1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()) {
94   MIRBuilder.setChangeObserver(Observer);
95 }
96 
97 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
98                                  GISelChangeObserver &Observer,
99                                  MachineIRBuilder &B)
100     : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) {
101   MIRBuilder.setChangeObserver(Observer);
102 }
103 LegalizerHelper::LegalizeResult
104 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
105   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
106 
107   MIRBuilder.setInstrAndDebugLoc(MI);
108 
109   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
110       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
111     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
112   auto Step = LI.getAction(MI, MRI);
113   switch (Step.Action) {
114   case Legal:
115     LLVM_DEBUG(dbgs() << ".. Already legal\n");
116     return AlreadyLegal;
117   case Libcall:
118     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
119     return libcall(MI);
120   case NarrowScalar:
121     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
122     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
123   case WidenScalar:
124     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
125     return widenScalar(MI, Step.TypeIdx, Step.NewType);
126   case Bitcast:
127     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
128     return bitcast(MI, Step.TypeIdx, Step.NewType);
129   case Lower:
130     LLVM_DEBUG(dbgs() << ".. Lower\n");
131     return lower(MI, Step.TypeIdx, Step.NewType);
132   case FewerElements:
133     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
134     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case MoreElements:
136     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
137     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
138   case Custom:
139     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
140     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
141   default:
142     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
143     return UnableToLegalize;
144   }
145 }
146 
147 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
148                                    SmallVectorImpl<Register> &VRegs) {
149   for (int i = 0; i < NumParts; ++i)
150     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
151   MIRBuilder.buildUnmerge(VRegs, Reg);
152 }
153 
154 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
155                                    LLT MainTy, LLT &LeftoverTy,
156                                    SmallVectorImpl<Register> &VRegs,
157                                    SmallVectorImpl<Register> &LeftoverRegs) {
158   assert(!LeftoverTy.isValid() && "this is an out argument");
159 
160   unsigned RegSize = RegTy.getSizeInBits();
161   unsigned MainSize = MainTy.getSizeInBits();
162   unsigned NumParts = RegSize / MainSize;
163   unsigned LeftoverSize = RegSize - NumParts * MainSize;
164 
165   // Use an unmerge when possible.
166   if (LeftoverSize == 0) {
167     for (unsigned I = 0; I < NumParts; ++I)
168       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
169     MIRBuilder.buildUnmerge(VRegs, Reg);
170     return true;
171   }
172 
173   if (MainTy.isVector()) {
174     unsigned EltSize = MainTy.getScalarSizeInBits();
175     if (LeftoverSize % EltSize != 0)
176       return false;
177     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
178   } else {
179     LeftoverTy = LLT::scalar(LeftoverSize);
180   }
181 
182   // For irregular sizes, extract the individual parts.
183   for (unsigned I = 0; I != NumParts; ++I) {
184     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
185     VRegs.push_back(NewReg);
186     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
187   }
188 
189   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
190        Offset += LeftoverSize) {
191     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
192     LeftoverRegs.push_back(NewReg);
193     MIRBuilder.buildExtract(NewReg, Reg, Offset);
194   }
195 
196   return true;
197 }
198 
199 void LegalizerHelper::insertParts(Register DstReg,
200                                   LLT ResultTy, LLT PartTy,
201                                   ArrayRef<Register> PartRegs,
202                                   LLT LeftoverTy,
203                                   ArrayRef<Register> LeftoverRegs) {
204   if (!LeftoverTy.isValid()) {
205     assert(LeftoverRegs.empty());
206 
207     if (!ResultTy.isVector()) {
208       MIRBuilder.buildMerge(DstReg, PartRegs);
209       return;
210     }
211 
212     if (PartTy.isVector())
213       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
214     else
215       MIRBuilder.buildBuildVector(DstReg, PartRegs);
216     return;
217   }
218 
219   unsigned PartSize = PartTy.getSizeInBits();
220   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
221 
222   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
223   MIRBuilder.buildUndef(CurResultReg);
224 
225   unsigned Offset = 0;
226   for (Register PartReg : PartRegs) {
227     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
228     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
229     CurResultReg = NewResultReg;
230     Offset += PartSize;
231   }
232 
233   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
234     // Use the original output register for the final insert to avoid a copy.
235     Register NewResultReg = (I + 1 == E) ?
236       DstReg : MRI.createGenericVirtualRegister(ResultTy);
237 
238     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
239     CurResultReg = NewResultReg;
240     Offset += LeftoverPartSize;
241   }
242 }
243 
244 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
245 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
246                               const MachineInstr &MI) {
247   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
248 
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[I] = MI.getOperand(I).getReg();
253 }
254 
255 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
256                                     LLT NarrowTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258 
259   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
260   if (SrcTy == GCDTy) {
261     // If the source already evenly divides the result type, we don't need to do
262     // anything.
263     Parts.push_back(SrcReg);
264   } else {
265     // Need to split into common type sized pieces.
266     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
267     getUnmergeResults(Parts, *Unmerge);
268   }
269 
270   return GCDTy;
271 }
272 
273 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
274                                          SmallVectorImpl<Register> &VRegs,
275                                          unsigned PadStrategy) {
276   LLT LCMTy = getLCMType(DstTy, NarrowTy);
277 
278   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
279   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
280   int NumOrigSrc = VRegs.size();
281 
282   Register PadReg;
283 
284   // Get a value we can use to pad the source value if the sources won't evenly
285   // cover the result type.
286   if (NumOrigSrc < NumParts * NumSubParts) {
287     if (PadStrategy == TargetOpcode::G_ZEXT)
288       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
289     else if (PadStrategy == TargetOpcode::G_ANYEXT)
290       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
291     else {
292       assert(PadStrategy == TargetOpcode::G_SEXT);
293 
294       // Shift the sign bit of the low register through the high register.
295       auto ShiftAmt =
296         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
297       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
298     }
299   }
300 
301   // Registers for the final merge to be produced.
302   SmallVector<Register, 4> Remerge(NumParts);
303 
304   // Registers needed for intermediate merges, which will be merged into a
305   // source for Remerge.
306   SmallVector<Register, 4> SubMerge(NumSubParts);
307 
308   // Once we've fully read off the end of the original source bits, we can reuse
309   // the same high bits for remaining padding elements.
310   Register AllPadReg;
311 
312   // Build merges to the LCM type to cover the original result type.
313   for (int I = 0; I != NumParts; ++I) {
314     bool AllMergePartsArePadding = true;
315 
316     // Build the requested merges to the requested type.
317     for (int J = 0; J != NumSubParts; ++J) {
318       int Idx = I * NumSubParts + J;
319       if (Idx >= NumOrigSrc) {
320         SubMerge[J] = PadReg;
321         continue;
322       }
323 
324       SubMerge[J] = VRegs[Idx];
325 
326       // There are meaningful bits here we can't reuse later.
327       AllMergePartsArePadding = false;
328     }
329 
330     // If we've filled up a complete piece with padding bits, we can directly
331     // emit the natural sized constant if applicable, rather than a merge of
332     // smaller constants.
333     if (AllMergePartsArePadding && !AllPadReg) {
334       if (PadStrategy == TargetOpcode::G_ANYEXT)
335         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
336       else if (PadStrategy == TargetOpcode::G_ZEXT)
337         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
338 
339       // If this is a sign extension, we can't materialize a trivial constant
340       // with the right type and have to produce a merge.
341     }
342 
343     if (AllPadReg) {
344       // Avoid creating additional instructions if we're just adding additional
345       // copies of padding bits.
346       Remerge[I] = AllPadReg;
347       continue;
348     }
349 
350     if (NumSubParts == 1)
351       Remerge[I] = SubMerge[0];
352     else
353       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
354 
355     // In the sign extend padding case, re-use the first all-signbit merge.
356     if (AllMergePartsArePadding && !AllPadReg)
357       AllPadReg = Remerge[I];
358   }
359 
360   VRegs = std::move(Remerge);
361   return LCMTy;
362 }
363 
364 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
365                                                ArrayRef<Register> RemergeRegs) {
366   LLT DstTy = MRI.getType(DstReg);
367 
368   // Create the merge to the widened source, and extract the relevant bits into
369   // the result.
370 
371   if (DstTy == LCMTy) {
372     MIRBuilder.buildMerge(DstReg, RemergeRegs);
373     return;
374   }
375 
376   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
377   if (DstTy.isScalar() && LCMTy.isScalar()) {
378     MIRBuilder.buildTrunc(DstReg, Remerge);
379     return;
380   }
381 
382   if (LCMTy.isVector()) {
383     MIRBuilder.buildExtract(DstReg, Remerge, 0);
384     return;
385   }
386 
387   llvm_unreachable("unhandled case");
388 }
389 
390 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
391 #define RTLIBCASE_INT(LibcallPrefix)                                           \
392   do {                                                                         \
393     switch (Size) {                                                            \
394     case 32:                                                                   \
395       return RTLIB::LibcallPrefix##32;                                         \
396     case 64:                                                                   \
397       return RTLIB::LibcallPrefix##64;                                         \
398     case 128:                                                                  \
399       return RTLIB::LibcallPrefix##128;                                        \
400     default:                                                                   \
401       llvm_unreachable("unexpected size");                                     \
402     }                                                                          \
403   } while (0)
404 
405 #define RTLIBCASE(LibcallPrefix)                                               \
406   do {                                                                         \
407     switch (Size) {                                                            \
408     case 32:                                                                   \
409       return RTLIB::LibcallPrefix##32;                                         \
410     case 64:                                                                   \
411       return RTLIB::LibcallPrefix##64;                                         \
412     case 80:                                                                   \
413       return RTLIB::LibcallPrefix##80;                                         \
414     case 128:                                                                  \
415       return RTLIB::LibcallPrefix##128;                                        \
416     default:                                                                   \
417       llvm_unreachable("unexpected size");                                     \
418     }                                                                          \
419   } while (0)
420 
421   switch (Opcode) {
422   case TargetOpcode::G_SDIV:
423     RTLIBCASE_INT(SDIV_I);
424   case TargetOpcode::G_UDIV:
425     RTLIBCASE_INT(UDIV_I);
426   case TargetOpcode::G_SREM:
427     RTLIBCASE_INT(SREM_I);
428   case TargetOpcode::G_UREM:
429     RTLIBCASE_INT(UREM_I);
430   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
431     RTLIBCASE_INT(CTLZ_I);
432   case TargetOpcode::G_FADD:
433     RTLIBCASE(ADD_F);
434   case TargetOpcode::G_FSUB:
435     RTLIBCASE(SUB_F);
436   case TargetOpcode::G_FMUL:
437     RTLIBCASE(MUL_F);
438   case TargetOpcode::G_FDIV:
439     RTLIBCASE(DIV_F);
440   case TargetOpcode::G_FEXP:
441     RTLIBCASE(EXP_F);
442   case TargetOpcode::G_FEXP2:
443     RTLIBCASE(EXP2_F);
444   case TargetOpcode::G_FREM:
445     RTLIBCASE(REM_F);
446   case TargetOpcode::G_FPOW:
447     RTLIBCASE(POW_F);
448   case TargetOpcode::G_FMA:
449     RTLIBCASE(FMA_F);
450   case TargetOpcode::G_FSIN:
451     RTLIBCASE(SIN_F);
452   case TargetOpcode::G_FCOS:
453     RTLIBCASE(COS_F);
454   case TargetOpcode::G_FLOG10:
455     RTLIBCASE(LOG10_F);
456   case TargetOpcode::G_FLOG:
457     RTLIBCASE(LOG_F);
458   case TargetOpcode::G_FLOG2:
459     RTLIBCASE(LOG2_F);
460   case TargetOpcode::G_FCEIL:
461     RTLIBCASE(CEIL_F);
462   case TargetOpcode::G_FFLOOR:
463     RTLIBCASE(FLOOR_F);
464   case TargetOpcode::G_FMINNUM:
465     RTLIBCASE(FMIN_F);
466   case TargetOpcode::G_FMAXNUM:
467     RTLIBCASE(FMAX_F);
468   case TargetOpcode::G_FSQRT:
469     RTLIBCASE(SQRT_F);
470   case TargetOpcode::G_FRINT:
471     RTLIBCASE(RINT_F);
472   case TargetOpcode::G_FNEARBYINT:
473     RTLIBCASE(NEARBYINT_F);
474   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
475     RTLIBCASE(ROUNDEVEN_F);
476   }
477   llvm_unreachable("Unknown libcall function");
478 }
479 
480 /// True if an instruction is in tail position in its caller. Intended for
481 /// legalizing libcalls as tail calls when possible.
482 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
483                                     MachineInstr &MI) {
484   MachineBasicBlock &MBB = *MI.getParent();
485   const Function &F = MBB.getParent()->getFunction();
486 
487   // Conservatively require the attributes of the call to match those of
488   // the return. Ignore NoAlias and NonNull because they don't affect the
489   // call sequence.
490   AttributeList CallerAttrs = F.getAttributes();
491   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
492           .removeAttribute(Attribute::NoAlias)
493           .removeAttribute(Attribute::NonNull)
494           .hasAttributes())
495     return false;
496 
497   // It's not safe to eliminate the sign / zero extension of the return value.
498   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
499       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
500     return false;
501 
502   // Only tail call if the following instruction is a standard return.
503   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
504   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
505     return false;
506 
507   return true;
508 }
509 
510 LegalizerHelper::LegalizeResult
511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
512                     const CallLowering::ArgInfo &Result,
513                     ArrayRef<CallLowering::ArgInfo> Args,
514                     const CallingConv::ID CC) {
515   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
516 
517   CallLowering::CallLoweringInfo Info;
518   Info.CallConv = CC;
519   Info.Callee = MachineOperand::CreateES(Name);
520   Info.OrigRet = Result;
521   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
522   if (!CLI.lowerCall(MIRBuilder, Info))
523     return LegalizerHelper::UnableToLegalize;
524 
525   return LegalizerHelper::Legalized;
526 }
527 
528 LegalizerHelper::LegalizeResult
529 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
530                     const CallLowering::ArgInfo &Result,
531                     ArrayRef<CallLowering::ArgInfo> Args) {
532   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
533   const char *Name = TLI.getLibcallName(Libcall);
534   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
535   return createLibcall(MIRBuilder, Name, Result, Args, CC);
536 }
537 
538 // Useful for libcalls where all operands have the same type.
539 static LegalizerHelper::LegalizeResult
540 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
541               Type *OpType) {
542   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
543 
544   SmallVector<CallLowering::ArgInfo, 3> Args;
545   for (unsigned i = 1; i < MI.getNumOperands(); i++)
546     Args.push_back({MI.getOperand(i).getReg(), OpType});
547   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
548                        Args);
549 }
550 
551 LegalizerHelper::LegalizeResult
552 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
553                        MachineInstr &MI) {
554   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
555   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
556 
557   SmallVector<CallLowering::ArgInfo, 3> Args;
558   // Add all the args, except for the last which is an imm denoting 'tail'.
559   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
560     Register Reg = MI.getOperand(i).getReg();
561 
562     // Need derive an IR type for call lowering.
563     LLT OpLLT = MRI.getType(Reg);
564     Type *OpTy = nullptr;
565     if (OpLLT.isPointer())
566       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
567     else
568       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
569     Args.push_back({Reg, OpTy});
570   }
571 
572   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
573   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
574   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
575   RTLIB::Libcall RTLibcall;
576   switch (ID) {
577   case Intrinsic::memcpy:
578     RTLibcall = RTLIB::MEMCPY;
579     break;
580   case Intrinsic::memset:
581     RTLibcall = RTLIB::MEMSET;
582     break;
583   case Intrinsic::memmove:
584     RTLibcall = RTLIB::MEMMOVE;
585     break;
586   default:
587     return LegalizerHelper::UnableToLegalize;
588   }
589   const char *Name = TLI.getLibcallName(RTLibcall);
590 
591   MIRBuilder.setInstrAndDebugLoc(MI);
592 
593   CallLowering::CallLoweringInfo Info;
594   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
595   Info.Callee = MachineOperand::CreateES(Name);
596   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
597   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
598                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
599 
600   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
601   if (!CLI.lowerCall(MIRBuilder, Info))
602     return LegalizerHelper::UnableToLegalize;
603 
604   if (Info.LoweredTailCall) {
605     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
606     // We must have a return following the call (or debug insts) to get past
607     // isLibCallInTailPosition.
608     do {
609       MachineInstr *Next = MI.getNextNode();
610       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
611              "Expected instr following MI to be return or debug inst?");
612       // We lowered a tail call, so the call is now the return from the block.
613       // Delete the old return.
614       Next->eraseFromParent();
615     } while (MI.getNextNode());
616   }
617 
618   return LegalizerHelper::Legalized;
619 }
620 
621 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
622                                        Type *FromType) {
623   auto ToMVT = MVT::getVT(ToType);
624   auto FromMVT = MVT::getVT(FromType);
625 
626   switch (Opcode) {
627   case TargetOpcode::G_FPEXT:
628     return RTLIB::getFPEXT(FromMVT, ToMVT);
629   case TargetOpcode::G_FPTRUNC:
630     return RTLIB::getFPROUND(FromMVT, ToMVT);
631   case TargetOpcode::G_FPTOSI:
632     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
633   case TargetOpcode::G_FPTOUI:
634     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
635   case TargetOpcode::G_SITOFP:
636     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
637   case TargetOpcode::G_UITOFP:
638     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
639   }
640   llvm_unreachable("Unsupported libcall function");
641 }
642 
643 static LegalizerHelper::LegalizeResult
644 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
645                   Type *FromType) {
646   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
647   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
648                        {{MI.getOperand(1).getReg(), FromType}});
649 }
650 
651 LegalizerHelper::LegalizeResult
652 LegalizerHelper::libcall(MachineInstr &MI) {
653   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
654   unsigned Size = LLTy.getSizeInBits();
655   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
656 
657   switch (MI.getOpcode()) {
658   default:
659     return UnableToLegalize;
660   case TargetOpcode::G_SDIV:
661   case TargetOpcode::G_UDIV:
662   case TargetOpcode::G_SREM:
663   case TargetOpcode::G_UREM:
664   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
665     Type *HLTy = IntegerType::get(Ctx, Size);
666     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
667     if (Status != Legalized)
668       return Status;
669     break;
670   }
671   case TargetOpcode::G_FADD:
672   case TargetOpcode::G_FSUB:
673   case TargetOpcode::G_FMUL:
674   case TargetOpcode::G_FDIV:
675   case TargetOpcode::G_FMA:
676   case TargetOpcode::G_FPOW:
677   case TargetOpcode::G_FREM:
678   case TargetOpcode::G_FCOS:
679   case TargetOpcode::G_FSIN:
680   case TargetOpcode::G_FLOG10:
681   case TargetOpcode::G_FLOG:
682   case TargetOpcode::G_FLOG2:
683   case TargetOpcode::G_FEXP:
684   case TargetOpcode::G_FEXP2:
685   case TargetOpcode::G_FCEIL:
686   case TargetOpcode::G_FFLOOR:
687   case TargetOpcode::G_FMINNUM:
688   case TargetOpcode::G_FMAXNUM:
689   case TargetOpcode::G_FSQRT:
690   case TargetOpcode::G_FRINT:
691   case TargetOpcode::G_FNEARBYINT:
692   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
693     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
694     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
695       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
696       return UnableToLegalize;
697     }
698     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
699     if (Status != Legalized)
700       return Status;
701     break;
702   }
703   case TargetOpcode::G_FPEXT:
704   case TargetOpcode::G_FPTRUNC: {
705     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
706     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
707     if (!FromTy || !ToTy)
708       return UnableToLegalize;
709     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
710     if (Status != Legalized)
711       return Status;
712     break;
713   }
714   case TargetOpcode::G_FPTOSI:
715   case TargetOpcode::G_FPTOUI: {
716     // FIXME: Support other types
717     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
718     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
719     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
720       return UnableToLegalize;
721     LegalizeResult Status = conversionLibcall(
722         MI, MIRBuilder,
723         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
724         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
725     if (Status != Legalized)
726       return Status;
727     break;
728   }
729   case TargetOpcode::G_SITOFP:
730   case TargetOpcode::G_UITOFP: {
731     // FIXME: Support other types
732     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
733     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
734     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
735       return UnableToLegalize;
736     LegalizeResult Status = conversionLibcall(
737         MI, MIRBuilder,
738         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
739         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
740     if (Status != Legalized)
741       return Status;
742     break;
743   }
744   }
745 
746   MI.eraseFromParent();
747   return Legalized;
748 }
749 
750 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
751                                                               unsigned TypeIdx,
752                                                               LLT NarrowTy) {
753   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
754   uint64_t NarrowSize = NarrowTy.getSizeInBits();
755 
756   switch (MI.getOpcode()) {
757   default:
758     return UnableToLegalize;
759   case TargetOpcode::G_IMPLICIT_DEF: {
760     Register DstReg = MI.getOperand(0).getReg();
761     LLT DstTy = MRI.getType(DstReg);
762 
763     // If SizeOp0 is not an exact multiple of NarrowSize, emit
764     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
765     // FIXME: Although this would also be legal for the general case, it causes
766     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
767     //  combines not being hit). This seems to be a problem related to the
768     //  artifact combiner.
