1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/Utils.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetFrameLowering.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetMachine.h" 33 34 #define DEBUG_TYPE "legalizer" 35 36 using namespace llvm; 37 using namespace LegalizeActions; 38 using namespace MIPatternMatch; 39 40 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 41 /// 42 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 43 /// with any leftover piece as type \p LeftoverTy 44 /// 45 /// Returns -1 in the first element of the pair if the breakdown is not 46 /// satisfiable. 47 static std::pair<int, int> 48 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 49 assert(!LeftoverTy.isValid() && "this is an out argument"); 50 51 unsigned Size = OrigTy.getSizeInBits(); 52 unsigned NarrowSize = NarrowTy.getSizeInBits(); 53 unsigned NumParts = Size / NarrowSize; 54 unsigned LeftoverSize = Size - NumParts * NarrowSize; 55 assert(Size > NarrowSize); 56 57 if (LeftoverSize == 0) 58 return {NumParts, 0}; 59 60 if (NarrowTy.isVector()) { 61 unsigned EltSize = OrigTy.getScalarSizeInBits(); 62 if (LeftoverSize % EltSize != 0) 63 return {-1, -1}; 64 LeftoverTy = LLT::scalarOrVector( 65 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 66 } else { 67 LeftoverTy = LLT::scalar(LeftoverSize); 68 } 69 70 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 71 return std::make_pair(NumParts, NumLeftover); 72 } 73 74 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 75 76 if (!Ty.isScalar()) 77 return nullptr; 78 79 switch (Ty.getSizeInBits()) { 80 case 16: 81 return Type::getHalfTy(Ctx); 82 case 32: 83 return Type::getFloatTy(Ctx); 84 case 64: 85 return Type::getDoubleTy(Ctx); 86 case 80: 87 return Type::getX86_FP80Ty(Ctx); 88 case 128: 89 return Type::getFP128Ty(Ctx); 90 default: 91 return nullptr; 92 } 93 } 94 95 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 96 GISelChangeObserver &Observer, 97 MachineIRBuilder &Builder) 98 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 99 LI(*MF.getSubtarget().getLegalizerInfo()), 100 TLI(*MF.getSubtarget().getTargetLowering()) { } 101 102 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 103 GISelChangeObserver &Observer, 104 MachineIRBuilder &B) 105 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 106 TLI(*MF.getSubtarget().getTargetLowering()) { } 107 108 LegalizerHelper::LegalizeResult 109 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 110 LostDebugLocObserver &LocObserver) { 111 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 112 113 MIRBuilder.setInstrAndDebugLoc(MI); 114 115 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 116 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 117 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 118 auto Step = LI.getAction(MI, MRI); 119 switch (Step.Action) { 120 case Legal: 121 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 122 return AlreadyLegal; 123 case Libcall: 124 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 125 return libcall(MI, LocObserver); 126 case NarrowScalar: 127 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 128 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 129 case WidenScalar: 130 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 131 return widenScalar(MI, Step.TypeIdx, Step.NewType); 132 case Bitcast: 133 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 134 return bitcast(MI, Step.TypeIdx, Step.NewType); 135 case Lower: 136 LLVM_DEBUG(dbgs() << ".. Lower\n"); 137 return lower(MI, Step.TypeIdx, Step.NewType); 138 case FewerElements: 139 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 140 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 141 case MoreElements: 142 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 143 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 144 case Custom: 145 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 146 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 147 default: 148 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 149 return UnableToLegalize; 150 } 151 } 152 153 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 154 SmallVectorImpl<Register> &VRegs) { 155 for (int i = 0; i < NumParts; ++i) 156 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 157 MIRBuilder.buildUnmerge(VRegs, Reg); 158 } 159 160 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 161 LLT MainTy, LLT &LeftoverTy, 162 SmallVectorImpl<Register> &VRegs, 163 SmallVectorImpl<Register> &LeftoverRegs) { 164 assert(!LeftoverTy.isValid() && "this is an out argument"); 165 166 unsigned RegSize = RegTy.getSizeInBits(); 167 unsigned MainSize = MainTy.getSizeInBits(); 168 unsigned NumParts = RegSize / MainSize; 169 unsigned LeftoverSize = RegSize - NumParts * MainSize; 170 171 // Use an unmerge when possible. 172 if (LeftoverSize == 0) { 173 for (unsigned I = 0; I < NumParts; ++I) 174 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 175 MIRBuilder.buildUnmerge(VRegs, Reg); 176 return true; 177 } 178 179 // Perform irregular split. Leftover is last element of RegPieces. 180 if (MainTy.isVector()) { 181 SmallVector<Register, 8> RegPieces; 182 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces); 183 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 184 VRegs.push_back(RegPieces[i]); 185 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 186 LeftoverTy = MRI.getType(LeftoverRegs[0]); 187 return true; 188 } 189 190 LeftoverTy = LLT::scalar(LeftoverSize); 191 // For irregular sizes, extract the individual parts. 192 for (unsigned I = 0; I != NumParts; ++I) { 193 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 194 VRegs.push_back(NewReg); 195 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 196 } 197 198 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 199 Offset += LeftoverSize) { 200 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 201 LeftoverRegs.push_back(NewReg); 202 MIRBuilder.buildExtract(NewReg, Reg, Offset); 203 } 204 205 return true; 206 } 207 208 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts, 209 SmallVectorImpl<Register> &VRegs) { 210 LLT RegTy = MRI.getType(Reg); 211 assert(RegTy.isVector() && "Expected a vector type"); 212 213 LLT EltTy = RegTy.getElementType(); 214 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 215 unsigned RegNumElts = RegTy.getNumElements(); 216 unsigned LeftoverNumElts = RegNumElts % NumElts; 217 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 218 219 // Perfect split without leftover 220 if (LeftoverNumElts == 0) 221 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs); 222 223 // Irregular split. Provide direct access to all elements for artifact 224 // combiner using unmerge to elements. Then build vectors with NumElts 225 // elements. Remaining element(s) will be (used to build vector) Leftover. 226 SmallVector<Register, 8> Elts; 227 extractParts(Reg, EltTy, RegNumElts, Elts); 228 229 unsigned Offset = 0; 230 // Requested sub-vectors of NarrowTy. 231 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 232 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 233 VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 234 } 235 236 // Leftover element(s). 237 if (LeftoverNumElts == 1) { 238 VRegs.push_back(Elts[Offset]); 239 } else { 240 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 241 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 242 VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0)); 243 } 244 } 245 246 void LegalizerHelper::insertParts(Register DstReg, 247 LLT ResultTy, LLT PartTy, 248 ArrayRef<Register> PartRegs, 249 LLT LeftoverTy, 250 ArrayRef<Register> LeftoverRegs) { 251 if (!LeftoverTy.isValid()) { 252 assert(LeftoverRegs.empty()); 253 254 if (!ResultTy.isVector()) { 255 MIRBuilder.buildMerge(DstReg, PartRegs); 256 return; 257 } 258 259 if (PartTy.isVector()) 260 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 261 else 262 MIRBuilder.buildBuildVector(DstReg, PartRegs); 263 return; 264 } 265 266 // Merge sub-vectors with different number of elements and insert into DstReg. 267 if (ResultTy.isVector()) { 268 assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); 269 SmallVector<Register, 8> AllRegs; 270 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs)) 271 AllRegs.push_back(Reg); 272 return mergeMixedSubvectors(DstReg, AllRegs); 273 } 274 275 SmallVector<Register> GCDRegs; 276 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 277 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 278 extractGCDType(GCDRegs, GCDTy, PartReg); 279 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 280 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 281 } 282 283 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts, 284 Register Reg) { 285 LLT Ty = MRI.getType(Reg); 286 SmallVector<Register, 8> RegElts; 287 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts); 288 Elts.append(RegElts); 289 } 290 291 /// Merge \p PartRegs with different types into \p DstReg. 292 void LegalizerHelper::mergeMixedSubvectors(Register DstReg, 293 ArrayRef<Register> PartRegs) { 294 SmallVector<Register, 8> AllElts; 295 for (unsigned i = 0; i < PartRegs.size() - 1; ++i) 296 appendVectorElts(AllElts, PartRegs[i]); 297 298 Register Leftover = PartRegs[PartRegs.size() - 1]; 299 if (MRI.getType(Leftover).isScalar()) 300 AllElts.push_back(Leftover); 301 else 302 appendVectorElts(AllElts, Leftover); 303 304 MIRBuilder.buildMerge(DstReg, AllElts); 305 } 306 307 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 308 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 309 const MachineInstr &MI) { 310 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 311 312 const int StartIdx = Regs.size(); 313 const int NumResults = MI.getNumOperands() - 1; 314 Regs.resize(Regs.size() + NumResults); 315 for (int I = 0; I != NumResults; ++I) 316 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 317 } 318 319 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 320 LLT GCDTy, Register SrcReg) { 321 LLT SrcTy = MRI.getType(SrcReg); 322 if (SrcTy == GCDTy) { 323 // If the source already evenly divides the result type, we don't need to do 324 // anything. 325 Parts.push_back(SrcReg); 326 } else { 327 // Need to split into common type sized pieces. 328 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 329 getUnmergeResults(Parts, *Unmerge); 330 } 331 } 332 333 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 334 LLT NarrowTy, Register SrcReg) { 335 LLT SrcTy = MRI.getType(SrcReg); 336 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 337 extractGCDType(Parts, GCDTy, SrcReg); 338 return GCDTy; 339 } 340 341 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 342 SmallVectorImpl<Register> &VRegs, 343 unsigned PadStrategy) { 344 LLT LCMTy = getLCMType(DstTy, NarrowTy); 345 346 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 347 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 348 int NumOrigSrc = VRegs.size(); 349 350 Register PadReg; 351 352 // Get a value we can use to pad the source value if the sources won't evenly 353 // cover the result type. 354 if (NumOrigSrc < NumParts * NumSubParts) { 355 if (PadStrategy == TargetOpcode::G_ZEXT) 356 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 357 else if (PadStrategy == TargetOpcode::G_ANYEXT) 358 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 359 else { 360 assert(PadStrategy == TargetOpcode::G_SEXT); 361 362 // Shift the sign bit of the low register through the high register. 363 auto ShiftAmt = 364 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 365 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 366 } 367 } 368 369 // Registers for the final merge to be produced. 370 SmallVector<Register, 4> Remerge(NumParts); 371 372 // Registers needed for intermediate merges, which will be merged into a 373 // source for Remerge. 374 SmallVector<Register, 4> SubMerge(NumSubParts); 375 376 // Once we've fully read off the end of the original source bits, we can reuse 377 // the same high bits for remaining padding elements. 378 Register AllPadReg; 379 380 // Build merges to the LCM type to cover the original result type. 381 for (int I = 0; I != NumParts; ++I) { 382 bool AllMergePartsArePadding = true; 383 384 // Build the requested merges to the requested type. 385 for (int J = 0; J != NumSubParts; ++J) { 386 int Idx = I * NumSubParts + J; 387 if (Idx >= NumOrigSrc) { 388 SubMerge[J] = PadReg; 389 continue; 390 } 391 392 SubMerge[J] = VRegs[Idx]; 393 394 // There are meaningful bits here we can't reuse later. 395 AllMergePartsArePadding = false; 396 } 397 398 // If we've filled up a complete piece with padding bits, we can directly 399 // emit the natural sized constant if applicable, rather than a merge of 400 // smaller constants. 401 if (AllMergePartsArePadding && !AllPadReg) { 402 if (PadStrategy == TargetOpcode::G_ANYEXT) 403 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 404 else if (PadStrategy == TargetOpcode::G_ZEXT) 405 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 406 407 // If this is a sign extension, we can't materialize a trivial constant 408 // with the right type and have to produce a merge. 409 } 410 411 if (AllPadReg) { 412 // Avoid creating additional instructions if we're just adding additional 413 // copies of padding bits. 414 Remerge[I] = AllPadReg; 415 continue; 416 } 417 418 if (NumSubParts == 1) 419 Remerge[I] = SubMerge[0]; 420 else 421 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 422 423 // In the sign extend padding case, re-use the first all-signbit merge. 424 if (AllMergePartsArePadding && !AllPadReg) 425 AllPadReg = Remerge[I]; 426 } 427 428 VRegs = std::move(Remerge); 429 return LCMTy; 430 } 431 432 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 433 ArrayRef<Register> RemergeRegs) { 434 LLT DstTy = MRI.getType(DstReg); 435 436 // Create the merge to the widened source, and extract the relevant bits into 437 // the result. 438 439 if (DstTy == LCMTy) { 440 MIRBuilder.buildMerge(DstReg, RemergeRegs); 441 return; 442 } 443 444 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 445 if (DstTy.isScalar() && LCMTy.isScalar()) { 446 MIRBuilder.buildTrunc(DstReg, Remerge); 447 return; 448 } 449 450 if (LCMTy.isVector()) { 451 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 452 SmallVector<Register, 8> UnmergeDefs(NumDefs); 453 UnmergeDefs[0] = DstReg; 454 for (unsigned I = 1; I != NumDefs; ++I) 455 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 456 457 MIRBuilder.buildUnmerge(UnmergeDefs, 458 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 459 return; 460 } 461 462 llvm_unreachable("unhandled case"); 463 } 464 465 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 466 #define RTLIBCASE_INT(LibcallPrefix) \ 467 do { \ 468 switch (Size) { \ 469 case 32: \ 470 return RTLIB::LibcallPrefix##32; \ 471 case 64: \ 472 return RTLIB::LibcallPrefix##64; \ 473 case 128: \ 474 return RTLIB::LibcallPrefix##128; \ 475 default: \ 476 llvm_unreachable("unexpected size"); \ 477 } \ 478 } while (0) 479 480 #define RTLIBCASE(LibcallPrefix) \ 481 do { \ 482 switch (Size) { \ 483 case 32: \ 484 return RTLIB::LibcallPrefix##32; \ 485 case 64: \ 486 return RTLIB::LibcallPrefix##64; \ 487 case 80: \ 488 return RTLIB::LibcallPrefix##80; \ 489 case 128: \ 490 return RTLIB::LibcallPrefix##128; \ 491 default: \ 492 llvm_unreachable("unexpected size"); \ 493 } \ 494 } while (0) 495 496 switch (Opcode) { 497 case TargetOpcode::G_SDIV: 498 RTLIBCASE_INT(SDIV_I); 499 case TargetOpcode::G_UDIV: 500 RTLIBCASE_INT(UDIV_I); 501 case TargetOpcode::G_SREM: 502 RTLIBCASE_INT(SREM_I); 503 case TargetOpcode::G_UREM: 504 RTLIBCASE_INT(UREM_I); 505 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 506 RTLIBCASE_INT(CTLZ_I); 507 case TargetOpcode::G_FADD: 508 RTLIBCASE(ADD_F); 509 case TargetOpcode::G_FSUB: 510 RTLIBCASE(SUB_F); 511 case TargetOpcode::G_FMUL: 512 RTLIBCASE(MUL_F); 513 case TargetOpcode::G_FDIV: 514 RTLIBCASE(DIV_F); 515 case TargetOpcode::G_FEXP: 516 RTLIBCASE(EXP_F); 517 case TargetOpcode::G_FEXP2: 518 RTLIBCASE(EXP2_F); 519 case TargetOpcode::G_FREM: 520 RTLIBCASE(REM_F); 521 case TargetOpcode::G_FPOW: 522 RTLIBCASE(POW_F); 523 case TargetOpcode::G_FMA: 524 RTLIBCASE(FMA_F); 525 case TargetOpcode::G_FSIN: 526 RTLIBCASE(SIN_F); 527 case TargetOpcode::G_FCOS: 528 RTLIBCASE(COS_F); 529 case TargetOpcode::G_FLOG10: 530 RTLIBCASE(LOG10_F); 531 case TargetOpcode::G_FLOG: 532 RTLIBCASE(LOG_F); 533 case TargetOpcode::G_FLOG2: 534 RTLIBCASE(LOG2_F); 535 case TargetOpcode::G_FCEIL: 536 RTLIBCASE(CEIL_F); 537 case TargetOpcode::G_FFLOOR: 538 RTLIBCASE(FLOOR_F); 539 case TargetOpcode::G_FMINNUM: 540 RTLIBCASE(FMIN_F); 541 case TargetOpcode::G_FMAXNUM: 542 RTLIBCASE(FMAX_F); 543 case TargetOpcode::G_FSQRT: 544 RTLIBCASE(SQRT_F); 545 case TargetOpcode::G_FRINT: 546 RTLIBCASE(RINT_F); 547 case TargetOpcode::G_FNEARBYINT: 548 RTLIBCASE(NEARBYINT_F); 549 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 550 RTLIBCASE(ROUNDEVEN_F); 551 } 552 llvm_unreachable("Unknown libcall function"); 553 } 554 555 /// True if an instruction is in tail position in its caller. Intended for 556 /// legalizing libcalls as tail calls when possible. 557 static bool isLibCallInTailPosition(MachineInstr &MI, 558 const TargetInstrInfo &TII, 559 MachineRegisterInfo &MRI) { 560 MachineBasicBlock &MBB = *MI.getParent(); 561 const Function &F = MBB.getParent()->getFunction(); 562 563 // Conservatively require the attributes of the call to match those of 564 // the return. Ignore NoAlias and NonNull because they don't affect the 565 // call sequence. 566 AttributeList CallerAttrs = F.getAttributes(); 567 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) 568 .removeAttribute(Attribute::NoAlias) 569 .removeAttribute(Attribute::NonNull) 570 .hasAttributes()) 571 return false; 572 573 // It's not safe to eliminate the sign / zero extension of the return value. 574 if (CallerAttrs.hasRetAttr(Attribute::ZExt) || 575 CallerAttrs.hasRetAttr(Attribute::SExt)) 576 return false; 577 578 // Only tail call if the following instruction is a standard return or if we 579 // have a `thisreturn` callee, and a sequence like: 580 // 581 // G_MEMCPY %0, %1, %2 582 // $x0 = COPY %0 583 // RET_ReallyLR implicit $x0 584 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 585 if (Next != MBB.instr_end() && Next->isCopy()) { 586 switch (MI.getOpcode()) { 587 default: 588 llvm_unreachable("unsupported opcode"); 589 case TargetOpcode::G_BZERO: 590 return false; 591 case TargetOpcode::G_MEMCPY: 592 case TargetOpcode::G_MEMMOVE: 593 case TargetOpcode::G_MEMSET: 594 break; 595 } 596 597 Register VReg = MI.getOperand(0).getReg(); 598 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 599 return false; 600 601 Register PReg = Next->getOperand(0).getReg(); 602 if (!PReg.isPhysical()) 603 return false; 604 605 auto Ret = next_nodbg(Next, MBB.instr_end()); 606 if (Ret == MBB.instr_end() || !Ret->isReturn()) 607 return false; 608 609 if (Ret->getNumImplicitOperands() != 1) 610 return false; 611 612 if (PReg != Ret->getOperand(0).getReg()) 613 return false; 614 615 // Skip over the COPY that we just validated. 616 Next = Ret; 617 } 618 619 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 620 return false; 621 622 return true; 623 } 624 625 LegalizerHelper::LegalizeResult 626 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 627 const CallLowering::ArgInfo &Result, 628 ArrayRef<CallLowering::ArgInfo> Args, 629 const CallingConv::ID CC) { 630 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 631 632 CallLowering::CallLoweringInfo Info; 633 Info.CallConv = CC; 634 Info.Callee = MachineOperand::CreateES(Name); 635 Info.OrigRet = Result; 636 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 637 if (!CLI.lowerCall(MIRBuilder, Info)) 638 return LegalizerHelper::UnableToLegalize; 639 640 return LegalizerHelper::Legalized; 641 } 642 643 LegalizerHelper::LegalizeResult 644 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 645 const CallLowering::ArgInfo &Result, 646 ArrayRef<CallLowering::ArgInfo> Args) { 647 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 648 const char *Name = TLI.getLibcallName(Libcall); 649 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 650 return createLibcall(MIRBuilder, Name, Result, Args, CC); 651 } 652 653 // Useful for libcalls where all operands have the same type. 654 static LegalizerHelper::LegalizeResult 655 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 656 Type *OpType) { 657 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 658 659 // FIXME: What does the original arg index mean here? 660 SmallVector<CallLowering::ArgInfo, 3> Args; 661 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 662 Args.push_back({MO.getReg(), OpType, 0}); 663 return createLibcall(MIRBuilder, Libcall, 664 {MI.getOperand(0).getReg(), OpType, 0}, Args); 665 } 666 667 LegalizerHelper::LegalizeResult 668 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 669 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 670 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 671 672 SmallVector<CallLowering::ArgInfo, 3> Args; 673 // Add all the args, except for the last which is an imm denoting 'tail'. 674 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 675 Register Reg = MI.getOperand(i).getReg(); 676 677 // Need derive an IR type for call lowering. 678 LLT OpLLT = MRI.getType(Reg); 679 Type *OpTy = nullptr; 680 if (OpLLT.isPointer()) 681 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 682 else 683 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 684 Args.push_back({Reg, OpTy, 0}); 685 } 686 687 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 688 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 689 RTLIB::Libcall RTLibcall; 690 unsigned Opc = MI.getOpcode(); 691 switch (Opc) { 692 case TargetOpcode::G_BZERO: 693 RTLibcall = RTLIB::BZERO; 694 break; 695 case TargetOpcode::G_MEMCPY: 696 RTLibcall = RTLIB::MEMCPY; 697 Args[0].Flags[0].setReturned(); 698 break; 699 case TargetOpcode::G_MEMMOVE: 700 RTLibcall = RTLIB::MEMMOVE; 701 Args[0].Flags[0].setReturned(); 702 break; 703 case TargetOpcode::G_MEMSET: 704 RTLibcall = RTLIB::MEMSET; 705 Args[0].Flags[0].setReturned(); 706 break; 707 default: 708 llvm_unreachable("unsupported opcode"); 709 } 710 const char *Name = TLI.getLibcallName(RTLibcall); 711 712 // Unsupported libcall on the target. 713 if (!Name) { 714 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 715 << MIRBuilder.getTII().getName(Opc) << "\n"); 716 return LegalizerHelper::UnableToLegalize; 717 } 718 719 CallLowering::CallLoweringInfo Info; 720 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 721 Info.Callee = MachineOperand::CreateES(Name); 722 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 723 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 724 isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI); 725 726 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 727 if (!CLI.lowerCall(MIRBuilder, Info)) 728 return LegalizerHelper::UnableToLegalize; 729 730 if (Info.LoweredTailCall) { 731 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 732 733 // Check debug locations before removing the return. 734 LocObserver.checkpoint(true); 735 736 // We must have a return following the call (or debug insts) to get past 737 // isLibCallInTailPosition. 738 do { 739 MachineInstr *Next = MI.getNextNode(); 740 assert(Next && 741 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 742 "Expected instr following MI to be return or debug inst?"); 743 // We lowered a tail call, so the call is now the return from the block. 744 // Delete the old return. 745 Next->eraseFromParent(); 746 } while (MI.getNextNode()); 747 748 // We expect to lose the debug location from the return. 749 LocObserver.checkpoint(false); 750 } 751 752 return LegalizerHelper::Legalized; 753 } 754 755 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 756 Type *FromType) { 757 auto ToMVT = MVT::getVT(ToType); 758 auto FromMVT = MVT::getVT(FromType); 759 760 switch (Opcode) { 761 case TargetOpcode::G_FPEXT: 762 return RTLIB::getFPEXT(FromMVT, ToMVT); 763 case TargetOpcode::G_FPTRUNC: 764 return RTLIB::getFPROUND(FromMVT, ToMVT); 765 case TargetOpcode::G_FPTOSI: 766 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 767 case TargetOpcode::G_FPTOUI: 768 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 769 case TargetOpcode::G_SITOFP: 770 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 771 case TargetOpcode::G_UITOFP: 772 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 773 } 774 llvm_unreachable("Unsupported libcall function"); 775 } 776 777 static LegalizerHelper::LegalizeResult 778 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 779 Type *FromType) { 780 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 781 return createLibcall(MIRBuilder, Libcall, 782 {MI.getOperand(0).getReg(), ToType, 0}, 783 {{MI.getOperand(1).getReg(), FromType, 0}}); 784 } 785 786 LegalizerHelper::LegalizeResult 787 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 788 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 789 unsigned Size = LLTy.getSizeInBits(); 790 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 791 792 switch (MI.getOpcode()) { 793 default: 794 return UnableToLegalize; 795 case TargetOpcode::G_SDIV: 796 case TargetOpcode::G_UDIV: 797 case TargetOpcode::G_SREM: 798 case TargetOpcode::G_UREM: 799 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 800 Type *HLTy = IntegerType::get(Ctx, Size); 801 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 802 if (Status != Legalized) 803 return Status; 804 break; 805 } 806 case TargetOpcode::G_FADD: 807 case TargetOpcode::G_FSUB: 808 case TargetOpcode::G_FMUL: 809 case TargetOpcode::G_FDIV: 810 case TargetOpcode::G_FMA: 811 case TargetOpcode::G_FPOW: 812 case TargetOpcode::G_FREM: 813 case TargetOpcode::G_FCOS: 814 case TargetOpcode::G_FSIN: 815 case TargetOpcode::G_FLOG10: 816 case TargetOpcode::G_FLOG: 817 case TargetOpcode::G_FLOG2: 818 case TargetOpcode::G_FEXP: 819 case TargetOpcode::G_FEXP2: 820 case TargetOpcode::G_FCEIL: 821 case TargetOpcode::G_FFLOOR: 822 case TargetOpcode::G_FMINNUM: 823 case TargetOpcode::G_FMAXNUM: 824 case TargetOpcode::G_FSQRT: 825 case TargetOpcode::G_FRINT: 826 case TargetOpcode::G_FNEARBYINT: 827 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 828 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 829 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 830 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 831 return UnableToLegalize; 832 } 833 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 834 if (Status != Legalized) 835 return Status; 836 break; 837 } 838 case TargetOpcode::G_FPEXT: 839 case TargetOpcode::G_FPTRUNC: { 840 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 841 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 842 if (!FromTy || !ToTy) 843 return UnableToLegalize; 844 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 845 if (Status != Legalized) 846 return Status; 847 break; 848 } 849 case TargetOpcode::G_FPTOSI: 850 case TargetOpcode::G_FPTOUI: { 851 // FIXME: Support other types 852 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 853 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 854 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 855 return UnableToLegalize; 856 LegalizeResult Status = conversionLibcall( 857 MI, MIRBuilder, 858 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 859 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 860 if (Status != Legalized) 861 return Status; 862 break; 863 } 864 case TargetOpcode::G_SITOFP: 865 case TargetOpcode::G_UITOFP: { 866 // FIXME: Support other types 867 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 868 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 869 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 870 return UnableToLegalize; 871 LegalizeResult Status = conversionLibcall( 872 MI, MIRBuilder, 873 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 874 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 875 if (Status != Legalized) 876 return Status; 877 break; 878 } 879 case TargetOpcode::G_BZERO: 880 case TargetOpcode::G_MEMCPY: 881 case TargetOpcode::G_MEMMOVE: 882 case TargetOpcode::G_MEMSET: { 883 LegalizeResult Result = 884 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 885 if (Result != Legalized) 886 return Result; 887 MI.eraseFromParent(); 888 return Result; 889 } 890 } 891 892 MI.eraseFromParent(); 893 return Legalized; 894 } 895 896 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 897 unsigned TypeIdx, 898 LLT NarrowTy) { 899 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 900 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 901 902 switch (MI.getOpcode()) { 903 default: 904 return UnableToLegalize; 905 case TargetOpcode::G_IMPLICIT_DEF: { 906 Register DstReg = MI.getOperand(0).getReg(); 907 LLT DstTy = MRI.getType(DstReg); 908 909 // If SizeOp0 is not an exact multiple of NarrowSize, emit 910 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 911 // FIXME: Although this would also be legal for the general case, it causes 912 // a lot of regressions in the emitted code (superfluous COPYs, artifact 913 // combines not being hit). This seems to be a problem related to the 914 // artifact combiner. 915 if (SizeOp0 % NarrowSize != 0) { 916 LLT ImplicitTy = NarrowTy; 917 if (DstTy.isVector()) 918 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 919 920 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 921 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 922 923 MI.eraseFromParent(); 924 return Legalized; 925 } 926 927 int NumParts = SizeOp0 / NarrowSize; 928 929 SmallVector<Register, 2> DstRegs; 930 for (int i = 0; i < NumParts; ++i) 931 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 932 933 if (DstTy.isVector()) 934 MIRBuilder.buildBuildVector(DstReg, DstRegs); 935 else 936 MIRBuilder.buildMerge(DstReg, DstRegs); 937 MI.eraseFromParent(); 938 return Legalized; 939 } 940 case TargetOpcode::G_CONSTANT: { 941 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 942 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 943 unsigned TotalSize = Ty.getSizeInBits(); 944 unsigned NarrowSize = NarrowTy.getSizeInBits(); 945 int NumParts = TotalSize / NarrowSize; 946 947 SmallVector<Register, 4> PartRegs; 948 for (int I = 0; I != NumParts; ++I) { 949 unsigned Offset = I * NarrowSize; 950 auto K = MIRBuilder.buildConstant(NarrowTy, 951 Val.lshr(Offset).trunc(NarrowSize)); 952 PartRegs.push_back(K.getReg(0)); 953 } 954 955 LLT LeftoverTy; 956 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 957 SmallVector<Register, 1> LeftoverRegs; 958 if (LeftoverBits != 0) { 959 LeftoverTy = LLT::scalar(LeftoverBits); 960 auto K = MIRBuilder.buildConstant( 961 LeftoverTy, 962 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 963 LeftoverRegs.push_back(K.getReg(0)); 964 } 965 966 insertParts(MI.getOperand(0).getReg(), 967 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 968 969 MI.eraseFromParent(); 970 return Legalized; 971 } 972 case TargetOpcode::G_SEXT: 973 case TargetOpcode::G_ZEXT: 974 case TargetOpcode::G_ANYEXT: 975 return narrowScalarExt(MI, TypeIdx, NarrowTy); 976 case TargetOpcode::G_TRUNC: { 977 if (TypeIdx != 1) 978 return UnableToLegalize; 979 980 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 981 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 982 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 983 return UnableToLegalize; 984 } 985 986 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 987 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 988 MI.eraseFromParent(); 989 return Legalized; 990 } 991 992 case TargetOpcode::G_FREEZE: { 993 if (TypeIdx != 0) 994 return UnableToLegalize; 995 996 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 997 // Should widen scalar first 998 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) 999 return UnableToLegalize; 1000 1001 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 1002 SmallVector<Register, 8> Parts; 1003 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { 1004 Parts.push_back( 1005 MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0)); 1006 } 1007 1008 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts); 1009 MI.eraseFromParent(); 1010 return Legalized; 1011 } 1012 case TargetOpcode::G_ADD: 1013 case TargetOpcode::G_SUB: 1014 case TargetOpcode::G_SADDO: 1015 case TargetOpcode::G_SSUBO: 1016 case TargetOpcode::G_SADDE: 1017 case TargetOpcode::G_SSUBE: 1018 case TargetOpcode::G_UADDO: 1019 case TargetOpcode::G_USUBO: 1020 case TargetOpcode::G_UADDE: 1021 case TargetOpcode::G_USUBE: 1022 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 1023 case TargetOpcode::G_MUL: 1024 case TargetOpcode::G_UMULH: 1025 return narrowScalarMul(MI, NarrowTy); 1026 case TargetOpcode::G_EXTRACT: 1027 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 1028 case TargetOpcode::G_INSERT: 1029 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 1030 case TargetOpcode::G_LOAD: { 1031 auto &LoadMI = cast<GLoad>(MI); 1032 Register DstReg = LoadMI.getDstReg(); 1033 LLT DstTy = MRI.getType(DstReg); 1034 if (DstTy.isVector()) 1035 return UnableToLegalize; 1036 1037 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { 1038 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1039 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 1040 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1041 LoadMI.eraseFromParent(); 1042 return Legalized; 1043 } 1044 1045 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 1046 } 1047 case TargetOpcode::G_ZEXTLOAD: 1048 case TargetOpcode::G_SEXTLOAD: { 1049 auto &LoadMI = cast<GExtLoad>(MI); 1050 Register DstReg = LoadMI.getDstReg(); 1051 Register PtrReg = LoadMI.getPointerReg(); 1052 1053 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1054 auto &MMO = LoadMI.getMMO(); 1055 unsigned MemSize = MMO.getSizeInBits(); 1056 1057 if (MemSize == NarrowSize) { 1058 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1059 } else if (MemSize < NarrowSize) { 1060 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 1061 } else if (MemSize > NarrowSize) { 1062 // FIXME: Need to split the load. 1063 return UnableToLegalize; 1064 } 1065 1066 if (isa<GZExtLoad>(LoadMI)) 1067 MIRBuilder.buildZExt(DstReg, TmpReg); 1068 else 1069 MIRBuilder.buildSExt(DstReg, TmpReg); 1070 1071 LoadMI.eraseFromParent(); 1072 return Legalized; 1073 } 1074 case TargetOpcode::G_STORE: { 1075 auto &StoreMI = cast<GStore>(MI); 1076 1077 Register SrcReg = StoreMI.getValueReg(); 1078 LLT SrcTy = MRI.getType(SrcReg); 1079 if (SrcTy.isVector()) 1080 return UnableToLegalize; 1081 1082 int NumParts = SizeOp0 / NarrowSize; 1083 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 1084 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 1085 if (SrcTy.isVector() && LeftoverBits != 0) 1086 return UnableToLegalize; 1087 1088 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { 1089 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1090 MIRBuilder.buildTrunc(TmpReg, SrcReg); 1091 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1092 StoreMI.eraseFromParent(); 1093 return Legalized; 1094 } 1095 1096 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1097 } 1098 case TargetOpcode::G_SELECT: 1099 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1100 case TargetOpcode::G_AND: 1101 case TargetOpcode::G_OR: 1102 case TargetOpcode::G_XOR: { 1103 // Legalize bitwise operation: 1104 // A = BinOp<Ty> B, C 1105 // into: 1106 // B1, ..., BN = G_UNMERGE_VALUES B 1107 // C1, ..., CN = G_UNMERGE_VALUES C 1108 // A1 = BinOp<Ty/N> B1, C2 1109 // ... 