1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()) {
94   MIRBuilder.setChangeObserver(Observer);
95 }
96 
97 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
98                                  GISelChangeObserver &Observer,
99                                  MachineIRBuilder &B)
100     : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) {
101   MIRBuilder.setChangeObserver(Observer);
102 }
103 LegalizerHelper::LegalizeResult
104 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
105   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
106 
107   MIRBuilder.setInstrAndDebugLoc(MI);
108 
109   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
110       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
111     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
112   auto Step = LI.getAction(MI, MRI);
113   switch (Step.Action) {
114   case Legal:
115     LLVM_DEBUG(dbgs() << ".. Already legal\n");
116     return AlreadyLegal;
117   case Libcall:
118     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
119     return libcall(MI);
120   case NarrowScalar:
121     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
122     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
123   case WidenScalar:
124     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
125     return widenScalar(MI, Step.TypeIdx, Step.NewType);
126   case Bitcast:
127     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
128     return bitcast(MI, Step.TypeIdx, Step.NewType);
129   case Lower:
130     LLVM_DEBUG(dbgs() << ".. Lower\n");
131     return lower(MI, Step.TypeIdx, Step.NewType);
132   case FewerElements:
133     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
134     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case MoreElements:
136     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
137     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
138   case Custom:
139     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
140     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
141   default:
142     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
143     return UnableToLegalize;
144   }
145 }
146 
147 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
148                                    SmallVectorImpl<Register> &VRegs) {
149   for (int i = 0; i < NumParts; ++i)
150     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
151   MIRBuilder.buildUnmerge(VRegs, Reg);
152 }
153 
154 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
155                                    LLT MainTy, LLT &LeftoverTy,
156                                    SmallVectorImpl<Register> &VRegs,
157                                    SmallVectorImpl<Register> &LeftoverRegs) {
158   assert(!LeftoverTy.isValid() && "this is an out argument");
159 
160   unsigned RegSize = RegTy.getSizeInBits();
161   unsigned MainSize = MainTy.getSizeInBits();
162   unsigned NumParts = RegSize / MainSize;
163   unsigned LeftoverSize = RegSize - NumParts * MainSize;
164 
165   // Use an unmerge when possible.
166   if (LeftoverSize == 0) {
167     for (unsigned I = 0; I < NumParts; ++I)
168       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
169     MIRBuilder.buildUnmerge(VRegs, Reg);
170     return true;
171   }
172 
173   if (MainTy.isVector()) {
174     unsigned EltSize = MainTy.getScalarSizeInBits();
175     if (LeftoverSize % EltSize != 0)
176       return false;
177     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
178   } else {
179     LeftoverTy = LLT::scalar(LeftoverSize);
180   }
181 
182   // For irregular sizes, extract the individual parts.
183   for (unsigned I = 0; I != NumParts; ++I) {
184     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
185     VRegs.push_back(NewReg);
186     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
187   }
188 
189   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
190        Offset += LeftoverSize) {
191     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
192     LeftoverRegs.push_back(NewReg);
193     MIRBuilder.buildExtract(NewReg, Reg, Offset);
194   }
195 
196   return true;
197 }
198 
199 void LegalizerHelper::insertParts(Register DstReg,
200                                   LLT ResultTy, LLT PartTy,
201                                   ArrayRef<Register> PartRegs,
202                                   LLT LeftoverTy,
203                                   ArrayRef<Register> LeftoverRegs) {
204   if (!LeftoverTy.isValid()) {
205     assert(LeftoverRegs.empty());
206 
207     if (!ResultTy.isVector()) {
208       MIRBuilder.buildMerge(DstReg, PartRegs);
209       return;
210     }
211 
212     if (PartTy.isVector())
213       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
214     else
215       MIRBuilder.buildBuildVector(DstReg, PartRegs);
216     return;
217   }
218 
219   unsigned PartSize = PartTy.getSizeInBits();
220   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
221 
222   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
223   MIRBuilder.buildUndef(CurResultReg);
224 
225   unsigned Offset = 0;
226   for (Register PartReg : PartRegs) {
227     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
228     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
229     CurResultReg = NewResultReg;
230     Offset += PartSize;
231   }
232 
233   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
234     // Use the original output register for the final insert to avoid a copy.
235     Register NewResultReg = (I + 1 == E) ?
236       DstReg : MRI.createGenericVirtualRegister(ResultTy);
237 
238     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
239     CurResultReg = NewResultReg;
240     Offset += LeftoverPartSize;
241   }
242 }
243 
244 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
245 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
246                               const MachineInstr &MI) {
247   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
248 
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[I] = MI.getOperand(I).getReg();
253 }
254 
255 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
256                                     LLT NarrowTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258 
259   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
260   if (SrcTy == GCDTy) {
261     // If the source already evenly divides the result type, we don't need to do
262     // anything.
263     Parts.push_back(SrcReg);
264   } else {
265     // Need to split into common type sized pieces.
266     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
267     getUnmergeResults(Parts, *Unmerge);
268   }
269 
270   return GCDTy;
271 }
272 
273 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
274                                          SmallVectorImpl<Register> &VRegs,
275                                          unsigned PadStrategy) {
276   LLT LCMTy = getLCMType(DstTy, NarrowTy);
277 
278   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
279   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
280   int NumOrigSrc = VRegs.size();
281 
282   Register PadReg;
283 
284   // Get a value we can use to pad the source value if the sources won't evenly
285   // cover the result type.
286   if (NumOrigSrc < NumParts * NumSubParts) {
287     if (PadStrategy == TargetOpcode::G_ZEXT)
288       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
289     else if (PadStrategy == TargetOpcode::G_ANYEXT)
290       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
291     else {
292       assert(PadStrategy == TargetOpcode::G_SEXT);
293 
294       // Shift the sign bit of the low register through the high register.
295       auto ShiftAmt =
296         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
297       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
298     }
299   }
300 
301   // Registers for the final merge to be produced.
302   SmallVector<Register, 4> Remerge(NumParts);
303 
304   // Registers needed for intermediate merges, which will be merged into a
305   // source for Remerge.
306   SmallVector<Register, 4> SubMerge(NumSubParts);
307 
308   // Once we've fully read off the end of the original source bits, we can reuse
309   // the same high bits for remaining padding elements.
310   Register AllPadReg;
311 
312   // Build merges to the LCM type to cover the original result type.
313   for (int I = 0; I != NumParts; ++I) {
314     bool AllMergePartsArePadding = true;
315 
316     // Build the requested merges to the requested type.
317     for (int J = 0; J != NumSubParts; ++J) {
318       int Idx = I * NumSubParts + J;
319       if (Idx >= NumOrigSrc) {
320         SubMerge[J] = PadReg;
321         continue;
322       }
323 
324       SubMerge[J] = VRegs[Idx];
325 
326       // There are meaningful bits here we can't reuse later.
327       AllMergePartsArePadding = false;
328     }
329 
330     // If we've filled up a complete piece with padding bits, we can directly
331     // emit the natural sized constant if applicable, rather than a merge of
332     // smaller constants.
333     if (AllMergePartsArePadding && !AllPadReg) {
334       if (PadStrategy == TargetOpcode::G_ANYEXT)
335         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
336       else if (PadStrategy == TargetOpcode::G_ZEXT)
337         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
338 
339       // If this is a sign extension, we can't materialize a trivial constant
340       // with the right type and have to produce a merge.
341     }
342 
343     if (AllPadReg) {
344       // Avoid creating additional instructions if we're just adding additional
345       // copies of padding bits.
346       Remerge[I] = AllPadReg;
347       continue;
348     }
349 
350     if (NumSubParts == 1)
351       Remerge[I] = SubMerge[0];
352     else
353       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
354 
355     // In the sign extend padding case, re-use the first all-signbit merge.
356     if (AllMergePartsArePadding && !AllPadReg)
357       AllPadReg = Remerge[I];
358   }
359 
360   VRegs = std::move(Remerge);
361   return LCMTy;
362 }
363 
364 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
365                                                ArrayRef<Register> RemergeRegs) {
366   LLT DstTy = MRI.getType(DstReg);
367 
368   // Create the merge to the widened source, and extract the relevant bits into
369   // the result.
370 
371   if (DstTy == LCMTy) {
372     MIRBuilder.buildMerge(DstReg, RemergeRegs);
373     return;
374   }
375 
376   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
377   if (DstTy.isScalar() && LCMTy.isScalar()) {
378     MIRBuilder.buildTrunc(DstReg, Remerge);
379     return;
380   }
381 
382   if (LCMTy.isVector()) {
383     MIRBuilder.buildExtract(DstReg, Remerge, 0);
384     return;
385   }
386 
387   llvm_unreachable("unhandled case");
388 }
389 
390 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
391 #define RTLIBCASE_INT(LibcallPrefix)                                           \
392   do {                                                                         \
393     switch (Size) {                                                            \
394     case 32:                                                                   \
395       return RTLIB::LibcallPrefix##32;                                         \
396     case 64:                                                                   \
397       return RTLIB::LibcallPrefix##64;                                         \
398     case 128:                                                                  \
399       return RTLIB::LibcallPrefix##128;                                        \
400     default:                                                                   \
401       llvm_unreachable("unexpected size");                                     \
402     }                                                                          \
403   } while (0)
404 
405 #define RTLIBCASE(LibcallPrefix)                                               \
406   do {                                                                         \
407     switch (Size) {                                                            \
408     case 32:                                                                   \
409       return RTLIB::LibcallPrefix##32;                                         \
410     case 64:                                                                   \
411       return RTLIB::LibcallPrefix##64;                                         \
412     case 80:                                                                   \
413       return RTLIB::LibcallPrefix##80;                                         \
414     case 128:                                                                  \
415       return RTLIB::LibcallPrefix##128;                                        \
416     default:                                                                   \
417       llvm_unreachable("unexpected size");                                     \
418     }                                                                          \
419   } while (0)
420 
421   switch (Opcode) {
422   case TargetOpcode::G_SDIV:
423     RTLIBCASE_INT(SDIV_I);
424   case TargetOpcode::G_UDIV:
425     RTLIBCASE_INT(UDIV_I);
426   case TargetOpcode::G_SREM:
427     RTLIBCASE_INT(SREM_I);
428   case TargetOpcode::G_UREM:
429     RTLIBCASE_INT(UREM_I);
430   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
431     RTLIBCASE_INT(CTLZ_I);
432   case TargetOpcode::G_FADD:
433     RTLIBCASE(ADD_F);
434   case TargetOpcode::G_FSUB:
435     RTLIBCASE(SUB_F);
436   case TargetOpcode::G_FMUL:
437     RTLIBCASE(MUL_F);
438   case TargetOpcode::G_FDIV:
439     RTLIBCASE(DIV_F);
440   case TargetOpcode::G_FEXP:
441     RTLIBCASE(EXP_F);
442   case TargetOpcode::G_FEXP2:
443     RTLIBCASE(EXP2_F);
444   case TargetOpcode::G_FREM:
445     RTLIBCASE(REM_F);
446   case TargetOpcode::G_FPOW:
447     RTLIBCASE(POW_F);
448   case TargetOpcode::G_FMA:
449     RTLIBCASE(FMA_F);
450   case TargetOpcode::G_FSIN:
451     RTLIBCASE(SIN_F);
452   case TargetOpcode::G_FCOS:
453     RTLIBCASE(COS_F);
454   case TargetOpcode::G_FLOG10:
455     RTLIBCASE(LOG10_F);
456   case TargetOpcode::G_FLOG:
457     RTLIBCASE(LOG_F);
458   case TargetOpcode::G_FLOG2:
459     RTLIBCASE(LOG2_F);
460   case TargetOpcode::G_FCEIL:
461     RTLIBCASE(CEIL_F);
462   case TargetOpcode::G_FFLOOR:
463     RTLIBCASE(FLOOR_F);
464   case TargetOpcode::G_FMINNUM:
465     RTLIBCASE(FMIN_F);
466   case TargetOpcode::G_FMAXNUM:
467     RTLIBCASE(FMAX_F);
468   case TargetOpcode::G_FSQRT:
469     RTLIBCASE(SQRT_F);
470   case TargetOpcode::G_FRINT:
471     RTLIBCASE(RINT_F);
472   case TargetOpcode::G_FNEARBYINT:
473     RTLIBCASE(NEARBYINT_F);
474   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
475     RTLIBCASE(ROUNDEVEN_F);
476   }
477   llvm_unreachable("Unknown libcall function");
478 }
479 
480 /// True if an instruction is in tail position in its caller. Intended for
481 /// legalizing libcalls as tail calls when possible.
482 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
483                                     MachineInstr &MI) {
484   MachineBasicBlock &MBB = *MI.getParent();
485   const Function &F = MBB.getParent()->getFunction();
486 
487   // Conservatively require the attributes of the call to match those of
488   // the return. Ignore NoAlias and NonNull because they don't affect the
489   // call sequence.
490   AttributeList CallerAttrs = F.getAttributes();
491   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
492           .removeAttribute(Attribute::NoAlias)
493           .removeAttribute(Attribute::NonNull)
494           .hasAttributes())
495     return false;
496 
497   // It's not safe to eliminate the sign / zero extension of the return value.
498   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
499       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
500     return false;
501 
502   // Only tail call if the following instruction is a standard return.
503   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
504   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
505     return false;
506 
507   return true;
508 }
509 
510 LegalizerHelper::LegalizeResult
511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
512                     const CallLowering::ArgInfo &Result,
513                     ArrayRef<CallLowering::ArgInfo> Args,
514                     const CallingConv::ID CC) {
515   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
516 
517   CallLowering::CallLoweringInfo Info;
518   Info.CallConv = CC;
519   Info.Callee = MachineOperand::CreateES(Name);
520   Info.OrigRet = Result;
521   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
522   if (!CLI.lowerCall(MIRBuilder, Info))
523     return LegalizerHelper::UnableToLegalize;
524 
525   return LegalizerHelper::Legalized;
526 }
527 
528 LegalizerHelper::LegalizeResult
529 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
530                     const CallLowering::ArgInfo &Result,
531                     ArrayRef<CallLowering::ArgInfo> Args) {
532   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
533   const char *Name = TLI.getLibcallName(Libcall);
534   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
535   return createLibcall(MIRBuilder, Name, Result, Args, CC);
536 }
537 
538 // Useful for libcalls where all operands have the same type.
539 static LegalizerHelper::LegalizeResult
540 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
541               Type *OpType) {
542   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
543 
544   SmallVector<CallLowering::ArgInfo, 3> Args;
545   for (unsigned i = 1; i < MI.getNumOperands(); i++)
546     Args.push_back({MI.getOperand(i).getReg(), OpType});
547   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
548                        Args);
549 }
550 
551 LegalizerHelper::LegalizeResult
552 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
553                        MachineInstr &MI) {
554   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
555   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
556 
557   SmallVector<CallLowering::ArgInfo, 3> Args;
558   // Add all the args, except for the last which is an imm denoting 'tail'.
559   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
560     Register Reg = MI.getOperand(i).getReg();
561 
562     // Need derive an IR type for call lowering.
563     LLT OpLLT = MRI.getType(Reg);
564     Type *OpTy = nullptr;
565     if (OpLLT.isPointer())
566       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
567     else
568       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
569     Args.push_back({Reg, OpTy});
570   }
571 
572   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
573   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
574   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
575   RTLIB::Libcall RTLibcall;
576   switch (ID) {
577   case Intrinsic::memcpy:
578     RTLibcall = RTLIB::MEMCPY;
579     break;
580   case Intrinsic::memset:
581     RTLibcall = RTLIB::MEMSET;
582     break;
583   case Intrinsic::memmove:
584     RTLibcall = RTLIB::MEMMOVE;
585     break;
586   default:
587     return LegalizerHelper::UnableToLegalize;
588   }
589   const char *Name = TLI.getLibcallName(RTLibcall);
590 
591   MIRBuilder.setInstrAndDebugLoc(MI);
592 
593   CallLowering::CallLoweringInfo Info;
594   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
595   Info.Callee = MachineOperand::CreateES(Name);
596   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
597   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
598                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
599 
600   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
601   if (!CLI.lowerCall(MIRBuilder, Info))
602     return LegalizerHelper::UnableToLegalize;
603 
604   if (Info.LoweredTailCall) {
605     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
606     // We must have a return following the call (or debug insts) to get past
607     // isLibCallInTailPosition.
608     do {
609       MachineInstr *Next = MI.getNextNode();
610       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
611              "Expected instr following MI to be return or debug inst?");
612       // We lowered a tail call, so the call is now the return from the block.
613       // Delete the old return.
614       Next->eraseFromParent();
615     } while (MI.getNextNode());
616   }
617 
618   return LegalizerHelper::Legalized;
619 }
620 
621 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
622                                        Type *FromType) {
623   auto ToMVT = MVT::getVT(ToType);
624   auto FromMVT = MVT::getVT(FromType);
625 
626   switch (Opcode) {
627   case TargetOpcode::G_FPEXT:
628     return RTLIB::getFPEXT(FromMVT, ToMVT);
629   case TargetOpcode::G_FPTRUNC:
630     return RTLIB::getFPROUND(FromMVT, ToMVT);
631   case TargetOpcode::G_FPTOSI:
632     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
633   case TargetOpcode::G_FPTOUI:
634     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
635   case TargetOpcode::G_SITOFP:
636     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
637   case TargetOpcode::G_UITOFP:
638     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
639   }
640   llvm_unreachable("Unsupported libcall function");
641 }
642 
643 static LegalizerHelper::LegalizeResult
644 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
645                   Type *FromType) {
646   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
647   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
648                        {{MI.getOperand(1).getReg(), FromType}});
649 }
650 
651 LegalizerHelper::LegalizeResult
652 LegalizerHelper::libcall(MachineInstr &MI) {
653   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
654   unsigned Size = LLTy.getSizeInBits();
655   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
656 
657   switch (MI.getOpcode()) {
658   default:
659     return UnableToLegalize;
660   case TargetOpcode::G_SDIV:
661   case TargetOpcode::G_UDIV:
662   case TargetOpcode::G_SREM:
663   case TargetOpcode::G_UREM:
664   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
665     Type *HLTy = IntegerType::get(Ctx, Size);
666     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
667     if (Status != Legalized)
668       return Status;
669     break;
670   }
671   case TargetOpcode::G_FADD:
672   case TargetOpcode::G_FSUB:
673   case TargetOpcode::G_FMUL:
674   case TargetOpcode::G_FDIV:
675   case TargetOpcode::G_FMA:
676   case TargetOpcode::G_FPOW:
677   case TargetOpcode::G_FREM:
678   case TargetOpcode::G_FCOS:
679   case TargetOpcode::G_FSIN:
680   case TargetOpcode::G_FLOG10:
681   case TargetOpcode::G_FLOG:
682   case TargetOpcode::G_FLOG2:
683   case TargetOpcode::G_FEXP:
684   case TargetOpcode::G_FEXP2:
685   case TargetOpcode::G_FCEIL:
686   case TargetOpcode::G_FFLOOR:
687   case TargetOpcode::G_FMINNUM:
688   case TargetOpcode::G_FMAXNUM:
689   case TargetOpcode::G_FSQRT:
690   case TargetOpcode::G_FRINT:
691   case TargetOpcode::G_FNEARBYINT:
692   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
693     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
694     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
695       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
696       return UnableToLegalize;
697     }
698     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
699     if (Status != Legalized)
700       return Status;
701     break;
702   }
703   case TargetOpcode::G_FPEXT:
704   case TargetOpcode::G_FPTRUNC: {
705     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
706     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
707     if (!FromTy || !ToTy)
708       return UnableToLegalize;
709     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
710     if (Status != Legalized)
711       return Status;
712     break;
713   }
714   case TargetOpcode::G_FPTOSI:
715   case TargetOpcode::G_FPTOUI: {
716     // FIXME: Support other types
717     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
718     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
719     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
720       return UnableToLegalize;
721     LegalizeResult Status = conversionLibcall(
722         MI, MIRBuilder,
723         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
724         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
725     if (Status != Legalized)
726       return Status;
727     break;
728   }
729   case TargetOpcode::G_SITOFP:
730   case TargetOpcode::G_UITOFP: {
731     // FIXME: Support other types
732     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
733     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
734     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
735       return UnableToLegalize;
736     LegalizeResult Status = conversionLibcall(
737         MI, MIRBuilder,
738         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
739         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
740     if (Status != Legalized)
741       return Status;
742     break;
743   }
744   }
745 
746   MI.eraseFromParent();
747   return Legalized;
748 }
749 
750 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
751                                                               unsigned TypeIdx,
752                                                               LLT NarrowTy) {
753   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
754   uint64_t NarrowSize = NarrowTy.getSizeInBits();
755 
756   switch (MI.getOpcode()) {
757   default:
758     return UnableToLegalize;
759   case TargetOpcode::G_IMPLICIT_DEF: {
760     Register DstReg = MI.getOperand(0).getReg();
761     LLT DstTy = MRI.getType(DstReg);
762 
763     // If SizeOp0 is not an exact multiple of NarrowSize, emit
764     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
765     // FIXME: Although this would also be legal for the general case, it causes
766     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
767     //  combines not being hit). This seems to be a problem related to the
768     //  artifact combiner.
