1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #define DEBUG_TYPE "legalizer" 28 29 using namespace llvm; 30 using namespace LegalizeActions; 31 32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 33 /// 34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 35 /// with any leftover piece as type \p LeftoverTy 36 /// 37 /// Returns -1 in the first element of the pair if the breakdown is not 38 /// satisfiable. 39 static std::pair<int, int> 40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 41 assert(!LeftoverTy.isValid() && "this is an out argument"); 42 43 unsigned Size = OrigTy.getSizeInBits(); 44 unsigned NarrowSize = NarrowTy.getSizeInBits(); 45 unsigned NumParts = Size / NarrowSize; 46 unsigned LeftoverSize = Size - NumParts * NarrowSize; 47 assert(Size > NarrowSize); 48 49 if (LeftoverSize == 0) 50 return {NumParts, 0}; 51 52 if (NarrowTy.isVector()) { 53 unsigned EltSize = OrigTy.getScalarSizeInBits(); 54 if (LeftoverSize % EltSize != 0) 55 return {-1, -1}; 56 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 57 } else { 58 LeftoverTy = LLT::scalar(LeftoverSize); 59 } 60 61 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 62 return std::make_pair(NumParts, NumLeftover); 63 } 64 65 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 66 GISelChangeObserver &Observer, 67 MachineIRBuilder &Builder) 68 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 69 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 70 MIRBuilder.setMF(MF); 71 MIRBuilder.setChangeObserver(Observer); 72 } 73 74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 75 GISelChangeObserver &Observer, 76 MachineIRBuilder &B) 77 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 78 MIRBuilder.setMF(MF); 79 MIRBuilder.setChangeObserver(Observer); 80 } 81 LegalizerHelper::LegalizeResult 82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 83 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 84 85 auto Step = LI.getAction(MI, MRI); 86 switch (Step.Action) { 87 case Legal: 88 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 89 return AlreadyLegal; 90 case Libcall: 91 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 92 return libcall(MI); 93 case NarrowScalar: 94 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 95 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 96 case WidenScalar: 97 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 98 return widenScalar(MI, Step.TypeIdx, Step.NewType); 99 case Lower: 100 LLVM_DEBUG(dbgs() << ".. Lower\n"); 101 return lower(MI, Step.TypeIdx, Step.NewType); 102 case FewerElements: 103 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 104 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 105 case MoreElements: 106 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 107 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 108 case Custom: 109 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 110 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 111 : UnableToLegalize; 112 default: 113 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 114 return UnableToLegalize; 115 } 116 } 117 118 void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts, 119 SmallVectorImpl<unsigned> &VRegs) { 120 for (int i = 0; i < NumParts; ++i) 121 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 122 MIRBuilder.buildUnmerge(VRegs, Reg); 123 } 124 125 bool LegalizerHelper::extractParts(unsigned Reg, LLT RegTy, 126 LLT MainTy, LLT &LeftoverTy, 127 SmallVectorImpl<unsigned> &VRegs, 128 SmallVectorImpl<unsigned> &LeftoverRegs) { 129 assert(!LeftoverTy.isValid() && "this is an out argument"); 130 131 unsigned RegSize = RegTy.getSizeInBits(); 132 unsigned MainSize = MainTy.getSizeInBits(); 133 unsigned NumParts = RegSize / MainSize; 134 unsigned LeftoverSize = RegSize - NumParts * MainSize; 135 136 // Use an unmerge when possible. 137 if (LeftoverSize == 0) { 138 for (unsigned I = 0; I < NumParts; ++I) 139 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 140 MIRBuilder.buildUnmerge(VRegs, Reg); 141 return true; 142 } 143 144 if (MainTy.isVector()) { 145 unsigned EltSize = MainTy.getScalarSizeInBits(); 146 if (LeftoverSize % EltSize != 0) 147 return false; 148 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 149 } else { 150 LeftoverTy = LLT::scalar(LeftoverSize); 151 } 152 153 // For irregular sizes, extract the individual parts. 154 for (unsigned I = 0; I != NumParts; ++I) { 155 unsigned NewReg = MRI.createGenericVirtualRegister(MainTy); 156 VRegs.push_back(NewReg); 157 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 158 } 159 160 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 161 Offset += LeftoverSize) { 162 unsigned NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 163 LeftoverRegs.push_back(NewReg); 164 MIRBuilder.buildExtract(NewReg, Reg, Offset); 165 } 166 167 return true; 168 } 169 170 void LegalizerHelper::insertParts(unsigned DstReg, 171 LLT ResultTy, LLT PartTy, 172 ArrayRef<unsigned> PartRegs, 173 LLT LeftoverTy, 174 ArrayRef<unsigned> LeftoverRegs) { 175 if (!LeftoverTy.isValid()) { 176 assert(LeftoverRegs.empty()); 177 178 if (!ResultTy.isVector()) { 179 MIRBuilder.buildMerge(DstReg, PartRegs); 180 return; 181 } 182 183 if (PartTy.isVector()) 184 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 185 else 186 MIRBuilder.buildBuildVector(DstReg, PartRegs); 187 return; 188 } 189 190 unsigned PartSize = PartTy.getSizeInBits(); 191 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 192 193 unsigned CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 194 MIRBuilder.buildUndef(CurResultReg); 195 196 unsigned Offset = 0; 197 for (unsigned PartReg : PartRegs) { 198 unsigned NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 199 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 200 CurResultReg = NewResultReg; 201 Offset += PartSize; 202 } 203 204 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 205 // Use the original output register for the final insert to avoid a copy. 206 unsigned NewResultReg = (I + 1 == E) ? 207 DstReg : MRI.createGenericVirtualRegister(ResultTy); 208 209 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 210 CurResultReg = NewResultReg; 211 Offset += LeftoverPartSize; 212 } 213 } 214 215 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 216 switch (Opcode) { 217 case TargetOpcode::G_SDIV: 218 assert((Size == 32 || Size == 64) && "Unsupported size"); 219 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 220 case TargetOpcode::G_UDIV: 221 assert((Size == 32 || Size == 64) && "Unsupported size"); 222 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 223 case TargetOpcode::G_SREM: 224 assert((Size == 32 || Size == 64) && "Unsupported size"); 225 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 226 case TargetOpcode::G_UREM: 227 assert((Size == 32 || Size == 64) && "Unsupported size"); 228 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 229 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 230 assert(Size == 32 && "Unsupported size"); 231 return RTLIB::CTLZ_I32; 232 case TargetOpcode::G_FADD: 233 assert((Size == 32 || Size == 64) && "Unsupported size"); 234 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 235 case TargetOpcode::G_FSUB: 236 assert((Size == 32 || Size == 64) && "Unsupported size"); 237 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 238 case TargetOpcode::G_FMUL: 239 assert((Size == 32 || Size == 64) && "Unsupported size"); 240 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 241 case TargetOpcode::G_FDIV: 242 assert((Size == 32 || Size == 64) && "Unsupported size"); 243 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 244 case TargetOpcode::G_FEXP: 245 assert((Size == 32 || Size == 64) && "Unsupported size"); 246 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 247 case TargetOpcode::G_FEXP2: 248 assert((Size == 32 || Size == 64) && "Unsupported size"); 249 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 250 case TargetOpcode::G_FREM: 251 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 252 case TargetOpcode::G_FPOW: 253 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 254 case TargetOpcode::G_FMA: 255 assert((Size == 32 || Size == 64) && "Unsupported size"); 256 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 257 case TargetOpcode::G_FSIN: 258 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 259 return Size == 128 ? RTLIB::SIN_F128 260 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 261 case TargetOpcode::G_FCOS: 262 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 263 return Size == 128 ? RTLIB::COS_F128 264 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 265 case TargetOpcode::G_FLOG10: 266 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 267 return Size == 128 ? RTLIB::LOG10_F128 268 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 269 case TargetOpcode::G_FLOG: 270 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 271 return Size == 128 ? RTLIB::LOG_F128 272 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 273 case TargetOpcode::G_FLOG2: 274 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 275 return Size == 128 ? RTLIB::LOG2_F128 276 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 277 case TargetOpcode::G_FCEIL: 278 assert((Size == 32 || Size == 64) && "Unsupported size"); 279 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 280 case TargetOpcode::G_FFLOOR: 281 assert((Size == 32 || Size == 64) && "Unsupported size"); 282 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 283 } 284 llvm_unreachable("Unknown libcall function"); 285 } 286 287 LegalizerHelper::LegalizeResult 288 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 289 const CallLowering::ArgInfo &Result, 290 ArrayRef<CallLowering::ArgInfo> Args) { 291 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 292 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 293 const char *Name = TLI.getLibcallName(Libcall); 294 295 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 296 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 297 MachineOperand::CreateES(Name), Result, Args)) 298 return LegalizerHelper::UnableToLegalize; 299 300 return LegalizerHelper::Legalized; 301 } 302 303 // Useful for libcalls where all operands have the same type. 304 static LegalizerHelper::LegalizeResult 305 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 306 Type *OpType) { 307 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 308 309 SmallVector<CallLowering::ArgInfo, 3> Args; 310 for (unsigned i = 1; i < MI.getNumOperands(); i++) 311 Args.push_back({MI.getOperand(i).getReg(), OpType}); 312 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 313 Args); 314 } 315 316 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 317 Type *FromType) { 318 auto ToMVT = MVT::getVT(ToType); 319 auto FromMVT = MVT::getVT(FromType); 320 321 switch (Opcode) { 322 case TargetOpcode::G_FPEXT: 323 return RTLIB::getFPEXT(FromMVT, ToMVT); 324 case TargetOpcode::G_FPTRUNC: 325 return RTLIB::getFPROUND(FromMVT, ToMVT); 326 case TargetOpcode::G_FPTOSI: 327 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 328 case TargetOpcode::G_FPTOUI: 329 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 330 case TargetOpcode::G_SITOFP: 331 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 332 case TargetOpcode::G_UITOFP: 333 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 334 } 335 llvm_unreachable("Unsupported libcall function"); 336 } 337 338 static LegalizerHelper::LegalizeResult 339 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 340 Type *FromType) { 341 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 342 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 343 {{MI.getOperand(1).getReg(), FromType}}); 344 } 345 346 LegalizerHelper::LegalizeResult 347 LegalizerHelper::libcall(MachineInstr &MI) { 348 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 349 unsigned Size = LLTy.getSizeInBits(); 350 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 351 352 MIRBuilder.setInstr(MI); 353 354 switch (MI.getOpcode()) { 355 default: 356 return UnableToLegalize; 357 case TargetOpcode::G_SDIV: 358 case TargetOpcode::G_UDIV: 359 case TargetOpcode::G_SREM: 360 case TargetOpcode::G_UREM: 361 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 362 Type *HLTy = IntegerType::get(Ctx, Size); 363 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 364 if (Status != Legalized) 365 return Status; 366 break; 367 } 368 case TargetOpcode::G_FADD: 369 case TargetOpcode::G_FSUB: 370 case TargetOpcode::G_FMUL: 371 case TargetOpcode::G_FDIV: 372 case TargetOpcode::G_FMA: 373 case TargetOpcode::G_FPOW: 374 case TargetOpcode::G_FREM: 375 case TargetOpcode::G_FCOS: 376 case TargetOpcode::G_FSIN: 377 case TargetOpcode::G_FLOG10: 378 case TargetOpcode::G_FLOG: 379 case TargetOpcode::G_FLOG2: 380 case TargetOpcode::G_FEXP: 381 case TargetOpcode::G_FEXP2: 382 case TargetOpcode::G_FCEIL: 383 case TargetOpcode::G_FFLOOR: { 384 if (Size > 64) { 385 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 386 return UnableToLegalize; 387 } 388 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 