1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()) { 90 MIRBuilder.setChangeObserver(Observer); 91 } 92 93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 94 GISelChangeObserver &Observer, 95 MachineIRBuilder &B) 96 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) { 97 MIRBuilder.setChangeObserver(Observer); 98 } 99 LegalizerHelper::LegalizeResult 100 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 101 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 102 103 MIRBuilder.setInstrAndDebugLoc(MI); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 108 auto Step = LI.getAction(MI, MRI); 109 switch (Step.Action) { 110 case Legal: 111 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 112 return AlreadyLegal; 113 case Libcall: 114 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 115 return libcall(MI); 116 case NarrowScalar: 117 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 118 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 119 case WidenScalar: 120 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 121 return widenScalar(MI, Step.TypeIdx, Step.NewType); 122 case Bitcast: 123 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 124 return bitcast(MI, Step.TypeIdx, Step.NewType); 125 case Lower: 126 LLVM_DEBUG(dbgs() << ".. Lower\n"); 127 return lower(MI, Step.TypeIdx, Step.NewType); 128 case FewerElements: 129 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 130 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 131 case MoreElements: 132 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 133 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case Custom: 135 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 136 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 137 default: 138 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 139 return UnableToLegalize; 140 } 141 } 142 143 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 144 SmallVectorImpl<Register> &VRegs) { 145 for (int i = 0; i < NumParts; ++i) 146 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 147 MIRBuilder.buildUnmerge(VRegs, Reg); 148 } 149 150 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 151 LLT MainTy, LLT &LeftoverTy, 152 SmallVectorImpl<Register> &VRegs, 153 SmallVectorImpl<Register> &LeftoverRegs) { 154 assert(!LeftoverTy.isValid() && "this is an out argument"); 155 156 unsigned RegSize = RegTy.getSizeInBits(); 157 unsigned MainSize = MainTy.getSizeInBits(); 158 unsigned NumParts = RegSize / MainSize; 159 unsigned LeftoverSize = RegSize - NumParts * MainSize; 160 161 // Use an unmerge when possible. 162 if (LeftoverSize == 0) { 163 for (unsigned I = 0; I < NumParts; ++I) 164 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 165 MIRBuilder.buildUnmerge(VRegs, Reg); 166 return true; 167 } 168 169 if (MainTy.isVector()) { 170 unsigned EltSize = MainTy.getScalarSizeInBits(); 171 if (LeftoverSize % EltSize != 0) 172 return false; 173 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 174 } else { 175 LeftoverTy = LLT::scalar(LeftoverSize); 176 } 177 178 // For irregular sizes, extract the individual parts. 179 for (unsigned I = 0; I != NumParts; ++I) { 180 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 181 VRegs.push_back(NewReg); 182 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 183 } 184 185 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 186 Offset += LeftoverSize) { 187 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 188 LeftoverRegs.push_back(NewReg); 189 MIRBuilder.buildExtract(NewReg, Reg, Offset); 190 } 191 192 return true; 193 } 194 195 void LegalizerHelper::insertParts(Register DstReg, 196 LLT ResultTy, LLT PartTy, 197 ArrayRef<Register> PartRegs, 198 LLT LeftoverTy, 199 ArrayRef<Register> LeftoverRegs) { 200 if (!LeftoverTy.isValid()) { 201 assert(LeftoverRegs.empty()); 202 203 if (!ResultTy.isVector()) { 204 MIRBuilder.buildMerge(DstReg, PartRegs); 205 return; 206 } 207 208 if (PartTy.isVector()) 209 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 210 else 211 MIRBuilder.buildBuildVector(DstReg, PartRegs); 212 return; 213 } 214 215 unsigned PartSize = PartTy.getSizeInBits(); 216 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 217 218 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 219 MIRBuilder.buildUndef(CurResultReg); 220 221 unsigned Offset = 0; 222 for (Register PartReg : PartRegs) { 223 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 224 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 225 CurResultReg = NewResultReg; 226 Offset += PartSize; 227 } 228 229 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 230 // Use the original output register for the final insert to avoid a copy. 231 Register NewResultReg = (I + 1 == E) ? 232 DstReg : MRI.createGenericVirtualRegister(ResultTy); 233 234 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 235 CurResultReg = NewResultReg; 236 Offset += LeftoverPartSize; 237 } 238 } 239 240 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 241 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 242 const MachineInstr &MI) { 243 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 244 245 const int NumResults = MI.getNumOperands() - 1; 246 Regs.resize(NumResults); 247 for (int I = 0; I != NumResults; ++I) 248 Regs[I] = MI.getOperand(I).getReg(); 249 } 250 251 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 252 LLT NarrowTy, Register SrcReg) { 253 LLT SrcTy = MRI.getType(SrcReg); 254 255 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 256 if (SrcTy == GCDTy) { 257 // If the source already evenly divides the result type, we don't need to do 258 // anything. 259 Parts.push_back(SrcReg); 260 } else { 261 // Need to split into common type sized pieces. 262 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 263 getUnmergeResults(Parts, *Unmerge); 264 } 265 266 return GCDTy; 267 } 268 269 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 270 SmallVectorImpl<Register> &VRegs, 271 unsigned PadStrategy) { 272 LLT LCMTy = getLCMType(DstTy, NarrowTy); 273 274 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 275 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 276 int NumOrigSrc = VRegs.size(); 277 278 Register PadReg; 279 280 // Get a value we can use to pad the source value if the sources won't evenly 281 // cover the result type. 282 if (NumOrigSrc < NumParts * NumSubParts) { 283 if (PadStrategy == TargetOpcode::G_ZEXT) 284 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 285 else if (PadStrategy == TargetOpcode::G_ANYEXT) 286 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 287 else { 288 assert(PadStrategy == TargetOpcode::G_SEXT); 289 290 // Shift the sign bit of the low register through the high register. 291 auto ShiftAmt = 292 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 293 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 294 } 295 } 296 297 // Registers for the final merge to be produced. 298 SmallVector<Register, 4> Remerge(NumParts); 299 300 // Registers needed for intermediate merges, which will be merged into a 301 // source for Remerge. 302 SmallVector<Register, 4> SubMerge(NumSubParts); 303 304 // Once we've fully read off the end of the original source bits, we can reuse 305 // the same high bits for remaining padding elements. 306 Register AllPadReg; 307 308 // Build merges to the LCM type to cover the original result type. 309 for (int I = 0; I != NumParts; ++I) { 310 bool AllMergePartsArePadding = true; 311 312 // Build the requested merges to the requested type. 313 for (int J = 0; J != NumSubParts; ++J) { 314 int Idx = I * NumSubParts + J; 315 if (Idx >= NumOrigSrc) { 316 SubMerge[J] = PadReg; 317 continue; 318 } 319 320 SubMerge[J] = VRegs[Idx]; 321 322 // There are meaningful bits here we can't reuse later. 323 AllMergePartsArePadding = false; 324 } 325 326 // If we've filled up a complete piece with padding bits, we can directly 327 // emit the natural sized constant if applicable, rather than a merge of 328 // smaller constants. 329 if (AllMergePartsArePadding && !AllPadReg) { 330 if (PadStrategy == TargetOpcode::G_ANYEXT) 331 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 332 else if (PadStrategy == TargetOpcode::G_ZEXT) 333 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 334 335 // If this is a sign extension, we can't materialize a trivial constant 336 // with the right type and have to produce a merge. 337 } 338 339 if (AllPadReg) { 340 // Avoid creating additional instructions if we're just adding additional 341 // copies of padding bits. 342 Remerge[I] = AllPadReg; 343 continue; 344 } 345 346 if (NumSubParts == 1) 347 Remerge[I] = SubMerge[0]; 348 else 349 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 350 351 // In the sign extend padding case, re-use the first all-signbit merge. 352 if (AllMergePartsArePadding && !AllPadReg) 353 AllPadReg = Remerge[I]; 354 } 355 356 VRegs = std::move(Remerge); 357 return LCMTy; 358 } 359 360 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 361 ArrayRef<Register> RemergeRegs) { 362 LLT DstTy = MRI.getType(DstReg); 363 364 // Create the merge to the widened source, and extract the relevant bits into 365 // the result. 366 367 if (DstTy == LCMTy) { 368 MIRBuilder.buildMerge(DstReg, RemergeRegs); 369 return; 370 } 371 372 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 373 if (DstTy.isScalar() && LCMTy.isScalar()) { 374 MIRBuilder.buildTrunc(DstReg, Remerge); 375 return; 376 } 377 378 if (LCMTy.isVector()) { 379 MIRBuilder.buildExtract(DstReg, Remerge, 0); 380 return; 381 } 382 383 llvm_unreachable("unhandled case"); 384 } 385 386 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 387 #define RTLIBCASE(LibcallPrefix) \ 388 do { \ 389 switch (Size) { \ 390 case 32: \ 391 return RTLIB::LibcallPrefix##32; \ 392 case 64: \ 393 return RTLIB::LibcallPrefix##64; \ 394 case 128: \ 395 return RTLIB::LibcallPrefix##128; \ 396 default: \ 397 llvm_unreachable("unexpected size"); \ 398 } \ 399 } while (0) 400 401 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 402 403 switch (Opcode) { 404 case TargetOpcode::G_SDIV: 405 RTLIBCASE(SDIV_I); 406 case TargetOpcode::G_UDIV: 407 RTLIBCASE(UDIV_I); 408 case TargetOpcode::G_SREM: 409 RTLIBCASE(SREM_I); 410 case TargetOpcode::G_UREM: 411 RTLIBCASE(UREM_I); 412 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 413 RTLIBCASE(CTLZ_I); 414 case TargetOpcode::G_FADD: 415 RTLIBCASE(ADD_F); 416 case TargetOpcode::G_FSUB: 417 RTLIBCASE(SUB_F); 418 case TargetOpcode::G_FMUL: 419 RTLIBCASE(MUL_F); 420 case TargetOpcode::G_FDIV: 421 RTLIBCASE(DIV_F); 422 case TargetOpcode::G_FEXP: 423 RTLIBCASE(EXP_F); 424 case TargetOpcode::G_FEXP2: 425 RTLIBCASE(EXP2_F); 426 case TargetOpcode::G_FREM: 427 RTLIBCASE(REM_F); 428 case TargetOpcode::G_FPOW: 429 RTLIBCASE(POW_F); 430 case TargetOpcode::G_FMA: 431 RTLIBCASE(FMA_F); 432 case TargetOpcode::G_FSIN: 433 RTLIBCASE(SIN_F); 434 case TargetOpcode::G_FCOS: 435 RTLIBCASE(COS_F); 436 case TargetOpcode::G_FLOG10: 437 RTLIBCASE(LOG10_F); 438 case TargetOpcode::G_FLOG: 439 RTLIBCASE(LOG_F); 440 case TargetOpcode::G_FLOG2: 441 RTLIBCASE(LOG2_F); 442 case TargetOpcode::G_FCEIL: 443 RTLIBCASE(CEIL_F); 444 case TargetOpcode::G_FFLOOR: 445 RTLIBCASE(FLOOR_F); 446 case TargetOpcode::G_FMINNUM: 447 RTLIBCASE(FMIN_F); 448 case TargetOpcode::G_FMAXNUM: 449 RTLIBCASE(FMAX_F); 450 case TargetOpcode::G_FSQRT: 451 RTLIBCASE(SQRT_F); 452 case TargetOpcode::G_FRINT: 453 RTLIBCASE(RINT_F); 454 case TargetOpcode::G_FNEARBYINT: 455 RTLIBCASE(NEARBYINT_F); 456 } 457 llvm_unreachable("Unknown libcall function"); 458 } 459 460 /// True if an instruction is in tail position in its caller. Intended for 461 /// legalizing libcalls as tail calls when possible. 462 static bool isLibCallInTailPosition(MachineInstr &MI) { 463 MachineBasicBlock &MBB = *MI.getParent(); 464 const Function &F = MBB.getParent()->getFunction(); 465 466 // Conservatively require the attributes of the call to match those of 467 // the return. Ignore NoAlias and NonNull because they don't affect the 468 // call sequence. 469 AttributeList CallerAttrs = F.getAttributes(); 470 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 471 .removeAttribute(Attribute::NoAlias) 472 .removeAttribute(Attribute::NonNull) 473 .hasAttributes()) 474 return false; 475 476 // It's not safe to eliminate the sign / zero extension of the return value. 477 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 478 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 479 return false; 480 481 // Only tail call if the following instruction is a standard return. 482 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 483 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 484 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 485 return false; 486 487 return true; 488 } 489 490 LegalizerHelper::LegalizeResult 491 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 492 const CallLowering::ArgInfo &Result, 493 ArrayRef<CallLowering::ArgInfo> Args, 494 const CallingConv::ID CC) { 495 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 496 497 CallLowering::CallLoweringInfo Info; 498 Info.CallConv = CC; 499 Info.Callee = MachineOperand::CreateES(Name); 500 Info.OrigRet = Result; 501 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 502 if (!CLI.lowerCall(MIRBuilder, Info)) 503 return LegalizerHelper::UnableToLegalize; 504 505 return LegalizerHelper::Legalized; 506 } 507 508 LegalizerHelper::LegalizeResult 509 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 510 const CallLowering::ArgInfo &Result, 511 ArrayRef<CallLowering::ArgInfo> Args) { 512 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 513 const char *Name = TLI.getLibcallName(Libcall); 514 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 515 return createLibcall(MIRBuilder, Name, Result, Args, CC); 516 } 517 518 // Useful for libcalls where all operands have the same type. 519 static LegalizerHelper::LegalizeResult 520 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 521 Type *OpType) { 522 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 523 524 SmallVector<CallLowering::ArgInfo, 3> Args; 525 for (unsigned i = 1; i < MI.getNumOperands(); i++) 526 Args.push_back({MI.getOperand(i).getReg(), OpType}); 527 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 528 Args); 529 } 530 531 LegalizerHelper::LegalizeResult 532 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 533 MachineInstr &MI) { 534 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 535 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 536 537 SmallVector<CallLowering::ArgInfo, 3> Args; 538 // Add all the args, except for the last which is an imm denoting 'tail'. 539 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 540 Register Reg = MI.getOperand(i).getReg(); 541 542 // Need derive an IR type for call lowering. 543 LLT OpLLT = MRI.getType(Reg); 544 Type *OpTy = nullptr; 545 if (OpLLT.isPointer()) 546 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 547 else 548 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 549 Args.push_back({Reg, OpTy}); 550 } 551 552 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 553 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 554 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 555 RTLIB::Libcall RTLibcall; 556 switch (ID) { 557 case Intrinsic::memcpy: 558 RTLibcall = RTLIB::MEMCPY; 559 break; 560 case Intrinsic::memset: 561 RTLibcall = RTLIB::MEMSET; 562 break; 563 case Intrinsic::memmove: 564 RTLibcall = RTLIB::MEMMOVE; 565 break; 566 default: 567 return LegalizerHelper::UnableToLegalize; 568 } 569 const char *Name = TLI.getLibcallName(RTLibcall); 570 571 MIRBuilder.setInstrAndDebugLoc(MI); 572 573 CallLowering::CallLoweringInfo Info; 574 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 575 Info.Callee = MachineOperand::CreateES(Name); 576 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 577 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 578 isLibCallInTailPosition(MI); 579 580 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 581 if (!CLI.lowerCall(MIRBuilder, Info)) 582 return LegalizerHelper::UnableToLegalize; 583 584 if (Info.LoweredTailCall) { 585 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 586 // We must have a return following the call (or debug insts) to get past 587 // isLibCallInTailPosition. 588 do { 589 MachineInstr *Next = MI.getNextNode(); 590 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 591 "Expected instr following MI to be return or debug inst?"); 592 // We lowered a tail call, so the call is now the return from the block. 593 // Delete the old return. 594 Next->eraseFromParent(); 595 } while (MI.getNextNode()); 596 } 597 598 return LegalizerHelper::Legalized; 599 } 600 601 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 602 Type *FromType) { 603 auto ToMVT = MVT::getVT(ToType); 604 auto FromMVT = MVT::getVT(FromType); 605 606 switch (Opcode) { 607 case TargetOpcode::G_FPEXT: 608 return RTLIB::getFPEXT(FromMVT, ToMVT); 609 case TargetOpcode::G_FPTRUNC: 610 return RTLIB::getFPROUND(FromMVT, ToMVT); 611 case TargetOpcode::G_FPTOSI: 612 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 613 case TargetOpcode::G_FPTOUI: 614 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 615 case TargetOpcode::G_SITOFP: 616 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 617 case TargetOpcode::G_UITOFP: 618 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 619 } 620 llvm_unreachable("Unsupported libcall function"); 621 } 622 623 static LegalizerHelper::LegalizeResult 624 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 625 Type *FromType) { 626 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 627 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 628 {{MI.getOperand(1).getReg(), FromType}}); 629 } 630 631 LegalizerHelper::LegalizeResult 632 LegalizerHelper::libcall(MachineInstr &MI) { 633 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 634 unsigned Size = LLTy.getSizeInBits(); 635 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 636 637 switch (MI.getOpcode()) { 638 default: 639 return UnableToLegalize; 640 case TargetOpcode::G_SDIV: 641 case TargetOpcode::G_UDIV: 642 case TargetOpcode::G_SREM: 643 case TargetOpcode::G_UREM: 644 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 645 Type *HLTy = IntegerType::get(Ctx, Size); 646 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 647 if (Status != Legalized) 648 return Status; 649 break; 650 } 651 case TargetOpcode::G_FADD: 652 case TargetOpcode::G_FSUB: 653 case TargetOpcode::G_FMUL: 654 case TargetOpcode::G_FDIV: 655 case TargetOpcode::G_FMA: 656 case TargetOpcode::G_FPOW: 657 case TargetOpcode::G_FREM: 658 case TargetOpcode::G_FCOS: 659 case TargetOpcode::G_FSIN: 660 case TargetOpcode::G_FLOG10: 661 case TargetOpcode::G_FLOG: 662 case TargetOpcode::G_FLOG2: 663 case TargetOpcode::G_FEXP: 664 case TargetOpcode::G_FEXP2: 665 case TargetOpcode::G_FCEIL: 666 case TargetOpcode::G_FFLOOR: 667 case TargetOpcode::G_FMINNUM: 668 case TargetOpcode::G_FMAXNUM: 669 case TargetOpcode::G_FSQRT: 670 case TargetOpcode::G_FRINT: 671 case TargetOpcode::G_FNEARBYINT: { 672 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 673 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 674 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 675 return UnableToLegalize; 676 } 677 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 678 if (Status != Legalized) 679 return Status; 680 break; 681 } 682 case TargetOpcode::G_FPEXT: 683 case TargetOpcode::G_FPTRUNC: { 684 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 685 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 686 if (!FromTy || !ToTy) 687 return UnableToLegalize; 688 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 689 if (Status != Legalized) 690 return Status; 691 break; 692 } 693 case TargetOpcode::G_FPTOSI: 694 case TargetOpcode::G_FPTOUI: { 695 // FIXME: Support other types 696 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 697 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 698 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 699 return UnableToLegalize; 700 LegalizeResult Status = conversionLibcall( 701 MI, MIRBuilder, 702 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 703 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 704 if (Status != Legalized) 705 return Status; 706 break; 707 } 708 case TargetOpcode::G_SITOFP: 709 case TargetOpcode::G_UITOFP: { 710 // FIXME: Support other types 711 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 712 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 713 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 714 return UnableToLegalize; 715 LegalizeResult Status = conversionLibcall( 716 MI, MIRBuilder, 717 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 718 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 719 if (Status != Legalized) 720 return Status; 721 break; 722 } 723 } 724 725 MI.eraseFromParent(); 726 return Legalized; 727 } 728 729 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 730 unsigned TypeIdx, 731 LLT NarrowTy) { 732 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 733 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 734 735 switch (MI.getOpcode()) { 736 default: 737 return UnableToLegalize; 738 case TargetOpcode::G_IMPLICIT_DEF: { 739 Register DstReg = MI.getOperand(0).getReg(); 740 LLT DstTy = MRI.getType(DstReg); 741 742 // If SizeOp0 is not an exact multiple of NarrowSize, emit 743 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 744 // FIXME: Although this would also be legal for the general case, it causes 745 // a lot of regressions in the emitted code (superfluous COPYs, artifact 746 // combines not being hit). This seems to be a problem related to the 747 // artifact combiner. 