1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()) { 94 MIRBuilder.setChangeObserver(Observer); 95 } 96 97 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 98 GISelChangeObserver &Observer, 99 MachineIRBuilder &B) 100 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) { 101 MIRBuilder.setChangeObserver(Observer); 102 } 103 LegalizerHelper::LegalizeResult 104 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 105 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 106 107 MIRBuilder.setInstrAndDebugLoc(MI); 108 109 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 110 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 111 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 112 auto Step = LI.getAction(MI, MRI); 113 switch (Step.Action) { 114 case Legal: 115 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 116 return AlreadyLegal; 117 case Libcall: 118 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 119 return libcall(MI); 120 case NarrowScalar: 121 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 122 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 123 case WidenScalar: 124 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 125 return widenScalar(MI, Step.TypeIdx, Step.NewType); 126 case Bitcast: 127 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 128 return bitcast(MI, Step.TypeIdx, Step.NewType); 129 case Lower: 130 LLVM_DEBUG(dbgs() << ".. Lower\n"); 131 return lower(MI, Step.TypeIdx, Step.NewType); 132 case FewerElements: 133 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 134 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case MoreElements: 136 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 137 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 138 case Custom: 139 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 140 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 141 default: 142 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 143 return UnableToLegalize; 144 } 145 } 146 147 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 148 SmallVectorImpl<Register> &VRegs) { 149 for (int i = 0; i < NumParts; ++i) 150 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 151 MIRBuilder.buildUnmerge(VRegs, Reg); 152 } 153 154 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 155 LLT MainTy, LLT &LeftoverTy, 156 SmallVectorImpl<Register> &VRegs, 157 SmallVectorImpl<Register> &LeftoverRegs) { 158 assert(!LeftoverTy.isValid() && "this is an out argument"); 159 160 unsigned RegSize = RegTy.getSizeInBits(); 161 unsigned MainSize = MainTy.getSizeInBits(); 162 unsigned NumParts = RegSize / MainSize; 163 unsigned LeftoverSize = RegSize - NumParts * MainSize; 164 165 // Use an unmerge when possible. 166 if (LeftoverSize == 0) { 167 for (unsigned I = 0; I < NumParts; ++I) 168 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 169 MIRBuilder.buildUnmerge(VRegs, Reg); 170 return true; 171 } 172 173 if (MainTy.isVector()) { 174 unsigned EltSize = MainTy.getScalarSizeInBits(); 175 if (LeftoverSize % EltSize != 0) 176 return false; 177 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 178 } else { 179 LeftoverTy = LLT::scalar(LeftoverSize); 180 } 181 182 // For irregular sizes, extract the individual parts. 183 for (unsigned I = 0; I != NumParts; ++I) { 184 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 185 VRegs.push_back(NewReg); 186 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 187 } 188 189 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 190 Offset += LeftoverSize) { 191 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 192 LeftoverRegs.push_back(NewReg); 193 MIRBuilder.buildExtract(NewReg, Reg, Offset); 194 } 195 196 return true; 197 } 198 199 void LegalizerHelper::insertParts(Register DstReg, 200 LLT ResultTy, LLT PartTy, 201 ArrayRef<Register> PartRegs, 202 LLT LeftoverTy, 203 ArrayRef<Register> LeftoverRegs) { 204 if (!LeftoverTy.isValid()) { 205 assert(LeftoverRegs.empty()); 206 207 if (!ResultTy.isVector()) { 208 MIRBuilder.buildMerge(DstReg, PartRegs); 209 return; 210 } 211 212 if (PartTy.isVector()) 213 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 214 else 215 MIRBuilder.buildBuildVector(DstReg, PartRegs); 216 return; 217 } 218 219 unsigned PartSize = PartTy.getSizeInBits(); 220 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 221 222 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 223 MIRBuilder.buildUndef(CurResultReg); 224 225 unsigned Offset = 0; 226 for (Register PartReg : PartRegs) { 227 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 228 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 229 CurResultReg = NewResultReg; 230 Offset += PartSize; 231 } 232 233 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 234 // Use the original output register for the final insert to avoid a copy. 235 Register NewResultReg = (I + 1 == E) ? 236 DstReg : MRI.createGenericVirtualRegister(ResultTy); 237 238 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 239 CurResultReg = NewResultReg; 240 Offset += LeftoverPartSize; 241 } 242 } 243 244 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 245 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 246 const MachineInstr &MI) { 247 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 248 249 const int NumResults = MI.getNumOperands() - 1; 250 Regs.resize(NumResults); 251 for (int I = 0; I != NumResults; ++I) 252 Regs[I] = MI.getOperand(I).getReg(); 253 } 254 255 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 256 LLT NarrowTy, Register SrcReg) { 257 LLT SrcTy = MRI.getType(SrcReg); 258 259 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 260 if (SrcTy == GCDTy) { 261 // If the source already evenly divides the result type, we don't need to do 262 // anything. 263 Parts.push_back(SrcReg); 264 } else { 265 // Need to split into common type sized pieces. 266 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 267 getUnmergeResults(Parts, *Unmerge); 268 } 269 270 return GCDTy; 271 } 272 273 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 274 SmallVectorImpl<Register> &VRegs, 275 unsigned PadStrategy) { 276 LLT LCMTy = getLCMType(DstTy, NarrowTy); 277 278 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 279 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 280 int NumOrigSrc = VRegs.size(); 281 282 Register PadReg; 283 284 // Get a value we can use to pad the source value if the sources won't evenly 285 // cover the result type. 286 if (NumOrigSrc < NumParts * NumSubParts) { 287 if (PadStrategy == TargetOpcode::G_ZEXT) 288 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 289 else if (PadStrategy == TargetOpcode::G_ANYEXT) 290 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 291 else { 292 assert(PadStrategy == TargetOpcode::G_SEXT); 293 294 // Shift the sign bit of the low register through the high register. 295 auto ShiftAmt = 296 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 297 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 298 } 299 } 300 301 // Registers for the final merge to be produced. 302 SmallVector<Register, 4> Remerge(NumParts); 303 304 // Registers needed for intermediate merges, which will be merged into a 305 // source for Remerge. 306 SmallVector<Register, 4> SubMerge(NumSubParts); 307 308 // Once we've fully read off the end of the original source bits, we can reuse 309 // the same high bits for remaining padding elements. 310 Register AllPadReg; 311 312 // Build merges to the LCM type to cover the original result type. 313 for (int I = 0; I != NumParts; ++I) { 314 bool AllMergePartsArePadding = true; 315 316 // Build the requested merges to the requested type. 317 for (int J = 0; J != NumSubParts; ++J) { 318 int Idx = I * NumSubParts + J; 319 if (Idx >= NumOrigSrc) { 320 SubMerge[J] = PadReg; 321 continue; 322 } 323 324 SubMerge[J] = VRegs[Idx]; 325 326 // There are meaningful bits here we can't reuse later. 327 AllMergePartsArePadding = false; 328 } 329 330 // If we've filled up a complete piece with padding bits, we can directly 331 // emit the natural sized constant if applicable, rather than a merge of 332 // smaller constants. 333 if (AllMergePartsArePadding && !AllPadReg) { 334 if (PadStrategy == TargetOpcode::G_ANYEXT) 335 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 336 else if (PadStrategy == TargetOpcode::G_ZEXT) 337 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 338 339 // If this is a sign extension, we can't materialize a trivial constant 340 // with the right type and have to produce a merge. 341 } 342 343 if (AllPadReg) { 344 // Avoid creating additional instructions if we're just adding additional 345 // copies of padding bits. 346 Remerge[I] = AllPadReg; 347 continue; 348 } 349 350 if (NumSubParts == 1) 351 Remerge[I] = SubMerge[0]; 352 else 353 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 354 355 // In the sign extend padding case, re-use the first all-signbit merge. 356 if (AllMergePartsArePadding && !AllPadReg) 357 AllPadReg = Remerge[I]; 358 } 359 360 VRegs = std::move(Remerge); 361 return LCMTy; 362 } 363 364 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 365 ArrayRef<Register> RemergeRegs) { 366 LLT DstTy = MRI.getType(DstReg); 367 368 // Create the merge to the widened source, and extract the relevant bits into 369 // the result. 370 371 if (DstTy == LCMTy) { 372 MIRBuilder.buildMerge(DstReg, RemergeRegs); 373 return; 374 } 375 376 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 377 if (DstTy.isScalar() && LCMTy.isScalar()) { 378 MIRBuilder.buildTrunc(DstReg, Remerge); 379 return; 380 } 381 382 if (LCMTy.isVector()) { 383 MIRBuilder.buildExtract(DstReg, Remerge, 0); 384 return; 385 } 386 387 llvm_unreachable("unhandled case"); 388 } 389 390 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 391 #define RTLIBCASE_INT(LibcallPrefix) \ 392 do { \ 393 switch (Size) { \ 394 case 32: \ 395 return RTLIB::LibcallPrefix##32; \ 396 case 64: \ 397 return RTLIB::LibcallPrefix##64; \ 398 case 128: \ 399 return RTLIB::LibcallPrefix##128; \ 400 default: \ 401 llvm_unreachable("unexpected size"); \ 402 } \ 403 } while (0) 404 405 #define RTLIBCASE(LibcallPrefix) \ 406 do { \ 407 switch (Size) { \ 408 case 32: \ 409 return RTLIB::LibcallPrefix##32; \ 410 case 64: \ 411 return RTLIB::LibcallPrefix##64; \ 412 case 80: \ 413 return RTLIB::LibcallPrefix##80; \ 414 case 128: \ 415 return RTLIB::LibcallPrefix##128; \ 416 default: \ 417 llvm_unreachable("unexpected size"); \ 418 } \ 419 } while (0) 420 421 switch (Opcode) { 422 case TargetOpcode::G_SDIV: 423 RTLIBCASE_INT(SDIV_I); 424 case TargetOpcode::G_UDIV: 425 RTLIBCASE_INT(UDIV_I); 426 case TargetOpcode::G_SREM: 427 RTLIBCASE_INT(SREM_I); 428 case TargetOpcode::G_UREM: 429 RTLIBCASE_INT(UREM_I); 430 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 431 RTLIBCASE_INT(CTLZ_I); 432 case TargetOpcode::G_FADD: 433 RTLIBCASE(ADD_F); 434 case TargetOpcode::G_FSUB: 435 RTLIBCASE(SUB_F); 436 case TargetOpcode::G_FMUL: 437 RTLIBCASE(MUL_F); 438 case TargetOpcode::G_FDIV: 439 RTLIBCASE(DIV_F); 440 case TargetOpcode::G_FEXP: 441 RTLIBCASE(EXP_F); 442 case TargetOpcode::G_FEXP2: 443 RTLIBCASE(EXP2_F); 444 case TargetOpcode::G_FREM: 445 RTLIBCASE(REM_F); 446 case TargetOpcode::G_FPOW: 447 RTLIBCASE(POW_F); 448 case TargetOpcode::G_FMA: 449 RTLIBCASE(FMA_F); 450 case TargetOpcode::G_FSIN: 451 RTLIBCASE(SIN_F); 452 case TargetOpcode::G_FCOS: 453 RTLIBCASE(COS_F); 454 case TargetOpcode::G_FLOG10: 455 RTLIBCASE(LOG10_F); 456 case TargetOpcode::G_FLOG: 457 RTLIBCASE(LOG_F); 458 case TargetOpcode::G_FLOG2: 459 RTLIBCASE(LOG2_F); 460 case TargetOpcode::G_FCEIL: 461 RTLIBCASE(CEIL_F); 462 case TargetOpcode::G_FFLOOR: 463 RTLIBCASE(FLOOR_F); 464 case TargetOpcode::G_FMINNUM: 465 RTLIBCASE(FMIN_F); 466 case TargetOpcode::G_FMAXNUM: 467 RTLIBCASE(FMAX_F); 468 case TargetOpcode::G_FSQRT: 469 RTLIBCASE(SQRT_F); 470 case TargetOpcode::G_FRINT: 471 RTLIBCASE(RINT_F); 472 case TargetOpcode::G_FNEARBYINT: 473 RTLIBCASE(NEARBYINT_F); 474 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 475 RTLIBCASE(ROUNDEVEN_F); 476 } 477 llvm_unreachable("Unknown libcall function"); 478 } 479 480 /// True if an instruction is in tail position in its caller. Intended for 481 /// legalizing libcalls as tail calls when possible. 482 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 483 MachineInstr &MI) { 484 MachineBasicBlock &MBB = *MI.getParent(); 485 const Function &F = MBB.getParent()->getFunction(); 486 487 // Conservatively require the attributes of the call to match those of 488 // the return. Ignore NoAlias and NonNull because they don't affect the 489 // call sequence. 490 AttributeList CallerAttrs = F.getAttributes(); 491 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 492 .removeAttribute(Attribute::NoAlias) 493 .removeAttribute(Attribute::NonNull) 494 .hasAttributes()) 495 return false; 496 497 // It's not safe to eliminate the sign / zero extension of the return value. 498 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 499 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 500 return false; 501 502 // Only tail call if the following instruction is a standard return. 503 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 504 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 505 return false; 506 507 return true; 508 } 509 510 LegalizerHelper::LegalizeResult 511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 512 const CallLowering::ArgInfo &Result, 513 ArrayRef<CallLowering::ArgInfo> Args, 514 const CallingConv::ID CC) { 515 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 516 517 CallLowering::CallLoweringInfo Info; 518 Info.CallConv = CC; 519 Info.Callee = MachineOperand::CreateES(Name); 520 Info.OrigRet = Result; 521 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 522 if (!CLI.lowerCall(MIRBuilder, Info)) 523 return LegalizerHelper::UnableToLegalize; 524 525 return LegalizerHelper::Legalized; 526 } 527 528 LegalizerHelper::LegalizeResult 529 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 530 const CallLowering::ArgInfo &Result, 531 ArrayRef<CallLowering::ArgInfo> Args) { 532 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 533 const char *Name = TLI.getLibcallName(Libcall); 534 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 535 return createLibcall(MIRBuilder, Name, Result, Args, CC); 536 } 537 538 // Useful for libcalls where all operands have the same type. 539 static LegalizerHelper::LegalizeResult 540 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 541 Type *OpType) { 542 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 543 544 SmallVector<CallLowering::ArgInfo, 3> Args; 545 for (unsigned i = 1; i < MI.getNumOperands(); i++) 546 Args.push_back({MI.getOperand(i).getReg(), OpType}); 547 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 548 Args); 549 } 550 551 LegalizerHelper::LegalizeResult 552 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 553 MachineInstr &MI) { 554 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 555 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 556 557 SmallVector<CallLowering::ArgInfo, 3> Args; 558 // Add all the args, except for the last which is an imm denoting 'tail'. 559 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 560 Register Reg = MI.getOperand(i).getReg(); 561 562 // Need derive an IR type for call lowering. 563 LLT OpLLT = MRI.getType(Reg); 564 Type *OpTy = nullptr; 565 if (OpLLT.isPointer()) 566 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 567 else 568 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 569 Args.push_back({Reg, OpTy}); 570 } 571 572 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 573 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 574 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 575 RTLIB::Libcall RTLibcall; 576 switch (ID) { 577 case Intrinsic::memcpy: 578 RTLibcall = RTLIB::MEMCPY; 579 break; 580 case Intrinsic::memset: 581 RTLibcall = RTLIB::MEMSET; 582 break; 583 case Intrinsic::memmove: 584 RTLibcall = RTLIB::MEMMOVE; 585 break; 586 default: 587 return LegalizerHelper::UnableToLegalize; 588 } 589 const char *Name = TLI.getLibcallName(RTLibcall); 590 591 MIRBuilder.setInstrAndDebugLoc(MI); 592 593 CallLowering::CallLoweringInfo Info; 594 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 595 Info.Callee = MachineOperand::CreateES(Name); 596 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 597 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 598 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 599 600 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 601 if (!CLI.lowerCall(MIRBuilder, Info)) 602 return LegalizerHelper::UnableToLegalize; 603 604 if (Info.LoweredTailCall) { 605 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 606 // We must have a return following the call (or debug insts) to get past 607 // isLibCallInTailPosition. 608 do { 609 MachineInstr *Next = MI.getNextNode(); 610 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 611 "Expected instr following MI to be return or debug inst?"); 612 // We lowered a tail call, so the call is now the return from the block. 613 // Delete the old return. 614 Next->eraseFromParent(); 615 } while (MI.getNextNode()); 616 } 617 618 return LegalizerHelper::Legalized; 619 } 620 621 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 622 Type *FromType) { 623 auto ToMVT = MVT::getVT(ToType); 624 auto FromMVT = MVT::getVT(FromType); 625 626 switch (Opcode) { 627 case TargetOpcode::G_FPEXT: 628 return RTLIB::getFPEXT(FromMVT, ToMVT); 629 case TargetOpcode::G_FPTRUNC: 630 return RTLIB::getFPROUND(FromMVT, ToMVT); 631 case TargetOpcode::G_FPTOSI: 632 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 633 case TargetOpcode::G_FPTOUI: 634 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 635 case TargetOpcode::G_SITOFP: 636 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 637 case TargetOpcode::G_UITOFP: 638 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 639 } 640 llvm_unreachable("Unsupported libcall function"); 641 } 642 643 static LegalizerHelper::LegalizeResult 644 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 645 Type *FromType) { 646 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 647 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 648 {{MI.getOperand(1).getReg(), FromType}}); 649 } 650 651 LegalizerHelper::LegalizeResult 652 LegalizerHelper::libcall(MachineInstr &MI) { 653 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 654 unsigned Size = LLTy.getSizeInBits(); 655 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 656 657 switch (MI.getOpcode()) { 658 default: 659 return UnableToLegalize; 660 case TargetOpcode::G_SDIV: 661 case TargetOpcode::G_UDIV: 662 case TargetOpcode::G_SREM: 663 case TargetOpcode::G_UREM: 664 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 665 Type *HLTy = IntegerType::get(Ctx, Size); 666 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 667 if (Status != Legalized) 668 return Status; 669 break; 670 } 671 case TargetOpcode::G_FADD: 672 case TargetOpcode::G_FSUB: 673 case TargetOpcode::G_FMUL: 674 case TargetOpcode::G_FDIV: 675 case TargetOpcode::G_FMA: 676 case TargetOpcode::G_FPOW: 677 case TargetOpcode::G_FREM: 678 case TargetOpcode::G_FCOS: 679 case TargetOpcode::G_FSIN: 680 case TargetOpcode::G_FLOG10: 681 case TargetOpcode::G_FLOG: 682 case TargetOpcode::G_FLOG2: 683 case TargetOpcode::G_FEXP: 684 case TargetOpcode::G_FEXP2: 685 case TargetOpcode::G_FCEIL: 686 case TargetOpcode::G_FFLOOR: 687 case TargetOpcode::G_FMINNUM: 688 case TargetOpcode::G_FMAXNUM: 689 case TargetOpcode::G_FSQRT: 690 case TargetOpcode::G_FRINT: 691 case TargetOpcode::G_FNEARBYINT: 692 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 693 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 694 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 695 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 696 return UnableToLegalize; 697 } 698 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 699 if (Status != Legalized) 700 return Status; 701 break; 702 } 703 case TargetOpcode::G_FPEXT: 704 case TargetOpcode::G_FPTRUNC: { 705 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 706 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 707 if (!FromTy || !ToTy) 708 return UnableToLegalize; 709 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 710 if (Status != Legalized) 711 return Status; 712 break; 713 } 714 case TargetOpcode::G_FPTOSI: 715 case TargetOpcode::G_FPTOUI: { 716 // FIXME: Support other types 717 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 718 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 719 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 720 return UnableToLegalize; 721 LegalizeResult Status = conversionLibcall( 722 MI, MIRBuilder, 723 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 724 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 725 if (Status != Legalized) 726 return Status; 727 break; 728 } 729 case TargetOpcode::G_SITOFP: 730 case TargetOpcode::G_UITOFP: { 731 // FIXME: Support other types 732 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 733 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 734 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 735 return UnableToLegalize; 736 LegalizeResult Status = conversionLibcall( 737 MI, MIRBuilder, 738 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 739 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 740 if (Status != Legalized) 741 return Status; 742 break; 743 } 744 } 745 746 MI.eraseFromParent(); 747 return Legalized; 748 } 749 750 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 751 unsigned TypeIdx, 752 LLT NarrowTy) { 753 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 754 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 755 756 switch (MI.getOpcode()) { 757 default: 758 return UnableToLegalize; 759 case TargetOpcode::G_IMPLICIT_DEF: { 760 Register DstReg = MI.getOperand(0).getReg(); 761 LLT DstTy = MRI.getType(DstReg); 762 763 // If SizeOp0 is not an exact multiple of NarrowSize, emit 764 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 765 // FIXME: Although this would also be legal for the general case, it causes 766 // a lot of regressions in the emitted code (superfluous COPYs, artifact 767 // combines not being hit). This seems to be a problem related to the 768 // artifact combiner. 769 if (SizeOp0 % NarrowSize != 0) { 770 LLT ImplicitTy = NarrowTy; 771 if (DstTy.isVector()) 772 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 773 774 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 775 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 776 777 MI.eraseFromParent(); 778 return Legalized; 779 } 780 781 int NumParts = SizeOp0 / NarrowSize; 782 783 SmallVector<Register, 2> DstRegs; 784 for (int i = 0; i < NumParts; ++i) 785 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 786 787 if (DstTy.isVector()) 788 MIRBuilder.buildBuildVector(DstReg, DstRegs); 789 else 790 MIRBuilder.buildMerge(DstReg, DstRegs); 791 MI.eraseFromParent(); 792 return Legalized; 793 } 794 case TargetOpcode::G_CONSTANT: { 795 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 796 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 797 unsigned TotalSize = Ty.getSizeInBits(); 798 unsigned NarrowSize = NarrowTy.getSizeInBits(); 799 int NumParts = TotalSize / NarrowSize; 800 801 SmallVector<Register, 4> PartRegs; 802 for (int I = 0; I != NumParts; ++I) { 803 unsigned Offset = I * NarrowSize; 804 auto K = MIRBuilder.buildConstant(NarrowTy, 805 Val.lshr(Offset).trunc(NarrowSize)); 806 PartRegs.push_back(K.getReg(0)); 807 } 808 809 LLT LeftoverTy; 810 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 811 SmallVector<Register, 1> LeftoverRegs; 812 if (LeftoverBits != 0) { 813 LeftoverTy = LLT::scalar(LeftoverBits); 814 auto K = MIRBuilder.buildConstant( 815 LeftoverTy, 816 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 817 LeftoverRegs.push_back(K.getReg(0)); 818 } 819 820 insertParts(MI.getOperand(0).getReg(), 821 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 822 823 MI.eraseFromParent(); 824 return Legalized; 825 } 826 case TargetOpcode::G_SEXT: 827 case TargetOpcode::G_ZEXT: 828 case TargetOpcode::G_ANYEXT: 829 return narrowScalarExt(MI, TypeIdx, NarrowTy); 830 case TargetOpcode::G_TRUNC: { 831 if (TypeIdx != 1) 832 return UnableToLegalize; 833 834 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 835 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 836 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 837 return UnableToLegalize; 838 } 839 840 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 841 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 842 MI.eraseFromParent(); 843 return Legalized; 844 } 845 846 case TargetOpcode::G_FREEZE: 847 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 848 849 case TargetOpcode::G_ADD: { 850 // FIXME: add support for when SizeOp0 isn't an exact multiple of 851 // NarrowSize. 852 if (SizeOp0 % NarrowSize != 0) 853 return UnableToLegalize; 854 // Expand in terms of carry-setting/consuming G_ADDE instructions. 