1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
23 #include "llvm/CodeGen/GlobalISel/Utils.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetOpcodes.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 
37 #define DEBUG_TYPE "legalizer"
38 
39 using namespace llvm;
40 using namespace LegalizeActions;
41 using namespace MIPatternMatch;
42 
43 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
44 ///
45 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
46 /// with any leftover piece as type \p LeftoverTy
47 ///
48 /// Returns -1 in the first element of the pair if the breakdown is not
49 /// satisfiable.
50 static std::pair<int, int>
51 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
52   assert(!LeftoverTy.isValid() && "this is an out argument");
53 
54   unsigned Size = OrigTy.getSizeInBits();
55   unsigned NarrowSize = NarrowTy.getSizeInBits();
56   unsigned NumParts = Size / NarrowSize;
57   unsigned LeftoverSize = Size - NumParts * NarrowSize;
58   assert(Size > NarrowSize);
59 
60   if (LeftoverSize == 0)
61     return {NumParts, 0};
62 
63   if (NarrowTy.isVector()) {
64     unsigned EltSize = OrigTy.getScalarSizeInBits();
65     if (LeftoverSize % EltSize != 0)
66       return {-1, -1};
67     LeftoverTy = LLT::scalarOrVector(
68         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
69   } else {
70     LeftoverTy = LLT::scalar(LeftoverSize);
71   }
72 
73   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
74   return std::make_pair(NumParts, NumLeftover);
75 }
76 
77 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
78 
79   if (!Ty.isScalar())
80     return nullptr;
81 
82   switch (Ty.getSizeInBits()) {
83   case 16:
84     return Type::getHalfTy(Ctx);
85   case 32:
86     return Type::getFloatTy(Ctx);
87   case 64:
88     return Type::getDoubleTy(Ctx);
89   case 80:
90     return Type::getX86_FP80Ty(Ctx);
91   case 128:
92     return Type::getFP128Ty(Ctx);
93   default:
94     return nullptr;
95   }
96 }
97 
98 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
99                                  GISelChangeObserver &Observer,
100                                  MachineIRBuilder &Builder)
101     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
102       LI(*MF.getSubtarget().getLegalizerInfo()),
103       TLI(*MF.getSubtarget().getTargetLowering()) { }
104 
105 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
106                                  GISelChangeObserver &Observer,
107                                  MachineIRBuilder &B)
108   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
109     TLI(*MF.getSubtarget().getTargetLowering()) { }
110 
111 LegalizerHelper::LegalizeResult
112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
113                                    LostDebugLocObserver &LocObserver) {
114   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
115 
116   MIRBuilder.setInstrAndDebugLoc(MI);
117 
118   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
119       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
120     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
121   auto Step = LI.getAction(MI, MRI);
122   switch (Step.Action) {
123   case Legal:
124     LLVM_DEBUG(dbgs() << ".. Already legal\n");
125     return AlreadyLegal;
126   case Libcall:
127     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
128     return libcall(MI, LocObserver);
129   case NarrowScalar:
130     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
131     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
132   case WidenScalar:
133     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
134     return widenScalar(MI, Step.TypeIdx, Step.NewType);
135   case Bitcast:
136     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
137     return bitcast(MI, Step.TypeIdx, Step.NewType);
138   case Lower:
139     LLVM_DEBUG(dbgs() << ".. Lower\n");
140     return lower(MI, Step.TypeIdx, Step.NewType);
141   case FewerElements:
142     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
143     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
144   case MoreElements:
145     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
146     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
147   case Custom:
148     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
149     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
150   default:
151     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
152     return UnableToLegalize;
153   }
154 }
155 
156 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
157                                    SmallVectorImpl<Register> &VRegs) {
158   for (int i = 0; i < NumParts; ++i)
159     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
160   MIRBuilder.buildUnmerge(VRegs, Reg);
161 }
162 
163 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
164                                    LLT MainTy, LLT &LeftoverTy,
165                                    SmallVectorImpl<Register> &VRegs,
166                                    SmallVectorImpl<Register> &LeftoverRegs) {
167   assert(!LeftoverTy.isValid() && "this is an out argument");
168 
169   unsigned RegSize = RegTy.getSizeInBits();
170   unsigned MainSize = MainTy.getSizeInBits();
171   unsigned NumParts = RegSize / MainSize;
172   unsigned LeftoverSize = RegSize - NumParts * MainSize;
173 
174   // Use an unmerge when possible.
175   if (LeftoverSize == 0) {
176     for (unsigned I = 0; I < NumParts; ++I)
177       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
178     MIRBuilder.buildUnmerge(VRegs, Reg);
179     return true;
180   }
181 
182   // Perform irregular split. Leftover is last element of RegPieces.
183   if (MainTy.isVector()) {
184     SmallVector<Register, 8> RegPieces;
185     extractVectorParts(Reg, MainTy.getNumElements(), RegPieces);
186     for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
187       VRegs.push_back(RegPieces[i]);
188     LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
189     LeftoverTy = MRI.getType(LeftoverRegs[0]);
190     return true;
191   }
192 
193   LeftoverTy = LLT::scalar(LeftoverSize);
194   // For irregular sizes, extract the individual parts.
195   for (unsigned I = 0; I != NumParts; ++I) {
196     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
197     VRegs.push_back(NewReg);
198     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
199   }
200 
201   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
202        Offset += LeftoverSize) {
203     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
204     LeftoverRegs.push_back(NewReg);
205     MIRBuilder.buildExtract(NewReg, Reg, Offset);
206   }
207 
208   return true;
209 }
210 
211 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts,
212                                          SmallVectorImpl<Register> &VRegs) {
213   LLT RegTy = MRI.getType(Reg);
214   assert(RegTy.isVector() && "Expected a vector type");
215 
216   LLT EltTy = RegTy.getElementType();
217   LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
218   unsigned RegNumElts = RegTy.getNumElements();
219   unsigned LeftoverNumElts = RegNumElts % NumElts;
220   unsigned NumNarrowTyPieces = RegNumElts / NumElts;
221 
222   // Perfect split without leftover
223   if (LeftoverNumElts == 0)
224     return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs);
225 
226   // Irregular split. Provide direct access to all elements for artifact
227   // combiner using unmerge to elements. Then build vectors with NumElts
228   // elements. Remaining element(s) will be (used to build vector) Leftover.
229   SmallVector<Register, 8> Elts;
230   extractParts(Reg, EltTy, RegNumElts, Elts);
231 
232   unsigned Offset = 0;
233   // Requested sub-vectors of NarrowTy.
234   for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
235     ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
236     VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
237   }
238 
239   // Leftover element(s).
240   if (LeftoverNumElts == 1) {
241     VRegs.push_back(Elts[Offset]);
242   } else {
243     LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
244     ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
245     VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0));
246   }
247 }
248 
249 void LegalizerHelper::insertParts(Register DstReg,
250                                   LLT ResultTy, LLT PartTy,
251                                   ArrayRef<Register> PartRegs,
252                                   LLT LeftoverTy,
253                                   ArrayRef<Register> LeftoverRegs) {
254   if (!LeftoverTy.isValid()) {
255     assert(LeftoverRegs.empty());
256 
257     if (!ResultTy.isVector()) {
258       MIRBuilder.buildMerge(DstReg, PartRegs);
259       return;
260     }
261 
262     if (PartTy.isVector())
263       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
264     else
265       MIRBuilder.buildBuildVector(DstReg, PartRegs);
266     return;
267   }
268 
269   // Merge sub-vectors with different number of elements and insert into DstReg.
270   if (ResultTy.isVector()) {
271     assert(LeftoverRegs.size() == 1 && "Expected one leftover register");
272     SmallVector<Register, 8> AllRegs;
273     for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs))
274       AllRegs.push_back(Reg);
275     return mergeMixedSubvectors(DstReg, AllRegs);
276   }
277 
278   SmallVector<Register> GCDRegs;
279   LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
280   for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
281     extractGCDType(GCDRegs, GCDTy, PartReg);
282   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
283   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
284 }
285 
286 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts,
287                                        Register Reg) {
288   LLT Ty = MRI.getType(Reg);
289   SmallVector<Register, 8> RegElts;
290   extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts);
291   Elts.append(RegElts);
292 }
293 
294 /// Merge \p PartRegs with different types into \p DstReg.
295 void LegalizerHelper::mergeMixedSubvectors(Register DstReg,
296                                            ArrayRef<Register> PartRegs) {
297   SmallVector<Register, 8> AllElts;
298   for (unsigned i = 0; i < PartRegs.size() - 1; ++i)
299     appendVectorElts(AllElts, PartRegs[i]);
300 
301   Register Leftover = PartRegs[PartRegs.size() - 1];
302   if (MRI.getType(Leftover).isScalar())
303     AllElts.push_back(Leftover);
304   else
305     appendVectorElts(AllElts, Leftover);
306 
307   MIRBuilder.buildMerge(DstReg, AllElts);
308 }
309 
310 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
311 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
312                               const MachineInstr &MI) {
313   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
314 
315   const int StartIdx = Regs.size();
316   const int NumResults = MI.getNumOperands() - 1;
317   Regs.resize(Regs.size() + NumResults);
318   for (int I = 0; I != NumResults; ++I)
319     Regs[StartIdx + I] = MI.getOperand(I).getReg();
320 }
321 
322 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
323                                      LLT GCDTy, Register SrcReg) {
324   LLT SrcTy = MRI.getType(SrcReg);
325   if (SrcTy == GCDTy) {
326     // If the source already evenly divides the result type, we don't need to do
327     // anything.
328     Parts.push_back(SrcReg);
329   } else {
330     // Need to split into common type sized pieces.
331     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
332     getUnmergeResults(Parts, *Unmerge);
333   }
334 }
335 
336 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
337                                     LLT NarrowTy, Register SrcReg) {
338   LLT SrcTy = MRI.getType(SrcReg);
339   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
340   extractGCDType(Parts, GCDTy, SrcReg);
341   return GCDTy;
342 }
343 
344 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
345                                          SmallVectorImpl<Register> &VRegs,
346                                          unsigned PadStrategy) {
347   LLT LCMTy = getLCMType(DstTy, NarrowTy);
348 
349   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
350   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
351   int NumOrigSrc = VRegs.size();
352 
353   Register PadReg;
354 
355   // Get a value we can use to pad the source value if the sources won't evenly
356   // cover the result type.
357   if (NumOrigSrc < NumParts * NumSubParts) {
358     if (PadStrategy == TargetOpcode::G_ZEXT)
359       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
360     else if (PadStrategy == TargetOpcode::G_ANYEXT)
361       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
362     else {
363       assert(PadStrategy == TargetOpcode::G_SEXT);
364 
365       // Shift the sign bit of the low register through the high register.
366       auto ShiftAmt =
367         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
368       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
369     }
370   }
371 
372   // Registers for the final merge to be produced.
373   SmallVector<Register, 4> Remerge(NumParts);
374 
375   // Registers needed for intermediate merges, which will be merged into a
376   // source for Remerge.
377   SmallVector<Register, 4> SubMerge(NumSubParts);
378 
379   // Once we've fully read off the end of the original source bits, we can reuse
380   // the same high bits for remaining padding elements.
381   Register AllPadReg;
382 
383   // Build merges to the LCM type to cover the original result type.
384   for (int I = 0; I != NumParts; ++I) {
385     bool AllMergePartsArePadding = true;
386 
387     // Build the requested merges to the requested type.
388     for (int J = 0; J != NumSubParts; ++J) {
389       int Idx = I * NumSubParts + J;
390       if (Idx >= NumOrigSrc) {
391         SubMerge[J] = PadReg;
392         continue;
393       }
394 
395       SubMerge[J] = VRegs[Idx];
396 
397       // There are meaningful bits here we can't reuse later.
398       AllMergePartsArePadding = false;
399     }
400 
401     // If we've filled up a complete piece with padding bits, we can directly
402     // emit the natural sized constant if applicable, rather than a merge of
403     // smaller constants.
404     if (AllMergePartsArePadding && !AllPadReg) {
405       if (PadStrategy == TargetOpcode::G_ANYEXT)
406         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
407       else if (PadStrategy == TargetOpcode::G_ZEXT)
408         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
409 
410       // If this is a sign extension, we can't materialize a trivial constant
411       // with the right type and have to produce a merge.
412     }
413 
414     if (AllPadReg) {
415       // Avoid creating additional instructions if we're just adding additional
416       // copies of padding bits.
417       Remerge[I] = AllPadReg;
418       continue;
419     }
420 
421     if (NumSubParts == 1)
422       Remerge[I] = SubMerge[0];
423     else
424       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
425 
426     // In the sign extend padding case, re-use the first all-signbit merge.
427     if (AllMergePartsArePadding && !AllPadReg)
428       AllPadReg = Remerge[I];
429   }
430 
431   VRegs = std::move(Remerge);
432   return LCMTy;
433 }
434 
435 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
436                                                ArrayRef<Register> RemergeRegs) {
437   LLT DstTy = MRI.getType(DstReg);
438 
439   // Create the merge to the widened source, and extract the relevant bits into
440   // the result.
441 
442   if (DstTy == LCMTy) {
443     MIRBuilder.buildMerge(DstReg, RemergeRegs);
444     return;
445   }
446 
447   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
448   if (DstTy.isScalar() && LCMTy.isScalar()) {
449     MIRBuilder.buildTrunc(DstReg, Remerge);
450     return;
451   }
452 
453   if (LCMTy.isVector()) {
454     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
455     SmallVector<Register, 8> UnmergeDefs(NumDefs);
456     UnmergeDefs[0] = DstReg;
457     for (unsigned I = 1; I != NumDefs; ++I)
458       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
459 
460     MIRBuilder.buildUnmerge(UnmergeDefs,
461                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
462     return;
463   }
464 
465   llvm_unreachable("unhandled case");
466 }
467 
468 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
469 #define RTLIBCASE_INT(LibcallPrefix)                                           \
470   do {                                                                         \
471     switch (Size) {                                                            \
472     case 32:                                                                   \
473       return RTLIB::LibcallPrefix##32;                                         \
474     case 64:                                                                   \
475       return RTLIB::LibcallPrefix##64;                                         \
476     case 128:                                                                  \
477       return RTLIB::LibcallPrefix##128;                                        \
478     default:                                                                   \
479       llvm_unreachable("unexpected size");                                     \
480     }                                                                          \
481   } while (0)
482 
483 #define RTLIBCASE(LibcallPrefix)                                               \
484   do {                                                                         \
485     switch (Size) {                                                            \
486     case 32:                                                                   \
487       return RTLIB::LibcallPrefix##32;                                         \
488     case 64:                                                                   \
489       return RTLIB::LibcallPrefix##64;                                         \
490     case 80:                                                                   \
491       return RTLIB::LibcallPrefix##80;                                         \
492     case 128:                                                                  \
493       return RTLIB::LibcallPrefix##128;                                        \
494     default:                                                                   \
495       llvm_unreachable("unexpected size");                                     \
496     }                                                                          \
497   } while (0)
498 
499   switch (Opcode) {
500   case TargetOpcode::G_SDIV:
501     RTLIBCASE_INT(SDIV_I);
502   case TargetOpcode::G_UDIV:
503     RTLIBCASE_INT(UDIV_I);
504   case TargetOpcode::G_SREM:
505     RTLIBCASE_INT(SREM_I);
506   case TargetOpcode::G_UREM:
507     RTLIBCASE_INT(UREM_I);
508   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
509     RTLIBCASE_INT(CTLZ_I);
510   case TargetOpcode::G_FADD:
511     RTLIBCASE(ADD_F);
512   case TargetOpcode::G_FSUB:
513     RTLIBCASE(SUB_F);
514   case TargetOpcode::G_FMUL:
515     RTLIBCASE(MUL_F);
516   case TargetOpcode::G_FDIV:
517     RTLIBCASE(DIV_F);
518   case TargetOpcode::G_FEXP:
519     RTLIBCASE(EXP_F);
520   case TargetOpcode::G_FEXP2:
521     RTLIBCASE(EXP2_F);
522   case TargetOpcode::G_FREM:
523     RTLIBCASE(REM_F);
524   case TargetOpcode::G_FPOW:
525     RTLIBCASE(POW_F);
526   case TargetOpcode::G_FMA:
527     RTLIBCASE(FMA_F);
528   case TargetOpcode::G_FSIN:
529     RTLIBCASE(SIN_F);
530   case TargetOpcode::G_FCOS:
531     RTLIBCASE(COS_F);
532   case TargetOpcode::G_FLOG10:
533     RTLIBCASE(LOG10_F);
534   case TargetOpcode::G_FLOG:
535     RTLIBCASE(LOG_F);
536   case TargetOpcode::G_FLOG2:
537     RTLIBCASE(LOG2_F);
538   case TargetOpcode::G_FCEIL:
539     RTLIBCASE(CEIL_F);
540   case TargetOpcode::G_FFLOOR:
541     RTLIBCASE(FLOOR_F);
542   case TargetOpcode::G_FMINNUM:
543     RTLIBCASE(FMIN_F);
544   case TargetOpcode::G_FMAXNUM:
545     RTLIBCASE(FMAX_F);
546   case TargetOpcode::G_FSQRT:
547     RTLIBCASE(SQRT_F);
548   case TargetOpcode::G_FRINT:
549     RTLIBCASE(RINT_F);
550   case TargetOpcode::G_FNEARBYINT:
551     RTLIBCASE(NEARBYINT_F);
552   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
553     RTLIBCASE(ROUNDEVEN_F);
554   }
555   llvm_unreachable("Unknown libcall function");
556 }
557 
558 /// True if an instruction is in tail position in its caller. Intended for
559 /// legalizing libcalls as tail calls when possible.
560 static bool isLibCallInTailPosition(MachineInstr &MI,
561                                     const TargetInstrInfo &TII,
562                                     MachineRegisterInfo &MRI) {
563   MachineBasicBlock &MBB = *MI.getParent();
564   const Function &F = MBB.getParent()->getFunction();
565 
566   // Conservatively require the attributes of the call to match those of
567   // the return. Ignore NoAlias and NonNull because they don't affect the
568   // call sequence.
569   AttributeList CallerAttrs = F.getAttributes();
570   if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs())
571           .removeAttribute(Attribute::NoAlias)
572           .removeAttribute(Attribute::NonNull)
573           .hasAttributes())
574     return false;
575 
576   // It's not safe to eliminate the sign / zero extension of the return value.
577   if (CallerAttrs.hasRetAttr(Attribute::ZExt) ||
578       CallerAttrs.hasRetAttr(Attribute::SExt))
579     return false;
580 
581   // Only tail call if the following instruction is a standard return or if we
582   // have a `thisreturn` callee, and a sequence like:
583   //
584   //   G_MEMCPY %0, %1, %2
585   //   $x0 = COPY %0
586   //   RET_ReallyLR implicit $x0
587   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
588   if (Next != MBB.instr_end() && Next->isCopy()) {
589     switch (MI.getOpcode()) {
590     default:
591       llvm_unreachable("unsupported opcode");
592     case TargetOpcode::G_BZERO:
593       return false;
594     case TargetOpcode::G_MEMCPY:
595     case TargetOpcode::G_MEMMOVE:
596     case TargetOpcode::G_MEMSET:
597       break;
598     }
599 
600     Register VReg = MI.getOperand(0).getReg();
601     if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
602       return false;
603 
604     Register PReg = Next->getOperand(0).getReg();
605     if (!PReg.isPhysical())
606       return false;
607 
608     auto Ret = next_nodbg(Next, MBB.instr_end());
609     if (Ret == MBB.instr_end() || !Ret->isReturn())
610       return false;
611 
612     if (Ret->getNumImplicitOperands() != 1)
613       return false;
614 
615     if (PReg != Ret->getOperand(0).getReg())
616       return false;
617 
618     // Skip over the COPY that we just validated.
619     Next = Ret;
620   }
621 
622   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
623     return false;
624 
625   return true;
626 }
627 
628 LegalizerHelper::LegalizeResult
629 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
630                     const CallLowering::ArgInfo &Result,
631                     ArrayRef<CallLowering::ArgInfo> Args,
632                     const CallingConv::ID CC) {
633   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
634 
635   CallLowering::CallLoweringInfo Info;
636   Info.CallConv = CC;
637   Info.Callee = MachineOperand::CreateES(Name);
638   Info.OrigRet = Result;
639   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
640   if (!CLI.lowerCall(MIRBuilder, Info))
641     return LegalizerHelper::UnableToLegalize;
642 
643   return LegalizerHelper::Legalized;
644 }
645 
646 LegalizerHelper::LegalizeResult
647 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
648                     const CallLowering::ArgInfo &Result,
649                     ArrayRef<CallLowering::ArgInfo> Args) {
650   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
651   const char *Name = TLI.getLibcallName(Libcall);
652   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
653   return createLibcall(MIRBuilder, Name, Result, Args, CC);
654 }
655 
656 // Useful for libcalls where all operands have the same type.
657 static LegalizerHelper::LegalizeResult
658 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
659               Type *OpType) {
660   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
661 
662   // FIXME: What does the original arg index mean here?
663   SmallVector<CallLowering::ArgInfo, 3> Args;
664   for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
665     Args.push_back({MO.getReg(), OpType, 0});
666   return createLibcall(MIRBuilder, Libcall,
667                        {MI.getOperand(0).getReg(), OpType, 0}, Args);
668 }
669 
670 LegalizerHelper::LegalizeResult
671 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
672                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
673   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
674 
675   SmallVector<CallLowering::ArgInfo, 3> Args;
676   // Add all the args, except for the last which is an imm denoting 'tail'.
677   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
678     Register Reg = MI.getOperand(i).getReg();
679 
680     // Need derive an IR type for call lowering.
681     LLT OpLLT = MRI.getType(Reg);
682     Type *OpTy = nullptr;
683     if (OpLLT.isPointer())
684       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
685     else
686       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
687     Args.push_back({Reg, OpTy, 0});
688   }
689 
690   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
691   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
692   RTLIB::Libcall RTLibcall;
693   unsigned Opc = MI.getOpcode();
694   switch (Opc) {
695   case TargetOpcode::G_BZERO:
696     RTLibcall = RTLIB::BZERO;
697     break;
698   case TargetOpcode::G_MEMCPY:
699     RTLibcall = RTLIB::MEMCPY;
700     Args[0].Flags[0].setReturned();
701     break;
702   case TargetOpcode::G_MEMMOVE:
703     RTLibcall = RTLIB::MEMMOVE;
704     Args[0].Flags[0].setReturned();
705     break;
706   case TargetOpcode::G_MEMSET:
707     RTLibcall = RTLIB::MEMSET;
708     Args[0].Flags[0].setReturned();
709     break;
710   default:
711     llvm_unreachable("unsupported opcode");
712   }
713   const char *Name = TLI.getLibcallName(RTLibcall);
714 
715   // Unsupported libcall on the target.
716   if (!Name) {
717     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
718                       << MIRBuilder.getTII().getName(Opc) << "\n");
719     return LegalizerHelper::UnableToLegalize;
720   }
721 
722   CallLowering::CallLoweringInfo Info;
723   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
724   Info.Callee = MachineOperand::CreateES(Name);
725   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
726   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
727                     isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI);
728 
729   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
730   if (!CLI.lowerCall(MIRBuilder, Info))
731     return LegalizerHelper::UnableToLegalize;
732 
733   if (Info.LoweredTailCall) {
734     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
735 
736     // Check debug locations before removing the return.
737     LocObserver.checkpoint(true);
738 
739     // We must have a return following the call (or debug insts) to get past
740     // isLibCallInTailPosition.
741     do {
742       MachineInstr *Next = MI.getNextNode();
743       assert(Next &&
744              (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
745              "Expected instr following MI to be return or debug inst?");
746       // We lowered a tail call, so the call is now the return from the block.
747       // Delete the old return.
748       Next->eraseFromParent();
749     } while (MI.getNextNode());
750 
751     // We expect to lose the debug location from the return.
752     LocObserver.checkpoint(false);
753   }
754 
755   return LegalizerHelper::Legalized;
756 }
757 
758 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
759                                        Type *FromType) {
760   auto ToMVT = MVT::getVT(ToType);
761   auto FromMVT = MVT::getVT(FromType);
762 
763   switch (Opcode) {
764   case TargetOpcode::G_FPEXT:
765     return RTLIB::getFPEXT(FromMVT, ToMVT);
766   case TargetOpcode::G_FPTRUNC:
767     return RTLIB::getFPROUND(FromMVT, ToMVT);
768   case TargetOpcode::G_FPTOSI:
769     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
770   case TargetOpcode::G_FPTOUI:
771     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
772   case TargetOpcode::G_SITOFP:
773     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
774   case TargetOpcode::G_UITOFP:
775     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
776   }
777   llvm_unreachable("Unsupported libcall function");
778 }
779 
780 static LegalizerHelper::LegalizeResult
781 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
782                   Type *FromType) {
783   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
784   return createLibcall(MIRBuilder, Libcall,
785                        {MI.getOperand(0).getReg(), ToType, 0},
786                        {{MI.getOperand(1).getReg(), FromType, 0}});
787 }
788 
789 LegalizerHelper::LegalizeResult
790 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
791   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
792   unsigned Size = LLTy.getSizeInBits();
793   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
794 
795   switch (MI.getOpcode()) {
796   default:
797     return UnableToLegalize;
798   case TargetOpcode::G_SDIV:
799   case TargetOpcode::G_UDIV:
800   case TargetOpcode::G_SREM:
801   case TargetOpcode::G_UREM:
802   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
803     Type *HLTy = IntegerType::get(Ctx, Size);
804     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
805     if (Status != Legalized)
806       return Status;
807     break;
808   }
809   case TargetOpcode::G_FADD:
810   case TargetOpcode::G_FSUB:
811   case TargetOpcode::G_FMUL:
812   case TargetOpcode::G_FDIV:
813   case TargetOpcode::G_FMA:
814   case TargetOpcode::G_FPOW:
815   case TargetOpcode::G_FREM:
816   case TargetOpcode::G_FCOS:
817   case TargetOpcode::G_FSIN:
818   case TargetOpcode::G_FLOG10:
819   case TargetOpcode::G_FLOG:
820   case TargetOpcode::G_FLOG2:
821   case TargetOpcode::G_FEXP:
822   case TargetOpcode::G_FEXP2:
823   case TargetOpcode::G_FCEIL:
824   case TargetOpcode::G_FFLOOR:
825   case TargetOpcode::G_FMINNUM:
826   case TargetOpcode::G_FMAXNUM:
827   case TargetOpcode::G_FSQRT:
828   case TargetOpcode::G_FRINT:
829   case TargetOpcode::G_FNEARBYINT:
830   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
831     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
832     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
833       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
834       return UnableToLegalize;
835     }
836     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
837     if (Status != Legalized)
838       return Status;
839     break;
840   }
841   case TargetOpcode::G_FPEXT:
842   case TargetOpcode::G_FPTRUNC: {
843     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
844     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
845     if (!FromTy || !ToTy)
846       return UnableToLegalize;
847     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
848     if (Status != Legalized)
849       return Status;
850     break;
851   }
852   case TargetOpcode::G_FPTOSI:
853   case TargetOpcode::G_FPTOUI: {
854     // FIXME: Support other types
855     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
856     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
857     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
858       return UnableToLegalize;
859     LegalizeResult Status = conversionLibcall(
860         MI, MIRBuilder,
861         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
862         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
863     if (Status != Legalized)
864       return Status;
865     break;
866   }
867   case TargetOpcode::G_SITOFP:
868   case TargetOpcode::G_UITOFP: {
869     // FIXME: Support other types
870     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
871     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
872     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
873       return UnableToLegalize;
874     LegalizeResult Status = conversionLibcall(
875         MI, MIRBuilder,
876         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
877         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
878     if (Status != Legalized)
879       return Status;
880     break;
881   }
882   case TargetOpcode::G_BZERO:
883   case TargetOpcode::G_MEMCPY:
884   case TargetOpcode::G_MEMMOVE:
885   case TargetOpcode::G_MEMSET: {
886     LegalizeResult Result =
887         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
888     if (Result != Legalized)
889       return Result;
890     MI.eraseFromParent();
891     return Result;
892   }
893   }
894 
895   MI.eraseFromParent();
896   return Legalized;
897 }
898 
899 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
900                                                               unsigned TypeIdx,
901                                                               LLT NarrowTy) {
902   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
903   uint64_t NarrowSize = NarrowTy.getSizeInBits();
904 
905   switch (MI.getOpcode()) {
906   default:
907     return UnableToLegalize;
908   case TargetOpcode::G_IMPLICIT_DEF: {
909     Register DstReg = MI.getOperand(0).getReg();
910     LLT DstTy = MRI.getType(DstReg);
911 
912     // If SizeOp0 is not an exact multiple of NarrowSize, emit
913     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
914     // FIXME: Although this would also be legal for the general case, it causes
915     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
916     //  combines not being hit). This seems to be a problem related to the
917     //  artifact combiner.
