1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()) {
90   MIRBuilder.setChangeObserver(Observer);
91 }
92 
93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
94                                  GISelChangeObserver &Observer,
95                                  MachineIRBuilder &B)
96     : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) {
97   MIRBuilder.setChangeObserver(Observer);
98 }
99 LegalizerHelper::LegalizeResult
100 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
101   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
102 
103   MIRBuilder.setInstrAndDebugLoc(MI);
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
108   auto Step = LI.getAction(MI, MRI);
109   switch (Step.Action) {
110   case Legal:
111     LLVM_DEBUG(dbgs() << ".. Already legal\n");
112     return AlreadyLegal;
113   case Libcall:
114     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
115     return libcall(MI);
116   case NarrowScalar:
117     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
118     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
119   case WidenScalar:
120     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
121     return widenScalar(MI, Step.TypeIdx, Step.NewType);
122   case Bitcast:
123     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
124     return bitcast(MI, Step.TypeIdx, Step.NewType);
125   case Lower:
126     LLVM_DEBUG(dbgs() << ".. Lower\n");
127     return lower(MI, Step.TypeIdx, Step.NewType);
128   case FewerElements:
129     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
130     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
131   case MoreElements:
132     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
133     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case Custom:
135     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
136     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
137   default:
138     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
139     return UnableToLegalize;
140   }
141 }
142 
143 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
144                                    SmallVectorImpl<Register> &VRegs) {
145   for (int i = 0; i < NumParts; ++i)
146     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
147   MIRBuilder.buildUnmerge(VRegs, Reg);
148 }
149 
150 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
151                                    LLT MainTy, LLT &LeftoverTy,
152                                    SmallVectorImpl<Register> &VRegs,
153                                    SmallVectorImpl<Register> &LeftoverRegs) {
154   assert(!LeftoverTy.isValid() && "this is an out argument");
155 
156   unsigned RegSize = RegTy.getSizeInBits();
157   unsigned MainSize = MainTy.getSizeInBits();
158   unsigned NumParts = RegSize / MainSize;
159   unsigned LeftoverSize = RegSize - NumParts * MainSize;
160 
161   // Use an unmerge when possible.
162   if (LeftoverSize == 0) {
163     for (unsigned I = 0; I < NumParts; ++I)
164       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
165     MIRBuilder.buildUnmerge(VRegs, Reg);
166     return true;
167   }
168 
169   if (MainTy.isVector()) {
170     unsigned EltSize = MainTy.getScalarSizeInBits();
171     if (LeftoverSize % EltSize != 0)
172       return false;
173     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
174   } else {
175     LeftoverTy = LLT::scalar(LeftoverSize);
176   }
177 
178   // For irregular sizes, extract the individual parts.
179   for (unsigned I = 0; I != NumParts; ++I) {
180     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
181     VRegs.push_back(NewReg);
182     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
183   }
184 
185   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
186        Offset += LeftoverSize) {
187     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
188     LeftoverRegs.push_back(NewReg);
189     MIRBuilder.buildExtract(NewReg, Reg, Offset);
190   }
191 
192   return true;
193 }
194 
195 void LegalizerHelper::insertParts(Register DstReg,
196                                   LLT ResultTy, LLT PartTy,
197                                   ArrayRef<Register> PartRegs,
198                                   LLT LeftoverTy,
199                                   ArrayRef<Register> LeftoverRegs) {
200   if (!LeftoverTy.isValid()) {
201     assert(LeftoverRegs.empty());
202 
203     if (!ResultTy.isVector()) {
204       MIRBuilder.buildMerge(DstReg, PartRegs);
205       return;
206     }
207 
208     if (PartTy.isVector())
209       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
210     else
211       MIRBuilder.buildBuildVector(DstReg, PartRegs);
212     return;
213   }
214 
215   unsigned PartSize = PartTy.getSizeInBits();
216   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
217 
218   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
219   MIRBuilder.buildUndef(CurResultReg);
220 
221   unsigned Offset = 0;
222   for (Register PartReg : PartRegs) {
223     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
224     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
225     CurResultReg = NewResultReg;
226     Offset += PartSize;
227   }
228 
229   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
230     // Use the original output register for the final insert to avoid a copy.
231     Register NewResultReg = (I + 1 == E) ?
232       DstReg : MRI.createGenericVirtualRegister(ResultTy);
233 
234     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
235     CurResultReg = NewResultReg;
236     Offset += LeftoverPartSize;
237   }
238 }
239 
240 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
241 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
242                               const MachineInstr &MI) {
243   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
244 
245   const int NumResults = MI.getNumOperands() - 1;
246   Regs.resize(NumResults);
247   for (int I = 0; I != NumResults; ++I)
248     Regs[I] = MI.getOperand(I).getReg();
249 }
250 
251 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
252                                     LLT NarrowTy, Register SrcReg) {
253   LLT SrcTy = MRI.getType(SrcReg);
254 
255   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
256   if (SrcTy == GCDTy) {
257     // If the source already evenly divides the result type, we don't need to do
258     // anything.
259     Parts.push_back(SrcReg);
260   } else {
261     // Need to split into common type sized pieces.
262     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
263     getUnmergeResults(Parts, *Unmerge);
264   }
265 
266   return GCDTy;
267 }
268 
269 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
270                                          SmallVectorImpl<Register> &VRegs,
271                                          unsigned PadStrategy) {
272   LLT LCMTy = getLCMType(DstTy, NarrowTy);
273 
274   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
275   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
276   int NumOrigSrc = VRegs.size();
277 
278   Register PadReg;
279 
280   // Get a value we can use to pad the source value if the sources won't evenly
281   // cover the result type.
282   if (NumOrigSrc < NumParts * NumSubParts) {
283     if (PadStrategy == TargetOpcode::G_ZEXT)
284       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
285     else if (PadStrategy == TargetOpcode::G_ANYEXT)
286       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
287     else {
288       assert(PadStrategy == TargetOpcode::G_SEXT);
289 
290       // Shift the sign bit of the low register through the high register.
291       auto ShiftAmt =
292         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
293       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
294     }
295   }
296 
297   // Registers for the final merge to be produced.
298   SmallVector<Register, 4> Remerge(NumParts);
299 
300   // Registers needed for intermediate merges, which will be merged into a
301   // source for Remerge.
302   SmallVector<Register, 4> SubMerge(NumSubParts);
303 
304   // Once we've fully read off the end of the original source bits, we can reuse
305   // the same high bits for remaining padding elements.
306   Register AllPadReg;
307 
308   // Build merges to the LCM type to cover the original result type.
309   for (int I = 0; I != NumParts; ++I) {
310     bool AllMergePartsArePadding = true;
311 
312     // Build the requested merges to the requested type.
313     for (int J = 0; J != NumSubParts; ++J) {
314       int Idx = I * NumSubParts + J;
315       if (Idx >= NumOrigSrc) {
316         SubMerge[J] = PadReg;
317         continue;
318       }
319 
320       SubMerge[J] = VRegs[Idx];
321 
322       // There are meaningful bits here we can't reuse later.
323       AllMergePartsArePadding = false;
324     }
325 
326     // If we've filled up a complete piece with padding bits, we can directly
327     // emit the natural sized constant if applicable, rather than a merge of
328     // smaller constants.
329     if (AllMergePartsArePadding && !AllPadReg) {
330       if (PadStrategy == TargetOpcode::G_ANYEXT)
331         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
332       else if (PadStrategy == TargetOpcode::G_ZEXT)
333         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
334 
335       // If this is a sign extension, we can't materialize a trivial constant
336       // with the right type and have to produce a merge.
337     }
338 
339     if (AllPadReg) {
340       // Avoid creating additional instructions if we're just adding additional
341       // copies of padding bits.
342       Remerge[I] = AllPadReg;
343       continue;
344     }
345 
346     if (NumSubParts == 1)
347       Remerge[I] = SubMerge[0];
348     else
349       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
350 
351     // In the sign extend padding case, re-use the first all-signbit merge.
352     if (AllMergePartsArePadding && !AllPadReg)
353       AllPadReg = Remerge[I];
354   }
355 
356   VRegs = std::move(Remerge);
357   return LCMTy;
358 }
359 
360 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
361                                                ArrayRef<Register> RemergeRegs) {
362   LLT DstTy = MRI.getType(DstReg);
363 
364   // Create the merge to the widened source, and extract the relevant bits into
365   // the result.
366 
367   if (DstTy == LCMTy) {
368     MIRBuilder.buildMerge(DstReg, RemergeRegs);
369     return;
370   }
371 
372   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
373   if (DstTy.isScalar() && LCMTy.isScalar()) {
374     MIRBuilder.buildTrunc(DstReg, Remerge);
375     return;
376   }
377 
378   if (LCMTy.isVector()) {
379     MIRBuilder.buildExtract(DstReg, Remerge, 0);
380     return;
381   }
382 
383   llvm_unreachable("unhandled case");
384 }
385 
386 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
387 #define RTLIBCASE(LibcallPrefix)                                               \
388   do {                                                                         \
389     switch (Size) {                                                            \
390     case 32:                                                                   \
391       return RTLIB::LibcallPrefix##32;                                         \
392     case 64:                                                                   \
393       return RTLIB::LibcallPrefix##64;                                         \
394     case 128:                                                                  \
395       return RTLIB::LibcallPrefix##128;                                        \
396     default:                                                                   \
397       llvm_unreachable("unexpected size");                                     \
398     }                                                                          \
399   } while (0)
400 
401   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
402 
403   switch (Opcode) {
404   case TargetOpcode::G_SDIV:
405     RTLIBCASE(SDIV_I);
406   case TargetOpcode::G_UDIV:
407     RTLIBCASE(UDIV_I);
408   case TargetOpcode::G_SREM:
409     RTLIBCASE(SREM_I);
410   case TargetOpcode::G_UREM:
411     RTLIBCASE(UREM_I);
412   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
413     RTLIBCASE(CTLZ_I);
414   case TargetOpcode::G_FADD:
415     RTLIBCASE(ADD_F);
416   case TargetOpcode::G_FSUB:
417     RTLIBCASE(SUB_F);
418   case TargetOpcode::G_FMUL:
419     RTLIBCASE(MUL_F);
420   case TargetOpcode::G_FDIV:
421     RTLIBCASE(DIV_F);
422   case TargetOpcode::G_FEXP:
423     RTLIBCASE(EXP_F);
424   case TargetOpcode::G_FEXP2:
425     RTLIBCASE(EXP2_F);
426   case TargetOpcode::G_FREM:
427     RTLIBCASE(REM_F);
428   case TargetOpcode::G_FPOW:
429     RTLIBCASE(POW_F);
430   case TargetOpcode::G_FMA:
431     RTLIBCASE(FMA_F);
432   case TargetOpcode::G_FSIN:
433     RTLIBCASE(SIN_F);
434   case TargetOpcode::G_FCOS:
435     RTLIBCASE(COS_F);
436   case TargetOpcode::G_FLOG10:
437     RTLIBCASE(LOG10_F);
438   case TargetOpcode::G_FLOG:
439     RTLIBCASE(LOG_F);
440   case TargetOpcode::G_FLOG2:
441     RTLIBCASE(LOG2_F);
442   case TargetOpcode::G_FCEIL:
443     RTLIBCASE(CEIL_F);
444   case TargetOpcode::G_FFLOOR:
445     RTLIBCASE(FLOOR_F);
446   case TargetOpcode::G_FMINNUM:
447     RTLIBCASE(FMIN_F);
448   case TargetOpcode::G_FMAXNUM:
449     RTLIBCASE(FMAX_F);
450   case TargetOpcode::G_FSQRT:
451     RTLIBCASE(SQRT_F);
452   case TargetOpcode::G_FRINT:
453     RTLIBCASE(RINT_F);
454   case TargetOpcode::G_FNEARBYINT:
455     RTLIBCASE(NEARBYINT_F);
456   }
457   llvm_unreachable("Unknown libcall function");
458 }
459 
460 /// True if an instruction is in tail position in its caller. Intended for
461 /// legalizing libcalls as tail calls when possible.
462 static bool isLibCallInTailPosition(MachineInstr &MI) {
463   MachineBasicBlock &MBB = *MI.getParent();
464   const Function &F = MBB.getParent()->getFunction();
465 
466   // Conservatively require the attributes of the call to match those of
467   // the return. Ignore NoAlias and NonNull because they don't affect the
468   // call sequence.
469   AttributeList CallerAttrs = F.getAttributes();
470   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
471           .removeAttribute(Attribute::NoAlias)
472           .removeAttribute(Attribute::NonNull)
473           .hasAttributes())
474     return false;
475 
476   // It's not safe to eliminate the sign / zero extension of the return value.
477   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
478       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
479     return false;
480 
481   // Only tail call if the following instruction is a standard return.
482   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
483   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
484   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
485     return false;
486 
487   return true;
488 }
489 
490 LegalizerHelper::LegalizeResult
491 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
492                     const CallLowering::ArgInfo &Result,
493                     ArrayRef<CallLowering::ArgInfo> Args,
494                     const CallingConv::ID CC) {
495   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
496 
497   CallLowering::CallLoweringInfo Info;
498   Info.CallConv = CC;
499   Info.Callee = MachineOperand::CreateES(Name);
500   Info.OrigRet = Result;
501   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
502   if (!CLI.lowerCall(MIRBuilder, Info))
503     return LegalizerHelper::UnableToLegalize;
504 
505   return LegalizerHelper::Legalized;
506 }
507 
508 LegalizerHelper::LegalizeResult
509 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
510                     const CallLowering::ArgInfo &Result,
511                     ArrayRef<CallLowering::ArgInfo> Args) {
512   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
513   const char *Name = TLI.getLibcallName(Libcall);
514   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
515   return createLibcall(MIRBuilder, Name, Result, Args, CC);
516 }
517 
518 // Useful for libcalls where all operands have the same type.
519 static LegalizerHelper::LegalizeResult
520 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
521               Type *OpType) {
522   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
523 
524   SmallVector<CallLowering::ArgInfo, 3> Args;
525   for (unsigned i = 1; i < MI.getNumOperands(); i++)
526     Args.push_back({MI.getOperand(i).getReg(), OpType});
527   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
528                        Args);
529 }
530 
531 LegalizerHelper::LegalizeResult
532 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
533                        MachineInstr &MI) {
534   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
535   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
536 
537   SmallVector<CallLowering::ArgInfo, 3> Args;
538   // Add all the args, except for the last which is an imm denoting 'tail'.
539   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
540     Register Reg = MI.getOperand(i).getReg();
541 
542     // Need derive an IR type for call lowering.
543     LLT OpLLT = MRI.getType(Reg);
544     Type *OpTy = nullptr;
545     if (OpLLT.isPointer())
546       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
547     else
548       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
549     Args.push_back({Reg, OpTy});
550   }
551 
552   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
553   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
554   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
555   RTLIB::Libcall RTLibcall;
556   switch (ID) {
557   case Intrinsic::memcpy:
558     RTLibcall = RTLIB::MEMCPY;
559     break;
560   case Intrinsic::memset:
561     RTLibcall = RTLIB::MEMSET;
562     break;
563   case Intrinsic::memmove:
564     RTLibcall = RTLIB::MEMMOVE;
565     break;
566   default:
567     return LegalizerHelper::UnableToLegalize;
568   }
569   const char *Name = TLI.getLibcallName(RTLibcall);
570 
571   MIRBuilder.setInstrAndDebugLoc(MI);
572 
573   CallLowering::CallLoweringInfo Info;
574   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
575   Info.Callee = MachineOperand::CreateES(Name);
576   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
577   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
578                     isLibCallInTailPosition(MI);
579 
580   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
581   if (!CLI.lowerCall(MIRBuilder, Info))
582     return LegalizerHelper::UnableToLegalize;
583 
584   if (Info.LoweredTailCall) {
585     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
586     // We must have a return following the call (or debug insts) to get past
587     // isLibCallInTailPosition.
588     do {
589       MachineInstr *Next = MI.getNextNode();
590       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
591              "Expected instr following MI to be return or debug inst?");
592       // We lowered a tail call, so the call is now the return from the block.
593       // Delete the old return.
594       Next->eraseFromParent();
595     } while (MI.getNextNode());
596   }
597 
598   return LegalizerHelper::Legalized;
599 }
600 
601 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
602                                        Type *FromType) {
603   auto ToMVT = MVT::getVT(ToType);
604   auto FromMVT = MVT::getVT(FromType);
605 
606   switch (Opcode) {
607   case TargetOpcode::G_FPEXT:
608     return RTLIB::getFPEXT(FromMVT, ToMVT);
609   case TargetOpcode::G_FPTRUNC:
610     return RTLIB::getFPROUND(FromMVT, ToMVT);
611   case TargetOpcode::G_FPTOSI:
612     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
613   case TargetOpcode::G_FPTOUI:
614     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
615   case TargetOpcode::G_SITOFP:
616     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
617   case TargetOpcode::G_UITOFP:
618     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
619   }
620   llvm_unreachable("Unsupported libcall function");
621 }
622 
623 static LegalizerHelper::LegalizeResult
624 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
625                   Type *FromType) {
626   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
627   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
628                        {{MI.getOperand(1).getReg(), FromType}});
629 }
630 
631 LegalizerHelper::LegalizeResult
632 LegalizerHelper::libcall(MachineInstr &MI) {
633   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
634   unsigned Size = LLTy.getSizeInBits();
635   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
636 
637   switch (MI.getOpcode()) {
638   default:
639     return UnableToLegalize;
640   case TargetOpcode::G_SDIV:
641   case TargetOpcode::G_UDIV:
642   case TargetOpcode::G_SREM:
643   case TargetOpcode::G_UREM:
644   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
645     Type *HLTy = IntegerType::get(Ctx, Size);
646     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
647     if (Status != Legalized)
648       return Status;
649     break;
650   }
651   case TargetOpcode::G_FADD:
652   case TargetOpcode::G_FSUB:
653   case TargetOpcode::G_FMUL:
654   case TargetOpcode::G_FDIV:
655   case TargetOpcode::G_FMA:
656   case TargetOpcode::G_FPOW:
657   case TargetOpcode::G_FREM:
658   case TargetOpcode::G_FCOS:
659   case TargetOpcode::G_FSIN:
660   case TargetOpcode::G_FLOG10:
661   case TargetOpcode::G_FLOG:
662   case TargetOpcode::G_FLOG2:
663   case TargetOpcode::G_FEXP:
664   case TargetOpcode::G_FEXP2:
665   case TargetOpcode::G_FCEIL:
666   case TargetOpcode::G_FFLOOR:
667   case TargetOpcode::G_FMINNUM:
668   case TargetOpcode::G_FMAXNUM:
669   case TargetOpcode::G_FSQRT:
670   case TargetOpcode::G_FRINT:
671   case TargetOpcode::G_FNEARBYINT: {
672     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
673     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
674       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
675       return UnableToLegalize;
676     }
677     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
678     if (Status != Legalized)
679       return Status;
680     break;
681   }
682   case TargetOpcode::G_FPEXT:
683   case TargetOpcode::G_FPTRUNC: {
684     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
685     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
686     if (!FromTy || !ToTy)
687       return UnableToLegalize;
688     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
689     if (Status != Legalized)
690       return Status;
691     break;
692   }
693   case TargetOpcode::G_FPTOSI:
694   case TargetOpcode::G_FPTOUI: {
695     // FIXME: Support other types
696     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
697     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
698     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
699       return UnableToLegalize;
700     LegalizeResult Status = conversionLibcall(
701         MI, MIRBuilder,
702         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
703         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
704     if (Status != Legalized)
705       return Status;
706     break;
707   }
708   case TargetOpcode::G_SITOFP:
709   case TargetOpcode::G_UITOFP: {
710     // FIXME: Support other types
711     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
712     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
713     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
714       return UnableToLegalize;
715     LegalizeResult Status = conversionLibcall(
716         MI, MIRBuilder,
717         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
718         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
719     if (Status != Legalized)
720       return Status;
721     break;
722   }
723   }
724 
725   MI.eraseFromParent();
726   return Legalized;
727 }
728 
729 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
730                                                               unsigned TypeIdx,
731                                                               LLT NarrowTy) {
732   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
733   uint64_t NarrowSize = NarrowTy.getSizeInBits();
734 
735   switch (MI.getOpcode()) {
736   default:
737     return UnableToLegalize;
738   case TargetOpcode::G_IMPLICIT_DEF: {
739     Register DstReg = MI.getOperand(0).getReg();
740     LLT DstTy = MRI.getType(DstReg);
741 
742     // If SizeOp0 is not an exact multiple of NarrowSize, emit
743     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
744     // FIXME: Although this would also be legal for the general case, it causes
745     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
746     //  combines not being hit). This seems to be a problem related to the
747     //  artifact combiner.
