1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #define DEBUG_TYPE "legalizer" 28 29 using namespace llvm; 30 using namespace LegalizeActions; 31 32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 33 /// 34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 35 /// with any leftover piece as type \p LeftoverTy 36 /// 37 /// Returns -1 in the first element of the pair if the breakdown is not 38 /// satisfiable. 39 static std::pair<int, int> 40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 41 assert(!LeftoverTy.isValid() && "this is an out argument"); 42 43 unsigned Size = OrigTy.getSizeInBits(); 44 unsigned NarrowSize = NarrowTy.getSizeInBits(); 45 unsigned NumParts = Size / NarrowSize; 46 unsigned LeftoverSize = Size - NumParts * NarrowSize; 47 assert(Size > NarrowSize); 48 49 if (LeftoverSize == 0) 50 return {NumParts, 0}; 51 52 if (NarrowTy.isVector()) { 53 unsigned EltSize = OrigTy.getScalarSizeInBits(); 54 if (LeftoverSize % EltSize != 0) 55 return {-1, -1}; 56 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 57 } else { 58 LeftoverTy = LLT::scalar(LeftoverSize); 59 } 60 61 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 62 return std::make_pair(NumParts, NumLeftover); 63 } 64 65 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 66 GISelChangeObserver &Observer, 67 MachineIRBuilder &Builder) 68 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 69 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 70 MIRBuilder.setMF(MF); 71 MIRBuilder.setChangeObserver(Observer); 72 } 73 74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 75 GISelChangeObserver &Observer, 76 MachineIRBuilder &B) 77 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 78 MIRBuilder.setMF(MF); 79 MIRBuilder.setChangeObserver(Observer); 80 } 81 LegalizerHelper::LegalizeResult 82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 83 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 84 85 auto Step = LI.getAction(MI, MRI); 86 switch (Step.Action) { 87 case Legal: 88 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 89 return AlreadyLegal; 90 case Libcall: 91 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 92 return libcall(MI); 93 case NarrowScalar: 94 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 95 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 96 case WidenScalar: 97 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 98 return widenScalar(MI, Step.TypeIdx, Step.NewType); 99 case Lower: 100 LLVM_DEBUG(dbgs() << ".. Lower\n"); 101 return lower(MI, Step.TypeIdx, Step.NewType); 102 case FewerElements: 103 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 104 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 105 case MoreElements: 106 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 107 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 108 case Custom: 109 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 110 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 111 : UnableToLegalize; 112 default: 113 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 114 return UnableToLegalize; 115 } 116 } 117 118 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 119 SmallVectorImpl<Register> &VRegs) { 120 for (int i = 0; i < NumParts; ++i) 121 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 122 MIRBuilder.buildUnmerge(VRegs, Reg); 123 } 124 125 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 126 LLT MainTy, LLT &LeftoverTy, 127 SmallVectorImpl<Register> &VRegs, 128 SmallVectorImpl<Register> &LeftoverRegs) { 129 assert(!LeftoverTy.isValid() && "this is an out argument"); 130 131 unsigned RegSize = RegTy.getSizeInBits(); 132 unsigned MainSize = MainTy.getSizeInBits(); 133 unsigned NumParts = RegSize / MainSize; 134 unsigned LeftoverSize = RegSize - NumParts * MainSize; 135 136 // Use an unmerge when possible. 137 if (LeftoverSize == 0) { 138 for (unsigned I = 0; I < NumParts; ++I) 139 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 140 MIRBuilder.buildUnmerge(VRegs, Reg); 141 return true; 142 } 143 144 if (MainTy.isVector()) { 145 unsigned EltSize = MainTy.getScalarSizeInBits(); 146 if (LeftoverSize % EltSize != 0) 147 return false; 148 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 149 } else { 150 LeftoverTy = LLT::scalar(LeftoverSize); 151 } 152 153 // For irregular sizes, extract the individual parts. 154 for (unsigned I = 0; I != NumParts; ++I) { 155 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 156 VRegs.push_back(NewReg); 157 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 158 } 159 160 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 161 Offset += LeftoverSize) { 162 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 163 LeftoverRegs.push_back(NewReg); 164 MIRBuilder.buildExtract(NewReg, Reg, Offset); 165 } 166 167 return true; 168 } 169 170 void LegalizerHelper::insertParts(Register DstReg, 171 LLT ResultTy, LLT PartTy, 172 ArrayRef<Register> PartRegs, 173 LLT LeftoverTy, 174 ArrayRef<Register> LeftoverRegs) { 175 if (!LeftoverTy.isValid()) { 176 assert(LeftoverRegs.empty()); 177 178 if (!ResultTy.isVector()) { 179 MIRBuilder.buildMerge(DstReg, PartRegs); 180 return; 181 } 182 183 if (PartTy.isVector()) 184 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 185 else 186 MIRBuilder.buildBuildVector(DstReg, PartRegs); 187 return; 188 } 189 190 unsigned PartSize = PartTy.getSizeInBits(); 191 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 192 193 unsigned CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 194 MIRBuilder.buildUndef(CurResultReg); 195 196 unsigned Offset = 0; 197 for (unsigned PartReg : PartRegs) { 198 unsigned NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 199 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 200 CurResultReg = NewResultReg; 201 Offset += PartSize; 202 } 203 204 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 205 // Use the original output register for the final insert to avoid a copy. 206 unsigned NewResultReg = (I + 1 == E) ? 207 DstReg : MRI.createGenericVirtualRegister(ResultTy); 208 209 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 210 CurResultReg = NewResultReg; 211 Offset += LeftoverPartSize; 212 } 213 } 214 215 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 216 switch (Opcode) { 217 case TargetOpcode::G_SDIV: 218 assert((Size == 32 || Size == 64) && "Unsupported size"); 219 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 220 case TargetOpcode::G_UDIV: 221 assert((Size == 32 || Size == 64) && "Unsupported size"); 222 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 223 case TargetOpcode::G_SREM: 224 assert((Size == 32 || Size == 64) && "Unsupported size"); 225 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 226 case TargetOpcode::G_UREM: 227 assert((Size == 32 || Size == 64) && "Unsupported size"); 228 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 229 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 230 assert(Size == 32 && "Unsupported size"); 231 return RTLIB::CTLZ_I32; 232 case TargetOpcode::G_FADD: 233 assert((Size == 32 || Size == 64) && "Unsupported size"); 234 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 235 case TargetOpcode::G_FSUB: 236 assert((Size == 32 || Size == 64) && "Unsupported size"); 237 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 238 case TargetOpcode::G_FMUL: 239 assert((Size == 32 || Size == 64) && "Unsupported size"); 240 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 241 case TargetOpcode::G_FDIV: 242 assert((Size == 32 || Size == 64) && "Unsupported size"); 243 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 244 case TargetOpcode::G_FEXP: 245 assert((Size == 32 || Size == 64) && "Unsupported size"); 246 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 247 case TargetOpcode::G_FEXP2: 248 assert((Size == 32 || Size == 64) && "Unsupported size"); 249 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 250 case TargetOpcode::G_FREM: 251 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 252 case TargetOpcode::G_FPOW: 253 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 254 case TargetOpcode::G_FMA: 255 assert((Size == 32 || Size == 64) && "Unsupported size"); 256 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 257 case TargetOpcode::G_FSIN: 258 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 259 return Size == 128 ? RTLIB::SIN_F128 260 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 261 case TargetOpcode::G_FCOS: 262 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 263 return Size == 128 ? RTLIB::COS_F128 264 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 265 case TargetOpcode::G_FLOG10: 266 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 267 return Size == 128 ? RTLIB::LOG10_F128 268 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 269 case TargetOpcode::G_FLOG: 270 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 271 return Size == 128 ? RTLIB::LOG_F128 272 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 273 case TargetOpcode::G_FLOG2: 274 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 275 return Size == 128 ? RTLIB::LOG2_F128 276 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 277 case TargetOpcode::G_FCEIL: 278 assert((Size == 32 || Size == 64) && "Unsupported size"); 279 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 280 case TargetOpcode::G_FFLOOR: 281 assert((Size == 32 || Size == 64) && "Unsupported size"); 282 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 283 } 284 llvm_unreachable("Unknown libcall function"); 285 } 286 287 LegalizerHelper::LegalizeResult 288 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 289 const CallLowering::ArgInfo &Result, 290 ArrayRef<CallLowering::ArgInfo> Args) { 291 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 292 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 293 const char *Name = TLI.getLibcallName(Libcall); 294 295 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 296 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 297 MachineOperand::CreateES(Name), Result, Args)) 298 return LegalizerHelper::UnableToLegalize; 299 300 return LegalizerHelper::Legalized; 301 } 302 303 // Useful for libcalls where all operands have the same type. 304 static LegalizerHelper::LegalizeResult 305 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 306 Type *OpType) { 307 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 308 309 SmallVector<CallLowering::ArgInfo, 3> Args; 310 for (unsigned i = 1; i < MI.getNumOperands(); i++) 311 Args.push_back({MI.getOperand(i).getReg(), OpType}); 312 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 313 Args); 314 } 315 316 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 317 Type *FromType) { 318 auto ToMVT = MVT::getVT(ToType); 319 auto FromMVT = MVT::getVT(FromType); 320 321 switch (Opcode) { 322 case TargetOpcode::G_FPEXT: 323 return RTLIB::getFPEXT(FromMVT, ToMVT); 324 case TargetOpcode::G_FPTRUNC: 325 return RTLIB::getFPROUND(FromMVT, ToMVT); 326 case TargetOpcode::G_FPTOSI: 327 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 328 case TargetOpcode::G_FPTOUI: 329 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 330 case TargetOpcode::G_SITOFP: 331 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 332 case TargetOpcode::G_UITOFP: 333 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 334 } 335 llvm_unreachable("Unsupported libcall function"); 336 } 337 338 static LegalizerHelper::LegalizeResult 339 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 340 Type *FromType) { 341 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 342 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 343 {{MI.getOperand(1).getReg(), FromType}}); 344 } 345 346 LegalizerHelper::LegalizeResult 347 LegalizerHelper::libcall(MachineInstr &MI) { 348 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 349 unsigned Size = LLTy.getSizeInBits(); 350 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 351 352 MIRBuilder.setInstr(MI); 353 354 switch (MI.getOpcode()) { 355 default: 356 return UnableToLegalize; 357 case TargetOpcode::G_SDIV: 358 case TargetOpcode::G_UDIV: 359 case TargetOpcode::G_SREM: 360 case TargetOpcode::G_UREM: 361 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 362 Type *HLTy = IntegerType::get(Ctx, Size); 363 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 364 if (Status != Legalized) 365 return Status; 366 break; 367 } 368 case TargetOpcode::G_FADD: 369 case TargetOpcode::G_FSUB: 370 case TargetOpcode::G_FMUL: 371 case TargetOpcode::G_FDIV: 372 case TargetOpcode::G_FMA: 373 case TargetOpcode::G_FPOW: 374 case TargetOpcode::G_FREM: 375 case TargetOpcode::G_FCOS: 376 case TargetOpcode::G_FSIN: 377 case TargetOpcode::G_FLOG10: 378 case TargetOpcode::G_FLOG: 379 case TargetOpcode::G_FLOG2: 380 case TargetOpcode::G_FEXP: 381 case TargetOpcode::G_FEXP2: 382 case TargetOpcode::G_FCEIL: 383 case TargetOpcode::G_FFLOOR: { 384 if (Size > 64) { 385 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 386 return UnableToLegalize; 387 } 388 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 