769     if (SizeOp0 % NarrowSize != 0) {
770       LLT ImplicitTy = NarrowTy;
771       if (DstTy.isVector())
772         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
773 
774       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
775       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
776 
777       MI.eraseFromParent();
778       return Legalized;
779     }
780 
781     int NumParts = SizeOp0 / NarrowSize;
782 
783     SmallVector<Register, 2> DstRegs;
784     for (int i = 0; i < NumParts; ++i)
785       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
786 
787     if (DstTy.isVector())
788       MIRBuilder.buildBuildVector(DstReg, DstRegs);
789     else
790       MIRBuilder.buildMerge(DstReg, DstRegs);
791     MI.eraseFromParent();
792     return Legalized;
793   }
794   case TargetOpcode::G_CONSTANT: {
795     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
796     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
797     unsigned TotalSize = Ty.getSizeInBits();
798     unsigned NarrowSize = NarrowTy.getSizeInBits();
799     int NumParts = TotalSize / NarrowSize;
800 
801     SmallVector<Register, 4> PartRegs;
802     for (int I = 0; I != NumParts; ++I) {
803       unsigned Offset = I * NarrowSize;
804       auto K = MIRBuilder.buildConstant(NarrowTy,
805                                         Val.lshr(Offset).trunc(NarrowSize));
806       PartRegs.push_back(K.getReg(0));
807     }
808 
809     LLT LeftoverTy;
810     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
811     SmallVector<Register, 1> LeftoverRegs;
812     if (LeftoverBits != 0) {
813       LeftoverTy = LLT::scalar(LeftoverBits);
814       auto K = MIRBuilder.buildConstant(
815         LeftoverTy,
816         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
817       LeftoverRegs.push_back(K.getReg(0));
818     }
819 
820     insertParts(MI.getOperand(0).getReg(),
821                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
822 
823     MI.eraseFromParent();
824     return Legalized;
825   }
826   case TargetOpcode::G_SEXT:
827   case TargetOpcode::G_ZEXT:
828   case TargetOpcode::G_ANYEXT:
829     return narrowScalarExt(MI, TypeIdx, NarrowTy);
830   case TargetOpcode::G_TRUNC: {
831     if (TypeIdx != 1)
832       return UnableToLegalize;
833 
834     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
835     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
836       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
837       return UnableToLegalize;
838     }
839 
840     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
841     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
842     MI.eraseFromParent();
843     return Legalized;
844   }
845 
846   case TargetOpcode::G_FREEZE:
847     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
848 
849   case TargetOpcode::G_ADD: {
850     // FIXME: add support for when SizeOp0 isn't an exact multiple of
851     // NarrowSize.
852     if (SizeOp0 % NarrowSize != 0)
853       return UnableToLegalize;
854     // Expand in terms of carry-setting/consuming G_ADDE instructions.
855     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
856 
857     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
858     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
859     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
860 
861     Register CarryIn;
862     for (int i = 0; i < NumParts; ++i) {
863       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
864       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
865 
866       if (i == 0)
867         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
868       else {
869         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
870                               Src2Regs[i], CarryIn);
871       }
872 
873       DstRegs.push_back(DstReg);
874       CarryIn = CarryOut;
875     }
876     Register DstReg = MI.getOperand(0).getReg();
877     if(MRI.getType(DstReg).isVector())
878       MIRBuilder.buildBuildVector(DstReg, DstRegs);
879     else
880       MIRBuilder.buildMerge(DstReg, DstRegs);
881     MI.eraseFromParent();
882     return Legalized;
883   }
884   case TargetOpcode::G_SUB: {
885     // FIXME: add support for when SizeOp0 isn't an exact multiple of
886     // NarrowSize.
887     if (SizeOp0 % NarrowSize != 0)
888       return UnableToLegalize;
889 
890     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
891 
892     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
893     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
894     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
895 
896     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
897     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
898     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
899                           {Src1Regs[0], Src2Regs[0]});
900     DstRegs.push_back(DstReg);
901     Register BorrowIn = BorrowOut;
902     for (int i = 1; i < NumParts; ++i) {
903       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
904       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
905 
906       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
907                             {Src1Regs[i], Src2Regs[i], BorrowIn});
908 
909       DstRegs.push_back(DstReg);
910       BorrowIn = BorrowOut;
911     }
912     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
913     MI.eraseFromParent();
914     return Legalized;
915   }
916   case TargetOpcode::G_MUL:
917   case TargetOpcode::G_UMULH:
918     return narrowScalarMul(MI, NarrowTy);
919   case TargetOpcode::G_EXTRACT:
920     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
921   case TargetOpcode::G_INSERT:
922     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
923   case TargetOpcode::G_LOAD: {
924     auto &MMO = **MI.memoperands_begin();
925     Register DstReg = MI.getOperand(0).getReg();
926     LLT DstTy = MRI.getType(DstReg);
927     if (DstTy.isVector())
928       return UnableToLegalize;
929 
930     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
931       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
932       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
933       MIRBuilder.buildAnyExt(DstReg, TmpReg);
934       MI.eraseFromParent();
935       return Legalized;
936     }
937 
938     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
939   }
940   case TargetOpcode::G_ZEXTLOAD:
941   case TargetOpcode::G_SEXTLOAD: {
942     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
943     Register DstReg = MI.getOperand(0).getReg();
944     Register PtrReg = MI.getOperand(1).getReg();
945 
946     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
947     auto &MMO = **MI.memoperands_begin();
948     if (MMO.getSizeInBits() == NarrowSize) {
949       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
950     } else {
951       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
952     }
953 
954     if (ZExt)
955       MIRBuilder.buildZExt(DstReg, TmpReg);
956     else
957       MIRBuilder.buildSExt(DstReg, TmpReg);
958 
959     MI.eraseFromParent();
960     return Legalized;
961   }
962   case TargetOpcode::G_STORE: {
963     const auto &MMO = **MI.memoperands_begin();
964 
965     Register SrcReg = MI.getOperand(0).getReg();
966     LLT SrcTy = MRI.getType(SrcReg);
967     if (SrcTy.isVector())
968       return UnableToLegalize;
969 
970     int NumParts = SizeOp0 / NarrowSize;
971     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
972     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
973     if (SrcTy.isVector() && LeftoverBits != 0)
974       return UnableToLegalize;
975 
976     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
977       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
978       auto &MMO = **MI.memoperands_begin();
979       MIRBuilder.buildTrunc(TmpReg, SrcReg);
980       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
981       MI.eraseFromParent();
982       return Legalized;
983     }
984 
985     return reduceLoadStoreWidth(MI, 0, NarrowTy);
986   }
987   case TargetOpcode::G_SELECT:
988     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
989   case TargetOpcode::G_AND:
990   case TargetOpcode::G_OR:
991   case TargetOpcode::G_XOR: {
992     // Legalize bitwise operation:
993     // A = BinOp<Ty> B, C
994     // into:
995     // B1, ..., BN = G_UNMERGE_VALUES B
996     // C1, ..., CN = G_UNMERGE_VALUES C
997     // A1 = BinOp<Ty/N> B1, C2
998     // ...
999     // AN = BinOp<Ty/N> BN, CN
1000     // A = G_MERGE_VALUES A1, ..., AN
1001     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1002   }
1003   case TargetOpcode::G_SHL:
1004   case TargetOpcode::G_LSHR:
1005   case TargetOpcode::G_ASHR:
1006     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1007   case TargetOpcode::G_CTLZ:
1008   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1009   case TargetOpcode::G_CTTZ:
1010   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1011   case TargetOpcode::G_CTPOP:
1012     if (TypeIdx == 1)
1013       switch (MI.getOpcode()) {
1014       case TargetOpcode::G_CTLZ:
1015       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1016         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1017       case TargetOpcode::G_CTTZ:
1018       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1019         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1020       case TargetOpcode::G_CTPOP:
1021         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1022       default:
1023         return UnableToLegalize;
1024       }
1025 
1026     Observer.changingInstr(MI);
1027     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1028     Observer.changedInstr(MI);
1029     return Legalized;
1030   case TargetOpcode::G_INTTOPTR:
1031     if (TypeIdx != 1)
1032       return UnableToLegalize;
1033 
1034     Observer.changingInstr(MI);
1035     narrowScalarSrc(MI, NarrowTy, 1);
1036     Observer.changedInstr(MI);
1037     return Legalized;
1038   case TargetOpcode::G_PTRTOINT:
1039     if (TypeIdx != 0)
1040       return UnableToLegalize;
1041 
1042     Observer.changingInstr(MI);
1043     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1044     Observer.changedInstr(MI);
1045     return Legalized;
1046   case TargetOpcode::G_PHI: {
1047     unsigned NumParts = SizeOp0 / NarrowSize;
1048     SmallVector<Register, 2> DstRegs(NumParts);
1049     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1050     Observer.changingInstr(MI);
1051     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1052       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1053       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1054       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1055                    SrcRegs[i / 2]);
1056     }
1057     MachineBasicBlock &MBB = *MI.getParent();
1058     MIRBuilder.setInsertPt(MBB, MI);
1059     for (unsigned i = 0; i < NumParts; ++i) {
1060       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1061       MachineInstrBuilder MIB =
1062           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1063       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1064         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1065     }
1066     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1067     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1068     Observer.changedInstr(MI);
1069     MI.eraseFromParent();
1070     return Legalized;
1071   }
1072   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1073   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1074     if (TypeIdx != 2)
1075       return UnableToLegalize;
1076 
1077     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1078     Observer.changingInstr(MI);
1079     narrowScalarSrc(MI, NarrowTy, OpIdx);
1080     Observer.changedInstr(MI);
1081     return Legalized;
1082   }
1083   case TargetOpcode::G_ICMP: {
1084     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1085     if (NarrowSize * 2 != SrcSize)
1086       return UnableToLegalize;
1087 
1088     Observer.changingInstr(MI);
1089     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1090     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1091     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1092 
1093     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1094     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1095     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1096 
1097     CmpInst::Predicate Pred =
1098         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1099     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1100 
1101     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1102       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1103       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1104       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1105       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1106       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1107     } else {
1108       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1109       MachineInstrBuilder CmpHEQ =
1110           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1111       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1112           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1113       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1114     }
1115     Observer.changedInstr(MI);
1116     MI.eraseFromParent();
1117     return Legalized;
1118   }
1119   case TargetOpcode::G_SEXT_INREG: {
1120     if (TypeIdx != 0)
1121       return UnableToLegalize;
1122 
1123     int64_t SizeInBits = MI.getOperand(2).getImm();
1124 
1125     // So long as the new type has more bits than the bits we're extending we
1126     // don't need to break it apart.
1127     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1128       Observer.changingInstr(MI);
1129       // We don't lose any non-extension bits by truncating the src and
1130       // sign-extending the dst.
1131       MachineOperand &MO1 = MI.getOperand(1);
1132       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1133       MO1.setReg(TruncMIB.getReg(0));
1134 
1135       MachineOperand &MO2 = MI.getOperand(0);
1136       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1137       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1138       MIRBuilder.buildSExt(MO2, DstExt);
1139       MO2.setReg(DstExt);
1140       Observer.changedInstr(MI);
1141       return Legalized;
1142     }
1143 
1144     // Break it apart. Components below the extension point are unmodified. The
1145     // component containing the extension point becomes a narrower SEXT_INREG.
1146     // Components above it are ashr'd from the component containing the
1147     // extension point.
1148     if (SizeOp0 % NarrowSize != 0)
1149       return UnableToLegalize;
1150     int NumParts = SizeOp0 / NarrowSize;
1151 
1152     // List the registers where the destination will be scattered.
1153     SmallVector<Register, 2> DstRegs;
1154     // List the registers where the source will be split.
1155     SmallVector<Register, 2> SrcRegs;
1156 
1157     // Create all the temporary registers.
1158     for (int i = 0; i < NumParts; ++i) {
1159       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1160 
1161       SrcRegs.push_back(SrcReg);
1162     }
1163 
1164     // Explode the big arguments into smaller chunks.
1165     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1166 
1167     Register AshrCstReg =
1168         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1169             .getReg(0);
1170     Register FullExtensionReg = 0;
1171     Register PartialExtensionReg = 0;
1172 
1173     // Do the operation on each small part.
1174     for (int i = 0; i < NumParts; ++i) {
1175       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1176         DstRegs.push_back(SrcRegs[i]);
1177       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1178         assert(PartialExtensionReg &&
1179                "Expected to visit partial extension before full");
1180         if (FullExtensionReg) {
1181           DstRegs.push_back(FullExtensionReg);
1182           continue;
1183         }
1184         DstRegs.push_back(
1185             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1186                 .getReg(0));
1187         FullExtensionReg = DstRegs.back();
1188       } else {
1189         DstRegs.push_back(
1190             MIRBuilder
1191                 .buildInstr(
1192                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1193                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1194                 .getReg(0));
1195         PartialExtensionReg = DstRegs.back();
1196       }
1197     }
1198 
1199     // Gather the destination registers into the final destination.
1200     Register DstReg = MI.getOperand(0).getReg();
1201     MIRBuilder.buildMerge(DstReg, DstRegs);
1202     MI.eraseFromParent();
1203     return Legalized;
1204   }
1205   case TargetOpcode::G_BSWAP:
1206   case TargetOpcode::G_BITREVERSE: {
1207     if (SizeOp0 % NarrowSize != 0)
1208       return UnableToLegalize;
1209 
1210     Observer.changingInstr(MI);
1211     SmallVector<Register, 2> SrcRegs, DstRegs;
1212     unsigned NumParts = SizeOp0 / NarrowSize;
1213     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1214 
1215     for (unsigned i = 0; i < NumParts; ++i) {
1216       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1217                                            {SrcRegs[NumParts - 1 - i]});
1218       DstRegs.push_back(DstPart.getReg(0));
1219     }
1220 
1221     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1222 
1223     Observer.changedInstr(MI);
1224     MI.eraseFromParent();
1225     return Legalized;
1226   }
1227   case TargetOpcode::G_PTR_ADD:
1228   case TargetOpcode::G_PTRMASK: {
1229     if (TypeIdx != 1)
1230       return UnableToLegalize;
1231     Observer.changingInstr(MI);
1232     narrowScalarSrc(MI, NarrowTy, 2);
1233     Observer.changedInstr(MI);
1234     return Legalized;
1235   }
1236   case TargetOpcode::G_FPTOUI: {
1237     if (TypeIdx != 0)
1238       return UnableToLegalize;
1239     Observer.changingInstr(MI);
1240     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1241     Observer.changedInstr(MI);
1242     return Legalized;
1243   }
1244   case TargetOpcode::G_FPTOSI: {
1245     if (TypeIdx != 0)
1246       return UnableToLegalize;
1247     Observer.changingInstr(MI);
1248     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1249     Observer.changedInstr(MI);
1250     return Legalized;
1251   }
1252   case TargetOpcode::G_FPEXT:
1253     if (TypeIdx != 0)
1254       return UnableToLegalize;
1255     Observer.changingInstr(MI);
1256     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1257     Observer.changedInstr(MI);
1258     return Legalized;
1259   }
1260 }
1261 
1262 Register LegalizerHelper::coerceToScalar(Register Val) {
1263   LLT Ty = MRI.getType(Val);
1264   if (Ty.isScalar())
1265     return Val;
1266 
1267   const DataLayout &DL = MIRBuilder.getDataLayout();
1268   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1269   if (Ty.isPointer()) {
1270     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1271       return Register();
1272     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1273   }
1274 
1275   Register NewVal = Val;
1276 
1277   assert(Ty.isVector());
1278   LLT EltTy = Ty.getElementType();
1279   if (EltTy.isPointer())
1280     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1281   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1282 }
1283 
1284 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1285                                      unsigned OpIdx, unsigned ExtOpcode) {
1286   MachineOperand &MO = MI.getOperand(OpIdx);
1287   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1288   MO.setReg(ExtB.getReg(0));
1289 }
1290 
1291 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1292                                       unsigned OpIdx) {
1293   MachineOperand &MO = MI.getOperand(OpIdx);
1294   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1295   MO.setReg(ExtB.getReg(0));
1296 }
1297 
1298 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1299                                      unsigned OpIdx, unsigned TruncOpcode) {
1300   MachineOperand &MO = MI.getOperand(OpIdx);
1301   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1302   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1303   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1304   MO.setReg(DstExt);
1305 }
1306 
1307 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1308                                       unsigned OpIdx, unsigned ExtOpcode) {
1309   MachineOperand &MO = MI.getOperand(OpIdx);
1310   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1311   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1312   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1313   MO.setReg(DstTrunc);
1314 }
1315 
1316 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1317                                             unsigned OpIdx) {
1318   MachineOperand &MO = MI.getOperand(OpIdx);
1319   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1320   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1321 }
1322 
1323 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1324                                             unsigned OpIdx) {
1325   MachineOperand &MO = MI.getOperand(OpIdx);
1326 
1327   LLT OldTy = MRI.getType(MO.getReg());
1328   unsigned OldElts = OldTy.getNumElements();
1329   unsigned NewElts = MoreTy.getNumElements();
1330 
1331   unsigned NumParts = NewElts / OldElts;
1332 
1333   // Use concat_vectors if the result is a multiple of the number of elements.
1334   if (NumParts * OldElts == NewElts) {
1335     SmallVector<Register, 8> Parts;
1336     Parts.push_back(MO.getReg());
1337 
1338     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1339     for (unsigned I = 1; I != NumParts; ++I)
1340       Parts.push_back(ImpDef);
1341 
1342     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1343     MO.setReg(Concat.getReg(0));
1344     return;
1345   }
1346 
1347   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1348   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1349   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1350   MO.setReg(MoreReg);
1351 }
1352 
1353 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1354   MachineOperand &Op = MI.getOperand(OpIdx);
1355   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1356 }
1357 
1358 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1359   MachineOperand &MO = MI.getOperand(OpIdx);
1360   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1361   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1362   MIRBuilder.buildBitcast(MO, CastDst);
1363   MO.setReg(CastDst);
1364 }
1365 
1366 LegalizerHelper::LegalizeResult
1367 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1368                                         LLT WideTy) {
1369   if (TypeIdx != 1)
1370     return UnableToLegalize;
1371 
1372   Register DstReg = MI.getOperand(0).getReg();
1373   LLT DstTy = MRI.getType(DstReg);
1374   if (DstTy.isVector())
1375     return UnableToLegalize;
1376 
1377   Register Src1 = MI.getOperand(1).getReg();
1378   LLT SrcTy = MRI.getType(Src1);
1379   const int DstSize = DstTy.getSizeInBits();
1380   const int SrcSize = SrcTy.getSizeInBits();
1381   const int WideSize = WideTy.getSizeInBits();
1382   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1383 
1384   unsigned NumOps = MI.getNumOperands();
1385   unsigned NumSrc = MI.getNumOperands() - 1;
1386   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1387 
1388   if (WideSize >= DstSize) {
1389     // Directly pack the bits in the target type.
1390     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1391 
1392     for (unsigned I = 2; I != NumOps; ++I) {
1393       const unsigned Offset = (I - 1) * PartSize;
1394 
1395       Register SrcReg = MI.getOperand(I).getReg();
1396       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1397 
1398       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1399 
1400       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1401         MRI.createGenericVirtualRegister(WideTy);
1402 
1403       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1404       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1405       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1406       ResultReg = NextResult;
1407     }
1408 
1409     if (WideSize > DstSize)
1410       MIRBuilder.buildTrunc(DstReg, ResultReg);
1411     else if (DstTy.isPointer())
1412       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1413 
1414     MI.eraseFromParent();
1415     return Legalized;
1416   }
1417 
1418   // Unmerge the original values to the GCD type, and recombine to the next
1419   // multiple greater than the original type.
1420   //
1421   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1422   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1423   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1424   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1425   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1426   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1427   // %12:_(s12) = G_MERGE_VALUES %10, %11
1428   //
1429   // Padding with undef if necessary:
1430   //
1431   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1432   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1433   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1434   // %7:_(s2) = G_IMPLICIT_DEF
1435   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1436   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1437   // %10:_(s12) = G_MERGE_VALUES %8, %9
1438 
1439   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1440   LLT GCDTy = LLT::scalar(GCD);
1441 
1442   SmallVector<Register, 8> Parts;
1443   SmallVector<Register, 8> NewMergeRegs;
1444   SmallVector<Register, 8> Unmerges;
1445   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1446 
1447   // Decompose the original operands if they don't evenly divide.
1448   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1449     Register SrcReg = MI.getOperand(I).getReg();
1450     if (GCD == SrcSize) {
1451       Unmerges.push_back(SrcReg);
1452     } else {
1453       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1454       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1455         Unmerges.push_back(Unmerge.getReg(J));
1456     }
1457   }
1458 
1459   // Pad with undef to the next size that is a multiple of the requested size.
1460   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1461     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1462     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1463       Unmerges.push_back(UndefReg);
1464   }
1465 
1466   const int PartsPerGCD = WideSize / GCD;
1467 
1468   // Build merges of each piece.
1469   ArrayRef<Register> Slicer(Unmerges);
1470   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1471     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1472     NewMergeRegs.push_back(Merge.getReg(0));
1473   }
1474 
1475   // A truncate may be necessary if the requested type doesn't evenly divide the
1476   // original result type.
1477   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1478     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1479   } else {
1480     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1481     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1482   }
1483 
1484   MI.eraseFromParent();
1485   return Legalized;
1486 }
1487 
1488 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1489   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1490   LLT OrigTy = MRI.getType(OrigReg);
1491   LLT LCMTy = getLCMType(WideTy, OrigTy);
1492 
1493   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1494   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1495 
1496   Register UnmergeSrc = WideReg;
1497 
1498   // Create a merge to the LCM type, padding with undef
1499   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1500   // =>
1501   // %1:_(<4 x s32>) = G_FOO
1502   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1503   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1504   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1505   if (NumMergeParts > 1) {
1506     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1507     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1508     MergeParts[0] = WideReg;
1509     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1510   }
1511 
1512   // Unmerge to the original register and pad with dead defs.
1513   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1514   UnmergeResults[0] = OrigReg;
1515   for (int I = 1; I != NumUnmergeParts; ++I)
1516     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1517 
1518   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1519   return WideReg;
1520 }
1521 
1522 LegalizerHelper::LegalizeResult
1523 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1524                                           LLT WideTy) {
1525   if (TypeIdx != 0)
1526     return UnableToLegalize;
1527 
1528   int NumDst = MI.getNumOperands() - 1;
1529   Register SrcReg = MI.getOperand(NumDst).getReg();
1530   LLT SrcTy = MRI.getType(SrcReg);
1531   if (SrcTy.isVector())
1532     return UnableToLegalize;
1533 
1534   Register Dst0Reg = MI.getOperand(0).getReg();
1535   LLT DstTy = MRI.getType(Dst0Reg);
1536   if (!DstTy.isScalar())
1537     return UnableToLegalize;
1538 
1539   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1540     if (SrcTy.isPointer()) {
1541       const DataLayout &DL = MIRBuilder.getDataLayout();
1542       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1543         LLVM_DEBUG(
1544             dbgs() << "Not casting non-integral address space integer\n");
1545         return UnableToLegalize;
1546       }
1547 
1548       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1549       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1550     }
1551 
1552     // Widen SrcTy to WideTy. This does not affect the result, but since the
1553     // user requested this size, it is probably better handled than SrcTy and
1554     // should reduce the total number of legalization artifacts
1555     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1556       SrcTy = WideTy;
1557       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1558     }
1559 
1560     // Theres no unmerge type to target. Directly extract the bits from the
1561     // source type
1562     unsigned DstSize = DstTy.getSizeInBits();
1563 
1564     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1565     for (int I = 1; I != NumDst; ++I) {
1566       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1567       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1568       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1569     }
1570 
1571     MI.eraseFromParent();
1572     return Legalized;
1573   }
1574 
1575   // Extend the source to a wider type.
