1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 67 GISelChangeObserver &Observer, 68 MachineIRBuilder &Builder) 69 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 70 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 71 MIRBuilder.setMF(MF); 72 MIRBuilder.setChangeObserver(Observer); 73 } 74 75 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 76 GISelChangeObserver &Observer, 77 MachineIRBuilder &B) 78 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 79 MIRBuilder.setMF(MF); 80 MIRBuilder.setChangeObserver(Observer); 81 } 82 LegalizerHelper::LegalizeResult 83 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 84 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 85 86 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 87 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 88 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized 89 : UnableToLegalize; 90 auto Step = LI.getAction(MI, MRI); 91 switch (Step.Action) { 92 case Legal: 93 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 94 return AlreadyLegal; 95 case Libcall: 96 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 97 return libcall(MI); 98 case NarrowScalar: 99 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 100 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 101 case WidenScalar: 102 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 103 return widenScalar(MI, Step.TypeIdx, Step.NewType); 104 case Lower: 105 LLVM_DEBUG(dbgs() << ".. Lower\n"); 106 return lower(MI, Step.TypeIdx, Step.NewType); 107 case FewerElements: 108 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 109 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 110 case MoreElements: 111 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 112 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 113 case Custom: 114 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 115 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 116 : UnableToLegalize; 117 default: 118 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 119 return UnableToLegalize; 120 } 121 } 122 123 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 124 SmallVectorImpl<Register> &VRegs) { 125 for (int i = 0; i < NumParts; ++i) 126 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 127 MIRBuilder.buildUnmerge(VRegs, Reg); 128 } 129 130 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 131 LLT MainTy, LLT &LeftoverTy, 132 SmallVectorImpl<Register> &VRegs, 133 SmallVectorImpl<Register> &LeftoverRegs) { 134 assert(!LeftoverTy.isValid() && "this is an out argument"); 135 136 unsigned RegSize = RegTy.getSizeInBits(); 137 unsigned MainSize = MainTy.getSizeInBits(); 138 unsigned NumParts = RegSize / MainSize; 139 unsigned LeftoverSize = RegSize - NumParts * MainSize; 140 141 // Use an unmerge when possible. 142 if (LeftoverSize == 0) { 143 for (unsigned I = 0; I < NumParts; ++I) 144 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 145 MIRBuilder.buildUnmerge(VRegs, Reg); 146 return true; 147 } 148 149 if (MainTy.isVector()) { 150 unsigned EltSize = MainTy.getScalarSizeInBits(); 151 if (LeftoverSize % EltSize != 0) 152 return false; 153 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 154 } else { 155 LeftoverTy = LLT::scalar(LeftoverSize); 156 } 157 158 // For irregular sizes, extract the individual parts. 159 for (unsigned I = 0; I != NumParts; ++I) { 160 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 161 VRegs.push_back(NewReg); 162 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 163 } 164 165 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 166 Offset += LeftoverSize) { 167 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 168 LeftoverRegs.push_back(NewReg); 169 MIRBuilder.buildExtract(NewReg, Reg, Offset); 170 } 171 172 return true; 173 } 174 175 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 176 if (OrigTy.isVector() && TargetTy.isVector()) { 177 assert(OrigTy.getElementType() == TargetTy.getElementType()); 178 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 179 TargetTy.getNumElements()); 180 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 181 } 182 183 if (OrigTy.isVector() && !TargetTy.isVector()) { 184 assert(OrigTy.getElementType() == TargetTy); 185 return TargetTy; 186 } 187 188 assert(!OrigTy.isVector() && !TargetTy.isVector()); 189 190 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 191 TargetTy.getSizeInBits()); 192 return LLT::scalar(GCD); 193 } 194 195 void LegalizerHelper::insertParts(Register DstReg, 196 LLT ResultTy, LLT PartTy, 197 ArrayRef<Register> PartRegs, 198 LLT LeftoverTy, 199 ArrayRef<Register> LeftoverRegs) { 200 if (!LeftoverTy.isValid()) { 201 assert(LeftoverRegs.empty()); 202 203 if (!ResultTy.isVector()) { 204 MIRBuilder.buildMerge(DstReg, PartRegs); 205 return; 206 } 207 208 if (PartTy.isVector()) 209 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 210 else 211 MIRBuilder.buildBuildVector(DstReg, PartRegs); 212 return; 213 } 214 215 unsigned PartSize = PartTy.getSizeInBits(); 216 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 217 218 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 219 MIRBuilder.buildUndef(CurResultReg); 220 221 unsigned Offset = 0; 222 for (Register PartReg : PartRegs) { 223 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 224 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 225 CurResultReg = NewResultReg; 226 Offset += PartSize; 227 } 228 229 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 230 // Use the original output register for the final insert to avoid a copy. 231 Register NewResultReg = (I + 1 == E) ? 232 DstReg : MRI.createGenericVirtualRegister(ResultTy); 233 234 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 235 CurResultReg = NewResultReg; 236 Offset += LeftoverPartSize; 237 } 238 } 239 240 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 241 switch (Opcode) { 242 case TargetOpcode::G_SDIV: 243 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 244 switch (Size) { 245 case 32: 246 return RTLIB::SDIV_I32; 247 case 64: 248 return RTLIB::SDIV_I64; 249 case 128: 250 return RTLIB::SDIV_I128; 251 default: 252 llvm_unreachable("unexpected size"); 253 } 254 case TargetOpcode::G_UDIV: 255 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 256 switch (Size) { 257 case 32: 258 return RTLIB::UDIV_I32; 259 case 64: 260 return RTLIB::UDIV_I64; 261 case 128: 262 return RTLIB::UDIV_I128; 263 default: 264 llvm_unreachable("unexpected size"); 265 } 266 case TargetOpcode::G_SREM: 267 assert((Size == 32 || Size == 64) && "Unsupported size"); 268 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 269 case TargetOpcode::G_UREM: 270 assert((Size == 32 || Size == 64) && "Unsupported size"); 271 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 272 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 273 assert(Size == 32 && "Unsupported size"); 274 return RTLIB::CTLZ_I32; 275 case TargetOpcode::G_FADD: 276 assert((Size == 32 || Size == 64) && "Unsupported size"); 277 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 278 case TargetOpcode::G_FSUB: 279 assert((Size == 32 || Size == 64) && "Unsupported size"); 280 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 281 case TargetOpcode::G_FMUL: 282 assert((Size == 32 || Size == 64) && "Unsupported size"); 283 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 284 case TargetOpcode::G_FDIV: 285 assert((Size == 32 || Size == 64) && "Unsupported size"); 286 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 287 case TargetOpcode::G_FEXP: 288 assert((Size == 32 || Size == 64) && "Unsupported size"); 289 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 290 case TargetOpcode::G_FEXP2: 291 assert((Size == 32 || Size == 64) && "Unsupported size"); 292 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 293 case TargetOpcode::G_FREM: 294 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 295 case TargetOpcode::G_FPOW: 296 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 297 case TargetOpcode::G_FMA: 298 assert((Size == 32 || Size == 64) && "Unsupported size"); 299 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 300 case TargetOpcode::G_FSIN: 301 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 302 return Size == 128 ? RTLIB::SIN_F128 303 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 304 case TargetOpcode::G_FCOS: 305 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 306 return Size == 128 ? RTLIB::COS_F128 307 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 308 case TargetOpcode::G_FLOG10: 309 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 310 return Size == 128 ? RTLIB::LOG10_F128 311 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 312 case TargetOpcode::G_FLOG: 313 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 314 return Size == 128 ? RTLIB::LOG_F128 315 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 316 case TargetOpcode::G_FLOG2: 317 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 318 return Size == 128 ? RTLIB::LOG2_F128 319 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 320 case TargetOpcode::G_FCEIL: 321 assert((Size == 32 || Size == 64) && "Unsupported size"); 322 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 323 case TargetOpcode::G_FFLOOR: 324 assert((Size == 32 || Size == 64) && "Unsupported size"); 325 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 326 } 327 llvm_unreachable("Unknown libcall function"); 328 } 329 330 /// True if an instruction is in tail position in its caller. Intended for 331 /// legalizing libcalls as tail calls when possible. 332 static bool isLibCallInTailPosition(MachineInstr &MI) { 333 const Function &F = MI.getParent()->getParent()->getFunction(); 334 335 // Conservatively require the attributes of the call to match those of 336 // the return. Ignore NoAlias and NonNull because they don't affect the 337 // call sequence. 338 AttributeList CallerAttrs = F.getAttributes(); 339 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 340 .removeAttribute(Attribute::NoAlias) 341 .removeAttribute(Attribute::NonNull) 342 .hasAttributes()) 343 return false; 344 345 // It's not safe to eliminate the sign / zero extension of the return value. 346 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 347 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 348 return false; 349 350 // Only tail call if the following instruction is a standard return. 351 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 352 MachineInstr *Next = MI.getNextNode(); 353 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 354 return false; 355 356 return true; 357 } 358 359 LegalizerHelper::LegalizeResult 360 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 361 const CallLowering::ArgInfo &Result, 362 ArrayRef<CallLowering::ArgInfo> Args) { 363 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 364 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 365 const char *Name = TLI.getLibcallName(Libcall); 366 367 CallLowering::CallLoweringInfo Info; 368 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 369 Info.Callee = MachineOperand::CreateES(Name); 370 Info.OrigRet = Result; 371 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 372 if (!CLI.lowerCall(MIRBuilder, Info)) 373 return LegalizerHelper::UnableToLegalize; 374 375 return LegalizerHelper::Legalized; 376 } 377 378 // Useful for libcalls where all operands have the same type. 379 static LegalizerHelper::LegalizeResult 380 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 381 Type *OpType) { 382 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 383 384 SmallVector<CallLowering::ArgInfo, 3> Args; 385 for (unsigned i = 1; i < MI.getNumOperands(); i++) 386 Args.push_back({MI.getOperand(i).getReg(), OpType}); 387 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 388 Args); 389 } 390 391 LegalizerHelper::LegalizeResult 392 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 393 MachineInstr &MI) { 394 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 395 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 396 397 SmallVector<CallLowering::ArgInfo, 3> Args; 398 // Add all the args, except for the last which is an imm denoting 'tail'. 399 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 400 Register Reg = MI.getOperand(i).getReg(); 401 402 // Need derive an IR type for call lowering. 403 LLT OpLLT = MRI.getType(Reg); 404 Type *OpTy = nullptr; 405 if (OpLLT.isPointer()) 406 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 407 else 408 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 409 Args.push_back({Reg, OpTy}); 410 } 411 412 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 413 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 414 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 415 RTLIB::Libcall RTLibcall; 416 switch (ID) { 417 case Intrinsic::memcpy: 418 RTLibcall = RTLIB::MEMCPY; 419 break; 420 case Intrinsic::memset: 421 RTLibcall = RTLIB::MEMSET; 422 break; 423 case Intrinsic::memmove: 424 RTLibcall = RTLIB::MEMMOVE; 425 break; 426 default: 427 return LegalizerHelper::UnableToLegalize; 428 } 429 const char *Name = TLI.getLibcallName(RTLibcall); 430 431 MIRBuilder.setInstr(MI); 432 433 CallLowering::CallLoweringInfo Info; 434 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 435 Info.Callee = MachineOperand::CreateES(Name); 436 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 437 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 438 isLibCallInTailPosition(MI); 439 440 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 441 if (!CLI.lowerCall(MIRBuilder, Info)) 442 return LegalizerHelper::UnableToLegalize; 443 444 if (Info.LoweredTailCall) { 445 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 446 // We must have a return following the call to get past 447 // isLibCallInTailPosition. 448 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 449 "Expected instr following MI to be a return?"); 450 451 // We lowered a tail call, so the call is now the return from the block. 452 // Delete the old return. 453 MI.getNextNode()->eraseFromParent(); 454 } 455 456 return LegalizerHelper::Legalized; 457 } 458 459 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 460 Type *FromType) { 461 auto ToMVT = MVT::getVT(ToType); 462 auto FromMVT = MVT::getVT(FromType); 463 464 switch (Opcode) { 465 case TargetOpcode::G_FPEXT: 466 return RTLIB::getFPEXT(FromMVT, ToMVT); 467 case TargetOpcode::G_FPTRUNC: 468 return RTLIB::getFPROUND(FromMVT, ToMVT); 469 case TargetOpcode::G_FPTOSI: 470 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 471 case TargetOpcode::G_FPTOUI: 472 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 473 case TargetOpcode::G_SITOFP: 474 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 475 case TargetOpcode::G_UITOFP: 476 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 477 } 478 llvm_unreachable("Unsupported libcall function"); 479 } 480 481 static LegalizerHelper::LegalizeResult 482 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 483 Type *FromType) { 484 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 485 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 486 {{MI.getOperand(1).getReg(), FromType}}); 487 } 488 489 LegalizerHelper::LegalizeResult 490 LegalizerHelper::libcall(MachineInstr &MI) { 491 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 492 unsigned Size = LLTy.getSizeInBits(); 493 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 494 495 MIRBuilder.setInstr(MI); 496 497 switch (MI.getOpcode()) { 498 default: 499 return UnableToLegalize; 500 case TargetOpcode::G_SDIV: 501 case TargetOpcode::G_UDIV: 502 case TargetOpcode::G_SREM: 503 case TargetOpcode::G_UREM: 504 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 505 Type *HLTy = IntegerType::get(Ctx, Size); 506 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 507 if (Status != Legalized) 508 return Status; 509 break; 510 } 511 case TargetOpcode::G_FADD: 512 case TargetOpcode::G_FSUB: 513 case TargetOpcode::G_FMUL: 514 case TargetOpcode::G_FDIV: 515 case TargetOpcode::G_FMA: 516 case TargetOpcode::G_FPOW: 517 case TargetOpcode::G_FREM: 518 case TargetOpcode::G_FCOS: 519 case TargetOpcode::G_FSIN: 520 case TargetOpcode::G_FLOG10: 521 case TargetOpcode::G_FLOG: 522 case TargetOpcode::G_FLOG2: 523 case TargetOpcode::G_FEXP: 524 case TargetOpcode::G_FEXP2: 525 case TargetOpcode::G_FCEIL: 526 case TargetOpcode::G_FFLOOR: { 527 if (Size > 64) { 528 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 529 return UnableToLegalize; 530 } 531 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 532 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 533 if (Status != Legalized) 534 return Status; 535 break; 536 } 537 case TargetOpcode::G_FPEXT: { 538 // FIXME: Support other floating point types (half, fp128 etc) 539 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 540 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 541 if (ToSize != 64 || FromSize != 32) 542 return UnableToLegalize; 543 LegalizeResult Status = conversionLibcall( 544 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 545 if (Status != Legalized) 546 return Status; 547 break; 548 } 549 case TargetOpcode::G_FPTRUNC: { 550 // FIXME: Support other floating point types (half, fp128 etc) 551 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 552 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 553 if (ToSize != 32 || FromSize != 64) 554 return UnableToLegalize; 555 LegalizeResult Status = conversionLibcall( 556 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 557 if (Status != Legalized) 558 return Status; 559 break; 560 } 561 case TargetOpcode::G_FPTOSI: 562 case TargetOpcode::G_FPTOUI: { 563 // FIXME: Support other types 564 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 565 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 566 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 567 return UnableToLegalize; 568 LegalizeResult Status = conversionLibcall( 569 MI, MIRBuilder, 570 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 571 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 572 if (Status != Legalized) 573 return Status; 574 break; 575 } 576 case TargetOpcode::G_SITOFP: 577 case TargetOpcode::G_UITOFP: { 578 // FIXME: Support other types 579 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 580 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 581 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 582 return UnableToLegalize; 583 LegalizeResult Status = conversionLibcall( 584 MI, MIRBuilder, 585 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 586 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 587 if (Status != Legalized) 588 return Status; 589 break; 590 } 591 } 592 593 MI.eraseFromParent(); 594 return Legalized; 595 } 596 597 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 598 unsigned TypeIdx, 599 LLT NarrowTy) { 600 MIRBuilder.setInstr(MI); 601 602 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 603 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 604 605 switch (MI.getOpcode()) { 606 default: 607 return UnableToLegalize; 608 case TargetOpcode::G_IMPLICIT_DEF: { 609 // FIXME: add support for when SizeOp0 isn't an exact multiple of 610 // NarrowSize. 