389 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 390 if (Status != Legalized) 391 return Status; 392 break; 393 } 394 case TargetOpcode::G_FPEXT: { 395 // FIXME: Support other floating point types (half, fp128 etc) 396 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 397 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 398 if (ToSize != 64 || FromSize != 32) 399 return UnableToLegalize; 400 LegalizeResult Status = conversionLibcall( 401 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 402 if (Status != Legalized) 403 return Status; 404 break; 405 } 406 case TargetOpcode::G_FPTRUNC: { 407 // FIXME: Support other floating point types (half, fp128 etc) 408 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 409 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 410 if (ToSize != 32 || FromSize != 64) 411 return UnableToLegalize; 412 LegalizeResult Status = conversionLibcall( 413 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 414 if (Status != Legalized) 415 return Status; 416 break; 417 } 418 case TargetOpcode::G_FPTOSI: 419 case TargetOpcode::G_FPTOUI: { 420 // FIXME: Support other types 421 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 422 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 423 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 424 return UnableToLegalize; 425 LegalizeResult Status = conversionLibcall( 426 MI, MIRBuilder, 427 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 428 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 429 if (Status != Legalized) 430 return Status; 431 break; 432 } 433 case TargetOpcode::G_SITOFP: 434 case TargetOpcode::G_UITOFP: { 435 // FIXME: Support other types 436 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 437 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 438 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 439 return UnableToLegalize; 440 LegalizeResult Status = conversionLibcall( 441 MI, MIRBuilder, 442 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 443 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 444 if (Status != Legalized) 445 return Status; 446 break; 447 } 448 } 449 450 MI.eraseFromParent(); 451 return Legalized; 452 } 453 454 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 455 unsigned TypeIdx, 456 LLT NarrowTy) { 457 MIRBuilder.setInstr(MI); 458 459 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 460 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 461 462 switch (MI.getOpcode()) { 463 default: 464 return UnableToLegalize; 465 case TargetOpcode::G_IMPLICIT_DEF: { 466 // FIXME: add support for when SizeOp0 isn't an exact multiple of 467 // NarrowSize. 468 if (SizeOp0 % NarrowSize != 0) 469 return UnableToLegalize; 470 int NumParts = SizeOp0 / NarrowSize; 471 472 SmallVector<Register, 2> DstRegs; 473 for (int i = 0; i < NumParts; ++i) 474 DstRegs.push_back( 475 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 476 477 unsigned DstReg = MI.getOperand(0).getReg(); 478 if(MRI.getType(DstReg).isVector()) 479 MIRBuilder.buildBuildVector(DstReg, DstRegs); 480 else 481 MIRBuilder.buildMerge(DstReg, DstRegs); 482 MI.eraseFromParent(); 483 return Legalized; 484 } 485 case TargetOpcode::G_CONSTANT: { 486 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 487 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 488 unsigned TotalSize = Ty.getSizeInBits(); 489 unsigned NarrowSize = NarrowTy.getSizeInBits(); 490 int NumParts = TotalSize / NarrowSize; 491 492 SmallVector<Register, 4> PartRegs; 493 for (int I = 0; I != NumParts; ++I) { 494 unsigned Offset = I * NarrowSize; 495 auto K = MIRBuilder.buildConstant(NarrowTy, 496 Val.lshr(Offset).trunc(NarrowSize)); 497 PartRegs.push_back(K.getReg(0)); 498 } 499 500 LLT LeftoverTy; 501 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 502 SmallVector<Register, 1> LeftoverRegs; 503 if (LeftoverBits != 0) { 504 LeftoverTy = LLT::scalar(LeftoverBits); 505 auto K = MIRBuilder.buildConstant( 506 LeftoverTy, 507 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 508 LeftoverRegs.push_back(K.getReg(0)); 509 } 510 511 insertParts(MI.getOperand(0).getReg(), 512 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 513 514 MI.eraseFromParent(); 515 return Legalized; 516 } 517 case TargetOpcode::G_ADD: { 518 // FIXME: add support for when SizeOp0 isn't an exact multiple of 519 // NarrowSize. 520 if (SizeOp0 % NarrowSize != 0) 521 return UnableToLegalize; 522 // Expand in terms of carry-setting/consuming G_ADDE instructions. 523 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 524 525 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 526 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 527 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 528 529 Register CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 530 MIRBuilder.buildConstant(CarryIn, 0); 531 532 for (int i = 0; i < NumParts; ++i) { 533 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 534 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 535 536 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 537 Src2Regs[i], CarryIn); 538 539 DstRegs.push_back(DstReg); 540 CarryIn = CarryOut; 541 } 542 Register DstReg = MI.getOperand(0).getReg(); 543 if(MRI.getType(DstReg).isVector()) 544 MIRBuilder.buildBuildVector(DstReg, DstRegs); 545 else 546 MIRBuilder.buildMerge(DstReg, DstRegs); 547 MI.eraseFromParent(); 548 return Legalized; 549 } 550 case TargetOpcode::G_SUB: { 551 // FIXME: add support for when SizeOp0 isn't an exact multiple of 552 // NarrowSize. 553 if (SizeOp0 % NarrowSize != 0) 554 return UnableToLegalize; 555 556 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 557 558 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 559 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 560 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 561 562 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 563 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 564 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 565 {Src1Regs[0], Src2Regs[0]}); 566 DstRegs.push_back(DstReg); 567 Register BorrowIn = BorrowOut; 568 for (int i = 1; i < NumParts; ++i) { 569 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 570 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 571 572 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 573 {Src1Regs[i], Src2Regs[i], BorrowIn}); 574 575 DstRegs.push_back(DstReg); 576 BorrowIn = BorrowOut; 577 } 578 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 579 MI.eraseFromParent(); 580 return Legalized; 581 } 582 case TargetOpcode::G_MUL: 583 case TargetOpcode::G_UMULH: 584 return narrowScalarMul(MI, NarrowTy); 585 case TargetOpcode::G_EXTRACT: 586 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 587 case TargetOpcode::G_INSERT: 588 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 589 case TargetOpcode::G_LOAD: { 590 const auto &MMO = **MI.memoperands_begin(); 591 Register DstReg = MI.getOperand(0).getReg(); 592 LLT DstTy = MRI.getType(DstReg); 593 if (DstTy.isVector()) 594 return UnableToLegalize; 595 596 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 597 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 598 auto &MMO = **MI.memoperands_begin(); 599 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 600 MIRBuilder.buildAnyExt(DstReg, TmpReg); 601 MI.eraseFromParent(); 602 return Legalized; 603 } 604 605 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 606 } 607 case TargetOpcode::G_ZEXTLOAD: 608 case TargetOpcode::G_SEXTLOAD: { 609 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 610 Register DstReg = MI.getOperand(0).getReg(); 611 Register PtrReg = MI.getOperand(1).getReg(); 612 613 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 614 auto &MMO = **MI.memoperands_begin(); 615 if (MMO.getSizeInBits() == NarrowSize) { 616 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 617 } else { 618 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 619 : TargetOpcode::G_SEXTLOAD; 620 MIRBuilder.buildInstr(ExtLoad) 621 .addDef(TmpReg) 622 .addUse(PtrReg) 623 .addMemOperand(&MMO); 624 } 625 626 if (ZExt) 627 MIRBuilder.buildZExt(DstReg, TmpReg); 628 else 629 MIRBuilder.buildSExt(DstReg, TmpReg); 630 631 MI.eraseFromParent(); 632 return Legalized; 633 } 634 case TargetOpcode::G_STORE: { 635 const auto &MMO = **MI.memoperands_begin(); 636 637 Register SrcReg = MI.getOperand(0).getReg(); 638 LLT SrcTy = MRI.getType(SrcReg); 639 if (SrcTy.isVector()) 640 return UnableToLegalize; 641 642 int NumParts = SizeOp0 / NarrowSize; 643 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 644 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 645 if (SrcTy.isVector() && LeftoverBits != 0) 646 return UnableToLegalize; 647 648 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 649 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 650 auto &MMO = **MI.memoperands_begin(); 651 MIRBuilder.buildTrunc(TmpReg, SrcReg); 652 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 653 MI.eraseFromParent(); 654 return Legalized; 655 } 656 657 return reduceLoadStoreWidth(MI, 0, NarrowTy); 658 } 659 case TargetOpcode::G_SELECT: 660 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 661 case TargetOpcode::G_AND: 662 case TargetOpcode::G_OR: 663 case TargetOpcode::G_XOR: { 664 // Legalize bitwise operation: 665 // A = BinOp<Ty> B, C 666 // into: 667 // B1, ..., BN = G_UNMERGE_VALUES B 668 // C1, ..., CN = G_UNMERGE_VALUES C 669 // A1 = BinOp<Ty/N> B1, C2 670 // ... 671 // AN = BinOp<Ty/N> BN, CN 672 // A = G_MERGE_VALUES A1, ..., AN 673 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 674 } 675 case TargetOpcode::G_SHL: 676 case TargetOpcode::G_LSHR: 677 case TargetOpcode::G_ASHR: 678 return narrowScalarShift(MI, TypeIdx, NarrowTy); 679 case TargetOpcode::G_CTLZ: 680 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 681 case TargetOpcode::G_CTTZ: 682 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 683 case TargetOpcode::G_CTPOP: 684 if (TypeIdx != 0) 685 return UnableToLegalize; // TODO 686 687 Observer.changingInstr(MI); 688 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 689 Observer.changedInstr(MI); 690 return Legalized; 691 case TargetOpcode::G_INTTOPTR: 692 if (TypeIdx != 1) 693 return UnableToLegalize; 694 695 Observer.changingInstr(MI); 696 narrowScalarSrc(MI, NarrowTy, 1); 697 Observer.changedInstr(MI); 698 return Legalized; 699 case TargetOpcode::G_PTRTOINT: 700 if (TypeIdx != 0) 701 return UnableToLegalize; 702 703 Observer.changingInstr(MI); 704 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 705 Observer.changedInstr(MI); 706 return Legalized; 707 } 708 } 709 710 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 711 unsigned OpIdx, unsigned ExtOpcode) { 712 MachineOperand &MO = MI.getOperand(OpIdx); 713 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 714 MO.setReg(ExtB->getOperand(0).getReg()); 715 } 716 717 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 718 unsigned OpIdx) { 719 MachineOperand &MO = MI.getOperand(OpIdx); 720 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 721 {MO.getReg()}); 722 MO.setReg(ExtB->getOperand(0).getReg()); 723 } 724 725 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 726 unsigned OpIdx, unsigned TruncOpcode) { 727 MachineOperand &MO = MI.getOperand(OpIdx); 728 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 729 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 730 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 731 MO.setReg(DstExt); 732 } 733 734 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 735 unsigned OpIdx, unsigned ExtOpcode) { 736 MachineOperand &MO = MI.getOperand(OpIdx); 737 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 738 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 739 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 740 MO.setReg(DstTrunc); 741 } 742 743 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 744 unsigned OpIdx) { 745 MachineOperand &MO = MI.getOperand(OpIdx); 746 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 747 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 748 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 749 MO.setReg(DstExt); 750 } 751 752 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 753 unsigned OpIdx) { 754 MachineOperand &MO = MI.getOperand(OpIdx); 755 756 LLT OldTy = MRI.getType(MO.getReg()); 757 unsigned OldElts = OldTy.getNumElements(); 758 unsigned NewElts = MoreTy.getNumElements(); 759 760 unsigned NumParts = NewElts / OldElts; 761 762 // Use concat_vectors if the result is a multiple of the number of elements. 