389 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 390 if (Status != Legalized) 391 return Status; 392 break; 393 } 394 case TargetOpcode::G_FPEXT: { 395 // FIXME: Support other floating point types (half, fp128 etc) 396 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 397 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 398 if (ToSize != 64 || FromSize != 32) 399 return UnableToLegalize; 400 LegalizeResult Status = conversionLibcall( 401 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 402 if (Status != Legalized) 403 return Status; 404 break; 405 } 406 case TargetOpcode::G_FPTRUNC: { 407 // FIXME: Support other floating point types (half, fp128 etc) 408 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 409 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 410 if (ToSize != 32 || FromSize != 64) 411 return UnableToLegalize; 412 LegalizeResult Status = conversionLibcall( 413 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 414 if (Status != Legalized) 415 return Status; 416 break; 417 } 418 case TargetOpcode::G_FPTOSI: 419 case TargetOpcode::G_FPTOUI: { 420 // FIXME: Support other types 421 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 422 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 423 if (ToSize != 32 || (FromSize != 32 && FromSize != 64)) 424 return UnableToLegalize; 425 LegalizeResult Status = conversionLibcall( 426 MI, MIRBuilder, Type::getInt32Ty(Ctx), 427 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 428 if (Status != Legalized) 429 return Status; 430 break; 431 } 432 case TargetOpcode::G_SITOFP: 433 case TargetOpcode::G_UITOFP: { 434 // FIXME: Support other types 435 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 436 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 437 if (FromSize != 32 || (ToSize != 32 && ToSize != 64)) 438 return UnableToLegalize; 439 LegalizeResult Status = conversionLibcall( 440 MI, MIRBuilder, 441 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 442 Type::getInt32Ty(Ctx)); 443 if (Status != Legalized) 444 return Status; 445 break; 446 } 447 } 448 449 MI.eraseFromParent(); 450 return Legalized; 451 } 452 453 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 454 unsigned TypeIdx, 455 LLT NarrowTy) { 456 MIRBuilder.setInstr(MI); 457 458 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 459 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 460 461 switch (MI.getOpcode()) { 462 default: 463 return UnableToLegalize; 464 case TargetOpcode::G_IMPLICIT_DEF: { 465 // FIXME: add support for when SizeOp0 isn't an exact multiple of 466 // NarrowSize. 467 if (SizeOp0 % NarrowSize != 0) 468 return UnableToLegalize; 469 int NumParts = SizeOp0 / NarrowSize; 470 471 SmallVector<unsigned, 2> DstRegs; 472 for (int i = 0; i < NumParts; ++i) 473 DstRegs.push_back( 474 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 475 476 unsigned DstReg = MI.getOperand(0).getReg(); 477 if(MRI.getType(DstReg).isVector()) 478 MIRBuilder.buildBuildVector(DstReg, DstRegs); 479 else 480 MIRBuilder.buildMerge(DstReg, DstRegs); 481 MI.eraseFromParent(); 482 return Legalized; 483 } 484 case TargetOpcode::G_CONSTANT: { 485 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 486 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 487 unsigned TotalSize = Ty.getSizeInBits(); 488 unsigned NarrowSize = NarrowTy.getSizeInBits(); 489 int NumParts = TotalSize / NarrowSize; 490 491 SmallVector<unsigned, 4> PartRegs; 492 for (int I = 0; I != NumParts; ++I) { 493 unsigned Offset = I * NarrowSize; 494 auto K = MIRBuilder.buildConstant(NarrowTy, 495 Val.lshr(Offset).trunc(NarrowSize)); 496 PartRegs.push_back(K.getReg(0)); 497 } 498 499 LLT LeftoverTy; 500 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 501 SmallVector<unsigned, 1> LeftoverRegs; 502 if (LeftoverBits != 0) { 503 LeftoverTy = LLT::scalar(LeftoverBits); 504 auto K = MIRBuilder.buildConstant( 505 LeftoverTy, 506 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 507 LeftoverRegs.push_back(K.getReg(0)); 508 } 509 510 insertParts(MI.getOperand(0).getReg(), 511 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 512 513 MI.eraseFromParent(); 514 return Legalized; 515 } 516 case TargetOpcode::G_ADD: { 517 // FIXME: add support for when SizeOp0 isn't an exact multiple of 518 // NarrowSize. 519 if (SizeOp0 % NarrowSize != 0) 520 return UnableToLegalize; 521 // Expand in terms of carry-setting/consuming G_ADDE instructions. 522 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 523 524 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 525 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 526 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 527 528 unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 529 MIRBuilder.buildConstant(CarryIn, 0); 530 531 for (int i = 0; i < NumParts; ++i) { 532 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 533 unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 534 535 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 536 Src2Regs[i], CarryIn); 537 538 DstRegs.push_back(DstReg); 539 CarryIn = CarryOut; 540 } 541 unsigned DstReg = MI.getOperand(0).getReg(); 542 if(MRI.getType(DstReg).isVector()) 543 MIRBuilder.buildBuildVector(DstReg, DstRegs); 544 else 545 MIRBuilder.buildMerge(DstReg, DstRegs); 546 MI.eraseFromParent(); 547 return Legalized; 548 } 549 case TargetOpcode::G_SUB: { 550 // FIXME: add support for when SizeOp0 isn't an exact multiple of 551 // NarrowSize. 552 if (SizeOp0 % NarrowSize != 0) 553 return UnableToLegalize; 554 555 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 556 557 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 558 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 559 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 560 561 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 562 unsigned BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 563 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 564 {Src1Regs[0], Src2Regs[0]}); 565 DstRegs.push_back(DstReg); 566 unsigned BorrowIn = BorrowOut; 567 for (int i = 1; i < NumParts; ++i) { 568 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 569 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 570 571 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 572 {Src1Regs[i], Src2Regs[i], BorrowIn}); 573 574 DstRegs.push_back(DstReg); 575 BorrowIn = BorrowOut; 576 } 577 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 578 MI.eraseFromParent(); 579 return Legalized; 580 } 581 case TargetOpcode::G_MUL: 582 case TargetOpcode::G_UMULH: 583 return narrowScalarMul(MI, NarrowTy); 584 case TargetOpcode::G_EXTRACT: 585 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 586 case TargetOpcode::G_INSERT: 587 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 588 case TargetOpcode::G_LOAD: { 589 const auto &MMO = **MI.memoperands_begin(); 590 unsigned DstReg = MI.getOperand(0).getReg(); 591 LLT DstTy = MRI.getType(DstReg); 592 if (DstTy.isVector()) 593 return UnableToLegalize; 594 595 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 596 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 597 auto &MMO = **MI.memoperands_begin(); 598 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 599 MIRBuilder.buildAnyExt(DstReg, TmpReg); 600 MI.eraseFromParent(); 601 return Legalized; 602 } 603 604 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 605 } 606 case TargetOpcode::G_ZEXTLOAD: 607 case TargetOpcode::G_SEXTLOAD: { 608 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 609 unsigned DstReg = MI.getOperand(0).getReg(); 610 unsigned PtrReg = MI.getOperand(1).getReg(); 611 612 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 613 auto &MMO = **MI.memoperands_begin(); 614 if (MMO.getSizeInBits() == NarrowSize) { 615 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 616 } else { 617 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 618 : TargetOpcode::G_SEXTLOAD; 619 MIRBuilder.buildInstr(ExtLoad) 620 .addDef(TmpReg) 621 .addUse(PtrReg) 622 .addMemOperand(&MMO); 623 } 624 625 if (ZExt) 626 MIRBuilder.buildZExt(DstReg, TmpReg); 627 else 628 MIRBuilder.buildSExt(DstReg, TmpReg); 629 630 MI.eraseFromParent(); 631 return Legalized; 632 } 633 case TargetOpcode::G_STORE: { 634 const auto &MMO = **MI.memoperands_begin(); 635 636 unsigned SrcReg = MI.getOperand(0).getReg(); 637 LLT SrcTy = MRI.getType(SrcReg); 638 if (SrcTy.isVector()) 639 return UnableToLegalize; 640 641 int NumParts = SizeOp0 / NarrowSize; 642 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 643 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 644 if (SrcTy.isVector() && LeftoverBits != 0) 645 return UnableToLegalize; 646 647 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 648 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 649 auto &MMO = **MI.memoperands_begin(); 650 MIRBuilder.buildTrunc(TmpReg, SrcReg); 651 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 652 MI.eraseFromParent(); 653 return Legalized; 654 } 655 656 return reduceLoadStoreWidth(MI, 0, NarrowTy); 657 } 658 case TargetOpcode::G_SELECT: 659 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 660 case TargetOpcode::G_AND: 661 case TargetOpcode::G_OR: 662 case TargetOpcode::G_XOR: { 663 // Legalize bitwise operation: 664 // A = BinOp<Ty> B, C 665 // into: 666 // B1, ..., BN = G_UNMERGE_VALUES B 667 // C1, ..., CN = G_UNMERGE_VALUES C 668 // A1 = BinOp<Ty/N> B1, C2 669 // ... 670 // AN = BinOp<Ty/N> BN, CN 671 // A = G_MERGE_VALUES A1, ..., AN 672 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 673 } 674 case TargetOpcode::G_SHL: 675 case TargetOpcode::G_LSHR: 676 case TargetOpcode::G_ASHR: 677 return narrowScalarShift(MI, TypeIdx, NarrowTy); 678 case TargetOpcode::G_CTLZ: 679 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 680 case TargetOpcode::G_CTTZ: 681 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 682 case TargetOpcode::G_CTPOP: 683 if (TypeIdx != 0) 684 return UnableToLegalize; // TODO 685 686 Observer.changingInstr(MI); 687 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 688 Observer.changedInstr(MI); 689 return Legalized; 690 case TargetOpcode::G_INTTOPTR: 691 if (TypeIdx != 1) 692 return UnableToLegalize; 693 694 Observer.changingInstr(MI); 695 narrowScalarSrc(MI, NarrowTy, 1); 696 Observer.changedInstr(MI); 697 return Legalized; 698 case TargetOpcode::G_PTRTOINT: 699 if (TypeIdx != 0) 700 return UnableToLegalize; 701 702 Observer.changingInstr(MI); 703 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 704 Observer.changedInstr(MI); 705 return Legalized; 706 } 707 } 708 709 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 710 unsigned OpIdx, unsigned ExtOpcode) { 711 MachineOperand &MO = MI.getOperand(OpIdx); 712 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 713 MO.setReg(ExtB->getOperand(0).getReg()); 714 } 715 716 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 717 unsigned OpIdx) { 718 MachineOperand &MO = MI.getOperand(OpIdx); 719 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 720 {MO.getReg()}); 721 MO.setReg(ExtB->getOperand(0).getReg()); 722 } 723 724 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 725 unsigned OpIdx, unsigned TruncOpcode) { 726 MachineOperand &MO = MI.getOperand(OpIdx); 727 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 728 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 729 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 730 MO.setReg(DstExt); 731 } 732 733 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 734 unsigned OpIdx, unsigned ExtOpcode) { 735 MachineOperand &MO = MI.getOperand(OpIdx); 736 unsigned DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 737 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 738 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 739 MO.setReg(DstTrunc); 740 } 741 742 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 743 unsigned OpIdx) { 744 MachineOperand &MO = MI.getOperand(OpIdx); 745 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 746 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 747 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 748 MO.setReg(DstExt); 749 } 750 751 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 752 unsigned OpIdx) { 753 MachineOperand &MO = MI.getOperand(OpIdx); 754 755 LLT OldTy = MRI.getType(MO.getReg()); 756 unsigned OldElts = OldTy.getNumElements(); 757 unsigned NewElts = MoreTy.getNumElements(); 758 759 unsigned NumParts = NewElts / OldElts; 760 761 // Use concat_vectors if the result is a multiple of the number of elements. 