1576   LLT LCMTy = getLCMType(SrcTy, WideTy);
1577 
1578   Register WideSrc = SrcReg;
1579   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1580     // TODO: If this is an integral address space, cast to integer and anyext.
1581     if (SrcTy.isPointer()) {
1582       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1583       return UnableToLegalize;
1584     }
1585 
1586     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1587   }
1588 
1589   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1590 
1591   // Create a sequence of unmerges to the original results. since we may have
1592   // widened the source, we will need to pad the results with dead defs to cover
1593   // the source register.
1594   // e.g. widen s16 to s32:
1595   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1596   //
1597   // =>
1598   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1599   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1600   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1601   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1602 
1603   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1604   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1605 
1606   for (int I = 0; I != NumUnmerge; ++I) {
1607     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1608 
1609     for (int J = 0; J != PartsPerUnmerge; ++J) {
1610       int Idx = I * PartsPerUnmerge + J;
1611       if (Idx < NumDst)
1612         MIB.addDef(MI.getOperand(Idx).getReg());
1613       else {
1614         // Create dead def for excess components.
1615         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1616       }
1617     }
1618 
1619     MIB.addUse(Unmerge.getReg(I));
1620   }
1621 
1622   MI.eraseFromParent();
1623   return Legalized;
1624 }
1625 
1626 LegalizerHelper::LegalizeResult
1627 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1628                                     LLT WideTy) {
1629   Register DstReg = MI.getOperand(0).getReg();
1630   Register SrcReg = MI.getOperand(1).getReg();
1631   LLT SrcTy = MRI.getType(SrcReg);
1632 
1633   LLT DstTy = MRI.getType(DstReg);
1634   unsigned Offset = MI.getOperand(2).getImm();
1635 
1636   if (TypeIdx == 0) {
1637     if (SrcTy.isVector() || DstTy.isVector())
1638       return UnableToLegalize;
1639 
1640     SrcOp Src(SrcReg);
1641     if (SrcTy.isPointer()) {
1642       // Extracts from pointers can be handled only if they are really just
1643       // simple integers.
1644       const DataLayout &DL = MIRBuilder.getDataLayout();
1645       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1646         return UnableToLegalize;
1647 
1648       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1649       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1650       SrcTy = SrcAsIntTy;
1651     }
1652 
1653     if (DstTy.isPointer())
1654       return UnableToLegalize;
1655 
1656     if (Offset == 0) {
1657       // Avoid a shift in the degenerate case.
1658       MIRBuilder.buildTrunc(DstReg,
1659                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1660       MI.eraseFromParent();
1661       return Legalized;
1662     }
1663 
1664     // Do a shift in the source type.
1665     LLT ShiftTy = SrcTy;
1666     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1667       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1668       ShiftTy = WideTy;
1669     }
1670 
1671     auto LShr = MIRBuilder.buildLShr(
1672       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1673     MIRBuilder.buildTrunc(DstReg, LShr);
1674     MI.eraseFromParent();
1675     return Legalized;
1676   }
1677 
1678   if (SrcTy.isScalar()) {
1679     Observer.changingInstr(MI);
1680     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1681     Observer.changedInstr(MI);
1682     return Legalized;
1683   }
1684 
1685   if (!SrcTy.isVector())
1686     return UnableToLegalize;
1687 
1688   if (DstTy != SrcTy.getElementType())
1689     return UnableToLegalize;
1690 
1691   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1692     return UnableToLegalize;
1693 
1694   Observer.changingInstr(MI);
1695   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1696 
1697   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1698                           Offset);
1699   widenScalarDst(MI, WideTy.getScalarType(), 0);
1700   Observer.changedInstr(MI);
1701   return Legalized;
1702 }
1703 
1704 LegalizerHelper::LegalizeResult
1705 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1706                                    LLT WideTy) {
1707   if (TypeIdx != 0 || WideTy.isVector())
1708     return UnableToLegalize;
1709   Observer.changingInstr(MI);
1710   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1711   widenScalarDst(MI, WideTy);
1712   Observer.changedInstr(MI);
1713   return Legalized;
1714 }
1715 
1716 LegalizerHelper::LegalizeResult
1717 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1718                                          LLT WideTy) {
1719   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1720                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1721                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1722   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1723                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1724   // We can convert this to:
1725   //   1. Any extend iN to iM
1726   //   2. SHL by M-N
1727   //   3. [US][ADD|SUB|SHL]SAT
1728   //   4. L/ASHR by M-N
1729   //
1730   // It may be more efficient to lower this to a min and a max operation in
1731   // the higher precision arithmetic if the promoted operation isn't legal,
1732   // but this decision is up to the target's lowering request.
1733   Register DstReg = MI.getOperand(0).getReg();
1734 
1735   unsigned NewBits = WideTy.getScalarSizeInBits();
1736   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1737 
1738   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1739   // must not left shift the RHS to preserve the shift amount.
1740   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1741   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1742                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1743   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1744   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1745   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1746 
1747   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1748                                         {ShiftL, ShiftR}, MI.getFlags());
1749 
1750   // Use a shift that will preserve the number of sign bits when the trunc is
1751   // folded away.
1752   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1753                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1754 
1755   MIRBuilder.buildTrunc(DstReg, Result);
1756   MI.eraseFromParent();
1757   return Legalized;
1758 }
1759 
1760 LegalizerHelper::LegalizeResult
1761 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1762   switch (MI.getOpcode()) {
1763   default:
1764     return UnableToLegalize;
1765   case TargetOpcode::G_EXTRACT:
1766     return widenScalarExtract(MI, TypeIdx, WideTy);
1767   case TargetOpcode::G_INSERT:
1768     return widenScalarInsert(MI, TypeIdx, WideTy);
1769   case TargetOpcode::G_MERGE_VALUES:
1770     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1771   case TargetOpcode::G_UNMERGE_VALUES:
1772     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1773   case TargetOpcode::G_UADDO:
1774   case TargetOpcode::G_USUBO: {
1775     if (TypeIdx == 1)
1776       return UnableToLegalize; // TODO
1777     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1778     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1779     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1780                           ? TargetOpcode::G_ADD
1781                           : TargetOpcode::G_SUB;
1782     // Do the arithmetic in the larger type.
1783     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1784     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1785     APInt Mask =
1786         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1787     auto AndOp = MIRBuilder.buildAnd(
1788         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1789     // There is no overflow if the AndOp is the same as NewOp.
1790     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1791     // Now trunc the NewOp to the original result.
1792     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1793     MI.eraseFromParent();
1794     return Legalized;
1795   }
1796   case TargetOpcode::G_SADDSAT:
1797   case TargetOpcode::G_SSUBSAT:
1798   case TargetOpcode::G_SSHLSAT:
1799   case TargetOpcode::G_UADDSAT:
1800   case TargetOpcode::G_USUBSAT:
1801   case TargetOpcode::G_USHLSAT:
1802     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1803   case TargetOpcode::G_CTTZ:
1804   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1805   case TargetOpcode::G_CTLZ:
1806   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1807   case TargetOpcode::G_CTPOP: {
1808     if (TypeIdx == 0) {
1809       Observer.changingInstr(MI);
1810       widenScalarDst(MI, WideTy, 0);
1811       Observer.changedInstr(MI);
1812       return Legalized;
1813     }
1814 
1815     Register SrcReg = MI.getOperand(1).getReg();
1816 
1817     // First ZEXT the input.
1818     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1819     LLT CurTy = MRI.getType(SrcReg);
1820     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1821       // The count is the same in the larger type except if the original
1822       // value was zero.  This can be handled by setting the bit just off
1823       // the top of the original type.
1824       auto TopBit =
1825           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1826       MIBSrc = MIRBuilder.buildOr(
1827         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1828     }
1829 
1830     // Perform the operation at the larger size.
1831     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1832     // This is already the correct result for CTPOP and CTTZs
1833     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1834         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1835       // The correct result is NewOp - (Difference in widety and current ty).
1836       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1837       MIBNewOp = MIRBuilder.buildSub(
1838           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1839     }
1840 
1841     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1842     MI.eraseFromParent();
1843     return Legalized;
1844   }
1845   case TargetOpcode::G_BSWAP: {
1846     Observer.changingInstr(MI);
1847     Register DstReg = MI.getOperand(0).getReg();
1848 
1849     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1850     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1851     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1852     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1853 
1854     MI.getOperand(0).setReg(DstExt);
1855 
1856     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1857 
1858     LLT Ty = MRI.getType(DstReg);
1859     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1860     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1861     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1862 
1863     MIRBuilder.buildTrunc(DstReg, ShrReg);
1864     Observer.changedInstr(MI);
1865     return Legalized;
1866   }
1867   case TargetOpcode::G_BITREVERSE: {
1868     Observer.changingInstr(MI);
1869 
1870     Register DstReg = MI.getOperand(0).getReg();
1871     LLT Ty = MRI.getType(DstReg);
1872     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1873 
1874     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1875     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1876     MI.getOperand(0).setReg(DstExt);
1877     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1878 
1879     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1880     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1881     MIRBuilder.buildTrunc(DstReg, Shift);
1882     Observer.changedInstr(MI);
1883     return Legalized;
1884   }
1885   case TargetOpcode::G_FREEZE:
1886     Observer.changingInstr(MI);
1887     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1888     widenScalarDst(MI, WideTy);
1889     Observer.changedInstr(MI);
1890     return Legalized;
1891 
1892   case TargetOpcode::G_ADD:
1893   case TargetOpcode::G_AND:
1894   case TargetOpcode::G_MUL:
1895   case TargetOpcode::G_OR:
1896   case TargetOpcode::G_XOR:
1897   case TargetOpcode::G_SUB:
1898     // Perform operation at larger width (any extension is fines here, high bits
1899     // don't affect the result) and then truncate the result back to the
1900     // original type.
1901     Observer.changingInstr(MI);
1902     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1903     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1904     widenScalarDst(MI, WideTy);
1905     Observer.changedInstr(MI);
1906     return Legalized;
1907 
1908   case TargetOpcode::G_SHL:
1909     Observer.changingInstr(MI);
1910 
1911     if (TypeIdx == 0) {
1912       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1913       widenScalarDst(MI, WideTy);
1914     } else {
1915       assert(TypeIdx == 1);
1916       // The "number of bits to shift" operand must preserve its value as an
1917       // unsigned integer:
1918       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1919     }
1920 
1921     Observer.changedInstr(MI);
1922     return Legalized;
1923 
1924   case TargetOpcode::G_SDIV:
1925   case TargetOpcode::G_SREM:
1926   case TargetOpcode::G_SMIN:
1927   case TargetOpcode::G_SMAX:
1928     Observer.changingInstr(MI);
1929     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1930     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1931     widenScalarDst(MI, WideTy);
1932     Observer.changedInstr(MI);
1933     return Legalized;
1934 
1935   case TargetOpcode::G_ASHR:
1936   case TargetOpcode::G_LSHR:
1937     Observer.changingInstr(MI);
1938 
1939     if (TypeIdx == 0) {
1940       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1941         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1942 
1943       widenScalarSrc(MI, WideTy, 1, CvtOp);
1944       widenScalarDst(MI, WideTy);
1945     } else {
1946       assert(TypeIdx == 1);
1947       // The "number of bits to shift" operand must preserve its value as an
1948       // unsigned integer:
1949       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1950     }
1951 
1952     Observer.changedInstr(MI);
1953     return Legalized;
1954   case TargetOpcode::G_UDIV:
1955   case TargetOpcode::G_UREM:
1956   case TargetOpcode::G_UMIN:
1957   case TargetOpcode::G_UMAX:
1958     Observer.changingInstr(MI);
1959     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1960     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1961     widenScalarDst(MI, WideTy);
1962     Observer.changedInstr(MI);
1963     return Legalized;
1964 
1965   case TargetOpcode::G_SELECT:
1966     Observer.changingInstr(MI);
1967     if (TypeIdx == 0) {
1968       // Perform operation at larger width (any extension is fine here, high
1969       // bits don't affect the result) and then truncate the result back to the
1970       // original type.
1971       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1972       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1973       widenScalarDst(MI, WideTy);
1974     } else {
1975       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1976       // Explicit extension is required here since high bits affect the result.
1977       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1978     }
1979     Observer.changedInstr(MI);
1980     return Legalized;
1981 
1982   case TargetOpcode::G_FPTOSI:
1983   case TargetOpcode::G_FPTOUI:
1984     Observer.changingInstr(MI);
1985 
1986     if (TypeIdx == 0)
1987       widenScalarDst(MI, WideTy);
1988     else
1989       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1990 
1991     Observer.changedInstr(MI);
1992     return Legalized;
1993   case TargetOpcode::G_SITOFP:
1994     Observer.changingInstr(MI);
1995 
1996     if (TypeIdx == 0)
1997       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1998     else
1999       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2000 
2001     Observer.changedInstr(MI);
2002     return Legalized;
2003   case TargetOpcode::G_UITOFP:
2004     Observer.changingInstr(MI);
2005 
2006     if (TypeIdx == 0)
2007       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2008     else
2009       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2010 
2011     Observer.changedInstr(MI);
2012     return Legalized;
2013   case TargetOpcode::G_LOAD:
2014   case TargetOpcode::G_SEXTLOAD:
2015   case TargetOpcode::G_ZEXTLOAD:
2016     Observer.changingInstr(MI);
2017     widenScalarDst(MI, WideTy);
2018     Observer.changedInstr(MI);
2019     return Legalized;
2020 
2021   case TargetOpcode::G_STORE: {
2022     if (TypeIdx != 0)
2023       return UnableToLegalize;
2024 
2025     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2026     if (!isPowerOf2_32(Ty.getSizeInBits()))
2027       return UnableToLegalize;
2028 
2029     Observer.changingInstr(MI);
2030 
2031     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2032       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2033     widenScalarSrc(MI, WideTy, 0, ExtType);
2034 
2035     Observer.changedInstr(MI);
2036     return Legalized;
2037   }
2038   case TargetOpcode::G_CONSTANT: {
2039     MachineOperand &SrcMO = MI.getOperand(1);
2040     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2041     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2042         MRI.getType(MI.getOperand(0).getReg()));
2043     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2044             ExtOpc == TargetOpcode::G_ANYEXT) &&
2045            "Illegal Extend");
2046     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2047     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2048                            ? SrcVal.sext(WideTy.getSizeInBits())
2049                            : SrcVal.zext(WideTy.getSizeInBits());
2050     Observer.changingInstr(MI);
2051     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2052 
2053     widenScalarDst(MI, WideTy);
2054     Observer.changedInstr(MI);
2055     return Legalized;
2056   }
2057   case TargetOpcode::G_FCONSTANT: {
2058     MachineOperand &SrcMO = MI.getOperand(1);
2059     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2060     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2061     bool LosesInfo;
2062     switch (WideTy.getSizeInBits()) {
2063     case 32:
2064       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2065                   &LosesInfo);
2066       break;
2067     case 64:
2068       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2069                   &LosesInfo);
2070       break;
2071     default:
2072       return UnableToLegalize;
2073     }
2074 
2075     assert(!LosesInfo && "extend should always be lossless");
2076 
2077     Observer.changingInstr(MI);
2078     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2079 
2080     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2081     Observer.changedInstr(MI);
2082     return Legalized;
2083   }
2084   case TargetOpcode::G_IMPLICIT_DEF: {
2085     Observer.changingInstr(MI);
2086     widenScalarDst(MI, WideTy);
2087     Observer.changedInstr(MI);
2088     return Legalized;
2089   }
2090   case TargetOpcode::G_BRCOND:
2091     Observer.changingInstr(MI);
2092     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2093     Observer.changedInstr(MI);
2094     return Legalized;
2095 
2096   case TargetOpcode::G_FCMP:
2097     Observer.changingInstr(MI);
2098     if (TypeIdx == 0)
2099       widenScalarDst(MI, WideTy);
2100     else {
2101       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2102       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2103     }
2104     Observer.changedInstr(MI);
2105     return Legalized;
2106 
2107   case TargetOpcode::G_ICMP:
2108     Observer.changingInstr(MI);
2109     if (TypeIdx == 0)
2110       widenScalarDst(MI, WideTy);
2111     else {
2112       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2113                                MI.getOperand(1).getPredicate()))
2114                                ? TargetOpcode::G_SEXT
2115                                : TargetOpcode::G_ZEXT;
2116       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2117       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2118     }
2119     Observer.changedInstr(MI);
2120     return Legalized;
2121 
2122   case TargetOpcode::G_PTR_ADD:
2123     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2124     Observer.changingInstr(MI);
2125     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2126     Observer.changedInstr(MI);
2127     return Legalized;
2128 
2129   case TargetOpcode::G_PHI: {
2130     assert(TypeIdx == 0 && "Expecting only Idx 0");
2131 
2132     Observer.changingInstr(MI);
2133     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2134       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2135       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2136       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2137     }
2138 
2139     MachineBasicBlock &MBB = *MI.getParent();
2140     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2141     widenScalarDst(MI, WideTy);
2142     Observer.changedInstr(MI);
2143     return Legalized;
2144   }
2145   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2146     if (TypeIdx == 0) {
2147       Register VecReg = MI.getOperand(1).getReg();
2148       LLT VecTy = MRI.getType(VecReg);
2149       Observer.changingInstr(MI);
2150 
2151       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2152                                      WideTy.getSizeInBits()),
2153                      1, TargetOpcode::G_SEXT);
2154 
2155       widenScalarDst(MI, WideTy, 0);
2156       Observer.changedInstr(MI);
2157       return Legalized;
2158     }
2159 
2160     if (TypeIdx != 2)
2161       return UnableToLegalize;
2162     Observer.changingInstr(MI);
2163     // TODO: Probably should be zext
2164     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2165     Observer.changedInstr(MI);
2166     return Legalized;
2167   }
2168   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2169     if (TypeIdx == 1) {
2170       Observer.changingInstr(MI);
2171 
2172       Register VecReg = MI.getOperand(1).getReg();
2173       LLT VecTy = MRI.getType(VecReg);
2174       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2175 
2176       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2177       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2178       widenScalarDst(MI, WideVecTy, 0);
2179       Observer.changedInstr(MI);
2180       return Legalized;
2181     }
2182 
2183     if (TypeIdx == 2) {
2184       Observer.changingInstr(MI);
2185       // TODO: Probably should be zext
2186       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2187       Observer.changedInstr(MI);
2188       return Legalized;
2189     }
2190 
2191     return UnableToLegalize;
2192   }
2193   case TargetOpcode::G_FADD:
2194   case TargetOpcode::G_FMUL:
2195   case TargetOpcode::G_FSUB:
2196   case TargetOpcode::G_FMA:
2197   case TargetOpcode::G_FMAD:
2198   case TargetOpcode::G_FNEG:
2199   case TargetOpcode::G_FABS:
2200   case TargetOpcode::G_FCANONICALIZE:
2201   case TargetOpcode::G_FMINNUM:
2202   case TargetOpcode::G_FMAXNUM:
2203   case TargetOpcode::G_FMINNUM_IEEE:
2204   case TargetOpcode::G_FMAXNUM_IEEE:
2205   case TargetOpcode::G_FMINIMUM:
2206   case TargetOpcode::G_FMAXIMUM:
2207   case TargetOpcode::G_FDIV:
2208   case TargetOpcode::G_FREM:
2209   case TargetOpcode::G_FCEIL:
2210   case TargetOpcode::G_FFLOOR:
2211   case TargetOpcode::G_FCOS:
2212   case TargetOpcode::G_FSIN:
2213   case TargetOpcode::G_FLOG10:
2214   case TargetOpcode::G_FLOG:
2215   case TargetOpcode::G_FLOG2:
2216   case TargetOpcode::G_FRINT:
2217   case TargetOpcode::G_FNEARBYINT:
2218   case TargetOpcode::G_FSQRT:
2219   case TargetOpcode::G_FEXP:
2220   case TargetOpcode::G_FEXP2:
2221   case TargetOpcode::G_FPOW:
2222   case TargetOpcode::G_INTRINSIC_TRUNC:
2223   case TargetOpcode::G_INTRINSIC_ROUND:
2224   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2225     assert(TypeIdx == 0);
2226     Observer.changingInstr(MI);
2227 
2228     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2229       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2230 
2231     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2232     Observer.changedInstr(MI);
2233     return Legalized;
2234   case TargetOpcode::G_FPOWI: {
2235     if (TypeIdx != 0)
2236       return UnableToLegalize;
2237     Observer.changingInstr(MI);
2238     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2239     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2240     Observer.changedInstr(MI);
2241     return Legalized;
2242   }
2243   case TargetOpcode::G_INTTOPTR:
2244     if (TypeIdx != 1)
2245       return UnableToLegalize;
2246 
2247     Observer.changingInstr(MI);
2248     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2249     Observer.changedInstr(MI);
2250     return Legalized;
2251   case TargetOpcode::G_PTRTOINT:
2252     if (TypeIdx != 0)
2253       return UnableToLegalize;
2254 
2255     Observer.changingInstr(MI);
2256     widenScalarDst(MI, WideTy, 0);
2257     Observer.changedInstr(MI);
2258     return Legalized;
2259   case TargetOpcode::G_BUILD_VECTOR: {
2260     Observer.changingInstr(MI);
2261 
2262     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2263     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2264       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2265 
2266     // Avoid changing the result vector type if the source element type was
2267     // requested.