763 if (NumParts * OldElts == NewElts) { 764 SmallVector<Register, 8> Parts; 765 Parts.push_back(MO.getReg()); 766 767 unsigned ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 768 for (unsigned I = 1; I != NumParts; ++I) 769 Parts.push_back(ImpDef); 770 771 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 772 MO.setReg(Concat.getReg(0)); 773 return; 774 } 775 776 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 777 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 778 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 779 MO.setReg(MoreReg); 780 } 781 782 LegalizerHelper::LegalizeResult 783 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 784 LLT WideTy) { 785 if (TypeIdx != 1) 786 return UnableToLegalize; 787 788 Register DstReg = MI.getOperand(0).getReg(); 789 LLT DstTy = MRI.getType(DstReg); 790 if (!DstTy.isScalar()) 791 return UnableToLegalize; 792 793 unsigned NumOps = MI.getNumOperands(); 794 unsigned NumSrc = MI.getNumOperands() - 1; 795 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 796 797 Register Src1 = MI.getOperand(1).getReg(); 798 Register ResultReg = MIRBuilder.buildZExt(DstTy, Src1)->getOperand(0).getReg(); 799 800 for (unsigned I = 2; I != NumOps; ++I) { 801 const unsigned Offset = (I - 1) * PartSize; 802 803 Register SrcReg = MI.getOperand(I).getReg(); 804 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 805 806 auto ZextInput = MIRBuilder.buildZExt(DstTy, SrcReg); 807 808 Register NextResult = I + 1 == NumOps ? DstReg : 809 MRI.createGenericVirtualRegister(DstTy); 810 811 auto ShiftAmt = MIRBuilder.buildConstant(DstTy, Offset); 812 auto Shl = MIRBuilder.buildShl(DstTy, ZextInput, ShiftAmt); 813 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 814 ResultReg = NextResult; 815 } 816 817 MI.eraseFromParent(); 818 return Legalized; 819 } 820 821 LegalizerHelper::LegalizeResult 822 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 823 LLT WideTy) { 824 if (TypeIdx != 0) 825 return UnableToLegalize; 826 827 unsigned NumDst = MI.getNumOperands() - 1; 828 Register SrcReg = MI.getOperand(NumDst).getReg(); 829 LLT SrcTy = MRI.getType(SrcReg); 830 if (!SrcTy.isScalar()) 831 return UnableToLegalize; 832 833 Register Dst0Reg = MI.getOperand(0).getReg(); 834 LLT DstTy = MRI.getType(Dst0Reg); 835 if (!DstTy.isScalar()) 836 return UnableToLegalize; 837 838 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 839 LLT NewSrcTy = LLT::scalar(NewSrcSize); 840 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 841 842 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 843 844 for (unsigned I = 1; I != NumDst; ++I) { 845 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 846 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 847 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 848 } 849 850 Observer.changingInstr(MI); 851 852 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 853 for (unsigned I = 0; I != NumDst; ++I) 854 widenScalarDst(MI, WideTy, I); 855 856 Observer.changedInstr(MI); 857 858 return Legalized; 859 } 860 861 LegalizerHelper::LegalizeResult 862 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 863 LLT WideTy) { 864 Register DstReg = MI.getOperand(0).getReg(); 865 Register SrcReg = MI.getOperand(1).getReg(); 866 LLT SrcTy = MRI.getType(SrcReg); 867 868 LLT DstTy = MRI.getType(DstReg); 869 unsigned Offset = MI.getOperand(2).getImm(); 870 871 if (TypeIdx == 0) { 872 if (SrcTy.isVector() || DstTy.isVector()) 873 return UnableToLegalize; 874 875 SrcOp Src(SrcReg); 876 if (SrcTy.isPointer()) { 877 // Extracts from pointers can be handled only if they are really just 878 // simple integers. 879 const DataLayout &DL = MIRBuilder.getDataLayout(); 880 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 881 return UnableToLegalize; 882 883 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 884 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 885 SrcTy = SrcAsIntTy; 886 } 887 888 if (DstTy.isPointer()) 889 return UnableToLegalize; 890 891 if (Offset == 0) { 892 // Avoid a shift in the degenerate case. 893 MIRBuilder.buildTrunc(DstReg, 894 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 899 // Do a shift in the source type. 900 LLT ShiftTy = SrcTy; 901 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 902 Src = MIRBuilder.buildAnyExt(WideTy, Src); 903 ShiftTy = WideTy; 904 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 905 return UnableToLegalize; 906 907 auto LShr = MIRBuilder.buildLShr( 908 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 909 MIRBuilder.buildTrunc(DstReg, LShr); 910 MI.eraseFromParent(); 911 return Legalized; 912 } 913 914 if (SrcTy.isScalar()) { 915 Observer.changingInstr(MI); 916 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 917 Observer.changedInstr(MI); 918 return Legalized; 919 } 920 921 if (!SrcTy.isVector()) 922 return UnableToLegalize; 923 924 if (DstTy != SrcTy.getElementType()) 925 return UnableToLegalize; 926 927 if (Offset % SrcTy.getScalarSizeInBits() != 0) 928 return UnableToLegalize; 929 930 Observer.changingInstr(MI); 931 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 932 933 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 934 Offset); 935 widenScalarDst(MI, WideTy.getScalarType(), 0); 936 Observer.changedInstr(MI); 937 return Legalized; 938 } 939 940 LegalizerHelper::LegalizeResult 941 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 942 LLT WideTy) { 943 if (TypeIdx != 0) 944 return UnableToLegalize; 945 Observer.changingInstr(MI); 946 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 947 widenScalarDst(MI, WideTy); 948 Observer.changedInstr(MI); 949 return Legalized; 950 } 951 952 LegalizerHelper::LegalizeResult 953 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 954 MIRBuilder.setInstr(MI); 955 956 switch (MI.getOpcode()) { 957 default: 958 return UnableToLegalize; 959 case TargetOpcode::G_EXTRACT: 960 return widenScalarExtract(MI, TypeIdx, WideTy); 961 case TargetOpcode::G_INSERT: 962 return widenScalarInsert(MI, TypeIdx, WideTy); 963 case TargetOpcode::G_MERGE_VALUES: 964 return widenScalarMergeValues(MI, TypeIdx, WideTy); 965 case TargetOpcode::G_UNMERGE_VALUES: 966 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 967 case TargetOpcode::G_UADDO: 968 case TargetOpcode::G_USUBO: { 969 if (TypeIdx == 1) 970 return UnableToLegalize; // TODO 971 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 972 {MI.getOperand(2).getReg()}); 973 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 974 {MI.getOperand(3).getReg()}); 975 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 976 ? TargetOpcode::G_ADD 977 : TargetOpcode::G_SUB; 978 // Do the arithmetic in the larger type. 979 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 980 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 981 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 982 auto AndOp = MIRBuilder.buildInstr( 983 TargetOpcode::G_AND, {WideTy}, 984 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 985 // There is no overflow if the AndOp is the same as NewOp. 986 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 987 AndOp); 988 // Now trunc the NewOp to the original result. 989 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 990 MI.eraseFromParent(); 991 return Legalized; 992 } 993 case TargetOpcode::G_CTTZ: 994 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 995 case TargetOpcode::G_CTLZ: 996 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 997 case TargetOpcode::G_CTPOP: { 998 if (TypeIdx == 0) { 999 Observer.changingInstr(MI); 1000 widenScalarDst(MI, WideTy, 0); 1001 Observer.changedInstr(MI); 1002 return Legalized; 1003 } 1004 1005 Register SrcReg = MI.getOperand(1).getReg(); 1006 1007 // First ZEXT the input. 1008 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1009 LLT CurTy = MRI.getType(SrcReg); 1010 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1011 // The count is the same in the larger type except if the original 1012 // value was zero. This can be handled by setting the bit just off 1013 // the top of the original type. 1014 auto TopBit = 1015 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1016 MIBSrc = MIRBuilder.buildOr( 1017 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1018 } 1019 1020 // Perform the operation at the larger size. 1021 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1022 // This is already the correct result for CTPOP and CTTZs 1023 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1024 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1025 // The correct result is NewOp - (Difference in widety and current ty). 1026 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1027 MIBNewOp = MIRBuilder.buildInstr( 1028 TargetOpcode::G_SUB, {WideTy}, 1029 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1030 } 1031 1032 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1033 MI.eraseFromParent(); 1034 return Legalized; 1035 } 1036 case TargetOpcode::G_BSWAP: { 1037 Observer.changingInstr(MI); 1038 Register DstReg = MI.getOperand(0).getReg(); 1039 1040 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1041 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1042 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1043 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1044 1045 MI.getOperand(0).setReg(DstExt); 1046 1047 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1048 1049 LLT Ty = MRI.getType(DstReg); 1050 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1051 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1052 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1053 .addDef(ShrReg) 1054 .addUse(DstExt) 1055 .addUse(ShiftAmtReg); 1056 1057 MIRBuilder.buildTrunc(DstReg, ShrReg); 1058 Observer.changedInstr(MI); 1059 return Legalized; 1060 } 1061 case TargetOpcode::G_ADD: 1062 case TargetOpcode::G_AND: 1063 case TargetOpcode::G_MUL: 1064 case TargetOpcode::G_OR: 1065 case TargetOpcode::G_XOR: 1066 case TargetOpcode::G_SUB: 1067 // Perform operation at larger width (any extension is fines here, high bits 1068 // don't affect the result) and then truncate the result back to the 1069 // original type. 1070 Observer.changingInstr(MI); 1071 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1072 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1073 widenScalarDst(MI, WideTy); 1074 Observer.changedInstr(MI); 1075 return Legalized; 1076 1077 case TargetOpcode::G_SHL: 1078 Observer.changingInstr(MI); 1079 1080 if (TypeIdx == 0) { 1081 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1082 widenScalarDst(MI, WideTy); 1083 } else { 1084 assert(TypeIdx == 1); 1085 // The "number of bits to shift" operand must preserve its value as an 1086 // unsigned integer: 1087 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1088 } 1089 1090 Observer.changedInstr(MI); 1091 return Legalized; 1092 1093 case TargetOpcode::G_SDIV: 1094 case TargetOpcode::G_SREM: 1095 case TargetOpcode::G_SMIN: 1096 case TargetOpcode::G_SMAX: 1097 Observer.changingInstr(MI); 1098 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1099 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1100 widenScalarDst(MI, WideTy); 1101 Observer.changedInstr(MI); 1102 return Legalized; 1103 1104 case TargetOpcode::G_ASHR: 1105 case TargetOpcode::G_LSHR: 1106 Observer.changingInstr(MI); 1107 1108 if (TypeIdx == 0) { 1109 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1110 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1111 1112 widenScalarSrc(MI, WideTy, 1, CvtOp); 1113 widenScalarDst(MI, WideTy); 1114 } else { 1115 assert(TypeIdx == 1); 1116 // The "number of bits to shift" operand must preserve its value as an 1117 // unsigned integer: 1118 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1119 } 1120 1121 Observer.changedInstr(MI); 1122 return Legalized; 1123 case TargetOpcode::G_UDIV: 1124 case TargetOpcode::G_UREM: 1125 case TargetOpcode::G_UMIN: 1126 case TargetOpcode::G_UMAX: 1127 Observer.changingInstr(MI); 1128 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1129 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1130 widenScalarDst(MI, WideTy); 1131 Observer.changedInstr(MI); 1132 return Legalized; 1133 1134 case TargetOpcode::G_SELECT: 1135 Observer.changingInstr(MI); 1136 if (TypeIdx == 0) { 1137 // Perform operation at larger width (any extension is fine here, high 1138 // bits don't affect the result) and then truncate the result back to the 1139 // original type. 1140 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1141 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1142 widenScalarDst(MI, WideTy); 1143 } else { 1144 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1145 // Explicit extension is required here since high bits affect the result. 