748     if (SizeOp0 % NarrowSize != 0) {
749       LLT ImplicitTy = NarrowTy;
750       if (DstTy.isVector())
751         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
752 
753       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
754       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
755 
756       MI.eraseFromParent();
757       return Legalized;
758     }
759 
760     int NumParts = SizeOp0 / NarrowSize;
761 
762     SmallVector<Register, 2> DstRegs;
763     for (int i = 0; i < NumParts; ++i)
764       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
765 
766     if (DstTy.isVector())
767       MIRBuilder.buildBuildVector(DstReg, DstRegs);
768     else
769       MIRBuilder.buildMerge(DstReg, DstRegs);
770     MI.eraseFromParent();
771     return Legalized;
772   }
773   case TargetOpcode::G_CONSTANT: {
774     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
775     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
776     unsigned TotalSize = Ty.getSizeInBits();
777     unsigned NarrowSize = NarrowTy.getSizeInBits();
778     int NumParts = TotalSize / NarrowSize;
779 
780     SmallVector<Register, 4> PartRegs;
781     for (int I = 0; I != NumParts; ++I) {
782       unsigned Offset = I * NarrowSize;
783       auto K = MIRBuilder.buildConstant(NarrowTy,
784                                         Val.lshr(Offset).trunc(NarrowSize));
785       PartRegs.push_back(K.getReg(0));
786     }
787 
788     LLT LeftoverTy;
789     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
790     SmallVector<Register, 1> LeftoverRegs;
791     if (LeftoverBits != 0) {
792       LeftoverTy = LLT::scalar(LeftoverBits);
793       auto K = MIRBuilder.buildConstant(
794         LeftoverTy,
795         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
796       LeftoverRegs.push_back(K.getReg(0));
797     }
798 
799     insertParts(MI.getOperand(0).getReg(),
800                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
801 
802     MI.eraseFromParent();
803     return Legalized;
804   }
805   case TargetOpcode::G_SEXT:
806   case TargetOpcode::G_ZEXT:
807   case TargetOpcode::G_ANYEXT:
808     return narrowScalarExt(MI, TypeIdx, NarrowTy);
809   case TargetOpcode::G_TRUNC: {
810     if (TypeIdx != 1)
811       return UnableToLegalize;
812 
813     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
814     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
815       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
816       return UnableToLegalize;
817     }
818 
819     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
820     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
821     MI.eraseFromParent();
822     return Legalized;
823   }
824 
825   case TargetOpcode::G_FREEZE:
826     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
827 
828   case TargetOpcode::G_ADD: {
829     // FIXME: add support for when SizeOp0 isn't an exact multiple of
830     // NarrowSize.
831     if (SizeOp0 % NarrowSize != 0)
832       return UnableToLegalize;
833     // Expand in terms of carry-setting/consuming G_ADDE instructions.
834     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
835 
836     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
837     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
838     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
839 
840     Register CarryIn;
841     for (int i = 0; i < NumParts; ++i) {
842       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
843       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
844 
845       if (i == 0)
846         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
847       else {
848         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
849                               Src2Regs[i], CarryIn);
850       }
851 
852       DstRegs.push_back(DstReg);
853       CarryIn = CarryOut;
854     }
855     Register DstReg = MI.getOperand(0).getReg();
856     if(MRI.getType(DstReg).isVector())
857       MIRBuilder.buildBuildVector(DstReg, DstRegs);
858     else
859       MIRBuilder.buildMerge(DstReg, DstRegs);
860     MI.eraseFromParent();
861     return Legalized;
862   }
863   case TargetOpcode::G_SUB: {
864     // FIXME: add support for when SizeOp0 isn't an exact multiple of
865     // NarrowSize.
866     if (SizeOp0 % NarrowSize != 0)
867       return UnableToLegalize;
868 
869     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
870 
871     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
872     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
873     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
874 
875     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
876     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
877     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
878                           {Src1Regs[0], Src2Regs[0]});
879     DstRegs.push_back(DstReg);
880     Register BorrowIn = BorrowOut;
881     for (int i = 1; i < NumParts; ++i) {
882       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
883       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
884 
885       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
886                             {Src1Regs[i], Src2Regs[i], BorrowIn});
887 
888       DstRegs.push_back(DstReg);
889       BorrowIn = BorrowOut;
890     }
891     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
892     MI.eraseFromParent();
893     return Legalized;
894   }
895   case TargetOpcode::G_MUL:
896   case TargetOpcode::G_UMULH:
897     return narrowScalarMul(MI, NarrowTy);
898   case TargetOpcode::G_EXTRACT:
899     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
900   case TargetOpcode::G_INSERT:
901     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
902   case TargetOpcode::G_LOAD: {
903     const auto &MMO = **MI.memoperands_begin();
904     Register DstReg = MI.getOperand(0).getReg();
905     LLT DstTy = MRI.getType(DstReg);
906     if (DstTy.isVector())
907       return UnableToLegalize;
908 
909     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
910       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
911       auto &MMO = **MI.memoperands_begin();
912       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
913       MIRBuilder.buildAnyExt(DstReg, TmpReg);
914       MI.eraseFromParent();
915       return Legalized;
916     }
917 
918     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
919   }
920   case TargetOpcode::G_ZEXTLOAD:
921   case TargetOpcode::G_SEXTLOAD: {
922     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
923     Register DstReg = MI.getOperand(0).getReg();
924     Register PtrReg = MI.getOperand(1).getReg();
925 
926     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
927     auto &MMO = **MI.memoperands_begin();
928     if (MMO.getSizeInBits() == NarrowSize) {
929       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
930     } else {
931       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
932     }
933 
934     if (ZExt)
935       MIRBuilder.buildZExt(DstReg, TmpReg);
936     else
937       MIRBuilder.buildSExt(DstReg, TmpReg);
938 
939     MI.eraseFromParent();
940     return Legalized;
941   }
942   case TargetOpcode::G_STORE: {
943     const auto &MMO = **MI.memoperands_begin();
944 
945     Register SrcReg = MI.getOperand(0).getReg();
946     LLT SrcTy = MRI.getType(SrcReg);
947     if (SrcTy.isVector())
948       return UnableToLegalize;
949 
950     int NumParts = SizeOp0 / NarrowSize;
951     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
952     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
953     if (SrcTy.isVector() && LeftoverBits != 0)
954       return UnableToLegalize;
955 
956     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
957       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
958       auto &MMO = **MI.memoperands_begin();
959       MIRBuilder.buildTrunc(TmpReg, SrcReg);
960       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
961       MI.eraseFromParent();
962       return Legalized;
963     }
964 
965     return reduceLoadStoreWidth(MI, 0, NarrowTy);
966   }
967   case TargetOpcode::G_SELECT:
968     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
969   case TargetOpcode::G_AND:
970   case TargetOpcode::G_OR:
971   case TargetOpcode::G_XOR: {
972     // Legalize bitwise operation:
973     // A = BinOp<Ty> B, C
974     // into:
975     // B1, ..., BN = G_UNMERGE_VALUES B
976     // C1, ..., CN = G_UNMERGE_VALUES C
977     // A1 = BinOp<Ty/N> B1, C2
978     // ...
979     // AN = BinOp<Ty/N> BN, CN
980     // A = G_MERGE_VALUES A1, ..., AN
981     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
982   }
983   case TargetOpcode::G_SHL:
984   case TargetOpcode::G_LSHR:
985   case TargetOpcode::G_ASHR:
986     return narrowScalarShift(MI, TypeIdx, NarrowTy);
987   case TargetOpcode::G_CTLZ:
988   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
989   case TargetOpcode::G_CTTZ:
990   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
991   case TargetOpcode::G_CTPOP:
992     if (TypeIdx == 1)
993       switch (MI.getOpcode()) {
994       case TargetOpcode::G_CTLZ:
995       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
996         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
997       case TargetOpcode::G_CTTZ:
998       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
999         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1000       case TargetOpcode::G_CTPOP:
1001         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1002       default:
1003         return UnableToLegalize;
1004       }
1005 
1006     Observer.changingInstr(MI);
1007     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1008     Observer.changedInstr(MI);
1009     return Legalized;
1010   case TargetOpcode::G_INTTOPTR:
1011     if (TypeIdx != 1)
1012       return UnableToLegalize;
1013 
1014     Observer.changingInstr(MI);
1015     narrowScalarSrc(MI, NarrowTy, 1);
1016     Observer.changedInstr(MI);
1017     return Legalized;
1018   case TargetOpcode::G_PTRTOINT:
1019     if (TypeIdx != 0)
1020       return UnableToLegalize;
1021 
1022     Observer.changingInstr(MI);
1023     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1024     Observer.changedInstr(MI);
1025     return Legalized;
1026   case TargetOpcode::G_PHI: {
1027     unsigned NumParts = SizeOp0 / NarrowSize;
1028     SmallVector<Register, 2> DstRegs(NumParts);
1029     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1030     Observer.changingInstr(MI);
1031     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1032       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1033       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1034       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1035                    SrcRegs[i / 2]);
1036     }
1037     MachineBasicBlock &MBB = *MI.getParent();
1038     MIRBuilder.setInsertPt(MBB, MI);
1039     for (unsigned i = 0; i < NumParts; ++i) {
1040       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1041       MachineInstrBuilder MIB =
1042           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1043       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1044         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1045     }
1046     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1047     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1048     Observer.changedInstr(MI);
1049     MI.eraseFromParent();
1050     return Legalized;
1051   }
1052   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1053   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1054     if (TypeIdx != 2)
1055       return UnableToLegalize;
1056 
1057     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1058     Observer.changingInstr(MI);
1059     narrowScalarSrc(MI, NarrowTy, OpIdx);
1060     Observer.changedInstr(MI);
1061     return Legalized;
1062   }
1063   case TargetOpcode::G_ICMP: {
1064     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1065     if (NarrowSize * 2 != SrcSize)
1066       return UnableToLegalize;
1067 
1068     Observer.changingInstr(MI);
1069     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1070     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1071     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1072 
1073     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1074     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1075     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1076 
1077     CmpInst::Predicate Pred =
1078         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1079     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1080 
1081     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1082       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1083       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1084       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1085       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1086       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1087     } else {
1088       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1089       MachineInstrBuilder CmpHEQ =
1090           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1091       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1092           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1093       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1094     }
1095     Observer.changedInstr(MI);
1096     MI.eraseFromParent();
1097     return Legalized;
1098   }
1099   case TargetOpcode::G_SEXT_INREG: {
1100     if (TypeIdx != 0)
1101       return UnableToLegalize;
1102 
1103     int64_t SizeInBits = MI.getOperand(2).getImm();
1104 
1105     // So long as the new type has more bits than the bits we're extending we
1106     // don't need to break it apart.
1107     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1108       Observer.changingInstr(MI);
1109       // We don't lose any non-extension bits by truncating the src and
1110       // sign-extending the dst.
1111       MachineOperand &MO1 = MI.getOperand(1);
1112       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1113       MO1.setReg(TruncMIB.getReg(0));
1114 
1115       MachineOperand &MO2 = MI.getOperand(0);
1116       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1117       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1118       MIRBuilder.buildSExt(MO2, DstExt);
1119       MO2.setReg(DstExt);
1120       Observer.changedInstr(MI);
1121       return Legalized;
1122     }
1123 
1124     // Break it apart. Components below the extension point are unmodified. The
1125     // component containing the extension point becomes a narrower SEXT_INREG.
1126     // Components above it are ashr'd from the component containing the
1127     // extension point.
1128     if (SizeOp0 % NarrowSize != 0)
1129       return UnableToLegalize;
1130     int NumParts = SizeOp0 / NarrowSize;
1131 
1132     // List the registers where the destination will be scattered.
1133     SmallVector<Register, 2> DstRegs;
1134     // List the registers where the source will be split.
1135     SmallVector<Register, 2> SrcRegs;
1136 
1137     // Create all the temporary registers.
1138     for (int i = 0; i < NumParts; ++i) {
1139       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1140 
1141       SrcRegs.push_back(SrcReg);
1142     }
1143 
1144     // Explode the big arguments into smaller chunks.
1145     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1146 
1147     Register AshrCstReg =
1148         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1149             .getReg(0);
1150     Register FullExtensionReg = 0;
1151     Register PartialExtensionReg = 0;
1152 
1153     // Do the operation on each small part.
1154     for (int i = 0; i < NumParts; ++i) {
1155       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1156         DstRegs.push_back(SrcRegs[i]);
1157       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1158         assert(PartialExtensionReg &&
1159                "Expected to visit partial extension before full");
1160         if (FullExtensionReg) {
1161           DstRegs.push_back(FullExtensionReg);
1162           continue;
1163         }
1164         DstRegs.push_back(
1165             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1166                 .getReg(0));
1167         FullExtensionReg = DstRegs.back();
1168       } else {
1169         DstRegs.push_back(
1170             MIRBuilder
1171                 .buildInstr(
1172                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1173                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1174                 .getReg(0));
1175         PartialExtensionReg = DstRegs.back();
1176       }
1177     }
1178 
1179     // Gather the destination registers into the final destination.
1180     Register DstReg = MI.getOperand(0).getReg();
1181     MIRBuilder.buildMerge(DstReg, DstRegs);
1182     MI.eraseFromParent();
1183     return Legalized;
1184   }
1185   case TargetOpcode::G_BSWAP:
1186   case TargetOpcode::G_BITREVERSE: {
1187     if (SizeOp0 % NarrowSize != 0)
1188       return UnableToLegalize;
1189 
1190     Observer.changingInstr(MI);
1191     SmallVector<Register, 2> SrcRegs, DstRegs;
1192     unsigned NumParts = SizeOp0 / NarrowSize;
1193     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1194 
1195     for (unsigned i = 0; i < NumParts; ++i) {
1196       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1197                                            {SrcRegs[NumParts - 1 - i]});
1198       DstRegs.push_back(DstPart.getReg(0));
1199     }
1200 
1201     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1202 
1203     Observer.changedInstr(MI);
1204     MI.eraseFromParent();
1205     return Legalized;
1206   }
1207   case TargetOpcode::G_PTRMASK: {
1208     if (TypeIdx != 1)
1209       return UnableToLegalize;
1210     Observer.changingInstr(MI);
1211     narrowScalarSrc(MI, NarrowTy, 2);
1212     Observer.changedInstr(MI);
1213     return Legalized;
1214   }
1215   }
1216 }
1217 
1218 Register LegalizerHelper::coerceToScalar(Register Val) {
1219   LLT Ty = MRI.getType(Val);
1220   if (Ty.isScalar())
1221     return Val;
1222 
1223   const DataLayout &DL = MIRBuilder.getDataLayout();
1224   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1225   if (Ty.isPointer()) {
1226     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1227       return Register();
1228     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1229   }
1230 
1231   Register NewVal = Val;
1232 
1233   assert(Ty.isVector());
1234   LLT EltTy = Ty.getElementType();
1235   if (EltTy.isPointer())
1236     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1237   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1238 }
1239 
1240 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1241                                      unsigned OpIdx, unsigned ExtOpcode) {
1242   MachineOperand &MO = MI.getOperand(OpIdx);
1243   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1244   MO.setReg(ExtB.getReg(0));
1245 }
1246 
1247 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1248                                       unsigned OpIdx) {
1249   MachineOperand &MO = MI.getOperand(OpIdx);
1250   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1251   MO.setReg(ExtB.getReg(0));
1252 }
1253 
1254 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1255                                      unsigned OpIdx, unsigned TruncOpcode) {
1256   MachineOperand &MO = MI.getOperand(OpIdx);
1257   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1258   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1259   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1260   MO.setReg(DstExt);
1261 }
1262 
1263 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1264                                       unsigned OpIdx, unsigned ExtOpcode) {
1265   MachineOperand &MO = MI.getOperand(OpIdx);
1266   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1267   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1268   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1269   MO.setReg(DstTrunc);
1270 }
1271 
1272 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1273                                             unsigned OpIdx) {
1274   MachineOperand &MO = MI.getOperand(OpIdx);
1275   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1276   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1277   MIRBuilder.buildExtract(MO, DstExt, 0);
1278   MO.setReg(DstExt);
1279 }
1280 
1281 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1282                                             unsigned OpIdx) {
1283   MachineOperand &MO = MI.getOperand(OpIdx);
1284 
1285   LLT OldTy = MRI.getType(MO.getReg());
1286   unsigned OldElts = OldTy.getNumElements();
1287   unsigned NewElts = MoreTy.getNumElements();
1288 
1289   unsigned NumParts = NewElts / OldElts;
1290 
1291   // Use concat_vectors if the result is a multiple of the number of elements.
1292   if (NumParts * OldElts == NewElts) {
1293     SmallVector<Register, 8> Parts;
1294     Parts.push_back(MO.getReg());
1295 
1296     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1297     for (unsigned I = 1; I != NumParts; ++I)
1298       Parts.push_back(ImpDef);
1299 
1300     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1301     MO.setReg(Concat.getReg(0));
1302     return;
1303   }
1304 
1305   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1306   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1307   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1308   MO.setReg(MoreReg);
1309 }
1310 
1311 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1312   MachineOperand &Op = MI.getOperand(OpIdx);
1313   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1314 }
1315 
1316 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1317   MachineOperand &MO = MI.getOperand(OpIdx);
1318   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1319   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1320   MIRBuilder.buildBitcast(MO, CastDst);
1321   MO.setReg(CastDst);
1322 }
1323 
1324 LegalizerHelper::LegalizeResult
1325 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1326                                         LLT WideTy) {
1327   if (TypeIdx != 1)
1328     return UnableToLegalize;
1329 
1330   Register DstReg = MI.getOperand(0).getReg();
1331   LLT DstTy = MRI.getType(DstReg);
1332   if (DstTy.isVector())
1333     return UnableToLegalize;
1334 
1335   Register Src1 = MI.getOperand(1).getReg();
1336   LLT SrcTy = MRI.getType(Src1);
1337   const int DstSize = DstTy.getSizeInBits();
1338   const int SrcSize = SrcTy.getSizeInBits();
1339   const int WideSize = WideTy.getSizeInBits();
1340   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1341 
1342   unsigned NumOps = MI.getNumOperands();
1343   unsigned NumSrc = MI.getNumOperands() - 1;
1344   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1345 
1346   if (WideSize >= DstSize) {
1347     // Directly pack the bits in the target type.