611 if (SizeOp0 % NarrowSize != 0) 612 return UnableToLegalize; 613 int NumParts = SizeOp0 / NarrowSize; 614 615 SmallVector<Register, 2> DstRegs; 616 for (int i = 0; i < NumParts; ++i) 617 DstRegs.push_back( 618 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 619 620 Register DstReg = MI.getOperand(0).getReg(); 621 if(MRI.getType(DstReg).isVector()) 622 MIRBuilder.buildBuildVector(DstReg, DstRegs); 623 else 624 MIRBuilder.buildMerge(DstReg, DstRegs); 625 MI.eraseFromParent(); 626 return Legalized; 627 } 628 case TargetOpcode::G_CONSTANT: { 629 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 630 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 631 unsigned TotalSize = Ty.getSizeInBits(); 632 unsigned NarrowSize = NarrowTy.getSizeInBits(); 633 int NumParts = TotalSize / NarrowSize; 634 635 SmallVector<Register, 4> PartRegs; 636 for (int I = 0; I != NumParts; ++I) { 637 unsigned Offset = I * NarrowSize; 638 auto K = MIRBuilder.buildConstant(NarrowTy, 639 Val.lshr(Offset).trunc(NarrowSize)); 640 PartRegs.push_back(K.getReg(0)); 641 } 642 643 LLT LeftoverTy; 644 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 645 SmallVector<Register, 1> LeftoverRegs; 646 if (LeftoverBits != 0) { 647 LeftoverTy = LLT::scalar(LeftoverBits); 648 auto K = MIRBuilder.buildConstant( 649 LeftoverTy, 650 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 651 LeftoverRegs.push_back(K.getReg(0)); 652 } 653 654 insertParts(MI.getOperand(0).getReg(), 655 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 656 657 MI.eraseFromParent(); 658 return Legalized; 659 } 660 case TargetOpcode::G_SEXT: { 661 if (TypeIdx != 0) 662 return UnableToLegalize; 663 664 Register SrcReg = MI.getOperand(1).getReg(); 665 LLT SrcTy = MRI.getType(SrcReg); 666 667 // FIXME: support the general case where the requested NarrowTy may not be 668 // the same as the source type. E.g. s128 = sext(s32) 669 if ((SrcTy.getSizeInBits() != SizeOp0 / 2) || 670 SrcTy.getSizeInBits() != NarrowTy.getSizeInBits()) { 671 LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n"); 672 return UnableToLegalize; 673 } 674 675 // Shift the sign bit of the low register through the high register. 676 auto ShiftAmt = 677 MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1); 678 auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt); 679 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)}); 680 MI.eraseFromParent(); 681 return Legalized; 682 } 683 case TargetOpcode::G_ZEXT: { 684 if (TypeIdx != 0) 685 return UnableToLegalize; 686 687 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 688 uint64_t SizeOp1 = SrcTy.getSizeInBits(); 689 if (SizeOp0 % SizeOp1 != 0) 690 return UnableToLegalize; 691 692 // Generate a merge where the bottom bits are taken from the source, and 693 // zero everything else. 694 Register ZeroReg = MIRBuilder.buildConstant(SrcTy, 0).getReg(0); 695 unsigned NumParts = SizeOp0 / SizeOp1; 696 SmallVector<Register, 4> Srcs = {MI.getOperand(1).getReg()}; 697 for (unsigned Part = 1; Part < NumParts; ++Part) 698 Srcs.push_back(ZeroReg); 699 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Srcs); 700 MI.eraseFromParent(); 701 return Legalized; 702 } 703 case TargetOpcode::G_TRUNC: { 704 if (TypeIdx != 1) 705 return UnableToLegalize; 706 707 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 708 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 709 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 710 return UnableToLegalize; 711 } 712 713 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 714 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Unmerge.getReg(0)); 715 MI.eraseFromParent(); 716 return Legalized; 717 } 718 719 case TargetOpcode::G_ADD: { 720 // FIXME: add support for when SizeOp0 isn't an exact multiple of 721 // NarrowSize. 722 if (SizeOp0 % NarrowSize != 0) 723 return UnableToLegalize; 724 // Expand in terms of carry-setting/consuming G_ADDE instructions. 725 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 726 727 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 728 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 729 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 730 731 Register CarryIn; 732 for (int i = 0; i < NumParts; ++i) { 733 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 734 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 735 736 if (i == 0) 737 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 738 else { 739 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 740 Src2Regs[i], CarryIn); 741 } 742 743 DstRegs.push_back(DstReg); 744 CarryIn = CarryOut; 745 } 746 Register DstReg = MI.getOperand(0).getReg(); 747 if(MRI.getType(DstReg).isVector()) 748 MIRBuilder.buildBuildVector(DstReg, DstRegs); 749 else 750 MIRBuilder.buildMerge(DstReg, DstRegs); 751 MI.eraseFromParent(); 752 return Legalized; 753 } 754 case TargetOpcode::G_SUB: { 755 // FIXME: add support for when SizeOp0 isn't an exact multiple of 756 // NarrowSize. 757 if (SizeOp0 % NarrowSize != 0) 758 return UnableToLegalize; 759 760 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 761 762 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 763 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 764 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 765 766 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 767 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 768 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 769 {Src1Regs[0], Src2Regs[0]}); 770 DstRegs.push_back(DstReg); 771 Register BorrowIn = BorrowOut; 772 for (int i = 1; i < NumParts; ++i) { 773 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 774 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 775 776 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 777 {Src1Regs[i], Src2Regs[i], BorrowIn}); 778 779 DstRegs.push_back(DstReg); 780 BorrowIn = BorrowOut; 781 } 782 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 783 MI.eraseFromParent(); 784 return Legalized; 785 } 786 case TargetOpcode::G_MUL: 787 case TargetOpcode::G_UMULH: 788 return narrowScalarMul(MI, NarrowTy); 789 case TargetOpcode::G_EXTRACT: 790 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 791 case TargetOpcode::G_INSERT: 792 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 793 case TargetOpcode::G_LOAD: { 794 const auto &MMO = **MI.memoperands_begin(); 795 Register DstReg = MI.getOperand(0).getReg(); 796 LLT DstTy = MRI.getType(DstReg); 797 if (DstTy.isVector()) 798 return UnableToLegalize; 799 800 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 801 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 802 auto &MMO = **MI.memoperands_begin(); 803 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 804 MIRBuilder.buildAnyExt(DstReg, TmpReg); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 809 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 810 } 811 case TargetOpcode::G_ZEXTLOAD: 812 case TargetOpcode::G_SEXTLOAD: { 813 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 814 Register DstReg = MI.getOperand(0).getReg(); 815 Register PtrReg = MI.getOperand(1).getReg(); 816 817 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 818 auto &MMO = **MI.memoperands_begin(); 819 if (MMO.getSizeInBits() == NarrowSize) { 820 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 821 } else { 822 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 823 : TargetOpcode::G_SEXTLOAD; 824 MIRBuilder.buildInstr(ExtLoad) 825 .addDef(TmpReg) 826 .addUse(PtrReg) 827 .addMemOperand(&MMO); 828 } 829 830 if (ZExt) 831 MIRBuilder.buildZExt(DstReg, TmpReg); 832 else 833 MIRBuilder.buildSExt(DstReg, TmpReg); 834 835 MI.eraseFromParent(); 836 return Legalized; 837 } 838 case TargetOpcode::G_STORE: { 839 const auto &MMO = **MI.memoperands_begin(); 840 841 Register SrcReg = MI.getOperand(0).getReg(); 842 LLT SrcTy = MRI.getType(SrcReg); 843 if (SrcTy.isVector()) 844 return UnableToLegalize; 845 846 int NumParts = SizeOp0 / NarrowSize; 847 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 848 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 849 if (SrcTy.isVector() && LeftoverBits != 0) 850 return UnableToLegalize; 851 852 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 853 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 854 auto &MMO = **MI.memoperands_begin(); 855 MIRBuilder.buildTrunc(TmpReg, SrcReg); 856 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 857 MI.eraseFromParent(); 858 return Legalized; 859 } 860 861 return reduceLoadStoreWidth(MI, 0, NarrowTy); 862 } 863 case TargetOpcode::G_SELECT: 864 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 865 case TargetOpcode::G_AND: 866 case TargetOpcode::G_OR: 867 case TargetOpcode::G_XOR: { 868 // Legalize bitwise operation: 869 // A = BinOp<Ty> B, C 870 // into: 871 // B1, ..., BN = G_UNMERGE_VALUES B 872 // C1, ..., CN = G_UNMERGE_VALUES C 873 // A1 = BinOp<Ty/N> B1, C2 874 // ... 875 // AN = BinOp<Ty/N> BN, CN 876 // A = G_MERGE_VALUES A1, ..., AN 877 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 878 } 879 case TargetOpcode::G_SHL: 880 case TargetOpcode::G_LSHR: 881 case TargetOpcode::G_ASHR: 882 return narrowScalarShift(MI, TypeIdx, NarrowTy); 883 case TargetOpcode::G_CTLZ: 884 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 885 case TargetOpcode::G_CTTZ: 886 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 887 case TargetOpcode::G_CTPOP: 888 if (TypeIdx != 0) 889 return UnableToLegalize; // TODO 890 891 Observer.changingInstr(MI); 892 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 893 Observer.changedInstr(MI); 894 return Legalized; 895 case TargetOpcode::G_INTTOPTR: 896 if (TypeIdx != 1) 897 return UnableToLegalize; 898 899 Observer.changingInstr(MI); 900 narrowScalarSrc(MI, NarrowTy, 1); 901 Observer.changedInstr(MI); 902 return Legalized; 903 case TargetOpcode::G_PTRTOINT: 904 if (TypeIdx != 0) 905 return UnableToLegalize; 906 907 Observer.changingInstr(MI); 908 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 909 Observer.changedInstr(MI); 910 return Legalized; 911 case TargetOpcode::G_PHI: { 912 unsigned NumParts = SizeOp0 / NarrowSize; 913 SmallVector<Register, 2> DstRegs; 914 SmallVector<SmallVector<Register, 2>, 2> SrcRegs; 915 DstRegs.resize(NumParts); 916 SrcRegs.resize(MI.getNumOperands() / 2); 917 Observer.changingInstr(MI); 918 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 919 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 920 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 921 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 922 SrcRegs[i / 2]); 923 } 924 MachineBasicBlock &MBB = *MI.getParent(); 925 MIRBuilder.setInsertPt(MBB, MI); 926 for (unsigned i = 0; i < NumParts; ++i) { 927 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 928 MachineInstrBuilder MIB = 929 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 930 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 931 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 932 } 933 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 934 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 935 Observer.changedInstr(MI); 936 MI.eraseFromParent(); 937 return Legalized; 938 } 939 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 940 case TargetOpcode::G_INSERT_VECTOR_ELT: { 941 if (TypeIdx != 2) 942 return UnableToLegalize; 943 944 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 945 Observer.changingInstr(MI); 946 narrowScalarSrc(MI, NarrowTy, OpIdx); 947 Observer.changedInstr(MI); 948 return Legalized; 949 } 950 case TargetOpcode::G_ICMP: { 951 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 952 if (NarrowSize * 2 != SrcSize) 953 return UnableToLegalize; 954 955 Observer.changingInstr(MI); 956 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 957 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 958 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg()); 959 960 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 961 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 962 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg()); 963 964 CmpInst::Predicate Pred = 965 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 966 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 967 968 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 969 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 970 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 971 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 972 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 973 MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero); 974 } else { 975 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 976 MachineInstrBuilder CmpHEQ = 977 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 978 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 979 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 980 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH); 981 } 982 Observer.changedInstr(MI); 983 MI.eraseFromParent(); 984 return Legalized; 985 } 986 case TargetOpcode::G_SEXT_INREG: { 987 if (TypeIdx != 0) 988 return UnableToLegalize; 989 990 if (!MI.getOperand(2).isImm()) 991 return UnableToLegalize; 992 int64_t SizeInBits = MI.getOperand(2).getImm(); 993 994 // So long as the new type has more bits than the bits we're extending we 995 // don't need to break it apart. 996 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 997 Observer.changingInstr(MI); 998 // We don't lose any non-extension bits by truncating the src and 999 // sign-extending the dst. 1000 MachineOperand &MO1 = MI.getOperand(1); 1001 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1.getReg()); 1002 MO1.setReg(TruncMIB->getOperand(0).getReg()); 1003 1004 MachineOperand &MO2 = MI.getOperand(0); 1005 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1006 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1007 MIRBuilder.buildInstr(TargetOpcode::G_SEXT, {MO2.getReg()}, {DstExt}); 1008 MO2.setReg(DstExt); 1009 Observer.changedInstr(MI); 1010 return Legalized; 1011 } 1012 1013 // Break it apart. Components below the extension point are unmodified. The 1014 // component containing the extension point becomes a narrower SEXT_INREG. 1015 // Components above it are ashr'd from the component containing the 1016 // extension point. 1017 if (SizeOp0 % NarrowSize != 0) 1018 return UnableToLegalize; 1019 int NumParts = SizeOp0 / NarrowSize; 1020 1021 // List the registers where the destination will be scattered. 1022 SmallVector<Register, 2> DstRegs; 1023 // List the registers where the source will be split. 1024 SmallVector<Register, 2> SrcRegs; 1025 1026 // Create all the temporary registers. 1027 for (int i = 0; i < NumParts; ++i) { 1028 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1029 1030 SrcRegs.push_back(SrcReg); 1031 } 1032 1033 // Explode the big arguments into smaller chunks. 1034 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1).getReg()); 1035 1036 Register AshrCstReg = 1037 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1038 ->getOperand(0) 1039 .getReg(); 1040 Register FullExtensionReg = 0; 1041 Register PartialExtensionReg = 0; 1042 1043 // Do the operation on each small part. 1044 for (int i = 0; i < NumParts; ++i) { 1045 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1046 DstRegs.push_back(SrcRegs[i]); 1047 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1048 assert(PartialExtensionReg && 1049 "Expected to visit partial extension before full"); 1050 if (FullExtensionReg) { 1051 DstRegs.push_back(FullExtensionReg); 1052 continue; 1053 } 1054 DstRegs.push_back(MIRBuilder 1055 .buildInstr(TargetOpcode::G_ASHR, {NarrowTy}, 1056 {PartialExtensionReg, AshrCstReg}) 1057 ->getOperand(0) 1058 .getReg()); 1059 FullExtensionReg = DstRegs.back(); 1060 } else { 1061 DstRegs.push_back( 1062 MIRBuilder 1063 .buildInstr( 1064 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1065 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1066 ->getOperand(0) 1067 .getReg()); 1068 PartialExtensionReg = DstRegs.back(); 1069 } 1070 } 1071 1072 // Gather the destination registers into the final destination. 1073 Register DstReg = MI.getOperand(0).getReg(); 1074 MIRBuilder.buildMerge(DstReg, DstRegs); 1075 MI.eraseFromParent(); 1076 return Legalized; 1077 } 1078 case TargetOpcode::G_BSWAP: 1079 case TargetOpcode::G_BITREVERSE: { 1080 if (SizeOp0 % NarrowSize != 0) 1081 return UnableToLegalize; 1082 1083 Observer.changingInstr(MI); 1084 SmallVector<Register, 2> SrcRegs, DstRegs; 1085 unsigned NumParts = SizeOp0 / NarrowSize; 1086 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1087 1088 for (unsigned i = 0; i < NumParts; ++i) { 1089 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1090 {SrcRegs[NumParts - 1 - i]}); 1091 DstRegs.push_back(DstPart.getReg(0)); 1092 } 1093 1094 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 1095 1096 Observer.changedInstr(MI); 1097 MI.eraseFromParent(); 1098 return Legalized; 1099 } 1100 } 1101 } 1102 1103 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1104 unsigned OpIdx, unsigned ExtOpcode) { 1105 MachineOperand &MO = MI.getOperand(OpIdx); 1106 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 1107 MO.setReg(ExtB->getOperand(0).getReg()); 1108 } 1109 1110 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1111 unsigned OpIdx) { 1112 MachineOperand &MO = MI.getOperand(OpIdx); 1113 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 1114 {MO.getReg()}); 1115 MO.setReg(ExtB->getOperand(0).getReg()); 1116 } 1117 1118 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1119 unsigned OpIdx, unsigned TruncOpcode) { 1120 MachineOperand &MO = MI.getOperand(OpIdx); 1121 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1122 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1123 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 1124 MO.setReg(DstExt); 1125 } 1126 1127 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1128 unsigned OpIdx, unsigned ExtOpcode) { 1129 MachineOperand &MO = MI.getOperand(OpIdx); 1130 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1131 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1132 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 1133 MO.setReg(DstTrunc); 1134 } 1135 1136 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1137 unsigned OpIdx) { 1138 MachineOperand &MO = MI.getOperand(OpIdx); 1139 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1140 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1141 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 1142 MO.setReg(DstExt); 1143 } 1144 1145 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1146 unsigned OpIdx) { 1147 MachineOperand &MO = MI.getOperand(OpIdx); 1148 1149 LLT OldTy = MRI.getType(MO.getReg()); 1150 unsigned OldElts = OldTy.getNumElements(); 1151 unsigned NewElts = MoreTy.getNumElements(); 1152 1153 unsigned NumParts = NewElts / OldElts; 1154 1155 // Use concat_vectors if the result is a multiple of the number of elements. 