918     if (SizeOp0 % NarrowSize != 0) {
919       LLT ImplicitTy = NarrowTy;
920       if (DstTy.isVector())
921         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
922 
923       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
924       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
925 
926       MI.eraseFromParent();
927       return Legalized;
928     }
929 
930     int NumParts = SizeOp0 / NarrowSize;
931 
932     SmallVector<Register, 2> DstRegs;
933     for (int i = 0; i < NumParts; ++i)
934       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
935 
936     if (DstTy.isVector())
937       MIRBuilder.buildBuildVector(DstReg, DstRegs);
938     else
939       MIRBuilder.buildMerge(DstReg, DstRegs);
940     MI.eraseFromParent();
941     return Legalized;
942   }
943   case TargetOpcode::G_CONSTANT: {
944     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
945     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
946     unsigned TotalSize = Ty.getSizeInBits();
947     unsigned NarrowSize = NarrowTy.getSizeInBits();
948     int NumParts = TotalSize / NarrowSize;
949 
950     SmallVector<Register, 4> PartRegs;
951     for (int I = 0; I != NumParts; ++I) {
952       unsigned Offset = I * NarrowSize;
953       auto K = MIRBuilder.buildConstant(NarrowTy,
954                                         Val.lshr(Offset).trunc(NarrowSize));
955       PartRegs.push_back(K.getReg(0));
956     }
957 
958     LLT LeftoverTy;
959     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
960     SmallVector<Register, 1> LeftoverRegs;
961     if (LeftoverBits != 0) {
962       LeftoverTy = LLT::scalar(LeftoverBits);
963       auto K = MIRBuilder.buildConstant(
964         LeftoverTy,
965         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
966       LeftoverRegs.push_back(K.getReg(0));
967     }
968 
969     insertParts(MI.getOperand(0).getReg(),
970                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
971 
972     MI.eraseFromParent();
973     return Legalized;
974   }
975   case TargetOpcode::G_SEXT:
976   case TargetOpcode::G_ZEXT:
977   case TargetOpcode::G_ANYEXT:
978     return narrowScalarExt(MI, TypeIdx, NarrowTy);
979   case TargetOpcode::G_TRUNC: {
980     if (TypeIdx != 1)
981       return UnableToLegalize;
982 
983     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
984     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
985       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
986       return UnableToLegalize;
987     }
988 
989     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
990     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
991     MI.eraseFromParent();
992     return Legalized;
993   }
994 
995   case TargetOpcode::G_FREEZE: {
996     if (TypeIdx != 0)
997       return UnableToLegalize;
998 
999     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1000     // Should widen scalar first
1001     if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0)
1002       return UnableToLegalize;
1003 
1004     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
1005     SmallVector<Register, 8> Parts;
1006     for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) {
1007       Parts.push_back(
1008           MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0));
1009     }
1010 
1011     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts);
1012     MI.eraseFromParent();
1013     return Legalized;
1014   }
1015   case TargetOpcode::G_ADD:
1016   case TargetOpcode::G_SUB:
1017   case TargetOpcode::G_SADDO:
1018   case TargetOpcode::G_SSUBO:
1019   case TargetOpcode::G_SADDE:
1020   case TargetOpcode::G_SSUBE:
1021   case TargetOpcode::G_UADDO:
1022   case TargetOpcode::G_USUBO:
1023   case TargetOpcode::G_UADDE:
1024   case TargetOpcode::G_USUBE:
1025     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_MUL:
1027   case TargetOpcode::G_UMULH:
1028     return narrowScalarMul(MI, NarrowTy);
1029   case TargetOpcode::G_EXTRACT:
1030     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
1031   case TargetOpcode::G_INSERT:
1032     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
1033   case TargetOpcode::G_LOAD: {
1034     auto &LoadMI = cast<GLoad>(MI);
1035     Register DstReg = LoadMI.getDstReg();
1036     LLT DstTy = MRI.getType(DstReg);
1037     if (DstTy.isVector())
1038       return UnableToLegalize;
1039 
1040     if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
1041       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1042       MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
1043       MIRBuilder.buildAnyExt(DstReg, TmpReg);
1044       LoadMI.eraseFromParent();
1045       return Legalized;
1046     }
1047 
1048     return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
1049   }
1050   case TargetOpcode::G_ZEXTLOAD:
1051   case TargetOpcode::G_SEXTLOAD: {
1052     auto &LoadMI = cast<GExtLoad>(MI);
1053     Register DstReg = LoadMI.getDstReg();
1054     Register PtrReg = LoadMI.getPointerReg();
1055 
1056     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1057     auto &MMO = LoadMI.getMMO();
1058     unsigned MemSize = MMO.getSizeInBits();
1059 
1060     if (MemSize == NarrowSize) {
1061       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1062     } else if (MemSize < NarrowSize) {
1063       MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
1064     } else if (MemSize > NarrowSize) {
1065       // FIXME: Need to split the load.
1066       return UnableToLegalize;
1067     }
1068 
1069     if (isa<GZExtLoad>(LoadMI))
1070       MIRBuilder.buildZExt(DstReg, TmpReg);
1071     else
1072       MIRBuilder.buildSExt(DstReg, TmpReg);
1073 
1074     LoadMI.eraseFromParent();
1075     return Legalized;
1076   }
1077   case TargetOpcode::G_STORE: {
1078     auto &StoreMI = cast<GStore>(MI);
1079 
1080     Register SrcReg = StoreMI.getValueReg();
1081     LLT SrcTy = MRI.getType(SrcReg);
1082     if (SrcTy.isVector())
1083       return UnableToLegalize;
1084 
1085     int NumParts = SizeOp0 / NarrowSize;
1086     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
1087     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
1088     if (SrcTy.isVector() && LeftoverBits != 0)
1089       return UnableToLegalize;
1090 
1091     if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
1092       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1093       MIRBuilder.buildTrunc(TmpReg, SrcReg);
1094       MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1095       StoreMI.eraseFromParent();
1096       return Legalized;
1097     }
1098 
1099     return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1100   }
1101   case TargetOpcode::G_SELECT:
1102     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1103   case TargetOpcode::G_AND:
1104   case TargetOpcode::G_OR:
1105   case TargetOpcode::G_XOR: {
1106     // Legalize bitwise operation:
1107     // A = BinOp<Ty> B, C
1108     // into:
1109     // B1, ..., BN = G_UNMERGE_VALUES B
1110     // C1, ..., CN = G_UNMERGE_VALUES C
1111     // A1 = BinOp<Ty/N> B1, C2
1112     // ...
1113     // AN = BinOp<Ty/N> BN, CN
1114     // A = G_MERGE_VALUES A1, ..., AN
1115     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1116   }
1117   case TargetOpcode::G_SHL:
1118   case TargetOpcode::G_LSHR:
1119   case TargetOpcode::G_ASHR:
1120     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1121   case TargetOpcode::G_CTLZ:
1122   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1123   case TargetOpcode::G_CTTZ:
1124   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1125   case TargetOpcode::G_CTPOP:
1126     if (TypeIdx == 1)
1127       switch (MI.getOpcode()) {
1128       case TargetOpcode::G_CTLZ:
1129       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1130         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1131       case TargetOpcode::G_CTTZ:
1132       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1133         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1134       case TargetOpcode::G_CTPOP:
1135         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1136       default:
1137         return UnableToLegalize;
1138       }
1139 
1140     Observer.changingInstr(MI);
1141     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1142     Observer.changedInstr(MI);
1143     return Legalized;
1144   case TargetOpcode::G_INTTOPTR:
1145     if (TypeIdx != 1)
1146       return UnableToLegalize;
1147 
1148     Observer.changingInstr(MI);
1149     narrowScalarSrc(MI, NarrowTy, 1);
1150     Observer.changedInstr(MI);
1151     return Legalized;
1152   case TargetOpcode::G_PTRTOINT:
1153     if (TypeIdx != 0)
1154       return UnableToLegalize;
1155 
1156     Observer.changingInstr(MI);
1157     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1158     Observer.changedInstr(MI);
1159     return Legalized;
1160   case TargetOpcode::G_PHI: {
1161     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1162     // NarrowSize.
1163     if (SizeOp0 % NarrowSize != 0)
1164       return UnableToLegalize;
1165 
1166     unsigned NumParts = SizeOp0 / NarrowSize;
1167     SmallVector<Register, 2> DstRegs(NumParts);
1168     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1169     Observer.changingInstr(MI);
1170     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1171       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1172       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1173       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1174                    SrcRegs[i / 2]);
1175     }
1176     MachineBasicBlock &MBB = *MI.getParent();
1177     MIRBuilder.setInsertPt(MBB, MI);
1178     for (unsigned i = 0; i < NumParts; ++i) {
1179       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1180       MachineInstrBuilder MIB =
1181           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1182       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1183         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1184     }
1185     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1186     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1187     Observer.changedInstr(MI);
1188     MI.eraseFromParent();
1189     return Legalized;
1190   }
1191   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1192   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1193     if (TypeIdx != 2)
1194       return UnableToLegalize;
1195 
1196     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1197     Observer.changingInstr(MI);
1198     narrowScalarSrc(MI, NarrowTy, OpIdx);
1199     Observer.changedInstr(MI);
1200     return Legalized;
1201   }
1202   case TargetOpcode::G_ICMP: {
1203     Register LHS = MI.getOperand(2).getReg();
1204     LLT SrcTy = MRI.getType(LHS);
1205     uint64_t SrcSize = SrcTy.getSizeInBits();
1206     CmpInst::Predicate Pred =
1207         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1208 
1209     // TODO: Handle the non-equality case for weird sizes.
1210     if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1211       return UnableToLegalize;
1212 
1213     LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1214     SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1215     if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1216                       LHSLeftoverRegs))
1217       return UnableToLegalize;
1218 
1219     LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1220     SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1221     if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1222                       RHSPartRegs, RHSLeftoverRegs))
1223       return UnableToLegalize;
1224 
1225     // We now have the LHS and RHS of the compare split into narrow-type
1226     // registers, plus potentially some leftover type.
1227     Register Dst = MI.getOperand(0).getReg();
1228     LLT ResTy = MRI.getType(Dst);
1229     if (ICmpInst::isEquality(Pred)) {
1230       // For each part on the LHS and RHS, keep track of the result of XOR-ing
1231       // them together. For each equal part, the result should be all 0s. For
1232       // each non-equal part, we'll get at least one 1.
1233       auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1234       SmallVector<Register, 4> Xors;
1235       for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1236         auto LHS = std::get<0>(LHSAndRHS);
1237         auto RHS = std::get<1>(LHSAndRHS);
1238         auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1239         Xors.push_back(Xor);
1240       }
1241 
1242       // Build a G_XOR for each leftover register. Each G_XOR must be widened
1243       // to the desired narrow type so that we can OR them together later.
1244       SmallVector<Register, 4> WidenedXors;
1245       for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1246         auto LHS = std::get<0>(LHSAndRHS);
1247         auto RHS = std::get<1>(LHSAndRHS);
1248         auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1249         LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1250         buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1251                             /* PadStrategy = */ TargetOpcode::G_ZEXT);
1252         Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1253       }
1254 
1255       // Now, for each part we broke up, we know if they are equal/not equal
1256       // based off the G_XOR. We can OR these all together and compare against
1257       // 0 to get the result.
1258       assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1259       auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1260       for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1261         Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1262       MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1263     } else {
1264       // TODO: Handle non-power-of-two types.
1265       assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1266       assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1267       Register LHSL = LHSPartRegs[0];
1268       Register LHSH = LHSPartRegs[1];
1269       Register RHSL = RHSPartRegs[0];
1270       Register RHSH = RHSPartRegs[1];
1271       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1272       MachineInstrBuilder CmpHEQ =
1273           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1274       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1275           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1276       MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1277     }
1278     MI.eraseFromParent();
1279     return Legalized;
1280   }
1281   case TargetOpcode::G_SEXT_INREG: {
1282     if (TypeIdx != 0)
1283       return UnableToLegalize;
1284 
1285     int64_t SizeInBits = MI.getOperand(2).getImm();
1286 
1287     // So long as the new type has more bits than the bits we're extending we
1288     // don't need to break it apart.
1289     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1290       Observer.changingInstr(MI);
1291       // We don't lose any non-extension bits by truncating the src and
1292       // sign-extending the dst.
1293       MachineOperand &MO1 = MI.getOperand(1);
1294       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1295       MO1.setReg(TruncMIB.getReg(0));
1296 
1297       MachineOperand &MO2 = MI.getOperand(0);
1298       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1299       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1300       MIRBuilder.buildSExt(MO2, DstExt);
1301       MO2.setReg(DstExt);
1302       Observer.changedInstr(MI);
1303       return Legalized;
1304     }
1305 
1306     // Break it apart. Components below the extension point are unmodified. The
1307     // component containing the extension point becomes a narrower SEXT_INREG.
1308     // Components above it are ashr'd from the component containing the
1309     // extension point.
1310     if (SizeOp0 % NarrowSize != 0)
1311       return UnableToLegalize;
1312     int NumParts = SizeOp0 / NarrowSize;
1313 
1314     // List the registers where the destination will be scattered.
1315     SmallVector<Register, 2> DstRegs;
1316     // List the registers where the source will be split.
1317     SmallVector<Register, 2> SrcRegs;
1318 
1319     // Create all the temporary registers.
1320     for (int i = 0; i < NumParts; ++i) {
1321       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1322 
1323       SrcRegs.push_back(SrcReg);
1324     }
1325 
1326     // Explode the big arguments into smaller chunks.
1327     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1328 
1329     Register AshrCstReg =
1330         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1331             .getReg(0);
1332     Register FullExtensionReg = 0;
1333     Register PartialExtensionReg = 0;
1334 
1335     // Do the operation on each small part.
1336     for (int i = 0; i < NumParts; ++i) {
1337       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1338         DstRegs.push_back(SrcRegs[i]);
1339       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1340         assert(PartialExtensionReg &&
1341                "Expected to visit partial extension before full");
1342         if (FullExtensionReg) {
1343           DstRegs.push_back(FullExtensionReg);
1344           continue;
1345         }
1346         DstRegs.push_back(
1347             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1348                 .getReg(0));
1349         FullExtensionReg = DstRegs.back();
1350       } else {
1351         DstRegs.push_back(
1352             MIRBuilder
1353                 .buildInstr(
1354                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1355                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1356                 .getReg(0));
1357         PartialExtensionReg = DstRegs.back();
1358       }
1359     }
1360 
1361     // Gather the destination registers into the final destination.
1362     Register DstReg = MI.getOperand(0).getReg();
1363     MIRBuilder.buildMerge(DstReg, DstRegs);
1364     MI.eraseFromParent();
1365     return Legalized;
1366   }
1367   case TargetOpcode::G_BSWAP:
1368   case TargetOpcode::G_BITREVERSE: {
1369     if (SizeOp0 % NarrowSize != 0)
1370       return UnableToLegalize;
1371 
1372     Observer.changingInstr(MI);
1373     SmallVector<Register, 2> SrcRegs, DstRegs;
1374     unsigned NumParts = SizeOp0 / NarrowSize;
1375     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1376 
1377     for (unsigned i = 0; i < NumParts; ++i) {
1378       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1379                                            {SrcRegs[NumParts - 1 - i]});
1380       DstRegs.push_back(DstPart.getReg(0));
1381     }
1382 
1383     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1384 
1385     Observer.changedInstr(MI);
1386     MI.eraseFromParent();
1387     return Legalized;
1388   }
1389   case TargetOpcode::G_PTR_ADD:
1390   case TargetOpcode::G_PTRMASK: {
1391     if (TypeIdx != 1)
1392       return UnableToLegalize;
1393     Observer.changingInstr(MI);
1394     narrowScalarSrc(MI, NarrowTy, 2);
1395     Observer.changedInstr(MI);
1396     return Legalized;
1397   }
1398   case TargetOpcode::G_FPTOUI:
1399   case TargetOpcode::G_FPTOSI:
1400     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1401   case TargetOpcode::G_FPEXT:
1402     if (TypeIdx != 0)
1403       return UnableToLegalize;
1404     Observer.changingInstr(MI);
1405     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1406     Observer.changedInstr(MI);
1407     return Legalized;
1408   }
1409 }
1410 
1411 Register LegalizerHelper::coerceToScalar(Register Val) {
1412   LLT Ty = MRI.getType(Val);
1413   if (Ty.isScalar())
1414     return Val;
1415 
1416   const DataLayout &DL = MIRBuilder.getDataLayout();
1417   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1418   if (Ty.isPointer()) {
1419     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1420       return Register();
1421     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1422   }
1423 
1424   Register NewVal = Val;
1425 
1426   assert(Ty.isVector());
1427   LLT EltTy = Ty.getElementType();
1428   if (EltTy.isPointer())
1429     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1430   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1431 }
1432 
1433 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1434                                      unsigned OpIdx, unsigned ExtOpcode) {
1435   MachineOperand &MO = MI.getOperand(OpIdx);
1436   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1437   MO.setReg(ExtB.getReg(0));
1438 }
1439 
1440 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1441                                       unsigned OpIdx) {
1442   MachineOperand &MO = MI.getOperand(OpIdx);
1443   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1444   MO.setReg(ExtB.getReg(0));
1445 }
1446 
1447 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1448                                      unsigned OpIdx, unsigned TruncOpcode) {
1449   MachineOperand &MO = MI.getOperand(OpIdx);
1450   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1451   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1452   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1453   MO.setReg(DstExt);
1454 }
1455 
1456 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1457                                       unsigned OpIdx, unsigned ExtOpcode) {
1458   MachineOperand &MO = MI.getOperand(OpIdx);
1459   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1460   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1461   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1462   MO.setReg(DstTrunc);
1463 }
1464 
1465 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1466                                             unsigned OpIdx) {
1467   MachineOperand &MO = MI.getOperand(OpIdx);
1468   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1469   Register Dst = MO.getReg();
1470   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1471   MO.setReg(DstExt);
1472   MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt);
1473 }
1474 
1475 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1476                                             unsigned OpIdx) {
1477   MachineOperand &MO = MI.getOperand(OpIdx);
1478   SmallVector<Register, 8> Regs;
1479   MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0));
1480 }
1481 
1482 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1483   MachineOperand &Op = MI.getOperand(OpIdx);
1484   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1485 }
1486 
1487 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1488   MachineOperand &MO = MI.getOperand(OpIdx);
1489   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1490   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1491   MIRBuilder.buildBitcast(MO, CastDst);
1492   MO.setReg(CastDst);
1493 }
1494 
1495 LegalizerHelper::LegalizeResult
1496 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1497                                         LLT WideTy) {
1498   if (TypeIdx != 1)
1499     return UnableToLegalize;
1500 
1501   Register DstReg = MI.getOperand(0).getReg();
1502   LLT DstTy = MRI.getType(DstReg);
1503   if (DstTy.isVector())
1504     return UnableToLegalize;
1505 
1506   Register Src1 = MI.getOperand(1).getReg();
1507   LLT SrcTy = MRI.getType(Src1);
1508   const int DstSize = DstTy.getSizeInBits();
1509   const int SrcSize = SrcTy.getSizeInBits();
1510   const int WideSize = WideTy.getSizeInBits();
1511   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1512 
1513   unsigned NumOps = MI.getNumOperands();
1514   unsigned NumSrc = MI.getNumOperands() - 1;
1515   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1516 
1517   if (WideSize >= DstSize) {
1518     // Directly pack the bits in the target type.
1519     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1520 
1521     for (unsigned I = 2; I != NumOps; ++I) {
1522       const unsigned Offset = (I - 1) * PartSize;
1523 
1524       Register SrcReg = MI.getOperand(I).getReg();
1525       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1526 
1527       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1528 
1529       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1530         MRI.createGenericVirtualRegister(WideTy);
1531 
1532       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1533       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1534       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1535       ResultReg = NextResult;
1536     }
1537 
1538     if (WideSize > DstSize)
1539       MIRBuilder.buildTrunc(DstReg, ResultReg);
1540     else if (DstTy.isPointer())
1541       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1542 
1543     MI.eraseFromParent();
1544     return Legalized;
1545   }
1546 
1547   // Unmerge the original values to the GCD type, and recombine to the next
1548   // multiple greater than the original type.
1549   //
1550   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1551   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1552   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1553   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1554   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1555   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1556   // %12:_(s12) = G_MERGE_VALUES %10, %11
1557   //
1558   // Padding with undef if necessary:
1559   //
1560   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1561   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1562   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1563   // %7:_(s2) = G_IMPLICIT_DEF
1564   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1565   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1566   // %10:_(s12) = G_MERGE_VALUES %8, %9
1567 
1568   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1569   LLT GCDTy = LLT::scalar(GCD);
1570 
1571   SmallVector<Register, 8> Parts;
1572   SmallVector<Register, 8> NewMergeRegs;
1573   SmallVector<Register, 8> Unmerges;
1574   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1575 
1576   // Decompose the original operands if they don't evenly divide.
1577   for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
1578     Register SrcReg = MO.getReg();
1579     if (GCD == SrcSize) {
1580       Unmerges.push_back(SrcReg);
1581     } else {
1582       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1583       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1584         Unmerges.push_back(Unmerge.getReg(J));
1585     }
1586   }
1587 
1588   // Pad with undef to the next size that is a multiple of the requested size.
1589   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1590     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1591     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1592       Unmerges.push_back(UndefReg);
1593   }
1594 
1595   const int PartsPerGCD = WideSize / GCD;
1596 
1597   // Build merges of each piece.
1598   ArrayRef<Register> Slicer(Unmerges);
1599   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1600     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1601     NewMergeRegs.push_back(Merge.getReg(0));
1602   }
1603 
1604   // A truncate may be necessary if the requested type doesn't evenly divide the
1605   // original result type.
1606   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1607     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1608   } else {
1609     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1610     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1611   }
1612 
1613   MI.eraseFromParent();
1614   return Legalized;
1615 }
1616 
1617 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1618   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1619   LLT OrigTy = MRI.getType(OrigReg);
1620   LLT LCMTy = getLCMType(WideTy, OrigTy);
1621 
1622   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1623   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1624 
1625   Register UnmergeSrc = WideReg;
1626 
1627   // Create a merge to the LCM type, padding with undef
1628   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1629   // =>
1630   // %1:_(<4 x s32>) = G_FOO
1631   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1632   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1633   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1634   if (NumMergeParts > 1) {
1635     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1636     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1637     MergeParts[0] = WideReg;
1638     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1639   }
1640 
1641   // Unmerge to the original register and pad with dead defs.
1642   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1643   UnmergeResults[0] = OrigReg;
1644   for (int I = 1; I != NumUnmergeParts; ++I)
1645     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1646 
1647   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1648   return WideReg;
1649 }
1650 
1651 LegalizerHelper::LegalizeResult
1652 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1653                                           LLT WideTy) {
1654   if (TypeIdx != 0)
1655     return UnableToLegalize;
1656 
1657   int NumDst = MI.getNumOperands() - 1;
1658   Register SrcReg = MI.getOperand(NumDst).getReg();
1659   LLT SrcTy = MRI.getType(SrcReg);
1660   if (SrcTy.isVector())
1661     return UnableToLegalize;
1662 
1663   Register Dst0Reg = MI.getOperand(0).getReg();
1664   LLT DstTy = MRI.getType(Dst0Reg);
1665   if (!DstTy.isScalar())
1666     return UnableToLegalize;
1667 
1668   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1669     if (SrcTy.isPointer()) {
1670       const DataLayout &DL = MIRBuilder.getDataLayout();
1671       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1672         LLVM_DEBUG(
1673             dbgs() << "Not casting non-integral address space integer\n");
1674         return UnableToLegalize;
1675       }
1676 
1677       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1678       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1679     }
1680 
1681     // Widen SrcTy to WideTy. This does not affect the result, but since the
1682     // user requested this size, it is probably better handled than SrcTy and
1683     // should reduce the total number of legalization artifacts.
1684     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1685       SrcTy = WideTy;
1686       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1687     }
1688 
1689     // Theres no unmerge type to target. Directly extract the bits from the
1690     // source type
1691     unsigned DstSize = DstTy.getSizeInBits();
1692 
1693     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1694     for (int I = 1; I != NumDst; ++I) {
1695       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1696       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1697       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1698     }
1699 
1700     MI.eraseFromParent();
1701     return Legalized;
1702   }
1703 
1704   // Extend the source to a wider type.
1705   LLT LCMTy = getLCMType(SrcTy, WideTy);
1706 
1707   Register WideSrc = SrcReg;
1708   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1709     // TODO: If this is an integral address space, cast to integer and anyext.
1710     if (SrcTy.isPointer()) {
1711       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1712       return UnableToLegalize;
1713     }
1714 
1715     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1716   }
1717 
1718   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1719 
1720   // Create a sequence of unmerges and merges to the original results. Since we
1721   // may have widened the source, we will need to pad the results with dead defs
1722   // to cover the source register.
1723   // e.g. widen s48 to s64:
1724   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1725   //
1726   // =>
1727   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1728   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1729   //  ; unpack to GCD type, with extra dead defs
1730   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1731   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1732   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1733   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1734   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1735   const LLT GCDTy = getGCDType(WideTy, DstTy);
1736   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1737   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1738 
1739   // Directly unmerge to the destination without going through a GCD type
1740   // if possible
1741   if (PartsPerRemerge == 1) {
1742     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1743 
1744     for (int I = 0; I != NumUnmerge; ++I) {
1745       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1746 
1747       for (int J = 0; J != PartsPerUnmerge; ++J) {
1748         int Idx = I * PartsPerUnmerge + J;
1749         if (Idx < NumDst)
1750           MIB.addDef(MI.getOperand(Idx).getReg());
1751         else {
1752           // Create dead def for excess components.
1753           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1754         }
1755       }
1756 
1757       MIB.addUse(Unmerge.getReg(I));
1758     }
1759   } else {
1760     SmallVector<Register, 16> Parts;
1761     for (int J = 0; J != NumUnmerge; ++J)
1762       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1763 
1764     SmallVector<Register, 8> RemergeParts;
1765     for (int I = 0; I != NumDst; ++I) {
1766       for (int J = 0; J < PartsPerRemerge; ++J) {
1767         const int Idx = I * PartsPerRemerge + J;
1768         RemergeParts.emplace_back(Parts[Idx]);
1769       }
1770 
1771       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1772       RemergeParts.clear();
1773     }
1774   }
1775 
1776   MI.eraseFromParent();
1777   return Legalized;
1778 }
1779 
1780 LegalizerHelper::LegalizeResult
1781 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1782                                     LLT WideTy) {
1783   Register DstReg = MI.getOperand(0).getReg();
1784   Register SrcReg = MI.getOperand(1).getReg();
1785   LLT SrcTy = MRI.getType(SrcReg);
1786 
1787   LLT DstTy = MRI.getType(DstReg);
1788   unsigned Offset = MI.getOperand(2).getImm();
1789 
1790   if (TypeIdx == 0) {
1791     if (SrcTy.isVector() || DstTy.isVector())
1792       return UnableToLegalize;
1793 
1794     SrcOp Src(SrcReg);
1795     if (SrcTy.isPointer()) {
1796       // Extracts from pointers can be handled only if they are really just
1797       // simple integers.
1798       const DataLayout &DL = MIRBuilder.getDataLayout();
1799       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1800         return UnableToLegalize;
1801 
1802       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1803       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1804       SrcTy = SrcAsIntTy;
1805     }
1806 
1807     if (DstTy.isPointer())
1808       return UnableToLegalize;
1809 
1810     if (Offset == 0) {
1811       // Avoid a shift in the degenerate case.
1812       MIRBuilder.buildTrunc(DstReg,
1813                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1814       MI.eraseFromParent();
1815       return Legalized;
1816     }
1817 
1818     // Do a shift in the source type.
1819     LLT ShiftTy = SrcTy;
1820     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1821       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1822       ShiftTy = WideTy;
1823     }
1824 
1825     auto LShr = MIRBuilder.buildLShr(
1826       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1827     MIRBuilder.buildTrunc(DstReg, LShr);
1828     MI.eraseFromParent();
1829     return Legalized;
1830   }
1831 
1832   if (SrcTy.isScalar()) {
1833     Observer.changingInstr(MI);
1834     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1835     Observer.changedInstr(MI);
1836     return Legalized;
1837   }
1838 
1839   if (!SrcTy.isVector())
1840     return UnableToLegalize;
1841 
1842   if (DstTy != SrcTy.getElementType())
1843     return UnableToLegalize;
1844 
1845   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1846     return UnableToLegalize;
1847 
1848   Observer.changingInstr(MI);
1849   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1850 
1851   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1852                           Offset);
1853   widenScalarDst(MI, WideTy.getScalarType(), 0);
1854   Observer.changedInstr(MI);
1855   return Legalized;
1856 }
1857 
1858 LegalizerHelper::LegalizeResult
1859 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1860                                    LLT WideTy) {
1861   if (TypeIdx != 0 || WideTy.isVector())
1862     return UnableToLegalize;
1863   Observer.changingInstr(MI);
1864   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1865   widenScalarDst(MI, WideTy);
1866   Observer.changedInstr(MI);
1867   return Legalized;
1868 }
1869 
1870 LegalizerHelper::LegalizeResult
1871 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1872                                            LLT WideTy) {
1873   if (TypeIdx == 1)
1874     return UnableToLegalize; // TODO
1875 
1876   unsigned Opcode;
1877   unsigned ExtOpcode;
1878   Optional<Register> CarryIn = None;
1879   switch (MI.getOpcode()) {
1880   default:
1881     llvm_unreachable("Unexpected opcode!");
1882   case TargetOpcode::G_SADDO:
1883     Opcode = TargetOpcode::G_ADD;
1884     ExtOpcode = TargetOpcode::G_SEXT;
1885     break;
1886   case TargetOpcode::G_SSUBO:
1887     Opcode = TargetOpcode::G_SUB;
1888     ExtOpcode = TargetOpcode::G_SEXT;
1889     break;
1890   case TargetOpcode::G_UADDO:
1891     Opcode = TargetOpcode::G_ADD;
1892     ExtOpcode = TargetOpcode::G_ZEXT;
1893     break;
1894   case TargetOpcode::G_USUBO:
1895     Opcode = TargetOpcode::G_SUB;
1896     ExtOpcode = TargetOpcode::G_ZEXT;
1897     break;
1898   case TargetOpcode::G_SADDE:
1899     Opcode = TargetOpcode::G_UADDE;
1900     ExtOpcode = TargetOpcode::G_SEXT;
1901     CarryIn = MI.getOperand(4).getReg();
1902     break;
1903   case TargetOpcode::G_SSUBE:
1904     Opcode = TargetOpcode::G_USUBE;
1905     ExtOpcode = TargetOpcode::G_SEXT;
1906     CarryIn = MI.getOperand(4).getReg();
1907     break;
1908   case TargetOpcode::G_UADDE:
1909     Opcode = TargetOpcode::G_UADDE;
1910     ExtOpcode = TargetOpcode::G_ZEXT;
1911     CarryIn = MI.getOperand(4).getReg();
1912     break;
1913   case TargetOpcode::G_USUBE:
1914     Opcode = TargetOpcode::G_USUBE;
1915     ExtOpcode = TargetOpcode::G_ZEXT;
1916     CarryIn = MI.getOperand(4).getReg();
1917     break;
1918   }
1919 
1920   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1921   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1922   // Do the arithmetic in the larger type.
1923   Register NewOp;
1924   if (CarryIn) {
1925     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1926     NewOp = MIRBuilder
1927                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1928                             {LHSExt, RHSExt, *CarryIn})
1929                 .getReg(0);
1930   } else {
1931     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1932   }
1933   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1934   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1935   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1936   // There is no overflow if the ExtOp is the same as NewOp.
1937   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1938   // Now trunc the NewOp to the original result.
1939   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1940   MI.eraseFromParent();
1941   return Legalized;
1942 }
1943 
1944 LegalizerHelper::LegalizeResult
1945 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1946                                          LLT WideTy) {
1947   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1948                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1949                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1950   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1951                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1952   // We can convert this to:
1953   //   1. Any extend iN to iM
1954   //   2. SHL by M-N
1955   //   3. [US][ADD|SUB|SHL]SAT
1956   //   4. L/ASHR by M-N
1957   //
1958   // It may be more efficient to lower this to a min and a max operation in
1959   // the higher precision arithmetic if the promoted operation isn't legal,
1960   // but this decision is up to the target's lowering request.
1961   Register DstReg = MI.getOperand(0).getReg();
1962 
1963   unsigned NewBits = WideTy.getScalarSizeInBits();
1964   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1965 
1966   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1967   // must not left shift the RHS to preserve the shift amount.
1968   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1969   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1970                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1971   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1972   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1973   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1974 
1975   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1976                                         {ShiftL, ShiftR}, MI.getFlags());
1977 
1978   // Use a shift that will preserve the number of sign bits when the trunc is
1979   // folded away.