2268     if (TypeIdx == 1) {
2269       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2270     } else {
2271       widenScalarDst(MI, WideTy, 0);
2272     }
2273 
2274     Observer.changedInstr(MI);
2275     return Legalized;
2276   }
2277   case TargetOpcode::G_SEXT_INREG:
2278     if (TypeIdx != 0)
2279       return UnableToLegalize;
2280 
2281     Observer.changingInstr(MI);
2282     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2283     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2284     Observer.changedInstr(MI);
2285     return Legalized;
2286   case TargetOpcode::G_PTRMASK: {
2287     if (TypeIdx != 1)
2288       return UnableToLegalize;
2289     Observer.changingInstr(MI);
2290     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2291     Observer.changedInstr(MI);
2292     return Legalized;
2293   }
2294   }
2295 }
2296 
2297 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2298                              MachineIRBuilder &B, Register Src, LLT Ty) {
2299   auto Unmerge = B.buildUnmerge(Ty, Src);
2300   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2301     Pieces.push_back(Unmerge.getReg(I));
2302 }
2303 
2304 LegalizerHelper::LegalizeResult
2305 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2306   Register Dst = MI.getOperand(0).getReg();
2307   Register Src = MI.getOperand(1).getReg();
2308   LLT DstTy = MRI.getType(Dst);
2309   LLT SrcTy = MRI.getType(Src);
2310 
2311   if (SrcTy.isVector()) {
2312     LLT SrcEltTy = SrcTy.getElementType();
2313     SmallVector<Register, 8> SrcRegs;
2314 
2315     if (DstTy.isVector()) {
2316       int NumDstElt = DstTy.getNumElements();
2317       int NumSrcElt = SrcTy.getNumElements();
2318 
2319       LLT DstEltTy = DstTy.getElementType();
2320       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2321       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2322 
2323       // If there's an element size mismatch, insert intermediate casts to match
2324       // the result element type.
2325       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2326         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2327         //
2328         // =>
2329         //
2330         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2331         // %3:_(<2 x s8>) = G_BITCAST %2
2332         // %4:_(<2 x s8>) = G_BITCAST %3
2333         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2334         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2335         SrcPartTy = SrcEltTy;
2336       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2337         //
2338         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2339         //
2340         // =>
2341         //
2342         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2343         // %3:_(s16) = G_BITCAST %2
2344         // %4:_(s16) = G_BITCAST %3
2345         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2346         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2347         DstCastTy = DstEltTy;
2348       }
2349 
2350       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2351       for (Register &SrcReg : SrcRegs)
2352         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2353     } else
2354       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2355 
2356     MIRBuilder.buildMerge(Dst, SrcRegs);
2357     MI.eraseFromParent();
2358     return Legalized;
2359   }
2360 
2361   if (DstTy.isVector()) {
2362     SmallVector<Register, 8> SrcRegs;
2363     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2364     MIRBuilder.buildMerge(Dst, SrcRegs);
2365     MI.eraseFromParent();
2366     return Legalized;
2367   }
2368 
2369   return UnableToLegalize;
2370 }
2371 
2372 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2373 /// is casting to a vector with a smaller element size, perform multiple element
2374 /// extracts and merge the results. If this is coercing to a vector with larger
2375 /// elements, index the bitcasted vector and extract the target element with bit
2376 /// operations. This is intended to force the indexing in the native register
2377 /// size for architectures that can dynamically index the register file.
2378 LegalizerHelper::LegalizeResult
2379 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2380                                          LLT CastTy) {
2381   if (TypeIdx != 1)
2382     return UnableToLegalize;
2383 
2384   Register Dst = MI.getOperand(0).getReg();
2385   Register SrcVec = MI.getOperand(1).getReg();
2386   Register Idx = MI.getOperand(2).getReg();
2387   LLT SrcVecTy = MRI.getType(SrcVec);
2388   LLT IdxTy = MRI.getType(Idx);
2389 
2390   LLT SrcEltTy = SrcVecTy.getElementType();
2391   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2392   unsigned OldNumElts = SrcVecTy.getNumElements();
2393 
2394   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2395   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2396 
2397   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2398   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2399   if (NewNumElts > OldNumElts) {
2400     // Decreasing the vector element size
2401     //
2402     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2403     //  =>
2404     //  v4i32:castx = bitcast x:v2i64
2405     //
2406     // i64 = bitcast
2407     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2408     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2409     //
2410     if (NewNumElts % OldNumElts != 0)
2411       return UnableToLegalize;
2412 
2413     // Type of the intermediate result vector.
2414     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2415     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2416 
2417     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2418 
2419     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2420     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2421 
2422     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2423       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2424       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2425       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2426       NewOps[I] = Elt.getReg(0);
2427     }
2428 
2429     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2430     MIRBuilder.buildBitcast(Dst, NewVec);
2431     MI.eraseFromParent();
2432     return Legalized;
2433   }
2434 
2435   if (NewNumElts < OldNumElts) {
2436     if (NewEltSize % OldEltSize != 0)
2437       return UnableToLegalize;
2438 
2439     // This only depends on powers of 2 because we use bit tricks to figure out
2440     // the bit offset we need to shift to get the target element. A general
2441     // expansion could emit division/multiply.
2442     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2443       return UnableToLegalize;
2444 
2445     // Increasing the vector element size.
2446     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2447     //
2448     //   =>
2449     //
2450     // %cast = G_BITCAST %vec
2451     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2452     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2453     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2454     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2455     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2456     // %elt = G_TRUNC %elt_bits
2457 
2458     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2459     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2460 
2461     // Divide to get the index in the wider element type.
2462     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2463 
2464     Register WideElt = CastVec;
2465     if (CastTy.isVector()) {
2466       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2467                                                      ScaledIdx).getReg(0);
2468     }
2469 
2470     // Now figure out the amount we need to shift to get the target bits.
2471     auto OffsetMask = MIRBuilder.buildConstant(
2472       IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2473     auto OffsetIdx = MIRBuilder.buildAnd(IdxTy, Idx, OffsetMask);
2474     auto OffsetBits = MIRBuilder.buildShl(
2475       IdxTy, OffsetIdx,
2476       MIRBuilder.buildConstant(IdxTy, Log2_32(OldEltSize)));
2477 
2478     // Shift the wide element to get the target element.
2479     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2480     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2481     MI.eraseFromParent();
2482     return Legalized;
2483   }
2484 
2485   return UnableToLegalize;
2486 }
2487 
2488 LegalizerHelper::LegalizeResult
2489 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2490   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2491   Register DstReg = MI.getOperand(0).getReg();
2492   Register PtrReg = MI.getOperand(1).getReg();
2493   LLT DstTy = MRI.getType(DstReg);
2494   auto &MMO = **MI.memoperands_begin();
2495 
2496   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2497     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2498       // This load needs splitting into power of 2 sized loads.
2499       if (DstTy.isVector())
2500         return UnableToLegalize;
2501       if (isPowerOf2_32(DstTy.getSizeInBits()))
2502         return UnableToLegalize; // Don't know what we're being asked to do.
2503 
2504       // Our strategy here is to generate anyextending loads for the smaller
2505       // types up to next power-2 result type, and then combine the two larger
2506       // result values together, before truncating back down to the non-pow-2
2507       // type.
2508       // E.g. v1 = i24 load =>
2509       // v2 = i32 zextload (2 byte)
2510       // v3 = i32 load (1 byte)
2511       // v4 = i32 shl v3, 16
2512       // v5 = i32 or v4, v2
2513       // v1 = i24 trunc v5
2514       // By doing this we generate the correct truncate which should get
2515       // combined away as an artifact with a matching extend.
2516       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2517       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2518 
2519       MachineFunction &MF = MIRBuilder.getMF();
2520       MachineMemOperand *LargeMMO =
2521         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2522       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2523         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2524 
2525       LLT PtrTy = MRI.getType(PtrReg);
2526       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2527       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2528       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2529       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2530       auto LargeLoad = MIRBuilder.buildLoadInstr(
2531         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2532 
2533       auto OffsetCst = MIRBuilder.buildConstant(
2534         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2535       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2536       auto SmallPtr =
2537         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2538       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2539                                             *SmallMMO);
2540 
2541       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2542       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2543       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2544       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2545       MI.eraseFromParent();
2546       return Legalized;
2547     }
2548 
2549     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2550     MI.eraseFromParent();
2551     return Legalized;
2552   }
2553 
2554   if (DstTy.isScalar()) {
2555     Register TmpReg =
2556       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2557     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2558     switch (MI.getOpcode()) {
2559     default:
2560       llvm_unreachable("Unexpected opcode");
2561     case TargetOpcode::G_LOAD:
2562       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2563       break;
2564     case TargetOpcode::G_SEXTLOAD:
2565       MIRBuilder.buildSExt(DstReg, TmpReg);
2566       break;
2567     case TargetOpcode::G_ZEXTLOAD:
2568       MIRBuilder.buildZExt(DstReg, TmpReg);
2569       break;
2570     }
2571 
2572     MI.eraseFromParent();
2573     return Legalized;
2574   }
2575 
2576   return UnableToLegalize;
2577 }
2578 
2579 LegalizerHelper::LegalizeResult
2580 LegalizerHelper::lowerStore(MachineInstr &MI) {
2581   // Lower a non-power of 2 store into multiple pow-2 stores.
2582   // E.g. split an i24 store into an i16 store + i8 store.
2583   // We do this by first extending the stored value to the next largest power
2584   // of 2 type, and then using truncating stores to store the components.
2585   // By doing this, likewise with G_LOAD, generate an extend that can be
2586   // artifact-combined away instead of leaving behind extracts.
2587   Register SrcReg = MI.getOperand(0).getReg();
2588   Register PtrReg = MI.getOperand(1).getReg();
2589   LLT SrcTy = MRI.getType(SrcReg);
2590   MachineMemOperand &MMO = **MI.memoperands_begin();
2591   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2592     return UnableToLegalize;
2593   if (SrcTy.isVector())
2594     return UnableToLegalize;
2595   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2596     return UnableToLegalize; // Don't know what we're being asked to do.
2597 
2598   // Extend to the next pow-2.
2599   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2600   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2601 
2602   // Obtain the smaller value by shifting away the larger value.
2603   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2604   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2605   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2606   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2607 
2608   // Generate the PtrAdd and truncating stores.
2609   LLT PtrTy = MRI.getType(PtrReg);
2610   auto OffsetCst = MIRBuilder.buildConstant(
2611     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2612   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2613   auto SmallPtr =
2614     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2615 
2616   MachineFunction &MF = MIRBuilder.getMF();
2617   MachineMemOperand *LargeMMO =
2618     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2619   MachineMemOperand *SmallMMO =
2620     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2621   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2622   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2623   MI.eraseFromParent();
2624   return Legalized;
2625 }
2626 
2627 LegalizerHelper::LegalizeResult
2628 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2629   switch (MI.getOpcode()) {
2630   case TargetOpcode::G_LOAD: {
2631     if (TypeIdx != 0)
2632       return UnableToLegalize;
2633 
2634     Observer.changingInstr(MI);
2635     bitcastDst(MI, CastTy, 0);
2636     Observer.changedInstr(MI);
2637     return Legalized;
2638   }
2639   case TargetOpcode::G_STORE: {
2640     if (TypeIdx != 0)
2641       return UnableToLegalize;
2642 
2643     Observer.changingInstr(MI);
2644     bitcastSrc(MI, CastTy, 0);
2645     Observer.changedInstr(MI);
2646     return Legalized;
2647   }
2648   case TargetOpcode::G_SELECT: {
2649     if (TypeIdx != 0)
2650       return UnableToLegalize;
2651 
2652     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2653       LLVM_DEBUG(
2654           dbgs() << "bitcast action not implemented for vector select\n");
2655       return UnableToLegalize;
2656     }
2657 
2658     Observer.changingInstr(MI);
2659     bitcastSrc(MI, CastTy, 2);
2660     bitcastSrc(MI, CastTy, 3);
2661     bitcastDst(MI, CastTy, 0);
2662     Observer.changedInstr(MI);
2663     return Legalized;
2664   }
2665   case TargetOpcode::G_AND:
2666   case TargetOpcode::G_OR:
2667   case TargetOpcode::G_XOR: {
2668     Observer.changingInstr(MI);
2669     bitcastSrc(MI, CastTy, 1);
2670     bitcastSrc(MI, CastTy, 2);
2671     bitcastDst(MI, CastTy, 0);
2672     Observer.changedInstr(MI);
2673     return Legalized;
2674   }
2675   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2676     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2677   default:
2678     return UnableToLegalize;
2679   }
2680 }
2681 
2682 // Legalize an instruction by changing the opcode in place.
2683 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2684     Observer.changingInstr(MI);
2685     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2686     Observer.changedInstr(MI);
2687 }
2688 
2689 LegalizerHelper::LegalizeResult
2690 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2691   using namespace TargetOpcode;
2692 
2693   switch(MI.getOpcode()) {
2694   default:
2695     return UnableToLegalize;
2696   case TargetOpcode::G_BITCAST:
2697     return lowerBitcast(MI);
2698   case TargetOpcode::G_SREM:
2699   case TargetOpcode::G_UREM: {
2700     auto Quot =
2701         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2702                               {MI.getOperand(1), MI.getOperand(2)});
2703 
2704     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2705     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2706     MI.eraseFromParent();
2707     return Legalized;
2708   }
2709   case TargetOpcode::G_SADDO:
2710   case TargetOpcode::G_SSUBO:
2711     return lowerSADDO_SSUBO(MI);
2712   case TargetOpcode::G_SMULO:
2713   case TargetOpcode::G_UMULO: {
2714     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2715     // result.
2716     Register Res = MI.getOperand(0).getReg();
2717     Register Overflow = MI.getOperand(1).getReg();
2718     Register LHS = MI.getOperand(2).getReg();
2719     Register RHS = MI.getOperand(3).getReg();
2720 
2721     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2722                           ? TargetOpcode::G_SMULH
2723                           : TargetOpcode::G_UMULH;
2724 
2725     Observer.changingInstr(MI);
2726     const auto &TII = MIRBuilder.getTII();
2727     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2728     MI.RemoveOperand(1);
2729     Observer.changedInstr(MI);
2730 
2731     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2732 
2733     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2734     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2735 
2736     // For *signed* multiply, overflow is detected by checking:
2737     // (hi != (lo >> bitwidth-1))
2738     if (Opcode == TargetOpcode::G_SMULH) {
2739       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2740       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2741       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2742     } else {
2743       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2744     }
2745     return Legalized;
2746   }
2747   case TargetOpcode::G_FNEG: {
2748     // TODO: Handle vector types once we are able to
2749     // represent them.
2750     if (Ty.isVector())
2751       return UnableToLegalize;
2752     Register Res = MI.getOperand(0).getReg();
2753     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2754     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2755     if (!ZeroTy)
2756       return UnableToLegalize;
2757     ConstantFP &ZeroForNegation =
2758         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2759     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2760     Register SubByReg = MI.getOperand(1).getReg();
2761     Register ZeroReg = Zero.getReg(0);
2762     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2763     MI.eraseFromParent();
2764     return Legalized;
2765   }
2766   case TargetOpcode::G_FSUB: {
2767     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2768     // First, check if G_FNEG is marked as Lower. If so, we may
2769     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2770     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2771       return UnableToLegalize;
2772     Register Res = MI.getOperand(0).getReg();
2773     Register LHS = MI.getOperand(1).getReg();
2774     Register RHS = MI.getOperand(2).getReg();
2775     Register Neg = MRI.createGenericVirtualRegister(Ty);
2776     MIRBuilder.buildFNeg(Neg, RHS);
2777     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2778     MI.eraseFromParent();
2779     return Legalized;
2780   }
2781   case TargetOpcode::G_FMAD:
2782     return lowerFMad(MI);
2783   case TargetOpcode::G_FFLOOR:
2784     return lowerFFloor(MI);
2785   case TargetOpcode::G_INTRINSIC_ROUND:
2786     return lowerIntrinsicRound(MI);
2787   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2788     // Since round even is the assumed rounding mode for unconstrained FP
2789     // operations, rint and roundeven are the same operation.
2790     changeOpcode(MI, TargetOpcode::G_FRINT);
2791     return Legalized;
2792   }
2793   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2794     Register OldValRes = MI.getOperand(0).getReg();
2795     Register SuccessRes = MI.getOperand(1).getReg();
2796     Register Addr = MI.getOperand(2).getReg();
2797     Register CmpVal = MI.getOperand(3).getReg();
2798     Register NewVal = MI.getOperand(4).getReg();
2799     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2800                                   **MI.memoperands_begin());
2801     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2802     MI.eraseFromParent();
2803     return Legalized;
2804   }
2805   case TargetOpcode::G_LOAD:
2806   case TargetOpcode::G_SEXTLOAD:
2807   case TargetOpcode::G_ZEXTLOAD:
2808     return lowerLoad(MI);
2809   case TargetOpcode::G_STORE:
2810     return lowerStore(MI);
2811   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2812   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2813   case TargetOpcode::G_CTLZ:
2814   case TargetOpcode::G_CTTZ:
2815   case TargetOpcode::G_CTPOP:
2816     return lowerBitCount(MI, TypeIdx, Ty);
2817   case G_UADDO: {
2818     Register Res = MI.getOperand(0).getReg();
2819     Register CarryOut = MI.getOperand(1).getReg();
2820     Register LHS = MI.getOperand(2).getReg();
2821     Register RHS = MI.getOperand(3).getReg();
2822 
2823     MIRBuilder.buildAdd(Res, LHS, RHS);
2824     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2825 
2826     MI.eraseFromParent();
2827     return Legalized;
2828   }
2829   case G_UADDE: {
2830     Register Res = MI.getOperand(0).getReg();
2831     Register CarryOut = MI.getOperand(1).getReg();
2832     Register LHS = MI.getOperand(2).getReg();
2833     Register RHS = MI.getOperand(3).getReg();
2834     Register CarryIn = MI.getOperand(4).getReg();
2835     LLT Ty = MRI.getType(Res);
2836 
2837     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2838     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2839     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2840     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2841 
2842     MI.eraseFromParent();
2843     return Legalized;
2844   }
2845   case G_USUBO: {
2846     Register Res = MI.getOperand(0).getReg();
2847     Register BorrowOut = MI.getOperand(1).getReg();
2848     Register LHS = MI.getOperand(2).getReg();
2849     Register RHS = MI.getOperand(3).getReg();
2850 
2851     MIRBuilder.buildSub(Res, LHS, RHS);
2852     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2853 
2854     MI.eraseFromParent();
2855     return Legalized;
2856   }
2857   case G_USUBE: {
2858     Register Res = MI.getOperand(0).getReg();
2859     Register BorrowOut = MI.getOperand(1).getReg();
2860     Register LHS = MI.getOperand(2).getReg();
2861     Register RHS = MI.getOperand(3).getReg();
2862     Register BorrowIn = MI.getOperand(4).getReg();
2863     const LLT CondTy = MRI.getType(BorrowOut);
2864     const LLT Ty = MRI.getType(Res);
2865 
2866     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2867     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2868     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2869 
2870     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2871     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2872     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2873 
2874     MI.eraseFromParent();
2875     return Legalized;
2876   }
2877   case G_UITOFP:
2878     return lowerUITOFP(MI, TypeIdx, Ty);
2879   case G_SITOFP:
2880     return lowerSITOFP(MI, TypeIdx, Ty);
2881   case G_FPTOUI:
2882     return lowerFPTOUI(MI, TypeIdx, Ty);
2883   case G_FPTOSI:
2884     return lowerFPTOSI(MI);
2885   case G_FPTRUNC:
2886     return lowerFPTRUNC(MI, TypeIdx, Ty);
2887   case G_FPOWI:
2888     return lowerFPOWI(MI);
2889   case G_SMIN:
2890   case G_SMAX:
2891   case G_UMIN:
2892   case G_UMAX:
2893     return lowerMinMax(MI, TypeIdx, Ty);
2894   case G_FCOPYSIGN:
2895     return lowerFCopySign(MI, TypeIdx, Ty);
2896   case G_FMINNUM:
2897   case G_FMAXNUM:
2898     return lowerFMinNumMaxNum(MI);
2899   case G_MERGE_VALUES:
2900     return lowerMergeValues(MI);
2901   case G_UNMERGE_VALUES:
2902     return lowerUnmergeValues(MI);
2903   case TargetOpcode::G_SEXT_INREG: {
2904     assert(MI.getOperand(2).isImm() && "Expected immediate");
2905     int64_t SizeInBits = MI.getOperand(2).getImm();
2906 
2907     Register DstReg = MI.getOperand(0).getReg();
2908     Register SrcReg = MI.getOperand(1).getReg();
2909     LLT DstTy = MRI.getType(DstReg);
2910     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2911 
2912     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2913     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2914     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2915     MI.eraseFromParent();
2916     return Legalized;
2917   }
2918   case G_EXTRACT_VECTOR_ELT:
2919   case G_INSERT_VECTOR_ELT:
2920     return lowerExtractInsertVectorElt(MI);
2921   case G_SHUFFLE_VECTOR:
2922     return lowerShuffleVector(MI);
2923   case G_DYN_STACKALLOC:
2924     return lowerDynStackAlloc(MI);
2925   case G_EXTRACT:
2926     return lowerExtract(MI);
2927   case G_INSERT:
2928     return lowerInsert(MI);
2929   case G_BSWAP:
2930     return lowerBswap(MI);
2931   case G_BITREVERSE:
2932     return lowerBitreverse(MI);
2933   case G_READ_REGISTER:
2934   case G_WRITE_REGISTER:
2935     return lowerReadWriteRegister(MI);
2936   case G_UADDSAT:
2937   case G_USUBSAT: {
2938     // Try to make a reasonable guess about which lowering strategy to use. The
2939     // target can override this with custom lowering and calling the
2940     // implementation functions.
2941     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2942     if (LI.isLegalOrCustom({G_UMIN, Ty}))
2943       return lowerAddSubSatToMinMax(MI);
2944     return lowerAddSubSatToAddoSubo(MI);
2945   }
2946   case G_SADDSAT:
2947   case G_SSUBSAT: {
2948     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2949 
2950     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
2951     // since it's a shorter expansion. However, we would need to figure out the
2952     // preferred boolean type for the carry out for the query.
2953     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
2954       return lowerAddSubSatToMinMax(MI);
2955     return lowerAddSubSatToAddoSubo(MI);
2956   }
2957   case G_SSHLSAT:
2958   case G_USHLSAT:
2959     return lowerShlSat(MI);
2960   }
2961 }
2962 
2963 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
2964                                                   Align MinAlign) const {
2965   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
2966   // datalayout for the preferred alignment. Also there should be a target hook
2967   // for this to allow targets to reduce the alignment and ignore the
2968   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
2969   // the type.