1348     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1349 
1350     for (unsigned I = 2; I != NumOps; ++I) {
1351       const unsigned Offset = (I - 1) * PartSize;
1352 
1353       Register SrcReg = MI.getOperand(I).getReg();
1354       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1355 
1356       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1357 
1358       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1359         MRI.createGenericVirtualRegister(WideTy);
1360 
1361       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1362       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1363       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1364       ResultReg = NextResult;
1365     }
1366 
1367     if (WideSize > DstSize)
1368       MIRBuilder.buildTrunc(DstReg, ResultReg);
1369     else if (DstTy.isPointer())
1370       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1371 
1372     MI.eraseFromParent();
1373     return Legalized;
1374   }
1375 
1376   // Unmerge the original values to the GCD type, and recombine to the next
1377   // multiple greater than the original type.
1378   //
1379   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1380   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1381   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1382   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1383   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1384   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1385   // %12:_(s12) = G_MERGE_VALUES %10, %11
1386   //
1387   // Padding with undef if necessary:
1388   //
1389   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1390   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1391   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1392   // %7:_(s2) = G_IMPLICIT_DEF
1393   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1394   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1395   // %10:_(s12) = G_MERGE_VALUES %8, %9
1396 
1397   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1398   LLT GCDTy = LLT::scalar(GCD);
1399 
1400   SmallVector<Register, 8> Parts;
1401   SmallVector<Register, 8> NewMergeRegs;
1402   SmallVector<Register, 8> Unmerges;
1403   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1404 
1405   // Decompose the original operands if they don't evenly divide.
1406   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1407     Register SrcReg = MI.getOperand(I).getReg();
1408     if (GCD == SrcSize) {
1409       Unmerges.push_back(SrcReg);
1410     } else {
1411       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1412       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1413         Unmerges.push_back(Unmerge.getReg(J));
1414     }
1415   }
1416 
1417   // Pad with undef to the next size that is a multiple of the requested size.
1418   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1419     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1420     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1421       Unmerges.push_back(UndefReg);
1422   }
1423 
1424   const int PartsPerGCD = WideSize / GCD;
1425 
1426   // Build merges of each piece.
1427   ArrayRef<Register> Slicer(Unmerges);
1428   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1429     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1430     NewMergeRegs.push_back(Merge.getReg(0));
1431   }
1432 
1433   // A truncate may be necessary if the requested type doesn't evenly divide the
1434   // original result type.
1435   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1436     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1437   } else {
1438     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1439     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1440   }
1441 
1442   MI.eraseFromParent();
1443   return Legalized;
1444 }
1445 
1446 LegalizerHelper::LegalizeResult
1447 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1448                                           LLT WideTy) {
1449   if (TypeIdx != 0)
1450     return UnableToLegalize;
1451 
1452   int NumDst = MI.getNumOperands() - 1;
1453   Register SrcReg = MI.getOperand(NumDst).getReg();
1454   LLT SrcTy = MRI.getType(SrcReg);
1455   if (SrcTy.isVector())
1456     return UnableToLegalize;
1457 
1458   Register Dst0Reg = MI.getOperand(0).getReg();
1459   LLT DstTy = MRI.getType(Dst0Reg);
1460   if (!DstTy.isScalar())
1461     return UnableToLegalize;
1462 
1463   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1464     if (SrcTy.isPointer()) {
1465       const DataLayout &DL = MIRBuilder.getDataLayout();
1466       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1467         LLVM_DEBUG(
1468             dbgs() << "Not casting non-integral address space integer\n");
1469         return UnableToLegalize;
1470       }
1471 
1472       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1473       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1474     }
1475 
1476     // Widen SrcTy to WideTy. This does not affect the result, but since the
1477     // user requested this size, it is probably better handled than SrcTy and
1478     // should reduce the total number of legalization artifacts
1479     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1480       SrcTy = WideTy;
1481       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1482     }
1483 
1484     // Theres no unmerge type to target. Directly extract the bits from the
1485     // source type
1486     unsigned DstSize = DstTy.getSizeInBits();
1487 
1488     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1489     for (int I = 1; I != NumDst; ++I) {
1490       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1491       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1492       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1493     }
1494 
1495     MI.eraseFromParent();
1496     return Legalized;
1497   }
1498 
1499   // Extend the source to a wider type.
1500   LLT LCMTy = getLCMType(SrcTy, WideTy);
1501 
1502   Register WideSrc = SrcReg;
1503   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1504     // TODO: If this is an integral address space, cast to integer and anyext.
1505     if (SrcTy.isPointer()) {
1506       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1507       return UnableToLegalize;
1508     }
1509 
1510     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1511   }
1512 
1513   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1514 
1515   // Create a sequence of unmerges to the original results. since we may have
1516   // widened the source, we will need to pad the results with dead defs to cover
1517   // the source register.
1518   // e.g. widen s16 to s32:
1519   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1520   //
1521   // =>
1522   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1523   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1524   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1525   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1526 
1527   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1528   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1529 
1530   for (int I = 0; I != NumUnmerge; ++I) {
1531     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1532 
1533     for (int J = 0; J != PartsPerUnmerge; ++J) {
1534       int Idx = I * PartsPerUnmerge + J;
1535       if (Idx < NumDst)
1536         MIB.addDef(MI.getOperand(Idx).getReg());
1537       else {
1538         // Create dead def for excess components.
1539         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1540       }
1541     }
1542 
1543     MIB.addUse(Unmerge.getReg(I));
1544   }
1545 
1546   MI.eraseFromParent();
1547   return Legalized;
1548 }
1549 
1550 LegalizerHelper::LegalizeResult
1551 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1552                                     LLT WideTy) {
1553   Register DstReg = MI.getOperand(0).getReg();
1554   Register SrcReg = MI.getOperand(1).getReg();
1555   LLT SrcTy = MRI.getType(SrcReg);
1556 
1557   LLT DstTy = MRI.getType(DstReg);
1558   unsigned Offset = MI.getOperand(2).getImm();
1559 
1560   if (TypeIdx == 0) {
1561     if (SrcTy.isVector() || DstTy.isVector())
1562       return UnableToLegalize;
1563 
1564     SrcOp Src(SrcReg);
1565     if (SrcTy.isPointer()) {
1566       // Extracts from pointers can be handled only if they are really just
1567       // simple integers.
1568       const DataLayout &DL = MIRBuilder.getDataLayout();
1569       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1570         return UnableToLegalize;
1571 
1572       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1573       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1574       SrcTy = SrcAsIntTy;
1575     }
1576 
1577     if (DstTy.isPointer())
1578       return UnableToLegalize;
1579 
1580     if (Offset == 0) {
1581       // Avoid a shift in the degenerate case.
1582       MIRBuilder.buildTrunc(DstReg,
1583                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1584       MI.eraseFromParent();
1585       return Legalized;
1586     }
1587 
1588     // Do a shift in the source type.
1589     LLT ShiftTy = SrcTy;
1590     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1591       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1592       ShiftTy = WideTy;
1593     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1594       return UnableToLegalize;
1595 
1596     auto LShr = MIRBuilder.buildLShr(
1597       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1598     MIRBuilder.buildTrunc(DstReg, LShr);
1599     MI.eraseFromParent();
1600     return Legalized;
1601   }
1602 
1603   if (SrcTy.isScalar()) {
1604     Observer.changingInstr(MI);
1605     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1606     Observer.changedInstr(MI);
1607     return Legalized;
1608   }
1609 
1610   if (!SrcTy.isVector())
1611     return UnableToLegalize;
1612 
1613   if (DstTy != SrcTy.getElementType())
1614     return UnableToLegalize;
1615 
1616   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1617     return UnableToLegalize;
1618 
1619   Observer.changingInstr(MI);
1620   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1621 
1622   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1623                           Offset);
1624   widenScalarDst(MI, WideTy.getScalarType(), 0);
1625   Observer.changedInstr(MI);
1626   return Legalized;
1627 }
1628 
1629 LegalizerHelper::LegalizeResult
1630 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1631                                    LLT WideTy) {
1632   if (TypeIdx != 0)
1633     return UnableToLegalize;
1634   Observer.changingInstr(MI);
1635   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1636   widenScalarDst(MI, WideTy);
1637   Observer.changedInstr(MI);
1638   return Legalized;
1639 }
1640 
1641 LegalizerHelper::LegalizeResult
1642 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1643   switch (MI.getOpcode()) {
1644   default:
1645     return UnableToLegalize;
1646   case TargetOpcode::G_EXTRACT:
1647     return widenScalarExtract(MI, TypeIdx, WideTy);
1648   case TargetOpcode::G_INSERT:
1649     return widenScalarInsert(MI, TypeIdx, WideTy);
1650   case TargetOpcode::G_MERGE_VALUES:
1651     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1652   case TargetOpcode::G_UNMERGE_VALUES:
1653     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1654   case TargetOpcode::G_UADDO:
1655   case TargetOpcode::G_USUBO: {
1656     if (TypeIdx == 1)
1657       return UnableToLegalize; // TODO
1658     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1659     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1660     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1661                           ? TargetOpcode::G_ADD
1662                           : TargetOpcode::G_SUB;
1663     // Do the arithmetic in the larger type.
1664     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1665     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1666     APInt Mask =
1667         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1668     auto AndOp = MIRBuilder.buildAnd(
1669         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1670     // There is no overflow if the AndOp is the same as NewOp.
1671     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1672     // Now trunc the NewOp to the original result.
1673     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1674     MI.eraseFromParent();
1675     return Legalized;
1676   }
1677   case TargetOpcode::G_CTTZ:
1678   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1679   case TargetOpcode::G_CTLZ:
1680   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1681   case TargetOpcode::G_CTPOP: {
1682     if (TypeIdx == 0) {
1683       Observer.changingInstr(MI);
1684       widenScalarDst(MI, WideTy, 0);
1685       Observer.changedInstr(MI);
1686       return Legalized;
1687     }
1688 
1689     Register SrcReg = MI.getOperand(1).getReg();
1690 
1691     // First ZEXT the input.
1692     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1693     LLT CurTy = MRI.getType(SrcReg);
1694     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1695       // The count is the same in the larger type except if the original
1696       // value was zero.  This can be handled by setting the bit just off
1697       // the top of the original type.
1698       auto TopBit =
1699           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1700       MIBSrc = MIRBuilder.buildOr(
1701         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1702     }
1703 
1704     // Perform the operation at the larger size.
1705     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1706     // This is already the correct result for CTPOP and CTTZs
1707     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1708         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1709       // The correct result is NewOp - (Difference in widety and current ty).
1710       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1711       MIBNewOp = MIRBuilder.buildSub(
1712           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1713     }
1714 
1715     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1716     MI.eraseFromParent();
1717     return Legalized;
1718   }
1719   case TargetOpcode::G_BSWAP: {
1720     Observer.changingInstr(MI);
1721     Register DstReg = MI.getOperand(0).getReg();
1722 
1723     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1724     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1725     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1726     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1727 
1728     MI.getOperand(0).setReg(DstExt);
1729 
1730     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1731 
1732     LLT Ty = MRI.getType(DstReg);
1733     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1734     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1735     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1736 
1737     MIRBuilder.buildTrunc(DstReg, ShrReg);
1738     Observer.changedInstr(MI);
1739     return Legalized;
1740   }
1741   case TargetOpcode::G_BITREVERSE: {
1742     Observer.changingInstr(MI);
1743 
1744     Register DstReg = MI.getOperand(0).getReg();
1745     LLT Ty = MRI.getType(DstReg);
1746     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1747 
1748     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1749     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1750     MI.getOperand(0).setReg(DstExt);
1751     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1752 
1753     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1754     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1755     MIRBuilder.buildTrunc(DstReg, Shift);
1756     Observer.changedInstr(MI);
1757     return Legalized;
1758   }
1759   case TargetOpcode::G_FREEZE:
1760     Observer.changingInstr(MI);
1761     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1762     widenScalarDst(MI, WideTy);
1763     Observer.changedInstr(MI);
1764     return Legalized;
1765 
1766   case TargetOpcode::G_ADD:
1767   case TargetOpcode::G_AND:
1768   case TargetOpcode::G_MUL:
1769   case TargetOpcode::G_OR:
1770   case TargetOpcode::G_XOR:
1771   case TargetOpcode::G_SUB:
1772     // Perform operation at larger width (any extension is fines here, high bits
1773     // don't affect the result) and then truncate the result back to the
1774     // original type.
1775     Observer.changingInstr(MI);
1776     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1777     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1778     widenScalarDst(MI, WideTy);
1779     Observer.changedInstr(MI);
1780     return Legalized;
1781 
1782   case TargetOpcode::G_SHL:
1783     Observer.changingInstr(MI);
1784 
1785     if (TypeIdx == 0) {
1786       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1787       widenScalarDst(MI, WideTy);
1788     } else {
1789       assert(TypeIdx == 1);
1790       // The "number of bits to shift" operand must preserve its value as an
1791       // unsigned integer:
1792       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1793     }
1794 
1795     Observer.changedInstr(MI);
1796     return Legalized;
1797 
1798   case TargetOpcode::G_SDIV:
1799   case TargetOpcode::G_SREM:
1800   case TargetOpcode::G_SMIN:
1801   case TargetOpcode::G_SMAX:
1802     Observer.changingInstr(MI);
1803     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1804     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1805     widenScalarDst(MI, WideTy);
1806     Observer.changedInstr(MI);
1807     return Legalized;
1808 
1809   case TargetOpcode::G_ASHR:
1810   case TargetOpcode::G_LSHR:
1811     Observer.changingInstr(MI);
1812 
1813     if (TypeIdx == 0) {
1814       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1815         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1816 
1817       widenScalarSrc(MI, WideTy, 1, CvtOp);
1818       widenScalarDst(MI, WideTy);
1819     } else {
1820       assert(TypeIdx == 1);
1821       // The "number of bits to shift" operand must preserve its value as an
1822       // unsigned integer:
1823       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1824     }
1825 
1826     Observer.changedInstr(MI);
1827     return Legalized;
1828   case TargetOpcode::G_UDIV:
1829   case TargetOpcode::G_UREM:
1830   case TargetOpcode::G_UMIN:
1831   case TargetOpcode::G_UMAX:
1832     Observer.changingInstr(MI);
1833     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1834     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1835     widenScalarDst(MI, WideTy);
1836     Observer.changedInstr(MI);
1837     return Legalized;
1838 
1839   case TargetOpcode::G_SELECT:
1840     Observer.changingInstr(MI);
1841     if (TypeIdx == 0) {
1842       // Perform operation at larger width (any extension is fine here, high
1843       // bits don't affect the result) and then truncate the result back to the
1844       // original type.
1845       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1846       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1847       widenScalarDst(MI, WideTy);
1848     } else {
1849       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1850       // Explicit extension is required here since high bits affect the result.
1851       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1852     }
1853     Observer.changedInstr(MI);
1854     return Legalized;
1855 
1856   case TargetOpcode::G_FPTOSI:
1857   case TargetOpcode::G_FPTOUI:
1858     Observer.changingInstr(MI);
1859 
1860     if (TypeIdx == 0)
1861       widenScalarDst(MI, WideTy);
1862     else
1863       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1864 
1865     Observer.changedInstr(MI);
1866     return Legalized;
1867   case TargetOpcode::G_SITOFP:
1868     if (TypeIdx != 1)
1869       return UnableToLegalize;
1870     Observer.changingInstr(MI);
1871     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1872     Observer.changedInstr(MI);
1873     return Legalized;
1874 
1875   case TargetOpcode::G_UITOFP:
1876     if (TypeIdx != 1)
1877       return UnableToLegalize;
1878     Observer.changingInstr(MI);
1879     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1880     Observer.changedInstr(MI);
1881     return Legalized;
1882 
1883   case TargetOpcode::G_LOAD:
1884   case TargetOpcode::G_SEXTLOAD:
1885   case TargetOpcode::G_ZEXTLOAD:
1886     Observer.changingInstr(MI);
1887     widenScalarDst(MI, WideTy);
1888     Observer.changedInstr(MI);
1889     return Legalized;
1890 
1891   case TargetOpcode::G_STORE: {
1892     if (TypeIdx != 0)
1893       return UnableToLegalize;
1894 
1895     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1896     if (!isPowerOf2_32(Ty.getSizeInBits()))
1897       return UnableToLegalize;
1898 
1899     Observer.changingInstr(MI);
1900 
1901     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1902       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1903     widenScalarSrc(MI, WideTy, 0, ExtType);
1904 
1905     Observer.changedInstr(MI);
1906     return Legalized;
1907   }
1908   case TargetOpcode::G_CONSTANT: {
1909     MachineOperand &SrcMO = MI.getOperand(1);
1910     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1911     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1912         MRI.getType(MI.getOperand(0).getReg()));
1913     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1914             ExtOpc == TargetOpcode::G_ANYEXT) &&
1915            "Illegal Extend");
1916     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1917     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1918                            ? SrcVal.sext(WideTy.getSizeInBits())
1919                            : SrcVal.zext(WideTy.getSizeInBits());
1920     Observer.changingInstr(MI);
1921     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1922 
1923     widenScalarDst(MI, WideTy);
1924     Observer.changedInstr(MI);
1925     return Legalized;
1926   }
1927   case TargetOpcode::G_FCONSTANT: {
1928     MachineOperand &SrcMO = MI.getOperand(1);
1929     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1930     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1931     bool LosesInfo;
1932     switch (WideTy.getSizeInBits()) {
1933     case 32:
1934       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1935                   &LosesInfo);
1936       break;
1937     case 64:
1938       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1939                   &LosesInfo);
1940       break;
1941     default:
1942       return UnableToLegalize;
1943     }
1944 
1945     assert(!LosesInfo && "extend should always be lossless");
1946 
1947     Observer.changingInstr(MI);
1948     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1949 
1950     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1951     Observer.changedInstr(MI);
1952     return Legalized;
1953   }
1954   case TargetOpcode::G_IMPLICIT_DEF: {
1955     Observer.changingInstr(MI);
1956     widenScalarDst(MI, WideTy);
1957     Observer.changedInstr(MI);
1958     return Legalized;
1959   }
1960   case TargetOpcode::G_BRCOND:
1961     Observer.changingInstr(MI);
1962     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1963     Observer.changedInstr(MI);
1964     return Legalized;
1965 
1966   case TargetOpcode::G_FCMP:
1967     Observer.changingInstr(MI);
1968     if (TypeIdx == 0)
1969       widenScalarDst(MI, WideTy);
1970     else {
1971       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1972       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1973     }
1974     Observer.changedInstr(MI);
1975     return Legalized;
1976 
1977   case TargetOpcode::G_ICMP:
1978     Observer.changingInstr(MI);
1979     if (TypeIdx == 0)
1980       widenScalarDst(MI, WideTy);
1981     else {
1982       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1983                                MI.getOperand(1).getPredicate()))
1984                                ? TargetOpcode::G_SEXT
1985                                : TargetOpcode::G_ZEXT;
1986       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1987       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1988     }
1989     Observer.changedInstr(MI);
1990     return Legalized;
1991 
1992   case TargetOpcode::G_PTR_ADD:
1993     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1994     Observer.changingInstr(MI);
1995     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1996     Observer.changedInstr(MI);
1997     return Legalized;
1998 
1999   case TargetOpcode::G_PHI: {
2000     assert(TypeIdx == 0 && "Expecting only Idx 0");
2001 
2002     Observer.changingInstr(MI);
2003     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2004       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2005       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2006       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2007     }
2008 
2009     MachineBasicBlock &MBB = *MI.getParent();
2010     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2011     widenScalarDst(MI, WideTy);
2012     Observer.changedInstr(MI);
2013     return Legalized;
2014   }
2015   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2016     if (TypeIdx == 0) {
2017       Register VecReg = MI.getOperand(1).getReg();
2018       LLT VecTy = MRI.getType(VecReg);
2019       Observer.changingInstr(MI);
2020 
2021       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2022                                      WideTy.getSizeInBits()),
2023                      1, TargetOpcode::G_SEXT);
2024 
2025       widenScalarDst(MI, WideTy, 0);
2026       Observer.changedInstr(MI);
2027       return Legalized;
2028     }
2029 
2030     if (TypeIdx != 2)
2031       return UnableToLegalize;
2032     Observer.changingInstr(MI);
2033     // TODO: Probably should be zext
2034     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2035     Observer.changedInstr(MI);
2036     return Legalized;
2037   }
2038   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2039     if (TypeIdx == 1) {
2040       Observer.changingInstr(MI);
2041 
2042       Register VecReg = MI.getOperand(1).getReg();
2043       LLT VecTy = MRI.getType(VecReg);
2044       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2045 
2046       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2047       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2048       widenScalarDst(MI, WideVecTy, 0);
2049       Observer.changedInstr(MI);
2050       return Legalized;
2051     }
2052 
2053     if (TypeIdx == 2) {
2054       Observer.changingInstr(MI);
2055       // TODO: Probably should be zext
2056       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2057       Observer.changedInstr(MI);
2058       return Legalized;
2059     }
2060 
2061     return UnableToLegalize;
2062   }
2063   case TargetOpcode::G_FADD:
2064   case TargetOpcode::G_FMUL:
2065   case TargetOpcode::G_FSUB:
2066   case TargetOpcode::G_FMA:
2067   case TargetOpcode::G_FMAD:
2068   case TargetOpcode::G_FNEG:
2069   case TargetOpcode::G_FABS:
2070   case TargetOpcode::G_FCANONICALIZE:
2071   case TargetOpcode::G_FMINNUM:
2072   case TargetOpcode::G_FMAXNUM:
2073   case TargetOpcode::G_FMINNUM_IEEE:
2074   case TargetOpcode::G_FMAXNUM_IEEE:
2075   case TargetOpcode::G_FMINIMUM:
2076   case TargetOpcode::G_FMAXIMUM:
2077   case TargetOpcode::G_FDIV:
2078   case TargetOpcode::G_FREM:
2079   case TargetOpcode::G_FCEIL:
2080   case TargetOpcode::G_FFLOOR:
2081   case TargetOpcode::G_FCOS:
2082   case TargetOpcode::G_FSIN:
2083   case TargetOpcode::G_FLOG10:
2084   case TargetOpcode::G_FLOG:
2085   case TargetOpcode::G_FLOG2:
2086   case TargetOpcode::G_FRINT:
2087   case TargetOpcode::G_FNEARBYINT:
2088   case TargetOpcode::G_FSQRT:
2089   case TargetOpcode::G_FEXP:
2090   case TargetOpcode::G_FEXP2:
2091   case TargetOpcode::G_FPOW:
2092   case TargetOpcode::G_INTRINSIC_TRUNC:
2093   case TargetOpcode::G_INTRINSIC_ROUND:
2094     assert(TypeIdx == 0);
2095     Observer.changingInstr(MI);
2096 
2097     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2098       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2099 
2100     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2101     Observer.changedInstr(MI);
2102     return Legalized;
2103   case TargetOpcode::G_INTTOPTR:
2104     if (TypeIdx != 1)
2105       return UnableToLegalize;
2106 
2107     Observer.changingInstr(MI);
2108     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2109     Observer.changedInstr(MI);
2110     return Legalized;
2111   case TargetOpcode::G_PTRTOINT:
2112     if (TypeIdx != 0)
2113       return UnableToLegalize;
2114 
2115     Observer.changingInstr(MI);
2116     widenScalarDst(MI, WideTy, 0);
2117     Observer.changedInstr(MI);
2118     return Legalized;
2119   case TargetOpcode::G_BUILD_VECTOR: {
2120     Observer.changingInstr(MI);
2121 
2122     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2123     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2124       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2125 
2126     // Avoid changing the result vector type if the source element type was
2127     // requested.