1156 if (NumParts * OldElts == NewElts) { 1157 SmallVector<Register, 8> Parts; 1158 Parts.push_back(MO.getReg()); 1159 1160 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1161 for (unsigned I = 1; I != NumParts; ++I) 1162 Parts.push_back(ImpDef); 1163 1164 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1165 MO.setReg(Concat.getReg(0)); 1166 return; 1167 } 1168 1169 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1170 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1171 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1172 MO.setReg(MoreReg); 1173 } 1174 1175 LegalizerHelper::LegalizeResult 1176 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1177 LLT WideTy) { 1178 if (TypeIdx != 1) 1179 return UnableToLegalize; 1180 1181 Register DstReg = MI.getOperand(0).getReg(); 1182 LLT DstTy = MRI.getType(DstReg); 1183 if (DstTy.isVector()) 1184 return UnableToLegalize; 1185 1186 Register Src1 = MI.getOperand(1).getReg(); 1187 LLT SrcTy = MRI.getType(Src1); 1188 const int DstSize = DstTy.getSizeInBits(); 1189 const int SrcSize = SrcTy.getSizeInBits(); 1190 const int WideSize = WideTy.getSizeInBits(); 1191 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1192 1193 unsigned NumOps = MI.getNumOperands(); 1194 unsigned NumSrc = MI.getNumOperands() - 1; 1195 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1196 1197 if (WideSize >= DstSize) { 1198 // Directly pack the bits in the target type. 1199 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1200 1201 for (unsigned I = 2; I != NumOps; ++I) { 1202 const unsigned Offset = (I - 1) * PartSize; 1203 1204 Register SrcReg = MI.getOperand(I).getReg(); 1205 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1206 1207 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1208 1209 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1210 MRI.createGenericVirtualRegister(WideTy); 1211 1212 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1213 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1214 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1215 ResultReg = NextResult; 1216 } 1217 1218 if (WideSize > DstSize) 1219 MIRBuilder.buildTrunc(DstReg, ResultReg); 1220 else if (DstTy.isPointer()) 1221 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1222 1223 MI.eraseFromParent(); 1224 return Legalized; 1225 } 1226 1227 // Unmerge the original values to the GCD type, and recombine to the next 1228 // multiple greater than the original type. 1229 // 1230 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1231 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1232 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1233 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1234 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1235 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1236 // %12:_(s12) = G_MERGE_VALUES %10, %11 1237 // 1238 // Padding with undef if necessary: 1239 // 1240 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1241 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1242 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1243 // %7:_(s2) = G_IMPLICIT_DEF 1244 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1245 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1246 // %10:_(s12) = G_MERGE_VALUES %8, %9 1247 1248 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1249 LLT GCDTy = LLT::scalar(GCD); 1250 1251 SmallVector<Register, 8> Parts; 1252 SmallVector<Register, 8> NewMergeRegs; 1253 SmallVector<Register, 8> Unmerges; 1254 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1255 1256 // Decompose the original operands if they don't evenly divide. 1257 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1258 Register SrcReg = MI.getOperand(I).getReg(); 1259 if (GCD == SrcSize) { 1260 Unmerges.push_back(SrcReg); 1261 } else { 1262 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1263 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1264 Unmerges.push_back(Unmerge.getReg(J)); 1265 } 1266 } 1267 1268 // Pad with undef to the next size that is a multiple of the requested size. 1269 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1270 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1271 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1272 Unmerges.push_back(UndefReg); 1273 } 1274 1275 const int PartsPerGCD = WideSize / GCD; 1276 1277 // Build merges of each piece. 1278 ArrayRef<Register> Slicer(Unmerges); 1279 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1280 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1281 NewMergeRegs.push_back(Merge.getReg(0)); 1282 } 1283 1284 // A truncate may be necessary if the requested type doesn't evenly divide the 1285 // original result type. 1286 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1287 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1288 } else { 1289 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1290 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1291 } 1292 1293 MI.eraseFromParent(); 1294 return Legalized; 1295 } 1296 1297 LegalizerHelper::LegalizeResult 1298 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1299 LLT WideTy) { 1300 if (TypeIdx != 0) 1301 return UnableToLegalize; 1302 1303 unsigned NumDst = MI.getNumOperands() - 1; 1304 Register SrcReg = MI.getOperand(NumDst).getReg(); 1305 LLT SrcTy = MRI.getType(SrcReg); 1306 if (!SrcTy.isScalar()) 1307 return UnableToLegalize; 1308 1309 Register Dst0Reg = MI.getOperand(0).getReg(); 1310 LLT DstTy = MRI.getType(Dst0Reg); 1311 if (!DstTy.isScalar()) 1312 return UnableToLegalize; 1313 1314 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 1315 LLT NewSrcTy = LLT::scalar(NewSrcSize); 1316 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 1317 1318 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 1319 1320 for (unsigned I = 1; I != NumDst; ++I) { 1321 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 1322 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 1323 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 1324 } 1325 1326 Observer.changingInstr(MI); 1327 1328 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 1329 for (unsigned I = 0; I != NumDst; ++I) 1330 widenScalarDst(MI, WideTy, I); 1331 1332 Observer.changedInstr(MI); 1333 1334 return Legalized; 1335 } 1336 1337 LegalizerHelper::LegalizeResult 1338 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1339 LLT WideTy) { 1340 Register DstReg = MI.getOperand(0).getReg(); 1341 Register SrcReg = MI.getOperand(1).getReg(); 1342 LLT SrcTy = MRI.getType(SrcReg); 1343 1344 LLT DstTy = MRI.getType(DstReg); 1345 unsigned Offset = MI.getOperand(2).getImm(); 1346 1347 if (TypeIdx == 0) { 1348 if (SrcTy.isVector() || DstTy.isVector()) 1349 return UnableToLegalize; 1350 1351 SrcOp Src(SrcReg); 1352 if (SrcTy.isPointer()) { 1353 // Extracts from pointers can be handled only if they are really just 1354 // simple integers. 1355 const DataLayout &DL = MIRBuilder.getDataLayout(); 1356 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1357 return UnableToLegalize; 1358 1359 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1360 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1361 SrcTy = SrcAsIntTy; 1362 } 1363 1364 if (DstTy.isPointer()) 1365 return UnableToLegalize; 1366 1367 if (Offset == 0) { 1368 // Avoid a shift in the degenerate case. 1369 MIRBuilder.buildTrunc(DstReg, 1370 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1371 MI.eraseFromParent(); 1372 return Legalized; 1373 } 1374 1375 // Do a shift in the source type. 1376 LLT ShiftTy = SrcTy; 1377 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1378 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1379 ShiftTy = WideTy; 1380 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1381 return UnableToLegalize; 1382 1383 auto LShr = MIRBuilder.buildLShr( 1384 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1385 MIRBuilder.buildTrunc(DstReg, LShr); 1386 MI.eraseFromParent(); 1387 return Legalized; 1388 } 1389 1390 if (SrcTy.isScalar()) { 1391 Observer.changingInstr(MI); 1392 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1393 Observer.changedInstr(MI); 1394 return Legalized; 1395 } 1396 1397 if (!SrcTy.isVector()) 1398 return UnableToLegalize; 1399 1400 if (DstTy != SrcTy.getElementType()) 1401 return UnableToLegalize; 1402 1403 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1404 return UnableToLegalize; 1405 1406 Observer.changingInstr(MI); 1407 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1408 1409 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1410 Offset); 1411 widenScalarDst(MI, WideTy.getScalarType(), 0); 1412 Observer.changedInstr(MI); 1413 return Legalized; 1414 } 1415 1416 LegalizerHelper::LegalizeResult 1417 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1418 LLT WideTy) { 1419 if (TypeIdx != 0) 1420 return UnableToLegalize; 1421 Observer.changingInstr(MI); 1422 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1423 widenScalarDst(MI, WideTy); 1424 Observer.changedInstr(MI); 1425 return Legalized; 1426 } 1427 1428 LegalizerHelper::LegalizeResult 1429 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1430 MIRBuilder.setInstr(MI); 1431 1432 switch (MI.getOpcode()) { 1433 default: 1434 return UnableToLegalize; 1435 case TargetOpcode::G_EXTRACT: 1436 return widenScalarExtract(MI, TypeIdx, WideTy); 1437 case TargetOpcode::G_INSERT: 1438 return widenScalarInsert(MI, TypeIdx, WideTy); 1439 case TargetOpcode::G_MERGE_VALUES: 1440 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1441 case TargetOpcode::G_UNMERGE_VALUES: 1442 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1443 case TargetOpcode::G_UADDO: 1444 case TargetOpcode::G_USUBO: { 1445 if (TypeIdx == 1) 1446 return UnableToLegalize; // TODO 1447 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1448 {MI.getOperand(2).getReg()}); 1449 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1450 {MI.getOperand(3).getReg()}); 1451 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1452 ? TargetOpcode::G_ADD 1453 : TargetOpcode::G_SUB; 1454 // Do the arithmetic in the larger type. 1455 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1456 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1457 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 1458 auto AndOp = MIRBuilder.buildInstr( 1459 TargetOpcode::G_AND, {WideTy}, 1460 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 1461 // There is no overflow if the AndOp is the same as NewOp. 1462 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 1463 AndOp); 1464 // Now trunc the NewOp to the original result. 1465 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 1466 MI.eraseFromParent(); 1467 return Legalized; 1468 } 1469 case TargetOpcode::G_CTTZ: 1470 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1471 case TargetOpcode::G_CTLZ: 1472 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1473 case TargetOpcode::G_CTPOP: { 1474 if (TypeIdx == 0) { 1475 Observer.changingInstr(MI); 1476 widenScalarDst(MI, WideTy, 0); 1477 Observer.changedInstr(MI); 1478 return Legalized; 1479 } 1480 1481 Register SrcReg = MI.getOperand(1).getReg(); 1482 1483 // First ZEXT the input. 1484 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1485 LLT CurTy = MRI.getType(SrcReg); 1486 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1487 // The count is the same in the larger type except if the original 1488 // value was zero. This can be handled by setting the bit just off 1489 // the top of the original type. 1490 auto TopBit = 1491 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1492 MIBSrc = MIRBuilder.buildOr( 1493 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1494 } 1495 1496 // Perform the operation at the larger size. 1497 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1498 // This is already the correct result for CTPOP and CTTZs 1499 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1500 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1501 // The correct result is NewOp - (Difference in widety and current ty). 1502 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1503 MIBNewOp = MIRBuilder.buildInstr( 1504 TargetOpcode::G_SUB, {WideTy}, 1505 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1506 } 1507 1508 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1509 MI.eraseFromParent(); 1510 return Legalized; 1511 } 1512 case TargetOpcode::G_BSWAP: { 1513 Observer.changingInstr(MI); 1514 Register DstReg = MI.getOperand(0).getReg(); 1515 1516 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1517 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1518 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1519 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1520 1521 MI.getOperand(0).setReg(DstExt); 1522 1523 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1524 1525 LLT Ty = MRI.getType(DstReg); 1526 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1527 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1528 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1529 .addDef(ShrReg) 1530 .addUse(DstExt) 1531 .addUse(ShiftAmtReg); 1532 1533 MIRBuilder.buildTrunc(DstReg, ShrReg); 1534 Observer.changedInstr(MI); 1535 return Legalized; 1536 } 1537 case TargetOpcode::G_BITREVERSE: { 1538 Observer.changingInstr(MI); 1539 1540 Register DstReg = MI.getOperand(0).getReg(); 1541 LLT Ty = MRI.getType(DstReg); 1542 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1543 1544 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1545 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1546 MI.getOperand(0).setReg(DstExt); 1547 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1548 1549 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1550 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1551 MIRBuilder.buildTrunc(DstReg, Shift); 1552 Observer.changedInstr(MI); 1553 return Legalized; 1554 } 1555 case TargetOpcode::G_ADD: 1556 case TargetOpcode::G_AND: 1557 case TargetOpcode::G_MUL: 1558 case TargetOpcode::G_OR: 1559 case TargetOpcode::G_XOR: 1560 case TargetOpcode::G_SUB: 1561 // Perform operation at larger width (any extension is fines here, high bits 1562 // don't affect the result) and then truncate the result back to the 1563 // original type. 1564 Observer.changingInstr(MI); 1565 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1566 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1567 widenScalarDst(MI, WideTy); 1568 Observer.changedInstr(MI); 1569 return Legalized; 1570 1571 case TargetOpcode::G_SHL: 1572 Observer.changingInstr(MI); 1573 1574 if (TypeIdx == 0) { 1575 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1576 widenScalarDst(MI, WideTy); 1577 } else { 1578 assert(TypeIdx == 1); 1579 // The "number of bits to shift" operand must preserve its value as an 1580 // unsigned integer: 1581 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1582 } 1583 1584 Observer.changedInstr(MI); 1585 return Legalized; 1586 1587 case TargetOpcode::G_SDIV: 1588 case TargetOpcode::G_SREM: 1589 case TargetOpcode::G_SMIN: 1590 case TargetOpcode::G_SMAX: 1591 Observer.changingInstr(MI); 1592 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1593 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1594 widenScalarDst(MI, WideTy); 1595 Observer.changedInstr(MI); 1596 return Legalized; 1597 1598 case TargetOpcode::G_ASHR: 1599 case TargetOpcode::G_LSHR: 1600 Observer.changingInstr(MI); 1601 1602 if (TypeIdx == 0) { 1603 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1604 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1605 1606 widenScalarSrc(MI, WideTy, 1, CvtOp); 1607 widenScalarDst(MI, WideTy); 1608 } else { 1609 assert(TypeIdx == 1); 1610 // The "number of bits to shift" operand must preserve its value as an 1611 // unsigned integer: 1612 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1613 } 1614 1615 Observer.changedInstr(MI); 1616 return Legalized; 1617 case TargetOpcode::G_UDIV: 1618 case TargetOpcode::G_UREM: 1619 case TargetOpcode::G_UMIN: 1620 case TargetOpcode::G_UMAX: 1621 Observer.changingInstr(MI); 1622 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1623 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1624 widenScalarDst(MI, WideTy); 1625 Observer.changedInstr(MI); 1626 return Legalized; 1627 1628 case TargetOpcode::G_SELECT: 1629 Observer.changingInstr(MI); 1630 if (TypeIdx == 0) { 1631 // Perform operation at larger width (any extension is fine here, high 1632 // bits don't affect the result) and then truncate the result back to the 1633 // original type. 1634 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1635 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1636 widenScalarDst(MI, WideTy); 1637 } else { 1638 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1639 // Explicit extension is required here since high bits affect the result. 