1146 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1147 } 1148 Observer.changedInstr(MI); 1149 return Legalized; 1150 1151 case TargetOpcode::G_FPTOSI: 1152 case TargetOpcode::G_FPTOUI: 1153 if (TypeIdx != 0) 1154 return UnableToLegalize; 1155 Observer.changingInstr(MI); 1156 widenScalarDst(MI, WideTy); 1157 Observer.changedInstr(MI); 1158 return Legalized; 1159 1160 case TargetOpcode::G_SITOFP: 1161 if (TypeIdx != 1) 1162 return UnableToLegalize; 1163 Observer.changingInstr(MI); 1164 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1165 Observer.changedInstr(MI); 1166 return Legalized; 1167 1168 case TargetOpcode::G_UITOFP: 1169 if (TypeIdx != 1) 1170 return UnableToLegalize; 1171 Observer.changingInstr(MI); 1172 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1173 Observer.changedInstr(MI); 1174 return Legalized; 1175 1176 case TargetOpcode::G_LOAD: 1177 case TargetOpcode::G_SEXTLOAD: 1178 case TargetOpcode::G_ZEXTLOAD: 1179 Observer.changingInstr(MI); 1180 widenScalarDst(MI, WideTy); 1181 Observer.changedInstr(MI); 1182 return Legalized; 1183 1184 case TargetOpcode::G_STORE: { 1185 if (TypeIdx != 0) 1186 return UnableToLegalize; 1187 1188 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1189 if (!isPowerOf2_32(Ty.getSizeInBits())) 1190 return UnableToLegalize; 1191 1192 Observer.changingInstr(MI); 1193 1194 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1195 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1196 widenScalarSrc(MI, WideTy, 0, ExtType); 1197 1198 Observer.changedInstr(MI); 1199 return Legalized; 1200 } 1201 case TargetOpcode::G_CONSTANT: { 1202 MachineOperand &SrcMO = MI.getOperand(1); 1203 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1204 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1205 Observer.changingInstr(MI); 1206 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1207 1208 widenScalarDst(MI, WideTy); 1209 Observer.changedInstr(MI); 1210 return Legalized; 1211 } 1212 case TargetOpcode::G_FCONSTANT: { 1213 MachineOperand &SrcMO = MI.getOperand(1); 1214 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1215 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1216 bool LosesInfo; 1217 switch (WideTy.getSizeInBits()) { 1218 case 32: 1219 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1220 &LosesInfo); 1221 break; 1222 case 64: 1223 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1224 &LosesInfo); 1225 break; 1226 default: 1227 return UnableToLegalize; 1228 } 1229 1230 assert(!LosesInfo && "extend should always be lossless"); 1231 1232 Observer.changingInstr(MI); 1233 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1234 1235 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1236 Observer.changedInstr(MI); 1237 return Legalized; 1238 } 1239 case TargetOpcode::G_IMPLICIT_DEF: { 1240 Observer.changingInstr(MI); 1241 widenScalarDst(MI, WideTy); 1242 Observer.changedInstr(MI); 1243 return Legalized; 1244 } 1245 case TargetOpcode::G_BRCOND: 1246 Observer.changingInstr(MI); 1247 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1248 Observer.changedInstr(MI); 1249 return Legalized; 1250 1251 case TargetOpcode::G_FCMP: 1252 Observer.changingInstr(MI); 1253 if (TypeIdx == 0) 1254 widenScalarDst(MI, WideTy); 1255 else { 1256 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1257 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1258 } 1259 Observer.changedInstr(MI); 1260 return Legalized; 1261 1262 case TargetOpcode::G_ICMP: 1263 Observer.changingInstr(MI); 1264 if (TypeIdx == 0) 1265 widenScalarDst(MI, WideTy); 1266 else { 1267 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1268 MI.getOperand(1).getPredicate())) 1269 ? TargetOpcode::G_SEXT 1270 : TargetOpcode::G_ZEXT; 1271 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1272 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1273 } 1274 Observer.changedInstr(MI); 1275 return Legalized; 1276 1277 case TargetOpcode::G_GEP: 1278 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1279 Observer.changingInstr(MI); 1280 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1281 Observer.changedInstr(MI); 1282 return Legalized; 1283 1284 case TargetOpcode::G_PHI: { 1285 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1286 1287 Observer.changingInstr(MI); 1288 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1289 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1290 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1291 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1292 } 1293 1294 MachineBasicBlock &MBB = *MI.getParent(); 1295 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1296 widenScalarDst(MI, WideTy); 1297 Observer.changedInstr(MI); 1298 return Legalized; 1299 } 1300 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1301 if (TypeIdx == 0) { 1302 Register VecReg = MI.getOperand(1).getReg(); 1303 LLT VecTy = MRI.getType(VecReg); 1304 Observer.changingInstr(MI); 1305 1306 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1307 WideTy.getSizeInBits()), 1308 1, TargetOpcode::G_SEXT); 1309 1310 widenScalarDst(MI, WideTy, 0); 1311 Observer.changedInstr(MI); 1312 return Legalized; 1313 } 1314 1315 if (TypeIdx != 2) 1316 return UnableToLegalize; 1317 Observer.changingInstr(MI); 1318 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1319 Observer.changedInstr(MI); 1320 return Legalized; 1321 } 1322 case TargetOpcode::G_FADD: 1323 case TargetOpcode::G_FMUL: 1324 case TargetOpcode::G_FSUB: 1325 case TargetOpcode::G_FMA: 1326 case TargetOpcode::G_FNEG: 1327 case TargetOpcode::G_FABS: 1328 case TargetOpcode::G_FCANONICALIZE: 1329 case TargetOpcode::G_FDIV: 1330 case TargetOpcode::G_FREM: 1331 case TargetOpcode::G_FCEIL: 1332 case TargetOpcode::G_FFLOOR: 1333 case TargetOpcode::G_FCOS: 1334 case TargetOpcode::G_FSIN: 1335 case TargetOpcode::G_FLOG10: 1336 case TargetOpcode::G_FLOG: 1337 case TargetOpcode::G_FLOG2: 1338 case TargetOpcode::G_FRINT: 1339 case TargetOpcode::G_FNEARBYINT: 1340 case TargetOpcode::G_FSQRT: 1341 case TargetOpcode::G_FEXP: 1342 case TargetOpcode::G_FEXP2: 1343 case TargetOpcode::G_FPOW: 1344 case TargetOpcode::G_INTRINSIC_TRUNC: 1345 case TargetOpcode::G_INTRINSIC_ROUND: 1346 assert(TypeIdx == 0); 1347 Observer.changingInstr(MI); 1348 1349 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1350 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1351 1352 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1353 Observer.changedInstr(MI); 1354 return Legalized; 1355 case TargetOpcode::G_INTTOPTR: 1356 if (TypeIdx != 1) 1357 return UnableToLegalize; 1358 1359 Observer.changingInstr(MI); 1360 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1361 Observer.changedInstr(MI); 1362 return Legalized; 1363 case TargetOpcode::G_PTRTOINT: 1364 if (TypeIdx != 0) 1365 return UnableToLegalize; 1366 1367 Observer.changingInstr(MI); 1368 widenScalarDst(MI, WideTy, 0); 1369 Observer.changedInstr(MI); 1370 return Legalized; 1371 } 1372 } 1373 1374 LegalizerHelper::LegalizeResult 1375 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1376 using namespace TargetOpcode; 1377 MIRBuilder.setInstr(MI); 1378 1379 switch(MI.getOpcode()) { 1380 default: 1381 return UnableToLegalize; 1382 case TargetOpcode::G_SREM: 1383 case TargetOpcode::G_UREM: { 1384 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 1385 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1386 .addDef(QuotReg) 1387 .addUse(MI.getOperand(1).getReg()) 1388 .addUse(MI.getOperand(2).getReg()); 1389 1390 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 1391 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1392 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1393 ProdReg); 1394 MI.eraseFromParent(); 1395 return Legalized; 1396 } 1397 case TargetOpcode::G_SMULO: 1398 case TargetOpcode::G_UMULO: { 1399 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1400 // result. 1401 Register Res = MI.getOperand(0).getReg(); 1402 Register Overflow = MI.getOperand(1).getReg(); 1403 Register LHS = MI.getOperand(2).getReg(); 1404 Register RHS = MI.getOperand(3).getReg(); 1405 1406 MIRBuilder.buildMul(Res, LHS, RHS); 1407 1408 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1409 ? TargetOpcode::G_SMULH 1410 : TargetOpcode::G_UMULH; 1411 1412 Register HiPart = MRI.createGenericVirtualRegister(Ty); 1413 MIRBuilder.buildInstr(Opcode) 1414 .addDef(HiPart) 1415 .addUse(LHS) 1416 .addUse(RHS); 1417 1418 Register Zero = MRI.createGenericVirtualRegister(Ty); 1419 MIRBuilder.buildConstant(Zero, 0); 1420 1421 // For *signed* multiply, overflow is detected by checking: 1422 // (hi != (lo >> bitwidth-1)) 1423 if (Opcode == TargetOpcode::G_SMULH) { 1424 Register Shifted = MRI.createGenericVirtualRegister(Ty); 1425 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1426 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1427 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1428 .addDef(Shifted) 1429 .addUse(Res) 1430 .addUse(ShiftAmt); 1431 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1432 } else { 1433 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1434 } 1435 MI.eraseFromParent(); 1436 return Legalized; 1437 } 1438 case TargetOpcode::G_FNEG: { 1439 // TODO: Handle vector types once we are able to 1440 // represent them. 1441 if (Ty.isVector()) 1442 return UnableToLegalize; 1443 Register Res = MI.getOperand(0).getReg(); 1444 Type *ZeroTy; 1445 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1446 switch (Ty.getSizeInBits()) { 1447 case 16: 1448 ZeroTy = Type::getHalfTy(Ctx); 1449 break; 1450 case 32: 1451 ZeroTy = Type::getFloatTy(Ctx); 1452 break; 1453 case 64: 1454 ZeroTy = Type::getDoubleTy(Ctx); 1455 break; 1456 case 128: 1457 ZeroTy = Type::getFP128Ty(Ctx); 1458 break; 1459 default: 1460 llvm_unreachable("unexpected floating-point type"); 1461 } 1462 ConstantFP &ZeroForNegation = 1463 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1464 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1465 Register SubByReg = MI.getOperand(1).getReg(); 1466 Register ZeroReg = Zero->getOperand(0).getReg(); 1467 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 1468 MI.getFlags()); 1469 MI.eraseFromParent(); 1470 return Legalized; 1471 } 1472 case TargetOpcode::G_FSUB: { 1473 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1474 // First, check if G_FNEG is marked as Lower. If so, we may 1475 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1476 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1477 return UnableToLegalize; 1478 Register Res = MI.getOperand(0).getReg(); 1479 Register LHS = MI.getOperand(1).getReg(); 1480 Register RHS = MI.getOperand(2).getReg(); 1481 Register Neg = MRI.createGenericVirtualRegister(Ty); 1482 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1483 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 1484 MI.eraseFromParent(); 1485 return Legalized; 1486 } 1487 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1488 Register OldValRes = MI.getOperand(0).getReg(); 1489 Register SuccessRes = MI.getOperand(1).getReg(); 1490 Register Addr = MI.getOperand(2).getReg(); 1491 Register CmpVal = MI.getOperand(3).getReg(); 1492 Register NewVal = MI.getOperand(4).getReg(); 1493 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1494 **MI.memoperands_begin()); 1495 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1496 MI.eraseFromParent(); 1497 return Legalized; 1498 } 1499 case TargetOpcode::G_LOAD: 1500 case TargetOpcode::G_SEXTLOAD: 1501 case TargetOpcode::G_ZEXTLOAD: { 1502 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1503 Register DstReg = MI.getOperand(0).getReg(); 1504 Register PtrReg = MI.getOperand(1).getReg(); 1505 LLT DstTy = MRI.getType(DstReg); 1506 auto &MMO = **MI.memoperands_begin(); 1507 1508 if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { 1509 // In the case of G_LOAD, this was a non-extending load already and we're 1510 // about to lower to the same instruction. 1511 if (MI.getOpcode() == TargetOpcode::G_LOAD) 1512 return UnableToLegalize; 1513 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1514 MI.eraseFromParent(); 1515 return Legalized; 1516 } 1517 1518 if (DstTy.isScalar()) { 1519 Register TmpReg = 1520 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 1521 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1522 switch (MI.getOpcode()) { 1523 default: 1524 llvm_unreachable("Unexpected opcode"); 1525 case TargetOpcode::G_LOAD: 1526 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1527 break; 1528 case TargetOpcode::G_SEXTLOAD: 1529 MIRBuilder.buildSExt(DstReg, TmpReg); 1530 break; 1531 case TargetOpcode::G_ZEXTLOAD: 1532 MIRBuilder.buildZExt(DstReg, TmpReg); 1533 break; 1534 } 1535 MI.eraseFromParent(); 1536 return Legalized; 1537 } 1538 1539 return UnableToLegalize; 1540 } 1541 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1542 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1543 case TargetOpcode::G_CTLZ: 1544 case TargetOpcode::G_CTTZ: 1545 case TargetOpcode::G_CTPOP: 1546 return lowerBitCount(MI, TypeIdx, Ty); 1547 case G_UADDO: { 1548 Register Res = MI.getOperand(0).getReg(); 1549 Register CarryOut = MI.getOperand(1).getReg(); 1550 Register LHS = MI.getOperand(2).getReg(); 1551 Register RHS = MI.getOperand(3).getReg(); 1552 1553 MIRBuilder.buildAdd(Res, LHS, RHS); 1554 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 1555 1556 MI.eraseFromParent(); 1557 return Legalized; 1558 } 1559 case G_UADDE: { 1560 Register Res = MI.getOperand(0).getReg(); 1561 Register CarryOut = MI.getOperand(1).getReg(); 1562 Register LHS = MI.getOperand(2).getReg(); 1563 Register RHS = MI.getOperand(3).getReg(); 1564 Register CarryIn = MI.getOperand(4).getReg(); 1565 1566 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 1567 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1568 1569 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1570 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1571 