855 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 856 857 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 858 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 859 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 860 861 Register CarryIn; 862 for (int i = 0; i < NumParts; ++i) { 863 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 864 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 865 866 if (i == 0) 867 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 868 else { 869 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 870 Src2Regs[i], CarryIn); 871 } 872 873 DstRegs.push_back(DstReg); 874 CarryIn = CarryOut; 875 } 876 Register DstReg = MI.getOperand(0).getReg(); 877 if(MRI.getType(DstReg).isVector()) 878 MIRBuilder.buildBuildVector(DstReg, DstRegs); 879 else 880 MIRBuilder.buildMerge(DstReg, DstRegs); 881 MI.eraseFromParent(); 882 return Legalized; 883 } 884 case TargetOpcode::G_SUB: { 885 // FIXME: add support for when SizeOp0 isn't an exact multiple of 886 // NarrowSize. 887 if (SizeOp0 % NarrowSize != 0) 888 return UnableToLegalize; 889 890 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 891 892 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 893 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 894 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 895 896 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 897 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 898 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 899 {Src1Regs[0], Src2Regs[0]}); 900 DstRegs.push_back(DstReg); 901 Register BorrowIn = BorrowOut; 902 for (int i = 1; i < NumParts; ++i) { 903 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 904 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 905 906 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 907 {Src1Regs[i], Src2Regs[i], BorrowIn}); 908 909 DstRegs.push_back(DstReg); 910 BorrowIn = BorrowOut; 911 } 912 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 913 MI.eraseFromParent(); 914 return Legalized; 915 } 916 case TargetOpcode::G_MUL: 917 case TargetOpcode::G_UMULH: 918 return narrowScalarMul(MI, NarrowTy); 919 case TargetOpcode::G_EXTRACT: 920 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 921 case TargetOpcode::G_INSERT: 922 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 923 case TargetOpcode::G_LOAD: { 924 auto &MMO = **MI.memoperands_begin(); 925 Register DstReg = MI.getOperand(0).getReg(); 926 LLT DstTy = MRI.getType(DstReg); 927 if (DstTy.isVector()) 928 return UnableToLegalize; 929 930 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 931 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 932 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 933 MIRBuilder.buildAnyExt(DstReg, TmpReg); 934 MI.eraseFromParent(); 935 return Legalized; 936 } 937 938 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 939 } 940 case TargetOpcode::G_ZEXTLOAD: 941 case TargetOpcode::G_SEXTLOAD: { 942 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 943 Register DstReg = MI.getOperand(0).getReg(); 944 Register PtrReg = MI.getOperand(1).getReg(); 945 946 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 947 auto &MMO = **MI.memoperands_begin(); 948 if (MMO.getSizeInBits() == NarrowSize) { 949 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 950 } else { 951 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 952 } 953 954 if (ZExt) 955 MIRBuilder.buildZExt(DstReg, TmpReg); 956 else 957 MIRBuilder.buildSExt(DstReg, TmpReg); 958 959 MI.eraseFromParent(); 960 return Legalized; 961 } 962 case TargetOpcode::G_STORE: { 963 const auto &MMO = **MI.memoperands_begin(); 964 965 Register SrcReg = MI.getOperand(0).getReg(); 966 LLT SrcTy = MRI.getType(SrcReg); 967 if (SrcTy.isVector()) 968 return UnableToLegalize; 969 970 int NumParts = SizeOp0 / NarrowSize; 971 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 972 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 973 if (SrcTy.isVector() && LeftoverBits != 0) 974 return UnableToLegalize; 975 976 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 977 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 978 auto &MMO = **MI.memoperands_begin(); 979 MIRBuilder.buildTrunc(TmpReg, SrcReg); 980 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 981 MI.eraseFromParent(); 982 return Legalized; 983 } 984 985 return reduceLoadStoreWidth(MI, 0, NarrowTy); 986 } 987 case TargetOpcode::G_SELECT: 988 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 989 case TargetOpcode::G_AND: 990 case TargetOpcode::G_OR: 991 case TargetOpcode::G_XOR: { 992 // Legalize bitwise operation: 993 // A = BinOp<Ty> B, C 994 // into: 995 // B1, ..., BN = G_UNMERGE_VALUES B 996 // C1, ..., CN = G_UNMERGE_VALUES C 997 // A1 = BinOp<Ty/N> B1, C2 998 // ... 999 // AN = BinOp<Ty/N> BN, CN 1000 // A = G_MERGE_VALUES A1, ..., AN 1001 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1002 } 1003 case TargetOpcode::G_SHL: 1004 case TargetOpcode::G_LSHR: 1005 case TargetOpcode::G_ASHR: 1006 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1007 case TargetOpcode::G_CTLZ: 1008 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1009 case TargetOpcode::G_CTTZ: 1010 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1011 case TargetOpcode::G_CTPOP: 1012 if (TypeIdx == 1) 1013 switch (MI.getOpcode()) { 1014 case TargetOpcode::G_CTLZ: 1015 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1016 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1017 case TargetOpcode::G_CTTZ: 1018 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1019 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1020 case TargetOpcode::G_CTPOP: 1021 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1022 default: 1023 return UnableToLegalize; 1024 } 1025 1026 Observer.changingInstr(MI); 1027 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1028 Observer.changedInstr(MI); 1029 return Legalized; 1030 case TargetOpcode::G_INTTOPTR: 1031 if (TypeIdx != 1) 1032 return UnableToLegalize; 1033 1034 Observer.changingInstr(MI); 1035 narrowScalarSrc(MI, NarrowTy, 1); 1036 Observer.changedInstr(MI); 1037 return Legalized; 1038 case TargetOpcode::G_PTRTOINT: 1039 if (TypeIdx != 0) 1040 return UnableToLegalize; 1041 1042 Observer.changingInstr(MI); 1043 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1044 Observer.changedInstr(MI); 1045 return Legalized; 1046 case TargetOpcode::G_PHI: { 1047 unsigned NumParts = SizeOp0 / NarrowSize; 1048 SmallVector<Register, 2> DstRegs(NumParts); 1049 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1050 Observer.changingInstr(MI); 1051 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1052 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1053 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1054 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1055 SrcRegs[i / 2]); 1056 } 1057 MachineBasicBlock &MBB = *MI.getParent(); 1058 MIRBuilder.setInsertPt(MBB, MI); 1059 for (unsigned i = 0; i < NumParts; ++i) { 1060 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1061 MachineInstrBuilder MIB = 1062 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1063 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1064 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1065 } 1066 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1067 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1068 Observer.changedInstr(MI); 1069 MI.eraseFromParent(); 1070 return Legalized; 1071 } 1072 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1073 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1074 if (TypeIdx != 2) 1075 return UnableToLegalize; 1076 1077 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1078 Observer.changingInstr(MI); 1079 narrowScalarSrc(MI, NarrowTy, OpIdx); 1080 Observer.changedInstr(MI); 1081 return Legalized; 1082 } 1083 case TargetOpcode::G_ICMP: { 1084 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1085 if (NarrowSize * 2 != SrcSize) 1086 return UnableToLegalize; 1087 1088 Observer.changingInstr(MI); 1089 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1090 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1091 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1092 1093 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1094 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1095 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1096 1097 CmpInst::Predicate Pred = 1098 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1099 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1100 1101 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1102 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1103 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1104 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1105 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1106 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1107 } else { 1108 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1109 MachineInstrBuilder CmpHEQ = 1110 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1111 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1112 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1113 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1114 } 1115 Observer.changedInstr(MI); 1116 MI.eraseFromParent(); 1117 return Legalized; 1118 } 1119 case TargetOpcode::G_SEXT_INREG: { 1120 if (TypeIdx != 0) 1121 return UnableToLegalize; 1122 1123 int64_t SizeInBits = MI.getOperand(2).getImm(); 1124 1125 // So long as the new type has more bits than the bits we're extending we 1126 // don't need to break it apart. 1127 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1128 Observer.changingInstr(MI); 1129 // We don't lose any non-extension bits by truncating the src and 1130 // sign-extending the dst. 1131 MachineOperand &MO1 = MI.getOperand(1); 1132 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1133 MO1.setReg(TruncMIB.getReg(0)); 1134 1135 MachineOperand &MO2 = MI.getOperand(0); 1136 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1137 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1138 MIRBuilder.buildSExt(MO2, DstExt); 1139 MO2.setReg(DstExt); 1140 Observer.changedInstr(MI); 1141 return Legalized; 1142 } 1143 1144 // Break it apart. Components below the extension point are unmodified. The 1145 // component containing the extension point becomes a narrower SEXT_INREG. 1146 // Components above it are ashr'd from the component containing the 1147 // extension point. 1148 if (SizeOp0 % NarrowSize != 0) 1149 return UnableToLegalize; 1150 int NumParts = SizeOp0 / NarrowSize; 1151 1152 // List the registers where the destination will be scattered. 1153 SmallVector<Register, 2> DstRegs; 1154 // List the registers where the source will be split. 1155 SmallVector<Register, 2> SrcRegs; 1156 1157 // Create all the temporary registers. 1158 for (int i = 0; i < NumParts; ++i) { 1159 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1160 1161 SrcRegs.push_back(SrcReg); 1162 } 1163 1164 // Explode the big arguments into smaller chunks. 1165 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1166 1167 Register AshrCstReg = 1168 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1169 .getReg(0); 1170 Register FullExtensionReg = 0; 1171 Register PartialExtensionReg = 0; 1172 1173 // Do the operation on each small part. 1174 for (int i = 0; i < NumParts; ++i) { 1175 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1176 DstRegs.push_back(SrcRegs[i]); 1177 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1178 assert(PartialExtensionReg && 1179 "Expected to visit partial extension before full"); 1180 if (FullExtensionReg) { 1181 DstRegs.push_back(FullExtensionReg); 1182 continue; 1183 } 1184 DstRegs.push_back( 1185 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1186 .getReg(0)); 1187 FullExtensionReg = DstRegs.back(); 1188 } else { 1189 DstRegs.push_back( 1190 MIRBuilder 1191 .buildInstr( 1192 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1193 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1194 .getReg(0)); 1195 PartialExtensionReg = DstRegs.back(); 1196 } 1197 } 1198 1199 // Gather the destination registers into the final destination. 1200 Register DstReg = MI.getOperand(0).getReg(); 1201 MIRBuilder.buildMerge(DstReg, DstRegs); 1202 MI.eraseFromParent(); 1203 return Legalized; 1204 } 1205 case TargetOpcode::G_BSWAP: 1206 case TargetOpcode::G_BITREVERSE: { 1207 if (SizeOp0 % NarrowSize != 0) 1208 return UnableToLegalize; 1209 1210 Observer.changingInstr(MI); 1211 SmallVector<Register, 2> SrcRegs, DstRegs; 1212 unsigned NumParts = SizeOp0 / NarrowSize; 1213 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1214 1215 for (unsigned i = 0; i < NumParts; ++i) { 1216 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1217 {SrcRegs[NumParts - 1 - i]}); 1218 DstRegs.push_back(DstPart.getReg(0)); 1219 } 1220 1221 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1222 1223 Observer.changedInstr(MI); 1224 MI.eraseFromParent(); 1225 return Legalized; 1226 } 1227 case TargetOpcode::G_PTR_ADD: 1228 case TargetOpcode::G_PTRMASK: { 1229 if (TypeIdx != 1) 1230 return UnableToLegalize; 1231 Observer.changingInstr(MI); 1232 narrowScalarSrc(MI, NarrowTy, 2); 1233 Observer.changedInstr(MI); 1234 return Legalized; 1235 } 1236 case TargetOpcode::G_FPTOUI: { 1237 if (TypeIdx != 0) 1238 return UnableToLegalize; 1239 Observer.changingInstr(MI); 1240 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1241 Observer.changedInstr(MI); 1242 return Legalized; 1243 } 1244 case TargetOpcode::G_FPTOSI: { 1245 if (TypeIdx != 0) 1246 return UnableToLegalize; 1247 Observer.changingInstr(MI); 1248 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1249 Observer.changedInstr(MI); 1250 return Legalized; 1251 } 1252 case TargetOpcode::G_FPEXT: 1253 if (TypeIdx != 0) 1254 return UnableToLegalize; 1255 Observer.changingInstr(MI); 1256 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1257 Observer.changedInstr(MI); 1258 return Legalized; 1259 } 1260 } 1261 1262 Register LegalizerHelper::coerceToScalar(Register Val) { 1263 LLT Ty = MRI.getType(Val); 1264 if (Ty.isScalar()) 1265 return Val; 1266 1267 const DataLayout &DL = MIRBuilder.getDataLayout(); 1268 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1269 if (Ty.isPointer()) { 1270 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1271 return Register(); 1272 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1273 } 1274 1275 Register NewVal = Val; 1276 1277 assert(Ty.isVector()); 1278 LLT EltTy = Ty.getElementType(); 1279 if (EltTy.isPointer()) 1280 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1281 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1282 } 1283 1284 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1285 unsigned OpIdx, unsigned ExtOpcode) { 1286 MachineOperand &MO = MI.getOperand(OpIdx); 1287 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1288 MO.setReg(ExtB.getReg(0)); 1289 } 1290 1291 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1292 unsigned OpIdx) { 1293 MachineOperand &MO = MI.getOperand(OpIdx); 1294 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1295 MO.setReg(ExtB.getReg(0)); 1296 } 1297 1298 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1299 unsigned OpIdx, unsigned TruncOpcode) { 1300 MachineOperand &MO = MI.getOperand(OpIdx); 1301 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1302 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1303 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1304 MO.setReg(DstExt); 1305 } 1306 1307 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1308 unsigned OpIdx, unsigned ExtOpcode) { 1309 MachineOperand &MO = MI.getOperand(OpIdx); 1310 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1311 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1312 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1313 MO.setReg(DstTrunc); 1314 } 1315 1316 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1317 unsigned OpIdx) { 1318 MachineOperand &MO = MI.getOperand(OpIdx); 1319 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1320 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1321 } 1322 1323 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1324 unsigned OpIdx) { 1325 MachineOperand &MO = MI.getOperand(OpIdx); 1326 1327 LLT OldTy = MRI.getType(MO.getReg()); 1328 unsigned OldElts = OldTy.getNumElements(); 1329 unsigned NewElts = MoreTy.getNumElements(); 1330 1331 unsigned NumParts = NewElts / OldElts; 1332 1333 // Use concat_vectors if the result is a multiple of the number of elements. 1334 if (NumParts * OldElts == NewElts) { 1335 SmallVector<Register, 8> Parts; 1336 Parts.push_back(MO.getReg()); 1337 1338 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1339 for (unsigned I = 1; I != NumParts; ++I) 1340 Parts.push_back(ImpDef); 1341 1342 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1343 MO.setReg(Concat.getReg(0)); 1344 return; 1345 } 1346 1347 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1348 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1349 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1350 MO.setReg(MoreReg); 1351 } 1352 1353 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1354 MachineOperand &Op = MI.getOperand(OpIdx); 1355 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1356 } 1357 1358 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1359 MachineOperand &MO = MI.getOperand(OpIdx); 1360 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1361 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1362 MIRBuilder.buildBitcast(MO, CastDst); 1363 MO.setReg(CastDst); 1364 } 1365 1366 LegalizerHelper::LegalizeResult 1367 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1368 LLT WideTy) { 1369 if (TypeIdx != 1) 1370 return UnableToLegalize; 1371 1372 Register DstReg = MI.getOperand(0).getReg(); 1373 LLT DstTy = MRI.getType(DstReg); 1374 if (DstTy.isVector()) 1375 return UnableToLegalize; 1376 1377 Register Src1 = MI.getOperand(1).getReg(); 1378 LLT SrcTy = MRI.getType(Src1); 1379 const int DstSize = DstTy.getSizeInBits(); 1380 const int SrcSize = SrcTy.getSizeInBits(); 1381 const int WideSize = WideTy.getSizeInBits(); 1382 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1383 1384 unsigned NumOps = MI.getNumOperands(); 1385 unsigned NumSrc = MI.getNumOperands() - 1; 1386 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1387 1388 if (WideSize >= DstSize) { 1389 // Directly pack the bits in the target type. 1390 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1391 1392 for (unsigned I = 2; I != NumOps; ++I) { 1393 const unsigned Offset = (I - 1) * PartSize; 1394 1395 Register SrcReg = MI.getOperand(I).getReg(); 1396 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1397 1398 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1399 1400 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1401 MRI.createGenericVirtualRegister(WideTy); 1402 1403 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1404 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1405 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1406 ResultReg = NextResult; 1407 } 1408 1409 if (WideSize > DstSize) 1410 MIRBuilder.buildTrunc(DstReg, ResultReg); 1411 else if (DstTy.isPointer()) 1412 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1413 1414 MI.eraseFromParent(); 1415 return Legalized; 1416 } 1417 1418 // Unmerge the original values to the GCD type, and recombine to the next 1419 // multiple greater than the original type. 1420 // 1421 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1422 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1423 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1424 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1425 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1426 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1427 // %12:_(s12) = G_MERGE_VALUES %10, %11 1428 // 1429 // Padding with undef if necessary: 1430 // 1431 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1432 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1433 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1434 // %7:_(s2) = G_IMPLICIT_DEF 1435 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1436 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1437 // %10:_(s12) = G_MERGE_VALUES %8, %9 1438 1439 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1440 LLT GCDTy = LLT::scalar(GCD); 1441 1442 SmallVector<Register, 8> Parts; 1443 SmallVector<Register, 8> NewMergeRegs; 1444 SmallVector<Register, 8> Unmerges; 1445 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1446 1447 // Decompose the original operands if they don't evenly divide. 1448 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1449 Register SrcReg = MI.getOperand(I).getReg(); 1450 if (GCD == SrcSize) { 1451 Unmerges.push_back(SrcReg); 1452 } else { 1453 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1454 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1455 Unmerges.push_back(Unmerge.getReg(J)); 1456 } 1457 } 1458 1459 // Pad with undef to the next size that is a multiple of the requested size. 1460 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1461 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1462 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1463 Unmerges.push_back(UndefReg); 1464 } 1465 1466 const int PartsPerGCD = WideSize / GCD; 1467 1468 // Build merges of each piece. 1469 ArrayRef<Register> Slicer(Unmerges); 1470 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1471 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1472 NewMergeRegs.push_back(Merge.getReg(0)); 1473 } 1474 1475 // A truncate may be necessary if the requested type doesn't evenly divide the 1476 // original result type. 1477 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1478 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1479 } else { 1480 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1481 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1482 } 1483 1484 MI.eraseFromParent(); 1485 return Legalized; 1486 } 1487 1488 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1489 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1490 LLT OrigTy = MRI.getType(OrigReg); 1491 LLT LCMTy = getLCMType(WideTy, OrigTy); 1492 1493 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1494 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1495 1496 Register UnmergeSrc = WideReg; 1497 1498 // Create a merge to the LCM type, padding with undef 1499 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1500 // => 1501 // %1:_(<4 x s32>) = G_FOO 1502 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1503 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1504 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1505 if (NumMergeParts > 1) { 1506 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1507 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1508 MergeParts[0] = WideReg; 1509 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1510 } 1511 1512 // Unmerge to the original register and pad with dead defs. 1513 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1514 UnmergeResults[0] = OrigReg; 1515 for (int I = 1; I != NumUnmergeParts; ++I) 1516 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1517 1518 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1519 return WideReg; 1520 } 1521 1522 LegalizerHelper::LegalizeResult 1523 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1524 LLT WideTy) { 1525 if (TypeIdx != 0) 1526 return UnableToLegalize; 1527 1528 int NumDst = MI.getNumOperands() - 1; 1529 Register SrcReg = MI.getOperand(NumDst).getReg(); 1530 LLT SrcTy = MRI.getType(SrcReg); 1531 if (SrcTy.isVector()) 1532 return UnableToLegalize; 1533 1534 Register Dst0Reg = MI.getOperand(0).getReg(); 1535 LLT DstTy = MRI.getType(Dst0Reg); 1536 if (!DstTy.isScalar()) 1537 return UnableToLegalize; 1538 1539 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1540 if (SrcTy.isPointer()) { 1541 const DataLayout &DL = MIRBuilder.getDataLayout(); 1542 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1543 LLVM_DEBUG( 1544 dbgs() << "Not casting non-integral address space integer\n"); 1545 return UnableToLegalize; 1546 } 1547 1548 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1549 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1550 } 1551 1552 // Widen SrcTy to WideTy. This does not affect the result, but since the 1553 // user requested this size, it is probably better handled than SrcTy and 1554 // should reduce the total number of legalization artifacts 1555 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1556 SrcTy = WideTy; 1557 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1558 } 1559 1560 // Theres no unmerge type to target. Directly extract the bits from the 1561 // source type 1562 unsigned DstSize = DstTy.getSizeInBits(); 1563 1564 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1565 for (int I = 1; I != NumDst; ++I) { 1566 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1567 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1568 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1569 } 1570 1571 MI.eraseFromParent(); 1572 return Legalized; 1573 } 1574 1575 // Extend the source to a wider type. 1576 LLT LCMTy = getLCMType(SrcTy, WideTy); 1577 1578 Register WideSrc = SrcReg; 1579 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1580 // TODO: If this is an integral address space, cast to integer and anyext. 1581 if (SrcTy.isPointer()) { 1582 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1583 return UnableToLegalize; 1584 } 1585 1586 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1587 } 1588 1589 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1590 1591 // Create a sequence of unmerges to the original results. since we may have 1592 // widened the source, we will need to pad the results with dead defs to cover 1593 // the source register. 