1640 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1641 } 1642 Observer.changedInstr(MI); 1643 return Legalized; 1644 1645 case TargetOpcode::G_FPTOSI: 1646 case TargetOpcode::G_FPTOUI: 1647 Observer.changingInstr(MI); 1648 1649 if (TypeIdx == 0) 1650 widenScalarDst(MI, WideTy); 1651 else 1652 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1653 1654 Observer.changedInstr(MI); 1655 return Legalized; 1656 case TargetOpcode::G_SITOFP: 1657 if (TypeIdx != 1) 1658 return UnableToLegalize; 1659 Observer.changingInstr(MI); 1660 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1661 Observer.changedInstr(MI); 1662 return Legalized; 1663 1664 case TargetOpcode::G_UITOFP: 1665 if (TypeIdx != 1) 1666 return UnableToLegalize; 1667 Observer.changingInstr(MI); 1668 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1669 Observer.changedInstr(MI); 1670 return Legalized; 1671 1672 case TargetOpcode::G_LOAD: 1673 case TargetOpcode::G_SEXTLOAD: 1674 case TargetOpcode::G_ZEXTLOAD: 1675 Observer.changingInstr(MI); 1676 widenScalarDst(MI, WideTy); 1677 Observer.changedInstr(MI); 1678 return Legalized; 1679 1680 case TargetOpcode::G_STORE: { 1681 if (TypeIdx != 0) 1682 return UnableToLegalize; 1683 1684 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1685 if (!isPowerOf2_32(Ty.getSizeInBits())) 1686 return UnableToLegalize; 1687 1688 Observer.changingInstr(MI); 1689 1690 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1691 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1692 widenScalarSrc(MI, WideTy, 0, ExtType); 1693 1694 Observer.changedInstr(MI); 1695 return Legalized; 1696 } 1697 case TargetOpcode::G_CONSTANT: { 1698 MachineOperand &SrcMO = MI.getOperand(1); 1699 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1700 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1701 MRI.getType(MI.getOperand(0).getReg())); 1702 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1703 ExtOpc == TargetOpcode::G_ANYEXT) && 1704 "Illegal Extend"); 1705 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1706 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1707 ? SrcVal.sext(WideTy.getSizeInBits()) 1708 : SrcVal.zext(WideTy.getSizeInBits()); 1709 Observer.changingInstr(MI); 1710 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1711 1712 widenScalarDst(MI, WideTy); 1713 Observer.changedInstr(MI); 1714 return Legalized; 1715 } 1716 case TargetOpcode::G_FCONSTANT: { 1717 MachineOperand &SrcMO = MI.getOperand(1); 1718 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1719 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1720 bool LosesInfo; 1721 switch (WideTy.getSizeInBits()) { 1722 case 32: 1723 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1724 &LosesInfo); 1725 break; 1726 case 64: 1727 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1728 &LosesInfo); 1729 break; 1730 default: 1731 return UnableToLegalize; 1732 } 1733 1734 assert(!LosesInfo && "extend should always be lossless"); 1735 1736 Observer.changingInstr(MI); 1737 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1738 1739 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1740 Observer.changedInstr(MI); 1741 return Legalized; 1742 } 1743 case TargetOpcode::G_IMPLICIT_DEF: { 1744 Observer.changingInstr(MI); 1745 widenScalarDst(MI, WideTy); 1746 Observer.changedInstr(MI); 1747 return Legalized; 1748 } 1749 case TargetOpcode::G_BRCOND: 1750 Observer.changingInstr(MI); 1751 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1752 Observer.changedInstr(MI); 1753 return Legalized; 1754 1755 case TargetOpcode::G_FCMP: 1756 Observer.changingInstr(MI); 1757 if (TypeIdx == 0) 1758 widenScalarDst(MI, WideTy); 1759 else { 1760 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1761 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1762 } 1763 Observer.changedInstr(MI); 1764 return Legalized; 1765 1766 case TargetOpcode::G_ICMP: 1767 Observer.changingInstr(MI); 1768 if (TypeIdx == 0) 1769 widenScalarDst(MI, WideTy); 1770 else { 1771 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1772 MI.getOperand(1).getPredicate())) 1773 ? TargetOpcode::G_SEXT 1774 : TargetOpcode::G_ZEXT; 1775 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1776 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1777 } 1778 Observer.changedInstr(MI); 1779 return Legalized; 1780 1781 case TargetOpcode::G_PTR_ADD: 1782 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1783 Observer.changingInstr(MI); 1784 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1785 Observer.changedInstr(MI); 1786 return Legalized; 1787 1788 case TargetOpcode::G_PHI: { 1789 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1790 1791 Observer.changingInstr(MI); 1792 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1793 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1794 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1795 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1796 } 1797 1798 MachineBasicBlock &MBB = *MI.getParent(); 1799 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1800 widenScalarDst(MI, WideTy); 1801 Observer.changedInstr(MI); 1802 return Legalized; 1803 } 1804 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1805 if (TypeIdx == 0) { 1806 Register VecReg = MI.getOperand(1).getReg(); 1807 LLT VecTy = MRI.getType(VecReg); 1808 Observer.changingInstr(MI); 1809 1810 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1811 WideTy.getSizeInBits()), 1812 1, TargetOpcode::G_SEXT); 1813 1814 widenScalarDst(MI, WideTy, 0); 1815 Observer.changedInstr(MI); 1816 return Legalized; 1817 } 1818 1819 if (TypeIdx != 2) 1820 return UnableToLegalize; 1821 Observer.changingInstr(MI); 1822 // TODO: Probably should be zext 1823 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1824 Observer.changedInstr(MI); 1825 return Legalized; 1826 } 1827 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1828 if (TypeIdx == 1) { 1829 Observer.changingInstr(MI); 1830 1831 Register VecReg = MI.getOperand(1).getReg(); 1832 LLT VecTy = MRI.getType(VecReg); 1833 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 1834 1835 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 1836 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1837 widenScalarDst(MI, WideVecTy, 0); 1838 Observer.changedInstr(MI); 1839 return Legalized; 1840 } 1841 1842 if (TypeIdx == 2) { 1843 Observer.changingInstr(MI); 1844 // TODO: Probably should be zext 1845 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 1846 Observer.changedInstr(MI); 1847 } 1848 1849 return Legalized; 1850 } 1851 case TargetOpcode::G_FADD: 1852 case TargetOpcode::G_FMUL: 1853 case TargetOpcode::G_FSUB: 1854 case TargetOpcode::G_FMA: 1855 case TargetOpcode::G_FMAD: 1856 case TargetOpcode::G_FNEG: 1857 case TargetOpcode::G_FABS: 1858 case TargetOpcode::G_FCANONICALIZE: 1859 case TargetOpcode::G_FMINNUM: 1860 case TargetOpcode::G_FMAXNUM: 1861 case TargetOpcode::G_FMINNUM_IEEE: 1862 case TargetOpcode::G_FMAXNUM_IEEE: 1863 case TargetOpcode::G_FMINIMUM: 1864 case TargetOpcode::G_FMAXIMUM: 1865 case TargetOpcode::G_FDIV: 1866 case TargetOpcode::G_FREM: 1867 case TargetOpcode::G_FCEIL: 1868 case TargetOpcode::G_FFLOOR: 1869 case TargetOpcode::G_FCOS: 1870 case TargetOpcode::G_FSIN: 1871 case TargetOpcode::G_FLOG10: 1872 case TargetOpcode::G_FLOG: 1873 case TargetOpcode::G_FLOG2: 1874 case TargetOpcode::G_FRINT: 1875 case TargetOpcode::G_FNEARBYINT: 1876 case TargetOpcode::G_FSQRT: 1877 case TargetOpcode::G_FEXP: 1878 case TargetOpcode::G_FEXP2: 1879 case TargetOpcode::G_FPOW: 1880 case TargetOpcode::G_INTRINSIC_TRUNC: 1881 case TargetOpcode::G_INTRINSIC_ROUND: 1882 assert(TypeIdx == 0); 1883 Observer.changingInstr(MI); 1884 1885 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1886 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1887 1888 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1889 Observer.changedInstr(MI); 1890 return Legalized; 1891 case TargetOpcode::G_INTTOPTR: 1892 if (TypeIdx != 1) 1893 return UnableToLegalize; 1894 1895 Observer.changingInstr(MI); 1896 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1897 Observer.changedInstr(MI); 1898 return Legalized; 1899 case TargetOpcode::G_PTRTOINT: 1900 if (TypeIdx != 0) 1901 return UnableToLegalize; 1902 1903 Observer.changingInstr(MI); 1904 widenScalarDst(MI, WideTy, 0); 1905 Observer.changedInstr(MI); 1906 return Legalized; 1907 case TargetOpcode::G_BUILD_VECTOR: { 1908 Observer.changingInstr(MI); 1909 1910 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 1911 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 1912 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 1913 1914 // Avoid changing the result vector type if the source element type was 1915 // requested. 1916 if (TypeIdx == 1) { 1917 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 1918 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 1919 } else { 1920 widenScalarDst(MI, WideTy, 0); 1921 } 1922 1923 Observer.changedInstr(MI); 1924 return Legalized; 1925 } 1926 case TargetOpcode::G_SEXT_INREG: 1927 if (TypeIdx != 0) 1928 return UnableToLegalize; 1929 1930 Observer.changingInstr(MI); 1931 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1932 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 1933 Observer.changedInstr(MI); 1934 return Legalized; 1935 } 1936 } 1937 1938 LegalizerHelper::LegalizeResult 1939 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1940 using namespace TargetOpcode; 1941 MIRBuilder.setInstr(MI); 1942 1943 switch(MI.getOpcode()) { 1944 default: 1945 return UnableToLegalize; 1946 case TargetOpcode::G_SREM: 1947 case TargetOpcode::G_UREM: { 1948 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 1949 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1950 .addDef(QuotReg) 1951 .addUse(MI.getOperand(1).getReg()) 1952 .addUse(MI.getOperand(2).getReg()); 1953 1954 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 1955 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1956 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1957 ProdReg); 1958 MI.eraseFromParent(); 1959 return Legalized; 1960 } 1961 case TargetOpcode::G_SADDO: 1962 case TargetOpcode::G_SSUBO: 1963 return lowerSADDO_SSUBO(MI); 1964 case TargetOpcode::G_SMULO: 1965 case TargetOpcode::G_UMULO: { 1966 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1967 // result. 1968 Register Res = MI.getOperand(0).getReg(); 1969 Register Overflow = MI.getOperand(1).getReg(); 1970 Register LHS = MI.getOperand(2).getReg(); 1971 Register RHS = MI.getOperand(3).getReg(); 1972 1973 MIRBuilder.buildMul(Res, LHS, RHS); 1974 1975 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1976 ? TargetOpcode::G_SMULH 1977 : TargetOpcode::G_UMULH; 1978 1979 Register HiPart = MRI.createGenericVirtualRegister(Ty); 1980 MIRBuilder.buildInstr(Opcode) 1981 .addDef(HiPart) 1982 .addUse(LHS) 1983 .addUse(RHS); 1984 1985 Register Zero = MRI.createGenericVirtualRegister(Ty); 1986 MIRBuilder.buildConstant(Zero, 0); 1987 1988 // For *signed* multiply, overflow is detected by checking: 1989 // (hi != (lo >> bitwidth-1)) 1990 if (Opcode == TargetOpcode::G_SMULH) { 1991 Register Shifted = MRI.createGenericVirtualRegister(Ty); 1992 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1993 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1994 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1995 .addDef(Shifted) 1996 .addUse(Res) 1997 .addUse(ShiftAmt); 1998 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1999 } else { 2000 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2001 } 2002 MI.eraseFromParent(); 2003 return Legalized; 2004 } 2005 case TargetOpcode::G_FNEG: { 2006 // TODO: Handle vector types once we are able to 2007 // represent them. 2008 if (Ty.isVector()) 2009 return UnableToLegalize; 2010 Register Res = MI.getOperand(0).getReg(); 2011 Type *ZeroTy; 2012 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2013 switch (Ty.getSizeInBits()) { 2014 case 16: 2015 ZeroTy = Type::getHalfTy(Ctx); 2016 break; 2017 case 32: 2018 ZeroTy = Type::getFloatTy(Ctx); 2019 break; 2020 case 64: 2021 ZeroTy = Type::getDoubleTy(Ctx); 2022 break; 2023 case 128: 2024 ZeroTy = Type::getFP128Ty(Ctx); 2025 break; 2026 default: 2027 llvm_unreachable("unexpected floating-point type"); 2028 } 2029 ConstantFP &ZeroForNegation = 2030 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2031 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2032 Register SubByReg = MI.getOperand(1).getReg(); 2033 Register ZeroReg = Zero->getOperand(0).getReg(); 2034 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 2035 MI.getFlags()); 2036 MI.eraseFromParent(); 2037 return Legalized; 2038 } 2039 case TargetOpcode::G_FSUB: { 2040 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2041 // First, check if G_FNEG is marked as Lower. If so, we may 2042 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2043 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2044 return UnableToLegalize; 2045 Register Res = MI.getOperand(0).getReg(); 2046 Register LHS = MI.getOperand(1).getReg(); 2047 Register RHS = MI.getOperand(2).getReg(); 2048 Register Neg = MRI.createGenericVirtualRegister(Ty); 2049 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 2050 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 2051 MI.eraseFromParent(); 2052 return Legalized; 2053 } 2054 case TargetOpcode::G_FMAD: 2055 return lowerFMad(MI); 2056 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2057 Register OldValRes = MI.getOperand(0).getReg(); 2058 Register SuccessRes = MI.getOperand(1).getReg(); 2059 Register Addr = MI.getOperand(2).getReg(); 2060 Register CmpVal = MI.getOperand(3).getReg(); 2061 Register NewVal = MI.getOperand(4).getReg(); 2062 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2063 **MI.memoperands_begin()); 2064 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2065 MI.eraseFromParent(); 2066 return Legalized; 2067 } 2068 case TargetOpcode::G_LOAD: 2069 case TargetOpcode::G_SEXTLOAD: 2070 case TargetOpcode::G_ZEXTLOAD: { 2071 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2072 Register DstReg = MI.getOperand(0).getReg(); 2073 Register PtrReg = MI.getOperand(1).getReg(); 2074 LLT DstTy = MRI.getType(DstReg); 2075 auto &MMO = **MI.memoperands_begin(); 2076 2077 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2078 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2079 // This load needs splitting into power of 2 sized loads. 2080 if (DstTy.isVector()) 2081 return UnableToLegalize; 2082 if (isPowerOf2_32(DstTy.getSizeInBits())) 2083 return UnableToLegalize; // Don't know what we're being asked to do. 2084 2085 // Our strategy here is to generate anyextending loads for the smaller 2086 // types up to next power-2 result type, and then combine the two larger 2087 // result values together, before truncating back down to the non-pow-2 2088 // type. 2089 // E.g. v1 = i24 load => 2090 // v2 = i32 load (2 byte) 2091 // v3 = i32 load (1 byte) 2092 // v4 = i32 shl v3, 16 2093 // v5 = i32 or v4, v2 2094 // v1 = i24 trunc v5 2095 // By doing this we generate the correct truncate which should get 2096 // combined away as an artifact with a matching extend. 2097 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2098 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2099 2100 MachineFunction &MF = MIRBuilder.getMF(); 2101 MachineMemOperand *LargeMMO = 2102 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2103 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2104 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2105 2106 LLT PtrTy = MRI.getType(PtrReg); 2107 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2108 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2109 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2110 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2111 auto LargeLoad = 2112 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); 2113 2114 auto OffsetCst = 2115 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2116 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2117 auto SmallPtr = 2118 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2119 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2120 *SmallMMO); 2121 2122 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2123 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2124 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2125 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2126 MI.eraseFromParent(); 2127 return Legalized; 2128 } 2129 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2130 MI.eraseFromParent(); 2131 return Legalized; 2132 } 2133 2134 if (DstTy.isScalar()) { 2135 Register TmpReg = 2136 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2137 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2138 switch (MI.getOpcode()) { 2139 default: 2140 llvm_unreachable("Unexpected opcode"); 2141 case TargetOpcode::G_LOAD: 2142 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2143 break; 2144 case TargetOpcode::G_SEXTLOAD: 2145 MIRBuilder.buildSExt(DstReg, TmpReg); 2146 break; 2147 case TargetOpcode::G_ZEXTLOAD: 2148 MIRBuilder.buildZExt(DstReg, TmpReg); 2149 break; 2150 } 2151 MI.eraseFromParent(); 2152 return Legalized; 2153 } 2154 2155 return UnableToLegalize; 2156 } 2157 case TargetOpcode::G_STORE: { 2158 // Lower a non-power of 2 store into multiple pow-2 stores. 2159 // E.g. split an i24 store into an i16 store + i8 store. 2160 // We do this by first extending the stored value to the next largest power 2161 // of 2 type, and then using truncating stores to store the components. 2162 // By doing this, likewise with G_LOAD, generate an extend that can be 2163 // artifact-combined away instead of leaving behind extracts. 2164 Register SrcReg = MI.getOperand(0).getReg(); 2165 Register PtrReg = MI.getOperand(1).getReg(); 2166 LLT SrcTy = MRI.getType(SrcReg); 2167 MachineMemOperand &MMO = **MI.memoperands_begin(); 2168 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2169 return UnableToLegalize; 2170 if (SrcTy.isVector()) 2171 return UnableToLegalize; 2172 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2173 return UnableToLegalize; // Don't know what we're being asked to do. 2174 2175 // Extend to the next pow-2. 2176 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2177 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2178 2179 // Obtain the smaller value by shifting away the larger value. 2180 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2181 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2182 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2183 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2184 2185 // Generate the PtrAdd and truncating stores. 