1110 // AN = BinOp<Ty/N> BN, CN 1111 // A = G_MERGE_VALUES A1, ..., AN 1112 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1113 } 1114 case TargetOpcode::G_SHL: 1115 case TargetOpcode::G_LSHR: 1116 case TargetOpcode::G_ASHR: 1117 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1118 case TargetOpcode::G_CTLZ: 1119 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1120 case TargetOpcode::G_CTTZ: 1121 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1122 case TargetOpcode::G_CTPOP: 1123 if (TypeIdx == 1) 1124 switch (MI.getOpcode()) { 1125 case TargetOpcode::G_CTLZ: 1126 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1127 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1128 case TargetOpcode::G_CTTZ: 1129 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1130 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1131 case TargetOpcode::G_CTPOP: 1132 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1133 default: 1134 return UnableToLegalize; 1135 } 1136 1137 Observer.changingInstr(MI); 1138 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1139 Observer.changedInstr(MI); 1140 return Legalized; 1141 case TargetOpcode::G_INTTOPTR: 1142 if (TypeIdx != 1) 1143 return UnableToLegalize; 1144 1145 Observer.changingInstr(MI); 1146 narrowScalarSrc(MI, NarrowTy, 1); 1147 Observer.changedInstr(MI); 1148 return Legalized; 1149 case TargetOpcode::G_PTRTOINT: 1150 if (TypeIdx != 0) 1151 return UnableToLegalize; 1152 1153 Observer.changingInstr(MI); 1154 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1155 Observer.changedInstr(MI); 1156 return Legalized; 1157 case TargetOpcode::G_PHI: { 1158 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1159 // NarrowSize. 1160 if (SizeOp0 % NarrowSize != 0) 1161 return UnableToLegalize; 1162 1163 unsigned NumParts = SizeOp0 / NarrowSize; 1164 SmallVector<Register, 2> DstRegs(NumParts); 1165 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1166 Observer.changingInstr(MI); 1167 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1168 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1169 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1170 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1171 SrcRegs[i / 2]); 1172 } 1173 MachineBasicBlock &MBB = *MI.getParent(); 1174 MIRBuilder.setInsertPt(MBB, MI); 1175 for (unsigned i = 0; i < NumParts; ++i) { 1176 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1177 MachineInstrBuilder MIB = 1178 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1179 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1180 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1181 } 1182 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1183 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1184 Observer.changedInstr(MI); 1185 MI.eraseFromParent(); 1186 return Legalized; 1187 } 1188 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1189 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1190 if (TypeIdx != 2) 1191 return UnableToLegalize; 1192 1193 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1194 Observer.changingInstr(MI); 1195 narrowScalarSrc(MI, NarrowTy, OpIdx); 1196 Observer.changedInstr(MI); 1197 return Legalized; 1198 } 1199 case TargetOpcode::G_ICMP: { 1200 Register LHS = MI.getOperand(2).getReg(); 1201 LLT SrcTy = MRI.getType(LHS); 1202 uint64_t SrcSize = SrcTy.getSizeInBits(); 1203 CmpInst::Predicate Pred = 1204 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1205 1206 // TODO: Handle the non-equality case for weird sizes. 1207 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1208 return UnableToLegalize; 1209 1210 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1211 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1212 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1213 LHSLeftoverRegs)) 1214 return UnableToLegalize; 1215 1216 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1217 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1218 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1219 RHSPartRegs, RHSLeftoverRegs)) 1220 return UnableToLegalize; 1221 1222 // We now have the LHS and RHS of the compare split into narrow-type 1223 // registers, plus potentially some leftover type. 1224 Register Dst = MI.getOperand(0).getReg(); 1225 LLT ResTy = MRI.getType(Dst); 1226 if (ICmpInst::isEquality(Pred)) { 1227 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1228 // them together. For each equal part, the result should be all 0s. For 1229 // each non-equal part, we'll get at least one 1. 1230 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1231 SmallVector<Register, 4> Xors; 1232 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1233 auto LHS = std::get<0>(LHSAndRHS); 1234 auto RHS = std::get<1>(LHSAndRHS); 1235 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1236 Xors.push_back(Xor); 1237 } 1238 1239 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1240 // to the desired narrow type so that we can OR them together later. 1241 SmallVector<Register, 4> WidenedXors; 1242 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1243 auto LHS = std::get<0>(LHSAndRHS); 1244 auto RHS = std::get<1>(LHSAndRHS); 1245 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1246 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1247 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1248 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1249 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1250 } 1251 1252 // Now, for each part we broke up, we know if they are equal/not equal 1253 // based off the G_XOR. We can OR these all together and compare against 1254 // 0 to get the result. 1255 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1256 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1257 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1258 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1259 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1260 } else { 1261 // TODO: Handle non-power-of-two types. 1262 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1263 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1264 Register LHSL = LHSPartRegs[0]; 1265 Register LHSH = LHSPartRegs[1]; 1266 Register RHSL = RHSPartRegs[0]; 1267 Register RHSH = RHSPartRegs[1]; 1268 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1269 MachineInstrBuilder CmpHEQ = 1270 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1271 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1272 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1273 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1274 } 1275 MI.eraseFromParent(); 1276 return Legalized; 1277 } 1278 case TargetOpcode::G_SEXT_INREG: { 1279 if (TypeIdx != 0) 1280 return UnableToLegalize; 1281 1282 int64_t SizeInBits = MI.getOperand(2).getImm(); 1283 1284 // So long as the new type has more bits than the bits we're extending we 1285 // don't need to break it apart. 1286 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1287 Observer.changingInstr(MI); 1288 // We don't lose any non-extension bits by truncating the src and 1289 // sign-extending the dst. 1290 MachineOperand &MO1 = MI.getOperand(1); 1291 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1292 MO1.setReg(TruncMIB.getReg(0)); 1293 1294 MachineOperand &MO2 = MI.getOperand(0); 1295 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1296 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1297 MIRBuilder.buildSExt(MO2, DstExt); 1298 MO2.setReg(DstExt); 1299 Observer.changedInstr(MI); 1300 return Legalized; 1301 } 1302 1303 // Break it apart. Components below the extension point are unmodified. The 1304 // component containing the extension point becomes a narrower SEXT_INREG. 1305 // Components above it are ashr'd from the component containing the 1306 // extension point. 1307 if (SizeOp0 % NarrowSize != 0) 1308 return UnableToLegalize; 1309 int NumParts = SizeOp0 / NarrowSize; 1310 1311 // List the registers where the destination will be scattered. 1312 SmallVector<Register, 2> DstRegs; 1313 // List the registers where the source will be split. 1314 SmallVector<Register, 2> SrcRegs; 1315 1316 // Create all the temporary registers. 1317 for (int i = 0; i < NumParts; ++i) { 1318 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1319 1320 SrcRegs.push_back(SrcReg); 1321 } 1322 1323 // Explode the big arguments into smaller chunks. 1324 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1325 1326 Register AshrCstReg = 1327 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1328 .getReg(0); 1329 Register FullExtensionReg = 0; 1330 Register PartialExtensionReg = 0; 1331 1332 // Do the operation on each small part. 1333 for (int i = 0; i < NumParts; ++i) { 1334 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1335 DstRegs.push_back(SrcRegs[i]); 1336 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1337 assert(PartialExtensionReg && 1338 "Expected to visit partial extension before full"); 1339 if (FullExtensionReg) { 1340 DstRegs.push_back(FullExtensionReg); 1341 continue; 1342 } 1343 DstRegs.push_back( 1344 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1345 .getReg(0)); 1346 FullExtensionReg = DstRegs.back(); 1347 } else { 1348 DstRegs.push_back( 1349 MIRBuilder 1350 .buildInstr( 1351 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1352 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1353 .getReg(0)); 1354 PartialExtensionReg = DstRegs.back(); 1355 } 1356 } 1357 1358 // Gather the destination registers into the final destination. 1359 Register DstReg = MI.getOperand(0).getReg(); 1360 MIRBuilder.buildMerge(DstReg, DstRegs); 1361 MI.eraseFromParent(); 1362 return Legalized; 1363 } 1364 case TargetOpcode::G_BSWAP: 1365 case TargetOpcode::G_BITREVERSE: { 1366 if (SizeOp0 % NarrowSize != 0) 1367 return UnableToLegalize; 1368 1369 Observer.changingInstr(MI); 1370 SmallVector<Register, 2> SrcRegs, DstRegs; 1371 unsigned NumParts = SizeOp0 / NarrowSize; 1372 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1373 1374 for (unsigned i = 0; i < NumParts; ++i) { 1375 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1376 {SrcRegs[NumParts - 1 - i]}); 1377 DstRegs.push_back(DstPart.getReg(0)); 1378 } 1379 1380 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1381 1382 Observer.changedInstr(MI); 1383 MI.eraseFromParent(); 1384 return Legalized; 1385 } 1386 case TargetOpcode::G_PTR_ADD: 1387 case TargetOpcode::G_PTRMASK: { 1388 if (TypeIdx != 1) 1389 return UnableToLegalize; 1390 Observer.changingInstr(MI); 1391 narrowScalarSrc(MI, NarrowTy, 2); 1392 Observer.changedInstr(MI); 1393 return Legalized; 1394 } 1395 case TargetOpcode::G_FPTOUI: 1396 case TargetOpcode::G_FPTOSI: 1397 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1398 case TargetOpcode::G_FPEXT: 1399 if (TypeIdx != 0) 1400 return UnableToLegalize; 1401 Observer.changingInstr(MI); 1402 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1403 Observer.changedInstr(MI); 1404 return Legalized; 1405 } 1406 } 1407 1408 Register LegalizerHelper::coerceToScalar(Register Val) { 1409 LLT Ty = MRI.getType(Val); 1410 if (Ty.isScalar()) 1411 return Val; 1412 1413 const DataLayout &DL = MIRBuilder.getDataLayout(); 1414 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1415 if (Ty.isPointer()) { 1416 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1417 return Register(); 1418 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1419 } 1420 1421 Register NewVal = Val; 1422 1423 assert(Ty.isVector()); 1424 LLT EltTy = Ty.getElementType(); 1425 if (EltTy.isPointer()) 1426 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1427 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1428 } 1429 1430 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1431 unsigned OpIdx, unsigned ExtOpcode) { 1432 MachineOperand &MO = MI.getOperand(OpIdx); 1433 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1434 MO.setReg(ExtB.getReg(0)); 1435 } 1436 1437 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1438 unsigned OpIdx) { 1439 MachineOperand &MO = MI.getOperand(OpIdx); 1440 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1441 MO.setReg(ExtB.getReg(0)); 1442 } 1443 1444 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1445 unsigned OpIdx, unsigned TruncOpcode) { 1446 MachineOperand &MO = MI.getOperand(OpIdx); 1447 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1448 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1449 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1450 MO.setReg(DstExt); 1451 } 1452 1453 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1454 unsigned OpIdx, unsigned ExtOpcode) { 1455 MachineOperand &MO = MI.getOperand(OpIdx); 1456 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1457 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1458 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1459 MO.setReg(DstTrunc); 1460 } 1461 1462 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1463 unsigned OpIdx) { 1464 MachineOperand &MO = MI.getOperand(OpIdx); 1465 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1466 Register Dst = MO.getReg(); 1467 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1468 MO.setReg(DstExt); 1469 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); 1470 } 1471 1472 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1473 unsigned OpIdx) { 1474 MachineOperand &MO = MI.getOperand(OpIdx); 1475 SmallVector<Register, 8> Regs; 1476 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); 1477 } 1478 1479 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1480 MachineOperand &Op = MI.getOperand(OpIdx); 1481 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1482 } 1483 1484 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1485 MachineOperand &MO = MI.getOperand(OpIdx); 1486 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1487 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1488 MIRBuilder.buildBitcast(MO, CastDst); 1489 MO.setReg(CastDst); 1490 } 1491 1492 LegalizerHelper::LegalizeResult 1493 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1494 LLT WideTy) { 1495 if (TypeIdx != 1) 1496 return UnableToLegalize; 1497 1498 Register DstReg = MI.getOperand(0).getReg(); 1499 LLT DstTy = MRI.getType(DstReg); 1500 if (DstTy.isVector()) 1501 return UnableToLegalize; 1502 1503 Register Src1 = MI.getOperand(1).getReg(); 1504 LLT SrcTy = MRI.getType(Src1); 1505 const int DstSize = DstTy.getSizeInBits(); 1506 const int SrcSize = SrcTy.getSizeInBits(); 1507 const int WideSize = WideTy.getSizeInBits(); 1508 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1509 1510 unsigned NumOps = MI.getNumOperands(); 1511 unsigned NumSrc = MI.getNumOperands() - 1; 1512 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1513 1514 if (WideSize >= DstSize) { 1515 // Directly pack the bits in the target type. 1516 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1517 1518 for (unsigned I = 2; I != NumOps; ++I) { 1519 const unsigned Offset = (I - 1) * PartSize; 1520 1521 Register SrcReg = MI.getOperand(I).getReg(); 1522 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1523 1524 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1525 1526 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1527 MRI.createGenericVirtualRegister(WideTy); 1528 1529 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1530 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1531 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1532 ResultReg = NextResult; 1533 } 1534 1535 if (WideSize > DstSize) 1536 MIRBuilder.buildTrunc(DstReg, ResultReg); 1537 else if (DstTy.isPointer()) 1538 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1539 1540 MI.eraseFromParent(); 1541 return Legalized; 1542 } 1543 1544 // Unmerge the original values to the GCD type, and recombine to the next 1545 // multiple greater than the original type. 1546 // 1547 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1548 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1549 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1550 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1551 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1552 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1553 // %12:_(s12) = G_MERGE_VALUES %10, %11 1554 // 1555 // Padding with undef if necessary: 1556 // 1557 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1558 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1559 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1560 // %7:_(s2) = G_IMPLICIT_DEF 1561 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1562 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1563 // %10:_(s12) = G_MERGE_VALUES %8, %9 1564 1565 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1566 LLT GCDTy = LLT::scalar(GCD); 1567 1568 SmallVector<Register, 8> Parts; 1569 SmallVector<Register, 8> NewMergeRegs; 1570 SmallVector<Register, 8> Unmerges; 1571 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1572 1573 // Decompose the original operands if they don't evenly divide. 1574 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1575 Register SrcReg = MO.getReg(); 1576 if (GCD == SrcSize) { 1577 Unmerges.push_back(SrcReg); 1578 } else { 1579 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1580 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1581 Unmerges.push_back(Unmerge.getReg(J)); 1582 } 1583 } 1584 1585 // Pad with undef to the next size that is a multiple of the requested size. 1586 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1587 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1588 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1589 Unmerges.push_back(UndefReg); 1590 } 1591 1592 const int PartsPerGCD = WideSize / GCD; 1593 1594 // Build merges of each piece. 1595 ArrayRef<Register> Slicer(Unmerges); 1596 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1597 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1598 NewMergeRegs.push_back(Merge.getReg(0)); 1599 } 1600 1601 // A truncate may be necessary if the requested type doesn't evenly divide the 1602 // original result type. 1603 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1604 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1605 } else { 1606 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1607 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1608 } 1609 1610 MI.eraseFromParent(); 1611 return Legalized; 1612 } 1613 1614 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1615 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1616 LLT OrigTy = MRI.getType(OrigReg); 1617 LLT LCMTy = getLCMType(WideTy, OrigTy); 1618 1619 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1620 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1621 1622 Register UnmergeSrc = WideReg; 1623 1624 // Create a merge to the LCM type, padding with undef 1625 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1626 // => 1627 // %1:_(<4 x s32>) = G_FOO 1628 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1629 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1630 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1631 if (NumMergeParts > 1) { 1632 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1633 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1634 MergeParts[0] = WideReg; 1635 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1636 } 1637 1638 // Unmerge to the original register and pad with dead defs. 1639 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1640 UnmergeResults[0] = OrigReg; 1641 for (int I = 1; I != NumUnmergeParts; ++I) 1642 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1643 1644 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1645 return WideReg; 1646 } 1647 1648 LegalizerHelper::LegalizeResult 1649 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1650 LLT WideTy) { 1651 if (TypeIdx != 0) 1652 return UnableToLegalize; 1653 1654 int NumDst = MI.getNumOperands() - 1; 1655 Register SrcReg = MI.getOperand(NumDst).getReg(); 1656 LLT SrcTy = MRI.getType(SrcReg); 1657 if (SrcTy.isVector()) 1658 return UnableToLegalize; 1659 1660 Register Dst0Reg = MI.getOperand(0).getReg(); 1661 LLT DstTy = MRI.getType(Dst0Reg); 1662 if (!DstTy.isScalar()) 1663 return UnableToLegalize; 1664 1665 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1666 if (SrcTy.isPointer()) { 1667 const DataLayout &DL = MIRBuilder.getDataLayout(); 1668 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1669 LLVM_DEBUG( 1670 dbgs() << "Not casting non-integral address space integer\n"); 1671 return UnableToLegalize; 1672 } 1673 1674 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1675 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1676 } 1677 1678 // Widen SrcTy to WideTy. This does not affect the result, but since the 1679 // user requested this size, it is probably better handled than SrcTy and 1680 // should reduce the total number of legalization artifacts. 1681 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1682 SrcTy = WideTy; 1683 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1684 } 1685 1686 // Theres no unmerge type to target. Directly extract the bits from the 1687 // source type 1688 unsigned DstSize = DstTy.getSizeInBits(); 1689 1690 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1691 for (int I = 1; I != NumDst; ++I) { 1692 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1693 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1694 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1695 } 1696 1697 MI.eraseFromParent(); 1698 return Legalized; 1699 } 1700 1701 // Extend the source to a wider type. 1702 LLT LCMTy = getLCMType(SrcTy, WideTy); 1703 1704 Register WideSrc = SrcReg; 1705 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1706 // TODO: If this is an integral address space, cast to integer and anyext. 1707 if (SrcTy.isPointer()) { 1708 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1709 return UnableToLegalize; 1710 } 1711 1712 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1713 } 1714 1715 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1716 1717 // Create a sequence of unmerges and merges to the original results. Since we 1718 // may have widened the source, we will need to pad the results with dead defs 1719 // to cover the source register. 1720 // e.g. widen s48 to s64: 1721 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1722 // 1723 // => 1724 // %4:_(s192) = G_ANYEXT %0:_(s96) 1725 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1726 // ; unpack to GCD type, with extra dead defs 1727 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1728 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1729 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1730 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1731 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1732 const LLT GCDTy = getGCDType(WideTy, DstTy); 1733 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1734 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1735 1736 // Directly unmerge to the destination without going through a GCD type 1737 // if possible 1738 if (PartsPerRemerge == 1) { 1739 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1740 1741 for (int I = 0; I != NumUnmerge; ++I) { 1742 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1743 1744 for (int J = 0; J != PartsPerUnmerge; ++J) { 1745 int Idx = I * PartsPerUnmerge + J; 1746 if (Idx < NumDst) 1747 MIB.addDef(MI.getOperand(Idx).getReg()); 1748 else { 1749 // Create dead def for excess components. 1750 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1751 } 1752 } 1753 1754 MIB.addUse(Unmerge.getReg(I)); 1755 } 1756 } else { 1757 SmallVector<Register, 16> Parts; 1758 for (int J = 0; J != NumUnmerge; ++J) 1759 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1760 1761 SmallVector<Register, 8> RemergeParts; 1762 for (int I = 0; I != NumDst; ++I) { 1763 for (int J = 0; J < PartsPerRemerge; ++J) { 1764 const int Idx = I * PartsPerRemerge + J; 1765 RemergeParts.emplace_back(Parts[Idx]); 1766 } 1767 1768 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1769 RemergeParts.clear(); 1770 } 1771 } 1772 1773 MI.eraseFromParent(); 1774 return Legalized; 1775 } 1776 1777 LegalizerHelper::LegalizeResult 1778 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1779 LLT WideTy) { 1780 Register DstReg = MI.getOperand(0).getReg(); 1781 Register SrcReg = MI.getOperand(1).getReg(); 1782 LLT SrcTy = MRI.getType(SrcReg); 1783 1784 LLT DstTy = MRI.getType(DstReg); 1785 unsigned Offset = MI.getOperand(2).getImm(); 1786 1787 if (TypeIdx == 0) { 1788 if (SrcTy.isVector() || DstTy.isVector()) 1789 return UnableToLegalize; 1790 1791 SrcOp Src(SrcReg); 1792 if (SrcTy.isPointer()) { 1793 // Extracts from pointers can be handled only if they are really just 1794 // simple integers. 1795 const DataLayout &DL = MIRBuilder.getDataLayout(); 1796 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1797 return UnableToLegalize; 1798 1799 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1800 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1801 SrcTy = SrcAsIntTy; 1802 } 1803 1804 if (DstTy.isPointer()) 1805 return UnableToLegalize; 1806 1807 if (Offset == 0) { 1808 // Avoid a shift in the degenerate case. 1809 MIRBuilder.buildTrunc(DstReg, 1810 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1811 MI.eraseFromParent(); 1812 return Legalized; 1813 } 1814 1815 // Do a shift in the source type. 1816 LLT ShiftTy = SrcTy; 1817 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1818 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1819 ShiftTy = WideTy; 1820 } 1821 1822 auto LShr = MIRBuilder.buildLShr( 1823 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1824 MIRBuilder.buildTrunc(DstReg, LShr); 1825 MI.eraseFromParent(); 1826 return Legalized; 1827 } 1828 1829 if (SrcTy.isScalar()) { 1830 Observer.changingInstr(MI); 1831 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1832 Observer.changedInstr(MI); 1833 return Legalized; 1834 } 1835 1836 if (!SrcTy.isVector()) 1837 return UnableToLegalize; 1838 1839 if (DstTy != SrcTy.getElementType()) 1840 return UnableToLegalize; 1841 1842 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1843 return UnableToLegalize; 1844 1845 Observer.changingInstr(MI); 1846 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1847 1848 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1849 Offset); 1850 widenScalarDst(MI, WideTy.getScalarType(), 0); 1851 Observer.changedInstr(MI); 1852 return Legalized; 1853 } 1854 1855 LegalizerHelper::LegalizeResult 1856 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1857 LLT WideTy) { 1858 if (TypeIdx != 0 || WideTy.isVector()) 1859 return UnableToLegalize; 1860 Observer.changingInstr(MI); 1861 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1862 widenScalarDst(MI, WideTy); 1863 Observer.changedInstr(MI); 1864 return Legalized; 1865 } 1866 1867 LegalizerHelper::LegalizeResult 1868 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1869 LLT WideTy) { 1870 if (TypeIdx == 1) 1871 return UnableToLegalize; // TODO 1872 1873 unsigned Opcode; 1874 unsigned ExtOpcode; 1875 Optional<Register> CarryIn = None; 1876 switch (MI.getOpcode()) { 1877 default: 1878 llvm_unreachable("Unexpected opcode!"); 1879 case TargetOpcode::G_SADDO: 1880 Opcode = TargetOpcode::G_ADD; 1881 ExtOpcode = TargetOpcode::G_SEXT; 1882 break; 1883 case TargetOpcode::G_SSUBO: 1884 Opcode = TargetOpcode::G_SUB; 1885 ExtOpcode = TargetOpcode::G_SEXT; 1886 break; 1887 case TargetOpcode::G_UADDO: 1888 Opcode = TargetOpcode::G_ADD; 1889 ExtOpcode = TargetOpcode::G_ZEXT; 1890 break; 1891 case TargetOpcode::G_USUBO: 1892 Opcode = TargetOpcode::G_SUB; 1893 ExtOpcode = TargetOpcode::G_ZEXT; 1894 break; 1895 case TargetOpcode::G_SADDE: 1896 Opcode = TargetOpcode::G_UADDE; 1897 ExtOpcode = TargetOpcode::G_SEXT; 1898 CarryIn = MI.getOperand(4).getReg(); 1899 break; 1900 case TargetOpcode::G_SSUBE: 1901 Opcode = TargetOpcode::G_USUBE; 1902 ExtOpcode = TargetOpcode::G_SEXT; 1903 CarryIn = MI.getOperand(4).getReg(); 1904 break; 1905 case TargetOpcode::G_UADDE: 1906 Opcode = TargetOpcode::G_UADDE; 1907 ExtOpcode = TargetOpcode::G_ZEXT; 1908 CarryIn = MI.getOperand(4).getReg(); 1909 break; 1910 case TargetOpcode::G_USUBE: 1911 Opcode = TargetOpcode::G_USUBE; 1912 ExtOpcode = TargetOpcode::G_ZEXT; 1913 CarryIn = MI.getOperand(4).getReg(); 1914 break; 1915 } 1916 1917 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1918 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1919 // Do the arithmetic in the larger type. 1920 Register NewOp; 1921 if (CarryIn) { 1922 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1923 NewOp = MIRBuilder 1924 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1925 {LHSExt, RHSExt, *CarryIn}) 1926 .getReg(0); 1927 } else { 1928 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1929 } 1930 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1931 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1932 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1933 // There is no overflow if the ExtOp is the same as NewOp. 1934 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1935 // Now trunc the NewOp to the original result. 1936 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1937 MI.eraseFromParent(); 1938 return Legalized; 1939 } 1940 1941 LegalizerHelper::LegalizeResult 1942 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1943 LLT WideTy) { 1944 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1945 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1946 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1947 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1948 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1949 // We can convert this to: 1950 // 1. Any extend iN to iM 1951 // 2. SHL by M-N 1952 // 3. [US][ADD|SUB|SHL]SAT 1953 // 4. L/ASHR by M-N 1954 // 1955 // It may be more efficient to lower this to a min and a max operation in 1956 // the higher precision arithmetic if the promoted operation isn't legal, 1957 // but this decision is up to the target's lowering request. 1958 Register DstReg = MI.getOperand(0).getReg(); 1959 1960 unsigned NewBits = WideTy.getScalarSizeInBits(); 1961 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1962 1963 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1964 // must not left shift the RHS to preserve the shift amount. 1965 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1966 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1967 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1968 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1969 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1970 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1971 1972 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1973 {ShiftL, ShiftR}, MI.getFlags()); 1974 1975 // Use a shift that will preserve the number of sign bits when the trunc is 1976 // folded away. 1977 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1978 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1979 1980 MIRBuilder.buildTrunc(DstReg, Result); 1981 MI.eraseFromParent(); 1982 return Legalized; 1983 } 1984 1985 LegalizerHelper::LegalizeResult 1986 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1987 LLT WideTy) { 1988 if (TypeIdx == 1) 1989 return UnableToLegalize; 1990 1991 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1992 Register Result = MI.getOperand(0).getReg(); 1993 Register OriginalOverflow = MI.getOperand(1).getReg(); 1994 Register LHS = MI.getOperand(2).getReg(); 1995 Register RHS = MI.getOperand(3).getReg(); 1996 LLT SrcTy = MRI.getType(LHS); 1997 LLT OverflowTy = MRI.getType(OriginalOverflow); 1998 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1999 2000 // To determine if the result overflowed in the larger type, we extend the 2001 // input to the larger type, do the multiply (checking if it overflows), 2002 // then also check the high bits of the result to see if overflow happened 2003 // there. 2004 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2005 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 2006 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 2007 2008 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 2009 {LeftOperand, RightOperand}); 2010 auto Mul = Mulo->getOperand(0); 2011 MIRBuilder.buildTrunc(Result, Mul); 2012 2013 MachineInstrBuilder ExtResult; 2014 // Overflow occurred if it occurred in the larger type, or if the high part 2015 // of the result does not zero/sign-extend the low part. Check this second 2016 // possibility first. 2017 if (IsSigned) { 2018 // For signed, overflow occurred when the high part does not sign-extend 2019 // the low part. 2020 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 2021 } else { 2022 // Unsigned overflow occurred when the high part does not zero-extend the 2023 // low part. 2024 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 2025 } 2026 2027 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 2028 // so we don't need to check the overflow result of larger type Mulo. 2029 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 2030 auto Overflow = 2031 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 2032 // Finally check if the multiplication in the larger type itself overflowed. 