748 if (SizeOp0 % NarrowSize != 0) { 749 LLT ImplicitTy = NarrowTy; 750 if (DstTy.isVector()) 751 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 752 753 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 754 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 755 756 MI.eraseFromParent(); 757 return Legalized; 758 } 759 760 int NumParts = SizeOp0 / NarrowSize; 761 762 SmallVector<Register, 2> DstRegs; 763 for (int i = 0; i < NumParts; ++i) 764 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 765 766 if (DstTy.isVector()) 767 MIRBuilder.buildBuildVector(DstReg, DstRegs); 768 else 769 MIRBuilder.buildMerge(DstReg, DstRegs); 770 MI.eraseFromParent(); 771 return Legalized; 772 } 773 case TargetOpcode::G_CONSTANT: { 774 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 775 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 776 unsigned TotalSize = Ty.getSizeInBits(); 777 unsigned NarrowSize = NarrowTy.getSizeInBits(); 778 int NumParts = TotalSize / NarrowSize; 779 780 SmallVector<Register, 4> PartRegs; 781 for (int I = 0; I != NumParts; ++I) { 782 unsigned Offset = I * NarrowSize; 783 auto K = MIRBuilder.buildConstant(NarrowTy, 784 Val.lshr(Offset).trunc(NarrowSize)); 785 PartRegs.push_back(K.getReg(0)); 786 } 787 788 LLT LeftoverTy; 789 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 790 SmallVector<Register, 1> LeftoverRegs; 791 if (LeftoverBits != 0) { 792 LeftoverTy = LLT::scalar(LeftoverBits); 793 auto K = MIRBuilder.buildConstant( 794 LeftoverTy, 795 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 796 LeftoverRegs.push_back(K.getReg(0)); 797 } 798 799 insertParts(MI.getOperand(0).getReg(), 800 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 801 802 MI.eraseFromParent(); 803 return Legalized; 804 } 805 case TargetOpcode::G_SEXT: 806 case TargetOpcode::G_ZEXT: 807 case TargetOpcode::G_ANYEXT: 808 return narrowScalarExt(MI, TypeIdx, NarrowTy); 809 case TargetOpcode::G_TRUNC: { 810 if (TypeIdx != 1) 811 return UnableToLegalize; 812 813 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 814 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 815 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 816 return UnableToLegalize; 817 } 818 819 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 820 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 821 MI.eraseFromParent(); 822 return Legalized; 823 } 824 825 case TargetOpcode::G_FREEZE: 826 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 827 828 case TargetOpcode::G_ADD: { 829 // FIXME: add support for when SizeOp0 isn't an exact multiple of 830 // NarrowSize. 831 if (SizeOp0 % NarrowSize != 0) 832 return UnableToLegalize; 833 // Expand in terms of carry-setting/consuming G_ADDE instructions. 834 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 835 836 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 837 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 838 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 839 840 Register CarryIn; 841 for (int i = 0; i < NumParts; ++i) { 842 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 843 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 844 845 if (i == 0) 846 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 847 else { 848 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 849 Src2Regs[i], CarryIn); 850 } 851 852 DstRegs.push_back(DstReg); 853 CarryIn = CarryOut; 854 } 855 Register DstReg = MI.getOperand(0).getReg(); 856 if(MRI.getType(DstReg).isVector()) 857 MIRBuilder.buildBuildVector(DstReg, DstRegs); 858 else 859 MIRBuilder.buildMerge(DstReg, DstRegs); 860 MI.eraseFromParent(); 861 return Legalized; 862 } 863 case TargetOpcode::G_SUB: { 864 // FIXME: add support for when SizeOp0 isn't an exact multiple of 865 // NarrowSize. 866 if (SizeOp0 % NarrowSize != 0) 867 return UnableToLegalize; 868 869 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 870 871 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 872 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 873 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 874 875 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 876 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 877 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 878 {Src1Regs[0], Src2Regs[0]}); 879 DstRegs.push_back(DstReg); 880 Register BorrowIn = BorrowOut; 881 for (int i = 1; i < NumParts; ++i) { 882 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 883 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 884 885 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 886 {Src1Regs[i], Src2Regs[i], BorrowIn}); 887 888 DstRegs.push_back(DstReg); 889 BorrowIn = BorrowOut; 890 } 891 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 892 MI.eraseFromParent(); 893 return Legalized; 894 } 895 case TargetOpcode::G_MUL: 896 case TargetOpcode::G_UMULH: 897 return narrowScalarMul(MI, NarrowTy); 898 case TargetOpcode::G_EXTRACT: 899 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 900 case TargetOpcode::G_INSERT: 901 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_LOAD: { 903 const auto &MMO = **MI.memoperands_begin(); 904 Register DstReg = MI.getOperand(0).getReg(); 905 LLT DstTy = MRI.getType(DstReg); 906 if (DstTy.isVector()) 907 return UnableToLegalize; 908 909 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 910 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 911 auto &MMO = **MI.memoperands_begin(); 912 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 913 MIRBuilder.buildAnyExt(DstReg, TmpReg); 914 MI.eraseFromParent(); 915 return Legalized; 916 } 917 918 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 919 } 920 case TargetOpcode::G_ZEXTLOAD: 921 case TargetOpcode::G_SEXTLOAD: { 922 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 923 Register DstReg = MI.getOperand(0).getReg(); 924 Register PtrReg = MI.getOperand(1).getReg(); 925 926 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 927 auto &MMO = **MI.memoperands_begin(); 928 if (MMO.getSizeInBits() == NarrowSize) { 929 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 930 } else { 931 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 932 } 933 934 if (ZExt) 935 MIRBuilder.buildZExt(DstReg, TmpReg); 936 else 937 MIRBuilder.buildSExt(DstReg, TmpReg); 938 939 MI.eraseFromParent(); 940 return Legalized; 941 } 942 case TargetOpcode::G_STORE: { 943 const auto &MMO = **MI.memoperands_begin(); 944 945 Register SrcReg = MI.getOperand(0).getReg(); 946 LLT SrcTy = MRI.getType(SrcReg); 947 if (SrcTy.isVector()) 948 return UnableToLegalize; 949 950 int NumParts = SizeOp0 / NarrowSize; 951 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 952 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 953 if (SrcTy.isVector() && LeftoverBits != 0) 954 return UnableToLegalize; 955 956 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 957 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 958 auto &MMO = **MI.memoperands_begin(); 959 MIRBuilder.buildTrunc(TmpReg, SrcReg); 960 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 961 MI.eraseFromParent(); 962 return Legalized; 963 } 964 965 return reduceLoadStoreWidth(MI, 0, NarrowTy); 966 } 967 case TargetOpcode::G_SELECT: 968 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 969 case TargetOpcode::G_AND: 970 case TargetOpcode::G_OR: 971 case TargetOpcode::G_XOR: { 972 // Legalize bitwise operation: 973 // A = BinOp<Ty> B, C 974 // into: 975 // B1, ..., BN = G_UNMERGE_VALUES B 976 // C1, ..., CN = G_UNMERGE_VALUES C 977 // A1 = BinOp<Ty/N> B1, C2 978 // ... 979 // AN = BinOp<Ty/N> BN, CN 980 // A = G_MERGE_VALUES A1, ..., AN 981 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 982 } 983 case TargetOpcode::G_SHL: 984 case TargetOpcode::G_LSHR: 985 case TargetOpcode::G_ASHR: 986 return narrowScalarShift(MI, TypeIdx, NarrowTy); 987 case TargetOpcode::G_CTLZ: 988 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 989 case TargetOpcode::G_CTTZ: 990 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 991 case TargetOpcode::G_CTPOP: 992 if (TypeIdx == 1) 993 switch (MI.getOpcode()) { 994 case TargetOpcode::G_CTLZ: 995 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 996 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 997 case TargetOpcode::G_CTTZ: 998 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 999 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1000 case TargetOpcode::G_CTPOP: 1001 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1002 default: 1003 return UnableToLegalize; 1004 } 1005 1006 Observer.changingInstr(MI); 1007 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1008 Observer.changedInstr(MI); 1009 return Legalized; 1010 case TargetOpcode::G_INTTOPTR: 1011 if (TypeIdx != 1) 1012 return UnableToLegalize; 1013 1014 Observer.changingInstr(MI); 1015 narrowScalarSrc(MI, NarrowTy, 1); 1016 Observer.changedInstr(MI); 1017 return Legalized; 1018 case TargetOpcode::G_PTRTOINT: 1019 if (TypeIdx != 0) 1020 return UnableToLegalize; 1021 1022 Observer.changingInstr(MI); 1023 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1024 Observer.changedInstr(MI); 1025 return Legalized; 1026 case TargetOpcode::G_PHI: { 1027 unsigned NumParts = SizeOp0 / NarrowSize; 1028 SmallVector<Register, 2> DstRegs(NumParts); 1029 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1030 Observer.changingInstr(MI); 1031 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1032 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1033 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1034 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1035 SrcRegs[i / 2]); 1036 } 1037 MachineBasicBlock &MBB = *MI.getParent(); 1038 MIRBuilder.setInsertPt(MBB, MI); 1039 for (unsigned i = 0; i < NumParts; ++i) { 1040 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1041 MachineInstrBuilder MIB = 1042 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1043 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1044 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1045 } 1046 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1047 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1048 Observer.changedInstr(MI); 1049 MI.eraseFromParent(); 1050 return Legalized; 1051 } 1052 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1053 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1054 if (TypeIdx != 2) 1055 return UnableToLegalize; 1056 1057 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1058 Observer.changingInstr(MI); 1059 narrowScalarSrc(MI, NarrowTy, OpIdx); 1060 Observer.changedInstr(MI); 1061 return Legalized; 1062 } 1063 case TargetOpcode::G_ICMP: { 1064 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1065 if (NarrowSize * 2 != SrcSize) 1066 return UnableToLegalize; 1067 1068 Observer.changingInstr(MI); 1069 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1070 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1071 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1072 1073 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1074 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1075 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1076 1077 CmpInst::Predicate Pred = 1078 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1079 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1080 1081 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1082 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1083 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1084 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1085 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1086 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1087 } else { 1088 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1089 MachineInstrBuilder CmpHEQ = 1090 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1091 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1092 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1093 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1094 } 1095 Observer.changedInstr(MI); 1096 MI.eraseFromParent(); 1097 return Legalized; 1098 } 1099 case TargetOpcode::G_SEXT_INREG: { 1100 if (TypeIdx != 0) 1101 return UnableToLegalize; 1102 1103 int64_t SizeInBits = MI.getOperand(2).getImm(); 1104 1105 // So long as the new type has more bits than the bits we're extending we 1106 // don't need to break it apart. 1107 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1108 Observer.changingInstr(MI); 1109 // We don't lose any non-extension bits by truncating the src and 1110 // sign-extending the dst. 1111 MachineOperand &MO1 = MI.getOperand(1); 1112 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1113 MO1.setReg(TruncMIB.getReg(0)); 1114 1115 MachineOperand &MO2 = MI.getOperand(0); 1116 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1117 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1118 MIRBuilder.buildSExt(MO2, DstExt); 1119 MO2.setReg(DstExt); 1120 Observer.changedInstr(MI); 1121 return Legalized; 1122 } 1123 1124 // Break it apart. Components below the extension point are unmodified. The 1125 // component containing the extension point becomes a narrower SEXT_INREG. 1126 // Components above it are ashr'd from the component containing the 1127 // extension point. 1128 if (SizeOp0 % NarrowSize != 0) 1129 return UnableToLegalize; 1130 int NumParts = SizeOp0 / NarrowSize; 1131 1132 // List the registers where the destination will be scattered. 1133 SmallVector<Register, 2> DstRegs; 1134 // List the registers where the source will be split. 1135 SmallVector<Register, 2> SrcRegs; 1136 1137 // Create all the temporary registers. 1138 for (int i = 0; i < NumParts; ++i) { 1139 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1140 1141 SrcRegs.push_back(SrcReg); 1142 } 1143 1144 // Explode the big arguments into smaller chunks. 1145 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1146 1147 Register AshrCstReg = 1148 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1149 .getReg(0); 1150 Register FullExtensionReg = 0; 1151 Register PartialExtensionReg = 0; 1152 1153 // Do the operation on each small part. 1154 for (int i = 0; i < NumParts; ++i) { 1155 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1156 DstRegs.push_back(SrcRegs[i]); 1157 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1158 assert(PartialExtensionReg && 1159 "Expected to visit partial extension before full"); 1160 if (FullExtensionReg) { 1161 DstRegs.push_back(FullExtensionReg); 1162 continue; 1163 } 1164 DstRegs.push_back( 1165 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1166 .getReg(0)); 1167 FullExtensionReg = DstRegs.back(); 1168 } else { 1169 DstRegs.push_back( 1170 MIRBuilder 1171 .buildInstr( 1172 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1173 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1174 .getReg(0)); 1175 PartialExtensionReg = DstRegs.back(); 1176 } 1177 } 1178 1179 // Gather the destination registers into the final destination. 1180 Register DstReg = MI.getOperand(0).getReg(); 1181 MIRBuilder.buildMerge(DstReg, DstRegs); 1182 MI.eraseFromParent(); 1183 return Legalized; 1184 } 1185 case TargetOpcode::G_BSWAP: 1186 case TargetOpcode::G_BITREVERSE: { 1187 if (SizeOp0 % NarrowSize != 0) 1188 return UnableToLegalize; 1189 1190 Observer.changingInstr(MI); 1191 SmallVector<Register, 2> SrcRegs, DstRegs; 1192 unsigned NumParts = SizeOp0 / NarrowSize; 1193 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1194 1195 for (unsigned i = 0; i < NumParts; ++i) { 1196 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1197 {SrcRegs[NumParts - 1 - i]}); 1198 DstRegs.push_back(DstPart.getReg(0)); 1199 } 1200 1201 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1202 1203 Observer.changedInstr(MI); 1204 MI.eraseFromParent(); 1205 return Legalized; 1206 } 1207 case TargetOpcode::G_PTRMASK: { 1208 if (TypeIdx != 1) 1209 return UnableToLegalize; 1210 Observer.changingInstr(MI); 1211 narrowScalarSrc(MI, NarrowTy, 2); 1212 Observer.changedInstr(MI); 1213 return Legalized; 1214 } 1215 } 1216 } 1217 1218 Register LegalizerHelper::coerceToScalar(Register Val) { 1219 LLT Ty = MRI.getType(Val); 1220 if (Ty.isScalar()) 1221 return Val; 1222 1223 const DataLayout &DL = MIRBuilder.getDataLayout(); 1224 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1225 if (Ty.isPointer()) { 1226 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1227 return Register(); 1228 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1229 } 1230 1231 Register NewVal = Val; 1232 1233 assert(Ty.isVector()); 1234 LLT EltTy = Ty.getElementType(); 1235 if (EltTy.isPointer()) 1236 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1237 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1238 } 1239 1240 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1241 unsigned OpIdx, unsigned ExtOpcode) { 1242 MachineOperand &MO = MI.getOperand(OpIdx); 1243 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1244 MO.setReg(ExtB.getReg(0)); 1245 } 1246 1247 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1248 unsigned OpIdx) { 1249 MachineOperand &MO = MI.getOperand(OpIdx); 1250 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1251 MO.setReg(ExtB.getReg(0)); 1252 } 1253 1254 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1255 unsigned OpIdx, unsigned TruncOpcode) { 1256 MachineOperand &MO = MI.getOperand(OpIdx); 1257 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1258 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1259 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1260 MO.setReg(DstExt); 1261 } 1262 1263 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1264 unsigned OpIdx, unsigned ExtOpcode) { 1265 MachineOperand &MO = MI.getOperand(OpIdx); 1266 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1267 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1268 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1269 MO.setReg(DstTrunc); 1270 } 1271 1272 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1273 unsigned OpIdx) { 1274 MachineOperand &MO = MI.getOperand(OpIdx); 1275 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1276 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1277 MIRBuilder.buildExtract(MO, DstExt, 0); 1278 MO.setReg(DstExt); 1279 } 1280 1281 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1282 unsigned OpIdx) { 1283 MachineOperand &MO = MI.getOperand(OpIdx); 1284 1285 LLT OldTy = MRI.getType(MO.getReg()); 1286 unsigned OldElts = OldTy.getNumElements(); 1287 unsigned NewElts = MoreTy.getNumElements(); 1288 1289 unsigned NumParts = NewElts / OldElts; 1290 1291 // Use concat_vectors if the result is a multiple of the number of elements. 1292 if (NumParts * OldElts == NewElts) { 1293 SmallVector<Register, 8> Parts; 1294 Parts.push_back(MO.getReg()); 1295 1296 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1297 for (unsigned I = 1; I != NumParts; ++I) 1298 Parts.push_back(ImpDef); 1299 1300 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1301 MO.setReg(Concat.getReg(0)); 1302 return; 1303 } 1304 1305 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1306 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1307 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1308 MO.setReg(MoreReg); 1309 } 1310 1311 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1312 MachineOperand &Op = MI.getOperand(OpIdx); 1313 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1314 } 1315 1316 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1317 MachineOperand &MO = MI.getOperand(OpIdx); 1318 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1319 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1320 MIRBuilder.buildBitcast(MO, CastDst); 1321 MO.setReg(CastDst); 1322 } 1323 1324 LegalizerHelper::LegalizeResult 1325 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1326 LLT WideTy) { 1327 if (TypeIdx != 1) 1328 return UnableToLegalize; 1329 1330 Register DstReg = MI.getOperand(0).getReg(); 1331 LLT DstTy = MRI.getType(DstReg); 1332 if (DstTy.isVector()) 1333 return UnableToLegalize; 1334 1335 Register Src1 = MI.getOperand(1).getReg(); 1336 LLT SrcTy = MRI.getType(Src1); 1337 const int DstSize = DstTy.getSizeInBits(); 1338 const int SrcSize = SrcTy.getSizeInBits(); 1339 const int WideSize = WideTy.getSizeInBits(); 1340 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1341 1342 unsigned NumOps = MI.getNumOperands(); 1343 unsigned NumSrc = MI.getNumOperands() - 1; 1344 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1345 1346 if (WideSize >= DstSize) { 1347 // Directly pack the bits in the target type. 1348 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1349 1350 for (unsigned I = 2; I != NumOps; ++I) { 1351 const unsigned Offset = (I - 1) * PartSize; 1352 1353 Register SrcReg = MI.getOperand(I).getReg(); 1354 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1355 1356 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1357 1358 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1359 MRI.createGenericVirtualRegister(WideTy); 1360 1361 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1362 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1363 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1364 ResultReg = NextResult; 1365 } 1366 1367 if (WideSize > DstSize) 1368 MIRBuilder.buildTrunc(DstReg, ResultReg); 1369 else if (DstTy.isPointer()) 1370 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1371 1372 MI.eraseFromParent(); 1373 return Legalized; 1374 } 1375 1376 // Unmerge the original values to the GCD type, and recombine to the next 1377 // multiple greater than the original type. 1378 // 1379 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1380 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1381 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1382 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1383 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1384 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1385 // %12:_(s12) = G_MERGE_VALUES %10, %11 1386 // 1387 // Padding with undef if necessary: 1388 // 1389 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1390 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1391 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1392 // %7:_(s2) = G_IMPLICIT_DEF 1393 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1394 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1395 // %10:_(s12) = G_MERGE_VALUES %8, %9 1396 1397 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1398 LLT GCDTy = LLT::scalar(GCD); 1399 1400 SmallVector<Register, 8> Parts; 1401 SmallVector<Register, 8> NewMergeRegs; 1402 SmallVector<Register, 8> Unmerges; 1403 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1404 1405 // Decompose the original operands if they don't evenly divide. 1406 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1407 Register SrcReg = MI.getOperand(I).getReg(); 1408 if (GCD == SrcSize) { 1409 Unmerges.push_back(SrcReg); 1410 } else { 1411 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1412 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1413 Unmerges.push_back(Unmerge.getReg(J)); 1414 } 1415 } 1416 1417 // Pad with undef to the next size that is a multiple of the requested size. 1418 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1419 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1420 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1421 Unmerges.push_back(UndefReg); 1422 } 1423 1424 const int PartsPerGCD = WideSize / GCD; 1425 1426 // Build merges of each piece. 