769     if (SizeOp0 % NarrowSize != 0) {
770       LLT ImplicitTy = NarrowTy;
771       if (DstTy.isVector())
772         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
773 
774       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
775       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
776 
777       MI.eraseFromParent();
778       return Legalized;
779     }
780 
781     int NumParts = SizeOp0 / NarrowSize;
782 
783     SmallVector<Register, 2> DstRegs;
784     for (int i = 0; i < NumParts; ++i)
785       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
786 
787     if (DstTy.isVector())
788       MIRBuilder.buildBuildVector(DstReg, DstRegs);
789     else
790       MIRBuilder.buildMerge(DstReg, DstRegs);
791     MI.eraseFromParent();
792     return Legalized;
793   }
794   case TargetOpcode::G_CONSTANT: {
795     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
796     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
797     unsigned TotalSize = Ty.getSizeInBits();
798     unsigned NarrowSize = NarrowTy.getSizeInBits();
799     int NumParts = TotalSize / NarrowSize;
800 
801     SmallVector<Register, 4> PartRegs;
802     for (int I = 0; I != NumParts; ++I) {
803       unsigned Offset = I * NarrowSize;
804       auto K = MIRBuilder.buildConstant(NarrowTy,
805                                         Val.lshr(Offset).trunc(NarrowSize));
806       PartRegs.push_back(K.getReg(0));
807     }
808 
809     LLT LeftoverTy;
810     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
811     SmallVector<Register, 1> LeftoverRegs;
812     if (LeftoverBits != 0) {
813       LeftoverTy = LLT::scalar(LeftoverBits);
814       auto K = MIRBuilder.buildConstant(
815         LeftoverTy,
816         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
817       LeftoverRegs.push_back(K.getReg(0));
818     }
819 
820     insertParts(MI.getOperand(0).getReg(),
821                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
822 
823     MI.eraseFromParent();
824     return Legalized;
825   }
826   case TargetOpcode::G_SEXT:
827   case TargetOpcode::G_ZEXT:
828   case TargetOpcode::G_ANYEXT:
829     return narrowScalarExt(MI, TypeIdx, NarrowTy);
830   case TargetOpcode::G_TRUNC: {
831     if (TypeIdx != 1)
832       return UnableToLegalize;
833 
834     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
835     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
836       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
837       return UnableToLegalize;
838     }
839 
840     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
841     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
842     MI.eraseFromParent();
843     return Legalized;
844   }
845 
846   case TargetOpcode::G_FREEZE:
847     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
848 
849   case TargetOpcode::G_ADD: {
850     // FIXME: add support for when SizeOp0 isn't an exact multiple of
851     // NarrowSize.
852     if (SizeOp0 % NarrowSize != 0)
853       return UnableToLegalize;
854     // Expand in terms of carry-setting/consuming G_ADDE instructions.
855     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
856 
857     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
858     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
859     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
860 
861     Register CarryIn;
862     for (int i = 0; i < NumParts; ++i) {
863       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
864       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
865 
866       if (i == 0)
867         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
868       else {
869         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
870                               Src2Regs[i], CarryIn);
871       }
872 
873       DstRegs.push_back(DstReg);
874       CarryIn = CarryOut;
875     }
876     Register DstReg = MI.getOperand(0).getReg();
877     if(MRI.getType(DstReg).isVector())
878       MIRBuilder.buildBuildVector(DstReg, DstRegs);
879     else
880       MIRBuilder.buildMerge(DstReg, DstRegs);
881     MI.eraseFromParent();
882     return Legalized;
883   }
884   case TargetOpcode::G_SUB: {
885     // FIXME: add support for when SizeOp0 isn't an exact multiple of
886     // NarrowSize.
887     if (SizeOp0 % NarrowSize != 0)
888       return UnableToLegalize;
889 
890     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
891 
892     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
893     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
894     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
895 
896     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
897     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
898     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
899                           {Src1Regs[0], Src2Regs[0]});
900     DstRegs.push_back(DstReg);
901     Register BorrowIn = BorrowOut;
902     for (int i = 1; i < NumParts; ++i) {
903       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
904       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
905 
906       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
907                             {Src1Regs[i], Src2Regs[i], BorrowIn});
908 
909       DstRegs.push_back(DstReg);
910       BorrowIn = BorrowOut;
911     }
912     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
913     MI.eraseFromParent();
914     return Legalized;
915   }
916   case TargetOpcode::G_MUL:
917   case TargetOpcode::G_UMULH:
918     return narrowScalarMul(MI, NarrowTy);
919   case TargetOpcode::G_EXTRACT:
920     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
921   case TargetOpcode::G_INSERT:
922     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
923   case TargetOpcode::G_LOAD: {
924     auto &MMO = **MI.memoperands_begin();
925     Register DstReg = MI.getOperand(0).getReg();
926     LLT DstTy = MRI.getType(DstReg);
927     if (DstTy.isVector())
928       return UnableToLegalize;
929 
930     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
931       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
932       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
933       MIRBuilder.buildAnyExt(DstReg, TmpReg);
934       MI.eraseFromParent();
935       return Legalized;
936     }
937 
938     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
939   }
940   case TargetOpcode::G_ZEXTLOAD:
941   case TargetOpcode::G_SEXTLOAD: {
942     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
943     Register DstReg = MI.getOperand(0).getReg();
944     Register PtrReg = MI.getOperand(1).getReg();
945 
946     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
947     auto &MMO = **MI.memoperands_begin();
948     if (MMO.getSizeInBits() == NarrowSize) {
949       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
950     } else {
951       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
952     }
953 
954     if (ZExt)
955       MIRBuilder.buildZExt(DstReg, TmpReg);
956     else
957       MIRBuilder.buildSExt(DstReg, TmpReg);
958 
959     MI.eraseFromParent();
960     return Legalized;
961   }
962   case TargetOpcode::G_STORE: {
963     const auto &MMO = **MI.memoperands_begin();
964 
965     Register SrcReg = MI.getOperand(0).getReg();
966     LLT SrcTy = MRI.getType(SrcReg);
967     if (SrcTy.isVector())
968       return UnableToLegalize;
969 
970     int NumParts = SizeOp0 / NarrowSize;
971     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
972     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
973     if (SrcTy.isVector() && LeftoverBits != 0)
974       return UnableToLegalize;
975 
976     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
977       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
978       auto &MMO = **MI.memoperands_begin();
979       MIRBuilder.buildTrunc(TmpReg, SrcReg);
980       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
981       MI.eraseFromParent();
982       return Legalized;
983     }
984 
985     return reduceLoadStoreWidth(MI, 0, NarrowTy);
986   }
987   case TargetOpcode::G_SELECT:
988     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
989   case TargetOpcode::G_AND:
990   case TargetOpcode::G_OR:
991   case TargetOpcode::G_XOR: {
992     // Legalize bitwise operation:
993     // A = BinOp<Ty> B, C
994     // into:
995     // B1, ..., BN = G_UNMERGE_VALUES B
996     // C1, ..., CN = G_UNMERGE_VALUES C
997     // A1 = BinOp<Ty/N> B1, C2
998     // ...
999     // AN = BinOp<Ty/N> BN, CN
1000     // A = G_MERGE_VALUES A1, ..., AN
1001     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1002   }
1003   case TargetOpcode::G_SHL:
1004   case TargetOpcode::G_LSHR:
1005   case TargetOpcode::G_ASHR:
1006     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1007   case TargetOpcode::G_CTLZ:
1008   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1009   case TargetOpcode::G_CTTZ:
1010   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1011   case TargetOpcode::G_CTPOP:
1012     if (TypeIdx == 1)
1013       switch (MI.getOpcode()) {
1014       case TargetOpcode::G_CTLZ:
1015       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1016         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1017       case TargetOpcode::G_CTTZ:
1018       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1019         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1020       case TargetOpcode::G_CTPOP:
1021         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1022       default:
1023         return UnableToLegalize;
1024       }
1025 
1026     Observer.changingInstr(MI);
1027     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1028     Observer.changedInstr(MI);
1029     return Legalized;
1030   case TargetOpcode::G_INTTOPTR:
1031     if (TypeIdx != 1)
1032       return UnableToLegalize;
1033 
1034     Observer.changingInstr(MI);
1035     narrowScalarSrc(MI, NarrowTy, 1);
1036     Observer.changedInstr(MI);
1037     return Legalized;
1038   case TargetOpcode::G_PTRTOINT:
1039     if (TypeIdx != 0)
1040       return UnableToLegalize;
1041 
1042     Observer.changingInstr(MI);
1043     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1044     Observer.changedInstr(MI);
1045     return Legalized;
1046   case TargetOpcode::G_PHI: {
1047     unsigned NumParts = SizeOp0 / NarrowSize;
1048     SmallVector<Register, 2> DstRegs(NumParts);
1049     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1050     Observer.changingInstr(MI);
1051     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1052       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1053       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1054       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1055                    SrcRegs[i / 2]);
1056     }
1057     MachineBasicBlock &MBB = *MI.getParent();
1058     MIRBuilder.setInsertPt(MBB, MI);
1059     for (unsigned i = 0; i < NumParts; ++i) {
1060       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1061       MachineInstrBuilder MIB =
1062           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1063       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1064         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1065     }
1066     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1067     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1068     Observer.changedInstr(MI);
1069     MI.eraseFromParent();
1070     return Legalized;
1071   }
1072   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1073   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1074     if (TypeIdx != 2)
1075       return UnableToLegalize;
1076 
1077     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1078     Observer.changingInstr(MI);
1079     narrowScalarSrc(MI, NarrowTy, OpIdx);
1080     Observer.changedInstr(MI);
1081     return Legalized;
1082   }
1083   case TargetOpcode::G_ICMP: {
1084     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1085     if (NarrowSize * 2 != SrcSize)
1086       return UnableToLegalize;
1087 
1088     Observer.changingInstr(MI);
1089     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1090     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1091     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1092 
1093     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1094     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1095     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1096 
1097     CmpInst::Predicate Pred =
1098         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1099     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1100 
1101     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1102       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1103       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1104       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1105       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1106       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1107     } else {
1108       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1109       MachineInstrBuilder CmpHEQ =
1110           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1111       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1112           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1113       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1114     }
1115     Observer.changedInstr(MI);
1116     MI.eraseFromParent();
1117     return Legalized;
1118   }
1119   case TargetOpcode::G_SEXT_INREG: {
1120     if (TypeIdx != 0)
1121       return UnableToLegalize;
1122 
1123     int64_t SizeInBits = MI.getOperand(2).getImm();
1124 
1125     // So long as the new type has more bits than the bits we're extending we
1126     // don't need to break it apart.
1127     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1128       Observer.changingInstr(MI);
1129       // We don't lose any non-extension bits by truncating the src and
1130       // sign-extending the dst.
1131       MachineOperand &MO1 = MI.getOperand(1);
1132       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1133       MO1.setReg(TruncMIB.getReg(0));
1134 
1135       MachineOperand &MO2 = MI.getOperand(0);
1136       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1137       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1138       MIRBuilder.buildSExt(MO2, DstExt);
1139       MO2.setReg(DstExt);
1140       Observer.changedInstr(MI);
1141       return Legalized;
1142     }
1143 
1144     // Break it apart. Components below the extension point are unmodified. The
1145     // component containing the extension point becomes a narrower SEXT_INREG.
1146     // Components above it are ashr'd from the component containing the
1147     // extension point.
1148     if (SizeOp0 % NarrowSize != 0)
1149       return UnableToLegalize;
1150     int NumParts = SizeOp0 / NarrowSize;
1151 
1152     // List the registers where the destination will be scattered.
1153     SmallVector<Register, 2> DstRegs;
1154     // List the registers where the source will be split.
1155     SmallVector<Register, 2> SrcRegs;
1156 
1157     // Create all the temporary registers.
1158     for (int i = 0; i < NumParts; ++i) {
1159       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1160 
1161       SrcRegs.push_back(SrcReg);
1162     }
1163 
1164     // Explode the big arguments into smaller chunks.
1165     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1166 
1167     Register AshrCstReg =
1168         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1169             .getReg(0);
1170     Register FullExtensionReg = 0;
1171     Register PartialExtensionReg = 0;
1172 
1173     // Do the operation on each small part.
1174     for (int i = 0; i < NumParts; ++i) {
1175       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1176         DstRegs.push_back(SrcRegs[i]);
1177       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1178         assert(PartialExtensionReg &&
1179                "Expected to visit partial extension before full");
1180         if (FullExtensionReg) {
1181           DstRegs.push_back(FullExtensionReg);
1182           continue;
1183         }
1184         DstRegs.push_back(
1185             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1186                 .getReg(0));
1187         FullExtensionReg = DstRegs.back();
1188       } else {
1189         DstRegs.push_back(
1190             MIRBuilder
1191                 .buildInstr(
1192                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1193                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1194                 .getReg(0));
1195         PartialExtensionReg = DstRegs.back();
1196       }
1197     }
1198 
1199     // Gather the destination registers into the final destination.
1200     Register DstReg = MI.getOperand(0).getReg();
1201     MIRBuilder.buildMerge(DstReg, DstRegs);
1202     MI.eraseFromParent();
1203     return Legalized;
1204   }
1205   case TargetOpcode::G_BSWAP:
1206   case TargetOpcode::G_BITREVERSE: {
1207     if (SizeOp0 % NarrowSize != 0)
1208       return UnableToLegalize;
1209 
1210     Observer.changingInstr(MI);
1211     SmallVector<Register, 2> SrcRegs, DstRegs;
1212     unsigned NumParts = SizeOp0 / NarrowSize;
1213     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1214 
1215     for (unsigned i = 0; i < NumParts; ++i) {
1216       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1217                                            {SrcRegs[NumParts - 1 - i]});
1218       DstRegs.push_back(DstPart.getReg(0));
1219     }
1220 
1221     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1222 
1223     Observer.changedInstr(MI);
1224     MI.eraseFromParent();
1225     return Legalized;
1226   }
1227   case TargetOpcode::G_PTR_ADD:
1228   case TargetOpcode::G_PTRMASK: {
1229     if (TypeIdx != 1)
1230       return UnableToLegalize;
1231     Observer.changingInstr(MI);
1232     narrowScalarSrc(MI, NarrowTy, 2);
1233     Observer.changedInstr(MI);
1234     return Legalized;
1235   }
1236   case TargetOpcode::G_FPTOUI: {
1237     if (TypeIdx != 0)
1238       return UnableToLegalize;
1239     Observer.changingInstr(MI);
1240     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1241     Observer.changedInstr(MI);
1242     return Legalized;
1243   }
1244   case TargetOpcode::G_FPTOSI: {
1245     if (TypeIdx != 0)
1246       return UnableToLegalize;
1247     Observer.changingInstr(MI);
1248     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1249     Observer.changedInstr(MI);
1250     return Legalized;
1251   }
1252   case TargetOpcode::G_FPEXT:
1253     if (TypeIdx != 0)
1254       return UnableToLegalize;
1255     Observer.changingInstr(MI);
1256     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1257     Observer.changedInstr(MI);
1258     return Legalized;
1259   }
1260 }
1261 
1262 Register LegalizerHelper::coerceToScalar(Register Val) {
1263   LLT Ty = MRI.getType(Val);
1264   if (Ty.isScalar())
1265     return Val;
1266 
1267   const DataLayout &DL = MIRBuilder.getDataLayout();
1268   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1269   if (Ty.isPointer()) {
1270     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1271       return Register();
1272     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1273   }
1274 
1275   Register NewVal = Val;
1276 
1277   assert(Ty.isVector());
1278   LLT EltTy = Ty.getElementType();
1279   if (EltTy.isPointer())
1280     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1281   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1282 }
1283 
1284 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1285                                      unsigned OpIdx, unsigned ExtOpcode) {
1286   MachineOperand &MO = MI.getOperand(OpIdx);
1287   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1288   MO.setReg(ExtB.getReg(0));
1289 }
1290 
1291 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1292                                       unsigned OpIdx) {
1293   MachineOperand &MO = MI.getOperand(OpIdx);
1294   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1295   MO.setReg(ExtB.getReg(0));
1296 }
1297 
1298 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1299                                      unsigned OpIdx, unsigned TruncOpcode) {
1300   MachineOperand &MO = MI.getOperand(OpIdx);
1301   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1302   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1303   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1304   MO.setReg(DstExt);
1305 }
1306 
1307 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1308                                       unsigned OpIdx, unsigned ExtOpcode) {
1309   MachineOperand &MO = MI.getOperand(OpIdx);
1310   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1311   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1312   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1313   MO.setReg(DstTrunc);
1314 }
1315 
1316 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1317                                             unsigned OpIdx) {
1318   MachineOperand &MO = MI.getOperand(OpIdx);
1319   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1320   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1321 }
1322 
1323 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1324                                             unsigned OpIdx) {
1325   MachineOperand &MO = MI.getOperand(OpIdx);
1326 
1327   LLT OldTy = MRI.getType(MO.getReg());
1328   unsigned OldElts = OldTy.getNumElements();
1329   unsigned NewElts = MoreTy.getNumElements();
1330 
1331   unsigned NumParts = NewElts / OldElts;
1332 
1333   // Use concat_vectors if the result is a multiple of the number of elements.
1334   if (NumParts * OldElts == NewElts) {
1335     SmallVector<Register, 8> Parts;
1336     Parts.push_back(MO.getReg());
1337 
1338     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1339     for (unsigned I = 1; I != NumParts; ++I)
1340       Parts.push_back(ImpDef);
1341 
1342     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1343     MO.setReg(Concat.getReg(0));
1344     return;
1345   }
1346 
1347   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1348   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1349   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1350   MO.setReg(MoreReg);
1351 }
1352 
1353 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1354   MachineOperand &Op = MI.getOperand(OpIdx);
1355   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1356 }
1357 
1358 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1359   MachineOperand &MO = MI.getOperand(OpIdx);
1360   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1361   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1362   MIRBuilder.buildBitcast(MO, CastDst);
1363   MO.setReg(CastDst);
1364 }
1365 
1366 LegalizerHelper::LegalizeResult
1367 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1368                                         LLT WideTy) {
1369   if (TypeIdx != 1)
1370     return UnableToLegalize;
1371 
1372   Register DstReg = MI.getOperand(0).getReg();
1373   LLT DstTy = MRI.getType(DstReg);
1374   if (DstTy.isVector())
1375     return UnableToLegalize;
1376 
1377   Register Src1 = MI.getOperand(1).getReg();
1378   LLT SrcTy = MRI.getType(Src1);
1379   const int DstSize = DstTy.getSizeInBits();
1380   const int SrcSize = SrcTy.getSizeInBits();
1381   const int WideSize = WideTy.getSizeInBits();
1382   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1383 
1384   unsigned NumOps = MI.getNumOperands();
1385   unsigned NumSrc = MI.getNumOperands() - 1;
1386   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1387 
1388   if (WideSize >= DstSize) {
1389     // Directly pack the bits in the target type.
1390     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1391 
1392     for (unsigned I = 2; I != NumOps; ++I) {
1393       const unsigned Offset = (I - 1) * PartSize;
1394 
1395       Register SrcReg = MI.getOperand(I).getReg();
1396       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1397 
1398       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1399 
1400       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1401         MRI.createGenericVirtualRegister(WideTy);
1402 
1403       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1404       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1405       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1406       ResultReg = NextResult;
1407     }
1408 
1409     if (WideSize > DstSize)
1410       MIRBuilder.buildTrunc(DstReg, ResultReg);
1411     else if (DstTy.isPointer())
1412       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1413 
1414     MI.eraseFromParent();
1415     return Legalized;
1416   }
1417 
1418   // Unmerge the original values to the GCD type, and recombine to the next
1419   // multiple greater than the original type.
1420   //
1421   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1422   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1423   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1424   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1425   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1426   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1427   // %12:_(s12) = G_MERGE_VALUES %10, %11
1428   //
1429   // Padding with undef if necessary:
1430   //
1431   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1432   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1433   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1434   // %7:_(s2) = G_IMPLICIT_DEF
1435   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1436   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1437   // %10:_(s12) = G_MERGE_VALUES %8, %9
1438 
1439   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1440   LLT GCDTy = LLT::scalar(GCD);
1441 
1442   SmallVector<Register, 8> Parts;
1443   SmallVector<Register, 8> NewMergeRegs;
1444   SmallVector<Register, 8> Unmerges;
1445   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1446 
1447   // Decompose the original operands if they don't evenly divide.
1448   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1449     Register SrcReg = MI.getOperand(I).getReg();
1450     if (GCD == SrcSize) {
1451       Unmerges.push_back(SrcReg);
1452     } else {
1453       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1454       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1455         Unmerges.push_back(Unmerge.getReg(J));
1456     }
1457   }
1458 
1459   // Pad with undef to the next size that is a multiple of the requested size.
1460   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1461     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1462     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1463       Unmerges.push_back(UndefReg);
1464   }
1465 
1466   const int PartsPerGCD = WideSize / GCD;
1467 
1468   // Build merges of each piece.
1469   ArrayRef<Register> Slicer(Unmerges);
1470   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1471     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1472     NewMergeRegs.push_back(Merge.getReg(0));
1473   }
1474 
1475   // A truncate may be necessary if the requested type doesn't evenly divide the
1476   // original result type.
1477   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1478     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1479   } else {
1480     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1481     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1482   }
1483 
1484   MI.eraseFromParent();
1485   return Legalized;
1486 }
1487 
1488 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1489   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1490   LLT OrigTy = MRI.getType(OrigReg);
1491   LLT LCMTy = getLCMType(WideTy, OrigTy);
1492 
1493   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1494   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1495 
1496   Register UnmergeSrc = WideReg;
1497 
1498   // Create a merge to the LCM type, padding with undef
1499   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1500   // =>
1501   // %1:_(<4 x s32>) = G_FOO
1502   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1503   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1504   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1505   if (NumMergeParts > 1) {
1506     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1507     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1508     MergeParts[0] = WideReg;
1509     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1510   }
1511 
1512   // Unmerge to the original register and pad with dead defs.
1513   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1514   UnmergeResults[0] = OrigReg;
1515   for (int I = 1; I != NumUnmergeParts; ++I)
1516     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1517 
1518   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1519   return WideReg;
1520 }
1521 
1522 LegalizerHelper::LegalizeResult
1523 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1524                                           LLT WideTy) {
1525   if (TypeIdx != 0)
1526     return UnableToLegalize;
1527 
1528   int NumDst = MI.getNumOperands() - 1;
1529   Register SrcReg = MI.getOperand(NumDst).getReg();
1530   LLT SrcTy = MRI.getType(SrcReg);
1531   if (SrcTy.isVector())
1532     return UnableToLegalize;
1533 
1534   Register Dst0Reg = MI.getOperand(0).getReg();
1535   LLT DstTy = MRI.getType(Dst0Reg);
1536   if (!DstTy.isScalar())
1537     return UnableToLegalize;
1538 
1539   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1540     if (SrcTy.isPointer()) {
1541       const DataLayout &DL = MIRBuilder.getDataLayout();
1542       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1543         LLVM_DEBUG(
1544             dbgs() << "Not casting non-integral address space integer\n");
1545         return UnableToLegalize;
1546       }
1547 
1548       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1549       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1550     }
1551 
1552     // Widen SrcTy to WideTy. This does not affect the result, but since the
1553     // user requested this size, it is probably better handled than SrcTy and
1554     // should reduce the total number of legalization artifacts
1555     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1556       SrcTy = WideTy;
1557       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1558     }
1559 
1560     // Theres no unmerge type to target. Directly extract the bits from the
1561     // source type
1562     unsigned DstSize = DstTy.getSizeInBits();
1563 
1564     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1565     for (int I = 1; I != NumDst; ++I) {
1566       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1567       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1568       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1569     }
1570 
1571     MI.eraseFromParent();
1572     return Legalized;
1573   }
1574 
1575   // Extend the source to a wider type.