2033 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 2034 } else { 2035 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 2036 } 2037 MI.eraseFromParent(); 2038 return Legalized; 2039 } 2040 2041 LegalizerHelper::LegalizeResult 2042 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 2043 switch (MI.getOpcode()) { 2044 default: 2045 return UnableToLegalize; 2046 case TargetOpcode::G_ATOMICRMW_XCHG: 2047 case TargetOpcode::G_ATOMICRMW_ADD: 2048 case TargetOpcode::G_ATOMICRMW_SUB: 2049 case TargetOpcode::G_ATOMICRMW_AND: 2050 case TargetOpcode::G_ATOMICRMW_OR: 2051 case TargetOpcode::G_ATOMICRMW_XOR: 2052 case TargetOpcode::G_ATOMICRMW_MIN: 2053 case TargetOpcode::G_ATOMICRMW_MAX: 2054 case TargetOpcode::G_ATOMICRMW_UMIN: 2055 case TargetOpcode::G_ATOMICRMW_UMAX: 2056 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 2057 Observer.changingInstr(MI); 2058 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2059 widenScalarDst(MI, WideTy, 0); 2060 Observer.changedInstr(MI); 2061 return Legalized; 2062 case TargetOpcode::G_ATOMIC_CMPXCHG: 2063 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 2064 Observer.changingInstr(MI); 2065 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2066 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2067 widenScalarDst(MI, WideTy, 0); 2068 Observer.changedInstr(MI); 2069 return Legalized; 2070 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 2071 if (TypeIdx == 0) { 2072 Observer.changingInstr(MI); 2073 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2074 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2075 widenScalarDst(MI, WideTy, 0); 2076 Observer.changedInstr(MI); 2077 return Legalized; 2078 } 2079 assert(TypeIdx == 1 && 2080 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2081 Observer.changingInstr(MI); 2082 widenScalarDst(MI, WideTy, 1); 2083 Observer.changedInstr(MI); 2084 return Legalized; 2085 case TargetOpcode::G_EXTRACT: 2086 return widenScalarExtract(MI, TypeIdx, WideTy); 2087 case TargetOpcode::G_INSERT: 2088 return widenScalarInsert(MI, TypeIdx, WideTy); 2089 case TargetOpcode::G_MERGE_VALUES: 2090 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2091 case TargetOpcode::G_UNMERGE_VALUES: 2092 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2093 case TargetOpcode::G_SADDO: 2094 case TargetOpcode::G_SSUBO: 2095 case TargetOpcode::G_UADDO: 2096 case TargetOpcode::G_USUBO: 2097 case TargetOpcode::G_SADDE: 2098 case TargetOpcode::G_SSUBE: 2099 case TargetOpcode::G_UADDE: 2100 case TargetOpcode::G_USUBE: 2101 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2102 case TargetOpcode::G_UMULO: 2103 case TargetOpcode::G_SMULO: 2104 return widenScalarMulo(MI, TypeIdx, WideTy); 2105 case TargetOpcode::G_SADDSAT: 2106 case TargetOpcode::G_SSUBSAT: 2107 case TargetOpcode::G_SSHLSAT: 2108 case TargetOpcode::G_UADDSAT: 2109 case TargetOpcode::G_USUBSAT: 2110 case TargetOpcode::G_USHLSAT: 2111 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2112 case TargetOpcode::G_CTTZ: 2113 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2114 case TargetOpcode::G_CTLZ: 2115 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2116 case TargetOpcode::G_CTPOP: { 2117 if (TypeIdx == 0) { 2118 Observer.changingInstr(MI); 2119 widenScalarDst(MI, WideTy, 0); 2120 Observer.changedInstr(MI); 2121 return Legalized; 2122 } 2123 2124 Register SrcReg = MI.getOperand(1).getReg(); 2125 2126 // First extend the input. 2127 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || 2128 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF 2129 ? TargetOpcode::G_ANYEXT 2130 : TargetOpcode::G_ZEXT; 2131 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); 2132 LLT CurTy = MRI.getType(SrcReg); 2133 unsigned NewOpc = MI.getOpcode(); 2134 if (NewOpc == TargetOpcode::G_CTTZ) { 2135 // The count is the same in the larger type except if the original 2136 // value was zero. This can be handled by setting the bit just off 2137 // the top of the original type. 2138 auto TopBit = 2139 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2140 MIBSrc = MIRBuilder.buildOr( 2141 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2142 // Now we know the operand is non-zero, use the more relaxed opcode. 2143 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; 2144 } 2145 2146 // Perform the operation at the larger size. 2147 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); 2148 // This is already the correct result for CTPOP and CTTZs 2149 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 2150 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2151 // The correct result is NewOp - (Difference in widety and current ty). 2152 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2153 MIBNewOp = MIRBuilder.buildSub( 2154 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2155 } 2156 2157 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2158 MI.eraseFromParent(); 2159 return Legalized; 2160 } 2161 case TargetOpcode::G_BSWAP: { 2162 Observer.changingInstr(MI); 2163 Register DstReg = MI.getOperand(0).getReg(); 2164 2165 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2166 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2167 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2168 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2169 2170 MI.getOperand(0).setReg(DstExt); 2171 2172 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2173 2174 LLT Ty = MRI.getType(DstReg); 2175 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2176 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2177 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2178 2179 MIRBuilder.buildTrunc(DstReg, ShrReg); 2180 Observer.changedInstr(MI); 2181 return Legalized; 2182 } 2183 case TargetOpcode::G_BITREVERSE: { 2184 Observer.changingInstr(MI); 2185 2186 Register DstReg = MI.getOperand(0).getReg(); 2187 LLT Ty = MRI.getType(DstReg); 2188 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2189 2190 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2191 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2192 MI.getOperand(0).setReg(DstExt); 2193 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2194 2195 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2196 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2197 MIRBuilder.buildTrunc(DstReg, Shift); 2198 Observer.changedInstr(MI); 2199 return Legalized; 2200 } 2201 case TargetOpcode::G_FREEZE: 2202 Observer.changingInstr(MI); 2203 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2204 widenScalarDst(MI, WideTy); 2205 Observer.changedInstr(MI); 2206 return Legalized; 2207 2208 case TargetOpcode::G_ABS: 2209 Observer.changingInstr(MI); 2210 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2211 widenScalarDst(MI, WideTy); 2212 Observer.changedInstr(MI); 2213 return Legalized; 2214 2215 case TargetOpcode::G_ADD: 2216 case TargetOpcode::G_AND: 2217 case TargetOpcode::G_MUL: 2218 case TargetOpcode::G_OR: 2219 case TargetOpcode::G_XOR: 2220 case TargetOpcode::G_SUB: 2221 // Perform operation at larger width (any extension is fines here, high bits 2222 // don't affect the result) and then truncate the result back to the 2223 // original type. 2224 Observer.changingInstr(MI); 2225 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2226 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2227 widenScalarDst(MI, WideTy); 2228 Observer.changedInstr(MI); 2229 return Legalized; 2230 2231 case TargetOpcode::G_SBFX: 2232 case TargetOpcode::G_UBFX: 2233 Observer.changingInstr(MI); 2234 2235 if (TypeIdx == 0) { 2236 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2237 widenScalarDst(MI, WideTy); 2238 } else { 2239 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2240 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2241 } 2242 2243 Observer.changedInstr(MI); 2244 return Legalized; 2245 2246 case TargetOpcode::G_SHL: 2247 Observer.changingInstr(MI); 2248 2249 if (TypeIdx == 0) { 2250 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2251 widenScalarDst(MI, WideTy); 2252 } else { 2253 assert(TypeIdx == 1); 2254 // The "number of bits to shift" operand must preserve its value as an 2255 // unsigned integer: 2256 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2257 } 2258 2259 Observer.changedInstr(MI); 2260 return Legalized; 2261 2262 case TargetOpcode::G_SDIV: 2263 case TargetOpcode::G_SREM: 2264 case TargetOpcode::G_SMIN: 2265 case TargetOpcode::G_SMAX: 2266 Observer.changingInstr(MI); 2267 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2268 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2269 widenScalarDst(MI, WideTy); 2270 Observer.changedInstr(MI); 2271 return Legalized; 2272 2273 case TargetOpcode::G_SDIVREM: 2274 Observer.changingInstr(MI); 2275 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2276 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2277 widenScalarDst(MI, WideTy); 2278 widenScalarDst(MI, WideTy, 1); 2279 Observer.changedInstr(MI); 2280 return Legalized; 2281 2282 case TargetOpcode::G_ASHR: 2283 case TargetOpcode::G_LSHR: 2284 Observer.changingInstr(MI); 2285 2286 if (TypeIdx == 0) { 2287 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2288 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2289 2290 widenScalarSrc(MI, WideTy, 1, CvtOp); 2291 widenScalarDst(MI, WideTy); 2292 } else { 2293 assert(TypeIdx == 1); 2294 // The "number of bits to shift" operand must preserve its value as an 2295 // unsigned integer: 2296 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2297 } 2298 2299 Observer.changedInstr(MI); 2300 return Legalized; 2301 case TargetOpcode::G_UDIV: 2302 case TargetOpcode::G_UREM: 2303 case TargetOpcode::G_UMIN: 2304 case TargetOpcode::G_UMAX: 2305 Observer.changingInstr(MI); 2306 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2307 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2308 widenScalarDst(MI, WideTy); 2309 Observer.changedInstr(MI); 2310 return Legalized; 2311 2312 case TargetOpcode::G_UDIVREM: 2313 Observer.changingInstr(MI); 2314 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2315 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2316 widenScalarDst(MI, WideTy); 2317 widenScalarDst(MI, WideTy, 1); 2318 Observer.changedInstr(MI); 2319 return Legalized; 2320 2321 case TargetOpcode::G_SELECT: 2322 Observer.changingInstr(MI); 2323 if (TypeIdx == 0) { 2324 // Perform operation at larger width (any extension is fine here, high 2325 // bits don't affect the result) and then truncate the result back to the 2326 // original type. 2327 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2328 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2329 widenScalarDst(MI, WideTy); 2330 } else { 2331 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2332 // Explicit extension is required here since high bits affect the result. 2333 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2334 } 2335 Observer.changedInstr(MI); 2336 return Legalized; 2337 2338 case TargetOpcode::G_FPTOSI: 2339 case TargetOpcode::G_FPTOUI: 2340 Observer.changingInstr(MI); 2341 2342 if (TypeIdx == 0) 2343 widenScalarDst(MI, WideTy); 2344 else 2345 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2346 2347 Observer.changedInstr(MI); 2348 return Legalized; 2349 case TargetOpcode::G_SITOFP: 2350 Observer.changingInstr(MI); 2351 2352 if (TypeIdx == 0) 2353 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2354 else 2355 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2356 2357 Observer.changedInstr(MI); 2358 return Legalized; 2359 case TargetOpcode::G_UITOFP: 2360 Observer.changingInstr(MI); 2361 2362 if (TypeIdx == 0) 2363 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2364 else 2365 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2366 2367 Observer.changedInstr(MI); 2368 return Legalized; 2369 case TargetOpcode::G_LOAD: 2370 case TargetOpcode::G_SEXTLOAD: 2371 case TargetOpcode::G_ZEXTLOAD: 2372 Observer.changingInstr(MI); 2373 widenScalarDst(MI, WideTy); 2374 Observer.changedInstr(MI); 2375 return Legalized; 2376 2377 case TargetOpcode::G_STORE: { 2378 if (TypeIdx != 0) 2379 return UnableToLegalize; 2380 2381 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2382 if (!Ty.isScalar()) 2383 return UnableToLegalize; 2384 2385 Observer.changingInstr(MI); 2386 2387 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2388 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2389 widenScalarSrc(MI, WideTy, 0, ExtType); 2390 2391 Observer.changedInstr(MI); 2392 return Legalized; 2393 } 2394 case TargetOpcode::G_CONSTANT: { 2395 MachineOperand &SrcMO = MI.getOperand(1); 2396 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2397 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2398 MRI.getType(MI.getOperand(0).getReg())); 2399 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2400 ExtOpc == TargetOpcode::G_ANYEXT) && 2401 "Illegal Extend"); 2402 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2403 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2404 ? SrcVal.sext(WideTy.getSizeInBits()) 2405 : SrcVal.zext(WideTy.getSizeInBits()); 2406 Observer.changingInstr(MI); 2407 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2408 2409 widenScalarDst(MI, WideTy); 2410 Observer.changedInstr(MI); 2411 return Legalized; 2412 } 2413 case TargetOpcode::G_FCONSTANT: { 2414 MachineOperand &SrcMO = MI.getOperand(1); 2415 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2416 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2417 bool LosesInfo; 2418 switch (WideTy.getSizeInBits()) { 2419 case 32: 2420 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2421 &LosesInfo); 2422 break; 2423 case 64: 2424 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2425 &LosesInfo); 2426 break; 2427 default: 2428 return UnableToLegalize; 2429 } 2430 2431 assert(!LosesInfo && "extend should always be lossless"); 2432 2433 Observer.changingInstr(MI); 2434 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2435 2436 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2437 Observer.changedInstr(MI); 2438 return Legalized; 2439 } 2440 case TargetOpcode::G_IMPLICIT_DEF: { 2441 Observer.changingInstr(MI); 2442 widenScalarDst(MI, WideTy); 2443 Observer.changedInstr(MI); 2444 return Legalized; 2445 } 2446 case TargetOpcode::G_BRCOND: 2447 Observer.changingInstr(MI); 2448 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2449 Observer.changedInstr(MI); 2450 return Legalized; 2451 2452 case TargetOpcode::G_FCMP: 2453 Observer.changingInstr(MI); 2454 if (TypeIdx == 0) 2455 widenScalarDst(MI, WideTy); 2456 else { 2457 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2458 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2459 } 2460 Observer.changedInstr(MI); 2461 return Legalized; 2462 2463 case TargetOpcode::G_ICMP: 2464 Observer.changingInstr(MI); 2465 if (TypeIdx == 0) 2466 widenScalarDst(MI, WideTy); 2467 else { 2468 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2469 MI.getOperand(1).getPredicate())) 2470 ? TargetOpcode::G_SEXT 2471 : TargetOpcode::G_ZEXT; 2472 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2473 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2474 } 2475 Observer.changedInstr(MI); 2476 return Legalized; 2477 2478 case TargetOpcode::G_PTR_ADD: 2479 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2480 Observer.changingInstr(MI); 2481 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2482 Observer.changedInstr(MI); 2483 return Legalized; 2484 2485 case TargetOpcode::G_PHI: { 2486 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2487 2488 Observer.changingInstr(MI); 2489 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2490 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2491 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2492 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2493 } 2494 2495 MachineBasicBlock &MBB = *MI.getParent(); 2496 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2497 widenScalarDst(MI, WideTy); 2498 Observer.changedInstr(MI); 2499 return Legalized; 2500 } 2501 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2502 if (TypeIdx == 0) { 2503 Register VecReg = MI.getOperand(1).getReg(); 2504 LLT VecTy = MRI.getType(VecReg); 2505 Observer.changingInstr(MI); 2506 2507 widenScalarSrc( 2508 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2509 TargetOpcode::G_ANYEXT); 2510 2511 widenScalarDst(MI, WideTy, 0); 2512 Observer.changedInstr(MI); 2513 return Legalized; 2514 } 2515 2516 if (TypeIdx != 2) 2517 return UnableToLegalize; 2518 Observer.changingInstr(MI); 2519 // TODO: Probably should be zext 2520 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2521 Observer.changedInstr(MI); 2522 return Legalized; 2523 } 2524 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2525 if (TypeIdx == 1) { 2526 Observer.changingInstr(MI); 2527 2528 Register VecReg = MI.getOperand(1).getReg(); 2529 LLT VecTy = MRI.getType(VecReg); 2530 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2531 2532 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2533 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2534 widenScalarDst(MI, WideVecTy, 0); 2535 Observer.changedInstr(MI); 2536 return Legalized; 2537 } 2538 2539 if (TypeIdx == 2) { 2540 Observer.changingInstr(MI); 2541 // TODO: Probably should be zext 2542 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2543 Observer.changedInstr(MI); 2544 return Legalized; 2545 } 2546 2547 return UnableToLegalize; 2548 } 2549 case TargetOpcode::G_FADD: 2550 case TargetOpcode::G_FMUL: 2551 case TargetOpcode::G_FSUB: 2552 case TargetOpcode::G_FMA: 2553 case TargetOpcode::G_FMAD: 2554 case TargetOpcode::G_FNEG: 2555 case TargetOpcode::G_FABS: 2556 case TargetOpcode::G_FCANONICALIZE: 2557 case TargetOpcode::G_FMINNUM: 2558 case TargetOpcode::G_FMAXNUM: 2559 case TargetOpcode::G_FMINNUM_IEEE: 2560 case TargetOpcode::G_FMAXNUM_IEEE: 2561 case TargetOpcode::G_FMINIMUM: 2562 case TargetOpcode::G_FMAXIMUM: 2563 case TargetOpcode::G_FDIV: 2564 case TargetOpcode::G_FREM: 2565 case TargetOpcode::G_FCEIL: 2566 case TargetOpcode::G_FFLOOR: 2567 case TargetOpcode::G_FCOS: 2568 case TargetOpcode::G_FSIN: 2569 case TargetOpcode::G_FLOG10: 2570 case TargetOpcode::G_FLOG: 2571 case TargetOpcode::G_FLOG2: 2572 case TargetOpcode::G_FRINT: 2573 case TargetOpcode::G_FNEARBYINT: 2574 case TargetOpcode::G_FSQRT: 2575 case TargetOpcode::G_FEXP: 2576 case TargetOpcode::G_FEXP2: 2577 case TargetOpcode::G_FPOW: 2578 case TargetOpcode::G_INTRINSIC_TRUNC: 2579 case TargetOpcode::G_INTRINSIC_ROUND: 2580 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2581 assert(TypeIdx == 0); 2582 Observer.changingInstr(MI); 2583 2584 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2585 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2586 2587 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2588 Observer.changedInstr(MI); 2589 return Legalized; 2590 case TargetOpcode::G_FPOWI: { 2591 if (TypeIdx != 0) 2592 return UnableToLegalize; 2593 Observer.changingInstr(MI); 2594 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2595 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2596 Observer.changedInstr(MI); 2597 return Legalized; 2598 } 2599 case TargetOpcode::G_INTTOPTR: 2600 if (TypeIdx != 1) 2601 return UnableToLegalize; 2602 2603 Observer.changingInstr(MI); 2604 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2605 Observer.changedInstr(MI); 2606 return Legalized; 2607 case TargetOpcode::G_PTRTOINT: 2608 if (TypeIdx != 0) 2609 return UnableToLegalize; 2610 2611 Observer.changingInstr(MI); 2612 widenScalarDst(MI, WideTy, 0); 2613 Observer.changedInstr(MI); 2614 return Legalized; 2615 case TargetOpcode::G_BUILD_VECTOR: { 2616 Observer.changingInstr(MI); 2617 2618 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2619 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2620 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2621 2622 // Avoid changing the result vector type if the source element type was 2623 // requested. 2624 if (TypeIdx == 1) { 2625 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2626 } else { 2627 widenScalarDst(MI, WideTy, 0); 2628 } 2629 2630 Observer.changedInstr(MI); 2631 return Legalized; 2632 } 2633 case TargetOpcode::G_SEXT_INREG: 2634 if (TypeIdx != 0) 2635 return UnableToLegalize; 2636 2637 Observer.changingInstr(MI); 2638 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2639 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2640 Observer.changedInstr(MI); 2641 return Legalized; 2642 case TargetOpcode::G_PTRMASK: { 2643 if (TypeIdx != 1) 2644 return UnableToLegalize; 2645 Observer.changingInstr(MI); 2646 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2647 Observer.changedInstr(MI); 2648 return Legalized; 2649 } 2650 } 2651 } 2652 2653 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2654 MachineIRBuilder &B, Register Src, LLT Ty) { 2655 auto Unmerge = B.buildUnmerge(Ty, Src); 2656 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2657 Pieces.push_back(Unmerge.getReg(I)); 2658 } 2659 2660 LegalizerHelper::LegalizeResult 2661 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2662 Register Dst = MI.getOperand(0).getReg(); 2663 Register Src = MI.getOperand(1).getReg(); 2664 LLT DstTy = MRI.getType(Dst); 2665 LLT SrcTy = MRI.getType(Src); 2666 2667 if (SrcTy.isVector()) { 2668 LLT SrcEltTy = SrcTy.getElementType(); 2669 SmallVector<Register, 8> SrcRegs; 2670 2671 if (DstTy.isVector()) { 2672 int NumDstElt = DstTy.getNumElements(); 2673 int NumSrcElt = SrcTy.getNumElements(); 2674 2675 LLT DstEltTy = DstTy.getElementType(); 2676 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2677 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2678 2679 // If there's an element size mismatch, insert intermediate casts to match 2680 // the result element type. 2681 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2682 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2683 // 2684 // => 2685 // 2686 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2687 // %3:_(<2 x s8>) = G_BITCAST %2 2688 // %4:_(<2 x s8>) = G_BITCAST %3 2689 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2690 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2691 SrcPartTy = SrcEltTy; 2692 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2693 // 2694 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2695 // 2696 // => 2697 // 2698 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2699 // %3:_(s16) = G_BITCAST %2 2700 // %4:_(s16) = G_BITCAST %3 2701 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2702 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2703 DstCastTy = DstEltTy; 2704 } 2705 2706 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2707 for (Register &SrcReg : SrcRegs) 2708 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2709 } else 2710 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2711 2712 MIRBuilder.buildMerge(Dst, SrcRegs); 2713 MI.eraseFromParent(); 2714 return Legalized; 2715 } 2716 2717 if (DstTy.isVector()) { 2718 SmallVector<Register, 8> SrcRegs; 2719 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2720 MIRBuilder.buildMerge(Dst, SrcRegs); 2721 MI.eraseFromParent(); 2722 return Legalized; 2723 } 2724 2725 return UnableToLegalize; 2726 } 2727 2728 /// Figure out the bit offset into a register when coercing a vector index for 2729 /// the wide element type. This is only for the case when promoting vector to 2730 /// one with larger elements. 2731 // 2732 /// 2733 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2734 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2735 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2736 Register Idx, 2737 unsigned NewEltSize, 2738 unsigned OldEltSize) { 2739 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2740 LLT IdxTy = B.getMRI()->getType(Idx); 2741 2742 // Now figure out the amount we need to shift to get the target bits. 2743 auto OffsetMask = B.buildConstant( 2744 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); 2745 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2746 return B.buildShl(IdxTy, OffsetIdx, 2747 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2748 } 2749 2750 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2751 /// is casting to a vector with a smaller element size, perform multiple element 2752 /// extracts and merge the results. If this is coercing to a vector with larger 2753 /// elements, index the bitcasted vector and extract the target element with bit 2754 /// operations. This is intended to force the indexing in the native register 2755 /// size for architectures that can dynamically index the register file. 2756 LegalizerHelper::LegalizeResult 2757 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2758 LLT CastTy) { 2759 if (TypeIdx != 1) 2760 return UnableToLegalize; 2761 2762 Register Dst = MI.getOperand(0).getReg(); 2763 Register SrcVec = MI.getOperand(1).getReg(); 2764 Register Idx = MI.getOperand(2).getReg(); 2765 LLT SrcVecTy = MRI.getType(SrcVec); 2766 LLT IdxTy = MRI.getType(Idx); 2767 2768 LLT SrcEltTy = SrcVecTy.getElementType(); 2769 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2770 unsigned OldNumElts = SrcVecTy.getNumElements(); 2771 2772 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2773 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2774 2775 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2776 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2777 if (NewNumElts > OldNumElts) { 2778 // Decreasing the vector element size 2779 // 2780 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2781 // => 2782 // v4i32:castx = bitcast x:v2i64 2783 // 2784 // i64 = bitcast 2785 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2786 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2787 // 2788 if (NewNumElts % OldNumElts != 0) 2789 return UnableToLegalize; 2790 2791 // Type of the intermediate result vector. 2792 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2793 LLT MidTy = 2794 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2795 2796 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2797 2798 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2799 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2800 2801 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2802 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2803 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2804 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2805 NewOps[I] = Elt.getReg(0); 2806 } 2807 2808 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2809 MIRBuilder.buildBitcast(Dst, NewVec); 2810 MI.eraseFromParent(); 2811 return Legalized; 2812 } 2813 2814 if (NewNumElts < OldNumElts) { 2815 if (NewEltSize % OldEltSize != 0) 2816 return UnableToLegalize; 2817 2818 // This only depends on powers of 2 because we use bit tricks to figure out 2819 // the bit offset we need to shift to get the target element. A general 2820 // expansion could emit division/multiply. 2821 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2822 return UnableToLegalize; 2823 2824 // Increasing the vector element size. 2825 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2826 // 2827 // => 2828 // 2829 // %cast = G_BITCAST %vec 2830 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2831 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2832 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2833 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2834 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2835 // %elt = G_TRUNC %elt_bits 2836 2837 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2838 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2839 2840 // Divide to get the index in the wider element type. 2841 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2842 2843 Register WideElt = CastVec; 2844 if (CastTy.isVector()) { 2845 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2846 ScaledIdx).getReg(0); 2847 } 2848 2849 // Compute the bit offset into the register of the target element. 2850 Register OffsetBits = getBitcastWiderVectorElementOffset( 2851 MIRBuilder, Idx, NewEltSize, OldEltSize); 2852 2853 // Shift the wide element to get the target element. 2854 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2855 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2856 MI.eraseFromParent(); 2857 return Legalized; 2858 } 2859 2860 return UnableToLegalize; 2861 } 2862 2863 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2864 /// TargetReg, while preserving other bits in \p TargetReg. 2865 /// 2866 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2867 static Register buildBitFieldInsert(MachineIRBuilder &B, 2868 Register TargetReg, Register InsertReg, 2869 Register OffsetBits) { 2870 LLT TargetTy = B.getMRI()->getType(TargetReg); 2871 LLT InsertTy = B.getMRI()->getType(InsertReg); 2872 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2873 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2874 2875 // Produce a bitmask of the value to insert 2876 auto EltMask = B.buildConstant( 2877 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2878 InsertTy.getSizeInBits())); 2879 // Shift it into position 2880 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2881 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2882 2883 // Clear out the bits in the wide element 2884 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2885 2886 // The value to insert has all zeros already, so stick it into the masked 2887 // wide element. 2888 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2889 } 2890 2891 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2892 /// is increasing the element size, perform the indexing in the target element 2893 /// type, and use bit operations to insert at the element position. This is 2894 /// intended for architectures that can dynamically index the register file and 2895 /// want to force indexing in the native register size. 2896 LegalizerHelper::LegalizeResult 2897 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2898 LLT CastTy) { 2899 if (TypeIdx != 0) 2900 return UnableToLegalize; 2901 2902 Register Dst = MI.getOperand(0).getReg(); 2903 Register SrcVec = MI.getOperand(1).getReg(); 2904 Register Val = MI.getOperand(2).getReg(); 2905 Register Idx = MI.getOperand(3).getReg(); 2906 2907 LLT VecTy = MRI.getType(Dst); 2908 LLT IdxTy = MRI.getType(Idx); 2909 2910 LLT VecEltTy = VecTy.getElementType(); 2911 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2912 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2913 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2914 2915 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2916 unsigned OldNumElts = VecTy.getNumElements(); 2917 2918 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2919 if (NewNumElts < OldNumElts) { 2920 if (NewEltSize % OldEltSize != 0) 2921 return UnableToLegalize; 2922 2923 // This only depends on powers of 2 because we use bit tricks to figure out 2924 // the bit offset we need to shift to get the target element. A general 2925 // expansion could emit division/multiply. 2926 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2927 return UnableToLegalize; 2928 2929 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2930 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2931 2932 // Divide to get the index in the wider element type. 2933 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2934 2935 Register ExtractedElt = CastVec; 2936 if (CastTy.isVector()) { 2937 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2938 ScaledIdx).getReg(0); 2939 } 2940 2941 // Compute the bit offset into the register of the target element. 2942 Register OffsetBits = getBitcastWiderVectorElementOffset( 2943 MIRBuilder, Idx, NewEltSize, OldEltSize); 2944 2945 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2946 Val, OffsetBits); 2947 if (CastTy.isVector()) { 2948 InsertedElt = MIRBuilder.buildInsertVectorElement( 2949 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2950 } 2951 2952 MIRBuilder.buildBitcast(Dst, InsertedElt); 2953 MI.eraseFromParent(); 2954 return Legalized; 2955 } 2956 2957 return UnableToLegalize; 2958 } 2959 2960 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 2961 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2962 Register DstReg = LoadMI.getDstReg(); 2963 Register PtrReg = LoadMI.getPointerReg(); 2964 LLT DstTy = MRI.getType(DstReg); 2965 MachineMemOperand &MMO = LoadMI.getMMO(); 2966 LLT MemTy = MMO.getMemoryType(); 2967 MachineFunction &MF = MIRBuilder.getMF(); 2968 2969 unsigned MemSizeInBits = MemTy.getSizeInBits(); 2970 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2971 2972 if (MemSizeInBits != MemStoreSizeInBits) { 2973 if (MemTy.isVector()) 2974 return UnableToLegalize; 2975 2976 // Promote to a byte-sized load if not loading an integral number of 2977 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2978 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 2979 MachineMemOperand *NewMMO = 2980 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 2981 2982 Register LoadReg = DstReg; 2983 LLT LoadTy = DstTy; 2984 2985 // If this wasn't already an extending load, we need to widen the result 2986 // register to avoid creating a load with a narrower result than the source. 2987 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 2988 LoadTy = WideMemTy; 2989 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 2990 } 2991 2992 if (isa<GSExtLoad>(LoadMI)) { 2993 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2994 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 2995 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) { 2996 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2997 // The extra bits are guaranteed to be zero, since we stored them that 2998 // way. A zext load from Wide thus automatically gives zext from MemVT. 2999 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 3000 } else { 3001 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 3002 } 3003 3004 if (DstTy != LoadTy) 3005 MIRBuilder.buildTrunc(DstReg, LoadReg); 3006 3007 LoadMI.eraseFromParent(); 3008 return Legalized; 3009 } 3010 3011 // Big endian lowering not implemented. 3012 if (MIRBuilder.getDataLayout().isBigEndian()) 3013 return UnableToLegalize; 3014 3015 // This load needs splitting into power of 2 sized loads. 3016 // 3017 // Our strategy here is to generate anyextending loads for the smaller 3018 // types up to next power-2 result type, and then combine the two larger 3019 // result values together, before truncating back down to the non-pow-2 3020 // type. 3021 // E.g. v1 = i24 load => 3022 // v2 = i32 zextload (2 byte) 3023 // v3 = i32 load (1 byte) 3024 // v4 = i32 shl v3, 16 3025 // v5 = i32 or v4, v2 3026 // v1 = i24 trunc v5 3027 // By doing this we generate the correct truncate which should get 3028 // combined away as an artifact with a matching extend. 