1427 ArrayRef<Register> Slicer(Unmerges); 1428 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1429 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1430 NewMergeRegs.push_back(Merge.getReg(0)); 1431 } 1432 1433 // A truncate may be necessary if the requested type doesn't evenly divide the 1434 // original result type. 1435 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1436 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1437 } else { 1438 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1439 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1440 } 1441 1442 MI.eraseFromParent(); 1443 return Legalized; 1444 } 1445 1446 LegalizerHelper::LegalizeResult 1447 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1448 LLT WideTy) { 1449 if (TypeIdx != 0) 1450 return UnableToLegalize; 1451 1452 int NumDst = MI.getNumOperands() - 1; 1453 Register SrcReg = MI.getOperand(NumDst).getReg(); 1454 LLT SrcTy = MRI.getType(SrcReg); 1455 if (SrcTy.isVector()) 1456 return UnableToLegalize; 1457 1458 Register Dst0Reg = MI.getOperand(0).getReg(); 1459 LLT DstTy = MRI.getType(Dst0Reg); 1460 if (!DstTy.isScalar()) 1461 return UnableToLegalize; 1462 1463 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1464 if (SrcTy.isPointer()) { 1465 const DataLayout &DL = MIRBuilder.getDataLayout(); 1466 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1467 LLVM_DEBUG( 1468 dbgs() << "Not casting non-integral address space integer\n"); 1469 return UnableToLegalize; 1470 } 1471 1472 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1473 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1474 } 1475 1476 // Widen SrcTy to WideTy. This does not affect the result, but since the 1477 // user requested this size, it is probably better handled than SrcTy and 1478 // should reduce the total number of legalization artifacts 1479 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1480 SrcTy = WideTy; 1481 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1482 } 1483 1484 // Theres no unmerge type to target. Directly extract the bits from the 1485 // source type 1486 unsigned DstSize = DstTy.getSizeInBits(); 1487 1488 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1489 for (int I = 1; I != NumDst; ++I) { 1490 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1491 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1492 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1493 } 1494 1495 MI.eraseFromParent(); 1496 return Legalized; 1497 } 1498 1499 // Extend the source to a wider type. 1500 LLT LCMTy = getLCMType(SrcTy, WideTy); 1501 1502 Register WideSrc = SrcReg; 1503 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1504 // TODO: If this is an integral address space, cast to integer and anyext. 1505 if (SrcTy.isPointer()) { 1506 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1507 return UnableToLegalize; 1508 } 1509 1510 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1511 } 1512 1513 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1514 1515 // Create a sequence of unmerges to the original results. since we may have 1516 // widened the source, we will need to pad the results with dead defs to cover 1517 // the source register. 1518 // e.g. widen s16 to s32: 1519 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1520 // 1521 // => 1522 // %4:_(s64) = G_ANYEXT %0:_(s48) 1523 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1524 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1525 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1526 1527 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1528 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1529 1530 for (int I = 0; I != NumUnmerge; ++I) { 1531 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1532 1533 for (int J = 0; J != PartsPerUnmerge; ++J) { 1534 int Idx = I * PartsPerUnmerge + J; 1535 if (Idx < NumDst) 1536 MIB.addDef(MI.getOperand(Idx).getReg()); 1537 else { 1538 // Create dead def for excess components. 1539 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1540 } 1541 } 1542 1543 MIB.addUse(Unmerge.getReg(I)); 1544 } 1545 1546 MI.eraseFromParent(); 1547 return Legalized; 1548 } 1549 1550 LegalizerHelper::LegalizeResult 1551 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1552 LLT WideTy) { 1553 Register DstReg = MI.getOperand(0).getReg(); 1554 Register SrcReg = MI.getOperand(1).getReg(); 1555 LLT SrcTy = MRI.getType(SrcReg); 1556 1557 LLT DstTy = MRI.getType(DstReg); 1558 unsigned Offset = MI.getOperand(2).getImm(); 1559 1560 if (TypeIdx == 0) { 1561 if (SrcTy.isVector() || DstTy.isVector()) 1562 return UnableToLegalize; 1563 1564 SrcOp Src(SrcReg); 1565 if (SrcTy.isPointer()) { 1566 // Extracts from pointers can be handled only if they are really just 1567 // simple integers. 1568 const DataLayout &DL = MIRBuilder.getDataLayout(); 1569 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1570 return UnableToLegalize; 1571 1572 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1573 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1574 SrcTy = SrcAsIntTy; 1575 } 1576 1577 if (DstTy.isPointer()) 1578 return UnableToLegalize; 1579 1580 if (Offset == 0) { 1581 // Avoid a shift in the degenerate case. 1582 MIRBuilder.buildTrunc(DstReg, 1583 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1584 MI.eraseFromParent(); 1585 return Legalized; 1586 } 1587 1588 // Do a shift in the source type. 1589 LLT ShiftTy = SrcTy; 1590 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1591 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1592 ShiftTy = WideTy; 1593 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1594 return UnableToLegalize; 1595 1596 auto LShr = MIRBuilder.buildLShr( 1597 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1598 MIRBuilder.buildTrunc(DstReg, LShr); 1599 MI.eraseFromParent(); 1600 return Legalized; 1601 } 1602 1603 if (SrcTy.isScalar()) { 1604 Observer.changingInstr(MI); 1605 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1606 Observer.changedInstr(MI); 1607 return Legalized; 1608 } 1609 1610 if (!SrcTy.isVector()) 1611 return UnableToLegalize; 1612 1613 if (DstTy != SrcTy.getElementType()) 1614 return UnableToLegalize; 1615 1616 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1617 return UnableToLegalize; 1618 1619 Observer.changingInstr(MI); 1620 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1621 1622 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1623 Offset); 1624 widenScalarDst(MI, WideTy.getScalarType(), 0); 1625 Observer.changedInstr(MI); 1626 return Legalized; 1627 } 1628 1629 LegalizerHelper::LegalizeResult 1630 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1631 LLT WideTy) { 1632 if (TypeIdx != 0) 1633 return UnableToLegalize; 1634 Observer.changingInstr(MI); 1635 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1636 widenScalarDst(MI, WideTy); 1637 Observer.changedInstr(MI); 1638 return Legalized; 1639 } 1640 1641 LegalizerHelper::LegalizeResult 1642 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1643 switch (MI.getOpcode()) { 1644 default: 1645 return UnableToLegalize; 1646 case TargetOpcode::G_EXTRACT: 1647 return widenScalarExtract(MI, TypeIdx, WideTy); 1648 case TargetOpcode::G_INSERT: 1649 return widenScalarInsert(MI, TypeIdx, WideTy); 1650 case TargetOpcode::G_MERGE_VALUES: 1651 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1652 case TargetOpcode::G_UNMERGE_VALUES: 1653 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1654 case TargetOpcode::G_UADDO: 1655 case TargetOpcode::G_USUBO: { 1656 if (TypeIdx == 1) 1657 return UnableToLegalize; // TODO 1658 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1659 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1660 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1661 ? TargetOpcode::G_ADD 1662 : TargetOpcode::G_SUB; 1663 // Do the arithmetic in the larger type. 1664 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1665 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1666 APInt Mask = 1667 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1668 auto AndOp = MIRBuilder.buildAnd( 1669 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1670 // There is no overflow if the AndOp is the same as NewOp. 1671 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1672 // Now trunc the NewOp to the original result. 1673 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1674 MI.eraseFromParent(); 1675 return Legalized; 1676 } 1677 case TargetOpcode::G_CTTZ: 1678 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1679 case TargetOpcode::G_CTLZ: 1680 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1681 case TargetOpcode::G_CTPOP: { 1682 if (TypeIdx == 0) { 1683 Observer.changingInstr(MI); 1684 widenScalarDst(MI, WideTy, 0); 1685 Observer.changedInstr(MI); 1686 return Legalized; 1687 } 1688 1689 Register SrcReg = MI.getOperand(1).getReg(); 1690 1691 // First ZEXT the input. 1692 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1693 LLT CurTy = MRI.getType(SrcReg); 1694 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1695 // The count is the same in the larger type except if the original 1696 // value was zero. This can be handled by setting the bit just off 1697 // the top of the original type. 1698 auto TopBit = 1699 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1700 MIBSrc = MIRBuilder.buildOr( 1701 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1702 } 1703 1704 // Perform the operation at the larger size. 1705 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1706 // This is already the correct result for CTPOP and CTTZs 1707 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1708 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1709 // The correct result is NewOp - (Difference in widety and current ty). 1710 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1711 MIBNewOp = MIRBuilder.buildSub( 1712 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1713 } 1714 1715 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1716 MI.eraseFromParent(); 1717 return Legalized; 1718 } 1719 case TargetOpcode::G_BSWAP: { 1720 Observer.changingInstr(MI); 1721 Register DstReg = MI.getOperand(0).getReg(); 1722 1723 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1724 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1725 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1726 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1727 1728 MI.getOperand(0).setReg(DstExt); 1729 1730 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1731 1732 LLT Ty = MRI.getType(DstReg); 1733 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1734 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1735 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1736 1737 MIRBuilder.buildTrunc(DstReg, ShrReg); 1738 Observer.changedInstr(MI); 1739 return Legalized; 1740 } 1741 case TargetOpcode::G_BITREVERSE: { 1742 Observer.changingInstr(MI); 1743 1744 Register DstReg = MI.getOperand(0).getReg(); 1745 LLT Ty = MRI.getType(DstReg); 1746 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1747 1748 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1749 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1750 MI.getOperand(0).setReg(DstExt); 1751 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1752 1753 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1754 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1755 MIRBuilder.buildTrunc(DstReg, Shift); 1756 Observer.changedInstr(MI); 1757 return Legalized; 1758 } 1759 case TargetOpcode::G_FREEZE: 1760 Observer.changingInstr(MI); 1761 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1762 widenScalarDst(MI, WideTy); 1763 Observer.changedInstr(MI); 1764 return Legalized; 1765 1766 case TargetOpcode::G_ADD: 1767 case TargetOpcode::G_AND: 1768 case TargetOpcode::G_MUL: 1769 case TargetOpcode::G_OR: 1770 case TargetOpcode::G_XOR: 1771 case TargetOpcode::G_SUB: 1772 // Perform operation at larger width (any extension is fines here, high bits 1773 // don't affect the result) and then truncate the result back to the 1774 // original type. 1775 Observer.changingInstr(MI); 1776 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1777 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1778 widenScalarDst(MI, WideTy); 1779 Observer.changedInstr(MI); 1780 return Legalized; 1781 1782 case TargetOpcode::G_SHL: 1783 Observer.changingInstr(MI); 1784 1785 if (TypeIdx == 0) { 1786 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1787 widenScalarDst(MI, WideTy); 1788 } else { 1789 assert(TypeIdx == 1); 1790 // The "number of bits to shift" operand must preserve its value as an 1791 // unsigned integer: 1792 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1793 } 1794 1795 Observer.changedInstr(MI); 1796 return Legalized; 1797 1798 case TargetOpcode::G_SDIV: 1799 case TargetOpcode::G_SREM: 1800 case TargetOpcode::G_SMIN: 1801 case TargetOpcode::G_SMAX: 1802 Observer.changingInstr(MI); 1803 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1804 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1805 widenScalarDst(MI, WideTy); 1806 Observer.changedInstr(MI); 1807 return Legalized; 1808 1809 case TargetOpcode::G_ASHR: 1810 case TargetOpcode::G_LSHR: 1811 Observer.changingInstr(MI); 1812 1813 if (TypeIdx == 0) { 1814 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1815 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1816 1817 widenScalarSrc(MI, WideTy, 1, CvtOp); 1818 widenScalarDst(MI, WideTy); 1819 } else { 1820 assert(TypeIdx == 1); 1821 // The "number of bits to shift" operand must preserve its value as an 1822 // unsigned integer: 1823 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1824 } 1825 1826 Observer.changedInstr(MI); 1827 return Legalized; 1828 case TargetOpcode::G_UDIV: 1829 case TargetOpcode::G_UREM: 1830 case TargetOpcode::G_UMIN: 1831 case TargetOpcode::G_UMAX: 1832 Observer.changingInstr(MI); 1833 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1834 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1835 widenScalarDst(MI, WideTy); 1836 Observer.changedInstr(MI); 1837 return Legalized; 1838 1839 case TargetOpcode::G_SELECT: 1840 Observer.changingInstr(MI); 1841 if (TypeIdx == 0) { 1842 // Perform operation at larger width (any extension is fine here, high 1843 // bits don't affect the result) and then truncate the result back to the 1844 // original type. 1845 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1846 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1847 widenScalarDst(MI, WideTy); 1848 } else { 1849 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1850 // Explicit extension is required here since high bits affect the result. 1851 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1852 } 1853 Observer.changedInstr(MI); 1854 return Legalized; 1855 1856 case TargetOpcode::G_FPTOSI: 1857 case TargetOpcode::G_FPTOUI: 1858 Observer.changingInstr(MI); 1859 1860 if (TypeIdx == 0) 1861 widenScalarDst(MI, WideTy); 1862 else 1863 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1864 1865 Observer.changedInstr(MI); 1866 return Legalized; 1867 case TargetOpcode::G_SITOFP: 1868 if (TypeIdx != 1) 1869 return UnableToLegalize; 1870 Observer.changingInstr(MI); 1871 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1872 Observer.changedInstr(MI); 1873 return Legalized; 1874 1875 case TargetOpcode::G_UITOFP: 1876 if (TypeIdx != 1) 1877 return UnableToLegalize; 1878 Observer.changingInstr(MI); 1879 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1880 Observer.changedInstr(MI); 1881 return Legalized; 1882 1883 case TargetOpcode::G_LOAD: 1884 case TargetOpcode::G_SEXTLOAD: 1885 case TargetOpcode::G_ZEXTLOAD: 1886 Observer.changingInstr(MI); 1887 widenScalarDst(MI, WideTy); 1888 Observer.changedInstr(MI); 1889 return Legalized; 1890 1891 case TargetOpcode::G_STORE: { 1892 if (TypeIdx != 0) 1893 return UnableToLegalize; 1894 1895 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1896 if (!isPowerOf2_32(Ty.getSizeInBits())) 1897 return UnableToLegalize; 1898 1899 Observer.changingInstr(MI); 1900 1901 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1902 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1903 widenScalarSrc(MI, WideTy, 0, ExtType); 1904 1905 Observer.changedInstr(MI); 1906 return Legalized; 1907 } 1908 case TargetOpcode::G_CONSTANT: { 1909 MachineOperand &SrcMO = MI.getOperand(1); 1910 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1911 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1912 MRI.getType(MI.getOperand(0).getReg())); 1913 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1914 ExtOpc == TargetOpcode::G_ANYEXT) && 1915 "Illegal Extend"); 1916 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1917 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1918 ? SrcVal.sext(WideTy.getSizeInBits()) 1919 : SrcVal.zext(WideTy.getSizeInBits()); 1920 Observer.changingInstr(MI); 1921 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1922 1923 widenScalarDst(MI, WideTy); 1924 Observer.changedInstr(MI); 1925 return Legalized; 1926 } 1927 case TargetOpcode::G_FCONSTANT: { 1928 MachineOperand &SrcMO = MI.getOperand(1); 1929 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1930 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1931 bool LosesInfo; 1932 switch (WideTy.getSizeInBits()) { 1933 case 32: 1934 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1935 &LosesInfo); 1936 break; 1937 case 64: 1938 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1939 &LosesInfo); 1940 break; 1941 default: 1942 return UnableToLegalize; 1943 } 1944 1945 assert(!LosesInfo && "extend should always be lossless"); 1946 1947 Observer.changingInstr(MI); 1948 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1949 1950 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1951 Observer.changedInstr(MI); 1952 return Legalized; 1953 } 1954 case TargetOpcode::G_IMPLICIT_DEF: { 1955 Observer.changingInstr(MI); 1956 widenScalarDst(MI, WideTy); 1957 Observer.changedInstr(MI); 1958 return Legalized; 1959 } 1960 case TargetOpcode::G_BRCOND: 1961 Observer.changingInstr(MI); 1962 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1963 Observer.changedInstr(MI); 1964 return Legalized; 1965 1966 case TargetOpcode::G_FCMP: 1967 Observer.changingInstr(MI); 1968 if (TypeIdx == 0) 1969 widenScalarDst(MI, WideTy); 1970 else { 1971 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1972 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1973 } 1974 Observer.changedInstr(MI); 1975 return Legalized; 1976 1977 case TargetOpcode::G_ICMP: 1978 Observer.changingInstr(MI); 1979 if (TypeIdx == 0) 1980 widenScalarDst(MI, WideTy); 1981 else { 1982 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1983 MI.getOperand(1).getPredicate())) 1984 ? TargetOpcode::G_SEXT 1985 : TargetOpcode::G_ZEXT; 1986 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1987 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1988 } 1989 Observer.changedInstr(MI); 1990 return Legalized; 1991 1992 case TargetOpcode::G_PTR_ADD: 1993 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1994 Observer.changingInstr(MI); 1995 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1996 Observer.changedInstr(MI); 1997 return Legalized; 1998 1999 case TargetOpcode::G_PHI: { 2000 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2001 2002 Observer.changingInstr(MI); 2003 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2004 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2005 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2006 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2007 } 2008 2009 MachineBasicBlock &MBB = *MI.getParent(); 2010 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2011 widenScalarDst(MI, WideTy); 2012 Observer.changedInstr(MI); 2013 return Legalized; 2014 } 2015 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2016 if (TypeIdx == 0) { 2017 Register VecReg = MI.getOperand(1).getReg(); 2018 LLT VecTy = MRI.getType(VecReg); 2019 Observer.changingInstr(MI); 2020 2021 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2022 WideTy.getSizeInBits()), 2023 1, TargetOpcode::G_SEXT); 2024 2025 widenScalarDst(MI, WideTy, 0); 2026 Observer.changedInstr(MI); 2027 return Legalized; 2028 } 2029 2030 if (TypeIdx != 2) 2031 return UnableToLegalize; 2032 Observer.changingInstr(MI); 2033 // TODO: Probably should be zext 2034 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2035 Observer.changedInstr(MI); 2036 return Legalized; 2037 } 2038 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2039 if (TypeIdx == 1) { 2040 Observer.changingInstr(MI); 2041 2042 Register VecReg = MI.getOperand(1).getReg(); 2043 LLT VecTy = MRI.getType(VecReg); 2044 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2045 2046 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2047 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2048 widenScalarDst(MI, WideVecTy, 0); 2049 Observer.changedInstr(MI); 2050 return Legalized; 2051 } 2052 2053 if (TypeIdx == 2) { 2054 Observer.changingInstr(MI); 2055 // TODO: Probably should be zext 2056 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2057 Observer.changedInstr(MI); 2058 return Legalized; 2059 } 2060 2061 return UnableToLegalize; 2062 } 2063 case TargetOpcode::G_FADD: 2064 case TargetOpcode::G_FMUL: 2065 case TargetOpcode::G_FSUB: 2066 case TargetOpcode::G_FMA: 2067 case TargetOpcode::G_FMAD: 2068 case TargetOpcode::G_FNEG: 2069 case TargetOpcode::G_FABS: 2070 case TargetOpcode::G_FCANONICALIZE: 2071 case TargetOpcode::G_FMINNUM: 2072 case TargetOpcode::G_FMAXNUM: 2073 case TargetOpcode::G_FMINNUM_IEEE: 2074 case TargetOpcode::G_FMAXNUM_IEEE: 2075 case TargetOpcode::G_FMINIMUM: 2076 case TargetOpcode::G_FMAXIMUM: 2077 case TargetOpcode::G_FDIV: 2078 case TargetOpcode::G_FREM: 2079 case TargetOpcode::G_FCEIL: 2080 case TargetOpcode::G_FFLOOR: 2081 case TargetOpcode::G_FCOS: 2082 case TargetOpcode::G_FSIN: 2083 case TargetOpcode::G_FLOG10: 2084 case TargetOpcode::G_FLOG: 2085 case TargetOpcode::G_FLOG2: 2086 case TargetOpcode::G_FRINT: 2087 case TargetOpcode::G_FNEARBYINT: 2088 case TargetOpcode::G_FSQRT: 2089 case TargetOpcode::G_FEXP: 2090 case TargetOpcode::G_FEXP2: 2091 case TargetOpcode::G_FPOW: 2092 case TargetOpcode::G_INTRINSIC_TRUNC: 2093 case TargetOpcode::G_INTRINSIC_ROUND: 2094 assert(TypeIdx == 0); 2095 Observer.changingInstr(MI); 2096 2097 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2098 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2099 2100 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2101 Observer.changedInstr(MI); 2102 return Legalized; 2103 case TargetOpcode::G_INTTOPTR: 2104 if (TypeIdx != 1) 2105 return UnableToLegalize; 2106 2107 Observer.changingInstr(MI); 2108 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2109 Observer.changedInstr(MI); 2110 return Legalized; 2111 case TargetOpcode::G_PTRTOINT: 2112 if (TypeIdx != 0) 2113 return UnableToLegalize; 2114 2115 Observer.changingInstr(MI); 2116 widenScalarDst(MI, WideTy, 0); 2117 Observer.changedInstr(MI); 2118 return Legalized; 2119 case TargetOpcode::G_BUILD_VECTOR: { 2120 Observer.changingInstr(MI); 2121 2122 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2123 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2124 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2125 2126 // Avoid changing the result vector type if the source element type was 2127 // requested. 