2186 LLT PtrTy = MRI.getType(PtrReg); 2187 auto OffsetCst = 2188 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2189 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2190 auto SmallPtr = 2191 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2192 2193 MachineFunction &MF = MIRBuilder.getMF(); 2194 MachineMemOperand *LargeMMO = 2195 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2196 MachineMemOperand *SmallMMO = 2197 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2198 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2199 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2200 MI.eraseFromParent(); 2201 return Legalized; 2202 } 2203 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2204 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2205 case TargetOpcode::G_CTLZ: 2206 case TargetOpcode::G_CTTZ: 2207 case TargetOpcode::G_CTPOP: 2208 return lowerBitCount(MI, TypeIdx, Ty); 2209 case G_UADDO: { 2210 Register Res = MI.getOperand(0).getReg(); 2211 Register CarryOut = MI.getOperand(1).getReg(); 2212 Register LHS = MI.getOperand(2).getReg(); 2213 Register RHS = MI.getOperand(3).getReg(); 2214 2215 MIRBuilder.buildAdd(Res, LHS, RHS); 2216 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2217 2218 MI.eraseFromParent(); 2219 return Legalized; 2220 } 2221 case G_UADDE: { 2222 Register Res = MI.getOperand(0).getReg(); 2223 Register CarryOut = MI.getOperand(1).getReg(); 2224 Register LHS = MI.getOperand(2).getReg(); 2225 Register RHS = MI.getOperand(3).getReg(); 2226 Register CarryIn = MI.getOperand(4).getReg(); 2227 2228 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2229 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2230 2231 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2232 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2233 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2234 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2235 2236 MI.eraseFromParent(); 2237 return Legalized; 2238 } 2239 case G_USUBO: { 2240 Register Res = MI.getOperand(0).getReg(); 2241 Register BorrowOut = MI.getOperand(1).getReg(); 2242 Register LHS = MI.getOperand(2).getReg(); 2243 Register RHS = MI.getOperand(3).getReg(); 2244 2245 MIRBuilder.buildSub(Res, LHS, RHS); 2246 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2247 2248 MI.eraseFromParent(); 2249 return Legalized; 2250 } 2251 case G_USUBE: { 2252 Register Res = MI.getOperand(0).getReg(); 2253 Register BorrowOut = MI.getOperand(1).getReg(); 2254 Register LHS = MI.getOperand(2).getReg(); 2255 Register RHS = MI.getOperand(3).getReg(); 2256 Register BorrowIn = MI.getOperand(4).getReg(); 2257 2258 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2259 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2260 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2261 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2262 2263 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2264 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2265 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2266 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2267 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2268 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2269 2270 MI.eraseFromParent(); 2271 return Legalized; 2272 } 2273 case G_UITOFP: 2274 return lowerUITOFP(MI, TypeIdx, Ty); 2275 case G_SITOFP: 2276 return lowerSITOFP(MI, TypeIdx, Ty); 2277 case G_FPTOUI: 2278 return lowerFPTOUI(MI, TypeIdx, Ty); 2279 case G_SMIN: 2280 case G_SMAX: 2281 case G_UMIN: 2282 case G_UMAX: 2283 return lowerMinMax(MI, TypeIdx, Ty); 2284 case G_FCOPYSIGN: 2285 return lowerFCopySign(MI, TypeIdx, Ty); 2286 case G_FMINNUM: 2287 case G_FMAXNUM: 2288 return lowerFMinNumMaxNum(MI); 2289 case G_UNMERGE_VALUES: 2290 return lowerUnmergeValues(MI); 2291 case TargetOpcode::G_SEXT_INREG: { 2292 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2293 int64_t SizeInBits = MI.getOperand(2).getImm(); 2294 2295 Register DstReg = MI.getOperand(0).getReg(); 2296 Register SrcReg = MI.getOperand(1).getReg(); 2297 LLT DstTy = MRI.getType(DstReg); 2298 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2299 2300 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2301 MIRBuilder.buildInstr(TargetOpcode::G_SHL, {TmpRes}, {SrcReg, MIBSz->getOperand(0).getReg()}); 2302 MIRBuilder.buildInstr(TargetOpcode::G_ASHR, {DstReg}, {TmpRes, MIBSz->getOperand(0).getReg()}); 2303 MI.eraseFromParent(); 2304 return Legalized; 2305 } 2306 case G_SHUFFLE_VECTOR: 2307 return lowerShuffleVector(MI); 2308 case G_DYN_STACKALLOC: 2309 return lowerDynStackAlloc(MI); 2310 case G_EXTRACT: 2311 return lowerExtract(MI); 2312 case G_INSERT: 2313 return lowerInsert(MI); 2314 case G_BSWAP: 2315 return lowerBswap(MI); 2316 case G_BITREVERSE: 2317 return lowerBitreverse(MI); 2318 } 2319 } 2320 2321 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2322 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2323 SmallVector<Register, 2> DstRegs; 2324 2325 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2326 Register DstReg = MI.getOperand(0).getReg(); 2327 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2328 int NumParts = Size / NarrowSize; 2329 // FIXME: Don't know how to handle the situation where the small vectors 2330 // aren't all the same size yet. 2331 if (Size % NarrowSize != 0) 2332 return UnableToLegalize; 2333 2334 for (int i = 0; i < NumParts; ++i) { 2335 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2336 MIRBuilder.buildUndef(TmpReg); 2337 DstRegs.push_back(TmpReg); 2338 } 2339 2340 if (NarrowTy.isVector()) 2341 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2342 else 2343 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2344 2345 MI.eraseFromParent(); 2346 return Legalized; 2347 } 2348 2349 LegalizerHelper::LegalizeResult 2350 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2351 LLT NarrowTy) { 2352 const unsigned Opc = MI.getOpcode(); 2353 const unsigned NumOps = MI.getNumOperands() - 1; 2354 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2355 const Register DstReg = MI.getOperand(0).getReg(); 2356 const unsigned Flags = MI.getFlags(); 2357 const LLT DstTy = MRI.getType(DstReg); 2358 const unsigned Size = DstTy.getSizeInBits(); 2359 const int NumParts = Size / NarrowSize; 2360 const LLT EltTy = DstTy.getElementType(); 2361 const unsigned EltSize = EltTy.getSizeInBits(); 2362 const unsigned BitsForNumParts = NarrowSize * NumParts; 2363 2364 // Check if we have any leftovers. If we do, then only handle the case where 2365 // the leftover is one element. 2366 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2367 return UnableToLegalize; 2368 2369 if (BitsForNumParts != Size) { 2370 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2371 MIRBuilder.buildUndef(AccumDstReg); 2372 2373 // Handle the pieces which evenly divide into the requested type with 2374 // extract/op/insert sequence. 2375 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2376 SmallVector<SrcOp, 4> SrcOps; 2377 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2378 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2379 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 2380 SrcOps.push_back(PartOpReg); 2381 } 2382 2383 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2384 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2385 2386 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2387 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2388 AccumDstReg = PartInsertReg; 2389 } 2390 2391 // Handle the remaining element sized leftover piece. 2392 SmallVector<SrcOp, 4> SrcOps; 2393 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2394 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2395 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 2396 BitsForNumParts); 2397 SrcOps.push_back(PartOpReg); 2398 } 2399 2400 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2401 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2402 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2403 MI.eraseFromParent(); 2404 2405 return Legalized; 2406 } 2407 2408 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2409 2410 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2411 2412 if (NumOps >= 2) 2413 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2414 2415 if (NumOps >= 3) 2416 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2417 2418 for (int i = 0; i < NumParts; ++i) { 2419 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2420 2421 if (NumOps == 1) 2422 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2423 else if (NumOps == 2) { 2424 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2425 } else if (NumOps == 3) { 2426 MIRBuilder.buildInstr(Opc, {DstReg}, 2427 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2428 } 2429 2430 DstRegs.push_back(DstReg); 2431 } 2432 2433 if (NarrowTy.isVector()) 2434 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2435 else 2436 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2437 2438 MI.eraseFromParent(); 2439 return Legalized; 2440 } 2441 2442 // Handle splitting vector operations which need to have the same number of 2443 // elements in each type index, but each type index may have a different element 2444 // type. 2445 // 2446 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2447 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2448 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2449 // 2450 // Also handles some irregular breakdown cases, e.g. 2451 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2452 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2453 // s64 = G_SHL s64, s32 2454 LegalizerHelper::LegalizeResult 2455 LegalizerHelper::fewerElementsVectorMultiEltType( 2456 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2457 if (TypeIdx != 0) 2458 return UnableToLegalize; 2459 2460 const LLT NarrowTy0 = NarrowTyArg; 2461 const unsigned NewNumElts = 2462 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2463 2464 const Register DstReg = MI.getOperand(0).getReg(); 2465 LLT DstTy = MRI.getType(DstReg); 2466 LLT LeftoverTy0; 2467 2468 // All of the operands need to have the same number of elements, so if we can 2469 // determine a type breakdown for the result type, we can for all of the 2470 // source types. 2471 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2472 if (NumParts < 0) 2473 return UnableToLegalize; 2474 2475 SmallVector<MachineInstrBuilder, 4> NewInsts; 2476 2477 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2478 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2479 2480 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2481 LLT LeftoverTy; 2482 Register SrcReg = MI.getOperand(I).getReg(); 2483 LLT SrcTyI = MRI.getType(SrcReg); 2484 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2485 LLT LeftoverTyI; 2486 2487 // Split this operand into the requested typed registers, and any leftover 2488 // required to reproduce the original type. 2489 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2490 LeftoverRegs)) 2491 return UnableToLegalize; 2492 2493 if (I == 1) { 2494 // For the first operand, create an instruction for each part and setup 2495 // the result. 2496 for (Register PartReg : PartRegs) { 2497 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2498 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2499 .addDef(PartDstReg) 2500 .addUse(PartReg)); 2501 DstRegs.push_back(PartDstReg); 2502 } 2503 2504 for (Register LeftoverReg : LeftoverRegs) { 2505 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2506 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2507 .addDef(PartDstReg) 2508 .addUse(LeftoverReg)); 2509 LeftoverDstRegs.push_back(PartDstReg); 2510 } 2511 } else { 2512 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2513 2514 // Add the newly created operand splits to the existing instructions. The 2515 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2516 // pieces. 2517 unsigned InstCount = 0; 2518 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2519 NewInsts[InstCount++].addUse(PartRegs[J]); 2520 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2521 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2522 } 2523 2524 PartRegs.clear(); 2525 LeftoverRegs.clear(); 2526 } 2527 2528 // Insert the newly built operations and rebuild the result register. 2529 for (auto &MIB : NewInsts) 2530 MIRBuilder.insertInstr(MIB); 2531 2532 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2533 2534 MI.eraseFromParent(); 2535 return Legalized; 2536 } 2537 2538 LegalizerHelper::LegalizeResult 2539 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2540 LLT NarrowTy) { 2541 if (TypeIdx != 0) 2542 return UnableToLegalize; 2543 2544 Register DstReg = MI.getOperand(0).getReg(); 2545 Register SrcReg = MI.getOperand(1).getReg(); 2546 LLT DstTy = MRI.getType(DstReg); 2547 LLT SrcTy = MRI.getType(SrcReg); 2548 2549 LLT NarrowTy0 = NarrowTy; 2550 LLT NarrowTy1; 2551 unsigned NumParts; 2552 2553 if (NarrowTy.isVector()) { 2554 // Uneven breakdown not handled. 2555 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2556 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2557 return UnableToLegalize; 2558 2559 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2560 } else { 2561 NumParts = DstTy.getNumElements(); 2562 NarrowTy1 = SrcTy.getElementType(); 2563 } 2564 2565 SmallVector<Register, 4> SrcRegs, DstRegs; 2566 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2567 2568 for (unsigned I = 0; I < NumParts; ++I) { 2569 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2570 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 2571 .addDef(DstReg) 2572 .addUse(SrcRegs[I]); 2573 2574 NewInst->setFlags(MI.getFlags()); 2575 DstRegs.push_back(DstReg); 2576 } 2577 2578 if (NarrowTy.isVector()) 2579 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2580 else 2581 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2582 2583 MI.eraseFromParent(); 2584 return Legalized; 2585 } 2586 2587 LegalizerHelper::LegalizeResult 2588 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2589 LLT NarrowTy) { 2590 Register DstReg = MI.getOperand(0).getReg(); 2591 Register Src0Reg = MI.getOperand(2).getReg(); 2592 LLT DstTy = MRI.getType(DstReg); 2593 LLT SrcTy = MRI.getType(Src0Reg); 2594 2595 unsigned NumParts; 2596 LLT NarrowTy0, NarrowTy1; 2597 2598 if (TypeIdx == 0) { 2599 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2600 unsigned OldElts = DstTy.getNumElements(); 2601 2602 NarrowTy0 = NarrowTy; 2603 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2604 NarrowTy1 = NarrowTy.isVector() ? 2605 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2606 SrcTy.getElementType(); 2607 2608 } else { 2609 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2610 unsigned OldElts = SrcTy.getNumElements(); 2611 2612 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2613 NarrowTy.getNumElements(); 2614 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2615 DstTy.getScalarSizeInBits()); 2616 NarrowTy1 = NarrowTy; 2617 } 2618 2619 // FIXME: Don't know how to handle the situation where the small vectors 2620 // aren't all the same size yet. 2621 if (NarrowTy1.isVector() && 2622 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2623 return UnableToLegalize; 2624 2625 CmpInst::Predicate Pred 2626 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2627 2628 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2629 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2630 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2631 2632 for (unsigned I = 0; I < NumParts; ++I) { 2633 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2634 DstRegs.push_back(DstReg); 2635 2636 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2637 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2638 else { 2639 MachineInstr *NewCmp 2640 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2641 NewCmp->setFlags(MI.getFlags()); 2642 } 2643 } 2644 2645 if (NarrowTy1.isVector()) 2646 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2647 else 2648 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2649 2650 MI.eraseFromParent(); 2651 return Legalized; 2652 } 2653 2654 LegalizerHelper::LegalizeResult 2655 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2656 LLT NarrowTy) { 2657 Register DstReg = MI.getOperand(0).getReg(); 2658 Register CondReg = MI.getOperand(1).getReg(); 2659 2660 unsigned NumParts = 0; 2661 LLT NarrowTy0, NarrowTy1; 2662 2663 LLT DstTy = MRI.getType(DstReg); 2664 LLT CondTy = MRI.getType(CondReg); 2665 unsigned Size = DstTy.getSizeInBits(); 2666 2667 assert(TypeIdx == 0 || CondTy.isVector()); 2668 2669 if (TypeIdx == 0) { 2670 NarrowTy0 = NarrowTy; 2671 NarrowTy1 = CondTy; 2672 2673 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2674 // FIXME: Don't know how to handle the situation where the small vectors 2675 // aren't all the same size yet. 2676 if (Size % NarrowSize != 0) 2677 return UnableToLegalize; 2678 2679 NumParts = Size / NarrowSize; 2680 2681 // Need to break down the condition type 2682 if (CondTy.isVector()) { 2683 if (CondTy.getNumElements() == NumParts) 2684 NarrowTy1 = CondTy.getElementType(); 2685 else 2686 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2687 CondTy.getScalarSizeInBits()); 2688 } 2689 } else { 2690 NumParts = CondTy.getNumElements(); 2691 if (NarrowTy.isVector()) { 2692 // TODO: Handle uneven breakdown. 2693 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2694 return UnableToLegalize; 2695 2696 return UnableToLegalize; 2697 } else { 2698 NarrowTy0 = DstTy.getElementType(); 2699 NarrowTy1 = NarrowTy; 2700 } 2701 } 2702 2703 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2704 if (CondTy.isVector()) 2705 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2706 2707 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2708 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2709 2710 for (unsigned i = 0; i < NumParts; ++i) { 2711 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2712 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2713 Src1Regs[i], Src2Regs[i]); 2714 DstRegs.push_back(DstReg); 2715 } 2716 2717 if (NarrowTy0.isVector()) 2718 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2719 else 2720 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2721 2722 MI.eraseFromParent(); 2723 return Legalized; 2724 } 2725 2726 LegalizerHelper::LegalizeResult 2727 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2728 LLT NarrowTy) { 2729 const Register DstReg = MI.getOperand(0).getReg(); 2730 LLT PhiTy = MRI.getType(DstReg); 2731 LLT LeftoverTy; 2732 2733 // All of the operands need to have the same number of elements, so if we can 2734 // determine a type breakdown for the result type, we can for all of the 2735 // source types. 2736 int NumParts, NumLeftover; 2737 std::tie(NumParts, NumLeftover) 2738 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2739 if (NumParts < 0) 2740 return UnableToLegalize; 2741 2742 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2743 SmallVector<MachineInstrBuilder, 4> NewInsts; 2744 2745 const int TotalNumParts = NumParts + NumLeftover; 2746 2747 // Insert the new phis in the result block first. 2748 for (int I = 0; I != TotalNumParts; ++I) { 2749 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2750 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2751 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2752 .addDef(PartDstReg)); 2753 if (I < NumParts) 2754 DstRegs.push_back(PartDstReg); 2755 else 2756 LeftoverDstRegs.push_back(PartDstReg); 2757 } 2758 2759 MachineBasicBlock *MBB = MI.getParent(); 2760 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2761 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2762 2763 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2764 2765 // Insert code to extract the incoming values in each predecessor block. 2766 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2767 PartRegs.clear(); 2768 LeftoverRegs.clear(); 2769 2770 Register SrcReg = MI.getOperand(I).getReg(); 2771 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2772 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2773 2774 LLT Unused; 2775 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2776 LeftoverRegs)) 2777 return UnableToLegalize; 2778 2779 // Add the newly created operand splits to the existing instructions. The 2780 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2781 // pieces. 