1576   LLT LCMTy = getLCMType(SrcTy, WideTy);
1577 
1578   Register WideSrc = SrcReg;
1579   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1580     // TODO: If this is an integral address space, cast to integer and anyext.
1581     if (SrcTy.isPointer()) {
1582       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1583       return UnableToLegalize;
1584     }
1585 
1586     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1587   }
1588 
1589   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1590 
1591   // Create a sequence of unmerges to the original results. since we may have
1592   // widened the source, we will need to pad the results with dead defs to cover
1593   // the source register.
1594   // e.g. widen s16 to s32:
1595   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1596   //
1597   // =>
1598   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1599   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1600   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1601   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1602 
1603   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1604   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1605 
1606   for (int I = 0; I != NumUnmerge; ++I) {
1607     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1608 
1609     for (int J = 0; J != PartsPerUnmerge; ++J) {
1610       int Idx = I * PartsPerUnmerge + J;
1611       if (Idx < NumDst)
1612         MIB.addDef(MI.getOperand(Idx).getReg());
1613       else {
1614         // Create dead def for excess components.
1615         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1616       }
1617     }
1618 
1619     MIB.addUse(Unmerge.getReg(I));
1620   }
1621 
1622   MI.eraseFromParent();
1623   return Legalized;
1624 }
1625 
1626 LegalizerHelper::LegalizeResult
1627 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1628                                     LLT WideTy) {
1629   Register DstReg = MI.getOperand(0).getReg();
1630   Register SrcReg = MI.getOperand(1).getReg();
1631   LLT SrcTy = MRI.getType(SrcReg);
1632 
1633   LLT DstTy = MRI.getType(DstReg);
1634   unsigned Offset = MI.getOperand(2).getImm();
1635 
1636   if (TypeIdx == 0) {
1637     if (SrcTy.isVector() || DstTy.isVector())
1638       return UnableToLegalize;
1639 
1640     SrcOp Src(SrcReg);
1641     if (SrcTy.isPointer()) {
1642       // Extracts from pointers can be handled only if they are really just
1643       // simple integers.
1644       const DataLayout &DL = MIRBuilder.getDataLayout();
1645       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1646         return UnableToLegalize;
1647 
1648       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1649       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1650       SrcTy = SrcAsIntTy;
1651     }
1652 
1653     if (DstTy.isPointer())
1654       return UnableToLegalize;
1655 
1656     if (Offset == 0) {
1657       // Avoid a shift in the degenerate case.
1658       MIRBuilder.buildTrunc(DstReg,
1659                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1660       MI.eraseFromParent();
1661       return Legalized;
1662     }
1663 
1664     // Do a shift in the source type.
1665     LLT ShiftTy = SrcTy;
1666     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1667       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1668       ShiftTy = WideTy;
1669     }
1670 
1671     auto LShr = MIRBuilder.buildLShr(
1672       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1673     MIRBuilder.buildTrunc(DstReg, LShr);
1674     MI.eraseFromParent();
1675     return Legalized;
1676   }
1677 
1678   if (SrcTy.isScalar()) {
1679     Observer.changingInstr(MI);
1680     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1681     Observer.changedInstr(MI);
1682     return Legalized;
1683   }
1684 
1685   if (!SrcTy.isVector())
1686     return UnableToLegalize;
1687 
1688   if (DstTy != SrcTy.getElementType())
1689     return UnableToLegalize;
1690 
1691   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1692     return UnableToLegalize;
1693 
1694   Observer.changingInstr(MI);
1695   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1696 
1697   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1698                           Offset);
1699   widenScalarDst(MI, WideTy.getScalarType(), 0);
1700   Observer.changedInstr(MI);
1701   return Legalized;
1702 }
1703 
1704 LegalizerHelper::LegalizeResult
1705 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1706                                    LLT WideTy) {
1707   if (TypeIdx != 0 || WideTy.isVector())
1708     return UnableToLegalize;
1709   Observer.changingInstr(MI);
1710   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1711   widenScalarDst(MI, WideTy);
1712   Observer.changedInstr(MI);
1713   return Legalized;
1714 }
1715 
1716 LegalizerHelper::LegalizeResult
1717 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1718                                          LLT WideTy) {
1719   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1720                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1721                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1722   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1723                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1724   // We can convert this to:
1725   //   1. Any extend iN to iM
1726   //   2. SHL by M-N
1727   //   3. [US][ADD|SUB|SHL]SAT
1728   //   4. L/ASHR by M-N
1729   //
1730   // It may be more efficient to lower this to a min and a max operation in
1731   // the higher precision arithmetic if the promoted operation isn't legal,
1732   // but this decision is up to the target's lowering request.
1733   Register DstReg = MI.getOperand(0).getReg();
1734 
1735   unsigned NewBits = WideTy.getScalarSizeInBits();
1736   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1737 
1738   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1739   // must not left shift the RHS to preserve the shift amount.
1740   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1741   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1742                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1743   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1744   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1745   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1746 
1747   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1748                                         {ShiftL, ShiftR}, MI.getFlags());
1749 
1750   // Use a shift that will preserve the number of sign bits when the trunc is
1751   // folded away.
1752   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1753                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1754 
1755   MIRBuilder.buildTrunc(DstReg, Result);
1756   MI.eraseFromParent();
1757   return Legalized;
1758 }
1759 
1760 LegalizerHelper::LegalizeResult
1761 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1762   switch (MI.getOpcode()) {
1763   default:
1764     return UnableToLegalize;
1765   case TargetOpcode::G_EXTRACT:
1766     return widenScalarExtract(MI, TypeIdx, WideTy);
1767   case TargetOpcode::G_INSERT:
1768     return widenScalarInsert(MI, TypeIdx, WideTy);
1769   case TargetOpcode::G_MERGE_VALUES:
1770     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1771   case TargetOpcode::G_UNMERGE_VALUES:
1772     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1773   case TargetOpcode::G_UADDO:
1774   case TargetOpcode::G_USUBO: {
1775     if (TypeIdx == 1)
1776       return UnableToLegalize; // TODO
1777     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1778     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1779     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1780                           ? TargetOpcode::G_ADD
1781                           : TargetOpcode::G_SUB;
1782     // Do the arithmetic in the larger type.
1783     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1784     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1785     APInt Mask =
1786         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1787     auto AndOp = MIRBuilder.buildAnd(
1788         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1789     // There is no overflow if the AndOp is the same as NewOp.
1790     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1791     // Now trunc the NewOp to the original result.
1792     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1793     MI.eraseFromParent();
1794     return Legalized;
1795   }
1796   case TargetOpcode::G_SADDSAT:
1797   case TargetOpcode::G_SSUBSAT:
1798   case TargetOpcode::G_SSHLSAT:
1799   case TargetOpcode::G_UADDSAT:
1800   case TargetOpcode::G_USUBSAT:
1801   case TargetOpcode::G_USHLSAT:
1802     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1803   case TargetOpcode::G_CTTZ:
1804   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1805   case TargetOpcode::G_CTLZ:
1806   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1807   case TargetOpcode::G_CTPOP: {
1808     if (TypeIdx == 0) {
1809       Observer.changingInstr(MI);
1810       widenScalarDst(MI, WideTy, 0);
1811       Observer.changedInstr(MI);
1812       return Legalized;
1813     }
1814 
1815     Register SrcReg = MI.getOperand(1).getReg();
1816 
1817     // First ZEXT the input.
1818     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1819     LLT CurTy = MRI.getType(SrcReg);
1820     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1821       // The count is the same in the larger type except if the original
1822       // value was zero.  This can be handled by setting the bit just off
1823       // the top of the original type.
1824       auto TopBit =
1825           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1826       MIBSrc = MIRBuilder.buildOr(
1827         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1828     }
1829 
1830     // Perform the operation at the larger size.
1831     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1832     // This is already the correct result for CTPOP and CTTZs
1833     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1834         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1835       // The correct result is NewOp - (Difference in widety and current ty).
1836       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1837       MIBNewOp = MIRBuilder.buildSub(
1838           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1839     }
1840 
1841     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1842     MI.eraseFromParent();
1843     return Legalized;
1844   }
1845   case TargetOpcode::G_BSWAP: {
1846     Observer.changingInstr(MI);
1847     Register DstReg = MI.getOperand(0).getReg();
1848 
1849     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1850     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1851     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1852     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1853 
1854     MI.getOperand(0).setReg(DstExt);
1855 
1856     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1857 
1858     LLT Ty = MRI.getType(DstReg);
1859     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1860     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1861     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1862 
1863     MIRBuilder.buildTrunc(DstReg, ShrReg);
1864     Observer.changedInstr(MI);
1865     return Legalized;
1866   }
1867   case TargetOpcode::G_BITREVERSE: {
1868     Observer.changingInstr(MI);
1869 
1870     Register DstReg = MI.getOperand(0).getReg();
1871     LLT Ty = MRI.getType(DstReg);
1872     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1873 
1874     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1875     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1876     MI.getOperand(0).setReg(DstExt);
1877     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1878 
1879     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1880     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1881     MIRBuilder.buildTrunc(DstReg, Shift);
1882     Observer.changedInstr(MI);
1883     return Legalized;
1884   }
1885   case TargetOpcode::G_FREEZE:
1886     Observer.changingInstr(MI);
1887     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1888     widenScalarDst(MI, WideTy);
1889     Observer.changedInstr(MI);
1890     return Legalized;
1891 
1892   case TargetOpcode::G_ADD:
1893   case TargetOpcode::G_AND:
1894   case TargetOpcode::G_MUL:
1895   case TargetOpcode::G_OR:
1896   case TargetOpcode::G_XOR:
1897   case TargetOpcode::G_SUB:
1898     // Perform operation at larger width (any extension is fines here, high bits
1899     // don't affect the result) and then truncate the result back to the
1900     // original type.
1901     Observer.changingInstr(MI);
1902     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1903     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1904     widenScalarDst(MI, WideTy);
1905     Observer.changedInstr(MI);
1906     return Legalized;
1907 
1908   case TargetOpcode::G_SHL:
1909     Observer.changingInstr(MI);
1910 
1911     if (TypeIdx == 0) {
1912       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1913       widenScalarDst(MI, WideTy);
1914     } else {
1915       assert(TypeIdx == 1);
1916       // The "number of bits to shift" operand must preserve its value as an
1917       // unsigned integer:
1918       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1919     }
1920 
1921     Observer.changedInstr(MI);
1922     return Legalized;
1923 
1924   case TargetOpcode::G_SDIV:
1925   case TargetOpcode::G_SREM:
1926   case TargetOpcode::G_SMIN:
1927   case TargetOpcode::G_SMAX:
1928     Observer.changingInstr(MI);
1929     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1930     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1931     widenScalarDst(MI, WideTy);
1932     Observer.changedInstr(MI);
1933     return Legalized;
1934 
1935   case TargetOpcode::G_ASHR:
1936   case TargetOpcode::G_LSHR:
1937     Observer.changingInstr(MI);
1938 
1939     if (TypeIdx == 0) {
1940       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1941         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1942 
1943       widenScalarSrc(MI, WideTy, 1, CvtOp);
1944       widenScalarDst(MI, WideTy);
1945     } else {
1946       assert(TypeIdx == 1);
1947       // The "number of bits to shift" operand must preserve its value as an
1948       // unsigned integer:
1949       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1950     }
1951 
1952     Observer.changedInstr(MI);
1953     return Legalized;
1954   case TargetOpcode::G_UDIV:
1955   case TargetOpcode::G_UREM:
1956   case TargetOpcode::G_UMIN:
1957   case TargetOpcode::G_UMAX:
1958     Observer.changingInstr(MI);
1959     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1960     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1961     widenScalarDst(MI, WideTy);
1962     Observer.changedInstr(MI);
1963     return Legalized;
1964 
1965   case TargetOpcode::G_SELECT:
1966     Observer.changingInstr(MI);
1967     if (TypeIdx == 0) {
1968       // Perform operation at larger width (any extension is fine here, high
1969       // bits don't affect the result) and then truncate the result back to the
1970       // original type.
1971       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1972       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1973       widenScalarDst(MI, WideTy);
1974     } else {
1975       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1976       // Explicit extension is required here since high bits affect the result.
1977       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1978     }
1979     Observer.changedInstr(MI);
1980     return Legalized;
1981 
1982   case TargetOpcode::G_FPTOSI:
1983   case TargetOpcode::G_FPTOUI:
1984     Observer.changingInstr(MI);
1985 
1986     if (TypeIdx == 0)
1987       widenScalarDst(MI, WideTy);
1988     else
1989       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1990 
1991     Observer.changedInstr(MI);
1992     return Legalized;
1993   case TargetOpcode::G_SITOFP:
1994     Observer.changingInstr(MI);
1995 
1996     if (TypeIdx == 0)
1997       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1998     else
1999       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2000 
2001     Observer.changedInstr(MI);
2002     return Legalized;
2003   case TargetOpcode::G_UITOFP:
2004     Observer.changingInstr(MI);
2005 
2006     if (TypeIdx == 0)
2007       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2008     else
2009       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2010 
2011     Observer.changedInstr(MI);
2012     return Legalized;
2013   case TargetOpcode::G_LOAD:
2014   case TargetOpcode::G_SEXTLOAD:
2015   case TargetOpcode::G_ZEXTLOAD:
2016     Observer.changingInstr(MI);
2017     widenScalarDst(MI, WideTy);
2018     Observer.changedInstr(MI);
2019     return Legalized;
2020 
2021   case TargetOpcode::G_STORE: {
2022     if (TypeIdx != 0)
2023       return UnableToLegalize;
2024 
2025     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2026     if (!isPowerOf2_32(Ty.getSizeInBits()))
2027       return UnableToLegalize;
2028 
2029     Observer.changingInstr(MI);
2030 
2031     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2032       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2033     widenScalarSrc(MI, WideTy, 0, ExtType);
2034 
2035     Observer.changedInstr(MI);
2036     return Legalized;
2037   }
2038   case TargetOpcode::G_CONSTANT: {
2039     MachineOperand &SrcMO = MI.getOperand(1);
2040     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2041     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2042         MRI.getType(MI.getOperand(0).getReg()));
2043     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2044             ExtOpc == TargetOpcode::G_ANYEXT) &&
2045            "Illegal Extend");
2046     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2047     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2048                            ? SrcVal.sext(WideTy.getSizeInBits())
2049                            : SrcVal.zext(WideTy.getSizeInBits());
2050     Observer.changingInstr(MI);
2051     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2052 
2053     widenScalarDst(MI, WideTy);
2054     Observer.changedInstr(MI);
2055     return Legalized;
2056   }
2057   case TargetOpcode::G_FCONSTANT: {
2058     MachineOperand &SrcMO = MI.getOperand(1);
2059     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2060     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2061     bool LosesInfo;
2062     switch (WideTy.getSizeInBits()) {
2063     case 32:
2064       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2065                   &LosesInfo);
2066       break;
2067     case 64:
2068       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2069                   &LosesInfo);
2070       break;
2071     default:
2072       return UnableToLegalize;
2073     }
2074 
2075     assert(!LosesInfo && "extend should always be lossless");
2076 
2077     Observer.changingInstr(MI);
2078     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2079 
2080     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2081     Observer.changedInstr(MI);
2082     return Legalized;
2083   }
2084   case TargetOpcode::G_IMPLICIT_DEF: {
2085     Observer.changingInstr(MI);
2086     widenScalarDst(MI, WideTy);
2087     Observer.changedInstr(MI);
2088     return Legalized;
2089   }
2090   case TargetOpcode::G_BRCOND:
2091     Observer.changingInstr(MI);
2092     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2093     Observer.changedInstr(MI);
2094     return Legalized;
2095 
2096   case TargetOpcode::G_FCMP:
2097     Observer.changingInstr(MI);
2098     if (TypeIdx == 0)
2099       widenScalarDst(MI, WideTy);
2100     else {
2101       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2102       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2103     }
2104     Observer.changedInstr(MI);
2105     return Legalized;
2106 
2107   case TargetOpcode::G_ICMP:
2108     Observer.changingInstr(MI);
2109     if (TypeIdx == 0)
2110       widenScalarDst(MI, WideTy);
2111     else {
2112       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2113                                MI.getOperand(1).getPredicate()))
2114                                ? TargetOpcode::G_SEXT
2115                                : TargetOpcode::G_ZEXT;
2116       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2117       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2118     }
2119     Observer.changedInstr(MI);
2120     return Legalized;
2121 
2122   case TargetOpcode::G_PTR_ADD:
2123     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2124     Observer.changingInstr(MI);
2125     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2126     Observer.changedInstr(MI);
2127     return Legalized;
2128 
2129   case TargetOpcode::G_PHI: {
2130     assert(TypeIdx == 0 && "Expecting only Idx 0");
2131 
2132     Observer.changingInstr(MI);
2133     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2134       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2135       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2136       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2137     }
2138 
2139     MachineBasicBlock &MBB = *MI.getParent();
2140     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2141     widenScalarDst(MI, WideTy);
2142     Observer.changedInstr(MI);
2143     return Legalized;
2144   }
2145   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2146     if (TypeIdx == 0) {
2147       Register VecReg = MI.getOperand(1).getReg();
2148       LLT VecTy = MRI.getType(VecReg);
2149       Observer.changingInstr(MI);
2150 
2151       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2152                                      WideTy.getSizeInBits()),
2153                      1, TargetOpcode::G_SEXT);
2154 
2155       widenScalarDst(MI, WideTy, 0);
2156       Observer.changedInstr(MI);
2157       return Legalized;
2158     }
2159 
2160     if (TypeIdx != 2)
2161       return UnableToLegalize;
2162     Observer.changingInstr(MI);
2163     // TODO: Probably should be zext
2164     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2165     Observer.changedInstr(MI);
2166     return Legalized;
2167   }
2168   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2169     if (TypeIdx == 1) {
2170       Observer.changingInstr(MI);
2171 
2172       Register VecReg = MI.getOperand(1).getReg();
2173       LLT VecTy = MRI.getType(VecReg);
2174       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2175 
2176       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2177       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2178       widenScalarDst(MI, WideVecTy, 0);
2179       Observer.changedInstr(MI);
2180       return Legalized;
2181     }
2182 
2183     if (TypeIdx == 2) {
2184       Observer.changingInstr(MI);
2185       // TODO: Probably should be zext
2186       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2187       Observer.changedInstr(MI);
2188       return Legalized;
2189     }
2190 
2191     return UnableToLegalize;
2192   }
2193   case TargetOpcode::G_FADD:
2194   case TargetOpcode::G_FMUL:
2195   case TargetOpcode::G_FSUB:
2196   case TargetOpcode::G_FMA:
2197   case TargetOpcode::G_FMAD:
2198   case TargetOpcode::G_FNEG:
2199   case TargetOpcode::G_FABS:
2200   case TargetOpcode::G_FCANONICALIZE:
2201   case TargetOpcode::G_FMINNUM:
2202   case TargetOpcode::G_FMAXNUM:
2203   case TargetOpcode::G_FMINNUM_IEEE:
2204   case TargetOpcode::G_FMAXNUM_IEEE:
2205   case TargetOpcode::G_FMINIMUM:
2206   case TargetOpcode::G_FMAXIMUM:
2207   case TargetOpcode::G_FDIV:
2208   case TargetOpcode::G_FREM:
2209   case TargetOpcode::G_FCEIL:
2210   case TargetOpcode::G_FFLOOR:
2211   case TargetOpcode::G_FCOS:
2212   case TargetOpcode::G_FSIN:
2213   case TargetOpcode::G_FLOG10:
2214   case TargetOpcode::G_FLOG:
2215   case TargetOpcode::G_FLOG2:
2216   case TargetOpcode::G_FRINT:
2217   case TargetOpcode::G_FNEARBYINT:
2218   case TargetOpcode::G_FSQRT:
2219   case TargetOpcode::G_FEXP:
2220   case TargetOpcode::G_FEXP2:
2221   case TargetOpcode::G_FPOW:
2222   case TargetOpcode::G_INTRINSIC_TRUNC:
2223   case TargetOpcode::G_INTRINSIC_ROUND:
2224   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2225     assert(TypeIdx == 0);
2226     Observer.changingInstr(MI);
2227 
2228     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2229       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2230 
2231     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2232     Observer.changedInstr(MI);
2233     return Legalized;
2234   case TargetOpcode::G_FPOWI: {
2235     if (TypeIdx != 0)
2236       return UnableToLegalize;
2237     Observer.changingInstr(MI);
2238     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2239     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2240     Observer.changedInstr(MI);
2241     return Legalized;
2242   }
2243   case TargetOpcode::G_INTTOPTR:
2244     if (TypeIdx != 1)
2245       return UnableToLegalize;
2246 
2247     Observer.changingInstr(MI);
2248     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2249     Observer.changedInstr(MI);
2250     return Legalized;
2251   case TargetOpcode::G_PTRTOINT:
2252     if (TypeIdx != 0)
2253       return UnableToLegalize;
2254 
2255     Observer.changingInstr(MI);
2256     widenScalarDst(MI, WideTy, 0);
2257     Observer.changedInstr(MI);
2258     return Legalized;
2259   case TargetOpcode::G_BUILD_VECTOR: {
2260     Observer.changingInstr(MI);
2261 
2262     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2263     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2264       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2265 
2266     // Avoid changing the result vector type if the source element type was
2267     // requested.