3029 3030 uint64_t LargeSplitSize, SmallSplitSize; 3031 3032 if (!isPowerOf2_32(MemSizeInBits)) { 3033 // This load needs splitting into power of 2 sized loads. 3034 LargeSplitSize = PowerOf2Floor(MemSizeInBits); 3035 SmallSplitSize = MemSizeInBits - LargeSplitSize; 3036 } else { 3037 // This is already a power of 2, but we still need to split this in half. 3038 // 3039 // Assume we're being asked to decompose an unaligned load. 3040 // TODO: If this requires multiple splits, handle them all at once. 3041 auto &Ctx = MF.getFunction().getContext(); 3042 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3043 return UnableToLegalize; 3044 3045 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3046 } 3047 3048 if (MemTy.isVector()) { 3049 // TODO: Handle vector extloads 3050 if (MemTy != DstTy) 3051 return UnableToLegalize; 3052 3053 // TODO: We can do better than scalarizing the vector and at least split it 3054 // in half. 3055 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); 3056 } 3057 3058 MachineMemOperand *LargeMMO = 3059 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3060 MachineMemOperand *SmallMMO = 3061 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3062 3063 LLT PtrTy = MRI.getType(PtrReg); 3064 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 3065 LLT AnyExtTy = LLT::scalar(AnyExtSize); 3066 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 3067 PtrReg, *LargeMMO); 3068 3069 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 3070 LargeSplitSize / 8); 3071 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 3072 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 3073 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 3074 SmallPtr, *SmallMMO); 3075 3076 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 3077 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 3078 3079 if (AnyExtTy == DstTy) 3080 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 3081 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { 3082 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3083 MIRBuilder.buildTrunc(DstReg, {Or}); 3084 } else { 3085 assert(DstTy.isPointer() && "expected pointer"); 3086 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3087 3088 // FIXME: We currently consider this to be illegal for non-integral address 3089 // spaces, but we need still need a way to reinterpret the bits. 3090 MIRBuilder.buildIntToPtr(DstReg, Or); 3091 } 3092 3093 LoadMI.eraseFromParent(); 3094 return Legalized; 3095 } 3096 3097 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 3098 // Lower a non-power of 2 store into multiple pow-2 stores. 3099 // E.g. split an i24 store into an i16 store + i8 store. 3100 // We do this by first extending the stored value to the next largest power 3101 // of 2 type, and then using truncating stores to store the components. 3102 // By doing this, likewise with G_LOAD, generate an extend that can be 3103 // artifact-combined away instead of leaving behind extracts. 3104 Register SrcReg = StoreMI.getValueReg(); 3105 Register PtrReg = StoreMI.getPointerReg(); 3106 LLT SrcTy = MRI.getType(SrcReg); 3107 MachineFunction &MF = MIRBuilder.getMF(); 3108 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 3109 LLT MemTy = MMO.getMemoryType(); 3110 3111 unsigned StoreWidth = MemTy.getSizeInBits(); 3112 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3113 3114 if (StoreWidth != StoreSizeInBits) { 3115 if (SrcTy.isVector()) 3116 return UnableToLegalize; 3117 3118 // Promote to a byte-sized store with upper bits zero if not 3119 // storing an integral number of bytes. For example, promote 3120 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 3121 LLT WideTy = LLT::scalar(StoreSizeInBits); 3122 3123 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 3124 // Avoid creating a store with a narrower source than result. 3125 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 3126 SrcTy = WideTy; 3127 } 3128 3129 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 3130 3131 MachineMemOperand *NewMMO = 3132 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 3133 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 3134 StoreMI.eraseFromParent(); 3135 return Legalized; 3136 } 3137 3138 if (MemTy.isVector()) { 3139 // TODO: Handle vector trunc stores 3140 if (MemTy != SrcTy) 3141 return UnableToLegalize; 3142 3143 // TODO: We can do better than scalarizing the vector and at least split it 3144 // in half. 3145 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); 3146 } 3147 3148 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3149 uint64_t LargeSplitSize, SmallSplitSize; 3150 3151 if (!isPowerOf2_32(MemSizeInBits)) { 3152 LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); 3153 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 3154 } else { 3155 auto &Ctx = MF.getFunction().getContext(); 3156 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3157 return UnableToLegalize; // Don't know what we're being asked to do. 3158 3159 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3160 } 3161 3162 // Extend to the next pow-2. If this store was itself the result of lowering, 3163 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 3164 // that's wider than the stored size. 3165 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); 3166 const LLT NewSrcTy = LLT::scalar(AnyExtSize); 3167 3168 if (SrcTy.isPointer()) { 3169 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); 3170 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); 3171 } 3172 3173 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 3174 3175 // Obtain the smaller value by shifting away the larger value. 3176 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 3177 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 3178 3179 // Generate the PtrAdd and truncating stores. 3180 LLT PtrTy = MRI.getType(PtrReg); 3181 auto OffsetCst = MIRBuilder.buildConstant( 3182 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 3183 auto SmallPtr = 3184 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); 3185 3186 MachineMemOperand *LargeMMO = 3187 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3188 MachineMemOperand *SmallMMO = 3189 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3190 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 3191 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 3192 StoreMI.eraseFromParent(); 3193 return Legalized; 3194 } 3195 3196 LegalizerHelper::LegalizeResult 3197 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 3198 switch (MI.getOpcode()) { 3199 case TargetOpcode::G_LOAD: { 3200 if (TypeIdx != 0) 3201 return UnableToLegalize; 3202 MachineMemOperand &MMO = **MI.memoperands_begin(); 3203 3204 // Not sure how to interpret a bitcast of an extending load. 3205 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3206 return UnableToLegalize; 3207 3208 Observer.changingInstr(MI); 3209 bitcastDst(MI, CastTy, 0); 3210 MMO.setType(CastTy); 3211 Observer.changedInstr(MI); 3212 return Legalized; 3213 } 3214 case TargetOpcode::G_STORE: { 3215 if (TypeIdx != 0) 3216 return UnableToLegalize; 3217 3218 MachineMemOperand &MMO = **MI.memoperands_begin(); 3219 3220 // Not sure how to interpret a bitcast of a truncating store. 3221 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3222 return UnableToLegalize; 3223 3224 Observer.changingInstr(MI); 3225 bitcastSrc(MI, CastTy, 0); 3226 MMO.setType(CastTy); 3227 Observer.changedInstr(MI); 3228 return Legalized; 3229 } 3230 case TargetOpcode::G_SELECT: { 3231 if (TypeIdx != 0) 3232 return UnableToLegalize; 3233 3234 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3235 LLVM_DEBUG( 3236 dbgs() << "bitcast action not implemented for vector select\n"); 3237 return UnableToLegalize; 3238 } 3239 3240 Observer.changingInstr(MI); 3241 bitcastSrc(MI, CastTy, 2); 3242 bitcastSrc(MI, CastTy, 3); 3243 bitcastDst(MI, CastTy, 0); 3244 Observer.changedInstr(MI); 3245 return Legalized; 3246 } 3247 case TargetOpcode::G_AND: 3248 case TargetOpcode::G_OR: 3249 case TargetOpcode::G_XOR: { 3250 Observer.changingInstr(MI); 3251 bitcastSrc(MI, CastTy, 1); 3252 bitcastSrc(MI, CastTy, 2); 3253 bitcastDst(MI, CastTy, 0); 3254 Observer.changedInstr(MI); 3255 return Legalized; 3256 } 3257 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3258 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3259 case TargetOpcode::G_INSERT_VECTOR_ELT: 3260 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3261 default: 3262 return UnableToLegalize; 3263 } 3264 } 3265 3266 // Legalize an instruction by changing the opcode in place. 3267 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3268 Observer.changingInstr(MI); 3269 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3270 Observer.changedInstr(MI); 3271 } 3272 3273 LegalizerHelper::LegalizeResult 3274 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3275 using namespace TargetOpcode; 3276 3277 switch(MI.getOpcode()) { 3278 default: 3279 return UnableToLegalize; 3280 case TargetOpcode::G_BITCAST: 3281 return lowerBitcast(MI); 3282 case TargetOpcode::G_SREM: 3283 case TargetOpcode::G_UREM: { 3284 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3285 auto Quot = 3286 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3287 {MI.getOperand(1), MI.getOperand(2)}); 3288 3289 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3290 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3291 MI.eraseFromParent(); 3292 return Legalized; 3293 } 3294 case TargetOpcode::G_SADDO: 3295 case TargetOpcode::G_SSUBO: 3296 return lowerSADDO_SSUBO(MI); 3297 case TargetOpcode::G_UMULH: 3298 case TargetOpcode::G_SMULH: 3299 return lowerSMULH_UMULH(MI); 3300 case TargetOpcode::G_SMULO: 3301 case TargetOpcode::G_UMULO: { 3302 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3303 // result. 3304 Register Res = MI.getOperand(0).getReg(); 3305 Register Overflow = MI.getOperand(1).getReg(); 3306 Register LHS = MI.getOperand(2).getReg(); 3307 Register RHS = MI.getOperand(3).getReg(); 3308 LLT Ty = MRI.getType(Res); 3309 3310 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3311 ? TargetOpcode::G_SMULH 3312 : TargetOpcode::G_UMULH; 3313 3314 Observer.changingInstr(MI); 3315 const auto &TII = MIRBuilder.getTII(); 3316 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3317 MI.RemoveOperand(1); 3318 Observer.changedInstr(MI); 3319 3320 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3321 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3322 3323 // Move insert point forward so we can use the Res register if needed. 3324 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3325 3326 // For *signed* multiply, overflow is detected by checking: 3327 // (hi != (lo >> bitwidth-1)) 3328 if (Opcode == TargetOpcode::G_SMULH) { 3329 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3330 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3331 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3332 } else { 3333 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3334 } 3335 return Legalized; 3336 } 3337 case TargetOpcode::G_FNEG: { 3338 Register Res = MI.getOperand(0).getReg(); 3339 LLT Ty = MRI.getType(Res); 3340 3341 // TODO: Handle vector types once we are able to 3342 // represent them. 3343 if (Ty.isVector()) 3344 return UnableToLegalize; 3345 auto SignMask = 3346 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3347 Register SubByReg = MI.getOperand(1).getReg(); 3348 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3349 MI.eraseFromParent(); 3350 return Legalized; 3351 } 3352 case TargetOpcode::G_FSUB: { 3353 Register Res = MI.getOperand(0).getReg(); 3354 LLT Ty = MRI.getType(Res); 3355 3356 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3357 // First, check if G_FNEG is marked as Lower. If so, we may 3358 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3359 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3360 return UnableToLegalize; 3361 Register LHS = MI.getOperand(1).getReg(); 3362 Register RHS = MI.getOperand(2).getReg(); 3363 Register Neg = MRI.createGenericVirtualRegister(Ty); 3364 MIRBuilder.buildFNeg(Neg, RHS); 3365 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3366 MI.eraseFromParent(); 3367 return Legalized; 3368 } 3369 case TargetOpcode::G_FMAD: 3370 return lowerFMad(MI); 3371 case TargetOpcode::G_FFLOOR: 3372 return lowerFFloor(MI); 3373 case TargetOpcode::G_INTRINSIC_ROUND: 3374 return lowerIntrinsicRound(MI); 3375 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3376 // Since round even is the assumed rounding mode for unconstrained FP 3377 // operations, rint and roundeven are the same operation. 3378 changeOpcode(MI, TargetOpcode::G_FRINT); 3379 return Legalized; 3380 } 3381 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3382 Register OldValRes = MI.getOperand(0).getReg(); 3383 Register SuccessRes = MI.getOperand(1).getReg(); 3384 Register Addr = MI.getOperand(2).getReg(); 3385 Register CmpVal = MI.getOperand(3).getReg(); 3386 Register NewVal = MI.getOperand(4).getReg(); 3387 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3388 **MI.memoperands_begin()); 3389 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3390 MI.eraseFromParent(); 3391 return Legalized; 3392 } 3393 case TargetOpcode::G_LOAD: 3394 case TargetOpcode::G_SEXTLOAD: 3395 case TargetOpcode::G_ZEXTLOAD: 3396 return lowerLoad(cast<GAnyLoad>(MI)); 3397 case TargetOpcode::G_STORE: 3398 return lowerStore(cast<GStore>(MI)); 3399 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3400 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3401 case TargetOpcode::G_CTLZ: 3402 case TargetOpcode::G_CTTZ: 3403 case TargetOpcode::G_CTPOP: 3404 return lowerBitCount(MI); 3405 case G_UADDO: { 3406 Register Res = MI.getOperand(0).getReg(); 3407 Register CarryOut = MI.getOperand(1).getReg(); 3408 Register LHS = MI.getOperand(2).getReg(); 3409 Register RHS = MI.getOperand(3).getReg(); 3410 3411 MIRBuilder.buildAdd(Res, LHS, RHS); 3412 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3413 3414 MI.eraseFromParent(); 3415 return Legalized; 3416 } 3417 case G_UADDE: { 3418 Register Res = MI.getOperand(0).getReg(); 3419 Register CarryOut = MI.getOperand(1).getReg(); 3420 Register LHS = MI.getOperand(2).getReg(); 3421 Register RHS = MI.getOperand(3).getReg(); 3422 Register CarryIn = MI.getOperand(4).getReg(); 3423 LLT Ty = MRI.getType(Res); 3424 3425 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3426 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3427 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3428 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3429 3430 MI.eraseFromParent(); 3431 return Legalized; 3432 } 3433 case G_USUBO: { 3434 Register Res = MI.getOperand(0).getReg(); 3435 Register BorrowOut = MI.getOperand(1).getReg(); 3436 Register LHS = MI.getOperand(2).getReg(); 3437 Register RHS = MI.getOperand(3).getReg(); 3438 3439 MIRBuilder.buildSub(Res, LHS, RHS); 3440 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3441 3442 MI.eraseFromParent(); 3443 return Legalized; 3444 } 3445 case G_USUBE: { 3446 Register Res = MI.getOperand(0).getReg(); 3447 Register BorrowOut = MI.getOperand(1).getReg(); 3448 Register LHS = MI.getOperand(2).getReg(); 3449 Register RHS = MI.getOperand(3).getReg(); 3450 Register BorrowIn = MI.getOperand(4).getReg(); 3451 const LLT CondTy = MRI.getType(BorrowOut); 3452 const LLT Ty = MRI.getType(Res); 3453 3454 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3455 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3456 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3457 3458 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3459 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3460 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3461 3462 MI.eraseFromParent(); 3463 return Legalized; 3464 } 3465 case G_UITOFP: 3466 return lowerUITOFP(MI); 3467 case G_SITOFP: 3468 return lowerSITOFP(MI); 3469 case G_FPTOUI: 3470 return lowerFPTOUI(MI); 3471 case G_FPTOSI: 3472 return lowerFPTOSI(MI); 3473 case G_FPTRUNC: 3474 return lowerFPTRUNC(MI); 3475 case G_FPOWI: 3476 return lowerFPOWI(MI); 3477 case G_SMIN: 3478 case G_SMAX: 3479 case G_UMIN: 3480 case G_UMAX: 3481 return lowerMinMax(MI); 3482 case G_FCOPYSIGN: 3483 return lowerFCopySign(MI); 3484 case G_FMINNUM: 3485 case G_FMAXNUM: 3486 return lowerFMinNumMaxNum(MI); 3487 case G_MERGE_VALUES: 3488 return lowerMergeValues(MI); 3489 case G_UNMERGE_VALUES: 3490 return lowerUnmergeValues(MI); 3491 case TargetOpcode::G_SEXT_INREG: { 3492 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3493 int64_t SizeInBits = MI.getOperand(2).getImm(); 3494 3495 Register DstReg = MI.getOperand(0).getReg(); 3496 Register SrcReg = MI.getOperand(1).getReg(); 3497 LLT DstTy = MRI.getType(DstReg); 3498 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3499 3500 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3501 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3502 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3503 MI.eraseFromParent(); 3504 return Legalized; 3505 } 3506 case G_EXTRACT_VECTOR_ELT: 3507 case G_INSERT_VECTOR_ELT: 3508 return lowerExtractInsertVectorElt(MI); 3509 case G_SHUFFLE_VECTOR: 3510 return lowerShuffleVector(MI); 3511 case G_DYN_STACKALLOC: 3512 return lowerDynStackAlloc(MI); 3513 case G_EXTRACT: 3514 return lowerExtract(MI); 3515 case G_INSERT: 3516 return lowerInsert(MI); 3517 case G_BSWAP: 3518 return lowerBswap(MI); 3519 case G_BITREVERSE: 3520 return lowerBitreverse(MI); 3521 case G_READ_REGISTER: 3522 case G_WRITE_REGISTER: 3523 return lowerReadWriteRegister(MI); 3524 case G_UADDSAT: 3525 case G_USUBSAT: { 3526 // Try to make a reasonable guess about which lowering strategy to use. The 3527 // target can override this with custom lowering and calling the 3528 // implementation functions. 3529 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3530 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3531 return lowerAddSubSatToMinMax(MI); 3532 return lowerAddSubSatToAddoSubo(MI); 3533 } 3534 case G_SADDSAT: 3535 case G_SSUBSAT: { 3536 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3537 3538 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3539 // since it's a shorter expansion. However, we would need to figure out the 3540 // preferred boolean type for the carry out for the query. 3541 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3542 return lowerAddSubSatToMinMax(MI); 3543 return lowerAddSubSatToAddoSubo(MI); 3544 } 3545 case G_SSHLSAT: 3546 case G_USHLSAT: 3547 return lowerShlSat(MI); 3548 case G_ABS: 3549 return lowerAbsToAddXor(MI); 3550 case G_SELECT: 3551 return lowerSelect(MI); 3552 case G_SDIVREM: 3553 case G_UDIVREM: 3554 return lowerDIVREM(MI); 3555 case G_FSHL: 3556 case G_FSHR: 3557 return lowerFunnelShift(MI); 3558 case G_ROTL: 3559 case G_ROTR: 3560 return lowerRotate(MI); 3561 case G_MEMSET: 3562 case G_MEMCPY: 3563 case G_MEMMOVE: 3564 return lowerMemCpyFamily(MI); 3565 case G_MEMCPY_INLINE: 3566 return lowerMemcpyInline(MI); 3567 GISEL_VECREDUCE_CASES_NONSEQ 3568 return lowerVectorReduction(MI); 3569 } 3570 } 3571 3572 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3573 Align MinAlign) const { 3574 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3575 // datalayout for the preferred alignment. Also there should be a target hook 3576 // for this to allow targets to reduce the alignment and ignore the 3577 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3578 // the type. 3579 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3580 } 3581 3582 MachineInstrBuilder 3583 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3584 MachinePointerInfo &PtrInfo) { 3585 MachineFunction &MF = MIRBuilder.getMF(); 3586 const DataLayout &DL = MIRBuilder.getDataLayout(); 3587 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3588 3589 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3590 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3591 3592 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3593 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3594 } 3595 3596 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3597 LLT VecTy) { 3598 int64_t IdxVal; 3599 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3600 return IdxReg; 3601 3602 LLT IdxTy = B.getMRI()->getType(IdxReg); 3603 unsigned NElts = VecTy.getNumElements(); 3604 if (isPowerOf2_32(NElts)) { 3605 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3606 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3607 } 3608 3609 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3610 .getReg(0); 3611 } 3612 3613 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3614 Register Index) { 3615 LLT EltTy = VecTy.getElementType(); 3616 3617 // Calculate the element offset and add it to the pointer. 3618 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3619 assert(EltSize * 8 == EltTy.getSizeInBits() && 3620 "Converting bits to bytes lost precision"); 3621 3622 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3623 3624 LLT IdxTy = MRI.getType(Index); 3625 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3626 MIRBuilder.buildConstant(IdxTy, EltSize)); 3627 3628 LLT PtrTy = MRI.getType(VecPtr); 3629 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3630 } 3631 3632 #ifndef NDEBUG 3633 /// Check that all vector operands have same number of elements. Other operands 3634 /// should be listed in NonVecOp. 3635 static bool hasSameNumEltsOnAllVectorOperands( 3636 GenericMachineInstr &MI, MachineRegisterInfo &MRI, 3637 std::initializer_list<unsigned> NonVecOpIndices) { 3638 if (MI.getNumMemOperands() != 0) 3639 return false; 3640 3641 LLT VecTy = MRI.getType(MI.getReg(0)); 3642 if (!VecTy.isVector()) 3643 return false; 3644 unsigned NumElts = VecTy.getNumElements(); 3645 3646 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { 3647 MachineOperand &Op = MI.getOperand(OpIdx); 3648 if (!Op.isReg()) { 3649 if (!is_contained(NonVecOpIndices, OpIdx)) 3650 return false; 3651 continue; 3652 } 3653 3654 LLT Ty = MRI.getType(Op.getReg()); 3655 if (!Ty.isVector()) { 3656 if (!is_contained(NonVecOpIndices, OpIdx)) 3657 return false; 3658 continue; 3659 } 3660 3661 if (Ty.getNumElements() != NumElts) 3662 return false; 3663 } 3664 3665 return true; 3666 } 3667 #endif 3668 3669 /// Fill \p DstOps with DstOps that have same number of elements combined as 3670 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are 3671 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple 3672 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. 3673 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty, 3674 unsigned NumElts) { 3675 LLT LeftoverTy; 3676 assert(Ty.isVector() && "Expected vector type"); 3677 LLT EltTy = Ty.getElementType(); 3678 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 3679 int NumParts, NumLeftover; 3680 std::tie(NumParts, NumLeftover) = 3681 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); 3682 3683 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); 3684 for (int i = 0; i < NumParts; ++i) { 3685 DstOps.push_back(NarrowTy); 3686 } 3687 3688 if (LeftoverTy.isValid()) { 3689 assert(NumLeftover == 1 && "expected exactly one leftover"); 3690 DstOps.push_back(LeftoverTy); 3691 } 3692 } 3693 3694 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps 3695 /// made from \p Op depending on operand type. 3696 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N, 3697 MachineOperand &Op) { 3698 for (unsigned i = 0; i < N; ++i) { 3699 if (Op.isReg()) 3700 Ops.push_back(Op.getReg()); 3701 else if (Op.isImm()) 3702 Ops.push_back(Op.getImm()); 3703 else if (Op.isPredicate()) 3704 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate())); 3705 else 3706 llvm_unreachable("Unsupported type"); 3707 } 3708 } 3709 3710 // Handle splitting vector operations which need to have the same number of 3711 // elements in each type index, but each type index may have a different element 3712 // type. 3713 // 3714 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3715 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3716 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3717 // 3718 // Also handles some irregular breakdown cases, e.g. 3719 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3720 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3721 // s64 = G_SHL s64, s32 3722 LegalizerHelper::LegalizeResult 3723 LegalizerHelper::fewerElementsVectorMultiEltType( 3724 GenericMachineInstr &MI, unsigned NumElts, 3725 std::initializer_list<unsigned> NonVecOpIndices) { 3726 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && 3727 "Non-compatible opcode or not specified non-vector operands"); 3728 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3729 3730 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3731 unsigned NumDefs = MI.getNumDefs(); 3732 3733 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. 3734 // Build instructions with DstOps to use instruction found by CSE directly. 3735 // CSE copies found instruction into given vreg when building with vreg dest. 3736 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs); 3737 // Output registers will be taken from created instructions. 3738 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs); 3739 for (unsigned i = 0; i < NumDefs; ++i) { 3740 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); 3741 } 3742 3743 // Split vector input operands into sub-vectors with NumElts elts + Leftover. 3744 // Operands listed in NonVecOpIndices will be used as is without splitting; 3745 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 3746 // scalar condition (op 1), immediate in sext_inreg (op 2). 3747 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs); 3748 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3749 ++UseIdx, ++UseNo) { 3750 if (is_contained(NonVecOpIndices, UseIdx)) { 3751 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), 3752 MI.getOperand(UseIdx)); 3753 } else { 3754 SmallVector<Register, 8> SplitPieces; 3755 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces); 3756 for (auto Reg : SplitPieces) 3757 InputOpsPieces[UseNo].push_back(Reg); 3758 } 3759 } 3760 3761 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3762 3763 // Take i-th piece of each input operand split and build sub-vector/scalar 3764 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). 3765 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3766 SmallVector<DstOp, 2> Defs; 3767 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3768 Defs.push_back(OutputOpsPieces[DstNo][i]); 3769 3770 SmallVector<SrcOp, 3> Uses; 3771 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) 3772 Uses.push_back(InputOpsPieces[InputNo][i]); 3773 3774 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); 3775 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3776 OutputRegs[DstNo].push_back(I.getReg(DstNo)); 3777 } 3778 3779 // Merge small outputs into MI's output for each def operand. 3780 if (NumLeftovers) { 3781 for (unsigned i = 0; i < NumDefs; ++i) 3782 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); 3783 } else { 3784 for (unsigned i = 0; i < NumDefs; ++i) 3785 MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]); 3786 } 3787 3788 MI.eraseFromParent(); 3789 return Legalized; 3790 } 3791 3792 LegalizerHelper::LegalizeResult 3793 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, 3794 unsigned NumElts) { 3795 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3796 3797 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3798 unsigned NumDefs = MI.getNumDefs(); 3799 3800 SmallVector<DstOp, 8> OutputOpsPieces; 3801 SmallVector<Register, 8> OutputRegs; 3802 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); 3803 3804 // Instructions that perform register split will be inserted in basic block 3805 // where register is defined (basic block is in the next operand). 3806 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2); 3807 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3808 UseIdx += 2, ++UseNo) { 3809 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); 3810 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3811 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]); 3812 } 3813 3814 // Build PHIs with fewer elements. 3815 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3816 MIRBuilder.setInsertPt(*MI.getParent(), MI); 3817 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3818 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 3819 Phi.addDef( 3820 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); 3821 OutputRegs.push_back(Phi.getReg(0)); 3822 3823 for (unsigned j = 0; j < NumInputs / 2; ++j) { 3824 Phi.addUse(InputOpsPieces[j][i]); 3825 Phi.add(MI.getOperand(1 + j * 2 + 1)); 3826 } 3827 } 3828 3829 // Merge small outputs into MI's def. 3830 if (NumLeftovers) { 3831 mergeMixedSubvectors(MI.getReg(0), OutputRegs); 3832 } else { 3833 MIRBuilder.buildMerge(MI.getReg(0), OutputRegs); 3834 } 3835 3836 MI.eraseFromParent(); 3837 return Legalized; 3838 } 3839 3840 LegalizerHelper::LegalizeResult 3841 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3842 unsigned TypeIdx, 3843 LLT NarrowTy) { 3844 const int NumDst = MI.getNumOperands() - 1; 3845 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3846 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3847 LLT SrcTy = MRI.getType(SrcReg); 3848 3849 if (TypeIdx != 1 || NarrowTy == DstTy) 3850 return UnableToLegalize; 3851 3852 // Requires compatible types. Otherwise SrcReg should have been defined by 3853 // merge-like instruction that would get artifact combined. Most likely 3854 // instruction that defines SrcReg has to perform more/fewer elements 3855 // legalization compatible with NarrowTy. 3856 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3857 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3858 3859 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3860 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) 3861 return UnableToLegalize; 3862 3863 // This is most likely DstTy (smaller then register size) packed in SrcTy 3864 // (larger then register size) and since unmerge was not combined it will be 3865 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy 3866 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. 3867 3868 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) 3869 // 3870 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence 3871 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg 3872 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) 3873 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); 3874 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3875 const int PartsPerUnmerge = NumDst / NumUnmerge; 3876 3877 for (int I = 0; I != NumUnmerge; ++I) { 3878 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3879 3880 for (int J = 0; J != PartsPerUnmerge; ++J) 3881 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3882 MIB.addUse(Unmerge.getReg(I)); 3883 } 3884 3885 MI.eraseFromParent(); 3886 return Legalized; 3887 } 3888 3889 LegalizerHelper::LegalizeResult 3890 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3891 LLT NarrowTy) { 3892 Register DstReg = MI.getOperand(0).getReg(); 3893 LLT DstTy = MRI.getType(DstReg); 3894 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3895 // Requires compatible types. Otherwise user of DstReg did not perform unmerge 3896 // that should have been artifact combined. Most likely instruction that uses 3897 // DstReg has to do more/fewer elements legalization compatible with NarrowTy. 3898 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3899 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3900 if (NarrowTy == SrcTy) 3901 return UnableToLegalize; 3902 3903 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use 3904 // is for old mir tests. Since the changes to more/fewer elements it should no 3905 // longer be possible to generate MIR like this when starting from llvm-ir 3906 // because LCMTy approach was replaced with merge/unmerge to vector elements. 3907 if (TypeIdx == 1) { 3908 assert(SrcTy.isVector() && "Expected vector types"); 3909 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3910 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3911 (NarrowTy.getNumElements() >= SrcTy.getNumElements())) 3912 return UnableToLegalize; 3913 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) 3914 // 3915 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) 3916 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) 3917 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 3918 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 3919 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 3920 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 3921 3922 SmallVector<Register, 8> Elts; 3923 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); 3924 for (unsigned i = 1; i < MI.getNumOperands(); ++i) { 3925 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); 3926 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) 3927 Elts.push_back(Unmerge.getReg(j)); 3928 } 3929 3930 SmallVector<Register, 8> NarrowTyElts; 3931 unsigned NumNarrowTyElts = NarrowTy.getNumElements(); 3932 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; 3933 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; 3934 ++i, Offset += NumNarrowTyElts) { 3935 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts); 3936 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 3937 } 3938 3939 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3940 MI.eraseFromParent(); 3941 return Legalized; 3942 } 3943 3944 assert(TypeIdx == 0 && "Bad type index"); 3945 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || 3946 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) 3947 return UnableToLegalize; 3948 3949 // This is most likely SrcTy (smaller then register size) packed in DstTy 3950 // (larger then register size) and since merge was not combined it will be 3951 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy 3952 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. 