2970   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
2971 }
2972 
2973 MachineInstrBuilder
2974 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
2975                                       MachinePointerInfo &PtrInfo) {
2976   MachineFunction &MF = MIRBuilder.getMF();
2977   const DataLayout &DL = MIRBuilder.getDataLayout();
2978   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
2979 
2980   unsigned AddrSpace = DL.getAllocaAddrSpace();
2981   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
2982 
2983   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
2984   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
2985 }
2986 
2987 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
2988                                         LLT VecTy) {
2989   int64_t IdxVal;
2990   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
2991     return IdxReg;
2992 
2993   LLT IdxTy = B.getMRI()->getType(IdxReg);
2994   unsigned NElts = VecTy.getNumElements();
2995   if (isPowerOf2_32(NElts)) {
2996     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
2997     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
2998   }
2999 
3000   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3001       .getReg(0);
3002 }
3003 
3004 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3005                                                   Register Index) {
3006   LLT EltTy = VecTy.getElementType();
3007 
3008   // Calculate the element offset and add it to the pointer.
3009   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3010   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3011          "Converting bits to bytes lost precision");
3012 
3013   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3014 
3015   LLT IdxTy = MRI.getType(Index);
3016   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3017                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3018 
3019   LLT PtrTy = MRI.getType(VecPtr);
3020   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3021 }
3022 
3023 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3024     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3025   Register DstReg = MI.getOperand(0).getReg();
3026   LLT DstTy = MRI.getType(DstReg);
3027   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3028 
3029   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3030 
3031   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3032   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3033 
3034   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3035   MI.eraseFromParent();
3036   return Legalized;
3037 }
3038 
3039 // Handle splitting vector operations which need to have the same number of
3040 // elements in each type index, but each type index may have a different element
3041 // type.
3042 //
3043 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3044 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3045 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3046 //
3047 // Also handles some irregular breakdown cases, e.g.
3048 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3049 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3050 //             s64 = G_SHL s64, s32
3051 LegalizerHelper::LegalizeResult
3052 LegalizerHelper::fewerElementsVectorMultiEltType(
3053   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3054   if (TypeIdx != 0)
3055     return UnableToLegalize;
3056 
3057   const LLT NarrowTy0 = NarrowTyArg;
3058   const unsigned NewNumElts =
3059       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3060 
3061   const Register DstReg = MI.getOperand(0).getReg();
3062   LLT DstTy = MRI.getType(DstReg);
3063   LLT LeftoverTy0;
3064 
3065   // All of the operands need to have the same number of elements, so if we can
3066   // determine a type breakdown for the result type, we can for all of the
3067   // source types.
3068   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3069   if (NumParts < 0)
3070     return UnableToLegalize;
3071 
3072   SmallVector<MachineInstrBuilder, 4> NewInsts;
3073 
3074   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3075   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3076 
3077   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3078     Register SrcReg = MI.getOperand(I).getReg();
3079     LLT SrcTyI = MRI.getType(SrcReg);
3080     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3081     LLT LeftoverTyI;
3082 
3083     // Split this operand into the requested typed registers, and any leftover
3084     // required to reproduce the original type.
3085     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3086                       LeftoverRegs))
3087       return UnableToLegalize;
3088 
3089     if (I == 1) {
3090       // For the first operand, create an instruction for each part and setup
3091       // the result.
3092       for (Register PartReg : PartRegs) {
3093         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3094         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3095                                .addDef(PartDstReg)
3096                                .addUse(PartReg));
3097         DstRegs.push_back(PartDstReg);
3098       }
3099 
3100       for (Register LeftoverReg : LeftoverRegs) {
3101         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3102         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3103                                .addDef(PartDstReg)
3104                                .addUse(LeftoverReg));
3105         LeftoverDstRegs.push_back(PartDstReg);
3106       }
3107     } else {
3108       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3109 
3110       // Add the newly created operand splits to the existing instructions. The
3111       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3112       // pieces.
3113       unsigned InstCount = 0;
3114       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3115         NewInsts[InstCount++].addUse(PartRegs[J]);
3116       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3117         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3118     }
3119 
3120     PartRegs.clear();
3121     LeftoverRegs.clear();
3122   }
3123 
3124   // Insert the newly built operations and rebuild the result register.
3125   for (auto &MIB : NewInsts)
3126     MIRBuilder.insertInstr(MIB);
3127 
3128   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3129 
3130   MI.eraseFromParent();
3131   return Legalized;
3132 }
3133 
3134 LegalizerHelper::LegalizeResult
3135 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3136                                           LLT NarrowTy) {
3137   if (TypeIdx != 0)
3138     return UnableToLegalize;
3139 
3140   Register DstReg = MI.getOperand(0).getReg();
3141   Register SrcReg = MI.getOperand(1).getReg();
3142   LLT DstTy = MRI.getType(DstReg);
3143   LLT SrcTy = MRI.getType(SrcReg);
3144 
3145   LLT NarrowTy0 = NarrowTy;
3146   LLT NarrowTy1;
3147   unsigned NumParts;
3148 
3149   if (NarrowTy.isVector()) {
3150     // Uneven breakdown not handled.
3151     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3152     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3153       return UnableToLegalize;
3154 
3155     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
3156   } else {
3157     NumParts = DstTy.getNumElements();
3158     NarrowTy1 = SrcTy.getElementType();
3159   }
3160 
3161   SmallVector<Register, 4> SrcRegs, DstRegs;
3162   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3163 
3164   for (unsigned I = 0; I < NumParts; ++I) {
3165     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3166     MachineInstr *NewInst =
3167         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3168 
3169     NewInst->setFlags(MI.getFlags());
3170     DstRegs.push_back(DstReg);
3171   }
3172 
3173   if (NarrowTy.isVector())
3174     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3175   else
3176     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3177 
3178   MI.eraseFromParent();
3179   return Legalized;
3180 }
3181 
3182 LegalizerHelper::LegalizeResult
3183 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3184                                         LLT NarrowTy) {
3185   Register DstReg = MI.getOperand(0).getReg();
3186   Register Src0Reg = MI.getOperand(2).getReg();
3187   LLT DstTy = MRI.getType(DstReg);
3188   LLT SrcTy = MRI.getType(Src0Reg);
3189 
3190   unsigned NumParts;
3191   LLT NarrowTy0, NarrowTy1;
3192 
3193   if (TypeIdx == 0) {
3194     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3195     unsigned OldElts = DstTy.getNumElements();
3196 
3197     NarrowTy0 = NarrowTy;
3198     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3199     NarrowTy1 = NarrowTy.isVector() ?
3200       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3201       SrcTy.getElementType();
3202 
3203   } else {
3204     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3205     unsigned OldElts = SrcTy.getNumElements();
3206 
3207     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3208       NarrowTy.getNumElements();
3209     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3210                             DstTy.getScalarSizeInBits());
3211     NarrowTy1 = NarrowTy;
3212   }
3213 
3214   // FIXME: Don't know how to handle the situation where the small vectors
3215   // aren't all the same size yet.
3216   if (NarrowTy1.isVector() &&
3217       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3218     return UnableToLegalize;
3219 
3220   CmpInst::Predicate Pred
3221     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3222 
3223   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3224   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3225   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3226 
3227   for (unsigned I = 0; I < NumParts; ++I) {
3228     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3229     DstRegs.push_back(DstReg);
3230 
3231     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3232       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3233     else {
3234       MachineInstr *NewCmp
3235         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3236       NewCmp->setFlags(MI.getFlags());
3237     }
3238   }
3239 
3240   if (NarrowTy1.isVector())
3241     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3242   else
3243     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3244 
3245   MI.eraseFromParent();
3246   return Legalized;
3247 }
3248 
3249 LegalizerHelper::LegalizeResult
3250 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3251                                            LLT NarrowTy) {
3252   Register DstReg = MI.getOperand(0).getReg();
3253   Register CondReg = MI.getOperand(1).getReg();
3254 
3255   unsigned NumParts = 0;
3256   LLT NarrowTy0, NarrowTy1;
3257 
3258   LLT DstTy = MRI.getType(DstReg);
3259   LLT CondTy = MRI.getType(CondReg);
3260   unsigned Size = DstTy.getSizeInBits();
3261 
3262   assert(TypeIdx == 0 || CondTy.isVector());
3263 
3264   if (TypeIdx == 0) {
3265     NarrowTy0 = NarrowTy;
3266     NarrowTy1 = CondTy;
3267 
3268     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3269     // FIXME: Don't know how to handle the situation where the small vectors
3270     // aren't all the same size yet.
3271     if (Size % NarrowSize != 0)
3272       return UnableToLegalize;
3273 
3274     NumParts = Size / NarrowSize;
3275 
3276     // Need to break down the condition type
3277     if (CondTy.isVector()) {
3278       if (CondTy.getNumElements() == NumParts)
3279         NarrowTy1 = CondTy.getElementType();
3280       else
3281         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3282                                 CondTy.getScalarSizeInBits());
3283     }
3284   } else {
3285     NumParts = CondTy.getNumElements();
3286     if (NarrowTy.isVector()) {
3287       // TODO: Handle uneven breakdown.
3288       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3289         return UnableToLegalize;
3290 
3291       return UnableToLegalize;
3292     } else {
3293       NarrowTy0 = DstTy.getElementType();
3294       NarrowTy1 = NarrowTy;
3295     }
3296   }
3297 
3298   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3299   if (CondTy.isVector())
3300     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3301 
3302   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3303   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3304 
3305   for (unsigned i = 0; i < NumParts; ++i) {
3306     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3307     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3308                            Src1Regs[i], Src2Regs[i]);
3309     DstRegs.push_back(DstReg);
3310   }
3311 
3312   if (NarrowTy0.isVector())
3313     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3314   else
3315     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3316 
3317   MI.eraseFromParent();
3318   return Legalized;
3319 }
3320 
3321 LegalizerHelper::LegalizeResult
3322 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3323                                         LLT NarrowTy) {
3324   const Register DstReg = MI.getOperand(0).getReg();
3325   LLT PhiTy = MRI.getType(DstReg);
3326   LLT LeftoverTy;
3327 
3328   // All of the operands need to have the same number of elements, so if we can
3329   // determine a type breakdown for the result type, we can for all of the
3330   // source types.
3331   int NumParts, NumLeftover;
3332   std::tie(NumParts, NumLeftover)
3333     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3334   if (NumParts < 0)
3335     return UnableToLegalize;
3336 
3337   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3338   SmallVector<MachineInstrBuilder, 4> NewInsts;
3339 
3340   const int TotalNumParts = NumParts + NumLeftover;
3341 
3342   // Insert the new phis in the result block first.
3343   for (int I = 0; I != TotalNumParts; ++I) {
3344     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3345     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3346     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3347                        .addDef(PartDstReg));
3348     if (I < NumParts)
3349       DstRegs.push_back(PartDstReg);
3350     else
3351       LeftoverDstRegs.push_back(PartDstReg);
3352   }
3353 
3354   MachineBasicBlock *MBB = MI.getParent();
3355   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3356   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3357 
3358   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3359 
3360   // Insert code to extract the incoming values in each predecessor block.
3361   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3362     PartRegs.clear();
3363     LeftoverRegs.clear();
3364 
3365     Register SrcReg = MI.getOperand(I).getReg();
3366     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3367     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3368 
3369     LLT Unused;
3370     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3371                       LeftoverRegs))
3372       return UnableToLegalize;
3373 
3374     // Add the newly created operand splits to the existing instructions. The
3375     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3376     // pieces.
3377     for (int J = 0; J != TotalNumParts; ++J) {
3378       MachineInstrBuilder MIB = NewInsts[J];
3379       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3380       MIB.addMBB(&OpMBB);
3381     }
3382   }
3383 
3384   MI.eraseFromParent();
3385   return Legalized;
3386 }
3387 
3388 LegalizerHelper::LegalizeResult
3389 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3390                                                   unsigned TypeIdx,
3391                                                   LLT NarrowTy) {
3392   if (TypeIdx != 1)
3393     return UnableToLegalize;
3394 
3395   const int NumDst = MI.getNumOperands() - 1;
3396   const Register SrcReg = MI.getOperand(NumDst).getReg();
3397   LLT SrcTy = MRI.getType(SrcReg);
3398 
3399   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3400 
3401   // TODO: Create sequence of extracts.
3402   if (DstTy == NarrowTy)
3403     return UnableToLegalize;
3404 
3405   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3406   if (DstTy == GCDTy) {
3407     // This would just be a copy of the same unmerge.
3408     // TODO: Create extracts, pad with undef and create intermediate merges.
3409     return UnableToLegalize;
3410   }
3411 
3412   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3413   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3414   const int PartsPerUnmerge = NumDst / NumUnmerge;
3415 
3416   for (int I = 0; I != NumUnmerge; ++I) {
3417     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3418 
3419     for (int J = 0; J != PartsPerUnmerge; ++J)
3420       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3421     MIB.addUse(Unmerge.getReg(I));
3422   }
3423 
3424   MI.eraseFromParent();
3425   return Legalized;
3426 }
3427 
3428 LegalizerHelper::LegalizeResult
3429 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3430                                                 unsigned TypeIdx,
3431                                                 LLT NarrowTy) {
3432   assert(TypeIdx == 0 && "not a vector type index");
3433   Register DstReg = MI.getOperand(0).getReg();
3434   LLT DstTy = MRI.getType(DstReg);
3435   LLT SrcTy = DstTy.getElementType();
3436 
3437   int DstNumElts = DstTy.getNumElements();
3438   int NarrowNumElts = NarrowTy.getNumElements();
3439   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3440   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3441 
3442   SmallVector<Register, 8> ConcatOps;
3443   SmallVector<Register, 8> SubBuildVector;
3444 
3445   Register UndefReg;
3446   if (WidenedDstTy != DstTy)
3447     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3448 
3449   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3450   // necessary.
3451   //
3452   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3453   //   -> <2 x s16>
3454   //
3455   // %4:_(s16) = G_IMPLICIT_DEF
3456   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3457   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3458   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3459   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3460   for (int I = 0; I != NumConcat; ++I) {
3461     for (int J = 0; J != NarrowNumElts; ++J) {
3462       int SrcIdx = NarrowNumElts * I + J;
3463 
3464       if (SrcIdx < DstNumElts) {
3465         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3466         SubBuildVector.push_back(SrcReg);
3467       } else
3468         SubBuildVector.push_back(UndefReg);
3469     }
3470 
3471     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3472     ConcatOps.push_back(BuildVec.getReg(0));
3473     SubBuildVector.clear();
3474   }
3475 
3476   if (DstTy == WidenedDstTy)
3477     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3478   else {
3479     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3480     MIRBuilder.buildExtract(DstReg, Concat, 0);
3481   }
3482 
3483   MI.eraseFromParent();
3484   return Legalized;
3485 }
3486 
3487 LegalizerHelper::LegalizeResult
3488 LegalizerHelper::fewerElementsVectorExtractVectorElt(MachineInstr &MI,
3489                                                      unsigned TypeIdx,
3490                                                      LLT NarrowVecTy) {
3491   assert(TypeIdx == 1 && "not a vector type index");
3492 
3493   // TODO: Handle total scalarization case.
3494   if (!NarrowVecTy.isVector())
3495     return UnableToLegalize;
3496 
3497   Register DstReg = MI.getOperand(0).getReg();
3498   Register SrcVec = MI.getOperand(1).getReg();
3499   Register Idx = MI.getOperand(2).getReg();
3500   LLT VecTy = MRI.getType(SrcVec);
3501 
3502   // If the index is a constant, we can really break this down as you would
3503   // expect, and index into the target size pieces.
3504   int64_t IdxVal;
3505   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3506     // Avoid out of bounds indexing the pieces.
3507     if (IdxVal >= VecTy.getNumElements()) {
3508       MIRBuilder.buildUndef(DstReg);
3509       MI.eraseFromParent();
3510       return Legalized;
3511     }
3512 
3513     SmallVector<Register, 8> VecParts;
3514     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3515 
3516     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3517     buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3518                         TargetOpcode::G_ANYEXT);
3519 
3520     unsigned NewNumElts = NarrowVecTy.getNumElements();
3521 
3522     LLT IdxTy = MRI.getType(Idx);
3523     int64_t PartIdx = IdxVal / NewNumElts;
3524     auto NewIdx =
3525         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3526 
3527     MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3528     MI.eraseFromParent();
3529     return Legalized;
3530   }
3531 
3532   // With a variable index, we can't perform the extract in a smaller type, so
3533   // we're forced to expand this.
3534   //
3535   // TODO: We could emit a chain of compare/select to figure out which piece to
3536   // index.
3537   return lowerExtractInsertVectorElt(MI);
3538 }
3539 
3540 LegalizerHelper::LegalizeResult
3541 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3542                                       LLT NarrowTy) {
3543   // FIXME: Don't know how to handle secondary types yet.
3544   if (TypeIdx != 0)
3545     return UnableToLegalize;
3546 
3547   MachineMemOperand *MMO = *MI.memoperands_begin();
3548 
3549   // This implementation doesn't work for atomics. Give up instead of doing
3550   // something invalid.
3551   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3552       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3553     return UnableToLegalize;
3554 
3555   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3556   Register ValReg = MI.getOperand(0).getReg();
3557   Register AddrReg = MI.getOperand(1).getReg();
3558   LLT ValTy = MRI.getType(ValReg);
3559 
3560   // FIXME: Do we need a distinct NarrowMemory legalize action?
3561   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3562     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3563     return UnableToLegalize;
3564   }
3565 
3566   int NumParts = -1;
3567   int NumLeftover = -1;
3568   LLT LeftoverTy;
3569   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3570   if (IsLoad) {
3571     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3572   } else {
3573     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3574                      NarrowLeftoverRegs)) {
3575       NumParts = NarrowRegs.size();
3576       NumLeftover = NarrowLeftoverRegs.size();
3577     }
3578   }
3579 
3580   if (NumParts == -1)
3581     return UnableToLegalize;
3582 
3583   LLT PtrTy = MRI.getType(AddrReg);
3584   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3585 
3586   unsigned TotalSize = ValTy.getSizeInBits();
3587 
3588   // Split the load/store into PartTy sized pieces starting at Offset. If this
3589   // is a load, return the new registers in ValRegs. For a store, each elements
3590   // of ValRegs should be PartTy. Returns the next offset that needs to be
3591   // handled.
3592   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3593                              unsigned Offset) -> unsigned {
3594     MachineFunction &MF = MIRBuilder.getMF();
3595     unsigned PartSize = PartTy.getSizeInBits();
3596     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3597          Offset += PartSize, ++Idx) {
3598       unsigned ByteSize = PartSize / 8;
3599       unsigned ByteOffset = Offset / 8;
3600       Register NewAddrReg;
3601 
3602       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3603 
3604       MachineMemOperand *NewMMO =
3605         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3606 
3607       if (IsLoad) {
3608         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3609         ValRegs.push_back(Dst);
3610         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3611       } else {
3612         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3613       }
3614     }
3615 
3616     return Offset;
3617   };
3618 
3619   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3620 
3621   // Handle the rest of the register if this isn't an even type breakdown.
3622   if (LeftoverTy.isValid())
3623     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3624 
3625   if (IsLoad) {
3626     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3627                 LeftoverTy, NarrowLeftoverRegs);
3628   }
3629 
3630   MI.eraseFromParent();
3631   return Legalized;
3632 }
3633 
3634 LegalizerHelper::LegalizeResult
3635 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3636                                       LLT NarrowTy) {
3637   assert(TypeIdx == 0 && "only one type index expected");
3638 
3639   const unsigned Opc = MI.getOpcode();
3640   const int NumOps = MI.getNumOperands() - 1;
3641   const Register DstReg = MI.getOperand(0).getReg();
3642   const unsigned Flags = MI.getFlags();
3643   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3644   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3645 
3646   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3647 
3648   // First of all check whether we are narrowing (changing the element type)
3649   // or reducing the vector elements
3650   const LLT DstTy = MRI.getType(DstReg);
3651   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3652 
3653   SmallVector<Register, 8> ExtractedRegs[3];
3654   SmallVector<Register, 8> Parts;
3655 
3656   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3657 
3658   // Break down all the sources into NarrowTy pieces we can operate on. This may
3659   // involve creating merges to a wider type, padded with undef.
3660   for (int I = 0; I != NumOps; ++I) {
3661     Register SrcReg = MI.getOperand(I + 1).getReg();
3662     LLT SrcTy = MRI.getType(SrcReg);
3663 
3664     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3665     // For fewerElements, this is a smaller vector with the same element type.
3666     LLT OpNarrowTy;
3667     if (IsNarrow) {
3668       OpNarrowTy = NarrowScalarTy;
3669 
3670       // In case of narrowing, we need to cast vectors to scalars for this to
3671       // work properly
3672       // FIXME: Can we do without the bitcast here if we're narrowing?
3673       if (SrcTy.isVector()) {
3674         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3675         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3676       }
3677     } else {
3678       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3679     }
3680 
3681     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3682 
3683     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3684     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3685                         TargetOpcode::G_ANYEXT);
3686   }
3687 
3688   SmallVector<Register, 8> ResultRegs;
3689 
3690   // Input operands for each sub-instruction.
3691   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3692 
3693   int NumParts = ExtractedRegs[0].size();
3694   const unsigned DstSize = DstTy.getSizeInBits();
3695   const LLT DstScalarTy = LLT::scalar(DstSize);
3696 
3697   // Narrowing needs to use scalar types
3698   LLT DstLCMTy, NarrowDstTy;
3699   if (IsNarrow) {
3700     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3701     NarrowDstTy = NarrowScalarTy;
3702   } else {
3703     DstLCMTy = getLCMType(DstTy, NarrowTy);
3704     NarrowDstTy = NarrowTy;
3705   }
3706 
3707   // We widened the source registers to satisfy merge/unmerge size
3708   // constraints. We'll have some extra fully undef parts.
3709   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3710 
3711   for (int I = 0; I != NumRealParts; ++I) {
3712     // Emit this instruction on each of the split pieces.
3713     for (int J = 0; J != NumOps; ++J)
3714       InputRegs[J] = ExtractedRegs[J][I];
3715 
3716     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3717     ResultRegs.push_back(Inst.getReg(0));
3718   }
3719 
3720   // Fill out the widened result with undef instead of creating instructions
3721   // with undef inputs.