2128     if (TypeIdx == 1) {
2129       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2130       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2131     } else {
2132       widenScalarDst(MI, WideTy, 0);
2133     }
2134 
2135     Observer.changedInstr(MI);
2136     return Legalized;
2137   }
2138   case TargetOpcode::G_SEXT_INREG:
2139     if (TypeIdx != 0)
2140       return UnableToLegalize;
2141 
2142     Observer.changingInstr(MI);
2143     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2144     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2145     Observer.changedInstr(MI);
2146     return Legalized;
2147   case TargetOpcode::G_PTRMASK: {
2148     if (TypeIdx != 1)
2149       return UnableToLegalize;
2150     Observer.changingInstr(MI);
2151     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2152     Observer.changedInstr(MI);
2153     return Legalized;
2154   }
2155   }
2156 }
2157 
2158 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2159                              MachineIRBuilder &B, Register Src, LLT Ty) {
2160   auto Unmerge = B.buildUnmerge(Ty, Src);
2161   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2162     Pieces.push_back(Unmerge.getReg(I));
2163 }
2164 
2165 LegalizerHelper::LegalizeResult
2166 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2167   Register Dst = MI.getOperand(0).getReg();
2168   Register Src = MI.getOperand(1).getReg();
2169   LLT DstTy = MRI.getType(Dst);
2170   LLT SrcTy = MRI.getType(Src);
2171 
2172   if (SrcTy.isVector()) {
2173     LLT SrcEltTy = SrcTy.getElementType();
2174     SmallVector<Register, 8> SrcRegs;
2175 
2176     if (DstTy.isVector()) {
2177       int NumDstElt = DstTy.getNumElements();
2178       int NumSrcElt = SrcTy.getNumElements();
2179 
2180       LLT DstEltTy = DstTy.getElementType();
2181       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2182       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2183 
2184       // If there's an element size mismatch, insert intermediate casts to match
2185       // the result element type.
2186       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2187         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2188         //
2189         // =>
2190         //
2191         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2192         // %3:_(<2 x s8>) = G_BITCAST %2
2193         // %4:_(<2 x s8>) = G_BITCAST %3
2194         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2195         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2196         SrcPartTy = SrcEltTy;
2197       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2198         //
2199         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2200         //
2201         // =>
2202         //
2203         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2204         // %3:_(s16) = G_BITCAST %2
2205         // %4:_(s16) = G_BITCAST %3
2206         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2207         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2208         DstCastTy = DstEltTy;
2209       }
2210 
2211       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2212       for (Register &SrcReg : SrcRegs)
2213         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2214     } else
2215       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2216 
2217     MIRBuilder.buildMerge(Dst, SrcRegs);
2218     MI.eraseFromParent();
2219     return Legalized;
2220   }
2221 
2222   if (DstTy.isVector()) {
2223     SmallVector<Register, 8> SrcRegs;
2224     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2225     MIRBuilder.buildMerge(Dst, SrcRegs);
2226     MI.eraseFromParent();
2227     return Legalized;
2228   }
2229 
2230   return UnableToLegalize;
2231 }
2232 
2233 LegalizerHelper::LegalizeResult
2234 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2235   switch (MI.getOpcode()) {
2236   case TargetOpcode::G_LOAD: {
2237     if (TypeIdx != 0)
2238       return UnableToLegalize;
2239 
2240     Observer.changingInstr(MI);
2241     bitcastDst(MI, CastTy, 0);
2242     Observer.changedInstr(MI);
2243     return Legalized;
2244   }
2245   case TargetOpcode::G_STORE: {
2246     if (TypeIdx != 0)
2247       return UnableToLegalize;
2248 
2249     Observer.changingInstr(MI);
2250     bitcastSrc(MI, CastTy, 0);
2251     Observer.changedInstr(MI);
2252     return Legalized;
2253   }
2254   case TargetOpcode::G_SELECT: {
2255     if (TypeIdx != 0)
2256       return UnableToLegalize;
2257 
2258     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2259       LLVM_DEBUG(
2260           dbgs() << "bitcast action not implemented for vector select\n");
2261       return UnableToLegalize;
2262     }
2263 
2264     Observer.changingInstr(MI);
2265     bitcastSrc(MI, CastTy, 2);
2266     bitcastSrc(MI, CastTy, 3);
2267     bitcastDst(MI, CastTy, 0);
2268     Observer.changedInstr(MI);
2269     return Legalized;
2270   }
2271   case TargetOpcode::G_AND:
2272   case TargetOpcode::G_OR:
2273   case TargetOpcode::G_XOR: {
2274     Observer.changingInstr(MI);
2275     bitcastSrc(MI, CastTy, 1);
2276     bitcastSrc(MI, CastTy, 2);
2277     bitcastDst(MI, CastTy, 0);
2278     Observer.changedInstr(MI);
2279     return Legalized;
2280   }
2281   default:
2282     return UnableToLegalize;
2283   }
2284 }
2285 
2286 LegalizerHelper::LegalizeResult
2287 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2288   using namespace TargetOpcode;
2289 
2290   switch(MI.getOpcode()) {
2291   default:
2292     return UnableToLegalize;
2293   case TargetOpcode::G_BITCAST:
2294     return lowerBitcast(MI);
2295   case TargetOpcode::G_SREM:
2296   case TargetOpcode::G_UREM: {
2297     auto Quot =
2298         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2299                               {MI.getOperand(1), MI.getOperand(2)});
2300 
2301     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2302     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2303     MI.eraseFromParent();
2304     return Legalized;
2305   }
2306   case TargetOpcode::G_SADDO:
2307   case TargetOpcode::G_SSUBO:
2308     return lowerSADDO_SSUBO(MI);
2309   case TargetOpcode::G_SMULO:
2310   case TargetOpcode::G_UMULO: {
2311     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2312     // result.
2313     Register Res = MI.getOperand(0).getReg();
2314     Register Overflow = MI.getOperand(1).getReg();
2315     Register LHS = MI.getOperand(2).getReg();
2316     Register RHS = MI.getOperand(3).getReg();
2317 
2318     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2319                           ? TargetOpcode::G_SMULH
2320                           : TargetOpcode::G_UMULH;
2321 
2322     Observer.changingInstr(MI);
2323     const auto &TII = MIRBuilder.getTII();
2324     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2325     MI.RemoveOperand(1);
2326     Observer.changedInstr(MI);
2327 
2328     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2329 
2330     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2331     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2332 
2333     // For *signed* multiply, overflow is detected by checking:
2334     // (hi != (lo >> bitwidth-1))
2335     if (Opcode == TargetOpcode::G_SMULH) {
2336       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2337       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2338       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2339     } else {
2340       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2341     }
2342     return Legalized;
2343   }
2344   case TargetOpcode::G_FNEG: {
2345     // TODO: Handle vector types once we are able to
2346     // represent them.
2347     if (Ty.isVector())
2348       return UnableToLegalize;
2349     Register Res = MI.getOperand(0).getReg();
2350     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2351     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2352     if (!ZeroTy)
2353       return UnableToLegalize;
2354     ConstantFP &ZeroForNegation =
2355         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2356     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2357     Register SubByReg = MI.getOperand(1).getReg();
2358     Register ZeroReg = Zero.getReg(0);
2359     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2360     MI.eraseFromParent();
2361     return Legalized;
2362   }
2363   case TargetOpcode::G_FSUB: {
2364     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2365     // First, check if G_FNEG is marked as Lower. If so, we may
2366     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2367     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2368       return UnableToLegalize;
2369     Register Res = MI.getOperand(0).getReg();
2370     Register LHS = MI.getOperand(1).getReg();
2371     Register RHS = MI.getOperand(2).getReg();
2372     Register Neg = MRI.createGenericVirtualRegister(Ty);
2373     MIRBuilder.buildFNeg(Neg, RHS);
2374     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2375     MI.eraseFromParent();
2376     return Legalized;
2377   }
2378   case TargetOpcode::G_FMAD:
2379     return lowerFMad(MI);
2380   case TargetOpcode::G_FFLOOR:
2381     return lowerFFloor(MI);
2382   case TargetOpcode::G_INTRINSIC_ROUND:
2383     return lowerIntrinsicRound(MI);
2384   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2385     Register OldValRes = MI.getOperand(0).getReg();
2386     Register SuccessRes = MI.getOperand(1).getReg();
2387     Register Addr = MI.getOperand(2).getReg();
2388     Register CmpVal = MI.getOperand(3).getReg();
2389     Register NewVal = MI.getOperand(4).getReg();
2390     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2391                                   **MI.memoperands_begin());
2392     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2393     MI.eraseFromParent();
2394     return Legalized;
2395   }
2396   case TargetOpcode::G_LOAD:
2397   case TargetOpcode::G_SEXTLOAD:
2398   case TargetOpcode::G_ZEXTLOAD: {
2399     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2400     Register DstReg = MI.getOperand(0).getReg();
2401     Register PtrReg = MI.getOperand(1).getReg();
2402     LLT DstTy = MRI.getType(DstReg);
2403     auto &MMO = **MI.memoperands_begin();
2404 
2405     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2406       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2407         // This load needs splitting into power of 2 sized loads.
2408         if (DstTy.isVector())
2409           return UnableToLegalize;
2410         if (isPowerOf2_32(DstTy.getSizeInBits()))
2411           return UnableToLegalize; // Don't know what we're being asked to do.
2412 
2413         // Our strategy here is to generate anyextending loads for the smaller
2414         // types up to next power-2 result type, and then combine the two larger
2415         // result values together, before truncating back down to the non-pow-2
2416         // type.
2417         // E.g. v1 = i24 load =>
2418         // v2 = i32 zextload (2 byte)
2419         // v3 = i32 load (1 byte)
2420         // v4 = i32 shl v3, 16
2421         // v5 = i32 or v4, v2
2422         // v1 = i24 trunc v5
2423         // By doing this we generate the correct truncate which should get
2424         // combined away as an artifact with a matching extend.
2425         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2426         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2427 
2428         MachineFunction &MF = MIRBuilder.getMF();
2429         MachineMemOperand *LargeMMO =
2430             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2431         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2432             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2433 
2434         LLT PtrTy = MRI.getType(PtrReg);
2435         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2436         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2437         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2438         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2439         auto LargeLoad = MIRBuilder.buildLoadInstr(
2440             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2441 
2442         auto OffsetCst = MIRBuilder.buildConstant(
2443             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2444         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2445         auto SmallPtr =
2446             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2447         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2448                                               *SmallMMO);
2449 
2450         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2451         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2452         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2453         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2454         MI.eraseFromParent();
2455         return Legalized;
2456       }
2457       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2458       MI.eraseFromParent();
2459       return Legalized;
2460     }
2461 
2462     if (DstTy.isScalar()) {
2463       Register TmpReg =
2464           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2465       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2466       switch (MI.getOpcode()) {
2467       default:
2468         llvm_unreachable("Unexpected opcode");
2469       case TargetOpcode::G_LOAD:
2470         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2471         break;
2472       case TargetOpcode::G_SEXTLOAD:
2473         MIRBuilder.buildSExt(DstReg, TmpReg);
2474         break;
2475       case TargetOpcode::G_ZEXTLOAD:
2476         MIRBuilder.buildZExt(DstReg, TmpReg);
2477         break;
2478       }
2479       MI.eraseFromParent();
2480       return Legalized;
2481     }
2482 
2483     return UnableToLegalize;
2484   }
2485   case TargetOpcode::G_STORE: {
2486     // Lower a non-power of 2 store into multiple pow-2 stores.
2487     // E.g. split an i24 store into an i16 store + i8 store.
2488     // We do this by first extending the stored value to the next largest power
2489     // of 2 type, and then using truncating stores to store the components.
2490     // By doing this, likewise with G_LOAD, generate an extend that can be
2491     // artifact-combined away instead of leaving behind extracts.
2492     Register SrcReg = MI.getOperand(0).getReg();
2493     Register PtrReg = MI.getOperand(1).getReg();
2494     LLT SrcTy = MRI.getType(SrcReg);
2495     MachineMemOperand &MMO = **MI.memoperands_begin();
2496     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2497       return UnableToLegalize;
2498     if (SrcTy.isVector())
2499       return UnableToLegalize;
2500     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2501       return UnableToLegalize; // Don't know what we're being asked to do.
2502 
2503     // Extend to the next pow-2.
2504     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2505     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2506 
2507     // Obtain the smaller value by shifting away the larger value.
2508     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2509     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2510     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2511     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2512 
2513     // Generate the PtrAdd and truncating stores.
2514     LLT PtrTy = MRI.getType(PtrReg);
2515     auto OffsetCst = MIRBuilder.buildConstant(
2516             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2517     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2518     auto SmallPtr =
2519         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2520 
2521     MachineFunction &MF = MIRBuilder.getMF();
2522     MachineMemOperand *LargeMMO =
2523         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2524     MachineMemOperand *SmallMMO =
2525         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2526     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2527     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2528     MI.eraseFromParent();
2529     return Legalized;
2530   }
2531   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2532   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2533   case TargetOpcode::G_CTLZ:
2534   case TargetOpcode::G_CTTZ:
2535   case TargetOpcode::G_CTPOP:
2536     return lowerBitCount(MI, TypeIdx, Ty);
2537   case G_UADDO: {
2538     Register Res = MI.getOperand(0).getReg();
2539     Register CarryOut = MI.getOperand(1).getReg();
2540     Register LHS = MI.getOperand(2).getReg();
2541     Register RHS = MI.getOperand(3).getReg();
2542 
2543     MIRBuilder.buildAdd(Res, LHS, RHS);
2544     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2545 
2546     MI.eraseFromParent();
2547     return Legalized;
2548   }
2549   case G_UADDE: {
2550     Register Res = MI.getOperand(0).getReg();
2551     Register CarryOut = MI.getOperand(1).getReg();
2552     Register LHS = MI.getOperand(2).getReg();
2553     Register RHS = MI.getOperand(3).getReg();
2554     Register CarryIn = MI.getOperand(4).getReg();
2555     LLT Ty = MRI.getType(Res);
2556 
2557     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2558     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2559     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2560     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2561 
2562     MI.eraseFromParent();
2563     return Legalized;
2564   }
2565   case G_USUBO: {
2566     Register Res = MI.getOperand(0).getReg();
2567     Register BorrowOut = MI.getOperand(1).getReg();
2568     Register LHS = MI.getOperand(2).getReg();
2569     Register RHS = MI.getOperand(3).getReg();
2570 
2571     MIRBuilder.buildSub(Res, LHS, RHS);
2572     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2573 
2574     MI.eraseFromParent();
2575     return Legalized;
2576   }
2577   case G_USUBE: {
2578     Register Res = MI.getOperand(0).getReg();
2579     Register BorrowOut = MI.getOperand(1).getReg();
2580     Register LHS = MI.getOperand(2).getReg();
2581     Register RHS = MI.getOperand(3).getReg();
2582     Register BorrowIn = MI.getOperand(4).getReg();
2583     const LLT CondTy = MRI.getType(BorrowOut);
2584     const LLT Ty = MRI.getType(Res);
2585 
2586     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2587     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2588     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2589 
2590     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2591     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2592     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2593 
2594     MI.eraseFromParent();
2595     return Legalized;
2596   }
2597   case G_UITOFP:
2598     return lowerUITOFP(MI, TypeIdx, Ty);
2599   case G_SITOFP:
2600     return lowerSITOFP(MI, TypeIdx, Ty);
2601   case G_FPTOUI:
2602     return lowerFPTOUI(MI, TypeIdx, Ty);
2603   case G_FPTOSI:
2604     return lowerFPTOSI(MI);
2605   case G_FPTRUNC:
2606     return lowerFPTRUNC(MI, TypeIdx, Ty);
2607   case G_SMIN:
2608   case G_SMAX:
2609   case G_UMIN:
2610   case G_UMAX:
2611     return lowerMinMax(MI, TypeIdx, Ty);
2612   case G_FCOPYSIGN:
2613     return lowerFCopySign(MI, TypeIdx, Ty);
2614   case G_FMINNUM:
2615   case G_FMAXNUM:
2616     return lowerFMinNumMaxNum(MI);
2617   case G_MERGE_VALUES:
2618     return lowerMergeValues(MI);
2619   case G_UNMERGE_VALUES:
2620     return lowerUnmergeValues(MI);
2621   case TargetOpcode::G_SEXT_INREG: {
2622     assert(MI.getOperand(2).isImm() && "Expected immediate");
2623     int64_t SizeInBits = MI.getOperand(2).getImm();
2624 
2625     Register DstReg = MI.getOperand(0).getReg();
2626     Register SrcReg = MI.getOperand(1).getReg();
2627     LLT DstTy = MRI.getType(DstReg);
2628     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2629 
2630     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2631     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2632     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2633     MI.eraseFromParent();
2634     return Legalized;
2635   }
2636   case G_SHUFFLE_VECTOR:
2637     return lowerShuffleVector(MI);
2638   case G_DYN_STACKALLOC:
2639     return lowerDynStackAlloc(MI);
2640   case G_EXTRACT:
2641     return lowerExtract(MI);
2642   case G_INSERT:
2643     return lowerInsert(MI);
2644   case G_BSWAP:
2645     return lowerBswap(MI);
2646   case G_BITREVERSE:
2647     return lowerBitreverse(MI);
2648   case G_READ_REGISTER:
2649   case G_WRITE_REGISTER:
2650     return lowerReadWriteRegister(MI);
2651   }
2652 }
2653 
2654 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2655     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2656   SmallVector<Register, 2> DstRegs;
2657 
2658   unsigned NarrowSize = NarrowTy.getSizeInBits();
2659   Register DstReg = MI.getOperand(0).getReg();
2660   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2661   int NumParts = Size / NarrowSize;
2662   // FIXME: Don't know how to handle the situation where the small vectors
2663   // aren't all the same size yet.