1594 // e.g. widen s16 to s32: 1595 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1596 // 1597 // => 1598 // %4:_(s64) = G_ANYEXT %0:_(s48) 1599 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1600 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1601 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1602 1603 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1604 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1605 1606 for (int I = 0; I != NumUnmerge; ++I) { 1607 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1608 1609 for (int J = 0; J != PartsPerUnmerge; ++J) { 1610 int Idx = I * PartsPerUnmerge + J; 1611 if (Idx < NumDst) 1612 MIB.addDef(MI.getOperand(Idx).getReg()); 1613 else { 1614 // Create dead def for excess components. 1615 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1616 } 1617 } 1618 1619 MIB.addUse(Unmerge.getReg(I)); 1620 } 1621 1622 MI.eraseFromParent(); 1623 return Legalized; 1624 } 1625 1626 LegalizerHelper::LegalizeResult 1627 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1628 LLT WideTy) { 1629 Register DstReg = MI.getOperand(0).getReg(); 1630 Register SrcReg = MI.getOperand(1).getReg(); 1631 LLT SrcTy = MRI.getType(SrcReg); 1632 1633 LLT DstTy = MRI.getType(DstReg); 1634 unsigned Offset = MI.getOperand(2).getImm(); 1635 1636 if (TypeIdx == 0) { 1637 if (SrcTy.isVector() || DstTy.isVector()) 1638 return UnableToLegalize; 1639 1640 SrcOp Src(SrcReg); 1641 if (SrcTy.isPointer()) { 1642 // Extracts from pointers can be handled only if they are really just 1643 // simple integers. 1644 const DataLayout &DL = MIRBuilder.getDataLayout(); 1645 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1646 return UnableToLegalize; 1647 1648 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1649 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1650 SrcTy = SrcAsIntTy; 1651 } 1652 1653 if (DstTy.isPointer()) 1654 return UnableToLegalize; 1655 1656 if (Offset == 0) { 1657 // Avoid a shift in the degenerate case. 1658 MIRBuilder.buildTrunc(DstReg, 1659 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1660 MI.eraseFromParent(); 1661 return Legalized; 1662 } 1663 1664 // Do a shift in the source type. 1665 LLT ShiftTy = SrcTy; 1666 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1667 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1668 ShiftTy = WideTy; 1669 } 1670 1671 auto LShr = MIRBuilder.buildLShr( 1672 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1673 MIRBuilder.buildTrunc(DstReg, LShr); 1674 MI.eraseFromParent(); 1675 return Legalized; 1676 } 1677 1678 if (SrcTy.isScalar()) { 1679 Observer.changingInstr(MI); 1680 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1681 Observer.changedInstr(MI); 1682 return Legalized; 1683 } 1684 1685 if (!SrcTy.isVector()) 1686 return UnableToLegalize; 1687 1688 if (DstTy != SrcTy.getElementType()) 1689 return UnableToLegalize; 1690 1691 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1692 return UnableToLegalize; 1693 1694 Observer.changingInstr(MI); 1695 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1696 1697 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1698 Offset); 1699 widenScalarDst(MI, WideTy.getScalarType(), 0); 1700 Observer.changedInstr(MI); 1701 return Legalized; 1702 } 1703 1704 LegalizerHelper::LegalizeResult 1705 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1706 LLT WideTy) { 1707 if (TypeIdx != 0 || WideTy.isVector()) 1708 return UnableToLegalize; 1709 Observer.changingInstr(MI); 1710 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1711 widenScalarDst(MI, WideTy); 1712 Observer.changedInstr(MI); 1713 return Legalized; 1714 } 1715 1716 LegalizerHelper::LegalizeResult 1717 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1718 LLT WideTy) { 1719 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1720 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1721 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1722 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1723 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1724 // We can convert this to: 1725 // 1. Any extend iN to iM 1726 // 2. SHL by M-N 1727 // 3. [US][ADD|SUB|SHL]SAT 1728 // 4. L/ASHR by M-N 1729 // 1730 // It may be more efficient to lower this to a min and a max operation in 1731 // the higher precision arithmetic if the promoted operation isn't legal, 1732 // but this decision is up to the target's lowering request. 1733 Register DstReg = MI.getOperand(0).getReg(); 1734 1735 unsigned NewBits = WideTy.getScalarSizeInBits(); 1736 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1737 1738 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1739 // must not left shift the RHS to preserve the shift amount. 1740 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1741 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1742 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1743 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1744 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1745 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1746 1747 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1748 {ShiftL, ShiftR}, MI.getFlags()); 1749 1750 // Use a shift that will preserve the number of sign bits when the trunc is 1751 // folded away. 1752 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1753 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1754 1755 MIRBuilder.buildTrunc(DstReg, Result); 1756 MI.eraseFromParent(); 1757 return Legalized; 1758 } 1759 1760 LegalizerHelper::LegalizeResult 1761 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1762 switch (MI.getOpcode()) { 1763 default: 1764 return UnableToLegalize; 1765 case TargetOpcode::G_EXTRACT: 1766 return widenScalarExtract(MI, TypeIdx, WideTy); 1767 case TargetOpcode::G_INSERT: 1768 return widenScalarInsert(MI, TypeIdx, WideTy); 1769 case TargetOpcode::G_MERGE_VALUES: 1770 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1771 case TargetOpcode::G_UNMERGE_VALUES: 1772 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1773 case TargetOpcode::G_UADDO: 1774 case TargetOpcode::G_USUBO: { 1775 if (TypeIdx == 1) 1776 return UnableToLegalize; // TODO 1777 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1778 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1779 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1780 ? TargetOpcode::G_ADD 1781 : TargetOpcode::G_SUB; 1782 // Do the arithmetic in the larger type. 1783 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1784 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1785 APInt Mask = 1786 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1787 auto AndOp = MIRBuilder.buildAnd( 1788 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1789 // There is no overflow if the AndOp is the same as NewOp. 1790 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1791 // Now trunc the NewOp to the original result. 1792 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1793 MI.eraseFromParent(); 1794 return Legalized; 1795 } 1796 case TargetOpcode::G_SADDSAT: 1797 case TargetOpcode::G_SSUBSAT: 1798 case TargetOpcode::G_SSHLSAT: 1799 case TargetOpcode::G_UADDSAT: 1800 case TargetOpcode::G_USUBSAT: 1801 case TargetOpcode::G_USHLSAT: 1802 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1803 case TargetOpcode::G_CTTZ: 1804 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1805 case TargetOpcode::G_CTLZ: 1806 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1807 case TargetOpcode::G_CTPOP: { 1808 if (TypeIdx == 0) { 1809 Observer.changingInstr(MI); 1810 widenScalarDst(MI, WideTy, 0); 1811 Observer.changedInstr(MI); 1812 return Legalized; 1813 } 1814 1815 Register SrcReg = MI.getOperand(1).getReg(); 1816 1817 // First ZEXT the input. 1818 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1819 LLT CurTy = MRI.getType(SrcReg); 1820 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1821 // The count is the same in the larger type except if the original 1822 // value was zero. This can be handled by setting the bit just off 1823 // the top of the original type. 1824 auto TopBit = 1825 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1826 MIBSrc = MIRBuilder.buildOr( 1827 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1828 } 1829 1830 // Perform the operation at the larger size. 1831 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1832 // This is already the correct result for CTPOP and CTTZs 1833 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1834 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1835 // The correct result is NewOp - (Difference in widety and current ty). 1836 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1837 MIBNewOp = MIRBuilder.buildSub( 1838 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1839 } 1840 1841 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1842 MI.eraseFromParent(); 1843 return Legalized; 1844 } 1845 case TargetOpcode::G_BSWAP: { 1846 Observer.changingInstr(MI); 1847 Register DstReg = MI.getOperand(0).getReg(); 1848 1849 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1850 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1851 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1852 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1853 1854 MI.getOperand(0).setReg(DstExt); 1855 1856 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1857 1858 LLT Ty = MRI.getType(DstReg); 1859 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1860 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1861 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1862 1863 MIRBuilder.buildTrunc(DstReg, ShrReg); 1864 Observer.changedInstr(MI); 1865 return Legalized; 1866 } 1867 case TargetOpcode::G_BITREVERSE: { 1868 Observer.changingInstr(MI); 1869 1870 Register DstReg = MI.getOperand(0).getReg(); 1871 LLT Ty = MRI.getType(DstReg); 1872 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1873 1874 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1875 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1876 MI.getOperand(0).setReg(DstExt); 1877 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1878 1879 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1880 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1881 MIRBuilder.buildTrunc(DstReg, Shift); 1882 Observer.changedInstr(MI); 1883 return Legalized; 1884 } 1885 case TargetOpcode::G_FREEZE: 1886 Observer.changingInstr(MI); 1887 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1888 widenScalarDst(MI, WideTy); 1889 Observer.changedInstr(MI); 1890 return Legalized; 1891 1892 case TargetOpcode::G_ADD: 1893 case TargetOpcode::G_AND: 1894 case TargetOpcode::G_MUL: 1895 case TargetOpcode::G_OR: 1896 case TargetOpcode::G_XOR: 1897 case TargetOpcode::G_SUB: 1898 // Perform operation at larger width (any extension is fines here, high bits 1899 // don't affect the result) and then truncate the result back to the 1900 // original type. 1901 Observer.changingInstr(MI); 1902 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1903 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1904 widenScalarDst(MI, WideTy); 1905 Observer.changedInstr(MI); 1906 return Legalized; 1907 1908 case TargetOpcode::G_SHL: 1909 Observer.changingInstr(MI); 1910 1911 if (TypeIdx == 0) { 1912 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1913 widenScalarDst(MI, WideTy); 1914 } else { 1915 assert(TypeIdx == 1); 1916 // The "number of bits to shift" operand must preserve its value as an 1917 // unsigned integer: 1918 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1919 } 1920 1921 Observer.changedInstr(MI); 1922 return Legalized; 1923 1924 case TargetOpcode::G_SDIV: 1925 case TargetOpcode::G_SREM: 1926 case TargetOpcode::G_SMIN: 1927 case TargetOpcode::G_SMAX: 1928 Observer.changingInstr(MI); 1929 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1930 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1931 widenScalarDst(MI, WideTy); 1932 Observer.changedInstr(MI); 1933 return Legalized; 1934 1935 case TargetOpcode::G_ASHR: 1936 case TargetOpcode::G_LSHR: 1937 Observer.changingInstr(MI); 1938 1939 if (TypeIdx == 0) { 1940 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1941 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1942 1943 widenScalarSrc(MI, WideTy, 1, CvtOp); 1944 widenScalarDst(MI, WideTy); 1945 } else { 1946 assert(TypeIdx == 1); 1947 // The "number of bits to shift" operand must preserve its value as an 1948 // unsigned integer: 1949 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1950 } 1951 1952 Observer.changedInstr(MI); 1953 return Legalized; 1954 case TargetOpcode::G_UDIV: 1955 case TargetOpcode::G_UREM: 1956 case TargetOpcode::G_UMIN: 1957 case TargetOpcode::G_UMAX: 1958 Observer.changingInstr(MI); 1959 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1960 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1961 widenScalarDst(MI, WideTy); 1962 Observer.changedInstr(MI); 1963 return Legalized; 1964 1965 case TargetOpcode::G_SELECT: 1966 Observer.changingInstr(MI); 1967 if (TypeIdx == 0) { 1968 // Perform operation at larger width (any extension is fine here, high 1969 // bits don't affect the result) and then truncate the result back to the 1970 // original type. 1971 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1972 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1973 widenScalarDst(MI, WideTy); 1974 } else { 1975 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1976 // Explicit extension is required here since high bits affect the result. 1977 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1978 } 1979 Observer.changedInstr(MI); 1980 return Legalized; 1981 1982 case TargetOpcode::G_FPTOSI: 1983 case TargetOpcode::G_FPTOUI: 1984 Observer.changingInstr(MI); 1985 1986 if (TypeIdx == 0) 1987 widenScalarDst(MI, WideTy); 1988 else 1989 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1990 1991 Observer.changedInstr(MI); 1992 return Legalized; 1993 case TargetOpcode::G_SITOFP: 1994 Observer.changingInstr(MI); 1995 1996 if (TypeIdx == 0) 1997 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1998 else 1999 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2000 2001 Observer.changedInstr(MI); 2002 return Legalized; 2003 case TargetOpcode::G_UITOFP: 2004 Observer.changingInstr(MI); 2005 2006 if (TypeIdx == 0) 2007 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2008 else 2009 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2010 2011 Observer.changedInstr(MI); 2012 return Legalized; 2013 case TargetOpcode::G_LOAD: 2014 case TargetOpcode::G_SEXTLOAD: 2015 case TargetOpcode::G_ZEXTLOAD: 2016 Observer.changingInstr(MI); 2017 widenScalarDst(MI, WideTy); 2018 Observer.changedInstr(MI); 2019 return Legalized; 2020 2021 case TargetOpcode::G_STORE: { 2022 if (TypeIdx != 0) 2023 return UnableToLegalize; 2024 2025 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2026 if (!isPowerOf2_32(Ty.getSizeInBits())) 2027 return UnableToLegalize; 2028 2029 Observer.changingInstr(MI); 2030 2031 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2032 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2033 widenScalarSrc(MI, WideTy, 0, ExtType); 2034 2035 Observer.changedInstr(MI); 2036 return Legalized; 2037 } 2038 case TargetOpcode::G_CONSTANT: { 2039 MachineOperand &SrcMO = MI.getOperand(1); 2040 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2041 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2042 MRI.getType(MI.getOperand(0).getReg())); 2043 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2044 ExtOpc == TargetOpcode::G_ANYEXT) && 2045 "Illegal Extend"); 2046 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2047 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2048 ? SrcVal.sext(WideTy.getSizeInBits()) 2049 : SrcVal.zext(WideTy.getSizeInBits()); 2050 Observer.changingInstr(MI); 2051 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2052 2053 widenScalarDst(MI, WideTy); 2054 Observer.changedInstr(MI); 2055 return Legalized; 2056 } 2057 case TargetOpcode::G_FCONSTANT: { 2058 MachineOperand &SrcMO = MI.getOperand(1); 2059 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2060 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2061 bool LosesInfo; 2062 switch (WideTy.getSizeInBits()) { 2063 case 32: 2064 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2065 &LosesInfo); 2066 break; 2067 case 64: 2068 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2069 &LosesInfo); 2070 break; 2071 default: 2072 return UnableToLegalize; 2073 } 2074 2075 assert(!LosesInfo && "extend should always be lossless"); 2076 2077 Observer.changingInstr(MI); 2078 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2079 2080 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2081 Observer.changedInstr(MI); 2082 return Legalized; 2083 } 2084 case TargetOpcode::G_IMPLICIT_DEF: { 2085 Observer.changingInstr(MI); 2086 widenScalarDst(MI, WideTy); 2087 Observer.changedInstr(MI); 2088 return Legalized; 2089 } 2090 case TargetOpcode::G_BRCOND: 2091 Observer.changingInstr(MI); 2092 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2093 Observer.changedInstr(MI); 2094 return Legalized; 2095 2096 case TargetOpcode::G_FCMP: 2097 Observer.changingInstr(MI); 2098 if (TypeIdx == 0) 2099 widenScalarDst(MI, WideTy); 2100 else { 2101 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2102 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2103 } 2104 Observer.changedInstr(MI); 2105 return Legalized; 2106 2107 case TargetOpcode::G_ICMP: 2108 Observer.changingInstr(MI); 2109 if (TypeIdx == 0) 2110 widenScalarDst(MI, WideTy); 2111 else { 2112 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2113 MI.getOperand(1).getPredicate())) 2114 ? TargetOpcode::G_SEXT 2115 : TargetOpcode::G_ZEXT; 2116 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2117 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2118 } 2119 Observer.changedInstr(MI); 2120 return Legalized; 2121 2122 case TargetOpcode::G_PTR_ADD: 2123 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2124 Observer.changingInstr(MI); 2125 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2126 Observer.changedInstr(MI); 2127 return Legalized; 2128 2129 case TargetOpcode::G_PHI: { 2130 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2131 2132 Observer.changingInstr(MI); 2133 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2134 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2135 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2136 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2137 } 2138 2139 MachineBasicBlock &MBB = *MI.getParent(); 2140 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2141 widenScalarDst(MI, WideTy); 2142 Observer.changedInstr(MI); 2143 return Legalized; 2144 } 2145 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2146 if (TypeIdx == 0) { 2147 Register VecReg = MI.getOperand(1).getReg(); 2148 LLT VecTy = MRI.getType(VecReg); 2149 Observer.changingInstr(MI); 2150 2151 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2152 WideTy.getSizeInBits()), 2153 1, TargetOpcode::G_SEXT); 2154 2155 widenScalarDst(MI, WideTy, 0); 2156 Observer.changedInstr(MI); 2157 return Legalized; 2158 } 2159 2160 if (TypeIdx != 2) 2161 return UnableToLegalize; 2162 Observer.changingInstr(MI); 2163 // TODO: Probably should be zext 2164 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2165 Observer.changedInstr(MI); 2166 return Legalized; 2167 } 2168 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2169 if (TypeIdx == 1) { 2170 Observer.changingInstr(MI); 2171 2172 Register VecReg = MI.getOperand(1).getReg(); 2173 LLT VecTy = MRI.getType(VecReg); 2174 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2175 2176 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2177 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2178 widenScalarDst(MI, WideVecTy, 0); 2179 Observer.changedInstr(MI); 2180 return Legalized; 2181 } 2182 2183 if (TypeIdx == 2) { 2184 Observer.changingInstr(MI); 2185 // TODO: Probably should be zext 2186 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2187 Observer.changedInstr(MI); 2188 return Legalized; 2189 } 2190 2191 return UnableToLegalize; 2192 } 2193 case TargetOpcode::G_FADD: 2194 case TargetOpcode::G_FMUL: 2195 case TargetOpcode::G_FSUB: 2196 case TargetOpcode::G_FMA: 2197 case TargetOpcode::G_FMAD: 2198 case TargetOpcode::G_FNEG: 2199 case TargetOpcode::G_FABS: 2200 case TargetOpcode::G_FCANONICALIZE: 2201 case TargetOpcode::G_FMINNUM: 2202 case TargetOpcode::G_FMAXNUM: 2203 case TargetOpcode::G_FMINNUM_IEEE: 2204 case TargetOpcode::G_FMAXNUM_IEEE: 2205 case TargetOpcode::G_FMINIMUM: 2206 case TargetOpcode::G_FMAXIMUM: 2207 case TargetOpcode::G_FDIV: 2208 case TargetOpcode::G_FREM: 2209 case TargetOpcode::G_FCEIL: 2210 case TargetOpcode::G_FFLOOR: 2211 case TargetOpcode::G_FCOS: 2212 case TargetOpcode::G_FSIN: 2213 case TargetOpcode::G_FLOG10: 2214 case TargetOpcode::G_FLOG: 2215 case TargetOpcode::G_FLOG2: 2216 case TargetOpcode::G_FRINT: 2217 case TargetOpcode::G_FNEARBYINT: 2218 case TargetOpcode::G_FSQRT: 2219 case TargetOpcode::G_FEXP: 2220 case TargetOpcode::G_FEXP2: 2221 case TargetOpcode::G_FPOW: 2222 case TargetOpcode::G_INTRINSIC_TRUNC: 2223 case TargetOpcode::G_INTRINSIC_ROUND: 2224 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2225 assert(TypeIdx == 0); 2226 Observer.changingInstr(MI); 2227 2228 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2229 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2230 2231 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2232 Observer.changedInstr(MI); 2233 return Legalized; 2234 case TargetOpcode::G_FPOWI: { 2235 if (TypeIdx != 0) 2236 return UnableToLegalize; 2237 Observer.changingInstr(MI); 2238 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2239 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2240 Observer.changedInstr(MI); 2241 return Legalized; 2242 } 2243 case TargetOpcode::G_INTTOPTR: 2244 if (TypeIdx != 1) 2245 return UnableToLegalize; 2246 2247 Observer.changingInstr(MI); 2248 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2249 Observer.changedInstr(MI); 2250 return Legalized; 2251 case TargetOpcode::G_PTRTOINT: 2252 if (TypeIdx != 0) 2253 return UnableToLegalize; 2254 2255 Observer.changingInstr(MI); 2256 widenScalarDst(MI, WideTy, 0); 2257 Observer.changedInstr(MI); 2258 return Legalized; 2259 case TargetOpcode::G_BUILD_VECTOR: { 2260 Observer.changingInstr(MI); 2261 2262 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2263 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2264 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2265 2266 // Avoid changing the result vector type if the source element type was 2267 // requested. 2268 if (TypeIdx == 1) { 2269 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2270 } else { 2271 widenScalarDst(MI, WideTy, 0); 2272 } 2273 2274 Observer.changedInstr(MI); 2275 return Legalized; 2276 } 2277 case TargetOpcode::G_SEXT_INREG: 2278 if (TypeIdx != 0) 2279 return UnableToLegalize; 2280 2281 Observer.changingInstr(MI); 2282 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2283 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2284 Observer.changedInstr(MI); 2285 return Legalized; 2286 case TargetOpcode::G_PTRMASK: { 2287 if (TypeIdx != 1) 2288 return UnableToLegalize; 2289 Observer.changingInstr(MI); 2290 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2291 Observer.changedInstr(MI); 2292 return Legalized; 2293 } 2294 } 2295 } 2296 2297 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2298 MachineIRBuilder &B, Register Src, LLT Ty) { 2299 auto Unmerge = B.buildUnmerge(Ty, Src); 2300 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2301 Pieces.push_back(Unmerge.getReg(I)); 2302 } 2303 2304 LegalizerHelper::LegalizeResult 2305 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2306 Register Dst = MI.getOperand(0).getReg(); 2307 Register Src = MI.getOperand(1).getReg(); 2308 LLT DstTy = MRI.getType(Dst); 2309 LLT SrcTy = MRI.getType(Src); 2310 2311 if (SrcTy.isVector()) { 2312 LLT SrcEltTy = SrcTy.getElementType(); 2313 SmallVector<Register, 8> SrcRegs; 2314 2315 if (DstTy.isVector()) { 2316 int NumDstElt = DstTy.getNumElements(); 2317 int NumSrcElt = SrcTy.getNumElements(); 2318 2319 LLT DstEltTy = DstTy.getElementType(); 2320 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2321 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2322 2323 // If there's an element size mismatch, insert intermediate casts to match 2324 // the result element type. 2325 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2326 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2327 // 2328 // => 2329 // 2330 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2331 // %3:_(<2 x s8>) = G_BITCAST %2 2332 // %4:_(<2 x s8>) = G_BITCAST %3 2333 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2334 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2335 SrcPartTy = SrcEltTy; 2336 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2337 // 2338 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2339 // 2340 // => 2341 // 2342 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2343 // %3:_(s16) = G_BITCAST %2 2344 // %4:_(s16) = G_BITCAST %3 2345 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2346 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2347 DstCastTy = DstEltTy; 2348 } 2349 2350 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2351 for (Register &SrcReg : SrcRegs) 2352 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2353 } else 2354 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2355 2356 MIRBuilder.buildMerge(Dst, SrcRegs); 2357 MI.eraseFromParent(); 2358 return Legalized; 2359 } 2360 2361 if (DstTy.isVector()) { 2362 SmallVector<Register, 8> SrcRegs; 2363 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2364 MIRBuilder.buildMerge(Dst, SrcRegs); 2365 MI.eraseFromParent(); 2366 return Legalized; 2367 } 2368 2369 return UnableToLegalize; 2370 } 2371 2372 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2373 /// is casting to a vector with a smaller element size, perform multiple element 2374 /// extracts and merge the results. If this is coercing to a vector with larger 2375 /// elements, index the bitcasted vector and extract the target element with bit 2376 /// operations. This is intended to force the indexing in the native register 2377 /// size for architectures that can dynamically index the register file. 2378 LegalizerHelper::LegalizeResult 2379 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2380 LLT CastTy) { 2381 if (TypeIdx != 1) 2382 return UnableToLegalize; 2383 2384 Register Dst = MI.getOperand(0).getReg(); 2385 Register SrcVec = MI.getOperand(1).getReg(); 2386 Register Idx = MI.getOperand(2).getReg(); 2387 LLT SrcVecTy = MRI.getType(SrcVec); 2388 LLT IdxTy = MRI.getType(Idx); 2389 2390 LLT SrcEltTy = SrcVecTy.getElementType(); 2391 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2392 unsigned OldNumElts = SrcVecTy.getNumElements(); 2393 2394 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2395 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2396 2397 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2398 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2399 if (NewNumElts > OldNumElts) { 2400 // Decreasing the vector element size 2401 // 2402 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2403 // => 2404 // v4i32:castx = bitcast x:v2i64 2405 // 2406 // i64 = bitcast 2407 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2408 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2409 // 2410 if (NewNumElts % OldNumElts != 0) 2411 return UnableToLegalize; 2412 2413 // Type of the intermediate result vector. 