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1572 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1573 1574 MI.eraseFromParent(); 1575 return Legalized; 1576 } 1577 case G_USUBO: { 1578 Register Res = MI.getOperand(0).getReg(); 1579 Register BorrowOut = MI.getOperand(1).getReg(); 1580 Register LHS = MI.getOperand(2).getReg(); 1581 Register RHS = MI.getOperand(3).getReg(); 1582 1583 MIRBuilder.buildSub(Res, LHS, RHS); 1584 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 1585 1586 MI.eraseFromParent(); 1587 return Legalized; 1588 } 1589 case G_USUBE: { 1590 Register Res = MI.getOperand(0).getReg(); 1591 Register BorrowOut = MI.getOperand(1).getReg(); 1592 Register LHS = MI.getOperand(2).getReg(); 1593 Register RHS = MI.getOperand(3).getReg(); 1594 Register BorrowIn = MI.getOperand(4).getReg(); 1595 1596 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 1597 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 1598 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1599 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1600 1601 MIRBuilder.buildSub(TmpRes, LHS, RHS); 1602 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 1603 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 1604 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 1605 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 1606 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 1607 1608 MI.eraseFromParent(); 1609 return Legalized; 1610 } 1611 case G_UITOFP: 1612 return lowerUITOFP(MI, TypeIdx, Ty); 1613 case G_SITOFP: 1614 return lowerSITOFP(MI, TypeIdx, Ty); 1615 } 1616 } 1617 1618 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 1619 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 1620 SmallVector<Register, 2> DstRegs; 1621 1622 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1623 Register DstReg = MI.getOperand(0).getReg(); 1624 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1625 int NumParts = Size / NarrowSize; 1626 // FIXME: Don't know how to handle the situation where the small vectors 1627 // aren't all the same size yet. 1628 if (Size % NarrowSize != 0) 1629 return UnableToLegalize; 1630 1631 for (int i = 0; i < NumParts; ++i) { 1632 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1633 MIRBuilder.buildUndef(TmpReg); 1634 DstRegs.push_back(TmpReg); 1635 } 1636 1637 if (NarrowTy.isVector()) 1638 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1639 else 1640 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1641 1642 MI.eraseFromParent(); 1643 return Legalized; 1644 } 1645 1646 LegalizerHelper::LegalizeResult 1647 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 1648 LLT NarrowTy) { 1649 const unsigned Opc = MI.getOpcode(); 1650 const unsigned NumOps = MI.getNumOperands() - 1; 1651 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 1652 const unsigned DstReg = MI.getOperand(0).getReg(); 1653 const unsigned Flags = MI.getFlags(); 1654 const LLT DstTy = MRI.getType(DstReg); 1655 const unsigned Size = DstTy.getSizeInBits(); 1656 const int NumParts = Size / NarrowSize; 1657 const LLT EltTy = DstTy.getElementType(); 1658 const unsigned EltSize = EltTy.getSizeInBits(); 1659 const unsigned BitsForNumParts = NarrowSize * NumParts; 1660 1661 // Check if we have any leftovers. If we do, then only handle the case where 1662 // the leftover is one element. 1663 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 1664 return UnableToLegalize; 1665 1666 if (BitsForNumParts != Size) { 1667 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 1668 MIRBuilder.buildUndef(AccumDstReg); 1669 1670 // Handle the pieces which evenly divide into the requested type with 1671 // extract/op/insert sequence. 1672 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 1673 SmallVector<SrcOp, 4> SrcOps; 1674 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1675 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 1676 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 1677 SrcOps.push_back(PartOpReg); 1678 } 1679 1680 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 1681 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1682 1683 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 1684 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 1685 AccumDstReg = PartInsertReg; 1686 } 1687 1688 // Handle the remaining element sized leftover piece. 1689 SmallVector<SrcOp, 4> SrcOps; 1690 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1691 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 1692 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 1693 BitsForNumParts); 1694 SrcOps.push_back(PartOpReg); 1695 } 1696 1697 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 1698 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1699 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 1700 MI.eraseFromParent(); 1701 1702 return Legalized; 1703 } 1704 1705 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1706 1707 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 1708 1709 if (NumOps >= 2) 1710 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 1711 1712 if (NumOps >= 3) 1713 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 1714 1715 for (int i = 0; i < NumParts; ++i) { 1716 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 1717 1718 if (NumOps == 1) 1719 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 1720 else if (NumOps == 2) { 1721 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 1722 } else if (NumOps == 3) { 1723 MIRBuilder.buildInstr(Opc, {DstReg}, 1724 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 1725 } 1726 1727 DstRegs.push_back(DstReg); 1728 } 1729 1730 if (NarrowTy.isVector()) 1731 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1732 else 1733 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1734 1735 MI.eraseFromParent(); 1736 return Legalized; 1737 } 1738 1739 // Handle splitting vector operations which need to have the same number of 1740 // elements in each type index, but each type index may have a different element 1741 // type. 1742 // 1743 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 1744 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1745 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1746 // 1747 // Also handles some irregular breakdown cases, e.g. 1748 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 1749 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1750 // s64 = G_SHL s64, s32 1751 LegalizerHelper::LegalizeResult 1752 LegalizerHelper::fewerElementsVectorMultiEltType( 1753 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 1754 if (TypeIdx != 0) 1755 return UnableToLegalize; 1756 1757 const LLT NarrowTy0 = NarrowTyArg; 1758 const unsigned NewNumElts = 1759 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 1760 1761 const Register DstReg = MI.getOperand(0).getReg(); 1762 LLT DstTy = MRI.getType(DstReg); 1763 LLT LeftoverTy0; 1764 1765 int NumParts, NumLeftover; 1766 // All of the operands need to have the same number of elements, so if we can 1767 // determine a type breakdown for the result type, we can for all of the 1768 // source types. 1769 std::tie(NumParts, NumLeftover) 1770 = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0); 1771 if (NumParts < 0) 1772 return UnableToLegalize; 1773 1774 SmallVector<MachineInstrBuilder, 4> NewInsts; 1775 1776 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 1777 SmallVector<Register, 4> PartRegs, LeftoverRegs; 1778 1779 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1780 LLT LeftoverTy; 1781 Register SrcReg = MI.getOperand(I).getReg(); 1782 LLT SrcTyI = MRI.getType(SrcReg); 1783 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 1784 LLT LeftoverTyI; 1785 1786 // Split this operand into the requested typed registers, and any leftover 1787 // required to reproduce the original type. 1788 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 1789 LeftoverRegs)) 1790 return UnableToLegalize; 1791 1792 if (I == 1) { 1793 // For the first operand, create an instruction for each part and setup 1794 // the result. 1795 for (Register PartReg : PartRegs) { 1796 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1797 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1798 .addDef(PartDstReg) 1799 .addUse(PartReg)); 1800 DstRegs.push_back(PartDstReg); 1801 } 1802 1803 for (Register LeftoverReg : LeftoverRegs) { 1804 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 1805 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1806 .addDef(PartDstReg) 1807 .addUse(LeftoverReg)); 1808 LeftoverDstRegs.push_back(PartDstReg); 1809 } 1810 } else { 1811 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 1812 1813 // Add the newly created operand splits to the existing instructions. The 1814 // odd-sized pieces are ordered after the requested NarrowTyArg sized 1815 // pieces. 1816 unsigned InstCount = 0; 1817 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 1818 NewInsts[InstCount++].addUse(PartRegs[J]); 1819 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 1820 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 1821 } 1822 1823 PartRegs.clear(); 1824 LeftoverRegs.clear(); 1825 } 1826 1827 // Insert the newly built operations and rebuild the result register. 1828 for (auto &MIB : NewInsts) 1829 MIRBuilder.insertInstr(MIB); 1830 1831 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 1832 1833 MI.eraseFromParent(); 1834 return Legalized; 1835 } 1836 1837 LegalizerHelper::LegalizeResult 1838 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 1839 LLT NarrowTy) { 1840 if (TypeIdx != 0) 1841 return UnableToLegalize; 1842 1843 Register DstReg = MI.getOperand(0).getReg(); 1844 Register SrcReg = MI.getOperand(1).getReg(); 1845 LLT DstTy = MRI.getType(DstReg); 1846 LLT SrcTy = MRI.getType(SrcReg); 1847 1848 LLT NarrowTy0 = NarrowTy; 1849 LLT NarrowTy1; 1850 unsigned NumParts; 1851 1852 if (NarrowTy.isVector()) { 1853 // Uneven breakdown not handled. 1854 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 1855 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 1856 return UnableToLegalize; 1857 1858 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 1859 } else { 1860 NumParts = DstTy.getNumElements(); 1861 NarrowTy1 = SrcTy.getElementType(); 1862 } 1863 1864 SmallVector<Register, 4> SrcRegs, DstRegs; 1865 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 1866 1867 for (unsigned I = 0; I < NumParts; ++I) { 1868 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1869 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 1870 .addDef(DstReg) 1871 .addUse(SrcRegs[I]); 1872 1873 NewInst->setFlags(MI.getFlags()); 1874 DstRegs.push_back(DstReg); 1875 } 1876 1877 if (NarrowTy.isVector()) 1878 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1879 else 1880 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1881 1882 MI.eraseFromParent(); 1883 return Legalized; 1884 } 1885 1886 LegalizerHelper::LegalizeResult 1887 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 1888 LLT NarrowTy) { 1889 Register DstReg = MI.getOperand(0).getReg(); 1890 Register Src0Reg = MI.getOperand(2).getReg(); 1891 LLT DstTy = MRI.getType(DstReg); 1892 LLT SrcTy = MRI.getType(Src0Reg); 1893 1894 unsigned NumParts; 1895 LLT NarrowTy0, NarrowTy1; 1896 1897 if (TypeIdx == 0) { 1898 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1899 unsigned OldElts = DstTy.getNumElements(); 1900 1901 NarrowTy0 = NarrowTy; 1902 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 1903 NarrowTy1 = NarrowTy.isVector() ? 1904 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 1905 SrcTy.getElementType(); 1906 1907 } else { 1908 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1909 unsigned OldElts = SrcTy.getNumElements(); 1910 1911 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 1912 NarrowTy.getNumElements(); 1913 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 1914 DstTy.getScalarSizeInBits()); 1915 NarrowTy1 = NarrowTy; 1916 } 1917 1918 // FIXME: Don't know how to handle the situation where the small vectors 1919 // aren't all the same size yet. 1920 if (NarrowTy1.isVector() && 1921 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 1922 return UnableToLegalize; 1923 1924 CmpInst::Predicate Pred 1925 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1926 1927 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 1928 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 1929 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 1930 1931 for (unsigned I = 0; I < NumParts; ++I) { 1932 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1933 DstRegs.push_back(DstReg); 1934 1935 if (MI.getOpcode() == TargetOpcode::G_ICMP) 1936 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1937 else { 1938 MachineInstr *NewCmp 1939 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1940 NewCmp->setFlags(MI.getFlags()); 1941 } 1942 } 1943 1944 if (NarrowTy1.isVector()) 1945 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1946 else 1947 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1948 1949 MI.eraseFromParent(); 1950 return Legalized; 1951 } 1952 1953 LegalizerHelper::LegalizeResult 1954 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 1955 LLT NarrowTy) { 1956 Register DstReg = MI.getOperand(0).getReg(); 1957 Register CondReg = MI.getOperand(1).getReg(); 1958 1959 unsigned NumParts = 0; 1960 LLT NarrowTy0, NarrowTy1; 1961 1962 LLT DstTy = MRI.getType(DstReg); 1963 LLT CondTy = MRI.getType(CondReg); 1964 unsigned Size = DstTy.getSizeInBits(); 1965 1966 assert(TypeIdx == 0 || CondTy.isVector()); 1967 1968 if (TypeIdx == 0) { 1969 NarrowTy0 = NarrowTy; 1970 NarrowTy1 = CondTy; 1971 1972 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 1973 // FIXME: Don't know how to handle the situation where the small vectors 1974 // aren't all the same size yet. 1975 if (Size % NarrowSize != 0) 1976 return UnableToLegalize; 1977 1978 NumParts = Size / NarrowSize; 1979 1980 // Need to break down the condition type 1981 if (CondTy.isVector()) { 1982 if (CondTy.getNumElements() == NumParts) 1983 NarrowTy1 = CondTy.getElementType(); 1984 else 1985 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 1986 CondTy.getScalarSizeInBits()); 1987 } 1988 } else { 1989 NumParts = CondTy.getNumElements(); 1990 if (NarrowTy.isVector()) { 1991 // TODO: Handle uneven breakdown. 