1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 23 #include "llvm/CodeGen/GlobalISel/Utils.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetFrameLowering.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetOpcodes.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 37 #define DEBUG_TYPE "legalizer" 38 39 using namespace llvm; 40 using namespace LegalizeActions; 41 using namespace MIPatternMatch; 42 43 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 44 /// 45 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 46 /// with any leftover piece as type \p LeftoverTy 47 /// 48 /// Returns -1 in the first element of the pair if the breakdown is not 49 /// satisfiable. 50 static std::pair<int, int> 51 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 52 assert(!LeftoverTy.isValid() && "this is an out argument"); 53 54 unsigned Size = OrigTy.getSizeInBits(); 55 unsigned NarrowSize = NarrowTy.getSizeInBits(); 56 unsigned NumParts = Size / NarrowSize; 57 unsigned LeftoverSize = Size - NumParts * NarrowSize; 58 assert(Size > NarrowSize); 59 60 if (LeftoverSize == 0) 61 return {NumParts, 0}; 62 63 if (NarrowTy.isVector()) { 64 unsigned EltSize = OrigTy.getScalarSizeInBits(); 65 if (LeftoverSize % EltSize != 0) 66 return {-1, -1}; 67 LeftoverTy = LLT::scalarOrVector( 68 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 69 } else { 70 LeftoverTy = LLT::scalar(LeftoverSize); 71 } 72 73 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 74 return std::make_pair(NumParts, NumLeftover); 75 } 76 77 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 78 79 if (!Ty.isScalar()) 80 return nullptr; 81 82 switch (Ty.getSizeInBits()) { 83 case 16: 84 return Type::getHalfTy(Ctx); 85 case 32: 86 return Type::getFloatTy(Ctx); 87 case 64: 88 return Type::getDoubleTy(Ctx); 89 case 80: 90 return Type::getX86_FP80Ty(Ctx); 91 case 128: 92 return Type::getFP128Ty(Ctx); 93 default: 94 return nullptr; 95 } 96 } 97 98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 99 GISelChangeObserver &Observer, 100 MachineIRBuilder &Builder) 101 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 102 LI(*MF.getSubtarget().getLegalizerInfo()), 103 TLI(*MF.getSubtarget().getTargetLowering()) { } 104 105 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 106 GISelChangeObserver &Observer, 107 MachineIRBuilder &B) 108 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 109 TLI(*MF.getSubtarget().getTargetLowering()) { } 110 111 LegalizerHelper::LegalizeResult 112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 113 LostDebugLocObserver &LocObserver) { 114 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 115 116 MIRBuilder.setInstrAndDebugLoc(MI); 117 118 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 119 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 120 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 121 auto Step = LI.getAction(MI, MRI); 122 switch (Step.Action) { 123 case Legal: 124 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 125 return AlreadyLegal; 126 case Libcall: 127 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 128 return libcall(MI, LocObserver); 129 case NarrowScalar: 130 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 131 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 132 case WidenScalar: 133 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 134 return widenScalar(MI, Step.TypeIdx, Step.NewType); 135 case Bitcast: 136 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 137 return bitcast(MI, Step.TypeIdx, Step.NewType); 138 case Lower: 139 LLVM_DEBUG(dbgs() << ".. Lower\n"); 140 return lower(MI, Step.TypeIdx, Step.NewType); 141 case FewerElements: 142 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 143 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 144 case MoreElements: 145 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 146 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 147 case Custom: 148 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 149 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 150 default: 151 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 152 return UnableToLegalize; 153 } 154 } 155 156 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 157 SmallVectorImpl<Register> &VRegs) { 158 for (int i = 0; i < NumParts; ++i) 159 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 160 MIRBuilder.buildUnmerge(VRegs, Reg); 161 } 162 163 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 164 LLT MainTy, LLT &LeftoverTy, 165 SmallVectorImpl<Register> &VRegs, 166 SmallVectorImpl<Register> &LeftoverRegs) { 167 assert(!LeftoverTy.isValid() && "this is an out argument"); 168 169 unsigned RegSize = RegTy.getSizeInBits(); 170 unsigned MainSize = MainTy.getSizeInBits(); 171 unsigned NumParts = RegSize / MainSize; 172 unsigned LeftoverSize = RegSize - NumParts * MainSize; 173 174 // Use an unmerge when possible. 175 if (LeftoverSize == 0) { 176 for (unsigned I = 0; I < NumParts; ++I) 177 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 178 MIRBuilder.buildUnmerge(VRegs, Reg); 179 return true; 180 } 181 182 // Perform irregular split. Leftover is last element of RegPieces. 183 if (MainTy.isVector()) { 184 SmallVector<Register, 8> RegPieces; 185 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces); 186 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 187 VRegs.push_back(RegPieces[i]); 188 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 189 LeftoverTy = MRI.getType(LeftoverRegs[0]); 190 return true; 191 } 192 193 LeftoverTy = LLT::scalar(LeftoverSize); 194 // For irregular sizes, extract the individual parts. 195 for (unsigned I = 0; I != NumParts; ++I) { 196 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 197 VRegs.push_back(NewReg); 198 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 199 } 200 201 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 202 Offset += LeftoverSize) { 203 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 204 LeftoverRegs.push_back(NewReg); 205 MIRBuilder.buildExtract(NewReg, Reg, Offset); 206 } 207 208 return true; 209 } 210 211 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts, 212 SmallVectorImpl<Register> &VRegs) { 213 LLT RegTy = MRI.getType(Reg); 214 assert(RegTy.isVector() && "Expected a vector type"); 215 216 LLT EltTy = RegTy.getElementType(); 217 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 218 unsigned RegNumElts = RegTy.getNumElements(); 219 unsigned LeftoverNumElts = RegNumElts % NumElts; 220 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 221 222 // Perfect split without leftover 223 if (LeftoverNumElts == 0) 224 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs); 225 226 // Irregular split. Provide direct access to all elements for artifact 227 // combiner using unmerge to elements. Then build vectors with NumElts 228 // elements. Remaining element(s) will be (used to build vector) Leftover. 229 SmallVector<Register, 8> Elts; 230 extractParts(Reg, EltTy, RegNumElts, Elts); 231 232 unsigned Offset = 0; 233 // Requested sub-vectors of NarrowTy. 234 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 235 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 236 VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 237 } 238 239 // Leftover element(s). 240 if (LeftoverNumElts == 1) { 241 VRegs.push_back(Elts[Offset]); 242 } else { 243 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 244 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 245 VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0)); 246 } 247 } 248 249 void LegalizerHelper::insertParts(Register DstReg, 250 LLT ResultTy, LLT PartTy, 251 ArrayRef<Register> PartRegs, 252 LLT LeftoverTy, 253 ArrayRef<Register> LeftoverRegs) { 254 if (!LeftoverTy.isValid()) { 255 assert(LeftoverRegs.empty()); 256 257 if (!ResultTy.isVector()) { 258 MIRBuilder.buildMerge(DstReg, PartRegs); 259 return; 260 } 261 262 if (PartTy.isVector()) 263 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 264 else 265 MIRBuilder.buildBuildVector(DstReg, PartRegs); 266 return; 267 } 268 269 // Merge sub-vectors with different number of elements and insert into DstReg. 270 if (ResultTy.isVector()) { 271 assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); 272 SmallVector<Register, 8> AllRegs; 273 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs)) 274 AllRegs.push_back(Reg); 275 return mergeMixedSubvectors(DstReg, AllRegs); 276 } 277 278 SmallVector<Register> GCDRegs; 279 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 280 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 281 extractGCDType(GCDRegs, GCDTy, PartReg); 282 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 283 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 284 } 285 286 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts, 287 Register Reg) { 288 LLT Ty = MRI.getType(Reg); 289 SmallVector<Register, 8> RegElts; 290 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts); 291 Elts.append(RegElts); 292 } 293 294 /// Merge \p PartRegs with different types into \p DstReg. 295 void LegalizerHelper::mergeMixedSubvectors(Register DstReg, 296 ArrayRef<Register> PartRegs) { 297 SmallVector<Register, 8> AllElts; 298 for (unsigned i = 0; i < PartRegs.size() - 1; ++i) 299 appendVectorElts(AllElts, PartRegs[i]); 300 301 Register Leftover = PartRegs[PartRegs.size() - 1]; 302 if (MRI.getType(Leftover).isScalar()) 303 AllElts.push_back(Leftover); 304 else 305 appendVectorElts(AllElts, Leftover); 306 307 MIRBuilder.buildMerge(DstReg, AllElts); 308 } 309 310 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 311 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 312 const MachineInstr &MI) { 313 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 314 315 const int StartIdx = Regs.size(); 316 const int NumResults = MI.getNumOperands() - 1; 317 Regs.resize(Regs.size() + NumResults); 318 for (int I = 0; I != NumResults; ++I) 319 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 320 } 321 322 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 323 LLT GCDTy, Register SrcReg) { 324 LLT SrcTy = MRI.getType(SrcReg); 325 if (SrcTy == GCDTy) { 326 // If the source already evenly divides the result type, we don't need to do 327 // anything. 328 Parts.push_back(SrcReg); 329 } else { 330 // Need to split into common type sized pieces. 331 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 332 getUnmergeResults(Parts, *Unmerge); 333 } 334 } 335 336 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 337 LLT NarrowTy, Register SrcReg) { 338 LLT SrcTy = MRI.getType(SrcReg); 339 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 340 extractGCDType(Parts, GCDTy, SrcReg); 341 return GCDTy; 342 } 343 344 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 345 SmallVectorImpl<Register> &VRegs, 346 unsigned PadStrategy) { 347 LLT LCMTy = getLCMType(DstTy, NarrowTy); 348 349 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 350 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 351 int NumOrigSrc = VRegs.size(); 352 353 Register PadReg; 354 355 // Get a value we can use to pad the source value if the sources won't evenly 356 // cover the result type. 357 if (NumOrigSrc < NumParts * NumSubParts) { 358 if (PadStrategy == TargetOpcode::G_ZEXT) 359 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 360 else if (PadStrategy == TargetOpcode::G_ANYEXT) 361 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 362 else { 363 assert(PadStrategy == TargetOpcode::G_SEXT); 364 365 // Shift the sign bit of the low register through the high register. 366 auto ShiftAmt = 367 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 368 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 369 } 370 } 371 372 // Registers for the final merge to be produced. 373 SmallVector<Register, 4> Remerge(NumParts); 374 375 // Registers needed for intermediate merges, which will be merged into a 376 // source for Remerge. 377 SmallVector<Register, 4> SubMerge(NumSubParts); 378 379 // Once we've fully read off the end of the original source bits, we can reuse 380 // the same high bits for remaining padding elements. 381 Register AllPadReg; 382 383 // Build merges to the LCM type to cover the original result type. 384 for (int I = 0; I != NumParts; ++I) { 385 bool AllMergePartsArePadding = true; 386 387 // Build the requested merges to the requested type. 388 for (int J = 0; J != NumSubParts; ++J) { 389 int Idx = I * NumSubParts + J; 390 if (Idx >= NumOrigSrc) { 391 SubMerge[J] = PadReg; 392 continue; 393 } 394 395 SubMerge[J] = VRegs[Idx]; 396 397 // There are meaningful bits here we can't reuse later. 398 AllMergePartsArePadding = false; 399 } 400 401 // If we've filled up a complete piece with padding bits, we can directly 402 // emit the natural sized constant if applicable, rather than a merge of 403 // smaller constants. 404 if (AllMergePartsArePadding && !AllPadReg) { 405 if (PadStrategy == TargetOpcode::G_ANYEXT) 406 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 407 else if (PadStrategy == TargetOpcode::G_ZEXT) 408 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 409 410 // If this is a sign extension, we can't materialize a trivial constant 411 // with the right type and have to produce a merge. 412 } 413 414 if (AllPadReg) { 415 // Avoid creating additional instructions if we're just adding additional 416 // copies of padding bits. 417 Remerge[I] = AllPadReg; 418 continue; 419 } 420 421 if (NumSubParts == 1) 422 Remerge[I] = SubMerge[0]; 423 else 424 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 425 426 // In the sign extend padding case, re-use the first all-signbit merge. 427 if (AllMergePartsArePadding && !AllPadReg) 428 AllPadReg = Remerge[I]; 429 } 430 431 VRegs = std::move(Remerge); 432 return LCMTy; 433 } 434 435 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 436 ArrayRef<Register> RemergeRegs) { 437 LLT DstTy = MRI.getType(DstReg); 438 439 // Create the merge to the widened source, and extract the relevant bits into 440 // the result. 441 442 if (DstTy == LCMTy) { 443 MIRBuilder.buildMerge(DstReg, RemergeRegs); 444 return; 445 } 446 447 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 448 if (DstTy.isScalar() && LCMTy.isScalar()) { 449 MIRBuilder.buildTrunc(DstReg, Remerge); 450 return; 451 } 452 453 if (LCMTy.isVector()) { 454 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 455 SmallVector<Register, 8> UnmergeDefs(NumDefs); 456 UnmergeDefs[0] = DstReg; 457 for (unsigned I = 1; I != NumDefs; ++I) 458 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 459 460 MIRBuilder.buildUnmerge(UnmergeDefs, 461 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 462 return; 463 } 464 465 llvm_unreachable("unhandled case"); 466 } 467 468 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 469 #define RTLIBCASE_INT(LibcallPrefix) \ 470 do { \ 471 switch (Size) { \ 472 case 32: \ 473 return RTLIB::LibcallPrefix##32; \ 474 case 64: \ 475 return RTLIB::LibcallPrefix##64; \ 476 case 128: \ 477 return RTLIB::LibcallPrefix##128; \ 478 default: \ 479 llvm_unreachable("unexpected size"); \ 480 } \ 481 } while (0) 482 483 #define RTLIBCASE(LibcallPrefix) \ 484 do { \ 485 switch (Size) { \ 486 case 32: \ 487 return RTLIB::LibcallPrefix##32; \ 488 case 64: \ 489 return RTLIB::LibcallPrefix##64; \ 490 case 80: \ 491 return RTLIB::LibcallPrefix##80; \ 492 case 128: \ 493 return RTLIB::LibcallPrefix##128; \ 494 default: \ 495 llvm_unreachable("unexpected size"); \ 496 } \ 497 } while (0) 498 499 switch (Opcode) { 500 case TargetOpcode::G_SDIV: 501 RTLIBCASE_INT(SDIV_I); 502 case TargetOpcode::G_UDIV: 503 RTLIBCASE_INT(UDIV_I); 504 case TargetOpcode::G_SREM: 505 RTLIBCASE_INT(SREM_I); 506 case TargetOpcode::G_UREM: 507 RTLIBCASE_INT(UREM_I); 508 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 509 RTLIBCASE_INT(CTLZ_I); 510 case TargetOpcode::G_FADD: 511 RTLIBCASE(ADD_F); 512 case TargetOpcode::G_FSUB: 513 RTLIBCASE(SUB_F); 514 case TargetOpcode::G_FMUL: 515 RTLIBCASE(MUL_F); 516 case TargetOpcode::G_FDIV: 517 RTLIBCASE(DIV_F); 518 case TargetOpcode::G_FEXP: 519 RTLIBCASE(EXP_F); 520 case TargetOpcode::G_FEXP2: 521 RTLIBCASE(EXP2_F); 522 case TargetOpcode::G_FREM: 523 RTLIBCASE(REM_F); 524 case TargetOpcode::G_FPOW: 525 RTLIBCASE(POW_F); 526 case TargetOpcode::G_FMA: 527 RTLIBCASE(FMA_F); 528 case TargetOpcode::G_FSIN: 529 RTLIBCASE(SIN_F); 530 case TargetOpcode::G_FCOS: 531 RTLIBCASE(COS_F); 532 case TargetOpcode::G_FLOG10: 533 RTLIBCASE(LOG10_F); 534 case TargetOpcode::G_FLOG: 535 RTLIBCASE(LOG_F); 536 case TargetOpcode::G_FLOG2: 537 RTLIBCASE(LOG2_F); 538 case TargetOpcode::G_FCEIL: 539 RTLIBCASE(CEIL_F); 540 case TargetOpcode::G_FFLOOR: 541 RTLIBCASE(FLOOR_F); 542 case TargetOpcode::G_FMINNUM: 543 RTLIBCASE(FMIN_F); 544 case TargetOpcode::G_FMAXNUM: 545 RTLIBCASE(FMAX_F); 546 case TargetOpcode::G_FSQRT: 547 RTLIBCASE(SQRT_F); 548 case TargetOpcode::G_FRINT: 549 RTLIBCASE(RINT_F); 550 case TargetOpcode::G_FNEARBYINT: 551 RTLIBCASE(NEARBYINT_F); 552 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 553 RTLIBCASE(ROUNDEVEN_F); 554 } 555 llvm_unreachable("Unknown libcall function"); 556 } 557 558 /// True if an instruction is in tail position in its caller. Intended for 559 /// legalizing libcalls as tail calls when possible. 560 static bool isLibCallInTailPosition(MachineInstr &MI, 561 const TargetInstrInfo &TII, 562 MachineRegisterInfo &MRI) { 563 MachineBasicBlock &MBB = *MI.getParent(); 564 const Function &F = MBB.getParent()->getFunction(); 565 566 // Conservatively require the attributes of the call to match those of 567 // the return. Ignore NoAlias and NonNull because they don't affect the 568 // call sequence. 569 AttributeList CallerAttrs = F.getAttributes(); 570 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) 571 .removeAttribute(Attribute::NoAlias) 572 .removeAttribute(Attribute::NonNull) 573 .hasAttributes()) 574 return false; 575 576 // It's not safe to eliminate the sign / zero extension of the return value. 577 if (CallerAttrs.hasRetAttr(Attribute::ZExt) || 578 CallerAttrs.hasRetAttr(Attribute::SExt)) 579 return false; 580 581 // Only tail call if the following instruction is a standard return or if we 582 // have a `thisreturn` callee, and a sequence like: 583 // 584 // G_MEMCPY %0, %1, %2 585 // $x0 = COPY %0 586 // RET_ReallyLR implicit $x0 587 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 588 if (Next != MBB.instr_end() && Next->isCopy()) { 589 switch (MI.getOpcode()) { 590 default: 591 llvm_unreachable("unsupported opcode"); 592 case TargetOpcode::G_BZERO: 593 return false; 594 case TargetOpcode::G_MEMCPY: 595 case TargetOpcode::G_MEMMOVE: 596 case TargetOpcode::G_MEMSET: 597 break; 598 } 599 600 Register VReg = MI.getOperand(0).getReg(); 601 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 602 return false; 603 604 Register PReg = Next->getOperand(0).getReg(); 605 if (!PReg.isPhysical()) 606 return false; 607 608 auto Ret = next_nodbg(Next, MBB.instr_end()); 609 if (Ret == MBB.instr_end() || !Ret->isReturn()) 610 return false; 611 612 if (Ret->getNumImplicitOperands() != 1) 613 return false; 614 615 if (PReg != Ret->getOperand(0).getReg()) 616 return false; 617 618 // Skip over the COPY that we just validated. 619 Next = Ret; 620 } 621 622 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 623 return false; 624 625 return true; 626 } 627 628 LegalizerHelper::LegalizeResult 629 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 630 const CallLowering::ArgInfo &Result, 631 ArrayRef<CallLowering::ArgInfo> Args, 632 const CallingConv::ID CC) { 633 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 634 635 CallLowering::CallLoweringInfo Info; 636 Info.CallConv = CC; 637 Info.Callee = MachineOperand::CreateES(Name); 638 Info.OrigRet = Result; 639 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 640 if (!CLI.lowerCall(MIRBuilder, Info)) 641 return LegalizerHelper::UnableToLegalize; 642 643 return LegalizerHelper::Legalized; 644 } 645 646 LegalizerHelper::LegalizeResult 647 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 648 const CallLowering::ArgInfo &Result, 649 ArrayRef<CallLowering::ArgInfo> Args) { 650 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 651 const char *Name = TLI.getLibcallName(Libcall); 652 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 653 return createLibcall(MIRBuilder, Name, Result, Args, CC); 654 } 655 656 // Useful for libcalls where all operands have the same type. 657 static LegalizerHelper::LegalizeResult 658 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 659 Type *OpType) { 660 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 661 662 // FIXME: What does the original arg index mean here? 663 SmallVector<CallLowering::ArgInfo, 3> Args; 664 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 665 Args.push_back({MO.getReg(), OpType, 0}); 666 return createLibcall(MIRBuilder, Libcall, 667 {MI.getOperand(0).getReg(), OpType, 0}, Args); 668 } 669 670 LegalizerHelper::LegalizeResult 671 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 672 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 673 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 674 675 SmallVector<CallLowering::ArgInfo, 3> Args; 676 // Add all the args, except for the last which is an imm denoting 'tail'. 677 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 678 Register Reg = MI.getOperand(i).getReg(); 679 680 // Need derive an IR type for call lowering. 681 LLT OpLLT = MRI.getType(Reg); 682 Type *OpTy = nullptr; 683 if (OpLLT.isPointer()) 684 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 685 else 686 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 687 Args.push_back({Reg, OpTy, 0}); 688 } 689 690 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 691 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 692 RTLIB::Libcall RTLibcall; 693 unsigned Opc = MI.getOpcode(); 694 switch (Opc) { 695 case TargetOpcode::G_BZERO: 696 RTLibcall = RTLIB::BZERO; 697 break; 698 case TargetOpcode::G_MEMCPY: 699 RTLibcall = RTLIB::MEMCPY; 700 Args[0].Flags[0].setReturned(); 701 break; 702 case TargetOpcode::G_MEMMOVE: 703 RTLibcall = RTLIB::MEMMOVE; 704 Args[0].Flags[0].setReturned(); 705 break; 706 case TargetOpcode::G_MEMSET: 707 RTLibcall = RTLIB::MEMSET; 708 Args[0].Flags[0].setReturned(); 709 break; 710 default: 711 llvm_unreachable("unsupported opcode"); 712 } 713 const char *Name = TLI.getLibcallName(RTLibcall); 714 715 // Unsupported libcall on the target. 716 if (!Name) { 717 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 718 << MIRBuilder.getTII().getName(Opc) << "\n"); 719 return LegalizerHelper::UnableToLegalize; 720 } 721 722 CallLowering::CallLoweringInfo Info; 723 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 724 Info.Callee = MachineOperand::CreateES(Name); 725 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 726 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 727 isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI); 728 729 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 730 if (!CLI.lowerCall(MIRBuilder, Info)) 731 return LegalizerHelper::UnableToLegalize; 732 733 if (Info.LoweredTailCall) { 734 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 735 736 // Check debug locations before removing the return. 737 LocObserver.checkpoint(true); 738 739 // We must have a return following the call (or debug insts) to get past 740 // isLibCallInTailPosition. 741 do { 742 MachineInstr *Next = MI.getNextNode(); 743 assert(Next && 744 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 745 "Expected instr following MI to be return or debug inst?"); 746 // We lowered a tail call, so the call is now the return from the block. 747 // Delete the old return. 748 Next->eraseFromParent(); 749 } while (MI.getNextNode()); 750 751 // We expect to lose the debug location from the return. 752 LocObserver.checkpoint(false); 753 } 754 755 return LegalizerHelper::Legalized; 756 } 757 758 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 759 Type *FromType) { 760 auto ToMVT = MVT::getVT(ToType); 761 auto FromMVT = MVT::getVT(FromType); 762 763 switch (Opcode) { 764 case TargetOpcode::G_FPEXT: 765 return RTLIB::getFPEXT(FromMVT, ToMVT); 766 case TargetOpcode::G_FPTRUNC: 767 return RTLIB::getFPROUND(FromMVT, ToMVT); 768 case TargetOpcode::G_FPTOSI: 769 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 770 case TargetOpcode::G_FPTOUI: 771 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 772 case TargetOpcode::G_SITOFP: 773 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 774 case TargetOpcode::G_UITOFP: 775 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 776 } 777 llvm_unreachable("Unsupported libcall function"); 778 } 779 780 static LegalizerHelper::LegalizeResult 781 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 782 Type *FromType) { 783 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 784 return createLibcall(MIRBuilder, Libcall, 785 {MI.getOperand(0).getReg(), ToType, 0}, 786 {{MI.getOperand(1).getReg(), FromType, 0}}); 787 } 788 789 LegalizerHelper::LegalizeResult 790 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 791 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 792 unsigned Size = LLTy.getSizeInBits(); 793 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 794 795 switch (MI.getOpcode()) { 796 default: 797 return UnableToLegalize; 798 case TargetOpcode::G_SDIV: 799 case TargetOpcode::G_UDIV: 800 case TargetOpcode::G_SREM: 801 case TargetOpcode::G_UREM: 802 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 803 Type *HLTy = IntegerType::get(Ctx, Size); 804 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 805 if (Status != Legalized) 806 return Status; 807 break; 808 } 809 case TargetOpcode::G_FADD: 810 case TargetOpcode::G_FSUB: 811 case TargetOpcode::G_FMUL: 812 case TargetOpcode::G_FDIV: 813 case TargetOpcode::G_FMA: 814 case TargetOpcode::G_FPOW: 815 case TargetOpcode::G_FREM: 816 case TargetOpcode::G_FCOS: 817 case TargetOpcode::G_FSIN: 818 case TargetOpcode::G_FLOG10: 819 case TargetOpcode::G_FLOG: 820 case TargetOpcode::G_FLOG2: 821 case TargetOpcode::G_FEXP: 822 case TargetOpcode::G_FEXP2: 823 case TargetOpcode::G_FCEIL: 824 case TargetOpcode::G_FFLOOR: 825 case TargetOpcode::G_FMINNUM: 826 case TargetOpcode::G_FMAXNUM: 827 case TargetOpcode::G_FSQRT: 828 case TargetOpcode::G_FRINT: 829 case TargetOpcode::G_FNEARBYINT: 830 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 831 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 832 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 833 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 834 return UnableToLegalize; 835 } 836 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 837 if (Status != Legalized) 838 return Status; 839 break; 840 } 841 case TargetOpcode::G_FPEXT: 842 case TargetOpcode::G_FPTRUNC: { 843 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 844 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 845 if (!FromTy || !ToTy) 846 return UnableToLegalize; 847 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 848 if (Status != Legalized) 849 return Status; 850 break; 851 } 852 case TargetOpcode::G_FPTOSI: 853 case TargetOpcode::G_FPTOUI: { 854 // FIXME: Support other types 855 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 856 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 857 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 858 return UnableToLegalize; 859 LegalizeResult Status = conversionLibcall( 860 MI, MIRBuilder, 861 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 862 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 863 if (Status != Legalized) 864 return Status; 865 break; 866 } 867 case TargetOpcode::G_SITOFP: 868 case TargetOpcode::G_UITOFP: { 869 // FIXME: Support other types 870 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 871 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 872 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 873 return UnableToLegalize; 874 LegalizeResult Status = conversionLibcall( 875 MI, MIRBuilder, 876 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 877 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 878 if (Status != Legalized) 879 return Status; 880 break; 881 } 882 case TargetOpcode::G_BZERO: 883 case TargetOpcode::G_MEMCPY: 884 case TargetOpcode::G_MEMMOVE: 885 case TargetOpcode::G_MEMSET: { 886 LegalizeResult Result = 887 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 888 if (Result != Legalized) 889 return Result; 890 MI.eraseFromParent(); 891 return Result; 892 } 893 } 894 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 899 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 900 unsigned TypeIdx, 901 LLT NarrowTy) { 902 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 903 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 904 905 switch (MI.getOpcode()) { 906 default: 907 return UnableToLegalize; 908 case TargetOpcode::G_IMPLICIT_DEF: { 909 Register DstReg = MI.getOperand(0).getReg(); 910 LLT DstTy = MRI.getType(DstReg); 911 912 // If SizeOp0 is not an exact multiple of NarrowSize, emit 913 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 914 // FIXME: Although this would also be legal for the general case, it causes 915 // a lot of regressions in the emitted code (superfluous COPYs, artifact 916 // combines not being hit). This seems to be a problem related to the 917 // artifact combiner. 918 if (SizeOp0 % NarrowSize != 0) { 919 LLT ImplicitTy = NarrowTy; 920 if (DstTy.isVector()) 921 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 922 923 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 924 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 925 926 MI.eraseFromParent(); 927 return Legalized; 928 } 929 930 int NumParts = SizeOp0 / NarrowSize; 931 932 SmallVector<Register, 2> DstRegs; 933 for (int i = 0; i < NumParts; ++i) 934 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 935 936 if (DstTy.isVector()) 937 MIRBuilder.buildBuildVector(DstReg, DstRegs); 938 else 939 MIRBuilder.buildMerge(DstReg, DstRegs); 940 MI.eraseFromParent(); 941 return Legalized; 942 } 943 case TargetOpcode::G_CONSTANT: { 944 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 945 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 946 unsigned TotalSize = Ty.getSizeInBits(); 947 unsigned NarrowSize = NarrowTy.getSizeInBits(); 948 int NumParts = TotalSize / NarrowSize; 949 950 SmallVector<Register, 4> PartRegs; 951 for (int I = 0; I != NumParts; ++I) { 952 unsigned Offset = I * NarrowSize; 953 auto K = MIRBuilder.buildConstant(NarrowTy, 954 Val.lshr(Offset).trunc(NarrowSize)); 955 PartRegs.push_back(K.getReg(0)); 956 } 957 958 LLT LeftoverTy; 959 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 960 SmallVector<Register, 1> LeftoverRegs; 961 if (LeftoverBits != 0) { 962 LeftoverTy = LLT::scalar(LeftoverBits); 963 auto K = MIRBuilder.buildConstant( 964 LeftoverTy, 965 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 966 LeftoverRegs.push_back(K.getReg(0)); 967 } 968 969 insertParts(MI.getOperand(0).getReg(), 970 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 971 972 MI.eraseFromParent(); 973 return Legalized; 974 } 975 case TargetOpcode::G_SEXT: 976 case TargetOpcode::G_ZEXT: 977 case TargetOpcode::G_ANYEXT: 978 return narrowScalarExt(MI, TypeIdx, NarrowTy); 979 case TargetOpcode::G_TRUNC: { 980 if (TypeIdx != 1) 981 return UnableToLegalize; 982 983 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 984 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 985 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 986 return UnableToLegalize; 987 } 988 989 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 990 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 991 MI.eraseFromParent(); 992 return Legalized; 993 } 994 995 case TargetOpcode::G_FREEZE: { 996 if (TypeIdx != 0) 997 return UnableToLegalize; 998 999 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1000 // Should widen scalar first 1001 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) 1002 return UnableToLegalize; 1003 1004 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 1005 SmallVector<Register, 8> Parts; 1006 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { 1007 Parts.push_back( 1008 MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0)); 1009 } 1010 1011 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts); 1012 MI.eraseFromParent(); 1013 return Legalized; 1014 } 1015 case TargetOpcode::G_ADD: 1016 case TargetOpcode::G_SUB: 1017 case TargetOpcode::G_SADDO: 1018 case TargetOpcode::G_SSUBO: 1019 case TargetOpcode::G_SADDE: 1020 case TargetOpcode::G_SSUBE: 1021 case TargetOpcode::G_UADDO: 1022 case TargetOpcode::G_USUBO: 1023 case TargetOpcode::G_UADDE: 1024 case TargetOpcode::G_USUBE: 1025 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_MUL: 1027 case TargetOpcode::G_UMULH: 1028 return narrowScalarMul(MI, NarrowTy); 1029 case TargetOpcode::G_EXTRACT: 1030 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 1031 case TargetOpcode::G_INSERT: 1032 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 1033 case TargetOpcode::G_LOAD: { 1034 auto &LoadMI = cast<GLoad>(MI); 1035 Register DstReg = LoadMI.getDstReg(); 1036 LLT DstTy = MRI.getType(DstReg); 1037 if (DstTy.isVector()) 1038 return UnableToLegalize; 1039 1040 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { 1041 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1042 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 1043 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1044 LoadMI.eraseFromParent(); 1045 return Legalized; 1046 } 1047 1048 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 1049 } 1050 case TargetOpcode::G_ZEXTLOAD: 1051 case TargetOpcode::G_SEXTLOAD: { 1052 auto &LoadMI = cast<GExtLoad>(MI); 1053 Register DstReg = LoadMI.getDstReg(); 1054 Register PtrReg = LoadMI.getPointerReg(); 1055 1056 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1057 auto &MMO = LoadMI.getMMO(); 1058 unsigned MemSize = MMO.getSizeInBits(); 1059 1060 if (MemSize == NarrowSize) { 1061 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1062 } else if (MemSize < NarrowSize) { 1063 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 1064 } else if (MemSize > NarrowSize) { 1065 // FIXME: Need to split the load. 1066 return UnableToLegalize; 1067 } 1068 1069 if (isa<GZExtLoad>(LoadMI)) 1070 MIRBuilder.buildZExt(DstReg, TmpReg); 1071 else 1072 MIRBuilder.buildSExt(DstReg, TmpReg); 1073 1074 LoadMI.eraseFromParent(); 1075 return Legalized; 1076 } 1077 case TargetOpcode::G_STORE: { 1078 auto &StoreMI = cast<GStore>(MI); 1079 1080 Register SrcReg = StoreMI.getValueReg(); 1081 LLT SrcTy = MRI.getType(SrcReg); 1082 if (SrcTy.isVector()) 1083 return UnableToLegalize; 1084 1085 int NumParts = SizeOp0 / NarrowSize; 1086 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 1087 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 1088 if (SrcTy.isVector() && LeftoverBits != 0) 1089 return UnableToLegalize; 1090 1091 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { 1092 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1093 MIRBuilder.buildTrunc(TmpReg, SrcReg); 1094 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1095 StoreMI.eraseFromParent(); 1096 return Legalized; 1097 } 1098 1099 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1100 } 1101 case TargetOpcode::G_SELECT: 1102 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1103 case TargetOpcode::G_AND: 1104 case TargetOpcode::G_OR: 1105 case TargetOpcode::G_XOR: { 1106 // Legalize bitwise operation: 1107 // A = BinOp<Ty> B, C 1108 // into: 1109 // B1, ..., BN = G_UNMERGE_VALUES B 1110 // C1, ..., CN = G_UNMERGE_VALUES C 1111 // A1 = BinOp<Ty/N> B1, C2 1112 // ... 