2782 for (int J = 0; J != TotalNumParts; ++J) { 2783 MachineInstrBuilder MIB = NewInsts[J]; 2784 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2785 MIB.addMBB(&OpMBB); 2786 } 2787 } 2788 2789 MI.eraseFromParent(); 2790 return Legalized; 2791 } 2792 2793 LegalizerHelper::LegalizeResult 2794 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2795 unsigned TypeIdx, 2796 LLT NarrowTy) { 2797 if (TypeIdx != 1) 2798 return UnableToLegalize; 2799 2800 const int NumDst = MI.getNumOperands() - 1; 2801 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2802 LLT SrcTy = MRI.getType(SrcReg); 2803 2804 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2805 2806 // TODO: Create sequence of extracts. 2807 if (DstTy == NarrowTy) 2808 return UnableToLegalize; 2809 2810 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 2811 if (DstTy == GCDTy) { 2812 // This would just be a copy of the same unmerge. 2813 // TODO: Create extracts, pad with undef and create intermediate merges. 2814 return UnableToLegalize; 2815 } 2816 2817 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2818 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2819 const int PartsPerUnmerge = NumDst / NumUnmerge; 2820 2821 for (int I = 0; I != NumUnmerge; ++I) { 2822 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2823 2824 for (int J = 0; J != PartsPerUnmerge; ++J) 2825 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 2826 MIB.addUse(Unmerge.getReg(I)); 2827 } 2828 2829 MI.eraseFromParent(); 2830 return Legalized; 2831 } 2832 2833 LegalizerHelper::LegalizeResult 2834 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 2835 unsigned TypeIdx, 2836 LLT NarrowTy) { 2837 assert(TypeIdx == 0 && "not a vector type index"); 2838 Register DstReg = MI.getOperand(0).getReg(); 2839 LLT DstTy = MRI.getType(DstReg); 2840 LLT SrcTy = DstTy.getElementType(); 2841 2842 int DstNumElts = DstTy.getNumElements(); 2843 int NarrowNumElts = NarrowTy.getNumElements(); 2844 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 2845 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 2846 2847 SmallVector<Register, 8> ConcatOps; 2848 SmallVector<Register, 8> SubBuildVector; 2849 2850 Register UndefReg; 2851 if (WidenedDstTy != DstTy) 2852 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 2853 2854 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 2855 // necessary. 2856 // 2857 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 2858 // -> <2 x s16> 2859 // 2860 // %4:_(s16) = G_IMPLICIT_DEF 2861 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 2862 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 2863 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 2864 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 2865 for (int I = 0; I != NumConcat; ++I) { 2866 for (int J = 0; J != NarrowNumElts; ++J) { 2867 int SrcIdx = NarrowNumElts * I + J; 2868 2869 if (SrcIdx < DstNumElts) { 2870 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 2871 SubBuildVector.push_back(SrcReg); 2872 } else 2873 SubBuildVector.push_back(UndefReg); 2874 } 2875 2876 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 2877 ConcatOps.push_back(BuildVec.getReg(0)); 2878 SubBuildVector.clear(); 2879 } 2880 2881 if (DstTy == WidenedDstTy) 2882 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 2883 else { 2884 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 2885 MIRBuilder.buildExtract(DstReg, Concat, 0); 2886 } 2887 2888 MI.eraseFromParent(); 2889 return Legalized; 2890 } 2891 2892 LegalizerHelper::LegalizeResult 2893 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2894 LLT NarrowTy) { 2895 // FIXME: Don't know how to handle secondary types yet. 2896 if (TypeIdx != 0) 2897 return UnableToLegalize; 2898 2899 MachineMemOperand *MMO = *MI.memoperands_begin(); 2900 2901 // This implementation doesn't work for atomics. Give up instead of doing 2902 // something invalid. 2903 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2904 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2905 return UnableToLegalize; 2906 2907 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2908 Register ValReg = MI.getOperand(0).getReg(); 2909 Register AddrReg = MI.getOperand(1).getReg(); 2910 LLT ValTy = MRI.getType(ValReg); 2911 2912 int NumParts = -1; 2913 int NumLeftover = -1; 2914 LLT LeftoverTy; 2915 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 2916 if (IsLoad) { 2917 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2918 } else { 2919 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2920 NarrowLeftoverRegs)) { 2921 NumParts = NarrowRegs.size(); 2922 NumLeftover = NarrowLeftoverRegs.size(); 2923 } 2924 } 2925 2926 if (NumParts == -1) 2927 return UnableToLegalize; 2928 2929 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2930 2931 unsigned TotalSize = ValTy.getSizeInBits(); 2932 2933 // Split the load/store into PartTy sized pieces starting at Offset. If this 2934 // is a load, return the new registers in ValRegs. For a store, each elements 2935 // of ValRegs should be PartTy. Returns the next offset that needs to be 2936 // handled. 2937 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 2938 unsigned Offset) -> unsigned { 2939 MachineFunction &MF = MIRBuilder.getMF(); 2940 unsigned PartSize = PartTy.getSizeInBits(); 2941 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2942 Offset += PartSize, ++Idx) { 2943 unsigned ByteSize = PartSize / 8; 2944 unsigned ByteOffset = Offset / 8; 2945 Register NewAddrReg; 2946 2947 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2948 2949 MachineMemOperand *NewMMO = 2950 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2951 2952 if (IsLoad) { 2953 Register Dst = MRI.createGenericVirtualRegister(PartTy); 2954 ValRegs.push_back(Dst); 2955 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2956 } else { 2957 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2958 } 2959 } 2960 2961 return Offset; 2962 }; 2963 2964 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2965 2966 // Handle the rest of the register if this isn't an even type breakdown. 2967 if (LeftoverTy.isValid()) 2968 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2969 2970 if (IsLoad) { 2971 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2972 LeftoverTy, NarrowLeftoverRegs); 2973 } 2974 2975 MI.eraseFromParent(); 2976 return Legalized; 2977 } 2978 2979 LegalizerHelper::LegalizeResult 2980 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2981 LLT NarrowTy) { 2982 using namespace TargetOpcode; 2983 2984 MIRBuilder.setInstr(MI); 2985 switch (MI.getOpcode()) { 2986 case G_IMPLICIT_DEF: 2987 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2988 case G_AND: 2989 case G_OR: 2990 case G_XOR: 2991 case G_ADD: 2992 case G_SUB: 2993 case G_MUL: 2994 case G_SMULH: 2995 case G_UMULH: 2996 case G_FADD: 2997 case G_FMUL: 2998 case G_FSUB: 2999 case G_FNEG: 3000 case G_FABS: 3001 case G_FCANONICALIZE: 3002 case G_FDIV: 3003 case G_FREM: 3004 case G_FMA: 3005 case G_FMAD: 3006 case G_FPOW: 3007 case G_FEXP: 3008 case G_FEXP2: 3009 case G_FLOG: 3010 case G_FLOG2: 3011 case G_FLOG10: 3012 case G_FNEARBYINT: 3013 case G_FCEIL: 3014 case G_FFLOOR: 3015 case G_FRINT: 3016 case G_INTRINSIC_ROUND: 3017 case G_INTRINSIC_TRUNC: 3018 case G_FCOS: 3019 case G_FSIN: 3020 case G_FSQRT: 3021 case G_BSWAP: 3022 case G_BITREVERSE: 3023 case G_SDIV: 3024 case G_SMIN: 3025 case G_SMAX: 3026 case G_UMIN: 3027 case G_UMAX: 3028 case G_FMINNUM: 3029 case G_FMAXNUM: 3030 case G_FMINNUM_IEEE: 3031 case G_FMAXNUM_IEEE: 3032 case G_FMINIMUM: 3033 case G_FMAXIMUM: 3034 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3035 case G_SHL: 3036 case G_LSHR: 3037 case G_ASHR: 3038 case G_CTLZ: 3039 case G_CTLZ_ZERO_UNDEF: 3040 case G_CTTZ: 3041 case G_CTTZ_ZERO_UNDEF: 3042 case G_CTPOP: 3043 case G_FCOPYSIGN: 3044 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3045 case G_ZEXT: 3046 case G_SEXT: 3047 case G_ANYEXT: 3048 case G_FPEXT: 3049 case G_FPTRUNC: 3050 case G_SITOFP: 3051 case G_UITOFP: 3052 case G_FPTOSI: 3053 case G_FPTOUI: 3054 case G_INTTOPTR: 3055 case G_PTRTOINT: 3056 case G_ADDRSPACE_CAST: 3057 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3058 case G_ICMP: 3059 case G_FCMP: 3060 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3061 case G_SELECT: 3062 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3063 case G_PHI: 3064 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3065 case G_UNMERGE_VALUES: 3066 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3067 case G_BUILD_VECTOR: 3068 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3069 case G_LOAD: 3070 case G_STORE: 3071 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3072 default: 3073 return UnableToLegalize; 3074 } 3075 } 3076 3077 LegalizerHelper::LegalizeResult 3078 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3079 const LLT HalfTy, const LLT AmtTy) { 3080 3081 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3082 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3083 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 3084 3085 if (Amt.isNullValue()) { 3086 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 3087 MI.eraseFromParent(); 3088 return Legalized; 3089 } 3090 3091 LLT NVT = HalfTy; 3092 unsigned NVTBits = HalfTy.getSizeInBits(); 3093 unsigned VTBits = 2 * NVTBits; 3094 3095 SrcOp Lo(Register(0)), Hi(Register(0)); 3096 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3097 if (Amt.ugt(VTBits)) { 3098 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3099 } else if (Amt.ugt(NVTBits)) { 3100 Lo = MIRBuilder.buildConstant(NVT, 0); 3101 Hi = MIRBuilder.buildShl(NVT, InL, 3102 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3103 } else if (Amt == NVTBits) { 3104 Lo = MIRBuilder.buildConstant(NVT, 0); 3105 Hi = InL; 3106 } else { 3107 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3108 auto OrLHS = 3109 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3110 auto OrRHS = MIRBuilder.buildLShr( 3111 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3112 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3113 } 3114 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3115 if (Amt.ugt(VTBits)) { 3116 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3117 } else if (Amt.ugt(NVTBits)) { 3118 Lo = MIRBuilder.buildLShr(NVT, InH, 3119 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3120 Hi = MIRBuilder.buildConstant(NVT, 0); 3121 } else if (Amt == NVTBits) { 3122 Lo = InH; 3123 Hi = MIRBuilder.buildConstant(NVT, 0); 3124 } else { 3125 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3126 3127 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3128 auto OrRHS = MIRBuilder.buildShl( 3129 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3130 3131 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3132 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3133 } 3134 } else { 3135 if (Amt.ugt(VTBits)) { 3136 Hi = Lo = MIRBuilder.buildAShr( 3137 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3138 } else if (Amt.ugt(NVTBits)) { 3139 Lo = MIRBuilder.buildAShr(NVT, InH, 3140 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3141 Hi = MIRBuilder.buildAShr(NVT, InH, 3142 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3143 } else if (Amt == NVTBits) { 3144 Lo = InH; 3145 Hi = MIRBuilder.buildAShr(NVT, InH, 3146 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3147 } else { 3148 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3149 3150 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3151 auto OrRHS = MIRBuilder.buildShl( 3152 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3153 3154 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3155 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3156 } 3157 } 3158 3159 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 3160 MI.eraseFromParent(); 3161 3162 return Legalized; 3163 } 3164 3165 // TODO: Optimize if constant shift amount. 3166 LegalizerHelper::LegalizeResult 3167 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3168 LLT RequestedTy) { 3169 if (TypeIdx == 1) { 3170 Observer.changingInstr(MI); 3171 narrowScalarSrc(MI, RequestedTy, 2); 3172 Observer.changedInstr(MI); 3173 return Legalized; 3174 } 3175 3176 Register DstReg = MI.getOperand(0).getReg(); 3177 LLT DstTy = MRI.getType(DstReg); 3178 if (DstTy.isVector()) 3179 return UnableToLegalize; 3180 3181 Register Amt = MI.getOperand(2).getReg(); 3182 LLT ShiftAmtTy = MRI.getType(Amt); 3183 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3184 if (DstEltSize % 2 != 0) 3185 return UnableToLegalize; 3186 3187 // Ignore the input type. We can only go to exactly half the size of the 3188 // input. If that isn't small enough, the resulting pieces will be further 3189 // legalized. 3190 const unsigned NewBitSize = DstEltSize / 2; 3191 const LLT HalfTy = LLT::scalar(NewBitSize); 3192 const LLT CondTy = LLT::scalar(1); 3193 3194 if (const MachineInstr *KShiftAmt = 3195 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3196 return narrowScalarShiftByConstant( 3197 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3198 } 3199 3200 // TODO: Expand with known bits. 3201 3202 // Handle the fully general expansion by an unknown amount. 3203 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3204 3205 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3206 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3207 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 3208 3209 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3210 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3211 3212 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3213 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3214 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3215 3216 Register ResultRegs[2]; 3217 switch (MI.getOpcode()) { 3218 case TargetOpcode::G_SHL: { 3219 // Short: ShAmt < NewBitSize 3220 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3221 3222 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3223 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3224 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3225 3226 // Long: ShAmt >= NewBitSize 3227 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3228 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3229 3230 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3231 auto Hi = MIRBuilder.buildSelect( 3232 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3233 3234 ResultRegs[0] = Lo.getReg(0); 3235 ResultRegs[1] = Hi.getReg(0); 3236 break; 3237 } 3238 case TargetOpcode::G_LSHR: 3239 case TargetOpcode::G_ASHR: { 3240 // Short: ShAmt < NewBitSize 3241 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3242 3243 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3244 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3245 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3246 3247 // Long: ShAmt >= NewBitSize 3248 MachineInstrBuilder HiL; 3249 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3250 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3251 } else { 3252 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3253 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3254 } 3255 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3256 {InH, AmtExcess}); // Lo from Hi part. 3257 3258 auto Lo = MIRBuilder.buildSelect( 3259 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3260 3261 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3262 3263 ResultRegs[0] = Lo.getReg(0); 3264 ResultRegs[1] = Hi.getReg(0); 3265 break; 3266 } 3267 default: 3268 llvm_unreachable("not a shift"); 3269 } 3270 3271 MIRBuilder.buildMerge(DstReg, ResultRegs); 3272 MI.eraseFromParent(); 3273 return Legalized; 3274 } 3275 3276 LegalizerHelper::LegalizeResult 3277 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3278 LLT MoreTy) { 3279 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3280 3281 Observer.changingInstr(MI); 3282 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3283 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3284 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3285 moreElementsVectorSrc(MI, MoreTy, I); 3286 } 3287 3288 MachineBasicBlock &MBB = *MI.getParent(); 3289 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3290 moreElementsVectorDst(MI, MoreTy, 0); 3291 Observer.changedInstr(MI); 3292 return Legalized; 3293 } 3294 3295 LegalizerHelper::LegalizeResult 3296 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3297 LLT MoreTy) { 3298 MIRBuilder.setInstr(MI); 3299 unsigned Opc = MI.getOpcode(); 3300 switch (Opc) { 3301 case TargetOpcode::G_IMPLICIT_DEF: 3302 case TargetOpcode::G_LOAD: { 3303 if (TypeIdx != 0) 3304 return UnableToLegalize; 3305 Observer.changingInstr(MI); 3306 moreElementsVectorDst(MI, MoreTy, 0); 3307 Observer.changedInstr(MI); 3308 return Legalized; 3309 } 3310 case TargetOpcode::G_STORE: 3311 if (TypeIdx != 0) 3312 return UnableToLegalize; 3313 Observer.changingInstr(MI); 3314 moreElementsVectorSrc(MI, MoreTy, 0); 3315 Observer.changedInstr(MI); 3316 return Legalized; 3317 case TargetOpcode::G_AND: 3318 case TargetOpcode::G_OR: 3319 case TargetOpcode::G_XOR: 3320 case TargetOpcode::G_SMIN: 3321 case TargetOpcode::G_SMAX: 3322 case TargetOpcode::G_UMIN: 3323 case TargetOpcode::G_UMAX: 3324 case TargetOpcode::G_FMINNUM: 3325 case TargetOpcode::G_FMAXNUM: 3326 case TargetOpcode::G_FMINNUM_IEEE: 3327 case TargetOpcode::G_FMAXNUM_IEEE: 3328 case TargetOpcode::G_FMINIMUM: 3329 case TargetOpcode::G_FMAXIMUM: { 3330 Observer.changingInstr(MI); 3331 moreElementsVectorSrc(MI, MoreTy, 1); 3332 moreElementsVectorSrc(MI, MoreTy, 2); 3333 moreElementsVectorDst(MI, MoreTy, 0); 3334 Observer.changedInstr(MI); 3335 return Legalized; 3336 } 3337 case TargetOpcode::G_EXTRACT: 3338 if (TypeIdx != 1) 3339 return UnableToLegalize; 3340 Observer.changingInstr(MI); 3341 moreElementsVectorSrc(MI, MoreTy, 1); 3342 Observer.changedInstr(MI); 3343 return Legalized; 3344 case TargetOpcode::G_INSERT: 3345 if (TypeIdx != 0) 3346 return UnableToLegalize; 3347 Observer.changingInstr(MI); 3348 moreElementsVectorSrc(MI, MoreTy, 1); 3349 moreElementsVectorDst(MI, MoreTy, 0); 3350 Observer.changedInstr(MI); 3351 return Legalized; 3352 case TargetOpcode::G_SELECT: 3353 if (TypeIdx != 0) 3354 return UnableToLegalize; 3355 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3356 return UnableToLegalize; 3357 3358 Observer.changingInstr(MI); 3359 moreElementsVectorSrc(MI, MoreTy, 2); 3360 moreElementsVectorSrc(MI, MoreTy, 3); 3361 moreElementsVectorDst(MI, MoreTy, 0); 3362 Observer.changedInstr(MI); 3363 return Legalized; 3364 case TargetOpcode::G_UNMERGE_VALUES: { 3365 if (TypeIdx != 1) 3366 return UnableToLegalize; 3367 3368 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3369 int NumDst = MI.getNumOperands() - 1; 3370 moreElementsVectorSrc(MI, MoreTy, NumDst); 3371 3372 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3373 for (int I = 0; I != NumDst; ++I) 3374 MIB.addDef(MI.getOperand(I).getReg()); 3375 3376 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3377 for (int I = NumDst; I != NewNumDst; ++I) 3378 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3379 3380 MIB.addUse(MI.getOperand(NumDst).getReg()); 3381 MI.eraseFromParent(); 3382 return Legalized; 3383 } 3384 case TargetOpcode::G_PHI: 3385 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3386 default: 3387 return UnableToLegalize; 3388 } 3389 } 3390 3391 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3392 ArrayRef<Register> Src1Regs, 3393 ArrayRef<Register> Src2Regs, 3394 LLT NarrowTy) { 3395 MachineIRBuilder &B = MIRBuilder; 3396 unsigned SrcParts = Src1Regs.size(); 3397 unsigned DstParts = DstRegs.size(); 3398 3399 unsigned DstIdx = 0; // Low bits of the result. 