1992 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 1993 return UnableToLegalize; 1994 1995 return UnableToLegalize; 1996 } else { 1997 NarrowTy0 = DstTy.getElementType(); 1998 NarrowTy1 = NarrowTy; 1999 } 2000 } 2001 2002 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2003 if (CondTy.isVector()) 2004 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2005 2006 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2007 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2008 2009 for (unsigned i = 0; i < NumParts; ++i) { 2010 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2011 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2012 Src1Regs[i], Src2Regs[i]); 2013 DstRegs.push_back(DstReg); 2014 } 2015 2016 if (NarrowTy0.isVector()) 2017 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2018 else 2019 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2020 2021 MI.eraseFromParent(); 2022 return Legalized; 2023 } 2024 2025 LegalizerHelper::LegalizeResult 2026 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2027 LLT NarrowTy) { 2028 const Register DstReg = MI.getOperand(0).getReg(); 2029 LLT PhiTy = MRI.getType(DstReg); 2030 LLT LeftoverTy; 2031 2032 // All of the operands need to have the same number of elements, so if we can 2033 // determine a type breakdown for the result type, we can for all of the 2034 // source types. 2035 int NumParts, NumLeftover; 2036 std::tie(NumParts, NumLeftover) 2037 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2038 if (NumParts < 0) 2039 return UnableToLegalize; 2040 2041 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2042 SmallVector<MachineInstrBuilder, 4> NewInsts; 2043 2044 const int TotalNumParts = NumParts + NumLeftover; 2045 2046 // Insert the new phis in the result block first. 2047 for (int I = 0; I != TotalNumParts; ++I) { 2048 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2049 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2050 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2051 .addDef(PartDstReg)); 2052 if (I < NumParts) 2053 DstRegs.push_back(PartDstReg); 2054 else 2055 LeftoverDstRegs.push_back(PartDstReg); 2056 } 2057 2058 MachineBasicBlock *MBB = MI.getParent(); 2059 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2060 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2061 2062 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2063 2064 // Insert code to extract the incoming values in each predecessor block. 2065 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2066 PartRegs.clear(); 2067 LeftoverRegs.clear(); 2068 2069 Register SrcReg = MI.getOperand(I).getReg(); 2070 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2071 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2072 2073 LLT Unused; 2074 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2075 LeftoverRegs)) 2076 return UnableToLegalize; 2077 2078 // Add the newly created operand splits to the existing instructions. The 2079 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2080 // pieces. 2081 for (int J = 0; J != TotalNumParts; ++J) { 2082 MachineInstrBuilder MIB = NewInsts[J]; 2083 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2084 MIB.addMBB(&OpMBB); 2085 } 2086 } 2087 2088 MI.eraseFromParent(); 2089 return Legalized; 2090 } 2091 2092 LegalizerHelper::LegalizeResult 2093 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2094 LLT NarrowTy) { 2095 // FIXME: Don't know how to handle secondary types yet. 2096 if (TypeIdx != 0) 2097 return UnableToLegalize; 2098 2099 MachineMemOperand *MMO = *MI.memoperands_begin(); 2100 2101 // This implementation doesn't work for atomics. Give up instead of doing 2102 // something invalid. 2103 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2104 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2105 return UnableToLegalize; 2106 2107 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2108 Register ValReg = MI.getOperand(0).getReg(); 2109 Register AddrReg = MI.getOperand(1).getReg(); 2110 LLT ValTy = MRI.getType(ValReg); 2111 2112 int NumParts = -1; 2113 int NumLeftover = -1; 2114 LLT LeftoverTy; 2115 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 2116 if (IsLoad) { 2117 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2118 } else { 2119 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2120 NarrowLeftoverRegs)) { 2121 NumParts = NarrowRegs.size(); 2122 NumLeftover = NarrowLeftoverRegs.size(); 2123 } 2124 } 2125 2126 if (NumParts == -1) 2127 return UnableToLegalize; 2128 2129 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2130 2131 unsigned TotalSize = ValTy.getSizeInBits(); 2132 2133 // Split the load/store into PartTy sized pieces starting at Offset. If this 2134 // is a load, return the new registers in ValRegs. For a store, each elements 2135 // of ValRegs should be PartTy. Returns the next offset that needs to be 2136 // handled. 2137 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 2138 unsigned Offset) -> unsigned { 2139 MachineFunction &MF = MIRBuilder.getMF(); 2140 unsigned PartSize = PartTy.getSizeInBits(); 2141 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2142 Offset += PartSize, ++Idx) { 2143 unsigned ByteSize = PartSize / 8; 2144 unsigned ByteOffset = Offset / 8; 2145 Register NewAddrReg; 2146 2147 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2148 2149 MachineMemOperand *NewMMO = 2150 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2151 2152 if (IsLoad) { 2153 Register Dst = MRI.createGenericVirtualRegister(PartTy); 2154 ValRegs.push_back(Dst); 2155 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2156 } else { 2157 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2158 } 2159 } 2160 2161 return Offset; 2162 }; 2163 2164 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2165 2166 // Handle the rest of the register if this isn't an even type breakdown. 2167 if (LeftoverTy.isValid()) 2168 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2169 2170 if (IsLoad) { 2171 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2172 LeftoverTy, NarrowLeftoverRegs); 2173 } 2174 2175 MI.eraseFromParent(); 2176 return Legalized; 2177 } 2178 2179 LegalizerHelper::LegalizeResult 2180 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2181 LLT NarrowTy) { 2182 using namespace TargetOpcode; 2183 2184 MIRBuilder.setInstr(MI); 2185 switch (MI.getOpcode()) { 2186 case G_IMPLICIT_DEF: 2187 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2188 case G_AND: 2189 case G_OR: 2190 case G_XOR: 2191 case G_ADD: 2192 case G_SUB: 2193 case G_MUL: 2194 case G_SMULH: 2195 case G_UMULH: 2196 case G_FADD: 2197 case G_FMUL: 2198 case G_FSUB: 2199 case G_FNEG: 2200 case G_FABS: 2201 case G_FCANONICALIZE: 2202 case G_FDIV: 2203 case G_FREM: 2204 case G_FMA: 2205 case G_FPOW: 2206 case G_FEXP: 2207 case G_FEXP2: 2208 case G_FLOG: 2209 case G_FLOG2: 2210 case G_FLOG10: 2211 case G_FNEARBYINT: 2212 case G_FCEIL: 2213 case G_FFLOOR: 2214 case G_FRINT: 2215 case G_INTRINSIC_ROUND: 2216 case G_INTRINSIC_TRUNC: 2217 case G_FCOS: 2218 case G_FSIN: 2219 case G_FSQRT: 2220 case G_BSWAP: 2221 case G_SDIV: 2222 case G_SMIN: 2223 case G_SMAX: 2224 case G_UMIN: 2225 case G_UMAX: 2226 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2227 case G_SHL: 2228 case G_LSHR: 2229 case G_ASHR: 2230 case G_CTLZ: 2231 case G_CTLZ_ZERO_UNDEF: 2232 case G_CTTZ: 2233 case G_CTTZ_ZERO_UNDEF: 2234 case G_CTPOP: 2235 case G_FCOPYSIGN: 2236 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2237 case G_ZEXT: 2238 case G_SEXT: 2239 case G_ANYEXT: 2240 case G_FPEXT: 2241 case G_FPTRUNC: 2242 case G_SITOFP: 2243 case G_UITOFP: 2244 case G_FPTOSI: 2245 case G_FPTOUI: 2246 case G_INTTOPTR: 2247 case G_PTRTOINT: 2248 case G_ADDRSPACE_CAST: 2249 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2250 case G_ICMP: 2251 case G_FCMP: 2252 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2253 case G_SELECT: 2254 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2255 case G_PHI: 2256 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 2257 case G_LOAD: 2258 case G_STORE: 2259 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2260 default: 2261 return UnableToLegalize; 2262 } 2263 } 2264 2265 LegalizerHelper::LegalizeResult 2266 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2267 const LLT HalfTy, const LLT AmtTy) { 2268 2269 Register InL = MRI.createGenericVirtualRegister(HalfTy); 2270 Register InH = MRI.createGenericVirtualRegister(HalfTy); 2271 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2272 2273 if (Amt.isNullValue()) { 2274 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2275 MI.eraseFromParent(); 2276 return Legalized; 2277 } 2278 2279 LLT NVT = HalfTy; 2280 unsigned NVTBits = HalfTy.getSizeInBits(); 2281 unsigned VTBits = 2 * NVTBits; 2282 2283 SrcOp Lo(Register(0)), Hi(Register(0)); 2284 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2285 if (Amt.ugt(VTBits)) { 2286 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2287 } else if (Amt.ugt(NVTBits)) { 2288 Lo = MIRBuilder.buildConstant(NVT, 0); 2289 Hi = MIRBuilder.buildShl(NVT, InL, 2290 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2291 } else if (Amt == NVTBits) { 2292 Lo = MIRBuilder.buildConstant(NVT, 0); 2293 Hi = InL; 2294 } else { 2295 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2296 auto OrLHS = 2297 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2298 auto OrRHS = MIRBuilder.buildLShr( 2299 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2300 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2301 } 2302 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2303 if (Amt.ugt(VTBits)) { 2304 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2305 } else if (Amt.ugt(NVTBits)) { 2306 Lo = MIRBuilder.buildLShr(NVT, InH, 2307 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2308 Hi = MIRBuilder.buildConstant(NVT, 0); 2309 } else if (Amt == NVTBits) { 2310 Lo = InH; 2311 Hi = MIRBuilder.buildConstant(NVT, 0); 2312 } else { 2313 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2314 2315 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2316 auto OrRHS = MIRBuilder.buildShl( 2317 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2318 2319 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2320 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 2321 } 2322 } else { 2323 if (Amt.ugt(VTBits)) { 2324 Hi = Lo = MIRBuilder.buildAShr( 2325 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2326 } else if (Amt.ugt(NVTBits)) { 2327 Lo = MIRBuilder.buildAShr(NVT, InH, 2328 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2329 Hi = MIRBuilder.buildAShr(NVT, InH, 2330 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2331 } else if (Amt == NVTBits) { 2332 Lo = InH; 2333 Hi = MIRBuilder.buildAShr(NVT, InH, 2334 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2335 } else { 2336 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2337 2338 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2339 auto OrRHS = MIRBuilder.buildShl( 2340 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2341 2342 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2343 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 2344 } 2345 } 2346 2347 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 2348 MI.eraseFromParent(); 2349 2350 return Legalized; 2351 } 2352 2353 // TODO: Optimize if constant shift amount. 2354 LegalizerHelper::LegalizeResult 2355 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 2356 LLT RequestedTy) { 2357 if (TypeIdx == 1) { 2358 Observer.changingInstr(MI); 2359 narrowScalarSrc(MI, RequestedTy, 2); 2360 Observer.changedInstr(MI); 2361 return Legalized; 2362 } 2363 2364 Register DstReg = MI.getOperand(0).getReg(); 2365 LLT DstTy = MRI.getType(DstReg); 2366 if (DstTy.isVector()) 2367 return UnableToLegalize; 2368 2369 Register Amt = MI.getOperand(2).getReg(); 2370 LLT ShiftAmtTy = MRI.getType(Amt); 2371 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 2372 if (DstEltSize % 2 != 0) 2373 return UnableToLegalize; 2374 2375 // Ignore the input type. We can only go to exactly half the size of the 2376 // input. If that isn't small enough, the resulting pieces will be further 2377 // legalized. 