724   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6725     int64_t Offset = IdxVal * EltBytes;
6726     PtrInfo = PtrInfo.getWithOffset(Offset);
6727     EltAlign = commonAlignment(VecAlign, Offset);
6728   } else {
6729     // We lose information with a variable offset.
6730     EltAlign = getStackTemporaryAlignment(EltTy);
6731     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6732   }
6733 
6734   if (InsertVal) {
6735     // Write the inserted element
6736     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6737 
6738     // Reload the whole vector.
6739     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6740   } else {
6741     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6742   }
6743 
6744   MI.eraseFromParent();
6745   return Legalized;
6746 }
6747 
6748 LegalizerHelper::LegalizeResult
6749 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6750   Register DstReg = MI.getOperand(0).getReg();
6751   Register Src0Reg = MI.getOperand(1).getReg();
6752   Register Src1Reg = MI.getOperand(2).getReg();
6753   LLT Src0Ty = MRI.getType(Src0Reg);
6754   LLT DstTy = MRI.getType(DstReg);
6755   LLT IdxTy = LLT::scalar(32);
6756 
6757   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6758 
6759   if (DstTy.isScalar()) {
6760     if (Src0Ty.isVector())
6761       return UnableToLegalize;
6762 
6763     // This is just a SELECT.
6764     assert(Mask.size() == 1 && "Expected a single mask element");
6765     Register Val;
6766     if (Mask[0] < 0 || Mask[0] > 1)
6767       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6768     else
6769       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6770     MIRBuilder.buildCopy(DstReg, Val);
6771     MI.eraseFromParent();
6772     return Legalized;
6773   }
6774 
6775   Register Undef;
6776   SmallVector<Register, 32> BuildVec;
6777   LLT EltTy = DstTy.getElementType();
6778 
6779   for (int Idx : Mask) {
6780     if (Idx < 0) {
6781       if (!Undef.isValid())
6782         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6783       BuildVec.push_back(Undef);
6784       continue;
6785     }
6786 
6787     if (Src0Ty.isScalar()) {
6788       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6789     } else {
6790       int NumElts = Src0Ty.getNumElements();
6791       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6792       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6793       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6794       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6795       BuildVec.push_back(Extract.getReg(0));
6796     }
6797   }
6798 
6799   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6800   MI.eraseFromParent();
6801   return Legalized;
6802 }
6803 
6804 LegalizerHelper::LegalizeResult
6805 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6806   const auto &MF = *MI.getMF();
6807   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6808   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6809     return UnableToLegalize;
6810 
6811   Register Dst = MI.getOperand(0).getReg();
6812   Register AllocSize = MI.getOperand(1).getReg();
6813   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6814 
6815   LLT PtrTy = MRI.getType(Dst);
6816   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6817 
6818   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6819   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6820   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6821 
6822   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6823   // have to generate an extra instruction to negate the alloc and then use
6824   // G_PTR_ADD to add the negative offset.
6825   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6826   if (Alignment > Align(1)) {
6827     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6828     AlignMask.negate();
6829     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6830     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6831   }
6832 
6833   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6834   MIRBuilder.buildCopy(SPReg, SPTmp);
6835   MIRBuilder.buildCopy(Dst, SPTmp);
6836 
6837   MI.eraseFromParent();
6838   return Legalized;
6839 }
6840 
6841 LegalizerHelper::LegalizeResult
6842 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6843   Register Dst = MI.getOperand(0).getReg();
6844   Register Src = MI.getOperand(1).getReg();
6845   unsigned Offset = MI.getOperand(2).getImm();
6846 
6847   LLT DstTy = MRI.getType(Dst);
6848   LLT SrcTy = MRI.getType(Src);
6849 
6850   if (DstTy.isScalar() &&
6851       (SrcTy.isScalar() ||
6852        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6853     LLT SrcIntTy = SrcTy;
6854     if (!SrcTy.isScalar()) {
6855       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6856       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6857     }
6858 
6859     if (Offset == 0)
6860       MIRBuilder.buildTrunc(Dst, Src);
6861     else {
6862       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6863       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6864       MIRBuilder.buildTrunc(Dst, Shr);
6865     }
6866 
6867     MI.eraseFromParent();
6868     return Legalized;
6869   }
6870 
6871   return UnableToLegalize;
6872 }
6873 