762 if (NumParts * OldElts == NewElts) { 763 SmallVector<unsigned, 8> Parts; 764 Parts.push_back(MO.getReg()); 765 766 unsigned ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 767 for (unsigned I = 1; I != NumParts; ++I) 768 Parts.push_back(ImpDef); 769 770 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 771 MO.setReg(Concat.getReg(0)); 772 return; 773 } 774 775 unsigned MoreReg = MRI.createGenericVirtualRegister(MoreTy); 776 unsigned ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 777 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 778 MO.setReg(MoreReg); 779 } 780 781 LegalizerHelper::LegalizeResult 782 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 783 LLT WideTy) { 784 if (TypeIdx != 1) 785 return UnableToLegalize; 786 787 unsigned DstReg = MI.getOperand(0).getReg(); 788 LLT DstTy = MRI.getType(DstReg); 789 if (!DstTy.isScalar()) 790 return UnableToLegalize; 791 792 unsigned NumOps = MI.getNumOperands(); 793 unsigned NumSrc = MI.getNumOperands() - 1; 794 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 795 796 unsigned Src1 = MI.getOperand(1).getReg(); 797 unsigned ResultReg = MIRBuilder.buildZExt(DstTy, Src1)->getOperand(0).getReg(); 798 799 for (unsigned I = 2; I != NumOps; ++I) { 800 const unsigned Offset = (I - 1) * PartSize; 801 802 unsigned SrcReg = MI.getOperand(I).getReg(); 803 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 804 805 auto ZextInput = MIRBuilder.buildZExt(DstTy, SrcReg); 806 807 unsigned NextResult = I + 1 == NumOps ? DstReg : 808 MRI.createGenericVirtualRegister(DstTy); 809 810 auto ShiftAmt = MIRBuilder.buildConstant(DstTy, Offset); 811 auto Shl = MIRBuilder.buildShl(DstTy, ZextInput, ShiftAmt); 812 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 813 ResultReg = NextResult; 814 } 815 816 MI.eraseFromParent(); 817 return Legalized; 818 } 819 820 LegalizerHelper::LegalizeResult 821 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 822 LLT WideTy) { 823 if (TypeIdx != 0) 824 return UnableToLegalize; 825 826 unsigned NumDst = MI.getNumOperands() - 1; 827 unsigned SrcReg = MI.getOperand(NumDst).getReg(); 828 LLT SrcTy = MRI.getType(SrcReg); 829 if (!SrcTy.isScalar()) 830 return UnableToLegalize; 831 832 unsigned Dst0Reg = MI.getOperand(0).getReg(); 833 LLT DstTy = MRI.getType(Dst0Reg); 834 if (!DstTy.isScalar()) 835 return UnableToLegalize; 836 837 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 838 LLT NewSrcTy = LLT::scalar(NewSrcSize); 839 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 840 841 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 842 843 for (unsigned I = 1; I != NumDst; ++I) { 844 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 845 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 846 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 847 } 848 849 Observer.changingInstr(MI); 850 851 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 852 for (unsigned I = 0; I != NumDst; ++I) 853 widenScalarDst(MI, WideTy, I); 854 855 Observer.changedInstr(MI); 856 857 return Legalized; 858 } 859 860 LegalizerHelper::LegalizeResult 861 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 862 LLT WideTy) { 863 unsigned DstReg = MI.getOperand(0).getReg(); 864 unsigned SrcReg = MI.getOperand(1).getReg(); 865 LLT SrcTy = MRI.getType(SrcReg); 866 867 LLT DstTy = MRI.getType(DstReg); 868 unsigned Offset = MI.getOperand(2).getImm(); 869 870 if (TypeIdx == 0) { 871 if (SrcTy.isVector() || DstTy.isVector()) 872 return UnableToLegalize; 873 874 SrcOp Src(SrcReg); 875 if (SrcTy.isPointer()) { 876 // Extracts from pointers can be handled only if they are really just 877 // simple integers. 878 const DataLayout &DL = MIRBuilder.getDataLayout(); 879 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 880 return UnableToLegalize; 881 882 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 883 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 884 SrcTy = SrcAsIntTy; 885 } 886 887 if (DstTy.isPointer()) 888 return UnableToLegalize; 889 890 if (Offset == 0) { 891 // Avoid a shift in the degenerate case. 892 MIRBuilder.buildTrunc(DstReg, 893 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 894 MI.eraseFromParent(); 895 return Legalized; 896 } 897 898 // Do a shift in the source type. 899 LLT ShiftTy = SrcTy; 900 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 901 Src = MIRBuilder.buildAnyExt(WideTy, Src); 902 ShiftTy = WideTy; 903 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 904 return UnableToLegalize; 905 906 auto LShr = MIRBuilder.buildLShr( 907 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 908 MIRBuilder.buildTrunc(DstReg, LShr); 909 MI.eraseFromParent(); 910 return Legalized; 911 } 912 913 if (SrcTy.isScalar()) { 914 Observer.changingInstr(MI); 915 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 916 Observer.changedInstr(MI); 917 return Legalized; 918 } 919 920 if (!SrcTy.isVector()) 921 return UnableToLegalize; 922 923 if (DstTy != SrcTy.getElementType()) 924 return UnableToLegalize; 925 926 if (Offset % SrcTy.getScalarSizeInBits() != 0) 927 return UnableToLegalize; 928 929 Observer.changingInstr(MI); 930 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 931 932 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 933 Offset); 934 widenScalarDst(MI, WideTy.getScalarType(), 0); 935 Observer.changedInstr(MI); 936 return Legalized; 937 } 938 939 LegalizerHelper::LegalizeResult 940 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 941 LLT WideTy) { 942 if (TypeIdx != 0) 943 return UnableToLegalize; 944 Observer.changingInstr(MI); 945 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 946 widenScalarDst(MI, WideTy); 947 Observer.changedInstr(MI); 948 return Legalized; 949 } 950 951 LegalizerHelper::LegalizeResult 952 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 953 MIRBuilder.setInstr(MI); 954 955 switch (MI.getOpcode()) { 956 default: 957 return UnableToLegalize; 958 case TargetOpcode::G_EXTRACT: 959 return widenScalarExtract(MI, TypeIdx, WideTy); 960 case TargetOpcode::G_INSERT: 961 return widenScalarInsert(MI, TypeIdx, WideTy); 962 case TargetOpcode::G_MERGE_VALUES: 963 return widenScalarMergeValues(MI, TypeIdx, WideTy); 964 case TargetOpcode::G_UNMERGE_VALUES: 965 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 966 case TargetOpcode::G_UADDO: 967 case TargetOpcode::G_USUBO: { 968 if (TypeIdx == 1) 969 return UnableToLegalize; // TODO 970 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 971 {MI.getOperand(2).getReg()}); 972 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 973 {MI.getOperand(3).getReg()}); 974 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 975 ? TargetOpcode::G_ADD 976 : TargetOpcode::G_SUB; 977 // Do the arithmetic in the larger type. 978 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 979 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 980 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 981 auto AndOp = MIRBuilder.buildInstr( 982 TargetOpcode::G_AND, {WideTy}, 983 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 984 // There is no overflow if the AndOp is the same as NewOp. 985 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 986 AndOp); 987 // Now trunc the NewOp to the original result. 988 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 989 MI.eraseFromParent(); 990 return Legalized; 991 } 992 case TargetOpcode::G_CTTZ: 993 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 994 case TargetOpcode::G_CTLZ: 995 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 996 case TargetOpcode::G_CTPOP: { 997 if (TypeIdx == 0) { 998 Observer.changingInstr(MI); 999 widenScalarDst(MI, WideTy, 0); 1000 Observer.changedInstr(MI); 1001 return Legalized; 1002 } 1003 1004 unsigned SrcReg = MI.getOperand(1).getReg(); 1005 1006 // First ZEXT the input. 1007 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1008 LLT CurTy = MRI.getType(SrcReg); 1009 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1010 // The count is the same in the larger type except if the original 1011 // value was zero. This can be handled by setting the bit just off 1012 // the top of the original type. 1013 auto TopBit = 1014 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1015 MIBSrc = MIRBuilder.buildOr( 1016 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1017 } 1018 1019 // Perform the operation at the larger size. 1020 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1021 // This is already the correct result for CTPOP and CTTZs 1022 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1023 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1024 // The correct result is NewOp - (Difference in widety and current ty). 1025 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1026 MIBNewOp = MIRBuilder.buildInstr( 1027 TargetOpcode::G_SUB, {WideTy}, 1028 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1029 } 1030 1031 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1032 MI.eraseFromParent(); 1033 return Legalized; 1034 } 1035 case TargetOpcode::G_BSWAP: { 1036 Observer.changingInstr(MI); 1037 unsigned DstReg = MI.getOperand(0).getReg(); 1038 1039 unsigned ShrReg = MRI.createGenericVirtualRegister(WideTy); 1040 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 1041 unsigned ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1042 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1043 1044 MI.getOperand(0).setReg(DstExt); 1045 1046 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1047 1048 LLT Ty = MRI.getType(DstReg); 1049 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1050 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1051 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1052 .addDef(ShrReg) 1053 .addUse(DstExt) 1054 .addUse(ShiftAmtReg); 1055 1056 MIRBuilder.buildTrunc(DstReg, ShrReg); 1057 Observer.changedInstr(MI); 1058 return Legalized; 1059 } 1060 case TargetOpcode::G_ADD: 1061 case TargetOpcode::G_AND: 1062 case TargetOpcode::G_MUL: 1063 case TargetOpcode::G_OR: 1064 case TargetOpcode::G_XOR: 1065 case TargetOpcode::G_SUB: 1066 // Perform operation at larger width (any extension is fines here, high bits 1067 // don't affect the result) and then truncate the result back to the 1068 // original type. 1069 Observer.changingInstr(MI); 1070 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1071 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1072 widenScalarDst(MI, WideTy); 1073 Observer.changedInstr(MI); 1074 return Legalized; 1075 1076 case TargetOpcode::G_SHL: 1077 Observer.changingInstr(MI); 1078 1079 if (TypeIdx == 0) { 1080 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1081 widenScalarDst(MI, WideTy); 1082 } else { 1083 assert(TypeIdx == 1); 1084 // The "number of bits to shift" operand must preserve its value as an 1085 // unsigned integer: 1086 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1087 } 1088 1089 Observer.changedInstr(MI); 1090 return Legalized; 1091 1092 case TargetOpcode::G_SDIV: 1093 case TargetOpcode::G_SREM: 1094 case TargetOpcode::G_SMIN: 1095 case TargetOpcode::G_SMAX: 1096 Observer.changingInstr(MI); 1097 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1098 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1099 widenScalarDst(MI, WideTy); 1100 Observer.changedInstr(MI); 1101 return Legalized; 1102 1103 case TargetOpcode::G_ASHR: 1104 case TargetOpcode::G_LSHR: 1105 Observer.changingInstr(MI); 1106 1107 if (TypeIdx == 0) { 1108 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1109 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1110 1111 widenScalarSrc(MI, WideTy, 1, CvtOp); 1112 widenScalarDst(MI, WideTy); 1113 } else { 1114 assert(TypeIdx == 1); 1115 // The "number of bits to shift" operand must preserve its value as an 1116 // unsigned integer: 1117 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1118 } 1119 1120 Observer.changedInstr(MI); 1121 return Legalized; 1122 case TargetOpcode::G_UDIV: 1123 case TargetOpcode::G_UREM: 1124 case TargetOpcode::G_UMIN: 1125 case TargetOpcode::G_UMAX: 1126 Observer.changingInstr(MI); 1127 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1128 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1129 widenScalarDst(MI, WideTy); 1130 Observer.changedInstr(MI); 1131 return Legalized; 1132 1133 case TargetOpcode::G_SELECT: 1134 Observer.changingInstr(MI); 1135 if (TypeIdx == 0) { 1136 // Perform operation at larger width (any extension is fine here, high 1137 // bits don't affect the result) and then truncate the result back to the 1138 // original type. 1139 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1140 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1141 widenScalarDst(MI, WideTy); 1142 } else { 1143 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1144 // Explicit extension is required here since high bits affect the result. 