2378 const unsigned NewBitSize = DstEltSize / 2; 2379 const LLT HalfTy = LLT::scalar(NewBitSize); 2380 const LLT CondTy = LLT::scalar(1); 2381 2382 if (const MachineInstr *KShiftAmt = 2383 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 2384 return narrowScalarShiftByConstant( 2385 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 2386 } 2387 2388 // TODO: Expand with known bits. 2389 2390 // Handle the fully general expansion by an unknown amount. 2391 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 2392 2393 Register InL = MRI.createGenericVirtualRegister(HalfTy); 2394 Register InH = MRI.createGenericVirtualRegister(HalfTy); 2395 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2396 2397 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 2398 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 2399 2400 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 2401 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 2402 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 2403 2404 Register ResultRegs[2]; 2405 switch (MI.getOpcode()) { 2406 case TargetOpcode::G_SHL: { 2407 // Short: ShAmt < NewBitSize 2408 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2409 2410 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2411 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 2412 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2413 2414 // Long: ShAmt >= NewBitSize 2415 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 2416 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 2417 2418 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 2419 auto Hi = MIRBuilder.buildSelect( 2420 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 2421 2422 ResultRegs[0] = Lo.getReg(0); 2423 ResultRegs[1] = Hi.getReg(0); 2424 break; 2425 } 2426 case TargetOpcode::G_LSHR: { 2427 // Short: ShAmt < NewBitSize 2428 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt); 2429 2430 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2431 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 2432 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2433 2434 // Long: ShAmt >= NewBitSize 2435 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 2436 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2437 2438 auto Lo = MIRBuilder.buildSelect( 2439 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2440 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2441 2442 ResultRegs[0] = Lo.getReg(0); 2443 ResultRegs[1] = Hi.getReg(0); 2444 break; 2445 } 2446 case TargetOpcode::G_ASHR: { 2447 // Short: ShAmt < NewBitSize 2448 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt); 2449 2450 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2451 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack); 2452 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2453 2454 // Long: ShAmt >= NewBitSize 2455 2456 // Sign of Hi part. 2457 auto HiL = MIRBuilder.buildAShr( 2458 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1)); 2459 2460 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2461 2462 auto Lo = MIRBuilder.buildSelect( 2463 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2464 2465 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2466 2467 ResultRegs[0] = Lo.getReg(0); 2468 ResultRegs[1] = Hi.getReg(0); 2469 break; 2470 } 2471 default: 2472 llvm_unreachable("not a shift"); 2473 } 2474 2475 MIRBuilder.buildMerge(DstReg, ResultRegs); 2476 MI.eraseFromParent(); 2477 return Legalized; 2478 } 2479 2480 LegalizerHelper::LegalizeResult 2481 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2482 LLT MoreTy) { 2483 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2484 2485 Observer.changingInstr(MI); 2486 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2487 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2488 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2489 moreElementsVectorSrc(MI, MoreTy, I); 2490 } 2491 2492 MachineBasicBlock &MBB = *MI.getParent(); 2493 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2494 moreElementsVectorDst(MI, MoreTy, 0); 2495 Observer.changedInstr(MI); 2496 return Legalized; 2497 } 2498 2499 LegalizerHelper::LegalizeResult 2500 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 2501 LLT MoreTy) { 2502 MIRBuilder.setInstr(MI); 2503 unsigned Opc = MI.getOpcode(); 2504 switch (Opc) { 2505 case TargetOpcode::G_IMPLICIT_DEF: { 2506 Observer.changingInstr(MI); 2507 moreElementsVectorDst(MI, MoreTy, 0); 2508 Observer.changedInstr(MI); 2509 return Legalized; 2510 } 2511 case TargetOpcode::G_AND: 2512 case TargetOpcode::G_OR: 2513 case TargetOpcode::G_XOR: 2514 case TargetOpcode::G_SMIN: 2515 case TargetOpcode::G_SMAX: 2516 case TargetOpcode::G_UMIN: 2517 case TargetOpcode::G_UMAX: { 2518 Observer.changingInstr(MI); 2519 moreElementsVectorSrc(MI, MoreTy, 1); 2520 moreElementsVectorSrc(MI, MoreTy, 2); 2521 moreElementsVectorDst(MI, MoreTy, 0); 2522 Observer.changedInstr(MI); 2523 return Legalized; 2524 } 2525 case TargetOpcode::G_EXTRACT: 2526 if (TypeIdx != 1) 2527 return UnableToLegalize; 2528 Observer.changingInstr(MI); 2529 moreElementsVectorSrc(MI, MoreTy, 1); 2530 Observer.changedInstr(MI); 2531 return Legalized; 2532 case TargetOpcode::G_INSERT: 2533 if (TypeIdx != 0) 2534 return UnableToLegalize; 2535 Observer.changingInstr(MI); 2536 moreElementsVectorSrc(MI, MoreTy, 1); 2537 moreElementsVectorDst(MI, MoreTy, 0); 2538 Observer.changedInstr(MI); 2539 return Legalized; 2540 case TargetOpcode::G_SELECT: 2541 if (TypeIdx != 0) 2542 return UnableToLegalize; 2543 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 2544 return UnableToLegalize; 2545 2546 Observer.changingInstr(MI); 2547 moreElementsVectorSrc(MI, MoreTy, 2); 2548 moreElementsVectorSrc(MI, MoreTy, 3); 2549 moreElementsVectorDst(MI, MoreTy, 0); 2550 Observer.changedInstr(MI); 2551 return Legalized; 2552 case TargetOpcode::G_PHI: 2553 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 2554 default: 2555 return UnableToLegalize; 2556 } 2557 } 2558 2559 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 2560 ArrayRef<Register> Src1Regs, 2561 ArrayRef<Register> Src2Regs, 2562 LLT NarrowTy) { 2563 MachineIRBuilder &B = MIRBuilder; 2564 unsigned SrcParts = Src1Regs.size(); 2565 unsigned DstParts = DstRegs.size(); 2566 2567 unsigned DstIdx = 0; // Low bits of the result. 2568 Register FactorSum = 2569 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 2570 DstRegs[DstIdx] = FactorSum; 2571 2572 unsigned CarrySumPrevDstIdx; 2573 SmallVector<Register, 4> Factors; 2574 2575 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 2576 // Collect low parts of muls for DstIdx. 2577 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 2578 i <= std::min(DstIdx, SrcParts - 1); ++i) { 2579 MachineInstrBuilder Mul = 2580 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 2581 Factors.push_back(Mul.getReg(0)); 2582 } 2583 // Collect high parts of muls from previous DstIdx. 2584 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 2585 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 2586 MachineInstrBuilder Umulh = 2587 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 2588 Factors.push_back(Umulh.getReg(0)); 2589 } 2590 // Add CarrySum from additons calculated for previous DstIdx. 2591 if (DstIdx != 1) { 2592 Factors.push_back(CarrySumPrevDstIdx); 2593 } 2594 2595 Register CarrySum; 2596 // Add all factors and accumulate all carries into CarrySum. 2597 if (DstIdx != DstParts - 1) { 2598 MachineInstrBuilder Uaddo = 2599 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 2600 FactorSum = Uaddo.getReg(0); 2601 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 2602 for (unsigned i = 2; i < Factors.size(); ++i) { 2603 MachineInstrBuilder Uaddo = 2604 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 2605 FactorSum = Uaddo.getReg(0); 2606 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 2607 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 2608 } 2609 } else { 2610 // Since value for the next index is not calculated, neither is CarrySum. 2611 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 2612 for (unsigned i = 2; i < Factors.size(); ++i) 2613 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 2614 } 2615 2616 CarrySumPrevDstIdx = CarrySum; 2617 DstRegs[DstIdx] = FactorSum; 2618 Factors.clear(); 2619 } 2620 } 2621 2622 LegalizerHelper::LegalizeResult 2623 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 2624 Register DstReg = MI.getOperand(0).getReg(); 2625 Register Src1 = MI.getOperand(1).getReg(); 2626 Register Src2 = MI.getOperand(2).getReg(); 2627 2628 LLT Ty = MRI.getType(DstReg); 2629 if (Ty.isVector()) 2630 return UnableToLegalize; 2631 2632 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 2633 unsigned DstSize = Ty.getSizeInBits(); 2634 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2635 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 2636 return UnableToLegalize; 2637 2638 unsigned NumDstParts = DstSize / NarrowSize; 2639 unsigned NumSrcParts = SrcSize / NarrowSize; 2640 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 2641 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 2642 2643 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; 2644 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 2645 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 2646 DstTmpRegs.resize(DstTmpParts); 2647 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 2648 2649 // Take only high half of registers if this is high mul. 2650 ArrayRef<Register> DstRegs( 2651 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 2652 MIRBuilder.buildMerge(DstReg, DstRegs); 2653 MI.eraseFromParent(); 2654 return Legalized; 2655 } 2656 2657 LegalizerHelper::LegalizeResult 2658 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2659 LLT NarrowTy) { 2660 if (TypeIdx != 1) 2661 return UnableToLegalize; 2662 2663 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2664 2665 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 2666 // FIXME: add support for when SizeOp1 isn't an exact multiple of 2667 // NarrowSize. 2668 if (SizeOp1 % NarrowSize != 0) 2669 return UnableToLegalize; 2670 int NumParts = SizeOp1 / NarrowSize; 2671 2672 SmallVector<Register, 2> SrcRegs, DstRegs; 2673 SmallVector<uint64_t, 2> Indexes; 2674 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2675 2676 Register OpReg = MI.getOperand(0).getReg(); 2677 uint64_t OpStart = MI.getOperand(2).getImm(); 2678 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2679 for (int i = 0; i < NumParts; ++i) { 2680 unsigned SrcStart = i * NarrowSize; 2681 2682 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 2683 // No part of the extract uses this subregister, ignore it. 2684 continue; 2685 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2686 // The entire subregister is extracted, forward the value. 2687 DstRegs.push_back(SrcRegs[i]); 2688 continue; 2689 } 2690 2691 // OpSegStart is where this destination segment would start in OpReg if it 2692 // extended infinitely in both directions. 2693 int64_t ExtractOffset; 2694 uint64_t SegSize; 2695 if (OpStart < SrcStart) { 2696 ExtractOffset = 0; 2697 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 2698 } else { 2699 ExtractOffset = OpStart - SrcStart; 2700 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 2701 } 2702 2703 Register SegReg = SrcRegs[i]; 2704 if (ExtractOffset != 0 || SegSize != NarrowSize) { 2705 // A genuine extract is needed. 2706 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2707 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 2708 } 2709 2710 DstRegs.push_back(SegReg); 2711 } 2712 2713 Register DstReg = MI.getOperand(0).getReg(); 2714 if(MRI.getType(DstReg).isVector()) 2715 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2716 else 2717 MIRBuilder.buildMerge(DstReg, DstRegs); 2718 MI.eraseFromParent(); 2719 return Legalized; 2720 } 2721 2722 LegalizerHelper::LegalizeResult 2723 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2724 LLT NarrowTy) { 2725 // FIXME: Don't know how to handle secondary types yet. 2726 if (TypeIdx != 0) 2727 return UnableToLegalize; 2728 2729 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 2730 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2731 2732 // FIXME: add support for when SizeOp0 isn't an exact multiple of 2733 // NarrowSize. 2734 if (SizeOp0 % NarrowSize != 0) 2735 return UnableToLegalize; 2736 2737 int NumParts = SizeOp0 / NarrowSize; 2738 2739 SmallVector<Register, 2> SrcRegs, DstRegs; 2740 SmallVector<uint64_t, 2> Indexes; 2741 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2742 2743 Register OpReg = MI.getOperand(2).getReg(); 2744 uint64_t OpStart = MI.getOperand(3).getImm(); 2745 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2746 for (int i = 0; i < NumParts; ++i) { 2747 unsigned DstStart = i * NarrowSize; 2748 2749 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 2750 // No part of the insert affects this subregister, forward the original. 