2128 if (TypeIdx == 1) { 2129 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2130 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2131 } else { 2132 widenScalarDst(MI, WideTy, 0); 2133 } 2134 2135 Observer.changedInstr(MI); 2136 return Legalized; 2137 } 2138 case TargetOpcode::G_SEXT_INREG: 2139 if (TypeIdx != 0) 2140 return UnableToLegalize; 2141 2142 Observer.changingInstr(MI); 2143 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2144 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2145 Observer.changedInstr(MI); 2146 return Legalized; 2147 case TargetOpcode::G_PTRMASK: { 2148 if (TypeIdx != 1) 2149 return UnableToLegalize; 2150 Observer.changingInstr(MI); 2151 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2152 Observer.changedInstr(MI); 2153 return Legalized; 2154 } 2155 } 2156 } 2157 2158 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2159 MachineIRBuilder &B, Register Src, LLT Ty) { 2160 auto Unmerge = B.buildUnmerge(Ty, Src); 2161 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2162 Pieces.push_back(Unmerge.getReg(I)); 2163 } 2164 2165 LegalizerHelper::LegalizeResult 2166 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2167 Register Dst = MI.getOperand(0).getReg(); 2168 Register Src = MI.getOperand(1).getReg(); 2169 LLT DstTy = MRI.getType(Dst); 2170 LLT SrcTy = MRI.getType(Src); 2171 2172 if (SrcTy.isVector()) { 2173 LLT SrcEltTy = SrcTy.getElementType(); 2174 SmallVector<Register, 8> SrcRegs; 2175 2176 if (DstTy.isVector()) { 2177 int NumDstElt = DstTy.getNumElements(); 2178 int NumSrcElt = SrcTy.getNumElements(); 2179 2180 LLT DstEltTy = DstTy.getElementType(); 2181 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2182 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2183 2184 // If there's an element size mismatch, insert intermediate casts to match 2185 // the result element type. 2186 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2187 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2188 // 2189 // => 2190 // 2191 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2192 // %3:_(<2 x s8>) = G_BITCAST %2 2193 // %4:_(<2 x s8>) = G_BITCAST %3 2194 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2195 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2196 SrcPartTy = SrcEltTy; 2197 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2198 // 2199 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2200 // 2201 // => 2202 // 2203 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2204 // %3:_(s16) = G_BITCAST %2 2205 // %4:_(s16) = G_BITCAST %3 2206 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2207 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2208 DstCastTy = DstEltTy; 2209 } 2210 2211 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2212 for (Register &SrcReg : SrcRegs) 2213 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2214 } else 2215 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2216 2217 MIRBuilder.buildMerge(Dst, SrcRegs); 2218 MI.eraseFromParent(); 2219 return Legalized; 2220 } 2221 2222 if (DstTy.isVector()) { 2223 SmallVector<Register, 8> SrcRegs; 2224 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2225 MIRBuilder.buildMerge(Dst, SrcRegs); 2226 MI.eraseFromParent(); 2227 return Legalized; 2228 } 2229 2230 return UnableToLegalize; 2231 } 2232 2233 LegalizerHelper::LegalizeResult 2234 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2235 switch (MI.getOpcode()) { 2236 case TargetOpcode::G_LOAD: { 2237 if (TypeIdx != 0) 2238 return UnableToLegalize; 2239 2240 Observer.changingInstr(MI); 2241 bitcastDst(MI, CastTy, 0); 2242 Observer.changedInstr(MI); 2243 return Legalized; 2244 } 2245 case TargetOpcode::G_STORE: { 2246 if (TypeIdx != 0) 2247 return UnableToLegalize; 2248 2249 Observer.changingInstr(MI); 2250 bitcastSrc(MI, CastTy, 0); 2251 Observer.changedInstr(MI); 2252 return Legalized; 2253 } 2254 case TargetOpcode::G_SELECT: { 2255 if (TypeIdx != 0) 2256 return UnableToLegalize; 2257 2258 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2259 LLVM_DEBUG( 2260 dbgs() << "bitcast action not implemented for vector select\n"); 2261 return UnableToLegalize; 2262 } 2263 2264 Observer.changingInstr(MI); 2265 bitcastSrc(MI, CastTy, 2); 2266 bitcastSrc(MI, CastTy, 3); 2267 bitcastDst(MI, CastTy, 0); 2268 Observer.changedInstr(MI); 2269 return Legalized; 2270 } 2271 case TargetOpcode::G_AND: 2272 case TargetOpcode::G_OR: 2273 case TargetOpcode::G_XOR: { 2274 Observer.changingInstr(MI); 2275 bitcastSrc(MI, CastTy, 1); 2276 bitcastSrc(MI, CastTy, 2); 2277 bitcastDst(MI, CastTy, 0); 2278 Observer.changedInstr(MI); 2279 return Legalized; 2280 } 2281 default: 2282 return UnableToLegalize; 2283 } 2284 } 2285 2286 LegalizerHelper::LegalizeResult 2287 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2288 using namespace TargetOpcode; 2289 2290 switch(MI.getOpcode()) { 2291 default: 2292 return UnableToLegalize; 2293 case TargetOpcode::G_BITCAST: 2294 return lowerBitcast(MI); 2295 case TargetOpcode::G_SREM: 2296 case TargetOpcode::G_UREM: { 2297 auto Quot = 2298 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2299 {MI.getOperand(1), MI.getOperand(2)}); 2300 2301 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2302 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2303 MI.eraseFromParent(); 2304 return Legalized; 2305 } 2306 case TargetOpcode::G_SADDO: 2307 case TargetOpcode::G_SSUBO: 2308 return lowerSADDO_SSUBO(MI); 2309 case TargetOpcode::G_SMULO: 2310 case TargetOpcode::G_UMULO: { 2311 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2312 // result. 2313 Register Res = MI.getOperand(0).getReg(); 2314 Register Overflow = MI.getOperand(1).getReg(); 2315 Register LHS = MI.getOperand(2).getReg(); 2316 Register RHS = MI.getOperand(3).getReg(); 2317 2318 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2319 ? TargetOpcode::G_SMULH 2320 : TargetOpcode::G_UMULH; 2321 2322 Observer.changingInstr(MI); 2323 const auto &TII = MIRBuilder.getTII(); 2324 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2325 MI.RemoveOperand(1); 2326 Observer.changedInstr(MI); 2327 2328 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2329 2330 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2331 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2332 2333 // For *signed* multiply, overflow is detected by checking: 2334 // (hi != (lo >> bitwidth-1)) 2335 if (Opcode == TargetOpcode::G_SMULH) { 2336 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2337 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2338 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2339 } else { 2340 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2341 } 2342 return Legalized; 2343 } 2344 case TargetOpcode::G_FNEG: { 2345 // TODO: Handle vector types once we are able to 2346 // represent them. 2347 if (Ty.isVector()) 2348 return UnableToLegalize; 2349 Register Res = MI.getOperand(0).getReg(); 2350 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2351 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2352 if (!ZeroTy) 2353 return UnableToLegalize; 2354 ConstantFP &ZeroForNegation = 2355 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2356 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2357 Register SubByReg = MI.getOperand(1).getReg(); 2358 Register ZeroReg = Zero.getReg(0); 2359 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2360 MI.eraseFromParent(); 2361 return Legalized; 2362 } 2363 case TargetOpcode::G_FSUB: { 2364 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2365 // First, check if G_FNEG is marked as Lower. If so, we may 2366 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2367 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2368 return UnableToLegalize; 2369 Register Res = MI.getOperand(0).getReg(); 2370 Register LHS = MI.getOperand(1).getReg(); 2371 Register RHS = MI.getOperand(2).getReg(); 2372 Register Neg = MRI.createGenericVirtualRegister(Ty); 2373 MIRBuilder.buildFNeg(Neg, RHS); 2374 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2375 MI.eraseFromParent(); 2376 return Legalized; 2377 } 2378 case TargetOpcode::G_FMAD: 2379 return lowerFMad(MI); 2380 case TargetOpcode::G_FFLOOR: 2381 return lowerFFloor(MI); 2382 case TargetOpcode::G_INTRINSIC_ROUND: 2383 return lowerIntrinsicRound(MI); 2384 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2385 Register OldValRes = MI.getOperand(0).getReg(); 2386 Register SuccessRes = MI.getOperand(1).getReg(); 2387 Register Addr = MI.getOperand(2).getReg(); 2388 Register CmpVal = MI.getOperand(3).getReg(); 2389 Register NewVal = MI.getOperand(4).getReg(); 2390 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2391 **MI.memoperands_begin()); 2392 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2393 MI.eraseFromParent(); 2394 return Legalized; 2395 } 2396 case TargetOpcode::G_LOAD: 2397 case TargetOpcode::G_SEXTLOAD: 2398 case TargetOpcode::G_ZEXTLOAD: { 2399 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2400 Register DstReg = MI.getOperand(0).getReg(); 2401 Register PtrReg = MI.getOperand(1).getReg(); 2402 LLT DstTy = MRI.getType(DstReg); 2403 auto &MMO = **MI.memoperands_begin(); 2404 2405 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2406 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2407 // This load needs splitting into power of 2 sized loads. 2408 if (DstTy.isVector()) 2409 return UnableToLegalize; 2410 if (isPowerOf2_32(DstTy.getSizeInBits())) 2411 return UnableToLegalize; // Don't know what we're being asked to do. 2412 2413 // Our strategy here is to generate anyextending loads for the smaller 2414 // types up to next power-2 result type, and then combine the two larger 2415 // result values together, before truncating back down to the non-pow-2 2416 // type. 2417 // E.g. v1 = i24 load => 2418 // v2 = i32 zextload (2 byte) 2419 // v3 = i32 load (1 byte) 2420 // v4 = i32 shl v3, 16 2421 // v5 = i32 or v4, v2 2422 // v1 = i24 trunc v5 2423 // By doing this we generate the correct truncate which should get 2424 // combined away as an artifact with a matching extend. 2425 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2426 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2427 2428 MachineFunction &MF = MIRBuilder.getMF(); 2429 MachineMemOperand *LargeMMO = 2430 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2431 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2432 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2433 2434 LLT PtrTy = MRI.getType(PtrReg); 2435 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2436 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2437 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2438 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2439 auto LargeLoad = MIRBuilder.buildLoadInstr( 2440 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2441 2442 auto OffsetCst = MIRBuilder.buildConstant( 2443 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2444 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2445 auto SmallPtr = 2446 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2447 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2448 *SmallMMO); 2449 2450 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2451 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2452 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2453 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2454 MI.eraseFromParent(); 2455 return Legalized; 2456 } 2457 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2458 MI.eraseFromParent(); 2459 return Legalized; 2460 } 2461 2462 if (DstTy.isScalar()) { 2463 Register TmpReg = 2464 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2465 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2466 switch (MI.getOpcode()) { 2467 default: 2468 llvm_unreachable("Unexpected opcode"); 2469 case TargetOpcode::G_LOAD: 2470 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2471 break; 2472 case TargetOpcode::G_SEXTLOAD: 2473 MIRBuilder.buildSExt(DstReg, TmpReg); 2474 break; 2475 case TargetOpcode::G_ZEXTLOAD: 2476 MIRBuilder.buildZExt(DstReg, TmpReg); 2477 break; 2478 } 2479 MI.eraseFromParent(); 2480 return Legalized; 2481 } 2482 2483 return UnableToLegalize; 2484 } 2485 case TargetOpcode::G_STORE: { 2486 // Lower a non-power of 2 store into multiple pow-2 stores. 2487 // E.g. split an i24 store into an i16 store + i8 store. 2488 // We do this by first extending the stored value to the next largest power 2489 // of 2 type, and then using truncating stores to store the components. 2490 // By doing this, likewise with G_LOAD, generate an extend that can be 2491 // artifact-combined away instead of leaving behind extracts. 2492 Register SrcReg = MI.getOperand(0).getReg(); 2493 Register PtrReg = MI.getOperand(1).getReg(); 2494 LLT SrcTy = MRI.getType(SrcReg); 2495 MachineMemOperand &MMO = **MI.memoperands_begin(); 2496 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2497 return UnableToLegalize; 2498 if (SrcTy.isVector()) 2499 return UnableToLegalize; 2500 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2501 return UnableToLegalize; // Don't know what we're being asked to do. 2502 2503 // Extend to the next pow-2. 2504 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2505 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2506 2507 // Obtain the smaller value by shifting away the larger value. 2508 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2509 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2510 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2511 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2512 2513 // Generate the PtrAdd and truncating stores. 2514 LLT PtrTy = MRI.getType(PtrReg); 2515 auto OffsetCst = MIRBuilder.buildConstant( 2516 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2517 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2518 auto SmallPtr = 2519 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2520 2521 MachineFunction &MF = MIRBuilder.getMF(); 2522 MachineMemOperand *LargeMMO = 2523 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2524 MachineMemOperand *SmallMMO = 2525 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2526 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2527 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2528 MI.eraseFromParent(); 2529 return Legalized; 2530 } 2531 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2532 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2533 case TargetOpcode::G_CTLZ: 2534 case TargetOpcode::G_CTTZ: 2535 case TargetOpcode::G_CTPOP: 2536 return lowerBitCount(MI, TypeIdx, Ty); 2537 case G_UADDO: { 2538 Register Res = MI.getOperand(0).getReg(); 2539 Register CarryOut = MI.getOperand(1).getReg(); 2540 Register LHS = MI.getOperand(2).getReg(); 2541 Register RHS = MI.getOperand(3).getReg(); 2542 2543 MIRBuilder.buildAdd(Res, LHS, RHS); 2544 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2545 2546 MI.eraseFromParent(); 2547 return Legalized; 2548 } 2549 case G_UADDE: { 2550 Register Res = MI.getOperand(0).getReg(); 2551 Register CarryOut = MI.getOperand(1).getReg(); 2552 Register LHS = MI.getOperand(2).getReg(); 2553 Register RHS = MI.getOperand(3).getReg(); 2554 Register CarryIn = MI.getOperand(4).getReg(); 2555 LLT Ty = MRI.getType(Res); 2556 2557 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2558 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2559 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2560 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2561 2562 MI.eraseFromParent(); 2563 return Legalized; 2564 } 2565 case G_USUBO: { 2566 Register Res = MI.getOperand(0).getReg(); 2567 Register BorrowOut = MI.getOperand(1).getReg(); 2568 Register LHS = MI.getOperand(2).getReg(); 2569 Register RHS = MI.getOperand(3).getReg(); 2570 2571 MIRBuilder.buildSub(Res, LHS, RHS); 2572 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2573 2574 MI.eraseFromParent(); 2575 return Legalized; 2576 } 2577 case G_USUBE: { 2578 Register Res = MI.getOperand(0).getReg(); 2579 Register BorrowOut = MI.getOperand(1).getReg(); 2580 Register LHS = MI.getOperand(2).getReg(); 2581 Register RHS = MI.getOperand(3).getReg(); 2582 Register BorrowIn = MI.getOperand(4).getReg(); 2583 const LLT CondTy = MRI.getType(BorrowOut); 2584 const LLT Ty = MRI.getType(Res); 2585 2586 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2587 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2588 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2589 2590 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2591 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2592 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2593 2594 MI.eraseFromParent(); 2595 return Legalized; 2596 } 2597 case G_UITOFP: 2598 return lowerUITOFP(MI, TypeIdx, Ty); 2599 case G_SITOFP: 2600 return lowerSITOFP(MI, TypeIdx, Ty); 2601 case G_FPTOUI: 2602 return lowerFPTOUI(MI, TypeIdx, Ty); 2603 case G_FPTOSI: 2604 return lowerFPTOSI(MI); 2605 case G_FPTRUNC: 2606 return lowerFPTRUNC(MI, TypeIdx, Ty); 2607 case G_SMIN: 2608 case G_SMAX: 2609 case G_UMIN: 2610 case G_UMAX: 2611 return lowerMinMax(MI, TypeIdx, Ty); 2612 case G_FCOPYSIGN: 2613 return lowerFCopySign(MI, TypeIdx, Ty); 2614 case G_FMINNUM: 2615 case G_FMAXNUM: 2616 return lowerFMinNumMaxNum(MI); 2617 case G_MERGE_VALUES: 2618 return lowerMergeValues(MI); 2619 case G_UNMERGE_VALUES: 2620 return lowerUnmergeValues(MI); 2621 case TargetOpcode::G_SEXT_INREG: { 2622 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2623 int64_t SizeInBits = MI.getOperand(2).getImm(); 2624 2625 Register DstReg = MI.getOperand(0).getReg(); 2626 Register SrcReg = MI.getOperand(1).getReg(); 2627 LLT DstTy = MRI.getType(DstReg); 2628 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2629 2630 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2631 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2632 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2633 MI.eraseFromParent(); 2634 return Legalized; 2635 } 2636 case G_SHUFFLE_VECTOR: 2637 return lowerShuffleVector(MI); 2638 case G_DYN_STACKALLOC: 2639 return lowerDynStackAlloc(MI); 2640 case G_EXTRACT: 2641 return lowerExtract(MI); 2642 case G_INSERT: 2643 return lowerInsert(MI); 2644 case G_BSWAP: 2645 return lowerBswap(MI); 2646 case G_BITREVERSE: 2647 return lowerBitreverse(MI); 2648 case G_READ_REGISTER: 2649 case G_WRITE_REGISTER: 2650 return lowerReadWriteRegister(MI); 2651 } 2652 } 2653 2654 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2655 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2656 SmallVector<Register, 2> DstRegs; 2657 2658 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2659 Register DstReg = MI.getOperand(0).getReg(); 2660 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2661 int NumParts = Size / NarrowSize; 2662 // FIXME: Don't know how to handle the situation where the small vectors 2663 // aren't all the same size yet. 2664 if (Size % NarrowSize != 0) 2665 return UnableToLegalize; 2666 2667 for (int i = 0; i < NumParts; ++i) { 2668 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2669 MIRBuilder.buildUndef(TmpReg); 2670 DstRegs.push_back(TmpReg); 2671 } 2672 2673 if (NarrowTy.isVector()) 2674 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2675 else 2676 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2677 2678 MI.eraseFromParent(); 2679 return Legalized; 2680 } 2681 2682 // Handle splitting vector operations which need to have the same number of 2683 // elements in each type index, but each type index may have a different element 2684 // type. 2685 // 2686 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2687 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2688 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2689 // 2690 // Also handles some irregular breakdown cases, e.g. 2691 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2692 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2693 // s64 = G_SHL s64, s32 2694 LegalizerHelper::LegalizeResult 2695 LegalizerHelper::fewerElementsVectorMultiEltType( 2696 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2697 if (TypeIdx != 0) 2698 return UnableToLegalize; 2699 2700 const LLT NarrowTy0 = NarrowTyArg; 2701 const unsigned NewNumElts = 2702 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2703 2704 const Register DstReg = MI.getOperand(0).getReg(); 2705 LLT DstTy = MRI.getType(DstReg); 2706 LLT LeftoverTy0; 2707 2708 // All of the operands need to have the same number of elements, so if we can 2709 // determine a type breakdown for the result type, we can for all of the 2710 // source types. 2711 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2712 if (NumParts < 0) 2713 return UnableToLegalize; 2714 2715 SmallVector<MachineInstrBuilder, 4> NewInsts; 2716 2717 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2718 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2719 2720 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2721 Register SrcReg = MI.getOperand(I).getReg(); 2722 LLT SrcTyI = MRI.getType(SrcReg); 2723 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2724 LLT LeftoverTyI; 2725 2726 // Split this operand into the requested typed registers, and any leftover 2727 // required to reproduce the original type. 2728 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2729 LeftoverRegs)) 2730 return UnableToLegalize; 2731 2732 if (I == 1) { 2733 // For the first operand, create an instruction for each part and setup 2734 // the result. 