1145 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1146 } 1147 Observer.changedInstr(MI); 1148 return Legalized; 1149 1150 case TargetOpcode::G_FPTOSI: 1151 case TargetOpcode::G_FPTOUI: 1152 if (TypeIdx != 0) 1153 return UnableToLegalize; 1154 Observer.changingInstr(MI); 1155 widenScalarDst(MI, WideTy); 1156 Observer.changedInstr(MI); 1157 return Legalized; 1158 1159 case TargetOpcode::G_SITOFP: 1160 if (TypeIdx != 1) 1161 return UnableToLegalize; 1162 Observer.changingInstr(MI); 1163 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1164 Observer.changedInstr(MI); 1165 return Legalized; 1166 1167 case TargetOpcode::G_UITOFP: 1168 if (TypeIdx != 1) 1169 return UnableToLegalize; 1170 Observer.changingInstr(MI); 1171 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1172 Observer.changedInstr(MI); 1173 return Legalized; 1174 1175 case TargetOpcode::G_LOAD: 1176 case TargetOpcode::G_SEXTLOAD: 1177 case TargetOpcode::G_ZEXTLOAD: 1178 Observer.changingInstr(MI); 1179 widenScalarDst(MI, WideTy); 1180 Observer.changedInstr(MI); 1181 return Legalized; 1182 1183 case TargetOpcode::G_STORE: { 1184 if (TypeIdx != 0) 1185 return UnableToLegalize; 1186 1187 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1188 if (!isPowerOf2_32(Ty.getSizeInBits())) 1189 return UnableToLegalize; 1190 1191 Observer.changingInstr(MI); 1192 1193 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1194 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1195 widenScalarSrc(MI, WideTy, 0, ExtType); 1196 1197 Observer.changedInstr(MI); 1198 return Legalized; 1199 } 1200 case TargetOpcode::G_CONSTANT: { 1201 MachineOperand &SrcMO = MI.getOperand(1); 1202 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1203 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1204 Observer.changingInstr(MI); 1205 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1206 1207 widenScalarDst(MI, WideTy); 1208 Observer.changedInstr(MI); 1209 return Legalized; 1210 } 1211 case TargetOpcode::G_FCONSTANT: { 1212 MachineOperand &SrcMO = MI.getOperand(1); 1213 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1214 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1215 bool LosesInfo; 1216 switch (WideTy.getSizeInBits()) { 1217 case 32: 1218 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1219 &LosesInfo); 1220 break; 1221 case 64: 1222 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1223 &LosesInfo); 1224 break; 1225 default: 1226 return UnableToLegalize; 1227 } 1228 1229 assert(!LosesInfo && "extend should always be lossless"); 1230 1231 Observer.changingInstr(MI); 1232 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1233 1234 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1235 Observer.changedInstr(MI); 1236 return Legalized; 1237 } 1238 case TargetOpcode::G_IMPLICIT_DEF: { 1239 Observer.changingInstr(MI); 1240 widenScalarDst(MI, WideTy); 1241 Observer.changedInstr(MI); 1242 return Legalized; 1243 } 1244 case TargetOpcode::G_BRCOND: 1245 Observer.changingInstr(MI); 1246 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1247 Observer.changedInstr(MI); 1248 return Legalized; 1249 1250 case TargetOpcode::G_FCMP: 1251 Observer.changingInstr(MI); 1252 if (TypeIdx == 0) 1253 widenScalarDst(MI, WideTy); 1254 else { 1255 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1256 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1257 } 1258 Observer.changedInstr(MI); 1259 return Legalized; 1260 1261 case TargetOpcode::G_ICMP: 1262 Observer.changingInstr(MI); 1263 if (TypeIdx == 0) 1264 widenScalarDst(MI, WideTy); 1265 else { 1266 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1267 MI.getOperand(1).getPredicate())) 1268 ? TargetOpcode::G_SEXT 1269 : TargetOpcode::G_ZEXT; 1270 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1271 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1272 } 1273 Observer.changedInstr(MI); 1274 return Legalized; 1275 1276 case TargetOpcode::G_GEP: 1277 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1278 Observer.changingInstr(MI); 1279 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1280 Observer.changedInstr(MI); 1281 return Legalized; 1282 1283 case TargetOpcode::G_PHI: { 1284 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1285 1286 Observer.changingInstr(MI); 1287 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1288 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1289 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1290 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1291 } 1292 1293 MachineBasicBlock &MBB = *MI.getParent(); 1294 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1295 widenScalarDst(MI, WideTy); 1296 Observer.changedInstr(MI); 1297 return Legalized; 1298 } 1299 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1300 if (TypeIdx == 0) { 1301 unsigned VecReg = MI.getOperand(1).getReg(); 1302 LLT VecTy = MRI.getType(VecReg); 1303 Observer.changingInstr(MI); 1304 1305 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1306 WideTy.getSizeInBits()), 1307 1, TargetOpcode::G_SEXT); 1308 1309 widenScalarDst(MI, WideTy, 0); 1310 Observer.changedInstr(MI); 1311 return Legalized; 1312 } 1313 1314 if (TypeIdx != 2) 1315 return UnableToLegalize; 1316 Observer.changingInstr(MI); 1317 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1318 Observer.changedInstr(MI); 1319 return Legalized; 1320 } 1321 case TargetOpcode::G_FADD: 1322 case TargetOpcode::G_FMUL: 1323 case TargetOpcode::G_FSUB: 1324 case TargetOpcode::G_FMA: 1325 case TargetOpcode::G_FNEG: 1326 case TargetOpcode::G_FABS: 1327 case TargetOpcode::G_FCANONICALIZE: 1328 case TargetOpcode::G_FDIV: 1329 case TargetOpcode::G_FREM: 1330 case TargetOpcode::G_FCEIL: 1331 case TargetOpcode::G_FFLOOR: 1332 case TargetOpcode::G_FCOS: 1333 case TargetOpcode::G_FSIN: 1334 case TargetOpcode::G_FLOG10: 1335 case TargetOpcode::G_FLOG: 1336 case TargetOpcode::G_FLOG2: 1337 case TargetOpcode::G_FRINT: 1338 case TargetOpcode::G_FNEARBYINT: 1339 case TargetOpcode::G_FSQRT: 1340 case TargetOpcode::G_FEXP: 1341 case TargetOpcode::G_FEXP2: 1342 case TargetOpcode::G_FPOW: 1343 case TargetOpcode::G_INTRINSIC_TRUNC: 1344 case TargetOpcode::G_INTRINSIC_ROUND: 1345 assert(TypeIdx == 0); 1346 Observer.changingInstr(MI); 1347 1348 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1349 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1350 1351 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1352 Observer.changedInstr(MI); 1353 return Legalized; 1354 case TargetOpcode::G_INTTOPTR: 1355 if (TypeIdx != 1) 1356 return UnableToLegalize; 1357 1358 Observer.changingInstr(MI); 1359 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1360 Observer.changedInstr(MI); 1361 return Legalized; 1362 case TargetOpcode::G_PTRTOINT: 1363 if (TypeIdx != 0) 1364 return UnableToLegalize; 1365 1366 Observer.changingInstr(MI); 1367 widenScalarDst(MI, WideTy, 0); 1368 Observer.changedInstr(MI); 1369 return Legalized; 1370 } 1371 } 1372 1373 LegalizerHelper::LegalizeResult 1374 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1375 using namespace TargetOpcode; 1376 MIRBuilder.setInstr(MI); 1377 1378 switch(MI.getOpcode()) { 1379 default: 1380 return UnableToLegalize; 1381 case TargetOpcode::G_SREM: 1382 case TargetOpcode::G_UREM: { 1383 unsigned QuotReg = MRI.createGenericVirtualRegister(Ty); 1384 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1385 .addDef(QuotReg) 1386 .addUse(MI.getOperand(1).getReg()) 1387 .addUse(MI.getOperand(2).getReg()); 1388 1389 unsigned ProdReg = MRI.createGenericVirtualRegister(Ty); 1390 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1391 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1392 ProdReg); 1393 MI.eraseFromParent(); 1394 return Legalized; 1395 } 1396 case TargetOpcode::G_SMULO: 1397 case TargetOpcode::G_UMULO: { 1398 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1399 // result. 1400 unsigned Res = MI.getOperand(0).getReg(); 1401 unsigned Overflow = MI.getOperand(1).getReg(); 1402 unsigned LHS = MI.getOperand(2).getReg(); 1403 unsigned RHS = MI.getOperand(3).getReg(); 1404 1405 MIRBuilder.buildMul(Res, LHS, RHS); 1406 1407 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1408 ? TargetOpcode::G_SMULH 1409 : TargetOpcode::G_UMULH; 1410 1411 unsigned HiPart = MRI.createGenericVirtualRegister(Ty); 1412 MIRBuilder.buildInstr(Opcode) 1413 .addDef(HiPart) 1414 .addUse(LHS) 1415 .addUse(RHS); 1416 1417 unsigned Zero = MRI.createGenericVirtualRegister(Ty); 1418 MIRBuilder.buildConstant(Zero, 0); 1419 1420 // For *signed* multiply, overflow is detected by checking: 1421 // (hi != (lo >> bitwidth-1)) 1422 if (Opcode == TargetOpcode::G_SMULH) { 1423 unsigned Shifted = MRI.createGenericVirtualRegister(Ty); 1424 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1425 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1426 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1427 .addDef(Shifted) 1428 .addUse(Res) 1429 .addUse(ShiftAmt); 1430 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1431 } else { 1432 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1433 } 1434 MI.eraseFromParent(); 1435 return Legalized; 1436 } 1437 case TargetOpcode::G_FNEG: { 1438 // TODO: Handle vector types once we are able to 1439 // represent them. 1440 if (Ty.isVector()) 1441 return UnableToLegalize; 1442 unsigned Res = MI.getOperand(0).getReg(); 1443 Type *ZeroTy; 1444 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1445 switch (Ty.getSizeInBits()) { 1446 case 16: 1447 ZeroTy = Type::getHalfTy(Ctx); 1448 break; 1449 case 32: 1450 ZeroTy = Type::getFloatTy(Ctx); 1451 break; 1452 case 64: 1453 ZeroTy = Type::getDoubleTy(Ctx); 1454 break; 1455 case 128: 1456 ZeroTy = Type::getFP128Ty(Ctx); 1457 break; 1458 default: 1459 llvm_unreachable("unexpected floating-point type"); 1460 } 1461 ConstantFP &ZeroForNegation = 1462 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1463 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1464 unsigned SubByReg = MI.getOperand(1).getReg(); 1465 unsigned ZeroReg = Zero->getOperand(0).getReg(); 1466 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 1467 MI.getFlags()); 1468 MI.eraseFromParent(); 1469 return Legalized; 1470 } 1471 case TargetOpcode::G_FSUB: { 1472 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1473 // First, check if G_FNEG is marked as Lower. If so, we may 1474 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1475 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1476 return UnableToLegalize; 1477 unsigned Res = MI.getOperand(0).getReg(); 1478 unsigned LHS = MI.getOperand(1).getReg(); 1479 unsigned RHS = MI.getOperand(2).getReg(); 1480 unsigned Neg = MRI.createGenericVirtualRegister(Ty); 1481 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1482 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 1483 MI.eraseFromParent(); 1484 return Legalized; 1485 } 1486 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1487 unsigned OldValRes = MI.getOperand(0).getReg(); 1488 unsigned SuccessRes = MI.getOperand(1).getReg(); 1489 unsigned Addr = MI.getOperand(2).getReg(); 1490 unsigned CmpVal = MI.getOperand(3).getReg(); 1491 unsigned NewVal = MI.getOperand(4).getReg(); 1492 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1493 **MI.memoperands_begin()); 1494 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1495 MI.eraseFromParent(); 1496 return Legalized; 1497 } 1498 case TargetOpcode::G_LOAD: 1499 case TargetOpcode::G_SEXTLOAD: 1500 case TargetOpcode::G_ZEXTLOAD: { 1501 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1502 unsigned DstReg = MI.getOperand(0).getReg(); 1503 unsigned PtrReg = MI.getOperand(1).getReg(); 1504 LLT DstTy = MRI.getType(DstReg); 1505 auto &MMO = **MI.memoperands_begin(); 1506 1507 if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { 1508 // In the case of G_LOAD, this was a non-extending load already and we're 1509 // about to lower to the same instruction. 1510 if (MI.getOpcode() == TargetOpcode::G_LOAD) 1511 return UnableToLegalize; 1512 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1513 MI.eraseFromParent(); 1514 return Legalized; 1515 } 1516 1517 if (DstTy.isScalar()) { 1518 unsigned TmpReg = 1519 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 1520 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1521 switch (MI.getOpcode()) { 1522 default: 1523 llvm_unreachable("Unexpected opcode"); 1524 case TargetOpcode::G_LOAD: 1525 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1526 break; 1527 case TargetOpcode::G_SEXTLOAD: 1528 MIRBuilder.buildSExt(DstReg, TmpReg); 1529 break; 1530 case TargetOpcode::G_ZEXTLOAD: 1531 MIRBuilder.buildZExt(DstReg, TmpReg); 1532 break; 1533 } 1534 MI.eraseFromParent(); 1535 return Legalized; 1536 } 1537 1538 return UnableToLegalize; 1539 } 1540 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1541 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1542 case TargetOpcode::G_CTLZ: 1543 case TargetOpcode::G_CTTZ: 1544 case TargetOpcode::G_CTPOP: 1545 return lowerBitCount(MI, TypeIdx, Ty); 1546 case G_UADDO: { 1547 unsigned Res = MI.getOperand(0).getReg(); 1548 unsigned CarryOut = MI.getOperand(1).getReg(); 1549 unsigned LHS = MI.getOperand(2).getReg(); 1550 unsigned RHS = MI.getOperand(3).getReg(); 1551 1552 MIRBuilder.buildAdd(Res, LHS, RHS); 1553 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 1554 1555 MI.eraseFromParent(); 1556 return Legalized; 1557 } 1558 case G_UADDE: { 1559 unsigned Res = MI.getOperand(0).getReg(); 1560 unsigned CarryOut = MI.getOperand(1).getReg(); 1561 unsigned LHS = MI.getOperand(2).getReg(); 1562 unsigned RHS = MI.getOperand(3).getReg(); 1563 unsigned CarryIn = MI.getOperand(4).getReg(); 1564 1565 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1566 unsigned ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1567 1568 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1569 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1570 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1571 