1113 // AN = BinOp<Ty/N> BN, CN 1114 // A = G_MERGE_VALUES A1, ..., AN 1115 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1116 } 1117 case TargetOpcode::G_SHL: 1118 case TargetOpcode::G_LSHR: 1119 case TargetOpcode::G_ASHR: 1120 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1121 case TargetOpcode::G_CTLZ: 1122 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1123 case TargetOpcode::G_CTTZ: 1124 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1125 case TargetOpcode::G_CTPOP: 1126 if (TypeIdx == 1) 1127 switch (MI.getOpcode()) { 1128 case TargetOpcode::G_CTLZ: 1129 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1130 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1131 case TargetOpcode::G_CTTZ: 1132 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1133 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1134 case TargetOpcode::G_CTPOP: 1135 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1136 default: 1137 return UnableToLegalize; 1138 } 1139 1140 Observer.changingInstr(MI); 1141 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1142 Observer.changedInstr(MI); 1143 return Legalized; 1144 case TargetOpcode::G_INTTOPTR: 1145 if (TypeIdx != 1) 1146 return UnableToLegalize; 1147 1148 Observer.changingInstr(MI); 1149 narrowScalarSrc(MI, NarrowTy, 1); 1150 Observer.changedInstr(MI); 1151 return Legalized; 1152 case TargetOpcode::G_PTRTOINT: 1153 if (TypeIdx != 0) 1154 return UnableToLegalize; 1155 1156 Observer.changingInstr(MI); 1157 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1158 Observer.changedInstr(MI); 1159 return Legalized; 1160 case TargetOpcode::G_PHI: { 1161 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1162 // NarrowSize. 1163 if (SizeOp0 % NarrowSize != 0) 1164 return UnableToLegalize; 1165 1166 unsigned NumParts = SizeOp0 / NarrowSize; 1167 SmallVector<Register, 2> DstRegs(NumParts); 1168 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1169 Observer.changingInstr(MI); 1170 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1171 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1172 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1173 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1174 SrcRegs[i / 2]); 1175 } 1176 MachineBasicBlock &MBB = *MI.getParent(); 1177 MIRBuilder.setInsertPt(MBB, MI); 1178 for (unsigned i = 0; i < NumParts; ++i) { 1179 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1180 MachineInstrBuilder MIB = 1181 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1182 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1183 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1184 } 1185 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1186 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1187 Observer.changedInstr(MI); 1188 MI.eraseFromParent(); 1189 return Legalized; 1190 } 1191 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1192 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1193 if (TypeIdx != 2) 1194 return UnableToLegalize; 1195 1196 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1197 Observer.changingInstr(MI); 1198 narrowScalarSrc(MI, NarrowTy, OpIdx); 1199 Observer.changedInstr(MI); 1200 return Legalized; 1201 } 1202 case TargetOpcode::G_ICMP: { 1203 Register LHS = MI.getOperand(2).getReg(); 1204 LLT SrcTy = MRI.getType(LHS); 1205 uint64_t SrcSize = SrcTy.getSizeInBits(); 1206 CmpInst::Predicate Pred = 1207 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1208 1209 // TODO: Handle the non-equality case for weird sizes. 1210 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1211 return UnableToLegalize; 1212 1213 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1214 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1215 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1216 LHSLeftoverRegs)) 1217 return UnableToLegalize; 1218 1219 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1220 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1221 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1222 RHSPartRegs, RHSLeftoverRegs)) 1223 return UnableToLegalize; 1224 1225 // We now have the LHS and RHS of the compare split into narrow-type 1226 // registers, plus potentially some leftover type. 1227 Register Dst = MI.getOperand(0).getReg(); 1228 LLT ResTy = MRI.getType(Dst); 1229 if (ICmpInst::isEquality(Pred)) { 1230 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1231 // them together. For each equal part, the result should be all 0s. For 1232 // each non-equal part, we'll get at least one 1. 1233 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1234 SmallVector<Register, 4> Xors; 1235 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1236 auto LHS = std::get<0>(LHSAndRHS); 1237 auto RHS = std::get<1>(LHSAndRHS); 1238 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1239 Xors.push_back(Xor); 1240 } 1241 1242 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1243 // to the desired narrow type so that we can OR them together later. 1244 SmallVector<Register, 4> WidenedXors; 1245 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1246 auto LHS = std::get<0>(LHSAndRHS); 1247 auto RHS = std::get<1>(LHSAndRHS); 1248 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1249 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1250 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1251 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1252 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1253 } 1254 1255 // Now, for each part we broke up, we know if they are equal/not equal 1256 // based off the G_XOR. We can OR these all together and compare against 1257 // 0 to get the result. 1258 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1259 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1260 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1261 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1262 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1263 } else { 1264 // TODO: Handle non-power-of-two types. 1265 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1266 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1267 Register LHSL = LHSPartRegs[0]; 1268 Register LHSH = LHSPartRegs[1]; 1269 Register RHSL = RHSPartRegs[0]; 1270 Register RHSH = RHSPartRegs[1]; 1271 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1272 MachineInstrBuilder CmpHEQ = 1273 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1274 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1275 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1276 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1277 } 1278 MI.eraseFromParent(); 1279 return Legalized; 1280 } 1281 case TargetOpcode::G_SEXT_INREG: { 1282 if (TypeIdx != 0) 1283 return UnableToLegalize; 1284 1285 int64_t SizeInBits = MI.getOperand(2).getImm(); 1286 1287 // So long as the new type has more bits than the bits we're extending we 1288 // don't need to break it apart. 1289 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1290 Observer.changingInstr(MI); 1291 // We don't lose any non-extension bits by truncating the src and 1292 // sign-extending the dst. 1293 MachineOperand &MO1 = MI.getOperand(1); 1294 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1295 MO1.setReg(TruncMIB.getReg(0)); 1296 1297 MachineOperand &MO2 = MI.getOperand(0); 1298 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1299 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1300 MIRBuilder.buildSExt(MO2, DstExt); 1301 MO2.setReg(DstExt); 1302 Observer.changedInstr(MI); 1303 return Legalized; 1304 } 1305 1306 // Break it apart. Components below the extension point are unmodified. The 1307 // component containing the extension point becomes a narrower SEXT_INREG. 1308 // Components above it are ashr'd from the component containing the 1309 // extension point. 1310 if (SizeOp0 % NarrowSize != 0) 1311 return UnableToLegalize; 1312 int NumParts = SizeOp0 / NarrowSize; 1313 1314 // List the registers where the destination will be scattered. 1315 SmallVector<Register, 2> DstRegs; 1316 // List the registers where the source will be split. 1317 SmallVector<Register, 2> SrcRegs; 1318 1319 // Create all the temporary registers. 1320 for (int i = 0; i < NumParts; ++i) { 1321 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1322 1323 SrcRegs.push_back(SrcReg); 1324 } 1325 1326 // Explode the big arguments into smaller chunks. 1327 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1328 1329 Register AshrCstReg = 1330 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1331 .getReg(0); 1332 Register FullExtensionReg = 0; 1333 Register PartialExtensionReg = 0; 1334 1335 // Do the operation on each small part. 1336 for (int i = 0; i < NumParts; ++i) { 1337 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1338 DstRegs.push_back(SrcRegs[i]); 1339 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1340 assert(PartialExtensionReg && 1341 "Expected to visit partial extension before full"); 1342 if (FullExtensionReg) { 1343 DstRegs.push_back(FullExtensionReg); 1344 continue; 1345 } 1346 DstRegs.push_back( 1347 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1348 .getReg(0)); 1349 FullExtensionReg = DstRegs.back(); 1350 } else { 1351 DstRegs.push_back( 1352 MIRBuilder 1353 .buildInstr( 1354 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1355 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1356 .getReg(0)); 1357 PartialExtensionReg = DstRegs.back(); 1358 } 1359 } 1360 1361 // Gather the destination registers into the final destination. 1362 Register DstReg = MI.getOperand(0).getReg(); 1363 MIRBuilder.buildMerge(DstReg, DstRegs); 1364 MI.eraseFromParent(); 1365 return Legalized; 1366 } 1367 case TargetOpcode::G_BSWAP: 1368 case TargetOpcode::G_BITREVERSE: { 1369 if (SizeOp0 % NarrowSize != 0) 1370 return UnableToLegalize; 1371 1372 Observer.changingInstr(MI); 1373 SmallVector<Register, 2> SrcRegs, DstRegs; 1374 unsigned NumParts = SizeOp0 / NarrowSize; 1375 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1376 1377 for (unsigned i = 0; i < NumParts; ++i) { 1378 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1379 {SrcRegs[NumParts - 1 - i]}); 1380 DstRegs.push_back(DstPart.getReg(0)); 1381 } 1382 1383 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1384 1385 Observer.changedInstr(MI); 1386 MI.eraseFromParent(); 1387 return Legalized; 1388 } 1389 case TargetOpcode::G_PTR_ADD: 1390 case TargetOpcode::G_PTRMASK: { 1391 if (TypeIdx != 1) 1392 return UnableToLegalize; 1393 Observer.changingInstr(MI); 1394 narrowScalarSrc(MI, NarrowTy, 2); 1395 Observer.changedInstr(MI); 1396 return Legalized; 1397 } 1398 case TargetOpcode::G_FPTOUI: 1399 case TargetOpcode::G_FPTOSI: 1400 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1401 case TargetOpcode::G_FPEXT: 1402 if (TypeIdx != 0) 1403 return UnableToLegalize; 1404 Observer.changingInstr(MI); 1405 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1406 Observer.changedInstr(MI); 1407 return Legalized; 1408 } 1409 } 1410 1411 Register LegalizerHelper::coerceToScalar(Register Val) { 1412 LLT Ty = MRI.getType(Val); 1413 if (Ty.isScalar()) 1414 return Val; 1415 1416 const DataLayout &DL = MIRBuilder.getDataLayout(); 1417 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1418 if (Ty.isPointer()) { 1419 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1420 return Register(); 1421 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1422 } 1423 1424 Register NewVal = Val; 1425 1426 assert(Ty.isVector()); 1427 LLT EltTy = Ty.getElementType(); 1428 if (EltTy.isPointer()) 1429 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1430 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1431 } 1432 1433 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1434 unsigned OpIdx, unsigned ExtOpcode) { 1435 MachineOperand &MO = MI.getOperand(OpIdx); 1436 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1437 MO.setReg(ExtB.getReg(0)); 1438 } 1439 1440 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1441 unsigned OpIdx) { 1442 MachineOperand &MO = MI.getOperand(OpIdx); 1443 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1444 MO.setReg(ExtB.getReg(0)); 1445 } 1446 1447 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1448 unsigned OpIdx, unsigned TruncOpcode) { 1449 MachineOperand &MO = MI.getOperand(OpIdx); 1450 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1451 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1452 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1453 MO.setReg(DstExt); 1454 } 1455 1456 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1457 unsigned OpIdx, unsigned ExtOpcode) { 1458 MachineOperand &MO = MI.getOperand(OpIdx); 1459 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1460 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1461 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1462 MO.setReg(DstTrunc); 1463 } 1464 1465 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1466 unsigned OpIdx) { 1467 MachineOperand &MO = MI.getOperand(OpIdx); 1468 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1469 Register Dst = MO.getReg(); 1470 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1471 MO.setReg(DstExt); 1472 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); 1473 } 1474 1475 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1476 unsigned OpIdx) { 1477 MachineOperand &MO = MI.getOperand(OpIdx); 1478 SmallVector<Register, 8> Regs; 1479 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); 1480 } 1481 1482 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1483 MachineOperand &Op = MI.getOperand(OpIdx); 1484 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1485 } 1486 1487 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1488 MachineOperand &MO = MI.getOperand(OpIdx); 1489 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1490 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1491 MIRBuilder.buildBitcast(MO, CastDst); 1492 MO.setReg(CastDst); 1493 } 1494 1495 LegalizerHelper::LegalizeResult 1496 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1497 LLT WideTy) { 1498 if (TypeIdx != 1) 1499 return UnableToLegalize; 1500 1501 Register DstReg = MI.getOperand(0).getReg(); 1502 LLT DstTy = MRI.getType(DstReg); 1503 if (DstTy.isVector()) 1504 return UnableToLegalize; 1505 1506 Register Src1 = MI.getOperand(1).getReg(); 1507 LLT SrcTy = MRI.getType(Src1); 1508 const int DstSize = DstTy.getSizeInBits(); 1509 const int SrcSize = SrcTy.getSizeInBits(); 1510 const int WideSize = WideTy.getSizeInBits(); 1511 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1512 1513 unsigned NumOps = MI.getNumOperands(); 1514 unsigned NumSrc = MI.getNumOperands() - 1; 1515 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1516 1517 if (WideSize >= DstSize) { 1518 // Directly pack the bits in the target type. 1519 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1520 1521 for (unsigned I = 2; I != NumOps; ++I) { 1522 const unsigned Offset = (I - 1) * PartSize; 1523 1524 Register SrcReg = MI.getOperand(I).getReg(); 1525 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1526 1527 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1528 1529 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1530 MRI.createGenericVirtualRegister(WideTy); 1531 1532 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1533 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1534 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1535 ResultReg = NextResult; 1536 } 1537 1538 if (WideSize > DstSize) 1539 MIRBuilder.buildTrunc(DstReg, ResultReg); 1540 else if (DstTy.isPointer()) 1541 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1542 1543 MI.eraseFromParent(); 1544 return Legalized; 1545 } 1546 1547 // Unmerge the original values to the GCD type, and recombine to the next 1548 // multiple greater than the original type. 1549 // 1550 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1551 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1552 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1553 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1554 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1555 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1556 // %12:_(s12) = G_MERGE_VALUES %10, %11 1557 // 1558 // Padding with undef if necessary: 1559 // 1560 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1561 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1562 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1563 // %7:_(s2) = G_IMPLICIT_DEF 1564 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1565 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1566 // %10:_(s12) = G_MERGE_VALUES %8, %9 1567 1568 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1569 LLT GCDTy = LLT::scalar(GCD); 1570 1571 SmallVector<Register, 8> Parts; 1572 SmallVector<Register, 8> NewMergeRegs; 1573 SmallVector<Register, 8> Unmerges; 1574 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1575 1576 // Decompose the original operands if they don't evenly divide. 1577 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1578 Register SrcReg = MO.getReg(); 1579 if (GCD == SrcSize) { 1580 Unmerges.push_back(SrcReg); 1581 } else { 1582 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1583 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1584 Unmerges.push_back(Unmerge.getReg(J)); 1585 } 1586 } 1587 1588 // Pad with undef to the next size that is a multiple of the requested size. 1589 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1590 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1591 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1592 Unmerges.push_back(UndefReg); 1593 } 1594 1595 const int PartsPerGCD = WideSize / GCD; 1596 1597 // Build merges of each piece. 1598 ArrayRef<Register> Slicer(Unmerges); 1599 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1600 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1601 NewMergeRegs.push_back(Merge.getReg(0)); 1602 } 1603 1604 // A truncate may be necessary if the requested type doesn't evenly divide the 1605 // original result type. 1606 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1607 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1608 } else { 1609 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1610 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1611 } 1612 1613 MI.eraseFromParent(); 1614 return Legalized; 1615 } 1616 1617 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1618 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1619 LLT OrigTy = MRI.getType(OrigReg); 1620 LLT LCMTy = getLCMType(WideTy, OrigTy); 1621 1622 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1623 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1624 1625 Register UnmergeSrc = WideReg; 1626 1627 // Create a merge to the LCM type, padding with undef 1628 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1629 // => 1630 // %1:_(<4 x s32>) = G_FOO 1631 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1632 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1633 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1634 if (NumMergeParts > 1) { 1635 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1636 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1637 MergeParts[0] = WideReg; 1638 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1639 } 1640 1641 // Unmerge to the original register and pad with dead defs. 1642 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1643 UnmergeResults[0] = OrigReg; 1644 for (int I = 1; I != NumUnmergeParts; ++I) 1645 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1646 1647 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1648 return WideReg; 1649 } 1650 1651 LegalizerHelper::LegalizeResult 1652 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1653 LLT WideTy) { 1654 if (TypeIdx != 0) 1655 return UnableToLegalize; 1656 1657 int NumDst = MI.getNumOperands() - 1; 1658 Register SrcReg = MI.getOperand(NumDst).getReg(); 1659 LLT SrcTy = MRI.getType(SrcReg); 1660 if (SrcTy.isVector()) 1661 return UnableToLegalize; 1662 1663 Register Dst0Reg = MI.getOperand(0).getReg(); 1664 LLT DstTy = MRI.getType(Dst0Reg); 1665 if (!DstTy.isScalar()) 1666 return UnableToLegalize; 1667 1668 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1669 if (SrcTy.isPointer()) { 1670 const DataLayout &DL = MIRBuilder.getDataLayout(); 1671 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1672 LLVM_DEBUG( 1673 dbgs() << "Not casting non-integral address space integer\n"); 1674 return UnableToLegalize; 1675 } 1676 1677 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1678 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1679 } 1680 1681 // Widen SrcTy to WideTy. This does not affect the result, but since the 1682 // user requested this size, it is probably better handled than SrcTy and 1683 // should reduce the total number of legalization artifacts. 1684 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1685 SrcTy = WideTy; 1686 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1687 } 1688 1689 // Theres no unmerge type to target. Directly extract the bits from the 1690 // source type 1691 unsigned DstSize = DstTy.getSizeInBits(); 1692 1693 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1694 for (int I = 1; I != NumDst; ++I) { 1695 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1696 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1697 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1698 } 1699 1700 MI.eraseFromParent(); 1701 return Legalized; 1702 } 1703 1704 // Extend the source to a wider type. 1705 LLT LCMTy = getLCMType(SrcTy, WideTy); 1706 1707 Register WideSrc = SrcReg; 1708 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1709 // TODO: If this is an integral address space, cast to integer and anyext. 1710 if (SrcTy.isPointer()) { 1711 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1712 return UnableToLegalize; 1713 } 1714 1715 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1716 } 1717 1718 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1719 1720 // Create a sequence of unmerges and merges to the original results. Since we 1721 // may have widened the source, we will need to pad the results with dead defs 1722 // to cover the source register. 1723 // e.g. widen s48 to s64: 1724 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1725 // 1726 // => 1727 // %4:_(s192) = G_ANYEXT %0:_(s96) 1728 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1729 // ; unpack to GCD type, with extra dead defs 1730 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1731 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1732 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1733 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1734 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1735 const LLT GCDTy = getGCDType(WideTy, DstTy); 1736 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1737 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1738 1739 // Directly unmerge to the destination without going through a GCD type 1740 // if possible 1741 if (PartsPerRemerge == 1) { 1742 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1743 1744 for (int I = 0; I != NumUnmerge; ++I) { 1745 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1746 1747 for (int J = 0; J != PartsPerUnmerge; ++J) { 1748 int Idx = I * PartsPerUnmerge + J; 1749 if (Idx < NumDst) 1750 MIB.addDef(MI.getOperand(Idx).getReg()); 1751 else { 1752 // Create dead def for excess components. 1753 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1754 } 1755 } 1756 1757 MIB.addUse(Unmerge.getReg(I)); 1758 } 1759 } else { 1760 SmallVector<Register, 16> Parts; 1761 for (int J = 0; J != NumUnmerge; ++J) 1762 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1763 1764 SmallVector<Register, 8> RemergeParts; 1765 for (int I = 0; I != NumDst; ++I) { 1766 for (int J = 0; J < PartsPerRemerge; ++J) { 1767 const int Idx = I * PartsPerRemerge + J; 1768 RemergeParts.emplace_back(Parts[Idx]); 1769 } 1770 1771 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1772 RemergeParts.clear(); 1773 } 1774 } 1775 1776 MI.eraseFromParent(); 1777 return Legalized; 1778 } 1779 1780 LegalizerHelper::LegalizeResult 1781 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1782 LLT WideTy) { 1783 Register DstReg = MI.getOperand(0).getReg(); 1784 Register SrcReg = MI.getOperand(1).getReg(); 1785 LLT SrcTy = MRI.getType(SrcReg); 1786 1787 LLT DstTy = MRI.getType(DstReg); 1788 unsigned Offset = MI.getOperand(2).getImm(); 1789 1790 if (TypeIdx == 0) { 1791 if (SrcTy.isVector() || DstTy.isVector()) 1792 return UnableToLegalize; 1793 1794 SrcOp Src(SrcReg); 1795 if (SrcTy.isPointer()) { 1796 // Extracts from pointers can be handled only if they are really just 1797 // simple integers. 1798 const DataLayout &DL = MIRBuilder.getDataLayout(); 1799 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1800 return UnableToLegalize; 1801 1802 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1803 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1804 SrcTy = SrcAsIntTy; 1805 } 1806 1807 if (DstTy.isPointer()) 1808 return UnableToLegalize; 1809 1810 if (Offset == 0) { 1811 // Avoid a shift in the degenerate case. 1812 MIRBuilder.buildTrunc(DstReg, 1813 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1814 MI.eraseFromParent(); 1815 return Legalized; 1816 } 1817 1818 // Do a shift in the source type. 1819 LLT ShiftTy = SrcTy; 1820 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1821 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1822 ShiftTy = WideTy; 1823 } 1824 1825 auto LShr = MIRBuilder.buildLShr( 1826 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1827 MIRBuilder.buildTrunc(DstReg, LShr); 1828 MI.eraseFromParent(); 1829 return Legalized; 1830 } 1831 1832 if (SrcTy.isScalar()) { 1833 Observer.changingInstr(MI); 1834 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1835 Observer.changedInstr(MI); 1836 return Legalized; 1837 } 1838 1839 if (!SrcTy.isVector()) 1840 return UnableToLegalize; 1841 1842 if (DstTy != SrcTy.getElementType()) 1843 return UnableToLegalize; 1844 1845 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1846 return UnableToLegalize; 1847 1848 Observer.changingInstr(MI); 1849 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1850 1851 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1852 Offset); 1853 widenScalarDst(MI, WideTy.getScalarType(), 0); 1854 Observer.changedInstr(MI); 1855 return Legalized; 1856 } 1857 1858 LegalizerHelper::LegalizeResult 1859 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1860 LLT WideTy) { 1861 if (TypeIdx != 0 || WideTy.isVector()) 1862 return UnableToLegalize; 1863 Observer.changingInstr(MI); 1864 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1865 widenScalarDst(MI, WideTy); 1866 Observer.changedInstr(MI); 1867 return Legalized; 1868 } 1869 1870 LegalizerHelper::LegalizeResult 1871 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1872 LLT WideTy) { 1873 if (TypeIdx == 1) 1874 return UnableToLegalize; // TODO 1875 1876 unsigned Opcode; 1877 unsigned ExtOpcode; 1878 Optional<Register> CarryIn = None; 1879 switch (MI.getOpcode()) { 1880 default: 1881 llvm_unreachable("Unexpected opcode!"); 1882 case TargetOpcode::G_SADDO: 1883 Opcode = TargetOpcode::G_ADD; 1884 ExtOpcode = TargetOpcode::G_SEXT; 1885 break; 1886 case TargetOpcode::G_SSUBO: 1887 Opcode = TargetOpcode::G_SUB; 1888 ExtOpcode = TargetOpcode::G_SEXT; 1889 break; 1890 case TargetOpcode::G_UADDO: 1891 Opcode = TargetOpcode::G_ADD; 1892 ExtOpcode = TargetOpcode::G_ZEXT; 1893 break; 1894 case TargetOpcode::G_USUBO: 1895 Opcode = TargetOpcode::G_SUB; 1896 ExtOpcode = TargetOpcode::G_ZEXT; 1897 break; 1898 case TargetOpcode::G_SADDE: 1899 Opcode = TargetOpcode::G_UADDE; 1900 ExtOpcode = TargetOpcode::G_SEXT; 1901 CarryIn = MI.getOperand(4).getReg(); 1902 break; 1903 case TargetOpcode::G_SSUBE: 1904 Opcode = TargetOpcode::G_USUBE; 1905 ExtOpcode = TargetOpcode::G_SEXT; 1906 CarryIn = MI.getOperand(4).getReg(); 1907 break; 1908 case TargetOpcode::G_UADDE: 1909 Opcode = TargetOpcode::G_UADDE; 1910 ExtOpcode = TargetOpcode::G_ZEXT; 1911 CarryIn = MI.getOperand(4).getReg(); 1912 break; 1913 case TargetOpcode::G_USUBE: 1914 Opcode = TargetOpcode::G_USUBE; 1915 ExtOpcode = TargetOpcode::G_ZEXT; 1916 CarryIn = MI.getOperand(4).getReg(); 1917 break; 1918 } 1919 1920 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1921 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1922 // Do the arithmetic in the larger type. 1923 Register NewOp; 1924 if (CarryIn) { 1925 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1926 NewOp = MIRBuilder 1927 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1928 {LHSExt, RHSExt, *CarryIn}) 1929 .getReg(0); 1930 } else { 1931 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1932 } 1933 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1934 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1935 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1936 // There is no overflow if the ExtOp is the same as NewOp. 1937 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1938 // Now trunc the NewOp to the original result. 1939 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1940 MI.eraseFromParent(); 1941 return Legalized; 1942 } 1943 1944 LegalizerHelper::LegalizeResult 1945 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1946 LLT WideTy) { 1947 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1948 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1949 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1950 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1951 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1952 // We can convert this to: 1953 // 1. Any extend iN to iM 1954 // 2. SHL by M-N 1955 // 3. [US][ADD|SUB|SHL]SAT 1956 // 4. L/ASHR by M-N 1957 // 1958 // It may be more efficient to lower this to a min and a max operation in 1959 // the higher precision arithmetic if the promoted operation isn't legal, 1960 // but this decision is up to the target's lowering request. 1961 Register DstReg = MI.getOperand(0).getReg(); 1962 1963 unsigned NewBits = WideTy.getScalarSizeInBits(); 1964 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1965 1966 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1967 // must not left shift the RHS to preserve the shift amount. 1968 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1969 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1970 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1971 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1972 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1973 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1974 1975 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1976 {ShiftL, ShiftR}, MI.getFlags()); 1977 1978 // Use a shift that will preserve the number of sign bits when the trunc is 1979 // folded away. 1980 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1981 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1982 1983 MIRBuilder.buildTrunc(DstReg, Result); 1984 MI.eraseFromParent(); 1985 return Legalized; 1986 } 1987 1988 LegalizerHelper::LegalizeResult 1989 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1990 LLT WideTy) { 1991 if (TypeIdx == 1) { 1992 Observer.changingInstr(MI); 1993 widenScalarDst(MI, WideTy, 1); 1994 Observer.changedInstr(MI); 1995 return Legalized; 1996 } 1997 1998 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1999 Register Result = MI.getOperand(0).getReg(); 2000 Register OriginalOverflow = MI.getOperand(1).getReg(); 2001 Register LHS = MI.getOperand(2).getReg(); 2002 Register RHS = MI.getOperand(3).getReg(); 2003 LLT SrcTy = MRI.getType(LHS); 2004 LLT OverflowTy = MRI.getType(OriginalOverflow); 2005 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 2006 2007 // To determine if the result overflowed in the larger type, we extend the 2008 // input to the larger type, do the multiply (checking if it overflows), 2009 // then also check the high bits of the result to see if overflow happened 2010 // there. 2011 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2012 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 2013 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 2014 2015 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 2016 {LeftOperand, RightOperand}); 2017 auto Mul = Mulo->getOperand(0); 2018 MIRBuilder.buildTrunc(Result, Mul); 2019 2020 MachineInstrBuilder ExtResult; 2021 // Overflow occurred if it occurred in the larger type, or if the high part 2022 // of the result does not zero/sign-extend the low part. Check this second 2023 // possibility first. 2024 if (IsSigned) { 2025 // For signed, overflow occurred when the high part does not sign-extend 2026 // the low part. 2027 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 2028 } else { 2029 // Unsigned overflow occurred when the high part does not zero-extend the 2030 // low part. 2031 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 2032 } 2033 2034 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 2035 // so we don't need to check the overflow result of larger type Mulo. 2036 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 2037 auto Overflow = 2038 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 2039 // Finally check if the multiplication in the larger type itself overflowed. 