2735 for (Register PartReg : PartRegs) { 2736 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2737 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2738 .addDef(PartDstReg) 2739 .addUse(PartReg)); 2740 DstRegs.push_back(PartDstReg); 2741 } 2742 2743 for (Register LeftoverReg : LeftoverRegs) { 2744 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2745 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2746 .addDef(PartDstReg) 2747 .addUse(LeftoverReg)); 2748 LeftoverDstRegs.push_back(PartDstReg); 2749 } 2750 } else { 2751 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2752 2753 // Add the newly created operand splits to the existing instructions. The 2754 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2755 // pieces. 2756 unsigned InstCount = 0; 2757 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2758 NewInsts[InstCount++].addUse(PartRegs[J]); 2759 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2760 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2761 } 2762 2763 PartRegs.clear(); 2764 LeftoverRegs.clear(); 2765 } 2766 2767 // Insert the newly built operations and rebuild the result register. 2768 for (auto &MIB : NewInsts) 2769 MIRBuilder.insertInstr(MIB); 2770 2771 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2772 2773 MI.eraseFromParent(); 2774 return Legalized; 2775 } 2776 2777 LegalizerHelper::LegalizeResult 2778 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2779 LLT NarrowTy) { 2780 if (TypeIdx != 0) 2781 return UnableToLegalize; 2782 2783 Register DstReg = MI.getOperand(0).getReg(); 2784 Register SrcReg = MI.getOperand(1).getReg(); 2785 LLT DstTy = MRI.getType(DstReg); 2786 LLT SrcTy = MRI.getType(SrcReg); 2787 2788 LLT NarrowTy0 = NarrowTy; 2789 LLT NarrowTy1; 2790 unsigned NumParts; 2791 2792 if (NarrowTy.isVector()) { 2793 // Uneven breakdown not handled. 2794 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2795 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2796 return UnableToLegalize; 2797 2798 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2799 } else { 2800 NumParts = DstTy.getNumElements(); 2801 NarrowTy1 = SrcTy.getElementType(); 2802 } 2803 2804 SmallVector<Register, 4> SrcRegs, DstRegs; 2805 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2806 2807 for (unsigned I = 0; I < NumParts; ++I) { 2808 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2809 MachineInstr *NewInst = 2810 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2811 2812 NewInst->setFlags(MI.getFlags()); 2813 DstRegs.push_back(DstReg); 2814 } 2815 2816 if (NarrowTy.isVector()) 2817 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2818 else 2819 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2820 2821 MI.eraseFromParent(); 2822 return Legalized; 2823 } 2824 2825 LegalizerHelper::LegalizeResult 2826 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2827 LLT NarrowTy) { 2828 Register DstReg = MI.getOperand(0).getReg(); 2829 Register Src0Reg = MI.getOperand(2).getReg(); 2830 LLT DstTy = MRI.getType(DstReg); 2831 LLT SrcTy = MRI.getType(Src0Reg); 2832 2833 unsigned NumParts; 2834 LLT NarrowTy0, NarrowTy1; 2835 2836 if (TypeIdx == 0) { 2837 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2838 unsigned OldElts = DstTy.getNumElements(); 2839 2840 NarrowTy0 = NarrowTy; 2841 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2842 NarrowTy1 = NarrowTy.isVector() ? 2843 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2844 SrcTy.getElementType(); 2845 2846 } else { 2847 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2848 unsigned OldElts = SrcTy.getNumElements(); 2849 2850 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2851 NarrowTy.getNumElements(); 2852 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2853 DstTy.getScalarSizeInBits()); 2854 NarrowTy1 = NarrowTy; 2855 } 2856 2857 // FIXME: Don't know how to handle the situation where the small vectors 2858 // aren't all the same size yet. 2859 if (NarrowTy1.isVector() && 2860 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2861 return UnableToLegalize; 2862 2863 CmpInst::Predicate Pred 2864 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2865 2866 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2867 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2868 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2869 2870 for (unsigned I = 0; I < NumParts; ++I) { 2871 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2872 DstRegs.push_back(DstReg); 2873 2874 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2875 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2876 else { 2877 MachineInstr *NewCmp 2878 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2879 NewCmp->setFlags(MI.getFlags()); 2880 } 2881 } 2882 2883 if (NarrowTy1.isVector()) 2884 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2885 else 2886 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2887 2888 MI.eraseFromParent(); 2889 return Legalized; 2890 } 2891 2892 LegalizerHelper::LegalizeResult 2893 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2894 LLT NarrowTy) { 2895 Register DstReg = MI.getOperand(0).getReg(); 2896 Register CondReg = MI.getOperand(1).getReg(); 2897 2898 unsigned NumParts = 0; 2899 LLT NarrowTy0, NarrowTy1; 2900 2901 LLT DstTy = MRI.getType(DstReg); 2902 LLT CondTy = MRI.getType(CondReg); 2903 unsigned Size = DstTy.getSizeInBits(); 2904 2905 assert(TypeIdx == 0 || CondTy.isVector()); 2906 2907 if (TypeIdx == 0) { 2908 NarrowTy0 = NarrowTy; 2909 NarrowTy1 = CondTy; 2910 2911 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2912 // FIXME: Don't know how to handle the situation where the small vectors 2913 // aren't all the same size yet. 2914 if (Size % NarrowSize != 0) 2915 return UnableToLegalize; 2916 2917 NumParts = Size / NarrowSize; 2918 2919 // Need to break down the condition type 2920 if (CondTy.isVector()) { 2921 if (CondTy.getNumElements() == NumParts) 2922 NarrowTy1 = CondTy.getElementType(); 2923 else 2924 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2925 CondTy.getScalarSizeInBits()); 2926 } 2927 } else { 2928 NumParts = CondTy.getNumElements(); 2929 if (NarrowTy.isVector()) { 2930 // TODO: Handle uneven breakdown. 2931 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2932 return UnableToLegalize; 2933 2934 return UnableToLegalize; 2935 } else { 2936 NarrowTy0 = DstTy.getElementType(); 2937 NarrowTy1 = NarrowTy; 2938 } 2939 } 2940 2941 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2942 if (CondTy.isVector()) 2943 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2944 2945 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2946 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2947 2948 for (unsigned i = 0; i < NumParts; ++i) { 2949 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2950 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2951 Src1Regs[i], Src2Regs[i]); 2952 DstRegs.push_back(DstReg); 2953 } 2954 2955 if (NarrowTy0.isVector()) 2956 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2957 else 2958 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2959 2960 MI.eraseFromParent(); 2961 return Legalized; 2962 } 2963 2964 LegalizerHelper::LegalizeResult 2965 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2966 LLT NarrowTy) { 2967 const Register DstReg = MI.getOperand(0).getReg(); 2968 LLT PhiTy = MRI.getType(DstReg); 2969 LLT LeftoverTy; 2970 2971 // All of the operands need to have the same number of elements, so if we can 2972 // determine a type breakdown for the result type, we can for all of the 2973 // source types. 2974 int NumParts, NumLeftover; 2975 std::tie(NumParts, NumLeftover) 2976 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2977 if (NumParts < 0) 2978 return UnableToLegalize; 2979 2980 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2981 SmallVector<MachineInstrBuilder, 4> NewInsts; 2982 2983 const int TotalNumParts = NumParts + NumLeftover; 2984 2985 // Insert the new phis in the result block first. 2986 for (int I = 0; I != TotalNumParts; ++I) { 2987 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2988 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2989 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2990 .addDef(PartDstReg)); 2991 if (I < NumParts) 2992 DstRegs.push_back(PartDstReg); 2993 else 2994 LeftoverDstRegs.push_back(PartDstReg); 2995 } 2996 2997 MachineBasicBlock *MBB = MI.getParent(); 2998 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2999 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3000 3001 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3002 3003 // Insert code to extract the incoming values in each predecessor block. 3004 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3005 PartRegs.clear(); 3006 LeftoverRegs.clear(); 3007 3008 Register SrcReg = MI.getOperand(I).getReg(); 3009 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3010 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3011 3012 LLT Unused; 3013 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3014 LeftoverRegs)) 3015 return UnableToLegalize; 3016 3017 // Add the newly created operand splits to the existing instructions. The 3018 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3019 // pieces. 3020 for (int J = 0; J != TotalNumParts; ++J) { 3021 MachineInstrBuilder MIB = NewInsts[J]; 3022 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3023 MIB.addMBB(&OpMBB); 3024 } 3025 } 3026 3027 MI.eraseFromParent(); 3028 return Legalized; 3029 } 3030 3031 LegalizerHelper::LegalizeResult 3032 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3033 unsigned TypeIdx, 3034 LLT NarrowTy) { 3035 if (TypeIdx != 1) 3036 return UnableToLegalize; 3037 3038 const int NumDst = MI.getNumOperands() - 1; 3039 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3040 LLT SrcTy = MRI.getType(SrcReg); 3041 3042 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3043 3044 // TODO: Create sequence of extracts. 3045 if (DstTy == NarrowTy) 3046 return UnableToLegalize; 3047 3048 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3049 if (DstTy == GCDTy) { 3050 // This would just be a copy of the same unmerge. 3051 // TODO: Create extracts, pad with undef and create intermediate merges. 3052 return UnableToLegalize; 3053 } 3054 3055 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3056 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3057 const int PartsPerUnmerge = NumDst / NumUnmerge; 3058 3059 for (int I = 0; I != NumUnmerge; ++I) { 3060 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3061 3062 for (int J = 0; J != PartsPerUnmerge; ++J) 3063 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3064 MIB.addUse(Unmerge.getReg(I)); 3065 } 3066 3067 MI.eraseFromParent(); 3068 return Legalized; 3069 } 3070 3071 LegalizerHelper::LegalizeResult 3072 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3073 unsigned TypeIdx, 3074 LLT NarrowTy) { 3075 assert(TypeIdx == 0 && "not a vector type index"); 3076 Register DstReg = MI.getOperand(0).getReg(); 3077 LLT DstTy = MRI.getType(DstReg); 3078 LLT SrcTy = DstTy.getElementType(); 3079 3080 int DstNumElts = DstTy.getNumElements(); 3081 int NarrowNumElts = NarrowTy.getNumElements(); 3082 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3083 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3084 3085 SmallVector<Register, 8> ConcatOps; 3086 SmallVector<Register, 8> SubBuildVector; 3087 3088 Register UndefReg; 3089 if (WidenedDstTy != DstTy) 3090 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3091 3092 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3093 // necessary. 3094 // 3095 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3096 // -> <2 x s16> 3097 // 3098 // %4:_(s16) = G_IMPLICIT_DEF 3099 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3100 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3101 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3102 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3103 for (int I = 0; I != NumConcat; ++I) { 3104 for (int J = 0; J != NarrowNumElts; ++J) { 3105 int SrcIdx = NarrowNumElts * I + J; 3106 3107 if (SrcIdx < DstNumElts) { 3108 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3109 SubBuildVector.push_back(SrcReg); 3110 } else 3111 SubBuildVector.push_back(UndefReg); 3112 } 3113 3114 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3115 ConcatOps.push_back(BuildVec.getReg(0)); 3116 SubBuildVector.clear(); 3117 } 3118 3119 if (DstTy == WidenedDstTy) 3120 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3121 else { 3122 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3123 MIRBuilder.buildExtract(DstReg, Concat, 0); 3124 } 3125 3126 MI.eraseFromParent(); 3127 return Legalized; 3128 } 3129 3130 LegalizerHelper::LegalizeResult 3131 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3132 LLT NarrowTy) { 3133 // FIXME: Don't know how to handle secondary types yet. 3134 if (TypeIdx != 0) 3135 return UnableToLegalize; 3136 3137 MachineMemOperand *MMO = *MI.memoperands_begin(); 3138 3139 // This implementation doesn't work for atomics. Give up instead of doing 3140 // something invalid. 3141 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3142 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3143 return UnableToLegalize; 3144 3145 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3146 Register ValReg = MI.getOperand(0).getReg(); 3147 Register AddrReg = MI.getOperand(1).getReg(); 3148 LLT ValTy = MRI.getType(ValReg); 3149 3150 // FIXME: Do we need a distinct NarrowMemory legalize action? 3151 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3152 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3153 return UnableToLegalize; 3154 } 3155 3156 int NumParts = -1; 3157 int NumLeftover = -1; 3158 LLT LeftoverTy; 3159 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3160 if (IsLoad) { 3161 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3162 } else { 3163 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3164 NarrowLeftoverRegs)) { 3165 NumParts = NarrowRegs.size(); 3166 NumLeftover = NarrowLeftoverRegs.size(); 3167 } 3168 } 3169 3170 if (NumParts == -1) 3171 return UnableToLegalize; 3172 3173 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3174 3175 unsigned TotalSize = ValTy.getSizeInBits(); 3176 3177 // Split the load/store into PartTy sized pieces starting at Offset. If this 3178 // is a load, return the new registers in ValRegs. For a store, each elements 3179 // of ValRegs should be PartTy. Returns the next offset that needs to be 3180 // handled. 3181 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3182 unsigned Offset) -> unsigned { 3183 MachineFunction &MF = MIRBuilder.getMF(); 3184 unsigned PartSize = PartTy.getSizeInBits(); 3185 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3186 Offset += PartSize, ++Idx) { 3187 unsigned ByteSize = PartSize / 8; 3188 unsigned ByteOffset = Offset / 8; 3189 Register NewAddrReg; 3190 3191 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3192 3193 MachineMemOperand *NewMMO = 3194 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3195 3196 if (IsLoad) { 3197 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3198 ValRegs.push_back(Dst); 3199 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3200 } else { 3201 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3202 } 3203 } 3204 3205 return Offset; 3206 }; 3207 3208 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3209 3210 // Handle the rest of the register if this isn't an even type breakdown. 3211 if (LeftoverTy.isValid()) 3212 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3213 3214 if (IsLoad) { 3215 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3216 LeftoverTy, NarrowLeftoverRegs); 3217 } 3218 3219 MI.eraseFromParent(); 3220 return Legalized; 3221 } 3222 3223 LegalizerHelper::LegalizeResult 3224 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3225 LLT NarrowTy) { 3226 assert(TypeIdx == 0 && "only one type index expected"); 3227 3228 const unsigned Opc = MI.getOpcode(); 3229 const int NumOps = MI.getNumOperands() - 1; 3230 const Register DstReg = MI.getOperand(0).getReg(); 3231 const unsigned Flags = MI.getFlags(); 3232 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3233 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3234 3235 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3236 3237 // First of all check whether we are narrowing (changing the element type) 3238 // or reducing the vector elements 3239 const LLT DstTy = MRI.getType(DstReg); 3240 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3241 3242 SmallVector<Register, 8> ExtractedRegs[3]; 3243 SmallVector<Register, 8> Parts; 3244 3245 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3246 3247 // Break down all the sources into NarrowTy pieces we can operate on. This may 3248 // involve creating merges to a wider type, padded with undef. 3249 for (int I = 0; I != NumOps; ++I) { 3250 Register SrcReg = MI.getOperand(I + 1).getReg(); 3251 LLT SrcTy = MRI.getType(SrcReg); 3252 3253 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3254 // For fewerElements, this is a smaller vector with the same element type. 3255 LLT OpNarrowTy; 3256 if (IsNarrow) { 3257 OpNarrowTy = NarrowScalarTy; 3258 3259 // In case of narrowing, we need to cast vectors to scalars for this to 3260 // work properly 3261 // FIXME: Can we do without the bitcast here if we're narrowing? 3262 if (SrcTy.isVector()) { 3263 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3264 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3265 } 3266 } else { 3267 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3268 } 3269 3270 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3271 3272 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3273 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3274 TargetOpcode::G_ANYEXT); 3275 } 3276 3277 SmallVector<Register, 8> ResultRegs; 3278 3279 // Input operands for each sub-instruction. 3280 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3281 3282 int NumParts = ExtractedRegs[0].size(); 3283 const unsigned DstSize = DstTy.getSizeInBits(); 3284 const LLT DstScalarTy = LLT::scalar(DstSize); 3285 3286 // Narrowing needs to use scalar types 3287 LLT DstLCMTy, NarrowDstTy; 3288 if (IsNarrow) { 3289 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3290 NarrowDstTy = NarrowScalarTy; 3291 } else { 3292 DstLCMTy = getLCMType(DstTy, NarrowTy); 3293 NarrowDstTy = NarrowTy; 3294 } 3295 3296 // We widened the source registers to satisfy merge/unmerge size 3297 // constraints. We'll have some extra fully undef parts. 3298 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3299 3300 for (int I = 0; I != NumRealParts; ++I) { 3301 // Emit this instruction on each of the split pieces. 3302 for (int J = 0; J != NumOps; ++J) 3303 InputRegs[J] = ExtractedRegs[J][I]; 3304 3305 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3306 ResultRegs.push_back(Inst.getReg(0)); 3307 } 3308 3309 // Fill out the widened result with undef instead of creating instructions 3310 // with undef inputs. 3311 int NumUndefParts = NumParts - NumRealParts; 3312 if (NumUndefParts != 0) 3313 ResultRegs.append(NumUndefParts, 3314 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3315 3316 // Extract the possibly padded result. Use a scratch register if we need to do 3317 // a final bitcast, otherwise use the original result register. 