1980   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1981                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1982 
1983   MIRBuilder.buildTrunc(DstReg, Result);
1984   MI.eraseFromParent();
1985   return Legalized;
1986 }
1987 
1988 LegalizerHelper::LegalizeResult
1989 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1990                                  LLT WideTy) {
1991   if (TypeIdx == 1) {
1992     Observer.changingInstr(MI);
1993     widenScalarDst(MI, WideTy, 1);
1994     Observer.changedInstr(MI);
1995     return Legalized;
1996   }
1997 
1998   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1999   Register Result = MI.getOperand(0).getReg();
2000   Register OriginalOverflow = MI.getOperand(1).getReg();
2001   Register LHS = MI.getOperand(2).getReg();
2002   Register RHS = MI.getOperand(3).getReg();
2003   LLT SrcTy = MRI.getType(LHS);
2004   LLT OverflowTy = MRI.getType(OriginalOverflow);
2005   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
2006 
2007   // To determine if the result overflowed in the larger type, we extend the
2008   // input to the larger type, do the multiply (checking if it overflows),
2009   // then also check the high bits of the result to see if overflow happened
2010   // there.
2011   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2012   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
2013   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
2014 
2015   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
2016                                     {LeftOperand, RightOperand});
2017   auto Mul = Mulo->getOperand(0);
2018   MIRBuilder.buildTrunc(Result, Mul);
2019 
2020   MachineInstrBuilder ExtResult;
2021   // Overflow occurred if it occurred in the larger type, or if the high part
2022   // of the result does not zero/sign-extend the low part.  Check this second
2023   // possibility first.
2024   if (IsSigned) {
2025     // For signed, overflow occurred when the high part does not sign-extend
2026     // the low part.
2027     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
2028   } else {
2029     // Unsigned overflow occurred when the high part does not zero-extend the
2030     // low part.
2031     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
2032   }
2033 
2034   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
2035   // so we don't need to check the overflow result of larger type Mulo.
2036   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
2037     auto Overflow =
2038         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
2039     // Finally check if the multiplication in the larger type itself overflowed.
2040     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
2041   } else {
2042     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
2043   }
2044   MI.eraseFromParent();
2045   return Legalized;
2046 }
2047 
2048 LegalizerHelper::LegalizeResult
2049 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
2050   switch (MI.getOpcode()) {
2051   default:
2052     return UnableToLegalize;
2053   case TargetOpcode::G_ATOMICRMW_XCHG:
2054   case TargetOpcode::G_ATOMICRMW_ADD:
2055   case TargetOpcode::G_ATOMICRMW_SUB:
2056   case TargetOpcode::G_ATOMICRMW_AND:
2057   case TargetOpcode::G_ATOMICRMW_OR:
2058   case TargetOpcode::G_ATOMICRMW_XOR:
2059   case TargetOpcode::G_ATOMICRMW_MIN:
2060   case TargetOpcode::G_ATOMICRMW_MAX:
2061   case TargetOpcode::G_ATOMICRMW_UMIN:
2062   case TargetOpcode::G_ATOMICRMW_UMAX:
2063     assert(TypeIdx == 0 && "atomicrmw with second scalar type");
2064     Observer.changingInstr(MI);
2065     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2066     widenScalarDst(MI, WideTy, 0);
2067     Observer.changedInstr(MI);
2068     return Legalized;
2069   case TargetOpcode::G_ATOMIC_CMPXCHG:
2070     assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
2071     Observer.changingInstr(MI);
2072     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2073     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2074     widenScalarDst(MI, WideTy, 0);
2075     Observer.changedInstr(MI);
2076     return Legalized;
2077   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
2078     if (TypeIdx == 0) {
2079       Observer.changingInstr(MI);
2080       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2081       widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2082       widenScalarDst(MI, WideTy, 0);
2083       Observer.changedInstr(MI);
2084       return Legalized;
2085     }
2086     assert(TypeIdx == 1 &&
2087            "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
2088     Observer.changingInstr(MI);
2089     widenScalarDst(MI, WideTy, 1);
2090     Observer.changedInstr(MI);
2091     return Legalized;
2092   case TargetOpcode::G_EXTRACT:
2093     return widenScalarExtract(MI, TypeIdx, WideTy);
2094   case TargetOpcode::G_INSERT:
2095     return widenScalarInsert(MI, TypeIdx, WideTy);
2096   case TargetOpcode::G_MERGE_VALUES:
2097     return widenScalarMergeValues(MI, TypeIdx, WideTy);
2098   case TargetOpcode::G_UNMERGE_VALUES:
2099     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2100   case TargetOpcode::G_SADDO:
2101   case TargetOpcode::G_SSUBO:
2102   case TargetOpcode::G_UADDO:
2103   case TargetOpcode::G_USUBO:
2104   case TargetOpcode::G_SADDE:
2105   case TargetOpcode::G_SSUBE:
2106   case TargetOpcode::G_UADDE:
2107   case TargetOpcode::G_USUBE:
2108     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2109   case TargetOpcode::G_UMULO:
2110   case TargetOpcode::G_SMULO:
2111     return widenScalarMulo(MI, TypeIdx, WideTy);
2112   case TargetOpcode::G_SADDSAT:
2113   case TargetOpcode::G_SSUBSAT:
2114   case TargetOpcode::G_SSHLSAT:
2115   case TargetOpcode::G_UADDSAT:
2116   case TargetOpcode::G_USUBSAT:
2117   case TargetOpcode::G_USHLSAT:
2118     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2119   case TargetOpcode::G_CTTZ:
2120   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2121   case TargetOpcode::G_CTLZ:
2122   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2123   case TargetOpcode::G_CTPOP: {
2124     if (TypeIdx == 0) {
2125       Observer.changingInstr(MI);
2126       widenScalarDst(MI, WideTy, 0);
2127       Observer.changedInstr(MI);
2128       return Legalized;
2129     }
2130 
2131     Register SrcReg = MI.getOperand(1).getReg();
2132 
2133     // First extend the input.
2134     unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ ||
2135                               MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF
2136                           ? TargetOpcode::G_ANYEXT
2137                           : TargetOpcode::G_ZEXT;
2138     auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg});
2139     LLT CurTy = MRI.getType(SrcReg);
2140     unsigned NewOpc = MI.getOpcode();
2141     if (NewOpc == TargetOpcode::G_CTTZ) {
2142       // The count is the same in the larger type except if the original
2143       // value was zero.  This can be handled by setting the bit just off
2144       // the top of the original type.
2145       auto TopBit =
2146           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2147       MIBSrc = MIRBuilder.buildOr(
2148         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2149       // Now we know the operand is non-zero, use the more relaxed opcode.
2150       NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF;
2151     }
2152 
2153     // Perform the operation at the larger size.
2154     auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc});
2155     // This is already the correct result for CTPOP and CTTZs
2156     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
2157         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2158       // The correct result is NewOp - (Difference in widety and current ty).
2159       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2160       MIBNewOp = MIRBuilder.buildSub(
2161           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2162     }
2163 
2164     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2165     MI.eraseFromParent();
2166     return Legalized;
2167   }
2168   case TargetOpcode::G_BSWAP: {
2169     Observer.changingInstr(MI);
2170     Register DstReg = MI.getOperand(0).getReg();
2171 
2172     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2173     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2174     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2175     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2176 
2177     MI.getOperand(0).setReg(DstExt);
2178 
2179     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2180 
2181     LLT Ty = MRI.getType(DstReg);
2182     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2183     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2184     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2185 
2186     MIRBuilder.buildTrunc(DstReg, ShrReg);
2187     Observer.changedInstr(MI);
2188     return Legalized;
2189   }
2190   case TargetOpcode::G_BITREVERSE: {
2191     Observer.changingInstr(MI);
2192 
2193     Register DstReg = MI.getOperand(0).getReg();
2194     LLT Ty = MRI.getType(DstReg);
2195     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2196 
2197     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2198     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2199     MI.getOperand(0).setReg(DstExt);
2200     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2201 
2202     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2203     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2204     MIRBuilder.buildTrunc(DstReg, Shift);
2205     Observer.changedInstr(MI);
2206     return Legalized;
2207   }
2208   case TargetOpcode::G_FREEZE:
2209     Observer.changingInstr(MI);
2210     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2211     widenScalarDst(MI, WideTy);
2212     Observer.changedInstr(MI);
2213     return Legalized;
2214 
2215   case TargetOpcode::G_ABS:
2216     Observer.changingInstr(MI);
2217     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2218     widenScalarDst(MI, WideTy);
2219     Observer.changedInstr(MI);
2220     return Legalized;
2221 
2222   case TargetOpcode::G_ADD:
2223   case TargetOpcode::G_AND:
2224   case TargetOpcode::G_MUL:
2225   case TargetOpcode::G_OR:
2226   case TargetOpcode::G_XOR:
2227   case TargetOpcode::G_SUB:
2228     // Perform operation at larger width (any extension is fines here, high bits
2229     // don't affect the result) and then truncate the result back to the
2230     // original type.
2231     Observer.changingInstr(MI);
2232     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2233     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2234     widenScalarDst(MI, WideTy);
2235     Observer.changedInstr(MI);
2236     return Legalized;
2237 
2238   case TargetOpcode::G_SBFX:
2239   case TargetOpcode::G_UBFX:
2240     Observer.changingInstr(MI);
2241 
2242     if (TypeIdx == 0) {
2243       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2244       widenScalarDst(MI, WideTy);
2245     } else {
2246       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2247       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2248     }
2249 
2250     Observer.changedInstr(MI);
2251     return Legalized;
2252 
2253   case TargetOpcode::G_SHL:
2254     Observer.changingInstr(MI);
2255 
2256     if (TypeIdx == 0) {
2257       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2258       widenScalarDst(MI, WideTy);
2259     } else {
2260       assert(TypeIdx == 1);
2261       // The "number of bits to shift" operand must preserve its value as an
2262       // unsigned integer:
2263       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2264     }
2265 
2266     Observer.changedInstr(MI);
2267     return Legalized;
2268 
2269   case TargetOpcode::G_SDIV:
2270   case TargetOpcode::G_SREM:
2271   case TargetOpcode::G_SMIN:
2272   case TargetOpcode::G_SMAX:
2273     Observer.changingInstr(MI);
2274     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2275     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2276     widenScalarDst(MI, WideTy);
2277     Observer.changedInstr(MI);
2278     return Legalized;
2279 
2280   case TargetOpcode::G_SDIVREM:
2281     Observer.changingInstr(MI);
2282     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2283     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2284     widenScalarDst(MI, WideTy);
2285     widenScalarDst(MI, WideTy, 1);
2286     Observer.changedInstr(MI);
2287     return Legalized;
2288 
2289   case TargetOpcode::G_ASHR:
2290   case TargetOpcode::G_LSHR:
2291     Observer.changingInstr(MI);
2292 
2293     if (TypeIdx == 0) {
2294       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2295         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2296 
2297       widenScalarSrc(MI, WideTy, 1, CvtOp);
2298       widenScalarDst(MI, WideTy);
2299     } else {
2300       assert(TypeIdx == 1);
2301       // The "number of bits to shift" operand must preserve its value as an
2302       // unsigned integer:
2303       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2304     }
2305 
2306     Observer.changedInstr(MI);
2307     return Legalized;
2308   case TargetOpcode::G_UDIV:
2309   case TargetOpcode::G_UREM:
2310   case TargetOpcode::G_UMIN:
2311   case TargetOpcode::G_UMAX:
2312     Observer.changingInstr(MI);
2313     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2314     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2315     widenScalarDst(MI, WideTy);
2316     Observer.changedInstr(MI);
2317     return Legalized;
2318 
2319   case TargetOpcode::G_UDIVREM:
2320     Observer.changingInstr(MI);
2321     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2322     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2323     widenScalarDst(MI, WideTy);
2324     widenScalarDst(MI, WideTy, 1);
2325     Observer.changedInstr(MI);
2326     return Legalized;
2327 
2328   case TargetOpcode::G_SELECT:
2329     Observer.changingInstr(MI);
2330     if (TypeIdx == 0) {
2331       // Perform operation at larger width (any extension is fine here, high
2332       // bits don't affect the result) and then truncate the result back to the
2333       // original type.
2334       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2335       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2336       widenScalarDst(MI, WideTy);
2337     } else {
2338       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2339       // Explicit extension is required here since high bits affect the result.
2340       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2341     }
2342     Observer.changedInstr(MI);
2343     return Legalized;
2344 
2345   case TargetOpcode::G_FPTOSI:
2346   case TargetOpcode::G_FPTOUI:
2347     Observer.changingInstr(MI);
2348 
2349     if (TypeIdx == 0)
2350       widenScalarDst(MI, WideTy);
2351     else
2352       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2353 
2354     Observer.changedInstr(MI);
2355     return Legalized;
2356   case TargetOpcode::G_SITOFP:
2357     Observer.changingInstr(MI);
2358 
2359     if (TypeIdx == 0)
2360       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2361     else
2362       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2363 
2364     Observer.changedInstr(MI);
2365     return Legalized;
2366   case TargetOpcode::G_UITOFP:
2367     Observer.changingInstr(MI);
2368 
2369     if (TypeIdx == 0)
2370       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2371     else
2372       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2373 
2374     Observer.changedInstr(MI);
2375     return Legalized;
2376   case TargetOpcode::G_LOAD:
2377   case TargetOpcode::G_SEXTLOAD:
2378   case TargetOpcode::G_ZEXTLOAD:
2379     Observer.changingInstr(MI);
2380     widenScalarDst(MI, WideTy);
2381     Observer.changedInstr(MI);
2382     return Legalized;
2383 
2384   case TargetOpcode::G_STORE: {
2385     if (TypeIdx != 0)
2386       return UnableToLegalize;
2387 
2388     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2389     if (!Ty.isScalar())
2390       return UnableToLegalize;
2391 
2392     Observer.changingInstr(MI);
2393 
2394     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2395       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2396     widenScalarSrc(MI, WideTy, 0, ExtType);
2397 
2398     Observer.changedInstr(MI);
2399     return Legalized;
2400   }
2401   case TargetOpcode::G_CONSTANT: {
2402     MachineOperand &SrcMO = MI.getOperand(1);
2403     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2404     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2405         MRI.getType(MI.getOperand(0).getReg()));
2406     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2407             ExtOpc == TargetOpcode::G_ANYEXT) &&
2408            "Illegal Extend");
2409     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2410     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2411                            ? SrcVal.sext(WideTy.getSizeInBits())
2412                            : SrcVal.zext(WideTy.getSizeInBits());
2413     Observer.changingInstr(MI);
2414     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2415 
2416     widenScalarDst(MI, WideTy);
2417     Observer.changedInstr(MI);
2418     return Legalized;
2419   }
2420   case TargetOpcode::G_FCONSTANT: {
2421     MachineOperand &SrcMO = MI.getOperand(1);
2422     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2423     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2424     bool LosesInfo;
2425     switch (WideTy.getSizeInBits()) {
2426     case 32:
2427       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2428                   &LosesInfo);
2429       break;
2430     case 64:
2431       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2432                   &LosesInfo);
2433       break;
2434     default:
2435       return UnableToLegalize;
2436     }
2437 
2438     assert(!LosesInfo && "extend should always be lossless");
2439 
2440     Observer.changingInstr(MI);
2441     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2442 
2443     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2444     Observer.changedInstr(MI);
2445     return Legalized;
2446   }
2447   case TargetOpcode::G_IMPLICIT_DEF: {
2448     Observer.changingInstr(MI);
2449     widenScalarDst(MI, WideTy);
2450     Observer.changedInstr(MI);
2451     return Legalized;
2452   }
2453   case TargetOpcode::G_BRCOND:
2454     Observer.changingInstr(MI);
2455     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2456     Observer.changedInstr(MI);
2457     return Legalized;
2458 
2459   case TargetOpcode::G_FCMP:
2460     Observer.changingInstr(MI);
2461     if (TypeIdx == 0)
2462       widenScalarDst(MI, WideTy);
2463     else {
2464       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2465       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2466     }
2467     Observer.changedInstr(MI);
2468     return Legalized;
2469 
2470   case TargetOpcode::G_ICMP:
2471     Observer.changingInstr(MI);
2472     if (TypeIdx == 0)
2473       widenScalarDst(MI, WideTy);
2474     else {
2475       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2476                                MI.getOperand(1).getPredicate()))
2477                                ? TargetOpcode::G_SEXT
2478                                : TargetOpcode::G_ZEXT;
2479       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2480       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2481     }
2482     Observer.changedInstr(MI);
2483     return Legalized;
2484 
2485   case TargetOpcode::G_PTR_ADD:
2486     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2487     Observer.changingInstr(MI);
2488     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2489     Observer.changedInstr(MI);
2490     return Legalized;
2491 
2492   case TargetOpcode::G_PHI: {
2493     assert(TypeIdx == 0 && "Expecting only Idx 0");
2494 
2495     Observer.changingInstr(MI);
2496     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2497       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2498       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2499       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2500     }
2501 
2502     MachineBasicBlock &MBB = *MI.getParent();
2503     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2504     widenScalarDst(MI, WideTy);
2505     Observer.changedInstr(MI);
2506     return Legalized;
2507   }
2508   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2509     if (TypeIdx == 0) {
2510       Register VecReg = MI.getOperand(1).getReg();
2511       LLT VecTy = MRI.getType(VecReg);
2512       Observer.changingInstr(MI);
2513 
2514       widenScalarSrc(
2515           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2516           TargetOpcode::G_ANYEXT);
2517 
2518       widenScalarDst(MI, WideTy, 0);
2519       Observer.changedInstr(MI);
2520       return Legalized;
2521     }
2522 
2523     if (TypeIdx != 2)
2524       return UnableToLegalize;
2525     Observer.changingInstr(MI);
2526     // TODO: Probably should be zext
2527     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2528     Observer.changedInstr(MI);
2529     return Legalized;
2530   }
2531   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2532     if (TypeIdx == 1) {
2533       Observer.changingInstr(MI);
2534 
2535       Register VecReg = MI.getOperand(1).getReg();
2536       LLT VecTy = MRI.getType(VecReg);
2537       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2538 
2539       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2540       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2541       widenScalarDst(MI, WideVecTy, 0);
2542       Observer.changedInstr(MI);
2543       return Legalized;
2544     }
2545 
2546     if (TypeIdx == 2) {
2547       Observer.changingInstr(MI);
2548       // TODO: Probably should be zext
2549       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2550       Observer.changedInstr(MI);
2551       return Legalized;
2552     }
2553 
2554     return UnableToLegalize;
2555   }
2556   case TargetOpcode::G_FADD:
2557   case TargetOpcode::G_FMUL:
2558   case TargetOpcode::G_FSUB:
2559   case TargetOpcode::G_FMA:
2560   case TargetOpcode::G_FMAD:
2561   case TargetOpcode::G_FNEG:
2562   case TargetOpcode::G_FABS:
2563   case TargetOpcode::G_FCANONICALIZE:
2564   case TargetOpcode::G_FMINNUM:
2565   case TargetOpcode::G_FMAXNUM:
2566   case TargetOpcode::G_FMINNUM_IEEE:
2567   case TargetOpcode::G_FMAXNUM_IEEE:
2568   case TargetOpcode::G_FMINIMUM:
2569   case TargetOpcode::G_FMAXIMUM:
2570   case TargetOpcode::G_FDIV:
2571   case TargetOpcode::G_FREM:
2572   case TargetOpcode::G_FCEIL:
2573   case TargetOpcode::G_FFLOOR:
2574   case TargetOpcode::G_FCOS:
2575   case TargetOpcode::G_FSIN:
2576   case TargetOpcode::G_FLOG10:
2577   case TargetOpcode::G_FLOG:
2578   case TargetOpcode::G_FLOG2:
2579   case TargetOpcode::G_FRINT:
2580   case TargetOpcode::G_FNEARBYINT:
2581   case TargetOpcode::G_FSQRT:
2582   case TargetOpcode::G_FEXP:
2583   case TargetOpcode::G_FEXP2:
2584   case TargetOpcode::G_FPOW:
2585   case TargetOpcode::G_INTRINSIC_TRUNC:
2586   case TargetOpcode::G_INTRINSIC_ROUND:
2587   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2588     assert(TypeIdx == 0);
2589     Observer.changingInstr(MI);
2590 
2591     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2592       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2593 
2594     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2595     Observer.changedInstr(MI);
2596     return Legalized;
2597   case TargetOpcode::G_FPOWI: {
2598     if (TypeIdx != 0)
2599       return UnableToLegalize;
2600     Observer.changingInstr(MI);
2601     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2602     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2603     Observer.changedInstr(MI);
2604     return Legalized;
2605   }
2606   case TargetOpcode::G_INTTOPTR:
2607     if (TypeIdx != 1)
2608       return UnableToLegalize;
2609 
2610     Observer.changingInstr(MI);
2611     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2612     Observer.changedInstr(MI);
2613     return Legalized;
2614   case TargetOpcode::G_PTRTOINT:
2615     if (TypeIdx != 0)
2616       return UnableToLegalize;
2617 
2618     Observer.changingInstr(MI);
2619     widenScalarDst(MI, WideTy, 0);
2620     Observer.changedInstr(MI);
2621     return Legalized;
2622   case TargetOpcode::G_BUILD_VECTOR: {
2623     Observer.changingInstr(MI);
2624 
2625     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2626     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2627       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2628 
2629     // Avoid changing the result vector type if the source element type was
2630     // requested.
2631     if (TypeIdx == 1) {
2632       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2633     } else {
2634       widenScalarDst(MI, WideTy, 0);
2635     }
2636 
2637     Observer.changedInstr(MI);
2638     return Legalized;
2639   }
2640   case TargetOpcode::G_SEXT_INREG:
2641     if (TypeIdx != 0)
2642       return UnableToLegalize;
2643 
2644     Observer.changingInstr(MI);
2645     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2646     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2647     Observer.changedInstr(MI);
2648     return Legalized;
2649   case TargetOpcode::G_PTRMASK: {
2650     if (TypeIdx != 1)
2651       return UnableToLegalize;
2652     Observer.changingInstr(MI);
2653     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2654     Observer.changedInstr(MI);
2655     return Legalized;
2656   }
2657   }
2658 }
2659 
2660 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2661                              MachineIRBuilder &B, Register Src, LLT Ty) {
2662   auto Unmerge = B.buildUnmerge(Ty, Src);
2663   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2664     Pieces.push_back(Unmerge.getReg(I));
2665 }
2666 
2667 LegalizerHelper::LegalizeResult
2668 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2669   Register Dst = MI.getOperand(0).getReg();
2670   Register Src = MI.getOperand(1).getReg();
2671   LLT DstTy = MRI.getType(Dst);
2672   LLT SrcTy = MRI.getType(Src);
2673 
2674   if (SrcTy.isVector()) {
2675     LLT SrcEltTy = SrcTy.getElementType();
2676     SmallVector<Register, 8> SrcRegs;
2677 
2678     if (DstTy.isVector()) {
2679       int NumDstElt = DstTy.getNumElements();
2680       int NumSrcElt = SrcTy.getNumElements();
2681 
2682       LLT DstEltTy = DstTy.getElementType();
2683       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2684       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2685 
2686       // If there's an element size mismatch, insert intermediate casts to match
2687       // the result element type.
2688       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2689         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2690         //
2691         // =>
2692         //
2693         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2694         // %3:_(<2 x s8>) = G_BITCAST %2
2695         // %4:_(<2 x s8>) = G_BITCAST %3
2696         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2697         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2698         SrcPartTy = SrcEltTy;
2699       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2700         //
2701         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2702         //
2703         // =>
2704         //
2705         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2706         // %3:_(s16) = G_BITCAST %2
2707         // %4:_(s16) = G_BITCAST %3
2708         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2709         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2710         DstCastTy = DstEltTy;
2711       }
2712 
2713       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2714       for (Register &SrcReg : SrcRegs)
2715         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2716     } else
2717       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2718 
2719     MIRBuilder.buildMerge(Dst, SrcRegs);
2720     MI.eraseFromParent();
2721     return Legalized;
2722   }
2723 
2724   if (DstTy.isVector()) {
2725     SmallVector<Register, 8> SrcRegs;
2726     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2727     MIRBuilder.buildMerge(Dst, SrcRegs);
2728     MI.eraseFromParent();
2729     return Legalized;
2730   }
2731 
2732   return UnableToLegalize;
2733 }
2734 
2735 /// Figure out the bit offset into a register when coercing a vector index for
2736 /// the wide element type. This is only for the case when promoting vector to
2737 /// one with larger elements.
2738 //
2739 ///
2740 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2741 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2742 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2743                                                    Register Idx,
2744                                                    unsigned NewEltSize,
2745                                                    unsigned OldEltSize) {
2746   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2747   LLT IdxTy = B.getMRI()->getType(Idx);
2748 
2749   // Now figure out the amount we need to shift to get the target bits.
2750   auto OffsetMask = B.buildConstant(
2751       IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio));
2752   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2753   return B.buildShl(IdxTy, OffsetIdx,
2754                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2755 }
2756 
2757 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2758 /// is casting to a vector with a smaller element size, perform multiple element
2759 /// extracts and merge the results. If this is coercing to a vector with larger
2760 /// elements, index the bitcasted vector and extract the target element with bit
2761 /// operations. This is intended to force the indexing in the native register
2762 /// size for architectures that can dynamically index the register file.
2763 LegalizerHelper::LegalizeResult
2764 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2765                                          LLT CastTy) {
2766   if (TypeIdx != 1)
2767     return UnableToLegalize;
2768 
2769   Register Dst = MI.getOperand(0).getReg();
2770   Register SrcVec = MI.getOperand(1).getReg();
2771   Register Idx = MI.getOperand(2).getReg();
2772   LLT SrcVecTy = MRI.getType(SrcVec);
2773   LLT IdxTy = MRI.getType(Idx);
2774 
2775   LLT SrcEltTy = SrcVecTy.getElementType();
2776   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2777   unsigned OldNumElts = SrcVecTy.getNumElements();
2778 
2779   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2780   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2781 
2782   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2783   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2784   if (NewNumElts > OldNumElts) {
2785     // Decreasing the vector element size
2786     //
2787     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2788     //  =>
2789     //  v4i32:castx = bitcast x:v2i64
2790     //
2791     // i64 = bitcast
2792     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2793     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2794     //
2795     if (NewNumElts % OldNumElts != 0)
2796       return UnableToLegalize;
2797 
2798     // Type of the intermediate result vector.
2799     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2800     LLT MidTy =
2801         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2802 
2803     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2804 
2805     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2806     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2807 
2808     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2809       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2810       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2811       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2812       NewOps[I] = Elt.getReg(0);
2813     }
2814 
2815     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2816     MIRBuilder.buildBitcast(Dst, NewVec);
2817     MI.eraseFromParent();
2818     return Legalized;
2819   }
2820 
2821   if (NewNumElts < OldNumElts) {
2822     if (NewEltSize % OldEltSize != 0)
2823       return UnableToLegalize;
2824 
2825     // This only depends on powers of 2 because we use bit tricks to figure out
2826     // the bit offset we need to shift to get the target element. A general
2827     // expansion could emit division/multiply.
2828     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2829       return UnableToLegalize;
2830 
2831     // Increasing the vector element size.
2832     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2833     //
2834     //   =>
2835     //
2836     // %cast = G_BITCAST %vec
2837     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2838     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2839     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2840     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2841     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2842     // %elt = G_TRUNC %elt_bits
2843 
2844     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2845     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2846 
2847     // Divide to get the index in the wider element type.
2848     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2849 
2850     Register WideElt = CastVec;
2851     if (CastTy.isVector()) {
2852       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2853                                                      ScaledIdx).getReg(0);
2854     }
2855 
2856     // Compute the bit offset into the register of the target element.
2857     Register OffsetBits = getBitcastWiderVectorElementOffset(
2858       MIRBuilder, Idx, NewEltSize, OldEltSize);
2859 
2860     // Shift the wide element to get the target element.
2861     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2862     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2863     MI.eraseFromParent();
2864     return Legalized;
2865   }
2866 
2867   return UnableToLegalize;
2868 }
2869 
2870 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2871 /// TargetReg, while preserving other bits in \p TargetReg.
2872 ///
2873 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2874 static Register buildBitFieldInsert(MachineIRBuilder &B,
2875                                     Register TargetReg, Register InsertReg,
2876                                     Register OffsetBits) {
2877   LLT TargetTy = B.getMRI()->getType(TargetReg);
2878   LLT InsertTy = B.getMRI()->getType(InsertReg);
2879   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2880   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2881 
2882   // Produce a bitmask of the value to insert
2883   auto EltMask = B.buildConstant(
2884     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2885                                    InsertTy.getSizeInBits()));
2886   // Shift it into position
2887   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2888   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2889 
2890   // Clear out the bits in the wide element
2891   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2892 
2893   // The value to insert has all zeros already, so stick it into the masked
2894   // wide element.
2895   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2896 }
2897 
2898 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2899 /// is increasing the element size, perform the indexing in the target element
2900 /// type, and use bit operations to insert at the element position. This is
2901 /// intended for architectures that can dynamically index the register file and
2902 /// want to force indexing in the native register size.
2903 LegalizerHelper::LegalizeResult
2904 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2905                                         LLT CastTy) {
2906   if (TypeIdx != 0)
2907     return UnableToLegalize;
2908 
2909   Register Dst = MI.getOperand(0).getReg();
2910   Register SrcVec = MI.getOperand(1).getReg();
2911   Register Val = MI.getOperand(2).getReg();
2912   Register Idx = MI.getOperand(3).getReg();
2913 
2914   LLT VecTy = MRI.getType(Dst);
2915   LLT IdxTy = MRI.getType(Idx);
2916 
2917   LLT VecEltTy = VecTy.getElementType();
2918   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2919   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2920   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2921 
2922   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2923   unsigned OldNumElts = VecTy.getNumElements();
2924 
2925   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2926   if (NewNumElts < OldNumElts) {
2927     if (NewEltSize % OldEltSize != 0)
2928       return UnableToLegalize;
2929 
2930     // This only depends on powers of 2 because we use bit tricks to figure out
2931     // the bit offset we need to shift to get the target element. A general
2932     // expansion could emit division/multiply.
2933     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2934       return UnableToLegalize;
2935 
2936     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2937     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2938 
2939     // Divide to get the index in the wider element type.
2940     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2941 
2942     Register ExtractedElt = CastVec;
2943     if (CastTy.isVector()) {
2944       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2945                                                           ScaledIdx).getReg(0);
2946     }
2947 
2948     // Compute the bit offset into the register of the target element.
2949     Register OffsetBits = getBitcastWiderVectorElementOffset(
2950       MIRBuilder, Idx, NewEltSize, OldEltSize);
2951 
2952     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2953                                                Val, OffsetBits);
2954     if (CastTy.isVector()) {
2955       InsertedElt = MIRBuilder.buildInsertVectorElement(
2956         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2957     }
2958 
2959     MIRBuilder.buildBitcast(Dst, InsertedElt);
2960     MI.eraseFromParent();
2961     return Legalized;
2962   }
2963 
2964   return UnableToLegalize;
2965 }
2966 
2967 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
2968   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2969   Register DstReg = LoadMI.getDstReg();
2970   Register PtrReg = LoadMI.getPointerReg();
2971   LLT DstTy = MRI.getType(DstReg);
2972   MachineMemOperand &MMO = LoadMI.getMMO();
2973   LLT MemTy = MMO.getMemoryType();
2974   MachineFunction &MF = MIRBuilder.getMF();
2975 
2976   unsigned MemSizeInBits = MemTy.getSizeInBits();
2977   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2978 
2979   if (MemSizeInBits != MemStoreSizeInBits) {
2980     if (MemTy.isVector())
2981       return UnableToLegalize;
2982 
2983     // Promote to a byte-sized load if not loading an integral number of
2984     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2985     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2986     MachineMemOperand *NewMMO =
2987         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2988 
2989     Register LoadReg = DstReg;
2990     LLT LoadTy = DstTy;
2991 
2992     // If this wasn't already an extending load, we need to widen the result
2993     // register to avoid creating a load with a narrower result than the source.