2664   if (Size % NarrowSize != 0)
2665     return UnableToLegalize;
2666 
2667   for (int i = 0; i < NumParts; ++i) {
2668     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2669     MIRBuilder.buildUndef(TmpReg);
2670     DstRegs.push_back(TmpReg);
2671   }
2672 
2673   if (NarrowTy.isVector())
2674     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2675   else
2676     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2677 
2678   MI.eraseFromParent();
2679   return Legalized;
2680 }
2681 
2682 // Handle splitting vector operations which need to have the same number of
2683 // elements in each type index, but each type index may have a different element
2684 // type.
2685 //
2686 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2687 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2688 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2689 //
2690 // Also handles some irregular breakdown cases, e.g.
2691 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2692 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2693 //             s64 = G_SHL s64, s32
2694 LegalizerHelper::LegalizeResult
2695 LegalizerHelper::fewerElementsVectorMultiEltType(
2696   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2697   if (TypeIdx != 0)
2698     return UnableToLegalize;
2699 
2700   const LLT NarrowTy0 = NarrowTyArg;
2701   const unsigned NewNumElts =
2702       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2703 
2704   const Register DstReg = MI.getOperand(0).getReg();
2705   LLT DstTy = MRI.getType(DstReg);
2706   LLT LeftoverTy0;
2707 
2708   // All of the operands need to have the same number of elements, so if we can
2709   // determine a type breakdown for the result type, we can for all of the
2710   // source types.
2711   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2712   if (NumParts < 0)
2713     return UnableToLegalize;
2714 
2715   SmallVector<MachineInstrBuilder, 4> NewInsts;
2716 
2717   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2718   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2719 
2720   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2721     Register SrcReg = MI.getOperand(I).getReg();
2722     LLT SrcTyI = MRI.getType(SrcReg);
2723     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2724     LLT LeftoverTyI;
2725 
2726     // Split this operand into the requested typed registers, and any leftover
2727     // required to reproduce the original type.
2728     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2729                       LeftoverRegs))
2730       return UnableToLegalize;
2731 
2732     if (I == 1) {
2733       // For the first operand, create an instruction for each part and setup
2734       // the result.
2735       for (Register PartReg : PartRegs) {
2736         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2737         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2738                                .addDef(PartDstReg)
2739                                .addUse(PartReg));
2740         DstRegs.push_back(PartDstReg);
2741       }
2742 
2743       for (Register LeftoverReg : LeftoverRegs) {
2744         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2745         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2746                                .addDef(PartDstReg)
2747                                .addUse(LeftoverReg));
2748         LeftoverDstRegs.push_back(PartDstReg);
2749       }
2750     } else {
2751       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2752 
2753       // Add the newly created operand splits to the existing instructions. The
2754       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2755       // pieces.
2756       unsigned InstCount = 0;
2757       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2758         NewInsts[InstCount++].addUse(PartRegs[J]);
2759       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2760         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2761     }
2762 
2763     PartRegs.clear();
2764     LeftoverRegs.clear();
2765   }
2766 
2767   // Insert the newly built operations and rebuild the result register.
2768   for (auto &MIB : NewInsts)
2769     MIRBuilder.insertInstr(MIB);
2770 
2771   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2772 
2773   MI.eraseFromParent();
2774   return Legalized;
2775 }
2776 
2777 LegalizerHelper::LegalizeResult
2778 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2779                                           LLT NarrowTy) {
2780   if (TypeIdx != 0)
2781     return UnableToLegalize;
2782 
2783   Register DstReg = MI.getOperand(0).getReg();
2784   Register SrcReg = MI.getOperand(1).getReg();
2785   LLT DstTy = MRI.getType(DstReg);
2786   LLT SrcTy = MRI.getType(SrcReg);
2787 
2788   LLT NarrowTy0 = NarrowTy;
2789   LLT NarrowTy1;
2790   unsigned NumParts;
2791 
2792   if (NarrowTy.isVector()) {
2793     // Uneven breakdown not handled.
2794     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2795     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2796       return UnableToLegalize;
2797 
2798     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2799   } else {
2800     NumParts = DstTy.getNumElements();
2801     NarrowTy1 = SrcTy.getElementType();
2802   }
2803 
2804   SmallVector<Register, 4> SrcRegs, DstRegs;
2805   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2806 
2807   for (unsigned I = 0; I < NumParts; ++I) {
2808     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2809     MachineInstr *NewInst =
2810         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2811 
2812     NewInst->setFlags(MI.getFlags());
2813     DstRegs.push_back(DstReg);
2814   }
2815 
2816   if (NarrowTy.isVector())
2817     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2818   else
2819     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2820 
2821   MI.eraseFromParent();
2822   return Legalized;
2823 }
2824 
2825 LegalizerHelper::LegalizeResult
2826 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2827                                         LLT NarrowTy) {
2828   Register DstReg = MI.getOperand(0).getReg();
2829   Register Src0Reg = MI.getOperand(2).getReg();
2830   LLT DstTy = MRI.getType(DstReg);
2831   LLT SrcTy = MRI.getType(Src0Reg);
2832 
2833   unsigned NumParts;
2834   LLT NarrowTy0, NarrowTy1;
2835 
2836   if (TypeIdx == 0) {
2837     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2838     unsigned OldElts = DstTy.getNumElements();
2839 
2840     NarrowTy0 = NarrowTy;
2841     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2842     NarrowTy1 = NarrowTy.isVector() ?
2843       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2844       SrcTy.getElementType();
2845 
2846   } else {
2847     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2848     unsigned OldElts = SrcTy.getNumElements();
2849 
2850     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2851       NarrowTy.getNumElements();
2852     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2853                             DstTy.getScalarSizeInBits());
2854     NarrowTy1 = NarrowTy;
2855   }
2856 
2857   // FIXME: Don't know how to handle the situation where the small vectors
2858   // aren't all the same size yet.
2859   if (NarrowTy1.isVector() &&
2860       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2861     return UnableToLegalize;
2862 
2863   CmpInst::Predicate Pred
2864     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2865 
2866   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2867   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2868   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2869 
2870   for (unsigned I = 0; I < NumParts; ++I) {
2871     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2872     DstRegs.push_back(DstReg);
2873 
2874     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2875       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2876     else {
2877       MachineInstr *NewCmp
2878         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2879       NewCmp->setFlags(MI.getFlags());
2880     }
2881   }
2882 
2883   if (NarrowTy1.isVector())
2884     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2885   else
2886     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2887 
2888   MI.eraseFromParent();
2889   return Legalized;
2890 }
2891 
2892 LegalizerHelper::LegalizeResult
2893 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2894                                            LLT NarrowTy) {
2895   Register DstReg = MI.getOperand(0).getReg();
2896   Register CondReg = MI.getOperand(1).getReg();
2897 
2898   unsigned NumParts = 0;
2899   LLT NarrowTy0, NarrowTy1;
2900 
2901   LLT DstTy = MRI.getType(DstReg);
2902   LLT CondTy = MRI.getType(CondReg);
2903   unsigned Size = DstTy.getSizeInBits();
2904 
2905   assert(TypeIdx == 0 || CondTy.isVector());
2906 
2907   if (TypeIdx == 0) {
2908     NarrowTy0 = NarrowTy;
2909     NarrowTy1 = CondTy;
2910 
2911     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2912     // FIXME: Don't know how to handle the situation where the small vectors
2913     // aren't all the same size yet.
2914     if (Size % NarrowSize != 0)
2915       return UnableToLegalize;
2916 
2917     NumParts = Size / NarrowSize;
2918 
2919     // Need to break down the condition type
2920     if (CondTy.isVector()) {
2921       if (CondTy.getNumElements() == NumParts)
2922         NarrowTy1 = CondTy.getElementType();
2923       else
2924         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2925                                 CondTy.getScalarSizeInBits());
2926     }
2927   } else {
2928     NumParts = CondTy.getNumElements();
2929     if (NarrowTy.isVector()) {
2930       // TODO: Handle uneven breakdown.
2931       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2932         return UnableToLegalize;
2933 
2934       return UnableToLegalize;
2935     } else {
2936       NarrowTy0 = DstTy.getElementType();
2937       NarrowTy1 = NarrowTy;
2938     }
2939   }
2940 
2941   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2942   if (CondTy.isVector())
2943     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2944 
2945   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2946   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2947 
2948   for (unsigned i = 0; i < NumParts; ++i) {
2949     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2950     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2951                            Src1Regs[i], Src2Regs[i]);
2952     DstRegs.push_back(DstReg);
2953   }
2954 
2955   if (NarrowTy0.isVector())
2956     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2957   else
2958     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2959 
2960   MI.eraseFromParent();
2961   return Legalized;
2962 }
2963 
2964 LegalizerHelper::LegalizeResult
2965 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2966                                         LLT NarrowTy) {
2967   const Register DstReg = MI.getOperand(0).getReg();
2968   LLT PhiTy = MRI.getType(DstReg);
2969   LLT LeftoverTy;
2970 
2971   // All of the operands need to have the same number of elements, so if we can
2972   // determine a type breakdown for the result type, we can for all of the
2973   // source types.
2974   int NumParts, NumLeftover;
2975   std::tie(NumParts, NumLeftover)
2976     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2977   if (NumParts < 0)
2978     return UnableToLegalize;
2979 
2980   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2981   SmallVector<MachineInstrBuilder, 4> NewInsts;
2982 
2983   const int TotalNumParts = NumParts + NumLeftover;
2984 
2985   // Insert the new phis in the result block first.
2986   for (int I = 0; I != TotalNumParts; ++I) {
2987     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2988     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2989     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2990                        .addDef(PartDstReg));
2991     if (I < NumParts)
2992       DstRegs.push_back(PartDstReg);
2993     else
2994       LeftoverDstRegs.push_back(PartDstReg);
2995   }
2996 
2997   MachineBasicBlock *MBB = MI.getParent();
2998   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2999   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3000 
3001   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3002 
3003   // Insert code to extract the incoming values in each predecessor block.
3004   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3005     PartRegs.clear();
3006     LeftoverRegs.clear();
3007 
3008     Register SrcReg = MI.getOperand(I).getReg();
3009     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3010     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3011 
3012     LLT Unused;
3013     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3014                       LeftoverRegs))
3015       return UnableToLegalize;
3016 
3017     // Add the newly created operand splits to the existing instructions. The
3018     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3019     // pieces.
3020     for (int J = 0; J != TotalNumParts; ++J) {
3021       MachineInstrBuilder MIB = NewInsts[J];
3022       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3023       MIB.addMBB(&OpMBB);
3024     }
3025   }
3026 
3027   MI.eraseFromParent();
3028   return Legalized;
3029 }
3030 
3031 LegalizerHelper::LegalizeResult
3032 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3033                                                   unsigned TypeIdx,
3034                                                   LLT NarrowTy) {
3035   if (TypeIdx != 1)
3036     return UnableToLegalize;
3037 
3038   const int NumDst = MI.getNumOperands() - 1;
3039   const Register SrcReg = MI.getOperand(NumDst).getReg();
3040   LLT SrcTy = MRI.getType(SrcReg);
3041 
3042   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3043 
3044   // TODO: Create sequence of extracts.
3045   if (DstTy == NarrowTy)
3046     return UnableToLegalize;
3047 
3048   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3049   if (DstTy == GCDTy) {
3050     // This would just be a copy of the same unmerge.
3051     // TODO: Create extracts, pad with undef and create intermediate merges.
3052     return UnableToLegalize;
3053   }
3054 
3055   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3056   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3057   const int PartsPerUnmerge = NumDst / NumUnmerge;
3058 
3059   for (int I = 0; I != NumUnmerge; ++I) {
3060     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3061 
3062     for (int J = 0; J != PartsPerUnmerge; ++J)
3063       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3064     MIB.addUse(Unmerge.getReg(I));
3065   }
3066 
3067   MI.eraseFromParent();
3068   return Legalized;
3069 }
3070 
3071 LegalizerHelper::LegalizeResult
3072 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3073                                                 unsigned TypeIdx,
3074                                                 LLT NarrowTy) {
3075   assert(TypeIdx == 0 && "not a vector type index");
3076   Register DstReg = MI.getOperand(0).getReg();
3077   LLT DstTy = MRI.getType(DstReg);
3078   LLT SrcTy = DstTy.getElementType();
3079 
3080   int DstNumElts = DstTy.getNumElements();
3081   int NarrowNumElts = NarrowTy.getNumElements();
3082   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3083   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3084 
3085   SmallVector<Register, 8> ConcatOps;
3086   SmallVector<Register, 8> SubBuildVector;
3087 
3088   Register UndefReg;
3089   if (WidenedDstTy != DstTy)
3090     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3091 
3092   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3093   // necessary.
3094   //
3095   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3096   //   -> <2 x s16>
3097   //
3098   // %4:_(s16) = G_IMPLICIT_DEF
3099   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3100   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3101   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3102   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3103   for (int I = 0; I != NumConcat; ++I) {
3104     for (int J = 0; J != NarrowNumElts; ++J) {
3105       int SrcIdx = NarrowNumElts * I + J;
3106 
3107       if (SrcIdx < DstNumElts) {
3108         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3109         SubBuildVector.push_back(SrcReg);
3110       } else
3111         SubBuildVector.push_back(UndefReg);
3112     }
3113 
3114     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3115     ConcatOps.push_back(BuildVec.getReg(0));
3116     SubBuildVector.clear();
3117   }
3118 
3119   if (DstTy == WidenedDstTy)
3120     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3121   else {
3122     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3123     MIRBuilder.buildExtract(DstReg, Concat, 0);
3124   }
3125 
3126   MI.eraseFromParent();
3127   return Legalized;
3128 }
3129 
3130 LegalizerHelper::LegalizeResult
3131 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3132                                       LLT NarrowTy) {
3133   // FIXME: Don't know how to handle secondary types yet.
3134   if (TypeIdx != 0)
3135     return UnableToLegalize;
3136 
3137   MachineMemOperand *MMO = *MI.memoperands_begin();
3138 
3139   // This implementation doesn't work for atomics. Give up instead of doing
3140   // something invalid.
3141   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3142       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3143     return UnableToLegalize;
3144 
3145   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3146   Register ValReg = MI.getOperand(0).getReg();
3147   Register AddrReg = MI.getOperand(1).getReg();
3148   LLT ValTy = MRI.getType(ValReg);
3149 
3150   // FIXME: Do we need a distinct NarrowMemory legalize action?
3151   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3152     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3153     return UnableToLegalize;
3154   }
3155 
3156   int NumParts = -1;
3157   int NumLeftover = -1;
3158   LLT LeftoverTy;
3159   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3160   if (IsLoad) {
3161     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3162   } else {
3163     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3164                      NarrowLeftoverRegs)) {
3165       NumParts = NarrowRegs.size();
3166       NumLeftover = NarrowLeftoverRegs.size();
3167     }
3168   }
3169 
3170   if (NumParts == -1)
3171     return UnableToLegalize;
3172 
3173   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3174 
3175   unsigned TotalSize = ValTy.getSizeInBits();
3176 
3177   // Split the load/store into PartTy sized pieces starting at Offset. If this
3178   // is a load, return the new registers in ValRegs. For a store, each elements
3179   // of ValRegs should be PartTy. Returns the next offset that needs to be
3180   // handled.
3181   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3182                              unsigned Offset) -> unsigned {
3183     MachineFunction &MF = MIRBuilder.getMF();
3184     unsigned PartSize = PartTy.getSizeInBits();
3185     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3186          Offset += PartSize, ++Idx) {
3187       unsigned ByteSize = PartSize / 8;
3188       unsigned ByteOffset = Offset / 8;
3189       Register NewAddrReg;
3190 
3191       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3192 
3193       MachineMemOperand *NewMMO =
3194         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3195 
3196       if (IsLoad) {
3197         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3198         ValRegs.push_back(Dst);
3199         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3200       } else {
3201         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3202       }
3203     }
3204 
3205     return Offset;
3206   };
3207 
3208   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3209 
3210   // Handle the rest of the register if this isn't an even type breakdown.
3211   if (LeftoverTy.isValid())
3212     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3213 
3214   if (IsLoad) {
3215     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3216                 LeftoverTy, NarrowLeftoverRegs);
3217   }
3218 
3219   MI.eraseFromParent();
3220   return Legalized;
3221 }
3222 
3223 LegalizerHelper::LegalizeResult
3224 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3225                                       LLT NarrowTy) {
3226   assert(TypeIdx == 0 && "only one type index expected");
3227 
3228   const unsigned Opc = MI.getOpcode();
3229   const int NumOps = MI.getNumOperands() - 1;
3230   const Register DstReg = MI.getOperand(0).getReg();
3231   const unsigned Flags = MI.getFlags();
3232   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3233   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3234 
3235   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3236 
3237   // First of all check whether we are narrowing (changing the element type)
3238   // or reducing the vector elements
3239   const LLT DstTy = MRI.getType(DstReg);
3240   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3241 
3242   SmallVector<Register, 8> ExtractedRegs[3];
3243   SmallVector<Register, 8> Parts;
3244 
3245   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3246 
3247   // Break down all the sources into NarrowTy pieces we can operate on. This may
3248   // involve creating merges to a wider type, padded with undef.
3249   for (int I = 0; I != NumOps; ++I) {
3250     Register SrcReg = MI.getOperand(I + 1).getReg();
3251     LLT SrcTy = MRI.getType(SrcReg);
3252 
3253     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3254     // For fewerElements, this is a smaller vector with the same element type.
3255     LLT OpNarrowTy;
3256     if (IsNarrow) {
3257       OpNarrowTy = NarrowScalarTy;
3258 
3259       // In case of narrowing, we need to cast vectors to scalars for this to
3260       // work properly
3261       // FIXME: Can we do without the bitcast here if we're narrowing?
3262       if (SrcTy.isVector()) {
3263         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3264         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3265       }
3266     } else {
3267       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3268     }
3269 
3270     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3271 
3272     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3273     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3274                         TargetOpcode::G_ANYEXT);
3275   }
3276 
3277   SmallVector<Register, 8> ResultRegs;
3278 
3279   // Input operands for each sub-instruction.