6874 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6875   Register Dst = MI.getOperand(0).getReg();
6876   Register Src = MI.getOperand(1).getReg();
6877   Register InsertSrc = MI.getOperand(2).getReg();
6878   uint64_t Offset = MI.getOperand(3).getImm();
6879 
6880   LLT DstTy = MRI.getType(Src);
6881   LLT InsertTy = MRI.getType(InsertSrc);
6882 
6883   if (InsertTy.isVector() ||
6884       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6885     return UnableToLegalize;
6886 
6887   const DataLayout &DL = MIRBuilder.getDataLayout();
6888   if ((DstTy.isPointer() &&
6889        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6890       (InsertTy.isPointer() &&
6891        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6892     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6893     return UnableToLegalize;
6894   }
6895 
6896   LLT IntDstTy = DstTy;
6897 
6898   if (!DstTy.isScalar()) {
6899     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6900     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6901   }
6902 
6903   if (!InsertTy.isScalar()) {
6904     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6905     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6906   }
6907 
6908   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6909   if (Offset != 0) {
6910     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6911     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6912   }
6913 
6914   APInt MaskVal = APInt::getBitsSetWithWrap(
6915       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6916 
6917   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6918   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6919   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6920 
6921   MIRBuilder.buildCast(Dst, Or);
6922   MI.eraseFromParent();
6923   return Legalized;
6924 }
6925 
6926 LegalizerHelper::LegalizeResult
6927 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6928   Register Dst0 = MI.getOperand(0).getReg();
6929   Register Dst1 = MI.getOperand(1).getReg();
6930   Register LHS = MI.getOperand(2).getReg();
6931   Register RHS = MI.getOperand(3).getReg();
6932   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6933 
6934   LLT Ty = MRI.getType(Dst0);
6935   LLT BoolTy = MRI.getType(Dst1);
6936 
6937   if (IsAdd)
6938     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6939   else
6940     MIRBuilder.buildSub(Dst0, LHS, RHS);
6941 
6942   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6943 
6944   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6945 
6946   // For an addition, the result should be less than one of the operands (LHS)
6947   // if and only if the other operand (RHS) is negative, otherwise there will
6948   // be overflow.
6949   // For a subtraction, the result should be less than one of the operands
6950   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6951   // otherwise there will be overflow.
6952   auto ResultLowerThanLHS =
6953       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6954   auto ConditionRHS = MIRBuilder.buildICmp(
6955       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6956 
6957   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6958   MI.eraseFromParent();
6959   return Legalized;
6960 }
6961 
6962 LegalizerHelper::LegalizeResult
6963 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6964   Register Res = MI.getOperand(0).getReg();
6965   Register LHS = MI.getOperand(1).getReg();
6966   Register RHS = MI.getOperand(2).getReg();
6967   LLT Ty = MRI.getType(Res);
6968   bool IsSigned;
6969   bool IsAdd;
6970   unsigned BaseOp;
6971   switch (MI.getOpcode()) {
6972   default:
6973     llvm_unreachable("unexpected addsat/subsat opcode");
6974   case TargetOpcode::G_UADDSAT:
6975     IsSigned = false;
6976     IsAdd = true;
6977     BaseOp = TargetOpcode::G_ADD;
6978     break;
6979   case TargetOpcode::G_SADDSAT:
6980     IsSigned = true;
6981     IsAdd = true;
6982     BaseOp = TargetOpcode::G_ADD;
6983     break;
6984   case TargetOpcode::G_USUBSAT:
6985     IsSigned = false;
6986     IsAdd = false;
6987     BaseOp = TargetOpcode::G_SUB;
6988     break;
6989   case TargetOpcode::G_SSUBSAT:
6990     IsSigned = true;
6991     IsAdd = false;
6992     BaseOp = TargetOpcode::G_SUB;
6993     break;
6994   }
6995 
6996   if (IsSigned) {
6997     // sadd.sat(a, b) ->
6998     //   hi = 0x7fffffff - smax(a, 0)
6999     //   lo = 0x80000000 - smin(a, 0)
7000     //   a + smin(smax(lo, b), hi)
7001     // ssub.sat(a, b) ->
7002     //   lo = smax(a, -1) - 0x7fffffff
7003     //   hi = smin(a, -1) - 0x80000000
7004     //   a - smin(smax(lo, b), hi)
7005     // TODO: AMDGPU can use a "median of 3" instruction here:
7006     //   a +/- med3(lo, b, hi)
7007     uint64_t NumBits = Ty.getScalarSizeInBits();
7008     auto MaxVal =
7009         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
7010     auto MinVal =
7011         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7012     MachineInstrBuilder Hi, Lo;
7013     if (IsAdd) {
7014       auto Zero = MIRBuilder.buildConstant(Ty, 0);
7015       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
7016       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
7017     } else {
7018       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