2040 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 2041 } else { 2042 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 2043 } 2044 MI.eraseFromParent(); 2045 return Legalized; 2046 } 2047 2048 LegalizerHelper::LegalizeResult 2049 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 2050 switch (MI.getOpcode()) { 2051 default: 2052 return UnableToLegalize; 2053 case TargetOpcode::G_ATOMICRMW_XCHG: 2054 case TargetOpcode::G_ATOMICRMW_ADD: 2055 case TargetOpcode::G_ATOMICRMW_SUB: 2056 case TargetOpcode::G_ATOMICRMW_AND: 2057 case TargetOpcode::G_ATOMICRMW_OR: 2058 case TargetOpcode::G_ATOMICRMW_XOR: 2059 case TargetOpcode::G_ATOMICRMW_MIN: 2060 case TargetOpcode::G_ATOMICRMW_MAX: 2061 case TargetOpcode::G_ATOMICRMW_UMIN: 2062 case TargetOpcode::G_ATOMICRMW_UMAX: 2063 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 2064 Observer.changingInstr(MI); 2065 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2066 widenScalarDst(MI, WideTy, 0); 2067 Observer.changedInstr(MI); 2068 return Legalized; 2069 case TargetOpcode::G_ATOMIC_CMPXCHG: 2070 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 2071 Observer.changingInstr(MI); 2072 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2073 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2074 widenScalarDst(MI, WideTy, 0); 2075 Observer.changedInstr(MI); 2076 return Legalized; 2077 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 2078 if (TypeIdx == 0) { 2079 Observer.changingInstr(MI); 2080 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2081 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2082 widenScalarDst(MI, WideTy, 0); 2083 Observer.changedInstr(MI); 2084 return Legalized; 2085 } 2086 assert(TypeIdx == 1 && 2087 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2088 Observer.changingInstr(MI); 2089 widenScalarDst(MI, WideTy, 1); 2090 Observer.changedInstr(MI); 2091 return Legalized; 2092 case TargetOpcode::G_EXTRACT: 2093 return widenScalarExtract(MI, TypeIdx, WideTy); 2094 case TargetOpcode::G_INSERT: 2095 return widenScalarInsert(MI, TypeIdx, WideTy); 2096 case TargetOpcode::G_MERGE_VALUES: 2097 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2098 case TargetOpcode::G_UNMERGE_VALUES: 2099 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2100 case TargetOpcode::G_SADDO: 2101 case TargetOpcode::G_SSUBO: 2102 case TargetOpcode::G_UADDO: 2103 case TargetOpcode::G_USUBO: 2104 case TargetOpcode::G_SADDE: 2105 case TargetOpcode::G_SSUBE: 2106 case TargetOpcode::G_UADDE: 2107 case TargetOpcode::G_USUBE: 2108 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2109 case TargetOpcode::G_UMULO: 2110 case TargetOpcode::G_SMULO: 2111 return widenScalarMulo(MI, TypeIdx, WideTy); 2112 case TargetOpcode::G_SADDSAT: 2113 case TargetOpcode::G_SSUBSAT: 2114 case TargetOpcode::G_SSHLSAT: 2115 case TargetOpcode::G_UADDSAT: 2116 case TargetOpcode::G_USUBSAT: 2117 case TargetOpcode::G_USHLSAT: 2118 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2119 case TargetOpcode::G_CTTZ: 2120 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2121 case TargetOpcode::G_CTLZ: 2122 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2123 case TargetOpcode::G_CTPOP: { 2124 if (TypeIdx == 0) { 2125 Observer.changingInstr(MI); 2126 widenScalarDst(MI, WideTy, 0); 2127 Observer.changedInstr(MI); 2128 return Legalized; 2129 } 2130 2131 Register SrcReg = MI.getOperand(1).getReg(); 2132 2133 // First extend the input. 2134 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || 2135 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF 2136 ? TargetOpcode::G_ANYEXT 2137 : TargetOpcode::G_ZEXT; 2138 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); 2139 LLT CurTy = MRI.getType(SrcReg); 2140 unsigned NewOpc = MI.getOpcode(); 2141 if (NewOpc == TargetOpcode::G_CTTZ) { 2142 // The count is the same in the larger type except if the original 2143 // value was zero. This can be handled by setting the bit just off 2144 // the top of the original type. 2145 auto TopBit = 2146 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2147 MIBSrc = MIRBuilder.buildOr( 2148 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2149 // Now we know the operand is non-zero, use the more relaxed opcode. 2150 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; 2151 } 2152 2153 // Perform the operation at the larger size. 2154 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); 2155 // This is already the correct result for CTPOP and CTTZs 2156 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 2157 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2158 // The correct result is NewOp - (Difference in widety and current ty). 2159 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2160 MIBNewOp = MIRBuilder.buildSub( 2161 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2162 } 2163 2164 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2165 MI.eraseFromParent(); 2166 return Legalized; 2167 } 2168 case TargetOpcode::G_BSWAP: { 2169 Observer.changingInstr(MI); 2170 Register DstReg = MI.getOperand(0).getReg(); 2171 2172 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2173 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2174 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2175 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2176 2177 MI.getOperand(0).setReg(DstExt); 2178 2179 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2180 2181 LLT Ty = MRI.getType(DstReg); 2182 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2183 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2184 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2185 2186 MIRBuilder.buildTrunc(DstReg, ShrReg); 2187 Observer.changedInstr(MI); 2188 return Legalized; 2189 } 2190 case TargetOpcode::G_BITREVERSE: { 2191 Observer.changingInstr(MI); 2192 2193 Register DstReg = MI.getOperand(0).getReg(); 2194 LLT Ty = MRI.getType(DstReg); 2195 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2196 2197 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2198 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2199 MI.getOperand(0).setReg(DstExt); 2200 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2201 2202 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2203 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2204 MIRBuilder.buildTrunc(DstReg, Shift); 2205 Observer.changedInstr(MI); 2206 return Legalized; 2207 } 2208 case TargetOpcode::G_FREEZE: 2209 Observer.changingInstr(MI); 2210 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2211 widenScalarDst(MI, WideTy); 2212 Observer.changedInstr(MI); 2213 return Legalized; 2214 2215 case TargetOpcode::G_ABS: 2216 Observer.changingInstr(MI); 2217 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2218 widenScalarDst(MI, WideTy); 2219 Observer.changedInstr(MI); 2220 return Legalized; 2221 2222 case TargetOpcode::G_ADD: 2223 case TargetOpcode::G_AND: 2224 case TargetOpcode::G_MUL: 2225 case TargetOpcode::G_OR: 2226 case TargetOpcode::G_XOR: 2227 case TargetOpcode::G_SUB: 2228 // Perform operation at larger width (any extension is fines here, high bits 2229 // don't affect the result) and then truncate the result back to the 2230 // original type. 2231 Observer.changingInstr(MI); 2232 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2233 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2234 widenScalarDst(MI, WideTy); 2235 Observer.changedInstr(MI); 2236 return Legalized; 2237 2238 case TargetOpcode::G_SBFX: 2239 case TargetOpcode::G_UBFX: 2240 Observer.changingInstr(MI); 2241 2242 if (TypeIdx == 0) { 2243 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2244 widenScalarDst(MI, WideTy); 2245 } else { 2246 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2247 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2248 } 2249 2250 Observer.changedInstr(MI); 2251 return Legalized; 2252 2253 case TargetOpcode::G_SHL: 2254 Observer.changingInstr(MI); 2255 2256 if (TypeIdx == 0) { 2257 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2258 widenScalarDst(MI, WideTy); 2259 } else { 2260 assert(TypeIdx == 1); 2261 // The "number of bits to shift" operand must preserve its value as an 2262 // unsigned integer: 2263 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2264 } 2265 2266 Observer.changedInstr(MI); 2267 return Legalized; 2268 2269 case TargetOpcode::G_SDIV: 2270 case TargetOpcode::G_SREM: 2271 case TargetOpcode::G_SMIN: 2272 case TargetOpcode::G_SMAX: 2273 Observer.changingInstr(MI); 2274 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2275 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2276 widenScalarDst(MI, WideTy); 2277 Observer.changedInstr(MI); 2278 return Legalized; 2279 2280 case TargetOpcode::G_SDIVREM: 2281 Observer.changingInstr(MI); 2282 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2283 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2284 widenScalarDst(MI, WideTy); 2285 widenScalarDst(MI, WideTy, 1); 2286 Observer.changedInstr(MI); 2287 return Legalized; 2288 2289 case TargetOpcode::G_ASHR: 2290 case TargetOpcode::G_LSHR: 2291 Observer.changingInstr(MI); 2292 2293 if (TypeIdx == 0) { 2294 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2295 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2296 2297 widenScalarSrc(MI, WideTy, 1, CvtOp); 2298 widenScalarDst(MI, WideTy); 2299 } else { 2300 assert(TypeIdx == 1); 2301 // The "number of bits to shift" operand must preserve its value as an 2302 // unsigned integer: 2303 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2304 } 2305 2306 Observer.changedInstr(MI); 2307 return Legalized; 2308 case TargetOpcode::G_UDIV: 2309 case TargetOpcode::G_UREM: 2310 case TargetOpcode::G_UMIN: 2311 case TargetOpcode::G_UMAX: 2312 Observer.changingInstr(MI); 2313 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2314 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2315 widenScalarDst(MI, WideTy); 2316 Observer.changedInstr(MI); 2317 return Legalized; 2318 2319 case TargetOpcode::G_UDIVREM: 2320 Observer.changingInstr(MI); 2321 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2322 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2323 widenScalarDst(MI, WideTy); 2324 widenScalarDst(MI, WideTy, 1); 2325 Observer.changedInstr(MI); 2326 return Legalized; 2327 2328 case TargetOpcode::G_SELECT: 2329 Observer.changingInstr(MI); 2330 if (TypeIdx == 0) { 2331 // Perform operation at larger width (any extension is fine here, high 2332 // bits don't affect the result) and then truncate the result back to the 2333 // original type. 2334 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2335 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2336 widenScalarDst(MI, WideTy); 2337 } else { 2338 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2339 // Explicit extension is required here since high bits affect the result. 2340 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2341 } 2342 Observer.changedInstr(MI); 2343 return Legalized; 2344 2345 case TargetOpcode::G_FPTOSI: 2346 case TargetOpcode::G_FPTOUI: 2347 Observer.changingInstr(MI); 2348 2349 if (TypeIdx == 0) 2350 widenScalarDst(MI, WideTy); 2351 else 2352 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2353 2354 Observer.changedInstr(MI); 2355 return Legalized; 2356 case TargetOpcode::G_SITOFP: 2357 Observer.changingInstr(MI); 2358 2359 if (TypeIdx == 0) 2360 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2361 else 2362 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2363 2364 Observer.changedInstr(MI); 2365 return Legalized; 2366 case TargetOpcode::G_UITOFP: 2367 Observer.changingInstr(MI); 2368 2369 if (TypeIdx == 0) 2370 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2371 else 2372 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2373 2374 Observer.changedInstr(MI); 2375 return Legalized; 2376 case TargetOpcode::G_LOAD: 2377 case TargetOpcode::G_SEXTLOAD: 2378 case TargetOpcode::G_ZEXTLOAD: 2379 Observer.changingInstr(MI); 2380 widenScalarDst(MI, WideTy); 2381 Observer.changedInstr(MI); 2382 return Legalized; 2383 2384 case TargetOpcode::G_STORE: { 2385 if (TypeIdx != 0) 2386 return UnableToLegalize; 2387 2388 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2389 if (!Ty.isScalar()) 2390 return UnableToLegalize; 2391 2392 Observer.changingInstr(MI); 2393 2394 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2395 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2396 widenScalarSrc(MI, WideTy, 0, ExtType); 2397 2398 Observer.changedInstr(MI); 2399 return Legalized; 2400 } 2401 case TargetOpcode::G_CONSTANT: { 2402 MachineOperand &SrcMO = MI.getOperand(1); 2403 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2404 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2405 MRI.getType(MI.getOperand(0).getReg())); 2406 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2407 ExtOpc == TargetOpcode::G_ANYEXT) && 2408 "Illegal Extend"); 2409 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2410 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2411 ? SrcVal.sext(WideTy.getSizeInBits()) 2412 : SrcVal.zext(WideTy.getSizeInBits()); 2413 Observer.changingInstr(MI); 2414 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2415 2416 widenScalarDst(MI, WideTy); 2417 Observer.changedInstr(MI); 2418 return Legalized; 2419 } 2420 case TargetOpcode::G_FCONSTANT: { 2421 MachineOperand &SrcMO = MI.getOperand(1); 2422 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2423 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2424 bool LosesInfo; 2425 switch (WideTy.getSizeInBits()) { 2426 case 32: 2427 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2428 &LosesInfo); 2429 break; 2430 case 64: 2431 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2432 &LosesInfo); 2433 break; 2434 default: 2435 return UnableToLegalize; 2436 } 2437 2438 assert(!LosesInfo && "extend should always be lossless"); 2439 2440 Observer.changingInstr(MI); 2441 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2442 2443 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2444 Observer.changedInstr(MI); 2445 return Legalized; 2446 } 2447 case TargetOpcode::G_IMPLICIT_DEF: { 2448 Observer.changingInstr(MI); 2449 widenScalarDst(MI, WideTy); 2450 Observer.changedInstr(MI); 2451 return Legalized; 2452 } 2453 case TargetOpcode::G_BRCOND: 2454 Observer.changingInstr(MI); 2455 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2456 Observer.changedInstr(MI); 2457 return Legalized; 2458 2459 case TargetOpcode::G_FCMP: 2460 Observer.changingInstr(MI); 2461 if (TypeIdx == 0) 2462 widenScalarDst(MI, WideTy); 2463 else { 2464 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2465 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2466 } 2467 Observer.changedInstr(MI); 2468 return Legalized; 2469 2470 case TargetOpcode::G_ICMP: 2471 Observer.changingInstr(MI); 2472 if (TypeIdx == 0) 2473 widenScalarDst(MI, WideTy); 2474 else { 2475 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2476 MI.getOperand(1).getPredicate())) 2477 ? TargetOpcode::G_SEXT 2478 : TargetOpcode::G_ZEXT; 2479 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2480 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2481 } 2482 Observer.changedInstr(MI); 2483 return Legalized; 2484 2485 case TargetOpcode::G_PTR_ADD: 2486 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2487 Observer.changingInstr(MI); 2488 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2489 Observer.changedInstr(MI); 2490 return Legalized; 2491 2492 case TargetOpcode::G_PHI: { 2493 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2494 2495 Observer.changingInstr(MI); 2496 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2497 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2498 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2499 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2500 } 2501 2502 MachineBasicBlock &MBB = *MI.getParent(); 2503 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2504 widenScalarDst(MI, WideTy); 2505 Observer.changedInstr(MI); 2506 return Legalized; 2507 } 2508 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2509 if (TypeIdx == 0) { 2510 Register VecReg = MI.getOperand(1).getReg(); 2511 LLT VecTy = MRI.getType(VecReg); 2512 Observer.changingInstr(MI); 2513 2514 widenScalarSrc( 2515 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2516 TargetOpcode::G_ANYEXT); 2517 2518 widenScalarDst(MI, WideTy, 0); 2519 Observer.changedInstr(MI); 2520 return Legalized; 2521 } 2522 2523 if (TypeIdx != 2) 2524 return UnableToLegalize; 2525 Observer.changingInstr(MI); 2526 // TODO: Probably should be zext 2527 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2528 Observer.changedInstr(MI); 2529 return Legalized; 2530 } 2531 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2532 if (TypeIdx == 1) { 2533 Observer.changingInstr(MI); 2534 2535 Register VecReg = MI.getOperand(1).getReg(); 2536 LLT VecTy = MRI.getType(VecReg); 2537 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2538 2539 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2540 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2541 widenScalarDst(MI, WideVecTy, 0); 2542 Observer.changedInstr(MI); 2543 return Legalized; 2544 } 2545 2546 if (TypeIdx == 2) { 2547 Observer.changingInstr(MI); 2548 // TODO: Probably should be zext 2549 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2550 Observer.changedInstr(MI); 2551 return Legalized; 2552 } 2553 2554 return UnableToLegalize; 2555 } 2556 case TargetOpcode::G_FADD: 2557 case TargetOpcode::G_FMUL: 2558 case TargetOpcode::G_FSUB: 2559 case TargetOpcode::G_FMA: 2560 case TargetOpcode::G_FMAD: 2561 case TargetOpcode::G_FNEG: 2562 case TargetOpcode::G_FABS: 2563 case TargetOpcode::G_FCANONICALIZE: 2564 case TargetOpcode::G_FMINNUM: 2565 case TargetOpcode::G_FMAXNUM: 2566 case TargetOpcode::G_FMINNUM_IEEE: 2567 case TargetOpcode::G_FMAXNUM_IEEE: 2568 case TargetOpcode::G_FMINIMUM: 2569 case TargetOpcode::G_FMAXIMUM: 2570 case TargetOpcode::G_FDIV: 2571 case TargetOpcode::G_FREM: 2572 case TargetOpcode::G_FCEIL: 2573 case TargetOpcode::G_FFLOOR: 2574 case TargetOpcode::G_FCOS: 2575 case TargetOpcode::G_FSIN: 2576 case TargetOpcode::G_FLOG10: 2577 case TargetOpcode::G_FLOG: 2578 case TargetOpcode::G_FLOG2: 2579 case TargetOpcode::G_FRINT: 2580 case TargetOpcode::G_FNEARBYINT: 2581 case TargetOpcode::G_FSQRT: 2582 case TargetOpcode::G_FEXP: 2583 case TargetOpcode::G_FEXP2: 2584 case TargetOpcode::G_FPOW: 2585 case TargetOpcode::G_INTRINSIC_TRUNC: 2586 case TargetOpcode::G_INTRINSIC_ROUND: 2587 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2588 assert(TypeIdx == 0); 2589 Observer.changingInstr(MI); 2590 2591 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2592 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2593 2594 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2595 Observer.changedInstr(MI); 2596 return Legalized; 2597 case TargetOpcode::G_FPOWI: { 2598 if (TypeIdx != 0) 2599 return UnableToLegalize; 2600 Observer.changingInstr(MI); 2601 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2602 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2603 Observer.changedInstr(MI); 2604 return Legalized; 2605 } 2606 case TargetOpcode::G_INTTOPTR: 2607 if (TypeIdx != 1) 2608 return UnableToLegalize; 2609 2610 Observer.changingInstr(MI); 2611 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2612 Observer.changedInstr(MI); 2613 return Legalized; 2614 case TargetOpcode::G_PTRTOINT: 2615 if (TypeIdx != 0) 2616 return UnableToLegalize; 2617 2618 Observer.changingInstr(MI); 2619 widenScalarDst(MI, WideTy, 0); 2620 Observer.changedInstr(MI); 2621 return Legalized; 2622 case TargetOpcode::G_BUILD_VECTOR: { 2623 Observer.changingInstr(MI); 2624 2625 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2626 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2627 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2628 2629 // Avoid changing the result vector type if the source element type was 2630 // requested. 2631 if (TypeIdx == 1) { 2632 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2633 } else { 2634 widenScalarDst(MI, WideTy, 0); 2635 } 2636 2637 Observer.changedInstr(MI); 2638 return Legalized; 2639 } 2640 case TargetOpcode::G_SEXT_INREG: 2641 if (TypeIdx != 0) 2642 return UnableToLegalize; 2643 2644 Observer.changingInstr(MI); 2645 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2646 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2647 Observer.changedInstr(MI); 2648 return Legalized; 2649 case TargetOpcode::G_PTRMASK: { 2650 if (TypeIdx != 1) 2651 return UnableToLegalize; 2652 Observer.changingInstr(MI); 2653 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2654 Observer.changedInstr(MI); 2655 return Legalized; 2656 } 2657 } 2658 } 2659 2660 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2661 MachineIRBuilder &B, Register Src, LLT Ty) { 2662 auto Unmerge = B.buildUnmerge(Ty, Src); 2663 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2664 Pieces.push_back(Unmerge.getReg(I)); 2665 } 2666 2667 LegalizerHelper::LegalizeResult 2668 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2669 Register Dst = MI.getOperand(0).getReg(); 2670 Register Src = MI.getOperand(1).getReg(); 2671 LLT DstTy = MRI.getType(Dst); 2672 LLT SrcTy = MRI.getType(Src); 2673 2674 if (SrcTy.isVector()) { 2675 LLT SrcEltTy = SrcTy.getElementType(); 2676 SmallVector<Register, 8> SrcRegs; 2677 2678 if (DstTy.isVector()) { 2679 int NumDstElt = DstTy.getNumElements(); 2680 int NumSrcElt = SrcTy.getNumElements(); 2681 2682 LLT DstEltTy = DstTy.getElementType(); 2683 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2684 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2685 2686 // If there's an element size mismatch, insert intermediate casts to match 2687 // the result element type. 2688 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2689 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2690 // 2691 // => 2692 // 2693 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2694 // %3:_(<2 x s8>) = G_BITCAST %2 2695 // %4:_(<2 x s8>) = G_BITCAST %3 2696 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2697 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2698 SrcPartTy = SrcEltTy; 2699 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2700 // 2701 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2702 // 2703 // => 2704 // 2705 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2706 // %3:_(s16) = G_BITCAST %2 2707 // %4:_(s16) = G_BITCAST %3 2708 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2709 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2710 DstCastTy = DstEltTy; 2711 } 2712 2713 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2714 for (Register &SrcReg : SrcRegs) 2715 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2716 } else 2717 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2718 2719 MIRBuilder.buildMerge(Dst, SrcRegs); 2720 MI.eraseFromParent(); 2721 return Legalized; 2722 } 2723 2724 if (DstTy.isVector()) { 2725 SmallVector<Register, 8> SrcRegs; 2726 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2727 MIRBuilder.buildMerge(Dst, SrcRegs); 2728 MI.eraseFromParent(); 2729 return Legalized; 2730 } 2731 2732 return UnableToLegalize; 2733 } 2734 2735 /// Figure out the bit offset into a register when coercing a vector index for 2736 /// the wide element type. This is only for the case when promoting vector to 2737 /// one with larger elements. 2738 // 2739 /// 2740 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2741 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2742 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2743 Register Idx, 2744 unsigned NewEltSize, 2745 unsigned OldEltSize) { 2746 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2747 LLT IdxTy = B.getMRI()->getType(Idx); 2748 2749 // Now figure out the amount we need to shift to get the target bits. 2750 auto OffsetMask = B.buildConstant( 2751 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); 2752 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2753 return B.buildShl(IdxTy, OffsetIdx, 2754 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2755 } 2756 2757 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2758 /// is casting to a vector with a smaller element size, perform multiple element 2759 /// extracts and merge the results. If this is coercing to a vector with larger 2760 /// elements, index the bitcasted vector and extract the target element with bit 2761 /// operations. This is intended to force the indexing in the native register 2762 /// size for architectures that can dynamically index the register file. 2763 LegalizerHelper::LegalizeResult 2764 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2765 LLT CastTy) { 2766 if (TypeIdx != 1) 2767 return UnableToLegalize; 2768 2769 Register Dst = MI.getOperand(0).getReg(); 2770 Register SrcVec = MI.getOperand(1).getReg(); 2771 Register Idx = MI.getOperand(2).getReg(); 2772 LLT SrcVecTy = MRI.getType(SrcVec); 2773 LLT IdxTy = MRI.getType(Idx); 2774 2775 LLT SrcEltTy = SrcVecTy.getElementType(); 2776 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2777 unsigned OldNumElts = SrcVecTy.getNumElements(); 2778 2779 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2780 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2781 2782 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2783 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2784 if (NewNumElts > OldNumElts) { 2785 // Decreasing the vector element size 2786 // 2787 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2788 // => 2789 // v4i32:castx = bitcast x:v2i64 2790 // 2791 // i64 = bitcast 2792 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2793 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2794 // 2795 if (NewNumElts % OldNumElts != 0) 2796 return UnableToLegalize; 2797 2798 // Type of the intermediate result vector. 2799 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2800 LLT MidTy = 2801 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2802 2803 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2804 2805 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2806 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2807 2808 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2809 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2810 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2811 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2812 NewOps[I] = Elt.getReg(0); 2813 } 2814 2815 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2816 MIRBuilder.buildBitcast(Dst, NewVec); 2817 MI.eraseFromParent(); 2818 return Legalized; 2819 } 2820 2821 if (NewNumElts < OldNumElts) { 2822 if (NewEltSize % OldEltSize != 0) 2823 return UnableToLegalize; 2824 2825 // This only depends on powers of 2 because we use bit tricks to figure out 2826 // the bit offset we need to shift to get the target element. A general 2827 // expansion could emit division/multiply. 2828 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2829 return UnableToLegalize; 2830 2831 // Increasing the vector element size. 2832 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2833 // 2834 // => 2835 // 2836 // %cast = G_BITCAST %vec 2837 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2838 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2839 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2840 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2841 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2842 // %elt = G_TRUNC %elt_bits 2843 2844 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2845 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2846 2847 // Divide to get the index in the wider element type. 2848 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2849 2850 Register WideElt = CastVec; 2851 if (CastTy.isVector()) { 2852 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2853 ScaledIdx).getReg(0); 2854 } 2855 2856 // Compute the bit offset into the register of the target element. 2857 Register OffsetBits = getBitcastWiderVectorElementOffset( 2858 MIRBuilder, Idx, NewEltSize, OldEltSize); 2859 2860 // Shift the wide element to get the target element. 2861 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2862 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2863 MI.eraseFromParent(); 2864 return Legalized; 2865 } 2866 2867 return UnableToLegalize; 2868 } 2869 2870 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2871 /// TargetReg, while preserving other bits in \p TargetReg. 2872 /// 2873 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2874 static Register buildBitFieldInsert(MachineIRBuilder &B, 2875 Register TargetReg, Register InsertReg, 2876 Register OffsetBits) { 2877 LLT TargetTy = B.getMRI()->getType(TargetReg); 2878 LLT InsertTy = B.getMRI()->getType(InsertReg); 2879 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2880 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2881 2882 // Produce a bitmask of the value to insert 2883 auto EltMask = B.buildConstant( 2884 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2885 InsertTy.getSizeInBits())); 2886 // Shift it into position 2887 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2888 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2889 2890 // Clear out the bits in the wide element 2891 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2892 2893 // The value to insert has all zeros already, so stick it into the masked 2894 // wide element. 2895 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2896 } 2897 2898 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2899 /// is increasing the element size, perform the indexing in the target element 2900 /// type, and use bit operations to insert at the element position. This is 2901 /// intended for architectures that can dynamically index the register file and 2902 /// want to force indexing in the native register size. 2903 LegalizerHelper::LegalizeResult 2904 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2905 LLT CastTy) { 2906 if (TypeIdx != 0) 2907 return UnableToLegalize; 2908 2909 Register Dst = MI.getOperand(0).getReg(); 2910 Register SrcVec = MI.getOperand(1).getReg(); 2911 Register Val = MI.getOperand(2).getReg(); 2912 Register Idx = MI.getOperand(3).getReg(); 2913 2914 LLT VecTy = MRI.getType(Dst); 2915 LLT IdxTy = MRI.getType(Idx); 2916 2917 LLT VecEltTy = VecTy.getElementType(); 2918 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2919 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2920 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2921 2922 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2923 unsigned OldNumElts = VecTy.getNumElements(); 2924 2925 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2926 if (NewNumElts < OldNumElts) { 2927 if (NewEltSize % OldEltSize != 0) 2928 return UnableToLegalize; 2929 2930 // This only depends on powers of 2 because we use bit tricks to figure out 2931 // the bit offset we need to shift to get the target element. A general 2932 // expansion could emit division/multiply. 2933 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2934 return UnableToLegalize; 2935 2936 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2937 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2938 2939 // Divide to get the index in the wider element type. 2940 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2941 2942 Register ExtractedElt = CastVec; 2943 if (CastTy.isVector()) { 2944 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2945 ScaledIdx).getReg(0); 2946 } 2947 2948 // Compute the bit offset into the register of the target element. 2949 Register OffsetBits = getBitcastWiderVectorElementOffset( 2950 MIRBuilder, Idx, NewEltSize, OldEltSize); 2951 2952 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2953 Val, OffsetBits); 2954 if (CastTy.isVector()) { 2955 InsertedElt = MIRBuilder.buildInsertVectorElement( 2956 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2957 } 2958 2959 MIRBuilder.buildBitcast(Dst, InsertedElt); 2960 MI.eraseFromParent(); 2961 return Legalized; 2962 } 2963 2964 return UnableToLegalize; 2965 } 2966 2967 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 2968 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2969 Register DstReg = LoadMI.getDstReg(); 2970 Register PtrReg = LoadMI.getPointerReg(); 2971 LLT DstTy = MRI.getType(DstReg); 2972 MachineMemOperand &MMO = LoadMI.getMMO(); 2973 LLT MemTy = MMO.getMemoryType(); 2974 MachineFunction &MF = MIRBuilder.getMF(); 2975 2976 unsigned MemSizeInBits = MemTy.getSizeInBits(); 2977 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2978 2979 if (MemSizeInBits != MemStoreSizeInBits) { 2980 if (MemTy.isVector()) 2981 return UnableToLegalize; 2982 2983 // Promote to a byte-sized load if not loading an integral number of 2984 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2985 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 2986 MachineMemOperand *NewMMO = 2987 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 2988 2989 Register LoadReg = DstReg; 2990 LLT LoadTy = DstTy; 2991 2992 // If this wasn't already an extending load, we need to widen the result 2993 // register to avoid creating a load with a narrower result than the source. 2994 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 2995 LoadTy = WideMemTy; 2996 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 2997 } 2998 2999 if (isa<GSExtLoad>(LoadMI)) { 3000 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 3001 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 3002 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) { 3003 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 3004 // The extra bits are guaranteed to be zero, since we stored them that 3005 // way. A zext load from Wide thus automatically gives zext from MemVT. 3006 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 3007 } else { 3008 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 3009 } 3010 3011 if (DstTy != LoadTy) 3012 MIRBuilder.buildTrunc(DstReg, LoadReg); 3013 3014 LoadMI.eraseFromParent(); 3015 return Legalized; 3016 } 3017 3018 // Big endian lowering not implemented. 3019 if (MIRBuilder.getDataLayout().isBigEndian()) 3020 return UnableToLegalize; 3021 3022 // This load needs splitting into power of 2 sized loads. 3023 // 3024 // Our strategy here is to generate anyextending loads for the smaller 3025 // types up to next power-2 result type, and then combine the two larger 3026 // result values together, before truncating back down to the non-pow-2 3027 // type. 3028 // E.g. v1 = i24 load => 3029 // v2 = i32 zextload (2 byte) 3030 // v3 = i32 load (1 byte) 3031 // v4 = i32 shl v3, 16 3032 // v5 = i32 or v4, v2 3033 // v1 = i24 trunc v5 3034 // By doing this we generate the correct truncate which should get 3035 // combined away as an artifact with a matching extend. 