3280   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3281 
3282   int NumParts = ExtractedRegs[0].size();
3283   const unsigned DstSize = DstTy.getSizeInBits();
3284   const LLT DstScalarTy = LLT::scalar(DstSize);
3285 
3286   // Narrowing needs to use scalar types
3287   LLT DstLCMTy, NarrowDstTy;
3288   if (IsNarrow) {
3289     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3290     NarrowDstTy = NarrowScalarTy;
3291   } else {
3292     DstLCMTy = getLCMType(DstTy, NarrowTy);
3293     NarrowDstTy = NarrowTy;
3294   }
3295 
3296   // We widened the source registers to satisfy merge/unmerge size
3297   // constraints. We'll have some extra fully undef parts.
3298   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3299 
3300   for (int I = 0; I != NumRealParts; ++I) {
3301     // Emit this instruction on each of the split pieces.
3302     for (int J = 0; J != NumOps; ++J)
3303       InputRegs[J] = ExtractedRegs[J][I];
3304 
3305     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3306     ResultRegs.push_back(Inst.getReg(0));
3307   }
3308 
3309   // Fill out the widened result with undef instead of creating instructions
3310   // with undef inputs.
3311   int NumUndefParts = NumParts - NumRealParts;
3312   if (NumUndefParts != 0)
3313     ResultRegs.append(NumUndefParts,
3314                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3315 
3316   // Extract the possibly padded result. Use a scratch register if we need to do
3317   // a final bitcast, otherwise use the original result register.
3318   Register MergeDstReg;
3319   if (IsNarrow && DstTy.isVector())
3320     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3321   else
3322     MergeDstReg = DstReg;
3323 
3324   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3325 
3326   // Recast to vector if we narrowed a vector
3327   if (IsNarrow && DstTy.isVector())
3328     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3329 
3330   MI.eraseFromParent();
3331   return Legalized;
3332 }
3333 
3334 LegalizerHelper::LegalizeResult
3335 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3336                                               LLT NarrowTy) {
3337   Register DstReg = MI.getOperand(0).getReg();
3338   Register SrcReg = MI.getOperand(1).getReg();
3339   int64_t Imm = MI.getOperand(2).getImm();
3340 
3341   LLT DstTy = MRI.getType(DstReg);
3342 
3343   SmallVector<Register, 8> Parts;
3344   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3345   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3346 
3347   for (Register &R : Parts)
3348     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3349 
3350   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3351 
3352   MI.eraseFromParent();
3353   return Legalized;
3354 }
3355 
3356 LegalizerHelper::LegalizeResult
3357 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3358                                      LLT NarrowTy) {
3359   using namespace TargetOpcode;
3360 
3361   switch (MI.getOpcode()) {
3362   case G_IMPLICIT_DEF:
3363     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3364   case G_TRUNC:
3365   case G_AND:
3366   case G_OR:
3367   case G_XOR:
3368   case G_ADD:
3369   case G_SUB:
3370   case G_MUL:
3371   case G_SMULH:
3372   case G_UMULH:
3373   case G_FADD:
3374   case G_FMUL:
3375   case G_FSUB:
3376   case G_FNEG:
3377   case G_FABS:
3378   case G_FCANONICALIZE:
3379   case G_FDIV:
3380   case G_FREM:
3381   case G_FMA:
3382   case G_FMAD:
3383   case G_FPOW:
3384   case G_FEXP:
3385   case G_FEXP2:
3386   case G_FLOG:
3387   case G_FLOG2:
3388   case G_FLOG10:
3389   case G_FNEARBYINT:
3390   case G_FCEIL:
3391   case G_FFLOOR:
3392   case G_FRINT:
3393   case G_INTRINSIC_ROUND:
3394   case G_INTRINSIC_TRUNC:
3395   case G_FCOS:
3396   case G_FSIN:
3397   case G_FSQRT:
3398   case G_BSWAP:
3399   case G_BITREVERSE:
3400   case G_SDIV:
3401   case G_UDIV:
3402   case G_SREM:
3403   case G_UREM:
3404   case G_SMIN:
3405   case G_SMAX:
3406   case G_UMIN:
3407   case G_UMAX:
3408   case G_FMINNUM:
3409   case G_FMAXNUM:
3410   case G_FMINNUM_IEEE:
3411   case G_FMAXNUM_IEEE:
3412   case G_FMINIMUM:
3413   case G_FMAXIMUM:
3414   case G_FSHL:
3415   case G_FSHR:
3416   case G_FREEZE:
3417     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3418   case G_SHL:
3419   case G_LSHR:
3420   case G_ASHR:
3421   case G_CTLZ:
3422   case G_CTLZ_ZERO_UNDEF:
3423   case G_CTTZ:
3424   case G_CTTZ_ZERO_UNDEF:
3425   case G_CTPOP:
3426   case G_FCOPYSIGN:
3427     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3428   case G_ZEXT:
3429   case G_SEXT:
3430   case G_ANYEXT:
3431   case G_FPEXT:
3432   case G_FPTRUNC:
3433   case G_SITOFP:
3434   case G_UITOFP:
3435   case G_FPTOSI:
3436   case G_FPTOUI:
3437   case G_INTTOPTR:
3438   case G_PTRTOINT:
3439   case G_ADDRSPACE_CAST:
3440     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3441   case G_ICMP:
3442   case G_FCMP:
3443     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3444   case G_SELECT:
3445     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3446   case G_PHI:
3447     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3448   case G_UNMERGE_VALUES:
3449     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3450   case G_BUILD_VECTOR:
3451     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3452   case G_LOAD:
3453   case G_STORE:
3454     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3455   case G_SEXT_INREG:
3456     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3457   default:
3458     return UnableToLegalize;
3459   }
3460 }
3461 
3462 LegalizerHelper::LegalizeResult
3463 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3464                                              const LLT HalfTy, const LLT AmtTy) {
3465 
3466   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3467   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3468   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3469 
3470   if (Amt.isNullValue()) {
3471     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3472     MI.eraseFromParent();
3473     return Legalized;
3474   }
3475 
3476   LLT NVT = HalfTy;
3477   unsigned NVTBits = HalfTy.getSizeInBits();
3478   unsigned VTBits = 2 * NVTBits;
3479 
3480   SrcOp Lo(Register(0)), Hi(Register(0));
3481   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3482     if (Amt.ugt(VTBits)) {
3483       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3484     } else if (Amt.ugt(NVTBits)) {
3485       Lo = MIRBuilder.buildConstant(NVT, 0);
3486       Hi = MIRBuilder.buildShl(NVT, InL,
3487                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3488     } else if (Amt == NVTBits) {
3489       Lo = MIRBuilder.buildConstant(NVT, 0);
3490       Hi = InL;
3491     } else {
3492       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3493       auto OrLHS =
3494           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3495       auto OrRHS = MIRBuilder.buildLShr(
3496           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3497       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3498     }
3499   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3500     if (Amt.ugt(VTBits)) {
3501       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3502     } else if (Amt.ugt(NVTBits)) {
3503       Lo = MIRBuilder.buildLShr(NVT, InH,
3504                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3505       Hi = MIRBuilder.buildConstant(NVT, 0);
3506     } else if (Amt == NVTBits) {
3507       Lo = InH;
3508       Hi = MIRBuilder.buildConstant(NVT, 0);
3509     } else {
3510       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3511 
3512       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3513       auto OrRHS = MIRBuilder.buildShl(
3514           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3515 
3516       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3517       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3518     }
3519   } else {
3520     if (Amt.ugt(VTBits)) {
3521       Hi = Lo = MIRBuilder.buildAShr(
3522           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3523     } else if (Amt.ugt(NVTBits)) {
3524       Lo = MIRBuilder.buildAShr(NVT, InH,
3525                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3526       Hi = MIRBuilder.buildAShr(NVT, InH,
3527                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3528     } else if (Amt == NVTBits) {
3529       Lo = InH;
3530       Hi = MIRBuilder.buildAShr(NVT, InH,
3531                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3532     } else {
3533       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3534 
3535       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3536       auto OrRHS = MIRBuilder.buildShl(
3537           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3538 
3539       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3540       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3541     }
3542   }
3543 
3544   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3545   MI.eraseFromParent();
3546 
3547   return Legalized;
3548 }
3549 
3550 // TODO: Optimize if constant shift amount.
3551 LegalizerHelper::LegalizeResult
3552 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3553                                    LLT RequestedTy) {
3554   if (TypeIdx == 1) {
3555     Observer.changingInstr(MI);
3556     narrowScalarSrc(MI, RequestedTy, 2);
3557     Observer.changedInstr(MI);
3558     return Legalized;
3559   }
3560 
3561   Register DstReg = MI.getOperand(0).getReg();
3562   LLT DstTy = MRI.getType(DstReg);
3563   if (DstTy.isVector())
3564     return UnableToLegalize;
3565 
3566   Register Amt = MI.getOperand(2).getReg();
3567   LLT ShiftAmtTy = MRI.getType(Amt);
3568   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3569   if (DstEltSize % 2 != 0)
3570     return UnableToLegalize;
3571 
3572   // Ignore the input type. We can only go to exactly half the size of the
3573   // input. If that isn't small enough, the resulting pieces will be further
3574   // legalized.
3575   const unsigned NewBitSize = DstEltSize / 2;
3576   const LLT HalfTy = LLT::scalar(NewBitSize);
3577   const LLT CondTy = LLT::scalar(1);
3578 
3579   if (const MachineInstr *KShiftAmt =
3580           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3581     return narrowScalarShiftByConstant(
3582         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3583   }
3584 
3585   // TODO: Expand with known bits.
3586 
3587   // Handle the fully general expansion by an unknown amount.
3588   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3589 
3590   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3591   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3592   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3593 
3594   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3595   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3596 
3597   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3598   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3599   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3600 
3601   Register ResultRegs[2];
3602   switch (MI.getOpcode()) {
3603   case TargetOpcode::G_SHL: {
3604     // Short: ShAmt < NewBitSize
3605     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3606 
3607     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3608     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3609     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3610 
3611     // Long: ShAmt >= NewBitSize
3612     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3613     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3614 
3615     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3616     auto Hi = MIRBuilder.buildSelect(
3617         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3618 
3619     ResultRegs[0] = Lo.getReg(0);
3620     ResultRegs[1] = Hi.getReg(0);
3621     break;
3622   }
3623   case TargetOpcode::G_LSHR:
3624   case TargetOpcode::G_ASHR: {
3625     // Short: ShAmt < NewBitSize
3626     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3627 
3628     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3629     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3630     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3631 
3632     // Long: ShAmt >= NewBitSize
3633     MachineInstrBuilder HiL;
3634     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3635       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3636     } else {
3637       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3638       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3639     }
3640     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3641                                      {InH, AmtExcess});     // Lo from Hi part.
3642 
3643     auto Lo = MIRBuilder.buildSelect(
3644         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3645 
3646     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3647 
3648     ResultRegs[0] = Lo.getReg(0);
3649     ResultRegs[1] = Hi.getReg(0);
3650     break;
3651   }
3652   default:
3653     llvm_unreachable("not a shift");
3654   }
3655 
3656   MIRBuilder.buildMerge(DstReg, ResultRegs);
3657   MI.eraseFromParent();
3658   return Legalized;
3659 }
3660 
3661 LegalizerHelper::LegalizeResult
3662 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3663                                        LLT MoreTy) {
3664   assert(TypeIdx == 0 && "Expecting only Idx 0");
3665 
3666   Observer.changingInstr(MI);
3667   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3668     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3669     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3670     moreElementsVectorSrc(MI, MoreTy, I);
3671   }
3672 
3673   MachineBasicBlock &MBB = *MI.getParent();
3674   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3675   moreElementsVectorDst(MI, MoreTy, 0);
3676   Observer.changedInstr(MI);
3677   return Legalized;
3678 }
3679 
3680 LegalizerHelper::LegalizeResult
3681 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3682                                     LLT MoreTy) {
3683   unsigned Opc = MI.getOpcode();
3684   switch (Opc) {
3685   case TargetOpcode::G_IMPLICIT_DEF:
3686   case TargetOpcode::G_LOAD: {
3687     if (TypeIdx != 0)
3688       return UnableToLegalize;
3689     Observer.changingInstr(MI);
3690     moreElementsVectorDst(MI, MoreTy, 0);
3691     Observer.changedInstr(MI);
3692     return Legalized;
3693   }
3694   case TargetOpcode::G_STORE:
3695     if (TypeIdx != 0)
3696       return UnableToLegalize;
3697     Observer.changingInstr(MI);
3698     moreElementsVectorSrc(MI, MoreTy, 0);
3699     Observer.changedInstr(MI);
3700     return Legalized;
3701   case TargetOpcode::G_AND:
3702   case TargetOpcode::G_OR:
3703   case TargetOpcode::G_XOR:
3704   case TargetOpcode::G_SMIN:
3705   case TargetOpcode::G_SMAX:
3706   case TargetOpcode::G_UMIN:
3707   case TargetOpcode::G_UMAX:
3708   case TargetOpcode::G_FMINNUM:
3709   case TargetOpcode::G_FMAXNUM:
3710   case TargetOpcode::G_FMINNUM_IEEE:
3711   case TargetOpcode::G_FMAXNUM_IEEE:
3712   case TargetOpcode::G_FMINIMUM:
3713   case TargetOpcode::G_FMAXIMUM: {
3714     Observer.changingInstr(MI);
3715     moreElementsVectorSrc(MI, MoreTy, 1);
3716     moreElementsVectorSrc(MI, MoreTy, 2);
3717     moreElementsVectorDst(MI, MoreTy, 0);
3718     Observer.changedInstr(MI);
3719     return Legalized;
3720   }
3721   case TargetOpcode::G_EXTRACT:
3722     if (TypeIdx != 1)
3723       return UnableToLegalize;
3724     Observer.changingInstr(MI);
3725     moreElementsVectorSrc(MI, MoreTy, 1);
3726     Observer.changedInstr(MI);
3727     return Legalized;
3728   case TargetOpcode::G_INSERT:
3729   case TargetOpcode::G_FREEZE:
3730     if (TypeIdx != 0)
3731       return UnableToLegalize;
3732     Observer.changingInstr(MI);
3733     moreElementsVectorSrc(MI, MoreTy, 1);
3734     moreElementsVectorDst(MI, MoreTy, 0);
3735     Observer.changedInstr(MI);
3736     return Legalized;
3737   case TargetOpcode::G_SELECT:
3738     if (TypeIdx != 0)
3739       return UnableToLegalize;
3740     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3741       return UnableToLegalize;
3742 
3743     Observer.changingInstr(MI);
3744     moreElementsVectorSrc(MI, MoreTy, 2);
3745     moreElementsVectorSrc(MI, MoreTy, 3);
3746     moreElementsVectorDst(MI, MoreTy, 0);
3747     Observer.changedInstr(MI);
3748     return Legalized;
3749   case TargetOpcode::G_UNMERGE_VALUES: {
3750     if (TypeIdx != 1)
3751       return UnableToLegalize;
3752 
3753     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3754     int NumDst = MI.getNumOperands() - 1;
3755     moreElementsVectorSrc(MI, MoreTy, NumDst);
3756 
3757     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3758     for (int I = 0; I != NumDst; ++I)
3759       MIB.addDef(MI.getOperand(I).getReg());
3760 
3761     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3762     for (int I = NumDst; I != NewNumDst; ++I)
3763       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3764 
3765     MIB.addUse(MI.getOperand(NumDst).getReg());
3766     MI.eraseFromParent();
3767     return Legalized;
3768   }
3769   case TargetOpcode::G_PHI:
3770     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3771   default:
3772     return UnableToLegalize;
3773   }
3774 }
3775 
3776 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3777                                         ArrayRef<Register> Src1Regs,
3778                                         ArrayRef<Register> Src2Regs,
3779                                         LLT NarrowTy) {
3780   MachineIRBuilder &B = MIRBuilder;
3781   unsigned SrcParts = Src1Regs.size();
3782   unsigned DstParts = DstRegs.size();
3783 
3784   unsigned DstIdx = 0; // Low bits of the result.
3785   Register FactorSum =
3786       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3787   DstRegs[DstIdx] = FactorSum;
3788 
3789   unsigned CarrySumPrevDstIdx;
3790   SmallVector<Register, 4> Factors;
3791 
3792   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3793     // Collect low parts of muls for DstIdx.
3794     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3795          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3796       MachineInstrBuilder Mul =
3797           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3798       Factors.push_back(Mul.getReg(0));
3799     }
3800     // Collect high parts of muls from previous DstIdx.
3801     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3802          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3803       MachineInstrBuilder Umulh =
3804           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3805       Factors.push_back(Umulh.getReg(0));
3806     }
3807     // Add CarrySum from additions calculated for previous DstIdx.
3808     if (DstIdx != 1) {
3809       Factors.push_back(CarrySumPrevDstIdx);
3810     }
3811 
3812     Register CarrySum;
3813     // Add all factors and accumulate all carries into CarrySum.
3814     if (DstIdx != DstParts - 1) {
3815       MachineInstrBuilder Uaddo =
3816           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3817       FactorSum = Uaddo.getReg(0);
3818       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3819       for (unsigned i = 2; i < Factors.size(); ++i) {
3820         MachineInstrBuilder Uaddo =
3821             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3822         FactorSum = Uaddo.getReg(0);
3823         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3824         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3825       }
3826     } else {
3827       // Since value for the next index is not calculated, neither is CarrySum.
3828       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3829       for (unsigned i = 2; i < Factors.size(); ++i)
3830         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3831     }
3832 
3833     CarrySumPrevDstIdx = CarrySum;
3834     DstRegs[DstIdx] = FactorSum;
3835     Factors.clear();
3836   }
3837 }
3838 
3839 LegalizerHelper::LegalizeResult
3840 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3841   Register DstReg = MI.getOperand(0).getReg();
3842   Register Src1 = MI.getOperand(1).getReg();
3843   Register Src2 = MI.getOperand(2).getReg();
3844 
3845   LLT Ty = MRI.getType(DstReg);
3846   if (Ty.isVector())
3847     return UnableToLegalize;
3848 
3849   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3850   unsigned DstSize = Ty.getSizeInBits();
3851   unsigned NarrowSize = NarrowTy.getSizeInBits();
3852   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3853     return UnableToLegalize;
3854 
3855   unsigned NumDstParts = DstSize / NarrowSize;
3856   unsigned NumSrcParts = SrcSize / NarrowSize;
3857   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3858   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3859 
3860   SmallVector<Register, 2> Src1Parts, Src2Parts;
3861   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3862   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3863   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3864   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3865 
3866   // Take only high half of registers if this is high mul.
3867   ArrayRef<Register> DstRegs(
3868       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3869   MIRBuilder.buildMerge(DstReg, DstRegs);
3870   MI.eraseFromParent();
3871   return Legalized;
3872 }
3873 
3874 LegalizerHelper::LegalizeResult
3875 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3876                                      LLT NarrowTy) {
3877   if (TypeIdx != 1)
3878     return UnableToLegalize;
3879 
3880   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3881 
3882   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3883   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3884   // NarrowSize.
3885   if (SizeOp1 % NarrowSize != 0)
3886     return UnableToLegalize;
3887   int NumParts = SizeOp1 / NarrowSize;
3888 
3889   SmallVector<Register, 2> SrcRegs, DstRegs;
3890   SmallVector<uint64_t, 2> Indexes;
3891   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3892 
3893   Register OpReg = MI.getOperand(0).getReg();
3894   uint64_t OpStart = MI.getOperand(2).getImm();
3895   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3896   for (int i = 0; i < NumParts; ++i) {
3897     unsigned SrcStart = i * NarrowSize;
3898 
3899     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3900       // No part of the extract uses this subregister, ignore it.