2414 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2415 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2416 2417 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2418 2419 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2420 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2421 2422 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2423 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2424 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2425 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2426 NewOps[I] = Elt.getReg(0); 2427 } 2428 2429 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2430 MIRBuilder.buildBitcast(Dst, NewVec); 2431 MI.eraseFromParent(); 2432 return Legalized; 2433 } 2434 2435 if (NewNumElts < OldNumElts) { 2436 if (NewEltSize % OldEltSize != 0) 2437 return UnableToLegalize; 2438 2439 // This only depends on powers of 2 because we use bit tricks to figure out 2440 // the bit offset we need to shift to get the target element. A general 2441 // expansion could emit division/multiply. 2442 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2443 return UnableToLegalize; 2444 2445 // Increasing the vector element size. 2446 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2447 // 2448 // => 2449 // 2450 // %cast = G_BITCAST %vec 2451 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2452 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2453 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2454 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2455 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2456 // %elt = G_TRUNC %elt_bits 2457 2458 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2459 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2460 2461 // Divide to get the index in the wider element type. 2462 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2463 2464 Register WideElt = CastVec; 2465 if (CastTy.isVector()) { 2466 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2467 ScaledIdx).getReg(0); 2468 } 2469 2470 // Now figure out the amount we need to shift to get the target bits. 2471 auto OffsetMask = MIRBuilder.buildConstant( 2472 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2473 auto OffsetIdx = MIRBuilder.buildAnd(IdxTy, Idx, OffsetMask); 2474 auto OffsetBits = MIRBuilder.buildShl( 2475 IdxTy, OffsetIdx, 2476 MIRBuilder.buildConstant(IdxTy, Log2_32(OldEltSize))); 2477 2478 // Shift the wide element to get the target element. 2479 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2480 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2481 MI.eraseFromParent(); 2482 return Legalized; 2483 } 2484 2485 return UnableToLegalize; 2486 } 2487 2488 LegalizerHelper::LegalizeResult 2489 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2490 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2491 Register DstReg = MI.getOperand(0).getReg(); 2492 Register PtrReg = MI.getOperand(1).getReg(); 2493 LLT DstTy = MRI.getType(DstReg); 2494 auto &MMO = **MI.memoperands_begin(); 2495 2496 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2497 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2498 // This load needs splitting into power of 2 sized loads. 2499 if (DstTy.isVector()) 2500 return UnableToLegalize; 2501 if (isPowerOf2_32(DstTy.getSizeInBits())) 2502 return UnableToLegalize; // Don't know what we're being asked to do. 2503 2504 // Our strategy here is to generate anyextending loads for the smaller 2505 // types up to next power-2 result type, and then combine the two larger 2506 // result values together, before truncating back down to the non-pow-2 2507 // type. 2508 // E.g. v1 = i24 load => 2509 // v2 = i32 zextload (2 byte) 2510 // v3 = i32 load (1 byte) 2511 // v4 = i32 shl v3, 16 2512 // v5 = i32 or v4, v2 2513 // v1 = i24 trunc v5 2514 // By doing this we generate the correct truncate which should get 2515 // combined away as an artifact with a matching extend. 2516 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2517 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2518 2519 MachineFunction &MF = MIRBuilder.getMF(); 2520 MachineMemOperand *LargeMMO = 2521 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2522 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2523 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2524 2525 LLT PtrTy = MRI.getType(PtrReg); 2526 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2527 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2528 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2529 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2530 auto LargeLoad = MIRBuilder.buildLoadInstr( 2531 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2532 2533 auto OffsetCst = MIRBuilder.buildConstant( 2534 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2535 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2536 auto SmallPtr = 2537 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2538 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2539 *SmallMMO); 2540 2541 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2542 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2543 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2544 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2545 MI.eraseFromParent(); 2546 return Legalized; 2547 } 2548 2549 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2550 MI.eraseFromParent(); 2551 return Legalized; 2552 } 2553 2554 if (DstTy.isScalar()) { 2555 Register TmpReg = 2556 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2557 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2558 switch (MI.getOpcode()) { 2559 default: 2560 llvm_unreachable("Unexpected opcode"); 2561 case TargetOpcode::G_LOAD: 2562 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2563 break; 2564 case TargetOpcode::G_SEXTLOAD: 2565 MIRBuilder.buildSExt(DstReg, TmpReg); 2566 break; 2567 case TargetOpcode::G_ZEXTLOAD: 2568 MIRBuilder.buildZExt(DstReg, TmpReg); 2569 break; 2570 } 2571 2572 MI.eraseFromParent(); 2573 return Legalized; 2574 } 2575 2576 return UnableToLegalize; 2577 } 2578 2579 LegalizerHelper::LegalizeResult 2580 LegalizerHelper::lowerStore(MachineInstr &MI) { 2581 // Lower a non-power of 2 store into multiple pow-2 stores. 2582 // E.g. split an i24 store into an i16 store + i8 store. 2583 // We do this by first extending the stored value to the next largest power 2584 // of 2 type, and then using truncating stores to store the components. 2585 // By doing this, likewise with G_LOAD, generate an extend that can be 2586 // artifact-combined away instead of leaving behind extracts. 2587 Register SrcReg = MI.getOperand(0).getReg(); 2588 Register PtrReg = MI.getOperand(1).getReg(); 2589 LLT SrcTy = MRI.getType(SrcReg); 2590 MachineMemOperand &MMO = **MI.memoperands_begin(); 2591 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2592 return UnableToLegalize; 2593 if (SrcTy.isVector()) 2594 return UnableToLegalize; 2595 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2596 return UnableToLegalize; // Don't know what we're being asked to do. 2597 2598 // Extend to the next pow-2. 2599 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2600 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2601 2602 // Obtain the smaller value by shifting away the larger value. 2603 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2604 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2605 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2606 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2607 2608 // Generate the PtrAdd and truncating stores. 2609 LLT PtrTy = MRI.getType(PtrReg); 2610 auto OffsetCst = MIRBuilder.buildConstant( 2611 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2612 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2613 auto SmallPtr = 2614 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2615 2616 MachineFunction &MF = MIRBuilder.getMF(); 2617 MachineMemOperand *LargeMMO = 2618 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2619 MachineMemOperand *SmallMMO = 2620 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2621 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2622 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2623 MI.eraseFromParent(); 2624 return Legalized; 2625 } 2626 2627 LegalizerHelper::LegalizeResult 2628 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2629 switch (MI.getOpcode()) { 2630 case TargetOpcode::G_LOAD: { 2631 if (TypeIdx != 0) 2632 return UnableToLegalize; 2633 2634 Observer.changingInstr(MI); 2635 bitcastDst(MI, CastTy, 0); 2636 Observer.changedInstr(MI); 2637 return Legalized; 2638 } 2639 case TargetOpcode::G_STORE: { 2640 if (TypeIdx != 0) 2641 return UnableToLegalize; 2642 2643 Observer.changingInstr(MI); 2644 bitcastSrc(MI, CastTy, 0); 2645 Observer.changedInstr(MI); 2646 return Legalized; 2647 } 2648 case TargetOpcode::G_SELECT: { 2649 if (TypeIdx != 0) 2650 return UnableToLegalize; 2651 2652 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2653 LLVM_DEBUG( 2654 dbgs() << "bitcast action not implemented for vector select\n"); 2655 return UnableToLegalize; 2656 } 2657 2658 Observer.changingInstr(MI); 2659 bitcastSrc(MI, CastTy, 2); 2660 bitcastSrc(MI, CastTy, 3); 2661 bitcastDst(MI, CastTy, 0); 2662 Observer.changedInstr(MI); 2663 return Legalized; 2664 } 2665 case TargetOpcode::G_AND: 2666 case TargetOpcode::G_OR: 2667 case TargetOpcode::G_XOR: { 2668 Observer.changingInstr(MI); 2669 bitcastSrc(MI, CastTy, 1); 2670 bitcastSrc(MI, CastTy, 2); 2671 bitcastDst(MI, CastTy, 0); 2672 Observer.changedInstr(MI); 2673 return Legalized; 2674 } 2675 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2676 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2677 default: 2678 return UnableToLegalize; 2679 } 2680 } 2681 2682 // Legalize an instruction by changing the opcode in place. 2683 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2684 Observer.changingInstr(MI); 2685 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2686 Observer.changedInstr(MI); 2687 } 2688 2689 LegalizerHelper::LegalizeResult 2690 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2691 using namespace TargetOpcode; 2692 2693 switch(MI.getOpcode()) { 2694 default: 2695 return UnableToLegalize; 2696 case TargetOpcode::G_BITCAST: 2697 return lowerBitcast(MI); 2698 case TargetOpcode::G_SREM: 2699 case TargetOpcode::G_UREM: { 2700 auto Quot = 2701 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2702 {MI.getOperand(1), MI.getOperand(2)}); 2703 2704 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2705 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2706 MI.eraseFromParent(); 2707 return Legalized; 2708 } 2709 case TargetOpcode::G_SADDO: 2710 case TargetOpcode::G_SSUBO: 2711 return lowerSADDO_SSUBO(MI); 2712 case TargetOpcode::G_SMULO: 2713 case TargetOpcode::G_UMULO: { 2714 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2715 // result. 2716 Register Res = MI.getOperand(0).getReg(); 2717 Register Overflow = MI.getOperand(1).getReg(); 2718 Register LHS = MI.getOperand(2).getReg(); 2719 Register RHS = MI.getOperand(3).getReg(); 2720 2721 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2722 ? TargetOpcode::G_SMULH 2723 : TargetOpcode::G_UMULH; 2724 2725 Observer.changingInstr(MI); 2726 const auto &TII = MIRBuilder.getTII(); 2727 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2728 MI.RemoveOperand(1); 2729 Observer.changedInstr(MI); 2730 2731 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2732 2733 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2734 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2735 2736 // For *signed* multiply, overflow is detected by checking: 2737 // (hi != (lo >> bitwidth-1)) 2738 if (Opcode == TargetOpcode::G_SMULH) { 2739 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2740 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2741 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2742 } else { 2743 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2744 } 2745 return Legalized; 2746 } 2747 case TargetOpcode::G_FNEG: { 2748 // TODO: Handle vector types once we are able to 2749 // represent them. 2750 if (Ty.isVector()) 2751 return UnableToLegalize; 2752 Register Res = MI.getOperand(0).getReg(); 2753 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2754 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2755 if (!ZeroTy) 2756 return UnableToLegalize; 2757 ConstantFP &ZeroForNegation = 2758 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2759 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2760 Register SubByReg = MI.getOperand(1).getReg(); 2761 Register ZeroReg = Zero.getReg(0); 2762 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2763 MI.eraseFromParent(); 2764 return Legalized; 2765 } 2766 case TargetOpcode::G_FSUB: { 2767 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2768 // First, check if G_FNEG is marked as Lower. If so, we may 2769 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2770 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2771 return UnableToLegalize; 2772 Register Res = MI.getOperand(0).getReg(); 2773 Register LHS = MI.getOperand(1).getReg(); 2774 Register RHS = MI.getOperand(2).getReg(); 2775 Register Neg = MRI.createGenericVirtualRegister(Ty); 2776 MIRBuilder.buildFNeg(Neg, RHS); 2777 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2778 MI.eraseFromParent(); 2779 return Legalized; 2780 } 2781 case TargetOpcode::G_FMAD: 2782 return lowerFMad(MI); 2783 case TargetOpcode::G_FFLOOR: 2784 return lowerFFloor(MI); 2785 case TargetOpcode::G_INTRINSIC_ROUND: 2786 return lowerIntrinsicRound(MI); 2787 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2788 // Since round even is the assumed rounding mode for unconstrained FP 2789 // operations, rint and roundeven are the same operation. 2790 changeOpcode(MI, TargetOpcode::G_FRINT); 2791 return Legalized; 2792 } 2793 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2794 Register OldValRes = MI.getOperand(0).getReg(); 2795 Register SuccessRes = MI.getOperand(1).getReg(); 2796 Register Addr = MI.getOperand(2).getReg(); 2797 Register CmpVal = MI.getOperand(3).getReg(); 2798 Register NewVal = MI.getOperand(4).getReg(); 2799 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2800 **MI.memoperands_begin()); 2801 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2802 MI.eraseFromParent(); 2803 return Legalized; 2804 } 2805 case TargetOpcode::G_LOAD: 2806 case TargetOpcode::G_SEXTLOAD: 2807 case TargetOpcode::G_ZEXTLOAD: 2808 return lowerLoad(MI); 2809 case TargetOpcode::G_STORE: 2810 return lowerStore(MI); 2811 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2812 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2813 case TargetOpcode::G_CTLZ: 2814 case TargetOpcode::G_CTTZ: 2815 case TargetOpcode::G_CTPOP: 2816 return lowerBitCount(MI, TypeIdx, Ty); 2817 case G_UADDO: { 2818 Register Res = MI.getOperand(0).getReg(); 2819 Register CarryOut = MI.getOperand(1).getReg(); 2820 Register LHS = MI.getOperand(2).getReg(); 2821 Register RHS = MI.getOperand(3).getReg(); 2822 2823 MIRBuilder.buildAdd(Res, LHS, RHS); 2824 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2825 2826 MI.eraseFromParent(); 2827 return Legalized; 2828 } 2829 case G_UADDE: { 2830 Register Res = MI.getOperand(0).getReg(); 2831 Register CarryOut = MI.getOperand(1).getReg(); 2832 Register LHS = MI.getOperand(2).getReg(); 2833 Register RHS = MI.getOperand(3).getReg(); 2834 Register CarryIn = MI.getOperand(4).getReg(); 2835 LLT Ty = MRI.getType(Res); 2836 2837 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2838 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2839 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2840 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2841 2842 MI.eraseFromParent(); 2843 return Legalized; 2844 } 2845 case G_USUBO: { 2846 Register Res = MI.getOperand(0).getReg(); 2847 Register BorrowOut = MI.getOperand(1).getReg(); 2848 Register LHS = MI.getOperand(2).getReg(); 2849 Register RHS = MI.getOperand(3).getReg(); 2850 2851 MIRBuilder.buildSub(Res, LHS, RHS); 2852 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2853 2854 MI.eraseFromParent(); 2855 return Legalized; 2856 } 2857 case G_USUBE: { 2858 Register Res = MI.getOperand(0).getReg(); 2859 Register BorrowOut = MI.getOperand(1).getReg(); 2860 Register LHS = MI.getOperand(2).getReg(); 2861 Register RHS = MI.getOperand(3).getReg(); 2862 Register BorrowIn = MI.getOperand(4).getReg(); 2863 const LLT CondTy = MRI.getType(BorrowOut); 2864 const LLT Ty = MRI.getType(Res); 2865 2866 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2867 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2868 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2869 2870 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2871 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2872 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2873 2874 MI.eraseFromParent(); 2875 return Legalized; 2876 } 2877 case G_UITOFP: 2878 return lowerUITOFP(MI, TypeIdx, Ty); 2879 case G_SITOFP: 2880 return lowerSITOFP(MI, TypeIdx, Ty); 2881 case G_FPTOUI: 2882 return lowerFPTOUI(MI, TypeIdx, Ty); 2883 case G_FPTOSI: 2884 return lowerFPTOSI(MI); 2885 case G_FPTRUNC: 2886 return lowerFPTRUNC(MI, TypeIdx, Ty); 2887 case G_FPOWI: 2888 return lowerFPOWI(MI); 2889 case G_SMIN: 2890 case G_SMAX: 2891 case G_UMIN: 2892 case G_UMAX: 2893 return lowerMinMax(MI, TypeIdx, Ty); 2894 case G_FCOPYSIGN: 2895 return lowerFCopySign(MI, TypeIdx, Ty); 2896 case G_FMINNUM: 2897 case G_FMAXNUM: 2898 return lowerFMinNumMaxNum(MI); 2899 case G_MERGE_VALUES: 2900 return lowerMergeValues(MI); 2901 case G_UNMERGE_VALUES: 2902 return lowerUnmergeValues(MI); 2903 case TargetOpcode::G_SEXT_INREG: { 2904 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2905 int64_t SizeInBits = MI.getOperand(2).getImm(); 2906 2907 Register DstReg = MI.getOperand(0).getReg(); 2908 Register SrcReg = MI.getOperand(1).getReg(); 2909 LLT DstTy = MRI.getType(DstReg); 2910 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2911 2912 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2913 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2914 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2915 MI.eraseFromParent(); 2916 return Legalized; 2917 } 2918 case G_EXTRACT_VECTOR_ELT: 2919 case G_INSERT_VECTOR_ELT: 2920 return lowerExtractInsertVectorElt(MI); 2921 case G_SHUFFLE_VECTOR: 2922 return lowerShuffleVector(MI); 2923 case G_DYN_STACKALLOC: 2924 return lowerDynStackAlloc(MI); 2925 case G_EXTRACT: 2926 return lowerExtract(MI); 2927 case G_INSERT: 2928 return lowerInsert(MI); 2929 case G_BSWAP: 2930 return lowerBswap(MI); 2931 case G_BITREVERSE: 2932 return lowerBitreverse(MI); 2933 case G_READ_REGISTER: 2934 case G_WRITE_REGISTER: 2935 return lowerReadWriteRegister(MI); 2936 case G_UADDSAT: 2937 case G_USUBSAT: { 2938 // Try to make a reasonable guess about which lowering strategy to use. The 2939 // target can override this with custom lowering and calling the 2940 // implementation functions. 2941 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2942 if (LI.isLegalOrCustom({G_UMIN, Ty})) 2943 return lowerAddSubSatToMinMax(MI); 2944 return lowerAddSubSatToAddoSubo(MI); 2945 } 2946 case G_SADDSAT: 2947 case G_SSUBSAT: { 2948 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2949 2950 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 2951 // since it's a shorter expansion. However, we would need to figure out the 2952 // preferred boolean type for the carry out for the query. 2953 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 2954 return lowerAddSubSatToMinMax(MI); 2955 return lowerAddSubSatToAddoSubo(MI); 2956 } 2957 case G_SSHLSAT: 2958 case G_USHLSAT: 2959 return lowerShlSat(MI); 2960 } 2961 } 2962 2963 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 2964 Align MinAlign) const { 2965 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 2966 // datalayout for the preferred alignment. Also there should be a target hook 2967 // for this to allow targets to reduce the alignment and ignore the 2968 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 2969 // the type. 2970 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 2971 } 2972 2973 MachineInstrBuilder 2974 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 2975 MachinePointerInfo &PtrInfo) { 2976 MachineFunction &MF = MIRBuilder.getMF(); 2977 const DataLayout &DL = MIRBuilder.getDataLayout(); 2978 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 2979 2980 unsigned AddrSpace = DL.getAllocaAddrSpace(); 2981 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 2982 2983 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 2984 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 2985 } 2986 2987 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 2988 LLT VecTy) { 2989 int64_t IdxVal; 2990 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 2991 return IdxReg; 2992 2993 LLT IdxTy = B.getMRI()->getType(IdxReg); 2994 unsigned NElts = VecTy.getNumElements(); 2995 if (isPowerOf2_32(NElts)) { 2996 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 2997 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 2998 } 2999 3000 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3001 .getReg(0); 3002 } 3003 3004 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3005 Register Index) { 3006 LLT EltTy = VecTy.getElementType(); 3007 3008 // Calculate the element offset and add it to the pointer. 3009 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3010 assert(EltSize * 8 == EltTy.getSizeInBits() && 3011 "Converting bits to bytes lost precision"); 3012 3013 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3014 3015 LLT IdxTy = MRI.getType(Index); 3016 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3017 MIRBuilder.buildConstant(IdxTy, EltSize)); 3018 3019 LLT PtrTy = MRI.getType(VecPtr); 3020 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3021 } 3022 3023 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3024 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3025 Register DstReg = MI.getOperand(0).getReg(); 3026 LLT DstTy = MRI.getType(DstReg); 3027 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3028 3029 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3030 3031 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3032 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3033 3034 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3035 MI.eraseFromParent(); 3036 return Legalized; 3037 } 3038 3039 // Handle splitting vector operations which need to have the same number of 3040 // elements in each type index, but each type index may have a different element 3041 // type. 3042 // 3043 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3044 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3045 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3046 // 3047 // Also handles some irregular breakdown cases, e.g. 3048 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3049 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3050 // s64 = G_SHL s64, s32 3051 LegalizerHelper::LegalizeResult 3052 LegalizerHelper::fewerElementsVectorMultiEltType( 3053 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3054 if (TypeIdx != 0) 3055 return UnableToLegalize; 3056 3057 const LLT NarrowTy0 = NarrowTyArg; 3058 const unsigned NewNumElts = 3059 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3060 3061 const Register DstReg = MI.getOperand(0).getReg(); 3062 LLT DstTy = MRI.getType(DstReg); 3063 LLT LeftoverTy0; 3064 3065 // All of the operands need to have the same number of elements, so if we can 3066 // determine a type breakdown for the result type, we can for all of the 3067 // source types. 