2994     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2995       LoadTy = WideMemTy;
2996       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2997     }
2998 
2999     if (isa<GSExtLoad>(LoadMI)) {
3000       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
3001       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
3002     } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) {
3003       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
3004       // The extra bits are guaranteed to be zero, since we stored them that
3005       // way.  A zext load from Wide thus automatically gives zext from MemVT.
3006       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
3007     } else {
3008       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
3009     }
3010 
3011     if (DstTy != LoadTy)
3012       MIRBuilder.buildTrunc(DstReg, LoadReg);
3013 
3014     LoadMI.eraseFromParent();
3015     return Legalized;
3016   }
3017 
3018   // Big endian lowering not implemented.
3019   if (MIRBuilder.getDataLayout().isBigEndian())
3020     return UnableToLegalize;
3021 
3022   // This load needs splitting into power of 2 sized loads.
3023   //
3024   // Our strategy here is to generate anyextending loads for the smaller
3025   // types up to next power-2 result type, and then combine the two larger
3026   // result values together, before truncating back down to the non-pow-2
3027   // type.
3028   // E.g. v1 = i24 load =>
3029   // v2 = i32 zextload (2 byte)
3030   // v3 = i32 load (1 byte)
3031   // v4 = i32 shl v3, 16
3032   // v5 = i32 or v4, v2
3033   // v1 = i24 trunc v5
3034   // By doing this we generate the correct truncate which should get
3035   // combined away as an artifact with a matching extend.
3036 
3037   uint64_t LargeSplitSize, SmallSplitSize;
3038 
3039   if (!isPowerOf2_32(MemSizeInBits)) {
3040     // This load needs splitting into power of 2 sized loads.
3041     LargeSplitSize = PowerOf2Floor(MemSizeInBits);
3042     SmallSplitSize = MemSizeInBits - LargeSplitSize;
3043   } else {
3044     // This is already a power of 2, but we still need to split this in half.
3045     //
3046     // Assume we're being asked to decompose an unaligned load.
3047     // TODO: If this requires multiple splits, handle them all at once.
3048     auto &Ctx = MF.getFunction().getContext();
3049     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3050       return UnableToLegalize;
3051 
3052     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3053   }
3054 
3055   if (MemTy.isVector()) {
3056     // TODO: Handle vector extloads
3057     if (MemTy != DstTy)
3058       return UnableToLegalize;
3059 
3060     // TODO: We can do better than scalarizing the vector and at least split it
3061     // in half.
3062     return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
3063   }
3064 
3065   MachineMemOperand *LargeMMO =
3066       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3067   MachineMemOperand *SmallMMO =
3068       MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3069 
3070   LLT PtrTy = MRI.getType(PtrReg);
3071   unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
3072   LLT AnyExtTy = LLT::scalar(AnyExtSize);
3073   auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
3074                                              PtrReg, *LargeMMO);
3075 
3076   auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
3077                                             LargeSplitSize / 8);
3078   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
3079   auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
3080   auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
3081                                              SmallPtr, *SmallMMO);
3082 
3083   auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
3084   auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
3085 
3086   if (AnyExtTy == DstTy)
3087     MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
3088   else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
3089     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3090     MIRBuilder.buildTrunc(DstReg, {Or});
3091   } else {
3092     assert(DstTy.isPointer() && "expected pointer");
3093     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3094 
3095     // FIXME: We currently consider this to be illegal for non-integral address
3096     // spaces, but we need still need a way to reinterpret the bits.
3097     MIRBuilder.buildIntToPtr(DstReg, Or);
3098   }
3099 
3100   LoadMI.eraseFromParent();
3101   return Legalized;
3102 }
3103 
3104 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
3105   // Lower a non-power of 2 store into multiple pow-2 stores.
3106   // E.g. split an i24 store into an i16 store + i8 store.
3107   // We do this by first extending the stored value to the next largest power
3108   // of 2 type, and then using truncating stores to store the components.
3109   // By doing this, likewise with G_LOAD, generate an extend that can be
3110   // artifact-combined away instead of leaving behind extracts.
3111   Register SrcReg = StoreMI.getValueReg();
3112   Register PtrReg = StoreMI.getPointerReg();
3113   LLT SrcTy = MRI.getType(SrcReg);
3114   MachineFunction &MF = MIRBuilder.getMF();
3115   MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3116   LLT MemTy = MMO.getMemoryType();
3117 
3118   unsigned StoreWidth = MemTy.getSizeInBits();
3119   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3120 
3121   if (StoreWidth != StoreSizeInBits) {
3122     if (SrcTy.isVector())
3123       return UnableToLegalize;
3124 
3125     // Promote to a byte-sized store with upper bits zero if not
3126     // storing an integral number of bytes.  For example, promote
3127     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3128     LLT WideTy = LLT::scalar(StoreSizeInBits);
3129 
3130     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3131       // Avoid creating a store with a narrower source than result.
3132       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3133       SrcTy = WideTy;
3134     }
3135 
3136     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3137 
3138     MachineMemOperand *NewMMO =
3139         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3140     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3141     StoreMI.eraseFromParent();
3142     return Legalized;
3143   }
3144 
3145   if (MemTy.isVector()) {
3146     // TODO: Handle vector trunc stores
3147     if (MemTy != SrcTy)
3148       return UnableToLegalize;
3149 
3150     // TODO: We can do better than scalarizing the vector and at least split it
3151     // in half.
3152     return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
3153   }
3154 
3155   unsigned MemSizeInBits = MemTy.getSizeInBits();
3156   uint64_t LargeSplitSize, SmallSplitSize;
3157 
3158   if (!isPowerOf2_32(MemSizeInBits)) {
3159     LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
3160     SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3161   } else {
3162     auto &Ctx = MF.getFunction().getContext();
3163     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3164       return UnableToLegalize; // Don't know what we're being asked to do.
3165 
3166     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3167   }
3168 
3169   // Extend to the next pow-2. If this store was itself the result of lowering,
3170   // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3171   // that's wider than the stored size.
3172   unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
3173   const LLT NewSrcTy = LLT::scalar(AnyExtSize);
3174 
3175   if (SrcTy.isPointer()) {
3176     const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
3177     SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
3178   }
3179 
3180   auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3181 
3182   // Obtain the smaller value by shifting away the larger value.
3183   auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3184   auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3185 
3186   // Generate the PtrAdd and truncating stores.
3187   LLT PtrTy = MRI.getType(PtrReg);
3188   auto OffsetCst = MIRBuilder.buildConstant(
3189     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3190   auto SmallPtr =
3191     MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
3192 
3193   MachineMemOperand *LargeMMO =
3194     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3195   MachineMemOperand *SmallMMO =
3196     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3197   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3198   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3199   StoreMI.eraseFromParent();
3200   return Legalized;
3201 }
3202 
3203 LegalizerHelper::LegalizeResult
3204 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3205   switch (MI.getOpcode()) {
3206   case TargetOpcode::G_LOAD: {
3207     if (TypeIdx != 0)
3208       return UnableToLegalize;
3209     MachineMemOperand &MMO = **MI.memoperands_begin();
3210 
3211     // Not sure how to interpret a bitcast of an extending load.
3212     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3213       return UnableToLegalize;
3214 
3215     Observer.changingInstr(MI);
3216     bitcastDst(MI, CastTy, 0);
3217     MMO.setType(CastTy);
3218     Observer.changedInstr(MI);
3219     return Legalized;
3220   }
3221   case TargetOpcode::G_STORE: {
3222     if (TypeIdx != 0)
3223       return UnableToLegalize;
3224 
3225     MachineMemOperand &MMO = **MI.memoperands_begin();
3226 
3227     // Not sure how to interpret a bitcast of a truncating store.
3228     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3229       return UnableToLegalize;
3230 
3231     Observer.changingInstr(MI);
3232     bitcastSrc(MI, CastTy, 0);
3233     MMO.setType(CastTy);
3234     Observer.changedInstr(MI);
3235     return Legalized;
3236   }
3237   case TargetOpcode::G_SELECT: {
3238     if (TypeIdx != 0)
3239       return UnableToLegalize;
3240 
3241     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3242       LLVM_DEBUG(
3243           dbgs() << "bitcast action not implemented for vector select\n");
3244       return UnableToLegalize;
3245     }
3246 
3247     Observer.changingInstr(MI);
3248     bitcastSrc(MI, CastTy, 2);
3249     bitcastSrc(MI, CastTy, 3);
3250     bitcastDst(MI, CastTy, 0);
3251     Observer.changedInstr(MI);
3252     return Legalized;
3253   }
3254   case TargetOpcode::G_AND:
3255   case TargetOpcode::G_OR:
3256   case TargetOpcode::G_XOR: {
3257     Observer.changingInstr(MI);
3258     bitcastSrc(MI, CastTy, 1);
3259     bitcastSrc(MI, CastTy, 2);
3260     bitcastDst(MI, CastTy, 0);
3261     Observer.changedInstr(MI);
3262     return Legalized;
3263   }
3264   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3265     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3266   case TargetOpcode::G_INSERT_VECTOR_ELT:
3267     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3268   default:
3269     return UnableToLegalize;
3270   }
3271 }
3272 
3273 // Legalize an instruction by changing the opcode in place.
3274 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3275     Observer.changingInstr(MI);
3276     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3277     Observer.changedInstr(MI);
3278 }
3279 
3280 LegalizerHelper::LegalizeResult
3281 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3282   using namespace TargetOpcode;
3283 
3284   switch(MI.getOpcode()) {
3285   default:
3286     return UnableToLegalize;
3287   case TargetOpcode::G_BITCAST:
3288     return lowerBitcast(MI);
3289   case TargetOpcode::G_SREM:
3290   case TargetOpcode::G_UREM: {
3291     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3292     auto Quot =
3293         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3294                               {MI.getOperand(1), MI.getOperand(2)});
3295 
3296     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3297     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3298     MI.eraseFromParent();
3299     return Legalized;
3300   }
3301   case TargetOpcode::G_SADDO:
3302   case TargetOpcode::G_SSUBO:
3303     return lowerSADDO_SSUBO(MI);
3304   case TargetOpcode::G_UMULH:
3305   case TargetOpcode::G_SMULH:
3306     return lowerSMULH_UMULH(MI);
3307   case TargetOpcode::G_SMULO:
3308   case TargetOpcode::G_UMULO: {
3309     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3310     // result.
3311     Register Res = MI.getOperand(0).getReg();
3312     Register Overflow = MI.getOperand(1).getReg();
3313     Register LHS = MI.getOperand(2).getReg();
3314     Register RHS = MI.getOperand(3).getReg();
3315     LLT Ty = MRI.getType(Res);
3316 
3317     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3318                           ? TargetOpcode::G_SMULH
3319                           : TargetOpcode::G_UMULH;
3320 
3321     Observer.changingInstr(MI);
3322     const auto &TII = MIRBuilder.getTII();
3323     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3324     MI.removeOperand(1);
3325     Observer.changedInstr(MI);
3326 
3327     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3328     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3329 
3330     // Move insert point forward so we can use the Res register if needed.
3331     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3332 
3333     // For *signed* multiply, overflow is detected by checking:
3334     // (hi != (lo >> bitwidth-1))
3335     if (Opcode == TargetOpcode::G_SMULH) {
3336       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3337       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3338       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3339     } else {
3340       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3341     }
3342     return Legalized;
3343   }
3344   case TargetOpcode::G_FNEG: {
3345     Register Res = MI.getOperand(0).getReg();
3346     LLT Ty = MRI.getType(Res);
3347 
3348     // TODO: Handle vector types once we are able to
3349     // represent them.
3350     if (Ty.isVector())
3351       return UnableToLegalize;
3352     auto SignMask =
3353         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3354     Register SubByReg = MI.getOperand(1).getReg();
3355     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3356     MI.eraseFromParent();
3357     return Legalized;
3358   }
3359   case TargetOpcode::G_FSUB: {
3360     Register Res = MI.getOperand(0).getReg();
3361     LLT Ty = MRI.getType(Res);
3362 
3363     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3364     // First, check if G_FNEG is marked as Lower. If so, we may
3365     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3366     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3367       return UnableToLegalize;
3368     Register LHS = MI.getOperand(1).getReg();
3369     Register RHS = MI.getOperand(2).getReg();
3370     Register Neg = MRI.createGenericVirtualRegister(Ty);
3371     MIRBuilder.buildFNeg(Neg, RHS);
3372     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3373     MI.eraseFromParent();
3374     return Legalized;
3375   }
3376   case TargetOpcode::G_FMAD:
3377     return lowerFMad(MI);
3378   case TargetOpcode::G_FFLOOR:
3379     return lowerFFloor(MI);
3380   case TargetOpcode::G_INTRINSIC_ROUND:
3381     return lowerIntrinsicRound(MI);
3382   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3383     // Since round even is the assumed rounding mode for unconstrained FP
3384     // operations, rint and roundeven are the same operation.
3385     changeOpcode(MI, TargetOpcode::G_FRINT);
3386     return Legalized;
3387   }
3388   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3389     Register OldValRes = MI.getOperand(0).getReg();
3390     Register SuccessRes = MI.getOperand(1).getReg();
3391     Register Addr = MI.getOperand(2).getReg();
3392     Register CmpVal = MI.getOperand(3).getReg();
3393     Register NewVal = MI.getOperand(4).getReg();
3394     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3395                                   **MI.memoperands_begin());
3396     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3397     MI.eraseFromParent();
3398     return Legalized;
3399   }
3400   case TargetOpcode::G_LOAD:
3401   case TargetOpcode::G_SEXTLOAD:
3402   case TargetOpcode::G_ZEXTLOAD:
3403     return lowerLoad(cast<GAnyLoad>(MI));
3404   case TargetOpcode::G_STORE:
3405     return lowerStore(cast<GStore>(MI));
3406   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3407   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3408   case TargetOpcode::G_CTLZ:
3409   case TargetOpcode::G_CTTZ:
3410   case TargetOpcode::G_CTPOP:
3411     return lowerBitCount(MI);
3412   case G_UADDO: {
3413     Register Res = MI.getOperand(0).getReg();
3414     Register CarryOut = MI.getOperand(1).getReg();
3415     Register LHS = MI.getOperand(2).getReg();
3416     Register RHS = MI.getOperand(3).getReg();
3417 
3418     MIRBuilder.buildAdd(Res, LHS, RHS);
3419     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3420 
3421     MI.eraseFromParent();
3422     return Legalized;
3423   }
3424   case G_UADDE: {
3425     Register Res = MI.getOperand(0).getReg();
3426     Register CarryOut = MI.getOperand(1).getReg();
3427     Register LHS = MI.getOperand(2).getReg();
3428     Register RHS = MI.getOperand(3).getReg();
3429     Register CarryIn = MI.getOperand(4).getReg();
3430     LLT Ty = MRI.getType(Res);
3431 
3432     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3433     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3434     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3435     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3436 
3437     MI.eraseFromParent();
3438     return Legalized;
3439   }
3440   case G_USUBO: {
3441     Register Res = MI.getOperand(0).getReg();
3442     Register BorrowOut = MI.getOperand(1).getReg();
3443     Register LHS = MI.getOperand(2).getReg();
3444     Register RHS = MI.getOperand(3).getReg();
3445 
3446     MIRBuilder.buildSub(Res, LHS, RHS);
3447     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3448 
3449     MI.eraseFromParent();
3450     return Legalized;
3451   }
3452   case G_USUBE: {
3453     Register Res = MI.getOperand(0).getReg();
3454     Register BorrowOut = MI.getOperand(1).getReg();
3455     Register LHS = MI.getOperand(2).getReg();
3456     Register RHS = MI.getOperand(3).getReg();
3457     Register BorrowIn = MI.getOperand(4).getReg();
3458     const LLT CondTy = MRI.getType(BorrowOut);
3459     const LLT Ty = MRI.getType(Res);
3460 
3461     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3462     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3463     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3464 
3465     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3466     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3467     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3468 
3469     MI.eraseFromParent();
3470     return Legalized;
3471   }
3472   case G_UITOFP:
3473     return lowerUITOFP(MI);
3474   case G_SITOFP:
3475     return lowerSITOFP(MI);
3476   case G_FPTOUI:
3477     return lowerFPTOUI(MI);
3478   case G_FPTOSI:
3479     return lowerFPTOSI(MI);
3480   case G_FPTRUNC:
3481     return lowerFPTRUNC(MI);
3482   case G_FPOWI:
3483     return lowerFPOWI(MI);
3484   case G_SMIN:
3485   case G_SMAX:
3486   case G_UMIN:
3487   case G_UMAX:
3488     return lowerMinMax(MI);
3489   case G_FCOPYSIGN:
3490     return lowerFCopySign(MI);
3491   case G_FMINNUM:
3492   case G_FMAXNUM:
3493     return lowerFMinNumMaxNum(MI);
3494   case G_MERGE_VALUES:
3495     return lowerMergeValues(MI);
3496   case G_UNMERGE_VALUES:
3497     return lowerUnmergeValues(MI);
3498   case TargetOpcode::G_SEXT_INREG: {
3499     assert(MI.getOperand(2).isImm() && "Expected immediate");
3500     int64_t SizeInBits = MI.getOperand(2).getImm();
3501 
3502     Register DstReg = MI.getOperand(0).getReg();
3503     Register SrcReg = MI.getOperand(1).getReg();
3504     LLT DstTy = MRI.getType(DstReg);
3505     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3506 
3507     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3508     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3509     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3510     MI.eraseFromParent();
3511     return Legalized;
3512   }
3513   case G_EXTRACT_VECTOR_ELT:
3514   case G_INSERT_VECTOR_ELT:
3515     return lowerExtractInsertVectorElt(MI);
3516   case G_SHUFFLE_VECTOR:
3517     return lowerShuffleVector(MI);
3518   case G_DYN_STACKALLOC:
3519     return lowerDynStackAlloc(MI);
3520   case G_EXTRACT:
3521     return lowerExtract(MI);
3522   case G_INSERT:
3523     return lowerInsert(MI);
3524   case G_BSWAP:
3525     return lowerBswap(MI);
3526   case G_BITREVERSE:
3527     return lowerBitreverse(MI);
3528   case G_READ_REGISTER:
3529   case G_WRITE_REGISTER:
3530     return lowerReadWriteRegister(MI);
3531   case G_UADDSAT:
3532   case G_USUBSAT: {
3533     // Try to make a reasonable guess about which lowering strategy to use. The
3534     // target can override this with custom lowering and calling the
3535     // implementation functions.
3536     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3537     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3538       return lowerAddSubSatToMinMax(MI);
3539     return lowerAddSubSatToAddoSubo(MI);
3540   }
3541   case G_SADDSAT:
3542   case G_SSUBSAT: {
3543     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3544 
3545     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3546     // since it's a shorter expansion. However, we would need to figure out the
3547     // preferred boolean type for the carry out for the query.
3548     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3549       return lowerAddSubSatToMinMax(MI);
3550     return lowerAddSubSatToAddoSubo(MI);
3551   }
3552   case G_SSHLSAT:
3553   case G_USHLSAT:
3554     return lowerShlSat(MI);
3555   case G_ABS:
3556     return lowerAbsToAddXor(MI);
3557   case G_SELECT:
3558     return lowerSelect(MI);
3559   case G_SDIVREM:
3560   case G_UDIVREM:
3561     return lowerDIVREM(MI);
3562   case G_FSHL:
3563   case G_FSHR:
3564     return lowerFunnelShift(MI);
3565   case G_ROTL:
3566   case G_ROTR:
3567     return lowerRotate(MI);
3568   case G_MEMSET:
3569   case G_MEMCPY:
3570   case G_MEMMOVE:
3571     return lowerMemCpyFamily(MI);
3572   case G_MEMCPY_INLINE:
3573     return lowerMemcpyInline(MI);
3574   GISEL_VECREDUCE_CASES_NONSEQ
3575     return lowerVectorReduction(MI);
3576   }
3577 }
3578 
3579 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3580                                                   Align MinAlign) const {
3581   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3582   // datalayout for the preferred alignment. Also there should be a target hook
3583   // for this to allow targets to reduce the alignment and ignore the
3584   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3585   // the type.
3586   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3587 }
3588 
3589 MachineInstrBuilder
3590 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3591                                       MachinePointerInfo &PtrInfo) {
3592   MachineFunction &MF = MIRBuilder.getMF();
3593   const DataLayout &DL = MIRBuilder.getDataLayout();
3594   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3595 
3596   unsigned AddrSpace = DL.getAllocaAddrSpace();
3597   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3598 
3599   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3600   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3601 }
3602 
3603 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3604                                         LLT VecTy) {
3605   int64_t IdxVal;
3606   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3607     return IdxReg;
3608 
3609   LLT IdxTy = B.getMRI()->getType(IdxReg);
3610   unsigned NElts = VecTy.getNumElements();
3611   if (isPowerOf2_32(NElts)) {
3612     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3613     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3614   }
3615 
3616   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3617       .getReg(0);
3618 }
3619 
3620 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3621                                                   Register Index) {
3622   LLT EltTy = VecTy.getElementType();
3623 
3624   // Calculate the element offset and add it to the pointer.
3625   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3626   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3627          "Converting bits to bytes lost precision");
3628 
3629   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3630 
3631   LLT IdxTy = MRI.getType(Index);
3632   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3633                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3634 
3635   LLT PtrTy = MRI.getType(VecPtr);
3636   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3637 }
3638 
3639 #ifndef NDEBUG
3640 /// Check that all vector operands have same number of elements. Other operands
3641 /// should be listed in NonVecOp.
3642 static bool hasSameNumEltsOnAllVectorOperands(
3643     GenericMachineInstr &MI, MachineRegisterInfo &MRI,
3644     std::initializer_list<unsigned> NonVecOpIndices) {
3645   if (MI.getNumMemOperands() != 0)
3646     return false;
3647 
3648   LLT VecTy = MRI.getType(MI.getReg(0));
3649   if (!VecTy.isVector())
3650     return false;
3651   unsigned NumElts = VecTy.getNumElements();
3652 
3653   for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
3654     MachineOperand &Op = MI.getOperand(OpIdx);
3655     if (!Op.isReg()) {
3656       if (!is_contained(NonVecOpIndices, OpIdx))
3657         return false;
3658       continue;
3659     }
3660 
3661     LLT Ty = MRI.getType(Op.getReg());
3662     if (!Ty.isVector()) {
3663       if (!is_contained(NonVecOpIndices, OpIdx))
3664         return false;
3665       continue;
3666     }
3667 
3668     if (Ty.getNumElements() != NumElts)
3669       return false;
3670   }
3671 
3672   return true;
3673 }
3674 #endif
3675 
3676 /// Fill \p DstOps with DstOps that have same number of elements combined as
3677 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are
3678 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple
3679 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements.
3680 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty,
3681                        unsigned NumElts) {
3682   LLT LeftoverTy;
3683   assert(Ty.isVector() && "Expected vector type");
3684   LLT EltTy = Ty.getElementType();
3685   LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
3686   int NumParts, NumLeftover;
3687   std::tie(NumParts, NumLeftover) =
3688       getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy);
3689 
3690   assert(NumParts > 0 && "Error in getNarrowTypeBreakDown");
3691   for (int i = 0; i < NumParts; ++i) {
3692     DstOps.push_back(NarrowTy);
3693   }
3694 
3695   if (LeftoverTy.isValid()) {
3696     assert(NumLeftover == 1 && "expected exactly one leftover");
3697     DstOps.push_back(LeftoverTy);
3698   }
3699 }
3700 
3701 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps
3702 /// made from \p Op depending on operand type.
3703 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N,
3704                            MachineOperand &Op) {
3705   for (unsigned i = 0; i < N; ++i) {
3706     if (Op.isReg())
3707       Ops.push_back(Op.getReg());
3708     else if (Op.isImm())
3709       Ops.push_back(Op.getImm());
3710     else if (Op.isPredicate())
3711       Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate()));
3712     else
3713       llvm_unreachable("Unsupported type");
3714   }
3715 }
3716 
3717 // Handle splitting vector operations which need to have the same number of
3718 // elements in each type index, but each type index may have a different element
3719 // type.
3720 //
3721 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3722 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3723 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3724 //
3725 // Also handles some irregular breakdown cases, e.g.
3726 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3727 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3728 //             s64 = G_SHL s64, s32
3729 LegalizerHelper::LegalizeResult
3730 LegalizerHelper::fewerElementsVectorMultiEltType(
3731     GenericMachineInstr &MI, unsigned NumElts,
3732     std::initializer_list<unsigned> NonVecOpIndices) {
3733   assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) &&
3734          "Non-compatible opcode or not specified non-vector operands");
3735   unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3736 
3737   unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3738   unsigned NumDefs = MI.getNumDefs();
3739 
3740   // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output.
3741   // Build instructions with DstOps to use instruction found by CSE directly.
3742   // CSE copies found instruction into given vreg when building with vreg dest.
3743   SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs);
3744   // Output registers will be taken from created instructions.
3745   SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs);
3746   for (unsigned i = 0; i < NumDefs; ++i) {
3747     makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts);
3748   }
3749 
3750   // Split vector input operands into sub-vectors with NumElts elts + Leftover.
3751   // Operands listed in NonVecOpIndices will be used as is without splitting;
3752   // examples: compare predicate in icmp and fcmp (op 1), vector select with i1
3753   // scalar condition (op 1), immediate in sext_inreg (op 2).
3754   SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs);
3755   for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3756        ++UseIdx, ++UseNo) {
3757     if (is_contained(NonVecOpIndices, UseIdx)) {
3758       broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(),
3759                      MI.getOperand(UseIdx));
3760     } else {
3761       SmallVector<Register, 8> SplitPieces;
3762       extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces);
3763       for (auto Reg : SplitPieces)
3764         InputOpsPieces[UseNo].push_back(Reg);
3765     }
3766   }
3767 
3768   unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3769 
3770   // Take i-th piece of each input operand split and build sub-vector/scalar
3771   // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s).
3772   for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3773     SmallVector<DstOp, 2> Defs;
3774     for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3775       Defs.push_back(OutputOpsPieces[DstNo][i]);
3776 
3777     SmallVector<SrcOp, 3> Uses;
3778     for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo)
3779       Uses.push_back(InputOpsPieces[InputNo][i]);
3780 
3781     auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags());
3782     for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3783       OutputRegs[DstNo].push_back(I.getReg(DstNo));
3784   }
3785 
3786   // Merge small outputs into MI's output for each def operand.
3787   if (NumLeftovers) {
3788     for (unsigned i = 0; i < NumDefs; ++i)
3789       mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]);
3790   } else {
3791     for (unsigned i = 0; i < NumDefs; ++i)
3792       MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]);
3793   }
3794 
3795   MI.eraseFromParent();
3796   return Legalized;
3797 }
3798 
3799 LegalizerHelper::LegalizeResult
3800 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI,
3801                                         unsigned NumElts) {
3802   unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3803 
3804   unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3805   unsigned NumDefs = MI.getNumDefs();
3806 
3807   SmallVector<DstOp, 8> OutputOpsPieces;
3808   SmallVector<Register, 8> OutputRegs;
3809   makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts);
3810 
3811   // Instructions that perform register split will be inserted in basic block
3812   // where register is defined (basic block is in the next operand).
3813   SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2);
3814   for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3815        UseIdx += 2, ++UseNo) {
3816     MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB();
3817     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3818     extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]);
3819   }
3820 
3821   // Build PHIs with fewer elements.
3822   unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3823   MIRBuilder.setInsertPt(*MI.getParent(), MI);
3824   for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3825     auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
3826     Phi.addDef(
3827         MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI)));
3828     OutputRegs.push_back(Phi.getReg(0));
3829 
3830     for (unsigned j = 0; j < NumInputs / 2; ++j) {
3831       Phi.addUse(InputOpsPieces[j][i]);
3832       Phi.add(MI.getOperand(1 + j * 2 + 1));
3833     }
3834   }
3835 
3836   // Merge small outputs into MI's def.
3837   if (NumLeftovers) {
3838     mergeMixedSubvectors(MI.getReg(0), OutputRegs);
3839   } else {
3840     MIRBuilder.buildMerge(MI.getReg(0), OutputRegs);
3841   }
3842 
3843   MI.eraseFromParent();
3844   return Legalized;
3845 }
3846 
3847 LegalizerHelper::LegalizeResult
3848 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3849                                                   unsigned TypeIdx,
3850                                                   LLT NarrowTy) {
3851   const int NumDst = MI.getNumOperands() - 1;
3852   const Register SrcReg = MI.getOperand(NumDst).getReg();
3853   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3854   LLT SrcTy = MRI.getType(SrcReg);
3855 
3856   if (TypeIdx != 1 || NarrowTy == DstTy)
3857     return UnableToLegalize;
3858 
3859   // Requires compatible types. Otherwise SrcReg should have been defined by
3860   // merge-like instruction that would get artifact combined. Most likely
3861   // instruction that defines SrcReg has to perform more/fewer elements
3862   // legalization compatible with NarrowTy.
3863   assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types");
3864   assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3865 
3866   if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3867       (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0))
3868     return UnableToLegalize;
3869 
3870   // This is most likely DstTy (smaller then register size) packed in SrcTy
3871   // (larger then register size) and since unmerge was not combined it will be
3872   // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy
3873   // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy.
3874 
3875   // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy)
3876   //
3877   // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence
3878   // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg
3879   // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy)
3880   auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg);
3881   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3882   const int PartsPerUnmerge = NumDst / NumUnmerge;
3883 
3884   for (int I = 0; I != NumUnmerge; ++I) {
3885     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3886 
3887     for (int J = 0; J != PartsPerUnmerge; ++J)
3888       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3889     MIB.addUse(Unmerge.getReg(I));
3890   }
3891 
3892   MI.eraseFromParent();
3893   return Legalized;
3894 }
3895 
3896 LegalizerHelper::LegalizeResult
3897 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3898                                           LLT NarrowTy) {
3899   Register DstReg = MI.getOperand(0).getReg();
3900   LLT DstTy = MRI.getType(DstReg);
3901   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3902   // Requires compatible types. Otherwise user of DstReg did not perform unmerge
3903   // that should have been artifact combined. Most likely instruction that uses
3904   // DstReg has to do more/fewer elements legalization compatible with NarrowTy.
3905   assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types");
3906   assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3907   if (NarrowTy == SrcTy)
3908     return UnableToLegalize;
3909 
3910   // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use
3911   // is for old mir tests. Since the changes to more/fewer elements it should no
3912   // longer be possible to generate MIR like this when starting from llvm-ir
3913   // because LCMTy approach was replaced with merge/unmerge to vector elements.