2268     if (TypeIdx == 1) {
2269       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2270     } else {
2271       widenScalarDst(MI, WideTy, 0);
2272     }
2273 
2274     Observer.changedInstr(MI);
2275     return Legalized;
2276   }
2277   case TargetOpcode::G_SEXT_INREG:
2278     if (TypeIdx != 0)
2279       return UnableToLegalize;
2280 
2281     Observer.changingInstr(MI);
2282     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2283     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2284     Observer.changedInstr(MI);
2285     return Legalized;
2286   case TargetOpcode::G_PTRMASK: {
2287     if (TypeIdx != 1)
2288       return UnableToLegalize;
2289     Observer.changingInstr(MI);
2290     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2291     Observer.changedInstr(MI);
2292     return Legalized;
2293   }
2294   }
2295 }
2296 
2297 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2298                              MachineIRBuilder &B, Register Src, LLT Ty) {
2299   auto Unmerge = B.buildUnmerge(Ty, Src);
2300   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2301     Pieces.push_back(Unmerge.getReg(I));
2302 }
2303 
2304 LegalizerHelper::LegalizeResult
2305 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2306   Register Dst = MI.getOperand(0).getReg();
2307   Register Src = MI.getOperand(1).getReg();
2308   LLT DstTy = MRI.getType(Dst);
2309   LLT SrcTy = MRI.getType(Src);
2310 
2311   if (SrcTy.isVector()) {
2312     LLT SrcEltTy = SrcTy.getElementType();
2313     SmallVector<Register, 8> SrcRegs;
2314 
2315     if (DstTy.isVector()) {
2316       int NumDstElt = DstTy.getNumElements();
2317       int NumSrcElt = SrcTy.getNumElements();
2318 
2319       LLT DstEltTy = DstTy.getElementType();
2320       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2321       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2322 
2323       // If there's an element size mismatch, insert intermediate casts to match
2324       // the result element type.
2325       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2326         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2327         //
2328         // =>
2329         //
2330         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2331         // %3:_(<2 x s8>) = G_BITCAST %2
2332         // %4:_(<2 x s8>) = G_BITCAST %3
2333         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2334         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2335         SrcPartTy = SrcEltTy;
2336       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2337         //
2338         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2339         //
2340         // =>
2341         //
2342         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2343         // %3:_(s16) = G_BITCAST %2
2344         // %4:_(s16) = G_BITCAST %3
2345         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2346         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2347         DstCastTy = DstEltTy;
2348       }
2349 
2350       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2351       for (Register &SrcReg : SrcRegs)
2352         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2353     } else
2354       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2355 
2356     MIRBuilder.buildMerge(Dst, SrcRegs);
2357     MI.eraseFromParent();
2358     return Legalized;
2359   }
2360 
2361   if (DstTy.isVector()) {
2362     SmallVector<Register, 8> SrcRegs;
2363     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2364     MIRBuilder.buildMerge(Dst, SrcRegs);
2365     MI.eraseFromParent();
2366     return Legalized;
2367   }
2368 
2369   return UnableToLegalize;
2370 }
2371 
2372 /// Figure out the bit offset into a register when coercing a vector index for
2373 /// the wide element type. This is only for the case when promoting vector to
2374 /// one with larger elements.
2375 //
2376 ///
2377 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2378 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2379 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2380                                                    Register Idx,
2381                                                    unsigned NewEltSize,
2382                                                    unsigned OldEltSize) {
2383   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2384   LLT IdxTy = B.getMRI()->getType(Idx);
2385 
2386   // Now figure out the amount we need to shift to get the target bits.
2387   auto OffsetMask = B.buildConstant(
2388     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2389   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2390   return B.buildShl(IdxTy, OffsetIdx,
2391                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2392 }
2393 
2394 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2395 /// is casting to a vector with a smaller element size, perform multiple element
2396 /// extracts and merge the results. If this is coercing to a vector with larger
2397 /// elements, index the bitcasted vector and extract the target element with bit
2398 /// operations. This is intended to force the indexing in the native register
2399 /// size for architectures that can dynamically index the register file.
2400 LegalizerHelper::LegalizeResult
2401 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2402                                          LLT CastTy) {
2403   if (TypeIdx != 1)
2404     return UnableToLegalize;
2405 
2406   Register Dst = MI.getOperand(0).getReg();
2407   Register SrcVec = MI.getOperand(1).getReg();
2408   Register Idx = MI.getOperand(2).getReg();
2409   LLT SrcVecTy = MRI.getType(SrcVec);
2410   LLT IdxTy = MRI.getType(Idx);
2411 
2412   LLT SrcEltTy = SrcVecTy.getElementType();
2413   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2414   unsigned OldNumElts = SrcVecTy.getNumElements();
2415 
2416   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2417   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2418 
2419   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2420   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2421   if (NewNumElts > OldNumElts) {
2422     // Decreasing the vector element size
2423     //
2424     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2425     //  =>
2426     //  v4i32:castx = bitcast x:v2i64
2427     //
2428     // i64 = bitcast
2429     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2430     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2431     //
2432     if (NewNumElts % OldNumElts != 0)
2433       return UnableToLegalize;
2434 
2435     // Type of the intermediate result vector.
2436     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2437     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2438 
2439     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2440 
2441     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2442     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2443 
2444     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2445       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2446       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2447       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2448       NewOps[I] = Elt.getReg(0);
2449     }
2450 
2451     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2452     MIRBuilder.buildBitcast(Dst, NewVec);
2453     MI.eraseFromParent();
2454     return Legalized;
2455   }
2456 
2457   if (NewNumElts < OldNumElts) {
2458     if (NewEltSize % OldEltSize != 0)
2459       return UnableToLegalize;
2460 
2461     // This only depends on powers of 2 because we use bit tricks to figure out
2462     // the bit offset we need to shift to get the target element. A general
2463     // expansion could emit division/multiply.
2464     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2465       return UnableToLegalize;
2466 
2467     // Increasing the vector element size.
2468     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2469     //
2470     //   =>
2471     //
2472     // %cast = G_BITCAST %vec
2473     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2474     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2475     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2476     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2477     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2478     // %elt = G_TRUNC %elt_bits
2479 
2480     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2481     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2482 
2483     // Divide to get the index in the wider element type.
2484     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2485 
2486     Register WideElt = CastVec;
2487     if (CastTy.isVector()) {
2488       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2489                                                      ScaledIdx).getReg(0);
2490     }
2491 
2492     // Compute the bit offset into the register of the target element.
2493     Register OffsetBits = getBitcastWiderVectorElementOffset(
2494       MIRBuilder, Idx, NewEltSize, OldEltSize);
2495 
2496     // Shift the wide element to get the target element.
2497     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2498     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2499     MI.eraseFromParent();
2500     return Legalized;
2501   }
2502 
2503   return UnableToLegalize;
2504 }
2505 
2506 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2507 /// TargetReg, while preserving other bits in \p TargetReg.
2508 ///
2509 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2510 static Register buildBitFieldInsert(MachineIRBuilder &B,
2511                                     Register TargetReg, Register InsertReg,
2512                                     Register OffsetBits) {
2513   LLT TargetTy = B.getMRI()->getType(TargetReg);
2514   LLT InsertTy = B.getMRI()->getType(InsertReg);
2515   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2516   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2517 
2518   // Produce a bitmask of the value to insert
2519   auto EltMask = B.buildConstant(
2520     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2521                                    InsertTy.getSizeInBits()));
2522   // Shift it into position
2523   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2524   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2525 
2526   // Clear out the bits in the wide element
2527   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2528 
2529   // The value to insert has all zeros already, so stick it into the masked
2530   // wide element.
2531   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2532 }
2533 
2534 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2535 /// is increasing the element size, perform the indexing in the target element
2536 /// type, and use bit operations to insert at the element position. This is
2537 /// intended for architectures that can dynamically index the register file and
2538 /// want to force indexing in the native register size.
2539 LegalizerHelper::LegalizeResult
2540 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2541                                         LLT CastTy) {
2542   if (TypeIdx != 0)
2543     return UnableToLegalize;
2544 
2545   Register Dst = MI.getOperand(0).getReg();
2546   Register SrcVec = MI.getOperand(1).getReg();
2547   Register Val = MI.getOperand(2).getReg();
2548   Register Idx = MI.getOperand(3).getReg();
2549 
2550   LLT VecTy = MRI.getType(Dst);
2551   LLT IdxTy = MRI.getType(Idx);
2552 
2553   LLT VecEltTy = VecTy.getElementType();
2554   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2555   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2556   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2557 
2558   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2559   unsigned OldNumElts = VecTy.getNumElements();
2560 
2561   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2562   if (NewNumElts < OldNumElts) {
2563     if (NewEltSize % OldEltSize != 0)
2564       return UnableToLegalize;
2565 
2566     // This only depends on powers of 2 because we use bit tricks to figure out
2567     // the bit offset we need to shift to get the target element. A general
2568     // expansion could emit division/multiply.
2569     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2570       return UnableToLegalize;
2571 
2572     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2573     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2574 
2575     // Divide to get the index in the wider element type.
2576     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2577 
2578     Register ExtractedElt = CastVec;
2579     if (CastTy.isVector()) {
2580       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2581                                                           ScaledIdx).getReg(0);
2582     }
2583 
2584     // Compute the bit offset into the register of the target element.
2585     Register OffsetBits = getBitcastWiderVectorElementOffset(
2586       MIRBuilder, Idx, NewEltSize, OldEltSize);
2587 
2588     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2589                                                Val, OffsetBits);
2590     if (CastTy.isVector()) {
2591       InsertedElt = MIRBuilder.buildInsertVectorElement(
2592         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2593     }
2594 
2595     MIRBuilder.buildBitcast(Dst, InsertedElt);
2596     MI.eraseFromParent();
2597     return Legalized;
2598   }
2599 
2600   return UnableToLegalize;
2601 }
2602 
2603 LegalizerHelper::LegalizeResult
2604 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2605   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2606   Register DstReg = MI.getOperand(0).getReg();
2607   Register PtrReg = MI.getOperand(1).getReg();
2608   LLT DstTy = MRI.getType(DstReg);
2609   auto &MMO = **MI.memoperands_begin();
2610 
2611   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2612     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2613       // This load needs splitting into power of 2 sized loads.
2614       if (DstTy.isVector())
2615         return UnableToLegalize;
2616       if (isPowerOf2_32(DstTy.getSizeInBits()))
2617         return UnableToLegalize; // Don't know what we're being asked to do.
2618 
2619       // Our strategy here is to generate anyextending loads for the smaller
2620       // types up to next power-2 result type, and then combine the two larger
2621       // result values together, before truncating back down to the non-pow-2
2622       // type.
2623       // E.g. v1 = i24 load =>
2624       // v2 = i32 zextload (2 byte)
2625       // v3 = i32 load (1 byte)
2626       // v4 = i32 shl v3, 16
2627       // v5 = i32 or v4, v2
2628       // v1 = i24 trunc v5
2629       // By doing this we generate the correct truncate which should get
2630       // combined away as an artifact with a matching extend.
2631       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2632       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2633 
2634       MachineFunction &MF = MIRBuilder.getMF();
2635       MachineMemOperand *LargeMMO =
2636         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2637       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2638         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2639 
2640       LLT PtrTy = MRI.getType(PtrReg);
2641       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2642       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2643       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2644       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2645       auto LargeLoad = MIRBuilder.buildLoadInstr(
2646         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2647 
2648       auto OffsetCst = MIRBuilder.buildConstant(
2649         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2650       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2651       auto SmallPtr =
2652         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2653       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2654                                             *SmallMMO);
2655 
2656       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2657       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2658       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2659       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2660       MI.eraseFromParent();
2661       return Legalized;
2662     }
2663 
2664     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2665     MI.eraseFromParent();
2666     return Legalized;
2667   }
2668 
2669   if (DstTy.isScalar()) {
2670     Register TmpReg =
2671       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2672     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2673     switch (MI.getOpcode()) {
2674     default:
2675       llvm_unreachable("Unexpected opcode");
2676     case TargetOpcode::G_LOAD:
2677       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2678       break;
2679     case TargetOpcode::G_SEXTLOAD:
2680       MIRBuilder.buildSExt(DstReg, TmpReg);
2681       break;
2682     case TargetOpcode::G_ZEXTLOAD:
2683       MIRBuilder.buildZExt(DstReg, TmpReg);
2684       break;
2685     }
2686 
2687     MI.eraseFromParent();
2688     return Legalized;
2689   }
2690 
2691   return UnableToLegalize;
2692 }
2693 
2694 LegalizerHelper::LegalizeResult
2695 LegalizerHelper::lowerStore(MachineInstr &MI) {
2696   // Lower a non-power of 2 store into multiple pow-2 stores.
2697   // E.g. split an i24 store into an i16 store + i8 store.
2698   // We do this by first extending the stored value to the next largest power
2699   // of 2 type, and then using truncating stores to store the components.
2700   // By doing this, likewise with G_LOAD, generate an extend that can be
2701   // artifact-combined away instead of leaving behind extracts.
2702   Register SrcReg = MI.getOperand(0).getReg();
2703   Register PtrReg = MI.getOperand(1).getReg();
2704   LLT SrcTy = MRI.getType(SrcReg);
2705   MachineMemOperand &MMO = **MI.memoperands_begin();
2706   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2707     return UnableToLegalize;
2708   if (SrcTy.isVector())
2709     return UnableToLegalize;
2710   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2711     return UnableToLegalize; // Don't know what we're being asked to do.
2712 
2713   // Extend to the next pow-2.
2714   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2715   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2716 
2717   // Obtain the smaller value by shifting away the larger value.
2718   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2719   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2720   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2721   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2722 
2723   // Generate the PtrAdd and truncating stores.
2724   LLT PtrTy = MRI.getType(PtrReg);
2725   auto OffsetCst = MIRBuilder.buildConstant(
2726     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2727   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2728   auto SmallPtr =
2729     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2730 
2731   MachineFunction &MF = MIRBuilder.getMF();
2732   MachineMemOperand *LargeMMO =
2733     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2734   MachineMemOperand *SmallMMO =
2735     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2736   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2737   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2738   MI.eraseFromParent();
2739   return Legalized;
2740 }
2741 
2742 LegalizerHelper::LegalizeResult
2743 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2744   switch (MI.getOpcode()) {
2745   case TargetOpcode::G_LOAD: {
2746     if (TypeIdx != 0)
2747       return UnableToLegalize;
2748 
2749     Observer.changingInstr(MI);
2750     bitcastDst(MI, CastTy, 0);
2751     Observer.changedInstr(MI);
2752     return Legalized;
2753   }
2754   case TargetOpcode::G_STORE: {
2755     if (TypeIdx != 0)
2756       return UnableToLegalize;
2757 
2758     Observer.changingInstr(MI);
2759     bitcastSrc(MI, CastTy, 0);
2760     Observer.changedInstr(MI);
2761     return Legalized;
2762   }
2763   case TargetOpcode::G_SELECT: {
2764     if (TypeIdx != 0)
2765       return UnableToLegalize;
2766 
2767     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2768       LLVM_DEBUG(
2769           dbgs() << "bitcast action not implemented for vector select\n");
2770       return UnableToLegalize;
2771     }
2772 
2773     Observer.changingInstr(MI);
2774     bitcastSrc(MI, CastTy, 2);
2775     bitcastSrc(MI, CastTy, 3);
2776     bitcastDst(MI, CastTy, 0);
2777     Observer.changedInstr(MI);
2778     return Legalized;
2779   }
2780   case TargetOpcode::G_AND:
2781   case TargetOpcode::G_OR:
2782   case TargetOpcode::G_XOR: {
2783     Observer.changingInstr(MI);
2784     bitcastSrc(MI, CastTy, 1);
2785     bitcastSrc(MI, CastTy, 2);
2786     bitcastDst(MI, CastTy, 0);
2787     Observer.changedInstr(MI);
2788     return Legalized;
2789   }
2790   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2791     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2792   case TargetOpcode::G_INSERT_VECTOR_ELT:
2793     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2794   default:
2795     return UnableToLegalize;
2796   }
2797 }
2798 
2799 // Legalize an instruction by changing the opcode in place.
2800 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2801     Observer.changingInstr(MI);
2802     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2803     Observer.changedInstr(MI);
2804 }
2805 
2806 LegalizerHelper::LegalizeResult
2807 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2808   using namespace TargetOpcode;
2809 
2810   switch(MI.getOpcode()) {
2811   default:
2812     return UnableToLegalize;
2813   case TargetOpcode::G_BITCAST:
2814     return lowerBitcast(MI);
2815   case TargetOpcode::G_SREM:
2816   case TargetOpcode::G_UREM: {
2817     auto Quot =
2818         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2819                               {MI.getOperand(1), MI.getOperand(2)});
2820 
2821     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2822     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2823     MI.eraseFromParent();
2824     return Legalized;
2825   }
2826   case TargetOpcode::G_SADDO:
2827   case TargetOpcode::G_SSUBO:
2828     return lowerSADDO_SSUBO(MI);
2829   case TargetOpcode::G_SMULO:
2830   case TargetOpcode::G_UMULO: {
2831     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2832     // result.
2833     Register Res = MI.getOperand(0).getReg();
2834     Register Overflow = MI.getOperand(1).getReg();
2835     Register LHS = MI.getOperand(2).getReg();
2836     Register RHS = MI.getOperand(3).getReg();
2837 
2838     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2839                           ? TargetOpcode::G_SMULH
2840                           : TargetOpcode::G_UMULH;
2841 
2842     Observer.changingInstr(MI);
2843     const auto &TII = MIRBuilder.getTII();
2844     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2845     MI.RemoveOperand(1);
2846     Observer.changedInstr(MI);
2847 
2848     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2849 
2850     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2851     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2852 
2853     // For *signed* multiply, overflow is detected by checking:
2854     // (hi != (lo >> bitwidth-1))
2855     if (Opcode == TargetOpcode::G_SMULH) {
2856       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2857       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2858       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2859     } else {
2860       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2861     }
2862     return Legalized;
2863   }
2864   case TargetOpcode::G_FNEG: {
2865     // TODO: Handle vector types once we are able to
2866     // represent them.
2867     if (Ty.isVector())
2868       return UnableToLegalize;
2869     Register Res = MI.getOperand(0).getReg();
2870     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2871     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2872     if (!ZeroTy)
2873       return UnableToLegalize;
2874     ConstantFP &ZeroForNegation =
2875         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2876     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2877     Register SubByReg = MI.getOperand(1).getReg();
2878     Register ZeroReg = Zero.getReg(0);
2879     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2880     MI.eraseFromParent();
2881     return Legalized;
2882   }
2883   case TargetOpcode::G_FSUB: {
2884     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2885     // First, check if G_FNEG is marked as Lower. If so, we may
2886     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2887     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2888       return UnableToLegalize;
2889     Register Res = MI.getOperand(0).getReg();
2890     Register LHS = MI.getOperand(1).getReg();
2891     Register RHS = MI.getOperand(2).getReg();
2892     Register Neg = MRI.createGenericVirtualRegister(Ty);
2893     MIRBuilder.buildFNeg(Neg, RHS);
2894     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2895     MI.eraseFromParent();
2896     return Legalized;
2897   }
2898   case TargetOpcode::G_FMAD:
2899     return lowerFMad(MI);
2900   case TargetOpcode::G_FFLOOR:
2901     return lowerFFloor(MI);
2902   case TargetOpcode::G_INTRINSIC_ROUND:
2903     return lowerIntrinsicRound(MI);
2904   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2905     // Since round even is the assumed rounding mode for unconstrained FP
2906     // operations, rint and roundeven are the same operation.
2907     changeOpcode(MI, TargetOpcode::G_FRINT);
2908     return Legalized;
2909   }
2910   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2911     Register OldValRes = MI.getOperand(0).getReg();
2912     Register SuccessRes = MI.getOperand(1).getReg();
2913     Register Addr = MI.getOperand(2).getReg();
2914     Register CmpVal = MI.getOperand(3).getReg();
2915     Register NewVal = MI.getOperand(4).getReg();
2916     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2917                                   **MI.memoperands_begin());
2918     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2919     MI.eraseFromParent();
2920     return Legalized;
2921   }
2922   case TargetOpcode::G_LOAD:
2923   case TargetOpcode::G_SEXTLOAD:
2924   case TargetOpcode::G_ZEXTLOAD:
2925     return lowerLoad(MI);
2926   case TargetOpcode::G_STORE:
2927     return lowerStore(MI);
2928   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2929   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2930   case TargetOpcode::G_CTLZ:
2931   case TargetOpcode::G_CTTZ:
2932   case TargetOpcode::G_CTPOP:
2933     return lowerBitCount(MI, TypeIdx, Ty);
2934   case G_UADDO: {
2935     Register Res = MI.getOperand(0).getReg();
2936     Register CarryOut = MI.getOperand(1).getReg();
2937     Register LHS = MI.getOperand(2).getReg();
2938     Register RHS = MI.getOperand(3).getReg();
2939 
2940     MIRBuilder.buildAdd(Res, LHS, RHS);
2941     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2942 
2943     MI.eraseFromParent();
2944     return Legalized;
2945   }
2946   case G_UADDE: {
2947     Register Res = MI.getOperand(0).getReg();
2948     Register CarryOut = MI.getOperand(1).getReg();
2949     Register LHS = MI.getOperand(2).getReg();
2950     Register RHS = MI.getOperand(3).getReg();
2951     Register CarryIn = MI.getOperand(4).getReg();
2952     LLT Ty = MRI.getType(Res);
2953 
2954     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2955     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2956     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2957     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2958 
2959     MI.eraseFromParent();
2960     return Legalized;
2961   }
2962   case G_USUBO: {
2963     Register Res = MI.getOperand(0).getReg();
2964     Register BorrowOut = MI.getOperand(1).getReg();
2965     Register LHS = MI.getOperand(2).getReg();
2966     Register RHS = MI.getOperand(3).getReg();
2967 
2968     MIRBuilder.buildSub(Res, LHS, RHS);
2969     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2970 
2971     MI.eraseFromParent();
2972     return Legalized;
2973   }
2974   case G_USUBE: {
2975     Register Res = MI.getOperand(0).getReg();
2976     Register BorrowOut = MI.getOperand(1).getReg();
2977     Register LHS = MI.getOperand(2).getReg();
2978     Register RHS = MI.getOperand(3).getReg();
2979     Register BorrowIn = MI.getOperand(4).getReg();
2980     const LLT CondTy = MRI.getType(BorrowOut);
2981     const LLT Ty = MRI.getType(Res);
2982 
2983     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2984     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2985     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2986 
2987     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2988     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2989     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2990 
2991     MI.eraseFromParent();
2992     return Legalized;
2993   }
2994   case G_UITOFP:
2995     return lowerUITOFP(MI, TypeIdx, Ty);
2996   case G_SITOFP:
2997     return lowerSITOFP(MI, TypeIdx, Ty);
2998   case G_FPTOUI:
2999     return lowerFPTOUI(MI, TypeIdx, Ty);
3000   case G_FPTOSI:
3001     return lowerFPTOSI(MI);
3002   case G_FPTRUNC:
3003     return lowerFPTRUNC(MI, TypeIdx, Ty);
3004   case G_FPOWI:
3005     return lowerFPOWI(MI);
3006   case G_SMIN:
3007   case G_SMAX:
3008   case G_UMIN:
3009   case G_UMAX:
3010     return lowerMinMax(MI, TypeIdx, Ty);
3011   case G_FCOPYSIGN:
3012     return lowerFCopySign(MI, TypeIdx, Ty);
3013   case G_FMINNUM:
3014   case G_FMAXNUM:
3015     return lowerFMinNumMaxNum(MI);
3016   case G_MERGE_VALUES:
3017     return lowerMergeValues(MI);
3018   case G_UNMERGE_VALUES:
3019     return lowerUnmergeValues(MI);
3020   case TargetOpcode::G_SEXT_INREG: {
3021     assert(MI.getOperand(2).isImm() && "Expected immediate");
3022     int64_t SizeInBits = MI.getOperand(2).getImm();
3023 
3024     Register DstReg = MI.getOperand(0).getReg();
3025     Register SrcReg = MI.getOperand(1).getReg();
3026     LLT DstTy = MRI.getType(DstReg);
3027     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3028 
3029     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3030     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3031     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3032     MI.eraseFromParent();
3033     return Legalized;
3034   }
3035   case G_EXTRACT_VECTOR_ELT:
3036   case G_INSERT_VECTOR_ELT:
3037     return lowerExtractInsertVectorElt(MI);
3038   case G_SHUFFLE_VECTOR:
3039     return lowerShuffleVector(MI);
3040   case G_DYN_STACKALLOC:
3041     return lowerDynStackAlloc(MI);
3042   case G_EXTRACT:
3043     return lowerExtract(MI);
3044   case G_INSERT:
3045     return lowerInsert(MI);
3046   case G_BSWAP:
3047     return lowerBswap(MI);
3048   case G_BITREVERSE:
3049     return lowerBitreverse(MI);
3050   case G_READ_REGISTER:
3051   case G_WRITE_REGISTER:
3052     return lowerReadWriteRegister(MI);
3053   case G_UADDSAT:
3054   case G_USUBSAT: {
3055     // Try to make a reasonable guess about which lowering strategy to use. The
3056     // target can override this with custom lowering and calling the
3057     // implementation functions.