3722   int NumUndefParts = NumParts - NumRealParts;
3723   if (NumUndefParts != 0)
3724     ResultRegs.append(NumUndefParts,
3725                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3726 
3727   // Extract the possibly padded result. Use a scratch register if we need to do
3728   // a final bitcast, otherwise use the original result register.
3729   Register MergeDstReg;
3730   if (IsNarrow && DstTy.isVector())
3731     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3732   else
3733     MergeDstReg = DstReg;
3734 
3735   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3736 
3737   // Recast to vector if we narrowed a vector
3738   if (IsNarrow && DstTy.isVector())
3739     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3740 
3741   MI.eraseFromParent();
3742   return Legalized;
3743 }
3744 
3745 LegalizerHelper::LegalizeResult
3746 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3747                                               LLT NarrowTy) {
3748   Register DstReg = MI.getOperand(0).getReg();
3749   Register SrcReg = MI.getOperand(1).getReg();
3750   int64_t Imm = MI.getOperand(2).getImm();
3751 
3752   LLT DstTy = MRI.getType(DstReg);
3753 
3754   SmallVector<Register, 8> Parts;
3755   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3756   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3757 
3758   for (Register &R : Parts)
3759     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3760 
3761   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3762 
3763   MI.eraseFromParent();
3764   return Legalized;
3765 }
3766 
3767 LegalizerHelper::LegalizeResult
3768 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3769                                      LLT NarrowTy) {
3770   using namespace TargetOpcode;
3771 
3772   switch (MI.getOpcode()) {
3773   case G_IMPLICIT_DEF:
3774     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3775   case G_TRUNC:
3776   case G_AND:
3777   case G_OR:
3778   case G_XOR:
3779   case G_ADD:
3780   case G_SUB:
3781   case G_MUL:
3782   case G_PTR_ADD:
3783   case G_SMULH:
3784   case G_UMULH:
3785   case G_FADD:
3786   case G_FMUL:
3787   case G_FSUB:
3788   case G_FNEG:
3789   case G_FABS:
3790   case G_FCANONICALIZE:
3791   case G_FDIV:
3792   case G_FREM:
3793   case G_FMA:
3794   case G_FMAD:
3795   case G_FPOW:
3796   case G_FEXP:
3797   case G_FEXP2:
3798   case G_FLOG:
3799   case G_FLOG2:
3800   case G_FLOG10:
3801   case G_FNEARBYINT:
3802   case G_FCEIL:
3803   case G_FFLOOR:
3804   case G_FRINT:
3805   case G_INTRINSIC_ROUND:
3806   case G_INTRINSIC_ROUNDEVEN:
3807   case G_INTRINSIC_TRUNC:
3808   case G_FCOS:
3809   case G_FSIN:
3810   case G_FSQRT:
3811   case G_BSWAP:
3812   case G_BITREVERSE:
3813   case G_SDIV:
3814   case G_UDIV:
3815   case G_SREM:
3816   case G_UREM:
3817   case G_SMIN:
3818   case G_SMAX:
3819   case G_UMIN:
3820   case G_UMAX:
3821   case G_FMINNUM:
3822   case G_FMAXNUM:
3823   case G_FMINNUM_IEEE:
3824   case G_FMAXNUM_IEEE:
3825   case G_FMINIMUM:
3826   case G_FMAXIMUM:
3827   case G_FSHL:
3828   case G_FSHR:
3829   case G_FREEZE:
3830   case G_SADDSAT:
3831   case G_SSUBSAT:
3832   case G_UADDSAT:
3833   case G_USUBSAT:
3834     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3835   case G_SHL:
3836   case G_LSHR:
3837   case G_ASHR:
3838   case G_SSHLSAT:
3839   case G_USHLSAT:
3840   case G_CTLZ:
3841   case G_CTLZ_ZERO_UNDEF:
3842   case G_CTTZ:
3843   case G_CTTZ_ZERO_UNDEF:
3844   case G_CTPOP:
3845   case G_FCOPYSIGN:
3846     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3847   case G_ZEXT:
3848   case G_SEXT:
3849   case G_ANYEXT:
3850   case G_FPEXT:
3851   case G_FPTRUNC:
3852   case G_SITOFP:
3853   case G_UITOFP:
3854   case G_FPTOSI:
3855   case G_FPTOUI:
3856   case G_INTTOPTR:
3857   case G_PTRTOINT:
3858   case G_ADDRSPACE_CAST:
3859     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3860   case G_ICMP:
3861   case G_FCMP:
3862     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3863   case G_SELECT:
3864     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3865   case G_PHI:
3866     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3867   case G_UNMERGE_VALUES:
3868     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3869   case G_BUILD_VECTOR:
3870     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3871   case G_EXTRACT_VECTOR_ELT:
3872     return fewerElementsVectorExtractVectorElt(MI, TypeIdx, NarrowTy);
3873   case G_LOAD:
3874   case G_STORE:
3875     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3876   case G_SEXT_INREG:
3877     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3878   default:
3879     return UnableToLegalize;
3880   }
3881 }
3882 
3883 LegalizerHelper::LegalizeResult
3884 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3885                                              const LLT HalfTy, const LLT AmtTy) {
3886 
3887   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3888   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3889   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3890 
3891   if (Amt.isNullValue()) {
3892     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3893     MI.eraseFromParent();
3894     return Legalized;
3895   }
3896 
3897   LLT NVT = HalfTy;
3898   unsigned NVTBits = HalfTy.getSizeInBits();
3899   unsigned VTBits = 2 * NVTBits;
3900 
3901   SrcOp Lo(Register(0)), Hi(Register(0));
3902   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3903     if (Amt.ugt(VTBits)) {
3904       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3905     } else if (Amt.ugt(NVTBits)) {
3906       Lo = MIRBuilder.buildConstant(NVT, 0);
3907       Hi = MIRBuilder.buildShl(NVT, InL,
3908                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3909     } else if (Amt == NVTBits) {
3910       Lo = MIRBuilder.buildConstant(NVT, 0);
3911       Hi = InL;
3912     } else {
3913       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3914       auto OrLHS =
3915           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3916       auto OrRHS = MIRBuilder.buildLShr(
3917           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3918       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3919     }
3920   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3921     if (Amt.ugt(VTBits)) {
3922       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3923     } else if (Amt.ugt(NVTBits)) {
3924       Lo = MIRBuilder.buildLShr(NVT, InH,
3925                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3926       Hi = MIRBuilder.buildConstant(NVT, 0);
3927     } else if (Amt == NVTBits) {
3928       Lo = InH;
3929       Hi = MIRBuilder.buildConstant(NVT, 0);
3930     } else {
3931       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3932 
3933       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3934       auto OrRHS = MIRBuilder.buildShl(
3935           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3936 
3937       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3938       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3939     }
3940   } else {
3941     if (Amt.ugt(VTBits)) {
3942       Hi = Lo = MIRBuilder.buildAShr(
3943           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3944     } else if (Amt.ugt(NVTBits)) {
3945       Lo = MIRBuilder.buildAShr(NVT, InH,
3946                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3947       Hi = MIRBuilder.buildAShr(NVT, InH,
3948                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3949     } else if (Amt == NVTBits) {
3950       Lo = InH;
3951       Hi = MIRBuilder.buildAShr(NVT, InH,
3952                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3953     } else {
3954       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3955 
3956       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3957       auto OrRHS = MIRBuilder.buildShl(
3958           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3959 
3960       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3961       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3962     }
3963   }
3964 
3965   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3966   MI.eraseFromParent();
3967 
3968   return Legalized;
3969 }
3970 
3971 // TODO: Optimize if constant shift amount.
3972 LegalizerHelper::LegalizeResult
3973 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3974                                    LLT RequestedTy) {
3975   if (TypeIdx == 1) {
3976     Observer.changingInstr(MI);
3977     narrowScalarSrc(MI, RequestedTy, 2);
3978     Observer.changedInstr(MI);
3979     return Legalized;
3980   }
3981 
3982   Register DstReg = MI.getOperand(0).getReg();
3983   LLT DstTy = MRI.getType(DstReg);
3984   if (DstTy.isVector())
3985     return UnableToLegalize;
3986 
3987   Register Amt = MI.getOperand(2).getReg();
3988   LLT ShiftAmtTy = MRI.getType(Amt);
3989   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3990   if (DstEltSize % 2 != 0)
3991     return UnableToLegalize;
3992 
3993   // Ignore the input type. We can only go to exactly half the size of the
3994   // input. If that isn't small enough, the resulting pieces will be further
3995   // legalized.
3996   const unsigned NewBitSize = DstEltSize / 2;
3997   const LLT HalfTy = LLT::scalar(NewBitSize);
3998   const LLT CondTy = LLT::scalar(1);
3999 
4000   if (const MachineInstr *KShiftAmt =
4001           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4002     return narrowScalarShiftByConstant(
4003         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4004   }
4005 
4006   // TODO: Expand with known bits.
4007 
4008   // Handle the fully general expansion by an unknown amount.
4009   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4010 
4011   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4012   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4013   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4014 
4015   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4016   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4017 
4018   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4019   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4020   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4021 
4022   Register ResultRegs[2];
4023   switch (MI.getOpcode()) {
4024   case TargetOpcode::G_SHL: {
4025     // Short: ShAmt < NewBitSize
4026     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4027 
4028     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4029     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4030     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4031 
4032     // Long: ShAmt >= NewBitSize
4033     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4034     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4035 
4036     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4037     auto Hi = MIRBuilder.buildSelect(
4038         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4039 
4040     ResultRegs[0] = Lo.getReg(0);
4041     ResultRegs[1] = Hi.getReg(0);
4042     break;
4043   }
4044   case TargetOpcode::G_LSHR:
4045   case TargetOpcode::G_ASHR: {
4046     // Short: ShAmt < NewBitSize
4047     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4048 
4049     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4050     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4051     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4052 
4053     // Long: ShAmt >= NewBitSize
4054     MachineInstrBuilder HiL;
4055     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4056       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4057     } else {
4058       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4059       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4060     }
4061     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4062                                      {InH, AmtExcess});     // Lo from Hi part.
4063 
4064     auto Lo = MIRBuilder.buildSelect(
4065         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4066 
4067     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4068 
4069     ResultRegs[0] = Lo.getReg(0);
4070     ResultRegs[1] = Hi.getReg(0);
4071     break;
4072   }
4073   default:
4074     llvm_unreachable("not a shift");
4075   }
4076 
4077   MIRBuilder.buildMerge(DstReg, ResultRegs);
4078   MI.eraseFromParent();
4079   return Legalized;
4080 }
4081 
4082 LegalizerHelper::LegalizeResult
4083 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4084                                        LLT MoreTy) {
4085   assert(TypeIdx == 0 && "Expecting only Idx 0");
4086 
4087   Observer.changingInstr(MI);
4088   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4089     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4090     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4091     moreElementsVectorSrc(MI, MoreTy, I);
4092   }
4093 
4094   MachineBasicBlock &MBB = *MI.getParent();
4095   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4096   moreElementsVectorDst(MI, MoreTy, 0);
4097   Observer.changedInstr(MI);
4098   return Legalized;
4099 }
4100 
4101 LegalizerHelper::LegalizeResult
4102 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4103                                     LLT MoreTy) {
4104   unsigned Opc = MI.getOpcode();
4105   switch (Opc) {
4106   case TargetOpcode::G_IMPLICIT_DEF:
4107   case TargetOpcode::G_LOAD: {
4108     if (TypeIdx != 0)
4109       return UnableToLegalize;
4110     Observer.changingInstr(MI);
4111     moreElementsVectorDst(MI, MoreTy, 0);
4112     Observer.changedInstr(MI);
4113     return Legalized;
4114   }
4115   case TargetOpcode::G_STORE:
4116     if (TypeIdx != 0)
4117       return UnableToLegalize;
4118     Observer.changingInstr(MI);
4119     moreElementsVectorSrc(MI, MoreTy, 0);
4120     Observer.changedInstr(MI);
4121     return Legalized;
4122   case TargetOpcode::G_AND:
4123   case TargetOpcode::G_OR:
4124   case TargetOpcode::G_XOR:
4125   case TargetOpcode::G_SMIN:
4126   case TargetOpcode::G_SMAX:
4127   case TargetOpcode::G_UMIN:
4128   case TargetOpcode::G_UMAX:
4129   case TargetOpcode::G_FMINNUM:
4130   case TargetOpcode::G_FMAXNUM:
4131   case TargetOpcode::G_FMINNUM_IEEE:
4132   case TargetOpcode::G_FMAXNUM_IEEE:
4133   case TargetOpcode::G_FMINIMUM:
4134   case TargetOpcode::G_FMAXIMUM: {
4135     Observer.changingInstr(MI);
4136     moreElementsVectorSrc(MI, MoreTy, 1);
4137     moreElementsVectorSrc(MI, MoreTy, 2);
4138     moreElementsVectorDst(MI, MoreTy, 0);
4139     Observer.changedInstr(MI);
4140     return Legalized;
4141   }
4142   case TargetOpcode::G_EXTRACT:
4143     if (TypeIdx != 1)
4144       return UnableToLegalize;
4145     Observer.changingInstr(MI);
4146     moreElementsVectorSrc(MI, MoreTy, 1);
4147     Observer.changedInstr(MI);
4148     return Legalized;
4149   case TargetOpcode::G_INSERT:
4150   case TargetOpcode::G_FREEZE:
4151     if (TypeIdx != 0)
4152       return UnableToLegalize;
4153     Observer.changingInstr(MI);
4154     moreElementsVectorSrc(MI, MoreTy, 1);
4155     moreElementsVectorDst(MI, MoreTy, 0);
4156     Observer.changedInstr(MI);
4157     return Legalized;
4158   case TargetOpcode::G_SELECT:
4159     if (TypeIdx != 0)
4160       return UnableToLegalize;
4161     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4162       return UnableToLegalize;
4163 
4164     Observer.changingInstr(MI);
4165     moreElementsVectorSrc(MI, MoreTy, 2);
4166     moreElementsVectorSrc(MI, MoreTy, 3);
4167     moreElementsVectorDst(MI, MoreTy, 0);
4168     Observer.changedInstr(MI);
4169     return Legalized;
4170   case TargetOpcode::G_UNMERGE_VALUES: {
4171     if (TypeIdx != 1)
4172       return UnableToLegalize;
4173 
4174     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4175     int NumDst = MI.getNumOperands() - 1;
4176     moreElementsVectorSrc(MI, MoreTy, NumDst);
4177 
4178     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4179     for (int I = 0; I != NumDst; ++I)
4180       MIB.addDef(MI.getOperand(I).getReg());
4181 
4182     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4183     for (int I = NumDst; I != NewNumDst; ++I)
4184       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4185 
4186     MIB.addUse(MI.getOperand(NumDst).getReg());
4187     MI.eraseFromParent();
4188     return Legalized;
4189   }
4190   case TargetOpcode::G_PHI:
4191     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4192   default:
4193     return UnableToLegalize;
4194   }
4195 }
4196 
4197 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4198                                         ArrayRef<Register> Src1Regs,
4199                                         ArrayRef<Register> Src2Regs,
4200                                         LLT NarrowTy) {
4201   MachineIRBuilder &B = MIRBuilder;
4202   unsigned SrcParts = Src1Regs.size();
4203   unsigned DstParts = DstRegs.size();
4204 
4205   unsigned DstIdx = 0; // Low bits of the result.
4206   Register FactorSum =
4207       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4208   DstRegs[DstIdx] = FactorSum;
4209 
4210   unsigned CarrySumPrevDstIdx;
4211   SmallVector<Register, 4> Factors;
4212 
4213   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4214     // Collect low parts of muls for DstIdx.
4215     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4216          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4217       MachineInstrBuilder Mul =
4218           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4219       Factors.push_back(Mul.getReg(0));
4220     }
4221     // Collect high parts of muls from previous DstIdx.
4222     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4223          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4224       MachineInstrBuilder Umulh =
4225           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4226       Factors.push_back(Umulh.getReg(0));
4227     }
4228     // Add CarrySum from additions calculated for previous DstIdx.
4229     if (DstIdx != 1) {
4230       Factors.push_back(CarrySumPrevDstIdx);
4231     }
4232 
4233     Register CarrySum;
4234     // Add all factors and accumulate all carries into CarrySum.
4235     if (DstIdx != DstParts - 1) {
4236       MachineInstrBuilder Uaddo =
4237           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4238       FactorSum = Uaddo.getReg(0);
4239       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4240       for (unsigned i = 2; i < Factors.size(); ++i) {
4241         MachineInstrBuilder Uaddo =
4242             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4243         FactorSum = Uaddo.getReg(0);
4244         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4245         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4246       }
4247     } else {
4248       // Since value for the next index is not calculated, neither is CarrySum.
4249       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4250       for (unsigned i = 2; i < Factors.size(); ++i)
4251         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4252     }
4253 
4254     CarrySumPrevDstIdx = CarrySum;
4255     DstRegs[DstIdx] = FactorSum;
4256     Factors.clear();
4257   }
4258 }
4259 
4260 LegalizerHelper::LegalizeResult
4261 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4262   Register DstReg = MI.getOperand(0).getReg();
4263   Register Src1 = MI.getOperand(1).getReg();
4264   Register Src2 = MI.getOperand(2).getReg();
4265 
4266   LLT Ty = MRI.getType(DstReg);
4267   if (Ty.isVector())
4268     return UnableToLegalize;
4269 
4270   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4271   unsigned DstSize = Ty.getSizeInBits();
4272   unsigned NarrowSize = NarrowTy.getSizeInBits();
4273   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4274     return UnableToLegalize;
4275 
4276   unsigned NumDstParts = DstSize / NarrowSize;
4277   unsigned NumSrcParts = SrcSize / NarrowSize;
4278   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4279   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4280 
4281   SmallVector<Register, 2> Src1Parts, Src2Parts;
4282   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4283   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4284   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4285   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4286 
4287   // Take only high half of registers if this is high mul.
4288   ArrayRef<Register> DstRegs(
4289       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4290   MIRBuilder.buildMerge(DstReg, DstRegs);
4291   MI.eraseFromParent();
4292   return Legalized;
4293 }
4294 
4295 LegalizerHelper::LegalizeResult
4296 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4297                                      LLT NarrowTy) {
4298   if (TypeIdx != 1)
4299     return UnableToLegalize;
4300 
4301   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4302 
4303   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4304   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4305   // NarrowSize.
4306   if (SizeOp1 % NarrowSize != 0)
4307     return UnableToLegalize;
4308   int NumParts = SizeOp1 / NarrowSize;
4309 
4310   SmallVector<Register, 2> SrcRegs, DstRegs;
4311   SmallVector<uint64_t, 2> Indexes;
4312   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4313 
4314   Register OpReg = MI.getOperand(0).getReg();
4315   uint64_t OpStart = MI.getOperand(2).getImm();
4316   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4317   for (int i = 0; i < NumParts; ++i) {
4318     unsigned SrcStart = i * NarrowSize;
4319 
4320     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4321       // No part of the extract uses this subregister, ignore it.
4322       continue;
4323     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4324       // The entire subregister is extracted, forward the value.
4325       DstRegs.push_back(SrcRegs[i]);
4326       continue;
4327     }
4328 
4329     // OpSegStart is where this destination segment would start in OpReg if it
4330     // extended infinitely in both directions.
4331     int64_t ExtractOffset;
4332     uint64_t SegSize;
4333     if (OpStart < SrcStart) {
4334       ExtractOffset = 0;
4335       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4336     } else {
4337       ExtractOffset = OpStart - SrcStart;
4338       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4339     }
4340 
4341     Register SegReg = SrcRegs[i];
4342     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4343       // A genuine extract is needed.
4344       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4345       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4346     }
4347 
4348     DstRegs.push_back(SegReg);
4349   }
4350 
4351   Register DstReg = MI.getOperand(0).getReg();
4352   if (MRI.getType(DstReg).isVector())
4353     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4354   else if (DstRegs.size() > 1)
4355     MIRBuilder.buildMerge(DstReg, DstRegs);
4356   else
4357     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4358   MI.eraseFromParent();
4359   return Legalized;
4360 }
4361 
4362 LegalizerHelper::LegalizeResult
4363 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4364                                     LLT NarrowTy) {
4365   // FIXME: Don't know how to handle secondary types yet.
4366   if (TypeIdx != 0)
4367     return UnableToLegalize;
4368 
4369   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4370   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4371 
4372   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4373   // NarrowSize.
4374   if (SizeOp0 % NarrowSize != 0)
4375     return UnableToLegalize;
4376 
4377   int NumParts = SizeOp0 / NarrowSize;
4378 
4379   SmallVector<Register, 2> SrcRegs, DstRegs;
4380   SmallVector<uint64_t, 2> Indexes;
4381   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4382 
4383   Register OpReg = MI.getOperand(2).getReg();
4384   uint64_t OpStart = MI.getOperand(3).getImm();
4385   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4386   for (int i = 0; i < NumParts; ++i) {
4387     unsigned DstStart = i * NarrowSize;
4388 
4389     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4390       // No part of the insert affects this subregister, forward the original.
4391       DstRegs.push_back(SrcRegs[i]);
4392       continue;
4393     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4394       // The entire subregister is defined by this insert, forward the new
4395       // value.
4396       DstRegs.push_back(OpReg);
4397       continue;
4398     }
4399 
4400     // OpSegStart is where this destination segment would start in OpReg if it
4401     // extended infinitely in both directions.
4402     int64_t ExtractOffset, InsertOffset;
4403     uint64_t SegSize;
4404     if (OpStart < DstStart) {
4405       InsertOffset = 0;
4406       ExtractOffset = DstStart - OpStart;
4407       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4408     } else {
4409       InsertOffset = OpStart - DstStart;
4410       ExtractOffset = 0;
4411       SegSize =
4412         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4413     }
4414 
4415     Register SegReg = OpReg;
4416     if (ExtractOffset != 0 || SegSize != OpSize) {
4417       // A genuine extract is needed.