3914   if (TypeIdx == 1) {
3915     assert(SrcTy.isVector() && "Expected vector types");
3916     assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3917     if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3918         (NarrowTy.getNumElements() >= SrcTy.getNumElements()))
3919       return UnableToLegalize;
3920     // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy)
3921     //
3922     // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy)
3923     // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy)
3924     // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4
3925     // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6
3926     // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8
3927     // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11
3928 
3929     SmallVector<Register, 8> Elts;
3930     LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType();
3931     for (unsigned i = 1; i < MI.getNumOperands(); ++i) {
3932       auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg());
3933       for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j)
3934         Elts.push_back(Unmerge.getReg(j));
3935     }
3936 
3937     SmallVector<Register, 8> NarrowTyElts;
3938     unsigned NumNarrowTyElts = NarrowTy.getNumElements();
3939     unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts;
3940     for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces;
3941          ++i, Offset += NumNarrowTyElts) {
3942       ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts);
3943       NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
3944     }
3945 
3946     MIRBuilder.buildMerge(DstReg, NarrowTyElts);
3947     MI.eraseFromParent();
3948     return Legalized;
3949   }
3950 
3951   assert(TypeIdx == 0 && "Bad type index");
3952   if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) ||
3953       (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0))
3954     return UnableToLegalize;
3955 
3956   // This is most likely SrcTy (smaller then register size) packed in DstTy
3957   // (larger then register size) and since merge was not combined it will be
3958   // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy
3959   // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy.
3960 
3961   // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4
3962   //
3963   // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg
3964   // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4
3965   // %0:_(DstTy)  = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence
3966   SmallVector<Register, 8> NarrowTyElts;
3967   unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3968   unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1;
3969   unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts;
3970   for (unsigned i = 0; i < NumParts; ++i) {
3971     SmallVector<Register, 8> Sources;
3972     for (unsigned j = 0; j < NumElts; ++j)
3973       Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg());
3974     NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0));
3975   }
3976 
3977   MIRBuilder.buildMerge(DstReg, NarrowTyElts);
3978   MI.eraseFromParent();
3979   return Legalized;
3980 }
3981 
3982 LegalizerHelper::LegalizeResult
3983 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3984                                                            unsigned TypeIdx,
3985                                                            LLT NarrowVecTy) {
3986   Register DstReg = MI.getOperand(0).getReg();
3987   Register SrcVec = MI.getOperand(1).getReg();
3988   Register InsertVal;
3989   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3990 
3991   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3992   if (IsInsert)
3993     InsertVal = MI.getOperand(2).getReg();
3994 
3995   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3996 
3997   // TODO: Handle total scalarization case.
3998   if (!NarrowVecTy.isVector())
3999     return UnableToLegalize;
4000 
4001   LLT VecTy = MRI.getType(SrcVec);
4002 
4003   // If the index is a constant, we can really break this down as you would
4004   // expect, and index into the target size pieces.
4005   int64_t IdxVal;
4006   auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI);
4007   if (MaybeCst) {
4008     IdxVal = MaybeCst->Value.getSExtValue();
4009     // Avoid out of bounds indexing the pieces.
4010     if (IdxVal >= VecTy.getNumElements()) {
4011       MIRBuilder.buildUndef(DstReg);
4012       MI.eraseFromParent();
4013       return Legalized;
4014     }
4015 
4016     SmallVector<Register, 8> VecParts;
4017     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
4018 
4019     // Build a sequence of NarrowTy pieces in VecParts for this operand.
4020     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
4021                                     TargetOpcode::G_ANYEXT);
4022 
4023     unsigned NewNumElts = NarrowVecTy.getNumElements();
4024 
4025     LLT IdxTy = MRI.getType(Idx);
4026     int64_t PartIdx = IdxVal / NewNumElts;
4027     auto NewIdx =
4028         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4029 
4030     if (IsInsert) {
4031       LLT PartTy = MRI.getType(VecParts[PartIdx]);
4032 
4033       // Use the adjusted index to insert into one of the subvectors.
4034       auto InsertPart = MIRBuilder.buildInsertVectorElement(
4035           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4036       VecParts[PartIdx] = InsertPart.getReg(0);
4037 
4038       // Recombine the inserted subvector with the others to reform the result
4039       // vector.
4040       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4041     } else {
4042       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4043     }
4044 
4045     MI.eraseFromParent();
4046     return Legalized;
4047   }
4048 
4049   // With a variable index, we can't perform the operation in a smaller type, so
4050   // we're forced to expand this.
4051   //
4052   // TODO: We could emit a chain of compare/select to figure out which piece to
4053   // index.
4054   return lowerExtractInsertVectorElt(MI);
4055 }
4056 
4057 LegalizerHelper::LegalizeResult
4058 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4059                                       LLT NarrowTy) {
4060   // FIXME: Don't know how to handle secondary types yet.
4061   if (TypeIdx != 0)
4062     return UnableToLegalize;
4063 
4064   // This implementation doesn't work for atomics. Give up instead of doing
4065   // something invalid.
4066   if (LdStMI.isAtomic())
4067     return UnableToLegalize;
4068 
4069   bool IsLoad = isa<GLoad>(LdStMI);
4070   Register ValReg = LdStMI.getReg(0);
4071   Register AddrReg = LdStMI.getPointerReg();
4072   LLT ValTy = MRI.getType(ValReg);
4073 
4074   // FIXME: Do we need a distinct NarrowMemory legalize action?
4075   if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
4076     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
4077     return UnableToLegalize;
4078   }
4079 
4080   int NumParts = -1;
4081   int NumLeftover = -1;
4082   LLT LeftoverTy;
4083   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4084   if (IsLoad) {
4085     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4086   } else {
4087     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4088                      NarrowLeftoverRegs)) {
4089       NumParts = NarrowRegs.size();
4090       NumLeftover = NarrowLeftoverRegs.size();
4091     }
4092   }
4093 
4094   if (NumParts == -1)
4095     return UnableToLegalize;
4096 
4097   LLT PtrTy = MRI.getType(AddrReg);
4098   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4099 
4100   unsigned TotalSize = ValTy.getSizeInBits();
4101 
4102   // Split the load/store into PartTy sized pieces starting at Offset. If this
4103   // is a load, return the new registers in ValRegs. For a store, each elements
4104   // of ValRegs should be PartTy. Returns the next offset that needs to be
4105   // handled.
4106   bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian();
4107   auto MMO = LdStMI.getMMO();
4108   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4109                              unsigned NumParts, unsigned Offset) -> unsigned {
4110     MachineFunction &MF = MIRBuilder.getMF();
4111     unsigned PartSize = PartTy.getSizeInBits();
4112     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4113          ++Idx) {
4114       unsigned ByteOffset = Offset / 8;
4115       Register NewAddrReg;
4116 
4117       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4118 
4119       MachineMemOperand *NewMMO =
4120           MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4121 
4122       if (IsLoad) {
4123         Register Dst = MRI.createGenericVirtualRegister(PartTy);
4124         ValRegs.push_back(Dst);
4125         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4126       } else {
4127         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4128       }
4129       Offset = isBigEndian ? Offset - PartSize : Offset + PartSize;
4130     }
4131 
4132     return Offset;
4133   };
4134 
4135   unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0;
4136   unsigned HandledOffset =
4137       splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset);
4138 
4139   // Handle the rest of the register if this isn't an even type breakdown.
4140   if (LeftoverTy.isValid())
4141     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset);
4142 
4143   if (IsLoad) {
4144     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4145                 LeftoverTy, NarrowLeftoverRegs);
4146   }
4147 
4148   LdStMI.eraseFromParent();
4149   return Legalized;
4150 }
4151 
4152 LegalizerHelper::LegalizeResult
4153 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4154                                      LLT NarrowTy) {
4155   using namespace TargetOpcode;
4156   GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI);
4157   unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
4158 
4159   switch (MI.getOpcode()) {
4160   case G_IMPLICIT_DEF:
4161   case G_TRUNC:
4162   case G_AND:
4163   case G_OR:
4164   case G_XOR:
4165   case G_ADD:
4166   case G_SUB:
4167   case G_MUL:
4168   case G_PTR_ADD:
4169   case G_SMULH:
4170   case G_UMULH:
4171   case G_FADD:
4172   case G_FMUL:
4173   case G_FSUB:
4174   case G_FNEG:
4175   case G_FABS:
4176   case G_FCANONICALIZE:
4177   case G_FDIV:
4178   case G_FREM:
4179   case G_FMA:
4180   case G_FMAD:
4181   case G_FPOW:
4182   case G_FEXP:
4183   case G_FEXP2:
4184   case G_FLOG:
4185   case G_FLOG2:
4186   case G_FLOG10:
4187   case G_FNEARBYINT:
4188   case G_FCEIL:
4189   case G_FFLOOR:
4190   case G_FRINT:
4191   case G_INTRINSIC_ROUND:
4192   case G_INTRINSIC_ROUNDEVEN:
4193   case G_INTRINSIC_TRUNC:
4194   case G_FCOS:
4195   case G_FSIN:
4196   case G_FSQRT:
4197   case G_BSWAP:
4198   case G_BITREVERSE:
4199   case G_SDIV:
4200   case G_UDIV:
4201   case G_SREM:
4202   case G_UREM:
4203   case G_SDIVREM:
4204   case G_UDIVREM:
4205   case G_SMIN:
4206   case G_SMAX:
4207   case G_UMIN:
4208   case G_UMAX:
4209   case G_ABS:
4210   case G_FMINNUM:
4211   case G_FMAXNUM:
4212   case G_FMINNUM_IEEE:
4213   case G_FMAXNUM_IEEE:
4214   case G_FMINIMUM:
4215   case G_FMAXIMUM:
4216   case G_FSHL:
4217   case G_FSHR:
4218   case G_ROTL:
4219   case G_ROTR:
4220   case G_FREEZE:
4221   case G_SADDSAT:
4222   case G_SSUBSAT:
4223   case G_UADDSAT:
4224   case G_USUBSAT:
4225   case G_UMULO:
4226   case G_SMULO:
4227   case G_SHL:
4228   case G_LSHR:
4229   case G_ASHR:
4230   case G_SSHLSAT:
4231   case G_USHLSAT:
4232   case G_CTLZ:
4233   case G_CTLZ_ZERO_UNDEF:
4234   case G_CTTZ:
4235   case G_CTTZ_ZERO_UNDEF:
4236   case G_CTPOP:
4237   case G_FCOPYSIGN:
4238   case G_ZEXT:
4239   case G_SEXT:
4240   case G_ANYEXT:
4241   case G_FPEXT:
4242   case G_FPTRUNC:
4243   case G_SITOFP:
4244   case G_UITOFP:
4245   case G_FPTOSI:
4246   case G_FPTOUI:
4247   case G_INTTOPTR:
4248   case G_PTRTOINT:
4249   case G_ADDRSPACE_CAST:
4250   case G_UADDO:
4251   case G_USUBO:
4252   case G_UADDE:
4253   case G_USUBE:
4254   case G_SADDO:
4255   case G_SSUBO:
4256   case G_SADDE:
4257   case G_SSUBE:
4258     return fewerElementsVectorMultiEltType(GMI, NumElts);
4259   case G_ICMP:
4260   case G_FCMP:
4261     return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/});
4262   case G_SELECT:
4263     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4264       return fewerElementsVectorMultiEltType(GMI, NumElts);
4265     return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/});
4266   case G_PHI:
4267     return fewerElementsVectorPhi(GMI, NumElts);
4268   case G_UNMERGE_VALUES:
4269     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4270   case G_BUILD_VECTOR:
4271     assert(TypeIdx == 0 && "not a vector type index");
4272     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4273   case G_CONCAT_VECTORS:
4274     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4275       return UnableToLegalize;
4276     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4277   case G_EXTRACT_VECTOR_ELT:
4278   case G_INSERT_VECTOR_ELT:
4279     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4280   case G_LOAD:
4281   case G_STORE:
4282     return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4283   case G_SEXT_INREG:
4284     return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/});
4285   GISEL_VECREDUCE_CASES_NONSEQ
4286     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4287   case G_SHUFFLE_VECTOR:
4288     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4289   default:
4290     return UnableToLegalize;
4291   }
4292 }
4293 
4294 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4295     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4296   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4297   if (TypeIdx != 0)
4298     return UnableToLegalize;
4299 
4300   Register DstReg = MI.getOperand(0).getReg();
4301   Register Src1Reg = MI.getOperand(1).getReg();
4302   Register Src2Reg = MI.getOperand(2).getReg();
4303   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4304   LLT DstTy = MRI.getType(DstReg);
4305   LLT Src1Ty = MRI.getType(Src1Reg);
4306   LLT Src2Ty = MRI.getType(Src2Reg);
4307   // The shuffle should be canonicalized by now.
4308   if (DstTy != Src1Ty)
4309     return UnableToLegalize;
4310   if (DstTy != Src2Ty)
4311     return UnableToLegalize;
4312 
4313   if (!isPowerOf2_32(DstTy.getNumElements()))
4314     return UnableToLegalize;
4315 
4316   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4317   // Further legalization attempts will be needed to do split further.
4318   NarrowTy =
4319       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4320   unsigned NewElts = NarrowTy.getNumElements();
4321 
4322   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4323   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4324   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4325   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4326                         SplitSrc2Regs[1]};
4327 
4328   Register Hi, Lo;
4329 
4330   // If Lo or Hi uses elements from at most two of the four input vectors, then
4331   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4332   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4333   SmallVector<int, 16> Ops;
4334   for (unsigned High = 0; High < 2; ++High) {
4335     Register &Output = High ? Hi : Lo;
4336 
4337     // Build a shuffle mask for the output, discovering on the fly which
4338     // input vectors to use as shuffle operands (recorded in InputUsed).
4339     // If building a suitable shuffle vector proves too hard, then bail
4340     // out with useBuildVector set.
4341     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4342     unsigned FirstMaskIdx = High * NewElts;
4343     bool UseBuildVector = false;
4344     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4345       // The mask element.  This indexes into the input.
4346       int Idx = Mask[FirstMaskIdx + MaskOffset];
4347 
4348       // The input vector this mask element indexes into.
4349       unsigned Input = (unsigned)Idx / NewElts;
4350 
4351       if (Input >= array_lengthof(Inputs)) {
4352         // The mask element does not index into any input vector.
4353         Ops.push_back(-1);
4354         continue;
4355       }
4356 
4357       // Turn the index into an offset from the start of the input vector.
4358       Idx -= Input * NewElts;
4359 
4360       // Find or create a shuffle vector operand to hold this input.
4361       unsigned OpNo;
4362       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4363         if (InputUsed[OpNo] == Input) {
4364           // This input vector is already an operand.
4365           break;
4366         } else if (InputUsed[OpNo] == -1U) {
4367           // Create a new operand for this input vector.
4368           InputUsed[OpNo] = Input;
4369           break;
4370         }
4371       }
4372 
4373       if (OpNo >= array_lengthof(InputUsed)) {
4374         // More than two input vectors used!  Give up on trying to create a
4375         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4376         UseBuildVector = true;
4377         break;
4378       }
4379 
4380       // Add the mask index for the new shuffle vector.
4381       Ops.push_back(Idx + OpNo * NewElts);
4382     }
4383 
4384     if (UseBuildVector) {
4385       LLT EltTy = NarrowTy.getElementType();
4386       SmallVector<Register, 16> SVOps;
4387 
4388       // Extract the input elements by hand.
4389       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4390         // The mask element.  This indexes into the input.
4391         int Idx = Mask[FirstMaskIdx + MaskOffset];
4392 
4393         // The input vector this mask element indexes into.
4394         unsigned Input = (unsigned)Idx / NewElts;
4395 
4396         if (Input >= array_lengthof(Inputs)) {
4397           // The mask element is "undef" or indexes off the end of the input.
4398           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4399           continue;
4400         }
4401 
4402         // Turn the index into an offset from the start of the input vector.
4403         Idx -= Input * NewElts;
4404 
4405         // Extract the vector element by hand.
4406         SVOps.push_back(MIRBuilder
4407                             .buildExtractVectorElement(
4408                                 EltTy, Inputs[Input],
4409                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4410                             .getReg(0));
4411       }
4412 
4413       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4414       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4415     } else if (InputUsed[0] == -1U) {
4416       // No input vectors were used! The result is undefined.
4417       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4418     } else {
4419       Register Op0 = Inputs[InputUsed[0]];
4420       // If only one input was used, use an undefined vector for the other.
4421       Register Op1 = InputUsed[1] == -1U
4422                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4423                          : Inputs[InputUsed[1]];
4424       // At least one input vector was used. Create a new shuffle vector.
4425       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4426     }
4427 
4428     Ops.clear();
4429   }
4430 
4431   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4432   MI.eraseFromParent();
4433   return Legalized;
4434 }
4435 
4436 static unsigned getScalarOpcForReduction(unsigned Opc) {
4437   unsigned ScalarOpc;
4438   switch (Opc) {
4439   case TargetOpcode::G_VECREDUCE_FADD:
4440     ScalarOpc = TargetOpcode::G_FADD;
4441     break;
4442   case TargetOpcode::G_VECREDUCE_FMUL:
4443     ScalarOpc = TargetOpcode::G_FMUL;
4444     break;
4445   case TargetOpcode::G_VECREDUCE_FMAX:
4446     ScalarOpc = TargetOpcode::G_FMAXNUM;
4447     break;
4448   case TargetOpcode::G_VECREDUCE_FMIN:
4449     ScalarOpc = TargetOpcode::G_FMINNUM;
4450     break;
4451   case TargetOpcode::G_VECREDUCE_ADD:
4452     ScalarOpc = TargetOpcode::G_ADD;
4453     break;
4454   case TargetOpcode::G_VECREDUCE_MUL:
4455     ScalarOpc = TargetOpcode::G_MUL;
4456     break;
4457   case TargetOpcode::G_VECREDUCE_AND:
4458     ScalarOpc = TargetOpcode::G_AND;
4459     break;
4460   case TargetOpcode::G_VECREDUCE_OR:
4461     ScalarOpc = TargetOpcode::G_OR;
4462     break;
4463   case TargetOpcode::G_VECREDUCE_XOR:
4464     ScalarOpc = TargetOpcode::G_XOR;
4465     break;
4466   case TargetOpcode::G_VECREDUCE_SMAX:
4467     ScalarOpc = TargetOpcode::G_SMAX;
4468     break;
4469   case TargetOpcode::G_VECREDUCE_SMIN:
4470     ScalarOpc = TargetOpcode::G_SMIN;
4471     break;
4472   case TargetOpcode::G_VECREDUCE_UMAX:
4473     ScalarOpc = TargetOpcode::G_UMAX;
4474     break;
4475   case TargetOpcode::G_VECREDUCE_UMIN:
4476     ScalarOpc = TargetOpcode::G_UMIN;
4477     break;
4478   default:
4479     llvm_unreachable("Unhandled reduction");
4480   }
4481   return ScalarOpc;
4482 }
4483 
4484 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4485     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4486   unsigned Opc = MI.getOpcode();
4487   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4488          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4489          "Sequential reductions not expected");
4490 
4491   if (TypeIdx != 1)
4492     return UnableToLegalize;
4493 
4494   // The semantics of the normal non-sequential reductions allow us to freely
4495   // re-associate the operation.
4496   Register SrcReg = MI.getOperand(1).getReg();
4497   LLT SrcTy = MRI.getType(SrcReg);
4498   Register DstReg = MI.getOperand(0).getReg();
4499   LLT DstTy = MRI.getType(DstReg);
4500 
4501   if (NarrowTy.isVector() &&
4502       (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0))
4503     return UnableToLegalize;
4504 
4505   unsigned ScalarOpc = getScalarOpcForReduction(Opc);
4506   SmallVector<Register> SplitSrcs;
4507   // If NarrowTy is a scalar then we're being asked to scalarize.
4508   const unsigned NumParts =
4509       NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements()
4510                           : SrcTy.getNumElements();
4511 
4512   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4513   if (NarrowTy.isScalar()) {
4514     if (DstTy != NarrowTy)
4515       return UnableToLegalize; // FIXME: handle implicit extensions.
4516 
4517     if (isPowerOf2_32(NumParts)) {
4518       // Generate a tree of scalar operations to reduce the critical path.
4519       SmallVector<Register> PartialResults;
4520       unsigned NumPartsLeft = NumParts;
4521       while (NumPartsLeft > 1) {
4522         for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) {
4523           PartialResults.emplace_back(
4524               MIRBuilder
4525                   .buildInstr(ScalarOpc, {NarrowTy},
4526                               {SplitSrcs[Idx], SplitSrcs[Idx + 1]})
4527                   .getReg(0));
4528         }
4529         SplitSrcs = PartialResults;
4530         PartialResults.clear();
4531         NumPartsLeft = SplitSrcs.size();
4532       }
4533       assert(SplitSrcs.size() == 1);
4534       MIRBuilder.buildCopy(DstReg, SplitSrcs[0]);
4535       MI.eraseFromParent();
4536       return Legalized;
4537     }
4538     // If we can't generate a tree, then just do sequential operations.
4539     Register Acc = SplitSrcs[0];
4540     for (unsigned Idx = 1; Idx < NumParts; ++Idx)
4541       Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]})
4542                 .getReg(0);
4543     MIRBuilder.buildCopy(DstReg, Acc);
4544     MI.eraseFromParent();
4545     return Legalized;
4546   }
4547   SmallVector<Register> PartialReductions;
4548   for (unsigned Part = 0; Part < NumParts; ++Part) {
4549     PartialReductions.push_back(
4550         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4551   }
4552 
4553 
4554   // If the types involved are powers of 2, we can generate intermediate vector
4555   // ops, before generating a final reduction operation.
4556   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4557       isPowerOf2_32(NarrowTy.getNumElements())) {
4558     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4559   }
4560 
4561   Register Acc = PartialReductions[0];
4562   for (unsigned Part = 1; Part < NumParts; ++Part) {
4563     if (Part == NumParts - 1) {
4564       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4565                             {Acc, PartialReductions[Part]});
4566     } else {
4567       Acc = MIRBuilder
4568                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4569                 .getReg(0);
4570     }
4571   }
4572   MI.eraseFromParent();
4573   return Legalized;
4574 }
4575 
4576 LegalizerHelper::LegalizeResult
4577 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4578                                         LLT SrcTy, LLT NarrowTy,
4579                                         unsigned ScalarOpc) {
4580   SmallVector<Register> SplitSrcs;
4581   // Split the sources into NarrowTy size pieces.
4582   extractParts(SrcReg, NarrowTy,
4583                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4584   // We're going to do a tree reduction using vector operations until we have
4585   // one NarrowTy size value left.
4586   while (SplitSrcs.size() > 1) {
4587     SmallVector<Register> PartialRdxs;
4588     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4589       Register LHS = SplitSrcs[Idx];
4590       Register RHS = SplitSrcs[Idx + 1];
4591       // Create the intermediate vector op.
4592       Register Res =
4593           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4594       PartialRdxs.push_back(Res);
4595     }
4596     SplitSrcs = std::move(PartialRdxs);
4597   }
4598   // Finally generate the requested NarrowTy based reduction.
4599   Observer.changingInstr(MI);
4600   MI.getOperand(1).setReg(SplitSrcs[0]);
4601   Observer.changedInstr(MI);
4602   return Legalized;
4603 }
4604 
4605 LegalizerHelper::LegalizeResult
4606 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4607                                              const LLT HalfTy, const LLT AmtTy) {
4608 
4609   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4610   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4611   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4612 
4613   if (Amt.isZero()) {
4614     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4615     MI.eraseFromParent();
4616     return Legalized;
4617   }
4618 
4619   LLT NVT = HalfTy;
4620   unsigned NVTBits = HalfTy.getSizeInBits();
4621   unsigned VTBits = 2 * NVTBits;
4622 
4623   SrcOp Lo(Register(0)), Hi(Register(0));
4624   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4625     if (Amt.ugt(VTBits)) {
4626       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4627     } else if (Amt.ugt(NVTBits)) {
4628       Lo = MIRBuilder.buildConstant(NVT, 0);
4629       Hi = MIRBuilder.buildShl(NVT, InL,
4630                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4631     } else if (Amt == NVTBits) {
4632       Lo = MIRBuilder.buildConstant(NVT, 0);
4633       Hi = InL;
4634     } else {
4635       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4636       auto OrLHS =
4637           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4638       auto OrRHS = MIRBuilder.buildLShr(
4639           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4640       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4641     }
4642   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4643     if (Amt.ugt(VTBits)) {
4644       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4645     } else if (Amt.ugt(NVTBits)) {
4646       Lo = MIRBuilder.buildLShr(NVT, InH,
4647                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4648       Hi = MIRBuilder.buildConstant(NVT, 0);
4649     } else if (Amt == NVTBits) {
4650       Lo = InH;
4651       Hi = MIRBuilder.buildConstant(NVT, 0);
4652     } else {
4653       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4654 
4655       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4656       auto OrRHS = MIRBuilder.buildShl(
4657           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4658 
4659       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4660       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4661     }
4662   } else {
4663     if (Amt.ugt(VTBits)) {
4664       Hi = Lo = MIRBuilder.buildAShr(
4665           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4666     } else if (Amt.ugt(NVTBits)) {
4667       Lo = MIRBuilder.buildAShr(NVT, InH,
4668                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4669       Hi = MIRBuilder.buildAShr(NVT, InH,
4670                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4671     } else if (Amt == NVTBits) {
4672       Lo = InH;
4673       Hi = MIRBuilder.buildAShr(NVT, InH,
4674                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4675     } else {
4676       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4677 
4678       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4679       auto OrRHS = MIRBuilder.buildShl(
4680           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4681 
4682       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4683       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4684     }
4685   }
4686 
4687   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4688   MI.eraseFromParent();
4689 
4690   return Legalized;
4691 }
4692 
4693 // TODO: Optimize if constant shift amount.
4694 LegalizerHelper::LegalizeResult
4695 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4696                                    LLT RequestedTy) {
4697   if (TypeIdx == 1) {
4698     Observer.changingInstr(MI);
4699     narrowScalarSrc(MI, RequestedTy, 2);
4700     Observer.changedInstr(MI);
4701     return Legalized;
4702   }
4703 
4704   Register DstReg = MI.getOperand(0).getReg();
4705   LLT DstTy = MRI.getType(DstReg);
4706   if (DstTy.isVector())
4707     return UnableToLegalize;
4708 
4709   Register Amt = MI.getOperand(2).getReg();
4710   LLT ShiftAmtTy = MRI.getType(Amt);
4711   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4712   if (DstEltSize % 2 != 0)
4713     return UnableToLegalize;
4714 
4715   // Ignore the input type. We can only go to exactly half the size of the
4716   // input. If that isn't small enough, the resulting pieces will be further
4717   // legalized.
4718   const unsigned NewBitSize = DstEltSize / 2;
4719   const LLT HalfTy = LLT::scalar(NewBitSize);
4720   const LLT CondTy = LLT::scalar(1);
4721 
4722   if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) {
4723     return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy,
4724                                        ShiftAmtTy);
4725   }
4726 
4727   // TODO: Expand with known bits.
4728 
4729   // Handle the fully general expansion by an unknown amount.
4730   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4731 
4732   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4733   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4734   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4735 
4736   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4737   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4738 
4739   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4740   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4741   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4742 
4743   Register ResultRegs[2];
4744   switch (MI.getOpcode()) {
4745   case TargetOpcode::G_SHL: {
4746     // Short: ShAmt < NewBitSize
4747     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4748 
4749     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4750     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4751     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4752 
4753     // Long: ShAmt >= NewBitSize
4754     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4755     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4756 
4757     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4758     auto Hi = MIRBuilder.buildSelect(
4759         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4760 
4761     ResultRegs[0] = Lo.getReg(0);
4762     ResultRegs[1] = Hi.getReg(0);
4763     break;
4764   }
4765   case TargetOpcode::G_LSHR:
4766   case TargetOpcode::G_ASHR: {
4767     // Short: ShAmt < NewBitSize
4768     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4769 
4770     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4771     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4772     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4773 
4774     // Long: ShAmt >= NewBitSize
4775     MachineInstrBuilder HiL;
4776     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4777       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4778     } else {
4779       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4780       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4781     }
4782     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4783                                      {InH, AmtExcess});     // Lo from Hi part.