3036 3037 uint64_t LargeSplitSize, SmallSplitSize; 3038 3039 if (!isPowerOf2_32(MemSizeInBits)) { 3040 // This load needs splitting into power of 2 sized loads. 3041 LargeSplitSize = PowerOf2Floor(MemSizeInBits); 3042 SmallSplitSize = MemSizeInBits - LargeSplitSize; 3043 } else { 3044 // This is already a power of 2, but we still need to split this in half. 3045 // 3046 // Assume we're being asked to decompose an unaligned load. 3047 // TODO: If this requires multiple splits, handle them all at once. 3048 auto &Ctx = MF.getFunction().getContext(); 3049 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3050 return UnableToLegalize; 3051 3052 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3053 } 3054 3055 if (MemTy.isVector()) { 3056 // TODO: Handle vector extloads 3057 if (MemTy != DstTy) 3058 return UnableToLegalize; 3059 3060 // TODO: We can do better than scalarizing the vector and at least split it 3061 // in half. 3062 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); 3063 } 3064 3065 MachineMemOperand *LargeMMO = 3066 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3067 MachineMemOperand *SmallMMO = 3068 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3069 3070 LLT PtrTy = MRI.getType(PtrReg); 3071 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 3072 LLT AnyExtTy = LLT::scalar(AnyExtSize); 3073 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 3074 PtrReg, *LargeMMO); 3075 3076 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 3077 LargeSplitSize / 8); 3078 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 3079 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 3080 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 3081 SmallPtr, *SmallMMO); 3082 3083 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 3084 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 3085 3086 if (AnyExtTy == DstTy) 3087 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 3088 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { 3089 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3090 MIRBuilder.buildTrunc(DstReg, {Or}); 3091 } else { 3092 assert(DstTy.isPointer() && "expected pointer"); 3093 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3094 3095 // FIXME: We currently consider this to be illegal for non-integral address 3096 // spaces, but we need still need a way to reinterpret the bits. 3097 MIRBuilder.buildIntToPtr(DstReg, Or); 3098 } 3099 3100 LoadMI.eraseFromParent(); 3101 return Legalized; 3102 } 3103 3104 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 3105 // Lower a non-power of 2 store into multiple pow-2 stores. 3106 // E.g. split an i24 store into an i16 store + i8 store. 3107 // We do this by first extending the stored value to the next largest power 3108 // of 2 type, and then using truncating stores to store the components. 3109 // By doing this, likewise with G_LOAD, generate an extend that can be 3110 // artifact-combined away instead of leaving behind extracts. 3111 Register SrcReg = StoreMI.getValueReg(); 3112 Register PtrReg = StoreMI.getPointerReg(); 3113 LLT SrcTy = MRI.getType(SrcReg); 3114 MachineFunction &MF = MIRBuilder.getMF(); 3115 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 3116 LLT MemTy = MMO.getMemoryType(); 3117 3118 unsigned StoreWidth = MemTy.getSizeInBits(); 3119 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3120 3121 if (StoreWidth != StoreSizeInBits) { 3122 if (SrcTy.isVector()) 3123 return UnableToLegalize; 3124 3125 // Promote to a byte-sized store with upper bits zero if not 3126 // storing an integral number of bytes. For example, promote 3127 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 3128 LLT WideTy = LLT::scalar(StoreSizeInBits); 3129 3130 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 3131 // Avoid creating a store with a narrower source than result. 3132 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 3133 SrcTy = WideTy; 3134 } 3135 3136 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 3137 3138 MachineMemOperand *NewMMO = 3139 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 3140 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 3141 StoreMI.eraseFromParent(); 3142 return Legalized; 3143 } 3144 3145 if (MemTy.isVector()) { 3146 // TODO: Handle vector trunc stores 3147 if (MemTy != SrcTy) 3148 return UnableToLegalize; 3149 3150 // TODO: We can do better than scalarizing the vector and at least split it 3151 // in half. 3152 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); 3153 } 3154 3155 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3156 uint64_t LargeSplitSize, SmallSplitSize; 3157 3158 if (!isPowerOf2_32(MemSizeInBits)) { 3159 LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); 3160 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 3161 } else { 3162 auto &Ctx = MF.getFunction().getContext(); 3163 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3164 return UnableToLegalize; // Don't know what we're being asked to do. 3165 3166 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3167 } 3168 3169 // Extend to the next pow-2. If this store was itself the result of lowering, 3170 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 3171 // that's wider than the stored size. 3172 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); 3173 const LLT NewSrcTy = LLT::scalar(AnyExtSize); 3174 3175 if (SrcTy.isPointer()) { 3176 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); 3177 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); 3178 } 3179 3180 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 3181 3182 // Obtain the smaller value by shifting away the larger value. 3183 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 3184 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 3185 3186 // Generate the PtrAdd and truncating stores. 3187 LLT PtrTy = MRI.getType(PtrReg); 3188 auto OffsetCst = MIRBuilder.buildConstant( 3189 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 3190 auto SmallPtr = 3191 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); 3192 3193 MachineMemOperand *LargeMMO = 3194 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3195 MachineMemOperand *SmallMMO = 3196 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3197 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 3198 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 3199 StoreMI.eraseFromParent(); 3200 return Legalized; 3201 } 3202 3203 LegalizerHelper::LegalizeResult 3204 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 3205 switch (MI.getOpcode()) { 3206 case TargetOpcode::G_LOAD: { 3207 if (TypeIdx != 0) 3208 return UnableToLegalize; 3209 MachineMemOperand &MMO = **MI.memoperands_begin(); 3210 3211 // Not sure how to interpret a bitcast of an extending load. 3212 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3213 return UnableToLegalize; 3214 3215 Observer.changingInstr(MI); 3216 bitcastDst(MI, CastTy, 0); 3217 MMO.setType(CastTy); 3218 Observer.changedInstr(MI); 3219 return Legalized; 3220 } 3221 case TargetOpcode::G_STORE: { 3222 if (TypeIdx != 0) 3223 return UnableToLegalize; 3224 3225 MachineMemOperand &MMO = **MI.memoperands_begin(); 3226 3227 // Not sure how to interpret a bitcast of a truncating store. 3228 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3229 return UnableToLegalize; 3230 3231 Observer.changingInstr(MI); 3232 bitcastSrc(MI, CastTy, 0); 3233 MMO.setType(CastTy); 3234 Observer.changedInstr(MI); 3235 return Legalized; 3236 } 3237 case TargetOpcode::G_SELECT: { 3238 if (TypeIdx != 0) 3239 return UnableToLegalize; 3240 3241 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3242 LLVM_DEBUG( 3243 dbgs() << "bitcast action not implemented for vector select\n"); 3244 return UnableToLegalize; 3245 } 3246 3247 Observer.changingInstr(MI); 3248 bitcastSrc(MI, CastTy, 2); 3249 bitcastSrc(MI, CastTy, 3); 3250 bitcastDst(MI, CastTy, 0); 3251 Observer.changedInstr(MI); 3252 return Legalized; 3253 } 3254 case TargetOpcode::G_AND: 3255 case TargetOpcode::G_OR: 3256 case TargetOpcode::G_XOR: { 3257 Observer.changingInstr(MI); 3258 bitcastSrc(MI, CastTy, 1); 3259 bitcastSrc(MI, CastTy, 2); 3260 bitcastDst(MI, CastTy, 0); 3261 Observer.changedInstr(MI); 3262 return Legalized; 3263 } 3264 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3265 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3266 case TargetOpcode::G_INSERT_VECTOR_ELT: 3267 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3268 default: 3269 return UnableToLegalize; 3270 } 3271 } 3272 3273 // Legalize an instruction by changing the opcode in place. 3274 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3275 Observer.changingInstr(MI); 3276 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3277 Observer.changedInstr(MI); 3278 } 3279 3280 LegalizerHelper::LegalizeResult 3281 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3282 using namespace TargetOpcode; 3283 3284 switch(MI.getOpcode()) { 3285 default: 3286 return UnableToLegalize; 3287 case TargetOpcode::G_BITCAST: 3288 return lowerBitcast(MI); 3289 case TargetOpcode::G_SREM: 3290 case TargetOpcode::G_UREM: { 3291 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3292 auto Quot = 3293 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3294 {MI.getOperand(1), MI.getOperand(2)}); 3295 3296 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3297 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3298 MI.eraseFromParent(); 3299 return Legalized; 3300 } 3301 case TargetOpcode::G_SADDO: 3302 case TargetOpcode::G_SSUBO: 3303 return lowerSADDO_SSUBO(MI); 3304 case TargetOpcode::G_UMULH: 3305 case TargetOpcode::G_SMULH: 3306 return lowerSMULH_UMULH(MI); 3307 case TargetOpcode::G_SMULO: 3308 case TargetOpcode::G_UMULO: { 3309 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3310 // result. 3311 Register Res = MI.getOperand(0).getReg(); 3312 Register Overflow = MI.getOperand(1).getReg(); 3313 Register LHS = MI.getOperand(2).getReg(); 3314 Register RHS = MI.getOperand(3).getReg(); 3315 LLT Ty = MRI.getType(Res); 3316 3317 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3318 ? TargetOpcode::G_SMULH 3319 : TargetOpcode::G_UMULH; 3320 3321 Observer.changingInstr(MI); 3322 const auto &TII = MIRBuilder.getTII(); 3323 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3324 MI.removeOperand(1); 3325 Observer.changedInstr(MI); 3326 3327 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3328 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3329 3330 // Move insert point forward so we can use the Res register if needed. 3331 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3332 3333 // For *signed* multiply, overflow is detected by checking: 3334 // (hi != (lo >> bitwidth-1)) 3335 if (Opcode == TargetOpcode::G_SMULH) { 3336 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3337 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3338 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3339 } else { 3340 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3341 } 3342 return Legalized; 3343 } 3344 case TargetOpcode::G_FNEG: { 3345 Register Res = MI.getOperand(0).getReg(); 3346 LLT Ty = MRI.getType(Res); 3347 3348 // TODO: Handle vector types once we are able to 3349 // represent them. 3350 if (Ty.isVector()) 3351 return UnableToLegalize; 3352 auto SignMask = 3353 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3354 Register SubByReg = MI.getOperand(1).getReg(); 3355 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3356 MI.eraseFromParent(); 3357 return Legalized; 3358 } 3359 case TargetOpcode::G_FSUB: { 3360 Register Res = MI.getOperand(0).getReg(); 3361 LLT Ty = MRI.getType(Res); 3362 3363 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3364 // First, check if G_FNEG is marked as Lower. If so, we may 3365 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3366 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3367 return UnableToLegalize; 3368 Register LHS = MI.getOperand(1).getReg(); 3369 Register RHS = MI.getOperand(2).getReg(); 3370 Register Neg = MRI.createGenericVirtualRegister(Ty); 3371 MIRBuilder.buildFNeg(Neg, RHS); 3372 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3373 MI.eraseFromParent(); 3374 return Legalized; 3375 } 3376 case TargetOpcode::G_FMAD: 3377 return lowerFMad(MI); 3378 case TargetOpcode::G_FFLOOR: 3379 return lowerFFloor(MI); 3380 case TargetOpcode::G_INTRINSIC_ROUND: 3381 return lowerIntrinsicRound(MI); 3382 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3383 // Since round even is the assumed rounding mode for unconstrained FP 3384 // operations, rint and roundeven are the same operation. 3385 changeOpcode(MI, TargetOpcode::G_FRINT); 3386 return Legalized; 3387 } 3388 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3389 Register OldValRes = MI.getOperand(0).getReg(); 3390 Register SuccessRes = MI.getOperand(1).getReg(); 3391 Register Addr = MI.getOperand(2).getReg(); 3392 Register CmpVal = MI.getOperand(3).getReg(); 3393 Register NewVal = MI.getOperand(4).getReg(); 3394 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3395 **MI.memoperands_begin()); 3396 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3397 MI.eraseFromParent(); 3398 return Legalized; 3399 } 3400 case TargetOpcode::G_LOAD: 3401 case TargetOpcode::G_SEXTLOAD: 3402 case TargetOpcode::G_ZEXTLOAD: 3403 return lowerLoad(cast<GAnyLoad>(MI)); 3404 case TargetOpcode::G_STORE: 3405 return lowerStore(cast<GStore>(MI)); 3406 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3407 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3408 case TargetOpcode::G_CTLZ: 3409 case TargetOpcode::G_CTTZ: 3410 case TargetOpcode::G_CTPOP: 3411 return lowerBitCount(MI); 3412 case G_UADDO: { 3413 Register Res = MI.getOperand(0).getReg(); 3414 Register CarryOut = MI.getOperand(1).getReg(); 3415 Register LHS = MI.getOperand(2).getReg(); 3416 Register RHS = MI.getOperand(3).getReg(); 3417 3418 MIRBuilder.buildAdd(Res, LHS, RHS); 3419 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3420 3421 MI.eraseFromParent(); 3422 return Legalized; 3423 } 3424 case G_UADDE: { 3425 Register Res = MI.getOperand(0).getReg(); 3426 Register CarryOut = MI.getOperand(1).getReg(); 3427 Register LHS = MI.getOperand(2).getReg(); 3428 Register RHS = MI.getOperand(3).getReg(); 3429 Register CarryIn = MI.getOperand(4).getReg(); 3430 LLT Ty = MRI.getType(Res); 3431 3432 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3433 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3434 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3435 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3436 3437 MI.eraseFromParent(); 3438 return Legalized; 3439 } 3440 case G_USUBO: { 3441 Register Res = MI.getOperand(0).getReg(); 3442 Register BorrowOut = MI.getOperand(1).getReg(); 3443 Register LHS = MI.getOperand(2).getReg(); 3444 Register RHS = MI.getOperand(3).getReg(); 3445 3446 MIRBuilder.buildSub(Res, LHS, RHS); 3447 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3448 3449 MI.eraseFromParent(); 3450 return Legalized; 3451 } 3452 case G_USUBE: { 3453 Register Res = MI.getOperand(0).getReg(); 3454 Register BorrowOut = MI.getOperand(1).getReg(); 3455 Register LHS = MI.getOperand(2).getReg(); 3456 Register RHS = MI.getOperand(3).getReg(); 3457 Register BorrowIn = MI.getOperand(4).getReg(); 3458 const LLT CondTy = MRI.getType(BorrowOut); 3459 const LLT Ty = MRI.getType(Res); 3460 3461 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3462 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3463 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3464 3465 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3466 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3467 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3468 3469 MI.eraseFromParent(); 3470 return Legalized; 3471 } 3472 case G_UITOFP: 3473 return lowerUITOFP(MI); 3474 case G_SITOFP: 3475 return lowerSITOFP(MI); 3476 case G_FPTOUI: 3477 return lowerFPTOUI(MI); 3478 case G_FPTOSI: 3479 return lowerFPTOSI(MI); 3480 case G_FPTRUNC: 3481 return lowerFPTRUNC(MI); 3482 case G_FPOWI: 3483 return lowerFPOWI(MI); 3484 case G_SMIN: 3485 case G_SMAX: 3486 case G_UMIN: 3487 case G_UMAX: 3488 return lowerMinMax(MI); 3489 case G_FCOPYSIGN: 3490 return lowerFCopySign(MI); 3491 case G_FMINNUM: 3492 case G_FMAXNUM: 3493 return lowerFMinNumMaxNum(MI); 3494 case G_MERGE_VALUES: 3495 return lowerMergeValues(MI); 3496 case G_UNMERGE_VALUES: 3497 return lowerUnmergeValues(MI); 3498 case TargetOpcode::G_SEXT_INREG: { 3499 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3500 int64_t SizeInBits = MI.getOperand(2).getImm(); 3501 3502 Register DstReg = MI.getOperand(0).getReg(); 3503 Register SrcReg = MI.getOperand(1).getReg(); 3504 LLT DstTy = MRI.getType(DstReg); 3505 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3506 3507 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3508 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3509 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3510 MI.eraseFromParent(); 3511 return Legalized; 3512 } 3513 case G_EXTRACT_VECTOR_ELT: 3514 case G_INSERT_VECTOR_ELT: 3515 return lowerExtractInsertVectorElt(MI); 3516 case G_SHUFFLE_VECTOR: 3517 return lowerShuffleVector(MI); 3518 case G_DYN_STACKALLOC: 3519 return lowerDynStackAlloc(MI); 3520 case G_EXTRACT: 3521 return lowerExtract(MI); 3522 case G_INSERT: 3523 return lowerInsert(MI); 3524 case G_BSWAP: 3525 return lowerBswap(MI); 3526 case G_BITREVERSE: 3527 return lowerBitreverse(MI); 3528 case G_READ_REGISTER: 3529 case G_WRITE_REGISTER: 3530 return lowerReadWriteRegister(MI); 3531 case G_UADDSAT: 3532 case G_USUBSAT: { 3533 // Try to make a reasonable guess about which lowering strategy to use. The 3534 // target can override this with custom lowering and calling the 3535 // implementation functions. 3536 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3537 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3538 return lowerAddSubSatToMinMax(MI); 3539 return lowerAddSubSatToAddoSubo(MI); 3540 } 3541 case G_SADDSAT: 3542 case G_SSUBSAT: { 3543 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3544 3545 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3546 // since it's a shorter expansion. However, we would need to figure out the 3547 // preferred boolean type for the carry out for the query. 3548 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3549 return lowerAddSubSatToMinMax(MI); 3550 return lowerAddSubSatToAddoSubo(MI); 3551 } 3552 case G_SSHLSAT: 3553 case G_USHLSAT: 3554 return lowerShlSat(MI); 3555 case G_ABS: 3556 return lowerAbsToAddXor(MI); 3557 case G_SELECT: 3558 return lowerSelect(MI); 3559 case G_SDIVREM: 3560 case G_UDIVREM: 3561 return lowerDIVREM(MI); 3562 case G_FSHL: 3563 case G_FSHR: 3564 return lowerFunnelShift(MI); 3565 case G_ROTL: 3566 case G_ROTR: 3567 return lowerRotate(MI); 3568 case G_MEMSET: 3569 case G_MEMCPY: 3570 case G_MEMMOVE: 3571 return lowerMemCpyFamily(MI); 3572 case G_MEMCPY_INLINE: 3573 return lowerMemcpyInline(MI); 3574 GISEL_VECREDUCE_CASES_NONSEQ 3575 return lowerVectorReduction(MI); 3576 } 3577 } 3578 3579 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3580 Align MinAlign) const { 3581 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3582 // datalayout for the preferred alignment. Also there should be a target hook 3583 // for this to allow targets to reduce the alignment and ignore the 3584 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3585 // the type. 3586 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3587 } 3588 3589 MachineInstrBuilder 3590 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3591 MachinePointerInfo &PtrInfo) { 3592 MachineFunction &MF = MIRBuilder.getMF(); 3593 const DataLayout &DL = MIRBuilder.getDataLayout(); 3594 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3595 3596 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3597 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3598 3599 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3600 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3601 } 3602 3603 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3604 LLT VecTy) { 3605 int64_t IdxVal; 3606 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3607 return IdxReg; 3608 3609 LLT IdxTy = B.getMRI()->getType(IdxReg); 3610 unsigned NElts = VecTy.getNumElements(); 3611 if (isPowerOf2_32(NElts)) { 3612 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3613 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3614 } 3615 3616 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3617 .getReg(0); 3618 } 3619 3620 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3621 Register Index) { 3622 LLT EltTy = VecTy.getElementType(); 3623 3624 // Calculate the element offset and add it to the pointer. 3625 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3626 assert(EltSize * 8 == EltTy.getSizeInBits() && 3627 "Converting bits to bytes lost precision"); 3628 3629 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3630 3631 LLT IdxTy = MRI.getType(Index); 3632 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3633 MIRBuilder.buildConstant(IdxTy, EltSize)); 3634 3635 LLT PtrTy = MRI.getType(VecPtr); 3636 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3637 } 3638 3639 #ifndef NDEBUG 3640 /// Check that all vector operands have same number of elements. Other operands 3641 /// should be listed in NonVecOp. 3642 static bool hasSameNumEltsOnAllVectorOperands( 3643 GenericMachineInstr &MI, MachineRegisterInfo &MRI, 3644 std::initializer_list<unsigned> NonVecOpIndices) { 3645 if (MI.getNumMemOperands() != 0) 3646 return false; 3647 3648 LLT VecTy = MRI.getType(MI.getReg(0)); 3649 if (!VecTy.isVector()) 3650 return false; 3651 unsigned NumElts = VecTy.getNumElements(); 3652 3653 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { 3654 MachineOperand &Op = MI.getOperand(OpIdx); 3655 if (!Op.isReg()) { 3656 if (!is_contained(NonVecOpIndices, OpIdx)) 3657 return false; 3658 continue; 3659 } 3660 3661 LLT Ty = MRI.getType(Op.getReg()); 3662 if (!Ty.isVector()) { 3663 if (!is_contained(NonVecOpIndices, OpIdx)) 3664 return false; 3665 continue; 3666 } 3667 3668 if (Ty.getNumElements() != NumElts) 3669 return false; 3670 } 3671 3672 return true; 3673 } 3674 #endif 3675 3676 /// Fill \p DstOps with DstOps that have same number of elements combined as 3677 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are 3678 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple 3679 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. 3680 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty, 3681 unsigned NumElts) { 3682 LLT LeftoverTy; 3683 assert(Ty.isVector() && "Expected vector type"); 3684 LLT EltTy = Ty.getElementType(); 3685 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 3686 int NumParts, NumLeftover; 3687 std::tie(NumParts, NumLeftover) = 3688 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); 3689 3690 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); 3691 for (int i = 0; i < NumParts; ++i) { 3692 DstOps.push_back(NarrowTy); 3693 } 3694 3695 if (LeftoverTy.isValid()) { 3696 assert(NumLeftover == 1 && "expected exactly one leftover"); 3697 DstOps.push_back(LeftoverTy); 3698 } 3699 } 3700 3701 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps 3702 /// made from \p Op depending on operand type. 3703 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N, 3704 MachineOperand &Op) { 3705 for (unsigned i = 0; i < N; ++i) { 3706 if (Op.isReg()) 3707 Ops.push_back(Op.getReg()); 3708 else if (Op.isImm()) 3709 Ops.push_back(Op.getImm()); 3710 else if (Op.isPredicate()) 3711 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate())); 3712 else 3713 llvm_unreachable("Unsupported type"); 3714 } 3715 } 3716 3717 // Handle splitting vector operations which need to have the same number of 3718 // elements in each type index, but each type index may have a different element 3719 // type. 3720 // 3721 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3722 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3723 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3724 // 3725 // Also handles some irregular breakdown cases, e.g. 3726 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3727 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3728 // s64 = G_SHL s64, s32 3729 LegalizerHelper::LegalizeResult 3730 LegalizerHelper::fewerElementsVectorMultiEltType( 3731 GenericMachineInstr &MI, unsigned NumElts, 3732 std::initializer_list<unsigned> NonVecOpIndices) { 3733 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && 3734 "Non-compatible opcode or not specified non-vector operands"); 3735 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3736 3737 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3738 unsigned NumDefs = MI.getNumDefs(); 3739 3740 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. 3741 // Build instructions with DstOps to use instruction found by CSE directly. 3742 // CSE copies found instruction into given vreg when building with vreg dest. 3743 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs); 3744 // Output registers will be taken from created instructions. 3745 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs); 3746 for (unsigned i = 0; i < NumDefs; ++i) { 3747 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); 3748 } 3749 3750 // Split vector input operands into sub-vectors with NumElts elts + Leftover. 3751 // Operands listed in NonVecOpIndices will be used as is without splitting; 3752 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 3753 // scalar condition (op 1), immediate in sext_inreg (op 2). 3754 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs); 3755 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3756 ++UseIdx, ++UseNo) { 3757 if (is_contained(NonVecOpIndices, UseIdx)) { 3758 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), 3759 MI.getOperand(UseIdx)); 3760 } else { 3761 SmallVector<Register, 8> SplitPieces; 3762 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces); 3763 for (auto Reg : SplitPieces) 3764 InputOpsPieces[UseNo].push_back(Reg); 3765 } 3766 } 3767 3768 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3769 3770 // Take i-th piece of each input operand split and build sub-vector/scalar 3771 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). 3772 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3773 SmallVector<DstOp, 2> Defs; 3774 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3775 Defs.push_back(OutputOpsPieces[DstNo][i]); 3776 3777 SmallVector<SrcOp, 3> Uses; 3778 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) 3779 Uses.push_back(InputOpsPieces[InputNo][i]); 3780 3781 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); 3782 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3783 OutputRegs[DstNo].push_back(I.getReg(DstNo)); 3784 } 3785 3786 // Merge small outputs into MI's output for each def operand. 3787 if (NumLeftovers) { 3788 for (unsigned i = 0; i < NumDefs; ++i) 3789 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); 3790 } else { 3791 for (unsigned i = 0; i < NumDefs; ++i) 3792 MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]); 3793 } 3794 3795 MI.eraseFromParent(); 3796 return Legalized; 3797 } 3798 3799 LegalizerHelper::LegalizeResult 3800 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, 3801 unsigned NumElts) { 3802 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3803 3804 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3805 unsigned NumDefs = MI.getNumDefs(); 3806 3807 SmallVector<DstOp, 8> OutputOpsPieces; 3808 SmallVector<Register, 8> OutputRegs; 3809 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); 3810 3811 // Instructions that perform register split will be inserted in basic block 3812 // where register is defined (basic block is in the next operand). 3813 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2); 3814 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3815 UseIdx += 2, ++UseNo) { 3816 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); 3817 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3818 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]); 3819 } 3820 3821 // Build PHIs with fewer elements. 3822 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3823 MIRBuilder.setInsertPt(*MI.getParent(), MI); 3824 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3825 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 3826 Phi.addDef( 3827 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); 3828 OutputRegs.push_back(Phi.getReg(0)); 3829 3830 for (unsigned j = 0; j < NumInputs / 2; ++j) { 3831 Phi.addUse(InputOpsPieces[j][i]); 3832 Phi.add(MI.getOperand(1 + j * 2 + 1)); 3833 } 3834 } 3835 3836 // Merge small outputs into MI's def. 3837 if (NumLeftovers) { 3838 mergeMixedSubvectors(MI.getReg(0), OutputRegs); 3839 } else { 3840 MIRBuilder.buildMerge(MI.getReg(0), OutputRegs); 3841 } 3842 3843 MI.eraseFromParent(); 3844 return Legalized; 3845 } 3846 3847 LegalizerHelper::LegalizeResult 3848 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3849 unsigned TypeIdx, 3850 LLT NarrowTy) { 3851 const int NumDst = MI.getNumOperands() - 1; 3852 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3853 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3854 LLT SrcTy = MRI.getType(SrcReg); 3855 3856 if (TypeIdx != 1 || NarrowTy == DstTy) 3857 return UnableToLegalize; 3858 3859 // Requires compatible types. Otherwise SrcReg should have been defined by 3860 // merge-like instruction that would get artifact combined. Most likely 3861 // instruction that defines SrcReg has to perform more/fewer elements 3862 // legalization compatible with NarrowTy. 3863 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3864 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3865 3866 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3867 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) 3868 return UnableToLegalize; 3869 3870 // This is most likely DstTy (smaller then register size) packed in SrcTy 3871 // (larger then register size) and since unmerge was not combined it will be 3872 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy 3873 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. 3874 3875 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) 3876 // 3877 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence 3878 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg 3879 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) 3880 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); 3881 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3882 const int PartsPerUnmerge = NumDst / NumUnmerge; 3883 3884 for (int I = 0; I != NumUnmerge; ++I) { 3885 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3886 3887 for (int J = 0; J != PartsPerUnmerge; ++J) 3888 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3889 MIB.addUse(Unmerge.getReg(I)); 3890 } 3891 3892 MI.eraseFromParent(); 3893 return Legalized; 3894 } 3895 3896 LegalizerHelper::LegalizeResult 3897 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3898 LLT NarrowTy) { 3899 Register DstReg = MI.getOperand(0).getReg(); 3900 LLT DstTy = MRI.getType(DstReg); 3901 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3902 // Requires compatible types. Otherwise user of DstReg did not perform unmerge 3903 // that should have been artifact combined. Most likely instruction that uses 3904 // DstReg has to do more/fewer elements legalization compatible with NarrowTy. 3905 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3906 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3907 if (NarrowTy == SrcTy) 3908 return UnableToLegalize; 3909 3910 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use 3911 // is for old mir tests. Since the changes to more/fewer elements it should no 3912 // longer be possible to generate MIR like this when starting from llvm-ir 3913 // because LCMTy approach was replaced with merge/unmerge to vector elements. 3914 if (TypeIdx == 1) { 3915 assert(SrcTy.isVector() && "Expected vector types"); 3916 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3917 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3918 (NarrowTy.getNumElements() >= SrcTy.getNumElements())) 3919 return UnableToLegalize; 3920 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) 3921 // 3922 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) 3923 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) 3924 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 3925 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 3926 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 3927 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 3928 3929 SmallVector<Register, 8> Elts; 3930 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); 3931 for (unsigned i = 1; i < MI.getNumOperands(); ++i) { 3932 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); 3933 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) 3934 Elts.push_back(Unmerge.getReg(j)); 3935 } 3936 3937 SmallVector<Register, 8> NarrowTyElts; 3938 unsigned NumNarrowTyElts = NarrowTy.getNumElements(); 3939 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; 3940 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; 3941 ++i, Offset += NumNarrowTyElts) { 3942 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts); 3943 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 3944 } 3945 3946 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3947 MI.eraseFromParent(); 3948 return Legalized; 3949 } 3950 3951 assert(TypeIdx == 0 && "Bad type index"); 3952 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || 3953 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) 3954 return UnableToLegalize; 3955 3956 // This is most likely SrcTy (smaller then register size) packed in DstTy 3957 // (larger then register size) and since merge was not combined it will be 3958 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy 3959 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. 