3318 Register MergeDstReg; 3319 if (IsNarrow && DstTy.isVector()) 3320 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3321 else 3322 MergeDstReg = DstReg; 3323 3324 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3325 3326 // Recast to vector if we narrowed a vector 3327 if (IsNarrow && DstTy.isVector()) 3328 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3329 3330 MI.eraseFromParent(); 3331 return Legalized; 3332 } 3333 3334 LegalizerHelper::LegalizeResult 3335 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3336 LLT NarrowTy) { 3337 Register DstReg = MI.getOperand(0).getReg(); 3338 Register SrcReg = MI.getOperand(1).getReg(); 3339 int64_t Imm = MI.getOperand(2).getImm(); 3340 3341 LLT DstTy = MRI.getType(DstReg); 3342 3343 SmallVector<Register, 8> Parts; 3344 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3345 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3346 3347 for (Register &R : Parts) 3348 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3349 3350 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3351 3352 MI.eraseFromParent(); 3353 return Legalized; 3354 } 3355 3356 LegalizerHelper::LegalizeResult 3357 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3358 LLT NarrowTy) { 3359 using namespace TargetOpcode; 3360 3361 switch (MI.getOpcode()) { 3362 case G_IMPLICIT_DEF: 3363 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3364 case G_TRUNC: 3365 case G_AND: 3366 case G_OR: 3367 case G_XOR: 3368 case G_ADD: 3369 case G_SUB: 3370 case G_MUL: 3371 case G_SMULH: 3372 case G_UMULH: 3373 case G_FADD: 3374 case G_FMUL: 3375 case G_FSUB: 3376 case G_FNEG: 3377 case G_FABS: 3378 case G_FCANONICALIZE: 3379 case G_FDIV: 3380 case G_FREM: 3381 case G_FMA: 3382 case G_FMAD: 3383 case G_FPOW: 3384 case G_FEXP: 3385 case G_FEXP2: 3386 case G_FLOG: 3387 case G_FLOG2: 3388 case G_FLOG10: 3389 case G_FNEARBYINT: 3390 case G_FCEIL: 3391 case G_FFLOOR: 3392 case G_FRINT: 3393 case G_INTRINSIC_ROUND: 3394 case G_INTRINSIC_TRUNC: 3395 case G_FCOS: 3396 case G_FSIN: 3397 case G_FSQRT: 3398 case G_BSWAP: 3399 case G_BITREVERSE: 3400 case G_SDIV: 3401 case G_UDIV: 3402 case G_SREM: 3403 case G_UREM: 3404 case G_SMIN: 3405 case G_SMAX: 3406 case G_UMIN: 3407 case G_UMAX: 3408 case G_FMINNUM: 3409 case G_FMAXNUM: 3410 case G_FMINNUM_IEEE: 3411 case G_FMAXNUM_IEEE: 3412 case G_FMINIMUM: 3413 case G_FMAXIMUM: 3414 case G_FSHL: 3415 case G_FSHR: 3416 case G_FREEZE: 3417 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3418 case G_SHL: 3419 case G_LSHR: 3420 case G_ASHR: 3421 case G_CTLZ: 3422 case G_CTLZ_ZERO_UNDEF: 3423 case G_CTTZ: 3424 case G_CTTZ_ZERO_UNDEF: 3425 case G_CTPOP: 3426 case G_FCOPYSIGN: 3427 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3428 case G_ZEXT: 3429 case G_SEXT: 3430 case G_ANYEXT: 3431 case G_FPEXT: 3432 case G_FPTRUNC: 3433 case G_SITOFP: 3434 case G_UITOFP: 3435 case G_FPTOSI: 3436 case G_FPTOUI: 3437 case G_INTTOPTR: 3438 case G_PTRTOINT: 3439 case G_ADDRSPACE_CAST: 3440 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3441 case G_ICMP: 3442 case G_FCMP: 3443 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3444 case G_SELECT: 3445 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3446 case G_PHI: 3447 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3448 case G_UNMERGE_VALUES: 3449 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3450 case G_BUILD_VECTOR: 3451 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3452 case G_LOAD: 3453 case G_STORE: 3454 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3455 case G_SEXT_INREG: 3456 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3457 default: 3458 return UnableToLegalize; 3459 } 3460 } 3461 3462 LegalizerHelper::LegalizeResult 3463 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3464 const LLT HalfTy, const LLT AmtTy) { 3465 3466 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3467 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3468 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3469 3470 if (Amt.isNullValue()) { 3471 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3472 MI.eraseFromParent(); 3473 return Legalized; 3474 } 3475 3476 LLT NVT = HalfTy; 3477 unsigned NVTBits = HalfTy.getSizeInBits(); 3478 unsigned VTBits = 2 * NVTBits; 3479 3480 SrcOp Lo(Register(0)), Hi(Register(0)); 3481 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3482 if (Amt.ugt(VTBits)) { 3483 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3484 } else if (Amt.ugt(NVTBits)) { 3485 Lo = MIRBuilder.buildConstant(NVT, 0); 3486 Hi = MIRBuilder.buildShl(NVT, InL, 3487 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3488 } else if (Amt == NVTBits) { 3489 Lo = MIRBuilder.buildConstant(NVT, 0); 3490 Hi = InL; 3491 } else { 3492 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3493 auto OrLHS = 3494 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3495 auto OrRHS = MIRBuilder.buildLShr( 3496 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3497 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3498 } 3499 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3500 if (Amt.ugt(VTBits)) { 3501 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3502 } else if (Amt.ugt(NVTBits)) { 3503 Lo = MIRBuilder.buildLShr(NVT, InH, 3504 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3505 Hi = MIRBuilder.buildConstant(NVT, 0); 3506 } else if (Amt == NVTBits) { 3507 Lo = InH; 3508 Hi = MIRBuilder.buildConstant(NVT, 0); 3509 } else { 3510 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3511 3512 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3513 auto OrRHS = MIRBuilder.buildShl( 3514 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3515 3516 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3517 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3518 } 3519 } else { 3520 if (Amt.ugt(VTBits)) { 3521 Hi = Lo = MIRBuilder.buildAShr( 3522 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3523 } else if (Amt.ugt(NVTBits)) { 3524 Lo = MIRBuilder.buildAShr(NVT, InH, 3525 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3526 Hi = MIRBuilder.buildAShr(NVT, InH, 3527 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3528 } else if (Amt == NVTBits) { 3529 Lo = InH; 3530 Hi = MIRBuilder.buildAShr(NVT, InH, 3531 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3532 } else { 3533 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3534 3535 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3536 auto OrRHS = MIRBuilder.buildShl( 3537 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3538 3539 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3540 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3541 } 3542 } 3543 3544 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3545 MI.eraseFromParent(); 3546 3547 return Legalized; 3548 } 3549 3550 // TODO: Optimize if constant shift amount. 3551 LegalizerHelper::LegalizeResult 3552 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3553 LLT RequestedTy) { 3554 if (TypeIdx == 1) { 3555 Observer.changingInstr(MI); 3556 narrowScalarSrc(MI, RequestedTy, 2); 3557 Observer.changedInstr(MI); 3558 return Legalized; 3559 } 3560 3561 Register DstReg = MI.getOperand(0).getReg(); 3562 LLT DstTy = MRI.getType(DstReg); 3563 if (DstTy.isVector()) 3564 return UnableToLegalize; 3565 3566 Register Amt = MI.getOperand(2).getReg(); 3567 LLT ShiftAmtTy = MRI.getType(Amt); 3568 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3569 if (DstEltSize % 2 != 0) 3570 return UnableToLegalize; 3571 3572 // Ignore the input type. We can only go to exactly half the size of the 3573 // input. If that isn't small enough, the resulting pieces will be further 3574 // legalized. 3575 const unsigned NewBitSize = DstEltSize / 2; 3576 const LLT HalfTy = LLT::scalar(NewBitSize); 3577 const LLT CondTy = LLT::scalar(1); 3578 3579 if (const MachineInstr *KShiftAmt = 3580 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3581 return narrowScalarShiftByConstant( 3582 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3583 } 3584 3585 // TODO: Expand with known bits. 3586 3587 // Handle the fully general expansion by an unknown amount. 3588 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3589 3590 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3591 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3592 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3593 3594 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3595 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3596 3597 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3598 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3599 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3600 3601 Register ResultRegs[2]; 3602 switch (MI.getOpcode()) { 3603 case TargetOpcode::G_SHL: { 3604 // Short: ShAmt < NewBitSize 3605 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3606 3607 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3608 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3609 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3610 3611 // Long: ShAmt >= NewBitSize 3612 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3613 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3614 3615 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3616 auto Hi = MIRBuilder.buildSelect( 3617 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3618 3619 ResultRegs[0] = Lo.getReg(0); 3620 ResultRegs[1] = Hi.getReg(0); 3621 break; 3622 } 3623 case TargetOpcode::G_LSHR: 3624 case TargetOpcode::G_ASHR: { 3625 // Short: ShAmt < NewBitSize 3626 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3627 3628 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3629 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3630 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3631 3632 // Long: ShAmt >= NewBitSize 3633 MachineInstrBuilder HiL; 3634 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3635 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3636 } else { 3637 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3638 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3639 } 3640 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3641 {InH, AmtExcess}); // Lo from Hi part. 3642 3643 auto Lo = MIRBuilder.buildSelect( 3644 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3645 3646 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3647 3648 ResultRegs[0] = Lo.getReg(0); 3649 ResultRegs[1] = Hi.getReg(0); 3650 break; 3651 } 3652 default: 3653 llvm_unreachable("not a shift"); 3654 } 3655 3656 MIRBuilder.buildMerge(DstReg, ResultRegs); 3657 MI.eraseFromParent(); 3658 return Legalized; 3659 } 3660 3661 LegalizerHelper::LegalizeResult 3662 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3663 LLT MoreTy) { 3664 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3665 3666 Observer.changingInstr(MI); 3667 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3668 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3669 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3670 moreElementsVectorSrc(MI, MoreTy, I); 3671 } 3672 3673 MachineBasicBlock &MBB = *MI.getParent(); 3674 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3675 moreElementsVectorDst(MI, MoreTy, 0); 3676 Observer.changedInstr(MI); 3677 return Legalized; 3678 } 3679 3680 LegalizerHelper::LegalizeResult 3681 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3682 LLT MoreTy) { 3683 unsigned Opc = MI.getOpcode(); 3684 switch (Opc) { 3685 case TargetOpcode::G_IMPLICIT_DEF: 3686 case TargetOpcode::G_LOAD: { 3687 if (TypeIdx != 0) 3688 return UnableToLegalize; 3689 Observer.changingInstr(MI); 3690 moreElementsVectorDst(MI, MoreTy, 0); 3691 Observer.changedInstr(MI); 3692 return Legalized; 3693 } 3694 case TargetOpcode::G_STORE: 3695 if (TypeIdx != 0) 3696 return UnableToLegalize; 3697 Observer.changingInstr(MI); 3698 moreElementsVectorSrc(MI, MoreTy, 0); 3699 Observer.changedInstr(MI); 3700 return Legalized; 3701 case TargetOpcode::G_AND: 3702 case TargetOpcode::G_OR: 3703 case TargetOpcode::G_XOR: 3704 case TargetOpcode::G_SMIN: 3705 case TargetOpcode::G_SMAX: 3706 case TargetOpcode::G_UMIN: 3707 case TargetOpcode::G_UMAX: 3708 case TargetOpcode::G_FMINNUM: 3709 case TargetOpcode::G_FMAXNUM: 3710 case TargetOpcode::G_FMINNUM_IEEE: 3711 case TargetOpcode::G_FMAXNUM_IEEE: 3712 case TargetOpcode::G_FMINIMUM: 3713 case TargetOpcode::G_FMAXIMUM: { 3714 Observer.changingInstr(MI); 3715 moreElementsVectorSrc(MI, MoreTy, 1); 3716 moreElementsVectorSrc(MI, MoreTy, 2); 3717 moreElementsVectorDst(MI, MoreTy, 0); 3718 Observer.changedInstr(MI); 3719 return Legalized; 3720 } 3721 case TargetOpcode::G_EXTRACT: 3722 if (TypeIdx != 1) 3723 return UnableToLegalize; 3724 Observer.changingInstr(MI); 3725 moreElementsVectorSrc(MI, MoreTy, 1); 3726 Observer.changedInstr(MI); 3727 return Legalized; 3728 case TargetOpcode::G_INSERT: 3729 case TargetOpcode::G_FREEZE: 3730 if (TypeIdx != 0) 3731 return UnableToLegalize; 3732 Observer.changingInstr(MI); 3733 moreElementsVectorSrc(MI, MoreTy, 1); 3734 moreElementsVectorDst(MI, MoreTy, 0); 3735 Observer.changedInstr(MI); 3736 return Legalized; 3737 case TargetOpcode::G_SELECT: 3738 if (TypeIdx != 0) 3739 return UnableToLegalize; 3740 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3741 return UnableToLegalize; 3742 3743 Observer.changingInstr(MI); 3744 moreElementsVectorSrc(MI, MoreTy, 2); 3745 moreElementsVectorSrc(MI, MoreTy, 3); 3746 moreElementsVectorDst(MI, MoreTy, 0); 3747 Observer.changedInstr(MI); 3748 return Legalized; 3749 case TargetOpcode::G_UNMERGE_VALUES: { 3750 if (TypeIdx != 1) 3751 return UnableToLegalize; 3752 3753 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3754 int NumDst = MI.getNumOperands() - 1; 3755 moreElementsVectorSrc(MI, MoreTy, NumDst); 3756 3757 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3758 for (int I = 0; I != NumDst; ++I) 3759 MIB.addDef(MI.getOperand(I).getReg()); 3760 3761 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3762 for (int I = NumDst; I != NewNumDst; ++I) 3763 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3764 3765 MIB.addUse(MI.getOperand(NumDst).getReg()); 3766 MI.eraseFromParent(); 3767 return Legalized; 3768 } 3769 case TargetOpcode::G_PHI: 3770 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3771 default: 3772 return UnableToLegalize; 3773 } 3774 } 3775 3776 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3777 ArrayRef<Register> Src1Regs, 3778 ArrayRef<Register> Src2Regs, 3779 LLT NarrowTy) { 3780 MachineIRBuilder &B = MIRBuilder; 3781 unsigned SrcParts = Src1Regs.size(); 3782 unsigned DstParts = DstRegs.size(); 3783 3784 unsigned DstIdx = 0; // Low bits of the result. 3785 Register FactorSum = 3786 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3787 DstRegs[DstIdx] = FactorSum; 3788 3789 unsigned CarrySumPrevDstIdx; 3790 SmallVector<Register, 4> Factors; 3791 3792 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3793 // Collect low parts of muls for DstIdx. 3794 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3795 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3796 MachineInstrBuilder Mul = 3797 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3798 Factors.push_back(Mul.getReg(0)); 3799 } 3800 // Collect high parts of muls from previous DstIdx. 3801 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3802 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3803 MachineInstrBuilder Umulh = 3804 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3805 Factors.push_back(Umulh.getReg(0)); 3806 } 3807 // Add CarrySum from additions calculated for previous DstIdx. 3808 if (DstIdx != 1) { 3809 Factors.push_back(CarrySumPrevDstIdx); 3810 } 3811 3812 Register CarrySum; 3813 // Add all factors and accumulate all carries into CarrySum. 3814 if (DstIdx != DstParts - 1) { 3815 MachineInstrBuilder Uaddo = 3816 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3817 FactorSum = Uaddo.getReg(0); 3818 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3819 for (unsigned i = 2; i < Factors.size(); ++i) { 3820 MachineInstrBuilder Uaddo = 3821 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3822 FactorSum = Uaddo.getReg(0); 3823 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3824 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3825 } 3826 } else { 3827 // Since value for the next index is not calculated, neither is CarrySum. 3828 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3829 for (unsigned i = 2; i < Factors.size(); ++i) 3830 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3831 } 3832 3833 CarrySumPrevDstIdx = CarrySum; 3834 DstRegs[DstIdx] = FactorSum; 3835 Factors.clear(); 3836 } 3837 } 3838 3839 LegalizerHelper::LegalizeResult 3840 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3841 Register DstReg = MI.getOperand(0).getReg(); 3842 Register Src1 = MI.getOperand(1).getReg(); 3843 Register Src2 = MI.getOperand(2).getReg(); 3844 3845 LLT Ty = MRI.getType(DstReg); 3846 if (Ty.isVector()) 3847 return UnableToLegalize; 3848 3849 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3850 unsigned DstSize = Ty.getSizeInBits(); 3851 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3852 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3853 return UnableToLegalize; 3854 3855 unsigned NumDstParts = DstSize / NarrowSize; 3856 unsigned NumSrcParts = SrcSize / NarrowSize; 3857 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3858 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3859 3860 SmallVector<Register, 2> Src1Parts, Src2Parts; 3861 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3862 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3863 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3864 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3865 3866 // Take only high half of registers if this is high mul. 3867 ArrayRef<Register> DstRegs( 3868 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3869 MIRBuilder.buildMerge(DstReg, DstRegs); 3870 MI.eraseFromParent(); 3871 return Legalized; 3872 } 3873 3874 LegalizerHelper::LegalizeResult 3875 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3876 LLT NarrowTy) { 3877 if (TypeIdx != 1) 3878 return UnableToLegalize; 3879 3880 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3881 3882 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3883 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3884 // NarrowSize. 3885 if (SizeOp1 % NarrowSize != 0) 3886 return UnableToLegalize; 3887 int NumParts = SizeOp1 / NarrowSize; 3888 3889 SmallVector<Register, 2> SrcRegs, DstRegs; 3890 SmallVector<uint64_t, 2> Indexes; 3891 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3892 3893 Register OpReg = MI.getOperand(0).getReg(); 3894 uint64_t OpStart = MI.getOperand(2).getImm(); 3895 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3896 for (int i = 0; i < NumParts; ++i) { 3897 unsigned SrcStart = i * NarrowSize; 3898 3899 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3900 // No part of the extract uses this subregister, ignore it. 3901 continue; 3902 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3903 // The entire subregister is extracted, forward the value. 3904 DstRegs.push_back(SrcRegs[i]); 3905 continue; 3906 } 3907 3908 // OpSegStart is where this destination segment would start in OpReg if it 3909 // extended infinitely in both directions. 3910 int64_t ExtractOffset; 3911 uint64_t SegSize; 3912 if (OpStart < SrcStart) { 3913 ExtractOffset = 0; 3914 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3915 } else { 3916 ExtractOffset = OpStart - SrcStart; 3917 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3918 } 3919 3920 Register SegReg = SrcRegs[i]; 3921 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3922 // A genuine extract is needed. 3923 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3924 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3925 } 3926 3927 DstRegs.push_back(SegReg); 3928 } 3929 3930 Register DstReg = MI.getOperand(0).getReg(); 3931 if (MRI.getType(DstReg).isVector()) 3932 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3933 else if (DstRegs.size() > 1) 3934 MIRBuilder.buildMerge(DstReg, DstRegs); 3935 else 3936 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3937 MI.eraseFromParent(); 3938 return Legalized; 3939 } 3940 3941 LegalizerHelper::LegalizeResult 3942 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3943 LLT NarrowTy) { 3944 // FIXME: Don't know how to handle secondary types yet. 3945 if (TypeIdx != 0) 3946 return UnableToLegalize; 3947 3948 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3949 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3950 3951 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3952 // NarrowSize. 3953 if (SizeOp0 % NarrowSize != 0) 3954 return UnableToLegalize; 3955 3956 int NumParts = SizeOp0 / NarrowSize; 3957 3958 SmallVector<Register, 2> SrcRegs, DstRegs; 3959 SmallVector<uint64_t, 2> Indexes; 3960 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3961 3962 Register OpReg = MI.getOperand(2).getReg(); 3963 uint64_t OpStart = MI.getOperand(3).getImm(); 3964 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3965 for (int i = 0; i < NumParts; ++i) { 3966 unsigned DstStart = i * NarrowSize; 3967 3968 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3969 // No part of the insert affects this subregister, forward the original. 3970 DstRegs.push_back(SrcRegs[i]); 3971 continue; 3972 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3973 // The entire subregister is defined by this insert, forward the new 3974 // value. 3975 DstRegs.push_back(OpReg); 3976 continue; 3977 } 3978 3979 // OpSegStart is where this destination segment would start in OpReg if it 3980 // extended infinitely in both directions. 3981 int64_t ExtractOffset, InsertOffset; 3982 uint64_t SegSize; 3983 if (OpStart < DstStart) { 3984 InsertOffset = 0; 3985 ExtractOffset = DstStart - OpStart; 3986 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3987 } else { 3988 InsertOffset = OpStart - DstStart; 3989 ExtractOffset = 0; 3990 SegSize = 3991 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3992 } 3993 3994 Register SegReg = OpReg; 3995 if (ExtractOffset != 0 || SegSize != OpSize) { 3996 // A genuine extract is needed. 3997 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3998 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3999 } 4000 4001 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4002 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4003 DstRegs.push_back(DstReg); 4004 } 4005 4006 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4007 Register DstReg = MI.getOperand(0).getReg(); 4008 if(MRI.getType(DstReg).isVector()) 4009 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4010 else 4011 MIRBuilder.buildMerge(DstReg, DstRegs); 4012 MI.eraseFromParent(); 4013 return Legalized; 4014 } 4015 4016 LegalizerHelper::LegalizeResult 4017 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4018 LLT NarrowTy) { 4019 Register DstReg = MI.getOperand(0).getReg(); 4020 LLT DstTy = MRI.getType(DstReg); 4021 4022 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4023 4024 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4025 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4026 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4027 LLT LeftoverTy; 4028 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4029 Src0Regs, Src0LeftoverRegs)) 4030 return UnableToLegalize; 4031 4032 LLT Unused; 4033 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4034 Src1Regs, Src1LeftoverRegs)) 4035 llvm_unreachable("inconsistent extractParts result"); 4036 4037 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4038 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4039 {Src0Regs[I], Src1Regs[I]}); 4040 DstRegs.push_back(Inst.getReg(0)); 4041 } 4042 4043 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4044 auto Inst = MIRBuilder.buildInstr( 4045 MI.getOpcode(), 4046 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4047 DstLeftoverRegs.push_back(Inst.getReg(0)); 4048 } 4049 4050 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4051 LeftoverTy, DstLeftoverRegs); 4052 4053 MI.eraseFromParent(); 4054 return Legalized; 4055 } 4056 4057 LegalizerHelper::LegalizeResult 4058 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4059 LLT NarrowTy) { 4060 if (TypeIdx != 0) 4061 return UnableToLegalize; 4062 4063 Register DstReg = MI.getOperand(0).getReg(); 4064 Register SrcReg = MI.getOperand(1).getReg(); 4065 4066 LLT DstTy = MRI.getType(DstReg); 4067 if (DstTy.isVector()) 4068 return UnableToLegalize; 4069 4070 SmallVector<Register, 8> Parts; 4071 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4072 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4073 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4074 4075 MI.eraseFromParent(); 4076 return Legalized; 4077 } 4078 4079 LegalizerHelper::LegalizeResult 4080 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4081 LLT NarrowTy) { 4082 if (TypeIdx != 0) 4083 return UnableToLegalize; 4084 4085 Register CondReg = MI.getOperand(1).getReg(); 4086 LLT CondTy = MRI.getType(CondReg); 4087 if (CondTy.isVector()) // TODO: Handle vselect 4088 return UnableToLegalize; 4089 4090 Register DstReg = MI.getOperand(0).getReg(); 4091 LLT DstTy = MRI.getType(DstReg); 4092 4093 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4094 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4095 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4096 LLT LeftoverTy; 4097 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4098 Src1Regs, Src1LeftoverRegs)) 4099 return UnableToLegalize; 4100 4101 LLT Unused; 4102 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4103 Src2Regs, Src2LeftoverRegs)) 4104 llvm_unreachable("inconsistent extractParts result"); 4105 4106 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4107 auto Select = MIRBuilder.buildSelect(NarrowTy, 4108 CondReg, Src1Regs[I], Src2Regs[I]); 4109 DstRegs.push_back(Select.getReg(0)); 4110 } 4111 4112 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4113 auto Select = MIRBuilder.buildSelect( 4114 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4115 DstLeftoverRegs.push_back(Select.getReg(0)); 4116 } 4117 4118 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4119 LeftoverTy, DstLeftoverRegs); 4120 4121 MI.eraseFromParent(); 4122 return Legalized; 4123 } 4124 4125 LegalizerHelper::LegalizeResult 4126 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4127 LLT NarrowTy) { 4128 if (TypeIdx != 1) 4129 return UnableToLegalize; 4130 4131 Register DstReg = MI.getOperand(0).getReg(); 4132 Register SrcReg = MI.getOperand(1).getReg(); 4133 LLT DstTy = MRI.getType(DstReg); 4134 LLT SrcTy = MRI.getType(SrcReg); 4135 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4136 4137 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4138 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4139 4140 MachineIRBuilder &B = MIRBuilder; 4141 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4142 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4143 auto C_0 = B.buildConstant(NarrowTy, 0); 4144 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4145 UnmergeSrc.getReg(1), C_0); 4146 auto LoCTLZ = IsUndef ? 