3400 Register FactorSum = 3401 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3402 DstRegs[DstIdx] = FactorSum; 3403 3404 unsigned CarrySumPrevDstIdx; 3405 SmallVector<Register, 4> Factors; 3406 3407 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3408 // Collect low parts of muls for DstIdx. 3409 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3410 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3411 MachineInstrBuilder Mul = 3412 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3413 Factors.push_back(Mul.getReg(0)); 3414 } 3415 // Collect high parts of muls from previous DstIdx. 3416 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3417 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3418 MachineInstrBuilder Umulh = 3419 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3420 Factors.push_back(Umulh.getReg(0)); 3421 } 3422 // Add CarrySum from additions calculated for previous DstIdx. 3423 if (DstIdx != 1) { 3424 Factors.push_back(CarrySumPrevDstIdx); 3425 } 3426 3427 Register CarrySum; 3428 // Add all factors and accumulate all carries into CarrySum. 3429 if (DstIdx != DstParts - 1) { 3430 MachineInstrBuilder Uaddo = 3431 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3432 FactorSum = Uaddo.getReg(0); 3433 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3434 for (unsigned i = 2; i < Factors.size(); ++i) { 3435 MachineInstrBuilder Uaddo = 3436 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3437 FactorSum = Uaddo.getReg(0); 3438 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3439 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3440 } 3441 } else { 3442 // Since value for the next index is not calculated, neither is CarrySum. 3443 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3444 for (unsigned i = 2; i < Factors.size(); ++i) 3445 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3446 } 3447 3448 CarrySumPrevDstIdx = CarrySum; 3449 DstRegs[DstIdx] = FactorSum; 3450 Factors.clear(); 3451 } 3452 } 3453 3454 LegalizerHelper::LegalizeResult 3455 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3456 Register DstReg = MI.getOperand(0).getReg(); 3457 Register Src1 = MI.getOperand(1).getReg(); 3458 Register Src2 = MI.getOperand(2).getReg(); 3459 3460 LLT Ty = MRI.getType(DstReg); 3461 if (Ty.isVector()) 3462 return UnableToLegalize; 3463 3464 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3465 unsigned DstSize = Ty.getSizeInBits(); 3466 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3467 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3468 return UnableToLegalize; 3469 3470 unsigned NumDstParts = DstSize / NarrowSize; 3471 unsigned NumSrcParts = SrcSize / NarrowSize; 3472 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3473 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3474 3475 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; 3476 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3477 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3478 DstTmpRegs.resize(DstTmpParts); 3479 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3480 3481 // Take only high half of registers if this is high mul. 3482 ArrayRef<Register> DstRegs( 3483 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3484 MIRBuilder.buildMerge(DstReg, DstRegs); 3485 MI.eraseFromParent(); 3486 return Legalized; 3487 } 3488 3489 LegalizerHelper::LegalizeResult 3490 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3491 LLT NarrowTy) { 3492 if (TypeIdx != 1) 3493 return UnableToLegalize; 3494 3495 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3496 3497 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3498 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3499 // NarrowSize. 3500 if (SizeOp1 % NarrowSize != 0) 3501 return UnableToLegalize; 3502 int NumParts = SizeOp1 / NarrowSize; 3503 3504 SmallVector<Register, 2> SrcRegs, DstRegs; 3505 SmallVector<uint64_t, 2> Indexes; 3506 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3507 3508 Register OpReg = MI.getOperand(0).getReg(); 3509 uint64_t OpStart = MI.getOperand(2).getImm(); 3510 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3511 for (int i = 0; i < NumParts; ++i) { 3512 unsigned SrcStart = i * NarrowSize; 3513 3514 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3515 // No part of the extract uses this subregister, ignore it. 3516 continue; 3517 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3518 // The entire subregister is extracted, forward the value. 3519 DstRegs.push_back(SrcRegs[i]); 3520 continue; 3521 } 3522 3523 // OpSegStart is where this destination segment would start in OpReg if it 3524 // extended infinitely in both directions. 3525 int64_t ExtractOffset; 3526 uint64_t SegSize; 3527 if (OpStart < SrcStart) { 3528 ExtractOffset = 0; 3529 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3530 } else { 3531 ExtractOffset = OpStart - SrcStart; 3532 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3533 } 3534 3535 Register SegReg = SrcRegs[i]; 3536 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3537 // A genuine extract is needed. 3538 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3539 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3540 } 3541 3542 DstRegs.push_back(SegReg); 3543 } 3544 3545 Register DstReg = MI.getOperand(0).getReg(); 3546 if(MRI.getType(DstReg).isVector()) 3547 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3548 else 3549 MIRBuilder.buildMerge(DstReg, DstRegs); 3550 MI.eraseFromParent(); 3551 return Legalized; 3552 } 3553 3554 LegalizerHelper::LegalizeResult 3555 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3556 LLT NarrowTy) { 3557 // FIXME: Don't know how to handle secondary types yet. 3558 if (TypeIdx != 0) 3559 return UnableToLegalize; 3560 3561 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3562 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3563 3564 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3565 // NarrowSize. 3566 if (SizeOp0 % NarrowSize != 0) 3567 return UnableToLegalize; 3568 3569 int NumParts = SizeOp0 / NarrowSize; 3570 3571 SmallVector<Register, 2> SrcRegs, DstRegs; 3572 SmallVector<uint64_t, 2> Indexes; 3573 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3574 3575 Register OpReg = MI.getOperand(2).getReg(); 3576 uint64_t OpStart = MI.getOperand(3).getImm(); 3577 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3578 for (int i = 0; i < NumParts; ++i) { 3579 unsigned DstStart = i * NarrowSize; 3580 3581 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3582 // No part of the insert affects this subregister, forward the original. 3583 DstRegs.push_back(SrcRegs[i]); 3584 continue; 3585 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3586 // The entire subregister is defined by this insert, forward the new 3587 // value. 3588 DstRegs.push_back(OpReg); 3589 continue; 3590 } 3591 3592 // OpSegStart is where this destination segment would start in OpReg if it 3593 // extended infinitely in both directions. 3594 int64_t ExtractOffset, InsertOffset; 3595 uint64_t SegSize; 3596 if (OpStart < DstStart) { 3597 InsertOffset = 0; 3598 ExtractOffset = DstStart - OpStart; 3599 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3600 } else { 3601 InsertOffset = OpStart - DstStart; 3602 ExtractOffset = 0; 3603 SegSize = 3604 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3605 } 3606 3607 Register SegReg = OpReg; 3608 if (ExtractOffset != 0 || SegSize != OpSize) { 3609 // A genuine extract is needed. 3610 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3611 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3612 } 3613 3614 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3615 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3616 DstRegs.push_back(DstReg); 3617 } 3618 3619 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3620 Register DstReg = MI.getOperand(0).getReg(); 3621 if(MRI.getType(DstReg).isVector()) 3622 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3623 else 3624 MIRBuilder.buildMerge(DstReg, DstRegs); 3625 MI.eraseFromParent(); 3626 return Legalized; 3627 } 3628 3629 LegalizerHelper::LegalizeResult 3630 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3631 LLT NarrowTy) { 3632 Register DstReg = MI.getOperand(0).getReg(); 3633 LLT DstTy = MRI.getType(DstReg); 3634 3635 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3636 3637 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3638 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3639 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3640 LLT LeftoverTy; 3641 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3642 Src0Regs, Src0LeftoverRegs)) 3643 return UnableToLegalize; 3644 3645 LLT Unused; 3646 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3647 Src1Regs, Src1LeftoverRegs)) 3648 llvm_unreachable("inconsistent extractParts result"); 3649 3650 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3651 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3652 {Src0Regs[I], Src1Regs[I]}); 3653 DstRegs.push_back(Inst->getOperand(0).getReg()); 3654 } 3655 3656 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3657 auto Inst = MIRBuilder.buildInstr( 3658 MI.getOpcode(), 3659 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3660 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 3661 } 3662 3663 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3664 LeftoverTy, DstLeftoverRegs); 3665 3666 MI.eraseFromParent(); 3667 return Legalized; 3668 } 3669 3670 LegalizerHelper::LegalizeResult 3671 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3672 LLT NarrowTy) { 3673 if (TypeIdx != 0) 3674 return UnableToLegalize; 3675 3676 Register CondReg = MI.getOperand(1).getReg(); 3677 LLT CondTy = MRI.getType(CondReg); 3678 if (CondTy.isVector()) // TODO: Handle vselect 3679 return UnableToLegalize; 3680 3681 Register DstReg = MI.getOperand(0).getReg(); 3682 LLT DstTy = MRI.getType(DstReg); 3683 3684 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3685 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3686 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3687 LLT LeftoverTy; 3688 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3689 Src1Regs, Src1LeftoverRegs)) 3690 return UnableToLegalize; 3691 3692 LLT Unused; 3693 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3694 Src2Regs, Src2LeftoverRegs)) 3695 llvm_unreachable("inconsistent extractParts result"); 3696 3697 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3698 auto Select = MIRBuilder.buildSelect(NarrowTy, 3699 CondReg, Src1Regs[I], Src2Regs[I]); 3700 DstRegs.push_back(Select->getOperand(0).getReg()); 3701 } 3702 3703 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3704 auto Select = MIRBuilder.buildSelect( 3705 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3706 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 3707 } 3708 3709 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3710 LeftoverTy, DstLeftoverRegs); 3711 3712 MI.eraseFromParent(); 3713 return Legalized; 3714 } 3715 3716 LegalizerHelper::LegalizeResult 3717 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3718 unsigned Opc = MI.getOpcode(); 3719 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 3720 auto isSupported = [this](const LegalityQuery &Q) { 3721 auto QAction = LI.getAction(Q).Action; 3722 return QAction == Legal || QAction == Libcall || QAction == Custom; 3723 }; 3724 switch (Opc) { 3725 default: 3726 return UnableToLegalize; 3727 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 3728 // This trivially expands to CTLZ. 3729 Observer.changingInstr(MI); 3730 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 3731 Observer.changedInstr(MI); 3732 return Legalized; 3733 } 3734 case TargetOpcode::G_CTLZ: { 3735 Register SrcReg = MI.getOperand(1).getReg(); 3736 unsigned Len = Ty.getSizeInBits(); 3737 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 3738 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 3739 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 3740 {Ty}, {SrcReg}); 3741 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3742 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3743 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3744 SrcReg, MIBZero); 3745 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3746 MIBCtlzZU); 3747 MI.eraseFromParent(); 3748 return Legalized; 3749 } 3750 // for now, we do this: 3751 // NewLen = NextPowerOf2(Len); 3752 // x = x | (x >> 1); 3753 // x = x | (x >> 2); 3754 // ... 3755 // x = x | (x >>16); 3756 // x = x | (x >>32); // for 64-bit input 3757 // Upto NewLen/2 3758 // return Len - popcount(x); 3759 // 3760 // Ref: "Hacker's Delight" by Henry Warren 3761 Register Op = SrcReg; 3762 unsigned NewLen = PowerOf2Ceil(Len); 3763 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 3764 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 3765 auto MIBOp = MIRBuilder.buildInstr( 3766 TargetOpcode::G_OR, {Ty}, 3767 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 3768 {Op, MIBShiftAmt})}); 3769 Op = MIBOp->getOperand(0).getReg(); 3770 } 3771 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 3772 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3773 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 3774 MI.eraseFromParent(); 3775 return Legalized; 3776 } 3777 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 3778 // This trivially expands to CTTZ. 3779 Observer.changingInstr(MI); 3780 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 3781 Observer.changedInstr(MI); 3782 return Legalized; 3783 } 3784 case TargetOpcode::G_CTTZ: { 3785 Register SrcReg = MI.getOperand(1).getReg(); 3786 unsigned Len = Ty.getSizeInBits(); 3787 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 3788 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 3789 // zero. 3790 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 3791 {Ty}, {SrcReg}); 3792 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3793 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3794 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3795 SrcReg, MIBZero); 3796 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3797 MIBCttzZU); 3798 MI.eraseFromParent(); 3799 return Legalized; 3800 } 3801 // for now, we use: { return popcount(~x & (x - 1)); } 3802 // unless the target has ctlz but not ctpop, in which case we use: 3803 // { return 32 - nlz(~x & (x-1)); } 3804 // Ref: "Hacker's Delight" by Henry Warren 3805 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 3806 auto MIBNot = 3807 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 3808 auto MIBTmp = MIRBuilder.buildInstr( 3809 TargetOpcode::G_AND, {Ty}, 3810 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 3811 {SrcReg, MIBCstNeg1})}); 3812 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 3813 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 3814 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 3815 MIRBuilder.buildInstr( 3816 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3817 {MIBCstLen, 3818 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 3819 MI.eraseFromParent(); 3820 return Legalized; 3821 } 3822 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 3823 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 3824 return Legalized; 3825 } 3826 } 3827 } 3828 3829 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 3830 // representation. 3831 LegalizerHelper::LegalizeResult 3832 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3833 Register Dst = MI.getOperand(0).getReg(); 3834 Register Src = MI.getOperand(1).getReg(); 3835 const LLT S64 = LLT::scalar(64); 3836 const LLT S32 = LLT::scalar(32); 3837 const LLT S1 = LLT::scalar(1); 3838 3839 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3840 3841 // unsigned cul2f(ulong u) { 3842 // uint lz = clz(u); 3843 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3844 // u = (u << lz) & 0x7fffffffffffffffUL; 3845 // ulong t = u & 0xffffffffffUL; 3846 // uint v = (e << 23) | (uint)(u >> 40); 3847 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3848 // return as_float(v + r); 3849 // } 3850 3851 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3852 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3853 3854 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3855 3856 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3857 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3858 3859 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3860 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3861 3862 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3863 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3864 3865 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3866 3867 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3868 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3869 3870 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3871 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3872 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3873 3874 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 3875 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 3876 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 3877 auto One = MIRBuilder.buildConstant(S32, 1); 3878 3879 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 3880 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 3881 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 3882 MIRBuilder.buildAdd(Dst, V, R); 3883 3884 return Legalized; 3885 } 3886 3887 LegalizerHelper::LegalizeResult 3888 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3889 Register Dst = MI.getOperand(0).getReg(); 3890 Register Src = MI.getOperand(1).getReg(); 3891 LLT DstTy = MRI.getType(Dst); 3892 LLT SrcTy = MRI.getType(Src); 3893 3894 if (SrcTy == LLT::scalar(1)) { 3895 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 3896 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 3897 MIRBuilder.buildSelect(Dst, Src, True, False); 3898 MI.eraseFromParent(); 3899 return Legalized; 3900 } 3901 3902 if (SrcTy != LLT::scalar(64)) 3903 return UnableToLegalize; 3904 3905 if (DstTy == LLT::scalar(32)) { 3906 // TODO: SelectionDAG has several alternative expansions to port which may 3907 // be more reasonble depending on the available instructions. If a target 3908 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 3909 // intermediate type, this is probably worse. 