4784 
4785     auto Lo = MIRBuilder.buildSelect(
4786         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4787 
4788     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4789 
4790     ResultRegs[0] = Lo.getReg(0);
4791     ResultRegs[1] = Hi.getReg(0);
4792     break;
4793   }
4794   default:
4795     llvm_unreachable("not a shift");
4796   }
4797 
4798   MIRBuilder.buildMerge(DstReg, ResultRegs);
4799   MI.eraseFromParent();
4800   return Legalized;
4801 }
4802 
4803 LegalizerHelper::LegalizeResult
4804 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4805                                        LLT MoreTy) {
4806   assert(TypeIdx == 0 && "Expecting only Idx 0");
4807 
4808   Observer.changingInstr(MI);
4809   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4810     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4811     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4812     moreElementsVectorSrc(MI, MoreTy, I);
4813   }
4814 
4815   MachineBasicBlock &MBB = *MI.getParent();
4816   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4817   moreElementsVectorDst(MI, MoreTy, 0);
4818   Observer.changedInstr(MI);
4819   return Legalized;
4820 }
4821 
4822 LegalizerHelper::LegalizeResult
4823 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4824                                     LLT MoreTy) {
4825   unsigned Opc = MI.getOpcode();
4826   switch (Opc) {
4827   case TargetOpcode::G_IMPLICIT_DEF:
4828   case TargetOpcode::G_LOAD: {
4829     if (TypeIdx != 0)
4830       return UnableToLegalize;
4831     Observer.changingInstr(MI);
4832     moreElementsVectorDst(MI, MoreTy, 0);
4833     Observer.changedInstr(MI);
4834     return Legalized;
4835   }
4836   case TargetOpcode::G_STORE:
4837     if (TypeIdx != 0)
4838       return UnableToLegalize;
4839     Observer.changingInstr(MI);
4840     moreElementsVectorSrc(MI, MoreTy, 0);
4841     Observer.changedInstr(MI);
4842     return Legalized;
4843   case TargetOpcode::G_AND:
4844   case TargetOpcode::G_OR:
4845   case TargetOpcode::G_XOR:
4846   case TargetOpcode::G_ADD:
4847   case TargetOpcode::G_SUB:
4848   case TargetOpcode::G_MUL:
4849   case TargetOpcode::G_FADD:
4850   case TargetOpcode::G_FMUL:
4851   case TargetOpcode::G_UADDSAT:
4852   case TargetOpcode::G_USUBSAT:
4853   case TargetOpcode::G_SADDSAT:
4854   case TargetOpcode::G_SSUBSAT:
4855   case TargetOpcode::G_SMIN:
4856   case TargetOpcode::G_SMAX:
4857   case TargetOpcode::G_UMIN:
4858   case TargetOpcode::G_UMAX:
4859   case TargetOpcode::G_FMINNUM:
4860   case TargetOpcode::G_FMAXNUM:
4861   case TargetOpcode::G_FMINNUM_IEEE:
4862   case TargetOpcode::G_FMAXNUM_IEEE:
4863   case TargetOpcode::G_FMINIMUM:
4864   case TargetOpcode::G_FMAXIMUM: {
4865     Observer.changingInstr(MI);
4866     moreElementsVectorSrc(MI, MoreTy, 1);
4867     moreElementsVectorSrc(MI, MoreTy, 2);
4868     moreElementsVectorDst(MI, MoreTy, 0);
4869     Observer.changedInstr(MI);
4870     return Legalized;
4871   }
4872   case TargetOpcode::G_FMA:
4873   case TargetOpcode::G_FSHR:
4874   case TargetOpcode::G_FSHL: {
4875     Observer.changingInstr(MI);
4876     moreElementsVectorSrc(MI, MoreTy, 1);
4877     moreElementsVectorSrc(MI, MoreTy, 2);
4878     moreElementsVectorSrc(MI, MoreTy, 3);
4879     moreElementsVectorDst(MI, MoreTy, 0);
4880     Observer.changedInstr(MI);
4881     return Legalized;
4882   }
4883   case TargetOpcode::G_EXTRACT:
4884     if (TypeIdx != 1)
4885       return UnableToLegalize;
4886     Observer.changingInstr(MI);
4887     moreElementsVectorSrc(MI, MoreTy, 1);
4888     Observer.changedInstr(MI);
4889     return Legalized;
4890   case TargetOpcode::G_INSERT:
4891   case TargetOpcode::G_FREEZE:
4892   case TargetOpcode::G_FNEG:
4893   case TargetOpcode::G_FABS:
4894   case TargetOpcode::G_BSWAP:
4895   case TargetOpcode::G_FCANONICALIZE:
4896   case TargetOpcode::G_SEXT_INREG:
4897     if (TypeIdx != 0)
4898       return UnableToLegalize;
4899     Observer.changingInstr(MI);
4900     moreElementsVectorSrc(MI, MoreTy, 1);
4901     moreElementsVectorDst(MI, MoreTy, 0);
4902     Observer.changedInstr(MI);
4903     return Legalized;
4904   case TargetOpcode::G_SELECT:
4905     if (TypeIdx != 0)
4906       return UnableToLegalize;
4907     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4908       return UnableToLegalize;
4909 
4910     Observer.changingInstr(MI);
4911     moreElementsVectorSrc(MI, MoreTy, 2);
4912     moreElementsVectorSrc(MI, MoreTy, 3);
4913     moreElementsVectorDst(MI, MoreTy, 0);
4914     Observer.changedInstr(MI);
4915     return Legalized;
4916   case TargetOpcode::G_UNMERGE_VALUES:
4917     return UnableToLegalize;
4918   case TargetOpcode::G_PHI:
4919     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4920   case TargetOpcode::G_SHUFFLE_VECTOR:
4921     return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
4922   case TargetOpcode::G_BUILD_VECTOR: {
4923     SmallVector<SrcOp, 8> Elts;
4924     for (auto Op : MI.uses()) {
4925       Elts.push_back(Op.getReg());
4926     }
4927 
4928     for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) {
4929       Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType()));
4930     }
4931 
4932     MIRBuilder.buildDeleteTrailingVectorElements(
4933         MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts));
4934     MI.eraseFromParent();
4935     return Legalized;
4936   }
4937   case TargetOpcode::G_TRUNC: {
4938     Observer.changingInstr(MI);
4939     moreElementsVectorSrc(MI, MoreTy, 1);
4940     moreElementsVectorDst(MI, MoreTy, 0);
4941     Observer.changedInstr(MI);
4942     return Legalized;
4943   }
4944   default:
4945     return UnableToLegalize;
4946   }
4947 }
4948 
4949 LegalizerHelper::LegalizeResult
4950 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
4951                                            unsigned int TypeIdx, LLT MoreTy) {
4952   if (TypeIdx != 0)
4953     return UnableToLegalize;
4954 
4955   Register DstReg = MI.getOperand(0).getReg();
4956   Register Src1Reg = MI.getOperand(1).getReg();
4957   Register Src2Reg = MI.getOperand(2).getReg();
4958   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4959   LLT DstTy = MRI.getType(DstReg);
4960   LLT Src1Ty = MRI.getType(Src1Reg);
4961   LLT Src2Ty = MRI.getType(Src2Reg);
4962   unsigned NumElts = DstTy.getNumElements();
4963   unsigned WidenNumElts = MoreTy.getNumElements();
4964 
4965   // Expect a canonicalized shuffle.
4966   if (DstTy != Src1Ty || DstTy != Src2Ty)
4967     return UnableToLegalize;
4968 
4969   moreElementsVectorSrc(MI, MoreTy, 1);
4970   moreElementsVectorSrc(MI, MoreTy, 2);
4971 
4972   // Adjust mask based on new input vector length.
4973   SmallVector<int, 16> NewMask;
4974   for (unsigned I = 0; I != NumElts; ++I) {
4975     int Idx = Mask[I];
4976     if (Idx < static_cast<int>(NumElts))
4977       NewMask.push_back(Idx);
4978     else
4979       NewMask.push_back(Idx - NumElts + WidenNumElts);
4980   }
4981   for (unsigned I = NumElts; I != WidenNumElts; ++I)
4982     NewMask.push_back(-1);
4983   moreElementsVectorDst(MI, MoreTy, 0);
4984   MIRBuilder.setInstrAndDebugLoc(MI);
4985   MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
4986                                 MI.getOperand(1).getReg(),
4987                                 MI.getOperand(2).getReg(), NewMask);
4988   MI.eraseFromParent();
4989   return Legalized;
4990 }
4991 
4992 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4993                                         ArrayRef<Register> Src1Regs,
4994                                         ArrayRef<Register> Src2Regs,
4995                                         LLT NarrowTy) {
4996   MachineIRBuilder &B = MIRBuilder;
4997   unsigned SrcParts = Src1Regs.size();
4998   unsigned DstParts = DstRegs.size();
4999 
5000   unsigned DstIdx = 0; // Low bits of the result.
5001   Register FactorSum =
5002       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
5003   DstRegs[DstIdx] = FactorSum;
5004 
5005   unsigned CarrySumPrevDstIdx;
5006   SmallVector<Register, 4> Factors;
5007 
5008   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
5009     // Collect low parts of muls for DstIdx.
5010     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
5011          i <= std::min(DstIdx, SrcParts - 1); ++i) {
5012       MachineInstrBuilder Mul =
5013           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
5014       Factors.push_back(Mul.getReg(0));
5015     }
5016     // Collect high parts of muls from previous DstIdx.
5017     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
5018          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5019       MachineInstrBuilder Umulh =
5020           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5021       Factors.push_back(Umulh.getReg(0));
5022     }
5023     // Add CarrySum from additions calculated for previous DstIdx.
5024     if (DstIdx != 1) {
5025       Factors.push_back(CarrySumPrevDstIdx);
5026     }
5027 
5028     Register CarrySum;
5029     // Add all factors and accumulate all carries into CarrySum.
5030     if (DstIdx != DstParts - 1) {
5031       MachineInstrBuilder Uaddo =
5032           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5033       FactorSum = Uaddo.getReg(0);
5034       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5035       for (unsigned i = 2; i < Factors.size(); ++i) {
5036         MachineInstrBuilder Uaddo =
5037             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5038         FactorSum = Uaddo.getReg(0);
5039         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5040         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5041       }
5042     } else {
5043       // Since value for the next index is not calculated, neither is CarrySum.
5044       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5045       for (unsigned i = 2; i < Factors.size(); ++i)
5046         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5047     }
5048 
5049     CarrySumPrevDstIdx = CarrySum;
5050     DstRegs[DstIdx] = FactorSum;
5051     Factors.clear();
5052   }
5053 }
5054 
5055 LegalizerHelper::LegalizeResult
5056 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5057                                     LLT NarrowTy) {
5058   if (TypeIdx != 0)
5059     return UnableToLegalize;
5060 
5061   Register DstReg = MI.getOperand(0).getReg();
5062   LLT DstType = MRI.getType(DstReg);
5063   // FIXME: add support for vector types
5064   if (DstType.isVector())
5065     return UnableToLegalize;
5066 
5067   unsigned Opcode = MI.getOpcode();
5068   unsigned OpO, OpE, OpF;
5069   switch (Opcode) {
5070   case TargetOpcode::G_SADDO:
5071   case TargetOpcode::G_SADDE:
5072   case TargetOpcode::G_UADDO:
5073   case TargetOpcode::G_UADDE:
5074   case TargetOpcode::G_ADD:
5075     OpO = TargetOpcode::G_UADDO;
5076     OpE = TargetOpcode::G_UADDE;
5077     OpF = TargetOpcode::G_UADDE;
5078     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5079       OpF = TargetOpcode::G_SADDE;
5080     break;
5081   case TargetOpcode::G_SSUBO:
5082   case TargetOpcode::G_SSUBE:
5083   case TargetOpcode::G_USUBO:
5084   case TargetOpcode::G_USUBE:
5085   case TargetOpcode::G_SUB:
5086     OpO = TargetOpcode::G_USUBO;
5087     OpE = TargetOpcode::G_USUBE;
5088     OpF = TargetOpcode::G_USUBE;
5089     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5090       OpF = TargetOpcode::G_SSUBE;
5091     break;
5092   default:
5093     llvm_unreachable("Unexpected add/sub opcode!");
5094   }
5095 
5096   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5097   unsigned NumDefs = MI.getNumExplicitDefs();
5098   Register Src1 = MI.getOperand(NumDefs).getReg();
5099   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5100   Register CarryDst, CarryIn;
5101   if (NumDefs == 2)
5102     CarryDst = MI.getOperand(1).getReg();
5103   if (MI.getNumOperands() == NumDefs + 3)
5104     CarryIn = MI.getOperand(NumDefs + 2).getReg();
5105 
5106   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5107   LLT LeftoverTy, DummyTy;
5108   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5109   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5110   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5111 
5112   int NarrowParts = Src1Regs.size();
5113   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5114     Src1Regs.push_back(Src1Left[I]);
5115     Src2Regs.push_back(Src2Left[I]);
5116   }
5117   DstRegs.reserve(Src1Regs.size());
5118 
5119   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5120     Register DstReg =
5121         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5122     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5123     // Forward the final carry-out to the destination register
5124     if (i == e - 1 && CarryDst)
5125       CarryOut = CarryDst;
5126 
5127     if (!CarryIn) {
5128       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5129                             {Src1Regs[i], Src2Regs[i]});
5130     } else if (i == e - 1) {
5131       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5132                             {Src1Regs[i], Src2Regs[i], CarryIn});
5133     } else {
5134       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5135                             {Src1Regs[i], Src2Regs[i], CarryIn});
5136     }
5137 
5138     DstRegs.push_back(DstReg);
5139     CarryIn = CarryOut;
5140   }
5141   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5142               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5143               makeArrayRef(DstRegs).drop_front(NarrowParts));
5144 
5145   MI.eraseFromParent();
5146   return Legalized;
5147 }
5148 
5149 LegalizerHelper::LegalizeResult
5150 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5151   Register DstReg = MI.getOperand(0).getReg();
5152   Register Src1 = MI.getOperand(1).getReg();
5153   Register Src2 = MI.getOperand(2).getReg();
5154 
5155   LLT Ty = MRI.getType(DstReg);
5156   if (Ty.isVector())
5157     return UnableToLegalize;
5158 
5159   unsigned Size = Ty.getSizeInBits();
5160   unsigned NarrowSize = NarrowTy.getSizeInBits();
5161   if (Size % NarrowSize != 0)
5162     return UnableToLegalize;
5163 
5164   unsigned NumParts = Size / NarrowSize;
5165   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5166   unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1);
5167 
5168   SmallVector<Register, 2> Src1Parts, Src2Parts;
5169   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5170   extractParts(Src1, NarrowTy, NumParts, Src1Parts);
5171   extractParts(Src2, NarrowTy, NumParts, Src2Parts);
5172   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5173 
5174   // Take only high half of registers if this is high mul.
5175   ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts);
5176   MIRBuilder.buildMerge(DstReg, DstRegs);
5177   MI.eraseFromParent();
5178   return Legalized;
5179 }
5180 
5181 LegalizerHelper::LegalizeResult
5182 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5183                                    LLT NarrowTy) {
5184   if (TypeIdx != 0)
5185     return UnableToLegalize;
5186 
5187   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5188 
5189   Register Src = MI.getOperand(1).getReg();
5190   LLT SrcTy = MRI.getType(Src);
5191 
5192   // If all finite floats fit into the narrowed integer type, we can just swap
5193   // out the result type. This is practically only useful for conversions from
5194   // half to at least 16-bits, so just handle the one case.
5195   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5196       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5197     return UnableToLegalize;
5198 
5199   Observer.changingInstr(MI);
5200   narrowScalarDst(MI, NarrowTy, 0,
5201                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5202   Observer.changedInstr(MI);
5203   return Legalized;
5204 }
5205 
5206 LegalizerHelper::LegalizeResult
5207 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5208                                      LLT NarrowTy) {
5209   if (TypeIdx != 1)
5210     return UnableToLegalize;
5211 
5212   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5213 
5214   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5215   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5216   // NarrowSize.
5217   if (SizeOp1 % NarrowSize != 0)
5218     return UnableToLegalize;
5219   int NumParts = SizeOp1 / NarrowSize;
5220 
5221   SmallVector<Register, 2> SrcRegs, DstRegs;
5222   SmallVector<uint64_t, 2> Indexes;
5223   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5224 
5225   Register OpReg = MI.getOperand(0).getReg();
5226   uint64_t OpStart = MI.getOperand(2).getImm();
5227   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5228   for (int i = 0; i < NumParts; ++i) {
5229     unsigned SrcStart = i * NarrowSize;
5230 
5231     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5232       // No part of the extract uses this subregister, ignore it.
5233       continue;
5234     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5235       // The entire subregister is extracted, forward the value.
5236       DstRegs.push_back(SrcRegs[i]);
5237       continue;
5238     }
5239 
5240     // OpSegStart is where this destination segment would start in OpReg if it
5241     // extended infinitely in both directions.
5242     int64_t ExtractOffset;
5243     uint64_t SegSize;
5244     if (OpStart < SrcStart) {
5245       ExtractOffset = 0;
5246       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5247     } else {
5248       ExtractOffset = OpStart - SrcStart;
5249       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5250     }
5251 
5252     Register SegReg = SrcRegs[i];
5253     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5254       // A genuine extract is needed.
5255       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5256       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5257     }
5258 
5259     DstRegs.push_back(SegReg);
5260   }
5261 
5262   Register DstReg = MI.getOperand(0).getReg();
5263   if (MRI.getType(DstReg).isVector())
5264     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5265   else if (DstRegs.size() > 1)
5266     MIRBuilder.buildMerge(DstReg, DstRegs);
5267   else
5268     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5269   MI.eraseFromParent();
5270   return Legalized;
5271 }
5272 
5273 LegalizerHelper::LegalizeResult
5274 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5275                                     LLT NarrowTy) {
5276   // FIXME: Don't know how to handle secondary types yet.
5277   if (TypeIdx != 0)
5278     return UnableToLegalize;
5279 
5280   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5281   SmallVector<uint64_t, 2> Indexes;
5282   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5283   LLT LeftoverTy;
5284   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5285                LeftoverRegs);
5286 
5287   for (Register Reg : LeftoverRegs)
5288     SrcRegs.push_back(Reg);
5289 
5290   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5291   Register OpReg = MI.getOperand(2).getReg();
5292   uint64_t OpStart = MI.getOperand(3).getImm();
5293   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5294   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5295     unsigned DstStart = I * NarrowSize;
5296 
5297     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5298       // The entire subregister is defined by this insert, forward the new
5299       // value.
5300       DstRegs.push_back(OpReg);
5301       continue;
5302     }
5303 
5304     Register SrcReg = SrcRegs[I];
5305     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5306       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5307       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5308       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5309     }
5310 
5311     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5312       // No part of the insert affects this subregister, forward the original.
5313       DstRegs.push_back(SrcReg);
5314       continue;
5315     }
5316 
5317     // OpSegStart is where this destination segment would start in OpReg if it
5318     // extended infinitely in both directions.
5319     int64_t ExtractOffset, InsertOffset;
5320     uint64_t SegSize;
5321     if (OpStart < DstStart) {
5322       InsertOffset = 0;
5323       ExtractOffset = DstStart - OpStart;
5324       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5325     } else {
5326       InsertOffset = OpStart - DstStart;
5327       ExtractOffset = 0;
5328       SegSize =
5329         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5330     }
5331 
5332     Register SegReg = OpReg;
5333     if (ExtractOffset != 0 || SegSize != OpSize) {
5334       // A genuine extract is needed.
5335       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5336       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5337     }
5338 
5339     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5340     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5341     DstRegs.push_back(DstReg);
5342   }
5343 
5344   uint64_t WideSize = DstRegs.size() * NarrowSize;
5345   Register DstReg = MI.getOperand(0).getReg();
5346   if (WideSize > RegTy.getSizeInBits()) {
5347     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5348     MIRBuilder.buildMerge(MergeReg, DstRegs);
5349     MIRBuilder.buildTrunc(DstReg, MergeReg);
5350   } else
5351     MIRBuilder.buildMerge(DstReg, DstRegs);
5352 
5353   MI.eraseFromParent();
5354   return Legalized;
5355 }
5356 
5357 LegalizerHelper::LegalizeResult
5358 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5359                                    LLT NarrowTy) {
5360   Register DstReg = MI.getOperand(0).getReg();
5361   LLT DstTy = MRI.getType(DstReg);
5362 
5363   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5364 
5365   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5366   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5367   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5368   LLT LeftoverTy;
5369   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5370                     Src0Regs, Src0LeftoverRegs))
5371     return UnableToLegalize;
5372 
5373   LLT Unused;
5374   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5375                     Src1Regs, Src1LeftoverRegs))
5376     llvm_unreachable("inconsistent extractParts result");
5377 
5378   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5379     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5380                                         {Src0Regs[I], Src1Regs[I]});
5381     DstRegs.push_back(Inst.getReg(0));
5382   }
5383 
5384   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5385     auto Inst = MIRBuilder.buildInstr(
5386       MI.getOpcode(),
5387       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5388     DstLeftoverRegs.push_back(Inst.getReg(0));
5389   }
5390 
5391   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5392               LeftoverTy, DstLeftoverRegs);
5393 
5394   MI.eraseFromParent();
5395   return Legalized;
5396 }
5397 
5398 LegalizerHelper::LegalizeResult
5399 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5400                                  LLT NarrowTy) {
5401   if (TypeIdx != 0)
5402     return UnableToLegalize;
5403 
5404   Register DstReg = MI.getOperand(0).getReg();
5405   Register SrcReg = MI.getOperand(1).getReg();
5406 
5407   LLT DstTy = MRI.getType(DstReg);
5408   if (DstTy.isVector())
5409     return UnableToLegalize;
5410 
5411   SmallVector<Register, 8> Parts;
5412   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5413   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5414   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5415 
5416   MI.eraseFromParent();
5417   return Legalized;
5418 }
5419 
5420 LegalizerHelper::LegalizeResult
5421 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5422                                     LLT NarrowTy) {
5423   if (TypeIdx != 0)
5424     return UnableToLegalize;
5425 
5426   Register CondReg = MI.getOperand(1).getReg();
5427   LLT CondTy = MRI.getType(CondReg);
5428   if (CondTy.isVector()) // TODO: Handle vselect
5429     return UnableToLegalize;
5430 
5431   Register DstReg = MI.getOperand(0).getReg();
5432   LLT DstTy = MRI.getType(DstReg);
5433 
5434   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5435   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5436   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5437   LLT LeftoverTy;
5438   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5439                     Src1Regs, Src1LeftoverRegs))
5440     return UnableToLegalize;
5441 
5442   LLT Unused;
5443   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5444                     Src2Regs, Src2LeftoverRegs))
5445     llvm_unreachable("inconsistent extractParts result");
5446 
5447   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5448     auto Select = MIRBuilder.buildSelect(NarrowTy,
5449                                          CondReg, Src1Regs[I], Src2Regs[I]);
5450     DstRegs.push_back(Select.getReg(0));
5451   }
5452 
5453   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5454     auto Select = MIRBuilder.buildSelect(
5455       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5456     DstLeftoverRegs.push_back(Select.getReg(0));
5457   }
5458 
5459   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5460               LeftoverTy, DstLeftoverRegs);
5461 
5462   MI.eraseFromParent();
5463   return Legalized;
5464 }
5465 
5466 LegalizerHelper::LegalizeResult
5467 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5468                                   LLT NarrowTy) {
5469   if (TypeIdx != 1)
5470     return UnableToLegalize;
5471 
5472   Register DstReg = MI.getOperand(0).getReg();
5473   Register SrcReg = MI.getOperand(1).getReg();
5474   LLT DstTy = MRI.getType(DstReg);
5475   LLT SrcTy = MRI.getType(SrcReg);
5476   unsigned NarrowSize = NarrowTy.getSizeInBits();
5477 
5478   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5479     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5480 
5481     MachineIRBuilder &B = MIRBuilder;
5482     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5483     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5484     auto C_0 = B.buildConstant(NarrowTy, 0);
5485     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5486                                 UnmergeSrc.getReg(1), C_0);
5487     auto LoCTLZ = IsUndef ?
5488       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5489       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5490     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5491     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5492     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5493     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5494 
5495     MI.eraseFromParent();
5496     return Legalized;
5497   }
5498 
5499   return UnableToLegalize;
5500 }
5501 
5502 LegalizerHelper::LegalizeResult
5503 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5504                                   LLT NarrowTy) {
5505   if (TypeIdx != 1)
5506     return UnableToLegalize;
5507 
5508   Register DstReg = MI.getOperand(0).getReg();
5509   Register SrcReg = MI.getOperand(1).getReg();
5510   LLT DstTy = MRI.getType(DstReg);
5511   LLT SrcTy = MRI.getType(SrcReg);
5512   unsigned NarrowSize = NarrowTy.getSizeInBits();
5513 
5514   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5515     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5516 
5517     MachineIRBuilder &B = MIRBuilder;
5518     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5519     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5520     auto C_0 = B.buildConstant(NarrowTy, 0);
5521     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5522                                 UnmergeSrc.getReg(0), C_0);
5523     auto HiCTTZ = IsUndef ?
5524       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5525       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5526     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5527     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5528     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5529     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5530 
5531     MI.eraseFromParent();
5532     return Legalized;
5533   }
5534 
5535   return UnableToLegalize;
5536 }
5537 
5538 LegalizerHelper::LegalizeResult
5539 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5540                                    LLT NarrowTy) {
5541   if (TypeIdx != 1)
5542     return UnableToLegalize;
5543 
5544   Register DstReg = MI.getOperand(0).getReg();
5545   LLT DstTy = MRI.getType(DstReg);
5546   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5547   unsigned NarrowSize = NarrowTy.getSizeInBits();
5548 
5549   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5550     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5551 
5552     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5553     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5554     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5555 
5556     MI.eraseFromParent();
5557     return Legalized;
5558   }
5559 
5560   return UnableToLegalize;
5561 }
5562 
5563 LegalizerHelper::LegalizeResult
5564 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5565   unsigned Opc = MI.getOpcode();
5566   const auto &TII = MIRBuilder.getTII();
5567   auto isSupported = [this](const LegalityQuery &Q) {
5568     auto QAction = LI.getAction(Q).Action;
5569     return QAction == Legal || QAction == Libcall || QAction == Custom;
5570   };
5571   switch (Opc) {
5572   default:
5573     return UnableToLegalize;
5574   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5575     // This trivially expands to CTLZ.
5576     Observer.changingInstr(MI);
5577     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5578     Observer.changedInstr(MI);
5579     return Legalized;
5580   }
5581   case TargetOpcode::G_CTLZ: {
5582     Register DstReg = MI.getOperand(0).getReg();
5583     Register SrcReg = MI.getOperand(1).getReg();
5584     LLT DstTy = MRI.getType(DstReg);
5585     LLT SrcTy = MRI.getType(SrcReg);
5586     unsigned Len = SrcTy.getSizeInBits();
5587 
5588     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5589       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5590       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5591       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5592       auto ICmp = MIRBuilder.buildICmp(
5593           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5594       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5595       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5596       MI.eraseFromParent();
5597       return Legalized;
5598     }
5599     // for now, we do this:
5600     // NewLen = NextPowerOf2(Len);
5601     // x = x | (x >> 1);
5602     // x = x | (x >> 2);
5603     // ...
5604     // x = x | (x >>16);
5605     // x = x | (x >>32); // for 64-bit input
5606     // Upto NewLen/2
5607     // return Len - popcount(x);
5608     //
5609     // Ref: "Hacker's Delight" by Henry Warren
5610     Register Op = SrcReg;
5611     unsigned NewLen = PowerOf2Ceil(Len);
5612     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5613       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5614       auto MIBOp = MIRBuilder.buildOr(
5615           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5616       Op = MIBOp.getReg(0);
5617     }
5618     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5619     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5620                         MIBPop);
5621     MI.eraseFromParent();
5622     return Legalized;
5623   }
5624   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5625     // This trivially expands to CTTZ.
5626     Observer.changingInstr(MI);
5627     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5628     Observer.changedInstr(MI);
5629     return Legalized;
5630   }
5631   case TargetOpcode::G_CTTZ: {
5632     Register DstReg = MI.getOperand(0).getReg();
5633     Register SrcReg = MI.getOperand(1).getReg();
5634     LLT DstTy = MRI.getType(DstReg);
5635     LLT SrcTy = MRI.getType(SrcReg);
5636 
5637     unsigned Len = SrcTy.getSizeInBits();
5638     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5639       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5640       // zero.
5641       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5642       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5643       auto ICmp = MIRBuilder.buildICmp(
5644           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5645       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5646       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5647       MI.eraseFromParent();
5648       return Legalized;
5649     }
5650     // for now, we use: { return popcount(~x & (x - 1)); }
5651     // unless the target has ctlz but not ctpop, in which case we use:
5652     // { return 32 - nlz(~x & (x-1)); }
5653     // Ref: "Hacker's Delight" by Henry Warren
5654     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5655     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5656     auto MIBTmp = MIRBuilder.buildAnd(
5657         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5658     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5659         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5660       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5661       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5662                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5663       MI.eraseFromParent();
5664       return Legalized;
5665     }
5666     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5667     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5668     return Legalized;
5669   }
5670   case TargetOpcode::G_CTPOP: {
5671     Register SrcReg = MI.getOperand(1).getReg();
5672     LLT Ty = MRI.getType(SrcReg);
5673     unsigned Size = Ty.getSizeInBits();
5674     MachineIRBuilder &B = MIRBuilder;
5675 
5676     // Count set bits in blocks of 2 bits. Default approach would be
5677     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5678     // We use following formula instead:
5679     // B2Count = val - { (val >> 1) & 0x55555555 }
5680     // since it gives same result in blocks of 2 with one instruction less.
5681     auto C_1 = B.buildConstant(Ty, 1);
5682     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5683     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5684     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5685     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5686     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5687 
5688     // In order to get count in blocks of 4 add values from adjacent block of 2.
5689     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5690     auto C_2 = B.buildConstant(Ty, 2);
5691     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5692     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5693     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5694     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5695     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5696     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5697 
5698     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5699     // addition since count value sits in range {0,...,8} and 4 bits are enough
5700     // to hold such binary values. After addition high 4 bits still hold count
5701     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5702     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5703     auto C_4 = B.buildConstant(Ty, 4);
5704     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5705     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5706     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5707     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5708     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5709 
5710     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5711     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5712     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5713     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5714     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5715 
5716     // Shift count result from 8 high bits to low bits.
5717     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5718     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5719 
5720     MI.eraseFromParent();
5721     return Legalized;
5722   }
5723   }
5724 }
5725 
5726 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5727 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5728                                         Register Reg, unsigned BW) {
5729   return matchUnaryPredicate(
5730       MRI, Reg,
5731       [=](const Constant *C) {
5732         // Null constant here means an undef.
5733         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5734         return !CI || CI->getValue().urem(BW) != 0;
5735       },
5736       /*AllowUndefs*/ true);
5737 }
5738 
5739 LegalizerHelper::LegalizeResult
5740 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5741   Register Dst = MI.getOperand(0).getReg();
5742   Register X = MI.getOperand(1).getReg();
5743   Register Y = MI.getOperand(2).getReg();
5744   Register Z = MI.getOperand(3).getReg();
5745   LLT Ty = MRI.getType(Dst);
5746   LLT ShTy = MRI.getType(Z);
5747 
5748   unsigned BW = Ty.getScalarSizeInBits();
5749 
5750   if (!isPowerOf2_32(BW))
5751     return UnableToLegalize;
5752 
5753   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5754   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5755 
5756   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5757     // fshl X, Y, Z -> fshr X, Y, -Z
5758     // fshr X, Y, Z -> fshl X, Y, -Z
5759     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5760     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5761   } else {
5762     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5763     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5764     auto One = MIRBuilder.buildConstant(ShTy, 1);
5765     if (IsFSHL) {
5766       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5767       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5768     } else {
5769       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5770       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5771     }
5772 
5773     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5774   }
5775 
5776   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5777   MI.eraseFromParent();
5778   return Legalized;
5779 }
5780 
5781 LegalizerHelper::LegalizeResult
5782 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5783   Register Dst = MI.getOperand(0).getReg();
5784   Register X = MI.getOperand(1).getReg();
5785   Register Y = MI.getOperand(2).getReg();
5786   Register Z = MI.getOperand(3).getReg();
5787   LLT Ty = MRI.getType(Dst);
5788   LLT ShTy = MRI.getType(Z);
5789 
5790   const unsigned BW = Ty.getScalarSizeInBits();
5791   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5792 
5793   Register ShX, ShY;
5794   Register ShAmt, InvShAmt;
5795 
5796   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5797   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5798     // fshl: X << C | Y >> (BW - C)
5799     // fshr: X << (BW - C) | Y >> C
5800     // where C = Z % BW is not zero
5801     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5802     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5803     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5804     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5805     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5806   } else {
5807     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5808     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5809     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5810     if (isPowerOf2_32(BW)) {
5811       // Z % BW -> Z & (BW - 1)
5812       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5813       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5814       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5815       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5816     } else {
5817       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5818       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5819       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5820     }
5821 
5822     auto One = MIRBuilder.buildConstant(ShTy, 1);
5823     if (IsFSHL) {
5824       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5825       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5826       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5827     } else {
5828       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5829       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5830       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5831     }
5832   }
5833 
5834   MIRBuilder.buildOr(Dst, ShX, ShY);
5835   MI.eraseFromParent();
5836   return Legalized;
5837 }
5838 
5839 LegalizerHelper::LegalizeResult
5840 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5841   // These operations approximately do the following (while avoiding undefined
5842   // shifts by BW):
5843   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5844   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5845   Register Dst = MI.getOperand(0).getReg();
5846   LLT Ty = MRI.getType(Dst);
5847   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5848 
5849   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5850   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5851 
5852   // TODO: Use smarter heuristic that accounts for vector legalization.
5853   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5854     return lowerFunnelShiftAsShifts(MI);
5855 
5856   // This only works for powers of 2, fallback to shifts if it fails.