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1572 1573 MI.eraseFromParent(); 1574 return Legalized; 1575 } 1576 case G_USUBO: { 1577 unsigned Res = MI.getOperand(0).getReg(); 1578 unsigned BorrowOut = MI.getOperand(1).getReg(); 1579 unsigned LHS = MI.getOperand(2).getReg(); 1580 unsigned RHS = MI.getOperand(3).getReg(); 1581 1582 MIRBuilder.buildSub(Res, LHS, RHS); 1583 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 1584 1585 MI.eraseFromParent(); 1586 return Legalized; 1587 } 1588 case G_USUBE: { 1589 unsigned Res = MI.getOperand(0).getReg(); 1590 unsigned BorrowOut = MI.getOperand(1).getReg(); 1591 unsigned LHS = MI.getOperand(2).getReg(); 1592 unsigned RHS = MI.getOperand(3).getReg(); 1593 unsigned BorrowIn = MI.getOperand(4).getReg(); 1594 1595 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1596 unsigned ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 1597 unsigned LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1598 unsigned LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1599 1600 MIRBuilder.buildSub(TmpRes, LHS, RHS); 1601 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 1602 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 1603 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 1604 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 1605 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 1606 1607 MI.eraseFromParent(); 1608 return Legalized; 1609 } 1610 case G_UITOFP: 1611 return lowerUITOFP(MI, TypeIdx, Ty); 1612 case G_SITOFP: 1613 return lowerSITOFP(MI, TypeIdx, Ty); 1614 } 1615 } 1616 1617 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 1618 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 1619 SmallVector<unsigned, 2> DstRegs; 1620 1621 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1622 unsigned DstReg = MI.getOperand(0).getReg(); 1623 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1624 int NumParts = Size / NarrowSize; 1625 // FIXME: Don't know how to handle the situation where the small vectors 1626 // aren't all the same size yet. 1627 if (Size % NarrowSize != 0) 1628 return UnableToLegalize; 1629 1630 for (int i = 0; i < NumParts; ++i) { 1631 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1632 MIRBuilder.buildUndef(TmpReg); 1633 DstRegs.push_back(TmpReg); 1634 } 1635 1636 if (NarrowTy.isVector()) 1637 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1638 else 1639 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1640 1641 MI.eraseFromParent(); 1642 return Legalized; 1643 } 1644 1645 LegalizerHelper::LegalizeResult 1646 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 1647 LLT NarrowTy) { 1648 const unsigned Opc = MI.getOpcode(); 1649 const unsigned NumOps = MI.getNumOperands() - 1; 1650 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 1651 const unsigned DstReg = MI.getOperand(0).getReg(); 1652 const unsigned Flags = MI.getFlags(); 1653 const LLT DstTy = MRI.getType(DstReg); 1654 const unsigned Size = DstTy.getSizeInBits(); 1655 const int NumParts = Size / NarrowSize; 1656 const LLT EltTy = DstTy.getElementType(); 1657 const unsigned EltSize = EltTy.getSizeInBits(); 1658 const unsigned BitsForNumParts = NarrowSize * NumParts; 1659 1660 // Check if we have any leftovers. If we do, then only handle the case where 1661 // the leftover is one element. 1662 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 1663 return UnableToLegalize; 1664 1665 if (BitsForNumParts != Size) { 1666 unsigned AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 1667 MIRBuilder.buildUndef(AccumDstReg); 1668 1669 // Handle the pieces which evenly divide into the requested type with 1670 // extract/op/insert sequence. 1671 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 1672 SmallVector<SrcOp, 4> SrcOps; 1673 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1674 unsigned PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 1675 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 1676 SrcOps.push_back(PartOpReg); 1677 } 1678 1679 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 1680 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1681 1682 unsigned PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 1683 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 1684 AccumDstReg = PartInsertReg; 1685 } 1686 1687 // Handle the remaining element sized leftover piece. 1688 SmallVector<SrcOp, 4> SrcOps; 1689 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1690 unsigned PartOpReg = MRI.createGenericVirtualRegister(EltTy); 1691 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 1692 BitsForNumParts); 1693 SrcOps.push_back(PartOpReg); 1694 } 1695 1696 unsigned PartDstReg = MRI.createGenericVirtualRegister(EltTy); 1697 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1698 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 1699 MI.eraseFromParent(); 1700 1701 return Legalized; 1702 } 1703 1704 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1705 1706 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 1707 1708 if (NumOps >= 2) 1709 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 1710 1711 if (NumOps >= 3) 1712 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 1713 1714 for (int i = 0; i < NumParts; ++i) { 1715 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 1716 1717 if (NumOps == 1) 1718 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 1719 else if (NumOps == 2) { 1720 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 1721 } else if (NumOps == 3) { 1722 MIRBuilder.buildInstr(Opc, {DstReg}, 1723 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 1724 } 1725 1726 DstRegs.push_back(DstReg); 1727 } 1728 1729 if (NarrowTy.isVector()) 1730 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1731 else 1732 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1733 1734 MI.eraseFromParent(); 1735 return Legalized; 1736 } 1737 1738 // Handle splitting vector operations which need to have the same number of 1739 // elements in each type index, but each type index may have a different element 1740 // type. 1741 // 1742 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 1743 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1744 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1745 // 1746 // Also handles some irregular breakdown cases, e.g. 1747 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 1748 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1749 // s64 = G_SHL s64, s32 1750 LegalizerHelper::LegalizeResult 1751 LegalizerHelper::fewerElementsVectorMultiEltType( 1752 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 1753 if (TypeIdx != 0) 1754 return UnableToLegalize; 1755 1756 const LLT NarrowTy0 = NarrowTyArg; 1757 const unsigned NewNumElts = 1758 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 1759 1760 const unsigned DstReg = MI.getOperand(0).getReg(); 1761 LLT DstTy = MRI.getType(DstReg); 1762 LLT LeftoverTy0; 1763 1764 int NumParts, NumLeftover; 1765 // All of the operands need to have the same number of elements, so if we can 1766 // determine a type breakdown for the result type, we can for all of the 1767 // source types. 1768 std::tie(NumParts, NumLeftover) 1769 = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0); 1770 if (NumParts < 0) 1771 return UnableToLegalize; 1772 1773 SmallVector<MachineInstrBuilder, 4> NewInsts; 1774 1775 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 1776 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 1777 1778 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1779 LLT LeftoverTy; 1780 unsigned SrcReg = MI.getOperand(I).getReg(); 1781 LLT SrcTyI = MRI.getType(SrcReg); 1782 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 1783 LLT LeftoverTyI; 1784 1785 // Split this operand into the requested typed registers, and any leftover 1786 // required to reproduce the original type. 1787 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 1788 LeftoverRegs)) 1789 return UnableToLegalize; 1790 1791 if (I == 1) { 1792 // For the first operand, create an instruction for each part and setup 1793 // the result. 1794 for (unsigned PartReg : PartRegs) { 1795 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1796 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1797 .addDef(PartDstReg) 1798 .addUse(PartReg)); 1799 DstRegs.push_back(PartDstReg); 1800 } 1801 1802 for (unsigned LeftoverReg : LeftoverRegs) { 1803 unsigned PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 1804 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1805 .addDef(PartDstReg) 1806 .addUse(LeftoverReg)); 1807 LeftoverDstRegs.push_back(PartDstReg); 1808 } 1809 } else { 1810 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 1811 1812 // Add the newly created operand splits to the existing instructions. The 1813 // odd-sized pieces are ordered after the requested NarrowTyArg sized 1814 // pieces. 1815 unsigned InstCount = 0; 1816 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 1817 NewInsts[InstCount++].addUse(PartRegs[J]); 1818 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 1819 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 1820 } 1821 1822 PartRegs.clear(); 1823 LeftoverRegs.clear(); 1824 } 1825 1826 // Insert the newly built operations and rebuild the result register. 1827 for (auto &MIB : NewInsts) 1828 MIRBuilder.insertInstr(MIB); 1829 1830 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 1831 1832 MI.eraseFromParent(); 1833 return Legalized; 1834 } 1835 1836 LegalizerHelper::LegalizeResult 1837 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 1838 LLT NarrowTy) { 1839 if (TypeIdx != 0) 1840 return UnableToLegalize; 1841 1842 unsigned DstReg = MI.getOperand(0).getReg(); 1843 unsigned SrcReg = MI.getOperand(1).getReg(); 1844 LLT DstTy = MRI.getType(DstReg); 1845 LLT SrcTy = MRI.getType(SrcReg); 1846 1847 LLT NarrowTy0 = NarrowTy; 1848 LLT NarrowTy1; 1849 unsigned NumParts; 1850 1851 if (NarrowTy.isVector()) { 1852 // Uneven breakdown not handled. 1853 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 1854 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 1855 return UnableToLegalize; 1856 1857 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 1858 } else { 1859 NumParts = DstTy.getNumElements(); 1860 NarrowTy1 = SrcTy.getElementType(); 1861 } 1862 1863 SmallVector<unsigned, 4> SrcRegs, DstRegs; 1864 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 1865 1866 for (unsigned I = 0; I < NumParts; ++I) { 1867 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1868 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 1869 .addDef(DstReg) 1870 .addUse(SrcRegs[I]); 1871 1872 NewInst->setFlags(MI.getFlags()); 1873 DstRegs.push_back(DstReg); 1874 } 1875 1876 if (NarrowTy.isVector()) 1877 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1878 else 1879 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1880 1881 MI.eraseFromParent(); 1882 return Legalized; 1883 } 1884 1885 LegalizerHelper::LegalizeResult 1886 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 1887 LLT NarrowTy) { 1888 unsigned DstReg = MI.getOperand(0).getReg(); 1889 unsigned Src0Reg = MI.getOperand(2).getReg(); 1890 LLT DstTy = MRI.getType(DstReg); 1891 LLT SrcTy = MRI.getType(Src0Reg); 1892 1893 unsigned NumParts; 1894 LLT NarrowTy0, NarrowTy1; 1895 1896 if (TypeIdx == 0) { 1897 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1898 unsigned OldElts = DstTy.getNumElements(); 1899 1900 NarrowTy0 = NarrowTy; 1901 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 1902 NarrowTy1 = NarrowTy.isVector() ? 1903 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 1904 SrcTy.getElementType(); 1905 1906 } else { 1907 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1908 unsigned OldElts = SrcTy.getNumElements(); 1909 1910 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 1911 NarrowTy.getNumElements(); 1912 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 1913 DstTy.getScalarSizeInBits()); 1914 NarrowTy1 = NarrowTy; 1915 } 1916 1917 // FIXME: Don't know how to handle the situation where the small vectors 1918 // aren't all the same size yet. 1919 if (NarrowTy1.isVector() && 1920 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 1921 return UnableToLegalize; 1922 1923 CmpInst::Predicate Pred 1924 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1925 1926 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 1927 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 1928 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 1929 1930 for (unsigned I = 0; I < NumParts; ++I) { 1931 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1932 DstRegs.push_back(DstReg); 1933 1934 if (MI.getOpcode() == TargetOpcode::G_ICMP) 1935 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1936 else { 1937 MachineInstr *NewCmp 1938 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1939 NewCmp->setFlags(MI.getFlags()); 1940 } 1941 } 1942 1943 if (NarrowTy1.isVector()) 1944 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1945 else 1946 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1947 1948 MI.eraseFromParent(); 1949 return Legalized; 1950 } 1951 1952 LegalizerHelper::LegalizeResult 1953 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 1954 LLT NarrowTy) { 1955 unsigned DstReg = MI.getOperand(0).getReg(); 1956 unsigned CondReg = MI.getOperand(1).getReg(); 1957 1958 unsigned NumParts = 0; 1959 LLT NarrowTy0, NarrowTy1; 1960 1961 LLT DstTy = MRI.getType(DstReg); 1962 LLT CondTy = MRI.getType(CondReg); 1963 unsigned Size = DstTy.getSizeInBits(); 1964 1965 assert(TypeIdx == 0 || CondTy.isVector()); 1966 1967 if (TypeIdx == 0) { 1968 NarrowTy0 = NarrowTy; 1969 NarrowTy1 = CondTy; 1970 1971 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 1972 // FIXME: Don't know how to handle the situation where the small vectors 1973 // aren't all the same size yet. 1974 if (Size % NarrowSize != 0) 1975 return UnableToLegalize; 1976 1977 NumParts = Size / NarrowSize; 1978 1979 // Need to break down the condition type 1980 if (CondTy.isVector()) { 1981 if (CondTy.getNumElements() == NumParts) 1982 NarrowTy1 = CondTy.getElementType(); 1983 else 1984 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 1985 CondTy.getScalarSizeInBits()); 1986 } 1987 } else { 1988 NumParts = CondTy.getNumElements(); 1989 if (NarrowTy.isVector()) { 1990 // TODO: Handle uneven breakdown. 