3068 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3069 if (NumParts < 0) 3070 return UnableToLegalize; 3071 3072 SmallVector<MachineInstrBuilder, 4> NewInsts; 3073 3074 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3075 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3076 3077 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3078 Register SrcReg = MI.getOperand(I).getReg(); 3079 LLT SrcTyI = MRI.getType(SrcReg); 3080 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3081 LLT LeftoverTyI; 3082 3083 // Split this operand into the requested typed registers, and any leftover 3084 // required to reproduce the original type. 3085 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3086 LeftoverRegs)) 3087 return UnableToLegalize; 3088 3089 if (I == 1) { 3090 // For the first operand, create an instruction for each part and setup 3091 // the result. 3092 for (Register PartReg : PartRegs) { 3093 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3094 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3095 .addDef(PartDstReg) 3096 .addUse(PartReg)); 3097 DstRegs.push_back(PartDstReg); 3098 } 3099 3100 for (Register LeftoverReg : LeftoverRegs) { 3101 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3102 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3103 .addDef(PartDstReg) 3104 .addUse(LeftoverReg)); 3105 LeftoverDstRegs.push_back(PartDstReg); 3106 } 3107 } else { 3108 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3109 3110 // Add the newly created operand splits to the existing instructions. The 3111 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3112 // pieces. 3113 unsigned InstCount = 0; 3114 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3115 NewInsts[InstCount++].addUse(PartRegs[J]); 3116 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3117 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3118 } 3119 3120 PartRegs.clear(); 3121 LeftoverRegs.clear(); 3122 } 3123 3124 // Insert the newly built operations and rebuild the result register. 3125 for (auto &MIB : NewInsts) 3126 MIRBuilder.insertInstr(MIB); 3127 3128 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3129 3130 MI.eraseFromParent(); 3131 return Legalized; 3132 } 3133 3134 LegalizerHelper::LegalizeResult 3135 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3136 LLT NarrowTy) { 3137 if (TypeIdx != 0) 3138 return UnableToLegalize; 3139 3140 Register DstReg = MI.getOperand(0).getReg(); 3141 Register SrcReg = MI.getOperand(1).getReg(); 3142 LLT DstTy = MRI.getType(DstReg); 3143 LLT SrcTy = MRI.getType(SrcReg); 3144 3145 LLT NarrowTy0 = NarrowTy; 3146 LLT NarrowTy1; 3147 unsigned NumParts; 3148 3149 if (NarrowTy.isVector()) { 3150 // Uneven breakdown not handled. 3151 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3152 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3153 return UnableToLegalize; 3154 3155 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 3156 } else { 3157 NumParts = DstTy.getNumElements(); 3158 NarrowTy1 = SrcTy.getElementType(); 3159 } 3160 3161 SmallVector<Register, 4> SrcRegs, DstRegs; 3162 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3163 3164 for (unsigned I = 0; I < NumParts; ++I) { 3165 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3166 MachineInstr *NewInst = 3167 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3168 3169 NewInst->setFlags(MI.getFlags()); 3170 DstRegs.push_back(DstReg); 3171 } 3172 3173 if (NarrowTy.isVector()) 3174 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3175 else 3176 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3177 3178 MI.eraseFromParent(); 3179 return Legalized; 3180 } 3181 3182 LegalizerHelper::LegalizeResult 3183 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3184 LLT NarrowTy) { 3185 Register DstReg = MI.getOperand(0).getReg(); 3186 Register Src0Reg = MI.getOperand(2).getReg(); 3187 LLT DstTy = MRI.getType(DstReg); 3188 LLT SrcTy = MRI.getType(Src0Reg); 3189 3190 unsigned NumParts; 3191 LLT NarrowTy0, NarrowTy1; 3192 3193 if (TypeIdx == 0) { 3194 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3195 unsigned OldElts = DstTy.getNumElements(); 3196 3197 NarrowTy0 = NarrowTy; 3198 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3199 NarrowTy1 = NarrowTy.isVector() ? 3200 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3201 SrcTy.getElementType(); 3202 3203 } else { 3204 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3205 unsigned OldElts = SrcTy.getNumElements(); 3206 3207 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3208 NarrowTy.getNumElements(); 3209 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3210 DstTy.getScalarSizeInBits()); 3211 NarrowTy1 = NarrowTy; 3212 } 3213 3214 // FIXME: Don't know how to handle the situation where the small vectors 3215 // aren't all the same size yet. 3216 if (NarrowTy1.isVector() && 3217 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3218 return UnableToLegalize; 3219 3220 CmpInst::Predicate Pred 3221 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3222 3223 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3224 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3225 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3226 3227 for (unsigned I = 0; I < NumParts; ++I) { 3228 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3229 DstRegs.push_back(DstReg); 3230 3231 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3232 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3233 else { 3234 MachineInstr *NewCmp 3235 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3236 NewCmp->setFlags(MI.getFlags()); 3237 } 3238 } 3239 3240 if (NarrowTy1.isVector()) 3241 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3242 else 3243 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3244 3245 MI.eraseFromParent(); 3246 return Legalized; 3247 } 3248 3249 LegalizerHelper::LegalizeResult 3250 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3251 LLT NarrowTy) { 3252 Register DstReg = MI.getOperand(0).getReg(); 3253 Register CondReg = MI.getOperand(1).getReg(); 3254 3255 unsigned NumParts = 0; 3256 LLT NarrowTy0, NarrowTy1; 3257 3258 LLT DstTy = MRI.getType(DstReg); 3259 LLT CondTy = MRI.getType(CondReg); 3260 unsigned Size = DstTy.getSizeInBits(); 3261 3262 assert(TypeIdx == 0 || CondTy.isVector()); 3263 3264 if (TypeIdx == 0) { 3265 NarrowTy0 = NarrowTy; 3266 NarrowTy1 = CondTy; 3267 3268 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3269 // FIXME: Don't know how to handle the situation where the small vectors 3270 // aren't all the same size yet. 3271 if (Size % NarrowSize != 0) 3272 return UnableToLegalize; 3273 3274 NumParts = Size / NarrowSize; 3275 3276 // Need to break down the condition type 3277 if (CondTy.isVector()) { 3278 if (CondTy.getNumElements() == NumParts) 3279 NarrowTy1 = CondTy.getElementType(); 3280 else 3281 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3282 CondTy.getScalarSizeInBits()); 3283 } 3284 } else { 3285 NumParts = CondTy.getNumElements(); 3286 if (NarrowTy.isVector()) { 3287 // TODO: Handle uneven breakdown. 3288 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3289 return UnableToLegalize; 3290 3291 return UnableToLegalize; 3292 } else { 3293 NarrowTy0 = DstTy.getElementType(); 3294 NarrowTy1 = NarrowTy; 3295 } 3296 } 3297 3298 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3299 if (CondTy.isVector()) 3300 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3301 3302 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3303 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3304 3305 for (unsigned i = 0; i < NumParts; ++i) { 3306 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3307 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3308 Src1Regs[i], Src2Regs[i]); 3309 DstRegs.push_back(DstReg); 3310 } 3311 3312 if (NarrowTy0.isVector()) 3313 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3314 else 3315 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3316 3317 MI.eraseFromParent(); 3318 return Legalized; 3319 } 3320 3321 LegalizerHelper::LegalizeResult 3322 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3323 LLT NarrowTy) { 3324 const Register DstReg = MI.getOperand(0).getReg(); 3325 LLT PhiTy = MRI.getType(DstReg); 3326 LLT LeftoverTy; 3327 3328 // All of the operands need to have the same number of elements, so if we can 3329 // determine a type breakdown for the result type, we can for all of the 3330 // source types. 3331 int NumParts, NumLeftover; 3332 std::tie(NumParts, NumLeftover) 3333 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3334 if (NumParts < 0) 3335 return UnableToLegalize; 3336 3337 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3338 SmallVector<MachineInstrBuilder, 4> NewInsts; 3339 3340 const int TotalNumParts = NumParts + NumLeftover; 3341 3342 // Insert the new phis in the result block first. 3343 for (int I = 0; I != TotalNumParts; ++I) { 3344 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3345 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3346 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3347 .addDef(PartDstReg)); 3348 if (I < NumParts) 3349 DstRegs.push_back(PartDstReg); 3350 else 3351 LeftoverDstRegs.push_back(PartDstReg); 3352 } 3353 3354 MachineBasicBlock *MBB = MI.getParent(); 3355 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3356 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3357 3358 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3359 3360 // Insert code to extract the incoming values in each predecessor block. 3361 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3362 PartRegs.clear(); 3363 LeftoverRegs.clear(); 3364 3365 Register SrcReg = MI.getOperand(I).getReg(); 3366 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3367 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3368 3369 LLT Unused; 3370 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3371 LeftoverRegs)) 3372 return UnableToLegalize; 3373 3374 // Add the newly created operand splits to the existing instructions. The 3375 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3376 // pieces. 3377 for (int J = 0; J != TotalNumParts; ++J) { 3378 MachineInstrBuilder MIB = NewInsts[J]; 3379 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3380 MIB.addMBB(&OpMBB); 3381 } 3382 } 3383 3384 MI.eraseFromParent(); 3385 return Legalized; 3386 } 3387 3388 LegalizerHelper::LegalizeResult 3389 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3390 unsigned TypeIdx, 3391 LLT NarrowTy) { 3392 if (TypeIdx != 1) 3393 return UnableToLegalize; 3394 3395 const int NumDst = MI.getNumOperands() - 1; 3396 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3397 LLT SrcTy = MRI.getType(SrcReg); 3398 3399 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3400 3401 // TODO: Create sequence of extracts. 3402 if (DstTy == NarrowTy) 3403 return UnableToLegalize; 3404 3405 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3406 if (DstTy == GCDTy) { 3407 // This would just be a copy of the same unmerge. 3408 // TODO: Create extracts, pad with undef and create intermediate merges. 3409 return UnableToLegalize; 3410 } 3411 3412 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3413 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3414 const int PartsPerUnmerge = NumDst / NumUnmerge; 3415 3416 for (int I = 0; I != NumUnmerge; ++I) { 3417 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3418 3419 for (int J = 0; J != PartsPerUnmerge; ++J) 3420 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3421 MIB.addUse(Unmerge.getReg(I)); 3422 } 3423 3424 MI.eraseFromParent(); 3425 return Legalized; 3426 } 3427 3428 LegalizerHelper::LegalizeResult 3429 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3430 unsigned TypeIdx, 3431 LLT NarrowTy) { 3432 assert(TypeIdx == 0 && "not a vector type index"); 3433 Register DstReg = MI.getOperand(0).getReg(); 3434 LLT DstTy = MRI.getType(DstReg); 3435 LLT SrcTy = DstTy.getElementType(); 3436 3437 int DstNumElts = DstTy.getNumElements(); 3438 int NarrowNumElts = NarrowTy.getNumElements(); 3439 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3440 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3441 3442 SmallVector<Register, 8> ConcatOps; 3443 SmallVector<Register, 8> SubBuildVector; 3444 3445 Register UndefReg; 3446 if (WidenedDstTy != DstTy) 3447 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3448 3449 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3450 // necessary. 3451 // 3452 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3453 // -> <2 x s16> 3454 // 3455 // %4:_(s16) = G_IMPLICIT_DEF 3456 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3457 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3458 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3459 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3460 for (int I = 0; I != NumConcat; ++I) { 3461 for (int J = 0; J != NarrowNumElts; ++J) { 3462 int SrcIdx = NarrowNumElts * I + J; 3463 3464 if (SrcIdx < DstNumElts) { 3465 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3466 SubBuildVector.push_back(SrcReg); 3467 } else 3468 SubBuildVector.push_back(UndefReg); 3469 } 3470 3471 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3472 ConcatOps.push_back(BuildVec.getReg(0)); 3473 SubBuildVector.clear(); 3474 } 3475 3476 if (DstTy == WidenedDstTy) 3477 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3478 else { 3479 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3480 MIRBuilder.buildExtract(DstReg, Concat, 0); 3481 } 3482 3483 MI.eraseFromParent(); 3484 return Legalized; 3485 } 3486 3487 LegalizerHelper::LegalizeResult 3488 LegalizerHelper::fewerElementsVectorExtractVectorElt(MachineInstr &MI, 3489 unsigned TypeIdx, 3490 LLT NarrowVecTy) { 3491 assert(TypeIdx == 1 && "not a vector type index"); 3492 3493 // TODO: Handle total scalarization case. 3494 if (!NarrowVecTy.isVector()) 3495 return UnableToLegalize; 3496 3497 Register DstReg = MI.getOperand(0).getReg(); 3498 Register SrcVec = MI.getOperand(1).getReg(); 3499 Register Idx = MI.getOperand(2).getReg(); 3500 LLT VecTy = MRI.getType(SrcVec); 3501 3502 // If the index is a constant, we can really break this down as you would 3503 // expect, and index into the target size pieces. 3504 int64_t IdxVal; 3505 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3506 // Avoid out of bounds indexing the pieces. 3507 if (IdxVal >= VecTy.getNumElements()) { 3508 MIRBuilder.buildUndef(DstReg); 3509 MI.eraseFromParent(); 3510 return Legalized; 3511 } 3512 3513 SmallVector<Register, 8> VecParts; 3514 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3515 3516 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3517 buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3518 TargetOpcode::G_ANYEXT); 3519 3520 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3521 3522 LLT IdxTy = MRI.getType(Idx); 3523 int64_t PartIdx = IdxVal / NewNumElts; 3524 auto NewIdx = 3525 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3526 3527 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3528 MI.eraseFromParent(); 3529 return Legalized; 3530 } 3531 3532 // With a variable index, we can't perform the extract in a smaller type, so 3533 // we're forced to expand this. 3534 // 3535 // TODO: We could emit a chain of compare/select to figure out which piece to 3536 // index. 3537 return lowerExtractInsertVectorElt(MI); 3538 } 3539 3540 LegalizerHelper::LegalizeResult 3541 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3542 LLT NarrowTy) { 3543 // FIXME: Don't know how to handle secondary types yet. 3544 if (TypeIdx != 0) 3545 return UnableToLegalize; 3546 3547 MachineMemOperand *MMO = *MI.memoperands_begin(); 3548 3549 // This implementation doesn't work for atomics. Give up instead of doing 3550 // something invalid. 3551 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3552 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3553 return UnableToLegalize; 3554 3555 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3556 Register ValReg = MI.getOperand(0).getReg(); 3557 Register AddrReg = MI.getOperand(1).getReg(); 3558 LLT ValTy = MRI.getType(ValReg); 3559 3560 // FIXME: Do we need a distinct NarrowMemory legalize action? 3561 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3562 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3563 return UnableToLegalize; 3564 } 3565 3566 int NumParts = -1; 3567 int NumLeftover = -1; 3568 LLT LeftoverTy; 3569 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3570 if (IsLoad) { 3571 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3572 } else { 3573 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3574 NarrowLeftoverRegs)) { 3575 NumParts = NarrowRegs.size(); 3576 NumLeftover = NarrowLeftoverRegs.size(); 3577 } 3578 } 3579 3580 if (NumParts == -1) 3581 return UnableToLegalize; 3582 3583 LLT PtrTy = MRI.getType(AddrReg); 3584 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3585 3586 unsigned TotalSize = ValTy.getSizeInBits(); 3587 3588 // Split the load/store into PartTy sized pieces starting at Offset. If this 3589 // is a load, return the new registers in ValRegs. For a store, each elements 3590 // of ValRegs should be PartTy. Returns the next offset that needs to be 3591 // handled. 3592 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3593 unsigned Offset) -> unsigned { 3594 MachineFunction &MF = MIRBuilder.getMF(); 3595 unsigned PartSize = PartTy.getSizeInBits(); 3596 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3597 Offset += PartSize, ++Idx) { 3598 unsigned ByteSize = PartSize / 8; 3599 unsigned ByteOffset = Offset / 8; 3600 Register NewAddrReg; 3601 3602 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3603 3604 MachineMemOperand *NewMMO = 3605 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3606 3607 if (IsLoad) { 3608 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3609 ValRegs.push_back(Dst); 3610 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3611 } else { 3612 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3613 } 3614 } 3615 3616 return Offset; 3617 }; 3618 3619 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3620 3621 // Handle the rest of the register if this isn't an even type breakdown. 3622 if (LeftoverTy.isValid()) 3623 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3624 3625 if (IsLoad) { 3626 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3627 LeftoverTy, NarrowLeftoverRegs); 3628 } 3629 3630 MI.eraseFromParent(); 3631 return Legalized; 3632 } 3633 3634 LegalizerHelper::LegalizeResult 3635 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3636 LLT NarrowTy) { 3637 assert(TypeIdx == 0 && "only one type index expected"); 3638 3639 const unsigned Opc = MI.getOpcode(); 3640 const int NumOps = MI.getNumOperands() - 1; 3641 const Register DstReg = MI.getOperand(0).getReg(); 3642 const unsigned Flags = MI.getFlags(); 3643 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3644 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3645 3646 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3647 3648 // First of all check whether we are narrowing (changing the element type) 3649 // or reducing the vector elements 3650 const LLT DstTy = MRI.getType(DstReg); 3651 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3652 3653 SmallVector<Register, 8> ExtractedRegs[3]; 3654 SmallVector<Register, 8> Parts; 3655 3656 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3657 3658 // Break down all the sources into NarrowTy pieces we can operate on. This may 3659 // involve creating merges to a wider type, padded with undef. 3660 for (int I = 0; I != NumOps; ++I) { 3661 Register SrcReg = MI.getOperand(I + 1).getReg(); 3662 LLT SrcTy = MRI.getType(SrcReg); 3663 3664 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3665 // For fewerElements, this is a smaller vector with the same element type. 3666 LLT OpNarrowTy; 3667 if (IsNarrow) { 3668 OpNarrowTy = NarrowScalarTy; 3669 3670 // In case of narrowing, we need to cast vectors to scalars for this to 3671 // work properly 3672 // FIXME: Can we do without the bitcast here if we're narrowing? 3673 if (SrcTy.isVector()) { 3674 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3675 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3676 } 3677 } else { 3678 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3679 } 3680 3681 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3682 3683 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3684 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3685 TargetOpcode::G_ANYEXT); 3686 } 3687 3688 SmallVector<Register, 8> ResultRegs; 3689 3690 // Input operands for each sub-instruction. 3691 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3692 3693 int NumParts = ExtractedRegs[0].size(); 3694 const unsigned DstSize = DstTy.getSizeInBits(); 3695 const LLT DstScalarTy = LLT::scalar(DstSize); 3696 3697 // Narrowing needs to use scalar types 3698 LLT DstLCMTy, NarrowDstTy; 3699 if (IsNarrow) { 3700 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3701 NarrowDstTy = NarrowScalarTy; 3702 } else { 3703 DstLCMTy = getLCMType(DstTy, NarrowTy); 3704 NarrowDstTy = NarrowTy; 3705 } 3706 3707 // We widened the source registers to satisfy merge/unmerge size 3708 // constraints. We'll have some extra fully undef parts. 3709 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3710 3711 for (int I = 0; I != NumRealParts; ++I) { 3712 // Emit this instruction on each of the split pieces. 3713 for (int J = 0; J != NumOps; ++J) 3714 InputRegs[J] = ExtractedRegs[J][I]; 3715 3716 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3717 ResultRegs.push_back(Inst.getReg(0)); 3718 } 3719 3720 // Fill out the widened result with undef instead of creating instructions 3721 // with undef inputs. 3722 int NumUndefParts = NumParts - NumRealParts; 3723 if (NumUndefParts != 0) 3724 ResultRegs.append(NumUndefParts, 3725 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3726 3727 // Extract the possibly padded result. Use a scratch register if we need to do 3728 // a final bitcast, otherwise use the original result register. 