3960 3961 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 3962 // 3963 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg 3964 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 3965 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence 3966 SmallVector<Register, 8> NarrowTyElts; 3967 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3968 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; 3969 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; 3970 for (unsigned i = 0; i < NumParts; ++i) { 3971 SmallVector<Register, 8> Sources; 3972 for (unsigned j = 0; j < NumElts; ++j) 3973 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); 3974 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0)); 3975 } 3976 3977 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3978 MI.eraseFromParent(); 3979 return Legalized; 3980 } 3981 3982 LegalizerHelper::LegalizeResult 3983 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3984 unsigned TypeIdx, 3985 LLT NarrowVecTy) { 3986 Register DstReg = MI.getOperand(0).getReg(); 3987 Register SrcVec = MI.getOperand(1).getReg(); 3988 Register InsertVal; 3989 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3990 3991 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3992 if (IsInsert) 3993 InsertVal = MI.getOperand(2).getReg(); 3994 3995 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3996 3997 // TODO: Handle total scalarization case. 3998 if (!NarrowVecTy.isVector()) 3999 return UnableToLegalize; 4000 4001 LLT VecTy = MRI.getType(SrcVec); 4002 4003 // If the index is a constant, we can really break this down as you would 4004 // expect, and index into the target size pieces. 4005 int64_t IdxVal; 4006 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); 4007 if (MaybeCst) { 4008 IdxVal = MaybeCst->Value.getSExtValue(); 4009 // Avoid out of bounds indexing the pieces. 4010 if (IdxVal >= VecTy.getNumElements()) { 4011 MIRBuilder.buildUndef(DstReg); 4012 MI.eraseFromParent(); 4013 return Legalized; 4014 } 4015 4016 SmallVector<Register, 8> VecParts; 4017 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 4018 4019 // Build a sequence of NarrowTy pieces in VecParts for this operand. 4020 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 4021 TargetOpcode::G_ANYEXT); 4022 4023 unsigned NewNumElts = NarrowVecTy.getNumElements(); 4024 4025 LLT IdxTy = MRI.getType(Idx); 4026 int64_t PartIdx = IdxVal / NewNumElts; 4027 auto NewIdx = 4028 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 4029 4030 if (IsInsert) { 4031 LLT PartTy = MRI.getType(VecParts[PartIdx]); 4032 4033 // Use the adjusted index to insert into one of the subvectors. 4034 auto InsertPart = MIRBuilder.buildInsertVectorElement( 4035 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 4036 VecParts[PartIdx] = InsertPart.getReg(0); 4037 4038 // Recombine the inserted subvector with the others to reform the result 4039 // vector. 4040 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 4041 } else { 4042 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 4043 } 4044 4045 MI.eraseFromParent(); 4046 return Legalized; 4047 } 4048 4049 // With a variable index, we can't perform the operation in a smaller type, so 4050 // we're forced to expand this. 4051 // 4052 // TODO: We could emit a chain of compare/select to figure out which piece to 4053 // index. 4054 return lowerExtractInsertVectorElt(MI); 4055 } 4056 4057 LegalizerHelper::LegalizeResult 4058 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 4059 LLT NarrowTy) { 4060 // FIXME: Don't know how to handle secondary types yet. 4061 if (TypeIdx != 0) 4062 return UnableToLegalize; 4063 4064 // This implementation doesn't work for atomics. Give up instead of doing 4065 // something invalid. 4066 if (LdStMI.isAtomic()) 4067 return UnableToLegalize; 4068 4069 bool IsLoad = isa<GLoad>(LdStMI); 4070 Register ValReg = LdStMI.getReg(0); 4071 Register AddrReg = LdStMI.getPointerReg(); 4072 LLT ValTy = MRI.getType(ValReg); 4073 4074 // FIXME: Do we need a distinct NarrowMemory legalize action? 4075 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { 4076 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 4077 return UnableToLegalize; 4078 } 4079 4080 int NumParts = -1; 4081 int NumLeftover = -1; 4082 LLT LeftoverTy; 4083 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 4084 if (IsLoad) { 4085 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 4086 } else { 4087 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 4088 NarrowLeftoverRegs)) { 4089 NumParts = NarrowRegs.size(); 4090 NumLeftover = NarrowLeftoverRegs.size(); 4091 } 4092 } 4093 4094 if (NumParts == -1) 4095 return UnableToLegalize; 4096 4097 LLT PtrTy = MRI.getType(AddrReg); 4098 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4099 4100 unsigned TotalSize = ValTy.getSizeInBits(); 4101 4102 // Split the load/store into PartTy sized pieces starting at Offset. If this 4103 // is a load, return the new registers in ValRegs. For a store, each elements 4104 // of ValRegs should be PartTy. Returns the next offset that needs to be 4105 // handled. 4106 bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian(); 4107 auto MMO = LdStMI.getMMO(); 4108 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4109 unsigned NumParts, unsigned Offset) -> unsigned { 4110 MachineFunction &MF = MIRBuilder.getMF(); 4111 unsigned PartSize = PartTy.getSizeInBits(); 4112 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4113 ++Idx) { 4114 unsigned ByteOffset = Offset / 8; 4115 Register NewAddrReg; 4116 4117 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4118 4119 MachineMemOperand *NewMMO = 4120 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 4121 4122 if (IsLoad) { 4123 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4124 ValRegs.push_back(Dst); 4125 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4126 } else { 4127 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4128 } 4129 Offset = isBigEndian ? Offset - PartSize : Offset + PartSize; 4130 } 4131 4132 return Offset; 4133 }; 4134 4135 unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0; 4136 unsigned HandledOffset = 4137 splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset); 4138 4139 // Handle the rest of the register if this isn't an even type breakdown. 4140 if (LeftoverTy.isValid()) 4141 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset); 4142 4143 if (IsLoad) { 4144 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4145 LeftoverTy, NarrowLeftoverRegs); 4146 } 4147 4148 LdStMI.eraseFromParent(); 4149 return Legalized; 4150 } 4151 4152 LegalizerHelper::LegalizeResult 4153 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4154 LLT NarrowTy) { 4155 using namespace TargetOpcode; 4156 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI); 4157 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 4158 4159 switch (MI.getOpcode()) { 4160 case G_IMPLICIT_DEF: 4161 case G_TRUNC: 4162 case G_AND: 4163 case G_OR: 4164 case G_XOR: 4165 case G_ADD: 4166 case G_SUB: 4167 case G_MUL: 4168 case G_PTR_ADD: 4169 case G_SMULH: 4170 case G_UMULH: 4171 case G_FADD: 4172 case G_FMUL: 4173 case G_FSUB: 4174 case G_FNEG: 4175 case G_FABS: 4176 case G_FCANONICALIZE: 4177 case G_FDIV: 4178 case G_FREM: 4179 case G_FMA: 4180 case G_FMAD: 4181 case G_FPOW: 4182 case G_FEXP: 4183 case G_FEXP2: 4184 case G_FLOG: 4185 case G_FLOG2: 4186 case G_FLOG10: 4187 case G_FNEARBYINT: 4188 case G_FCEIL: 4189 case G_FFLOOR: 4190 case G_FRINT: 4191 case G_INTRINSIC_ROUND: 4192 case G_INTRINSIC_ROUNDEVEN: 4193 case G_INTRINSIC_TRUNC: 4194 case G_FCOS: 4195 case G_FSIN: 4196 case G_FSQRT: 4197 case G_BSWAP: 4198 case G_BITREVERSE: 4199 case G_SDIV: 4200 case G_UDIV: 4201 case G_SREM: 4202 case G_UREM: 4203 case G_SDIVREM: 4204 case G_UDIVREM: 4205 case G_SMIN: 4206 case G_SMAX: 4207 case G_UMIN: 4208 case G_UMAX: 4209 case G_ABS: 4210 case G_FMINNUM: 4211 case G_FMAXNUM: 4212 case G_FMINNUM_IEEE: 4213 case G_FMAXNUM_IEEE: 4214 case G_FMINIMUM: 4215 case G_FMAXIMUM: 4216 case G_FSHL: 4217 case G_FSHR: 4218 case G_ROTL: 4219 case G_ROTR: 4220 case G_FREEZE: 4221 case G_SADDSAT: 4222 case G_SSUBSAT: 4223 case G_UADDSAT: 4224 case G_USUBSAT: 4225 case G_UMULO: 4226 case G_SMULO: 4227 case G_SHL: 4228 case G_LSHR: 4229 case G_ASHR: 4230 case G_SSHLSAT: 4231 case G_USHLSAT: 4232 case G_CTLZ: 4233 case G_CTLZ_ZERO_UNDEF: 4234 case G_CTTZ: 4235 case G_CTTZ_ZERO_UNDEF: 4236 case G_CTPOP: 4237 case G_FCOPYSIGN: 4238 case G_ZEXT: 4239 case G_SEXT: 4240 case G_ANYEXT: 4241 case G_FPEXT: 4242 case G_FPTRUNC: 4243 case G_SITOFP: 4244 case G_UITOFP: 4245 case G_FPTOSI: 4246 case G_FPTOUI: 4247 case G_INTTOPTR: 4248 case G_PTRTOINT: 4249 case G_ADDRSPACE_CAST: 4250 case G_UADDO: 4251 case G_USUBO: 4252 case G_UADDE: 4253 case G_USUBE: 4254 case G_SADDO: 4255 case G_SSUBO: 4256 case G_SADDE: 4257 case G_SSUBE: 4258 return fewerElementsVectorMultiEltType(GMI, NumElts); 4259 case G_ICMP: 4260 case G_FCMP: 4261 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); 4262 case G_SELECT: 4263 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4264 return fewerElementsVectorMultiEltType(GMI, NumElts); 4265 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); 4266 case G_PHI: 4267 return fewerElementsVectorPhi(GMI, NumElts); 4268 case G_UNMERGE_VALUES: 4269 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4270 case G_BUILD_VECTOR: 4271 assert(TypeIdx == 0 && "not a vector type index"); 4272 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4273 case G_CONCAT_VECTORS: 4274 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4275 return UnableToLegalize; 4276 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4277 case G_EXTRACT_VECTOR_ELT: 4278 case G_INSERT_VECTOR_ELT: 4279 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4280 case G_LOAD: 4281 case G_STORE: 4282 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 4283 case G_SEXT_INREG: 4284 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); 4285 GISEL_VECREDUCE_CASES_NONSEQ 4286 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4287 case G_SHUFFLE_VECTOR: 4288 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4289 default: 4290 return UnableToLegalize; 4291 } 4292 } 4293 4294 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4295 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4296 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4297 if (TypeIdx != 0) 4298 return UnableToLegalize; 4299 4300 Register DstReg = MI.getOperand(0).getReg(); 4301 Register Src1Reg = MI.getOperand(1).getReg(); 4302 Register Src2Reg = MI.getOperand(2).getReg(); 4303 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4304 LLT DstTy = MRI.getType(DstReg); 4305 LLT Src1Ty = MRI.getType(Src1Reg); 4306 LLT Src2Ty = MRI.getType(Src2Reg); 4307 // The shuffle should be canonicalized by now. 4308 if (DstTy != Src1Ty) 4309 return UnableToLegalize; 4310 if (DstTy != Src2Ty) 4311 return UnableToLegalize; 4312 4313 if (!isPowerOf2_32(DstTy.getNumElements())) 4314 return UnableToLegalize; 4315 4316 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4317 // Further legalization attempts will be needed to do split further. 4318 NarrowTy = 4319 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4320 unsigned NewElts = NarrowTy.getNumElements(); 4321 4322 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4323 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4324 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4325 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4326 SplitSrc2Regs[1]}; 4327 4328 Register Hi, Lo; 4329 4330 // If Lo or Hi uses elements from at most two of the four input vectors, then 4331 // express it as a vector shuffle of those two inputs. Otherwise extract the 4332 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4333 SmallVector<int, 16> Ops; 4334 for (unsigned High = 0; High < 2; ++High) { 4335 Register &Output = High ? Hi : Lo; 4336 4337 // Build a shuffle mask for the output, discovering on the fly which 4338 // input vectors to use as shuffle operands (recorded in InputUsed). 4339 // If building a suitable shuffle vector proves too hard, then bail 4340 // out with useBuildVector set. 4341 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4342 unsigned FirstMaskIdx = High * NewElts; 4343 bool UseBuildVector = false; 4344 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4345 // The mask element. This indexes into the input. 4346 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4347 4348 // The input vector this mask element indexes into. 4349 unsigned Input = (unsigned)Idx / NewElts; 4350 4351 if (Input >= array_lengthof(Inputs)) { 4352 // The mask element does not index into any input vector. 4353 Ops.push_back(-1); 4354 continue; 4355 } 4356 4357 // Turn the index into an offset from the start of the input vector. 4358 Idx -= Input * NewElts; 4359 4360 // Find or create a shuffle vector operand to hold this input. 4361 unsigned OpNo; 4362 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4363 if (InputUsed[OpNo] == Input) { 4364 // This input vector is already an operand. 4365 break; 4366 } else if (InputUsed[OpNo] == -1U) { 4367 // Create a new operand for this input vector. 4368 InputUsed[OpNo] = Input; 4369 break; 4370 } 4371 } 4372 4373 if (OpNo >= array_lengthof(InputUsed)) { 4374 // More than two input vectors used! Give up on trying to create a 4375 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4376 UseBuildVector = true; 4377 break; 4378 } 4379 4380 // Add the mask index for the new shuffle vector. 4381 Ops.push_back(Idx + OpNo * NewElts); 4382 } 4383 4384 if (UseBuildVector) { 4385 LLT EltTy = NarrowTy.getElementType(); 4386 SmallVector<Register, 16> SVOps; 4387 4388 // Extract the input elements by hand. 4389 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4390 // The mask element. This indexes into the input. 4391 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4392 4393 // The input vector this mask element indexes into. 4394 unsigned Input = (unsigned)Idx / NewElts; 4395 4396 if (Input >= array_lengthof(Inputs)) { 4397 // The mask element is "undef" or indexes off the end of the input. 4398 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4399 continue; 4400 } 4401 4402 // Turn the index into an offset from the start of the input vector. 4403 Idx -= Input * NewElts; 4404 4405 // Extract the vector element by hand. 4406 SVOps.push_back(MIRBuilder 4407 .buildExtractVectorElement( 4408 EltTy, Inputs[Input], 4409 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4410 .getReg(0)); 4411 } 4412 4413 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4414 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4415 } else if (InputUsed[0] == -1U) { 4416 // No input vectors were used! The result is undefined. 4417 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4418 } else { 4419 Register Op0 = Inputs[InputUsed[0]]; 4420 // If only one input was used, use an undefined vector for the other. 4421 Register Op1 = InputUsed[1] == -1U 4422 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4423 : Inputs[InputUsed[1]]; 4424 // At least one input vector was used. Create a new shuffle vector. 4425 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4426 } 4427 4428 Ops.clear(); 4429 } 4430 4431 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4432 MI.eraseFromParent(); 4433 return Legalized; 4434 } 4435 4436 static unsigned getScalarOpcForReduction(unsigned Opc) { 4437 unsigned ScalarOpc; 4438 switch (Opc) { 4439 case TargetOpcode::G_VECREDUCE_FADD: 4440 ScalarOpc = TargetOpcode::G_FADD; 4441 break; 4442 case TargetOpcode::G_VECREDUCE_FMUL: 4443 ScalarOpc = TargetOpcode::G_FMUL; 4444 break; 4445 case TargetOpcode::G_VECREDUCE_FMAX: 4446 ScalarOpc = TargetOpcode::G_FMAXNUM; 4447 break; 4448 case TargetOpcode::G_VECREDUCE_FMIN: 4449 ScalarOpc = TargetOpcode::G_FMINNUM; 4450 break; 4451 case TargetOpcode::G_VECREDUCE_ADD: 4452 ScalarOpc = TargetOpcode::G_ADD; 4453 break; 4454 case TargetOpcode::G_VECREDUCE_MUL: 4455 ScalarOpc = TargetOpcode::G_MUL; 4456 break; 4457 case TargetOpcode::G_VECREDUCE_AND: 4458 ScalarOpc = TargetOpcode::G_AND; 4459 break; 4460 case TargetOpcode::G_VECREDUCE_OR: 4461 ScalarOpc = TargetOpcode::G_OR; 4462 break; 4463 case TargetOpcode::G_VECREDUCE_XOR: 4464 ScalarOpc = TargetOpcode::G_XOR; 4465 break; 4466 case TargetOpcode::G_VECREDUCE_SMAX: 4467 ScalarOpc = TargetOpcode::G_SMAX; 4468 break; 4469 case TargetOpcode::G_VECREDUCE_SMIN: 4470 ScalarOpc = TargetOpcode::G_SMIN; 4471 break; 4472 case TargetOpcode::G_VECREDUCE_UMAX: 4473 ScalarOpc = TargetOpcode::G_UMAX; 4474 break; 4475 case TargetOpcode::G_VECREDUCE_UMIN: 4476 ScalarOpc = TargetOpcode::G_UMIN; 4477 break; 4478 default: 4479 llvm_unreachable("Unhandled reduction"); 4480 } 4481 return ScalarOpc; 4482 } 4483 4484 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4485 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4486 unsigned Opc = MI.getOpcode(); 4487 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4488 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4489 "Sequential reductions not expected"); 4490 4491 if (TypeIdx != 1) 4492 return UnableToLegalize; 4493 4494 // The semantics of the normal non-sequential reductions allow us to freely 4495 // re-associate the operation. 4496 Register SrcReg = MI.getOperand(1).getReg(); 4497 LLT SrcTy = MRI.getType(SrcReg); 4498 Register DstReg = MI.getOperand(0).getReg(); 4499 LLT DstTy = MRI.getType(DstReg); 4500 4501 if (NarrowTy.isVector() && 4502 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) 4503 return UnableToLegalize; 4504 4505 unsigned ScalarOpc = getScalarOpcForReduction(Opc); 4506 SmallVector<Register> SplitSrcs; 4507 // If NarrowTy is a scalar then we're being asked to scalarize. 4508 const unsigned NumParts = 4509 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() 4510 : SrcTy.getNumElements(); 4511 4512 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4513 if (NarrowTy.isScalar()) { 4514 if (DstTy != NarrowTy) 4515 return UnableToLegalize; // FIXME: handle implicit extensions. 4516 4517 if (isPowerOf2_32(NumParts)) { 4518 // Generate a tree of scalar operations to reduce the critical path. 4519 SmallVector<Register> PartialResults; 4520 unsigned NumPartsLeft = NumParts; 4521 while (NumPartsLeft > 1) { 4522 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { 4523 PartialResults.emplace_back( 4524 MIRBuilder 4525 .buildInstr(ScalarOpc, {NarrowTy}, 4526 {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) 4527 .getReg(0)); 4528 } 4529 SplitSrcs = PartialResults; 4530 PartialResults.clear(); 4531 NumPartsLeft = SplitSrcs.size(); 4532 } 4533 assert(SplitSrcs.size() == 1); 4534 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); 4535 MI.eraseFromParent(); 4536 return Legalized; 4537 } 4538 // If we can't generate a tree, then just do sequential operations. 4539 Register Acc = SplitSrcs[0]; 4540 for (unsigned Idx = 1; Idx < NumParts; ++Idx) 4541 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) 4542 .getReg(0); 4543 MIRBuilder.buildCopy(DstReg, Acc); 4544 MI.eraseFromParent(); 4545 return Legalized; 4546 } 4547 SmallVector<Register> PartialReductions; 4548 for (unsigned Part = 0; Part < NumParts; ++Part) { 4549 PartialReductions.push_back( 4550 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4551 } 4552 4553 4554 // If the types involved are powers of 2, we can generate intermediate vector 4555 // ops, before generating a final reduction operation. 4556 if (isPowerOf2_32(SrcTy.getNumElements()) && 4557 isPowerOf2_32(NarrowTy.getNumElements())) { 4558 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4559 } 4560 4561 Register Acc = PartialReductions[0]; 4562 for (unsigned Part = 1; Part < NumParts; ++Part) { 4563 if (Part == NumParts - 1) { 4564 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4565 {Acc, PartialReductions[Part]}); 4566 } else { 4567 Acc = MIRBuilder 4568 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4569 .getReg(0); 4570 } 4571 } 4572 MI.eraseFromParent(); 4573 return Legalized; 4574 } 4575 4576 LegalizerHelper::LegalizeResult 4577 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4578 LLT SrcTy, LLT NarrowTy, 4579 unsigned ScalarOpc) { 4580 SmallVector<Register> SplitSrcs; 4581 // Split the sources into NarrowTy size pieces. 4582 extractParts(SrcReg, NarrowTy, 4583 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4584 // We're going to do a tree reduction using vector operations until we have 4585 // one NarrowTy size value left. 4586 while (SplitSrcs.size() > 1) { 4587 SmallVector<Register> PartialRdxs; 4588 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4589 Register LHS = SplitSrcs[Idx]; 4590 Register RHS = SplitSrcs[Idx + 1]; 4591 // Create the intermediate vector op. 4592 Register Res = 4593 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4594 PartialRdxs.push_back(Res); 4595 } 4596 SplitSrcs = std::move(PartialRdxs); 4597 } 4598 // Finally generate the requested NarrowTy based reduction. 4599 Observer.changingInstr(MI); 4600 MI.getOperand(1).setReg(SplitSrcs[0]); 4601 Observer.changedInstr(MI); 4602 return Legalized; 4603 } 4604 4605 LegalizerHelper::LegalizeResult 4606 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4607 const LLT HalfTy, const LLT AmtTy) { 4608 4609 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4610 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4611 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4612 4613 if (Amt.isZero()) { 4614 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4615 MI.eraseFromParent(); 4616 return Legalized; 4617 } 4618 4619 LLT NVT = HalfTy; 4620 unsigned NVTBits = HalfTy.getSizeInBits(); 4621 unsigned VTBits = 2 * NVTBits; 4622 4623 SrcOp Lo(Register(0)), Hi(Register(0)); 4624 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4625 if (Amt.ugt(VTBits)) { 4626 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4627 } else if (Amt.ugt(NVTBits)) { 4628 Lo = MIRBuilder.buildConstant(NVT, 0); 4629 Hi = MIRBuilder.buildShl(NVT, InL, 4630 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4631 } else if (Amt == NVTBits) { 4632 Lo = MIRBuilder.buildConstant(NVT, 0); 4633 Hi = InL; 4634 } else { 4635 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4636 auto OrLHS = 4637 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4638 auto OrRHS = MIRBuilder.buildLShr( 4639 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4640 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4641 } 4642 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4643 if (Amt.ugt(VTBits)) { 4644 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4645 } else if (Amt.ugt(NVTBits)) { 4646 Lo = MIRBuilder.buildLShr(NVT, InH, 4647 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4648 Hi = MIRBuilder.buildConstant(NVT, 0); 4649 } else if (Amt == NVTBits) { 4650 Lo = InH; 4651 Hi = MIRBuilder.buildConstant(NVT, 0); 4652 } else { 4653 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4654 4655 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4656 auto OrRHS = MIRBuilder.buildShl( 4657 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4658 4659 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4660 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4661 } 4662 } else { 4663 if (Amt.ugt(VTBits)) { 4664 Hi = Lo = MIRBuilder.buildAShr( 4665 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4666 } else if (Amt.ugt(NVTBits)) { 4667 Lo = MIRBuilder.buildAShr(NVT, InH, 4668 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4669 Hi = MIRBuilder.buildAShr(NVT, InH, 4670 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4671 } else if (Amt == NVTBits) { 4672 Lo = InH; 4673 Hi = MIRBuilder.buildAShr(NVT, InH, 4674 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4675 } else { 4676 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4677 4678 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4679 auto OrRHS = MIRBuilder.buildShl( 4680 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4681 4682 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4683 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4684 } 4685 } 4686 4687 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4688 MI.eraseFromParent(); 4689 4690 return Legalized; 4691 } 4692 4693 // TODO: Optimize if constant shift amount. 4694 LegalizerHelper::LegalizeResult 4695 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4696 LLT RequestedTy) { 4697 if (TypeIdx == 1) { 4698 Observer.changingInstr(MI); 4699 narrowScalarSrc(MI, RequestedTy, 2); 4700 Observer.changedInstr(MI); 4701 return Legalized; 4702 } 4703 4704 Register DstReg = MI.getOperand(0).getReg(); 4705 LLT DstTy = MRI.getType(DstReg); 4706 if (DstTy.isVector()) 4707 return UnableToLegalize; 4708 4709 Register Amt = MI.getOperand(2).getReg(); 4710 LLT ShiftAmtTy = MRI.getType(Amt); 4711 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4712 if (DstEltSize % 2 != 0) 4713 return UnableToLegalize; 4714 4715 // Ignore the input type. We can only go to exactly half the size of the 4716 // input. If that isn't small enough, the resulting pieces will be further 4717 // legalized. 4718 const unsigned NewBitSize = DstEltSize / 2; 4719 const LLT HalfTy = LLT::scalar(NewBitSize); 4720 const LLT CondTy = LLT::scalar(1); 4721 4722 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { 4723 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, 4724 ShiftAmtTy); 4725 } 4726 4727 // TODO: Expand with known bits. 4728 4729 // Handle the fully general expansion by an unknown amount. 4730 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4731 4732 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4733 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4734 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4735 4736 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4737 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4738 4739 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4740 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4741 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4742 4743 Register ResultRegs[2]; 4744 switch (MI.getOpcode()) { 4745 case TargetOpcode::G_SHL: { 4746 // Short: ShAmt < NewBitSize 4747 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4748 4749 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4750 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4751 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4752 4753 // Long: ShAmt >= NewBitSize 4754 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4755 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4756 4757 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4758 auto Hi = MIRBuilder.buildSelect( 4759 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4760 4761 ResultRegs[0] = Lo.getReg(0); 4762 ResultRegs[1] = Hi.getReg(0); 4763 break; 4764 } 4765 case TargetOpcode::G_LSHR: 4766 case TargetOpcode::G_ASHR: { 4767 // Short: ShAmt < NewBitSize 4768 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4769 4770 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4771 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4772 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4773 4774 // Long: ShAmt >= NewBitSize 4775 MachineInstrBuilder HiL; 4776 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4777 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4778 } else { 4779 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4780 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4781 } 4782 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4783 {InH, AmtExcess}); // Lo from Hi part. 4784 4785 auto Lo = MIRBuilder.buildSelect( 4786 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4787 4788 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4789 4790 ResultRegs[0] = Lo.getReg(0); 4791 ResultRegs[1] = Hi.getReg(0); 4792 break; 4793 } 4794 default: 4795 llvm_unreachable("not a shift"); 4796 } 4797 4798 MIRBuilder.buildMerge(DstReg, ResultRegs); 4799 MI.eraseFromParent(); 4800 return Legalized; 4801 } 4802 4803 LegalizerHelper::LegalizeResult 4804 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4805 LLT MoreTy) { 4806 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4807 4808 Observer.changingInstr(MI); 4809 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4810 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4811 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4812 moreElementsVectorSrc(MI, MoreTy, I); 4813 } 4814 4815 MachineBasicBlock &MBB = *MI.getParent(); 4816 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4817 moreElementsVectorDst(MI, MoreTy, 0); 4818 Observer.changedInstr(MI); 4819 return Legalized; 4820 } 4821 4822 LegalizerHelper::LegalizeResult 4823 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4824 LLT MoreTy) { 4825 unsigned Opc = MI.getOpcode(); 4826 switch (Opc) { 4827 case TargetOpcode::G_IMPLICIT_DEF: 4828 case TargetOpcode::G_LOAD: { 4829 if (TypeIdx != 0) 4830 return UnableToLegalize; 4831 Observer.changingInstr(MI); 4832 moreElementsVectorDst(MI, MoreTy, 0); 4833 Observer.changedInstr(MI); 4834 return Legalized; 4835 } 4836 case TargetOpcode::G_STORE: 4837 if (TypeIdx != 0) 4838 return UnableToLegalize; 4839 Observer.changingInstr(MI); 4840 moreElementsVectorSrc(MI, MoreTy, 0); 4841 Observer.changedInstr(MI); 4842 return Legalized; 4843 case TargetOpcode::G_AND: 4844 case TargetOpcode::G_OR: 4845 case TargetOpcode::G_XOR: 4846 case TargetOpcode::G_ADD: 4847 case TargetOpcode::G_SUB: 4848 case TargetOpcode::G_MUL: 4849 case TargetOpcode::G_FADD: 4850 case TargetOpcode::G_FMUL: 4851 case TargetOpcode::G_UADDSAT: 4852 case TargetOpcode::G_USUBSAT: 4853 case TargetOpcode::G_SADDSAT: 4854 case TargetOpcode::G_SSUBSAT: 4855 case TargetOpcode::G_SMIN: 4856 case TargetOpcode::G_SMAX: 4857 case TargetOpcode::G_UMIN: 4858 case TargetOpcode::G_UMAX: 4859 case TargetOpcode::G_FMINNUM: 4860 case TargetOpcode::G_FMAXNUM: 4861 case TargetOpcode::G_FMINNUM_IEEE: 4862 case TargetOpcode::G_FMAXNUM_IEEE: 4863 case TargetOpcode::G_FMINIMUM: 4864 case TargetOpcode::G_FMAXIMUM: { 4865 Observer.changingInstr(MI); 4866 moreElementsVectorSrc(MI, MoreTy, 1); 4867 moreElementsVectorSrc(MI, MoreTy, 2); 4868 moreElementsVectorDst(MI, MoreTy, 0); 4869 Observer.changedInstr(MI); 4870 return Legalized; 4871 } 4872 case TargetOpcode::G_FMA: 4873 case TargetOpcode::G_FSHR: 4874 case TargetOpcode::G_FSHL: { 4875 Observer.changingInstr(MI); 4876 moreElementsVectorSrc(MI, MoreTy, 1); 4877 moreElementsVectorSrc(MI, MoreTy, 2); 4878 moreElementsVectorSrc(MI, MoreTy, 3); 4879 moreElementsVectorDst(MI, MoreTy, 0); 4880 Observer.changedInstr(MI); 4881 return Legalized; 4882 } 4883 case TargetOpcode::G_EXTRACT: 4884 if (TypeIdx != 1) 4885 return UnableToLegalize; 4886 Observer.changingInstr(MI); 4887 moreElementsVectorSrc(MI, MoreTy, 1); 4888 Observer.changedInstr(MI); 4889 return Legalized; 4890 case TargetOpcode::G_INSERT: 4891 case TargetOpcode::G_FREEZE: 4892 case TargetOpcode::G_FNEG: 4893 case TargetOpcode::G_FABS: 4894 case TargetOpcode::G_BSWAP: 4895 case TargetOpcode::G_FCANONICALIZE: 4896 case TargetOpcode::G_SEXT_INREG: 4897 if (TypeIdx != 0) 4898 return UnableToLegalize; 4899 Observer.changingInstr(MI); 4900 moreElementsVectorSrc(MI, MoreTy, 1); 4901 moreElementsVectorDst(MI, MoreTy, 0); 4902 Observer.changedInstr(MI); 4903 return Legalized; 4904 case TargetOpcode::G_SELECT: 4905 if (TypeIdx != 0) 4906 return UnableToLegalize; 4907 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4908 return UnableToLegalize; 4909 4910 Observer.changingInstr(MI); 4911 moreElementsVectorSrc(MI, MoreTy, 2); 4912 moreElementsVectorSrc(MI, MoreTy, 3); 4913 moreElementsVectorDst(MI, MoreTy, 0); 4914 Observer.changedInstr(MI); 4915 return Legalized; 4916 case TargetOpcode::G_UNMERGE_VALUES: 4917 return UnableToLegalize; 4918 case TargetOpcode::G_PHI: 4919 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4920 case TargetOpcode::G_SHUFFLE_VECTOR: 4921 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 4922 case TargetOpcode::G_BUILD_VECTOR: { 4923 SmallVector<SrcOp, 8> Elts; 4924 for (auto Op : MI.uses()) { 4925 Elts.push_back(Op.getReg()); 4926 } 4927 4928 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { 4929 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); 4930 } 4931 4932 MIRBuilder.buildDeleteTrailingVectorElements( 4933 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); 4934 MI.eraseFromParent(); 4935 return Legalized; 4936 } 4937 case TargetOpcode::G_TRUNC: { 4938 Observer.changingInstr(MI); 4939 moreElementsVectorSrc(MI, MoreTy, 1); 4940 moreElementsVectorDst(MI, MoreTy, 0); 4941 Observer.changedInstr(MI); 4942 return Legalized; 4943 } 4944 default: 4945 return UnableToLegalize; 4946 } 4947 } 4948 4949 LegalizerHelper::LegalizeResult 4950 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 4951 unsigned int TypeIdx, LLT MoreTy) { 4952 if (TypeIdx != 0) 4953 return UnableToLegalize; 4954 4955 Register DstReg = MI.getOperand(0).getReg(); 4956 Register Src1Reg = MI.getOperand(1).getReg(); 4957 Register Src2Reg = MI.getOperand(2).getReg(); 4958 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4959 LLT DstTy = MRI.getType(DstReg); 4960 LLT Src1Ty = MRI.getType(Src1Reg); 4961 LLT Src2Ty = MRI.getType(Src2Reg); 4962 unsigned NumElts = DstTy.getNumElements(); 4963 unsigned WidenNumElts = MoreTy.getNumElements(); 4964 4965 // Expect a canonicalized shuffle. 4966 if (DstTy != Src1Ty || DstTy != Src2Ty) 4967 return UnableToLegalize; 4968 4969 moreElementsVectorSrc(MI, MoreTy, 1); 4970 moreElementsVectorSrc(MI, MoreTy, 2); 4971 4972 // Adjust mask based on new input vector length. 4973 SmallVector<int, 16> NewMask; 4974 for (unsigned I = 0; I != NumElts; ++I) { 4975 int Idx = Mask[I]; 4976 if (Idx < static_cast<int>(NumElts)) 4977 NewMask.push_back(Idx); 4978 else 4979 NewMask.push_back(Idx - NumElts + WidenNumElts); 4980 } 4981 for (unsigned I = NumElts; I != WidenNumElts; ++I) 4982 NewMask.push_back(-1); 4983 moreElementsVectorDst(MI, MoreTy, 0); 4984 MIRBuilder.setInstrAndDebugLoc(MI); 4985 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 4986 MI.getOperand(1).getReg(), 4987 MI.getOperand(2).getReg(), NewMask); 4988 MI.eraseFromParent(); 4989 return Legalized; 4990 } 4991 4992 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4993 ArrayRef<Register> Src1Regs, 4994 ArrayRef<Register> Src2Regs, 4995 LLT NarrowTy) { 4996 MachineIRBuilder &B = MIRBuilder; 4997 unsigned SrcParts = Src1Regs.size(); 4998 unsigned DstParts = DstRegs.size(); 4999 5000 unsigned DstIdx = 0; // Low bits of the result. 5001 Register FactorSum = 5002 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 5003 DstRegs[DstIdx] = FactorSum; 5004 5005 unsigned CarrySumPrevDstIdx; 5006 SmallVector<Register, 4> Factors; 5007 5008 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 5009 // Collect low parts of muls for DstIdx. 5010 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 5011 i <= std::min(DstIdx, SrcParts - 1); ++i) { 5012 MachineInstrBuilder Mul = 5013 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 5014 Factors.push_back(Mul.getReg(0)); 5015 } 5016 // Collect high parts of muls from previous DstIdx. 