3953 3954 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 3955 // 3956 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg 3957 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 3958 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence 3959 SmallVector<Register, 8> NarrowTyElts; 3960 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3961 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; 3962 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; 3963 for (unsigned i = 0; i < NumParts; ++i) { 3964 SmallVector<Register, 8> Sources; 3965 for (unsigned j = 0; j < NumElts; ++j) 3966 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); 3967 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0)); 3968 } 3969 3970 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3971 MI.eraseFromParent(); 3972 return Legalized; 3973 } 3974 3975 LegalizerHelper::LegalizeResult 3976 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3977 unsigned TypeIdx, 3978 LLT NarrowVecTy) { 3979 Register DstReg = MI.getOperand(0).getReg(); 3980 Register SrcVec = MI.getOperand(1).getReg(); 3981 Register InsertVal; 3982 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3983 3984 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3985 if (IsInsert) 3986 InsertVal = MI.getOperand(2).getReg(); 3987 3988 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3989 3990 // TODO: Handle total scalarization case. 3991 if (!NarrowVecTy.isVector()) 3992 return UnableToLegalize; 3993 3994 LLT VecTy = MRI.getType(SrcVec); 3995 3996 // If the index is a constant, we can really break this down as you would 3997 // expect, and index into the target size pieces. 3998 int64_t IdxVal; 3999 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); 4000 if (MaybeCst) { 4001 IdxVal = MaybeCst->Value.getSExtValue(); 4002 // Avoid out of bounds indexing the pieces. 4003 if (IdxVal >= VecTy.getNumElements()) { 4004 MIRBuilder.buildUndef(DstReg); 4005 MI.eraseFromParent(); 4006 return Legalized; 4007 } 4008 4009 SmallVector<Register, 8> VecParts; 4010 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 4011 4012 // Build a sequence of NarrowTy pieces in VecParts for this operand. 4013 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 4014 TargetOpcode::G_ANYEXT); 4015 4016 unsigned NewNumElts = NarrowVecTy.getNumElements(); 4017 4018 LLT IdxTy = MRI.getType(Idx); 4019 int64_t PartIdx = IdxVal / NewNumElts; 4020 auto NewIdx = 4021 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 4022 4023 if (IsInsert) { 4024 LLT PartTy = MRI.getType(VecParts[PartIdx]); 4025 4026 // Use the adjusted index to insert into one of the subvectors. 4027 auto InsertPart = MIRBuilder.buildInsertVectorElement( 4028 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 4029 VecParts[PartIdx] = InsertPart.getReg(0); 4030 4031 // Recombine the inserted subvector with the others to reform the result 4032 // vector. 4033 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 4034 } else { 4035 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 4036 } 4037 4038 MI.eraseFromParent(); 4039 return Legalized; 4040 } 4041 4042 // With a variable index, we can't perform the operation in a smaller type, so 4043 // we're forced to expand this. 4044 // 4045 // TODO: We could emit a chain of compare/select to figure out which piece to 4046 // index. 4047 return lowerExtractInsertVectorElt(MI); 4048 } 4049 4050 LegalizerHelper::LegalizeResult 4051 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 4052 LLT NarrowTy) { 4053 // FIXME: Don't know how to handle secondary types yet. 4054 if (TypeIdx != 0) 4055 return UnableToLegalize; 4056 4057 // This implementation doesn't work for atomics. Give up instead of doing 4058 // something invalid. 4059 if (LdStMI.isAtomic()) 4060 return UnableToLegalize; 4061 4062 bool IsLoad = isa<GLoad>(LdStMI); 4063 Register ValReg = LdStMI.getReg(0); 4064 Register AddrReg = LdStMI.getPointerReg(); 4065 LLT ValTy = MRI.getType(ValReg); 4066 4067 // FIXME: Do we need a distinct NarrowMemory legalize action? 4068 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { 4069 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 4070 return UnableToLegalize; 4071 } 4072 4073 int NumParts = -1; 4074 int NumLeftover = -1; 4075 LLT LeftoverTy; 4076 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 4077 if (IsLoad) { 4078 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 4079 } else { 4080 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 4081 NarrowLeftoverRegs)) { 4082 NumParts = NarrowRegs.size(); 4083 NumLeftover = NarrowLeftoverRegs.size(); 4084 } 4085 } 4086 4087 if (NumParts == -1) 4088 return UnableToLegalize; 4089 4090 LLT PtrTy = MRI.getType(AddrReg); 4091 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4092 4093 unsigned TotalSize = ValTy.getSizeInBits(); 4094 4095 // Split the load/store into PartTy sized pieces starting at Offset. If this 4096 // is a load, return the new registers in ValRegs. For a store, each elements 4097 // of ValRegs should be PartTy. Returns the next offset that needs to be 4098 // handled. 4099 bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian(); 4100 auto MMO = LdStMI.getMMO(); 4101 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4102 unsigned NumParts, unsigned Offset) -> unsigned { 4103 MachineFunction &MF = MIRBuilder.getMF(); 4104 unsigned PartSize = PartTy.getSizeInBits(); 4105 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4106 ++Idx) { 4107 unsigned ByteOffset = Offset / 8; 4108 Register NewAddrReg; 4109 4110 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4111 4112 MachineMemOperand *NewMMO = 4113 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 4114 4115 if (IsLoad) { 4116 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4117 ValRegs.push_back(Dst); 4118 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4119 } else { 4120 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4121 } 4122 Offset = isBigEndian ? Offset - PartSize : Offset + PartSize; 4123 } 4124 4125 return Offset; 4126 }; 4127 4128 unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0; 4129 unsigned HandledOffset = 4130 splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset); 4131 4132 // Handle the rest of the register if this isn't an even type breakdown. 4133 if (LeftoverTy.isValid()) 4134 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset); 4135 4136 if (IsLoad) { 4137 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4138 LeftoverTy, NarrowLeftoverRegs); 4139 } 4140 4141 LdStMI.eraseFromParent(); 4142 return Legalized; 4143 } 4144 4145 LegalizerHelper::LegalizeResult 4146 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4147 LLT NarrowTy) { 4148 using namespace TargetOpcode; 4149 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI); 4150 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 4151 4152 switch (MI.getOpcode()) { 4153 case G_IMPLICIT_DEF: 4154 case G_TRUNC: 4155 case G_AND: 4156 case G_OR: 4157 case G_XOR: 4158 case G_ADD: 4159 case G_SUB: 4160 case G_MUL: 4161 case G_PTR_ADD: 4162 case G_SMULH: 4163 case G_UMULH: 4164 case G_FADD: 4165 case G_FMUL: 4166 case G_FSUB: 4167 case G_FNEG: 4168 case G_FABS: 4169 case G_FCANONICALIZE: 4170 case G_FDIV: 4171 case G_FREM: 4172 case G_FMA: 4173 case G_FMAD: 4174 case G_FPOW: 4175 case G_FEXP: 4176 case G_FEXP2: 4177 case G_FLOG: 4178 case G_FLOG2: 4179 case G_FLOG10: 4180 case G_FNEARBYINT: 4181 case G_FCEIL: 4182 case G_FFLOOR: 4183 case G_FRINT: 4184 case G_INTRINSIC_ROUND: 4185 case G_INTRINSIC_ROUNDEVEN: 4186 case G_INTRINSIC_TRUNC: 4187 case G_FCOS: 4188 case G_FSIN: 4189 case G_FSQRT: 4190 case G_BSWAP: 4191 case G_BITREVERSE: 4192 case G_SDIV: 4193 case G_UDIV: 4194 case G_SREM: 4195 case G_UREM: 4196 case G_SDIVREM: 4197 case G_UDIVREM: 4198 case G_SMIN: 4199 case G_SMAX: 4200 case G_UMIN: 4201 case G_UMAX: 4202 case G_ABS: 4203 case G_FMINNUM: 4204 case G_FMAXNUM: 4205 case G_FMINNUM_IEEE: 4206 case G_FMAXNUM_IEEE: 4207 case G_FMINIMUM: 4208 case G_FMAXIMUM: 4209 case G_FSHL: 4210 case G_FSHR: 4211 case G_ROTL: 4212 case G_ROTR: 4213 case G_FREEZE: 4214 case G_SADDSAT: 4215 case G_SSUBSAT: 4216 case G_UADDSAT: 4217 case G_USUBSAT: 4218 case G_UMULO: 4219 case G_SMULO: 4220 case G_SHL: 4221 case G_LSHR: 4222 case G_ASHR: 4223 case G_SSHLSAT: 4224 case G_USHLSAT: 4225 case G_CTLZ: 4226 case G_CTLZ_ZERO_UNDEF: 4227 case G_CTTZ: 4228 case G_CTTZ_ZERO_UNDEF: 4229 case G_CTPOP: 4230 case G_FCOPYSIGN: 4231 case G_ZEXT: 4232 case G_SEXT: 4233 case G_ANYEXT: 4234 case G_FPEXT: 4235 case G_FPTRUNC: 4236 case G_SITOFP: 4237 case G_UITOFP: 4238 case G_FPTOSI: 4239 case G_FPTOUI: 4240 case G_INTTOPTR: 4241 case G_PTRTOINT: 4242 case G_ADDRSPACE_CAST: 4243 return fewerElementsVectorMultiEltType(GMI, NumElts); 4244 case G_ICMP: 4245 case G_FCMP: 4246 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); 4247 case G_SELECT: 4248 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4249 return fewerElementsVectorMultiEltType(GMI, NumElts); 4250 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); 4251 case G_PHI: 4252 return fewerElementsVectorPhi(GMI, NumElts); 4253 case G_UNMERGE_VALUES: 4254 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4255 case G_BUILD_VECTOR: 4256 assert(TypeIdx == 0 && "not a vector type index"); 4257 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4258 case G_CONCAT_VECTORS: 4259 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4260 return UnableToLegalize; 4261 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4262 case G_EXTRACT_VECTOR_ELT: 4263 case G_INSERT_VECTOR_ELT: 4264 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4265 case G_LOAD: 4266 case G_STORE: 4267 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 4268 case G_SEXT_INREG: 4269 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); 4270 GISEL_VECREDUCE_CASES_NONSEQ 4271 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4272 case G_SHUFFLE_VECTOR: 4273 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4274 default: 4275 return UnableToLegalize; 4276 } 4277 } 4278 4279 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4280 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4281 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4282 if (TypeIdx != 0) 4283 return UnableToLegalize; 4284 4285 Register DstReg = MI.getOperand(0).getReg(); 4286 Register Src1Reg = MI.getOperand(1).getReg(); 4287 Register Src2Reg = MI.getOperand(2).getReg(); 4288 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4289 LLT DstTy = MRI.getType(DstReg); 4290 LLT Src1Ty = MRI.getType(Src1Reg); 4291 LLT Src2Ty = MRI.getType(Src2Reg); 4292 // The shuffle should be canonicalized by now. 4293 if (DstTy != Src1Ty) 4294 return UnableToLegalize; 4295 if (DstTy != Src2Ty) 4296 return UnableToLegalize; 4297 4298 if (!isPowerOf2_32(DstTy.getNumElements())) 4299 return UnableToLegalize; 4300 4301 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4302 // Further legalization attempts will be needed to do split further. 4303 NarrowTy = 4304 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4305 unsigned NewElts = NarrowTy.getNumElements(); 4306 4307 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4308 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4309 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4310 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4311 SplitSrc2Regs[1]}; 4312 4313 Register Hi, Lo; 4314 4315 // If Lo or Hi uses elements from at most two of the four input vectors, then 4316 // express it as a vector shuffle of those two inputs. Otherwise extract the 4317 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4318 SmallVector<int, 16> Ops; 4319 for (unsigned High = 0; High < 2; ++High) { 4320 Register &Output = High ? Hi : Lo; 4321 4322 // Build a shuffle mask for the output, discovering on the fly which 4323 // input vectors to use as shuffle operands (recorded in InputUsed). 4324 // If building a suitable shuffle vector proves too hard, then bail 4325 // out with useBuildVector set. 4326 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4327 unsigned FirstMaskIdx = High * NewElts; 4328 bool UseBuildVector = false; 4329 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4330 // The mask element. This indexes into the input. 4331 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4332 4333 // The input vector this mask element indexes into. 4334 unsigned Input = (unsigned)Idx / NewElts; 4335 4336 if (Input >= array_lengthof(Inputs)) { 4337 // The mask element does not index into any input vector. 4338 Ops.push_back(-1); 4339 continue; 4340 } 4341 4342 // Turn the index into an offset from the start of the input vector. 4343 Idx -= Input * NewElts; 4344 4345 // Find or create a shuffle vector operand to hold this input. 4346 unsigned OpNo; 4347 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4348 if (InputUsed[OpNo] == Input) { 4349 // This input vector is already an operand. 4350 break; 4351 } else if (InputUsed[OpNo] == -1U) { 4352 // Create a new operand for this input vector. 4353 InputUsed[OpNo] = Input; 4354 break; 4355 } 4356 } 4357 4358 if (OpNo >= array_lengthof(InputUsed)) { 4359 // More than two input vectors used! Give up on trying to create a 4360 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4361 UseBuildVector = true; 4362 break; 4363 } 4364 4365 // Add the mask index for the new shuffle vector. 4366 Ops.push_back(Idx + OpNo * NewElts); 4367 } 4368 4369 if (UseBuildVector) { 4370 LLT EltTy = NarrowTy.getElementType(); 4371 SmallVector<Register, 16> SVOps; 4372 4373 // Extract the input elements by hand. 4374 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4375 // The mask element. This indexes into the input. 4376 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4377 4378 // The input vector this mask element indexes into. 4379 unsigned Input = (unsigned)Idx / NewElts; 4380 4381 if (Input >= array_lengthof(Inputs)) { 4382 // The mask element is "undef" or indexes off the end of the input. 4383 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4384 continue; 4385 } 4386 4387 // Turn the index into an offset from the start of the input vector. 4388 Idx -= Input * NewElts; 4389 4390 // Extract the vector element by hand. 4391 SVOps.push_back(MIRBuilder 4392 .buildExtractVectorElement( 4393 EltTy, Inputs[Input], 4394 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4395 .getReg(0)); 4396 } 4397 4398 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4399 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4400 } else if (InputUsed[0] == -1U) { 4401 // No input vectors were used! The result is undefined. 4402 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4403 } else { 4404 Register Op0 = Inputs[InputUsed[0]]; 4405 // If only one input was used, use an undefined vector for the other. 4406 Register Op1 = InputUsed[1] == -1U 4407 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4408 : Inputs[InputUsed[1]]; 4409 // At least one input vector was used. Create a new shuffle vector. 4410 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4411 } 4412 4413 Ops.clear(); 4414 } 4415 4416 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4417 MI.eraseFromParent(); 4418 return Legalized; 4419 } 4420 4421 static unsigned getScalarOpcForReduction(unsigned Opc) { 4422 unsigned ScalarOpc; 4423 switch (Opc) { 4424 case TargetOpcode::G_VECREDUCE_FADD: 4425 ScalarOpc = TargetOpcode::G_FADD; 4426 break; 4427 case TargetOpcode::G_VECREDUCE_FMUL: 4428 ScalarOpc = TargetOpcode::G_FMUL; 4429 break; 4430 case TargetOpcode::G_VECREDUCE_FMAX: 4431 ScalarOpc = TargetOpcode::G_FMAXNUM; 4432 break; 4433 case TargetOpcode::G_VECREDUCE_FMIN: 4434 ScalarOpc = TargetOpcode::G_FMINNUM; 4435 break; 4436 case TargetOpcode::G_VECREDUCE_ADD: 4437 ScalarOpc = TargetOpcode::G_ADD; 4438 break; 4439 case TargetOpcode::G_VECREDUCE_MUL: 4440 ScalarOpc = TargetOpcode::G_MUL; 4441 break; 4442 case TargetOpcode::G_VECREDUCE_AND: 4443 ScalarOpc = TargetOpcode::G_AND; 4444 break; 4445 case TargetOpcode::G_VECREDUCE_OR: 4446 ScalarOpc = TargetOpcode::G_OR; 4447 break; 4448 case TargetOpcode::G_VECREDUCE_XOR: 4449 ScalarOpc = TargetOpcode::G_XOR; 4450 break; 4451 case TargetOpcode::G_VECREDUCE_SMAX: 4452 ScalarOpc = TargetOpcode::G_SMAX; 4453 break; 4454 case TargetOpcode::G_VECREDUCE_SMIN: 4455 ScalarOpc = TargetOpcode::G_SMIN; 4456 break; 4457 case TargetOpcode::G_VECREDUCE_UMAX: 4458 ScalarOpc = TargetOpcode::G_UMAX; 4459 break; 4460 case TargetOpcode::G_VECREDUCE_UMIN: 4461 ScalarOpc = TargetOpcode::G_UMIN; 4462 break; 4463 default: 4464 llvm_unreachable("Unhandled reduction"); 4465 } 4466 return ScalarOpc; 4467 } 4468 4469 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4470 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4471 unsigned Opc = MI.getOpcode(); 4472 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4473 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4474 "Sequential reductions not expected"); 4475 4476 if (TypeIdx != 1) 4477 return UnableToLegalize; 4478 4479 // The semantics of the normal non-sequential reductions allow us to freely 4480 // re-associate the operation. 4481 Register SrcReg = MI.getOperand(1).getReg(); 4482 LLT SrcTy = MRI.getType(SrcReg); 4483 Register DstReg = MI.getOperand(0).getReg(); 4484 LLT DstTy = MRI.getType(DstReg); 4485 4486 if (NarrowTy.isVector() && 4487 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) 4488 return UnableToLegalize; 4489 4490 unsigned ScalarOpc = getScalarOpcForReduction(Opc); 4491 SmallVector<Register> SplitSrcs; 4492 // If NarrowTy is a scalar then we're being asked to scalarize. 4493 const unsigned NumParts = 4494 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() 4495 : SrcTy.getNumElements(); 4496 4497 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4498 if (NarrowTy.isScalar()) { 4499 if (DstTy != NarrowTy) 4500 return UnableToLegalize; // FIXME: handle implicit extensions. 4501 4502 if (isPowerOf2_32(NumParts)) { 4503 // Generate a tree of scalar operations to reduce the critical path. 4504 SmallVector<Register> PartialResults; 4505 unsigned NumPartsLeft = NumParts; 4506 while (NumPartsLeft > 1) { 4507 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { 4508 PartialResults.emplace_back( 4509 MIRBuilder 4510 .buildInstr(ScalarOpc, {NarrowTy}, 4511 {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) 4512 .getReg(0)); 4513 } 4514 SplitSrcs = PartialResults; 4515 PartialResults.clear(); 4516 NumPartsLeft = SplitSrcs.size(); 4517 } 4518 assert(SplitSrcs.size() == 1); 4519 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); 4520 MI.eraseFromParent(); 4521 return Legalized; 4522 } 4523 // If we can't generate a tree, then just do sequential operations. 4524 Register Acc = SplitSrcs[0]; 4525 for (unsigned Idx = 1; Idx < NumParts; ++Idx) 4526 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) 4527 .getReg(0); 4528 MIRBuilder.buildCopy(DstReg, Acc); 4529 MI.eraseFromParent(); 4530 return Legalized; 4531 } 4532 SmallVector<Register> PartialReductions; 4533 for (unsigned Part = 0; Part < NumParts; ++Part) { 4534 PartialReductions.push_back( 4535 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4536 } 4537 4538 4539 // If the types involved are powers of 2, we can generate intermediate vector 4540 // ops, before generating a final reduction operation. 4541 if (isPowerOf2_32(SrcTy.getNumElements()) && 4542 isPowerOf2_32(NarrowTy.getNumElements())) { 4543 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4544 } 4545 4546 Register Acc = PartialReductions[0]; 4547 for (unsigned Part = 1; Part < NumParts; ++Part) { 4548 if (Part == NumParts - 1) { 4549 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4550 {Acc, PartialReductions[Part]}); 4551 } else { 4552 Acc = MIRBuilder 4553 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4554 .getReg(0); 4555 } 4556 } 4557 MI.eraseFromParent(); 4558 return Legalized; 4559 } 4560 4561 LegalizerHelper::LegalizeResult 4562 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4563 LLT SrcTy, LLT NarrowTy, 4564 unsigned ScalarOpc) { 4565 SmallVector<Register> SplitSrcs; 4566 // Split the sources into NarrowTy size pieces. 4567 extractParts(SrcReg, NarrowTy, 4568 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4569 // We're going to do a tree reduction using vector operations until we have 4570 // one NarrowTy size value left. 4571 while (SplitSrcs.size() > 1) { 4572 SmallVector<Register> PartialRdxs; 4573 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4574 Register LHS = SplitSrcs[Idx]; 4575 Register RHS = SplitSrcs[Idx + 1]; 4576 // Create the intermediate vector op. 4577 Register Res = 4578 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4579 PartialRdxs.push_back(Res); 4580 } 4581 SplitSrcs = std::move(PartialRdxs); 4582 } 4583 // Finally generate the requested NarrowTy based reduction. 4584 Observer.changingInstr(MI); 4585 MI.getOperand(1).setReg(SplitSrcs[0]); 4586 Observer.changedInstr(MI); 4587 return Legalized; 4588 } 4589 4590 LegalizerHelper::LegalizeResult 4591 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4592 const LLT HalfTy, const LLT AmtTy) { 4593 4594 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4595 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4596 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4597 4598 if (Amt.isZero()) { 4599 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4600 MI.eraseFromParent(); 4601 return Legalized; 4602 } 4603 4604 LLT NVT = HalfTy; 4605 unsigned NVTBits = HalfTy.getSizeInBits(); 4606 unsigned VTBits = 2 * NVTBits; 4607 4608 SrcOp Lo(Register(0)), Hi(Register(0)); 4609 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4610 if (Amt.ugt(VTBits)) { 4611 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4612 } else if (Amt.ugt(NVTBits)) { 4613 Lo = MIRBuilder.buildConstant(NVT, 0); 4614 Hi = MIRBuilder.buildShl(NVT, InL, 4615 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4616 } else if (Amt == NVTBits) { 4617 Lo = MIRBuilder.buildConstant(NVT, 0); 4618 Hi = InL; 4619 } else { 4620 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4621 auto OrLHS = 4622 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4623 auto OrRHS = MIRBuilder.buildLShr( 4624 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4625 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4626 } 4627 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4628 if (Amt.ugt(VTBits)) { 4629 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4630 } else if (Amt.ugt(NVTBits)) { 4631 Lo = MIRBuilder.buildLShr(NVT, InH, 4632 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4633 Hi = MIRBuilder.buildConstant(NVT, 0); 4634 } else if (Amt == NVTBits) { 4635 Lo = InH; 4636 Hi = MIRBuilder.buildConstant(NVT, 0); 4637 } else { 4638 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4639 4640 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4641 auto OrRHS = MIRBuilder.buildShl( 4642 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4643 4644 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4645 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4646 } 4647 } else { 4648 if (Amt.ugt(VTBits)) { 4649 Hi = Lo = MIRBuilder.buildAShr( 4650 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4651 } else if (Amt.ugt(NVTBits)) { 4652 Lo = MIRBuilder.buildAShr(NVT, InH, 4653 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4654 Hi = MIRBuilder.buildAShr(NVT, InH, 4655 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4656 } else if (Amt == NVTBits) { 4657 Lo = InH; 4658 Hi = MIRBuilder.buildAShr(NVT, InH, 4659 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4660 } else { 4661 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4662 4663 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4664 auto OrRHS = MIRBuilder.buildShl( 4665 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4666 4667 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4668 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4669 } 4670 } 4671 4672 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4673 MI.eraseFromParent(); 4674 4675 return Legalized; 4676 } 4677 4678 // TODO: Optimize if constant shift amount. 4679 LegalizerHelper::LegalizeResult 4680 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4681 LLT RequestedTy) { 4682 if (TypeIdx == 1) { 4683 Observer.changingInstr(MI); 4684 narrowScalarSrc(MI, RequestedTy, 2); 4685 Observer.changedInstr(MI); 4686 return Legalized; 4687 } 4688 4689 Register DstReg = MI.getOperand(0).getReg(); 4690 LLT DstTy = MRI.getType(DstReg); 4691 if (DstTy.isVector()) 4692 return UnableToLegalize; 4693 4694 Register Amt = MI.getOperand(2).getReg(); 4695 LLT ShiftAmtTy = MRI.getType(Amt); 4696 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4697 if (DstEltSize % 2 != 0) 4698 return UnableToLegalize; 4699 4700 // Ignore the input type. We can only go to exactly half the size of the 4701 // input. If that isn't small enough, the resulting pieces will be further 4702 // legalized. 4703 const unsigned NewBitSize = DstEltSize / 2; 4704 const LLT HalfTy = LLT::scalar(NewBitSize); 4705 const LLT CondTy = LLT::scalar(1); 4706 4707 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { 4708 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, 4709 ShiftAmtTy); 4710 } 4711 4712 // TODO: Expand with known bits. 4713 4714 // Handle the fully general expansion by an unknown amount. 4715 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4716 4717 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4718 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4719 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4720 4721 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4722 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4723 4724 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4725 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4726 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4727 4728 Register ResultRegs[2]; 4729 switch (MI.getOpcode()) { 4730 case TargetOpcode::G_SHL: { 4731 // Short: ShAmt < NewBitSize 4732 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4733 4734 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4735 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4736 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4737 4738 // Long: ShAmt >= NewBitSize 4739 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4740 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4741 4742 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4743 auto Hi = MIRBuilder.buildSelect( 4744 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4745 4746 ResultRegs[0] = Lo.getReg(0); 4747 ResultRegs[1] = Hi.getReg(0); 4748 break; 4749 } 4750 case TargetOpcode::G_LSHR: 4751 case TargetOpcode::G_ASHR: { 4752 // Short: ShAmt < NewBitSize 4753 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4754 4755 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4756 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4757 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4758 4759 // Long: ShAmt >= NewBitSize 4760 MachineInstrBuilder HiL; 4761 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4762 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4763 } else { 4764 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4765 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4766 } 4767 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4768 {InH, AmtExcess}); // Lo from Hi part. 4769 4770 auto Lo = MIRBuilder.buildSelect( 4771 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4772 4773 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4774 4775 ResultRegs[0] = Lo.getReg(0); 4776 ResultRegs[1] = Hi.getReg(0); 4777 break; 4778 } 4779 default: 4780 llvm_unreachable("not a shift"); 4781 } 4782 4783 MIRBuilder.buildMerge(DstReg, ResultRegs); 4784 MI.eraseFromParent(); 4785 return Legalized; 4786 } 4787 4788 LegalizerHelper::LegalizeResult 4789 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4790 LLT MoreTy) { 4791 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4792 4793 Observer.changingInstr(MI); 4794 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4795 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4796 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4797 moreElementsVectorSrc(MI, MoreTy, I); 4798 } 4799 4800 MachineBasicBlock &MBB = *MI.getParent(); 4801 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4802 moreElementsVectorDst(MI, MoreTy, 0); 4803 Observer.changedInstr(MI); 4804 return Legalized; 4805 } 4806 4807 LegalizerHelper::LegalizeResult 4808 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4809 LLT MoreTy) { 4810 unsigned Opc = MI.getOpcode(); 4811 switch (Opc) { 4812 case TargetOpcode::G_IMPLICIT_DEF: 4813 case TargetOpcode::G_LOAD: { 4814 if (TypeIdx != 0) 4815 return UnableToLegalize; 4816 Observer.changingInstr(MI); 4817 moreElementsVectorDst(MI, MoreTy, 0); 4818 Observer.changedInstr(MI); 4819 return Legalized; 4820 } 4821 case TargetOpcode::G_STORE: 4822 if (TypeIdx != 0) 4823 return UnableToLegalize; 4824 Observer.changingInstr(MI); 4825 moreElementsVectorSrc(MI, MoreTy, 0); 4826 Observer.changedInstr(MI); 4827 return Legalized; 4828 case TargetOpcode::G_AND: 4829 case TargetOpcode::G_OR: 4830 case TargetOpcode::G_XOR: 4831 case TargetOpcode::G_ADD: 4832 case TargetOpcode::G_SUB: 4833 case TargetOpcode::G_MUL: 4834 case TargetOpcode::G_FADD: 4835 case TargetOpcode::G_FMUL: 4836 case TargetOpcode::G_UADDSAT: 4837 case TargetOpcode::G_USUBSAT: 4838 case TargetOpcode::G_SADDSAT: 4839 case TargetOpcode::G_SSUBSAT: 4840 case TargetOpcode::G_SMIN: 4841 case TargetOpcode::G_SMAX: 4842 case TargetOpcode::G_UMIN: 4843 case TargetOpcode::G_UMAX: 4844 case TargetOpcode::G_FMINNUM: 4845 case TargetOpcode::G_FMAXNUM: 4846 case TargetOpcode::G_FMINNUM_IEEE: 4847 case TargetOpcode::G_FMAXNUM_IEEE: 4848 case TargetOpcode::G_FMINIMUM: 4849 case TargetOpcode::G_FMAXIMUM: { 4850 Observer.changingInstr(MI); 4851 moreElementsVectorSrc(MI, MoreTy, 1); 4852 moreElementsVectorSrc(MI, MoreTy, 2); 4853 moreElementsVectorDst(MI, MoreTy, 0); 4854 Observer.changedInstr(MI); 4855 return Legalized; 4856 } 4857 case TargetOpcode::G_FMA: 4858 case TargetOpcode::G_FSHR: 4859 case TargetOpcode::G_FSHL: { 4860 Observer.changingInstr(MI); 4861 moreElementsVectorSrc(MI, MoreTy, 1); 4862 moreElementsVectorSrc(MI, MoreTy, 2); 4863 moreElementsVectorSrc(MI, MoreTy, 3); 4864 moreElementsVectorDst(MI, MoreTy, 0); 4865 Observer.changedInstr(MI); 4866 return Legalized; 4867 } 4868 case TargetOpcode::G_EXTRACT: 4869 if (TypeIdx != 1) 4870 return UnableToLegalize; 4871 Observer.changingInstr(MI); 4872 moreElementsVectorSrc(MI, MoreTy, 1); 4873 Observer.changedInstr(MI); 4874 return Legalized; 4875 case TargetOpcode::G_INSERT: 4876 case TargetOpcode::G_FREEZE: 4877 case TargetOpcode::G_FNEG: 4878 case TargetOpcode::G_FABS: 4879 case TargetOpcode::G_BSWAP: 4880 case TargetOpcode::G_FCANONICALIZE: 4881 case TargetOpcode::G_SEXT_INREG: 4882 if (TypeIdx != 0) 4883 return UnableToLegalize; 4884 Observer.changingInstr(MI); 4885 moreElementsVectorSrc(MI, MoreTy, 1); 4886 moreElementsVectorDst(MI, MoreTy, 0); 4887 Observer.changedInstr(MI); 4888 return Legalized; 4889 case TargetOpcode::G_SELECT: 4890 if (TypeIdx != 0) 4891 return UnableToLegalize; 4892 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4893 return UnableToLegalize; 4894 4895 Observer.changingInstr(MI); 4896 moreElementsVectorSrc(MI, MoreTy, 2); 4897 moreElementsVectorSrc(MI, MoreTy, 3); 4898 moreElementsVectorDst(MI, MoreTy, 0); 4899 Observer.changedInstr(MI); 4900 return Legalized; 4901 case TargetOpcode::G_UNMERGE_VALUES: 4902 return UnableToLegalize; 4903 case TargetOpcode::G_PHI: 4904 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4905 case TargetOpcode::G_SHUFFLE_VECTOR: 4906 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 4907 case TargetOpcode::G_BUILD_VECTOR: { 4908 SmallVector<SrcOp, 8> Elts; 4909 for (auto Op : MI.uses()) { 4910 Elts.push_back(Op.getReg()); 4911 } 4912 4913 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { 4914 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); 4915 } 4916 4917 MIRBuilder.buildDeleteTrailingVectorElements( 4918 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); 4919 MI.eraseFromParent(); 4920 return Legalized; 4921 } 4922 case TargetOpcode::G_TRUNC: { 4923 Observer.changingInstr(MI); 4924 moreElementsVectorSrc(MI, MoreTy, 1); 4925 moreElementsVectorDst(MI, MoreTy, 0); 4926 Observer.changedInstr(MI); 4927 return Legalized; 4928 } 4929 default: 4930 return UnableToLegalize; 4931 } 4932 } 4933 4934 LegalizerHelper::LegalizeResult 4935 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 4936 unsigned int TypeIdx, LLT MoreTy) { 4937 if (TypeIdx != 0) 4938 return UnableToLegalize; 4939 4940 Register DstReg = MI.getOperand(0).getReg(); 4941 Register Src1Reg = MI.getOperand(1).getReg(); 4942 Register Src2Reg = MI.getOperand(2).getReg(); 4943 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4944 LLT DstTy = MRI.getType(DstReg); 4945 LLT Src1Ty = MRI.getType(Src1Reg); 4946 LLT Src2Ty = MRI.getType(Src2Reg); 4947 unsigned NumElts = DstTy.getNumElements(); 4948 unsigned WidenNumElts = MoreTy.getNumElements(); 4949 4950 // Expect a canonicalized shuffle. 4951 if (DstTy != Src1Ty || DstTy != Src2Ty) 4952 return UnableToLegalize; 4953 4954 moreElementsVectorSrc(MI, MoreTy, 1); 4955 moreElementsVectorSrc(MI, MoreTy, 2); 4956 4957 // Adjust mask based on new input vector length. 4958 SmallVector<int, 16> NewMask; 4959 for (unsigned I = 0; I != NumElts; ++I) { 4960 int Idx = Mask[I]; 4961 if (Idx < static_cast<int>(NumElts)) 4962 NewMask.push_back(Idx); 4963 else 4964 NewMask.push_back(Idx - NumElts + WidenNumElts); 4965 } 4966 for (unsigned I = NumElts; I != WidenNumElts; ++I) 4967 NewMask.push_back(-1); 4968 moreElementsVectorDst(MI, MoreTy, 0); 4969 MIRBuilder.setInstrAndDebugLoc(MI); 4970 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 4971 MI.getOperand(1).getReg(), 4972 MI.getOperand(2).getReg(), NewMask); 4973 MI.eraseFromParent(); 4974 return Legalized; 4975 } 4976 4977 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4978 ArrayRef<Register> Src1Regs, 4979 ArrayRef<Register> Src2Regs, 4980 LLT NarrowTy) { 4981 MachineIRBuilder &B = MIRBuilder; 4982 unsigned SrcParts = Src1Regs.size(); 4983 unsigned DstParts = DstRegs.size(); 4984 4985 unsigned DstIdx = 0; // Low bits of the result. 4986 Register FactorSum = 4987 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4988 DstRegs[DstIdx] = FactorSum; 4989 4990 unsigned CarrySumPrevDstIdx; 4991 SmallVector<Register, 4> Factors; 4992 4993 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4994 // Collect low parts of muls for DstIdx. 4995 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4996 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4997 MachineInstrBuilder Mul = 4998 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4999 Factors.push_back(Mul.getReg(0)); 5000 } 5001 // Collect high parts of muls from previous DstIdx. 