7019       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
7020                                MaxVal);
7021       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
7022                                MinVal);
7023     }
7024     auto RHSClamped =
7025         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
7026     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
7027   } else {
7028     // uadd.sat(a, b) -> a + umin(~a, b)
7029     // usub.sat(a, b) -> a - umin(a, b)
7030     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
7031     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
7032     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
7033   }
7034 
7035   MI.eraseFromParent();
7036   return Legalized;
7037 }
7038 
7039 LegalizerHelper::LegalizeResult
7040 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
7041   Register Res = MI.getOperand(0).getReg();
7042   Register LHS = MI.getOperand(1).getReg();
7043   Register RHS = MI.getOperand(2).getReg();
7044   LLT Ty = MRI.getType(Res);
7045   LLT BoolTy = Ty.changeElementSize(1);
7046   bool IsSigned;
7047   bool IsAdd;
7048   unsigned OverflowOp;
7049   switch (MI.getOpcode()) {
7050   default:
7051     llvm_unreachable("unexpected addsat/subsat opcode");
7052   case TargetOpcode::G_UADDSAT:
7053     IsSigned = false;
7054     IsAdd = true;
7055     OverflowOp = TargetOpcode::G_UADDO;
7056     break;
7057   case TargetOpcode::G_SADDSAT:
7058     IsSigned = true;
7059     IsAdd = true;
7060     OverflowOp = TargetOpcode::G_SADDO;
7061     break;
7062   case TargetOpcode::G_USUBSAT:
7063     IsSigned = false;
7064     IsAdd = false;
7065     OverflowOp = TargetOpcode::G_USUBO;
7066     break;
7067   case TargetOpcode::G_SSUBSAT:
7068     IsSigned = true;
7069     IsAdd = false;
7070     OverflowOp = TargetOpcode::G_SSUBO;
7071     break;
7072   }
7073 
7074   auto OverflowRes =
7075       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
7076   Register Tmp = OverflowRes.getReg(0);
7077   Register Ov = OverflowRes.getReg(1);
7078   MachineInstrBuilder Clamp;
7079   if (IsSigned) {
7080     // sadd.sat(a, b) ->
7081     //   {tmp, ov} = saddo(a, b)
7082     //   ov ? (tmp >>s 31) + 0x80000000 : r
7083     // ssub.sat(a, b) ->
7084     //   {tmp, ov} = ssubo(a, b)
7085     //   ov ? (tmp >>s 31) + 0x80000000 : r
7086     uint64_t NumBits = Ty.getScalarSizeInBits();
7087     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
7088     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
7089     auto MinVal =
7090         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7091     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
7092   } else {
7093     // uadd.sat(a, b) ->
7094     //   {tmp, ov} = uaddo(a, b)
7095     //   ov ? 0xffffffff : tmp
7096     // usub.sat(a, b) ->
7097     //   {tmp, ov} = usubo(a, b)
7098     //   ov ? 0 : tmp
7099     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
7100   }
7101   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
7102 
7103   MI.eraseFromParent();
7104   return Legalized;
7105 }
7106 
7107 LegalizerHelper::LegalizeResult
7108 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
7109   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
7110           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
7111          "Expected shlsat opcode!");
7112   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
7113   Register Res = MI.getOperand(0).getReg();
7114   Register LHS = MI.getOperand(1).getReg();
7115   Register RHS = MI.getOperand(2).getReg();
7116   LLT Ty = MRI.getType(Res);
7117   LLT BoolTy = Ty.changeElementSize(1);
7118 
7119   unsigned BW = Ty.getScalarSizeInBits();
7120   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
7121   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
7122                        : MIRBuilder.buildLShr(Ty, Result, RHS);
7123 
7124   MachineInstrBuilder SatVal;
7125   if (IsSigned) {
7126     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
7127     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
7128     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
7129                                     MIRBuilder.buildConstant(Ty, 0));
7130     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
7131   } else {
7132     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
7133   }
7134   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
7135   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
7136 
7137   MI.eraseFromParent();
7138   return Legalized;
7139 }
7140 
7141 LegalizerHelper::LegalizeResult
7142 LegalizerHelper::lowerBswap(MachineInstr &MI) {
7143   Register Dst = MI.getOperand(0).getReg();
7144   Register Src = MI.getOperand(1).getReg();
7145   const LLT Ty = MRI.getType(Src);
7146   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
7147   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
7148 
7149   // Swap most and least significant byte, set remaining bytes in Res to zero.
7150   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7151   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7152   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7153   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7154 
7155   // Set i-th high/low byte in Res to i-th low/high byte from Src.