3729 Register MergeDstReg; 3730 if (IsNarrow && DstTy.isVector()) 3731 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3732 else 3733 MergeDstReg = DstReg; 3734 3735 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3736 3737 // Recast to vector if we narrowed a vector 3738 if (IsNarrow && DstTy.isVector()) 3739 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3740 3741 MI.eraseFromParent(); 3742 return Legalized; 3743 } 3744 3745 LegalizerHelper::LegalizeResult 3746 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3747 LLT NarrowTy) { 3748 Register DstReg = MI.getOperand(0).getReg(); 3749 Register SrcReg = MI.getOperand(1).getReg(); 3750 int64_t Imm = MI.getOperand(2).getImm(); 3751 3752 LLT DstTy = MRI.getType(DstReg); 3753 3754 SmallVector<Register, 8> Parts; 3755 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3756 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3757 3758 for (Register &R : Parts) 3759 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3760 3761 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3762 3763 MI.eraseFromParent(); 3764 return Legalized; 3765 } 3766 3767 LegalizerHelper::LegalizeResult 3768 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3769 LLT NarrowTy) { 3770 using namespace TargetOpcode; 3771 3772 switch (MI.getOpcode()) { 3773 case G_IMPLICIT_DEF: 3774 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3775 case G_TRUNC: 3776 case G_AND: 3777 case G_OR: 3778 case G_XOR: 3779 case G_ADD: 3780 case G_SUB: 3781 case G_MUL: 3782 case G_PTR_ADD: 3783 case G_SMULH: 3784 case G_UMULH: 3785 case G_FADD: 3786 case G_FMUL: 3787 case G_FSUB: 3788 case G_FNEG: 3789 case G_FABS: 3790 case G_FCANONICALIZE: 3791 case G_FDIV: 3792 case G_FREM: 3793 case G_FMA: 3794 case G_FMAD: 3795 case G_FPOW: 3796 case G_FEXP: 3797 case G_FEXP2: 3798 case G_FLOG: 3799 case G_FLOG2: 3800 case G_FLOG10: 3801 case G_FNEARBYINT: 3802 case G_FCEIL: 3803 case G_FFLOOR: 3804 case G_FRINT: 3805 case G_INTRINSIC_ROUND: 3806 case G_INTRINSIC_ROUNDEVEN: 3807 case G_INTRINSIC_TRUNC: 3808 case G_FCOS: 3809 case G_FSIN: 3810 case G_FSQRT: 3811 case G_BSWAP: 3812 case G_BITREVERSE: 3813 case G_SDIV: 3814 case G_UDIV: 3815 case G_SREM: 3816 case G_UREM: 3817 case G_SMIN: 3818 case G_SMAX: 3819 case G_UMIN: 3820 case G_UMAX: 3821 case G_FMINNUM: 3822 case G_FMAXNUM: 3823 case G_FMINNUM_IEEE: 3824 case G_FMAXNUM_IEEE: 3825 case G_FMINIMUM: 3826 case G_FMAXIMUM: 3827 case G_FSHL: 3828 case G_FSHR: 3829 case G_FREEZE: 3830 case G_SADDSAT: 3831 case G_SSUBSAT: 3832 case G_UADDSAT: 3833 case G_USUBSAT: 3834 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3835 case G_SHL: 3836 case G_LSHR: 3837 case G_ASHR: 3838 case G_SSHLSAT: 3839 case G_USHLSAT: 3840 case G_CTLZ: 3841 case G_CTLZ_ZERO_UNDEF: 3842 case G_CTTZ: 3843 case G_CTTZ_ZERO_UNDEF: 3844 case G_CTPOP: 3845 case G_FCOPYSIGN: 3846 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3847 case G_ZEXT: 3848 case G_SEXT: 3849 case G_ANYEXT: 3850 case G_FPEXT: 3851 case G_FPTRUNC: 3852 case G_SITOFP: 3853 case G_UITOFP: 3854 case G_FPTOSI: 3855 case G_FPTOUI: 3856 case G_INTTOPTR: 3857 case G_PTRTOINT: 3858 case G_ADDRSPACE_CAST: 3859 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3860 case G_ICMP: 3861 case G_FCMP: 3862 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3863 case G_SELECT: 3864 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3865 case G_PHI: 3866 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3867 case G_UNMERGE_VALUES: 3868 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3869 case G_BUILD_VECTOR: 3870 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3871 case G_EXTRACT_VECTOR_ELT: 3872 return fewerElementsVectorExtractVectorElt(MI, TypeIdx, NarrowTy); 3873 case G_LOAD: 3874 case G_STORE: 3875 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3876 case G_SEXT_INREG: 3877 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3878 default: 3879 return UnableToLegalize; 3880 } 3881 } 3882 3883 LegalizerHelper::LegalizeResult 3884 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3885 const LLT HalfTy, const LLT AmtTy) { 3886 3887 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3888 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3889 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3890 3891 if (Amt.isNullValue()) { 3892 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3893 MI.eraseFromParent(); 3894 return Legalized; 3895 } 3896 3897 LLT NVT = HalfTy; 3898 unsigned NVTBits = HalfTy.getSizeInBits(); 3899 unsigned VTBits = 2 * NVTBits; 3900 3901 SrcOp Lo(Register(0)), Hi(Register(0)); 3902 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3903 if (Amt.ugt(VTBits)) { 3904 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3905 } else if (Amt.ugt(NVTBits)) { 3906 Lo = MIRBuilder.buildConstant(NVT, 0); 3907 Hi = MIRBuilder.buildShl(NVT, InL, 3908 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3909 } else if (Amt == NVTBits) { 3910 Lo = MIRBuilder.buildConstant(NVT, 0); 3911 Hi = InL; 3912 } else { 3913 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3914 auto OrLHS = 3915 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3916 auto OrRHS = MIRBuilder.buildLShr( 3917 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3918 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3919 } 3920 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3921 if (Amt.ugt(VTBits)) { 3922 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3923 } else if (Amt.ugt(NVTBits)) { 3924 Lo = MIRBuilder.buildLShr(NVT, InH, 3925 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3926 Hi = MIRBuilder.buildConstant(NVT, 0); 3927 } else if (Amt == NVTBits) { 3928 Lo = InH; 3929 Hi = MIRBuilder.buildConstant(NVT, 0); 3930 } else { 3931 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3932 3933 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3934 auto OrRHS = MIRBuilder.buildShl( 3935 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3936 3937 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3938 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3939 } 3940 } else { 3941 if (Amt.ugt(VTBits)) { 3942 Hi = Lo = MIRBuilder.buildAShr( 3943 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3944 } else if (Amt.ugt(NVTBits)) { 3945 Lo = MIRBuilder.buildAShr(NVT, InH, 3946 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3947 Hi = MIRBuilder.buildAShr(NVT, InH, 3948 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3949 } else if (Amt == NVTBits) { 3950 Lo = InH; 3951 Hi = MIRBuilder.buildAShr(NVT, InH, 3952 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3953 } else { 3954 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3955 3956 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3957 auto OrRHS = MIRBuilder.buildShl( 3958 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3959 3960 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3961 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3962 } 3963 } 3964 3965 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3966 MI.eraseFromParent(); 3967 3968 return Legalized; 3969 } 3970 3971 // TODO: Optimize if constant shift amount. 3972 LegalizerHelper::LegalizeResult 3973 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3974 LLT RequestedTy) { 3975 if (TypeIdx == 1) { 3976 Observer.changingInstr(MI); 3977 narrowScalarSrc(MI, RequestedTy, 2); 3978 Observer.changedInstr(MI); 3979 return Legalized; 3980 } 3981 3982 Register DstReg = MI.getOperand(0).getReg(); 3983 LLT DstTy = MRI.getType(DstReg); 3984 if (DstTy.isVector()) 3985 return UnableToLegalize; 3986 3987 Register Amt = MI.getOperand(2).getReg(); 3988 LLT ShiftAmtTy = MRI.getType(Amt); 3989 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3990 if (DstEltSize % 2 != 0) 3991 return UnableToLegalize; 3992 3993 // Ignore the input type. We can only go to exactly half the size of the 3994 // input. If that isn't small enough, the resulting pieces will be further 3995 // legalized. 3996 const unsigned NewBitSize = DstEltSize / 2; 3997 const LLT HalfTy = LLT::scalar(NewBitSize); 3998 const LLT CondTy = LLT::scalar(1); 3999 4000 if (const MachineInstr *KShiftAmt = 4001 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4002 return narrowScalarShiftByConstant( 4003 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4004 } 4005 4006 // TODO: Expand with known bits. 4007 4008 // Handle the fully general expansion by an unknown amount. 4009 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4010 4011 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4012 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4013 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4014 4015 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4016 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4017 4018 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4019 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4020 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4021 4022 Register ResultRegs[2]; 4023 switch (MI.getOpcode()) { 4024 case TargetOpcode::G_SHL: { 4025 // Short: ShAmt < NewBitSize 4026 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4027 4028 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4029 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4030 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4031 4032 // Long: ShAmt >= NewBitSize 4033 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4034 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4035 4036 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4037 auto Hi = MIRBuilder.buildSelect( 4038 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4039 4040 ResultRegs[0] = Lo.getReg(0); 4041 ResultRegs[1] = Hi.getReg(0); 4042 break; 4043 } 4044 case TargetOpcode::G_LSHR: 4045 case TargetOpcode::G_ASHR: { 4046 // Short: ShAmt < NewBitSize 4047 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4048 4049 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4050 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4051 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4052 4053 // Long: ShAmt >= NewBitSize 4054 MachineInstrBuilder HiL; 4055 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4056 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4057 } else { 4058 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4059 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4060 } 4061 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4062 {InH, AmtExcess}); // Lo from Hi part. 4063 4064 auto Lo = MIRBuilder.buildSelect( 4065 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4066 4067 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4068 4069 ResultRegs[0] = Lo.getReg(0); 4070 ResultRegs[1] = Hi.getReg(0); 4071 break; 4072 } 4073 default: 4074 llvm_unreachable("not a shift"); 4075 } 4076 4077 MIRBuilder.buildMerge(DstReg, ResultRegs); 4078 MI.eraseFromParent(); 4079 return Legalized; 4080 } 4081 4082 LegalizerHelper::LegalizeResult 4083 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4084 LLT MoreTy) { 4085 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4086 4087 Observer.changingInstr(MI); 4088 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4089 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4090 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4091 moreElementsVectorSrc(MI, MoreTy, I); 4092 } 4093 4094 MachineBasicBlock &MBB = *MI.getParent(); 4095 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4096 moreElementsVectorDst(MI, MoreTy, 0); 4097 Observer.changedInstr(MI); 4098 return Legalized; 4099 } 4100 4101 LegalizerHelper::LegalizeResult 4102 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4103 LLT MoreTy) { 4104 unsigned Opc = MI.getOpcode(); 4105 switch (Opc) { 4106 case TargetOpcode::G_IMPLICIT_DEF: 4107 case TargetOpcode::G_LOAD: { 4108 if (TypeIdx != 0) 4109 return UnableToLegalize; 4110 Observer.changingInstr(MI); 4111 moreElementsVectorDst(MI, MoreTy, 0); 4112 Observer.changedInstr(MI); 4113 return Legalized; 4114 } 4115 case TargetOpcode::G_STORE: 4116 if (TypeIdx != 0) 4117 return UnableToLegalize; 4118 Observer.changingInstr(MI); 4119 moreElementsVectorSrc(MI, MoreTy, 0); 4120 Observer.changedInstr(MI); 4121 return Legalized; 4122 case TargetOpcode::G_AND: 4123 case TargetOpcode::G_OR: 4124 case TargetOpcode::G_XOR: 4125 case TargetOpcode::G_SMIN: 4126 case TargetOpcode::G_SMAX: 4127 case TargetOpcode::G_UMIN: 4128 case TargetOpcode::G_UMAX: 4129 case TargetOpcode::G_FMINNUM: 4130 case TargetOpcode::G_FMAXNUM: 4131 case TargetOpcode::G_FMINNUM_IEEE: 4132 case TargetOpcode::G_FMAXNUM_IEEE: 4133 case TargetOpcode::G_FMINIMUM: 4134 case TargetOpcode::G_FMAXIMUM: { 4135 Observer.changingInstr(MI); 4136 moreElementsVectorSrc(MI, MoreTy, 1); 4137 moreElementsVectorSrc(MI, MoreTy, 2); 4138 moreElementsVectorDst(MI, MoreTy, 0); 4139 Observer.changedInstr(MI); 4140 return Legalized; 4141 } 4142 case TargetOpcode::G_EXTRACT: 4143 if (TypeIdx != 1) 4144 return UnableToLegalize; 4145 Observer.changingInstr(MI); 4146 moreElementsVectorSrc(MI, MoreTy, 1); 4147 Observer.changedInstr(MI); 4148 return Legalized; 4149 case TargetOpcode::G_INSERT: 4150 case TargetOpcode::G_FREEZE: 4151 if (TypeIdx != 0) 4152 return UnableToLegalize; 4153 Observer.changingInstr(MI); 4154 moreElementsVectorSrc(MI, MoreTy, 1); 4155 moreElementsVectorDst(MI, MoreTy, 0); 4156 Observer.changedInstr(MI); 4157 return Legalized; 4158 case TargetOpcode::G_SELECT: 4159 if (TypeIdx != 0) 4160 return UnableToLegalize; 4161 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4162 return UnableToLegalize; 4163 4164 Observer.changingInstr(MI); 4165 moreElementsVectorSrc(MI, MoreTy, 2); 4166 moreElementsVectorSrc(MI, MoreTy, 3); 4167 moreElementsVectorDst(MI, MoreTy, 0); 4168 Observer.changedInstr(MI); 4169 return Legalized; 4170 case TargetOpcode::G_UNMERGE_VALUES: { 4171 if (TypeIdx != 1) 4172 return UnableToLegalize; 4173 4174 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4175 int NumDst = MI.getNumOperands() - 1; 4176 moreElementsVectorSrc(MI, MoreTy, NumDst); 4177 4178 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4179 for (int I = 0; I != NumDst; ++I) 4180 MIB.addDef(MI.getOperand(I).getReg()); 4181 4182 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4183 for (int I = NumDst; I != NewNumDst; ++I) 4184 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4185 4186 MIB.addUse(MI.getOperand(NumDst).getReg()); 4187 MI.eraseFromParent(); 4188 return Legalized; 4189 } 4190 case TargetOpcode::G_PHI: 4191 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4192 default: 4193 return UnableToLegalize; 4194 } 4195 } 4196 4197 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4198 ArrayRef<Register> Src1Regs, 4199 ArrayRef<Register> Src2Regs, 4200 LLT NarrowTy) { 4201 MachineIRBuilder &B = MIRBuilder; 4202 unsigned SrcParts = Src1Regs.size(); 4203 unsigned DstParts = DstRegs.size(); 4204 4205 unsigned DstIdx = 0; // Low bits of the result. 4206 Register FactorSum = 4207 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4208 DstRegs[DstIdx] = FactorSum; 4209 4210 unsigned CarrySumPrevDstIdx; 4211 SmallVector<Register, 4> Factors; 4212 4213 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4214 // Collect low parts of muls for DstIdx. 4215 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4216 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4217 MachineInstrBuilder Mul = 4218 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4219 Factors.push_back(Mul.getReg(0)); 4220 } 4221 // Collect high parts of muls from previous DstIdx. 4222 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4223 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4224 MachineInstrBuilder Umulh = 4225 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4226 Factors.push_back(Umulh.getReg(0)); 4227 } 4228 // Add CarrySum from additions calculated for previous DstIdx. 4229 if (DstIdx != 1) { 4230 Factors.push_back(CarrySumPrevDstIdx); 4231 } 4232 4233 Register CarrySum; 4234 // Add all factors and accumulate all carries into CarrySum. 4235 if (DstIdx != DstParts - 1) { 4236 MachineInstrBuilder Uaddo = 4237 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4238 FactorSum = Uaddo.getReg(0); 4239 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4240 for (unsigned i = 2; i < Factors.size(); ++i) { 4241 MachineInstrBuilder Uaddo = 4242 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4243 FactorSum = Uaddo.getReg(0); 4244 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4245 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4246 } 4247 } else { 4248 // Since value for the next index is not calculated, neither is CarrySum. 4249 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4250 for (unsigned i = 2; i < Factors.size(); ++i) 4251 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4252 } 4253 4254 CarrySumPrevDstIdx = CarrySum; 4255 DstRegs[DstIdx] = FactorSum; 4256 Factors.clear(); 4257 } 4258 } 4259 4260 LegalizerHelper::LegalizeResult 4261 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4262 Register DstReg = MI.getOperand(0).getReg(); 4263 Register Src1 = MI.getOperand(1).getReg(); 4264 Register Src2 = MI.getOperand(2).getReg(); 4265 4266 LLT Ty = MRI.getType(DstReg); 4267 if (Ty.isVector()) 4268 return UnableToLegalize; 4269 4270 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4271 unsigned DstSize = Ty.getSizeInBits(); 4272 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4273 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4274 return UnableToLegalize; 4275 4276 unsigned NumDstParts = DstSize / NarrowSize; 4277 unsigned NumSrcParts = SrcSize / NarrowSize; 4278 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4279 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4280 4281 SmallVector<Register, 2> Src1Parts, Src2Parts; 4282 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4283 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4284 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4285 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4286 4287 // Take only high half of registers if this is high mul. 4288 ArrayRef<Register> DstRegs( 4289 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4290 MIRBuilder.buildMerge(DstReg, DstRegs); 4291 MI.eraseFromParent(); 4292 return Legalized; 4293 } 4294 4295 LegalizerHelper::LegalizeResult 4296 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4297 LLT NarrowTy) { 4298 if (TypeIdx != 1) 4299 return UnableToLegalize; 4300 4301 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4302 4303 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4304 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4305 // NarrowSize. 4306 if (SizeOp1 % NarrowSize != 0) 4307 return UnableToLegalize; 4308 int NumParts = SizeOp1 / NarrowSize; 4309 4310 SmallVector<Register, 2> SrcRegs, DstRegs; 4311 SmallVector<uint64_t, 2> Indexes; 4312 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4313 4314 Register OpReg = MI.getOperand(0).getReg(); 4315 uint64_t OpStart = MI.getOperand(2).getImm(); 4316 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4317 for (int i = 0; i < NumParts; ++i) { 4318 unsigned SrcStart = i * NarrowSize; 4319 4320 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4321 // No part of the extract uses this subregister, ignore it. 4322 continue; 4323 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4324 // The entire subregister is extracted, forward the value. 4325 DstRegs.push_back(SrcRegs[i]); 4326 continue; 4327 } 4328 4329 // OpSegStart is where this destination segment would start in OpReg if it 4330 // extended infinitely in both directions. 4331 int64_t ExtractOffset; 4332 uint64_t SegSize; 4333 if (OpStart < SrcStart) { 4334 ExtractOffset = 0; 4335 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4336 } else { 4337 ExtractOffset = OpStart - SrcStart; 4338 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4339 } 4340 4341 Register SegReg = SrcRegs[i]; 4342 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4343 // A genuine extract is needed. 4344 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4345 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4346 } 4347 4348 DstRegs.push_back(SegReg); 4349 } 4350 4351 Register DstReg = MI.getOperand(0).getReg(); 4352 if (MRI.getType(DstReg).isVector()) 4353 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4354 else if (DstRegs.size() > 1) 4355 MIRBuilder.buildMerge(DstReg, DstRegs); 4356 else 4357 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4358 MI.eraseFromParent(); 4359 return Legalized; 4360 } 4361 4362 LegalizerHelper::LegalizeResult 4363 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4364 LLT NarrowTy) { 4365 // FIXME: Don't know how to handle secondary types yet. 4366 if (TypeIdx != 0) 4367 return UnableToLegalize; 4368 4369 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4370 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4371 4372 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4373 // NarrowSize. 4374 if (SizeOp0 % NarrowSize != 0) 4375 return UnableToLegalize; 4376 4377 int NumParts = SizeOp0 / NarrowSize; 4378 4379 SmallVector<Register, 2> SrcRegs, DstRegs; 4380 SmallVector<uint64_t, 2> Indexes; 4381 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4382 4383 Register OpReg = MI.getOperand(2).getReg(); 4384 uint64_t OpStart = MI.getOperand(3).getImm(); 4385 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4386 for (int i = 0; i < NumParts; ++i) { 4387 unsigned DstStart = i * NarrowSize; 4388 4389 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4390 // No part of the insert affects this subregister, forward the original. 4391 DstRegs.push_back(SrcRegs[i]); 4392 continue; 4393 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4394 // The entire subregister is defined by this insert, forward the new 4395 // value. 4396 DstRegs.push_back(OpReg); 4397 continue; 4398 } 4399 4400 // OpSegStart is where this destination segment would start in OpReg if it 4401 // extended infinitely in both directions. 4402 int64_t ExtractOffset, InsertOffset; 4403 uint64_t SegSize; 4404 if (OpStart < DstStart) { 4405 InsertOffset = 0; 4406 ExtractOffset = DstStart - OpStart; 4407 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4408 } else { 4409 InsertOffset = OpStart - DstStart; 4410 ExtractOffset = 0; 4411 SegSize = 4412 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4413 } 4414 4415 Register SegReg = OpReg; 4416 if (ExtractOffset != 0 || SegSize != OpSize) { 4417 // A genuine extract is needed. 4418 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4419 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4420 } 4421 4422 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4423 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4424 DstRegs.push_back(DstReg); 4425 } 4426 4427 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4428 Register DstReg = MI.getOperand(0).getReg(); 4429 if(MRI.getType(DstReg).isVector()) 4430 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4431 else 4432 MIRBuilder.buildMerge(DstReg, DstRegs); 4433 MI.eraseFromParent(); 4434 return Legalized; 4435 } 4436 4437 LegalizerHelper::LegalizeResult 4438 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4439 LLT NarrowTy) { 4440 Register DstReg = MI.getOperand(0).getReg(); 4441 LLT DstTy = MRI.getType(DstReg); 4442 4443 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4444 4445 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4446 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4447 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4448 LLT LeftoverTy; 4449 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4450 Src0Regs, Src0LeftoverRegs)) 4451 return UnableToLegalize; 4452 4453 LLT Unused; 4454 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4455 Src1Regs, Src1LeftoverRegs)) 4456 llvm_unreachable("inconsistent extractParts result"); 4457 4458 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4459 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4460 {Src0Regs[I], Src1Regs[I]}); 4461 DstRegs.push_back(Inst.getReg(0)); 4462 } 4463 4464 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4465 auto Inst = MIRBuilder.buildInstr( 4466 MI.getOpcode(), 4467 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4468 DstLeftoverRegs.push_back(Inst.getReg(0)); 4469 } 4470 4471 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4472 LeftoverTy, DstLeftoverRegs); 4473 4474 MI.eraseFromParent(); 4475 return Legalized; 4476 } 4477 4478 LegalizerHelper::LegalizeResult 4479 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4480 LLT NarrowTy) { 4481 if (TypeIdx != 0) 4482 return UnableToLegalize; 4483 4484 Register DstReg = MI.getOperand(0).getReg(); 4485 Register SrcReg = MI.getOperand(1).getReg(); 4486 4487 LLT DstTy = MRI.getType(DstReg); 4488 if (DstTy.isVector()) 4489 return UnableToLegalize; 4490 4491 SmallVector<Register, 8> Parts; 4492 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4493 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4494 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4495 4496 MI.eraseFromParent(); 4497 return Legalized; 4498 } 4499 4500 LegalizerHelper::LegalizeResult 4501 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4502 LLT NarrowTy) { 4503 if (TypeIdx != 0) 4504 return UnableToLegalize; 4505 4506 Register CondReg = MI.getOperand(1).getReg(); 4507 LLT CondTy = MRI.getType(CondReg); 4508 if (CondTy.isVector()) // TODO: Handle vselect 4509 return UnableToLegalize; 4510 4511 Register DstReg = MI.getOperand(0).getReg(); 4512 LLT DstTy = MRI.getType(DstReg); 4513 4514 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4515 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4516 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4517 LLT LeftoverTy; 4518 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4519 Src1Regs, Src1LeftoverRegs)) 4520 return UnableToLegalize; 4521 4522 LLT Unused; 4523 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4524 Src2Regs, Src2LeftoverRegs)) 4525 llvm_unreachable("inconsistent extractParts result"); 4526 4527 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4528 auto Select = MIRBuilder.buildSelect(NarrowTy, 4529 CondReg, Src1Regs[I], Src2Regs[I]); 4530 DstRegs.push_back(Select.getReg(0)); 4531 } 4532 4533 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4534 auto Select = MIRBuilder.buildSelect( 4535 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4536 DstLeftoverRegs.push_back(Select.getReg(0)); 4537 } 4538 4539 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4540 LeftoverTy, DstLeftoverRegs); 4541 4542 MI.eraseFromParent(); 4543 return Legalized; 4544 } 4545 4546 LegalizerHelper::LegalizeResult 4547 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4548 LLT NarrowTy) { 4549 if (TypeIdx != 1) 4550 return UnableToLegalize; 4551 4552 Register DstReg = MI.getOperand(0).getReg(); 4553 Register SrcReg = MI.getOperand(1).getReg(); 4554 LLT DstTy = MRI.getType(DstReg); 4555 LLT SrcTy = MRI.getType(SrcReg); 4556 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4557 4558 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4559 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4560 4561 MachineIRBuilder &B = MIRBuilder; 4562 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4563 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4564 auto C_0 = B.buildConstant(NarrowTy, 0); 4565 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4566 UnmergeSrc.getReg(1), C_0); 4567 auto LoCTLZ = IsUndef ? 4568 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4569 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4570 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4571 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4572 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4573 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4574 4575 MI.eraseFromParent(); 4576 return Legalized; 4577 } 4578 4579 return UnableToLegalize; 4580 } 4581 4582 LegalizerHelper::LegalizeResult 4583 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4584 LLT NarrowTy) { 4585 if (TypeIdx != 1) 4586 return UnableToLegalize; 4587 4588 Register DstReg = MI.getOperand(0).getReg(); 4589 Register SrcReg = MI.getOperand(1).getReg(); 4590 LLT DstTy = MRI.getType(DstReg); 4591 LLT SrcTy = MRI.getType(SrcReg); 4592 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4593 4594 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4595 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4596 4597 MachineIRBuilder &B = MIRBuilder; 4598 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4599 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4600 auto C_0 = B.buildConstant(NarrowTy, 0); 4601 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4602 UnmergeSrc.getReg(0), C_0); 4603 auto HiCTTZ = IsUndef ? 