5002 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 5003 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 5004 MachineInstrBuilder Umulh = 5005 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 5006 Factors.push_back(Umulh.getReg(0)); 5007 } 5008 // Add CarrySum from additions calculated for previous DstIdx. 5009 if (DstIdx != 1) { 5010 Factors.push_back(CarrySumPrevDstIdx); 5011 } 5012 5013 Register CarrySum; 5014 // Add all factors and accumulate all carries into CarrySum. 5015 if (DstIdx != DstParts - 1) { 5016 MachineInstrBuilder Uaddo = 5017 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5018 FactorSum = Uaddo.getReg(0); 5019 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5020 for (unsigned i = 2; i < Factors.size(); ++i) { 5021 MachineInstrBuilder Uaddo = 5022 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5023 FactorSum = Uaddo.getReg(0); 5024 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5025 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5026 } 5027 } else { 5028 // Since value for the next index is not calculated, neither is CarrySum. 5029 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5030 for (unsigned i = 2; i < Factors.size(); ++i) 5031 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5032 } 5033 5034 CarrySumPrevDstIdx = CarrySum; 5035 DstRegs[DstIdx] = FactorSum; 5036 Factors.clear(); 5037 } 5038 } 5039 5040 LegalizerHelper::LegalizeResult 5041 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5042 LLT NarrowTy) { 5043 if (TypeIdx != 0) 5044 return UnableToLegalize; 5045 5046 Register DstReg = MI.getOperand(0).getReg(); 5047 LLT DstType = MRI.getType(DstReg); 5048 // FIXME: add support for vector types 5049 if (DstType.isVector()) 5050 return UnableToLegalize; 5051 5052 unsigned Opcode = MI.getOpcode(); 5053 unsigned OpO, OpE, OpF; 5054 switch (Opcode) { 5055 case TargetOpcode::G_SADDO: 5056 case TargetOpcode::G_SADDE: 5057 case TargetOpcode::G_UADDO: 5058 case TargetOpcode::G_UADDE: 5059 case TargetOpcode::G_ADD: 5060 OpO = TargetOpcode::G_UADDO; 5061 OpE = TargetOpcode::G_UADDE; 5062 OpF = TargetOpcode::G_UADDE; 5063 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5064 OpF = TargetOpcode::G_SADDE; 5065 break; 5066 case TargetOpcode::G_SSUBO: 5067 case TargetOpcode::G_SSUBE: 5068 case TargetOpcode::G_USUBO: 5069 case TargetOpcode::G_USUBE: 5070 case TargetOpcode::G_SUB: 5071 OpO = TargetOpcode::G_USUBO; 5072 OpE = TargetOpcode::G_USUBE; 5073 OpF = TargetOpcode::G_USUBE; 5074 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5075 OpF = TargetOpcode::G_SSUBE; 5076 break; 5077 default: 5078 llvm_unreachable("Unexpected add/sub opcode!"); 5079 } 5080 5081 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5082 unsigned NumDefs = MI.getNumExplicitDefs(); 5083 Register Src1 = MI.getOperand(NumDefs).getReg(); 5084 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5085 Register CarryDst, CarryIn; 5086 if (NumDefs == 2) 5087 CarryDst = MI.getOperand(1).getReg(); 5088 if (MI.getNumOperands() == NumDefs + 3) 5089 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5090 5091 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5092 LLT LeftoverTy, DummyTy; 5093 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5094 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 5095 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5096 5097 int NarrowParts = Src1Regs.size(); 5098 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5099 Src1Regs.push_back(Src1Left[I]); 5100 Src2Regs.push_back(Src2Left[I]); 5101 } 5102 DstRegs.reserve(Src1Regs.size()); 5103 5104 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5105 Register DstReg = 5106 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5107 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5108 // Forward the final carry-out to the destination register 5109 if (i == e - 1 && CarryDst) 5110 CarryOut = CarryDst; 5111 5112 if (!CarryIn) { 5113 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5114 {Src1Regs[i], Src2Regs[i]}); 5115 } else if (i == e - 1) { 5116 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5117 {Src1Regs[i], Src2Regs[i], CarryIn}); 5118 } else { 5119 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5120 {Src1Regs[i], Src2Regs[i], CarryIn}); 5121 } 5122 5123 DstRegs.push_back(DstReg); 5124 CarryIn = CarryOut; 5125 } 5126 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5127 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5128 makeArrayRef(DstRegs).drop_front(NarrowParts)); 5129 5130 MI.eraseFromParent(); 5131 return Legalized; 5132 } 5133 5134 LegalizerHelper::LegalizeResult 5135 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5136 Register DstReg = MI.getOperand(0).getReg(); 5137 Register Src1 = MI.getOperand(1).getReg(); 5138 Register Src2 = MI.getOperand(2).getReg(); 5139 5140 LLT Ty = MRI.getType(DstReg); 5141 if (Ty.isVector()) 5142 return UnableToLegalize; 5143 5144 unsigned Size = Ty.getSizeInBits(); 5145 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5146 if (Size % NarrowSize != 0) 5147 return UnableToLegalize; 5148 5149 unsigned NumParts = Size / NarrowSize; 5150 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5151 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); 5152 5153 SmallVector<Register, 2> Src1Parts, Src2Parts; 5154 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5155 extractParts(Src1, NarrowTy, NumParts, Src1Parts); 5156 extractParts(Src2, NarrowTy, NumParts, Src2Parts); 5157 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5158 5159 // Take only high half of registers if this is high mul. 5160 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); 5161 MIRBuilder.buildMerge(DstReg, DstRegs); 5162 MI.eraseFromParent(); 5163 return Legalized; 5164 } 5165 5166 LegalizerHelper::LegalizeResult 5167 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5168 LLT NarrowTy) { 5169 if (TypeIdx != 0) 5170 return UnableToLegalize; 5171 5172 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5173 5174 Register Src = MI.getOperand(1).getReg(); 5175 LLT SrcTy = MRI.getType(Src); 5176 5177 // If all finite floats fit into the narrowed integer type, we can just swap 5178 // out the result type. This is practically only useful for conversions from 5179 // half to at least 16-bits, so just handle the one case. 5180 if (SrcTy.getScalarType() != LLT::scalar(16) || 5181 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5182 return UnableToLegalize; 5183 5184 Observer.changingInstr(MI); 5185 narrowScalarDst(MI, NarrowTy, 0, 5186 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5187 Observer.changedInstr(MI); 5188 return Legalized; 5189 } 5190 5191 LegalizerHelper::LegalizeResult 5192 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5193 LLT NarrowTy) { 5194 if (TypeIdx != 1) 5195 return UnableToLegalize; 5196 5197 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5198 5199 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5200 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5201 // NarrowSize. 5202 if (SizeOp1 % NarrowSize != 0) 5203 return UnableToLegalize; 5204 int NumParts = SizeOp1 / NarrowSize; 5205 5206 SmallVector<Register, 2> SrcRegs, DstRegs; 5207 SmallVector<uint64_t, 2> Indexes; 5208 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5209 5210 Register OpReg = MI.getOperand(0).getReg(); 5211 uint64_t OpStart = MI.getOperand(2).getImm(); 5212 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5213 for (int i = 0; i < NumParts; ++i) { 5214 unsigned SrcStart = i * NarrowSize; 5215 5216 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5217 // No part of the extract uses this subregister, ignore it. 5218 continue; 5219 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5220 // The entire subregister is extracted, forward the value. 5221 DstRegs.push_back(SrcRegs[i]); 5222 continue; 5223 } 5224 5225 // OpSegStart is where this destination segment would start in OpReg if it 5226 // extended infinitely in both directions. 5227 int64_t ExtractOffset; 5228 uint64_t SegSize; 5229 if (OpStart < SrcStart) { 5230 ExtractOffset = 0; 5231 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5232 } else { 5233 ExtractOffset = OpStart - SrcStart; 5234 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5235 } 5236 5237 Register SegReg = SrcRegs[i]; 5238 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5239 // A genuine extract is needed. 5240 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5241 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5242 } 5243 5244 DstRegs.push_back(SegReg); 5245 } 5246 5247 Register DstReg = MI.getOperand(0).getReg(); 5248 if (MRI.getType(DstReg).isVector()) 5249 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5250 else if (DstRegs.size() > 1) 5251 MIRBuilder.buildMerge(DstReg, DstRegs); 5252 else 5253 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5254 MI.eraseFromParent(); 5255 return Legalized; 5256 } 5257 5258 LegalizerHelper::LegalizeResult 5259 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5260 LLT NarrowTy) { 5261 // FIXME: Don't know how to handle secondary types yet. 5262 if (TypeIdx != 0) 5263 return UnableToLegalize; 5264 5265 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5266 SmallVector<uint64_t, 2> Indexes; 5267 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5268 LLT LeftoverTy; 5269 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5270 LeftoverRegs); 5271 5272 for (Register Reg : LeftoverRegs) 5273 SrcRegs.push_back(Reg); 5274 5275 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5276 Register OpReg = MI.getOperand(2).getReg(); 5277 uint64_t OpStart = MI.getOperand(3).getImm(); 5278 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5279 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5280 unsigned DstStart = I * NarrowSize; 5281 5282 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5283 // The entire subregister is defined by this insert, forward the new 5284 // value. 5285 DstRegs.push_back(OpReg); 5286 continue; 5287 } 5288 5289 Register SrcReg = SrcRegs[I]; 5290 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5291 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5292 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5293 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5294 } 5295 5296 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5297 // No part of the insert affects this subregister, forward the original. 5298 DstRegs.push_back(SrcReg); 5299 continue; 5300 } 5301 5302 // OpSegStart is where this destination segment would start in OpReg if it 5303 // extended infinitely in both directions. 5304 int64_t ExtractOffset, InsertOffset; 5305 uint64_t SegSize; 5306 if (OpStart < DstStart) { 5307 InsertOffset = 0; 5308 ExtractOffset = DstStart - OpStart; 5309 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5310 } else { 5311 InsertOffset = OpStart - DstStart; 5312 ExtractOffset = 0; 5313 SegSize = 5314 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5315 } 5316 5317 Register SegReg = OpReg; 5318 if (ExtractOffset != 0 || SegSize != OpSize) { 5319 // A genuine extract is needed. 5320 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5321 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5322 } 5323 5324 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5325 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5326 DstRegs.push_back(DstReg); 5327 } 5328 5329 uint64_t WideSize = DstRegs.size() * NarrowSize; 5330 Register DstReg = MI.getOperand(0).getReg(); 5331 if (WideSize > RegTy.getSizeInBits()) { 5332 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5333 MIRBuilder.buildMerge(MergeReg, DstRegs); 5334 MIRBuilder.buildTrunc(DstReg, MergeReg); 5335 } else 5336 MIRBuilder.buildMerge(DstReg, DstRegs); 5337 5338 MI.eraseFromParent(); 5339 return Legalized; 5340 } 5341 5342 LegalizerHelper::LegalizeResult 5343 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5344 LLT NarrowTy) { 5345 Register DstReg = MI.getOperand(0).getReg(); 5346 LLT DstTy = MRI.getType(DstReg); 5347 5348 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5349 5350 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5351 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5352 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5353 LLT LeftoverTy; 5354 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5355 Src0Regs, Src0LeftoverRegs)) 5356 return UnableToLegalize; 5357 5358 LLT Unused; 5359 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5360 Src1Regs, Src1LeftoverRegs)) 5361 llvm_unreachable("inconsistent extractParts result"); 5362 5363 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5364 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5365 {Src0Regs[I], Src1Regs[I]}); 5366 DstRegs.push_back(Inst.getReg(0)); 5367 } 5368 5369 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5370 auto Inst = MIRBuilder.buildInstr( 5371 MI.getOpcode(), 5372 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5373 DstLeftoverRegs.push_back(Inst.getReg(0)); 5374 } 5375 5376 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5377 LeftoverTy, DstLeftoverRegs); 5378 5379 MI.eraseFromParent(); 5380 return Legalized; 5381 } 5382 5383 LegalizerHelper::LegalizeResult 5384 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5385 LLT NarrowTy) { 5386 if (TypeIdx != 0) 5387 return UnableToLegalize; 5388 5389 Register DstReg = MI.getOperand(0).getReg(); 5390 Register SrcReg = MI.getOperand(1).getReg(); 5391 5392 LLT DstTy = MRI.getType(DstReg); 5393 if (DstTy.isVector()) 5394 return UnableToLegalize; 5395 5396 SmallVector<Register, 8> Parts; 5397 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5398 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5399 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5400 5401 MI.eraseFromParent(); 5402 return Legalized; 5403 } 5404 5405 LegalizerHelper::LegalizeResult 5406 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5407 LLT NarrowTy) { 5408 if (TypeIdx != 0) 5409 return UnableToLegalize; 5410 5411 Register CondReg = MI.getOperand(1).getReg(); 5412 LLT CondTy = MRI.getType(CondReg); 5413 if (CondTy.isVector()) // TODO: Handle vselect 5414 return UnableToLegalize; 5415 5416 Register DstReg = MI.getOperand(0).getReg(); 5417 LLT DstTy = MRI.getType(DstReg); 5418 5419 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5420 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5421 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5422 LLT LeftoverTy; 5423 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5424 Src1Regs, Src1LeftoverRegs)) 5425 return UnableToLegalize; 5426 5427 LLT Unused; 5428 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5429 Src2Regs, Src2LeftoverRegs)) 5430 llvm_unreachable("inconsistent extractParts result"); 5431 5432 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5433 auto Select = MIRBuilder.buildSelect(NarrowTy, 5434 CondReg, Src1Regs[I], Src2Regs[I]); 5435 DstRegs.push_back(Select.getReg(0)); 5436 } 5437 5438 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5439 auto Select = MIRBuilder.buildSelect( 5440 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5441 DstLeftoverRegs.push_back(Select.getReg(0)); 5442 } 5443 5444 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5445 LeftoverTy, DstLeftoverRegs); 5446 5447 MI.eraseFromParent(); 5448 return Legalized; 5449 } 5450 5451 LegalizerHelper::LegalizeResult 5452 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5453 LLT NarrowTy) { 5454 if (TypeIdx != 1) 5455 return UnableToLegalize; 5456 5457 Register DstReg = MI.getOperand(0).getReg(); 5458 Register SrcReg = MI.getOperand(1).getReg(); 5459 LLT DstTy = MRI.getType(DstReg); 5460 LLT SrcTy = MRI.getType(SrcReg); 5461 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5462 5463 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5464 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5465 5466 MachineIRBuilder &B = MIRBuilder; 5467 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5468 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5469 auto C_0 = B.buildConstant(NarrowTy, 0); 5470 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5471 UnmergeSrc.getReg(1), C_0); 5472 auto LoCTLZ = IsUndef ? 5473 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5474 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5475 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5476 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5477 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5478 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5479 5480 MI.eraseFromParent(); 5481 return Legalized; 5482 } 5483 5484 return UnableToLegalize; 5485 } 5486 5487 LegalizerHelper::LegalizeResult 5488 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5489 LLT NarrowTy) { 5490 if (TypeIdx != 1) 5491 return UnableToLegalize; 5492 5493 Register DstReg = MI.getOperand(0).getReg(); 5494 Register SrcReg = MI.getOperand(1).getReg(); 5495 LLT DstTy = MRI.getType(DstReg); 5496 LLT SrcTy = MRI.getType(SrcReg); 5497 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5498 5499 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5500 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5501 5502 MachineIRBuilder &B = MIRBuilder; 5503 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5504 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5505 auto C_0 = B.buildConstant(NarrowTy, 0); 5506 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5507 UnmergeSrc.getReg(0), C_0); 5508 auto HiCTTZ = IsUndef ? 5509 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5510 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5511 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5512 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5513 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5514 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5515 5516 MI.eraseFromParent(); 5517 return Legalized; 5518 } 5519 5520 return UnableToLegalize; 5521 } 5522 5523 LegalizerHelper::LegalizeResult 5524 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5525 LLT NarrowTy) { 5526 if (TypeIdx != 1) 5527 return UnableToLegalize; 5528 5529 Register DstReg = MI.getOperand(0).getReg(); 5530 LLT DstTy = MRI.getType(DstReg); 5531 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5532 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5533 5534 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5535 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5536 5537 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5538 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5539 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5540 5541 MI.eraseFromParent(); 5542 return Legalized; 5543 } 5544 5545 return UnableToLegalize; 5546 } 5547 5548 LegalizerHelper::LegalizeResult 5549 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5550 unsigned Opc = MI.getOpcode(); 5551 const auto &TII = MIRBuilder.getTII(); 5552 auto isSupported = [this](const LegalityQuery &Q) { 5553 auto QAction = LI.getAction(Q).Action; 5554 return QAction == Legal || QAction == Libcall || QAction == Custom; 5555 }; 5556 switch (Opc) { 5557 default: 5558 return UnableToLegalize; 5559 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5560 // This trivially expands to CTLZ. 5561 Observer.changingInstr(MI); 5562 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5563 Observer.changedInstr(MI); 5564 return Legalized; 5565 } 5566 case TargetOpcode::G_CTLZ: { 5567 Register DstReg = MI.getOperand(0).getReg(); 5568 Register SrcReg = MI.getOperand(1).getReg(); 5569 LLT DstTy = MRI.getType(DstReg); 5570 LLT SrcTy = MRI.getType(SrcReg); 5571 unsigned Len = SrcTy.getSizeInBits(); 5572 5573 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5574 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5575 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5576 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5577 auto ICmp = MIRBuilder.buildICmp( 5578 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5579 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5580 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5581 MI.eraseFromParent(); 5582 return Legalized; 5583 } 5584 // for now, we do this: 5585 // NewLen = NextPowerOf2(Len); 5586 // x = x | (x >> 1); 5587 // x = x | (x >> 2); 5588 // ... 5589 // x = x | (x >>16); 5590 // x = x | (x >>32); // for 64-bit input 5591 // Upto NewLen/2 5592 // return Len - popcount(x); 5593 // 5594 // Ref: "Hacker's Delight" by Henry Warren 5595 Register Op = SrcReg; 5596 unsigned NewLen = PowerOf2Ceil(Len); 5597 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5598 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5599 auto MIBOp = MIRBuilder.buildOr( 5600 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5601 Op = MIBOp.getReg(0); 5602 } 5603 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5604 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5605 MIBPop); 5606 MI.eraseFromParent(); 5607 return Legalized; 5608 } 5609 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5610 // This trivially expands to CTTZ. 5611 Observer.changingInstr(MI); 5612 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5613 Observer.changedInstr(MI); 5614 return Legalized; 5615 } 5616 case TargetOpcode::G_CTTZ: { 5617 Register DstReg = MI.getOperand(0).getReg(); 5618 Register SrcReg = MI.getOperand(1).getReg(); 5619 LLT DstTy = MRI.getType(DstReg); 5620 LLT SrcTy = MRI.getType(SrcReg); 5621 5622 unsigned Len = SrcTy.getSizeInBits(); 5623 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5624 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5625 // zero. 5626 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5627 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5628 auto ICmp = MIRBuilder.buildICmp( 5629 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5630 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5631 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5632 MI.eraseFromParent(); 5633 return Legalized; 5634 } 5635 // for now, we use: { return popcount(~x & (x - 1)); } 5636 // unless the target has ctlz but not ctpop, in which case we use: 5637 // { return 32 - nlz(~x & (x-1)); } 5638 // Ref: "Hacker's Delight" by Henry Warren 5639 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5640 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5641 auto MIBTmp = MIRBuilder.buildAnd( 5642 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5643 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5644 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5645 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5646 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5647 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5648 MI.eraseFromParent(); 5649 return Legalized; 5650 } 5651 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5652 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5653 return Legalized; 5654 } 5655 case TargetOpcode::G_CTPOP: { 5656 Register SrcReg = MI.getOperand(1).getReg(); 5657 LLT Ty = MRI.getType(SrcReg); 5658 unsigned Size = Ty.getSizeInBits(); 5659 MachineIRBuilder &B = MIRBuilder; 5660 5661 // Count set bits in blocks of 2 bits. Default approach would be 5662 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5663 // We use following formula instead: 5664 // B2Count = val - { (val >> 1) & 0x55555555 } 5665 // since it gives same result in blocks of 2 with one instruction less. 5666 auto C_1 = B.buildConstant(Ty, 1); 5667 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5668 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5669 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5670 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5671 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5672 5673 // In order to get count in blocks of 4 add values from adjacent block of 2. 5674 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5675 auto C_2 = B.buildConstant(Ty, 2); 5676 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5677 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5678 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5679 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5680 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5681 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5682 5683 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5684 // addition since count value sits in range {0,...,8} and 4 bits are enough 5685 // to hold such binary values. After addition high 4 bits still hold count 5686 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5687 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5688 auto C_4 = B.buildConstant(Ty, 4); 5689 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5690 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5691 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5692 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5693 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5694 5695 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5696 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5697 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5698 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5699 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5700 5701 // Shift count result from 8 high bits to low bits. 5702 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5703 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5704 5705 MI.eraseFromParent(); 5706 return Legalized; 5707 } 5708 } 5709 } 5710 5711 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5712 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5713 Register Reg, unsigned BW) { 5714 return matchUnaryPredicate( 5715 MRI, Reg, 5716 [=](const Constant *C) { 5717 // Null constant here means an undef. 5718 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5719 return !CI || CI->getValue().urem(BW) != 0; 5720 }, 5721 /*AllowUndefs*/ true); 5722 } 5723 5724 LegalizerHelper::LegalizeResult 5725 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5726 Register Dst = MI.getOperand(0).getReg(); 5727 Register X = MI.getOperand(1).getReg(); 5728 Register Y = MI.getOperand(2).getReg(); 5729 Register Z = MI.getOperand(3).getReg(); 5730 LLT Ty = MRI.getType(Dst); 5731 LLT ShTy = MRI.getType(Z); 5732 5733 unsigned BW = Ty.getScalarSizeInBits(); 5734 5735 if (!isPowerOf2_32(BW)) 5736 return UnableToLegalize; 5737 5738 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5739 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5740 5741 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5742 // fshl X, Y, Z -> fshr X, Y, -Z 5743 // fshr X, Y, Z -> fshl X, Y, -Z 5744 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5745 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5746 } else { 5747 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5748 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5749 auto One = MIRBuilder.buildConstant(ShTy, 1); 5750 if (IsFSHL) { 5751 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5752 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5753 } else { 5754 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5755 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5756 } 5757 5758 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5759 } 5760 5761 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5762 MI.eraseFromParent(); 5763 return Legalized; 5764 } 5765 5766 LegalizerHelper::LegalizeResult 5767 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5768 Register Dst = MI.getOperand(0).getReg(); 5769 Register X = MI.getOperand(1).getReg(); 5770 Register Y = MI.getOperand(2).getReg(); 5771 Register Z = MI.getOperand(3).getReg(); 5772 LLT Ty = MRI.getType(Dst); 5773 LLT ShTy = MRI.getType(Z); 5774 5775 const unsigned BW = Ty.getScalarSizeInBits(); 5776 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5777 5778 Register ShX, ShY; 5779 Register ShAmt, InvShAmt; 5780 5781 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5782 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5783 // fshl: X << C | Y >> (BW - C) 5784 // fshr: X << (BW - C) | Y >> C 5785 // where C = Z % BW is not zero 5786 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5787 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5788 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5789 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5790 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5791 } else { 5792 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5793 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5794 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5795 if (isPowerOf2_32(BW)) { 5796 // Z % BW -> Z & (BW - 1) 5797 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5798 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5799 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5800 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5801 } else { 5802 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5803 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5804 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5805 } 5806 5807 auto One = MIRBuilder.buildConstant(ShTy, 1); 5808 if (IsFSHL) { 5809 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5810 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5811 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5812 } else { 5813 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5814 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5815 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5816 } 5817 } 5818 5819 MIRBuilder.buildOr(Dst, ShX, ShY); 5820 MI.eraseFromParent(); 5821 return Legalized; 5822 } 5823 5824 LegalizerHelper::LegalizeResult 5825 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5826 // These operations approximately do the following (while avoiding undefined 5827 // shifts by BW): 5828 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5829 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5830 Register Dst = MI.getOperand(0).getReg(); 5831 LLT Ty = MRI.getType(Dst); 5832 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5833 5834 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5835 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5836 5837 // TODO: Use smarter heuristic that accounts for vector legalization. 5838 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5839 return lowerFunnelShiftAsShifts(MI); 5840 5841 // This only works for powers of 2, fallback to shifts if it fails. 5842 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5843 if (Result == UnableToLegalize) 5844 return lowerFunnelShiftAsShifts(MI); 5845 return Result; 5846 } 5847 5848 LegalizerHelper::LegalizeResult 5849 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5850 Register Dst = MI.getOperand(0).getReg(); 5851 Register Src = MI.getOperand(1).getReg(); 5852 Register Amt = MI.getOperand(2).getReg(); 5853 LLT AmtTy = MRI.getType(Amt); 5854 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5855 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5856 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5857 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5858 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5859 MI.eraseFromParent(); 5860 return Legalized; 5861 } 5862 5863 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5864 Register Dst = MI.getOperand(0).getReg(); 5865 Register Src = MI.getOperand(1).getReg(); 5866 Register Amt = MI.getOperand(2).getReg(); 5867 LLT DstTy = MRI.getType(Dst); 5868 LLT SrcTy = MRI.getType(Src); 5869 LLT AmtTy = MRI.getType(Amt); 5870 5871 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5872 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5873 5874 MIRBuilder.setInstrAndDebugLoc(MI); 5875 5876 // If a rotate in the other direction is supported, use it. 5877 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5878 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5879 isPowerOf2_32(EltSizeInBits)) 5880 return lowerRotateWithReverseRotate(MI); 5881 5882 // If a funnel shift is supported, use it. 5883 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5884 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5885 bool IsFShLegal = false; 5886 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || 5887 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { 5888 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, 5889 Register R3) { 5890 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); 5891 MI.eraseFromParent(); 5892 return Legalized; 5893 }; 5894 // If a funnel shift in the other direction is supported, use it. 5895 if (IsFShLegal) { 5896 return buildFunnelShift(FShOpc, Dst, Src, Amt); 5897 } else if (isPowerOf2_32(EltSizeInBits)) { 5898 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); 5899 return buildFunnelShift(RevFsh, Dst, Src, Amt); 5900 } 5901 } 5902 5903 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5904 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5905 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5906 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5907 Register ShVal; 5908 Register RevShiftVal; 5909 if (isPowerOf2_32(EltSizeInBits)) { 5910 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5911 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5912 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5913 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5914 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5915 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5916 RevShiftVal = 5917 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5918 } else { 5919 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5920 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5921 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5922 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5923 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5924 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5925 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5926 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5927 RevShiftVal = 5928 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5929 } 5930 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5931 MI.eraseFromParent(); 5932 return Legalized; 5933 } 5934 5935 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5936 // representation. 