3058     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3059     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3060       return lowerAddSubSatToMinMax(MI);
3061     return lowerAddSubSatToAddoSubo(MI);
3062   }
3063   case G_SADDSAT:
3064   case G_SSUBSAT: {
3065     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3066 
3067     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3068     // since it's a shorter expansion. However, we would need to figure out the
3069     // preferred boolean type for the carry out for the query.
3070     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3071       return lowerAddSubSatToMinMax(MI);
3072     return lowerAddSubSatToAddoSubo(MI);
3073   }
3074   case G_SSHLSAT:
3075   case G_USHLSAT:
3076     return lowerShlSat(MI);
3077   }
3078 }
3079 
3080 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3081                                                   Align MinAlign) const {
3082   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3083   // datalayout for the preferred alignment. Also there should be a target hook
3084   // for this to allow targets to reduce the alignment and ignore the
3085   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3086   // the type.
3087   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3088 }
3089 
3090 MachineInstrBuilder
3091 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3092                                       MachinePointerInfo &PtrInfo) {
3093   MachineFunction &MF = MIRBuilder.getMF();
3094   const DataLayout &DL = MIRBuilder.getDataLayout();
3095   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3096 
3097   unsigned AddrSpace = DL.getAllocaAddrSpace();
3098   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3099 
3100   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3101   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3102 }
3103 
3104 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3105                                         LLT VecTy) {
3106   int64_t IdxVal;
3107   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3108     return IdxReg;
3109 
3110   LLT IdxTy = B.getMRI()->getType(IdxReg);
3111   unsigned NElts = VecTy.getNumElements();
3112   if (isPowerOf2_32(NElts)) {
3113     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3114     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3115   }
3116 
3117   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3118       .getReg(0);
3119 }
3120 
3121 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3122                                                   Register Index) {
3123   LLT EltTy = VecTy.getElementType();
3124 
3125   // Calculate the element offset and add it to the pointer.
3126   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3127   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3128          "Converting bits to bytes lost precision");
3129 
3130   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3131 
3132   LLT IdxTy = MRI.getType(Index);
3133   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3134                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3135 
3136   LLT PtrTy = MRI.getType(VecPtr);
3137   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3138 }
3139 
3140 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3141     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3142   Register DstReg = MI.getOperand(0).getReg();
3143   LLT DstTy = MRI.getType(DstReg);
3144   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3145 
3146   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3147 
3148   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3149   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3150 
3151   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3152   MI.eraseFromParent();
3153   return Legalized;
3154 }
3155 
3156 // Handle splitting vector operations which need to have the same number of
3157 // elements in each type index, but each type index may have a different element
3158 // type.
3159 //
3160 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3161 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3162 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3163 //
3164 // Also handles some irregular breakdown cases, e.g.
3165 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3166 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3167 //             s64 = G_SHL s64, s32
3168 LegalizerHelper::LegalizeResult
3169 LegalizerHelper::fewerElementsVectorMultiEltType(
3170   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3171   if (TypeIdx != 0)
3172     return UnableToLegalize;
3173 
3174   const LLT NarrowTy0 = NarrowTyArg;
3175   const unsigned NewNumElts =
3176       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3177 
3178   const Register DstReg = MI.getOperand(0).getReg();
3179   LLT DstTy = MRI.getType(DstReg);
3180   LLT LeftoverTy0;
3181 
3182   // All of the operands need to have the same number of elements, so if we can
3183   // determine a type breakdown for the result type, we can for all of the
3184   // source types.
3185   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3186   if (NumParts < 0)
3187     return UnableToLegalize;
3188 
3189   SmallVector<MachineInstrBuilder, 4> NewInsts;
3190 
3191   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3192   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3193 
3194   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3195     Register SrcReg = MI.getOperand(I).getReg();
3196     LLT SrcTyI = MRI.getType(SrcReg);
3197     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3198     LLT LeftoverTyI;
3199 
3200     // Split this operand into the requested typed registers, and any leftover
3201     // required to reproduce the original type.
3202     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3203                       LeftoverRegs))
3204       return UnableToLegalize;
3205 
3206     if (I == 1) {
3207       // For the first operand, create an instruction for each part and setup
3208       // the result.
3209       for (Register PartReg : PartRegs) {
3210         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3211         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3212                                .addDef(PartDstReg)
3213                                .addUse(PartReg));
3214         DstRegs.push_back(PartDstReg);
3215       }
3216 
3217       for (Register LeftoverReg : LeftoverRegs) {
3218         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3219         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3220                                .addDef(PartDstReg)
3221                                .addUse(LeftoverReg));
3222         LeftoverDstRegs.push_back(PartDstReg);
3223       }
3224     } else {
3225       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3226 
3227       // Add the newly created operand splits to the existing instructions. The
3228       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3229       // pieces.
3230       unsigned InstCount = 0;
3231       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3232         NewInsts[InstCount++].addUse(PartRegs[J]);
3233       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3234         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3235     }
3236 
3237     PartRegs.clear();
3238     LeftoverRegs.clear();
3239   }
3240 
3241   // Insert the newly built operations and rebuild the result register.
3242   for (auto &MIB : NewInsts)
3243     MIRBuilder.insertInstr(MIB);
3244 
3245   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3246 
3247   MI.eraseFromParent();
3248   return Legalized;
3249 }
3250 
3251 LegalizerHelper::LegalizeResult
3252 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3253                                           LLT NarrowTy) {
3254   if (TypeIdx != 0)
3255     return UnableToLegalize;
3256 
3257   Register DstReg = MI.getOperand(0).getReg();
3258   Register SrcReg = MI.getOperand(1).getReg();
3259   LLT DstTy = MRI.getType(DstReg);
3260   LLT SrcTy = MRI.getType(SrcReg);
3261 
3262   LLT NarrowTy0 = NarrowTy;
3263   LLT NarrowTy1;
3264   unsigned NumParts;
3265 
3266   if (NarrowTy.isVector()) {
3267     // Uneven breakdown not handled.
3268     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3269     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3270       return UnableToLegalize;
3271 
3272     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
3273   } else {
3274     NumParts = DstTy.getNumElements();
3275     NarrowTy1 = SrcTy.getElementType();
3276   }
3277 
3278   SmallVector<Register, 4> SrcRegs, DstRegs;
3279   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3280 
3281   for (unsigned I = 0; I < NumParts; ++I) {
3282     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3283     MachineInstr *NewInst =
3284         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3285 
3286     NewInst->setFlags(MI.getFlags());
3287     DstRegs.push_back(DstReg);
3288   }
3289 
3290   if (NarrowTy.isVector())
3291     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3292   else
3293     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3294 
3295   MI.eraseFromParent();
3296   return Legalized;
3297 }
3298 
3299 LegalizerHelper::LegalizeResult
3300 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3301                                         LLT NarrowTy) {
3302   Register DstReg = MI.getOperand(0).getReg();
3303   Register Src0Reg = MI.getOperand(2).getReg();
3304   LLT DstTy = MRI.getType(DstReg);
3305   LLT SrcTy = MRI.getType(Src0Reg);
3306 
3307   unsigned NumParts;
3308   LLT NarrowTy0, NarrowTy1;
3309 
3310   if (TypeIdx == 0) {
3311     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3312     unsigned OldElts = DstTy.getNumElements();
3313 
3314     NarrowTy0 = NarrowTy;
3315     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3316     NarrowTy1 = NarrowTy.isVector() ?
3317       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3318       SrcTy.getElementType();
3319 
3320   } else {
3321     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3322     unsigned OldElts = SrcTy.getNumElements();
3323 
3324     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3325       NarrowTy.getNumElements();
3326     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3327                             DstTy.getScalarSizeInBits());
3328     NarrowTy1 = NarrowTy;
3329   }
3330 
3331   // FIXME: Don't know how to handle the situation where the small vectors
3332   // aren't all the same size yet.
3333   if (NarrowTy1.isVector() &&
3334       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3335     return UnableToLegalize;
3336 
3337   CmpInst::Predicate Pred
3338     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3339 
3340   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3341   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3342   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3343 
3344   for (unsigned I = 0; I < NumParts; ++I) {
3345     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3346     DstRegs.push_back(DstReg);
3347 
3348     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3349       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3350     else {
3351       MachineInstr *NewCmp
3352         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3353       NewCmp->setFlags(MI.getFlags());
3354     }
3355   }
3356 
3357   if (NarrowTy1.isVector())
3358     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3359   else
3360     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3361 
3362   MI.eraseFromParent();
3363   return Legalized;
3364 }
3365 
3366 LegalizerHelper::LegalizeResult
3367 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3368                                            LLT NarrowTy) {
3369   Register DstReg = MI.getOperand(0).getReg();
3370   Register CondReg = MI.getOperand(1).getReg();
3371 
3372   unsigned NumParts = 0;
3373   LLT NarrowTy0, NarrowTy1;
3374 
3375   LLT DstTy = MRI.getType(DstReg);
3376   LLT CondTy = MRI.getType(CondReg);
3377   unsigned Size = DstTy.getSizeInBits();
3378 
3379   assert(TypeIdx == 0 || CondTy.isVector());
3380 
3381   if (TypeIdx == 0) {
3382     NarrowTy0 = NarrowTy;
3383     NarrowTy1 = CondTy;
3384 
3385     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3386     // FIXME: Don't know how to handle the situation where the small vectors
3387     // aren't all the same size yet.
3388     if (Size % NarrowSize != 0)
3389       return UnableToLegalize;
3390 
3391     NumParts = Size / NarrowSize;
3392 
3393     // Need to break down the condition type
3394     if (CondTy.isVector()) {
3395       if (CondTy.getNumElements() == NumParts)
3396         NarrowTy1 = CondTy.getElementType();
3397       else
3398         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3399                                 CondTy.getScalarSizeInBits());
3400     }
3401   } else {
3402     NumParts = CondTy.getNumElements();
3403     if (NarrowTy.isVector()) {
3404       // TODO: Handle uneven breakdown.
3405       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3406         return UnableToLegalize;
3407 
3408       return UnableToLegalize;
3409     } else {
3410       NarrowTy0 = DstTy.getElementType();
3411       NarrowTy1 = NarrowTy;
3412     }
3413   }
3414 
3415   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3416   if (CondTy.isVector())
3417     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3418 
3419   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3420   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3421 
3422   for (unsigned i = 0; i < NumParts; ++i) {
3423     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3424     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3425                            Src1Regs[i], Src2Regs[i]);
3426     DstRegs.push_back(DstReg);
3427   }
3428 
3429   if (NarrowTy0.isVector())
3430     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3431   else
3432     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3433 
3434   MI.eraseFromParent();
3435   return Legalized;
3436 }
3437 
3438 LegalizerHelper::LegalizeResult
3439 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3440                                         LLT NarrowTy) {
3441   const Register DstReg = MI.getOperand(0).getReg();
3442   LLT PhiTy = MRI.getType(DstReg);
3443   LLT LeftoverTy;
3444 
3445   // All of the operands need to have the same number of elements, so if we can
3446   // determine a type breakdown for the result type, we can for all of the
3447   // source types.
3448   int NumParts, NumLeftover;
3449   std::tie(NumParts, NumLeftover)
3450     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3451   if (NumParts < 0)
3452     return UnableToLegalize;
3453 
3454   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3455   SmallVector<MachineInstrBuilder, 4> NewInsts;
3456 
3457   const int TotalNumParts = NumParts + NumLeftover;
3458 
3459   // Insert the new phis in the result block first.
3460   for (int I = 0; I != TotalNumParts; ++I) {
3461     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3462     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3463     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3464                        .addDef(PartDstReg));
3465     if (I < NumParts)
3466       DstRegs.push_back(PartDstReg);
3467     else
3468       LeftoverDstRegs.push_back(PartDstReg);
3469   }
3470 
3471   MachineBasicBlock *MBB = MI.getParent();
3472   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3473   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3474 
3475   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3476 
3477   // Insert code to extract the incoming values in each predecessor block.
3478   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3479     PartRegs.clear();
3480     LeftoverRegs.clear();
3481 
3482     Register SrcReg = MI.getOperand(I).getReg();
3483     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3484     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3485 
3486     LLT Unused;
3487     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3488                       LeftoverRegs))
3489       return UnableToLegalize;
3490 
3491     // Add the newly created operand splits to the existing instructions. The
3492     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3493     // pieces.
3494     for (int J = 0; J != TotalNumParts; ++J) {
3495       MachineInstrBuilder MIB = NewInsts[J];
3496       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3497       MIB.addMBB(&OpMBB);
3498     }
3499   }
3500 
3501   MI.eraseFromParent();
3502   return Legalized;
3503 }
3504 
3505 LegalizerHelper::LegalizeResult
3506 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3507                                                   unsigned TypeIdx,
3508                                                   LLT NarrowTy) {
3509   if (TypeIdx != 1)
3510     return UnableToLegalize;
3511 
3512   const int NumDst = MI.getNumOperands() - 1;
3513   const Register SrcReg = MI.getOperand(NumDst).getReg();
3514   LLT SrcTy = MRI.getType(SrcReg);
3515 
3516   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3517 
3518   // TODO: Create sequence of extracts.
3519   if (DstTy == NarrowTy)
3520     return UnableToLegalize;
3521 
3522   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3523   if (DstTy == GCDTy) {
3524     // This would just be a copy of the same unmerge.
3525     // TODO: Create extracts, pad with undef and create intermediate merges.
3526     return UnableToLegalize;
3527   }
3528 
3529   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3530   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3531   const int PartsPerUnmerge = NumDst / NumUnmerge;
3532 
3533   for (int I = 0; I != NumUnmerge; ++I) {
3534     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3535 
3536     for (int J = 0; J != PartsPerUnmerge; ++J)
3537       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3538     MIB.addUse(Unmerge.getReg(I));
3539   }
3540 
3541   MI.eraseFromParent();
3542   return Legalized;
3543 }
3544 
3545 LegalizerHelper::LegalizeResult
3546 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3547                                                 unsigned TypeIdx,
3548                                                 LLT NarrowTy) {
3549   assert(TypeIdx == 0 && "not a vector type index");
3550   Register DstReg = MI.getOperand(0).getReg();
3551   LLT DstTy = MRI.getType(DstReg);
3552   LLT SrcTy = DstTy.getElementType();
3553 
3554   int DstNumElts = DstTy.getNumElements();
3555   int NarrowNumElts = NarrowTy.getNumElements();
3556   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3557   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3558 
3559   SmallVector<Register, 8> ConcatOps;
3560   SmallVector<Register, 8> SubBuildVector;
3561 
3562   Register UndefReg;
3563   if (WidenedDstTy != DstTy)
3564     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3565 
3566   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3567   // necessary.
3568   //
3569   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3570   //   -> <2 x s16>
3571   //
3572   // %4:_(s16) = G_IMPLICIT_DEF
3573   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3574   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3575   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3576   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3577   for (int I = 0; I != NumConcat; ++I) {
3578     for (int J = 0; J != NarrowNumElts; ++J) {
3579       int SrcIdx = NarrowNumElts * I + J;
3580 
3581       if (SrcIdx < DstNumElts) {
3582         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3583         SubBuildVector.push_back(SrcReg);
3584       } else
3585         SubBuildVector.push_back(UndefReg);
3586     }
3587 
3588     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3589     ConcatOps.push_back(BuildVec.getReg(0));
3590     SubBuildVector.clear();
3591   }
3592 
3593   if (DstTy == WidenedDstTy)
3594     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3595   else {
3596     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3597     MIRBuilder.buildExtract(DstReg, Concat, 0);
3598   }
3599 
3600   MI.eraseFromParent();
3601   return Legalized;
3602 }
3603 
3604 LegalizerHelper::LegalizeResult
3605 LegalizerHelper::fewerElementsVectorExtractVectorElt(MachineInstr &MI,
3606                                                      unsigned TypeIdx,
3607                                                      LLT NarrowVecTy) {
3608   assert(TypeIdx == 1 && "not a vector type index");
3609 
3610   // TODO: Handle total scalarization case.
3611   if (!NarrowVecTy.isVector())
3612     return UnableToLegalize;
3613 
3614   Register DstReg = MI.getOperand(0).getReg();
3615   Register SrcVec = MI.getOperand(1).getReg();
3616   Register Idx = MI.getOperand(2).getReg();
3617   LLT VecTy = MRI.getType(SrcVec);
3618 
3619   // If the index is a constant, we can really break this down as you would
3620   // expect, and index into the target size pieces.
3621   int64_t IdxVal;
3622   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3623     // Avoid out of bounds indexing the pieces.
3624     if (IdxVal >= VecTy.getNumElements()) {
3625       MIRBuilder.buildUndef(DstReg);
3626       MI.eraseFromParent();
3627       return Legalized;
3628     }
3629 
3630     SmallVector<Register, 8> VecParts;
3631     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3632 
3633     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3634     buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3635                         TargetOpcode::G_ANYEXT);
3636 
3637     unsigned NewNumElts = NarrowVecTy.getNumElements();
3638 
3639     LLT IdxTy = MRI.getType(Idx);
3640     int64_t PartIdx = IdxVal / NewNumElts;
3641     auto NewIdx =
3642         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3643 
3644     MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3645     MI.eraseFromParent();
3646     return Legalized;
3647   }
3648 
3649   // With a variable index, we can't perform the extract in a smaller type, so
3650   // we're forced to expand this.
3651   //
3652   // TODO: We could emit a chain of compare/select to figure out which piece to
3653   // index.
3654   return lowerExtractInsertVectorElt(MI);
3655 }
3656 
3657 LegalizerHelper::LegalizeResult
3658 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3659                                       LLT NarrowTy) {
3660   // FIXME: Don't know how to handle secondary types yet.
3661   if (TypeIdx != 0)
3662     return UnableToLegalize;
3663 
3664   MachineMemOperand *MMO = *MI.memoperands_begin();
3665 
3666   // This implementation doesn't work for atomics. Give up instead of doing
3667   // something invalid.
3668   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3669       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3670     return UnableToLegalize;
3671 
3672   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3673   Register ValReg = MI.getOperand(0).getReg();
3674   Register AddrReg = MI.getOperand(1).getReg();
3675   LLT ValTy = MRI.getType(ValReg);
3676 
3677   // FIXME: Do we need a distinct NarrowMemory legalize action?
3678   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3679     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3680     return UnableToLegalize;
3681   }
3682 
3683   int NumParts = -1;
3684   int NumLeftover = -1;
3685   LLT LeftoverTy;
3686   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3687   if (IsLoad) {
3688     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3689   } else {
3690     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3691                      NarrowLeftoverRegs)) {
3692       NumParts = NarrowRegs.size();
3693       NumLeftover = NarrowLeftoverRegs.size();
3694     }
3695   }
3696 
3697   if (NumParts == -1)
3698     return UnableToLegalize;
3699 
3700   LLT PtrTy = MRI.getType(AddrReg);
3701   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3702 
3703   unsigned TotalSize = ValTy.getSizeInBits();
3704 
3705   // Split the load/store into PartTy sized pieces starting at Offset. If this
3706   // is a load, return the new registers in ValRegs. For a store, each elements
3707   // of ValRegs should be PartTy. Returns the next offset that needs to be
3708   // handled.
3709   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3710                              unsigned Offset) -> unsigned {
3711     MachineFunction &MF = MIRBuilder.getMF();
3712     unsigned PartSize = PartTy.getSizeInBits();
3713     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3714          Offset += PartSize, ++Idx) {
3715       unsigned ByteSize = PartSize / 8;
3716       unsigned ByteOffset = Offset / 8;
3717       Register NewAddrReg;
3718 
3719       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3720 
3721       MachineMemOperand *NewMMO =
3722         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3723 
3724       if (IsLoad) {
3725         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3726         ValRegs.push_back(Dst);
3727         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3728       } else {
3729         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3730       }
3731     }
3732 
3733     return Offset;
3734   };
3735 
3736   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3737 
3738   // Handle the rest of the register if this isn't an even type breakdown.