4418       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4419       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4420     }
4421 
4422     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4423     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4424     DstRegs.push_back(DstReg);
4425   }
4426 
4427   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4428   Register DstReg = MI.getOperand(0).getReg();
4429   if(MRI.getType(DstReg).isVector())
4430     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4431   else
4432     MIRBuilder.buildMerge(DstReg, DstRegs);
4433   MI.eraseFromParent();
4434   return Legalized;
4435 }
4436 
4437 LegalizerHelper::LegalizeResult
4438 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4439                                    LLT NarrowTy) {
4440   Register DstReg = MI.getOperand(0).getReg();
4441   LLT DstTy = MRI.getType(DstReg);
4442 
4443   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4444 
4445   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4446   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4447   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4448   LLT LeftoverTy;
4449   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4450                     Src0Regs, Src0LeftoverRegs))
4451     return UnableToLegalize;
4452 
4453   LLT Unused;
4454   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4455                     Src1Regs, Src1LeftoverRegs))
4456     llvm_unreachable("inconsistent extractParts result");
4457 
4458   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4459     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4460                                         {Src0Regs[I], Src1Regs[I]});
4461     DstRegs.push_back(Inst.getReg(0));
4462   }
4463 
4464   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4465     auto Inst = MIRBuilder.buildInstr(
4466       MI.getOpcode(),
4467       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4468     DstLeftoverRegs.push_back(Inst.getReg(0));
4469   }
4470 
4471   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4472               LeftoverTy, DstLeftoverRegs);
4473 
4474   MI.eraseFromParent();
4475   return Legalized;
4476 }
4477 
4478 LegalizerHelper::LegalizeResult
4479 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4480                                  LLT NarrowTy) {
4481   if (TypeIdx != 0)
4482     return UnableToLegalize;
4483 
4484   Register DstReg = MI.getOperand(0).getReg();
4485   Register SrcReg = MI.getOperand(1).getReg();
4486 
4487   LLT DstTy = MRI.getType(DstReg);
4488   if (DstTy.isVector())
4489     return UnableToLegalize;
4490 
4491   SmallVector<Register, 8> Parts;
4492   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4493   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4494   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4495 
4496   MI.eraseFromParent();
4497   return Legalized;
4498 }
4499 
4500 LegalizerHelper::LegalizeResult
4501 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4502                                     LLT NarrowTy) {
4503   if (TypeIdx != 0)
4504     return UnableToLegalize;
4505 
4506   Register CondReg = MI.getOperand(1).getReg();
4507   LLT CondTy = MRI.getType(CondReg);
4508   if (CondTy.isVector()) // TODO: Handle vselect
4509     return UnableToLegalize;
4510 
4511   Register DstReg = MI.getOperand(0).getReg();
4512   LLT DstTy = MRI.getType(DstReg);
4513 
4514   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4515   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4516   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4517   LLT LeftoverTy;
4518   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4519                     Src1Regs, Src1LeftoverRegs))
4520     return UnableToLegalize;
4521 
4522   LLT Unused;
4523   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4524                     Src2Regs, Src2LeftoverRegs))
4525     llvm_unreachable("inconsistent extractParts result");
4526 
4527   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4528     auto Select = MIRBuilder.buildSelect(NarrowTy,
4529                                          CondReg, Src1Regs[I], Src2Regs[I]);
4530     DstRegs.push_back(Select.getReg(0));
4531   }
4532 
4533   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4534     auto Select = MIRBuilder.buildSelect(
4535       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4536     DstLeftoverRegs.push_back(Select.getReg(0));
4537   }
4538 
4539   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4540               LeftoverTy, DstLeftoverRegs);
4541 
4542   MI.eraseFromParent();
4543   return Legalized;
4544 }
4545 
4546 LegalizerHelper::LegalizeResult
4547 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4548                                   LLT NarrowTy) {
4549   if (TypeIdx != 1)
4550     return UnableToLegalize;
4551 
4552   Register DstReg = MI.getOperand(0).getReg();
4553   Register SrcReg = MI.getOperand(1).getReg();
4554   LLT DstTy = MRI.getType(DstReg);
4555   LLT SrcTy = MRI.getType(SrcReg);
4556   unsigned NarrowSize = NarrowTy.getSizeInBits();
4557 
4558   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4559     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4560 
4561     MachineIRBuilder &B = MIRBuilder;
4562     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4563     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4564     auto C_0 = B.buildConstant(NarrowTy, 0);
4565     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4566                                 UnmergeSrc.getReg(1), C_0);
4567     auto LoCTLZ = IsUndef ?
4568       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4569       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4570     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4571     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4572     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4573     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4574 
4575     MI.eraseFromParent();
4576     return Legalized;
4577   }
4578 
4579   return UnableToLegalize;
4580 }
4581 
4582 LegalizerHelper::LegalizeResult
4583 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4584                                   LLT NarrowTy) {
4585   if (TypeIdx != 1)
4586     return UnableToLegalize;
4587 
4588   Register DstReg = MI.getOperand(0).getReg();
4589   Register SrcReg = MI.getOperand(1).getReg();
4590   LLT DstTy = MRI.getType(DstReg);
4591   LLT SrcTy = MRI.getType(SrcReg);
4592   unsigned NarrowSize = NarrowTy.getSizeInBits();
4593 
4594   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4595     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4596 
4597     MachineIRBuilder &B = MIRBuilder;
4598     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4599     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4600     auto C_0 = B.buildConstant(NarrowTy, 0);
4601     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4602                                 UnmergeSrc.getReg(0), C_0);
4603     auto HiCTTZ = IsUndef ?
4604       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4605       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4606     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4607     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4608     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4609     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4610 
4611     MI.eraseFromParent();
4612     return Legalized;
4613   }
4614 
4615   return UnableToLegalize;
4616 }
4617 
4618 LegalizerHelper::LegalizeResult
4619 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4620                                    LLT NarrowTy) {
4621   if (TypeIdx != 1)
4622     return UnableToLegalize;
4623 
4624   Register DstReg = MI.getOperand(0).getReg();
4625   LLT DstTy = MRI.getType(DstReg);
4626   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4627   unsigned NarrowSize = NarrowTy.getSizeInBits();
4628 
4629   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4630     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4631 
4632     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4633     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4634     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4635 
4636     MI.eraseFromParent();
4637     return Legalized;
4638   }
4639 
4640   return UnableToLegalize;
4641 }
4642 
4643 LegalizerHelper::LegalizeResult
4644 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4645   unsigned Opc = MI.getOpcode();
4646   const auto &TII = MIRBuilder.getTII();
4647   auto isSupported = [this](const LegalityQuery &Q) {
4648     auto QAction = LI.getAction(Q).Action;
4649     return QAction == Legal || QAction == Libcall || QAction == Custom;
4650   };
4651   switch (Opc) {
4652   default:
4653     return UnableToLegalize;
4654   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4655     // This trivially expands to CTLZ.
4656     Observer.changingInstr(MI);
4657     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4658     Observer.changedInstr(MI);
4659     return Legalized;
4660   }
4661   case TargetOpcode::G_CTLZ: {
4662     Register DstReg = MI.getOperand(0).getReg();
4663     Register SrcReg = MI.getOperand(1).getReg();
4664     LLT DstTy = MRI.getType(DstReg);
4665     LLT SrcTy = MRI.getType(SrcReg);
4666     unsigned Len = SrcTy.getSizeInBits();
4667 
4668     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4669       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4670       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4671       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4672       auto ICmp = MIRBuilder.buildICmp(
4673           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4674       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4675       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4676       MI.eraseFromParent();
4677       return Legalized;
4678     }
4679     // for now, we do this:
4680     // NewLen = NextPowerOf2(Len);
4681     // x = x | (x >> 1);
4682     // x = x | (x >> 2);
4683     // ...
4684     // x = x | (x >>16);
4685     // x = x | (x >>32); // for 64-bit input
4686     // Upto NewLen/2
4687     // return Len - popcount(x);
4688     //
4689     // Ref: "Hacker's Delight" by Henry Warren
4690     Register Op = SrcReg;
4691     unsigned NewLen = PowerOf2Ceil(Len);
4692     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4693       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4694       auto MIBOp = MIRBuilder.buildOr(
4695           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4696       Op = MIBOp.getReg(0);
4697     }
4698     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4699     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4700                         MIBPop);
4701     MI.eraseFromParent();
4702     return Legalized;
4703   }
4704   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4705     // This trivially expands to CTTZ.
4706     Observer.changingInstr(MI);
4707     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4708     Observer.changedInstr(MI);
4709     return Legalized;
4710   }
4711   case TargetOpcode::G_CTTZ: {
4712     Register DstReg = MI.getOperand(0).getReg();
4713     Register SrcReg = MI.getOperand(1).getReg();
4714     LLT DstTy = MRI.getType(DstReg);
4715     LLT SrcTy = MRI.getType(SrcReg);
4716 
4717     unsigned Len = SrcTy.getSizeInBits();
4718     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4719       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4720       // zero.
4721       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4722       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4723       auto ICmp = MIRBuilder.buildICmp(
4724           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4725       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4726       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4727       MI.eraseFromParent();
4728       return Legalized;
4729     }
4730     // for now, we use: { return popcount(~x & (x - 1)); }
4731     // unless the target has ctlz but not ctpop, in which case we use:
4732     // { return 32 - nlz(~x & (x-1)); }
4733     // Ref: "Hacker's Delight" by Henry Warren
4734     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4735     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4736     auto MIBTmp = MIRBuilder.buildAnd(
4737         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4738     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4739         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4740       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4741       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4742                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4743       MI.eraseFromParent();
4744       return Legalized;
4745     }
4746     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4747     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4748     return Legalized;
4749   }
4750   case TargetOpcode::G_CTPOP: {
4751     unsigned Size = Ty.getSizeInBits();
4752     MachineIRBuilder &B = MIRBuilder;
4753 
4754     // Count set bits in blocks of 2 bits. Default approach would be
4755     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4756     // We use following formula instead:
4757     // B2Count = val - { (val >> 1) & 0x55555555 }
4758     // since it gives same result in blocks of 2 with one instruction less.
4759     auto C_1 = B.buildConstant(Ty, 1);
4760     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4761     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4762     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4763     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4764     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4765 
4766     // In order to get count in blocks of 4 add values from adjacent block of 2.
4767     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4768     auto C_2 = B.buildConstant(Ty, 2);
4769     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4770     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4771     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4772     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4773     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4774     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4775 
4776     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4777     // addition since count value sits in range {0,...,8} and 4 bits are enough
4778     // to hold such binary values. After addition high 4 bits still hold count
4779     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4780     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4781     auto C_4 = B.buildConstant(Ty, 4);
4782     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4783     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4784     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4785     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4786     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4787 
4788     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4789     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4790     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4791     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4792     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4793 
4794     // Shift count result from 8 high bits to low bits.
4795     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4796     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4797 
4798     MI.eraseFromParent();
4799     return Legalized;
4800   }
4801   }
4802 }
4803 
4804 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4805 // representation.
4806 LegalizerHelper::LegalizeResult
4807 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4808   Register Dst = MI.getOperand(0).getReg();
4809   Register Src = MI.getOperand(1).getReg();
4810   const LLT S64 = LLT::scalar(64);
4811   const LLT S32 = LLT::scalar(32);
4812   const LLT S1 = LLT::scalar(1);
4813 
4814   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4815 
4816   // unsigned cul2f(ulong u) {
4817   //   uint lz = clz(u);
4818   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4819   //   u = (u << lz) & 0x7fffffffffffffffUL;
4820   //   ulong t = u & 0xffffffffffUL;
4821   //   uint v = (e << 23) | (uint)(u >> 40);
4822   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4823   //   return as_float(v + r);
4824   // }
4825 
4826   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4827   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4828 
4829   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4830 
4831   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4832   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4833 
4834   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4835   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4836 
4837   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4838   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4839 
4840   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4841 
4842   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4843   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4844 
4845   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4846   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4847   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4848 
4849   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4850   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4851   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4852   auto One = MIRBuilder.buildConstant(S32, 1);
4853 
4854   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4855   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4856   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4857   MIRBuilder.buildAdd(Dst, V, R);
4858 
4859   MI.eraseFromParent();
4860   return Legalized;
4861 }
4862 
4863 LegalizerHelper::LegalizeResult
4864 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4865   Register Dst = MI.getOperand(0).getReg();
4866   Register Src = MI.getOperand(1).getReg();
4867   LLT DstTy = MRI.getType(Dst);
4868   LLT SrcTy = MRI.getType(Src);
4869 
4870   if (SrcTy == LLT::scalar(1)) {
4871     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4872     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4873     MIRBuilder.buildSelect(Dst, Src, True, False);
4874     MI.eraseFromParent();
4875     return Legalized;
4876   }
4877 
4878   if (SrcTy != LLT::scalar(64))
4879     return UnableToLegalize;
4880 
4881   if (DstTy == LLT::scalar(32)) {
4882     // TODO: SelectionDAG has several alternative expansions to port which may
4883     // be more reasonble depending on the available instructions. If a target
4884     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4885     // intermediate type, this is probably worse.
4886     return lowerU64ToF32BitOps(MI);
4887   }
4888 
4889   return UnableToLegalize;
4890 }
4891 
4892 LegalizerHelper::LegalizeResult
4893 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4894   Register Dst = MI.getOperand(0).getReg();
4895   Register Src = MI.getOperand(1).getReg();
4896   LLT DstTy = MRI.getType(Dst);
4897   LLT SrcTy = MRI.getType(Src);
4898 
4899   const LLT S64 = LLT::scalar(64);
4900   const LLT S32 = LLT::scalar(32);
4901   const LLT S1 = LLT::scalar(1);
4902 
4903   if (SrcTy == S1) {
4904     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4905     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4906     MIRBuilder.buildSelect(Dst, Src, True, False);
4907     MI.eraseFromParent();
4908     return Legalized;
4909   }
4910 
4911   if (SrcTy != S64)
4912     return UnableToLegalize;
4913 
4914   if (DstTy == S32) {
4915     // signed cl2f(long l) {
4916     //   long s = l >> 63;
4917     //   float r = cul2f((l + s) ^ s);
4918     //   return s ? -r : r;
4919     // }
4920     Register L = Src;
4921     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4922     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4923 
4924     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4925     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4926     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4927 
4928     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4929     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4930                                             MIRBuilder.buildConstant(S64, 0));
4931     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4932     MI.eraseFromParent();
4933     return Legalized;
4934   }
4935 
4936   return UnableToLegalize;
4937 }
4938 
4939 LegalizerHelper::LegalizeResult
4940 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4941   Register Dst = MI.getOperand(0).getReg();
4942   Register Src = MI.getOperand(1).getReg();
4943   LLT DstTy = MRI.getType(Dst);
4944   LLT SrcTy = MRI.getType(Src);
4945   const LLT S64 = LLT::scalar(64);
4946   const LLT S32 = LLT::scalar(32);
4947 
4948   if (SrcTy != S64 && SrcTy != S32)
4949     return UnableToLegalize;
4950   if (DstTy != S32 && DstTy != S64)
4951     return UnableToLegalize;
4952 
4953   // FPTOSI gives same result as FPTOUI for positive signed integers.
4954   // FPTOUI needs to deal with fp values that convert to unsigned integers
4955   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4956 
4957   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4958   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4959                                                 : APFloat::IEEEdouble(),
4960                     APInt::getNullValue(SrcTy.getSizeInBits()));
4961   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4962 
4963   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4964 
4965   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4966   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4967   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4968   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4969   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4970   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4971   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4972 
4973   const LLT S1 = LLT::scalar(1);
4974 
4975   MachineInstrBuilder FCMP =
4976       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4977   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4978 
4979   MI.eraseFromParent();
4980   return Legalized;
4981 }
4982 
4983 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4984   Register Dst = MI.getOperand(0).getReg();
4985   Register Src = MI.getOperand(1).getReg();
4986   LLT DstTy = MRI.getType(Dst);
4987   LLT SrcTy = MRI.getType(Src);
4988   const LLT S64 = LLT::scalar(64);
4989   const LLT S32 = LLT::scalar(32);
4990 
4991   // FIXME: Only f32 to i64 conversions are supported.
4992   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4993     return UnableToLegalize;
4994 
4995   // Expand f32 -> i64 conversion
4996   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4997   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4998 
4999   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5000 
5001   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5002   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5003 
5004   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5005   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5006 
5007   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5008                                            APInt::getSignMask(SrcEltBits));
5009   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5010   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5011   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5012   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5013 
5014   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5015   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5016   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5017 
5018   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5019   R = MIRBuilder.buildZExt(DstTy, R);
5020 
5021   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5022   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5023   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5024   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5025 
5026   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5027   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5028 
5029   const LLT S1 = LLT::scalar(1);
5030   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5031                                     S1, Exponent, ExponentLoBit);
5032 
5033   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5034 
5035   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5036   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5037 
5038   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5039 
5040   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5041                                           S1, Exponent, ZeroSrcTy);
5042 
5043   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5044   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5045 
5046   MI.eraseFromParent();
5047   return Legalized;
5048 }
5049 
5050 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5051 LegalizerHelper::LegalizeResult
5052 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5053   Register Dst = MI.getOperand(0).getReg();
5054   Register Src = MI.getOperand(1).getReg();
5055 
5056   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5057     return UnableToLegalize;
5058 
5059   const unsigned ExpMask = 0x7ff;
5060   const unsigned ExpBiasf64 = 1023;
5061   const unsigned ExpBiasf16 = 15;
5062   const LLT S32 = LLT::scalar(32);
5063   const LLT S1 = LLT::scalar(1);
5064 
5065   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5066   Register U = Unmerge.getReg(0);
5067   Register UH = Unmerge.getReg(1);
5068 
5069   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5070   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5071 
5072   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5073   // add the f16 bias (15) to get the biased exponent for the f16 format.
5074   E = MIRBuilder.buildAdd(
5075     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5076 
5077   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5078   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5079 
5080   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5081                                        MIRBuilder.buildConstant(S32, 0x1ff));
5082   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5083 
5084   auto Zero = MIRBuilder.buildConstant(S32, 0);
5085   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5086   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5087   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5088 
5089   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5090   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5091   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5092   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5093 
5094   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5095   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5096 
5097   // N = M | (E << 12);
5098   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5099   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5100 
5101   // B = clamp(1-E, 0, 13);
5102   auto One = MIRBuilder.buildConstant(S32, 1);
5103   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5104   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5105   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5106 
5107   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5108                                        MIRBuilder.buildConstant(S32, 0x1000));
5109 
5110   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5111   auto D0 = MIRBuilder.buildShl(S32, D, B);
5112 
5113   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5114                                              D0, SigSetHigh);
5115   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5116   D = MIRBuilder.buildOr(S32, D, D1);
5117 
5118   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5119   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5120 
5121   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5122   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5123 
5124   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5125                                        MIRBuilder.buildConstant(S32, 3));
5126   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5127 
5128   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5129                                        MIRBuilder.buildConstant(S32, 5));
5130   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5131 
5132   V1 = MIRBuilder.buildOr(S32, V0, V1);
5133   V = MIRBuilder.buildAdd(S32, V, V1);
5134 
5135   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5136                                        E, MIRBuilder.buildConstant(S32, 30));
5137   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5138                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5139 
5140   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5141                                          E, MIRBuilder.buildConstant(S32, 1039));
5142   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5143 
5144   // Extract the sign bit.
5145   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5146   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5147 
5148   // Insert the sign bit
5149   V = MIRBuilder.buildOr(S32, Sign, V);
5150 
5151   MIRBuilder.buildTrunc(Dst, V);
5152   MI.eraseFromParent();
5153   return Legalized;
5154 }
5155 
5156 LegalizerHelper::LegalizeResult
5157 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5158   Register Dst = MI.getOperand(0).getReg();
5159   Register Src = MI.getOperand(1).getReg();
5160 
5161   LLT DstTy = MRI.getType(Dst);
5162   LLT SrcTy = MRI.getType(Src);
5163   const LLT S64 = LLT::scalar(64);
5164   const LLT S16 = LLT::scalar(16);
5165 
5166   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5167     return lowerFPTRUNC_F64_TO_F16(MI);
5168 
5169   return UnableToLegalize;
5170 }
5171 
5172 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5173 // multiplication tree.
5174 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5175   Register Dst = MI.getOperand(0).getReg();
5176   Register Src0 = MI.getOperand(1).getReg();
5177   Register Src1 = MI.getOperand(2).getReg();
5178   LLT Ty = MRI.getType(Dst);
5179 
5180   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5181   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5182   MI.eraseFromParent();
5183   return Legalized;
5184 }
5185 
5186 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5187   switch (Opc) {
5188   case TargetOpcode::G_SMIN:
5189     return CmpInst::ICMP_SLT;
5190   case TargetOpcode::G_SMAX:
5191     return CmpInst::ICMP_SGT;
5192   case TargetOpcode::G_UMIN:
5193     return CmpInst::ICMP_ULT;
5194   case TargetOpcode::G_UMAX:
5195     return CmpInst::ICMP_UGT;
5196   default:
5197     llvm_unreachable("not in integer min/max");
5198   }
5199 }
5200 
5201 LegalizerHelper::LegalizeResult
5202 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5203   Register Dst = MI.getOperand(0).getReg();
5204   Register Src0 = MI.getOperand(1).getReg();
5205   Register Src1 = MI.getOperand(2).getReg();
5206 
5207   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5208   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5209 
5210   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5211   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5212 
5213   MI.eraseFromParent();
5214   return Legalized;
5215 }
5216 
5217 LegalizerHelper::LegalizeResult
5218 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5219   Register Dst = MI.getOperand(0).getReg();
5220   Register Src0 = MI.getOperand(1).getReg();
5221   Register Src1 = MI.getOperand(2).getReg();
5222 
5223   const LLT Src0Ty = MRI.getType(Src0);
5224   const LLT Src1Ty = MRI.getType(Src1);
5225 
5226   const int Src0Size = Src0Ty.getScalarSizeInBits();
5227   const int Src1Size = Src1Ty.getScalarSizeInBits();
5228 
5229   auto SignBitMask = MIRBuilder.buildConstant(
5230     Src0Ty, APInt::getSignMask(Src0Size));
5231 
5232   auto NotSignBitMask = MIRBuilder.buildConstant(
5233     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5234 
5235   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5236   MachineInstr *Or;
5237 
5238   if (Src0Ty == Src1Ty) {
5239     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5240     Or = MIRBuilder.buildOr(Dst, And0, And1);
5241   } else if (Src0Size > Src1Size) {
5242     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5243     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5244     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5245     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5246     Or = MIRBuilder.buildOr(Dst, And0, And1);
5247   } else {
5248     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5249     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5250     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5251     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5252     Or = MIRBuilder.buildOr(Dst, And0, And1);
5253   }
5254 
5255   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5256   // constants are a nan and -0.0, but the final result should preserve
5257   // everything.