3910 return lowerU64ToF32BitOps(MI); 3911 } 3912 3913 return UnableToLegalize; 3914 } 3915 3916 LegalizerHelper::LegalizeResult 3917 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3918 Register Dst = MI.getOperand(0).getReg(); 3919 Register Src = MI.getOperand(1).getReg(); 3920 LLT DstTy = MRI.getType(Dst); 3921 LLT SrcTy = MRI.getType(Src); 3922 3923 const LLT S64 = LLT::scalar(64); 3924 const LLT S32 = LLT::scalar(32); 3925 const LLT S1 = LLT::scalar(1); 3926 3927 if (SrcTy == S1) { 3928 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 3929 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 3930 MIRBuilder.buildSelect(Dst, Src, True, False); 3931 MI.eraseFromParent(); 3932 return Legalized; 3933 } 3934 3935 if (SrcTy != S64) 3936 return UnableToLegalize; 3937 3938 if (DstTy == S32) { 3939 // signed cl2f(long l) { 3940 // long s = l >> 63; 3941 // float r = cul2f((l + s) ^ s); 3942 // return s ? -r : r; 3943 // } 3944 Register L = Src; 3945 auto SignBit = MIRBuilder.buildConstant(S64, 63); 3946 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 3947 3948 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 3949 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 3950 auto R = MIRBuilder.buildUITOFP(S32, Xor); 3951 3952 auto RNeg = MIRBuilder.buildFNeg(S32, R); 3953 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 3954 MIRBuilder.buildConstant(S64, 0)); 3955 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 3956 return Legalized; 3957 } 3958 3959 return UnableToLegalize; 3960 } 3961 3962 LegalizerHelper::LegalizeResult 3963 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3964 Register Dst = MI.getOperand(0).getReg(); 3965 Register Src = MI.getOperand(1).getReg(); 3966 LLT DstTy = MRI.getType(Dst); 3967 LLT SrcTy = MRI.getType(Src); 3968 const LLT S64 = LLT::scalar(64); 3969 const LLT S32 = LLT::scalar(32); 3970 3971 if (SrcTy != S64 && SrcTy != S32) 3972 return UnableToLegalize; 3973 if (DstTy != S32 && DstTy != S64) 3974 return UnableToLegalize; 3975 3976 // FPTOSI gives same result as FPTOUI for positive signed integers. 3977 // FPTOUI needs to deal with fp values that convert to unsigned integers 3978 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 3979 3980 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 3981 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 3982 : APFloat::IEEEdouble(), 3983 APInt::getNullValue(SrcTy.getSizeInBits())); 3984 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 3985 3986 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 3987 3988 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 3989 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 3990 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 3991 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 3992 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 3993 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 3994 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 3995 3996 MachineInstrBuilder FCMP = 3997 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, DstTy, Src, Threshold); 3998 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 3999 4000 MI.eraseFromParent(); 4001 return Legalized; 4002 } 4003 4004 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4005 switch (Opc) { 4006 case TargetOpcode::G_SMIN: 4007 return CmpInst::ICMP_SLT; 4008 case TargetOpcode::G_SMAX: 4009 return CmpInst::ICMP_SGT; 4010 case TargetOpcode::G_UMIN: 4011 return CmpInst::ICMP_ULT; 4012 case TargetOpcode::G_UMAX: 4013 return CmpInst::ICMP_UGT; 4014 default: 4015 llvm_unreachable("not in integer min/max"); 4016 } 4017 } 4018 4019 LegalizerHelper::LegalizeResult 4020 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4021 Register Dst = MI.getOperand(0).getReg(); 4022 Register Src0 = MI.getOperand(1).getReg(); 4023 Register Src1 = MI.getOperand(2).getReg(); 4024 4025 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4026 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4027 4028 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4029 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4030 4031 MI.eraseFromParent(); 4032 return Legalized; 4033 } 4034 4035 LegalizerHelper::LegalizeResult 4036 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4037 Register Dst = MI.getOperand(0).getReg(); 4038 Register Src0 = MI.getOperand(1).getReg(); 4039 Register Src1 = MI.getOperand(2).getReg(); 4040 4041 const LLT Src0Ty = MRI.getType(Src0); 4042 const LLT Src1Ty = MRI.getType(Src1); 4043 4044 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4045 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4046 4047 auto SignBitMask = MIRBuilder.buildConstant( 4048 Src0Ty, APInt::getSignMask(Src0Size)); 4049 4050 auto NotSignBitMask = MIRBuilder.buildConstant( 4051 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4052 4053 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4054 MachineInstr *Or; 4055 4056 if (Src0Ty == Src1Ty) { 4057 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4058 Or = MIRBuilder.buildOr(Dst, And0, And1); 4059 } else if (Src0Size > Src1Size) { 4060 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4061 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4062 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4063 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4064 Or = MIRBuilder.buildOr(Dst, And0, And1); 4065 } else { 4066 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4067 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4068 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4069 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4070 Or = MIRBuilder.buildOr(Dst, And0, And1); 4071 } 4072 4073 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4074 // constants are a nan and -0.0, but the final result should preserve 4075 // everything. 4076 if (unsigned Flags = MI.getFlags()) 4077 Or->setFlags(Flags); 4078 4079 MI.eraseFromParent(); 4080 return Legalized; 4081 } 4082 4083 LegalizerHelper::LegalizeResult 4084 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4085 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4086 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4087 4088 Register Dst = MI.getOperand(0).getReg(); 4089 Register Src0 = MI.getOperand(1).getReg(); 4090 Register Src1 = MI.getOperand(2).getReg(); 4091 LLT Ty = MRI.getType(Dst); 4092 4093 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4094 // Insert canonicalizes if it's possible we need to quiet to get correct 4095 // sNaN behavior. 4096 4097 // Note this must be done here, and not as an optimization combine in the 4098 // absence of a dedicate quiet-snan instruction as we're using an 4099 // omni-purpose G_FCANONICALIZE. 4100 if (!isKnownNeverSNaN(Src0, MRI)) 4101 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4102 4103 if (!isKnownNeverSNaN(Src1, MRI)) 4104 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4105 } 4106 4107 // If there are no nans, it's safe to simply replace this with the non-IEEE 4108 // version. 4109 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4110 MI.eraseFromParent(); 4111 return Legalized; 4112 } 4113 4114 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4115 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4116 Register DstReg = MI.getOperand(0).getReg(); 4117 LLT Ty = MRI.getType(DstReg); 4118 unsigned Flags = MI.getFlags(); 4119 4120 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4121 Flags); 4122 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4123 MI.eraseFromParent(); 4124 return Legalized; 4125 } 4126 4127 LegalizerHelper::LegalizeResult 4128 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4129 const unsigned NumDst = MI.getNumOperands() - 1; 4130 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4131 LLT SrcTy = MRI.getType(SrcReg); 4132 4133 Register Dst0Reg = MI.getOperand(0).getReg(); 4134 LLT DstTy = MRI.getType(Dst0Reg); 4135 4136 4137 // Expand scalarizing unmerge as bitcast to integer and shift. 4138 if (!DstTy.isVector() && SrcTy.isVector() && 4139 SrcTy.getElementType() == DstTy) { 4140 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4141 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4142 4143 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4144 4145 const unsigned DstSize = DstTy.getSizeInBits(); 4146 unsigned Offset = DstSize; 4147 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4148 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4149 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4150 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4151 } 4152 4153 MI.eraseFromParent(); 4154 return Legalized; 4155 } 4156 4157 return UnableToLegalize; 4158 } 4159 4160 LegalizerHelper::LegalizeResult 4161 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4162 Register DstReg = MI.getOperand(0).getReg(); 4163 Register Src0Reg = MI.getOperand(1).getReg(); 4164 Register Src1Reg = MI.getOperand(2).getReg(); 4165 LLT Src0Ty = MRI.getType(Src0Reg); 4166 LLT DstTy = MRI.getType(DstReg); 4167 LLT IdxTy = LLT::scalar(32); 4168 4169 const Constant *ShufMask = MI.getOperand(3).getShuffleMask(); 4170 4171 SmallVector<int, 32> Mask; 4172 ShuffleVectorInst::getShuffleMask(ShufMask, Mask); 4173 4174 if (DstTy.isScalar()) { 4175 if (Src0Ty.isVector()) 4176 return UnableToLegalize; 4177 4178 // This is just a SELECT. 4179 assert(Mask.size() == 1 && "Expected a single mask element"); 4180 Register Val; 4181 if (Mask[0] < 0 || Mask[0] > 1) 4182 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4183 else 4184 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4185 MIRBuilder.buildCopy(DstReg, Val); 4186 MI.eraseFromParent(); 4187 return Legalized; 4188 } 4189 4190 Register Undef; 4191 SmallVector<Register, 32> BuildVec; 4192 LLT EltTy = DstTy.getElementType(); 4193 4194 for (int Idx : Mask) { 4195 if (Idx < 0) { 4196 if (!Undef.isValid()) 4197 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4198 BuildVec.push_back(Undef); 4199 continue; 4200 } 4201 4202 if (Src0Ty.isScalar()) { 4203 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4204 } else { 4205 int NumElts = Src0Ty.getNumElements(); 4206 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4207 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4208 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4209 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4210 BuildVec.push_back(Extract.getReg(0)); 4211 } 4212 } 4213 4214 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4215 MI.eraseFromParent(); 4216 return Legalized; 4217 } 4218 4219 LegalizerHelper::LegalizeResult 4220 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4221 Register Dst = MI.getOperand(0).getReg(); 4222 Register AllocSize = MI.getOperand(1).getReg(); 4223 unsigned Align = MI.getOperand(2).getImm(); 4224 4225 const auto &MF = *MI.getMF(); 4226 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4227 4228 LLT PtrTy = MRI.getType(Dst); 4229 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4230 4231 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4232 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4233 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4234 4235 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4236 // have to generate an extra instruction to negate the alloc and then use 4237 // G_PTR_ADD to add the negative offset. 4238 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4239 if (Align) { 4240 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4241 AlignMask.negate(); 4242 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4243 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4244 } 4245 4246 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4247 MIRBuilder.buildCopy(SPReg, SPTmp); 4248 MIRBuilder.buildCopy(Dst, SPTmp); 4249 4250 MI.eraseFromParent(); 4251 return Legalized; 4252 } 4253 4254 LegalizerHelper::LegalizeResult 4255 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4256 Register Dst = MI.getOperand(0).getReg(); 4257 Register Src = MI.getOperand(1).getReg(); 4258 unsigned Offset = MI.getOperand(2).getImm(); 4259 4260 LLT DstTy = MRI.getType(Dst); 4261 LLT SrcTy = MRI.getType(Src); 4262 4263 if (DstTy.isScalar() && 4264 (SrcTy.isScalar() || 4265 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4266 LLT SrcIntTy = SrcTy; 4267 if (!SrcTy.isScalar()) { 4268 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4269 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4270 } 4271 4272 if (Offset == 0) 4273 MIRBuilder.buildTrunc(Dst, Src); 4274 else { 4275 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4276 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4277 MIRBuilder.buildTrunc(Dst, Shr); 4278 } 4279 4280 MI.eraseFromParent(); 4281 return Legalized; 4282 } 4283 4284 return UnableToLegalize; 4285 } 4286 4287 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4288 Register Dst = MI.getOperand(0).getReg(); 4289 Register Src = MI.getOperand(1).getReg(); 4290 Register InsertSrc = MI.getOperand(2).getReg(); 4291 uint64_t Offset = MI.getOperand(3).getImm(); 4292 4293 LLT DstTy = MRI.getType(Src); 4294 LLT InsertTy = MRI.getType(InsertSrc); 4295 4296 if (InsertTy.isScalar() && 4297 (DstTy.isScalar() || 4298 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4299 LLT IntDstTy = DstTy; 4300 if (!DstTy.isScalar()) { 4301 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4302 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4303 } 4304 4305 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4306 if (Offset != 0) { 4307 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4308 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4309 } 4310 4311 APInt MaskVal = ~APInt::getBitsSet(DstTy.getSizeInBits(), Offset, 4312 InsertTy.getSizeInBits()); 4313 4314 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4315 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4316 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4317 4318 MIRBuilder.buildBitcast(Dst, Or); 4319 MI.eraseFromParent(); 4320 return Legalized; 4321 } 4322 4323 return UnableToLegalize; 4324 } 4325 4326 LegalizerHelper::LegalizeResult 4327 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4328 Register Dst0 = MI.getOperand(0).getReg(); 4329 Register Dst1 = MI.getOperand(1).getReg(); 4330 Register LHS = MI.getOperand(2).getReg(); 4331 Register RHS = MI.getOperand(3).getReg(); 4332 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4333 4334 LLT Ty = MRI.getType(Dst0); 4335 LLT BoolTy = MRI.getType(Dst1); 4336 4337 if (IsAdd) 4338 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4339 else 4340 MIRBuilder.buildSub(Dst0, LHS, RHS); 4341 4342 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4343 4344 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4345 4346 // For an addition, the result should be less than one of the operands (LHS) 4347 // if and only if the other operand (RHS) is negative, otherwise there will 4348 // be overflow. 4349 // For a subtraction, the result should be less than one of the operands 4350 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4351 // otherwise there will be overflow. 4352 auto ResultLowerThanLHS = 4353 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4354 auto ConditionRHS = MIRBuilder.buildICmp( 4355 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4356 4357 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4358 MI.eraseFromParent(); 4359 return Legalized; 4360 } 4361 4362 LegalizerHelper::LegalizeResult 4363 LegalizerHelper::lowerBswap(MachineInstr &MI) { 4364 Register Dst = MI.getOperand(0).getReg(); 4365 Register Src = MI.getOperand(1).getReg(); 4366 const LLT Ty = MRI.getType(Src); 4367 unsigned SizeInBytes = Ty.getSizeInBytes(); 4368 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 4369 4370 // Swap most and least significant byte, set remaining bytes in Res to zero. 4371 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 4372 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 4373 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4374 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 4375 4376 // Set i-th high/low byte in Res to i-th low/high byte from Src. 4377 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 4378 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 4379 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 4380 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 4381 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 4382 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 4383 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 4384 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 4385 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 4386 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 4387 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4388 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 4389 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 4390 } 4391 Res.getInstr()->getOperand(0).setReg(Dst); 4392 4393 MI.eraseFromParent(); 4394 return Legalized; 4395 } 4396 4397 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 4398 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 4399 MachineInstrBuilder Src, APInt Mask) { 4400 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 4401 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 4402 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 4403 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 4404 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 4405 return B.buildOr(Dst, LHS, RHS); 4406 } 4407 4408 LegalizerHelper::LegalizeResult 4409 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 4410 Register Dst = MI.getOperand(0).getReg(); 4411 Register Src = MI.getOperand(1).getReg(); 4412 const LLT Ty = MRI.getType(Src); 4413 unsigned Size = Ty.getSizeInBits(); 4414 4415 MachineInstrBuilder BSWAP = 4416 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 4417 4418 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 4419 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 4420 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 4421 MachineInstrBuilder Swap4 = 4422 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 4423 4424 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 4425 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 4426 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 4427 MachineInstrBuilder Swap2 = 4428 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 4429 4430 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 4431 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 4432 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 4433 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 4434 4435 MI.eraseFromParent(); 4436 return Legalized; 4437 } 4438