3739   if (LeftoverTy.isValid())
3740     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3741 
3742   if (IsLoad) {
3743     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3744                 LeftoverTy, NarrowLeftoverRegs);
3745   }
3746 
3747   MI.eraseFromParent();
3748   return Legalized;
3749 }
3750 
3751 LegalizerHelper::LegalizeResult
3752 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3753                                       LLT NarrowTy) {
3754   assert(TypeIdx == 0 && "only one type index expected");
3755 
3756   const unsigned Opc = MI.getOpcode();
3757   const int NumOps = MI.getNumOperands() - 1;
3758   const Register DstReg = MI.getOperand(0).getReg();
3759   const unsigned Flags = MI.getFlags();
3760   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3761   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3762 
3763   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3764 
3765   // First of all check whether we are narrowing (changing the element type)
3766   // or reducing the vector elements
3767   const LLT DstTy = MRI.getType(DstReg);
3768   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3769 
3770   SmallVector<Register, 8> ExtractedRegs[3];
3771   SmallVector<Register, 8> Parts;
3772 
3773   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3774 
3775   // Break down all the sources into NarrowTy pieces we can operate on. This may
3776   // involve creating merges to a wider type, padded with undef.
3777   for (int I = 0; I != NumOps; ++I) {
3778     Register SrcReg = MI.getOperand(I + 1).getReg();
3779     LLT SrcTy = MRI.getType(SrcReg);
3780 
3781     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3782     // For fewerElements, this is a smaller vector with the same element type.
3783     LLT OpNarrowTy;
3784     if (IsNarrow) {
3785       OpNarrowTy = NarrowScalarTy;
3786 
3787       // In case of narrowing, we need to cast vectors to scalars for this to
3788       // work properly
3789       // FIXME: Can we do without the bitcast here if we're narrowing?
3790       if (SrcTy.isVector()) {
3791         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3792         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3793       }
3794     } else {
3795       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3796     }
3797 
3798     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3799 
3800     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3801     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3802                         TargetOpcode::G_ANYEXT);
3803   }
3804 
3805   SmallVector<Register, 8> ResultRegs;
3806 
3807   // Input operands for each sub-instruction.
3808   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3809 
3810   int NumParts = ExtractedRegs[0].size();
3811   const unsigned DstSize = DstTy.getSizeInBits();
3812   const LLT DstScalarTy = LLT::scalar(DstSize);
3813 
3814   // Narrowing needs to use scalar types
3815   LLT DstLCMTy, NarrowDstTy;
3816   if (IsNarrow) {
3817     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3818     NarrowDstTy = NarrowScalarTy;
3819   } else {
3820     DstLCMTy = getLCMType(DstTy, NarrowTy);
3821     NarrowDstTy = NarrowTy;
3822   }
3823 
3824   // We widened the source registers to satisfy merge/unmerge size
3825   // constraints. We'll have some extra fully undef parts.
3826   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3827 
3828   for (int I = 0; I != NumRealParts; ++I) {
3829     // Emit this instruction on each of the split pieces.
3830     for (int J = 0; J != NumOps; ++J)
3831       InputRegs[J] = ExtractedRegs[J][I];
3832 
3833     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3834     ResultRegs.push_back(Inst.getReg(0));
3835   }
3836 
3837   // Fill out the widened result with undef instead of creating instructions
3838   // with undef inputs.
3839   int NumUndefParts = NumParts - NumRealParts;
3840   if (NumUndefParts != 0)
3841     ResultRegs.append(NumUndefParts,
3842                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3843 
3844   // Extract the possibly padded result. Use a scratch register if we need to do
3845   // a final bitcast, otherwise use the original result register.
3846   Register MergeDstReg;
3847   if (IsNarrow && DstTy.isVector())
3848     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3849   else
3850     MergeDstReg = DstReg;
3851 
3852   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3853 
3854   // Recast to vector if we narrowed a vector
3855   if (IsNarrow && DstTy.isVector())
3856     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3857 
3858   MI.eraseFromParent();
3859   return Legalized;
3860 }
3861 
3862 LegalizerHelper::LegalizeResult
3863 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3864                                               LLT NarrowTy) {
3865   Register DstReg = MI.getOperand(0).getReg();
3866   Register SrcReg = MI.getOperand(1).getReg();
3867   int64_t Imm = MI.getOperand(2).getImm();
3868 
3869   LLT DstTy = MRI.getType(DstReg);
3870 
3871   SmallVector<Register, 8> Parts;
3872   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3873   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3874 
3875   for (Register &R : Parts)
3876     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3877 
3878   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3879 
3880   MI.eraseFromParent();
3881   return Legalized;
3882 }
3883 
3884 LegalizerHelper::LegalizeResult
3885 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3886                                      LLT NarrowTy) {
3887   using namespace TargetOpcode;
3888 
3889   switch (MI.getOpcode()) {
3890   case G_IMPLICIT_DEF:
3891     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3892   case G_TRUNC:
3893   case G_AND:
3894   case G_OR:
3895   case G_XOR:
3896   case G_ADD:
3897   case G_SUB:
3898   case G_MUL:
3899   case G_PTR_ADD:
3900   case G_SMULH:
3901   case G_UMULH:
3902   case G_FADD:
3903   case G_FMUL:
3904   case G_FSUB:
3905   case G_FNEG:
3906   case G_FABS:
3907   case G_FCANONICALIZE:
3908   case G_FDIV:
3909   case G_FREM:
3910   case G_FMA:
3911   case G_FMAD:
3912   case G_FPOW:
3913   case G_FEXP:
3914   case G_FEXP2:
3915   case G_FLOG:
3916   case G_FLOG2:
3917   case G_FLOG10:
3918   case G_FNEARBYINT:
3919   case G_FCEIL:
3920   case G_FFLOOR:
3921   case G_FRINT:
3922   case G_INTRINSIC_ROUND:
3923   case G_INTRINSIC_ROUNDEVEN:
3924   case G_INTRINSIC_TRUNC:
3925   case G_FCOS:
3926   case G_FSIN:
3927   case G_FSQRT:
3928   case G_BSWAP:
3929   case G_BITREVERSE:
3930   case G_SDIV:
3931   case G_UDIV:
3932   case G_SREM:
3933   case G_UREM:
3934   case G_SMIN:
3935   case G_SMAX:
3936   case G_UMIN:
3937   case G_UMAX:
3938   case G_FMINNUM:
3939   case G_FMAXNUM:
3940   case G_FMINNUM_IEEE:
3941   case G_FMAXNUM_IEEE:
3942   case G_FMINIMUM:
3943   case G_FMAXIMUM:
3944   case G_FSHL:
3945   case G_FSHR:
3946   case G_FREEZE:
3947   case G_SADDSAT:
3948   case G_SSUBSAT:
3949   case G_UADDSAT:
3950   case G_USUBSAT:
3951     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3952   case G_SHL:
3953   case G_LSHR:
3954   case G_ASHR:
3955   case G_SSHLSAT:
3956   case G_USHLSAT:
3957   case G_CTLZ:
3958   case G_CTLZ_ZERO_UNDEF:
3959   case G_CTTZ:
3960   case G_CTTZ_ZERO_UNDEF:
3961   case G_CTPOP:
3962   case G_FCOPYSIGN:
3963     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3964   case G_ZEXT:
3965   case G_SEXT:
3966   case G_ANYEXT:
3967   case G_FPEXT:
3968   case G_FPTRUNC:
3969   case G_SITOFP:
3970   case G_UITOFP:
3971   case G_FPTOSI:
3972   case G_FPTOUI:
3973   case G_INTTOPTR:
3974   case G_PTRTOINT:
3975   case G_ADDRSPACE_CAST:
3976     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3977   case G_ICMP:
3978   case G_FCMP:
3979     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3980   case G_SELECT:
3981     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3982   case G_PHI:
3983     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3984   case G_UNMERGE_VALUES:
3985     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3986   case G_BUILD_VECTOR:
3987     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3988   case G_EXTRACT_VECTOR_ELT:
3989     return fewerElementsVectorExtractVectorElt(MI, TypeIdx, NarrowTy);
3990   case G_LOAD:
3991   case G_STORE:
3992     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3993   case G_SEXT_INREG:
3994     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3995   default:
3996     return UnableToLegalize;
3997   }
3998 }
3999 
4000 LegalizerHelper::LegalizeResult
4001 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4002                                              const LLT HalfTy, const LLT AmtTy) {
4003 
4004   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4005   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4006   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4007 
4008   if (Amt.isNullValue()) {
4009     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4010     MI.eraseFromParent();
4011     return Legalized;
4012   }
4013 
4014   LLT NVT = HalfTy;
4015   unsigned NVTBits = HalfTy.getSizeInBits();
4016   unsigned VTBits = 2 * NVTBits;
4017 
4018   SrcOp Lo(Register(0)), Hi(Register(0));
4019   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4020     if (Amt.ugt(VTBits)) {
4021       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4022     } else if (Amt.ugt(NVTBits)) {
4023       Lo = MIRBuilder.buildConstant(NVT, 0);
4024       Hi = MIRBuilder.buildShl(NVT, InL,
4025                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4026     } else if (Amt == NVTBits) {
4027       Lo = MIRBuilder.buildConstant(NVT, 0);
4028       Hi = InL;
4029     } else {
4030       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4031       auto OrLHS =
4032           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4033       auto OrRHS = MIRBuilder.buildLShr(
4034           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4035       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4036     }
4037   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4038     if (Amt.ugt(VTBits)) {
4039       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4040     } else if (Amt.ugt(NVTBits)) {
4041       Lo = MIRBuilder.buildLShr(NVT, InH,
4042                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4043       Hi = MIRBuilder.buildConstant(NVT, 0);
4044     } else if (Amt == NVTBits) {
4045       Lo = InH;
4046       Hi = MIRBuilder.buildConstant(NVT, 0);
4047     } else {
4048       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4049 
4050       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4051       auto OrRHS = MIRBuilder.buildShl(
4052           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4053 
4054       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4055       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4056     }
4057   } else {
4058     if (Amt.ugt(VTBits)) {
4059       Hi = Lo = MIRBuilder.buildAShr(
4060           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4061     } else if (Amt.ugt(NVTBits)) {
4062       Lo = MIRBuilder.buildAShr(NVT, InH,
4063                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4064       Hi = MIRBuilder.buildAShr(NVT, InH,
4065                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4066     } else if (Amt == NVTBits) {
4067       Lo = InH;
4068       Hi = MIRBuilder.buildAShr(NVT, InH,
4069                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4070     } else {
4071       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4072 
4073       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4074       auto OrRHS = MIRBuilder.buildShl(
4075           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4076 
4077       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4078       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4079     }
4080   }
4081 
4082   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4083   MI.eraseFromParent();
4084 
4085   return Legalized;
4086 }
4087 
4088 // TODO: Optimize if constant shift amount.
4089 LegalizerHelper::LegalizeResult
4090 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4091                                    LLT RequestedTy) {
4092   if (TypeIdx == 1) {
4093     Observer.changingInstr(MI);
4094     narrowScalarSrc(MI, RequestedTy, 2);
4095     Observer.changedInstr(MI);
4096     return Legalized;
4097   }
4098 
4099   Register DstReg = MI.getOperand(0).getReg();
4100   LLT DstTy = MRI.getType(DstReg);
4101   if (DstTy.isVector())
4102     return UnableToLegalize;
4103 
4104   Register Amt = MI.getOperand(2).getReg();
4105   LLT ShiftAmtTy = MRI.getType(Amt);
4106   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4107   if (DstEltSize % 2 != 0)
4108     return UnableToLegalize;
4109 
4110   // Ignore the input type. We can only go to exactly half the size of the
4111   // input. If that isn't small enough, the resulting pieces will be further
4112   // legalized.
4113   const unsigned NewBitSize = DstEltSize / 2;
4114   const LLT HalfTy = LLT::scalar(NewBitSize);
4115   const LLT CondTy = LLT::scalar(1);
4116 
4117   if (const MachineInstr *KShiftAmt =
4118           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4119     return narrowScalarShiftByConstant(
4120         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4121   }
4122 
4123   // TODO: Expand with known bits.
4124 
4125   // Handle the fully general expansion by an unknown amount.
4126   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4127 
4128   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4129   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4130   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4131 
4132   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4133   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4134 
4135   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4136   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4137   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4138 
4139   Register ResultRegs[2];
4140   switch (MI.getOpcode()) {
4141   case TargetOpcode::G_SHL: {
4142     // Short: ShAmt < NewBitSize
4143     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4144 
4145     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4146     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4147     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4148 
4149     // Long: ShAmt >= NewBitSize
4150     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4151     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4152 
4153     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4154     auto Hi = MIRBuilder.buildSelect(
4155         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4156 
4157     ResultRegs[0] = Lo.getReg(0);
4158     ResultRegs[1] = Hi.getReg(0);
4159     break;
4160   }
4161   case TargetOpcode::G_LSHR:
4162   case TargetOpcode::G_ASHR: {
4163     // Short: ShAmt < NewBitSize
4164     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4165 
4166     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4167     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4168     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4169 
4170     // Long: ShAmt >= NewBitSize
4171     MachineInstrBuilder HiL;
4172     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4173       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4174     } else {
4175       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4176       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4177     }
4178     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4179                                      {InH, AmtExcess});     // Lo from Hi part.
4180 
4181     auto Lo = MIRBuilder.buildSelect(
4182         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4183 
4184     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4185 
4186     ResultRegs[0] = Lo.getReg(0);
4187     ResultRegs[1] = Hi.getReg(0);
4188     break;
4189   }
4190   default:
4191     llvm_unreachable("not a shift");
4192   }
4193 
4194   MIRBuilder.buildMerge(DstReg, ResultRegs);
4195   MI.eraseFromParent();
4196   return Legalized;
4197 }
4198 
4199 LegalizerHelper::LegalizeResult
4200 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4201                                        LLT MoreTy) {
4202   assert(TypeIdx == 0 && "Expecting only Idx 0");
4203 
4204   Observer.changingInstr(MI);
4205   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4206     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4207     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4208     moreElementsVectorSrc(MI, MoreTy, I);
4209   }
4210 
4211   MachineBasicBlock &MBB = *MI.getParent();
4212   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4213   moreElementsVectorDst(MI, MoreTy, 0);
4214   Observer.changedInstr(MI);
4215   return Legalized;
4216 }
4217 
4218 LegalizerHelper::LegalizeResult
4219 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4220                                     LLT MoreTy) {
4221   unsigned Opc = MI.getOpcode();
4222   switch (Opc) {
4223   case TargetOpcode::G_IMPLICIT_DEF:
4224   case TargetOpcode::G_LOAD: {
4225     if (TypeIdx != 0)
4226       return UnableToLegalize;
4227     Observer.changingInstr(MI);
4228     moreElementsVectorDst(MI, MoreTy, 0);
4229     Observer.changedInstr(MI);
4230     return Legalized;
4231   }
4232   case TargetOpcode::G_STORE:
4233     if (TypeIdx != 0)
4234       return UnableToLegalize;
4235     Observer.changingInstr(MI);
4236     moreElementsVectorSrc(MI, MoreTy, 0);
4237     Observer.changedInstr(MI);
4238     return Legalized;
4239   case TargetOpcode::G_AND:
4240   case TargetOpcode::G_OR:
4241   case TargetOpcode::G_XOR:
4242   case TargetOpcode::G_SMIN:
4243   case TargetOpcode::G_SMAX:
4244   case TargetOpcode::G_UMIN:
4245   case TargetOpcode::G_UMAX:
4246   case TargetOpcode::G_FMINNUM:
4247   case TargetOpcode::G_FMAXNUM:
4248   case TargetOpcode::G_FMINNUM_IEEE:
4249   case TargetOpcode::G_FMAXNUM_IEEE:
4250   case TargetOpcode::G_FMINIMUM:
4251   case TargetOpcode::G_FMAXIMUM: {
4252     Observer.changingInstr(MI);
4253     moreElementsVectorSrc(MI, MoreTy, 1);
4254     moreElementsVectorSrc(MI, MoreTy, 2);
4255     moreElementsVectorDst(MI, MoreTy, 0);
4256     Observer.changedInstr(MI);
4257     return Legalized;
4258   }
4259   case TargetOpcode::G_EXTRACT:
4260     if (TypeIdx != 1)
4261       return UnableToLegalize;
4262     Observer.changingInstr(MI);
4263     moreElementsVectorSrc(MI, MoreTy, 1);
4264     Observer.changedInstr(MI);
4265     return Legalized;
4266   case TargetOpcode::G_INSERT:
4267   case TargetOpcode::G_FREEZE:
4268     if (TypeIdx != 0)
4269       return UnableToLegalize;
4270     Observer.changingInstr(MI);
4271     moreElementsVectorSrc(MI, MoreTy, 1);
4272     moreElementsVectorDst(MI, MoreTy, 0);
4273     Observer.changedInstr(MI);
4274     return Legalized;
4275   case TargetOpcode::G_SELECT:
4276     if (TypeIdx != 0)
4277       return UnableToLegalize;
4278     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4279       return UnableToLegalize;
4280 
4281     Observer.changingInstr(MI);
4282     moreElementsVectorSrc(MI, MoreTy, 2);
4283     moreElementsVectorSrc(MI, MoreTy, 3);
4284     moreElementsVectorDst(MI, MoreTy, 0);
4285     Observer.changedInstr(MI);
4286     return Legalized;
4287   case TargetOpcode::G_UNMERGE_VALUES: {
4288     if (TypeIdx != 1)
4289       return UnableToLegalize;
4290 
4291     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4292     int NumDst = MI.getNumOperands() - 1;
4293     moreElementsVectorSrc(MI, MoreTy, NumDst);
4294 
4295     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4296     for (int I = 0; I != NumDst; ++I)
4297       MIB.addDef(MI.getOperand(I).getReg());
4298 
4299     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4300     for (int I = NumDst; I != NewNumDst; ++I)
4301       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4302 
4303     MIB.addUse(MI.getOperand(NumDst).getReg());
4304     MI.eraseFromParent();
4305     return Legalized;
4306   }
4307   case TargetOpcode::G_PHI:
4308     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4309   default:
4310     return UnableToLegalize;
4311   }
4312 }
4313 
4314 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4315                                         ArrayRef<Register> Src1Regs,
4316                                         ArrayRef<Register> Src2Regs,
4317                                         LLT NarrowTy) {
4318   MachineIRBuilder &B = MIRBuilder;
4319   unsigned SrcParts = Src1Regs.size();
4320   unsigned DstParts = DstRegs.size();
4321 
4322   unsigned DstIdx = 0; // Low bits of the result.
4323   Register FactorSum =
4324       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4325   DstRegs[DstIdx] = FactorSum;
4326 
4327   unsigned CarrySumPrevDstIdx;
4328   SmallVector<Register, 4> Factors;
4329 
4330   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4331     // Collect low parts of muls for DstIdx.
4332     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4333          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4334       MachineInstrBuilder Mul =
4335           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4336       Factors.push_back(Mul.getReg(0));
4337     }
4338     // Collect high parts of muls from previous DstIdx.
4339     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4340          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4341       MachineInstrBuilder Umulh =
4342           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4343       Factors.push_back(Umulh.getReg(0));
4344     }
4345     // Add CarrySum from additions calculated for previous DstIdx.
4346     if (DstIdx != 1) {
4347       Factors.push_back(CarrySumPrevDstIdx);
4348     }
4349 
4350     Register CarrySum;
4351     // Add all factors and accumulate all carries into CarrySum.
4352     if (DstIdx != DstParts - 1) {
4353       MachineInstrBuilder Uaddo =
4354           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4355       FactorSum = Uaddo.getReg(0);
4356       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4357       for (unsigned i = 2; i < Factors.size(); ++i) {
4358         MachineInstrBuilder Uaddo =
4359             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4360         FactorSum = Uaddo.getReg(0);
4361         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4362         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4363       }
4364     } else {
4365       // Since value for the next index is not calculated, neither is CarrySum.
4366       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4367       for (unsigned i = 2; i < Factors.size(); ++i)
4368         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4369     }
4370 
4371     CarrySumPrevDstIdx = CarrySum;
4372     DstRegs[DstIdx] = FactorSum;
4373     Factors.clear();
4374   }
4375 }
4376 
4377 LegalizerHelper::LegalizeResult
4378 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4379   Register DstReg = MI.getOperand(0).getReg();
4380   Register Src1 = MI.getOperand(1).getReg();
4381   Register Src2 = MI.getOperand(2).getReg();
4382 
4383   LLT Ty = MRI.getType(DstReg);
4384   if (Ty.isVector())
4385     return UnableToLegalize;
4386 
4387   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4388   unsigned DstSize = Ty.getSizeInBits();
4389   unsigned NarrowSize = NarrowTy.getSizeInBits();
4390   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4391     return UnableToLegalize;
4392 
4393   unsigned NumDstParts = DstSize / NarrowSize;
4394   unsigned NumSrcParts = SrcSize / NarrowSize;
4395   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4396   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4397 
4398   SmallVector<Register, 2> Src1Parts, Src2Parts;
4399   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4400   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4401   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4402   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4403 
4404   // Take only high half of registers if this is high mul.
4405   ArrayRef<Register> DstRegs(
4406       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4407   MIRBuilder.buildMerge(DstReg, DstRegs);
4408   MI.eraseFromParent();
4409   return Legalized;
4410 }
4411 
4412 LegalizerHelper::LegalizeResult
4413 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4414                                      LLT NarrowTy) {
4415   if (TypeIdx != 1)
4416     return UnableToLegalize;
4417 
4418   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4419 
4420   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4421   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4422   // NarrowSize.
4423   if (SizeOp1 % NarrowSize != 0)
4424     return UnableToLegalize;
4425   int NumParts = SizeOp1 / NarrowSize;
4426 
4427   SmallVector<Register, 2> SrcRegs, DstRegs;
4428   SmallVector<uint64_t, 2> Indexes;
4429   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4430 
4431   Register OpReg = MI.getOperand(0).getReg();
4432   uint64_t OpStart = MI.getOperand(2).getImm();
4433   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4434   for (int i = 0; i < NumParts; ++i) {
4435     unsigned SrcStart = i * NarrowSize;
4436 
4437     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4438       // No part of the extract uses this subregister, ignore it.
4439       continue;
4440     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4441       // The entire subregister is extracted, forward the value.
4442       DstRegs.push_back(SrcRegs[i]);
4443       continue;
4444     }
4445 
4446     // OpSegStart is where this destination segment would start in OpReg if it
4447     // extended infinitely in both directions.
4448     int64_t ExtractOffset;
4449     uint64_t SegSize;
4450     if (OpStart < SrcStart) {
4451       ExtractOffset = 0;
4452       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4453     } else {
4454       ExtractOffset = OpStart - SrcStart;
4455       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4456     }
4457 
4458     Register SegReg = SrcRegs[i];
4459     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4460       // A genuine extract is needed.