3901       continue;
3902     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3903       // The entire subregister is extracted, forward the value.
3904       DstRegs.push_back(SrcRegs[i]);
3905       continue;
3906     }
3907 
3908     // OpSegStart is where this destination segment would start in OpReg if it
3909     // extended infinitely in both directions.
3910     int64_t ExtractOffset;
3911     uint64_t SegSize;
3912     if (OpStart < SrcStart) {
3913       ExtractOffset = 0;
3914       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3915     } else {
3916       ExtractOffset = OpStart - SrcStart;
3917       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3918     }
3919 
3920     Register SegReg = SrcRegs[i];
3921     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3922       // A genuine extract is needed.
3923       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3924       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3925     }
3926 
3927     DstRegs.push_back(SegReg);
3928   }
3929 
3930   Register DstReg = MI.getOperand(0).getReg();
3931   if (MRI.getType(DstReg).isVector())
3932     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3933   else if (DstRegs.size() > 1)
3934     MIRBuilder.buildMerge(DstReg, DstRegs);
3935   else
3936     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3937   MI.eraseFromParent();
3938   return Legalized;
3939 }
3940 
3941 LegalizerHelper::LegalizeResult
3942 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3943                                     LLT NarrowTy) {
3944   // FIXME: Don't know how to handle secondary types yet.
3945   if (TypeIdx != 0)
3946     return UnableToLegalize;
3947 
3948   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3949   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3950 
3951   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3952   // NarrowSize.
3953   if (SizeOp0 % NarrowSize != 0)
3954     return UnableToLegalize;
3955 
3956   int NumParts = SizeOp0 / NarrowSize;
3957 
3958   SmallVector<Register, 2> SrcRegs, DstRegs;
3959   SmallVector<uint64_t, 2> Indexes;
3960   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3961 
3962   Register OpReg = MI.getOperand(2).getReg();
3963   uint64_t OpStart = MI.getOperand(3).getImm();
3964   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3965   for (int i = 0; i < NumParts; ++i) {
3966     unsigned DstStart = i * NarrowSize;
3967 
3968     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3969       // No part of the insert affects this subregister, forward the original.
3970       DstRegs.push_back(SrcRegs[i]);
3971       continue;
3972     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3973       // The entire subregister is defined by this insert, forward the new
3974       // value.
3975       DstRegs.push_back(OpReg);
3976       continue;
3977     }
3978 
3979     // OpSegStart is where this destination segment would start in OpReg if it
3980     // extended infinitely in both directions.
3981     int64_t ExtractOffset, InsertOffset;
3982     uint64_t SegSize;
3983     if (OpStart < DstStart) {
3984       InsertOffset = 0;
3985       ExtractOffset = DstStart - OpStart;
3986       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3987     } else {
3988       InsertOffset = OpStart - DstStart;
3989       ExtractOffset = 0;
3990       SegSize =
3991         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3992     }
3993 
3994     Register SegReg = OpReg;
3995     if (ExtractOffset != 0 || SegSize != OpSize) {
3996       // A genuine extract is needed.
3997       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3998       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3999     }
4000 
4001     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4002     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4003     DstRegs.push_back(DstReg);
4004   }
4005 
4006   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4007   Register DstReg = MI.getOperand(0).getReg();
4008   if(MRI.getType(DstReg).isVector())
4009     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4010   else
4011     MIRBuilder.buildMerge(DstReg, DstRegs);
4012   MI.eraseFromParent();
4013   return Legalized;
4014 }
4015 
4016 LegalizerHelper::LegalizeResult
4017 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4018                                    LLT NarrowTy) {
4019   Register DstReg = MI.getOperand(0).getReg();
4020   LLT DstTy = MRI.getType(DstReg);
4021 
4022   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4023 
4024   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4025   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4026   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4027   LLT LeftoverTy;
4028   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4029                     Src0Regs, Src0LeftoverRegs))
4030     return UnableToLegalize;
4031 
4032   LLT Unused;
4033   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4034                     Src1Regs, Src1LeftoverRegs))
4035     llvm_unreachable("inconsistent extractParts result");
4036 
4037   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4038     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4039                                         {Src0Regs[I], Src1Regs[I]});
4040     DstRegs.push_back(Inst.getReg(0));
4041   }
4042 
4043   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4044     auto Inst = MIRBuilder.buildInstr(
4045       MI.getOpcode(),
4046       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4047     DstLeftoverRegs.push_back(Inst.getReg(0));
4048   }
4049 
4050   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4051               LeftoverTy, DstLeftoverRegs);
4052 
4053   MI.eraseFromParent();
4054   return Legalized;
4055 }
4056 
4057 LegalizerHelper::LegalizeResult
4058 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4059                                  LLT NarrowTy) {
4060   if (TypeIdx != 0)
4061     return UnableToLegalize;
4062 
4063   Register DstReg = MI.getOperand(0).getReg();
4064   Register SrcReg = MI.getOperand(1).getReg();
4065 
4066   LLT DstTy = MRI.getType(DstReg);
4067   if (DstTy.isVector())
4068     return UnableToLegalize;
4069 
4070   SmallVector<Register, 8> Parts;
4071   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4072   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4073   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4074 
4075   MI.eraseFromParent();
4076   return Legalized;
4077 }
4078 
4079 LegalizerHelper::LegalizeResult
4080 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4081                                     LLT NarrowTy) {
4082   if (TypeIdx != 0)
4083     return UnableToLegalize;
4084 
4085   Register CondReg = MI.getOperand(1).getReg();
4086   LLT CondTy = MRI.getType(CondReg);
4087   if (CondTy.isVector()) // TODO: Handle vselect
4088     return UnableToLegalize;
4089 
4090   Register DstReg = MI.getOperand(0).getReg();
4091   LLT DstTy = MRI.getType(DstReg);
4092 
4093   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4094   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4095   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4096   LLT LeftoverTy;
4097   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4098                     Src1Regs, Src1LeftoverRegs))
4099     return UnableToLegalize;
4100 
4101   LLT Unused;
4102   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4103                     Src2Regs, Src2LeftoverRegs))
4104     llvm_unreachable("inconsistent extractParts result");
4105 
4106   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4107     auto Select = MIRBuilder.buildSelect(NarrowTy,
4108                                          CondReg, Src1Regs[I], Src2Regs[I]);
4109     DstRegs.push_back(Select.getReg(0));
4110   }
4111 
4112   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4113     auto Select = MIRBuilder.buildSelect(
4114       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4115     DstLeftoverRegs.push_back(Select.getReg(0));
4116   }
4117 
4118   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4119               LeftoverTy, DstLeftoverRegs);
4120 
4121   MI.eraseFromParent();
4122   return Legalized;
4123 }
4124 
4125 LegalizerHelper::LegalizeResult
4126 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4127                                   LLT NarrowTy) {
4128   if (TypeIdx != 1)
4129     return UnableToLegalize;
4130 
4131   Register DstReg = MI.getOperand(0).getReg();
4132   Register SrcReg = MI.getOperand(1).getReg();
4133   LLT DstTy = MRI.getType(DstReg);
4134   LLT SrcTy = MRI.getType(SrcReg);
4135   unsigned NarrowSize = NarrowTy.getSizeInBits();
4136 
4137   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4138     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4139 
4140     MachineIRBuilder &B = MIRBuilder;
4141     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4142     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4143     auto C_0 = B.buildConstant(NarrowTy, 0);
4144     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4145                                 UnmergeSrc.getReg(1), C_0);
4146     auto LoCTLZ = IsUndef ?
4147       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4148       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4149     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4150     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4151     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4152     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4153 
4154     MI.eraseFromParent();
4155     return Legalized;
4156   }
4157 
4158   return UnableToLegalize;
4159 }
4160 
4161 LegalizerHelper::LegalizeResult
4162 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4163                                   LLT NarrowTy) {
4164   if (TypeIdx != 1)
4165     return UnableToLegalize;
4166 
4167   Register DstReg = MI.getOperand(0).getReg();
4168   Register SrcReg = MI.getOperand(1).getReg();
4169   LLT DstTy = MRI.getType(DstReg);
4170   LLT SrcTy = MRI.getType(SrcReg);
4171   unsigned NarrowSize = NarrowTy.getSizeInBits();
4172 
4173   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4174     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4175 
4176     MachineIRBuilder &B = MIRBuilder;
4177     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4178     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4179     auto C_0 = B.buildConstant(NarrowTy, 0);
4180     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4181                                 UnmergeSrc.getReg(0), C_0);
4182     auto HiCTTZ = IsUndef ?
4183       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4184       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4185     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4186     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4187     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4188     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4189 
4190     MI.eraseFromParent();
4191     return Legalized;
4192   }
4193 
4194   return UnableToLegalize;
4195 }
4196 
4197 LegalizerHelper::LegalizeResult
4198 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4199                                    LLT NarrowTy) {
4200   if (TypeIdx != 1)
4201     return UnableToLegalize;
4202 
4203   Register DstReg = MI.getOperand(0).getReg();
4204   LLT DstTy = MRI.getType(DstReg);
4205   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4206   unsigned NarrowSize = NarrowTy.getSizeInBits();
4207 
4208   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4209     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4210 
4211     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4212     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4213     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4214 
4215     MI.eraseFromParent();
4216     return Legalized;
4217   }
4218 
4219   return UnableToLegalize;
4220 }
4221 
4222 LegalizerHelper::LegalizeResult
4223 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4224   unsigned Opc = MI.getOpcode();
4225   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4226   auto isSupported = [this](const LegalityQuery &Q) {
4227     auto QAction = LI.getAction(Q).Action;
4228     return QAction == Legal || QAction == Libcall || QAction == Custom;
4229   };
4230   switch (Opc) {
4231   default:
4232     return UnableToLegalize;
4233   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4234     // This trivially expands to CTLZ.
4235     Observer.changingInstr(MI);
4236     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4237     Observer.changedInstr(MI);
4238     return Legalized;
4239   }
4240   case TargetOpcode::G_CTLZ: {
4241     Register DstReg = MI.getOperand(0).getReg();
4242     Register SrcReg = MI.getOperand(1).getReg();
4243     LLT DstTy = MRI.getType(DstReg);
4244     LLT SrcTy = MRI.getType(SrcReg);
4245     unsigned Len = SrcTy.getSizeInBits();
4246 
4247     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4248       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4249       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4250       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4251       auto ICmp = MIRBuilder.buildICmp(
4252           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4253       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4254       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4255       MI.eraseFromParent();
4256       return Legalized;
4257     }
4258     // for now, we do this:
4259     // NewLen = NextPowerOf2(Len);
4260     // x = x | (x >> 1);
4261     // x = x | (x >> 2);
4262     // ...
4263     // x = x | (x >>16);
4264     // x = x | (x >>32); // for 64-bit input
4265     // Upto NewLen/2
4266     // return Len - popcount(x);
4267     //
4268     // Ref: "Hacker's Delight" by Henry Warren
4269     Register Op = SrcReg;
4270     unsigned NewLen = PowerOf2Ceil(Len);
4271     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4272       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4273       auto MIBOp = MIRBuilder.buildOr(
4274           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4275       Op = MIBOp.getReg(0);
4276     }
4277     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4278     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4279                         MIBPop);
4280     MI.eraseFromParent();
4281     return Legalized;
4282   }
4283   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4284     // This trivially expands to CTTZ.
4285     Observer.changingInstr(MI);
4286     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4287     Observer.changedInstr(MI);
4288     return Legalized;
4289   }
4290   case TargetOpcode::G_CTTZ: {
4291     Register DstReg = MI.getOperand(0).getReg();
4292     Register SrcReg = MI.getOperand(1).getReg();
4293     LLT DstTy = MRI.getType(DstReg);
4294     LLT SrcTy = MRI.getType(SrcReg);
4295 
4296     unsigned Len = SrcTy.getSizeInBits();
4297     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4298       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4299       // zero.
4300       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4301       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4302       auto ICmp = MIRBuilder.buildICmp(
4303           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4304       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4305       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4306       MI.eraseFromParent();
4307       return Legalized;
4308     }
4309     // for now, we use: { return popcount(~x & (x - 1)); }
4310     // unless the target has ctlz but not ctpop, in which case we use:
4311     // { return 32 - nlz(~x & (x-1)); }
4312     // Ref: "Hacker's Delight" by Henry Warren
4313     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4314     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4315     auto MIBTmp = MIRBuilder.buildAnd(
4316         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4317     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4318         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4319       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4320       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4321                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4322       MI.eraseFromParent();
4323       return Legalized;
4324     }
4325     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4326     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4327     return Legalized;
4328   }
4329   case TargetOpcode::G_CTPOP: {
4330     unsigned Size = Ty.getSizeInBits();
4331     MachineIRBuilder &B = MIRBuilder;
4332 
4333     // Count set bits in blocks of 2 bits. Default approach would be
4334     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4335     // We use following formula instead:
4336     // B2Count = val - { (val >> 1) & 0x55555555 }
4337     // since it gives same result in blocks of 2 with one instruction less.
4338     auto C_1 = B.buildConstant(Ty, 1);
4339     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4340     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4341     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4342     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4343     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4344 
4345     // In order to get count in blocks of 4 add values from adjacent block of 2.
4346     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4347     auto C_2 = B.buildConstant(Ty, 2);
4348     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4349     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4350     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4351     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4352     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4353     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4354 
4355     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4356     // addition since count value sits in range {0,...,8} and 4 bits are enough
4357     // to hold such binary values. After addition high 4 bits still hold count
4358     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4359     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4360     auto C_4 = B.buildConstant(Ty, 4);
4361     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4362     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4363     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4364     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4365     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4366 
4367     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4368     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4369     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4370     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4371     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4372 
4373     // Shift count result from 8 high bits to low bits.
4374     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4375     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4376 
4377     MI.eraseFromParent();
4378     return Legalized;
4379   }
4380   }
4381 }
4382 
4383 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4384 // representation.
4385 LegalizerHelper::LegalizeResult
4386 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4387   Register Dst = MI.getOperand(0).getReg();
4388   Register Src = MI.getOperand(1).getReg();
4389   const LLT S64 = LLT::scalar(64);
4390   const LLT S32 = LLT::scalar(32);
4391   const LLT S1 = LLT::scalar(1);
4392 
4393   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4394 
4395   // unsigned cul2f(ulong u) {
4396   //   uint lz = clz(u);
4397   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4398   //   u = (u << lz) & 0x7fffffffffffffffUL;
4399   //   ulong t = u & 0xffffffffffUL;
4400   //   uint v = (e << 23) | (uint)(u >> 40);
4401   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4402   //   return as_float(v + r);
4403   // }
4404 
4405   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4406   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4407 
4408   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4409 
4410   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4411   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4412 
4413   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4414   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4415 
4416   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4417   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4418 
4419   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4420 
4421   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4422   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4423 
4424   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4425   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4426   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4427 
4428   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4429   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4430   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4431   auto One = MIRBuilder.buildConstant(S32, 1);
4432 
4433   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4434   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4435   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4436   MIRBuilder.buildAdd(Dst, V, R);
4437 
4438   MI.eraseFromParent();
4439   return Legalized;
4440 }
4441 
4442 LegalizerHelper::LegalizeResult
4443 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4444   Register Dst = MI.getOperand(0).getReg();
4445   Register Src = MI.getOperand(1).getReg();
4446   LLT DstTy = MRI.getType(Dst);
4447   LLT SrcTy = MRI.getType(Src);
4448 
4449   if (SrcTy == LLT::scalar(1)) {
4450     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4451     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4452     MIRBuilder.buildSelect(Dst, Src, True, False);
4453     MI.eraseFromParent();
4454     return Legalized;
4455   }
4456 
4457   if (SrcTy != LLT::scalar(64))
4458     return UnableToLegalize;
4459 
4460   if (DstTy == LLT::scalar(32)) {
4461     // TODO: SelectionDAG has several alternative expansions to port which may
4462     // be more reasonble depending on the available instructions. If a target
4463     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4464     // intermediate type, this is probably worse.
4465     return lowerU64ToF32BitOps(MI);
4466   }
4467 
4468   return UnableToLegalize;
4469 }
4470 
4471 LegalizerHelper::LegalizeResult
4472 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4473   Register Dst = MI.getOperand(0).getReg();
4474   Register Src = MI.getOperand(1).getReg();
4475   LLT DstTy = MRI.getType(Dst);
4476   LLT SrcTy = MRI.getType(Src);
4477 
4478   const LLT S64 = LLT::scalar(64);
4479   const LLT S32 = LLT::scalar(32);
4480   const LLT S1 = LLT::scalar(1);
4481 
4482   if (SrcTy == S1) {
4483     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4484     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4485     MIRBuilder.buildSelect(Dst, Src, True, False);
4486     MI.eraseFromParent();
4487     return Legalized;
4488   }
4489 
4490   if (SrcTy != S64)
4491     return UnableToLegalize;
4492 
4493   if (DstTy == S32) {
4494     // signed cl2f(long l) {
4495     //   long s = l >> 63;
4496     //   float r = cul2f((l + s) ^ s);
4497     //   return s ? -r : r;
4498     // }
4499     Register L = Src;
4500     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4501     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4502 
4503     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4504     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4505     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4506 
4507     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4508     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4509                                             MIRBuilder.buildConstant(S64, 0));
4510     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4511     MI.eraseFromParent();
4512     return Legalized;
4513   }
4514 
4515   return UnableToLegalize;
4516 }
4517 
4518 LegalizerHelper::LegalizeResult
4519 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4520   Register Dst = MI.getOperand(0).getReg();
4521   Register Src = MI.getOperand(1).getReg();
4522   LLT DstTy = MRI.getType(Dst);
4523   LLT SrcTy = MRI.getType(Src);
4524   const LLT S64 = LLT::scalar(64);
4525   const LLT S32 = LLT::scalar(32);
4526 
4527   if (SrcTy != S64 && SrcTy != S32)
4528     return UnableToLegalize;
4529   if (DstTy != S32 && DstTy != S64)
4530     return UnableToLegalize;
4531 
4532   // FPTOSI gives same result as FPTOUI for positive signed integers.
4533   // FPTOUI needs to deal with fp values that convert to unsigned integers
4534   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4535 
4536   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4537   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4538                                                 : APFloat::IEEEdouble(),
4539                     APInt::getNullValue(SrcTy.getSizeInBits()));
4540   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4541 
4542   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4543 
4544   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4545   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4546   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4547   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4548   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4549   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4550   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4551 
4552   const LLT S1 = LLT::scalar(1);
4553 
4554   MachineInstrBuilder FCMP =
4555       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4556   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4557 
4558   MI.eraseFromParent();
4559   return Legalized;
4560 }
4561 
4562 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4563   Register Dst = MI.getOperand(0).getReg();
4564   Register Src = MI.getOperand(1).getReg();
4565   LLT DstTy = MRI.getType(Dst);
4566   LLT SrcTy = MRI.getType(Src);
4567   const LLT S64 = LLT::scalar(64);
4568   const LLT S32 = LLT::scalar(32);
4569 
4570   // FIXME: Only f32 to i64 conversions are supported.