5017 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 5018 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 5019 MachineInstrBuilder Umulh = 5020 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 5021 Factors.push_back(Umulh.getReg(0)); 5022 } 5023 // Add CarrySum from additions calculated for previous DstIdx. 5024 if (DstIdx != 1) { 5025 Factors.push_back(CarrySumPrevDstIdx); 5026 } 5027 5028 Register CarrySum; 5029 // Add all factors and accumulate all carries into CarrySum. 5030 if (DstIdx != DstParts - 1) { 5031 MachineInstrBuilder Uaddo = 5032 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5033 FactorSum = Uaddo.getReg(0); 5034 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5035 for (unsigned i = 2; i < Factors.size(); ++i) { 5036 MachineInstrBuilder Uaddo = 5037 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5038 FactorSum = Uaddo.getReg(0); 5039 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5040 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5041 } 5042 } else { 5043 // Since value for the next index is not calculated, neither is CarrySum. 5044 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5045 for (unsigned i = 2; i < Factors.size(); ++i) 5046 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5047 } 5048 5049 CarrySumPrevDstIdx = CarrySum; 5050 DstRegs[DstIdx] = FactorSum; 5051 Factors.clear(); 5052 } 5053 } 5054 5055 LegalizerHelper::LegalizeResult 5056 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5057 LLT NarrowTy) { 5058 if (TypeIdx != 0) 5059 return UnableToLegalize; 5060 5061 Register DstReg = MI.getOperand(0).getReg(); 5062 LLT DstType = MRI.getType(DstReg); 5063 // FIXME: add support for vector types 5064 if (DstType.isVector()) 5065 return UnableToLegalize; 5066 5067 unsigned Opcode = MI.getOpcode(); 5068 unsigned OpO, OpE, OpF; 5069 switch (Opcode) { 5070 case TargetOpcode::G_SADDO: 5071 case TargetOpcode::G_SADDE: 5072 case TargetOpcode::G_UADDO: 5073 case TargetOpcode::G_UADDE: 5074 case TargetOpcode::G_ADD: 5075 OpO = TargetOpcode::G_UADDO; 5076 OpE = TargetOpcode::G_UADDE; 5077 OpF = TargetOpcode::G_UADDE; 5078 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5079 OpF = TargetOpcode::G_SADDE; 5080 break; 5081 case TargetOpcode::G_SSUBO: 5082 case TargetOpcode::G_SSUBE: 5083 case TargetOpcode::G_USUBO: 5084 case TargetOpcode::G_USUBE: 5085 case TargetOpcode::G_SUB: 5086 OpO = TargetOpcode::G_USUBO; 5087 OpE = TargetOpcode::G_USUBE; 5088 OpF = TargetOpcode::G_USUBE; 5089 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5090 OpF = TargetOpcode::G_SSUBE; 5091 break; 5092 default: 5093 llvm_unreachable("Unexpected add/sub opcode!"); 5094 } 5095 5096 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5097 unsigned NumDefs = MI.getNumExplicitDefs(); 5098 Register Src1 = MI.getOperand(NumDefs).getReg(); 5099 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5100 Register CarryDst, CarryIn; 5101 if (NumDefs == 2) 5102 CarryDst = MI.getOperand(1).getReg(); 5103 if (MI.getNumOperands() == NumDefs + 3) 5104 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5105 5106 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5107 LLT LeftoverTy, DummyTy; 5108 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5109 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 5110 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5111 5112 int NarrowParts = Src1Regs.size(); 5113 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5114 Src1Regs.push_back(Src1Left[I]); 5115 Src2Regs.push_back(Src2Left[I]); 5116 } 5117 DstRegs.reserve(Src1Regs.size()); 5118 5119 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5120 Register DstReg = 5121 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5122 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5123 // Forward the final carry-out to the destination register 5124 if (i == e - 1 && CarryDst) 5125 CarryOut = CarryDst; 5126 5127 if (!CarryIn) { 5128 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5129 {Src1Regs[i], Src2Regs[i]}); 5130 } else if (i == e - 1) { 5131 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5132 {Src1Regs[i], Src2Regs[i], CarryIn}); 5133 } else { 5134 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5135 {Src1Regs[i], Src2Regs[i], CarryIn}); 5136 } 5137 5138 DstRegs.push_back(DstReg); 5139 CarryIn = CarryOut; 5140 } 5141 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5142 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5143 makeArrayRef(DstRegs).drop_front(NarrowParts)); 5144 5145 MI.eraseFromParent(); 5146 return Legalized; 5147 } 5148 5149 LegalizerHelper::LegalizeResult 5150 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5151 Register DstReg = MI.getOperand(0).getReg(); 5152 Register Src1 = MI.getOperand(1).getReg(); 5153 Register Src2 = MI.getOperand(2).getReg(); 5154 5155 LLT Ty = MRI.getType(DstReg); 5156 if (Ty.isVector()) 5157 return UnableToLegalize; 5158 5159 unsigned Size = Ty.getSizeInBits(); 5160 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5161 if (Size % NarrowSize != 0) 5162 return UnableToLegalize; 5163 5164 unsigned NumParts = Size / NarrowSize; 5165 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5166 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); 5167 5168 SmallVector<Register, 2> Src1Parts, Src2Parts; 5169 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5170 extractParts(Src1, NarrowTy, NumParts, Src1Parts); 5171 extractParts(Src2, NarrowTy, NumParts, Src2Parts); 5172 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5173 5174 // Take only high half of registers if this is high mul. 5175 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); 5176 MIRBuilder.buildMerge(DstReg, DstRegs); 5177 MI.eraseFromParent(); 5178 return Legalized; 5179 } 5180 5181 LegalizerHelper::LegalizeResult 5182 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5183 LLT NarrowTy) { 5184 if (TypeIdx != 0) 5185 return UnableToLegalize; 5186 5187 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5188 5189 Register Src = MI.getOperand(1).getReg(); 5190 LLT SrcTy = MRI.getType(Src); 5191 5192 // If all finite floats fit into the narrowed integer type, we can just swap 5193 // out the result type. This is practically only useful for conversions from 5194 // half to at least 16-bits, so just handle the one case. 5195 if (SrcTy.getScalarType() != LLT::scalar(16) || 5196 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5197 return UnableToLegalize; 5198 5199 Observer.changingInstr(MI); 5200 narrowScalarDst(MI, NarrowTy, 0, 5201 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5202 Observer.changedInstr(MI); 5203 return Legalized; 5204 } 5205 5206 LegalizerHelper::LegalizeResult 5207 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5208 LLT NarrowTy) { 5209 if (TypeIdx != 1) 5210 return UnableToLegalize; 5211 5212 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5213 5214 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5215 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5216 // NarrowSize. 5217 if (SizeOp1 % NarrowSize != 0) 5218 return UnableToLegalize; 5219 int NumParts = SizeOp1 / NarrowSize; 5220 5221 SmallVector<Register, 2> SrcRegs, DstRegs; 5222 SmallVector<uint64_t, 2> Indexes; 5223 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5224 5225 Register OpReg = MI.getOperand(0).getReg(); 5226 uint64_t OpStart = MI.getOperand(2).getImm(); 5227 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5228 for (int i = 0; i < NumParts; ++i) { 5229 unsigned SrcStart = i * NarrowSize; 5230 5231 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5232 // No part of the extract uses this subregister, ignore it. 5233 continue; 5234 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5235 // The entire subregister is extracted, forward the value. 5236 DstRegs.push_back(SrcRegs[i]); 5237 continue; 5238 } 5239 5240 // OpSegStart is where this destination segment would start in OpReg if it 5241 // extended infinitely in both directions. 5242 int64_t ExtractOffset; 5243 uint64_t SegSize; 5244 if (OpStart < SrcStart) { 5245 ExtractOffset = 0; 5246 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5247 } else { 5248 ExtractOffset = OpStart - SrcStart; 5249 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5250 } 5251 5252 Register SegReg = SrcRegs[i]; 5253 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5254 // A genuine extract is needed. 5255 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5256 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5257 } 5258 5259 DstRegs.push_back(SegReg); 5260 } 5261 5262 Register DstReg = MI.getOperand(0).getReg(); 5263 if (MRI.getType(DstReg).isVector()) 5264 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5265 else if (DstRegs.size() > 1) 5266 MIRBuilder.buildMerge(DstReg, DstRegs); 5267 else 5268 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5269 MI.eraseFromParent(); 5270 return Legalized; 5271 } 5272 5273 LegalizerHelper::LegalizeResult 5274 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5275 LLT NarrowTy) { 5276 // FIXME: Don't know how to handle secondary types yet. 5277 if (TypeIdx != 0) 5278 return UnableToLegalize; 5279 5280 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5281 SmallVector<uint64_t, 2> Indexes; 5282 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5283 LLT LeftoverTy; 5284 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5285 LeftoverRegs); 5286 5287 for (Register Reg : LeftoverRegs) 5288 SrcRegs.push_back(Reg); 5289 5290 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5291 Register OpReg = MI.getOperand(2).getReg(); 5292 uint64_t OpStart = MI.getOperand(3).getImm(); 5293 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5294 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5295 unsigned DstStart = I * NarrowSize; 5296 5297 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5298 // The entire subregister is defined by this insert, forward the new 5299 // value. 5300 DstRegs.push_back(OpReg); 5301 continue; 5302 } 5303 5304 Register SrcReg = SrcRegs[I]; 5305 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5306 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5307 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5308 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5309 } 5310 5311 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5312 // No part of the insert affects this subregister, forward the original. 5313 DstRegs.push_back(SrcReg); 5314 continue; 5315 } 5316 5317 // OpSegStart is where this destination segment would start in OpReg if it 5318 // extended infinitely in both directions. 5319 int64_t ExtractOffset, InsertOffset; 5320 uint64_t SegSize; 5321 if (OpStart < DstStart) { 5322 InsertOffset = 0; 5323 ExtractOffset = DstStart - OpStart; 5324 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5325 } else { 5326 InsertOffset = OpStart - DstStart; 5327 ExtractOffset = 0; 5328 SegSize = 5329 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5330 } 5331 5332 Register SegReg = OpReg; 5333 if (ExtractOffset != 0 || SegSize != OpSize) { 5334 // A genuine extract is needed. 5335 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5336 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5337 } 5338 5339 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5340 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5341 DstRegs.push_back(DstReg); 5342 } 5343 5344 uint64_t WideSize = DstRegs.size() * NarrowSize; 5345 Register DstReg = MI.getOperand(0).getReg(); 5346 if (WideSize > RegTy.getSizeInBits()) { 5347 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5348 MIRBuilder.buildMerge(MergeReg, DstRegs); 5349 MIRBuilder.buildTrunc(DstReg, MergeReg); 5350 } else 5351 MIRBuilder.buildMerge(DstReg, DstRegs); 5352 5353 MI.eraseFromParent(); 5354 return Legalized; 5355 } 5356 5357 LegalizerHelper::LegalizeResult 5358 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5359 LLT NarrowTy) { 5360 Register DstReg = MI.getOperand(0).getReg(); 5361 LLT DstTy = MRI.getType(DstReg); 5362 5363 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5364 5365 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5366 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5367 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5368 LLT LeftoverTy; 5369 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5370 Src0Regs, Src0LeftoverRegs)) 5371 return UnableToLegalize; 5372 5373 LLT Unused; 5374 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5375 Src1Regs, Src1LeftoverRegs)) 5376 llvm_unreachable("inconsistent extractParts result"); 5377 5378 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5379 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5380 {Src0Regs[I], Src1Regs[I]}); 5381 DstRegs.push_back(Inst.getReg(0)); 5382 } 5383 5384 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5385 auto Inst = MIRBuilder.buildInstr( 5386 MI.getOpcode(), 5387 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5388 DstLeftoverRegs.push_back(Inst.getReg(0)); 5389 } 5390 5391 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5392 LeftoverTy, DstLeftoverRegs); 5393 5394 MI.eraseFromParent(); 5395 return Legalized; 5396 } 5397 5398 LegalizerHelper::LegalizeResult 5399 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5400 LLT NarrowTy) { 5401 if (TypeIdx != 0) 5402 return UnableToLegalize; 5403 5404 Register DstReg = MI.getOperand(0).getReg(); 5405 Register SrcReg = MI.getOperand(1).getReg(); 5406 5407 LLT DstTy = MRI.getType(DstReg); 5408 if (DstTy.isVector()) 5409 return UnableToLegalize; 5410 5411 SmallVector<Register, 8> Parts; 5412 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5413 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5414 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5415 5416 MI.eraseFromParent(); 5417 return Legalized; 5418 } 5419 5420 LegalizerHelper::LegalizeResult 5421 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5422 LLT NarrowTy) { 5423 if (TypeIdx != 0) 5424 return UnableToLegalize; 5425 5426 Register CondReg = MI.getOperand(1).getReg(); 5427 LLT CondTy = MRI.getType(CondReg); 5428 if (CondTy.isVector()) // TODO: Handle vselect 5429 return UnableToLegalize; 5430 5431 Register DstReg = MI.getOperand(0).getReg(); 5432 LLT DstTy = MRI.getType(DstReg); 5433 5434 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5435 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5436 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5437 LLT LeftoverTy; 5438 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5439 Src1Regs, Src1LeftoverRegs)) 5440 return UnableToLegalize; 5441 5442 LLT Unused; 5443 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5444 Src2Regs, Src2LeftoverRegs)) 5445 llvm_unreachable("inconsistent extractParts result"); 5446 5447 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5448 auto Select = MIRBuilder.buildSelect(NarrowTy, 5449 CondReg, Src1Regs[I], Src2Regs[I]); 5450 DstRegs.push_back(Select.getReg(0)); 5451 } 5452 5453 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5454 auto Select = MIRBuilder.buildSelect( 5455 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5456 DstLeftoverRegs.push_back(Select.getReg(0)); 5457 } 5458 5459 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5460 LeftoverTy, DstLeftoverRegs); 5461 5462 MI.eraseFromParent(); 5463 return Legalized; 5464 } 5465 5466 LegalizerHelper::LegalizeResult 5467 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5468 LLT NarrowTy) { 5469 if (TypeIdx != 1) 5470 return UnableToLegalize; 5471 5472 Register DstReg = MI.getOperand(0).getReg(); 5473 Register SrcReg = MI.getOperand(1).getReg(); 5474 LLT DstTy = MRI.getType(DstReg); 5475 LLT SrcTy = MRI.getType(SrcReg); 5476 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5477 5478 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5479 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5480 5481 MachineIRBuilder &B = MIRBuilder; 5482 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5483 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5484 auto C_0 = B.buildConstant(NarrowTy, 0); 5485 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5486 UnmergeSrc.getReg(1), C_0); 5487 auto LoCTLZ = IsUndef ? 5488 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5489 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5490 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5491 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5492 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5493 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5494 5495 MI.eraseFromParent(); 5496 return Legalized; 5497 } 5498 5499 return UnableToLegalize; 5500 } 5501 5502 LegalizerHelper::LegalizeResult 5503 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5504 LLT NarrowTy) { 5505 if (TypeIdx != 1) 5506 return UnableToLegalize; 5507 5508 Register DstReg = MI.getOperand(0).getReg(); 5509 Register SrcReg = MI.getOperand(1).getReg(); 5510 LLT DstTy = MRI.getType(DstReg); 5511 LLT SrcTy = MRI.getType(SrcReg); 5512 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5513 5514 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5515 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5516 5517 MachineIRBuilder &B = MIRBuilder; 5518 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5519 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5520 auto C_0 = B.buildConstant(NarrowTy, 0); 5521 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5522 UnmergeSrc.getReg(0), C_0); 5523 auto HiCTTZ = IsUndef ? 5524 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5525 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5526 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5527 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5528 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5529 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5530 5531 MI.eraseFromParent(); 5532 return Legalized; 5533 } 5534 5535 return UnableToLegalize; 5536 } 5537 5538 LegalizerHelper::LegalizeResult 5539 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5540 LLT NarrowTy) { 5541 if (TypeIdx != 1) 5542 return UnableToLegalize; 5543 5544 Register DstReg = MI.getOperand(0).getReg(); 5545 LLT DstTy = MRI.getType(DstReg); 5546 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5547 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5548 5549 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5550 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5551 5552 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5553 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5554 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5555 5556 MI.eraseFromParent(); 5557 return Legalized; 5558 } 5559 5560 return UnableToLegalize; 5561 } 5562 5563 LegalizerHelper::LegalizeResult 5564 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5565 unsigned Opc = MI.getOpcode(); 5566 const auto &TII = MIRBuilder.getTII(); 5567 auto isSupported = [this](const LegalityQuery &Q) { 5568 auto QAction = LI.getAction(Q).Action; 5569 return QAction == Legal || QAction == Libcall || QAction == Custom; 5570 }; 5571 switch (Opc) { 5572 default: 5573 return UnableToLegalize; 5574 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5575 // This trivially expands to CTLZ. 5576 Observer.changingInstr(MI); 5577 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5578 Observer.changedInstr(MI); 5579 return Legalized; 5580 } 5581 case TargetOpcode::G_CTLZ: { 5582 Register DstReg = MI.getOperand(0).getReg(); 5583 Register SrcReg = MI.getOperand(1).getReg(); 5584 LLT DstTy = MRI.getType(DstReg); 5585 LLT SrcTy = MRI.getType(SrcReg); 5586 unsigned Len = SrcTy.getSizeInBits(); 5587 5588 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5589 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5590 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5591 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5592 auto ICmp = MIRBuilder.buildICmp( 5593 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5594 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5595 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5596 MI.eraseFromParent(); 5597 return Legalized; 5598 } 5599 // for now, we do this: 5600 // NewLen = NextPowerOf2(Len); 5601 // x = x | (x >> 1); 5602 // x = x | (x >> 2); 5603 // ... 5604 // x = x | (x >>16); 5605 // x = x | (x >>32); // for 64-bit input 5606 // Upto NewLen/2 5607 // return Len - popcount(x); 5608 // 5609 // Ref: "Hacker's Delight" by Henry Warren 5610 Register Op = SrcReg; 5611 unsigned NewLen = PowerOf2Ceil(Len); 5612 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5613 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5614 auto MIBOp = MIRBuilder.buildOr( 5615 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5616 Op = MIBOp.getReg(0); 5617 } 5618 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5619 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5620 MIBPop); 5621 MI.eraseFromParent(); 5622 return Legalized; 5623 } 5624 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5625 // This trivially expands to CTTZ. 5626 Observer.changingInstr(MI); 5627 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5628 Observer.changedInstr(MI); 5629 return Legalized; 5630 } 5631 case TargetOpcode::G_CTTZ: { 5632 Register DstReg = MI.getOperand(0).getReg(); 5633 Register SrcReg = MI.getOperand(1).getReg(); 5634 LLT DstTy = MRI.getType(DstReg); 5635 LLT SrcTy = MRI.getType(SrcReg); 5636 5637 unsigned Len = SrcTy.getSizeInBits(); 5638 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5639 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5640 // zero. 5641 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5642 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5643 auto ICmp = MIRBuilder.buildICmp( 5644 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5645 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5646 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5647 MI.eraseFromParent(); 5648 return Legalized; 5649 } 5650 // for now, we use: { return popcount(~x & (x - 1)); } 5651 // unless the target has ctlz but not ctpop, in which case we use: 5652 // { return 32 - nlz(~x & (x-1)); } 5653 // Ref: "Hacker's Delight" by Henry Warren 5654 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5655 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5656 auto MIBTmp = MIRBuilder.buildAnd( 5657 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5658 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5659 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5660 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5661 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5662 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5663 MI.eraseFromParent(); 5664 return Legalized; 5665 } 5666 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5667 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5668 return Legalized; 5669 } 5670 case TargetOpcode::G_CTPOP: { 5671 Register SrcReg = MI.getOperand(1).getReg(); 5672 LLT Ty = MRI.getType(SrcReg); 5673 unsigned Size = Ty.getSizeInBits(); 5674 MachineIRBuilder &B = MIRBuilder; 5675 5676 // Count set bits in blocks of 2 bits. Default approach would be 5677 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5678 // We use following formula instead: 5679 // B2Count = val - { (val >> 1) & 0x55555555 } 5680 // since it gives same result in blocks of 2 with one instruction less. 5681 auto C_1 = B.buildConstant(Ty, 1); 5682 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5683 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5684 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5685 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5686 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5687 5688 // In order to get count in blocks of 4 add values from adjacent block of 2. 5689 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5690 auto C_2 = B.buildConstant(Ty, 2); 5691 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5692 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5693 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5694 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5695 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5696 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5697 5698 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5699 // addition since count value sits in range {0,...,8} and 4 bits are enough 5700 // to hold such binary values. After addition high 4 bits still hold count 5701 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5702 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5703 auto C_4 = B.buildConstant(Ty, 4); 5704 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5705 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5706 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5707 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5708 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5709 5710 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5711 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5712 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5713 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5714 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5715 5716 // Shift count result from 8 high bits to low bits. 5717 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5718 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5719 5720 MI.eraseFromParent(); 5721 return Legalized; 5722 } 5723 } 5724 } 5725 5726 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5727 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5728 Register Reg, unsigned BW) { 5729 return matchUnaryPredicate( 5730 MRI, Reg, 5731 [=](const Constant *C) { 5732 // Null constant here means an undef. 5733 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5734 return !CI || CI->getValue().urem(BW) != 0; 5735 }, 5736 /*AllowUndefs*/ true); 5737 } 5738 5739 LegalizerHelper::LegalizeResult 5740 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5741 Register Dst = MI.getOperand(0).getReg(); 5742 Register X = MI.getOperand(1).getReg(); 5743 Register Y = MI.getOperand(2).getReg(); 5744 Register Z = MI.getOperand(3).getReg(); 5745 LLT Ty = MRI.getType(Dst); 5746 LLT ShTy = MRI.getType(Z); 5747 5748 unsigned BW = Ty.getScalarSizeInBits(); 5749 5750 if (!isPowerOf2_32(BW)) 5751 return UnableToLegalize; 5752 5753 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5754 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5755 5756 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5757 // fshl X, Y, Z -> fshr X, Y, -Z 5758 // fshr X, Y, Z -> fshl X, Y, -Z 5759 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5760 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5761 } else { 5762 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5763 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5764 auto One = MIRBuilder.buildConstant(ShTy, 1); 5765 if (IsFSHL) { 5766 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5767 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5768 } else { 5769 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5770 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5771 } 5772 5773 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5774 } 5775 5776 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5777 MI.eraseFromParent(); 5778 return Legalized; 5779 } 5780 5781 LegalizerHelper::LegalizeResult 5782 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5783 Register Dst = MI.getOperand(0).getReg(); 5784 Register X = MI.getOperand(1).getReg(); 5785 Register Y = MI.getOperand(2).getReg(); 5786 Register Z = MI.getOperand(3).getReg(); 5787 LLT Ty = MRI.getType(Dst); 5788 LLT ShTy = MRI.getType(Z); 5789 5790 const unsigned BW = Ty.getScalarSizeInBits(); 5791 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5792 5793 Register ShX, ShY; 5794 Register ShAmt, InvShAmt; 5795 5796 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5797 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5798 // fshl: X << C | Y >> (BW - C) 5799 // fshr: X << (BW - C) | Y >> C 5800 // where C = Z % BW is not zero 5801 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5802 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5803 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5804 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5805 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5806 } else { 5807 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5808 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5809 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5810 if (isPowerOf2_32(BW)) { 5811 // Z % BW -> Z & (BW - 1) 5812 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5813 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5814 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5815 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5816 } else { 5817 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5818 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5819 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5820 } 5821 5822 auto One = MIRBuilder.buildConstant(ShTy, 1); 5823 if (IsFSHL) { 5824 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5825 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5826 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5827 } else { 5828 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5829 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5830 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5831 } 5832 } 5833 5834 MIRBuilder.buildOr(Dst, ShX, ShY); 5835 MI.eraseFromParent(); 5836 return Legalized; 5837 } 5838 5839 LegalizerHelper::LegalizeResult 5840 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5841 // These operations approximately do the following (while avoiding undefined 5842 // shifts by BW): 5843 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5844 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5845 Register Dst = MI.getOperand(0).getReg(); 5846 LLT Ty = MRI.getType(Dst); 5847 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5848 5849 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5850 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5851 5852 // TODO: Use smarter heuristic that accounts for vector legalization. 5853 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5854 return lowerFunnelShiftAsShifts(MI); 5855 5856 // This only works for powers of 2, fallback to shifts if it fails. 5857 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5858 if (Result == UnableToLegalize) 5859 return lowerFunnelShiftAsShifts(MI); 5860 return Result; 5861 } 5862 5863 LegalizerHelper::LegalizeResult 5864 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5865 Register Dst = MI.getOperand(0).getReg(); 5866 Register Src = MI.getOperand(1).getReg(); 5867 Register Amt = MI.getOperand(2).getReg(); 5868 LLT AmtTy = MRI.getType(Amt); 5869 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5870 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5871 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5872 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5873 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5874 MI.eraseFromParent(); 5875 return Legalized; 5876 } 5877 5878 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5879 Register Dst = MI.getOperand(0).getReg(); 5880 Register Src = MI.getOperand(1).getReg(); 5881 Register Amt = MI.getOperand(2).getReg(); 5882 LLT DstTy = MRI.getType(Dst); 5883 LLT SrcTy = MRI.getType(Src); 5884 LLT AmtTy = MRI.getType(Amt); 5885 5886 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5887 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5888 5889 MIRBuilder.setInstrAndDebugLoc(MI); 5890 5891 // If a rotate in the other direction is supported, use it. 5892 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5893 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5894 isPowerOf2_32(EltSizeInBits)) 5895 return lowerRotateWithReverseRotate(MI); 5896 5897 // If a funnel shift is supported, use it. 5898 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5899 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5900 bool IsFShLegal = false; 5901 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || 5902 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { 5903 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, 5904 Register R3) { 5905 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); 5906 MI.eraseFromParent(); 5907 return Legalized; 5908 }; 5909 // If a funnel shift in the other direction is supported, use it. 5910 if (IsFShLegal) { 5911 return buildFunnelShift(FShOpc, Dst, Src, Amt); 5912 } else if (isPowerOf2_32(EltSizeInBits)) { 5913 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); 5914 return buildFunnelShift(RevFsh, Dst, Src, Amt); 5915 } 5916 } 5917 5918 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5919 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5920 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5921 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5922 Register ShVal; 5923 Register RevShiftVal; 5924 if (isPowerOf2_32(EltSizeInBits)) { 5925 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5926 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5927 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5928 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5929 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5930 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5931 RevShiftVal = 5932 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5933 } else { 5934 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5935 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5936 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5937 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5938 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5939 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5940 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5941 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5942 RevShiftVal = 5943 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5944 } 5945 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5946 MI.eraseFromParent(); 5947 return Legalized; 5948 } 5949 5950 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5951 // representation. 