4461       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4462       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4463     }
4464 
4465     DstRegs.push_back(SegReg);
4466   }
4467 
4468   Register DstReg = MI.getOperand(0).getReg();
4469   if (MRI.getType(DstReg).isVector())
4470     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4471   else if (DstRegs.size() > 1)
4472     MIRBuilder.buildMerge(DstReg, DstRegs);
4473   else
4474     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4475   MI.eraseFromParent();
4476   return Legalized;
4477 }
4478 
4479 LegalizerHelper::LegalizeResult
4480 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4481                                     LLT NarrowTy) {
4482   // FIXME: Don't know how to handle secondary types yet.
4483   if (TypeIdx != 0)
4484     return UnableToLegalize;
4485 
4486   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4487   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4488 
4489   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4490   // NarrowSize.
4491   if (SizeOp0 % NarrowSize != 0)
4492     return UnableToLegalize;
4493 
4494   int NumParts = SizeOp0 / NarrowSize;
4495 
4496   SmallVector<Register, 2> SrcRegs, DstRegs;
4497   SmallVector<uint64_t, 2> Indexes;
4498   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4499 
4500   Register OpReg = MI.getOperand(2).getReg();
4501   uint64_t OpStart = MI.getOperand(3).getImm();
4502   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4503   for (int i = 0; i < NumParts; ++i) {
4504     unsigned DstStart = i * NarrowSize;
4505 
4506     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4507       // No part of the insert affects this subregister, forward the original.
4508       DstRegs.push_back(SrcRegs[i]);
4509       continue;
4510     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4511       // The entire subregister is defined by this insert, forward the new
4512       // value.
4513       DstRegs.push_back(OpReg);
4514       continue;
4515     }
4516 
4517     // OpSegStart is where this destination segment would start in OpReg if it
4518     // extended infinitely in both directions.
4519     int64_t ExtractOffset, InsertOffset;
4520     uint64_t SegSize;
4521     if (OpStart < DstStart) {
4522       InsertOffset = 0;
4523       ExtractOffset = DstStart - OpStart;
4524       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4525     } else {
4526       InsertOffset = OpStart - DstStart;
4527       ExtractOffset = 0;
4528       SegSize =
4529         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4530     }
4531 
4532     Register SegReg = OpReg;
4533     if (ExtractOffset != 0 || SegSize != OpSize) {
4534       // A genuine extract is needed.
4535       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4536       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4537     }
4538 
4539     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4540     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4541     DstRegs.push_back(DstReg);
4542   }
4543 
4544   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4545   Register DstReg = MI.getOperand(0).getReg();
4546   if(MRI.getType(DstReg).isVector())
4547     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4548   else
4549     MIRBuilder.buildMerge(DstReg, DstRegs);
4550   MI.eraseFromParent();
4551   return Legalized;
4552 }
4553 
4554 LegalizerHelper::LegalizeResult
4555 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4556                                    LLT NarrowTy) {
4557   Register DstReg = MI.getOperand(0).getReg();
4558   LLT DstTy = MRI.getType(DstReg);
4559 
4560   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4561 
4562   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4563   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4564   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4565   LLT LeftoverTy;
4566   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4567                     Src0Regs, Src0LeftoverRegs))
4568     return UnableToLegalize;
4569 
4570   LLT Unused;
4571   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4572                     Src1Regs, Src1LeftoverRegs))
4573     llvm_unreachable("inconsistent extractParts result");
4574 
4575   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4576     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4577                                         {Src0Regs[I], Src1Regs[I]});
4578     DstRegs.push_back(Inst.getReg(0));
4579   }
4580 
4581   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4582     auto Inst = MIRBuilder.buildInstr(
4583       MI.getOpcode(),
4584       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4585     DstLeftoverRegs.push_back(Inst.getReg(0));
4586   }
4587 
4588   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4589               LeftoverTy, DstLeftoverRegs);
4590 
4591   MI.eraseFromParent();
4592   return Legalized;
4593 }
4594 
4595 LegalizerHelper::LegalizeResult
4596 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4597                                  LLT NarrowTy) {
4598   if (TypeIdx != 0)
4599     return UnableToLegalize;
4600 
4601   Register DstReg = MI.getOperand(0).getReg();
4602   Register SrcReg = MI.getOperand(1).getReg();
4603 
4604   LLT DstTy = MRI.getType(DstReg);
4605   if (DstTy.isVector())
4606     return UnableToLegalize;
4607 
4608   SmallVector<Register, 8> Parts;
4609   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4610   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4611   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4612 
4613   MI.eraseFromParent();
4614   return Legalized;
4615 }
4616 
4617 LegalizerHelper::LegalizeResult
4618 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4619                                     LLT NarrowTy) {
4620   if (TypeIdx != 0)
4621     return UnableToLegalize;
4622 
4623   Register CondReg = MI.getOperand(1).getReg();
4624   LLT CondTy = MRI.getType(CondReg);
4625   if (CondTy.isVector()) // TODO: Handle vselect
4626     return UnableToLegalize;
4627 
4628   Register DstReg = MI.getOperand(0).getReg();
4629   LLT DstTy = MRI.getType(DstReg);
4630 
4631   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4632   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4633   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4634   LLT LeftoverTy;
4635   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4636                     Src1Regs, Src1LeftoverRegs))
4637     return UnableToLegalize;
4638 
4639   LLT Unused;
4640   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4641                     Src2Regs, Src2LeftoverRegs))
4642     llvm_unreachable("inconsistent extractParts result");
4643 
4644   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4645     auto Select = MIRBuilder.buildSelect(NarrowTy,
4646                                          CondReg, Src1Regs[I], Src2Regs[I]);
4647     DstRegs.push_back(Select.getReg(0));
4648   }
4649 
4650   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4651     auto Select = MIRBuilder.buildSelect(
4652       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4653     DstLeftoverRegs.push_back(Select.getReg(0));
4654   }
4655 
4656   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4657               LeftoverTy, DstLeftoverRegs);
4658 
4659   MI.eraseFromParent();
4660   return Legalized;
4661 }
4662 
4663 LegalizerHelper::LegalizeResult
4664 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4665                                   LLT NarrowTy) {
4666   if (TypeIdx != 1)
4667     return UnableToLegalize;
4668 
4669   Register DstReg = MI.getOperand(0).getReg();
4670   Register SrcReg = MI.getOperand(1).getReg();
4671   LLT DstTy = MRI.getType(DstReg);
4672   LLT SrcTy = MRI.getType(SrcReg);
4673   unsigned NarrowSize = NarrowTy.getSizeInBits();
4674 
4675   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4676     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4677 
4678     MachineIRBuilder &B = MIRBuilder;
4679     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4680     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4681     auto C_0 = B.buildConstant(NarrowTy, 0);
4682     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4683                                 UnmergeSrc.getReg(1), C_0);
4684     auto LoCTLZ = IsUndef ?
4685       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4686       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4687     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4688     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4689     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4690     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4691 
4692     MI.eraseFromParent();
4693     return Legalized;
4694   }
4695 
4696   return UnableToLegalize;
4697 }
4698 
4699 LegalizerHelper::LegalizeResult
4700 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4701                                   LLT NarrowTy) {
4702   if (TypeIdx != 1)
4703     return UnableToLegalize;
4704 
4705   Register DstReg = MI.getOperand(0).getReg();
4706   Register SrcReg = MI.getOperand(1).getReg();
4707   LLT DstTy = MRI.getType(DstReg);
4708   LLT SrcTy = MRI.getType(SrcReg);
4709   unsigned NarrowSize = NarrowTy.getSizeInBits();
4710 
4711   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4712     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4713 
4714     MachineIRBuilder &B = MIRBuilder;
4715     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4716     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4717     auto C_0 = B.buildConstant(NarrowTy, 0);
4718     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4719                                 UnmergeSrc.getReg(0), C_0);
4720     auto HiCTTZ = IsUndef ?
4721       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4722       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4723     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4724     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4725     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4726     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4727 
4728     MI.eraseFromParent();
4729     return Legalized;
4730   }
4731 
4732   return UnableToLegalize;
4733 }
4734 
4735 LegalizerHelper::LegalizeResult
4736 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4737                                    LLT NarrowTy) {
4738   if (TypeIdx != 1)
4739     return UnableToLegalize;
4740 
4741   Register DstReg = MI.getOperand(0).getReg();
4742   LLT DstTy = MRI.getType(DstReg);
4743   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4744   unsigned NarrowSize = NarrowTy.getSizeInBits();
4745 
4746   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4747     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4748 
4749     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4750     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4751     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4752 
4753     MI.eraseFromParent();
4754     return Legalized;
4755   }
4756 
4757   return UnableToLegalize;
4758 }
4759 
4760 LegalizerHelper::LegalizeResult
4761 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4762   unsigned Opc = MI.getOpcode();
4763   const auto &TII = MIRBuilder.getTII();
4764   auto isSupported = [this](const LegalityQuery &Q) {
4765     auto QAction = LI.getAction(Q).Action;
4766     return QAction == Legal || QAction == Libcall || QAction == Custom;
4767   };
4768   switch (Opc) {
4769   default:
4770     return UnableToLegalize;
4771   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4772     // This trivially expands to CTLZ.
4773     Observer.changingInstr(MI);
4774     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4775     Observer.changedInstr(MI);
4776     return Legalized;
4777   }
4778   case TargetOpcode::G_CTLZ: {
4779     Register DstReg = MI.getOperand(0).getReg();
4780     Register SrcReg = MI.getOperand(1).getReg();
4781     LLT DstTy = MRI.getType(DstReg);
4782     LLT SrcTy = MRI.getType(SrcReg);
4783     unsigned Len = SrcTy.getSizeInBits();
4784 
4785     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4786       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4787       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4788       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4789       auto ICmp = MIRBuilder.buildICmp(
4790           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4791       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4792       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4793       MI.eraseFromParent();
4794       return Legalized;
4795     }
4796     // for now, we do this:
4797     // NewLen = NextPowerOf2(Len);
4798     // x = x | (x >> 1);
4799     // x = x | (x >> 2);
4800     // ...
4801     // x = x | (x >>16);
4802     // x = x | (x >>32); // for 64-bit input
4803     // Upto NewLen/2
4804     // return Len - popcount(x);
4805     //
4806     // Ref: "Hacker's Delight" by Henry Warren
4807     Register Op = SrcReg;
4808     unsigned NewLen = PowerOf2Ceil(Len);
4809     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4810       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4811       auto MIBOp = MIRBuilder.buildOr(
4812           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4813       Op = MIBOp.getReg(0);
4814     }
4815     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4816     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4817                         MIBPop);
4818     MI.eraseFromParent();
4819     return Legalized;
4820   }
4821   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4822     // This trivially expands to CTTZ.
4823     Observer.changingInstr(MI);
4824     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4825     Observer.changedInstr(MI);
4826     return Legalized;
4827   }
4828   case TargetOpcode::G_CTTZ: {
4829     Register DstReg = MI.getOperand(0).getReg();
4830     Register SrcReg = MI.getOperand(1).getReg();
4831     LLT DstTy = MRI.getType(DstReg);
4832     LLT SrcTy = MRI.getType(SrcReg);
4833 
4834     unsigned Len = SrcTy.getSizeInBits();
4835     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4836       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4837       // zero.
4838       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4839       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4840       auto ICmp = MIRBuilder.buildICmp(
4841           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4842       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4843       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4844       MI.eraseFromParent();
4845       return Legalized;
4846     }
4847     // for now, we use: { return popcount(~x & (x - 1)); }
4848     // unless the target has ctlz but not ctpop, in which case we use:
4849     // { return 32 - nlz(~x & (x-1)); }
4850     // Ref: "Hacker's Delight" by Henry Warren
4851     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4852     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4853     auto MIBTmp = MIRBuilder.buildAnd(
4854         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4855     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4856         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4857       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4858       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4859                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4860       MI.eraseFromParent();
4861       return Legalized;
4862     }
4863     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4864     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4865     return Legalized;
4866   }
4867   case TargetOpcode::G_CTPOP: {
4868     unsigned Size = Ty.getSizeInBits();
4869     MachineIRBuilder &B = MIRBuilder;
4870 
4871     // Count set bits in blocks of 2 bits. Default approach would be
4872     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4873     // We use following formula instead:
4874     // B2Count = val - { (val >> 1) & 0x55555555 }
4875     // since it gives same result in blocks of 2 with one instruction less.
4876     auto C_1 = B.buildConstant(Ty, 1);
4877     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4878     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4879     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4880     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4881     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4882 
4883     // In order to get count in blocks of 4 add values from adjacent block of 2.
4884     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4885     auto C_2 = B.buildConstant(Ty, 2);
4886     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4887     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4888     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4889     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4890     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4891     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4892 
4893     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4894     // addition since count value sits in range {0,...,8} and 4 bits are enough
4895     // to hold such binary values. After addition high 4 bits still hold count
4896     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4897     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4898     auto C_4 = B.buildConstant(Ty, 4);
4899     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4900     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4901     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4902     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4903     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4904 
4905     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4906     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4907     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4908     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4909     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4910 
4911     // Shift count result from 8 high bits to low bits.
4912     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4913     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4914 
4915     MI.eraseFromParent();
4916     return Legalized;
4917   }
4918   }
4919 }
4920 
4921 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4922 // representation.
4923 LegalizerHelper::LegalizeResult
4924 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4925   Register Dst = MI.getOperand(0).getReg();
4926   Register Src = MI.getOperand(1).getReg();
4927   const LLT S64 = LLT::scalar(64);
4928   const LLT S32 = LLT::scalar(32);
4929   const LLT S1 = LLT::scalar(1);
4930 
4931   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4932 
4933   // unsigned cul2f(ulong u) {
4934   //   uint lz = clz(u);
4935   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4936   //   u = (u << lz) & 0x7fffffffffffffffUL;
4937   //   ulong t = u & 0xffffffffffUL;
4938   //   uint v = (e << 23) | (uint)(u >> 40);
4939   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4940   //   return as_float(v + r);
4941   // }
4942 
4943   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4944   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4945 
4946   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4947 
4948   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4949   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4950 
4951   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4952   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4953 
4954   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4955   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4956 
4957   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4958 
4959   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4960   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4961 
4962   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4963   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4964   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4965 
4966   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4967   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4968   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4969   auto One = MIRBuilder.buildConstant(S32, 1);
4970 
4971   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4972   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4973   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4974   MIRBuilder.buildAdd(Dst, V, R);
4975 
4976   MI.eraseFromParent();
4977   return Legalized;
4978 }
4979 
4980 LegalizerHelper::LegalizeResult
4981 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4982   Register Dst = MI.getOperand(0).getReg();
4983   Register Src = MI.getOperand(1).getReg();
4984   LLT DstTy = MRI.getType(Dst);
4985   LLT SrcTy = MRI.getType(Src);
4986 
4987   if (SrcTy == LLT::scalar(1)) {
4988     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4989     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4990     MIRBuilder.buildSelect(Dst, Src, True, False);
4991     MI.eraseFromParent();
4992     return Legalized;
4993   }
4994 
4995   if (SrcTy != LLT::scalar(64))
4996     return UnableToLegalize;
4997 
4998   if (DstTy == LLT::scalar(32)) {
4999     // TODO: SelectionDAG has several alternative expansions to port which may
5000     // be more reasonble depending on the available instructions. If a target
5001     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5002     // intermediate type, this is probably worse.
5003     return lowerU64ToF32BitOps(MI);
5004   }
5005 
5006   return UnableToLegalize;
5007 }
5008 
5009 LegalizerHelper::LegalizeResult
5010 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5011   Register Dst = MI.getOperand(0).getReg();
5012   Register Src = MI.getOperand(1).getReg();
5013   LLT DstTy = MRI.getType(Dst);
5014   LLT SrcTy = MRI.getType(Src);
5015 
5016   const LLT S64 = LLT::scalar(64);
5017   const LLT S32 = LLT::scalar(32);
5018   const LLT S1 = LLT::scalar(1);
5019 
5020   if (SrcTy == S1) {
5021     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5022     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5023     MIRBuilder.buildSelect(Dst, Src, True, False);
5024     MI.eraseFromParent();
5025     return Legalized;
5026   }
5027 
5028   if (SrcTy != S64)
5029     return UnableToLegalize;
5030 
5031   if (DstTy == S32) {
5032     // signed cl2f(long l) {
5033     //   long s = l >> 63;
5034     //   float r = cul2f((l + s) ^ s);
5035     //   return s ? -r : r;
5036     // }
5037     Register L = Src;
5038     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5039     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5040 
5041     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5042     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5043     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5044 
5045     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5046     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5047                                             MIRBuilder.buildConstant(S64, 0));
5048     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5049     MI.eraseFromParent();
5050     return Legalized;
5051   }
5052 
5053   return UnableToLegalize;
5054 }
5055 
5056 LegalizerHelper::LegalizeResult
5057 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5058   Register Dst = MI.getOperand(0).getReg();
5059   Register Src = MI.getOperand(1).getReg();
5060   LLT DstTy = MRI.getType(Dst);
5061   LLT SrcTy = MRI.getType(Src);
5062   const LLT S64 = LLT::scalar(64);
5063   const LLT S32 = LLT::scalar(32);
5064 
5065   if (SrcTy != S64 && SrcTy != S32)
5066     return UnableToLegalize;
5067   if (DstTy != S32 && DstTy != S64)
5068     return UnableToLegalize;
5069 
5070   // FPTOSI gives same result as FPTOUI for positive signed integers.
5071   // FPTOUI needs to deal with fp values that convert to unsigned integers
5072   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5073 
5074   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5075   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5076                                                 : APFloat::IEEEdouble(),
5077                     APInt::getNullValue(SrcTy.getSizeInBits()));
5078   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5079 
5080   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5081 
5082   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5083   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5084   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5085   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5086   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5087   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5088   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5089 
5090   const LLT S1 = LLT::scalar(1);
5091 
5092   MachineInstrBuilder FCMP =
5093       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5094   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5095 
5096   MI.eraseFromParent();
5097   return Legalized;
5098 }
5099 
5100 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5101   Register Dst = MI.getOperand(0).getReg();
5102   Register Src = MI.getOperand(1).getReg();
5103   LLT DstTy = MRI.getType(Dst);
5104   LLT SrcTy = MRI.getType(Src);
5105   const LLT S64 = LLT::scalar(64);
5106   const LLT S32 = LLT::scalar(32);
5107 
5108   // FIXME: Only f32 to i64 conversions are supported.
5109   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5110     return UnableToLegalize;
5111 
5112   // Expand f32 -> i64 conversion
5113   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5114   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5115 
5116   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5117 
5118   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5119   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5120 
5121   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5122   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5123 
5124   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5125                                            APInt::getSignMask(SrcEltBits));
5126   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5127   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5128   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5129   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5130 
5131   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5132   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5133   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5134 
5135   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5136   R = MIRBuilder.buildZExt(DstTy, R);
5137 
5138   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5139   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5140   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5141   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5142 
5143   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5144   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5145 
5146   const LLT S1 = LLT::scalar(1);
5147   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5148                                     S1, Exponent, ExponentLoBit);
5149 
5150   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5151 
5152   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5153   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5154 
5155   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5156 
5157   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5158                                           S1, Exponent, ZeroSrcTy);
5159 
5160   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5161   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5162 
5163   MI.eraseFromParent();
5164   return Legalized;
5165 }
5166 
5167 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5168 LegalizerHelper::LegalizeResult
5169 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5170   Register Dst = MI.getOperand(0).getReg();
5171   Register Src = MI.getOperand(1).getReg();
5172 
5173   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5174     return UnableToLegalize;
5175 
5176   const unsigned ExpMask = 0x7ff;
5177   const unsigned ExpBiasf64 = 1023;
5178   const unsigned ExpBiasf16 = 15;
5179   const LLT S32 = LLT::scalar(32);
5180   const LLT S1 = LLT::scalar(1);
5181 
5182   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5183   Register U = Unmerge.getReg(0);
5184   Register UH = Unmerge.getReg(1);
5185 
5186   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5187   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5188 
5189   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5190   // add the f16 bias (15) to get the biased exponent for the f16 format.
5191   E = MIRBuilder.buildAdd(
5192     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5193 
5194   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5195   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5196 
5197   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5198                                        MIRBuilder.buildConstant(S32, 0x1ff));
5199   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5200 
5201   auto Zero = MIRBuilder.buildConstant(S32, 0);
5202   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5203   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5204   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5205 
5206   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5207   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5208   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5209   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5210 
5211   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5212   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5213 
5214   // N = M | (E << 12);
5215   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5216   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5217 
5218   // B = clamp(1-E, 0, 13);
5219   auto One = MIRBuilder.buildConstant(S32, 1);
5220   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5221   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5222   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5223 
5224   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5225                                        MIRBuilder.buildConstant(S32, 0x1000));
5226 
5227   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5228   auto D0 = MIRBuilder.buildShl(S32, D, B);
5229 
5230   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5231                                              D0, SigSetHigh);
5232   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5233   D = MIRBuilder.buildOr(S32, D, D1);
5234 
5235   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5236   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5237 
5238   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5239   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5240 
5241   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5242                                        MIRBuilder.buildConstant(S32, 3));
5243   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5244 
5245   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5246                                        MIRBuilder.buildConstant(S32, 5));
5247   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5248 
5249   V1 = MIRBuilder.buildOr(S32, V0, V1);
5250   V = MIRBuilder.buildAdd(S32, V, V1);
5251 
5252   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5253                                        E, MIRBuilder.buildConstant(S32, 30));
5254   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5255                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5256 
5257   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5258                                          E, MIRBuilder.buildConstant(S32, 1039));
5259   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5260 
5261   // Extract the sign bit.
5262   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5263   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5264 
5265   // Insert the sign bit
5266   V = MIRBuilder.buildOr(S32, Sign, V);
5267 
5268   MIRBuilder.buildTrunc(Dst, V);
5269   MI.eraseFromParent();
5270   return Legalized;
5271 }
5272 
5273 LegalizerHelper::LegalizeResult
5274 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5275   Register Dst = MI.getOperand(0).getReg();
5276   Register Src = MI.getOperand(1).getReg();
5277 
5278   LLT DstTy = MRI.getType(Dst);
5279   LLT SrcTy = MRI.getType(Src);
5280   const LLT S64 = LLT::scalar(64);
5281   const LLT S16 = LLT::scalar(16);
5282 
5283   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5284     return lowerFPTRUNC_F64_TO_F16(MI);
5285 
5286   return UnableToLegalize;
5287 }
5288 
5289 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5290 // multiplication tree.