4571   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4572     return UnableToLegalize;
4573 
4574   // Expand f32 -> i64 conversion
4575   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4576   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4577 
4578   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4579 
4580   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4581   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4582 
4583   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4584   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4585 
4586   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4587                                            APInt::getSignMask(SrcEltBits));
4588   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4589   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4590   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4591   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4592 
4593   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4594   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4595   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4596 
4597   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4598   R = MIRBuilder.buildZExt(DstTy, R);
4599 
4600   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4601   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4602   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4603   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4604 
4605   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4606   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4607 
4608   const LLT S1 = LLT::scalar(1);
4609   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4610                                     S1, Exponent, ExponentLoBit);
4611 
4612   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4613 
4614   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4615   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4616 
4617   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4618 
4619   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4620                                           S1, Exponent, ZeroSrcTy);
4621 
4622   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4623   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4624 
4625   MI.eraseFromParent();
4626   return Legalized;
4627 }
4628 
4629 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4630 LegalizerHelper::LegalizeResult
4631 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4632   Register Dst = MI.getOperand(0).getReg();
4633   Register Src = MI.getOperand(1).getReg();
4634 
4635   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4636     return UnableToLegalize;
4637 
4638   const unsigned ExpMask = 0x7ff;
4639   const unsigned ExpBiasf64 = 1023;
4640   const unsigned ExpBiasf16 = 15;
4641   const LLT S32 = LLT::scalar(32);
4642   const LLT S1 = LLT::scalar(1);
4643 
4644   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4645   Register U = Unmerge.getReg(0);
4646   Register UH = Unmerge.getReg(1);
4647 
4648   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4649   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4650 
4651   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4652   // add the f16 bias (15) to get the biased exponent for the f16 format.
4653   E = MIRBuilder.buildAdd(
4654     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4655 
4656   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4657   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4658 
4659   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4660                                        MIRBuilder.buildConstant(S32, 0x1ff));
4661   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4662 
4663   auto Zero = MIRBuilder.buildConstant(S32, 0);
4664   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4665   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4666   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4667 
4668   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4669   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4670   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4671   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4672 
4673   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4674   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4675 
4676   // N = M | (E << 12);
4677   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4678   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4679 
4680   // B = clamp(1-E, 0, 13);
4681   auto One = MIRBuilder.buildConstant(S32, 1);
4682   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4683   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4684   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4685 
4686   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4687                                        MIRBuilder.buildConstant(S32, 0x1000));
4688 
4689   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4690   auto D0 = MIRBuilder.buildShl(S32, D, B);
4691 
4692   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4693                                              D0, SigSetHigh);
4694   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4695   D = MIRBuilder.buildOr(S32, D, D1);
4696 
4697   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4698   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4699 
4700   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4701   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4702 
4703   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4704                                        MIRBuilder.buildConstant(S32, 3));
4705   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4706 
4707   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4708                                        MIRBuilder.buildConstant(S32, 5));
4709   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4710 
4711   V1 = MIRBuilder.buildOr(S32, V0, V1);
4712   V = MIRBuilder.buildAdd(S32, V, V1);
4713 
4714   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4715                                        E, MIRBuilder.buildConstant(S32, 30));
4716   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4717                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4718 
4719   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4720                                          E, MIRBuilder.buildConstant(S32, 1039));
4721   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4722 
4723   // Extract the sign bit.
4724   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4725   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4726 
4727   // Insert the sign bit
4728   V = MIRBuilder.buildOr(S32, Sign, V);
4729 
4730   MIRBuilder.buildTrunc(Dst, V);
4731   MI.eraseFromParent();
4732   return Legalized;
4733 }
4734 
4735 LegalizerHelper::LegalizeResult
4736 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4737   Register Dst = MI.getOperand(0).getReg();
4738   Register Src = MI.getOperand(1).getReg();
4739 
4740   LLT DstTy = MRI.getType(Dst);
4741   LLT SrcTy = MRI.getType(Src);
4742   const LLT S64 = LLT::scalar(64);
4743   const LLT S16 = LLT::scalar(16);
4744 
4745   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4746     return lowerFPTRUNC_F64_TO_F16(MI);
4747 
4748   return UnableToLegalize;
4749 }
4750 
4751 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4752   switch (Opc) {
4753   case TargetOpcode::G_SMIN:
4754     return CmpInst::ICMP_SLT;
4755   case TargetOpcode::G_SMAX:
4756     return CmpInst::ICMP_SGT;
4757   case TargetOpcode::G_UMIN:
4758     return CmpInst::ICMP_ULT;
4759   case TargetOpcode::G_UMAX:
4760     return CmpInst::ICMP_UGT;
4761   default:
4762     llvm_unreachable("not in integer min/max");
4763   }
4764 }
4765 
4766 LegalizerHelper::LegalizeResult
4767 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4768   Register Dst = MI.getOperand(0).getReg();
4769   Register Src0 = MI.getOperand(1).getReg();
4770   Register Src1 = MI.getOperand(2).getReg();
4771 
4772   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4773   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4774 
4775   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4776   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4777 
4778   MI.eraseFromParent();
4779   return Legalized;
4780 }
4781 
4782 LegalizerHelper::LegalizeResult
4783 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4784   Register Dst = MI.getOperand(0).getReg();
4785   Register Src0 = MI.getOperand(1).getReg();
4786   Register Src1 = MI.getOperand(2).getReg();
4787 
4788   const LLT Src0Ty = MRI.getType(Src0);
4789   const LLT Src1Ty = MRI.getType(Src1);
4790 
4791   const int Src0Size = Src0Ty.getScalarSizeInBits();
4792   const int Src1Size = Src1Ty.getScalarSizeInBits();
4793 
4794   auto SignBitMask = MIRBuilder.buildConstant(
4795     Src0Ty, APInt::getSignMask(Src0Size));
4796 
4797   auto NotSignBitMask = MIRBuilder.buildConstant(
4798     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4799 
4800   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4801   MachineInstr *Or;
4802 
4803   if (Src0Ty == Src1Ty) {
4804     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
4805     Or = MIRBuilder.buildOr(Dst, And0, And1);
4806   } else if (Src0Size > Src1Size) {
4807     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4808     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4809     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4810     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4811     Or = MIRBuilder.buildOr(Dst, And0, And1);
4812   } else {
4813     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4814     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4815     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4816     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4817     Or = MIRBuilder.buildOr(Dst, And0, And1);
4818   }
4819 
4820   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4821   // constants are a nan and -0.0, but the final result should preserve
4822   // everything.
4823   if (unsigned Flags = MI.getFlags())
4824     Or->setFlags(Flags);
4825 
4826   MI.eraseFromParent();
4827   return Legalized;
4828 }
4829 
4830 LegalizerHelper::LegalizeResult
4831 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4832   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4833     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4834 
4835   Register Dst = MI.getOperand(0).getReg();
4836   Register Src0 = MI.getOperand(1).getReg();
4837   Register Src1 = MI.getOperand(2).getReg();
4838   LLT Ty = MRI.getType(Dst);
4839 
4840   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4841     // Insert canonicalizes if it's possible we need to quiet to get correct
4842     // sNaN behavior.
4843 
4844     // Note this must be done here, and not as an optimization combine in the
4845     // absence of a dedicate quiet-snan instruction as we're using an
4846     // omni-purpose G_FCANONICALIZE.
4847     if (!isKnownNeverSNaN(Src0, MRI))
4848       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4849 
4850     if (!isKnownNeverSNaN(Src1, MRI))
4851       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4852   }
4853 
4854   // If there are no nans, it's safe to simply replace this with the non-IEEE
4855   // version.
4856   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4857   MI.eraseFromParent();
4858   return Legalized;
4859 }
4860 
4861 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4862   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4863   Register DstReg = MI.getOperand(0).getReg();
4864   LLT Ty = MRI.getType(DstReg);
4865   unsigned Flags = MI.getFlags();
4866 
4867   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4868                                   Flags);
4869   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4870   MI.eraseFromParent();
4871   return Legalized;
4872 }
4873 
4874 LegalizerHelper::LegalizeResult
4875 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4876   Register DstReg = MI.getOperand(0).getReg();
4877   Register X = MI.getOperand(1).getReg();
4878   const unsigned Flags = MI.getFlags();
4879   const LLT Ty = MRI.getType(DstReg);
4880   const LLT CondTy = Ty.changeElementSize(1);
4881 
4882   // round(x) =>
4883   //  t = trunc(x);
4884   //  d = fabs(x - t);
4885   //  o = copysign(1.0f, x);
4886   //  return t + (d >= 0.5 ? o : 0.0);
4887 
4888   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4889 
4890   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4891   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4892   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4893   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4894   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4895   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4896 
4897   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4898                                   Flags);
4899   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4900 
4901   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4902 
4903   MI.eraseFromParent();
4904   return Legalized;
4905 }
4906 
4907 LegalizerHelper::LegalizeResult
4908 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4909   Register DstReg = MI.getOperand(0).getReg();
4910   Register SrcReg = MI.getOperand(1).getReg();
4911   unsigned Flags = MI.getFlags();
4912   LLT Ty = MRI.getType(DstReg);
4913   const LLT CondTy = Ty.changeElementSize(1);
4914 
4915   // result = trunc(src);
4916   // if (src < 0.0 && src != result)
4917   //   result += -1.0.
4918 
4919   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4920   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4921 
4922   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4923                                   SrcReg, Zero, Flags);
4924   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4925                                       SrcReg, Trunc, Flags);
4926   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4927   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4928 
4929   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
4930   MI.eraseFromParent();
4931   return Legalized;
4932 }
4933 
4934 LegalizerHelper::LegalizeResult
4935 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
4936   const unsigned NumOps = MI.getNumOperands();
4937   Register DstReg = MI.getOperand(0).getReg();
4938   Register Src0Reg = MI.getOperand(1).getReg();
4939   LLT DstTy = MRI.getType(DstReg);
4940   LLT SrcTy = MRI.getType(Src0Reg);
4941   unsigned PartSize = SrcTy.getSizeInBits();
4942 
4943   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
4944   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
4945 
4946   for (unsigned I = 2; I != NumOps; ++I) {
4947     const unsigned Offset = (I - 1) * PartSize;
4948 
4949     Register SrcReg = MI.getOperand(I).getReg();
4950     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
4951 
4952     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
4953       MRI.createGenericVirtualRegister(WideTy);
4954 
4955     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
4956     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
4957     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
4958     ResultReg = NextResult;
4959   }
4960 
4961   if (DstTy.isPointer()) {
4962     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
4963           DstTy.getAddressSpace())) {
4964       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
4965       return UnableToLegalize;
4966     }
4967 
4968     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
4969   }
4970 
4971   MI.eraseFromParent();
4972   return Legalized;
4973 }
4974 
4975 LegalizerHelper::LegalizeResult
4976 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4977   const unsigned NumDst = MI.getNumOperands() - 1;
4978   Register SrcReg = MI.getOperand(NumDst).getReg();
4979   Register Dst0Reg = MI.getOperand(0).getReg();
4980   LLT DstTy = MRI.getType(Dst0Reg);
4981   if (DstTy.isPointer())
4982     return UnableToLegalize; // TODO
4983 
4984   SrcReg = coerceToScalar(SrcReg);
4985   if (!SrcReg)
4986     return UnableToLegalize;
4987 
4988   // Expand scalarizing unmerge as bitcast to integer and shift.
4989   LLT IntTy = MRI.getType(SrcReg);
4990 
4991   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
4992 
4993   const unsigned DstSize = DstTy.getSizeInBits();
4994   unsigned Offset = DstSize;
4995   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4996     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4997     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
4998     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4999   }
5000 
5001   MI.eraseFromParent();
5002   return Legalized;
5003 }
5004 
5005 LegalizerHelper::LegalizeResult
5006 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5007   Register DstReg = MI.getOperand(0).getReg();
5008   Register Src0Reg = MI.getOperand(1).getReg();
5009   Register Src1Reg = MI.getOperand(2).getReg();
5010   LLT Src0Ty = MRI.getType(Src0Reg);
5011   LLT DstTy = MRI.getType(DstReg);
5012   LLT IdxTy = LLT::scalar(32);
5013 
5014   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5015 
5016   if (DstTy.isScalar()) {
5017     if (Src0Ty.isVector())
5018       return UnableToLegalize;
5019 
5020     // This is just a SELECT.
5021     assert(Mask.size() == 1 && "Expected a single mask element");
5022     Register Val;
5023     if (Mask[0] < 0 || Mask[0] > 1)
5024       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5025     else
5026       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5027     MIRBuilder.buildCopy(DstReg, Val);
5028     MI.eraseFromParent();
5029     return Legalized;
5030   }
5031 
5032   Register Undef;
5033   SmallVector<Register, 32> BuildVec;
5034   LLT EltTy = DstTy.getElementType();
5035 
5036   for (int Idx : Mask) {
5037     if (Idx < 0) {
5038       if (!Undef.isValid())
5039         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5040       BuildVec.push_back(Undef);
5041       continue;
5042     }
5043 
5044     if (Src0Ty.isScalar()) {
5045       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5046     } else {
5047       int NumElts = Src0Ty.getNumElements();
5048       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5049       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5050       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5051       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5052       BuildVec.push_back(Extract.getReg(0));
5053     }
5054   }
5055 
5056   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5057   MI.eraseFromParent();
5058   return Legalized;
5059 }
5060 
5061 LegalizerHelper::LegalizeResult
5062 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5063   const auto &MF = *MI.getMF();
5064   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5065   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5066     return UnableToLegalize;
5067 
5068   Register Dst = MI.getOperand(0).getReg();
5069   Register AllocSize = MI.getOperand(1).getReg();
5070   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5071 
5072   LLT PtrTy = MRI.getType(Dst);
5073   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5074 
5075   const auto &TLI = *MF.getSubtarget().getTargetLowering();
5076   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5077   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5078   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5079 
5080   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5081   // have to generate an extra instruction to negate the alloc and then use
5082   // G_PTR_ADD to add the negative offset.
5083   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5084   if (Alignment > Align(1)) {
5085     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5086     AlignMask.negate();
5087     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5088     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5089   }
5090 
5091   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5092   MIRBuilder.buildCopy(SPReg, SPTmp);
5093   MIRBuilder.buildCopy(Dst, SPTmp);
5094 
5095   MI.eraseFromParent();
5096   return Legalized;
5097 }
5098 
5099 LegalizerHelper::LegalizeResult
5100 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5101   Register Dst = MI.getOperand(0).getReg();
5102   Register Src = MI.getOperand(1).getReg();
5103   unsigned Offset = MI.getOperand(2).getImm();
5104 
5105   LLT DstTy = MRI.getType(Dst);
5106   LLT SrcTy = MRI.getType(Src);
5107 
5108   if (DstTy.isScalar() &&
5109       (SrcTy.isScalar() ||
5110        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5111     LLT SrcIntTy = SrcTy;
5112     if (!SrcTy.isScalar()) {
5113       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5114       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5115     }
5116 
5117     if (Offset == 0)
5118       MIRBuilder.buildTrunc(Dst, Src);
5119     else {
5120       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5121       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5122       MIRBuilder.buildTrunc(Dst, Shr);
5123     }
5124 
5125     MI.eraseFromParent();
5126     return Legalized;
5127   }
5128 
5129   return UnableToLegalize;
5130 }
5131 
5132 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5133   Register Dst = MI.getOperand(0).getReg();
5134   Register Src = MI.getOperand(1).getReg();
5135   Register InsertSrc = MI.getOperand(2).getReg();
5136   uint64_t Offset = MI.getOperand(3).getImm();
5137 
5138   LLT DstTy = MRI.getType(Src);
5139   LLT InsertTy = MRI.getType(InsertSrc);
5140 
5141   if (InsertTy.isVector() ||
5142       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5143     return UnableToLegalize;
5144 
5145   const DataLayout &DL = MIRBuilder.getDataLayout();
5146   if ((DstTy.isPointer() &&
5147        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5148       (InsertTy.isPointer() &&
5149        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5150     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5151     return UnableToLegalize;
5152   }
5153 
5154   LLT IntDstTy = DstTy;
5155 
5156   if (!DstTy.isScalar()) {
5157     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5158     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5159   }
5160 
5161   if (!InsertTy.isScalar()) {
5162     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5163     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5164   }
5165 
5166   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5167   if (Offset != 0) {
5168     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5169     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5170   }
5171 
5172   APInt MaskVal = APInt::getBitsSetWithWrap(
5173       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5174 
5175   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5176   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5177   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5178 
5179   MIRBuilder.buildCast(Dst, Or);
5180   MI.eraseFromParent();
5181   return Legalized;
5182 }
5183 
5184 LegalizerHelper::LegalizeResult
5185 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5186   Register Dst0 = MI.getOperand(0).getReg();
5187   Register Dst1 = MI.getOperand(1).getReg();
5188   Register LHS = MI.getOperand(2).getReg();
5189   Register RHS = MI.getOperand(3).getReg();
5190   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5191 
5192   LLT Ty = MRI.getType(Dst0);
5193   LLT BoolTy = MRI.getType(Dst1);
5194 
5195   if (IsAdd)
5196     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5197   else
5198     MIRBuilder.buildSub(Dst0, LHS, RHS);
5199 
5200   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5201 
5202   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5203 
5204   // For an addition, the result should be less than one of the operands (LHS)
5205   // if and only if the other operand (RHS) is negative, otherwise there will
5206   // be overflow.
5207   // For a subtraction, the result should be less than one of the operands
5208   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5209   // otherwise there will be overflow.
5210   auto ResultLowerThanLHS =
5211       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5212   auto ConditionRHS = MIRBuilder.buildICmp(
5213       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5214 
5215   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5216   MI.eraseFromParent();
5217   return Legalized;
5218 }
5219 
5220 LegalizerHelper::LegalizeResult
5221 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5222   Register Dst = MI.getOperand(0).getReg();
5223   Register Src = MI.getOperand(1).getReg();
5224   const LLT Ty = MRI.getType(Src);
5225   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5226   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5227 
5228   // Swap most and least significant byte, set remaining bytes in Res to zero.
5229   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5230   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5231   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5232   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5233 
5234   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5235   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5236     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5237     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5238     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5239     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5240     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5241     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5242     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5243     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5244     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5245     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5246     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5247     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5248   }
5249   Res.getInstr()->getOperand(0).setReg(Dst);
5250 
5251   MI.eraseFromParent();
5252   return Legalized;
5253 }
5254 
5255 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5256 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5257                                  MachineInstrBuilder Src, APInt Mask) {
5258   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5259   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5260   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5261   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5262   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5263   return B.buildOr(Dst, LHS, RHS);
5264 }
5265 
5266 LegalizerHelper::LegalizeResult
5267 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5268   Register Dst = MI.getOperand(0).getReg();
5269   Register Src = MI.getOperand(1).getReg();
5270   const LLT Ty = MRI.getType(Src);
5271   unsigned Size = Ty.getSizeInBits();
5272 
5273   MachineInstrBuilder BSWAP =
5274       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5275 
5276   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5277   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5278   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5279   MachineInstrBuilder Swap4 =
5280       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5281 
5282   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5283   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5284   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5285   MachineInstrBuilder Swap2 =
5286       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5287 
5288   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5289   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5290   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5291   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5292 
5293   MI.eraseFromParent();
5294   return Legalized;
5295 }
5296 
5297 LegalizerHelper::LegalizeResult
5298 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5299   MachineFunction &MF = MIRBuilder.getMF();
5300   const TargetSubtargetInfo &STI = MF.getSubtarget();
5301   const TargetLowering *TLI = STI.getTargetLowering();
5302 
5303   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5304   int NameOpIdx = IsRead ? 1 : 0;
5305   int ValRegIndex = IsRead ? 0 : 1;
5306 
5307   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5308   const LLT Ty = MRI.getType(ValReg);
5309   const MDString *RegStr = cast<MDString>(
5310     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5311 
5312   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5313   if (!PhysReg.isValid())
5314     return UnableToLegalize;
5315 
5316   if (IsRead)
5317     MIRBuilder.buildCopy(ValReg, PhysReg);
5318   else
5319     MIRBuilder.buildCopy(PhysReg, ValReg);
5320 
5321   MI.eraseFromParent();
5322   return Legalized;
5323 }
5324