1991 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 1992 return UnableToLegalize; 1993 1994 return UnableToLegalize; 1995 } else { 1996 NarrowTy0 = DstTy.getElementType(); 1997 NarrowTy1 = NarrowTy; 1998 } 1999 } 2000 2001 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2002 if (CondTy.isVector()) 2003 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2004 2005 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2006 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2007 2008 for (unsigned i = 0; i < NumParts; ++i) { 2009 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2010 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2011 Src1Regs[i], Src2Regs[i]); 2012 DstRegs.push_back(DstReg); 2013 } 2014 2015 if (NarrowTy0.isVector()) 2016 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2017 else 2018 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2019 2020 MI.eraseFromParent(); 2021 return Legalized; 2022 } 2023 2024 LegalizerHelper::LegalizeResult 2025 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2026 LLT NarrowTy) { 2027 const unsigned DstReg = MI.getOperand(0).getReg(); 2028 LLT PhiTy = MRI.getType(DstReg); 2029 LLT LeftoverTy; 2030 2031 // All of the operands need to have the same number of elements, so if we can 2032 // determine a type breakdown for the result type, we can for all of the 2033 // source types. 2034 int NumParts, NumLeftover; 2035 std::tie(NumParts, NumLeftover) 2036 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2037 if (NumParts < 0) 2038 return UnableToLegalize; 2039 2040 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 2041 SmallVector<MachineInstrBuilder, 4> NewInsts; 2042 2043 const int TotalNumParts = NumParts + NumLeftover; 2044 2045 // Insert the new phis in the result block first. 2046 for (int I = 0; I != TotalNumParts; ++I) { 2047 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2048 unsigned PartDstReg = MRI.createGenericVirtualRegister(Ty); 2049 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2050 .addDef(PartDstReg)); 2051 if (I < NumParts) 2052 DstRegs.push_back(PartDstReg); 2053 else 2054 LeftoverDstRegs.push_back(PartDstReg); 2055 } 2056 2057 MachineBasicBlock *MBB = MI.getParent(); 2058 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2059 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2060 2061 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 2062 2063 // Insert code to extract the incoming values in each predecessor block. 2064 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2065 PartRegs.clear(); 2066 LeftoverRegs.clear(); 2067 2068 unsigned SrcReg = MI.getOperand(I).getReg(); 2069 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2070 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2071 2072 LLT Unused; 2073 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2074 LeftoverRegs)) 2075 return UnableToLegalize; 2076 2077 // Add the newly created operand splits to the existing instructions. The 2078 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2079 // pieces. 2080 for (int J = 0; J != TotalNumParts; ++J) { 2081 MachineInstrBuilder MIB = NewInsts[J]; 2082 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2083 MIB.addMBB(&OpMBB); 2084 } 2085 } 2086 2087 MI.eraseFromParent(); 2088 return Legalized; 2089 } 2090 2091 LegalizerHelper::LegalizeResult 2092 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2093 LLT NarrowTy) { 2094 // FIXME: Don't know how to handle secondary types yet. 2095 if (TypeIdx != 0) 2096 return UnableToLegalize; 2097 2098 MachineMemOperand *MMO = *MI.memoperands_begin(); 2099 2100 // This implementation doesn't work for atomics. Give up instead of doing 2101 // something invalid. 2102 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2103 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2104 return UnableToLegalize; 2105 2106 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2107 unsigned ValReg = MI.getOperand(0).getReg(); 2108 unsigned AddrReg = MI.getOperand(1).getReg(); 2109 LLT ValTy = MRI.getType(ValReg); 2110 2111 int NumParts = -1; 2112 int NumLeftover = -1; 2113 LLT LeftoverTy; 2114 SmallVector<unsigned, 8> NarrowRegs, NarrowLeftoverRegs; 2115 if (IsLoad) { 2116 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2117 } else { 2118 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2119 NarrowLeftoverRegs)) { 2120 NumParts = NarrowRegs.size(); 2121 NumLeftover = NarrowLeftoverRegs.size(); 2122 } 2123 } 2124 2125 if (NumParts == -1) 2126 return UnableToLegalize; 2127 2128 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2129 2130 unsigned TotalSize = ValTy.getSizeInBits(); 2131 2132 // Split the load/store into PartTy sized pieces starting at Offset. If this 2133 // is a load, return the new registers in ValRegs. For a store, each elements 2134 // of ValRegs should be PartTy. Returns the next offset that needs to be 2135 // handled. 2136 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<unsigned> &ValRegs, 2137 unsigned Offset) -> unsigned { 2138 MachineFunction &MF = MIRBuilder.getMF(); 2139 unsigned PartSize = PartTy.getSizeInBits(); 2140 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2141 Offset += PartSize, ++Idx) { 2142 unsigned ByteSize = PartSize / 8; 2143 unsigned ByteOffset = Offset / 8; 2144 unsigned NewAddrReg = 0; 2145 2146 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2147 2148 MachineMemOperand *NewMMO = 2149 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2150 2151 if (IsLoad) { 2152 unsigned Dst = MRI.createGenericVirtualRegister(PartTy); 2153 ValRegs.push_back(Dst); 2154 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2155 } else { 2156 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2157 } 2158 } 2159 2160 return Offset; 2161 }; 2162 2163 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2164 2165 // Handle the rest of the register if this isn't an even type breakdown. 2166 if (LeftoverTy.isValid()) 2167 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2168 2169 if (IsLoad) { 2170 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2171 LeftoverTy, NarrowLeftoverRegs); 2172 } 2173 2174 MI.eraseFromParent(); 2175 return Legalized; 2176 } 2177 2178 LegalizerHelper::LegalizeResult 2179 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2180 LLT NarrowTy) { 2181 using namespace TargetOpcode; 2182 2183 MIRBuilder.setInstr(MI); 2184 switch (MI.getOpcode()) { 2185 case G_IMPLICIT_DEF: 2186 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2187 case G_AND: 2188 case G_OR: 2189 case G_XOR: 2190 case G_ADD: 2191 case G_SUB: 2192 case G_MUL: 2193 case G_SMULH: 2194 case G_UMULH: 2195 case G_FADD: 2196 case G_FMUL: 2197 case G_FSUB: 2198 case G_FNEG: 2199 case G_FABS: 2200 case G_FCANONICALIZE: 2201 case G_FDIV: 2202 case G_FREM: 2203 case G_FMA: 2204 case G_FPOW: 2205 case G_FEXP: 2206 case G_FEXP2: 2207 case G_FLOG: 2208 case G_FLOG2: 2209 case G_FLOG10: 2210 case G_FNEARBYINT: 2211 case G_FCEIL: 2212 case G_FFLOOR: 2213 case G_FRINT: 2214 case G_INTRINSIC_ROUND: 2215 case G_INTRINSIC_TRUNC: 2216 case G_FCOS: 2217 case G_FSIN: 2218 case G_FSQRT: 2219 case G_BSWAP: 2220 case G_SDIV: 2221 case G_SMIN: 2222 case G_SMAX: 2223 case G_UMIN: 2224 case G_UMAX: 2225 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2226 case G_SHL: 2227 case G_LSHR: 2228 case G_ASHR: 2229 case G_CTLZ: 2230 case G_CTLZ_ZERO_UNDEF: 2231 case G_CTTZ: 2232 case G_CTTZ_ZERO_UNDEF: 2233 case G_CTPOP: 2234 case G_FCOPYSIGN: 2235 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2236 case G_ZEXT: 2237 case G_SEXT: 2238 case G_ANYEXT: 2239 case G_FPEXT: 2240 case G_FPTRUNC: 2241 case G_SITOFP: 2242 case G_UITOFP: 2243 case G_FPTOSI: 2244 case G_FPTOUI: 2245 case G_INTTOPTR: 2246 case G_PTRTOINT: 2247 case G_ADDRSPACE_CAST: 2248 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2249 case G_ICMP: 2250 case G_FCMP: 2251 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2252 case G_SELECT: 2253 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2254 case G_PHI: 2255 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 2256 case G_LOAD: 2257 case G_STORE: 2258 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2259 default: 2260 return UnableToLegalize; 2261 } 2262 } 2263 2264 LegalizerHelper::LegalizeResult 2265 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2266 const LLT HalfTy, const LLT AmtTy) { 2267 2268 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2269 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2270 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2271 2272 if (Amt.isNullValue()) { 2273 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2274 MI.eraseFromParent(); 2275 return Legalized; 2276 } 2277 2278 LLT NVT = HalfTy; 2279 unsigned NVTBits = HalfTy.getSizeInBits(); 2280 unsigned VTBits = 2 * NVTBits; 2281 2282 SrcOp Lo(0), Hi(0); 2283 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2284 if (Amt.ugt(VTBits)) { 2285 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2286 } else if (Amt.ugt(NVTBits)) { 2287 Lo = MIRBuilder.buildConstant(NVT, 0); 2288 Hi = MIRBuilder.buildShl(NVT, InL, 2289 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2290 } else if (Amt == NVTBits) { 2291 Lo = MIRBuilder.buildConstant(NVT, 0); 2292 Hi = InL; 2293 } else { 2294 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2295 auto OrLHS = 2296 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2297 auto OrRHS = MIRBuilder.buildLShr( 2298 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2299 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2300 } 2301 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2302 if (Amt.ugt(VTBits)) { 2303 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2304 } else if (Amt.ugt(NVTBits)) { 2305 Lo = MIRBuilder.buildLShr(NVT, InH, 2306 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2307 Hi = MIRBuilder.buildConstant(NVT, 0); 2308 } else if (Amt == NVTBits) { 2309 Lo = InH; 2310 Hi = MIRBuilder.buildConstant(NVT, 0); 2311 } else { 2312 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2313 2314 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2315 auto OrRHS = MIRBuilder.buildShl( 2316 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2317 2318 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2319 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 2320 } 2321 } else { 2322 if (Amt.ugt(VTBits)) { 2323 Hi = Lo = MIRBuilder.buildAShr( 2324 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2325 } else if (Amt.ugt(NVTBits)) { 2326 Lo = MIRBuilder.buildAShr(NVT, InH, 2327 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2328 Hi = MIRBuilder.buildAShr(NVT, InH, 2329 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2330 } else if (Amt == NVTBits) { 2331 Lo = InH; 2332 Hi = MIRBuilder.buildAShr(NVT, InH, 2333 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2334 } else { 2335 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2336 2337 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2338 auto OrRHS = MIRBuilder.buildShl( 2339 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2340 2341 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2342 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 2343 } 2344 } 2345 2346 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 2347 MI.eraseFromParent(); 2348 2349 return Legalized; 2350 } 2351 2352 // TODO: Optimize if constant shift amount. 2353 LegalizerHelper::LegalizeResult 2354 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 2355 LLT RequestedTy) { 2356 if (TypeIdx == 1) { 2357 Observer.changingInstr(MI); 2358 narrowScalarSrc(MI, RequestedTy, 2); 2359 Observer.changedInstr(MI); 2360 return Legalized; 2361 } 2362 2363 unsigned DstReg = MI.getOperand(0).getReg(); 2364 LLT DstTy = MRI.getType(DstReg); 2365 if (DstTy.isVector()) 2366 return UnableToLegalize; 2367 2368 unsigned Amt = MI.getOperand(2).getReg(); 2369 LLT ShiftAmtTy = MRI.getType(Amt); 2370 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 2371 if (DstEltSize % 2 != 0) 2372 return UnableToLegalize; 2373 2374 // Ignore the input type. We can only go to exactly half the size of the 2375 // input. If that isn't small enough, the resulting pieces will be further 2376 // legalized. 