4147 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4148 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4149 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4150 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4151 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4152 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4153 4154 MI.eraseFromParent(); 4155 return Legalized; 4156 } 4157 4158 return UnableToLegalize; 4159 } 4160 4161 LegalizerHelper::LegalizeResult 4162 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4163 LLT NarrowTy) { 4164 if (TypeIdx != 1) 4165 return UnableToLegalize; 4166 4167 Register DstReg = MI.getOperand(0).getReg(); 4168 Register SrcReg = MI.getOperand(1).getReg(); 4169 LLT DstTy = MRI.getType(DstReg); 4170 LLT SrcTy = MRI.getType(SrcReg); 4171 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4172 4173 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4174 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4175 4176 MachineIRBuilder &B = MIRBuilder; 4177 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4178 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4179 auto C_0 = B.buildConstant(NarrowTy, 0); 4180 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4181 UnmergeSrc.getReg(0), C_0); 4182 auto HiCTTZ = IsUndef ? 4183 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4184 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4185 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4186 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4187 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4188 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4189 4190 MI.eraseFromParent(); 4191 return Legalized; 4192 } 4193 4194 return UnableToLegalize; 4195 } 4196 4197 LegalizerHelper::LegalizeResult 4198 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4199 LLT NarrowTy) { 4200 if (TypeIdx != 1) 4201 return UnableToLegalize; 4202 4203 Register DstReg = MI.getOperand(0).getReg(); 4204 LLT DstTy = MRI.getType(DstReg); 4205 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4206 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4207 4208 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4209 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4210 4211 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4212 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4213 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4214 4215 MI.eraseFromParent(); 4216 return Legalized; 4217 } 4218 4219 return UnableToLegalize; 4220 } 4221 4222 LegalizerHelper::LegalizeResult 4223 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4224 unsigned Opc = MI.getOpcode(); 4225 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4226 auto isSupported = [this](const LegalityQuery &Q) { 4227 auto QAction = LI.getAction(Q).Action; 4228 return QAction == Legal || QAction == Libcall || QAction == Custom; 4229 }; 4230 switch (Opc) { 4231 default: 4232 return UnableToLegalize; 4233 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4234 // This trivially expands to CTLZ. 4235 Observer.changingInstr(MI); 4236 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4237 Observer.changedInstr(MI); 4238 return Legalized; 4239 } 4240 case TargetOpcode::G_CTLZ: { 4241 Register DstReg = MI.getOperand(0).getReg(); 4242 Register SrcReg = MI.getOperand(1).getReg(); 4243 LLT DstTy = MRI.getType(DstReg); 4244 LLT SrcTy = MRI.getType(SrcReg); 4245 unsigned Len = SrcTy.getSizeInBits(); 4246 4247 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4248 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4249 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4250 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4251 auto ICmp = MIRBuilder.buildICmp( 4252 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4253 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4254 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4255 MI.eraseFromParent(); 4256 return Legalized; 4257 } 4258 // for now, we do this: 4259 // NewLen = NextPowerOf2(Len); 4260 // x = x | (x >> 1); 4261 // x = x | (x >> 2); 4262 // ... 4263 // x = x | (x >>16); 4264 // x = x | (x >>32); // for 64-bit input 4265 // Upto NewLen/2 4266 // return Len - popcount(x); 4267 // 4268 // Ref: "Hacker's Delight" by Henry Warren 4269 Register Op = SrcReg; 4270 unsigned NewLen = PowerOf2Ceil(Len); 4271 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4272 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4273 auto MIBOp = MIRBuilder.buildOr( 4274 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4275 Op = MIBOp.getReg(0); 4276 } 4277 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4278 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4279 MIBPop); 4280 MI.eraseFromParent(); 4281 return Legalized; 4282 } 4283 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4284 // This trivially expands to CTTZ. 4285 Observer.changingInstr(MI); 4286 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4287 Observer.changedInstr(MI); 4288 return Legalized; 4289 } 4290 case TargetOpcode::G_CTTZ: { 4291 Register DstReg = MI.getOperand(0).getReg(); 4292 Register SrcReg = MI.getOperand(1).getReg(); 4293 LLT DstTy = MRI.getType(DstReg); 4294 LLT SrcTy = MRI.getType(SrcReg); 4295 4296 unsigned Len = SrcTy.getSizeInBits(); 4297 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4298 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4299 // zero. 4300 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4301 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4302 auto ICmp = MIRBuilder.buildICmp( 4303 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4304 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4305 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4306 MI.eraseFromParent(); 4307 return Legalized; 4308 } 4309 // for now, we use: { return popcount(~x & (x - 1)); } 4310 // unless the target has ctlz but not ctpop, in which case we use: 4311 // { return 32 - nlz(~x & (x-1)); } 4312 // Ref: "Hacker's Delight" by Henry Warren 4313 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4314 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4315 auto MIBTmp = MIRBuilder.buildAnd( 4316 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4317 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4318 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4319 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4320 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4321 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4322 MI.eraseFromParent(); 4323 return Legalized; 4324 } 4325 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4326 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4327 return Legalized; 4328 } 4329 case TargetOpcode::G_CTPOP: { 4330 unsigned Size = Ty.getSizeInBits(); 4331 MachineIRBuilder &B = MIRBuilder; 4332 4333 // Count set bits in blocks of 2 bits. Default approach would be 4334 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4335 // We use following formula instead: 4336 // B2Count = val - { (val >> 1) & 0x55555555 } 4337 // since it gives same result in blocks of 2 with one instruction less. 4338 auto C_1 = B.buildConstant(Ty, 1); 4339 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4340 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4341 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4342 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4343 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4344 4345 // In order to get count in blocks of 4 add values from adjacent block of 2. 4346 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4347 auto C_2 = B.buildConstant(Ty, 2); 4348 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4349 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4350 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4351 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4352 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4353 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4354 4355 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4356 // addition since count value sits in range {0,...,8} and 4 bits are enough 4357 // to hold such binary values. After addition high 4 bits still hold count 4358 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4359 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4360 auto C_4 = B.buildConstant(Ty, 4); 4361 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4362 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4363 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4364 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4365 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4366 4367 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4368 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4369 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4370 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4371 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4372 4373 // Shift count result from 8 high bits to low bits. 4374 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4375 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4376 4377 MI.eraseFromParent(); 4378 return Legalized; 4379 } 4380 } 4381 } 4382 4383 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4384 // representation. 4385 LegalizerHelper::LegalizeResult 4386 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4387 Register Dst = MI.getOperand(0).getReg(); 4388 Register Src = MI.getOperand(1).getReg(); 4389 const LLT S64 = LLT::scalar(64); 4390 const LLT S32 = LLT::scalar(32); 4391 const LLT S1 = LLT::scalar(1); 4392 4393 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4394 4395 // unsigned cul2f(ulong u) { 4396 // uint lz = clz(u); 4397 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4398 // u = (u << lz) & 0x7fffffffffffffffUL; 4399 // ulong t = u & 0xffffffffffUL; 4400 // uint v = (e << 23) | (uint)(u >> 40); 4401 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4402 // return as_float(v + r); 4403 // } 4404 4405 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4406 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4407 4408 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4409 4410 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4411 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4412 4413 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4414 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4415 4416 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4417 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4418 4419 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4420 4421 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4422 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4423 4424 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4425 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4426 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4427 4428 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4429 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4430 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4431 auto One = MIRBuilder.buildConstant(S32, 1); 4432 4433 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4434 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4435 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4436 MIRBuilder.buildAdd(Dst, V, R); 4437 4438 MI.eraseFromParent(); 4439 return Legalized; 4440 } 4441 4442 LegalizerHelper::LegalizeResult 4443 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4444 Register Dst = MI.getOperand(0).getReg(); 4445 Register Src = MI.getOperand(1).getReg(); 4446 LLT DstTy = MRI.getType(Dst); 4447 LLT SrcTy = MRI.getType(Src); 4448 4449 if (SrcTy == LLT::scalar(1)) { 4450 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4451 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4452 MIRBuilder.buildSelect(Dst, Src, True, False); 4453 MI.eraseFromParent(); 4454 return Legalized; 4455 } 4456 4457 if (SrcTy != LLT::scalar(64)) 4458 return UnableToLegalize; 4459 4460 if (DstTy == LLT::scalar(32)) { 4461 // TODO: SelectionDAG has several alternative expansions to port which may 4462 // be more reasonble depending on the available instructions. If a target 4463 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4464 // intermediate type, this is probably worse. 4465 return lowerU64ToF32BitOps(MI); 4466 } 4467 4468 return UnableToLegalize; 4469 } 4470 4471 LegalizerHelper::LegalizeResult 4472 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4473 Register Dst = MI.getOperand(0).getReg(); 4474 Register Src = MI.getOperand(1).getReg(); 4475 LLT DstTy = MRI.getType(Dst); 4476 LLT SrcTy = MRI.getType(Src); 4477 4478 const LLT S64 = LLT::scalar(64); 4479 const LLT S32 = LLT::scalar(32); 4480 const LLT S1 = LLT::scalar(1); 4481 4482 if (SrcTy == S1) { 4483 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4484 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4485 MIRBuilder.buildSelect(Dst, Src, True, False); 4486 MI.eraseFromParent(); 4487 return Legalized; 4488 } 4489 4490 if (SrcTy != S64) 4491 return UnableToLegalize; 4492 4493 if (DstTy == S32) { 4494 // signed cl2f(long l) { 4495 // long s = l >> 63; 4496 // float r = cul2f((l + s) ^ s); 4497 // return s ? -r : r; 4498 // } 4499 Register L = Src; 4500 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4501 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4502 4503 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4504 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4505 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4506 4507 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4508 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4509 MIRBuilder.buildConstant(S64, 0)); 4510 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4511 MI.eraseFromParent(); 4512 return Legalized; 4513 } 4514 4515 return UnableToLegalize; 4516 } 4517 4518 LegalizerHelper::LegalizeResult 4519 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4520 Register Dst = MI.getOperand(0).getReg(); 4521 Register Src = MI.getOperand(1).getReg(); 4522 LLT DstTy = MRI.getType(Dst); 4523 LLT SrcTy = MRI.getType(Src); 4524 const LLT S64 = LLT::scalar(64); 4525 const LLT S32 = LLT::scalar(32); 4526 4527 if (SrcTy != S64 && SrcTy != S32) 4528 return UnableToLegalize; 4529 if (DstTy != S32 && DstTy != S64) 4530 return UnableToLegalize; 4531 4532 // FPTOSI gives same result as FPTOUI for positive signed integers. 4533 // FPTOUI needs to deal with fp values that convert to unsigned integers 4534 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4535 4536 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4537 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4538 : APFloat::IEEEdouble(), 4539 APInt::getNullValue(SrcTy.getSizeInBits())); 4540 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4541 4542 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4543 4544 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4545 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4546 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4547 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4548 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4549 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4550 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4551 4552 const LLT S1 = LLT::scalar(1); 4553 4554 MachineInstrBuilder FCMP = 4555 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4556 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4557 4558 MI.eraseFromParent(); 4559 return Legalized; 4560 } 4561 4562 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4563 Register Dst = MI.getOperand(0).getReg(); 4564 Register Src = MI.getOperand(1).getReg(); 4565 LLT DstTy = MRI.getType(Dst); 4566 LLT SrcTy = MRI.getType(Src); 4567 const LLT S64 = LLT::scalar(64); 4568 const LLT S32 = LLT::scalar(32); 4569 4570 // FIXME: Only f32 to i64 conversions are supported. 4571 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4572 return UnableToLegalize; 4573 4574 // Expand f32 -> i64 conversion 4575 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4576 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4577 4578 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4579 4580 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4581 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4582 4583 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4584 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4585 4586 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4587 APInt::getSignMask(SrcEltBits)); 4588 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4589 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4590 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4591 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4592 4593 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4594 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4595 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4596 4597 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4598 R = MIRBuilder.buildZExt(DstTy, R); 4599 4600 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4601 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4602 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4603 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4604 4605 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4606 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4607 4608 const LLT S1 = LLT::scalar(1); 4609 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4610 S1, Exponent, ExponentLoBit); 4611 4612 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4613 4614 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4615 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4616 4617 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4618 4619 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4620 S1, Exponent, ZeroSrcTy); 4621 4622 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4623 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4624 4625 MI.eraseFromParent(); 4626 return Legalized; 4627 } 4628 4629 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4630 LegalizerHelper::LegalizeResult 4631 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4632 Register Dst = MI.getOperand(0).getReg(); 4633 Register Src = MI.getOperand(1).getReg(); 4634 4635 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4636 return UnableToLegalize; 4637 4638 const unsigned ExpMask = 0x7ff; 4639 const unsigned ExpBiasf64 = 1023; 4640 const unsigned ExpBiasf16 = 15; 4641 const LLT S32 = LLT::scalar(32); 4642 const LLT S1 = LLT::scalar(1); 4643 4644 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4645 Register U = Unmerge.getReg(0); 4646 Register UH = Unmerge.getReg(1); 4647 4648 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4649 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4650 4651 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4652 // add the f16 bias (15) to get the biased exponent for the f16 format. 