5937 LegalizerHelper::LegalizeResult 5938 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5939 Register Dst = MI.getOperand(0).getReg(); 5940 Register Src = MI.getOperand(1).getReg(); 5941 const LLT S64 = LLT::scalar(64); 5942 const LLT S32 = LLT::scalar(32); 5943 const LLT S1 = LLT::scalar(1); 5944 5945 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5946 5947 // unsigned cul2f(ulong u) { 5948 // uint lz = clz(u); 5949 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5950 // u = (u << lz) & 0x7fffffffffffffffUL; 5951 // ulong t = u & 0xffffffffffUL; 5952 // uint v = (e << 23) | (uint)(u >> 40); 5953 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5954 // return as_float(v + r); 5955 // } 5956 5957 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5958 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5959 5960 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5961 5962 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5963 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5964 5965 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5966 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5967 5968 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5969 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5970 5971 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5972 5973 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5974 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5975 5976 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5977 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5978 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5979 5980 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5981 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5982 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5983 auto One = MIRBuilder.buildConstant(S32, 1); 5984 5985 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5986 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5987 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5988 MIRBuilder.buildAdd(Dst, V, R); 5989 5990 MI.eraseFromParent(); 5991 return Legalized; 5992 } 5993 5994 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5995 Register Dst = MI.getOperand(0).getReg(); 5996 Register Src = MI.getOperand(1).getReg(); 5997 LLT DstTy = MRI.getType(Dst); 5998 LLT SrcTy = MRI.getType(Src); 5999 6000 if (SrcTy == LLT::scalar(1)) { 6001 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 6002 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6003 MIRBuilder.buildSelect(Dst, Src, True, False); 6004 MI.eraseFromParent(); 6005 return Legalized; 6006 } 6007 6008 if (SrcTy != LLT::scalar(64)) 6009 return UnableToLegalize; 6010 6011 if (DstTy == LLT::scalar(32)) { 6012 // TODO: SelectionDAG has several alternative expansions to port which may 6013 // be more reasonble depending on the available instructions. If a target 6014 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 6015 // intermediate type, this is probably worse. 6016 return lowerU64ToF32BitOps(MI); 6017 } 6018 6019 return UnableToLegalize; 6020 } 6021 6022 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 6023 Register Dst = MI.getOperand(0).getReg(); 6024 Register Src = MI.getOperand(1).getReg(); 6025 LLT DstTy = MRI.getType(Dst); 6026 LLT SrcTy = MRI.getType(Src); 6027 6028 const LLT S64 = LLT::scalar(64); 6029 const LLT S32 = LLT::scalar(32); 6030 const LLT S1 = LLT::scalar(1); 6031 6032 if (SrcTy == S1) { 6033 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6034 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6035 MIRBuilder.buildSelect(Dst, Src, True, False); 6036 MI.eraseFromParent(); 6037 return Legalized; 6038 } 6039 6040 if (SrcTy != S64) 6041 return UnableToLegalize; 6042 6043 if (DstTy == S32) { 6044 // signed cl2f(long l) { 6045 // long s = l >> 63; 6046 // float r = cul2f((l + s) ^ s); 6047 // return s ? -r : r; 6048 // } 6049 Register L = Src; 6050 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6051 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6052 6053 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6054 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6055 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6056 6057 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6058 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6059 MIRBuilder.buildConstant(S64, 0)); 6060 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6061 MI.eraseFromParent(); 6062 return Legalized; 6063 } 6064 6065 return UnableToLegalize; 6066 } 6067 6068 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 6069 Register Dst = MI.getOperand(0).getReg(); 6070 Register Src = MI.getOperand(1).getReg(); 6071 LLT DstTy = MRI.getType(Dst); 6072 LLT SrcTy = MRI.getType(Src); 6073 const LLT S64 = LLT::scalar(64); 6074 const LLT S32 = LLT::scalar(32); 6075 6076 if (SrcTy != S64 && SrcTy != S32) 6077 return UnableToLegalize; 6078 if (DstTy != S32 && DstTy != S64) 6079 return UnableToLegalize; 6080 6081 // FPTOSI gives same result as FPTOUI for positive signed integers. 6082 // FPTOUI needs to deal with fp values that convert to unsigned integers 6083 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 6084 6085 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 6086 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 6087 : APFloat::IEEEdouble(), 6088 APInt::getZero(SrcTy.getSizeInBits())); 6089 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 6090 6091 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 6092 6093 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 6094 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 6095 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 6096 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 6097 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 6098 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 6099 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 6100 6101 const LLT S1 = LLT::scalar(1); 6102 6103 MachineInstrBuilder FCMP = 6104 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 6105 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 6106 6107 MI.eraseFromParent(); 6108 return Legalized; 6109 } 6110 6111 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 6112 Register Dst = MI.getOperand(0).getReg(); 6113 Register Src = MI.getOperand(1).getReg(); 6114 LLT DstTy = MRI.getType(Dst); 6115 LLT SrcTy = MRI.getType(Src); 6116 const LLT S64 = LLT::scalar(64); 6117 const LLT S32 = LLT::scalar(32); 6118 6119 // FIXME: Only f32 to i64 conversions are supported. 6120 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6121 return UnableToLegalize; 6122 6123 // Expand f32 -> i64 conversion 6124 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6125 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6126 6127 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6128 6129 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6130 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6131 6132 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6133 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6134 6135 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6136 APInt::getSignMask(SrcEltBits)); 6137 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6138 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6139 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6140 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6141 6142 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6143 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6144 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6145 6146 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6147 R = MIRBuilder.buildZExt(DstTy, R); 6148 6149 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6150 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6151 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6152 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6153 6154 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6155 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6156 6157 const LLT S1 = LLT::scalar(1); 6158 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6159 S1, Exponent, ExponentLoBit); 6160 6161 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6162 6163 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6164 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6165 6166 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6167 6168 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6169 S1, Exponent, ZeroSrcTy); 6170 6171 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6172 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6173 6174 MI.eraseFromParent(); 6175 return Legalized; 6176 } 6177 6178 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6179 LegalizerHelper::LegalizeResult 6180 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6181 Register Dst = MI.getOperand(0).getReg(); 6182 Register Src = MI.getOperand(1).getReg(); 6183 6184 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6185 return UnableToLegalize; 6186 6187 const unsigned ExpMask = 0x7ff; 6188 const unsigned ExpBiasf64 = 1023; 6189 const unsigned ExpBiasf16 = 15; 6190 const LLT S32 = LLT::scalar(32); 6191 const LLT S1 = LLT::scalar(1); 6192 6193 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6194 Register U = Unmerge.getReg(0); 6195 Register UH = Unmerge.getReg(1); 6196 6197 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6198 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6199 6200 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6201 // add the f16 bias (15) to get the biased exponent for the f16 format. 6202 E = MIRBuilder.buildAdd( 6203 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6204 6205 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6206 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6207 6208 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6209 MIRBuilder.buildConstant(S32, 0x1ff)); 6210 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6211 6212 auto Zero = MIRBuilder.buildConstant(S32, 0); 6213 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6214 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6215 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6216 6217 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6218 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6219 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6220 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6221 6222 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6223 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6224 6225 // N = M | (E << 12); 6226 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6227 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6228 6229 // B = clamp(1-E, 0, 13); 6230 auto One = MIRBuilder.buildConstant(S32, 1); 6231 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6232 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6233 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6234 6235 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6236 MIRBuilder.buildConstant(S32, 0x1000)); 6237 6238 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6239 auto D0 = MIRBuilder.buildShl(S32, D, B); 6240 6241 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6242 D0, SigSetHigh); 6243 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6244 D = MIRBuilder.buildOr(S32, D, D1); 6245 6246 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6247 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6248 6249 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6250 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6251 6252 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6253 MIRBuilder.buildConstant(S32, 3)); 6254 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6255 6256 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6257 MIRBuilder.buildConstant(S32, 5)); 6258 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6259 6260 V1 = MIRBuilder.buildOr(S32, V0, V1); 6261 V = MIRBuilder.buildAdd(S32, V, V1); 6262 6263 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6264 E, MIRBuilder.buildConstant(S32, 30)); 6265 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6266 MIRBuilder.buildConstant(S32, 0x7c00), V); 6267 6268 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6269 E, MIRBuilder.buildConstant(S32, 1039)); 6270 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6271 6272 // Extract the sign bit. 6273 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6274 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6275 6276 // Insert the sign bit 6277 V = MIRBuilder.buildOr(S32, Sign, V); 6278 6279 MIRBuilder.buildTrunc(Dst, V); 6280 MI.eraseFromParent(); 6281 return Legalized; 6282 } 6283 6284 LegalizerHelper::LegalizeResult 6285 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6286 Register Dst = MI.getOperand(0).getReg(); 6287 Register Src = MI.getOperand(1).getReg(); 6288 6289 LLT DstTy = MRI.getType(Dst); 6290 LLT SrcTy = MRI.getType(Src); 6291 const LLT S64 = LLT::scalar(64); 6292 const LLT S16 = LLT::scalar(16); 6293 6294 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6295 return lowerFPTRUNC_F64_TO_F16(MI); 6296 6297 return UnableToLegalize; 6298 } 6299 6300 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6301 // multiplication tree. 6302 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6303 Register Dst = MI.getOperand(0).getReg(); 6304 Register Src0 = MI.getOperand(1).getReg(); 6305 Register Src1 = MI.getOperand(2).getReg(); 6306 LLT Ty = MRI.getType(Dst); 6307 6308 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6309 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6310 MI.eraseFromParent(); 6311 return Legalized; 6312 } 6313 6314 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6315 switch (Opc) { 6316 case TargetOpcode::G_SMIN: 6317 return CmpInst::ICMP_SLT; 6318 case TargetOpcode::G_SMAX: 6319 return CmpInst::ICMP_SGT; 6320 case TargetOpcode::G_UMIN: 6321 return CmpInst::ICMP_ULT; 6322 case TargetOpcode::G_UMAX: 6323 return CmpInst::ICMP_UGT; 6324 default: 6325 llvm_unreachable("not in integer min/max"); 6326 } 6327 } 6328 6329 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6330 Register Dst = MI.getOperand(0).getReg(); 6331 Register Src0 = MI.getOperand(1).getReg(); 6332 Register Src1 = MI.getOperand(2).getReg(); 6333 6334 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6335 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6336 6337 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6338 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6339 6340 MI.eraseFromParent(); 6341 return Legalized; 6342 } 6343 6344 LegalizerHelper::LegalizeResult 6345 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6346 Register Dst = MI.getOperand(0).getReg(); 6347 Register Src0 = MI.getOperand(1).getReg(); 6348 Register Src1 = MI.getOperand(2).getReg(); 6349 6350 const LLT Src0Ty = MRI.getType(Src0); 6351 const LLT Src1Ty = MRI.getType(Src1); 6352 6353 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6354 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6355 6356 auto SignBitMask = MIRBuilder.buildConstant( 6357 Src0Ty, APInt::getSignMask(Src0Size)); 6358 6359 auto NotSignBitMask = MIRBuilder.buildConstant( 6360 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6361 6362 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6363 Register And1; 6364 if (Src0Ty == Src1Ty) { 6365 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6366 } else if (Src0Size > Src1Size) { 6367 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6368 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6369 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6370 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6371 } else { 6372 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6373 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6374 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6375 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6376 } 6377 6378 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6379 // constants are a nan and -0.0, but the final result should preserve 6380 // everything. 6381 unsigned Flags = MI.getFlags(); 6382 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6383 6384 MI.eraseFromParent(); 6385 return Legalized; 6386 } 6387 6388 LegalizerHelper::LegalizeResult 6389 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6390 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6391 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6392 6393 Register Dst = MI.getOperand(0).getReg(); 6394 Register Src0 = MI.getOperand(1).getReg(); 6395 Register Src1 = MI.getOperand(2).getReg(); 6396 LLT Ty = MRI.getType(Dst); 6397 6398 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6399 // Insert canonicalizes if it's possible we need to quiet to get correct 6400 // sNaN behavior. 6401 6402 // Note this must be done here, and not as an optimization combine in the 6403 // absence of a dedicate quiet-snan instruction as we're using an 6404 // omni-purpose G_FCANONICALIZE. 6405 if (!isKnownNeverSNaN(Src0, MRI)) 6406 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6407 6408 if (!isKnownNeverSNaN(Src1, MRI)) 6409 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6410 } 6411 6412 // If there are no nans, it's safe to simply replace this with the non-IEEE 6413 // version. 6414 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6415 MI.eraseFromParent(); 6416 return Legalized; 6417 } 6418 6419 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6420 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6421 Register DstReg = MI.getOperand(0).getReg(); 6422 LLT Ty = MRI.getType(DstReg); 6423 unsigned Flags = MI.getFlags(); 6424 6425 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6426 Flags); 6427 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6428 MI.eraseFromParent(); 6429 return Legalized; 6430 } 6431 6432 LegalizerHelper::LegalizeResult 6433 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6434 Register DstReg = MI.getOperand(0).getReg(); 6435 Register X = MI.getOperand(1).getReg(); 6436 const unsigned Flags = MI.getFlags(); 6437 const LLT Ty = MRI.getType(DstReg); 6438 const LLT CondTy = Ty.changeElementSize(1); 6439 6440 // round(x) => 6441 // t = trunc(x); 6442 // d = fabs(x - t); 6443 // o = copysign(1.0f, x); 6444 // return t + (d >= 0.5 ? o : 0.0); 6445 6446 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6447 6448 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6449 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6450 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6451 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6452 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6453 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6454 6455 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6456 Flags); 6457 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6458 6459 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6460 6461 MI.eraseFromParent(); 6462 return Legalized; 6463 } 6464 6465 LegalizerHelper::LegalizeResult 6466 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6467 Register DstReg = MI.getOperand(0).getReg(); 6468 Register SrcReg = MI.getOperand(1).getReg(); 6469 unsigned Flags = MI.getFlags(); 6470 LLT Ty = MRI.getType(DstReg); 6471 const LLT CondTy = Ty.changeElementSize(1); 6472 6473 // result = trunc(src); 6474 // if (src < 0.0 && src != result) 6475 // result += -1.0. 6476 6477 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6478 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6479 6480 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6481 SrcReg, Zero, Flags); 6482 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6483 SrcReg, Trunc, Flags); 6484 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6485 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6486 6487 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6488 MI.eraseFromParent(); 6489 return Legalized; 6490 } 6491 6492 LegalizerHelper::LegalizeResult 6493 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6494 const unsigned NumOps = MI.getNumOperands(); 6495 Register DstReg = MI.getOperand(0).getReg(); 6496 Register Src0Reg = MI.getOperand(1).getReg(); 6497 LLT DstTy = MRI.getType(DstReg); 6498 LLT SrcTy = MRI.getType(Src0Reg); 6499 unsigned PartSize = SrcTy.getSizeInBits(); 6500 6501 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6502 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6503 6504 for (unsigned I = 2; I != NumOps; ++I) { 6505 const unsigned Offset = (I - 1) * PartSize; 6506 6507 Register SrcReg = MI.getOperand(I).getReg(); 6508 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6509 6510 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6511 MRI.createGenericVirtualRegister(WideTy); 6512 6513 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6514 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6515 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6516 ResultReg = NextResult; 6517 } 6518 6519 if (DstTy.isPointer()) { 6520 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6521 DstTy.getAddressSpace())) { 6522 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6523 return UnableToLegalize; 6524 } 6525 6526 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6527 } 6528 6529 MI.eraseFromParent(); 6530 return Legalized; 6531 } 6532 6533 LegalizerHelper::LegalizeResult 6534 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6535 const unsigned NumDst = MI.getNumOperands() - 1; 6536 Register SrcReg = MI.getOperand(NumDst).getReg(); 6537 Register Dst0Reg = MI.getOperand(0).getReg(); 6538 LLT DstTy = MRI.getType(Dst0Reg); 6539 if (DstTy.isPointer()) 6540 return UnableToLegalize; // TODO 6541 6542 SrcReg = coerceToScalar(SrcReg); 6543 if (!SrcReg) 6544 return UnableToLegalize; 6545 6546 // Expand scalarizing unmerge as bitcast to integer and shift. 6547 LLT IntTy = MRI.getType(SrcReg); 6548 6549 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6550 6551 const unsigned DstSize = DstTy.getSizeInBits(); 6552 unsigned Offset = DstSize; 6553 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6554 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6555 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6556 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6557 } 6558 6559 MI.eraseFromParent(); 6560 return Legalized; 6561 } 6562 6563 /// Lower a vector extract or insert by writing the vector to a stack temporary 6564 /// and reloading the element or vector. 6565 /// 6566 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6567 /// => 6568 /// %stack_temp = G_FRAME_INDEX 6569 /// G_STORE %vec, %stack_temp 6570 /// %idx = clamp(%idx, %vec.getNumElements()) 6571 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6572 /// %dst = G_LOAD %element_ptr 6573 LegalizerHelper::LegalizeResult 6574 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6575 Register DstReg = MI.getOperand(0).getReg(); 6576 Register SrcVec = MI.getOperand(1).getReg(); 6577 Register InsertVal; 6578 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6579 InsertVal = MI.getOperand(2).getReg(); 6580 6581 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6582 6583 LLT VecTy = MRI.getType(SrcVec); 6584 LLT EltTy = VecTy.getElementType(); 6585 unsigned NumElts = VecTy.getNumElements(); 6586 6587 int64_t IdxVal; 6588 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { 6589 SmallVector<Register, 8> SrcRegs; 6590 extractParts(SrcVec, EltTy, NumElts, SrcRegs); 6591 6592 if (InsertVal) { 6593 SrcRegs[IdxVal] = MI.getOperand(2).getReg(); 6594 MIRBuilder.buildMerge(DstReg, SrcRegs); 6595 } else { 6596 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); 6597 } 6598 6599 MI.eraseFromParent(); 6600 return Legalized; 6601 } 6602 6603 if (!EltTy.isByteSized()) { // Not implemented. 6604 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6605 return UnableToLegalize; 6606 } 6607 6608 unsigned EltBytes = EltTy.getSizeInBytes(); 6609 Align VecAlign = getStackTemporaryAlignment(VecTy); 6610 Align EltAlign; 6611 6612 MachinePointerInfo PtrInfo; 6613 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6614 VecAlign, PtrInfo); 6615 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6616 6617 // Get the pointer to the element, and be sure not to hit undefined behavior 6618 // if the index is out of bounds. 6619 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6620 6621 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6622 int64_t Offset = IdxVal * EltBytes; 6623 PtrInfo = PtrInfo.getWithOffset(Offset); 6624 EltAlign = commonAlignment(VecAlign, Offset); 6625 } else { 6626 // We lose information with a variable offset. 6627 EltAlign = getStackTemporaryAlignment(EltTy); 6628 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6629 } 6630 6631 if (InsertVal) { 6632 // Write the inserted element 6633 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6634 6635 // Reload the whole vector. 6636 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6637 } else { 6638 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6639 } 6640 6641 MI.eraseFromParent(); 6642 return Legalized; 6643 } 6644 6645 LegalizerHelper::LegalizeResult 6646 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6647 Register DstReg = MI.getOperand(0).getReg(); 6648 Register Src0Reg = MI.getOperand(1).getReg(); 6649 Register Src1Reg = MI.getOperand(2).getReg(); 6650 LLT Src0Ty = MRI.getType(Src0Reg); 6651 LLT DstTy = MRI.getType(DstReg); 6652 LLT IdxTy = LLT::scalar(32); 6653 6654 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6655 6656 if (DstTy.isScalar()) { 6657 if (Src0Ty.isVector()) 6658 return UnableToLegalize; 6659 6660 // This is just a SELECT. 6661 assert(Mask.size() == 1 && "Expected a single mask element"); 6662 Register Val; 6663 if (Mask[0] < 0 || Mask[0] > 1) 6664 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6665 else 6666 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6667 MIRBuilder.buildCopy(DstReg, Val); 6668 MI.eraseFromParent(); 6669 return Legalized; 6670 } 6671 6672 Register Undef; 6673 SmallVector<Register, 32> BuildVec; 6674 LLT EltTy = DstTy.getElementType(); 6675 6676 for (int Idx : Mask) { 6677 if (Idx < 0) { 6678 if (!Undef.isValid()) 6679 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6680 BuildVec.push_back(Undef); 6681 continue; 6682 } 6683 6684 if (Src0Ty.isScalar()) { 6685 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6686 } else { 6687 int NumElts = Src0Ty.getNumElements(); 6688 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6689 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6690 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6691 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6692 BuildVec.push_back(Extract.getReg(0)); 6693 } 6694 } 6695 6696 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6697 MI.eraseFromParent(); 6698 return Legalized; 6699 } 6700 6701 LegalizerHelper::LegalizeResult 6702 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6703 const auto &MF = *MI.getMF(); 6704 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6705 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6706 return UnableToLegalize; 6707 6708 Register Dst = MI.getOperand(0).getReg(); 6709 Register AllocSize = MI.getOperand(1).getReg(); 6710 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6711 6712 LLT PtrTy = MRI.getType(Dst); 6713 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6714 6715 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6716 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6717 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6718 6719 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6720 // have to generate an extra instruction to negate the alloc and then use 6721 // G_PTR_ADD to add the negative offset. 6722 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6723 if (Alignment > Align(1)) { 6724 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6725 AlignMask.negate(); 6726 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6727 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6728 } 6729 6730 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6731 MIRBuilder.buildCopy(SPReg, SPTmp); 6732 MIRBuilder.buildCopy(Dst, SPTmp); 6733 6734 MI.eraseFromParent(); 6735 return Legalized; 6736 } 6737 6738 LegalizerHelper::LegalizeResult 6739 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6740 Register Dst = MI.getOperand(0).getReg(); 6741 Register Src = MI.getOperand(1).getReg(); 6742 unsigned Offset = MI.getOperand(2).getImm(); 6743 6744 LLT DstTy = MRI.getType(Dst); 6745 LLT SrcTy = MRI.getType(Src); 6746 6747 // Extract sub-vector or one element 6748 if (SrcTy.isVector()) { 6749 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); 6750 unsigned DstSize = DstTy.getSizeInBits(); 6751 6752 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && 6753 (Offset + DstSize <= SrcTy.getSizeInBits())) { 6754 // Unmerge and allow access to each Src element for the artifact combiner. 6755 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src); 6756 6757 // Take element(s) we need to extract and copy it (merge them). 6758 SmallVector<Register, 8> SubVectorElts; 6759 for (unsigned Idx = Offset / SrcEltSize; 6760 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { 6761 SubVectorElts.push_back(Unmerge.getReg(Idx)); 6762 } 6763 if (SubVectorElts.size() == 1) 6764 MIRBuilder.buildCopy(Dst, SubVectorElts[0]); 6765 else 6766 MIRBuilder.buildMerge(Dst, SubVectorElts); 6767 6768 MI.eraseFromParent(); 6769 return Legalized; 6770 } 6771 } 6772 6773 if (DstTy.isScalar() && 6774 (SrcTy.isScalar() || 6775 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6776 LLT SrcIntTy = SrcTy; 6777 if (!SrcTy.isScalar()) { 6778 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6779 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6780 } 6781 6782 if (Offset == 0) 6783 MIRBuilder.buildTrunc(Dst, Src); 6784 else { 6785 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6786 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6787 MIRBuilder.buildTrunc(Dst, Shr); 6788 } 6789 6790 MI.eraseFromParent(); 6791 return Legalized; 6792 } 6793 6794 return UnableToLegalize; 6795 } 6796 6797 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6798 Register Dst = MI.getOperand(0).getReg(); 6799 Register Src = MI.getOperand(1).getReg(); 6800 Register InsertSrc = MI.getOperand(2).getReg(); 6801 uint64_t Offset = MI.getOperand(3).getImm(); 6802 6803 LLT DstTy = MRI.getType(Src); 6804 LLT InsertTy = MRI.getType(InsertSrc); 6805 6806 // Insert sub-vector or one element 6807 if (DstTy.isVector() && !InsertTy.isPointer()) { 6808 LLT EltTy = DstTy.getElementType(); 6809 unsigned EltSize = EltTy.getSizeInBits(); 6810 unsigned InsertSize = InsertTy.getSizeInBits(); 6811 6812 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && 6813 (Offset + InsertSize <= DstTy.getSizeInBits())) { 6814 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); 6815 SmallVector<Register, 8> DstElts; 6816 unsigned Idx = 0; 6817 // Elements from Src before insert start Offset 6818 for (; Idx < Offset / EltSize; ++Idx) { 6819 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6820 } 6821 6822 // Replace elements in Src with elements from InsertSrc 6823 if (InsertTy.getSizeInBits() > EltSize) { 6824 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); 6825 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; 6826 ++Idx, ++i) { 6827 DstElts.push_back(UnmergeInsertSrc.getReg(i)); 6828 } 6829 } else { 6830 DstElts.push_back(InsertSrc); 6831 ++Idx; 6832 } 6833 6834 // Remaining elements from Src after insert 6835 for (; Idx < DstTy.getNumElements(); ++Idx) { 6836 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6837 } 6838 6839 MIRBuilder.buildMerge(Dst, DstElts); 6840 MI.eraseFromParent(); 6841 return Legalized; 6842 } 6843 } 6844 6845 if (InsertTy.isVector() || 6846 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6847 return UnableToLegalize; 6848 6849 const DataLayout &DL = MIRBuilder.getDataLayout(); 6850 if ((DstTy.isPointer() && 6851 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6852 (InsertTy.isPointer() && 6853 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6854 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6855 return UnableToLegalize; 6856 } 6857 6858 LLT IntDstTy = DstTy; 6859 6860 if (!DstTy.isScalar()) { 6861 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6862 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6863 } 6864 6865 if (!InsertTy.isScalar()) { 6866 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6867 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6868 } 6869 6870 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6871 if (Offset != 0) { 6872 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6873 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6874 } 6875 6876 APInt MaskVal = APInt::getBitsSetWithWrap( 6877 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6878 6879 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6880 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6881 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6882 6883 MIRBuilder.buildCast(Dst, Or); 6884 MI.eraseFromParent(); 6885 return Legalized; 6886 } 6887 6888 LegalizerHelper::LegalizeResult 6889 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6890 Register Dst0 = MI.getOperand(0).getReg(); 6891 Register Dst1 = MI.getOperand(1).getReg(); 6892 Register LHS = MI.getOperand(2).getReg(); 6893 Register RHS = MI.getOperand(3).getReg(); 6894 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6895 6896 LLT Ty = MRI.getType(Dst0); 6897 LLT BoolTy = MRI.getType(Dst1); 6898 6899 if (IsAdd) 6900 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6901 else 6902 MIRBuilder.buildSub(Dst0, LHS, RHS); 6903 6904 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6905 6906 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6907 6908 // For an addition, the result should be less than one of the operands (LHS) 6909 // if and only if the other operand (RHS) is negative, otherwise there will 6910 // be overflow. 6911 // For a subtraction, the result should be less than one of the operands 6912 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6913 // otherwise there will be overflow. 