2377 const unsigned NewBitSize = DstEltSize / 2; 2378 const LLT HalfTy = LLT::scalar(NewBitSize); 2379 const LLT CondTy = LLT::scalar(1); 2380 2381 if (const MachineInstr *KShiftAmt = 2382 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 2383 return narrowScalarShiftByConstant( 2384 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 2385 } 2386 2387 // TODO: Expand with known bits. 2388 2389 // Handle the fully general expansion by an unknown amount. 2390 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 2391 2392 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2393 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2394 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2395 2396 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 2397 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 2398 2399 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 2400 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 2401 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 2402 2403 unsigned ResultRegs[2]; 2404 switch (MI.getOpcode()) { 2405 case TargetOpcode::G_SHL: { 2406 // Short: ShAmt < NewBitSize 2407 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2408 2409 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2410 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 2411 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2412 2413 // Long: ShAmt >= NewBitSize 2414 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 2415 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 2416 2417 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 2418 auto Hi = MIRBuilder.buildSelect( 2419 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 2420 2421 ResultRegs[0] = Lo.getReg(0); 2422 ResultRegs[1] = Hi.getReg(0); 2423 break; 2424 } 2425 case TargetOpcode::G_LSHR: { 2426 // Short: ShAmt < NewBitSize 2427 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt); 2428 2429 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2430 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 2431 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2432 2433 // Long: ShAmt >= NewBitSize 2434 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 2435 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2436 2437 auto Lo = MIRBuilder.buildSelect( 2438 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2439 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2440 2441 ResultRegs[0] = Lo.getReg(0); 2442 ResultRegs[1] = Hi.getReg(0); 2443 break; 2444 } 2445 case TargetOpcode::G_ASHR: { 2446 // Short: ShAmt < NewBitSize 2447 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt); 2448 2449 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2450 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack); 2451 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2452 2453 // Long: ShAmt >= NewBitSize 2454 2455 // Sign of Hi part. 2456 auto HiL = MIRBuilder.buildAShr( 2457 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1)); 2458 2459 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2460 2461 auto Lo = MIRBuilder.buildSelect( 2462 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2463 2464 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2465 2466 ResultRegs[0] = Lo.getReg(0); 2467 ResultRegs[1] = Hi.getReg(0); 2468 break; 2469 } 2470 default: 2471 llvm_unreachable("not a shift"); 2472 } 2473 2474 MIRBuilder.buildMerge(DstReg, ResultRegs); 2475 MI.eraseFromParent(); 2476 return Legalized; 2477 } 2478 2479 LegalizerHelper::LegalizeResult 2480 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2481 LLT MoreTy) { 2482 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2483 2484 Observer.changingInstr(MI); 2485 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2486 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2487 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2488 moreElementsVectorSrc(MI, MoreTy, I); 2489 } 2490 2491 MachineBasicBlock &MBB = *MI.getParent(); 2492 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2493 moreElementsVectorDst(MI, MoreTy, 0); 2494 Observer.changedInstr(MI); 2495 return Legalized; 2496 } 2497 2498 LegalizerHelper::LegalizeResult 2499 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 2500 LLT MoreTy) { 2501 MIRBuilder.setInstr(MI); 2502 unsigned Opc = MI.getOpcode(); 2503 switch (Opc) { 2504 case TargetOpcode::G_IMPLICIT_DEF: { 2505 Observer.changingInstr(MI); 2506 moreElementsVectorDst(MI, MoreTy, 0); 2507 Observer.changedInstr(MI); 2508 return Legalized; 2509 } 2510 case TargetOpcode::G_AND: 2511 case TargetOpcode::G_OR: 2512 case TargetOpcode::G_XOR: 2513 case TargetOpcode::G_SMIN: 2514 case TargetOpcode::G_SMAX: 2515 case TargetOpcode::G_UMIN: 2516 case TargetOpcode::G_UMAX: { 2517 Observer.changingInstr(MI); 2518 moreElementsVectorSrc(MI, MoreTy, 1); 2519 moreElementsVectorSrc(MI, MoreTy, 2); 2520 moreElementsVectorDst(MI, MoreTy, 0); 2521 Observer.changedInstr(MI); 2522 return Legalized; 2523 } 2524 case TargetOpcode::G_EXTRACT: 2525 if (TypeIdx != 1) 2526 return UnableToLegalize; 2527 Observer.changingInstr(MI); 2528 moreElementsVectorSrc(MI, MoreTy, 1); 2529 Observer.changedInstr(MI); 2530 return Legalized; 2531 case TargetOpcode::G_INSERT: 2532 if (TypeIdx != 0) 2533 return UnableToLegalize; 2534 Observer.changingInstr(MI); 2535 moreElementsVectorSrc(MI, MoreTy, 1); 2536 moreElementsVectorDst(MI, MoreTy, 0); 2537 Observer.changedInstr(MI); 2538 return Legalized; 2539 case TargetOpcode::G_SELECT: 2540 if (TypeIdx != 0) 2541 return UnableToLegalize; 2542 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 2543 return UnableToLegalize; 2544 2545 Observer.changingInstr(MI); 2546 moreElementsVectorSrc(MI, MoreTy, 2); 2547 moreElementsVectorSrc(MI, MoreTy, 3); 2548 moreElementsVectorDst(MI, MoreTy, 0); 2549 Observer.changedInstr(MI); 2550 return Legalized; 2551 case TargetOpcode::G_PHI: 2552 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 2553 default: 2554 return UnableToLegalize; 2555 } 2556 } 2557 2558 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<unsigned> &DstRegs, 2559 ArrayRef<unsigned> Src1Regs, 2560 ArrayRef<unsigned> Src2Regs, 2561 LLT NarrowTy) { 2562 MachineIRBuilder &B = MIRBuilder; 2563 unsigned SrcParts = Src1Regs.size(); 2564 unsigned DstParts = DstRegs.size(); 2565 2566 unsigned DstIdx = 0; // Low bits of the result. 2567 unsigned FactorSum = 2568 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 2569 DstRegs[DstIdx] = FactorSum; 2570 2571 unsigned CarrySumPrevDstIdx; 2572 SmallVector<unsigned, 4> Factors; 2573 2574 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 2575 // Collect low parts of muls for DstIdx. 2576 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 2577 i <= std::min(DstIdx, SrcParts - 1); ++i) { 2578 MachineInstrBuilder Mul = 2579 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 2580 Factors.push_back(Mul.getReg(0)); 2581 } 2582 // Collect high parts of muls from previous DstIdx. 2583 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 2584 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 2585 MachineInstrBuilder Umulh = 2586 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 2587 Factors.push_back(Umulh.getReg(0)); 2588 } 2589 // Add CarrySum from additons calculated for previous DstIdx. 2590 if (DstIdx != 1) { 2591 Factors.push_back(CarrySumPrevDstIdx); 2592 } 2593 2594 unsigned CarrySum = 0; 2595 // Add all factors and accumulate all carries into CarrySum. 2596 if (DstIdx != DstParts - 1) { 2597 MachineInstrBuilder Uaddo = 2598 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 2599 FactorSum = Uaddo.getReg(0); 2600 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 2601 for (unsigned i = 2; i < Factors.size(); ++i) { 2602 MachineInstrBuilder Uaddo = 2603 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 2604 FactorSum = Uaddo.getReg(0); 2605 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 2606 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 2607 } 2608 } else { 2609 // Since value for the next index is not calculated, neither is CarrySum. 2610 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 2611 for (unsigned i = 2; i < Factors.size(); ++i) 2612 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 2613 } 2614 2615 CarrySumPrevDstIdx = CarrySum; 2616 DstRegs[DstIdx] = FactorSum; 2617 Factors.clear(); 2618 } 2619 } 2620 2621 LegalizerHelper::LegalizeResult 2622 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 2623 unsigned DstReg = MI.getOperand(0).getReg(); 2624 unsigned Src1 = MI.getOperand(1).getReg(); 2625 unsigned Src2 = MI.getOperand(2).getReg(); 2626 2627 LLT Ty = MRI.getType(DstReg); 2628 if (Ty.isVector()) 2629 return UnableToLegalize; 2630 2631 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 2632 unsigned DstSize = Ty.getSizeInBits(); 2633 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2634 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 2635 return UnableToLegalize; 2636 2637 unsigned NumDstParts = DstSize / NarrowSize; 2638 unsigned NumSrcParts = SrcSize / NarrowSize; 2639 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 2640 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 2641 2642 SmallVector<unsigned, 2> Src1Parts, Src2Parts, DstTmpRegs; 2643 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 2644 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 2645 DstTmpRegs.resize(DstTmpParts); 2646 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 2647 2648 // Take only high half of registers if this is high mul. 2649 ArrayRef<unsigned> DstRegs( 2650 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 2651 MIRBuilder.buildMerge(DstReg, DstRegs); 2652 MI.eraseFromParent(); 2653 return Legalized; 2654 } 2655 2656 LegalizerHelper::LegalizeResult 2657 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2658 LLT NarrowTy) { 2659 if (TypeIdx != 1) 2660 return UnableToLegalize; 2661 2662 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2663 2664 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 2665 // FIXME: add support for when SizeOp1 isn't an exact multiple of 2666 // NarrowSize. 2667 if (SizeOp1 % NarrowSize != 0) 2668 return UnableToLegalize; 2669 int NumParts = SizeOp1 / NarrowSize; 2670 2671 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2672 SmallVector<uint64_t, 2> Indexes; 2673 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2674 2675 unsigned OpReg = MI.getOperand(0).getReg(); 2676 uint64_t OpStart = MI.getOperand(2).getImm(); 2677 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2678 for (int i = 0; i < NumParts; ++i) { 2679 unsigned SrcStart = i * NarrowSize; 2680 2681 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 2682 // No part of the extract uses this subregister, ignore it. 2683 continue; 2684 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2685 // The entire subregister is extracted, forward the value. 2686 DstRegs.push_back(SrcRegs[i]); 2687 continue; 2688 } 2689 2690 // OpSegStart is where this destination segment would start in OpReg if it 2691 // extended infinitely in both directions. 2692 int64_t ExtractOffset; 2693 uint64_t SegSize; 2694 if (OpStart < SrcStart) { 2695 ExtractOffset = 0; 2696 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 2697 } else { 2698 ExtractOffset = OpStart - SrcStart; 2699 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 2700 } 2701 2702 unsigned SegReg = SrcRegs[i]; 2703 if (ExtractOffset != 0 || SegSize != NarrowSize) { 2704 // A genuine extract is needed. 2705 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2706 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 2707 } 2708 2709 DstRegs.push_back(SegReg); 2710 } 2711 2712 unsigned DstReg = MI.getOperand(0).getReg(); 2713 if(MRI.getType(DstReg).isVector()) 2714 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2715 else 2716 MIRBuilder.buildMerge(DstReg, DstRegs); 2717 MI.eraseFromParent(); 2718 return Legalized; 2719 } 2720 2721 LegalizerHelper::LegalizeResult 2722 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2723 LLT NarrowTy) { 2724 // FIXME: Don't know how to handle secondary types yet. 2725 if (TypeIdx != 0) 2726 return UnableToLegalize; 2727 2728 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 2729 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2730 2731 // FIXME: add support for when SizeOp0 isn't an exact multiple of 2732 // NarrowSize. 2733 if (SizeOp0 % NarrowSize != 0) 2734 return UnableToLegalize; 2735 2736 int NumParts = SizeOp0 / NarrowSize; 2737 2738 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2739 SmallVector<uint64_t, 2> Indexes; 2740 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2741 2742 unsigned OpReg = MI.getOperand(2).getReg(); 2743 uint64_t OpStart = MI.getOperand(3).getImm(); 2744 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2745 for (int i = 0; i < NumParts; ++i) { 2746 unsigned DstStart = i * NarrowSize; 2747 2748 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 2749 // No part of the insert affects this subregister, forward the original. 