5258   if (unsigned Flags = MI.getFlags())
5259     Or->setFlags(Flags);
5260 
5261   MI.eraseFromParent();
5262   return Legalized;
5263 }
5264 
5265 LegalizerHelper::LegalizeResult
5266 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5267   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5268     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5269 
5270   Register Dst = MI.getOperand(0).getReg();
5271   Register Src0 = MI.getOperand(1).getReg();
5272   Register Src1 = MI.getOperand(2).getReg();
5273   LLT Ty = MRI.getType(Dst);
5274 
5275   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5276     // Insert canonicalizes if it's possible we need to quiet to get correct
5277     // sNaN behavior.
5278 
5279     // Note this must be done here, and not as an optimization combine in the
5280     // absence of a dedicate quiet-snan instruction as we're using an
5281     // omni-purpose G_FCANONICALIZE.
5282     if (!isKnownNeverSNaN(Src0, MRI))
5283       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5284 
5285     if (!isKnownNeverSNaN(Src1, MRI))
5286       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5287   }
5288 
5289   // If there are no nans, it's safe to simply replace this with the non-IEEE
5290   // version.
5291   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5292   MI.eraseFromParent();
5293   return Legalized;
5294 }
5295 
5296 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5297   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5298   Register DstReg = MI.getOperand(0).getReg();
5299   LLT Ty = MRI.getType(DstReg);
5300   unsigned Flags = MI.getFlags();
5301 
5302   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5303                                   Flags);
5304   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5305   MI.eraseFromParent();
5306   return Legalized;
5307 }
5308 
5309 LegalizerHelper::LegalizeResult
5310 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5311   Register DstReg = MI.getOperand(0).getReg();
5312   Register X = MI.getOperand(1).getReg();
5313   const unsigned Flags = MI.getFlags();
5314   const LLT Ty = MRI.getType(DstReg);
5315   const LLT CondTy = Ty.changeElementSize(1);
5316 
5317   // round(x) =>
5318   //  t = trunc(x);
5319   //  d = fabs(x - t);
5320   //  o = copysign(1.0f, x);
5321   //  return t + (d >= 0.5 ? o : 0.0);
5322 
5323   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5324 
5325   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5326   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5327   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5328   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5329   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5330   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5331 
5332   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5333                                   Flags);
5334   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5335 
5336   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5337 
5338   MI.eraseFromParent();
5339   return Legalized;
5340 }
5341 
5342 LegalizerHelper::LegalizeResult
5343 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5344   Register DstReg = MI.getOperand(0).getReg();
5345   Register SrcReg = MI.getOperand(1).getReg();
5346   unsigned Flags = MI.getFlags();
5347   LLT Ty = MRI.getType(DstReg);
5348   const LLT CondTy = Ty.changeElementSize(1);
5349 
5350   // result = trunc(src);
5351   // if (src < 0.0 && src != result)
5352   //   result += -1.0.
5353 
5354   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5355   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5356 
5357   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5358                                   SrcReg, Zero, Flags);
5359   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5360                                       SrcReg, Trunc, Flags);
5361   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5362   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5363 
5364   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5365   MI.eraseFromParent();
5366   return Legalized;
5367 }
5368 
5369 LegalizerHelper::LegalizeResult
5370 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5371   const unsigned NumOps = MI.getNumOperands();
5372   Register DstReg = MI.getOperand(0).getReg();
5373   Register Src0Reg = MI.getOperand(1).getReg();
5374   LLT DstTy = MRI.getType(DstReg);
5375   LLT SrcTy = MRI.getType(Src0Reg);
5376   unsigned PartSize = SrcTy.getSizeInBits();
5377 
5378   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5379   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5380 
5381   for (unsigned I = 2; I != NumOps; ++I) {
5382     const unsigned Offset = (I - 1) * PartSize;
5383 
5384     Register SrcReg = MI.getOperand(I).getReg();
5385     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5386 
5387     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5388       MRI.createGenericVirtualRegister(WideTy);
5389 
5390     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5391     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5392     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5393     ResultReg = NextResult;
5394   }
5395 
5396   if (DstTy.isPointer()) {
5397     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5398           DstTy.getAddressSpace())) {
5399       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5400       return UnableToLegalize;
5401     }
5402 
5403     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5404   }
5405 
5406   MI.eraseFromParent();
5407   return Legalized;
5408 }
5409 
5410 LegalizerHelper::LegalizeResult
5411 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5412   const unsigned NumDst = MI.getNumOperands() - 1;
5413   Register SrcReg = MI.getOperand(NumDst).getReg();
5414   Register Dst0Reg = MI.getOperand(0).getReg();
5415   LLT DstTy = MRI.getType(Dst0Reg);
5416   if (DstTy.isPointer())
5417     return UnableToLegalize; // TODO
5418 
5419   SrcReg = coerceToScalar(SrcReg);
5420   if (!SrcReg)
5421     return UnableToLegalize;
5422 
5423   // Expand scalarizing unmerge as bitcast to integer and shift.
5424   LLT IntTy = MRI.getType(SrcReg);
5425 
5426   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5427 
5428   const unsigned DstSize = DstTy.getSizeInBits();
5429   unsigned Offset = DstSize;
5430   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5431     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5432     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5433     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5434   }
5435 
5436   MI.eraseFromParent();
5437   return Legalized;
5438 }
5439 
5440 /// Lower a vector extract or insert by writing the vector to a stack temporary
5441 /// and reloading the element or vector.
5442 ///
5443 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5444 ///  =>
5445 ///  %stack_temp = G_FRAME_INDEX
5446 ///  G_STORE %vec, %stack_temp
5447 ///  %idx = clamp(%idx, %vec.getNumElements())
5448 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5449 ///  %dst = G_LOAD %element_ptr
5450 LegalizerHelper::LegalizeResult
5451 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5452   Register DstReg = MI.getOperand(0).getReg();
5453   Register SrcVec = MI.getOperand(1).getReg();
5454   Register InsertVal;
5455   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5456     InsertVal = MI.getOperand(2).getReg();
5457 
5458   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5459 
5460   LLT VecTy = MRI.getType(SrcVec);
5461   LLT EltTy = VecTy.getElementType();
5462   if (!EltTy.isByteSized()) { // Not implemented.
5463     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5464     return UnableToLegalize;
5465   }
5466 
5467   unsigned EltBytes = EltTy.getSizeInBytes();
5468   Align VecAlign = getStackTemporaryAlignment(VecTy);
5469   Align EltAlign;
5470 
5471   MachinePointerInfo PtrInfo;
5472   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5473                                         VecAlign, PtrInfo);
5474   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5475 
5476   // Get the pointer to the element, and be sure not to hit undefined behavior
5477   // if the index is out of bounds.
5478   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5479 
5480   int64_t IdxVal;
5481   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5482     int64_t Offset = IdxVal * EltBytes;
5483     PtrInfo = PtrInfo.getWithOffset(Offset);
5484     EltAlign = commonAlignment(VecAlign, Offset);
5485   } else {
5486     // We lose information with a variable offset.
5487     EltAlign = getStackTemporaryAlignment(EltTy);
5488     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5489   }
5490 
5491   if (InsertVal) {
5492     // Write the inserted element
5493     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5494 
5495     // Reload the whole vector.
5496     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5497   } else {
5498     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5499   }
5500 
5501   MI.eraseFromParent();
5502   return Legalized;
5503 }
5504 
5505 LegalizerHelper::LegalizeResult
5506 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5507   Register DstReg = MI.getOperand(0).getReg();
5508   Register Src0Reg = MI.getOperand(1).getReg();
5509   Register Src1Reg = MI.getOperand(2).getReg();
5510   LLT Src0Ty = MRI.getType(Src0Reg);
5511   LLT DstTy = MRI.getType(DstReg);
5512   LLT IdxTy = LLT::scalar(32);
5513 
5514   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5515 
5516   if (DstTy.isScalar()) {
5517     if (Src0Ty.isVector())
5518       return UnableToLegalize;
5519 
5520     // This is just a SELECT.
5521     assert(Mask.size() == 1 && "Expected a single mask element");
5522     Register Val;
5523     if (Mask[0] < 0 || Mask[0] > 1)
5524       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5525     else
5526       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5527     MIRBuilder.buildCopy(DstReg, Val);
5528     MI.eraseFromParent();
5529     return Legalized;
5530   }
5531 
5532   Register Undef;
5533   SmallVector<Register, 32> BuildVec;
5534   LLT EltTy = DstTy.getElementType();
5535 
5536   for (int Idx : Mask) {
5537     if (Idx < 0) {
5538       if (!Undef.isValid())
5539         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5540       BuildVec.push_back(Undef);
5541       continue;
5542     }
5543 
5544     if (Src0Ty.isScalar()) {
5545       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5546     } else {
5547       int NumElts = Src0Ty.getNumElements();
5548       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5549       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5550       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5551       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5552       BuildVec.push_back(Extract.getReg(0));
5553     }
5554   }
5555 
5556   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5557   MI.eraseFromParent();
5558   return Legalized;
5559 }
5560 
5561 LegalizerHelper::LegalizeResult
5562 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5563   const auto &MF = *MI.getMF();
5564   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5565   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5566     return UnableToLegalize;
5567 
5568   Register Dst = MI.getOperand(0).getReg();
5569   Register AllocSize = MI.getOperand(1).getReg();
5570   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5571 
5572   LLT PtrTy = MRI.getType(Dst);
5573   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5574 
5575   const auto &TLI = *MF.getSubtarget().getTargetLowering();
5576   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5577   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5578   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5579 
5580   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5581   // have to generate an extra instruction to negate the alloc and then use
5582   // G_PTR_ADD to add the negative offset.
5583   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5584   if (Alignment > Align(1)) {
5585     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5586     AlignMask.negate();
5587     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5588     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5589   }
5590 
5591   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5592   MIRBuilder.buildCopy(SPReg, SPTmp);
5593   MIRBuilder.buildCopy(Dst, SPTmp);
5594 
5595   MI.eraseFromParent();
5596   return Legalized;
5597 }
5598 
5599 LegalizerHelper::LegalizeResult
5600 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5601   Register Dst = MI.getOperand(0).getReg();
5602   Register Src = MI.getOperand(1).getReg();
5603   unsigned Offset = MI.getOperand(2).getImm();
5604 
5605   LLT DstTy = MRI.getType(Dst);
5606   LLT SrcTy = MRI.getType(Src);
5607 
5608   if (DstTy.isScalar() &&
5609       (SrcTy.isScalar() ||
5610        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5611     LLT SrcIntTy = SrcTy;
5612     if (!SrcTy.isScalar()) {
5613       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5614       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5615     }
5616 
5617     if (Offset == 0)
5618       MIRBuilder.buildTrunc(Dst, Src);
5619     else {
5620       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5621       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5622       MIRBuilder.buildTrunc(Dst, Shr);
5623     }
5624 
5625     MI.eraseFromParent();
5626     return Legalized;
5627   }
5628 
5629   return UnableToLegalize;
5630 }
5631 
5632 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5633   Register Dst = MI.getOperand(0).getReg();
5634   Register Src = MI.getOperand(1).getReg();
5635   Register InsertSrc = MI.getOperand(2).getReg();
5636   uint64_t Offset = MI.getOperand(3).getImm();
5637 
5638   LLT DstTy = MRI.getType(Src);
5639   LLT InsertTy = MRI.getType(InsertSrc);
5640 
5641   if (InsertTy.isVector() ||
5642       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5643     return UnableToLegalize;
5644 
5645   const DataLayout &DL = MIRBuilder.getDataLayout();
5646   if ((DstTy.isPointer() &&
5647        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5648       (InsertTy.isPointer() &&
5649        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5650     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5651     return UnableToLegalize;
5652   }
5653 
5654   LLT IntDstTy = DstTy;
5655 
5656   if (!DstTy.isScalar()) {
5657     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5658     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5659   }
5660 
5661   if (!InsertTy.isScalar()) {
5662     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5663     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5664   }
5665 
5666   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5667   if (Offset != 0) {
5668     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5669     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5670   }
5671 
5672   APInt MaskVal = APInt::getBitsSetWithWrap(
5673       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5674 
5675   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5676   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5677   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5678 
5679   MIRBuilder.buildCast(Dst, Or);
5680   MI.eraseFromParent();
5681   return Legalized;
5682 }
5683 
5684 LegalizerHelper::LegalizeResult
5685 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5686   Register Dst0 = MI.getOperand(0).getReg();
5687   Register Dst1 = MI.getOperand(1).getReg();
5688   Register LHS = MI.getOperand(2).getReg();
5689   Register RHS = MI.getOperand(3).getReg();
5690   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5691 
5692   LLT Ty = MRI.getType(Dst0);
5693   LLT BoolTy = MRI.getType(Dst1);
5694 
5695   if (IsAdd)
5696     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5697   else
5698     MIRBuilder.buildSub(Dst0, LHS, RHS);
5699 
5700   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5701 
5702   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5703 
5704   // For an addition, the result should be less than one of the operands (LHS)
5705   // if and only if the other operand (RHS) is negative, otherwise there will
5706   // be overflow.
5707   // For a subtraction, the result should be less than one of the operands
5708   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5709   // otherwise there will be overflow.
5710   auto ResultLowerThanLHS =
5711       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5712   auto ConditionRHS = MIRBuilder.buildICmp(
5713       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5714 
5715   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5716   MI.eraseFromParent();
5717   return Legalized;
5718 }
5719 
5720 LegalizerHelper::LegalizeResult
5721 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5722   Register Res = MI.getOperand(0).getReg();
5723   Register LHS = MI.getOperand(1).getReg();
5724   Register RHS = MI.getOperand(2).getReg();
5725   LLT Ty = MRI.getType(Res);
5726   bool IsSigned;
5727   bool IsAdd;
5728   unsigned BaseOp;
5729   switch (MI.getOpcode()) {
5730   default:
5731     llvm_unreachable("unexpected addsat/subsat opcode");
5732   case TargetOpcode::G_UADDSAT:
5733     IsSigned = false;
5734     IsAdd = true;
5735     BaseOp = TargetOpcode::G_ADD;
5736     break;
5737   case TargetOpcode::G_SADDSAT:
5738     IsSigned = true;
5739     IsAdd = true;
5740     BaseOp = TargetOpcode::G_ADD;
5741     break;
5742   case TargetOpcode::G_USUBSAT:
5743     IsSigned = false;
5744     IsAdd = false;
5745     BaseOp = TargetOpcode::G_SUB;
5746     break;
5747   case TargetOpcode::G_SSUBSAT:
5748     IsSigned = true;
5749     IsAdd = false;
5750     BaseOp = TargetOpcode::G_SUB;
5751     break;
5752   }
5753 
5754   if (IsSigned) {
5755     // sadd.sat(a, b) ->
5756     //   hi = 0x7fffffff - smax(a, 0)
5757     //   lo = 0x80000000 - smin(a, 0)
5758     //   a + smin(smax(lo, b), hi)
5759     // ssub.sat(a, b) ->
5760     //   lo = smax(a, -1) - 0x7fffffff
5761     //   hi = smin(a, -1) - 0x80000000
5762     //   a - smin(smax(lo, b), hi)
5763     // TODO: AMDGPU can use a "median of 3" instruction here:
5764     //   a +/- med3(lo, b, hi)
5765     uint64_t NumBits = Ty.getScalarSizeInBits();
5766     auto MaxVal =
5767         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5768     auto MinVal =
5769         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5770     MachineInstrBuilder Hi, Lo;
5771     if (IsAdd) {
5772       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5773       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5774       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5775     } else {
5776       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5777       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5778                                MaxVal);
5779       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5780                                MinVal);
5781     }
5782     auto RHSClamped =
5783         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5784     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5785   } else {
5786     // uadd.sat(a, b) -> a + umin(~a, b)
5787     // usub.sat(a, b) -> a - umin(a, b)
5788     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5789     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5790     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5791   }
5792 
5793   MI.eraseFromParent();
5794   return Legalized;
5795 }
5796 
5797 LegalizerHelper::LegalizeResult
5798 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
5799   Register Res = MI.getOperand(0).getReg();
5800   Register LHS = MI.getOperand(1).getReg();
5801   Register RHS = MI.getOperand(2).getReg();
5802   LLT Ty = MRI.getType(Res);
5803   LLT BoolTy = Ty.changeElementSize(1);
5804   bool IsSigned;
5805   bool IsAdd;
5806   unsigned OverflowOp;
5807   switch (MI.getOpcode()) {
5808   default:
5809     llvm_unreachable("unexpected addsat/subsat opcode");
5810   case TargetOpcode::G_UADDSAT:
5811     IsSigned = false;
5812     IsAdd = true;
5813     OverflowOp = TargetOpcode::G_UADDO;
5814     break;
5815   case TargetOpcode::G_SADDSAT:
5816     IsSigned = true;
5817     IsAdd = true;
5818     OverflowOp = TargetOpcode::G_SADDO;
5819     break;
5820   case TargetOpcode::G_USUBSAT:
5821     IsSigned = false;
5822     IsAdd = false;
5823     OverflowOp = TargetOpcode::G_USUBO;
5824     break;
5825   case TargetOpcode::G_SSUBSAT:
5826     IsSigned = true;
5827     IsAdd = false;
5828     OverflowOp = TargetOpcode::G_SSUBO;
5829     break;
5830   }
5831 
5832   auto OverflowRes =
5833       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
5834   Register Tmp = OverflowRes.getReg(0);
5835   Register Ov = OverflowRes.getReg(1);
5836   MachineInstrBuilder Clamp;
5837   if (IsSigned) {
5838     // sadd.sat(a, b) ->
5839     //   {tmp, ov} = saddo(a, b)
5840     //   ov ? (tmp >>s 31) + 0x80000000 : r
5841     // ssub.sat(a, b) ->
5842     //   {tmp, ov} = ssubo(a, b)
5843     //   ov ? (tmp >>s 31) + 0x80000000 : r
5844     uint64_t NumBits = Ty.getScalarSizeInBits();
5845     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
5846     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
5847     auto MinVal =
5848         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5849     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
5850   } else {
5851     // uadd.sat(a, b) ->
5852     //   {tmp, ov} = uaddo(a, b)
5853     //   ov ? 0xffffffff : tmp
5854     // usub.sat(a, b) ->
5855     //   {tmp, ov} = usubo(a, b)
5856     //   ov ? 0 : tmp
5857     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
5858   }
5859   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
5860 
5861   MI.eraseFromParent();
5862   return Legalized;
5863 }
5864 
5865 LegalizerHelper::LegalizeResult
5866 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
5867   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
5868           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
5869          "Expected shlsat opcode!");
5870   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
5871   Register Res = MI.getOperand(0).getReg();
5872   Register LHS = MI.getOperand(1).getReg();
5873   Register RHS = MI.getOperand(2).getReg();
5874   LLT Ty = MRI.getType(Res);
5875   LLT BoolTy = Ty.changeElementSize(1);
5876 
5877   unsigned BW = Ty.getScalarSizeInBits();
5878   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
5879   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
5880                        : MIRBuilder.buildLShr(Ty, Result, RHS);
5881 
5882   MachineInstrBuilder SatVal;
5883   if (IsSigned) {
5884     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
5885     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
5886     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
5887                                     MIRBuilder.buildConstant(Ty, 0));
5888     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
5889   } else {
5890     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
5891   }
5892   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, Ty, LHS, Orig);
5893   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
5894 
5895   MI.eraseFromParent();
5896   return Legalized;
5897 }
5898 
5899 LegalizerHelper::LegalizeResult
5900 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5901   Register Dst = MI.getOperand(0).getReg();
5902   Register Src = MI.getOperand(1).getReg();
5903   const LLT Ty = MRI.getType(Src);
5904   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5905   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5906 
5907   // Swap most and least significant byte, set remaining bytes in Res to zero.
5908   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5909   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5910   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5911   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5912 
5913   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5914   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5915     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5916     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5917     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5918     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5919     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5920     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5921     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5922     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5923     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5924     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5925     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5926     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5927   }
5928   Res.getInstr()->getOperand(0).setReg(Dst);
5929 
5930   MI.eraseFromParent();
5931   return Legalized;
5932 }
5933 
5934 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5935 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5936                                  MachineInstrBuilder Src, APInt Mask) {
5937   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5938   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5939   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5940   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5941   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5942   return B.buildOr(Dst, LHS, RHS);
5943 }
5944 
5945 LegalizerHelper::LegalizeResult
5946 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5947   Register Dst = MI.getOperand(0).getReg();
5948   Register Src = MI.getOperand(1).getReg();
5949   const LLT Ty = MRI.getType(Src);
5950   unsigned Size = Ty.getSizeInBits();
5951 
5952   MachineInstrBuilder BSWAP =
5953       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5954 
5955   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5956   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5957   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5958   MachineInstrBuilder Swap4 =
5959       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5960 
5961   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5962   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5963   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5964   MachineInstrBuilder Swap2 =
5965       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5966 
5967   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5968   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5969   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5970   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5971 
5972   MI.eraseFromParent();
5973   return Legalized;
5974 }
5975 
5976 LegalizerHelper::LegalizeResult
5977 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5978   MachineFunction &MF = MIRBuilder.getMF();
5979   const TargetSubtargetInfo &STI = MF.getSubtarget();
5980   const TargetLowering *TLI = STI.getTargetLowering();
5981 
5982   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5983   int NameOpIdx = IsRead ? 1 : 0;
5984   int ValRegIndex = IsRead ? 0 : 1;
5985 
5986   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5987   const LLT Ty = MRI.getType(ValReg);
5988   const MDString *RegStr = cast<MDString>(
5989     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5990 
5991   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5992   if (!PhysReg.isValid())
5993     return UnableToLegalize;
5994 
5995   if (IsRead)
5996     MIRBuilder.buildCopy(ValReg, PhysReg);
5997   else
5998     MIRBuilder.buildCopy(PhysReg, ValReg);
5999 
6000   MI.eraseFromParent();
6001   return Legalized;
6002 }
6003