5857   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5858   if (Result == UnableToLegalize)
5859     return lowerFunnelShiftAsShifts(MI);
5860   return Result;
5861 }
5862 
5863 LegalizerHelper::LegalizeResult
5864 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5865   Register Dst = MI.getOperand(0).getReg();
5866   Register Src = MI.getOperand(1).getReg();
5867   Register Amt = MI.getOperand(2).getReg();
5868   LLT AmtTy = MRI.getType(Amt);
5869   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5870   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5871   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5872   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5873   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5874   MI.eraseFromParent();
5875   return Legalized;
5876 }
5877 
5878 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5879   Register Dst = MI.getOperand(0).getReg();
5880   Register Src = MI.getOperand(1).getReg();
5881   Register Amt = MI.getOperand(2).getReg();
5882   LLT DstTy = MRI.getType(Dst);
5883   LLT SrcTy = MRI.getType(Src);
5884   LLT AmtTy = MRI.getType(Amt);
5885 
5886   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5887   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5888 
5889   MIRBuilder.setInstrAndDebugLoc(MI);
5890 
5891   // If a rotate in the other direction is supported, use it.
5892   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5893   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5894       isPowerOf2_32(EltSizeInBits))
5895     return lowerRotateWithReverseRotate(MI);
5896 
5897   // If a funnel shift is supported, use it.
5898   unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5899   unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5900   bool IsFShLegal = false;
5901   if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) ||
5902       LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) {
5903     auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2,
5904                                 Register R3) {
5905       MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3});
5906       MI.eraseFromParent();
5907       return Legalized;
5908     };
5909     // If a funnel shift in the other direction is supported, use it.
5910     if (IsFShLegal) {
5911       return buildFunnelShift(FShOpc, Dst, Src, Amt);
5912     } else if (isPowerOf2_32(EltSizeInBits)) {
5913       Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0);
5914       return buildFunnelShift(RevFsh, Dst, Src, Amt);
5915     }
5916   }
5917 
5918   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5919   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5920   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5921   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5922   Register ShVal;
5923   Register RevShiftVal;
5924   if (isPowerOf2_32(EltSizeInBits)) {
5925     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5926     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5927     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5928     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5929     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5930     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5931     RevShiftVal =
5932         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5933   } else {
5934     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5935     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5936     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5937     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5938     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5939     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5940     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5941     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5942     RevShiftVal =
5943         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5944   }
5945   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5946   MI.eraseFromParent();
5947   return Legalized;
5948 }
5949 
5950 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5951 // representation.
5952 LegalizerHelper::LegalizeResult
5953 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5954   Register Dst = MI.getOperand(0).getReg();
5955   Register Src = MI.getOperand(1).getReg();
5956   const LLT S64 = LLT::scalar(64);
5957   const LLT S32 = LLT::scalar(32);
5958   const LLT S1 = LLT::scalar(1);
5959 
5960   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5961 
5962   // unsigned cul2f(ulong u) {
5963   //   uint lz = clz(u);
5964   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5965   //   u = (u << lz) & 0x7fffffffffffffffUL;
5966   //   ulong t = u & 0xffffffffffUL;
5967   //   uint v = (e << 23) | (uint)(u >> 40);
5968   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5969   //   return as_float(v + r);
5970   // }
5971 
5972   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5973   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5974 
5975   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5976 
5977   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5978   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5979 
5980   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5981   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5982 
5983   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5984   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5985 
5986   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5987 
5988   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5989   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5990 
5991   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5992   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5993   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5994 
5995   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5996   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5997   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5998   auto One = MIRBuilder.buildConstant(S32, 1);
5999 
6000   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
6001   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
6002   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
6003   MIRBuilder.buildAdd(Dst, V, R);
6004 
6005   MI.eraseFromParent();
6006   return Legalized;
6007 }
6008 
6009 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
6010   Register Dst = MI.getOperand(0).getReg();
6011   Register Src = MI.getOperand(1).getReg();
6012   LLT DstTy = MRI.getType(Dst);
6013   LLT SrcTy = MRI.getType(Src);
6014 
6015   if (SrcTy == LLT::scalar(1)) {
6016     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
6017     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6018     MIRBuilder.buildSelect(Dst, Src, True, False);
6019     MI.eraseFromParent();
6020     return Legalized;
6021   }
6022 
6023   if (SrcTy != LLT::scalar(64))
6024     return UnableToLegalize;
6025 
6026   if (DstTy == LLT::scalar(32)) {
6027     // TODO: SelectionDAG has several alternative expansions to port which may
6028     // be more reasonble depending on the available instructions. If a target
6029     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6030     // intermediate type, this is probably worse.
6031     return lowerU64ToF32BitOps(MI);
6032   }
6033 
6034   return UnableToLegalize;
6035 }
6036 
6037 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6038   Register Dst = MI.getOperand(0).getReg();
6039   Register Src = MI.getOperand(1).getReg();
6040   LLT DstTy = MRI.getType(Dst);
6041   LLT SrcTy = MRI.getType(Src);
6042 
6043   const LLT S64 = LLT::scalar(64);
6044   const LLT S32 = LLT::scalar(32);
6045   const LLT S1 = LLT::scalar(1);
6046 
6047   if (SrcTy == S1) {
6048     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6049     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6050     MIRBuilder.buildSelect(Dst, Src, True, False);
6051     MI.eraseFromParent();
6052     return Legalized;
6053   }
6054 
6055   if (SrcTy != S64)
6056     return UnableToLegalize;
6057 
6058   if (DstTy == S32) {
6059     // signed cl2f(long l) {
6060     //   long s = l >> 63;
6061     //   float r = cul2f((l + s) ^ s);
6062     //   return s ? -r : r;
6063     // }
6064     Register L = Src;
6065     auto SignBit = MIRBuilder.buildConstant(S64, 63);
6066     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6067 
6068     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6069     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6070     auto R = MIRBuilder.buildUITOFP(S32, Xor);
6071 
6072     auto RNeg = MIRBuilder.buildFNeg(S32, R);
6073     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6074                                             MIRBuilder.buildConstant(S64, 0));
6075     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6076     MI.eraseFromParent();
6077     return Legalized;
6078   }
6079 
6080   return UnableToLegalize;
6081 }
6082 
6083 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6084   Register Dst = MI.getOperand(0).getReg();
6085   Register Src = MI.getOperand(1).getReg();
6086   LLT DstTy = MRI.getType(Dst);
6087   LLT SrcTy = MRI.getType(Src);
6088   const LLT S64 = LLT::scalar(64);
6089   const LLT S32 = LLT::scalar(32);
6090 
6091   if (SrcTy != S64 && SrcTy != S32)
6092     return UnableToLegalize;
6093   if (DstTy != S32 && DstTy != S64)
6094     return UnableToLegalize;
6095 
6096   // FPTOSI gives same result as FPTOUI for positive signed integers.
6097   // FPTOUI needs to deal with fp values that convert to unsigned integers
6098   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6099 
6100   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6101   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6102                                                 : APFloat::IEEEdouble(),
6103                     APInt::getZero(SrcTy.getSizeInBits()));
6104   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6105 
6106   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6107 
6108   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6109   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6110   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6111   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6112   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6113   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6114   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6115 
6116   const LLT S1 = LLT::scalar(1);
6117 
6118   MachineInstrBuilder FCMP =
6119       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6120   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6121 
6122   MI.eraseFromParent();
6123   return Legalized;
6124 }
6125 
6126 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6127   Register Dst = MI.getOperand(0).getReg();
6128   Register Src = MI.getOperand(1).getReg();
6129   LLT DstTy = MRI.getType(Dst);
6130   LLT SrcTy = MRI.getType(Src);
6131   const LLT S64 = LLT::scalar(64);
6132   const LLT S32 = LLT::scalar(32);
6133 
6134   // FIXME: Only f32 to i64 conversions are supported.
6135   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6136     return UnableToLegalize;
6137 
6138   // Expand f32 -> i64 conversion
6139   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6140   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6141 
6142   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6143 
6144   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6145   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6146 
6147   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6148   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6149 
6150   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6151                                            APInt::getSignMask(SrcEltBits));
6152   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6153   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6154   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6155   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6156 
6157   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6158   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6159   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6160 
6161   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6162   R = MIRBuilder.buildZExt(DstTy, R);
6163 
6164   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6165   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6166   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6167   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6168 
6169   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6170   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6171 
6172   const LLT S1 = LLT::scalar(1);
6173   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6174                                     S1, Exponent, ExponentLoBit);
6175 
6176   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6177 
6178   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6179   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6180 
6181   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6182 
6183   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6184                                           S1, Exponent, ZeroSrcTy);
6185 
6186   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6187   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6188 
6189   MI.eraseFromParent();
6190   return Legalized;
6191 }
6192 
6193 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6194 LegalizerHelper::LegalizeResult
6195 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6196   Register Dst = MI.getOperand(0).getReg();
6197   Register Src = MI.getOperand(1).getReg();
6198 
6199   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6200     return UnableToLegalize;
6201 
6202   const unsigned ExpMask = 0x7ff;
6203   const unsigned ExpBiasf64 = 1023;
6204   const unsigned ExpBiasf16 = 15;
6205   const LLT S32 = LLT::scalar(32);
6206   const LLT S1 = LLT::scalar(1);
6207 
6208   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6209   Register U = Unmerge.getReg(0);
6210   Register UH = Unmerge.getReg(1);
6211 
6212   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6213   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6214 
6215   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6216   // add the f16 bias (15) to get the biased exponent for the f16 format.
6217   E = MIRBuilder.buildAdd(
6218     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6219 
6220   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6221   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6222 
6223   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6224                                        MIRBuilder.buildConstant(S32, 0x1ff));
6225   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6226 
6227   auto Zero = MIRBuilder.buildConstant(S32, 0);
6228   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6229   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6230   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6231 
6232   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6233   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6234   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6235   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6236 
6237   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6238   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6239 
6240   // N = M | (E << 12);
6241   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6242   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6243 
6244   // B = clamp(1-E, 0, 13);
6245   auto One = MIRBuilder.buildConstant(S32, 1);
6246   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6247   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6248   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6249 
6250   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6251                                        MIRBuilder.buildConstant(S32, 0x1000));
6252 
6253   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6254   auto D0 = MIRBuilder.buildShl(S32, D, B);
6255 
6256   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6257                                              D0, SigSetHigh);
6258   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6259   D = MIRBuilder.buildOr(S32, D, D1);
6260 
6261   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6262   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6263 
6264   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6265   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6266 
6267   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6268                                        MIRBuilder.buildConstant(S32, 3));
6269   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6270 
6271   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6272                                        MIRBuilder.buildConstant(S32, 5));
6273   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6274 
6275   V1 = MIRBuilder.buildOr(S32, V0, V1);
6276   V = MIRBuilder.buildAdd(S32, V, V1);
6277 
6278   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6279                                        E, MIRBuilder.buildConstant(S32, 30));
6280   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6281                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6282 
6283   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6284                                          E, MIRBuilder.buildConstant(S32, 1039));
6285   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6286 
6287   // Extract the sign bit.
6288   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6289   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6290 
6291   // Insert the sign bit
6292   V = MIRBuilder.buildOr(S32, Sign, V);
6293 
6294   MIRBuilder.buildTrunc(Dst, V);
6295   MI.eraseFromParent();
6296   return Legalized;
6297 }
6298 
6299 LegalizerHelper::LegalizeResult
6300 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6301   Register Dst = MI.getOperand(0).getReg();
6302   Register Src = MI.getOperand(1).getReg();
6303 
6304   LLT DstTy = MRI.getType(Dst);
6305   LLT SrcTy = MRI.getType(Src);
6306   const LLT S64 = LLT::scalar(64);
6307   const LLT S16 = LLT::scalar(16);
6308 
6309   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6310     return lowerFPTRUNC_F64_TO_F16(MI);
6311 
6312   return UnableToLegalize;
6313 }
6314 
6315 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6316 // multiplication tree.
6317 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6318   Register Dst = MI.getOperand(0).getReg();
6319   Register Src0 = MI.getOperand(1).getReg();
6320   Register Src1 = MI.getOperand(2).getReg();
6321   LLT Ty = MRI.getType(Dst);
6322 
6323   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6324   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6325   MI.eraseFromParent();
6326   return Legalized;
6327 }
6328 
6329 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6330   switch (Opc) {
6331   case TargetOpcode::G_SMIN:
6332     return CmpInst::ICMP_SLT;
6333   case TargetOpcode::G_SMAX:
6334     return CmpInst::ICMP_SGT;
6335   case TargetOpcode::G_UMIN:
6336     return CmpInst::ICMP_ULT;
6337   case TargetOpcode::G_UMAX:
6338     return CmpInst::ICMP_UGT;
6339   default:
6340     llvm_unreachable("not in integer min/max");
6341   }
6342 }
6343 
6344 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6345   Register Dst = MI.getOperand(0).getReg();
6346   Register Src0 = MI.getOperand(1).getReg();
6347   Register Src1 = MI.getOperand(2).getReg();
6348 
6349   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6350   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6351 
6352   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6353   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6354 
6355   MI.eraseFromParent();
6356   return Legalized;
6357 }
6358 
6359 LegalizerHelper::LegalizeResult
6360 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6361   Register Dst = MI.getOperand(0).getReg();
6362   Register Src0 = MI.getOperand(1).getReg();
6363   Register Src1 = MI.getOperand(2).getReg();
6364 
6365   const LLT Src0Ty = MRI.getType(Src0);
6366   const LLT Src1Ty = MRI.getType(Src1);
6367 
6368   const int Src0Size = Src0Ty.getScalarSizeInBits();
6369   const int Src1Size = Src1Ty.getScalarSizeInBits();
6370 
6371   auto SignBitMask = MIRBuilder.buildConstant(
6372     Src0Ty, APInt::getSignMask(Src0Size));
6373 
6374   auto NotSignBitMask = MIRBuilder.buildConstant(
6375     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6376 
6377   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6378   Register And1;
6379   if (Src0Ty == Src1Ty) {
6380     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6381   } else if (Src0Size > Src1Size) {
6382     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6383     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6384     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6385     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6386   } else {
6387     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6388     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6389     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6390     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6391   }
6392 
6393   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6394   // constants are a nan and -0.0, but the final result should preserve
6395   // everything.
6396   unsigned Flags = MI.getFlags();
6397   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6398 
6399   MI.eraseFromParent();
6400   return Legalized;
6401 }
6402 
6403 LegalizerHelper::LegalizeResult
6404 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6405   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6406     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6407 
6408   Register Dst = MI.getOperand(0).getReg();
6409   Register Src0 = MI.getOperand(1).getReg();
6410   Register Src1 = MI.getOperand(2).getReg();
6411   LLT Ty = MRI.getType(Dst);
6412 
6413   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6414     // Insert canonicalizes if it's possible we need to quiet to get correct
6415     // sNaN behavior.
6416 
6417     // Note this must be done here, and not as an optimization combine in the
6418     // absence of a dedicate quiet-snan instruction as we're using an
6419     // omni-purpose G_FCANONICALIZE.
6420     if (!isKnownNeverSNaN(Src0, MRI))
6421       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6422 
6423     if (!isKnownNeverSNaN(Src1, MRI))
6424       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6425   }
6426 
6427   // If there are no nans, it's safe to simply replace this with the non-IEEE
6428   // version.
6429   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6430   MI.eraseFromParent();
6431   return Legalized;
6432 }
6433 
6434 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6435   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6436   Register DstReg = MI.getOperand(0).getReg();
6437   LLT Ty = MRI.getType(DstReg);
6438   unsigned Flags = MI.getFlags();
6439 
6440   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6441                                   Flags);
6442   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6443   MI.eraseFromParent();
6444   return Legalized;
6445 }
6446 
6447 LegalizerHelper::LegalizeResult
6448 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6449   Register DstReg = MI.getOperand(0).getReg();
6450   Register X = MI.getOperand(1).getReg();
6451   const unsigned Flags = MI.getFlags();
6452   const LLT Ty = MRI.getType(DstReg);
6453   const LLT CondTy = Ty.changeElementSize(1);
6454 
6455   // round(x) =>
6456   //  t = trunc(x);
6457   //  d = fabs(x - t);
6458   //  o = copysign(1.0f, x);
6459   //  return t + (d >= 0.5 ? o : 0.0);
6460 
6461   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6462 
6463   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6464   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6465   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6466   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6467   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6468   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6469 
6470   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6471                                   Flags);
6472   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6473 
6474   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6475 
6476   MI.eraseFromParent();
6477   return Legalized;
6478 }
6479 
6480 LegalizerHelper::LegalizeResult
6481 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6482   Register DstReg = MI.getOperand(0).getReg();
6483   Register SrcReg = MI.getOperand(1).getReg();
6484   unsigned Flags = MI.getFlags();
6485   LLT Ty = MRI.getType(DstReg);
6486   const LLT CondTy = Ty.changeElementSize(1);
6487 
6488   // result = trunc(src);
6489   // if (src < 0.0 && src != result)
6490   //   result += -1.0.
6491 
6492   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6493   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6494 
6495   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6496                                   SrcReg, Zero, Flags);
6497   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6498                                       SrcReg, Trunc, Flags);
6499   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6500   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6501 
6502   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6503   MI.eraseFromParent();
6504   return Legalized;
6505 }
6506 
6507 LegalizerHelper::LegalizeResult
6508 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6509   const unsigned NumOps = MI.getNumOperands();
6510   Register DstReg = MI.getOperand(0).getReg();
6511   Register Src0Reg = MI.getOperand(1).getReg();
6512   LLT DstTy = MRI.getType(DstReg);
6513   LLT SrcTy = MRI.getType(Src0Reg);
6514   unsigned PartSize = SrcTy.getSizeInBits();
6515 
6516   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6517   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6518 
6519   for (unsigned I = 2; I != NumOps; ++I) {
6520     const unsigned Offset = (I - 1) * PartSize;
6521 
6522     Register SrcReg = MI.getOperand(I).getReg();
6523     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6524 
6525     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6526       MRI.createGenericVirtualRegister(WideTy);
6527 
6528     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6529     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6530     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6531     ResultReg = NextResult;
6532   }
6533 
6534   if (DstTy.isPointer()) {
6535     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6536           DstTy.getAddressSpace())) {
6537       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6538       return UnableToLegalize;
6539     }
6540 
6541     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6542   }
6543 
6544   MI.eraseFromParent();
6545   return Legalized;
6546 }
6547 
6548 LegalizerHelper::LegalizeResult
6549 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6550   const unsigned NumDst = MI.getNumOperands() - 1;
6551   Register SrcReg = MI.getOperand(NumDst).getReg();
6552   Register Dst0Reg = MI.getOperand(0).getReg();
6553   LLT DstTy = MRI.getType(Dst0Reg);
6554   if (DstTy.isPointer())
6555     return UnableToLegalize; // TODO
6556 
6557   SrcReg = coerceToScalar(SrcReg);
6558   if (!SrcReg)
6559     return UnableToLegalize;
6560 
6561   // Expand scalarizing unmerge as bitcast to integer and shift.
6562   LLT IntTy = MRI.getType(SrcReg);
6563 
6564   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6565 
6566   const unsigned DstSize = DstTy.getSizeInBits();
6567   unsigned Offset = DstSize;
6568   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6569     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6570     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6571     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6572   }
6573 
6574   MI.eraseFromParent();
6575   return Legalized;
6576 }
6577 
6578 /// Lower a vector extract or insert by writing the vector to a stack temporary
6579 /// and reloading the element or vector.
6580 ///
6581 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6582 ///  =>
6583 ///  %stack_temp = G_FRAME_INDEX
6584 ///  G_STORE %vec, %stack_temp
6585 ///  %idx = clamp(%idx, %vec.getNumElements())
6586 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6587 ///  %dst = G_LOAD %element_ptr
6588 LegalizerHelper::LegalizeResult
6589 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6590   Register DstReg = MI.getOperand(0).getReg();
6591   Register SrcVec = MI.getOperand(1).getReg();
6592   Register InsertVal;
6593   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6594     InsertVal = MI.getOperand(2).getReg();
6595 
6596   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6597 
6598   LLT VecTy = MRI.getType(SrcVec);
6599   LLT EltTy = VecTy.getElementType();
6600   unsigned NumElts = VecTy.getNumElements();
6601 
6602   int64_t IdxVal;
6603   if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) {
6604     SmallVector<Register, 8> SrcRegs;
6605     extractParts(SrcVec, EltTy, NumElts, SrcRegs);
6606 
6607     if (InsertVal) {
6608       SrcRegs[IdxVal] = MI.getOperand(2).getReg();
6609       MIRBuilder.buildMerge(DstReg, SrcRegs);
6610     } else {
6611       MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]);
6612     }
6613 
6614     MI.eraseFromParent();
6615     return Legalized;
6616   }
6617 
6618   if (!EltTy.isByteSized()) { // Not implemented.
6619     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6620     return UnableToLegalize;
6621   }
6622 
6623   unsigned EltBytes = EltTy.getSizeInBytes();
6624   Align VecAlign = getStackTemporaryAlignment(VecTy);
6625   Align EltAlign;
6626 
6627   MachinePointerInfo PtrInfo;
6628   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6629                                         VecAlign, PtrInfo);
6630   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6631 
6632   // Get the pointer to the element, and be sure not to hit undefined behavior
6633   // if the index is out of bounds.
6634   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6635 
6636   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6637     int64_t Offset = IdxVal * EltBytes;
6638     PtrInfo = PtrInfo.getWithOffset(Offset);
6639     EltAlign = commonAlignment(VecAlign, Offset);
6640   } else {
6641     // We lose information with a variable offset.
6642     EltAlign = getStackTemporaryAlignment(EltTy);
6643     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6644   }
6645 
6646   if (InsertVal) {
6647     // Write the inserted element
6648     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6649 
6650     // Reload the whole vector.
6651     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6652   } else {
6653     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6654   }
6655 
6656   MI.eraseFromParent();
6657   return Legalized;
6658 }
6659 
6660 LegalizerHelper::LegalizeResult
6661 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6662   Register DstReg = MI.getOperand(0).getReg();
6663   Register Src0Reg = MI.getOperand(1).getReg();
6664   Register Src1Reg = MI.getOperand(2).getReg();
6665   LLT Src0Ty = MRI.getType(Src0Reg);
6666   LLT DstTy = MRI.getType(DstReg);
6667   LLT IdxTy = LLT::scalar(32);
6668 
6669   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6670 
6671   if (DstTy.isScalar()) {
6672     if (Src0Ty.isVector())
6673       return UnableToLegalize;
6674 
6675     // This is just a SELECT.
6676     assert(Mask.size() == 1 && "Expected a single mask element");
6677     Register Val;
6678     if (Mask[0] < 0 || Mask[0] > 1)
6679       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6680     else
6681       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6682     MIRBuilder.buildCopy(DstReg, Val);
6683     MI.eraseFromParent();
6684     return Legalized;
6685   }
6686 
6687   Register Undef;
6688   SmallVector<Register, 32> BuildVec;
6689   LLT EltTy = DstTy.getElementType();
6690 
6691   for (int Idx : Mask) {
6692     if (Idx < 0) {
6693       if (!Undef.isValid())
6694         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6695       BuildVec.push_back(Undef);
6696       continue;
6697     }
6698 
6699     if (Src0Ty.isScalar()) {
6700       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6701     } else {
6702       int NumElts = Src0Ty.getNumElements();
6703       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6704       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6705       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6706       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6707       BuildVec.push_back(Extract.getReg(0));
6708     }
6709   }
6710 
6711   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6712   MI.eraseFromParent();
6713   return Legalized;
6714 }
6715 
6716 LegalizerHelper::LegalizeResult
6717 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6718   const auto &MF = *MI.getMF();
6719   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6720   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6721     return UnableToLegalize;
6722 
6723   Register Dst = MI.getOperand(0).getReg();
6724   Register AllocSize = MI.getOperand(1).getReg();
6725   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6726 
6727   LLT PtrTy = MRI.getType(Dst);
6728   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6729 
6730   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6731   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6732   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6733 
6734   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6735   // have to generate an extra instruction to negate the alloc and then use
6736   // G_PTR_ADD to add the negative offset.
6737   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6738   if (Alignment > Align(1)) {
6739     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6740     AlignMask.negate();
6741     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6742     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6743   }
6744 
6745   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6746   MIRBuilder.buildCopy(SPReg, SPTmp);
6747   MIRBuilder.buildCopy(Dst, SPTmp);
6748 
6749   MI.eraseFromParent();
6750   return Legalized;
6751 }
6752 
6753 LegalizerHelper::LegalizeResult
6754 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6755   Register Dst = MI.getOperand(0).getReg();
6756   Register Src = MI.getOperand(1).getReg();
6757   unsigned Offset = MI.getOperand(2).getImm();
6758 
6759   LLT DstTy = MRI.getType(Dst);
6760   LLT SrcTy = MRI.getType(Src);
6761 
6762   // Extract sub-vector or one element
6763   if (SrcTy.isVector()) {
6764     unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
6765     unsigned DstSize = DstTy.getSizeInBits();
6766 
6767     if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) &&
6768         (Offset + DstSize <= SrcTy.getSizeInBits())) {
6769       // Unmerge and allow access to each Src element for the artifact combiner.
6770       auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src);
6771 
6772       // Take element(s) we need to extract and copy it (merge them).
6773       SmallVector<Register, 8> SubVectorElts;
6774       for (unsigned Idx = Offset / SrcEltSize;
6775            Idx < (Offset + DstSize) / SrcEltSize; ++Idx) {
6776         SubVectorElts.push_back(Unmerge.getReg(Idx));
6777       }
6778       if (SubVectorElts.size() == 1)
6779         MIRBuilder.buildCopy(Dst, SubVectorElts[0]);
6780       else
6781         MIRBuilder.buildMerge(Dst, SubVectorElts);
6782 
6783       MI.eraseFromParent();
6784       return Legalized;
6785     }
6786   }
6787 
6788   if (DstTy.isScalar() &&
6789       (SrcTy.isScalar() ||
6790        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6791     LLT SrcIntTy = SrcTy;
6792     if (!SrcTy.isScalar()) {
6793       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6794       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6795     }
6796 
6797     if (Offset == 0)
6798       MIRBuilder.buildTrunc(Dst, Src);
6799     else {
6800       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6801       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6802       MIRBuilder.buildTrunc(Dst, Shr);
6803     }
6804 
6805     MI.eraseFromParent();
6806     return Legalized;
6807   }
6808 
6809   return UnableToLegalize;
6810 }
6811 
6812 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6813   Register Dst = MI.getOperand(0).getReg();
6814   Register Src = MI.getOperand(1).getReg();
6815   Register InsertSrc = MI.getOperand(2).getReg();
6816   uint64_t Offset = MI.getOperand(3).getImm();
6817 
6818   LLT DstTy = MRI.getType(Src);
6819   LLT InsertTy = MRI.getType(InsertSrc);
6820 
6821   // Insert sub-vector or one element
6822   if (DstTy.isVector() && !InsertTy.isPointer()) {
6823     LLT EltTy = DstTy.getElementType();
6824     unsigned EltSize = EltTy.getSizeInBits();
6825     unsigned InsertSize = InsertTy.getSizeInBits();
6826 
6827     if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) &&
6828         (Offset + InsertSize <= DstTy.getSizeInBits())) {
6829       auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src);
6830       SmallVector<Register, 8> DstElts;
6831       unsigned Idx = 0;
6832       // Elements from Src before insert start Offset
6833       for (; Idx < Offset / EltSize; ++Idx) {
6834         DstElts.push_back(UnmergeSrc.getReg(Idx));
6835       }
6836 
6837       // Replace elements in Src with elements from InsertSrc
6838       if (InsertTy.getSizeInBits() > EltSize) {
6839         auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc);
6840         for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize;
6841              ++Idx, ++i) {
6842           DstElts.push_back(UnmergeInsertSrc.getReg(i));
6843         }
6844       } else {
6845         DstElts.push_back(InsertSrc);
6846         ++Idx;
6847       }
6848 
6849       // Remaining elements from Src after insert
6850       for (; Idx < DstTy.getNumElements(); ++Idx) {
6851         DstElts.push_back(UnmergeSrc.getReg(Idx));
6852       }
6853 
6854       MIRBuilder.buildMerge(Dst, DstElts);
6855       MI.eraseFromParent();
6856       return Legalized;
6857     }
6858   }
6859 
6860   if (InsertTy.isVector() ||
6861       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6862     return UnableToLegalize;
6863 
6864   const DataLayout &DL = MIRBuilder.getDataLayout();
6865   if ((DstTy.isPointer() &&
6866        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6867       (InsertTy.isPointer() &&
6868        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6869     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6870     return UnableToLegalize;
6871   }
6872 
6873   LLT IntDstTy = DstTy;
6874 
6875   if (!DstTy.isScalar()) {
6876     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6877     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6878   }
6879 
6880   if (!InsertTy.isScalar()) {
6881     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6882     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6883   }
6884 
6885   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6886   if (Offset != 0) {
6887     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6888     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6889   }
6890 
6891   APInt MaskVal = APInt::getBitsSetWithWrap(
6892       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6893 
6894   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6895   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6896   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6897 
6898   MIRBuilder.buildCast(Dst, Or);
6899   MI.eraseFromParent();
6900   return Legalized;
6901 }
6902 
6903 LegalizerHelper::LegalizeResult
6904 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6905   Register Dst0 = MI.getOperand(0).getReg();
6906   Register Dst1 = MI.getOperand(1).getReg();
6907   Register LHS = MI.getOperand(2).getReg();
6908   Register RHS = MI.getOperand(3).getReg();
6909   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6910 
6911   LLT Ty = MRI.getType(Dst0);
6912   LLT BoolTy = MRI.getType(Dst1);
6913 
6914   if (IsAdd)
6915     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6916   else
6917     MIRBuilder.buildSub(Dst0, LHS, RHS);
6918 
6919   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6920 
6921   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6922 
6923   // For an addition, the result should be less than one of the operands (LHS)
6924   // if and only if the other operand (RHS) is negative, otherwise there will
6925   // be overflow.
6926   // For a subtraction, the result should be less than one of the operands
6927   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6928   // otherwise there will be overflow.