5952 LegalizerHelper::LegalizeResult 5953 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5954 Register Dst = MI.getOperand(0).getReg(); 5955 Register Src = MI.getOperand(1).getReg(); 5956 const LLT S64 = LLT::scalar(64); 5957 const LLT S32 = LLT::scalar(32); 5958 const LLT S1 = LLT::scalar(1); 5959 5960 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5961 5962 // unsigned cul2f(ulong u) { 5963 // uint lz = clz(u); 5964 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5965 // u = (u << lz) & 0x7fffffffffffffffUL; 5966 // ulong t = u & 0xffffffffffUL; 5967 // uint v = (e << 23) | (uint)(u >> 40); 5968 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5969 // return as_float(v + r); 5970 // } 5971 5972 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5973 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5974 5975 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5976 5977 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5978 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5979 5980 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5981 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5982 5983 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5984 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5985 5986 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5987 5988 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5989 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5990 5991 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5992 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5993 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5994 5995 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5996 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5997 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5998 auto One = MIRBuilder.buildConstant(S32, 1); 5999 6000 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 6001 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 6002 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 6003 MIRBuilder.buildAdd(Dst, V, R); 6004 6005 MI.eraseFromParent(); 6006 return Legalized; 6007 } 6008 6009 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 6010 Register Dst = MI.getOperand(0).getReg(); 6011 Register Src = MI.getOperand(1).getReg(); 6012 LLT DstTy = MRI.getType(Dst); 6013 LLT SrcTy = MRI.getType(Src); 6014 6015 if (SrcTy == LLT::scalar(1)) { 6016 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 6017 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6018 MIRBuilder.buildSelect(Dst, Src, True, False); 6019 MI.eraseFromParent(); 6020 return Legalized; 6021 } 6022 6023 if (SrcTy != LLT::scalar(64)) 6024 return UnableToLegalize; 6025 6026 if (DstTy == LLT::scalar(32)) { 6027 // TODO: SelectionDAG has several alternative expansions to port which may 6028 // be more reasonble depending on the available instructions. If a target 6029 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 6030 // intermediate type, this is probably worse. 6031 return lowerU64ToF32BitOps(MI); 6032 } 6033 6034 return UnableToLegalize; 6035 } 6036 6037 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 6038 Register Dst = MI.getOperand(0).getReg(); 6039 Register Src = MI.getOperand(1).getReg(); 6040 LLT DstTy = MRI.getType(Dst); 6041 LLT SrcTy = MRI.getType(Src); 6042 6043 const LLT S64 = LLT::scalar(64); 6044 const LLT S32 = LLT::scalar(32); 6045 const LLT S1 = LLT::scalar(1); 6046 6047 if (SrcTy == S1) { 6048 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6049 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6050 MIRBuilder.buildSelect(Dst, Src, True, False); 6051 MI.eraseFromParent(); 6052 return Legalized; 6053 } 6054 6055 if (SrcTy != S64) 6056 return UnableToLegalize; 6057 6058 if (DstTy == S32) { 6059 // signed cl2f(long l) { 6060 // long s = l >> 63; 6061 // float r = cul2f((l + s) ^ s); 6062 // return s ? -r : r; 6063 // } 6064 Register L = Src; 6065 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6066 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6067 6068 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6069 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6070 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6071 6072 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6073 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6074 MIRBuilder.buildConstant(S64, 0)); 6075 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6076 MI.eraseFromParent(); 6077 return Legalized; 6078 } 6079 6080 return UnableToLegalize; 6081 } 6082 6083 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 6084 Register Dst = MI.getOperand(0).getReg(); 6085 Register Src = MI.getOperand(1).getReg(); 6086 LLT DstTy = MRI.getType(Dst); 6087 LLT SrcTy = MRI.getType(Src); 6088 const LLT S64 = LLT::scalar(64); 6089 const LLT S32 = LLT::scalar(32); 6090 6091 if (SrcTy != S64 && SrcTy != S32) 6092 return UnableToLegalize; 6093 if (DstTy != S32 && DstTy != S64) 6094 return UnableToLegalize; 6095 6096 // FPTOSI gives same result as FPTOUI for positive signed integers. 6097 // FPTOUI needs to deal with fp values that convert to unsigned integers 6098 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 6099 6100 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 6101 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 6102 : APFloat::IEEEdouble(), 6103 APInt::getZero(SrcTy.getSizeInBits())); 6104 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 6105 6106 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 6107 6108 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 6109 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 6110 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 6111 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 6112 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 6113 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 6114 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 6115 6116 const LLT S1 = LLT::scalar(1); 6117 6118 MachineInstrBuilder FCMP = 6119 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 6120 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 6121 6122 MI.eraseFromParent(); 6123 return Legalized; 6124 } 6125 6126 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 6127 Register Dst = MI.getOperand(0).getReg(); 6128 Register Src = MI.getOperand(1).getReg(); 6129 LLT DstTy = MRI.getType(Dst); 6130 LLT SrcTy = MRI.getType(Src); 6131 const LLT S64 = LLT::scalar(64); 6132 const LLT S32 = LLT::scalar(32); 6133 6134 // FIXME: Only f32 to i64 conversions are supported. 6135 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6136 return UnableToLegalize; 6137 6138 // Expand f32 -> i64 conversion 6139 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6140 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6141 6142 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6143 6144 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6145 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6146 6147 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6148 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6149 6150 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6151 APInt::getSignMask(SrcEltBits)); 6152 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6153 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6154 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6155 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6156 6157 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6158 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6159 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6160 6161 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6162 R = MIRBuilder.buildZExt(DstTy, R); 6163 6164 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6165 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6166 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6167 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6168 6169 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6170 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6171 6172 const LLT S1 = LLT::scalar(1); 6173 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6174 S1, Exponent, ExponentLoBit); 6175 6176 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6177 6178 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6179 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6180 6181 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6182 6183 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6184 S1, Exponent, ZeroSrcTy); 6185 6186 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6187 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6188 6189 MI.eraseFromParent(); 6190 return Legalized; 6191 } 6192 6193 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6194 LegalizerHelper::LegalizeResult 6195 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6196 Register Dst = MI.getOperand(0).getReg(); 6197 Register Src = MI.getOperand(1).getReg(); 6198 6199 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6200 return UnableToLegalize; 6201 6202 const unsigned ExpMask = 0x7ff; 6203 const unsigned ExpBiasf64 = 1023; 6204 const unsigned ExpBiasf16 = 15; 6205 const LLT S32 = LLT::scalar(32); 6206 const LLT S1 = LLT::scalar(1); 6207 6208 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6209 Register U = Unmerge.getReg(0); 6210 Register UH = Unmerge.getReg(1); 6211 6212 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6213 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6214 6215 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6216 // add the f16 bias (15) to get the biased exponent for the f16 format. 6217 E = MIRBuilder.buildAdd( 6218 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6219 6220 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6221 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6222 6223 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6224 MIRBuilder.buildConstant(S32, 0x1ff)); 6225 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6226 6227 auto Zero = MIRBuilder.buildConstant(S32, 0); 6228 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6229 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6230 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6231 6232 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6233 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6234 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6235 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6236 6237 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6238 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6239 6240 // N = M | (E << 12); 6241 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6242 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6243 6244 // B = clamp(1-E, 0, 13); 6245 auto One = MIRBuilder.buildConstant(S32, 1); 6246 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6247 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6248 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6249 6250 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6251 MIRBuilder.buildConstant(S32, 0x1000)); 6252 6253 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6254 auto D0 = MIRBuilder.buildShl(S32, D, B); 6255 6256 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6257 D0, SigSetHigh); 6258 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6259 D = MIRBuilder.buildOr(S32, D, D1); 6260 6261 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6262 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6263 6264 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6265 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6266 6267 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6268 MIRBuilder.buildConstant(S32, 3)); 6269 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6270 6271 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6272 MIRBuilder.buildConstant(S32, 5)); 6273 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6274 6275 V1 = MIRBuilder.buildOr(S32, V0, V1); 6276 V = MIRBuilder.buildAdd(S32, V, V1); 6277 6278 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6279 E, MIRBuilder.buildConstant(S32, 30)); 6280 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6281 MIRBuilder.buildConstant(S32, 0x7c00), V); 6282 6283 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6284 E, MIRBuilder.buildConstant(S32, 1039)); 6285 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6286 6287 // Extract the sign bit. 6288 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6289 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6290 6291 // Insert the sign bit 6292 V = MIRBuilder.buildOr(S32, Sign, V); 6293 6294 MIRBuilder.buildTrunc(Dst, V); 6295 MI.eraseFromParent(); 6296 return Legalized; 6297 } 6298 6299 LegalizerHelper::LegalizeResult 6300 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6301 Register Dst = MI.getOperand(0).getReg(); 6302 Register Src = MI.getOperand(1).getReg(); 6303 6304 LLT DstTy = MRI.getType(Dst); 6305 LLT SrcTy = MRI.getType(Src); 6306 const LLT S64 = LLT::scalar(64); 6307 const LLT S16 = LLT::scalar(16); 6308 6309 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6310 return lowerFPTRUNC_F64_TO_F16(MI); 6311 6312 return UnableToLegalize; 6313 } 6314 6315 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6316 // multiplication tree. 6317 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6318 Register Dst = MI.getOperand(0).getReg(); 6319 Register Src0 = MI.getOperand(1).getReg(); 6320 Register Src1 = MI.getOperand(2).getReg(); 6321 LLT Ty = MRI.getType(Dst); 6322 6323 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6324 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6325 MI.eraseFromParent(); 6326 return Legalized; 6327 } 6328 6329 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6330 switch (Opc) { 6331 case TargetOpcode::G_SMIN: 6332 return CmpInst::ICMP_SLT; 6333 case TargetOpcode::G_SMAX: 6334 return CmpInst::ICMP_SGT; 6335 case TargetOpcode::G_UMIN: 6336 return CmpInst::ICMP_ULT; 6337 case TargetOpcode::G_UMAX: 6338 return CmpInst::ICMP_UGT; 6339 default: 6340 llvm_unreachable("not in integer min/max"); 6341 } 6342 } 6343 6344 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6345 Register Dst = MI.getOperand(0).getReg(); 6346 Register Src0 = MI.getOperand(1).getReg(); 6347 Register Src1 = MI.getOperand(2).getReg(); 6348 6349 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6350 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6351 6352 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6353 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6354 6355 MI.eraseFromParent(); 6356 return Legalized; 6357 } 6358 6359 LegalizerHelper::LegalizeResult 6360 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6361 Register Dst = MI.getOperand(0).getReg(); 6362 Register Src0 = MI.getOperand(1).getReg(); 6363 Register Src1 = MI.getOperand(2).getReg(); 6364 6365 const LLT Src0Ty = MRI.getType(Src0); 6366 const LLT Src1Ty = MRI.getType(Src1); 6367 6368 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6369 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6370 6371 auto SignBitMask = MIRBuilder.buildConstant( 6372 Src0Ty, APInt::getSignMask(Src0Size)); 6373 6374 auto NotSignBitMask = MIRBuilder.buildConstant( 6375 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6376 6377 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6378 Register And1; 6379 if (Src0Ty == Src1Ty) { 6380 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6381 } else if (Src0Size > Src1Size) { 6382 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6383 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6384 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6385 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6386 } else { 6387 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6388 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6389 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6390 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6391 } 6392 6393 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6394 // constants are a nan and -0.0, but the final result should preserve 6395 // everything. 6396 unsigned Flags = MI.getFlags(); 6397 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6398 6399 MI.eraseFromParent(); 6400 return Legalized; 6401 } 6402 6403 LegalizerHelper::LegalizeResult 6404 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6405 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6406 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6407 6408 Register Dst = MI.getOperand(0).getReg(); 6409 Register Src0 = MI.getOperand(1).getReg(); 6410 Register Src1 = MI.getOperand(2).getReg(); 6411 LLT Ty = MRI.getType(Dst); 6412 6413 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6414 // Insert canonicalizes if it's possible we need to quiet to get correct 6415 // sNaN behavior. 6416 6417 // Note this must be done here, and not as an optimization combine in the 6418 // absence of a dedicate quiet-snan instruction as we're using an 6419 // omni-purpose G_FCANONICALIZE. 6420 if (!isKnownNeverSNaN(Src0, MRI)) 6421 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6422 6423 if (!isKnownNeverSNaN(Src1, MRI)) 6424 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6425 } 6426 6427 // If there are no nans, it's safe to simply replace this with the non-IEEE 6428 // version. 6429 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6430 MI.eraseFromParent(); 6431 return Legalized; 6432 } 6433 6434 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6435 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6436 Register DstReg = MI.getOperand(0).getReg(); 6437 LLT Ty = MRI.getType(DstReg); 6438 unsigned Flags = MI.getFlags(); 6439 6440 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6441 Flags); 6442 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6443 MI.eraseFromParent(); 6444 return Legalized; 6445 } 6446 6447 LegalizerHelper::LegalizeResult 6448 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6449 Register DstReg = MI.getOperand(0).getReg(); 6450 Register X = MI.getOperand(1).getReg(); 6451 const unsigned Flags = MI.getFlags(); 6452 const LLT Ty = MRI.getType(DstReg); 6453 const LLT CondTy = Ty.changeElementSize(1); 6454 6455 // round(x) => 6456 // t = trunc(x); 6457 // d = fabs(x - t); 6458 // o = copysign(1.0f, x); 6459 // return t + (d >= 0.5 ? o : 0.0); 6460 6461 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6462 6463 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6464 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6465 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6466 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6467 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6468 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6469 6470 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6471 Flags); 6472 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6473 6474 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6475 6476 MI.eraseFromParent(); 6477 return Legalized; 6478 } 6479 6480 LegalizerHelper::LegalizeResult 6481 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6482 Register DstReg = MI.getOperand(0).getReg(); 6483 Register SrcReg = MI.getOperand(1).getReg(); 6484 unsigned Flags = MI.getFlags(); 6485 LLT Ty = MRI.getType(DstReg); 6486 const LLT CondTy = Ty.changeElementSize(1); 6487 6488 // result = trunc(src); 6489 // if (src < 0.0 && src != result) 6490 // result += -1.0. 6491 6492 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6493 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6494 6495 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6496 SrcReg, Zero, Flags); 6497 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6498 SrcReg, Trunc, Flags); 6499 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6500 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6501 6502 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6503 MI.eraseFromParent(); 6504 return Legalized; 6505 } 6506 6507 LegalizerHelper::LegalizeResult 6508 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6509 const unsigned NumOps = MI.getNumOperands(); 6510 Register DstReg = MI.getOperand(0).getReg(); 6511 Register Src0Reg = MI.getOperand(1).getReg(); 6512 LLT DstTy = MRI.getType(DstReg); 6513 LLT SrcTy = MRI.getType(Src0Reg); 6514 unsigned PartSize = SrcTy.getSizeInBits(); 6515 6516 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6517 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6518 6519 for (unsigned I = 2; I != NumOps; ++I) { 6520 const unsigned Offset = (I - 1) * PartSize; 6521 6522 Register SrcReg = MI.getOperand(I).getReg(); 6523 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6524 6525 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6526 MRI.createGenericVirtualRegister(WideTy); 6527 6528 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6529 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6530 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6531 ResultReg = NextResult; 6532 } 6533 6534 if (DstTy.isPointer()) { 6535 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6536 DstTy.getAddressSpace())) { 6537 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6538 return UnableToLegalize; 6539 } 6540 6541 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6542 } 6543 6544 MI.eraseFromParent(); 6545 return Legalized; 6546 } 6547 6548 LegalizerHelper::LegalizeResult 6549 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6550 const unsigned NumDst = MI.getNumOperands() - 1; 6551 Register SrcReg = MI.getOperand(NumDst).getReg(); 6552 Register Dst0Reg = MI.getOperand(0).getReg(); 6553 LLT DstTy = MRI.getType(Dst0Reg); 6554 if (DstTy.isPointer()) 6555 return UnableToLegalize; // TODO 6556 6557 SrcReg = coerceToScalar(SrcReg); 6558 if (!SrcReg) 6559 return UnableToLegalize; 6560 6561 // Expand scalarizing unmerge as bitcast to integer and shift. 6562 LLT IntTy = MRI.getType(SrcReg); 6563 6564 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6565 6566 const unsigned DstSize = DstTy.getSizeInBits(); 6567 unsigned Offset = DstSize; 6568 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6569 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6570 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6571 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6572 } 6573 6574 MI.eraseFromParent(); 6575 return Legalized; 6576 } 6577 6578 /// Lower a vector extract or insert by writing the vector to a stack temporary 6579 /// and reloading the element or vector. 6580 /// 6581 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6582 /// => 6583 /// %stack_temp = G_FRAME_INDEX 6584 /// G_STORE %vec, %stack_temp 6585 /// %idx = clamp(%idx, %vec.getNumElements()) 6586 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6587 /// %dst = G_LOAD %element_ptr 6588 LegalizerHelper::LegalizeResult 6589 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6590 Register DstReg = MI.getOperand(0).getReg(); 6591 Register SrcVec = MI.getOperand(1).getReg(); 6592 Register InsertVal; 6593 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6594 InsertVal = MI.getOperand(2).getReg(); 6595 6596 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6597 6598 LLT VecTy = MRI.getType(SrcVec); 6599 LLT EltTy = VecTy.getElementType(); 6600 unsigned NumElts = VecTy.getNumElements(); 6601 6602 int64_t IdxVal; 6603 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { 6604 SmallVector<Register, 8> SrcRegs; 6605 extractParts(SrcVec, EltTy, NumElts, SrcRegs); 6606 6607 if (InsertVal) { 6608 SrcRegs[IdxVal] = MI.getOperand(2).getReg(); 6609 MIRBuilder.buildMerge(DstReg, SrcRegs); 6610 } else { 6611 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); 6612 } 6613 6614 MI.eraseFromParent(); 6615 return Legalized; 6616 } 6617 6618 if (!EltTy.isByteSized()) { // Not implemented. 6619 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6620 return UnableToLegalize; 6621 } 6622 6623 unsigned EltBytes = EltTy.getSizeInBytes(); 6624 Align VecAlign = getStackTemporaryAlignment(VecTy); 6625 Align EltAlign; 6626 6627 MachinePointerInfo PtrInfo; 6628 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6629 VecAlign, PtrInfo); 6630 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6631 6632 // Get the pointer to the element, and be sure not to hit undefined behavior 6633 // if the index is out of bounds. 6634 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6635 6636 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6637 int64_t Offset = IdxVal * EltBytes; 6638 PtrInfo = PtrInfo.getWithOffset(Offset); 6639 EltAlign = commonAlignment(VecAlign, Offset); 6640 } else { 6641 // We lose information with a variable offset. 6642 EltAlign = getStackTemporaryAlignment(EltTy); 6643 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6644 } 6645 6646 if (InsertVal) { 6647 // Write the inserted element 6648 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6649 6650 // Reload the whole vector. 6651 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6652 } else { 6653 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6654 } 6655 6656 MI.eraseFromParent(); 6657 return Legalized; 6658 } 6659 6660 LegalizerHelper::LegalizeResult 6661 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6662 Register DstReg = MI.getOperand(0).getReg(); 6663 Register Src0Reg = MI.getOperand(1).getReg(); 6664 Register Src1Reg = MI.getOperand(2).getReg(); 6665 LLT Src0Ty = MRI.getType(Src0Reg); 6666 LLT DstTy = MRI.getType(DstReg); 6667 LLT IdxTy = LLT::scalar(32); 6668 6669 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6670 6671 if (DstTy.isScalar()) { 6672 if (Src0Ty.isVector()) 6673 return UnableToLegalize; 6674 6675 // This is just a SELECT. 6676 assert(Mask.size() == 1 && "Expected a single mask element"); 6677 Register Val; 6678 if (Mask[0] < 0 || Mask[0] > 1) 6679 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6680 else 6681 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6682 MIRBuilder.buildCopy(DstReg, Val); 6683 MI.eraseFromParent(); 6684 return Legalized; 6685 } 6686 6687 Register Undef; 6688 SmallVector<Register, 32> BuildVec; 6689 LLT EltTy = DstTy.getElementType(); 6690 6691 for (int Idx : Mask) { 6692 if (Idx < 0) { 6693 if (!Undef.isValid()) 6694 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6695 BuildVec.push_back(Undef); 6696 continue; 6697 } 6698 6699 if (Src0Ty.isScalar()) { 6700 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6701 } else { 6702 int NumElts = Src0Ty.getNumElements(); 6703 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6704 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6705 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6706 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6707 BuildVec.push_back(Extract.getReg(0)); 6708 } 6709 } 6710 6711 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6712 MI.eraseFromParent(); 6713 return Legalized; 6714 } 6715 6716 LegalizerHelper::LegalizeResult 6717 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6718 const auto &MF = *MI.getMF(); 6719 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6720 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6721 return UnableToLegalize; 6722 6723 Register Dst = MI.getOperand(0).getReg(); 6724 Register AllocSize = MI.getOperand(1).getReg(); 6725 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6726 6727 LLT PtrTy = MRI.getType(Dst); 6728 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6729 6730 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6731 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6732 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6733 6734 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6735 // have to generate an extra instruction to negate the alloc and then use 6736 // G_PTR_ADD to add the negative offset. 6737 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6738 if (Alignment > Align(1)) { 6739 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6740 AlignMask.negate(); 6741 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6742 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6743 } 6744 6745 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6746 MIRBuilder.buildCopy(SPReg, SPTmp); 6747 MIRBuilder.buildCopy(Dst, SPTmp); 6748 6749 MI.eraseFromParent(); 6750 return Legalized; 6751 } 6752 6753 LegalizerHelper::LegalizeResult 6754 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6755 Register Dst = MI.getOperand(0).getReg(); 6756 Register Src = MI.getOperand(1).getReg(); 6757 unsigned Offset = MI.getOperand(2).getImm(); 6758 6759 LLT DstTy = MRI.getType(Dst); 6760 LLT SrcTy = MRI.getType(Src); 6761 6762 // Extract sub-vector or one element 6763 if (SrcTy.isVector()) { 6764 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); 6765 unsigned DstSize = DstTy.getSizeInBits(); 6766 6767 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && 6768 (Offset + DstSize <= SrcTy.getSizeInBits())) { 6769 // Unmerge and allow access to each Src element for the artifact combiner. 6770 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src); 6771 6772 // Take element(s) we need to extract and copy it (merge them). 6773 SmallVector<Register, 8> SubVectorElts; 6774 for (unsigned Idx = Offset / SrcEltSize; 6775 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { 6776 SubVectorElts.push_back(Unmerge.getReg(Idx)); 6777 } 6778 if (SubVectorElts.size() == 1) 6779 MIRBuilder.buildCopy(Dst, SubVectorElts[0]); 6780 else 6781 MIRBuilder.buildMerge(Dst, SubVectorElts); 6782 6783 MI.eraseFromParent(); 6784 return Legalized; 6785 } 6786 } 6787 6788 if (DstTy.isScalar() && 6789 (SrcTy.isScalar() || 6790 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6791 LLT SrcIntTy = SrcTy; 6792 if (!SrcTy.isScalar()) { 6793 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6794 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6795 } 6796 6797 if (Offset == 0) 6798 MIRBuilder.buildTrunc(Dst, Src); 6799 else { 6800 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6801 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6802 MIRBuilder.buildTrunc(Dst, Shr); 6803 } 6804 6805 MI.eraseFromParent(); 6806 return Legalized; 6807 } 6808 6809 return UnableToLegalize; 6810 } 6811 6812 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6813 Register Dst = MI.getOperand(0).getReg(); 6814 Register Src = MI.getOperand(1).getReg(); 6815 Register InsertSrc = MI.getOperand(2).getReg(); 6816 uint64_t Offset = MI.getOperand(3).getImm(); 6817 6818 LLT DstTy = MRI.getType(Src); 6819 LLT InsertTy = MRI.getType(InsertSrc); 6820 6821 // Insert sub-vector or one element 6822 if (DstTy.isVector() && !InsertTy.isPointer()) { 6823 LLT EltTy = DstTy.getElementType(); 6824 unsigned EltSize = EltTy.getSizeInBits(); 6825 unsigned InsertSize = InsertTy.getSizeInBits(); 6826 6827 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && 6828 (Offset + InsertSize <= DstTy.getSizeInBits())) { 6829 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); 6830 SmallVector<Register, 8> DstElts; 6831 unsigned Idx = 0; 6832 // Elements from Src before insert start Offset 6833 for (; Idx < Offset / EltSize; ++Idx) { 6834 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6835 } 6836 6837 // Replace elements in Src with elements from InsertSrc 6838 if (InsertTy.getSizeInBits() > EltSize) { 6839 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); 6840 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; 6841 ++Idx, ++i) { 6842 DstElts.push_back(UnmergeInsertSrc.getReg(i)); 6843 } 6844 } else { 6845 DstElts.push_back(InsertSrc); 6846 ++Idx; 6847 } 6848 6849 // Remaining elements from Src after insert 6850 for (; Idx < DstTy.getNumElements(); ++Idx) { 6851 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6852 } 6853 6854 MIRBuilder.buildMerge(Dst, DstElts); 6855 MI.eraseFromParent(); 6856 return Legalized; 6857 } 6858 } 6859 6860 if (InsertTy.isVector() || 6861 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6862 return UnableToLegalize; 6863 6864 const DataLayout &DL = MIRBuilder.getDataLayout(); 6865 if ((DstTy.isPointer() && 6866 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6867 (InsertTy.isPointer() && 6868 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6869 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6870 return UnableToLegalize; 6871 } 6872 6873 LLT IntDstTy = DstTy; 6874 6875 if (!DstTy.isScalar()) { 6876 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6877 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6878 } 6879 6880 if (!InsertTy.isScalar()) { 6881 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6882 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6883 } 6884 6885 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6886 if (Offset != 0) { 6887 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6888 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6889 } 6890 6891 APInt MaskVal = APInt::getBitsSetWithWrap( 6892 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6893 6894 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6895 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6896 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6897 6898 MIRBuilder.buildCast(Dst, Or); 6899 MI.eraseFromParent(); 6900 return Legalized; 6901 } 6902 6903 LegalizerHelper::LegalizeResult 6904 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6905 Register Dst0 = MI.getOperand(0).getReg(); 6906 Register Dst1 = MI.getOperand(1).getReg(); 6907 Register LHS = MI.getOperand(2).getReg(); 6908 Register RHS = MI.getOperand(3).getReg(); 6909 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6910 6911 LLT Ty = MRI.getType(Dst0); 6912 LLT BoolTy = MRI.getType(Dst1); 6913 6914 if (IsAdd) 6915 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6916 else 6917 MIRBuilder.buildSub(Dst0, LHS, RHS); 6918 6919 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6920 6921 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6922 6923 // For an addition, the result should be less than one of the operands (LHS) 6924 // if and only if the other operand (RHS) is negative, otherwise there will 6925 // be overflow. 6926 // For a subtraction, the result should be less than one of the operands 6927 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6928 // otherwise there will be overflow. 