2750 DstRegs.push_back(SrcRegs[i]); 2751 continue; 2752 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2753 // The entire subregister is defined by this insert, forward the new 2754 // value. 2755 DstRegs.push_back(OpReg); 2756 continue; 2757 } 2758 2759 // OpSegStart is where this destination segment would start in OpReg if it 2760 // extended infinitely in both directions. 2761 int64_t ExtractOffset, InsertOffset; 2762 uint64_t SegSize; 2763 if (OpStart < DstStart) { 2764 InsertOffset = 0; 2765 ExtractOffset = DstStart - OpStart; 2766 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 2767 } else { 2768 InsertOffset = OpStart - DstStart; 2769 ExtractOffset = 0; 2770 SegSize = 2771 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 2772 } 2773 2774 unsigned SegReg = OpReg; 2775 if (ExtractOffset != 0 || SegSize != OpSize) { 2776 // A genuine extract is needed. 2777 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2778 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 2779 } 2780 2781 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2782 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 2783 DstRegs.push_back(DstReg); 2784 } 2785 2786 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 2787 unsigned DstReg = MI.getOperand(0).getReg(); 2788 if(MRI.getType(DstReg).isVector()) 2789 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2790 else 2791 MIRBuilder.buildMerge(DstReg, DstRegs); 2792 MI.eraseFromParent(); 2793 return Legalized; 2794 } 2795 2796 LegalizerHelper::LegalizeResult 2797 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 2798 LLT NarrowTy) { 2799 unsigned DstReg = MI.getOperand(0).getReg(); 2800 LLT DstTy = MRI.getType(DstReg); 2801 2802 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 2803 2804 SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs; 2805 SmallVector<unsigned, 4> Src0Regs, Src0LeftoverRegs; 2806 SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs; 2807 LLT LeftoverTy; 2808 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 2809 Src0Regs, Src0LeftoverRegs)) 2810 return UnableToLegalize; 2811 2812 LLT Unused; 2813 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 2814 Src1Regs, Src1LeftoverRegs)) 2815 llvm_unreachable("inconsistent extractParts result"); 2816 2817 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2818 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 2819 {Src0Regs[I], Src1Regs[I]}); 2820 DstRegs.push_back(Inst->getOperand(0).getReg()); 2821 } 2822 2823 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2824 auto Inst = MIRBuilder.buildInstr( 2825 MI.getOpcode(), 2826 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 2827 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 2828 } 2829 2830 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2831 LeftoverTy, DstLeftoverRegs); 2832 2833 MI.eraseFromParent(); 2834 return Legalized; 2835 } 2836 2837 LegalizerHelper::LegalizeResult 2838 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 2839 LLT NarrowTy) { 2840 if (TypeIdx != 0) 2841 return UnableToLegalize; 2842 2843 unsigned CondReg = MI.getOperand(1).getReg(); 2844 LLT CondTy = MRI.getType(CondReg); 2845 if (CondTy.isVector()) // TODO: Handle vselect 2846 return UnableToLegalize; 2847 2848 unsigned DstReg = MI.getOperand(0).getReg(); 2849 LLT DstTy = MRI.getType(DstReg); 2850 2851 SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs; 2852 SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs; 2853 SmallVector<unsigned, 4> Src2Regs, Src2LeftoverRegs; 2854 LLT LeftoverTy; 2855 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 2856 Src1Regs, Src1LeftoverRegs)) 2857 return UnableToLegalize; 2858 2859 LLT Unused; 2860 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 2861 Src2Regs, Src2LeftoverRegs)) 2862 llvm_unreachable("inconsistent extractParts result"); 2863 2864 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2865 auto Select = MIRBuilder.buildSelect(NarrowTy, 2866 CondReg, Src1Regs[I], Src2Regs[I]); 2867 DstRegs.push_back(Select->getOperand(0).getReg()); 2868 } 2869 2870 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2871 auto Select = MIRBuilder.buildSelect( 2872 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 2873 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 2874 } 2875 2876 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2877 LeftoverTy, DstLeftoverRegs); 2878 2879 MI.eraseFromParent(); 2880 return Legalized; 2881 } 2882 2883 LegalizerHelper::LegalizeResult 2884 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2885 unsigned Opc = MI.getOpcode(); 2886 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2887 auto isSupported = [this](const LegalityQuery &Q) { 2888 auto QAction = LI.getAction(Q).Action; 2889 return QAction == Legal || QAction == Libcall || QAction == Custom; 2890 }; 2891 switch (Opc) { 2892 default: 2893 return UnableToLegalize; 2894 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 2895 // This trivially expands to CTLZ. 2896 Observer.changingInstr(MI); 2897 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 2898 Observer.changedInstr(MI); 2899 return Legalized; 2900 } 2901 case TargetOpcode::G_CTLZ: { 2902 unsigned SrcReg = MI.getOperand(1).getReg(); 2903 unsigned Len = Ty.getSizeInBits(); 2904 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 2905 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 2906 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 2907 {Ty}, {SrcReg}); 2908 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2909 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2910 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2911 SrcReg, MIBZero); 2912 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2913 MIBCtlzZU); 2914 MI.eraseFromParent(); 2915 return Legalized; 2916 } 2917 // for now, we do this: 2918 // NewLen = NextPowerOf2(Len); 2919 // x = x | (x >> 1); 2920 // x = x | (x >> 2); 2921 // ... 2922 // x = x | (x >>16); 2923 // x = x | (x >>32); // for 64-bit input 2924 // Upto NewLen/2 2925 // return Len - popcount(x); 2926 // 2927 // Ref: "Hacker's Delight" by Henry Warren 2928 unsigned Op = SrcReg; 2929 unsigned NewLen = PowerOf2Ceil(Len); 2930 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 2931 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 2932 auto MIBOp = MIRBuilder.buildInstr( 2933 TargetOpcode::G_OR, {Ty}, 2934 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 2935 {Op, MIBShiftAmt})}); 2936 Op = MIBOp->getOperand(0).getReg(); 2937 } 2938 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 2939 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2940 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 2941 MI.eraseFromParent(); 2942 return Legalized; 2943 } 2944 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 2945 // This trivially expands to CTTZ. 2946 Observer.changingInstr(MI); 2947 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 2948 Observer.changedInstr(MI); 2949 return Legalized; 2950 } 2951 case TargetOpcode::G_CTTZ: { 2952 unsigned SrcReg = MI.getOperand(1).getReg(); 2953 unsigned Len = Ty.getSizeInBits(); 2954 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 2955 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 2956 // zero. 2957 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 2958 {Ty}, {SrcReg}); 2959 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2960 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2961 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2962 SrcReg, MIBZero); 2963 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2964 MIBCttzZU); 2965 MI.eraseFromParent(); 2966 return Legalized; 2967 } 2968 // for now, we use: { return popcount(~x & (x - 1)); } 2969 // unless the target has ctlz but not ctpop, in which case we use: 2970 // { return 32 - nlz(~x & (x-1)); } 2971 // Ref: "Hacker's Delight" by Henry Warren 2972 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 2973 auto MIBNot = 2974 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 2975 auto MIBTmp = MIRBuilder.buildInstr( 2976 TargetOpcode::G_AND, {Ty}, 2977 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 2978 {SrcReg, MIBCstNeg1})}); 2979 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 2980 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 2981 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 2982 MIRBuilder.buildInstr( 2983 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2984 {MIBCstLen, 2985 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 2986 MI.eraseFromParent(); 2987 return Legalized; 2988 } 2989 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 2990 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 2991 return Legalized; 2992 } 2993 } 2994 } 2995 2996 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 2997 // representation. 2998 LegalizerHelper::LegalizeResult 2999 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3000 unsigned Dst = MI.getOperand(0).getReg(); 3001 unsigned Src = MI.getOperand(1).getReg(); 3002 const LLT S64 = LLT::scalar(64); 3003 const LLT S32 = LLT::scalar(32); 3004 const LLT S1 = LLT::scalar(1); 3005 3006 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3007 3008 // unsigned cul2f(ulong u) { 3009 // uint lz = clz(u); 3010 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3011 // u = (u << lz) & 0x7fffffffffffffffUL; 3012 // ulong t = u & 0xffffffffffUL; 3013 // uint v = (e << 23) | (uint)(u >> 40); 3014 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3015 // return as_float(v + r); 3016 // } 3017 3018 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3019 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3020 3021 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3022 3023 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3024 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3025 3026 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3027 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3028 3029 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3030 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3031 3032 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3033 3034 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3035 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3036 3037 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3038 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3039 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3040 3041 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 3042 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 3043 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 3044 auto One = MIRBuilder.buildConstant(S32, 1); 3045 3046 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 3047 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 3048 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 3049 MIRBuilder.buildAdd(Dst, V, R); 3050 3051 return Legalized; 3052 } 3053 3054 LegalizerHelper::LegalizeResult 3055 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3056 unsigned Dst = MI.getOperand(0).getReg(); 3057 unsigned Src = MI.getOperand(1).getReg(); 3058 LLT DstTy = MRI.getType(Dst); 3059 LLT SrcTy = MRI.getType(Src); 3060 3061 if (SrcTy != LLT::scalar(64)) 3062 return UnableToLegalize; 3063 3064 if (DstTy == LLT::scalar(32)) { 3065 // TODO: SelectionDAG has several alternative expansions to port which may 3066 // be more reasonble depending on the available instructions. If a target 3067 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 3068 // intermediate type, this is probably worse. 3069 return lowerU64ToF32BitOps(MI); 3070 } 3071 3072 return UnableToLegalize; 3073 } 3074 3075 LegalizerHelper::LegalizeResult 3076 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3077 unsigned Dst = MI.getOperand(0).getReg(); 3078 unsigned Src = MI.getOperand(1).getReg(); 3079 LLT DstTy = MRI.getType(Dst); 3080 LLT SrcTy = MRI.getType(Src); 3081 3082 const LLT S64 = LLT::scalar(64); 3083 const LLT S32 = LLT::scalar(32); 3084 const LLT S1 = LLT::scalar(1); 3085 3086 if (SrcTy != S64) 3087 return UnableToLegalize; 3088 3089 if (DstTy == S32) { 3090 // signed cl2f(long l) { 3091 // long s = l >> 63; 3092 // float r = cul2f((l + s) ^ s); 3093 // return s ? -r : r; 3094 // } 3095 unsigned L = Src; 3096 auto SignBit = MIRBuilder.buildConstant(S64, 63); 3097 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 3098 3099 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 3100 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 3101 auto R = MIRBuilder.buildUITOFP(S32, Xor); 3102 3103 auto RNeg = MIRBuilder.buildFNeg(S32, R); 3104 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 3105 MIRBuilder.buildConstant(S64, 0)); 3106 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 3107 return Legalized; 3108 } 3109 3110 return UnableToLegalize; 3111 } 3112