6929   auto ResultLowerThanLHS =
6930       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6931   auto ConditionRHS = MIRBuilder.buildICmp(
6932       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6933 
6934   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6935   MI.eraseFromParent();
6936   return Legalized;
6937 }
6938 
6939 LegalizerHelper::LegalizeResult
6940 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6941   Register Res = MI.getOperand(0).getReg();
6942   Register LHS = MI.getOperand(1).getReg();
6943   Register RHS = MI.getOperand(2).getReg();
6944   LLT Ty = MRI.getType(Res);
6945   bool IsSigned;
6946   bool IsAdd;
6947   unsigned BaseOp;
6948   switch (MI.getOpcode()) {
6949   default:
6950     llvm_unreachable("unexpected addsat/subsat opcode");
6951   case TargetOpcode::G_UADDSAT:
6952     IsSigned = false;
6953     IsAdd = true;
6954     BaseOp = TargetOpcode::G_ADD;
6955     break;
6956   case TargetOpcode::G_SADDSAT:
6957     IsSigned = true;
6958     IsAdd = true;
6959     BaseOp = TargetOpcode::G_ADD;
6960     break;
6961   case TargetOpcode::G_USUBSAT:
6962     IsSigned = false;
6963     IsAdd = false;
6964     BaseOp = TargetOpcode::G_SUB;
6965     break;
6966   case TargetOpcode::G_SSUBSAT:
6967     IsSigned = true;
6968     IsAdd = false;
6969     BaseOp = TargetOpcode::G_SUB;
6970     break;
6971   }
6972 
6973   if (IsSigned) {
6974     // sadd.sat(a, b) ->
6975     //   hi = 0x7fffffff - smax(a, 0)
6976     //   lo = 0x80000000 - smin(a, 0)
6977     //   a + smin(smax(lo, b), hi)
6978     // ssub.sat(a, b) ->
6979     //   lo = smax(a, -1) - 0x7fffffff
6980     //   hi = smin(a, -1) - 0x80000000
6981     //   a - smin(smax(lo, b), hi)
6982     // TODO: AMDGPU can use a "median of 3" instruction here:
6983     //   a +/- med3(lo, b, hi)
6984     uint64_t NumBits = Ty.getScalarSizeInBits();
6985     auto MaxVal =
6986         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6987     auto MinVal =
6988         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6989     MachineInstrBuilder Hi, Lo;
6990     if (IsAdd) {
6991       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6992       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6993       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6994     } else {
6995       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6996       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6997                                MaxVal);
6998       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6999                                MinVal);
7000     }
7001     auto RHSClamped =
7002         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
7003     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
7004   } else {
7005     // uadd.sat(a, b) -> a + umin(~a, b)
7006     // usub.sat(a, b) -> a - umin(a, b)
7007     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
7008     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
7009     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
7010   }
7011 
7012   MI.eraseFromParent();
7013   return Legalized;
7014 }
7015 
7016 LegalizerHelper::LegalizeResult
7017 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
7018   Register Res = MI.getOperand(0).getReg();
7019   Register LHS = MI.getOperand(1).getReg();
7020   Register RHS = MI.getOperand(2).getReg();
7021   LLT Ty = MRI.getType(Res);
7022   LLT BoolTy = Ty.changeElementSize(1);
7023   bool IsSigned;
7024   bool IsAdd;
7025   unsigned OverflowOp;
7026   switch (MI.getOpcode()) {
7027   default:
7028     llvm_unreachable("unexpected addsat/subsat opcode");
7029   case TargetOpcode::G_UADDSAT:
7030     IsSigned = false;
7031     IsAdd = true;
7032     OverflowOp = TargetOpcode::G_UADDO;
7033     break;
7034   case TargetOpcode::G_SADDSAT:
7035     IsSigned = true;
7036     IsAdd = true;
7037     OverflowOp = TargetOpcode::G_SADDO;
7038     break;
7039   case TargetOpcode::G_USUBSAT:
7040     IsSigned = false;
7041     IsAdd = false;
7042     OverflowOp = TargetOpcode::G_USUBO;
7043     break;
7044   case TargetOpcode::G_SSUBSAT:
7045     IsSigned = true;
7046     IsAdd = false;
7047     OverflowOp = TargetOpcode::G_SSUBO;
7048     break;
7049   }
7050 
7051   auto OverflowRes =
7052       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
7053   Register Tmp = OverflowRes.getReg(0);
7054   Register Ov = OverflowRes.getReg(1);
7055   MachineInstrBuilder Clamp;
7056   if (IsSigned) {
7057     // sadd.sat(a, b) ->
7058     //   {tmp, ov} = saddo(a, b)
7059     //   ov ? (tmp >>s 31) + 0x80000000 : r
7060     // ssub.sat(a, b) ->
7061     //   {tmp, ov} = ssubo(a, b)
7062     //   ov ? (tmp >>s 31) + 0x80000000 : r
7063     uint64_t NumBits = Ty.getScalarSizeInBits();
7064     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
7065     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
7066     auto MinVal =
7067         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7068     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
7069   } else {
7070     // uadd.sat(a, b) ->
7071     //   {tmp, ov} = uaddo(a, b)
7072     //   ov ? 0xffffffff : tmp
7073     // usub.sat(a, b) ->
7074     //   {tmp, ov} = usubo(a, b)
7075     //   ov ? 0 : tmp
7076     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
7077   }
7078   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
7079 
7080   MI.eraseFromParent();
7081   return Legalized;
7082 }
7083 
7084 LegalizerHelper::LegalizeResult
7085 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
7086   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
7087           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
7088          "Expected shlsat opcode!");
7089   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
7090   Register Res = MI.getOperand(0).getReg();
7091   Register LHS = MI.getOperand(1).getReg();
7092   Register RHS = MI.getOperand(2).getReg();
7093   LLT Ty = MRI.getType(Res);
7094   LLT BoolTy = Ty.changeElementSize(1);
7095 
7096   unsigned BW = Ty.getScalarSizeInBits();
7097   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
7098   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
7099                        : MIRBuilder.buildLShr(Ty, Result, RHS);
7100 
7101   MachineInstrBuilder SatVal;
7102   if (IsSigned) {
7103     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
7104     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
7105     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
7106                                     MIRBuilder.buildConstant(Ty, 0));
7107     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
7108   } else {
7109     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
7110   }
7111   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
7112   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
7113 
7114   MI.eraseFromParent();
7115   return Legalized;
7116 }
7117 
7118 LegalizerHelper::LegalizeResult
7119 LegalizerHelper::lowerBswap(MachineInstr &MI) {
7120   Register Dst = MI.getOperand(0).getReg();
7121   Register Src = MI.getOperand(1).getReg();
7122   const LLT Ty = MRI.getType(Src);
7123   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
7124   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
7125 
7126   // Swap most and least significant byte, set remaining bytes in Res to zero.
7127   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7128   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7129   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7130   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7131 
7132   // Set i-th high/low byte in Res to i-th low/high byte from Src.
7133   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7134     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7135     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7136     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7137     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7138     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7139     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7140     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7141     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7142     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7143     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7144     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7145     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7146   }
7147   Res.getInstr()->getOperand(0).setReg(Dst);
7148 
7149   MI.eraseFromParent();
7150   return Legalized;
7151 }
7152 
7153 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
7154 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7155                                  MachineInstrBuilder Src, APInt Mask) {
7156   const LLT Ty = Dst.getLLTTy(*B.getMRI());
7157   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7158   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7159   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7160   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7161   return B.buildOr(Dst, LHS, RHS);
7162 }
7163 
7164 LegalizerHelper::LegalizeResult
7165 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7166   Register Dst = MI.getOperand(0).getReg();
7167   Register Src = MI.getOperand(1).getReg();
7168   const LLT Ty = MRI.getType(Src);
7169   unsigned Size = Ty.getSizeInBits();
7170 
7171   MachineInstrBuilder BSWAP =
7172       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7173 
7174   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7175   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7176   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7177   MachineInstrBuilder Swap4 =
7178       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7179 
7180   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7181   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7182   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7183   MachineInstrBuilder Swap2 =
7184       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7185 
7186   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7187   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7188   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7189   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7190 
7191   MI.eraseFromParent();
7192   return Legalized;
7193 }
7194 
7195 LegalizerHelper::LegalizeResult
7196 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7197   MachineFunction &MF = MIRBuilder.getMF();
7198 
7199   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7200   int NameOpIdx = IsRead ? 1 : 0;
7201   int ValRegIndex = IsRead ? 0 : 1;
7202 
7203   Register ValReg = MI.getOperand(ValRegIndex).getReg();
7204   const LLT Ty = MRI.getType(ValReg);
7205   const MDString *RegStr = cast<MDString>(
7206     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7207 
7208   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7209   if (!PhysReg.isValid())
7210     return UnableToLegalize;
7211 
7212   if (IsRead)
7213     MIRBuilder.buildCopy(ValReg, PhysReg);
7214   else
7215     MIRBuilder.buildCopy(PhysReg, ValReg);
7216 
7217   MI.eraseFromParent();
7218   return Legalized;
7219 }
7220 
7221 LegalizerHelper::LegalizeResult
7222 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7223   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7224   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7225   Register Result = MI.getOperand(0).getReg();
7226   LLT OrigTy = MRI.getType(Result);
7227   auto SizeInBits = OrigTy.getScalarSizeInBits();
7228   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7229 
7230   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7231   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7232   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7233   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7234 
7235   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7236   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7237   MIRBuilder.buildTrunc(Result, Shifted);
7238 
7239   MI.eraseFromParent();
7240   return Legalized;
7241 }
7242 
7243 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7244   // Implement vector G_SELECT in terms of XOR, AND, OR.
7245   Register DstReg = MI.getOperand(0).getReg();
7246   Register MaskReg = MI.getOperand(1).getReg();
7247   Register Op1Reg = MI.getOperand(2).getReg();
7248   Register Op2Reg = MI.getOperand(3).getReg();
7249   LLT DstTy = MRI.getType(DstReg);
7250   LLT MaskTy = MRI.getType(MaskReg);
7251   LLT Op1Ty = MRI.getType(Op1Reg);
7252   if (!DstTy.isVector())
7253     return UnableToLegalize;
7254 
7255   // Vector selects can have a scalar predicate. If so, splat into a vector and
7256   // finish for later legalization attempts to try again.
7257   if (MaskTy.isScalar()) {
7258     Register MaskElt = MaskReg;
7259     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
7260       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
7261     // Generate a vector splat idiom to be pattern matched later.
7262     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7263     Observer.changingInstr(MI);
7264     MI.getOperand(1).setReg(ShufSplat.getReg(0));
7265     Observer.changedInstr(MI);
7266     return Legalized;
7267   }
7268 
7269   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
7270     return UnableToLegalize;
7271   }
7272 
7273   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7274   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7275   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7276   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7277   MI.eraseFromParent();
7278   return Legalized;
7279 }
7280 
7281 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7282   // Split DIVREM into individual instructions.
7283   unsigned Opcode = MI.getOpcode();
7284 
7285   MIRBuilder.buildInstr(
7286       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7287                                         : TargetOpcode::G_UDIV,
7288       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7289   MIRBuilder.buildInstr(
7290       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7291                                         : TargetOpcode::G_UREM,
7292       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7293   MI.eraseFromParent();
7294   return Legalized;
7295 }
7296 
7297 LegalizerHelper::LegalizeResult
7298 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7299   // Expand %res = G_ABS %a into:
7300   // %v1 = G_ASHR %a, scalar_size-1
7301   // %v2 = G_ADD %a, %v1
7302   // %res = G_XOR %v2, %v1
7303   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7304   Register OpReg = MI.getOperand(1).getReg();
7305   auto ShiftAmt =
7306       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7307   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7308   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7309   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7310   MI.eraseFromParent();
7311   return Legalized;
7312 }
7313 
7314 LegalizerHelper::LegalizeResult
7315 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7316   // Expand %res = G_ABS %a into:
7317   // %v1 = G_CONSTANT 0
7318   // %v2 = G_SUB %v1, %a
7319   // %res = G_SMAX %a, %v2
7320   Register SrcReg = MI.getOperand(1).getReg();
7321   LLT Ty = MRI.getType(SrcReg);
7322   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7323   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7324   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7325   MI.eraseFromParent();
7326   return Legalized;
7327 }
7328 
7329 LegalizerHelper::LegalizeResult
7330 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) {
7331   Register SrcReg = MI.getOperand(1).getReg();
7332   LLT SrcTy = MRI.getType(SrcReg);
7333   LLT DstTy = MRI.getType(SrcReg);
7334 
7335   // The source could be a scalar if the IR type was <1 x sN>.
7336   if (SrcTy.isScalar()) {
7337     if (DstTy.getSizeInBits() > SrcTy.getSizeInBits())
7338       return UnableToLegalize; // FIXME: handle extension.
7339     // This can be just a plain copy.
7340     Observer.changingInstr(MI);
7341     MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY));
7342     Observer.changedInstr(MI);
7343     return Legalized;
7344   }
7345   return UnableToLegalize;;
7346 }
7347 
7348 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
7349   // On Darwin, -Os means optimize for size without hurting performance, so
7350   // only really optimize for size when -Oz (MinSize) is used.
7351   if (MF.getTarget().getTargetTriple().isOSDarwin())
7352     return MF.getFunction().hasMinSize();
7353   return MF.getFunction().hasOptSize();
7354 }
7355 
7356 // Returns a list of types to use for memory op lowering in MemOps. A partial
7357 // port of findOptimalMemOpLowering in TargetLowering.
7358 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
7359                                           unsigned Limit, const MemOp &Op,
7360                                           unsigned DstAS, unsigned SrcAS,
7361                                           const AttributeList &FuncAttributes,
7362                                           const TargetLowering &TLI) {
7363   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
7364     return false;
7365 
7366   LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
7367 
7368   if (Ty == LLT()) {
7369     // Use the largest scalar type whose alignment constraints are satisfied.
7370     // We only need to check DstAlign here as SrcAlign is always greater or
7371     // equal to DstAlign (or zero).
7372     Ty = LLT::scalar(64);
7373     if (Op.isFixedDstAlign())
7374       while (Op.getDstAlign() < Ty.getSizeInBytes() &&
7375              !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
7376         Ty = LLT::scalar(Ty.getSizeInBytes());
7377     assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
7378     // FIXME: check for the largest legal type we can load/store to.
7379   }
7380 
7381   unsigned NumMemOps = 0;
7382   uint64_t Size = Op.size();
7383   while (Size) {
7384     unsigned TySize = Ty.getSizeInBytes();
7385     while (TySize > Size) {
7386       // For now, only use non-vector load / store's for the left-over pieces.
7387       LLT NewTy = Ty;
7388       // FIXME: check for mem op safety and legality of the types. Not all of
7389       // SDAGisms map cleanly to GISel concepts.
7390       if (NewTy.isVector())
7391         NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
7392       NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
7393       unsigned NewTySize = NewTy.getSizeInBytes();
7394       assert(NewTySize > 0 && "Could not find appropriate type");
7395 
7396       // If the new LLT cannot cover all of the remaining bits, then consider
7397       // issuing a (or a pair of) unaligned and overlapping load / store.
7398       bool Fast;
7399       // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
7400       MVT VT = getMVTForLLT(Ty);
7401       if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
7402           TLI.allowsMisalignedMemoryAccesses(
7403               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
7404               MachineMemOperand::MONone, &Fast) &&
7405           Fast)
7406         TySize = Size;
7407       else {
7408         Ty = NewTy;
7409         TySize = NewTySize;
7410       }
7411     }
7412 
7413     if (++NumMemOps > Limit)
7414       return false;
7415 
7416     MemOps.push_back(Ty);
7417     Size -= TySize;
7418   }
7419 
7420   return true;
7421 }
7422 
7423 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
7424   if (Ty.isVector())
7425     return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
7426                                 Ty.getNumElements());
7427   return IntegerType::get(C, Ty.getSizeInBits());
7428 }
7429 
7430 // Get a vectorized representation of the memset value operand, GISel edition.
7431 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
7432   MachineRegisterInfo &MRI = *MIB.getMRI();
7433   unsigned NumBits = Ty.getScalarSizeInBits();
7434   auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7435   if (!Ty.isVector() && ValVRegAndVal) {
7436     APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
7437     APInt SplatVal = APInt::getSplat(NumBits, Scalar);
7438     return MIB.buildConstant(Ty, SplatVal).getReg(0);
7439   }
7440 
7441   // Extend the byte value to the larger type, and then multiply by a magic
7442   // value 0x010101... in order to replicate it across every byte.
7443   // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
7444   if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
7445     return MIB.buildConstant(Ty, 0).getReg(0);
7446   }
7447 
7448   LLT ExtType = Ty.getScalarType();
7449   auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
7450   if (NumBits > 8) {
7451     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
7452     auto MagicMI = MIB.buildConstant(ExtType, Magic);
7453     Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
7454   }
7455 
7456   // For vector types create a G_BUILD_VECTOR.
7457   if (Ty.isVector())
7458     Val = MIB.buildSplatVector(Ty, Val).getReg(0);
7459 
7460   return Val;
7461 }
7462 
7463 LegalizerHelper::LegalizeResult
7464 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val,
7465                              uint64_t KnownLen, Align Alignment,
7466                              bool IsVolatile) {
7467   auto &MF = *MI.getParent()->getParent();
7468   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7469   auto &DL = MF.getDataLayout();
7470   LLVMContext &C = MF.getFunction().getContext();
7471 
7472   assert(KnownLen != 0 && "Have a zero length memset length!");
7473 
7474   bool DstAlignCanChange = false;
7475   MachineFrameInfo &MFI = MF.getFrameInfo();
7476   bool OptSize = shouldLowerMemFuncForSize(MF);
7477 
7478   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7479   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7480     DstAlignCanChange = true;
7481 
7482   unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
7483   std::vector<LLT> MemOps;
7484 
7485   const auto &DstMMO = **MI.memoperands_begin();
7486   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7487 
7488   auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7489   bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
7490 
7491   if (!findGISelOptimalMemOpLowering(MemOps, Limit,
7492                                      MemOp::Set(KnownLen, DstAlignCanChange,
7493                                                 Alignment,
7494                                                 /*IsZeroMemset=*/IsZeroVal,
7495                                                 /*IsVolatile=*/IsVolatile),
7496                                      DstPtrInfo.getAddrSpace(), ~0u,
7497                                      MF.getFunction().getAttributes(), TLI))
7498     return UnableToLegalize;
7499 
7500   if (DstAlignCanChange) {
7501     // Get an estimate of the type from the LLT.
7502     Type *IRTy = getTypeForLLT(MemOps[0], C);
7503     Align NewAlign = DL.getABITypeAlign(IRTy);
7504     if (NewAlign > Alignment) {
7505       Alignment = NewAlign;
7506       unsigned FI = FIDef->getOperand(1).getIndex();
7507       // Give the stack frame object a larger alignment if needed.
7508       if (MFI.getObjectAlign(FI) < Alignment)
7509         MFI.setObjectAlignment(FI, Alignment);
7510     }
7511   }
7512 
7513   MachineIRBuilder MIB(MI);
7514   // Find the largest store and generate the bit pattern for it.
7515   LLT LargestTy = MemOps[0];
7516   for (unsigned i = 1; i < MemOps.size(); i++)
7517     if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
7518       LargestTy = MemOps[i];
7519 
7520   // The memset stored value is always defined as an s8, so in order to make it
7521   // work with larger store types we need to repeat the bit pattern across the
7522   // wider type.
7523   Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
7524 
7525   if (!MemSetValue)
7526     return UnableToLegalize;
7527 
7528   // Generate the stores. For each store type in the list, we generate the
7529   // matching store of that type to the destination address.
7530   LLT PtrTy = MRI.getType(Dst);
7531   unsigned DstOff = 0;
7532   unsigned Size = KnownLen;
7533   for (unsigned I = 0; I < MemOps.size(); I++) {
7534     LLT Ty = MemOps[I];
7535     unsigned TySize = Ty.getSizeInBytes();
7536     if (TySize > Size) {
7537       // Issuing an unaligned load / store pair that overlaps with the previous
7538       // pair. Adjust the offset accordingly.
7539       assert(I == MemOps.size() - 1 && I != 0);
7540       DstOff -= TySize - Size;
7541     }
7542 
7543     // If this store is smaller than the largest store see whether we can get
7544     // the smaller value for free with a truncate.
7545     Register Value = MemSetValue;
7546     if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
7547       MVT VT = getMVTForLLT(Ty);
7548       MVT LargestVT = getMVTForLLT(LargestTy);
7549       if (!LargestTy.isVector() && !Ty.isVector() &&
7550           TLI.isTruncateFree(LargestVT, VT))
7551         Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
7552       else
7553         Value = getMemsetValue(Val, Ty, MIB);
7554       if (!Value)
7555         return UnableToLegalize;
7556     }
7557 
7558     auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
7559 
7560     Register Ptr = Dst;
7561     if (DstOff != 0) {
7562       auto Offset =
7563           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
7564       Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
7565     }
7566 
7567     MIB.buildStore(Value, Ptr, *StoreMMO);
7568     DstOff += Ty.getSizeInBytes();
7569     Size -= TySize;
7570   }
7571 
7572   MI.eraseFromParent();
7573   return Legalized;
7574 }
7575 
7576 LegalizerHelper::LegalizeResult
7577 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) {
7578   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
7579 
7580   Register Dst = MI.getOperand(0).getReg();
7581   Register Src = MI.getOperand(1).getReg();
7582   Register Len = MI.getOperand(2).getReg();
7583 
7584   const auto *MMOIt = MI.memoperands_begin();
7585   const MachineMemOperand *MemOp = *MMOIt;
7586   bool IsVolatile = MemOp->isVolatile();
7587 
7588   // See if this is a constant length copy
7589   auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7590   // FIXME: support dynamically sized G_MEMCPY_INLINE
7591   assert(LenVRegAndVal.hasValue() &&
7592          "inline memcpy with dynamic size is not yet supported");
7593   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7594   if (KnownLen == 0) {
7595     MI.eraseFromParent();
7596     return Legalized;
7597   }
7598 
7599   const auto &DstMMO = **MI.memoperands_begin();
7600   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7601   Align DstAlign = DstMMO.getBaseAlign();
7602   Align SrcAlign = SrcMMO.getBaseAlign();
7603 
7604   return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7605                            IsVolatile);
7606 }
7607 
7608 LegalizerHelper::LegalizeResult
7609 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src,
7610                                    uint64_t KnownLen, Align DstAlign,
7611                                    Align SrcAlign, bool IsVolatile) {
7612   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
7613   return lowerMemcpy(MI, Dst, Src, KnownLen,
7614                      std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign,
7615                      IsVolatile);
7616 }
7617 
7618 LegalizerHelper::LegalizeResult
7619 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src,
7620                              uint64_t KnownLen, uint64_t Limit, Align DstAlign,
7621                              Align SrcAlign, bool IsVolatile) {
7622   auto &MF = *MI.getParent()->getParent();
7623   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7624   auto &DL = MF.getDataLayout();
7625   LLVMContext &C = MF.getFunction().getContext();
7626 
7627   assert(KnownLen != 0 && "Have a zero length memcpy length!");
7628 
7629   bool DstAlignCanChange = false;
7630   MachineFrameInfo &MFI = MF.getFrameInfo();
7631   Align Alignment = commonAlignment(DstAlign, SrcAlign);
7632 
7633   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7634   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7635     DstAlignCanChange = true;
7636 
7637   // FIXME: infer better src pointer alignment like SelectionDAG does here.
7638   // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
7639   // if the memcpy is in a tail call position.
7640 
7641   std::vector<LLT> MemOps;
7642 
7643   const auto &DstMMO = **MI.memoperands_begin();
7644   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7645   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7646   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7647 
7648   if (!findGISelOptimalMemOpLowering(
7649           MemOps, Limit,
7650           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7651                       IsVolatile),
7652           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7653           MF.getFunction().getAttributes(), TLI))
7654     return UnableToLegalize;
7655 
7656   if (DstAlignCanChange) {
7657     // Get an estimate of the type from the LLT.
7658     Type *IRTy = getTypeForLLT(MemOps[0], C);
7659     Align NewAlign = DL.getABITypeAlign(IRTy);
7660 
7661     // Don't promote to an alignment that would require dynamic stack
7662     // realignment.
7663     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7664     if (!TRI->hasStackRealignment(MF))
7665       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7666         NewAlign = NewAlign / 2;
7667 
7668     if (NewAlign > Alignment) {
7669       Alignment = NewAlign;
7670       unsigned FI = FIDef->getOperand(1).getIndex();
7671       // Give the stack frame object a larger alignment if needed.
7672       if (MFI.getObjectAlign(FI) < Alignment)
7673         MFI.setObjectAlignment(FI, Alignment);
7674     }
7675   }
7676 
7677   LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
7678 
7679   MachineIRBuilder MIB(MI);
7680   // Now we need to emit a pair of load and stores for each of the types we've
7681   // collected. I.e. for each type, generate a load from the source pointer of
7682   // that type width, and then generate a corresponding store to the dest buffer
7683   // of that value loaded. This can result in a sequence of loads and stores
7684   // mixed types, depending on what the target specifies as good types to use.
7685   unsigned CurrOffset = 0;
7686   unsigned Size = KnownLen;
7687   for (auto CopyTy : MemOps) {
7688     // Issuing an unaligned load / store pair  that overlaps with the previous
7689     // pair. Adjust the offset accordingly.
7690     if (CopyTy.getSizeInBytes() > Size)
7691       CurrOffset -= CopyTy.getSizeInBytes() - Size;
7692 
7693     // Construct MMOs for the accesses.
7694     auto *LoadMMO =
7695         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7696     auto *StoreMMO =
7697         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7698 
7699     // Create the load.
7700     Register LoadPtr = Src;
7701     Register Offset;
7702     if (CurrOffset != 0) {
7703       LLT SrcTy = MRI.getType(Src);
7704       Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset)
7705                    .getReg(0);
7706       LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7707     }
7708     auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
7709 
7710     // Create the store.
7711     Register StorePtr = Dst;
7712     if (CurrOffset != 0) {
7713       LLT DstTy = MRI.getType(Dst);
7714       StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7715     }
7716     MIB.buildStore(LdVal, StorePtr, *StoreMMO);
7717     CurrOffset += CopyTy.getSizeInBytes();
7718     Size -= CopyTy.getSizeInBytes();
7719   }
7720 
7721   MI.eraseFromParent();
7722   return Legalized;
7723 }
7724 
7725 LegalizerHelper::LegalizeResult
7726 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src,
7727                               uint64_t KnownLen, Align DstAlign, Align SrcAlign,
7728                               bool IsVolatile) {
7729   auto &MF = *MI.getParent()->getParent();
7730   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7731   auto &DL = MF.getDataLayout();
7732   LLVMContext &C = MF.getFunction().getContext();
7733 
7734   assert(KnownLen != 0 && "Have a zero length memmove length!");
7735 
7736   bool DstAlignCanChange = false;
7737   MachineFrameInfo &MFI = MF.getFrameInfo();
7738   bool OptSize = shouldLowerMemFuncForSize(MF);
7739   Align Alignment = commonAlignment(DstAlign, SrcAlign);
7740 
7741   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7742   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7743     DstAlignCanChange = true;
7744 
7745   unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
7746   std::vector<LLT> MemOps;
7747 
7748   const auto &DstMMO = **MI.memoperands_begin();
7749   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7750   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7751   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7752 
7753   // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
7754   // to a bug in it's findOptimalMemOpLowering implementation. For now do the
7755   // same thing here.
7756   if (!findGISelOptimalMemOpLowering(
7757           MemOps, Limit,
7758           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7759                       /*IsVolatile*/ true),
7760           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7761           MF.getFunction().getAttributes(), TLI))
7762     return UnableToLegalize;
7763 
7764   if (DstAlignCanChange) {
7765     // Get an estimate of the type from the LLT.
7766     Type *IRTy = getTypeForLLT(MemOps[0], C);
7767     Align NewAlign = DL.getABITypeAlign(IRTy);
7768 
7769     // Don't promote to an alignment that would require dynamic stack
7770     // realignment.
7771     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7772     if (!TRI->hasStackRealignment(MF))
7773       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7774         NewAlign = NewAlign / 2;
7775 
7776     if (NewAlign > Alignment) {
7777       Alignment = NewAlign;
7778       unsigned FI = FIDef->getOperand(1).getIndex();
7779       // Give the stack frame object a larger alignment if needed.
7780       if (MFI.getObjectAlign(FI) < Alignment)
7781         MFI.setObjectAlignment(FI, Alignment);
7782     }
7783   }
7784 
7785   LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
7786 
7787   MachineIRBuilder MIB(MI);
7788   // Memmove requires that we perform the loads first before issuing the stores.
7789   // Apart from that, this loop is pretty much doing the same thing as the
7790   // memcpy codegen function.
7791   unsigned CurrOffset = 0;
7792   SmallVector<Register, 16> LoadVals;
7793   for (auto CopyTy : MemOps) {
7794     // Construct MMO for the load.
7795     auto *LoadMMO =
7796         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7797 
7798     // Create the load.
7799     Register LoadPtr = Src;
7800     if (CurrOffset != 0) {
7801       LLT SrcTy = MRI.getType(Src);
7802       auto Offset =
7803           MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset);
7804       LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7805     }
7806     LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
7807     CurrOffset += CopyTy.getSizeInBytes();
7808   }
7809 
7810   CurrOffset = 0;
7811   for (unsigned I = 0; I < MemOps.size(); ++I) {
7812     LLT CopyTy = MemOps[I];
7813     // Now store the values loaded.
7814     auto *StoreMMO =
7815         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7816 
7817     Register StorePtr = Dst;
7818     if (CurrOffset != 0) {
7819       LLT DstTy = MRI.getType(Dst);
7820       auto Offset =
7821           MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset);
7822       StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7823     }
7824     MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
7825     CurrOffset += CopyTy.getSizeInBytes();
7826   }
7827   MI.eraseFromParent();
7828   return Legalized;
7829 }
7830 
7831 LegalizerHelper::LegalizeResult
7832 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
7833   const unsigned Opc = MI.getOpcode();
7834   // This combine is fairly complex so it's not written with a separate
7835   // matcher function.
7836   assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
7837           Opc == TargetOpcode::G_MEMSET) &&
7838          "Expected memcpy like instruction");
7839 
7840   auto MMOIt = MI.memoperands_begin();
7841   const MachineMemOperand *MemOp = *MMOIt;
7842 
7843   Align DstAlign = MemOp->getBaseAlign();
7844   Align SrcAlign;
7845   Register Dst = MI.getOperand(0).getReg();
7846   Register Src = MI.getOperand(1).getReg();
7847   Register Len = MI.getOperand(2).getReg();
7848 
7849   if (Opc != TargetOpcode::G_MEMSET) {
7850     assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
7851     MemOp = *(++MMOIt);
7852     SrcAlign = MemOp->getBaseAlign();
7853   }
7854 
7855   // See if this is a constant length copy
7856   auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7857   if (!LenVRegAndVal)
7858     return UnableToLegalize;
7859   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7860 
7861   if (KnownLen == 0) {
7862     MI.eraseFromParent();
7863     return Legalized;
7864   }
7865 
7866   bool IsVolatile = MemOp->isVolatile();
7867   if (Opc == TargetOpcode::G_MEMCPY_INLINE)
7868     return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7869                              IsVolatile);
7870 
7871   // Don't try to optimize volatile.
7872   if (IsVolatile)
7873     return UnableToLegalize;
7874 
7875   if (MaxLen && KnownLen > MaxLen)
7876     return UnableToLegalize;
7877 
7878   if (Opc == TargetOpcode::G_MEMCPY) {
7879     auto &MF = *MI.getParent()->getParent();
7880     const auto &TLI = *MF.getSubtarget().getTargetLowering();
7881     bool OptSize = shouldLowerMemFuncForSize(MF);
7882     uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
7883     return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
7884                        IsVolatile);
7885   }
7886   if (Opc == TargetOpcode::G_MEMMOVE)
7887     return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
7888   if (Opc == TargetOpcode::G_MEMSET)
7889     return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
7890   return UnableToLegalize;
7891 }
7892