6929 auto ResultLowerThanLHS = 6930 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6931 auto ConditionRHS = MIRBuilder.buildICmp( 6932 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6933 6934 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6935 MI.eraseFromParent(); 6936 return Legalized; 6937 } 6938 6939 LegalizerHelper::LegalizeResult 6940 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6941 Register Res = MI.getOperand(0).getReg(); 6942 Register LHS = MI.getOperand(1).getReg(); 6943 Register RHS = MI.getOperand(2).getReg(); 6944 LLT Ty = MRI.getType(Res); 6945 bool IsSigned; 6946 bool IsAdd; 6947 unsigned BaseOp; 6948 switch (MI.getOpcode()) { 6949 default: 6950 llvm_unreachable("unexpected addsat/subsat opcode"); 6951 case TargetOpcode::G_UADDSAT: 6952 IsSigned = false; 6953 IsAdd = true; 6954 BaseOp = TargetOpcode::G_ADD; 6955 break; 6956 case TargetOpcode::G_SADDSAT: 6957 IsSigned = true; 6958 IsAdd = true; 6959 BaseOp = TargetOpcode::G_ADD; 6960 break; 6961 case TargetOpcode::G_USUBSAT: 6962 IsSigned = false; 6963 IsAdd = false; 6964 BaseOp = TargetOpcode::G_SUB; 6965 break; 6966 case TargetOpcode::G_SSUBSAT: 6967 IsSigned = true; 6968 IsAdd = false; 6969 BaseOp = TargetOpcode::G_SUB; 6970 break; 6971 } 6972 6973 if (IsSigned) { 6974 // sadd.sat(a, b) -> 6975 // hi = 0x7fffffff - smax(a, 0) 6976 // lo = 0x80000000 - smin(a, 0) 6977 // a + smin(smax(lo, b), hi) 6978 // ssub.sat(a, b) -> 6979 // lo = smax(a, -1) - 0x7fffffff 6980 // hi = smin(a, -1) - 0x80000000 6981 // a - smin(smax(lo, b), hi) 6982 // TODO: AMDGPU can use a "median of 3" instruction here: 6983 // a +/- med3(lo, b, hi) 6984 uint64_t NumBits = Ty.getScalarSizeInBits(); 6985 auto MaxVal = 6986 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6987 auto MinVal = 6988 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6989 MachineInstrBuilder Hi, Lo; 6990 if (IsAdd) { 6991 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6992 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6993 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6994 } else { 6995 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6996 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6997 MaxVal); 6998 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6999 MinVal); 7000 } 7001 auto RHSClamped = 7002 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 7003 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 7004 } else { 7005 // uadd.sat(a, b) -> a + umin(~a, b) 7006 // usub.sat(a, b) -> a - umin(a, b) 7007 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 7008 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 7009 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 7010 } 7011 7012 MI.eraseFromParent(); 7013 return Legalized; 7014 } 7015 7016 LegalizerHelper::LegalizeResult 7017 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 7018 Register Res = MI.getOperand(0).getReg(); 7019 Register LHS = MI.getOperand(1).getReg(); 7020 Register RHS = MI.getOperand(2).getReg(); 7021 LLT Ty = MRI.getType(Res); 7022 LLT BoolTy = Ty.changeElementSize(1); 7023 bool IsSigned; 7024 bool IsAdd; 7025 unsigned OverflowOp; 7026 switch (MI.getOpcode()) { 7027 default: 7028 llvm_unreachable("unexpected addsat/subsat opcode"); 7029 case TargetOpcode::G_UADDSAT: 7030 IsSigned = false; 7031 IsAdd = true; 7032 OverflowOp = TargetOpcode::G_UADDO; 7033 break; 7034 case TargetOpcode::G_SADDSAT: 7035 IsSigned = true; 7036 IsAdd = true; 7037 OverflowOp = TargetOpcode::G_SADDO; 7038 break; 7039 case TargetOpcode::G_USUBSAT: 7040 IsSigned = false; 7041 IsAdd = false; 7042 OverflowOp = TargetOpcode::G_USUBO; 7043 break; 7044 case TargetOpcode::G_SSUBSAT: 7045 IsSigned = true; 7046 IsAdd = false; 7047 OverflowOp = TargetOpcode::G_SSUBO; 7048 break; 7049 } 7050 7051 auto OverflowRes = 7052 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 7053 Register Tmp = OverflowRes.getReg(0); 7054 Register Ov = OverflowRes.getReg(1); 7055 MachineInstrBuilder Clamp; 7056 if (IsSigned) { 7057 // sadd.sat(a, b) -> 7058 // {tmp, ov} = saddo(a, b) 7059 // ov ? (tmp >>s 31) + 0x80000000 : r 7060 // ssub.sat(a, b) -> 7061 // {tmp, ov} = ssubo(a, b) 7062 // ov ? (tmp >>s 31) + 0x80000000 : r 7063 uint64_t NumBits = Ty.getScalarSizeInBits(); 7064 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 7065 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 7066 auto MinVal = 7067 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7068 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 7069 } else { 7070 // uadd.sat(a, b) -> 7071 // {tmp, ov} = uaddo(a, b) 7072 // ov ? 0xffffffff : tmp 7073 // usub.sat(a, b) -> 7074 // {tmp, ov} = usubo(a, b) 7075 // ov ? 0 : tmp 7076 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 7077 } 7078 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 7079 7080 MI.eraseFromParent(); 7081 return Legalized; 7082 } 7083 7084 LegalizerHelper::LegalizeResult 7085 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 7086 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 7087 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 7088 "Expected shlsat opcode!"); 7089 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 7090 Register Res = MI.getOperand(0).getReg(); 7091 Register LHS = MI.getOperand(1).getReg(); 7092 Register RHS = MI.getOperand(2).getReg(); 7093 LLT Ty = MRI.getType(Res); 7094 LLT BoolTy = Ty.changeElementSize(1); 7095 7096 unsigned BW = Ty.getScalarSizeInBits(); 7097 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 7098 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 7099 : MIRBuilder.buildLShr(Ty, Result, RHS); 7100 7101 MachineInstrBuilder SatVal; 7102 if (IsSigned) { 7103 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 7104 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 7105 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 7106 MIRBuilder.buildConstant(Ty, 0)); 7107 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 7108 } else { 7109 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 7110 } 7111 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 7112 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 7113 7114 MI.eraseFromParent(); 7115 return Legalized; 7116 } 7117 7118 LegalizerHelper::LegalizeResult 7119 LegalizerHelper::lowerBswap(MachineInstr &MI) { 7120 Register Dst = MI.getOperand(0).getReg(); 7121 Register Src = MI.getOperand(1).getReg(); 7122 const LLT Ty = MRI.getType(Src); 7123 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 7124 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 7125 7126 // Swap most and least significant byte, set remaining bytes in Res to zero. 7127 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 7128 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 7129 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7130 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 7131 7132 // Set i-th high/low byte in Res to i-th low/high byte from Src. 7133 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 7134 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 7135 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 7136 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 7137 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 7138 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 7139 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 7140 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 7141 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 7142 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 7143 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7144 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 7145 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 7146 } 7147 Res.getInstr()->getOperand(0).setReg(Dst); 7148 7149 MI.eraseFromParent(); 7150 return Legalized; 7151 } 7152 7153 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 7154 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 7155 MachineInstrBuilder Src, APInt Mask) { 7156 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 7157 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 7158 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 7159 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 7160 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 7161 return B.buildOr(Dst, LHS, RHS); 7162 } 7163 7164 LegalizerHelper::LegalizeResult 7165 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 7166 Register Dst = MI.getOperand(0).getReg(); 7167 Register Src = MI.getOperand(1).getReg(); 7168 const LLT Ty = MRI.getType(Src); 7169 unsigned Size = Ty.getSizeInBits(); 7170 7171 MachineInstrBuilder BSWAP = 7172 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 7173 7174 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 7175 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 7176 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 7177 MachineInstrBuilder Swap4 = 7178 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 7179 7180 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 7181 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 7182 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 7183 MachineInstrBuilder Swap2 = 7184 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 7185 7186 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 7187 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 7188 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 7189 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 7190 7191 MI.eraseFromParent(); 7192 return Legalized; 7193 } 7194 7195 LegalizerHelper::LegalizeResult 7196 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 7197 MachineFunction &MF = MIRBuilder.getMF(); 7198 7199 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 7200 int NameOpIdx = IsRead ? 1 : 0; 7201 int ValRegIndex = IsRead ? 0 : 1; 7202 7203 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 7204 const LLT Ty = MRI.getType(ValReg); 7205 const MDString *RegStr = cast<MDString>( 7206 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 7207 7208 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 7209 if (!PhysReg.isValid()) 7210 return UnableToLegalize; 7211 7212 if (IsRead) 7213 MIRBuilder.buildCopy(ValReg, PhysReg); 7214 else 7215 MIRBuilder.buildCopy(PhysReg, ValReg); 7216 7217 MI.eraseFromParent(); 7218 return Legalized; 7219 } 7220 7221 LegalizerHelper::LegalizeResult 7222 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7223 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7224 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7225 Register Result = MI.getOperand(0).getReg(); 7226 LLT OrigTy = MRI.getType(Result); 7227 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7228 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7229 7230 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7231 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7232 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7233 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7234 7235 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7236 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7237 MIRBuilder.buildTrunc(Result, Shifted); 7238 7239 MI.eraseFromParent(); 7240 return Legalized; 7241 } 7242 7243 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 7244 // Implement vector G_SELECT in terms of XOR, AND, OR. 7245 Register DstReg = MI.getOperand(0).getReg(); 7246 Register MaskReg = MI.getOperand(1).getReg(); 7247 Register Op1Reg = MI.getOperand(2).getReg(); 7248 Register Op2Reg = MI.getOperand(3).getReg(); 7249 LLT DstTy = MRI.getType(DstReg); 7250 LLT MaskTy = MRI.getType(MaskReg); 7251 LLT Op1Ty = MRI.getType(Op1Reg); 7252 if (!DstTy.isVector()) 7253 return UnableToLegalize; 7254 7255 // Vector selects can have a scalar predicate. If so, splat into a vector and 7256 // finish for later legalization attempts to try again. 7257 if (MaskTy.isScalar()) { 7258 Register MaskElt = MaskReg; 7259 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 7260 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 7261 // Generate a vector splat idiom to be pattern matched later. 7262 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 7263 Observer.changingInstr(MI); 7264 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 7265 Observer.changedInstr(MI); 7266 return Legalized; 7267 } 7268 7269 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 7270 return UnableToLegalize; 7271 } 7272 7273 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 7274 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 7275 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 7276 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 7277 MI.eraseFromParent(); 7278 return Legalized; 7279 } 7280 7281 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7282 // Split DIVREM into individual instructions. 7283 unsigned Opcode = MI.getOpcode(); 7284 7285 MIRBuilder.buildInstr( 7286 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7287 : TargetOpcode::G_UDIV, 7288 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7289 MIRBuilder.buildInstr( 7290 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7291 : TargetOpcode::G_UREM, 7292 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7293 MI.eraseFromParent(); 7294 return Legalized; 7295 } 7296 7297 LegalizerHelper::LegalizeResult 7298 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7299 // Expand %res = G_ABS %a into: 7300 // %v1 = G_ASHR %a, scalar_size-1 7301 // %v2 = G_ADD %a, %v1 7302 // %res = G_XOR %v2, %v1 7303 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7304 Register OpReg = MI.getOperand(1).getReg(); 7305 auto ShiftAmt = 7306 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7307 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7308 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7309 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7310 MI.eraseFromParent(); 7311 return Legalized; 7312 } 7313 7314 LegalizerHelper::LegalizeResult 7315 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7316 // Expand %res = G_ABS %a into: 7317 // %v1 = G_CONSTANT 0 7318 // %v2 = G_SUB %v1, %a 7319 // %res = G_SMAX %a, %v2 7320 Register SrcReg = MI.getOperand(1).getReg(); 7321 LLT Ty = MRI.getType(SrcReg); 7322 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7323 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7324 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7325 MI.eraseFromParent(); 7326 return Legalized; 7327 } 7328 7329 LegalizerHelper::LegalizeResult 7330 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { 7331 Register SrcReg = MI.getOperand(1).getReg(); 7332 LLT SrcTy = MRI.getType(SrcReg); 7333 LLT DstTy = MRI.getType(SrcReg); 7334 7335 // The source could be a scalar if the IR type was <1 x sN>. 7336 if (SrcTy.isScalar()) { 7337 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) 7338 return UnableToLegalize; // FIXME: handle extension. 7339 // This can be just a plain copy. 7340 Observer.changingInstr(MI); 7341 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); 7342 Observer.changedInstr(MI); 7343 return Legalized; 7344 } 7345 return UnableToLegalize;; 7346 } 7347 7348 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 7349 // On Darwin, -Os means optimize for size without hurting performance, so 7350 // only really optimize for size when -Oz (MinSize) is used. 7351 if (MF.getTarget().getTargetTriple().isOSDarwin()) 7352 return MF.getFunction().hasMinSize(); 7353 return MF.getFunction().hasOptSize(); 7354 } 7355 7356 // Returns a list of types to use for memory op lowering in MemOps. A partial 7357 // port of findOptimalMemOpLowering in TargetLowering. 7358 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 7359 unsigned Limit, const MemOp &Op, 7360 unsigned DstAS, unsigned SrcAS, 7361 const AttributeList &FuncAttributes, 7362 const TargetLowering &TLI) { 7363 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 7364 return false; 7365 7366 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 7367 7368 if (Ty == LLT()) { 7369 // Use the largest scalar type whose alignment constraints are satisfied. 7370 // We only need to check DstAlign here as SrcAlign is always greater or 7371 // equal to DstAlign (or zero). 7372 Ty = LLT::scalar(64); 7373 if (Op.isFixedDstAlign()) 7374 while (Op.getDstAlign() < Ty.getSizeInBytes() && 7375 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 7376 Ty = LLT::scalar(Ty.getSizeInBytes()); 7377 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 7378 // FIXME: check for the largest legal type we can load/store to. 7379 } 7380 7381 unsigned NumMemOps = 0; 7382 uint64_t Size = Op.size(); 7383 while (Size) { 7384 unsigned TySize = Ty.getSizeInBytes(); 7385 while (TySize > Size) { 7386 // For now, only use non-vector load / store's for the left-over pieces. 7387 LLT NewTy = Ty; 7388 // FIXME: check for mem op safety and legality of the types. Not all of 7389 // SDAGisms map cleanly to GISel concepts. 7390 if (NewTy.isVector()) 7391 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 7392 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 7393 unsigned NewTySize = NewTy.getSizeInBytes(); 7394 assert(NewTySize > 0 && "Could not find appropriate type"); 7395 7396 // If the new LLT cannot cover all of the remaining bits, then consider 7397 // issuing a (or a pair of) unaligned and overlapping load / store. 7398 bool Fast; 7399 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 7400 MVT VT = getMVTForLLT(Ty); 7401 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 7402 TLI.allowsMisalignedMemoryAccesses( 7403 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 7404 MachineMemOperand::MONone, &Fast) && 7405 Fast) 7406 TySize = Size; 7407 else { 7408 Ty = NewTy; 7409 TySize = NewTySize; 7410 } 7411 } 7412 7413 if (++NumMemOps > Limit) 7414 return false; 7415 7416 MemOps.push_back(Ty); 7417 Size -= TySize; 7418 } 7419 7420 return true; 7421 } 7422 7423 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 7424 if (Ty.isVector()) 7425 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 7426 Ty.getNumElements()); 7427 return IntegerType::get(C, Ty.getSizeInBits()); 7428 } 7429 7430 // Get a vectorized representation of the memset value operand, GISel edition. 7431 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 7432 MachineRegisterInfo &MRI = *MIB.getMRI(); 7433 unsigned NumBits = Ty.getScalarSizeInBits(); 7434 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7435 if (!Ty.isVector() && ValVRegAndVal) { 7436 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 7437 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 7438 return MIB.buildConstant(Ty, SplatVal).getReg(0); 7439 } 7440 7441 // Extend the byte value to the larger type, and then multiply by a magic 7442 // value 0x010101... in order to replicate it across every byte. 7443 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 7444 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 7445 return MIB.buildConstant(Ty, 0).getReg(0); 7446 } 7447 7448 LLT ExtType = Ty.getScalarType(); 7449 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 7450 if (NumBits > 8) { 7451 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 7452 auto MagicMI = MIB.buildConstant(ExtType, Magic); 7453 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 7454 } 7455 7456 // For vector types create a G_BUILD_VECTOR. 7457 if (Ty.isVector()) 7458 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 7459 7460 return Val; 7461 } 7462 7463 LegalizerHelper::LegalizeResult 7464 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, 7465 uint64_t KnownLen, Align Alignment, 7466 bool IsVolatile) { 7467 auto &MF = *MI.getParent()->getParent(); 7468 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7469 auto &DL = MF.getDataLayout(); 7470 LLVMContext &C = MF.getFunction().getContext(); 7471 7472 assert(KnownLen != 0 && "Have a zero length memset length!"); 7473 7474 bool DstAlignCanChange = false; 7475 MachineFrameInfo &MFI = MF.getFrameInfo(); 7476 bool OptSize = shouldLowerMemFuncForSize(MF); 7477 7478 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7479 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7480 DstAlignCanChange = true; 7481 7482 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 7483 std::vector<LLT> MemOps; 7484 7485 const auto &DstMMO = **MI.memoperands_begin(); 7486 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7487 7488 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7489 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 7490 7491 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 7492 MemOp::Set(KnownLen, DstAlignCanChange, 7493 Alignment, 7494 /*IsZeroMemset=*/IsZeroVal, 7495 /*IsVolatile=*/IsVolatile), 7496 DstPtrInfo.getAddrSpace(), ~0u, 7497 MF.getFunction().getAttributes(), TLI)) 7498 return UnableToLegalize; 7499 7500 if (DstAlignCanChange) { 7501 // Get an estimate of the type from the LLT. 7502 Type *IRTy = getTypeForLLT(MemOps[0], C); 7503 Align NewAlign = DL.getABITypeAlign(IRTy); 7504 if (NewAlign > Alignment) { 7505 Alignment = NewAlign; 7506 unsigned FI = FIDef->getOperand(1).getIndex(); 7507 // Give the stack frame object a larger alignment if needed. 7508 if (MFI.getObjectAlign(FI) < Alignment) 7509 MFI.setObjectAlignment(FI, Alignment); 7510 } 7511 } 7512 7513 MachineIRBuilder MIB(MI); 7514 // Find the largest store and generate the bit pattern for it. 7515 LLT LargestTy = MemOps[0]; 7516 for (unsigned i = 1; i < MemOps.size(); i++) 7517 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 7518 LargestTy = MemOps[i]; 7519 7520 // The memset stored value is always defined as an s8, so in order to make it 7521 // work with larger store types we need to repeat the bit pattern across the 7522 // wider type. 7523 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 7524 7525 if (!MemSetValue) 7526 return UnableToLegalize; 7527 7528 // Generate the stores. For each store type in the list, we generate the 7529 // matching store of that type to the destination address. 7530 LLT PtrTy = MRI.getType(Dst); 7531 unsigned DstOff = 0; 7532 unsigned Size = KnownLen; 7533 for (unsigned I = 0; I < MemOps.size(); I++) { 7534 LLT Ty = MemOps[I]; 7535 unsigned TySize = Ty.getSizeInBytes(); 7536 if (TySize > Size) { 7537 // Issuing an unaligned load / store pair that overlaps with the previous 7538 // pair. Adjust the offset accordingly. 7539 assert(I == MemOps.size() - 1 && I != 0); 7540 DstOff -= TySize - Size; 7541 } 7542 7543 // If this store is smaller than the largest store see whether we can get 7544 // the smaller value for free with a truncate. 7545 Register Value = MemSetValue; 7546 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 7547 MVT VT = getMVTForLLT(Ty); 7548 MVT LargestVT = getMVTForLLT(LargestTy); 7549 if (!LargestTy.isVector() && !Ty.isVector() && 7550 TLI.isTruncateFree(LargestVT, VT)) 7551 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 7552 else 7553 Value = getMemsetValue(Val, Ty, MIB); 7554 if (!Value) 7555 return UnableToLegalize; 7556 } 7557 7558 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 7559 7560 Register Ptr = Dst; 7561 if (DstOff != 0) { 7562 auto Offset = 7563 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 7564 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 7565 } 7566 7567 MIB.buildStore(Value, Ptr, *StoreMMO); 7568 DstOff += Ty.getSizeInBytes(); 7569 Size -= TySize; 7570 } 7571 7572 MI.eraseFromParent(); 7573 return Legalized; 7574 } 7575 7576 LegalizerHelper::LegalizeResult 7577 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { 7578 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7579 7580 Register Dst = MI.getOperand(0).getReg(); 7581 Register Src = MI.getOperand(1).getReg(); 7582 Register Len = MI.getOperand(2).getReg(); 7583 7584 const auto *MMOIt = MI.memoperands_begin(); 7585 const MachineMemOperand *MemOp = *MMOIt; 7586 bool IsVolatile = MemOp->isVolatile(); 7587 7588 // See if this is a constant length copy 7589 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7590 // FIXME: support dynamically sized G_MEMCPY_INLINE 7591 assert(LenVRegAndVal.hasValue() && 7592 "inline memcpy with dynamic size is not yet supported"); 7593 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7594 if (KnownLen == 0) { 7595 MI.eraseFromParent(); 7596 return Legalized; 7597 } 7598 7599 const auto &DstMMO = **MI.memoperands_begin(); 7600 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7601 Align DstAlign = DstMMO.getBaseAlign(); 7602 Align SrcAlign = SrcMMO.getBaseAlign(); 7603 7604 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7605 IsVolatile); 7606 } 7607 7608 LegalizerHelper::LegalizeResult 7609 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, 7610 uint64_t KnownLen, Align DstAlign, 7611 Align SrcAlign, bool IsVolatile) { 7612 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7613 return lowerMemcpy(MI, Dst, Src, KnownLen, 7614 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign, 7615 IsVolatile); 7616 } 7617 7618 LegalizerHelper::LegalizeResult 7619 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, 7620 uint64_t KnownLen, uint64_t Limit, Align DstAlign, 7621 Align SrcAlign, bool IsVolatile) { 7622 auto &MF = *MI.getParent()->getParent(); 7623 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7624 auto &DL = MF.getDataLayout(); 7625 LLVMContext &C = MF.getFunction().getContext(); 7626 7627 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 7628 7629 bool DstAlignCanChange = false; 7630 MachineFrameInfo &MFI = MF.getFrameInfo(); 7631 Align Alignment = commonAlignment(DstAlign, SrcAlign); 7632 7633 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7634 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7635 DstAlignCanChange = true; 7636 7637 // FIXME: infer better src pointer alignment like SelectionDAG does here. 7638 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 7639 // if the memcpy is in a tail call position. 7640 7641 std::vector<LLT> MemOps; 7642 7643 const auto &DstMMO = **MI.memoperands_begin(); 7644 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7645 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7646 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7647 7648 if (!findGISelOptimalMemOpLowering( 7649 MemOps, Limit, 7650 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7651 IsVolatile), 7652 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7653 MF.getFunction().getAttributes(), TLI)) 7654 return UnableToLegalize; 7655 7656 if (DstAlignCanChange) { 7657 // Get an estimate of the type from the LLT. 7658 Type *IRTy = getTypeForLLT(MemOps[0], C); 7659 Align NewAlign = DL.getABITypeAlign(IRTy); 7660 7661 // Don't promote to an alignment that would require dynamic stack 7662 // realignment. 7663 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7664 if (!TRI->hasStackRealignment(MF)) 7665 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7666 NewAlign = NewAlign / 2; 7667 7668 if (NewAlign > Alignment) { 7669 Alignment = NewAlign; 7670 unsigned FI = FIDef->getOperand(1).getIndex(); 7671 // Give the stack frame object a larger alignment if needed. 7672 if (MFI.getObjectAlign(FI) < Alignment) 7673 MFI.setObjectAlignment(FI, Alignment); 7674 } 7675 } 7676 7677 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 7678 7679 MachineIRBuilder MIB(MI); 7680 // Now we need to emit a pair of load and stores for each of the types we've 7681 // collected. I.e. for each type, generate a load from the source pointer of 7682 // that type width, and then generate a corresponding store to the dest buffer 7683 // of that value loaded. This can result in a sequence of loads and stores 7684 // mixed types, depending on what the target specifies as good types to use. 7685 unsigned CurrOffset = 0; 7686 unsigned Size = KnownLen; 7687 for (auto CopyTy : MemOps) { 7688 // Issuing an unaligned load / store pair that overlaps with the previous 7689 // pair. Adjust the offset accordingly. 7690 if (CopyTy.getSizeInBytes() > Size) 7691 CurrOffset -= CopyTy.getSizeInBytes() - Size; 7692 7693 // Construct MMOs for the accesses. 7694 auto *LoadMMO = 7695 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7696 auto *StoreMMO = 7697 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7698 7699 // Create the load. 7700 Register LoadPtr = Src; 7701 Register Offset; 7702 if (CurrOffset != 0) { 7703 LLT SrcTy = MRI.getType(Src); 7704 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) 7705 .getReg(0); 7706 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7707 } 7708 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 7709 7710 // Create the store. 7711 Register StorePtr = Dst; 7712 if (CurrOffset != 0) { 7713 LLT DstTy = MRI.getType(Dst); 7714 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7715 } 7716 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 7717 CurrOffset += CopyTy.getSizeInBytes(); 7718 Size -= CopyTy.getSizeInBytes(); 7719 } 7720 7721 MI.eraseFromParent(); 7722 return Legalized; 7723 } 7724 7725 LegalizerHelper::LegalizeResult 7726 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, 7727 uint64_t KnownLen, Align DstAlign, Align SrcAlign, 7728 bool IsVolatile) { 7729 auto &MF = *MI.getParent()->getParent(); 7730 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7731 auto &DL = MF.getDataLayout(); 7732 LLVMContext &C = MF.getFunction().getContext(); 7733 7734 assert(KnownLen != 0 && "Have a zero length memmove length!"); 7735 7736 bool DstAlignCanChange = false; 7737 MachineFrameInfo &MFI = MF.getFrameInfo(); 7738 bool OptSize = shouldLowerMemFuncForSize(MF); 7739 Align Alignment = commonAlignment(DstAlign, SrcAlign); 7740 7741 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7742 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7743 DstAlignCanChange = true; 7744 7745 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 7746 std::vector<LLT> MemOps; 7747 7748 const auto &DstMMO = **MI.memoperands_begin(); 7749 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7750 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7751 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7752 7753 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 7754 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 7755 // same thing here. 7756 if (!findGISelOptimalMemOpLowering( 7757 MemOps, Limit, 7758 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7759 /*IsVolatile*/ true), 7760 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7761 MF.getFunction().getAttributes(), TLI)) 7762 return UnableToLegalize; 7763 7764 if (DstAlignCanChange) { 7765 // Get an estimate of the type from the LLT. 7766 Type *IRTy = getTypeForLLT(MemOps[0], C); 7767 Align NewAlign = DL.getABITypeAlign(IRTy); 7768 7769 // Don't promote to an alignment that would require dynamic stack 7770 // realignment. 7771 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7772 if (!TRI->hasStackRealignment(MF)) 7773 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7774 NewAlign = NewAlign / 2; 7775 7776 if (NewAlign > Alignment) { 7777 Alignment = NewAlign; 7778 unsigned FI = FIDef->getOperand(1).getIndex(); 7779 // Give the stack frame object a larger alignment if needed. 7780 if (MFI.getObjectAlign(FI) < Alignment) 7781 MFI.setObjectAlignment(FI, Alignment); 7782 } 7783 } 7784 7785 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 7786 7787 MachineIRBuilder MIB(MI); 7788 // Memmove requires that we perform the loads first before issuing the stores. 7789 // Apart from that, this loop is pretty much doing the same thing as the 7790 // memcpy codegen function. 7791 unsigned CurrOffset = 0; 7792 SmallVector<Register, 16> LoadVals; 7793 for (auto CopyTy : MemOps) { 7794 // Construct MMO for the load. 7795 auto *LoadMMO = 7796 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7797 7798 // Create the load. 7799 Register LoadPtr = Src; 7800 if (CurrOffset != 0) { 7801 LLT SrcTy = MRI.getType(Src); 7802 auto Offset = 7803 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); 7804 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7805 } 7806 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 7807 CurrOffset += CopyTy.getSizeInBytes(); 7808 } 7809 7810 CurrOffset = 0; 7811 for (unsigned I = 0; I < MemOps.size(); ++I) { 7812 LLT CopyTy = MemOps[I]; 7813 // Now store the values loaded. 7814 auto *StoreMMO = 7815 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7816 7817 Register StorePtr = Dst; 7818 if (CurrOffset != 0) { 7819 LLT DstTy = MRI.getType(Dst); 7820 auto Offset = 7821 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); 7822 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7823 } 7824 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 7825 CurrOffset += CopyTy.getSizeInBytes(); 7826 } 7827 MI.eraseFromParent(); 7828 return Legalized; 7829 } 7830 7831 LegalizerHelper::LegalizeResult 7832 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 7833 const unsigned Opc = MI.getOpcode(); 7834 // This combine is fairly complex so it's not written with a separate 7835 // matcher function. 7836 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 7837 Opc == TargetOpcode::G_MEMSET) && 7838 "Expected memcpy like instruction"); 7839 7840 auto MMOIt = MI.memoperands_begin(); 7841 const MachineMemOperand *MemOp = *MMOIt; 7842 7843 Align DstAlign = MemOp->getBaseAlign(); 7844 Align SrcAlign; 7845 Register Dst = MI.getOperand(0).getReg(); 7846 Register Src = MI.getOperand(1).getReg(); 7847 Register Len = MI.getOperand(2).getReg(); 7848 7849 if (Opc != TargetOpcode::G_MEMSET) { 7850 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 7851 MemOp = *(++MMOIt); 7852 SrcAlign = MemOp->getBaseAlign(); 7853 } 7854 7855 // See if this is a constant length copy 7856 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7857 if (!LenVRegAndVal) 7858 return UnableToLegalize; 7859 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7860 7861 if (KnownLen == 0) { 7862 MI.eraseFromParent(); 7863 return Legalized; 7864 } 7865 7866 bool IsVolatile = MemOp->isVolatile(); 7867 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 7868 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7869 IsVolatile); 7870 7871 // Don't try to optimize volatile. 7872 if (IsVolatile) 7873 return UnableToLegalize; 7874 7875 if (MaxLen && KnownLen > MaxLen) 7876 return UnableToLegalize; 7877 7878 if (Opc == TargetOpcode::G_MEMCPY) { 7879 auto &MF = *MI.getParent()->getParent(); 7880 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7881 bool OptSize = shouldLowerMemFuncForSize(MF); 7882 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 7883 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 7884 IsVolatile); 7885 } 7886 if (Opc == TargetOpcode::G_MEMMOVE) 7887 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 7888 if (Opc == TargetOpcode::G_MEMSET) 7889 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 7890 return UnableToLegalize; 7891 } 7892