2751 DstRegs.push_back(SrcRegs[i]); 2752 continue; 2753 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2754 // The entire subregister is defined by this insert, forward the new 2755 // value. 2756 DstRegs.push_back(OpReg); 2757 continue; 2758 } 2759 2760 // OpSegStart is where this destination segment would start in OpReg if it 2761 // extended infinitely in both directions. 2762 int64_t ExtractOffset, InsertOffset; 2763 uint64_t SegSize; 2764 if (OpStart < DstStart) { 2765 InsertOffset = 0; 2766 ExtractOffset = DstStart - OpStart; 2767 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 2768 } else { 2769 InsertOffset = OpStart - DstStart; 2770 ExtractOffset = 0; 2771 SegSize = 2772 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 2773 } 2774 2775 Register SegReg = OpReg; 2776 if (ExtractOffset != 0 || SegSize != OpSize) { 2777 // A genuine extract is needed. 2778 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2779 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 2780 } 2781 2782 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2783 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 2784 DstRegs.push_back(DstReg); 2785 } 2786 2787 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 2788 Register DstReg = MI.getOperand(0).getReg(); 2789 if(MRI.getType(DstReg).isVector()) 2790 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2791 else 2792 MIRBuilder.buildMerge(DstReg, DstRegs); 2793 MI.eraseFromParent(); 2794 return Legalized; 2795 } 2796 2797 LegalizerHelper::LegalizeResult 2798 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 2799 LLT NarrowTy) { 2800 Register DstReg = MI.getOperand(0).getReg(); 2801 LLT DstTy = MRI.getType(DstReg); 2802 2803 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 2804 2805 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 2806 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 2807 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 2808 LLT LeftoverTy; 2809 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 2810 Src0Regs, Src0LeftoverRegs)) 2811 return UnableToLegalize; 2812 2813 LLT Unused; 2814 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 2815 Src1Regs, Src1LeftoverRegs)) 2816 llvm_unreachable("inconsistent extractParts result"); 2817 2818 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2819 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 2820 {Src0Regs[I], Src1Regs[I]}); 2821 DstRegs.push_back(Inst->getOperand(0).getReg()); 2822 } 2823 2824 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2825 auto Inst = MIRBuilder.buildInstr( 2826 MI.getOpcode(), 2827 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 2828 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 2829 } 2830 2831 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2832 LeftoverTy, DstLeftoverRegs); 2833 2834 MI.eraseFromParent(); 2835 return Legalized; 2836 } 2837 2838 LegalizerHelper::LegalizeResult 2839 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 2840 LLT NarrowTy) { 2841 if (TypeIdx != 0) 2842 return UnableToLegalize; 2843 2844 Register CondReg = MI.getOperand(1).getReg(); 2845 LLT CondTy = MRI.getType(CondReg); 2846 if (CondTy.isVector()) // TODO: Handle vselect 2847 return UnableToLegalize; 2848 2849 Register DstReg = MI.getOperand(0).getReg(); 2850 LLT DstTy = MRI.getType(DstReg); 2851 2852 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 2853 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 2854 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 2855 LLT LeftoverTy; 2856 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 2857 Src1Regs, Src1LeftoverRegs)) 2858 return UnableToLegalize; 2859 2860 LLT Unused; 2861 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 2862 Src2Regs, Src2LeftoverRegs)) 2863 llvm_unreachable("inconsistent extractParts result"); 2864 2865 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2866 auto Select = MIRBuilder.buildSelect(NarrowTy, 2867 CondReg, Src1Regs[I], Src2Regs[I]); 2868 DstRegs.push_back(Select->getOperand(0).getReg()); 2869 } 2870 2871 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2872 auto Select = MIRBuilder.buildSelect( 2873 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 2874 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 2875 } 2876 2877 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2878 LeftoverTy, DstLeftoverRegs); 2879 2880 MI.eraseFromParent(); 2881 return Legalized; 2882 } 2883 2884 LegalizerHelper::LegalizeResult 2885 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2886 unsigned Opc = MI.getOpcode(); 2887 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2888 auto isSupported = [this](const LegalityQuery &Q) { 2889 auto QAction = LI.getAction(Q).Action; 2890 return QAction == Legal || QAction == Libcall || QAction == Custom; 2891 }; 2892 switch (Opc) { 2893 default: 2894 return UnableToLegalize; 2895 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 2896 // This trivially expands to CTLZ. 2897 Observer.changingInstr(MI); 2898 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 2899 Observer.changedInstr(MI); 2900 return Legalized; 2901 } 2902 case TargetOpcode::G_CTLZ: { 2903 Register SrcReg = MI.getOperand(1).getReg(); 2904 unsigned Len = Ty.getSizeInBits(); 2905 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 2906 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 2907 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 2908 {Ty}, {SrcReg}); 2909 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2910 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2911 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2912 SrcReg, MIBZero); 2913 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2914 MIBCtlzZU); 2915 MI.eraseFromParent(); 2916 return Legalized; 2917 } 2918 // for now, we do this: 2919 // NewLen = NextPowerOf2(Len); 2920 // x = x | (x >> 1); 2921 // x = x | (x >> 2); 2922 // ... 2923 // x = x | (x >>16); 2924 // x = x | (x >>32); // for 64-bit input 2925 // Upto NewLen/2 2926 // return Len - popcount(x); 2927 // 2928 // Ref: "Hacker's Delight" by Henry Warren 2929 Register Op = SrcReg; 2930 unsigned NewLen = PowerOf2Ceil(Len); 2931 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 2932 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 2933 auto MIBOp = MIRBuilder.buildInstr( 2934 TargetOpcode::G_OR, {Ty}, 2935 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 2936 {Op, MIBShiftAmt})}); 2937 Op = MIBOp->getOperand(0).getReg(); 2938 } 2939 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 2940 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2941 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 2942 MI.eraseFromParent(); 2943 return Legalized; 2944 } 2945 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 2946 // This trivially expands to CTTZ. 2947 Observer.changingInstr(MI); 2948 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 2949 Observer.changedInstr(MI); 2950 return Legalized; 2951 } 2952 case TargetOpcode::G_CTTZ: { 2953 Register SrcReg = MI.getOperand(1).getReg(); 2954 unsigned Len = Ty.getSizeInBits(); 2955 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 2956 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 2957 // zero. 2958 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 2959 {Ty}, {SrcReg}); 2960 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2961 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2962 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2963 SrcReg, MIBZero); 2964 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2965 MIBCttzZU); 2966 MI.eraseFromParent(); 2967 return Legalized; 2968 } 2969 // for now, we use: { return popcount(~x & (x - 1)); } 2970 // unless the target has ctlz but not ctpop, in which case we use: 2971 // { return 32 - nlz(~x & (x-1)); } 2972 // Ref: "Hacker's Delight" by Henry Warren 2973 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 2974 auto MIBNot = 2975 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 2976 auto MIBTmp = MIRBuilder.buildInstr( 2977 TargetOpcode::G_AND, {Ty}, 2978 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 2979 {SrcReg, MIBCstNeg1})}); 2980 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 2981 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 2982 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 2983 MIRBuilder.buildInstr( 2984 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2985 {MIBCstLen, 2986 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 2987 MI.eraseFromParent(); 2988 return Legalized; 2989 } 2990 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 2991 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 2992 return Legalized; 2993 } 2994 } 2995 } 2996 2997 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 2998 // representation. 2999 LegalizerHelper::LegalizeResult 3000 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3001 Register Dst = MI.getOperand(0).getReg(); 3002 Register Src = MI.getOperand(1).getReg(); 3003 const LLT S64 = LLT::scalar(64); 3004 const LLT S32 = LLT::scalar(32); 3005 const LLT S1 = LLT::scalar(1); 3006 3007 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3008 3009 // unsigned cul2f(ulong u) { 3010 // uint lz = clz(u); 3011 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3012 // u = (u << lz) & 0x7fffffffffffffffUL; 3013 // ulong t = u & 0xffffffffffUL; 3014 // uint v = (e << 23) | (uint)(u >> 40); 3015 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3016 // return as_float(v + r); 3017 // } 3018 3019 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3020 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3021 3022 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3023 3024 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3025 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3026 3027 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3028 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3029 3030 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3031 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3032 3033 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3034 3035 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3036 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3037 3038 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3039 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3040 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3041 3042 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 3043 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 3044 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 3045 auto One = MIRBuilder.buildConstant(S32, 1); 3046 3047 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 3048 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 3049 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 3050 MIRBuilder.buildAdd(Dst, V, R); 3051 3052 return Legalized; 3053 } 3054 3055 LegalizerHelper::LegalizeResult 3056 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3057 Register Dst = MI.getOperand(0).getReg(); 3058 Register Src = MI.getOperand(1).getReg(); 3059 LLT DstTy = MRI.getType(Dst); 3060 LLT SrcTy = MRI.getType(Src); 3061 3062 if (SrcTy != LLT::scalar(64)) 3063 return UnableToLegalize; 3064 3065 if (DstTy == LLT::scalar(32)) { 3066 // TODO: SelectionDAG has several alternative expansions to port which may 3067 // be more reasonble depending on the available instructions. If a target 3068 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 3069 // intermediate type, this is probably worse. 3070 return lowerU64ToF32BitOps(MI); 3071 } 3072 3073 return UnableToLegalize; 3074 } 3075 3076 LegalizerHelper::LegalizeResult 3077 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3078 Register Dst = MI.getOperand(0).getReg(); 3079 Register Src = MI.getOperand(1).getReg(); 3080 LLT DstTy = MRI.getType(Dst); 3081 LLT SrcTy = MRI.getType(Src); 3082 3083 const LLT S64 = LLT::scalar(64); 3084 const LLT S32 = LLT::scalar(32); 3085 const LLT S1 = LLT::scalar(1); 3086 3087 if (SrcTy != S64) 3088 return UnableToLegalize; 3089 3090 if (DstTy == S32) { 3091 // signed cl2f(long l) { 3092 // long s = l >> 63; 3093 // float r = cul2f((l + s) ^ s); 3094 // return s ? -r : r; 3095 // } 3096 Register L = Src; 3097 auto SignBit = MIRBuilder.buildConstant(S64, 63); 3098 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 3099 3100 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 3101 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 3102 auto R = MIRBuilder.buildUITOFP(S32, Xor); 3103 3104 auto RNeg = MIRBuilder.buildFNeg(S32, R); 3105 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 3106 MIRBuilder.buildConstant(S64, 0)); 3107 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 3108 return Legalized; 3109 } 3110 3111 return UnableToLegalize; 3112 } 3113