4653 E = MIRBuilder.buildAdd( 4654 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4655 4656 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4657 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4658 4659 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4660 MIRBuilder.buildConstant(S32, 0x1ff)); 4661 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4662 4663 auto Zero = MIRBuilder.buildConstant(S32, 0); 4664 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4665 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4666 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4667 4668 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4669 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4670 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4671 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4672 4673 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4674 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4675 4676 // N = M | (E << 12); 4677 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4678 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4679 4680 // B = clamp(1-E, 0, 13); 4681 auto One = MIRBuilder.buildConstant(S32, 1); 4682 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4683 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4684 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4685 4686 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4687 MIRBuilder.buildConstant(S32, 0x1000)); 4688 4689 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4690 auto D0 = MIRBuilder.buildShl(S32, D, B); 4691 4692 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4693 D0, SigSetHigh); 4694 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4695 D = MIRBuilder.buildOr(S32, D, D1); 4696 4697 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4698 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4699 4700 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4701 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4702 4703 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4704 MIRBuilder.buildConstant(S32, 3)); 4705 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4706 4707 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4708 MIRBuilder.buildConstant(S32, 5)); 4709 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4710 4711 V1 = MIRBuilder.buildOr(S32, V0, V1); 4712 V = MIRBuilder.buildAdd(S32, V, V1); 4713 4714 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4715 E, MIRBuilder.buildConstant(S32, 30)); 4716 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4717 MIRBuilder.buildConstant(S32, 0x7c00), V); 4718 4719 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4720 E, MIRBuilder.buildConstant(S32, 1039)); 4721 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4722 4723 // Extract the sign bit. 4724 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4725 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4726 4727 // Insert the sign bit 4728 V = MIRBuilder.buildOr(S32, Sign, V); 4729 4730 MIRBuilder.buildTrunc(Dst, V); 4731 MI.eraseFromParent(); 4732 return Legalized; 4733 } 4734 4735 LegalizerHelper::LegalizeResult 4736 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4737 Register Dst = MI.getOperand(0).getReg(); 4738 Register Src = MI.getOperand(1).getReg(); 4739 4740 LLT DstTy = MRI.getType(Dst); 4741 LLT SrcTy = MRI.getType(Src); 4742 const LLT S64 = LLT::scalar(64); 4743 const LLT S16 = LLT::scalar(16); 4744 4745 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4746 return lowerFPTRUNC_F64_TO_F16(MI); 4747 4748 return UnableToLegalize; 4749 } 4750 4751 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4752 switch (Opc) { 4753 case TargetOpcode::G_SMIN: 4754 return CmpInst::ICMP_SLT; 4755 case TargetOpcode::G_SMAX: 4756 return CmpInst::ICMP_SGT; 4757 case TargetOpcode::G_UMIN: 4758 return CmpInst::ICMP_ULT; 4759 case TargetOpcode::G_UMAX: 4760 return CmpInst::ICMP_UGT; 4761 default: 4762 llvm_unreachable("not in integer min/max"); 4763 } 4764 } 4765 4766 LegalizerHelper::LegalizeResult 4767 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4768 Register Dst = MI.getOperand(0).getReg(); 4769 Register Src0 = MI.getOperand(1).getReg(); 4770 Register Src1 = MI.getOperand(2).getReg(); 4771 4772 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4773 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4774 4775 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4776 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4777 4778 MI.eraseFromParent(); 4779 return Legalized; 4780 } 4781 4782 LegalizerHelper::LegalizeResult 4783 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4784 Register Dst = MI.getOperand(0).getReg(); 4785 Register Src0 = MI.getOperand(1).getReg(); 4786 Register Src1 = MI.getOperand(2).getReg(); 4787 4788 const LLT Src0Ty = MRI.getType(Src0); 4789 const LLT Src1Ty = MRI.getType(Src1); 4790 4791 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4792 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4793 4794 auto SignBitMask = MIRBuilder.buildConstant( 4795 Src0Ty, APInt::getSignMask(Src0Size)); 4796 4797 auto NotSignBitMask = MIRBuilder.buildConstant( 4798 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4799 4800 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4801 MachineInstr *Or; 4802 4803 if (Src0Ty == Src1Ty) { 4804 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4805 Or = MIRBuilder.buildOr(Dst, And0, And1); 4806 } else if (Src0Size > Src1Size) { 4807 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4808 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4809 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4810 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4811 Or = MIRBuilder.buildOr(Dst, And0, And1); 4812 } else { 4813 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4814 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4815 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4816 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4817 Or = MIRBuilder.buildOr(Dst, And0, And1); 4818 } 4819 4820 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4821 // constants are a nan and -0.0, but the final result should preserve 4822 // everything. 4823 if (unsigned Flags = MI.getFlags()) 4824 Or->setFlags(Flags); 4825 4826 MI.eraseFromParent(); 4827 return Legalized; 4828 } 4829 4830 LegalizerHelper::LegalizeResult 4831 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4832 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4833 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4834 4835 Register Dst = MI.getOperand(0).getReg(); 4836 Register Src0 = MI.getOperand(1).getReg(); 4837 Register Src1 = MI.getOperand(2).getReg(); 4838 LLT Ty = MRI.getType(Dst); 4839 4840 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4841 // Insert canonicalizes if it's possible we need to quiet to get correct 4842 // sNaN behavior. 4843 4844 // Note this must be done here, and not as an optimization combine in the 4845 // absence of a dedicate quiet-snan instruction as we're using an 4846 // omni-purpose G_FCANONICALIZE. 4847 if (!isKnownNeverSNaN(Src0, MRI)) 4848 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4849 4850 if (!isKnownNeverSNaN(Src1, MRI)) 4851 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4852 } 4853 4854 // If there are no nans, it's safe to simply replace this with the non-IEEE 4855 // version. 4856 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4857 MI.eraseFromParent(); 4858 return Legalized; 4859 } 4860 4861 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4862 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4863 Register DstReg = MI.getOperand(0).getReg(); 4864 LLT Ty = MRI.getType(DstReg); 4865 unsigned Flags = MI.getFlags(); 4866 4867 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4868 Flags); 4869 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4870 MI.eraseFromParent(); 4871 return Legalized; 4872 } 4873 4874 LegalizerHelper::LegalizeResult 4875 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4876 Register DstReg = MI.getOperand(0).getReg(); 4877 Register X = MI.getOperand(1).getReg(); 4878 const unsigned Flags = MI.getFlags(); 4879 const LLT Ty = MRI.getType(DstReg); 4880 const LLT CondTy = Ty.changeElementSize(1); 4881 4882 // round(x) => 4883 // t = trunc(x); 4884 // d = fabs(x - t); 4885 // o = copysign(1.0f, x); 4886 // return t + (d >= 0.5 ? o : 0.0); 4887 4888 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4889 4890 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4891 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4892 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4893 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4894 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4895 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4896 4897 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4898 Flags); 4899 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4900 4901 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4902 4903 MI.eraseFromParent(); 4904 return Legalized; 4905 } 4906 4907 LegalizerHelper::LegalizeResult 4908 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4909 Register DstReg = MI.getOperand(0).getReg(); 4910 Register SrcReg = MI.getOperand(1).getReg(); 4911 unsigned Flags = MI.getFlags(); 4912 LLT Ty = MRI.getType(DstReg); 4913 const LLT CondTy = Ty.changeElementSize(1); 4914 4915 // result = trunc(src); 4916 // if (src < 0.0 && src != result) 4917 // result += -1.0. 4918 4919 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4920 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4921 4922 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4923 SrcReg, Zero, Flags); 4924 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4925 SrcReg, Trunc, Flags); 4926 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4927 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4928 4929 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4930 MI.eraseFromParent(); 4931 return Legalized; 4932 } 4933 4934 LegalizerHelper::LegalizeResult 4935 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 4936 const unsigned NumOps = MI.getNumOperands(); 4937 Register DstReg = MI.getOperand(0).getReg(); 4938 Register Src0Reg = MI.getOperand(1).getReg(); 4939 LLT DstTy = MRI.getType(DstReg); 4940 LLT SrcTy = MRI.getType(Src0Reg); 4941 unsigned PartSize = SrcTy.getSizeInBits(); 4942 4943 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 4944 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 4945 4946 for (unsigned I = 2; I != NumOps; ++I) { 4947 const unsigned Offset = (I - 1) * PartSize; 4948 4949 Register SrcReg = MI.getOperand(I).getReg(); 4950 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 4951 4952 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 4953 MRI.createGenericVirtualRegister(WideTy); 4954 4955 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 4956 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 4957 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 4958 ResultReg = NextResult; 4959 } 4960 4961 if (DstTy.isPointer()) { 4962 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 4963 DstTy.getAddressSpace())) { 4964 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 4965 return UnableToLegalize; 4966 } 4967 4968 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 4969 } 4970 4971 MI.eraseFromParent(); 4972 return Legalized; 4973 } 4974 4975 LegalizerHelper::LegalizeResult 4976 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4977 const unsigned NumDst = MI.getNumOperands() - 1; 4978 Register SrcReg = MI.getOperand(NumDst).getReg(); 4979 Register Dst0Reg = MI.getOperand(0).getReg(); 4980 LLT DstTy = MRI.getType(Dst0Reg); 4981 if (DstTy.isPointer()) 4982 return UnableToLegalize; // TODO 4983 4984 SrcReg = coerceToScalar(SrcReg); 4985 if (!SrcReg) 4986 return UnableToLegalize; 4987 4988 // Expand scalarizing unmerge as bitcast to integer and shift. 4989 LLT IntTy = MRI.getType(SrcReg); 4990 4991 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 4992 4993 const unsigned DstSize = DstTy.getSizeInBits(); 4994 unsigned Offset = DstSize; 4995 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4996 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4997 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 4998 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4999 } 5000 5001 MI.eraseFromParent(); 5002 return Legalized; 5003 } 5004 5005 LegalizerHelper::LegalizeResult 5006 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5007 Register DstReg = MI.getOperand(0).getReg(); 5008 Register Src0Reg = MI.getOperand(1).getReg(); 5009 Register Src1Reg = MI.getOperand(2).getReg(); 5010 LLT Src0Ty = MRI.getType(Src0Reg); 5011 LLT DstTy = MRI.getType(DstReg); 5012 LLT IdxTy = LLT::scalar(32); 5013 5014 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5015 5016 if (DstTy.isScalar()) { 5017 if (Src0Ty.isVector()) 5018 return UnableToLegalize; 5019 5020 // This is just a SELECT. 5021 assert(Mask.size() == 1 && "Expected a single mask element"); 5022 Register Val; 5023 if (Mask[0] < 0 || Mask[0] > 1) 5024 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5025 else 5026 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5027 MIRBuilder.buildCopy(DstReg, Val); 5028 MI.eraseFromParent(); 5029 return Legalized; 5030 } 5031 5032 Register Undef; 5033 SmallVector<Register, 32> BuildVec; 5034 LLT EltTy = DstTy.getElementType(); 5035 5036 for (int Idx : Mask) { 5037 if (Idx < 0) { 5038 if (!Undef.isValid()) 5039 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5040 BuildVec.push_back(Undef); 5041 continue; 5042 } 5043 5044 if (Src0Ty.isScalar()) { 5045 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5046 } else { 5047 int NumElts = Src0Ty.getNumElements(); 5048 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5049 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5050 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5051 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5052 BuildVec.push_back(Extract.getReg(0)); 5053 } 5054 } 5055 5056 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5057 MI.eraseFromParent(); 5058 return Legalized; 5059 } 5060 5061 LegalizerHelper::LegalizeResult 5062 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5063 const auto &MF = *MI.getMF(); 5064 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5065 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5066 return UnableToLegalize; 5067 5068 Register Dst = MI.getOperand(0).getReg(); 5069 Register AllocSize = MI.getOperand(1).getReg(); 5070 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5071 5072 LLT PtrTy = MRI.getType(Dst); 5073 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5074 5075 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5076 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5077 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5078 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5079 5080 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5081 // have to generate an extra instruction to negate the alloc and then use 5082 // G_PTR_ADD to add the negative offset. 5083 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5084 if (Alignment > Align(1)) { 5085 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5086 AlignMask.negate(); 5087 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5088 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5089 } 5090 5091 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5092 MIRBuilder.buildCopy(SPReg, SPTmp); 5093 MIRBuilder.buildCopy(Dst, SPTmp); 5094 5095 MI.eraseFromParent(); 5096 return Legalized; 5097 } 5098 5099 LegalizerHelper::LegalizeResult 5100 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5101 Register Dst = MI.getOperand(0).getReg(); 5102 Register Src = MI.getOperand(1).getReg(); 5103 unsigned Offset = MI.getOperand(2).getImm(); 5104 5105 LLT DstTy = MRI.getType(Dst); 5106 LLT SrcTy = MRI.getType(Src); 5107 5108 if (DstTy.isScalar() && 5109 (SrcTy.isScalar() || 5110 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5111 LLT SrcIntTy = SrcTy; 5112 if (!SrcTy.isScalar()) { 5113 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5114 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5115 } 5116 5117 if (Offset == 0) 5118 MIRBuilder.buildTrunc(Dst, Src); 5119 else { 5120 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5121 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5122 MIRBuilder.buildTrunc(Dst, Shr); 5123 } 5124 5125 MI.eraseFromParent(); 5126 return Legalized; 5127 } 5128 5129 return UnableToLegalize; 5130 } 5131 5132 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5133 Register Dst = MI.getOperand(0).getReg(); 5134 Register Src = MI.getOperand(1).getReg(); 5135 Register InsertSrc = MI.getOperand(2).getReg(); 5136 uint64_t Offset = MI.getOperand(3).getImm(); 5137 5138 LLT DstTy = MRI.getType(Src); 5139 LLT InsertTy = MRI.getType(InsertSrc); 5140 5141 if (InsertTy.isVector() || 5142 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5143 return UnableToLegalize; 5144 5145 const DataLayout &DL = MIRBuilder.getDataLayout(); 5146 if ((DstTy.isPointer() && 5147 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5148 (InsertTy.isPointer() && 5149 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5150 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5151 return UnableToLegalize; 5152 } 5153 5154 LLT IntDstTy = DstTy; 5155 5156 if (!DstTy.isScalar()) { 5157 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5158 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5159 } 5160 5161 if (!InsertTy.isScalar()) { 5162 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5163 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5164 } 5165 5166 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5167 if (Offset != 0) { 5168 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5169 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5170 } 5171 5172 APInt MaskVal = APInt::getBitsSetWithWrap( 5173 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5174 5175 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5176 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5177 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5178 5179 MIRBuilder.buildCast(Dst, Or); 5180 MI.eraseFromParent(); 5181 return Legalized; 5182 } 5183 5184 LegalizerHelper::LegalizeResult 5185 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5186 Register Dst0 = MI.getOperand(0).getReg(); 5187 Register Dst1 = MI.getOperand(1).getReg(); 5188 Register LHS = MI.getOperand(2).getReg(); 5189 Register RHS = MI.getOperand(3).getReg(); 5190 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5191 5192 LLT Ty = MRI.getType(Dst0); 5193 LLT BoolTy = MRI.getType(Dst1); 5194 5195 if (IsAdd) 5196 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5197 else 5198 MIRBuilder.buildSub(Dst0, LHS, RHS); 5199 5200 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5201 5202 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5203 5204 // For an addition, the result should be less than one of the operands (LHS) 5205 // if and only if the other operand (RHS) is negative, otherwise there will 5206 // be overflow. 5207 // For a subtraction, the result should be less than one of the operands 5208 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5209 // otherwise there will be overflow. 5210 auto ResultLowerThanLHS = 5211 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5212 auto ConditionRHS = MIRBuilder.buildICmp( 5213 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5214 5215 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5216 MI.eraseFromParent(); 5217 return Legalized; 5218 } 5219 5220 LegalizerHelper::LegalizeResult 5221 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5222 Register Dst = MI.getOperand(0).getReg(); 5223 Register Src = MI.getOperand(1).getReg(); 5224 const LLT Ty = MRI.getType(Src); 5225 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5226 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5227 5228 // Swap most and least significant byte, set remaining bytes in Res to zero. 5229 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5230 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5231 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5232 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5233 5234 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5235 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5236 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5237 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5238 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5239 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5240 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5241 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5242 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5243 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5244 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5245 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5246 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5247 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5248 } 5249 Res.getInstr()->getOperand(0).setReg(Dst); 5250 5251 MI.eraseFromParent(); 5252 return Legalized; 5253 } 5254 5255 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5256 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5257 MachineInstrBuilder Src, APInt Mask) { 5258 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5259 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5260 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5261 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5262 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5263 return B.buildOr(Dst, LHS, RHS); 5264 } 5265 5266 LegalizerHelper::LegalizeResult 5267 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5268 Register Dst = MI.getOperand(0).getReg(); 5269 Register Src = MI.getOperand(1).getReg(); 5270 const LLT Ty = MRI.getType(Src); 5271 unsigned Size = Ty.getSizeInBits(); 5272 5273 MachineInstrBuilder BSWAP = 5274 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5275 5276 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5277 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5278 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5279 MachineInstrBuilder Swap4 = 5280 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5281 5282 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5283 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5284 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5285 MachineInstrBuilder Swap2 = 5286 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5287 5288 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5289 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5290 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5291 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5292 5293 MI.eraseFromParent(); 5294 return Legalized; 5295 } 5296 5297 LegalizerHelper::LegalizeResult 5298 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5299 MachineFunction &MF = MIRBuilder.getMF(); 5300 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5301 const TargetLowering *TLI = STI.getTargetLowering(); 5302 5303 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5304 int NameOpIdx = IsRead ? 1 : 0; 5305 int ValRegIndex = IsRead ? 0 : 1; 5306 5307 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5308 const LLT Ty = MRI.getType(ValReg); 5309 const MDString *RegStr = cast<MDString>( 5310 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5311 5312 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5313 if (!PhysReg.isValid()) 5314 return UnableToLegalize; 5315 5316 if (IsRead) 5317 MIRBuilder.buildCopy(ValReg, PhysReg); 5318 else 5319 MIRBuilder.buildCopy(PhysReg, ValReg); 5320 5321 MI.eraseFromParent(); 5322 return Legalized; 5323 } 5324