7156   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7157     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7158     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7159     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7160     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7161     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7162     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7163     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7164     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7165     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7166     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7167     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7168     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7169   }
7170   Res.getInstr()->getOperand(0).setReg(Dst);
7171 
7172   MI.eraseFromParent();
7173   return Legalized;
7174 }
7175 
7176 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
7177 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7178                                  MachineInstrBuilder Src, APInt Mask) {
7179   const LLT Ty = Dst.getLLTTy(*B.getMRI());
7180   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7181   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7182   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7183   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7184   return B.buildOr(Dst, LHS, RHS);
7185 }
7186 
7187 LegalizerHelper::LegalizeResult
7188 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7189   Register Dst = MI.getOperand(0).getReg();
7190   Register Src = MI.getOperand(1).getReg();
7191   const LLT Ty = MRI.getType(Src);
7192   unsigned Size = Ty.getSizeInBits();
7193 
7194   MachineInstrBuilder BSWAP =
7195       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7196 
7197   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7198   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7199   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7200   MachineInstrBuilder Swap4 =
7201       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7202 
7203   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7204   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7205   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7206   MachineInstrBuilder Swap2 =
7207       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7208 
7209   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7210   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7211   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7212   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7213 
7214   MI.eraseFromParent();
7215   return Legalized;
7216 }
7217 
7218 LegalizerHelper::LegalizeResult
7219 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7220   MachineFunction &MF = MIRBuilder.getMF();
7221 
7222   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7223   int NameOpIdx = IsRead ? 1 : 0;
7224   int ValRegIndex = IsRead ? 0 : 1;
7225 
7226   Register ValReg = MI.getOperand(ValRegIndex).getReg();
7227   const LLT Ty = MRI.getType(ValReg);
7228   const MDString *RegStr = cast<MDString>(
7229     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7230 
7231   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7232   if (!PhysReg.isValid())
7233     return UnableToLegalize;
7234 
7235   if (IsRead)
7236     MIRBuilder.buildCopy(ValReg, PhysReg);
7237   else
7238     MIRBuilder.buildCopy(PhysReg, ValReg);
7239 
7240   MI.eraseFromParent();
7241   return Legalized;
7242 }
7243 
7244 LegalizerHelper::LegalizeResult
7245 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7246   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7247   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7248   Register Result = MI.getOperand(0).getReg();
7249   LLT OrigTy = MRI.getType(Result);
7250   auto SizeInBits = OrigTy.getScalarSizeInBits();
7251   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7252 
7253   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7254   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7255   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7256   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7257 
7258   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7259   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7260   MIRBuilder.buildTrunc(Result, Shifted);
7261 
7262   MI.eraseFromParent();
7263   return Legalized;
7264 }
7265 
7266 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7267   // Implement vector G_SELECT in terms of XOR, AND, OR.
7268   Register DstReg = MI.getOperand(0).getReg();
7269   Register MaskReg = MI.getOperand(1).getReg();
7270   Register Op1Reg = MI.getOperand(2).getReg();
7271   Register Op2Reg = MI.getOperand(3).getReg();
7272   LLT DstTy = MRI.getType(DstReg);
7273   LLT MaskTy = MRI.getType(MaskReg);
7274   LLT Op1Ty = MRI.getType(Op1Reg);
7275   if (!DstTy.isVector())
7276     return UnableToLegalize;
7277 
7278   // Vector selects can have a scalar predicate. If so, splat into a vector and
7279   // finish for later legalization attempts to try again.
7280   if (MaskTy.isScalar()) {
7281     Register MaskElt = MaskReg;
7282     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
7283       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
7284     // Generate a vector splat idiom to be pattern matched later.
7285     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7286     Observer.changingInstr(MI);
7287     MI.getOperand(1).setReg(ShufSplat.getReg(0));
7288     Observer.changedInstr(MI);
7289     return Legalized;
7290   }
7291 
7292   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
7293     return UnableToLegalize;
7294   }
7295 
7296   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7297   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7298   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7299   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7300   MI.eraseFromParent();
7301   return Legalized;
7302 }
7303 
7304 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7305   // Split DIVREM into individual instructions.
7306   unsigned Opcode = MI.getOpcode();
7307 
7308   MIRBuilder.buildInstr(
7309       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7310                                         : TargetOpcode::G_UDIV,
7311       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7312   MIRBuilder.buildInstr(
7313       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7314                                         : TargetOpcode::G_UREM,
7315       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7316   MI.eraseFromParent();
7317   return Legalized;
7318 }
7319 
7320 LegalizerHelper::LegalizeResult
7321 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7322   // Expand %res = G_ABS %a into:
7323   // %v1 = G_ASHR %a, scalar_size-1
7324   // %v2 = G_ADD %a, %v1
7325   // %res = G_XOR %v2, %v1
7326   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7327   Register OpReg = MI.getOperand(1).getReg();
7328   auto ShiftAmt =
7329       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7330   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7331   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7332   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7333   MI.eraseFromParent();
7334   return Legalized;
7335 }
7336 
7337 LegalizerHelper::LegalizeResult
7338 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7339   // Expand %res = G_ABS %a into:
7340   // %v1 = G_CONSTANT 0
7341   // %v2 = G_SUB %v1, %a
7342   // %res = G_SMAX %a, %v2
7343   Register SrcReg = MI.getOperand(1).getReg();
7344   LLT Ty = MRI.getType(SrcReg);
7345   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7346   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7347   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7348   MI.eraseFromParent();
7349   return Legalized;
7350 }
7351