4604 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4605 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4606 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4607 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4608 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4609 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4610 4611 MI.eraseFromParent(); 4612 return Legalized; 4613 } 4614 4615 return UnableToLegalize; 4616 } 4617 4618 LegalizerHelper::LegalizeResult 4619 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4620 LLT NarrowTy) { 4621 if (TypeIdx != 1) 4622 return UnableToLegalize; 4623 4624 Register DstReg = MI.getOperand(0).getReg(); 4625 LLT DstTy = MRI.getType(DstReg); 4626 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4627 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4628 4629 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4630 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4631 4632 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4633 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4634 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4635 4636 MI.eraseFromParent(); 4637 return Legalized; 4638 } 4639 4640 return UnableToLegalize; 4641 } 4642 4643 LegalizerHelper::LegalizeResult 4644 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4645 unsigned Opc = MI.getOpcode(); 4646 const auto &TII = MIRBuilder.getTII(); 4647 auto isSupported = [this](const LegalityQuery &Q) { 4648 auto QAction = LI.getAction(Q).Action; 4649 return QAction == Legal || QAction == Libcall || QAction == Custom; 4650 }; 4651 switch (Opc) { 4652 default: 4653 return UnableToLegalize; 4654 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4655 // This trivially expands to CTLZ. 4656 Observer.changingInstr(MI); 4657 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4658 Observer.changedInstr(MI); 4659 return Legalized; 4660 } 4661 case TargetOpcode::G_CTLZ: { 4662 Register DstReg = MI.getOperand(0).getReg(); 4663 Register SrcReg = MI.getOperand(1).getReg(); 4664 LLT DstTy = MRI.getType(DstReg); 4665 LLT SrcTy = MRI.getType(SrcReg); 4666 unsigned Len = SrcTy.getSizeInBits(); 4667 4668 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4669 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4670 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4671 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4672 auto ICmp = MIRBuilder.buildICmp( 4673 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4674 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4675 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4676 MI.eraseFromParent(); 4677 return Legalized; 4678 } 4679 // for now, we do this: 4680 // NewLen = NextPowerOf2(Len); 4681 // x = x | (x >> 1); 4682 // x = x | (x >> 2); 4683 // ... 4684 // x = x | (x >>16); 4685 // x = x | (x >>32); // for 64-bit input 4686 // Upto NewLen/2 4687 // return Len - popcount(x); 4688 // 4689 // Ref: "Hacker's Delight" by Henry Warren 4690 Register Op = SrcReg; 4691 unsigned NewLen = PowerOf2Ceil(Len); 4692 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4693 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4694 auto MIBOp = MIRBuilder.buildOr( 4695 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4696 Op = MIBOp.getReg(0); 4697 } 4698 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4699 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4700 MIBPop); 4701 MI.eraseFromParent(); 4702 return Legalized; 4703 } 4704 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4705 // This trivially expands to CTTZ. 4706 Observer.changingInstr(MI); 4707 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4708 Observer.changedInstr(MI); 4709 return Legalized; 4710 } 4711 case TargetOpcode::G_CTTZ: { 4712 Register DstReg = MI.getOperand(0).getReg(); 4713 Register SrcReg = MI.getOperand(1).getReg(); 4714 LLT DstTy = MRI.getType(DstReg); 4715 LLT SrcTy = MRI.getType(SrcReg); 4716 4717 unsigned Len = SrcTy.getSizeInBits(); 4718 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4719 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4720 // zero. 4721 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4722 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4723 auto ICmp = MIRBuilder.buildICmp( 4724 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4725 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4726 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4727 MI.eraseFromParent(); 4728 return Legalized; 4729 } 4730 // for now, we use: { return popcount(~x & (x - 1)); } 4731 // unless the target has ctlz but not ctpop, in which case we use: 4732 // { return 32 - nlz(~x & (x-1)); } 4733 // Ref: "Hacker's Delight" by Henry Warren 4734 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4735 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4736 auto MIBTmp = MIRBuilder.buildAnd( 4737 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4738 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4739 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4740 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4741 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4742 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4743 MI.eraseFromParent(); 4744 return Legalized; 4745 } 4746 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4747 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4748 return Legalized; 4749 } 4750 case TargetOpcode::G_CTPOP: { 4751 unsigned Size = Ty.getSizeInBits(); 4752 MachineIRBuilder &B = MIRBuilder; 4753 4754 // Count set bits in blocks of 2 bits. Default approach would be 4755 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4756 // We use following formula instead: 4757 // B2Count = val - { (val >> 1) & 0x55555555 } 4758 // since it gives same result in blocks of 2 with one instruction less. 4759 auto C_1 = B.buildConstant(Ty, 1); 4760 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4761 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4762 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4763 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4764 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4765 4766 // In order to get count in blocks of 4 add values from adjacent block of 2. 4767 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4768 auto C_2 = B.buildConstant(Ty, 2); 4769 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4770 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4771 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4772 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4773 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4774 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4775 4776 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4777 // addition since count value sits in range {0,...,8} and 4 bits are enough 4778 // to hold such binary values. After addition high 4 bits still hold count 4779 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4780 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4781 auto C_4 = B.buildConstant(Ty, 4); 4782 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4783 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4784 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4785 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4786 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4787 4788 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4789 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4790 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4791 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4792 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4793 4794 // Shift count result from 8 high bits to low bits. 4795 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4796 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4797 4798 MI.eraseFromParent(); 4799 return Legalized; 4800 } 4801 } 4802 } 4803 4804 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4805 // representation. 4806 LegalizerHelper::LegalizeResult 4807 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4808 Register Dst = MI.getOperand(0).getReg(); 4809 Register Src = MI.getOperand(1).getReg(); 4810 const LLT S64 = LLT::scalar(64); 4811 const LLT S32 = LLT::scalar(32); 4812 const LLT S1 = LLT::scalar(1); 4813 4814 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4815 4816 // unsigned cul2f(ulong u) { 4817 // uint lz = clz(u); 4818 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4819 // u = (u << lz) & 0x7fffffffffffffffUL; 4820 // ulong t = u & 0xffffffffffUL; 4821 // uint v = (e << 23) | (uint)(u >> 40); 4822 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4823 // return as_float(v + r); 4824 // } 4825 4826 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4827 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4828 4829 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4830 4831 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4832 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4833 4834 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4835 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4836 4837 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4838 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4839 4840 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4841 4842 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4843 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4844 4845 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4846 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4847 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4848 4849 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4850 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4851 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4852 auto One = MIRBuilder.buildConstant(S32, 1); 4853 4854 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4855 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4856 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4857 MIRBuilder.buildAdd(Dst, V, R); 4858 4859 MI.eraseFromParent(); 4860 return Legalized; 4861 } 4862 4863 LegalizerHelper::LegalizeResult 4864 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4865 Register Dst = MI.getOperand(0).getReg(); 4866 Register Src = MI.getOperand(1).getReg(); 4867 LLT DstTy = MRI.getType(Dst); 4868 LLT SrcTy = MRI.getType(Src); 4869 4870 if (SrcTy == LLT::scalar(1)) { 4871 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4872 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4873 MIRBuilder.buildSelect(Dst, Src, True, False); 4874 MI.eraseFromParent(); 4875 return Legalized; 4876 } 4877 4878 if (SrcTy != LLT::scalar(64)) 4879 return UnableToLegalize; 4880 4881 if (DstTy == LLT::scalar(32)) { 4882 // TODO: SelectionDAG has several alternative expansions to port which may 4883 // be more reasonble depending on the available instructions. If a target 4884 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4885 // intermediate type, this is probably worse. 4886 return lowerU64ToF32BitOps(MI); 4887 } 4888 4889 return UnableToLegalize; 4890 } 4891 4892 LegalizerHelper::LegalizeResult 4893 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4894 Register Dst = MI.getOperand(0).getReg(); 4895 Register Src = MI.getOperand(1).getReg(); 4896 LLT DstTy = MRI.getType(Dst); 4897 LLT SrcTy = MRI.getType(Src); 4898 4899 const LLT S64 = LLT::scalar(64); 4900 const LLT S32 = LLT::scalar(32); 4901 const LLT S1 = LLT::scalar(1); 4902 4903 if (SrcTy == S1) { 4904 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4905 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4906 MIRBuilder.buildSelect(Dst, Src, True, False); 4907 MI.eraseFromParent(); 4908 return Legalized; 4909 } 4910 4911 if (SrcTy != S64) 4912 return UnableToLegalize; 4913 4914 if (DstTy == S32) { 4915 // signed cl2f(long l) { 4916 // long s = l >> 63; 4917 // float r = cul2f((l + s) ^ s); 4918 // return s ? -r : r; 4919 // } 4920 Register L = Src; 4921 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4922 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4923 4924 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4925 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4926 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4927 4928 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4929 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4930 MIRBuilder.buildConstant(S64, 0)); 4931 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4932 MI.eraseFromParent(); 4933 return Legalized; 4934 } 4935 4936 return UnableToLegalize; 4937 } 4938 4939 LegalizerHelper::LegalizeResult 4940 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4941 Register Dst = MI.getOperand(0).getReg(); 4942 Register Src = MI.getOperand(1).getReg(); 4943 LLT DstTy = MRI.getType(Dst); 4944 LLT SrcTy = MRI.getType(Src); 4945 const LLT S64 = LLT::scalar(64); 4946 const LLT S32 = LLT::scalar(32); 4947 4948 if (SrcTy != S64 && SrcTy != S32) 4949 return UnableToLegalize; 4950 if (DstTy != S32 && DstTy != S64) 4951 return UnableToLegalize; 4952 4953 // FPTOSI gives same result as FPTOUI for positive signed integers. 4954 // FPTOUI needs to deal with fp values that convert to unsigned integers 4955 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4956 4957 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4958 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4959 : APFloat::IEEEdouble(), 4960 APInt::getNullValue(SrcTy.getSizeInBits())); 4961 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4962 4963 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4964 4965 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4966 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4967 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4968 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4969 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4970 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4971 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4972 4973 const LLT S1 = LLT::scalar(1); 4974 4975 MachineInstrBuilder FCMP = 4976 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4977 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4978 4979 MI.eraseFromParent(); 4980 return Legalized; 4981 } 4982 4983 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4984 Register Dst = MI.getOperand(0).getReg(); 4985 Register Src = MI.getOperand(1).getReg(); 4986 LLT DstTy = MRI.getType(Dst); 4987 LLT SrcTy = MRI.getType(Src); 4988 const LLT S64 = LLT::scalar(64); 4989 const LLT S32 = LLT::scalar(32); 4990 4991 // FIXME: Only f32 to i64 conversions are supported. 4992 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4993 return UnableToLegalize; 4994 4995 // Expand f32 -> i64 conversion 4996 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4997 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4998 4999 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5000 5001 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5002 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5003 5004 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5005 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5006 5007 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5008 APInt::getSignMask(SrcEltBits)); 5009 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5010 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5011 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5012 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5013 5014 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5015 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5016 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5017 5018 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5019 R = MIRBuilder.buildZExt(DstTy, R); 5020 5021 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5022 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5023 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5024 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5025 5026 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5027 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5028 5029 const LLT S1 = LLT::scalar(1); 5030 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5031 S1, Exponent, ExponentLoBit); 5032 5033 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5034 5035 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5036 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5037 5038 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5039 5040 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5041 S1, Exponent, ZeroSrcTy); 5042 5043 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5044 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5045 5046 MI.eraseFromParent(); 5047 return Legalized; 5048 } 5049 5050 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5051 LegalizerHelper::LegalizeResult 5052 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5053 Register Dst = MI.getOperand(0).getReg(); 5054 Register Src = MI.getOperand(1).getReg(); 5055 5056 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5057 return UnableToLegalize; 5058 5059 const unsigned ExpMask = 0x7ff; 5060 const unsigned ExpBiasf64 = 1023; 5061 const unsigned ExpBiasf16 = 15; 5062 const LLT S32 = LLT::scalar(32); 5063 const LLT S1 = LLT::scalar(1); 5064 5065 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5066 Register U = Unmerge.getReg(0); 5067 Register UH = Unmerge.getReg(1); 5068 5069 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5070 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5071 5072 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5073 // add the f16 bias (15) to get the biased exponent for the f16 format. 5074 E = MIRBuilder.buildAdd( 5075 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5076 5077 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5078 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5079 5080 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5081 MIRBuilder.buildConstant(S32, 0x1ff)); 5082 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5083 5084 auto Zero = MIRBuilder.buildConstant(S32, 0); 5085 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5086 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5087 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5088 5089 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5090 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5091 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5092 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5093 5094 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5095 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5096 5097 // N = M | (E << 12); 5098 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5099 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5100 5101 // B = clamp(1-E, 0, 13); 5102 auto One = MIRBuilder.buildConstant(S32, 1); 5103 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5104 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5105 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5106 5107 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5108 MIRBuilder.buildConstant(S32, 0x1000)); 5109 5110 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5111 auto D0 = MIRBuilder.buildShl(S32, D, B); 5112 5113 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5114 D0, SigSetHigh); 5115 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5116 D = MIRBuilder.buildOr(S32, D, D1); 5117 5118 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5119 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5120 5121 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5122 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5123 5124 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5125 MIRBuilder.buildConstant(S32, 3)); 5126 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5127 5128 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5129 MIRBuilder.buildConstant(S32, 5)); 5130 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5131 5132 V1 = MIRBuilder.buildOr(S32, V0, V1); 5133 V = MIRBuilder.buildAdd(S32, V, V1); 5134 5135 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5136 E, MIRBuilder.buildConstant(S32, 30)); 5137 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5138 MIRBuilder.buildConstant(S32, 0x7c00), V); 5139 5140 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5141 E, MIRBuilder.buildConstant(S32, 1039)); 5142 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5143 5144 // Extract the sign bit. 5145 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5146 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5147 5148 // Insert the sign bit 5149 V = MIRBuilder.buildOr(S32, Sign, V); 5150 5151 MIRBuilder.buildTrunc(Dst, V); 5152 MI.eraseFromParent(); 5153 return Legalized; 5154 } 5155 5156 LegalizerHelper::LegalizeResult 5157 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 5158 Register Dst = MI.getOperand(0).getReg(); 5159 Register Src = MI.getOperand(1).getReg(); 5160 5161 LLT DstTy = MRI.getType(Dst); 5162 LLT SrcTy = MRI.getType(Src); 5163 const LLT S64 = LLT::scalar(64); 5164 const LLT S16 = LLT::scalar(16); 5165 5166 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5167 return lowerFPTRUNC_F64_TO_F16(MI); 5168 5169 return UnableToLegalize; 5170 } 5171 5172 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5173 // multiplication tree. 5174 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5175 Register Dst = MI.getOperand(0).getReg(); 5176 Register Src0 = MI.getOperand(1).getReg(); 5177 Register Src1 = MI.getOperand(2).getReg(); 5178 LLT Ty = MRI.getType(Dst); 5179 5180 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5181 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5182 MI.eraseFromParent(); 5183 return Legalized; 5184 } 5185 5186 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5187 switch (Opc) { 5188 case TargetOpcode::G_SMIN: 5189 return CmpInst::ICMP_SLT; 5190 case TargetOpcode::G_SMAX: 5191 return CmpInst::ICMP_SGT; 5192 case TargetOpcode::G_UMIN: 5193 return CmpInst::ICMP_ULT; 5194 case TargetOpcode::G_UMAX: 5195 return CmpInst::ICMP_UGT; 5196 default: 5197 llvm_unreachable("not in integer min/max"); 5198 } 5199 } 5200 5201 LegalizerHelper::LegalizeResult 5202 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 5203 Register Dst = MI.getOperand(0).getReg(); 5204 Register Src0 = MI.getOperand(1).getReg(); 5205 Register Src1 = MI.getOperand(2).getReg(); 5206 5207 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5208 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5209 5210 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5211 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5212 5213 MI.eraseFromParent(); 5214 return Legalized; 5215 } 5216 5217 LegalizerHelper::LegalizeResult 5218 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 5219 Register Dst = MI.getOperand(0).getReg(); 5220 Register Src0 = MI.getOperand(1).getReg(); 5221 Register Src1 = MI.getOperand(2).getReg(); 5222 5223 const LLT Src0Ty = MRI.getType(Src0); 5224 const LLT Src1Ty = MRI.getType(Src1); 5225 5226 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5227 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5228 5229 auto SignBitMask = MIRBuilder.buildConstant( 5230 Src0Ty, APInt::getSignMask(Src0Size)); 5231 5232 auto NotSignBitMask = MIRBuilder.buildConstant( 5233 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5234 5235 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 5236 MachineInstr *Or; 5237 5238 if (Src0Ty == Src1Ty) { 5239 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 5240 Or = MIRBuilder.buildOr(Dst, And0, And1); 5241 } else if (Src0Size > Src1Size) { 5242 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5243 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5244 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5245 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 5246 Or = MIRBuilder.buildOr(Dst, And0, And1); 5247 } else { 5248 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5249 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5250 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5251 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 5252 Or = MIRBuilder.buildOr(Dst, And0, And1); 5253 } 5254 5255 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5256 // constants are a nan and -0.0, but the final result should preserve 5257 // everything. 5258 if (unsigned Flags = MI.getFlags()) 5259 Or->setFlags(Flags); 5260 5261 MI.eraseFromParent(); 5262 return Legalized; 5263 } 5264 5265 LegalizerHelper::LegalizeResult 5266 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5267 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5268 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5269 5270 Register Dst = MI.getOperand(0).getReg(); 5271 Register Src0 = MI.getOperand(1).getReg(); 5272 Register Src1 = MI.getOperand(2).getReg(); 5273 LLT Ty = MRI.getType(Dst); 5274 5275 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5276 // Insert canonicalizes if it's possible we need to quiet to get correct 5277 // sNaN behavior. 