6914 auto ResultLowerThanLHS = 6915 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6916 auto ConditionRHS = MIRBuilder.buildICmp( 6917 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6918 6919 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6920 MI.eraseFromParent(); 6921 return Legalized; 6922 } 6923 6924 LegalizerHelper::LegalizeResult 6925 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6926 Register Res = MI.getOperand(0).getReg(); 6927 Register LHS = MI.getOperand(1).getReg(); 6928 Register RHS = MI.getOperand(2).getReg(); 6929 LLT Ty = MRI.getType(Res); 6930 bool IsSigned; 6931 bool IsAdd; 6932 unsigned BaseOp; 6933 switch (MI.getOpcode()) { 6934 default: 6935 llvm_unreachable("unexpected addsat/subsat opcode"); 6936 case TargetOpcode::G_UADDSAT: 6937 IsSigned = false; 6938 IsAdd = true; 6939 BaseOp = TargetOpcode::G_ADD; 6940 break; 6941 case TargetOpcode::G_SADDSAT: 6942 IsSigned = true; 6943 IsAdd = true; 6944 BaseOp = TargetOpcode::G_ADD; 6945 break; 6946 case TargetOpcode::G_USUBSAT: 6947 IsSigned = false; 6948 IsAdd = false; 6949 BaseOp = TargetOpcode::G_SUB; 6950 break; 6951 case TargetOpcode::G_SSUBSAT: 6952 IsSigned = true; 6953 IsAdd = false; 6954 BaseOp = TargetOpcode::G_SUB; 6955 break; 6956 } 6957 6958 if (IsSigned) { 6959 // sadd.sat(a, b) -> 6960 // hi = 0x7fffffff - smax(a, 0) 6961 // lo = 0x80000000 - smin(a, 0) 6962 // a + smin(smax(lo, b), hi) 6963 // ssub.sat(a, b) -> 6964 // lo = smax(a, -1) - 0x7fffffff 6965 // hi = smin(a, -1) - 0x80000000 6966 // a - smin(smax(lo, b), hi) 6967 // TODO: AMDGPU can use a "median of 3" instruction here: 6968 // a +/- med3(lo, b, hi) 6969 uint64_t NumBits = Ty.getScalarSizeInBits(); 6970 auto MaxVal = 6971 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6972 auto MinVal = 6973 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6974 MachineInstrBuilder Hi, Lo; 6975 if (IsAdd) { 6976 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6977 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6978 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6979 } else { 6980 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6981 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6982 MaxVal); 6983 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6984 MinVal); 6985 } 6986 auto RHSClamped = 6987 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6988 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6989 } else { 6990 // uadd.sat(a, b) -> a + umin(~a, b) 6991 // usub.sat(a, b) -> a - umin(a, b) 6992 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6993 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6994 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6995 } 6996 6997 MI.eraseFromParent(); 6998 return Legalized; 6999 } 7000 7001 LegalizerHelper::LegalizeResult 7002 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 7003 Register Res = MI.getOperand(0).getReg(); 7004 Register LHS = MI.getOperand(1).getReg(); 7005 Register RHS = MI.getOperand(2).getReg(); 7006 LLT Ty = MRI.getType(Res); 7007 LLT BoolTy = Ty.changeElementSize(1); 7008 bool IsSigned; 7009 bool IsAdd; 7010 unsigned OverflowOp; 7011 switch (MI.getOpcode()) { 7012 default: 7013 llvm_unreachable("unexpected addsat/subsat opcode"); 7014 case TargetOpcode::G_UADDSAT: 7015 IsSigned = false; 7016 IsAdd = true; 7017 OverflowOp = TargetOpcode::G_UADDO; 7018 break; 7019 case TargetOpcode::G_SADDSAT: 7020 IsSigned = true; 7021 IsAdd = true; 7022 OverflowOp = TargetOpcode::G_SADDO; 7023 break; 7024 case TargetOpcode::G_USUBSAT: 7025 IsSigned = false; 7026 IsAdd = false; 7027 OverflowOp = TargetOpcode::G_USUBO; 7028 break; 7029 case TargetOpcode::G_SSUBSAT: 7030 IsSigned = true; 7031 IsAdd = false; 7032 OverflowOp = TargetOpcode::G_SSUBO; 7033 break; 7034 } 7035 7036 auto OverflowRes = 7037 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 7038 Register Tmp = OverflowRes.getReg(0); 7039 Register Ov = OverflowRes.getReg(1); 7040 MachineInstrBuilder Clamp; 7041 if (IsSigned) { 7042 // sadd.sat(a, b) -> 7043 // {tmp, ov} = saddo(a, b) 7044 // ov ? (tmp >>s 31) + 0x80000000 : r 7045 // ssub.sat(a, b) -> 7046 // {tmp, ov} = ssubo(a, b) 7047 // ov ? (tmp >>s 31) + 0x80000000 : r 7048 uint64_t NumBits = Ty.getScalarSizeInBits(); 7049 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 7050 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 7051 auto MinVal = 7052 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7053 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 7054 } else { 7055 // uadd.sat(a, b) -> 7056 // {tmp, ov} = uaddo(a, b) 7057 // ov ? 0xffffffff : tmp 7058 // usub.sat(a, b) -> 7059 // {tmp, ov} = usubo(a, b) 7060 // ov ? 0 : tmp 7061 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 7062 } 7063 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 7064 7065 MI.eraseFromParent(); 7066 return Legalized; 7067 } 7068 7069 LegalizerHelper::LegalizeResult 7070 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 7071 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 7072 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 7073 "Expected shlsat opcode!"); 7074 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 7075 Register Res = MI.getOperand(0).getReg(); 7076 Register LHS = MI.getOperand(1).getReg(); 7077 Register RHS = MI.getOperand(2).getReg(); 7078 LLT Ty = MRI.getType(Res); 7079 LLT BoolTy = Ty.changeElementSize(1); 7080 7081 unsigned BW = Ty.getScalarSizeInBits(); 7082 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 7083 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 7084 : MIRBuilder.buildLShr(Ty, Result, RHS); 7085 7086 MachineInstrBuilder SatVal; 7087 if (IsSigned) { 7088 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 7089 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 7090 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 7091 MIRBuilder.buildConstant(Ty, 0)); 7092 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 7093 } else { 7094 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 7095 } 7096 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 7097 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 7098 7099 MI.eraseFromParent(); 7100 return Legalized; 7101 } 7102 7103 LegalizerHelper::LegalizeResult 7104 LegalizerHelper::lowerBswap(MachineInstr &MI) { 7105 Register Dst = MI.getOperand(0).getReg(); 7106 Register Src = MI.getOperand(1).getReg(); 7107 const LLT Ty = MRI.getType(Src); 7108 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 7109 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 7110 7111 // Swap most and least significant byte, set remaining bytes in Res to zero. 7112 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 7113 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 7114 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7115 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 7116 7117 // Set i-th high/low byte in Res to i-th low/high byte from Src. 7118 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 7119 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 7120 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 7121 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 7122 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 7123 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 7124 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 7125 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 7126 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 7127 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 7128 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7129 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 7130 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 7131 } 7132 Res.getInstr()->getOperand(0).setReg(Dst); 7133 7134 MI.eraseFromParent(); 7135 return Legalized; 7136 } 7137 7138 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 7139 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 7140 MachineInstrBuilder Src, APInt Mask) { 7141 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 7142 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 7143 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 7144 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 7145 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 7146 return B.buildOr(Dst, LHS, RHS); 7147 } 7148 7149 LegalizerHelper::LegalizeResult 7150 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 7151 Register Dst = MI.getOperand(0).getReg(); 7152 Register Src = MI.getOperand(1).getReg(); 7153 const LLT Ty = MRI.getType(Src); 7154 unsigned Size = Ty.getSizeInBits(); 7155 7156 MachineInstrBuilder BSWAP = 7157 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 7158 7159 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 7160 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 7161 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 7162 MachineInstrBuilder Swap4 = 7163 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 7164 7165 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 7166 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 7167 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 7168 MachineInstrBuilder Swap2 = 7169 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 7170 7171 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 7172 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 7173 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 7174 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 7175 7176 MI.eraseFromParent(); 7177 return Legalized; 7178 } 7179 7180 LegalizerHelper::LegalizeResult 7181 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 7182 MachineFunction &MF = MIRBuilder.getMF(); 7183 7184 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 7185 int NameOpIdx = IsRead ? 1 : 0; 7186 int ValRegIndex = IsRead ? 0 : 1; 7187 7188 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 7189 const LLT Ty = MRI.getType(ValReg); 7190 const MDString *RegStr = cast<MDString>( 7191 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 7192 7193 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 7194 if (!PhysReg.isValid()) 7195 return UnableToLegalize; 7196 7197 if (IsRead) 7198 MIRBuilder.buildCopy(ValReg, PhysReg); 7199 else 7200 MIRBuilder.buildCopy(PhysReg, ValReg); 7201 7202 MI.eraseFromParent(); 7203 return Legalized; 7204 } 7205 7206 LegalizerHelper::LegalizeResult 7207 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7208 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7209 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7210 Register Result = MI.getOperand(0).getReg(); 7211 LLT OrigTy = MRI.getType(Result); 7212 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7213 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7214 7215 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7216 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7217 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7218 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7219 7220 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7221 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7222 MIRBuilder.buildTrunc(Result, Shifted); 7223 7224 MI.eraseFromParent(); 7225 return Legalized; 7226 } 7227 7228 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 7229 // Implement vector G_SELECT in terms of XOR, AND, OR. 7230 Register DstReg = MI.getOperand(0).getReg(); 7231 Register MaskReg = MI.getOperand(1).getReg(); 7232 Register Op1Reg = MI.getOperand(2).getReg(); 7233 Register Op2Reg = MI.getOperand(3).getReg(); 7234 LLT DstTy = MRI.getType(DstReg); 7235 LLT MaskTy = MRI.getType(MaskReg); 7236 LLT Op1Ty = MRI.getType(Op1Reg); 7237 if (!DstTy.isVector()) 7238 return UnableToLegalize; 7239 7240 // Vector selects can have a scalar predicate. If so, splat into a vector and 7241 // finish for later legalization attempts to try again. 7242 if (MaskTy.isScalar()) { 7243 Register MaskElt = MaskReg; 7244 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 7245 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 7246 // Generate a vector splat idiom to be pattern matched later. 7247 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 7248 Observer.changingInstr(MI); 7249 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 7250 Observer.changedInstr(MI); 7251 return Legalized; 7252 } 7253 7254 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 7255 return UnableToLegalize; 7256 } 7257 7258 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 7259 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 7260 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 7261 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 7262 MI.eraseFromParent(); 7263 return Legalized; 7264 } 7265 7266 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7267 // Split DIVREM into individual instructions. 7268 unsigned Opcode = MI.getOpcode(); 7269 7270 MIRBuilder.buildInstr( 7271 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7272 : TargetOpcode::G_UDIV, 7273 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7274 MIRBuilder.buildInstr( 7275 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7276 : TargetOpcode::G_UREM, 7277 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7278 MI.eraseFromParent(); 7279 return Legalized; 7280 } 7281 7282 LegalizerHelper::LegalizeResult 7283 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7284 // Expand %res = G_ABS %a into: 7285 // %v1 = G_ASHR %a, scalar_size-1 7286 // %v2 = G_ADD %a, %v1 7287 // %res = G_XOR %v2, %v1 7288 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7289 Register OpReg = MI.getOperand(1).getReg(); 7290 auto ShiftAmt = 7291 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7292 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7293 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7294 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7295 MI.eraseFromParent(); 7296 return Legalized; 7297 } 7298 7299 LegalizerHelper::LegalizeResult 7300 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7301 // Expand %res = G_ABS %a into: 7302 // %v1 = G_CONSTANT 0 7303 // %v2 = G_SUB %v1, %a 7304 // %res = G_SMAX %a, %v2 7305 Register SrcReg = MI.getOperand(1).getReg(); 7306 LLT Ty = MRI.getType(SrcReg); 7307 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7308 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7309 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7310 MI.eraseFromParent(); 7311 return Legalized; 7312 } 7313 7314 LegalizerHelper::LegalizeResult 7315 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { 7316 Register SrcReg = MI.getOperand(1).getReg(); 7317 LLT SrcTy = MRI.getType(SrcReg); 7318 LLT DstTy = MRI.getType(SrcReg); 7319 7320 // The source could be a scalar if the IR type was <1 x sN>. 7321 if (SrcTy.isScalar()) { 7322 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) 7323 return UnableToLegalize; // FIXME: handle extension. 7324 // This can be just a plain copy. 7325 Observer.changingInstr(MI); 7326 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); 7327 Observer.changedInstr(MI); 7328 return Legalized; 7329 } 7330 return UnableToLegalize;; 7331 } 7332 7333 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 7334 // On Darwin, -Os means optimize for size without hurting performance, so 7335 // only really optimize for size when -Oz (MinSize) is used. 7336 if (MF.getTarget().getTargetTriple().isOSDarwin()) 7337 return MF.getFunction().hasMinSize(); 7338 return MF.getFunction().hasOptSize(); 7339 } 7340 7341 // Returns a list of types to use for memory op lowering in MemOps. A partial 7342 // port of findOptimalMemOpLowering in TargetLowering. 7343 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 7344 unsigned Limit, const MemOp &Op, 7345 unsigned DstAS, unsigned SrcAS, 7346 const AttributeList &FuncAttributes, 7347 const TargetLowering &TLI) { 7348 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 7349 return false; 7350 7351 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 7352 7353 if (Ty == LLT()) { 7354 // Use the largest scalar type whose alignment constraints are satisfied. 7355 // We only need to check DstAlign here as SrcAlign is always greater or 7356 // equal to DstAlign (or zero). 7357 Ty = LLT::scalar(64); 7358 if (Op.isFixedDstAlign()) 7359 while (Op.getDstAlign() < Ty.getSizeInBytes() && 7360 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 7361 Ty = LLT::scalar(Ty.getSizeInBytes()); 7362 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 7363 // FIXME: check for the largest legal type we can load/store to. 7364 } 7365 7366 unsigned NumMemOps = 0; 7367 uint64_t Size = Op.size(); 7368 while (Size) { 7369 unsigned TySize = Ty.getSizeInBytes(); 7370 while (TySize > Size) { 7371 // For now, only use non-vector load / store's for the left-over pieces. 7372 LLT NewTy = Ty; 7373 // FIXME: check for mem op safety and legality of the types. Not all of 7374 // SDAGisms map cleanly to GISel concepts. 7375 if (NewTy.isVector()) 7376 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 7377 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 7378 unsigned NewTySize = NewTy.getSizeInBytes(); 7379 assert(NewTySize > 0 && "Could not find appropriate type"); 7380 7381 // If the new LLT cannot cover all of the remaining bits, then consider 7382 // issuing a (or a pair of) unaligned and overlapping load / store. 7383 bool Fast; 7384 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 7385 MVT VT = getMVTForLLT(Ty); 7386 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 7387 TLI.allowsMisalignedMemoryAccesses( 7388 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 7389 MachineMemOperand::MONone, &Fast) && 7390 Fast) 7391 TySize = Size; 7392 else { 7393 Ty = NewTy; 7394 TySize = NewTySize; 7395 } 7396 } 7397 7398 if (++NumMemOps > Limit) 7399 return false; 7400 7401 MemOps.push_back(Ty); 7402 Size -= TySize; 7403 } 7404 7405 return true; 7406 } 7407 7408 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 7409 if (Ty.isVector()) 7410 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 7411 Ty.getNumElements()); 7412 return IntegerType::get(C, Ty.getSizeInBits()); 7413 } 7414 7415 // Get a vectorized representation of the memset value operand, GISel edition. 7416 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 7417 MachineRegisterInfo &MRI = *MIB.getMRI(); 7418 unsigned NumBits = Ty.getScalarSizeInBits(); 7419 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7420 if (!Ty.isVector() && ValVRegAndVal) { 7421 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 7422 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 7423 return MIB.buildConstant(Ty, SplatVal).getReg(0); 7424 } 7425 7426 // Extend the byte value to the larger type, and then multiply by a magic 7427 // value 0x010101... in order to replicate it across every byte. 7428 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 7429 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 7430 return MIB.buildConstant(Ty, 0).getReg(0); 7431 } 7432 7433 LLT ExtType = Ty.getScalarType(); 7434 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 7435 if (NumBits > 8) { 7436 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 7437 auto MagicMI = MIB.buildConstant(ExtType, Magic); 7438 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 7439 } 7440 7441 // For vector types create a G_BUILD_VECTOR. 7442 if (Ty.isVector()) 7443 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 7444 7445 return Val; 7446 } 7447 7448 LegalizerHelper::LegalizeResult 7449 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, 7450 uint64_t KnownLen, Align Alignment, 7451 bool IsVolatile) { 7452 auto &MF = *MI.getParent()->getParent(); 7453 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7454 auto &DL = MF.getDataLayout(); 7455 LLVMContext &C = MF.getFunction().getContext(); 7456 7457 assert(KnownLen != 0 && "Have a zero length memset length!"); 7458 7459 bool DstAlignCanChange = false; 7460 MachineFrameInfo &MFI = MF.getFrameInfo(); 7461 bool OptSize = shouldLowerMemFuncForSize(MF); 7462 7463 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7464 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7465 DstAlignCanChange = true; 7466 7467 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 7468 std::vector<LLT> MemOps; 7469 7470 const auto &DstMMO = **MI.memoperands_begin(); 7471 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7472 7473 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7474 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 7475 7476 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 7477 MemOp::Set(KnownLen, DstAlignCanChange, 7478 Alignment, 7479 /*IsZeroMemset=*/IsZeroVal, 7480 /*IsVolatile=*/IsVolatile), 7481 DstPtrInfo.getAddrSpace(), ~0u, 7482 MF.getFunction().getAttributes(), TLI)) 7483 return UnableToLegalize; 7484 7485 if (DstAlignCanChange) { 7486 // Get an estimate of the type from the LLT. 7487 Type *IRTy = getTypeForLLT(MemOps[0], C); 7488 Align NewAlign = DL.getABITypeAlign(IRTy); 7489 if (NewAlign > Alignment) { 7490 Alignment = NewAlign; 7491 unsigned FI = FIDef->getOperand(1).getIndex(); 7492 // Give the stack frame object a larger alignment if needed. 7493 if (MFI.getObjectAlign(FI) < Alignment) 7494 MFI.setObjectAlignment(FI, Alignment); 7495 } 7496 } 7497 7498 MachineIRBuilder MIB(MI); 7499 // Find the largest store and generate the bit pattern for it. 7500 LLT LargestTy = MemOps[0]; 7501 for (unsigned i = 1; i < MemOps.size(); i++) 7502 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 7503 LargestTy = MemOps[i]; 7504 7505 // The memset stored value is always defined as an s8, so in order to make it 7506 // work with larger store types we need to repeat the bit pattern across the 7507 // wider type. 7508 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 7509 7510 if (!MemSetValue) 7511 return UnableToLegalize; 7512 7513 // Generate the stores. For each store type in the list, we generate the 7514 // matching store of that type to the destination address. 7515 LLT PtrTy = MRI.getType(Dst); 7516 unsigned DstOff = 0; 7517 unsigned Size = KnownLen; 7518 for (unsigned I = 0; I < MemOps.size(); I++) { 7519 LLT Ty = MemOps[I]; 7520 unsigned TySize = Ty.getSizeInBytes(); 7521 if (TySize > Size) { 7522 // Issuing an unaligned load / store pair that overlaps with the previous 7523 // pair. Adjust the offset accordingly. 7524 assert(I == MemOps.size() - 1 && I != 0); 7525 DstOff -= TySize - Size; 7526 } 7527 7528 // If this store is smaller than the largest store see whether we can get 7529 // the smaller value for free with a truncate. 7530 Register Value = MemSetValue; 7531 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 7532 MVT VT = getMVTForLLT(Ty); 7533 MVT LargestVT = getMVTForLLT(LargestTy); 7534 if (!LargestTy.isVector() && !Ty.isVector() && 7535 TLI.isTruncateFree(LargestVT, VT)) 7536 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 7537 else 7538 Value = getMemsetValue(Val, Ty, MIB); 7539 if (!Value) 7540 return UnableToLegalize; 7541 } 7542 7543 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 7544 7545 Register Ptr = Dst; 7546 if (DstOff != 0) { 7547 auto Offset = 7548 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 7549 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 7550 } 7551 7552 MIB.buildStore(Value, Ptr, *StoreMMO); 7553 DstOff += Ty.getSizeInBytes(); 7554 Size -= TySize; 7555 } 7556 7557 MI.eraseFromParent(); 7558 return Legalized; 7559 } 7560 7561 LegalizerHelper::LegalizeResult 7562 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { 7563 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7564 7565 Register Dst = MI.getOperand(0).getReg(); 7566 Register Src = MI.getOperand(1).getReg(); 7567 Register Len = MI.getOperand(2).getReg(); 7568 7569 const auto *MMOIt = MI.memoperands_begin(); 7570 const MachineMemOperand *MemOp = *MMOIt; 7571 bool IsVolatile = MemOp->isVolatile(); 7572 7573 // See if this is a constant length copy 7574 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7575 // FIXME: support dynamically sized G_MEMCPY_INLINE 7576 assert(LenVRegAndVal.hasValue() && 7577 "inline memcpy with dynamic size is not yet supported"); 7578 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7579 if (KnownLen == 0) { 7580 MI.eraseFromParent(); 7581 return Legalized; 7582 } 7583 7584 const auto &DstMMO = **MI.memoperands_begin(); 7585 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7586 Align DstAlign = DstMMO.getBaseAlign(); 7587 Align SrcAlign = SrcMMO.getBaseAlign(); 7588 7589 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7590 IsVolatile); 7591 } 7592 7593 LegalizerHelper::LegalizeResult 7594 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, 7595 uint64_t KnownLen, Align DstAlign, 7596 Align SrcAlign, bool IsVolatile) { 7597 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7598 return lowerMemcpy(MI, Dst, Src, KnownLen, 7599 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign, 7600 IsVolatile); 7601 } 7602 7603 LegalizerHelper::LegalizeResult 7604 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, 7605 uint64_t KnownLen, uint64_t Limit, Align DstAlign, 7606 Align SrcAlign, bool IsVolatile) { 7607 auto &MF = *MI.getParent()->getParent(); 7608 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7609 auto &DL = MF.getDataLayout(); 7610 LLVMContext &C = MF.getFunction().getContext(); 7611 7612 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 7613 7614 bool DstAlignCanChange = false; 7615 MachineFrameInfo &MFI = MF.getFrameInfo(); 7616 Align Alignment = commonAlignment(DstAlign, SrcAlign); 7617 7618 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7619 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7620 DstAlignCanChange = true; 7621 7622 // FIXME: infer better src pointer alignment like SelectionDAG does here. 7623 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 7624 // if the memcpy is in a tail call position. 7625 7626 std::vector<LLT> MemOps; 7627 7628 const auto &DstMMO = **MI.memoperands_begin(); 7629 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7630 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7631 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7632 7633 if (!findGISelOptimalMemOpLowering( 7634 MemOps, Limit, 7635 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7636 IsVolatile), 7637 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7638 MF.getFunction().getAttributes(), TLI)) 7639 return UnableToLegalize; 7640 7641 if (DstAlignCanChange) { 7642 // Get an estimate of the type from the LLT. 7643 Type *IRTy = getTypeForLLT(MemOps[0], C); 7644 Align NewAlign = DL.getABITypeAlign(IRTy); 7645 7646 // Don't promote to an alignment that would require dynamic stack 7647 // realignment. 7648 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7649 if (!TRI->hasStackRealignment(MF)) 7650 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7651 NewAlign = NewAlign / 2; 7652 7653 if (NewAlign > Alignment) { 7654 Alignment = NewAlign; 7655 unsigned FI = FIDef->getOperand(1).getIndex(); 7656 // Give the stack frame object a larger alignment if needed. 7657 if (MFI.getObjectAlign(FI) < Alignment) 7658 MFI.setObjectAlignment(FI, Alignment); 7659 } 7660 } 7661 7662 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 7663 7664 MachineIRBuilder MIB(MI); 7665 // Now we need to emit a pair of load and stores for each of the types we've 7666 // collected. I.e. for each type, generate a load from the source pointer of 7667 // that type width, and then generate a corresponding store to the dest buffer 7668 // of that value loaded. This can result in a sequence of loads and stores 7669 // mixed types, depending on what the target specifies as good types to use. 7670 unsigned CurrOffset = 0; 7671 unsigned Size = KnownLen; 7672 for (auto CopyTy : MemOps) { 7673 // Issuing an unaligned load / store pair that overlaps with the previous 7674 // pair. Adjust the offset accordingly. 7675 if (CopyTy.getSizeInBytes() > Size) 7676 CurrOffset -= CopyTy.getSizeInBytes() - Size; 7677 7678 // Construct MMOs for the accesses. 7679 auto *LoadMMO = 7680 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7681 auto *StoreMMO = 7682 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7683 7684 // Create the load. 7685 Register LoadPtr = Src; 7686 Register Offset; 7687 if (CurrOffset != 0) { 7688 LLT SrcTy = MRI.getType(Src); 7689 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) 7690 .getReg(0); 7691 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7692 } 7693 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 7694 7695 // Create the store. 7696 Register StorePtr = Dst; 7697 if (CurrOffset != 0) { 7698 LLT DstTy = MRI.getType(Dst); 7699 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7700 } 7701 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 7702 CurrOffset += CopyTy.getSizeInBytes(); 7703 Size -= CopyTy.getSizeInBytes(); 7704 } 7705 7706 MI.eraseFromParent(); 7707 return Legalized; 7708 } 7709 7710 LegalizerHelper::LegalizeResult 7711 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, 7712 uint64_t KnownLen, Align DstAlign, Align SrcAlign, 7713 bool IsVolatile) { 7714 auto &MF = *MI.getParent()->getParent(); 7715 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7716 auto &DL = MF.getDataLayout(); 7717 LLVMContext &C = MF.getFunction().getContext(); 7718 7719 assert(KnownLen != 0 && "Have a zero length memmove length!"); 7720 7721 bool DstAlignCanChange = false; 7722 MachineFrameInfo &MFI = MF.getFrameInfo(); 7723 bool OptSize = shouldLowerMemFuncForSize(MF); 7724 Align Alignment = commonAlignment(DstAlign, SrcAlign); 7725 7726 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7727 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7728 DstAlignCanChange = true; 7729 7730 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 7731 std::vector<LLT> MemOps; 7732 7733 const auto &DstMMO = **MI.memoperands_begin(); 7734 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7735 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7736 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7737 7738 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 7739 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 7740 // same thing here. 7741 if (!findGISelOptimalMemOpLowering( 7742 MemOps, Limit, 7743 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7744 /*IsVolatile*/ true), 7745 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7746 MF.getFunction().getAttributes(), TLI)) 7747 return UnableToLegalize; 7748 7749 if (DstAlignCanChange) { 7750 // Get an estimate of the type from the LLT. 7751 Type *IRTy = getTypeForLLT(MemOps[0], C); 7752 Align NewAlign = DL.getABITypeAlign(IRTy); 7753 7754 // Don't promote to an alignment that would require dynamic stack 7755 // realignment. 7756 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7757 if (!TRI->hasStackRealignment(MF)) 7758 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7759 NewAlign = NewAlign / 2; 7760 7761 if (NewAlign > Alignment) { 7762 Alignment = NewAlign; 7763 unsigned FI = FIDef->getOperand(1).getIndex(); 7764 // Give the stack frame object a larger alignment if needed. 7765 if (MFI.getObjectAlign(FI) < Alignment) 7766 MFI.setObjectAlignment(FI, Alignment); 7767 } 7768 } 7769 7770 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 7771 7772 MachineIRBuilder MIB(MI); 7773 // Memmove requires that we perform the loads first before issuing the stores. 7774 // Apart from that, this loop is pretty much doing the same thing as the 7775 // memcpy codegen function. 7776 unsigned CurrOffset = 0; 7777 SmallVector<Register, 16> LoadVals; 7778 for (auto CopyTy : MemOps) { 7779 // Construct MMO for the load. 7780 auto *LoadMMO = 7781 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7782 7783 // Create the load. 7784 Register LoadPtr = Src; 7785 if (CurrOffset != 0) { 7786 LLT SrcTy = MRI.getType(Src); 7787 auto Offset = 7788 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); 7789 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7790 } 7791 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 7792 CurrOffset += CopyTy.getSizeInBytes(); 7793 } 7794 7795 CurrOffset = 0; 7796 for (unsigned I = 0; I < MemOps.size(); ++I) { 7797 LLT CopyTy = MemOps[I]; 7798 // Now store the values loaded. 7799 auto *StoreMMO = 7800 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7801 7802 Register StorePtr = Dst; 7803 if (CurrOffset != 0) { 7804 LLT DstTy = MRI.getType(Dst); 7805 auto Offset = 7806 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); 7807 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7808 } 7809 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 7810 CurrOffset += CopyTy.getSizeInBytes(); 7811 } 7812 MI.eraseFromParent(); 7813 return Legalized; 7814 } 7815 7816 LegalizerHelper::LegalizeResult 7817 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 7818 const unsigned Opc = MI.getOpcode(); 7819 // This combine is fairly complex so it's not written with a separate 7820 // matcher function. 7821 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 7822 Opc == TargetOpcode::G_MEMSET) && 7823 "Expected memcpy like instruction"); 7824 7825 auto MMOIt = MI.memoperands_begin(); 7826 const MachineMemOperand *MemOp = *MMOIt; 7827 7828 Align DstAlign = MemOp->getBaseAlign(); 7829 Align SrcAlign; 7830 Register Dst = MI.getOperand(0).getReg(); 7831 Register Src = MI.getOperand(1).getReg(); 7832 Register Len = MI.getOperand(2).getReg(); 7833 7834 if (Opc != TargetOpcode::G_MEMSET) { 7835 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 7836 MemOp = *(++MMOIt); 7837 SrcAlign = MemOp->getBaseAlign(); 7838 } 7839 7840 // See if this is a constant length copy 7841 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7842 if (!LenVRegAndVal) 7843 return UnableToLegalize; 7844 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7845 7846 if (KnownLen == 0) { 7847 MI.eraseFromParent(); 7848 return Legalized; 7849 } 7850 7851 bool IsVolatile = MemOp->isVolatile(); 7852 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 7853 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7854 IsVolatile); 7855 7856 // Don't try to optimize volatile. 7857 if (IsVolatile) 7858 return UnableToLegalize; 7859 7860 if (MaxLen && KnownLen > MaxLen) 7861 return UnableToLegalize; 7862 7863 if (Opc == TargetOpcode::G_MEMCPY) { 7864 auto &MF = *MI.getParent()->getParent(); 7865 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7866 bool OptSize = shouldLowerMemFuncForSize(MF); 7867 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 7868 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 7869 IsVolatile); 7870 } 7871 if (Opc == TargetOpcode::G_MEMMOVE) 7872 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 7873 if (Opc == TargetOpcode::G_MEMSET) 7874 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 7875 return UnableToLegalize; 7876 } 7877