5278 5279 // Note this must be done here, and not as an optimization combine in the 5280 // absence of a dedicate quiet-snan instruction as we're using an 5281 // omni-purpose G_FCANONICALIZE. 5282 if (!isKnownNeverSNaN(Src0, MRI)) 5283 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5284 5285 if (!isKnownNeverSNaN(Src1, MRI)) 5286 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5287 } 5288 5289 // If there are no nans, it's safe to simply replace this with the non-IEEE 5290 // version. 5291 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5292 MI.eraseFromParent(); 5293 return Legalized; 5294 } 5295 5296 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5297 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5298 Register DstReg = MI.getOperand(0).getReg(); 5299 LLT Ty = MRI.getType(DstReg); 5300 unsigned Flags = MI.getFlags(); 5301 5302 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5303 Flags); 5304 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5305 MI.eraseFromParent(); 5306 return Legalized; 5307 } 5308 5309 LegalizerHelper::LegalizeResult 5310 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5311 Register DstReg = MI.getOperand(0).getReg(); 5312 Register X = MI.getOperand(1).getReg(); 5313 const unsigned Flags = MI.getFlags(); 5314 const LLT Ty = MRI.getType(DstReg); 5315 const LLT CondTy = Ty.changeElementSize(1); 5316 5317 // round(x) => 5318 // t = trunc(x); 5319 // d = fabs(x - t); 5320 // o = copysign(1.0f, x); 5321 // return t + (d >= 0.5 ? o : 0.0); 5322 5323 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5324 5325 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5326 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5327 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5328 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5329 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5330 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5331 5332 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5333 Flags); 5334 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5335 5336 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5337 5338 MI.eraseFromParent(); 5339 return Legalized; 5340 } 5341 5342 LegalizerHelper::LegalizeResult 5343 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5344 Register DstReg = MI.getOperand(0).getReg(); 5345 Register SrcReg = MI.getOperand(1).getReg(); 5346 unsigned Flags = MI.getFlags(); 5347 LLT Ty = MRI.getType(DstReg); 5348 const LLT CondTy = Ty.changeElementSize(1); 5349 5350 // result = trunc(src); 5351 // if (src < 0.0 && src != result) 5352 // result += -1.0. 5353 5354 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5355 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5356 5357 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5358 SrcReg, Zero, Flags); 5359 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5360 SrcReg, Trunc, Flags); 5361 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5362 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5363 5364 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5365 MI.eraseFromParent(); 5366 return Legalized; 5367 } 5368 5369 LegalizerHelper::LegalizeResult 5370 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5371 const unsigned NumOps = MI.getNumOperands(); 5372 Register DstReg = MI.getOperand(0).getReg(); 5373 Register Src0Reg = MI.getOperand(1).getReg(); 5374 LLT DstTy = MRI.getType(DstReg); 5375 LLT SrcTy = MRI.getType(Src0Reg); 5376 unsigned PartSize = SrcTy.getSizeInBits(); 5377 5378 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5379 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5380 5381 for (unsigned I = 2; I != NumOps; ++I) { 5382 const unsigned Offset = (I - 1) * PartSize; 5383 5384 Register SrcReg = MI.getOperand(I).getReg(); 5385 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5386 5387 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5388 MRI.createGenericVirtualRegister(WideTy); 5389 5390 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5391 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5392 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5393 ResultReg = NextResult; 5394 } 5395 5396 if (DstTy.isPointer()) { 5397 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5398 DstTy.getAddressSpace())) { 5399 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5400 return UnableToLegalize; 5401 } 5402 5403 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5404 } 5405 5406 MI.eraseFromParent(); 5407 return Legalized; 5408 } 5409 5410 LegalizerHelper::LegalizeResult 5411 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5412 const unsigned NumDst = MI.getNumOperands() - 1; 5413 Register SrcReg = MI.getOperand(NumDst).getReg(); 5414 Register Dst0Reg = MI.getOperand(0).getReg(); 5415 LLT DstTy = MRI.getType(Dst0Reg); 5416 if (DstTy.isPointer()) 5417 return UnableToLegalize; // TODO 5418 5419 SrcReg = coerceToScalar(SrcReg); 5420 if (!SrcReg) 5421 return UnableToLegalize; 5422 5423 // Expand scalarizing unmerge as bitcast to integer and shift. 5424 LLT IntTy = MRI.getType(SrcReg); 5425 5426 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5427 5428 const unsigned DstSize = DstTy.getSizeInBits(); 5429 unsigned Offset = DstSize; 5430 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5431 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5432 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5433 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5434 } 5435 5436 MI.eraseFromParent(); 5437 return Legalized; 5438 } 5439 5440 /// Lower a vector extract or insert by writing the vector to a stack temporary 5441 /// and reloading the element or vector. 5442 /// 5443 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5444 /// => 5445 /// %stack_temp = G_FRAME_INDEX 5446 /// G_STORE %vec, %stack_temp 5447 /// %idx = clamp(%idx, %vec.getNumElements()) 5448 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5449 /// %dst = G_LOAD %element_ptr 5450 LegalizerHelper::LegalizeResult 5451 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5452 Register DstReg = MI.getOperand(0).getReg(); 5453 Register SrcVec = MI.getOperand(1).getReg(); 5454 Register InsertVal; 5455 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5456 InsertVal = MI.getOperand(2).getReg(); 5457 5458 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5459 5460 LLT VecTy = MRI.getType(SrcVec); 5461 LLT EltTy = VecTy.getElementType(); 5462 if (!EltTy.isByteSized()) { // Not implemented. 5463 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5464 return UnableToLegalize; 5465 } 5466 5467 unsigned EltBytes = EltTy.getSizeInBytes(); 5468 Align VecAlign = getStackTemporaryAlignment(VecTy); 5469 Align EltAlign; 5470 5471 MachinePointerInfo PtrInfo; 5472 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5473 VecAlign, PtrInfo); 5474 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5475 5476 // Get the pointer to the element, and be sure not to hit undefined behavior 5477 // if the index is out of bounds. 5478 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5479 5480 int64_t IdxVal; 5481 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5482 int64_t Offset = IdxVal * EltBytes; 5483 PtrInfo = PtrInfo.getWithOffset(Offset); 5484 EltAlign = commonAlignment(VecAlign, Offset); 5485 } else { 5486 // We lose information with a variable offset. 5487 EltAlign = getStackTemporaryAlignment(EltTy); 5488 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5489 } 5490 5491 if (InsertVal) { 5492 // Write the inserted element 5493 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5494 5495 // Reload the whole vector. 5496 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5497 } else { 5498 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5499 } 5500 5501 MI.eraseFromParent(); 5502 return Legalized; 5503 } 5504 5505 LegalizerHelper::LegalizeResult 5506 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5507 Register DstReg = MI.getOperand(0).getReg(); 5508 Register Src0Reg = MI.getOperand(1).getReg(); 5509 Register Src1Reg = MI.getOperand(2).getReg(); 5510 LLT Src0Ty = MRI.getType(Src0Reg); 5511 LLT DstTy = MRI.getType(DstReg); 5512 LLT IdxTy = LLT::scalar(32); 5513 5514 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5515 5516 if (DstTy.isScalar()) { 5517 if (Src0Ty.isVector()) 5518 return UnableToLegalize; 5519 5520 // This is just a SELECT. 5521 assert(Mask.size() == 1 && "Expected a single mask element"); 5522 Register Val; 5523 if (Mask[0] < 0 || Mask[0] > 1) 5524 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5525 else 5526 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5527 MIRBuilder.buildCopy(DstReg, Val); 5528 MI.eraseFromParent(); 5529 return Legalized; 5530 } 5531 5532 Register Undef; 5533 SmallVector<Register, 32> BuildVec; 5534 LLT EltTy = DstTy.getElementType(); 5535 5536 for (int Idx : Mask) { 5537 if (Idx < 0) { 5538 if (!Undef.isValid()) 5539 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5540 BuildVec.push_back(Undef); 5541 continue; 5542 } 5543 5544 if (Src0Ty.isScalar()) { 5545 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5546 } else { 5547 int NumElts = Src0Ty.getNumElements(); 5548 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5549 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5550 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5551 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5552 BuildVec.push_back(Extract.getReg(0)); 5553 } 5554 } 5555 5556 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5557 MI.eraseFromParent(); 5558 return Legalized; 5559 } 5560 5561 LegalizerHelper::LegalizeResult 5562 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5563 const auto &MF = *MI.getMF(); 5564 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5565 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5566 return UnableToLegalize; 5567 5568 Register Dst = MI.getOperand(0).getReg(); 5569 Register AllocSize = MI.getOperand(1).getReg(); 5570 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5571 5572 LLT PtrTy = MRI.getType(Dst); 5573 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5574 5575 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5576 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5577 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5578 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5579 5580 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5581 // have to generate an extra instruction to negate the alloc and then use 5582 // G_PTR_ADD to add the negative offset. 5583 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5584 if (Alignment > Align(1)) { 5585 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5586 AlignMask.negate(); 5587 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5588 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5589 } 5590 5591 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5592 MIRBuilder.buildCopy(SPReg, SPTmp); 5593 MIRBuilder.buildCopy(Dst, SPTmp); 5594 5595 MI.eraseFromParent(); 5596 return Legalized; 5597 } 5598 5599 LegalizerHelper::LegalizeResult 5600 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5601 Register Dst = MI.getOperand(0).getReg(); 5602 Register Src = MI.getOperand(1).getReg(); 5603 unsigned Offset = MI.getOperand(2).getImm(); 5604 5605 LLT DstTy = MRI.getType(Dst); 5606 LLT SrcTy = MRI.getType(Src); 5607 5608 if (DstTy.isScalar() && 5609 (SrcTy.isScalar() || 5610 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5611 LLT SrcIntTy = SrcTy; 5612 if (!SrcTy.isScalar()) { 5613 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5614 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5615 } 5616 5617 if (Offset == 0) 5618 MIRBuilder.buildTrunc(Dst, Src); 5619 else { 5620 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5621 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5622 MIRBuilder.buildTrunc(Dst, Shr); 5623 } 5624 5625 MI.eraseFromParent(); 5626 return Legalized; 5627 } 5628 5629 return UnableToLegalize; 5630 } 5631 5632 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5633 Register Dst = MI.getOperand(0).getReg(); 5634 Register Src = MI.getOperand(1).getReg(); 5635 Register InsertSrc = MI.getOperand(2).getReg(); 5636 uint64_t Offset = MI.getOperand(3).getImm(); 5637 5638 LLT DstTy = MRI.getType(Src); 5639 LLT InsertTy = MRI.getType(InsertSrc); 5640 5641 if (InsertTy.isVector() || 5642 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5643 return UnableToLegalize; 5644 5645 const DataLayout &DL = MIRBuilder.getDataLayout(); 5646 if ((DstTy.isPointer() && 5647 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5648 (InsertTy.isPointer() && 5649 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5650 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5651 return UnableToLegalize; 5652 } 5653 5654 LLT IntDstTy = DstTy; 5655 5656 if (!DstTy.isScalar()) { 5657 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5658 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5659 } 5660 5661 if (!InsertTy.isScalar()) { 5662 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5663 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5664 } 5665 5666 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5667 if (Offset != 0) { 5668 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5669 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5670 } 5671 5672 APInt MaskVal = APInt::getBitsSetWithWrap( 5673 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5674 5675 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5676 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5677 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5678 5679 MIRBuilder.buildCast(Dst, Or); 5680 MI.eraseFromParent(); 5681 return Legalized; 5682 } 5683 5684 LegalizerHelper::LegalizeResult 5685 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5686 Register Dst0 = MI.getOperand(0).getReg(); 5687 Register Dst1 = MI.getOperand(1).getReg(); 5688 Register LHS = MI.getOperand(2).getReg(); 5689 Register RHS = MI.getOperand(3).getReg(); 5690 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5691 5692 LLT Ty = MRI.getType(Dst0); 5693 LLT BoolTy = MRI.getType(Dst1); 5694 5695 if (IsAdd) 5696 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5697 else 5698 MIRBuilder.buildSub(Dst0, LHS, RHS); 5699 5700 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5701 5702 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5703 5704 // For an addition, the result should be less than one of the operands (LHS) 5705 // if and only if the other operand (RHS) is negative, otherwise there will 5706 // be overflow. 5707 // For a subtraction, the result should be less than one of the operands 5708 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5709 // otherwise there will be overflow. 5710 auto ResultLowerThanLHS = 5711 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5712 auto ConditionRHS = MIRBuilder.buildICmp( 5713 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5714 5715 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5716 MI.eraseFromParent(); 5717 return Legalized; 5718 } 5719 5720 LegalizerHelper::LegalizeResult 5721 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5722 Register Res = MI.getOperand(0).getReg(); 5723 Register LHS = MI.getOperand(1).getReg(); 5724 Register RHS = MI.getOperand(2).getReg(); 5725 LLT Ty = MRI.getType(Res); 5726 bool IsSigned; 5727 bool IsAdd; 5728 unsigned BaseOp; 5729 switch (MI.getOpcode()) { 5730 default: 5731 llvm_unreachable("unexpected addsat/subsat opcode"); 5732 case TargetOpcode::G_UADDSAT: 5733 IsSigned = false; 5734 IsAdd = true; 5735 BaseOp = TargetOpcode::G_ADD; 5736 break; 5737 case TargetOpcode::G_SADDSAT: 5738 IsSigned = true; 5739 IsAdd = true; 5740 BaseOp = TargetOpcode::G_ADD; 5741 break; 5742 case TargetOpcode::G_USUBSAT: 5743 IsSigned = false; 5744 IsAdd = false; 5745 BaseOp = TargetOpcode::G_SUB; 5746 break; 5747 case TargetOpcode::G_SSUBSAT: 5748 IsSigned = true; 5749 IsAdd = false; 5750 BaseOp = TargetOpcode::G_SUB; 5751 break; 5752 } 5753 5754 if (IsSigned) { 5755 // sadd.sat(a, b) -> 5756 // hi = 0x7fffffff - smax(a, 0) 5757 // lo = 0x80000000 - smin(a, 0) 5758 // a + smin(smax(lo, b), hi) 5759 // ssub.sat(a, b) -> 5760 // lo = smax(a, -1) - 0x7fffffff 5761 // hi = smin(a, -1) - 0x80000000 5762 // a - smin(smax(lo, b), hi) 5763 // TODO: AMDGPU can use a "median of 3" instruction here: 5764 // a +/- med3(lo, b, hi) 5765 uint64_t NumBits = Ty.getScalarSizeInBits(); 5766 auto MaxVal = 5767 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5768 auto MinVal = 5769 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5770 MachineInstrBuilder Hi, Lo; 5771 if (IsAdd) { 5772 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5773 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5774 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5775 } else { 5776 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5777 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5778 MaxVal); 5779 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5780 MinVal); 5781 } 5782 auto RHSClamped = 5783 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5784 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5785 } else { 5786 // uadd.sat(a, b) -> a + umin(~a, b) 5787 // usub.sat(a, b) -> a - umin(a, b) 5788 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 5789 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 5790 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 5791 } 5792 5793 MI.eraseFromParent(); 5794 return Legalized; 5795 } 5796 5797 LegalizerHelper::LegalizeResult 5798 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 5799 Register Res = MI.getOperand(0).getReg(); 5800 Register LHS = MI.getOperand(1).getReg(); 5801 Register RHS = MI.getOperand(2).getReg(); 5802 LLT Ty = MRI.getType(Res); 5803 LLT BoolTy = Ty.changeElementSize(1); 5804 bool IsSigned; 5805 bool IsAdd; 5806 unsigned OverflowOp; 5807 switch (MI.getOpcode()) { 5808 default: 5809 llvm_unreachable("unexpected addsat/subsat opcode"); 5810 case TargetOpcode::G_UADDSAT: 5811 IsSigned = false; 5812 IsAdd = true; 5813 OverflowOp = TargetOpcode::G_UADDO; 5814 break; 5815 case TargetOpcode::G_SADDSAT: 5816 IsSigned = true; 5817 IsAdd = true; 5818 OverflowOp = TargetOpcode::G_SADDO; 5819 break; 5820 case TargetOpcode::G_USUBSAT: 5821 IsSigned = false; 5822 IsAdd = false; 5823 OverflowOp = TargetOpcode::G_USUBO; 5824 break; 5825 case TargetOpcode::G_SSUBSAT: 5826 IsSigned = true; 5827 IsAdd = false; 5828 OverflowOp = TargetOpcode::G_SSUBO; 5829 break; 5830 } 5831 5832 auto OverflowRes = 5833 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 5834 Register Tmp = OverflowRes.getReg(0); 5835 Register Ov = OverflowRes.getReg(1); 5836 MachineInstrBuilder Clamp; 5837 if (IsSigned) { 5838 // sadd.sat(a, b) -> 5839 // {tmp, ov} = saddo(a, b) 5840 // ov ? (tmp >>s 31) + 0x80000000 : r 5841 // ssub.sat(a, b) -> 5842 // {tmp, ov} = ssubo(a, b) 5843 // ov ? (tmp >>s 31) + 0x80000000 : r 5844 uint64_t NumBits = Ty.getScalarSizeInBits(); 5845 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 5846 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 5847 auto MinVal = 5848 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5849 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 5850 } else { 5851 // uadd.sat(a, b) -> 5852 // {tmp, ov} = uaddo(a, b) 5853 // ov ? 0xffffffff : tmp 5854 // usub.sat(a, b) -> 5855 // {tmp, ov} = usubo(a, b) 5856 // ov ? 0 : tmp 5857 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 5858 } 5859 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 5860 5861 MI.eraseFromParent(); 5862 return Legalized; 5863 } 5864 5865 LegalizerHelper::LegalizeResult 5866 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 5867 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 5868 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 5869 "Expected shlsat opcode!"); 5870 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 5871 Register Res = MI.getOperand(0).getReg(); 5872 Register LHS = MI.getOperand(1).getReg(); 5873 Register RHS = MI.getOperand(2).getReg(); 5874 LLT Ty = MRI.getType(Res); 5875 LLT BoolTy = Ty.changeElementSize(1); 5876 5877 unsigned BW = Ty.getScalarSizeInBits(); 5878 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 5879 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 5880 : MIRBuilder.buildLShr(Ty, Result, RHS); 5881 5882 MachineInstrBuilder SatVal; 5883 if (IsSigned) { 5884 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 5885 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 5886 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 5887 MIRBuilder.buildConstant(Ty, 0)); 5888 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 5889 } else { 5890 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 5891 } 5892 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, Ty, LHS, Orig); 5893 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 5894 5895 MI.eraseFromParent(); 5896 return Legalized; 5897 } 5898 5899 LegalizerHelper::LegalizeResult 5900 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5901 Register Dst = MI.getOperand(0).getReg(); 5902 Register Src = MI.getOperand(1).getReg(); 5903 const LLT Ty = MRI.getType(Src); 5904 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5905 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5906 5907 // Swap most and least significant byte, set remaining bytes in Res to zero. 5908 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5909 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5910 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5911 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5912 5913 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5914 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5915 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5916 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5917 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5918 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5919 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5920 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5921 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5922 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5923 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5924 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5925 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5926 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5927 } 5928 Res.getInstr()->getOperand(0).setReg(Dst); 5929 5930 MI.eraseFromParent(); 5931 return Legalized; 5932 } 5933 5934 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5935 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5936 MachineInstrBuilder Src, APInt Mask) { 5937 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5938 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5939 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5940 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5941 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5942 return B.buildOr(Dst, LHS, RHS); 5943 } 5944 5945 LegalizerHelper::LegalizeResult 5946 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5947 Register Dst = MI.getOperand(0).getReg(); 5948 Register Src = MI.getOperand(1).getReg(); 5949 const LLT Ty = MRI.getType(Src); 5950 unsigned Size = Ty.getSizeInBits(); 5951 5952 MachineInstrBuilder BSWAP = 5953 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5954 5955 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5956 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5957 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5958 MachineInstrBuilder Swap4 = 5959 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5960 5961 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5962 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5963 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5964 MachineInstrBuilder Swap2 = 5965 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5966 5967 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5968 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5969 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5970 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5971 5972 MI.eraseFromParent(); 5973 return Legalized; 5974 } 5975 5976 LegalizerHelper::LegalizeResult 5977 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5978 MachineFunction &MF = MIRBuilder.getMF(); 5979 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5980 const TargetLowering *TLI = STI.getTargetLowering(); 5981 5982 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5983 int NameOpIdx = IsRead ? 1 : 0; 5984 int ValRegIndex = IsRead ? 0 : 1; 5985 5986 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5987 const LLT Ty = MRI.getType(ValReg); 5988 const MDString *RegStr = cast<MDString>( 5989 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5990 5991 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5992 if (!PhysReg.isValid()) 5993 return UnableToLegalize; 5994 5995 if (IsRead) 5996 MIRBuilder.buildCopy(ValReg, PhysReg); 5997 else 5998 MIRBuilder.buildCopy(PhysReg, ValReg); 5999 6000 MI.eraseFromParent(); 6001 return Legalized; 6002 } 6003