5291 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5292   Register Dst = MI.getOperand(0).getReg();
5293   Register Src0 = MI.getOperand(1).getReg();
5294   Register Src1 = MI.getOperand(2).getReg();
5295   LLT Ty = MRI.getType(Dst);
5296 
5297   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5298   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5299   MI.eraseFromParent();
5300   return Legalized;
5301 }
5302 
5303 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5304   switch (Opc) {
5305   case TargetOpcode::G_SMIN:
5306     return CmpInst::ICMP_SLT;
5307   case TargetOpcode::G_SMAX:
5308     return CmpInst::ICMP_SGT;
5309   case TargetOpcode::G_UMIN:
5310     return CmpInst::ICMP_ULT;
5311   case TargetOpcode::G_UMAX:
5312     return CmpInst::ICMP_UGT;
5313   default:
5314     llvm_unreachable("not in integer min/max");
5315   }
5316 }
5317 
5318 LegalizerHelper::LegalizeResult
5319 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5320   Register Dst = MI.getOperand(0).getReg();
5321   Register Src0 = MI.getOperand(1).getReg();
5322   Register Src1 = MI.getOperand(2).getReg();
5323 
5324   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5325   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5326 
5327   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5328   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5329 
5330   MI.eraseFromParent();
5331   return Legalized;
5332 }
5333 
5334 LegalizerHelper::LegalizeResult
5335 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5336   Register Dst = MI.getOperand(0).getReg();
5337   Register Src0 = MI.getOperand(1).getReg();
5338   Register Src1 = MI.getOperand(2).getReg();
5339 
5340   const LLT Src0Ty = MRI.getType(Src0);
5341   const LLT Src1Ty = MRI.getType(Src1);
5342 
5343   const int Src0Size = Src0Ty.getScalarSizeInBits();
5344   const int Src1Size = Src1Ty.getScalarSizeInBits();
5345 
5346   auto SignBitMask = MIRBuilder.buildConstant(
5347     Src0Ty, APInt::getSignMask(Src0Size));
5348 
5349   auto NotSignBitMask = MIRBuilder.buildConstant(
5350     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5351 
5352   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5353   MachineInstr *Or;
5354 
5355   if (Src0Ty == Src1Ty) {
5356     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5357     Or = MIRBuilder.buildOr(Dst, And0, And1);
5358   } else if (Src0Size > Src1Size) {
5359     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5360     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5361     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5362     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5363     Or = MIRBuilder.buildOr(Dst, And0, And1);
5364   } else {
5365     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5366     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5367     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5368     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5369     Or = MIRBuilder.buildOr(Dst, And0, And1);
5370   }
5371 
5372   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5373   // constants are a nan and -0.0, but the final result should preserve
5374   // everything.
5375   if (unsigned Flags = MI.getFlags())
5376     Or->setFlags(Flags);
5377 
5378   MI.eraseFromParent();
5379   return Legalized;
5380 }
5381 
5382 LegalizerHelper::LegalizeResult
5383 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5384   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5385     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5386 
5387   Register Dst = MI.getOperand(0).getReg();
5388   Register Src0 = MI.getOperand(1).getReg();
5389   Register Src1 = MI.getOperand(2).getReg();
5390   LLT Ty = MRI.getType(Dst);
5391 
5392   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5393     // Insert canonicalizes if it's possible we need to quiet to get correct
5394     // sNaN behavior.
5395 
5396     // Note this must be done here, and not as an optimization combine in the
5397     // absence of a dedicate quiet-snan instruction as we're using an
5398     // omni-purpose G_FCANONICALIZE.
5399     if (!isKnownNeverSNaN(Src0, MRI))
5400       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5401 
5402     if (!isKnownNeverSNaN(Src1, MRI))
5403       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5404   }
5405 
5406   // If there are no nans, it's safe to simply replace this with the non-IEEE
5407   // version.
5408   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5409   MI.eraseFromParent();
5410   return Legalized;
5411 }
5412 
5413 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5414   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5415   Register DstReg = MI.getOperand(0).getReg();
5416   LLT Ty = MRI.getType(DstReg);
5417   unsigned Flags = MI.getFlags();
5418 
5419   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5420                                   Flags);
5421   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5422   MI.eraseFromParent();
5423   return Legalized;
5424 }
5425 
5426 LegalizerHelper::LegalizeResult
5427 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5428   Register DstReg = MI.getOperand(0).getReg();
5429   Register X = MI.getOperand(1).getReg();
5430   const unsigned Flags = MI.getFlags();
5431   const LLT Ty = MRI.getType(DstReg);
5432   const LLT CondTy = Ty.changeElementSize(1);
5433 
5434   // round(x) =>
5435   //  t = trunc(x);
5436   //  d = fabs(x - t);
5437   //  o = copysign(1.0f, x);
5438   //  return t + (d >= 0.5 ? o : 0.0);
5439 
5440   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5441 
5442   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5443   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5444   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5445   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5446   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5447   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5448 
5449   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5450                                   Flags);
5451   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5452 
5453   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5454 
5455   MI.eraseFromParent();
5456   return Legalized;
5457 }
5458 
5459 LegalizerHelper::LegalizeResult
5460 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5461   Register DstReg = MI.getOperand(0).getReg();
5462   Register SrcReg = MI.getOperand(1).getReg();
5463   unsigned Flags = MI.getFlags();
5464   LLT Ty = MRI.getType(DstReg);
5465   const LLT CondTy = Ty.changeElementSize(1);
5466 
5467   // result = trunc(src);
5468   // if (src < 0.0 && src != result)
5469   //   result += -1.0.
5470 
5471   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5472   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5473 
5474   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5475                                   SrcReg, Zero, Flags);
5476   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5477                                       SrcReg, Trunc, Flags);
5478   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5479   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5480 
5481   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5482   MI.eraseFromParent();
5483   return Legalized;
5484 }
5485 
5486 LegalizerHelper::LegalizeResult
5487 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5488   const unsigned NumOps = MI.getNumOperands();
5489   Register DstReg = MI.getOperand(0).getReg();
5490   Register Src0Reg = MI.getOperand(1).getReg();
5491   LLT DstTy = MRI.getType(DstReg);
5492   LLT SrcTy = MRI.getType(Src0Reg);
5493   unsigned PartSize = SrcTy.getSizeInBits();
5494 
5495   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5496   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5497 
5498   for (unsigned I = 2; I != NumOps; ++I) {
5499     const unsigned Offset = (I - 1) * PartSize;
5500 
5501     Register SrcReg = MI.getOperand(I).getReg();
5502     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5503 
5504     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5505       MRI.createGenericVirtualRegister(WideTy);
5506 
5507     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5508     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5509     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5510     ResultReg = NextResult;
5511   }
5512 
5513   if (DstTy.isPointer()) {
5514     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5515           DstTy.getAddressSpace())) {
5516       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5517       return UnableToLegalize;
5518     }
5519 
5520     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5521   }
5522 
5523   MI.eraseFromParent();
5524   return Legalized;
5525 }
5526 
5527 LegalizerHelper::LegalizeResult
5528 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5529   const unsigned NumDst = MI.getNumOperands() - 1;
5530   Register SrcReg = MI.getOperand(NumDst).getReg();
5531   Register Dst0Reg = MI.getOperand(0).getReg();
5532   LLT DstTy = MRI.getType(Dst0Reg);
5533   if (DstTy.isPointer())
5534     return UnableToLegalize; // TODO
5535 
5536   SrcReg = coerceToScalar(SrcReg);
5537   if (!SrcReg)
5538     return UnableToLegalize;
5539 
5540   // Expand scalarizing unmerge as bitcast to integer and shift.
5541   LLT IntTy = MRI.getType(SrcReg);
5542 
5543   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5544 
5545   const unsigned DstSize = DstTy.getSizeInBits();
5546   unsigned Offset = DstSize;
5547   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5548     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5549     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5550     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5551   }
5552 
5553   MI.eraseFromParent();
5554   return Legalized;
5555 }
5556 
5557 /// Lower a vector extract or insert by writing the vector to a stack temporary
5558 /// and reloading the element or vector.
5559 ///
5560 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5561 ///  =>
5562 ///  %stack_temp = G_FRAME_INDEX
5563 ///  G_STORE %vec, %stack_temp
5564 ///  %idx = clamp(%idx, %vec.getNumElements())
5565 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5566 ///  %dst = G_LOAD %element_ptr
5567 LegalizerHelper::LegalizeResult
5568 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5569   Register DstReg = MI.getOperand(0).getReg();
5570   Register SrcVec = MI.getOperand(1).getReg();
5571   Register InsertVal;
5572   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5573     InsertVal = MI.getOperand(2).getReg();
5574 
5575   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5576 
5577   LLT VecTy = MRI.getType(SrcVec);
5578   LLT EltTy = VecTy.getElementType();
5579   if (!EltTy.isByteSized()) { // Not implemented.
5580     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5581     return UnableToLegalize;
5582   }
5583 
5584   unsigned EltBytes = EltTy.getSizeInBytes();
5585   Align VecAlign = getStackTemporaryAlignment(VecTy);
5586   Align EltAlign;
5587 
5588   MachinePointerInfo PtrInfo;
5589   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5590                                         VecAlign, PtrInfo);
5591   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5592 
5593   // Get the pointer to the element, and be sure not to hit undefined behavior
5594   // if the index is out of bounds.
5595   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5596 
5597   int64_t IdxVal;
5598   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5599     int64_t Offset = IdxVal * EltBytes;
5600     PtrInfo = PtrInfo.getWithOffset(Offset);
5601     EltAlign = commonAlignment(VecAlign, Offset);
5602   } else {
5603     // We lose information with a variable offset.
5604     EltAlign = getStackTemporaryAlignment(EltTy);
5605     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5606   }
5607 
5608   if (InsertVal) {
5609     // Write the inserted element
5610     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5611 
5612     // Reload the whole vector.
5613     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5614   } else {
5615     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5616   }
5617 
5618   MI.eraseFromParent();
5619   return Legalized;
5620 }
5621 
5622 LegalizerHelper::LegalizeResult
5623 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5624   Register DstReg = MI.getOperand(0).getReg();
5625   Register Src0Reg = MI.getOperand(1).getReg();
5626   Register Src1Reg = MI.getOperand(2).getReg();
5627   LLT Src0Ty = MRI.getType(Src0Reg);
5628   LLT DstTy = MRI.getType(DstReg);
5629   LLT IdxTy = LLT::scalar(32);
5630 
5631   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5632 
5633   if (DstTy.isScalar()) {
5634     if (Src0Ty.isVector())
5635       return UnableToLegalize;
5636 
5637     // This is just a SELECT.
5638     assert(Mask.size() == 1 && "Expected a single mask element");
5639     Register Val;
5640     if (Mask[0] < 0 || Mask[0] > 1)
5641       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5642     else
5643       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5644     MIRBuilder.buildCopy(DstReg, Val);
5645     MI.eraseFromParent();
5646     return Legalized;
5647   }
5648 
5649   Register Undef;
5650   SmallVector<Register, 32> BuildVec;
5651   LLT EltTy = DstTy.getElementType();
5652 
5653   for (int Idx : Mask) {
5654     if (Idx < 0) {
5655       if (!Undef.isValid())
5656         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5657       BuildVec.push_back(Undef);
5658       continue;
5659     }
5660 
5661     if (Src0Ty.isScalar()) {
5662       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5663     } else {
5664       int NumElts = Src0Ty.getNumElements();
5665       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5666       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5667       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5668       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5669       BuildVec.push_back(Extract.getReg(0));
5670     }
5671   }
5672 
5673   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5674   MI.eraseFromParent();
5675   return Legalized;
5676 }
5677 
5678 LegalizerHelper::LegalizeResult
5679 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5680   const auto &MF = *MI.getMF();
5681   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5682   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5683     return UnableToLegalize;
5684 
5685   Register Dst = MI.getOperand(0).getReg();
5686   Register AllocSize = MI.getOperand(1).getReg();
5687   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5688 
5689   LLT PtrTy = MRI.getType(Dst);
5690   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5691 
5692   const auto &TLI = *MF.getSubtarget().getTargetLowering();
5693   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5694   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5695   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5696 
5697   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5698   // have to generate an extra instruction to negate the alloc and then use
5699   // G_PTR_ADD to add the negative offset.
5700   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5701   if (Alignment > Align(1)) {
5702     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5703     AlignMask.negate();
5704     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5705     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5706   }
5707 
5708   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5709   MIRBuilder.buildCopy(SPReg, SPTmp);
5710   MIRBuilder.buildCopy(Dst, SPTmp);
5711 
5712   MI.eraseFromParent();
5713   return Legalized;
5714 }
5715 
5716 LegalizerHelper::LegalizeResult
5717 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5718   Register Dst = MI.getOperand(0).getReg();
5719   Register Src = MI.getOperand(1).getReg();
5720   unsigned Offset = MI.getOperand(2).getImm();
5721 
5722   LLT DstTy = MRI.getType(Dst);
5723   LLT SrcTy = MRI.getType(Src);
5724 
5725   if (DstTy.isScalar() &&
5726       (SrcTy.isScalar() ||
5727        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5728     LLT SrcIntTy = SrcTy;
5729     if (!SrcTy.isScalar()) {
5730       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5731       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5732     }
5733 
5734     if (Offset == 0)
5735       MIRBuilder.buildTrunc(Dst, Src);
5736     else {
5737       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5738       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5739       MIRBuilder.buildTrunc(Dst, Shr);
5740     }
5741 
5742     MI.eraseFromParent();
5743     return Legalized;
5744   }
5745 
5746   return UnableToLegalize;
5747 }
5748 
5749 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5750   Register Dst = MI.getOperand(0).getReg();
5751   Register Src = MI.getOperand(1).getReg();
5752   Register InsertSrc = MI.getOperand(2).getReg();
5753   uint64_t Offset = MI.getOperand(3).getImm();
5754 
5755   LLT DstTy = MRI.getType(Src);
5756   LLT InsertTy = MRI.getType(InsertSrc);
5757 
5758   if (InsertTy.isVector() ||
5759       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5760     return UnableToLegalize;
5761 
5762   const DataLayout &DL = MIRBuilder.getDataLayout();
5763   if ((DstTy.isPointer() &&
5764        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5765       (InsertTy.isPointer() &&
5766        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5767     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5768     return UnableToLegalize;
5769   }
5770 
5771   LLT IntDstTy = DstTy;
5772 
5773   if (!DstTy.isScalar()) {
5774     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5775     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5776   }
5777 
5778   if (!InsertTy.isScalar()) {
5779     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5780     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5781   }
5782 
5783   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5784   if (Offset != 0) {
5785     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5786     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5787   }
5788 
5789   APInt MaskVal = APInt::getBitsSetWithWrap(
5790       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5791 
5792   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5793   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5794   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5795 
5796   MIRBuilder.buildCast(Dst, Or);
5797   MI.eraseFromParent();
5798   return Legalized;
5799 }
5800 
5801 LegalizerHelper::LegalizeResult
5802 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5803   Register Dst0 = MI.getOperand(0).getReg();
5804   Register Dst1 = MI.getOperand(1).getReg();
5805   Register LHS = MI.getOperand(2).getReg();
5806   Register RHS = MI.getOperand(3).getReg();
5807   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5808 
5809   LLT Ty = MRI.getType(Dst0);
5810   LLT BoolTy = MRI.getType(Dst1);
5811 
5812   if (IsAdd)
5813     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5814   else
5815     MIRBuilder.buildSub(Dst0, LHS, RHS);
5816 
5817   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5818 
5819   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5820 
5821   // For an addition, the result should be less than one of the operands (LHS)
5822   // if and only if the other operand (RHS) is negative, otherwise there will
5823   // be overflow.
5824   // For a subtraction, the result should be less than one of the operands
5825   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5826   // otherwise there will be overflow.
5827   auto ResultLowerThanLHS =
5828       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5829   auto ConditionRHS = MIRBuilder.buildICmp(
5830       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5831 
5832   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5833   MI.eraseFromParent();
5834   return Legalized;
5835 }
5836 
5837 LegalizerHelper::LegalizeResult
5838 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5839   Register Res = MI.getOperand(0).getReg();
5840   Register LHS = MI.getOperand(1).getReg();
5841   Register RHS = MI.getOperand(2).getReg();
5842   LLT Ty = MRI.getType(Res);
5843   bool IsSigned;
5844   bool IsAdd;
5845   unsigned BaseOp;
5846   switch (MI.getOpcode()) {
5847   default:
5848     llvm_unreachable("unexpected addsat/subsat opcode");
5849   case TargetOpcode::G_UADDSAT:
5850     IsSigned = false;
5851     IsAdd = true;
5852     BaseOp = TargetOpcode::G_ADD;
5853     break;
5854   case TargetOpcode::G_SADDSAT:
5855     IsSigned = true;
5856     IsAdd = true;
5857     BaseOp = TargetOpcode::G_ADD;
5858     break;
5859   case TargetOpcode::G_USUBSAT:
5860     IsSigned = false;
5861     IsAdd = false;
5862     BaseOp = TargetOpcode::G_SUB;
5863     break;
5864   case TargetOpcode::G_SSUBSAT:
5865     IsSigned = true;
5866     IsAdd = false;
5867     BaseOp = TargetOpcode::G_SUB;
5868     break;
5869   }
5870 
5871   if (IsSigned) {
5872     // sadd.sat(a, b) ->
5873     //   hi = 0x7fffffff - smax(a, 0)
5874     //   lo = 0x80000000 - smin(a, 0)
5875     //   a + smin(smax(lo, b), hi)
5876     // ssub.sat(a, b) ->
5877     //   lo = smax(a, -1) - 0x7fffffff
5878     //   hi = smin(a, -1) - 0x80000000
5879     //   a - smin(smax(lo, b), hi)
5880     // TODO: AMDGPU can use a "median of 3" instruction here:
5881     //   a +/- med3(lo, b, hi)
5882     uint64_t NumBits = Ty.getScalarSizeInBits();
5883     auto MaxVal =
5884         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5885     auto MinVal =
5886         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5887     MachineInstrBuilder Hi, Lo;
5888     if (IsAdd) {
5889       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5890       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5891       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5892     } else {
5893       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5894       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5895                                MaxVal);
5896       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5897                                MinVal);
5898     }
5899     auto RHSClamped =
5900         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5901     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5902   } else {
5903     // uadd.sat(a, b) -> a + umin(~a, b)
5904     // usub.sat(a, b) -> a - umin(a, b)
5905     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5906     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5907     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5908   }
5909 
5910   MI.eraseFromParent();
5911   return Legalized;
5912 }
5913 
5914 LegalizerHelper::LegalizeResult
5915 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
5916   Register Res = MI.getOperand(0).getReg();
5917   Register LHS = MI.getOperand(1).getReg();
5918   Register RHS = MI.getOperand(2).getReg();
5919   LLT Ty = MRI.getType(Res);
5920   LLT BoolTy = Ty.changeElementSize(1);
5921   bool IsSigned;
5922   bool IsAdd;
5923   unsigned OverflowOp;
5924   switch (MI.getOpcode()) {
5925   default:
5926     llvm_unreachable("unexpected addsat/subsat opcode");
5927   case TargetOpcode::G_UADDSAT:
5928     IsSigned = false;
5929     IsAdd = true;
5930     OverflowOp = TargetOpcode::G_UADDO;
5931     break;
5932   case TargetOpcode::G_SADDSAT:
5933     IsSigned = true;
5934     IsAdd = true;
5935     OverflowOp = TargetOpcode::G_SADDO;
5936     break;
5937   case TargetOpcode::G_USUBSAT:
5938     IsSigned = false;
5939     IsAdd = false;
5940     OverflowOp = TargetOpcode::G_USUBO;
5941     break;
5942   case TargetOpcode::G_SSUBSAT:
5943     IsSigned = true;
5944     IsAdd = false;
5945     OverflowOp = TargetOpcode::G_SSUBO;
5946     break;
5947   }
5948 
5949   auto OverflowRes =
5950       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
5951   Register Tmp = OverflowRes.getReg(0);
5952   Register Ov = OverflowRes.getReg(1);
5953   MachineInstrBuilder Clamp;
5954   if (IsSigned) {
5955     // sadd.sat(a, b) ->
5956     //   {tmp, ov} = saddo(a, b)
5957     //   ov ? (tmp >>s 31) + 0x80000000 : r
5958     // ssub.sat(a, b) ->
5959     //   {tmp, ov} = ssubo(a, b)
5960     //   ov ? (tmp >>s 31) + 0x80000000 : r
5961     uint64_t NumBits = Ty.getScalarSizeInBits();
5962     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
5963     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
5964     auto MinVal =
5965         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5966     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
5967   } else {
5968     // uadd.sat(a, b) ->
5969     //   {tmp, ov} = uaddo(a, b)
5970     //   ov ? 0xffffffff : tmp
5971     // usub.sat(a, b) ->
5972     //   {tmp, ov} = usubo(a, b)
5973     //   ov ? 0 : tmp
5974     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
5975   }
5976   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
5977 
5978   MI.eraseFromParent();
5979   return Legalized;
5980 }
5981 
5982 LegalizerHelper::LegalizeResult
5983 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
5984   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
5985           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
5986          "Expected shlsat opcode!");
5987   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
5988   Register Res = MI.getOperand(0).getReg();
5989   Register LHS = MI.getOperand(1).getReg();
5990   Register RHS = MI.getOperand(2).getReg();
5991   LLT Ty = MRI.getType(Res);
5992   LLT BoolTy = Ty.changeElementSize(1);
5993 
5994   unsigned BW = Ty.getScalarSizeInBits();
5995   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
5996   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
5997                        : MIRBuilder.buildLShr(Ty, Result, RHS);
5998 
5999   MachineInstrBuilder SatVal;
6000   if (IsSigned) {
6001     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6002     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6003     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6004                                     MIRBuilder.buildConstant(Ty, 0));
6005     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6006   } else {
6007     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6008   }
6009   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, Ty, LHS, Orig);
6010   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6011 
6012   MI.eraseFromParent();
6013   return Legalized;
6014 }
6015 
6016 LegalizerHelper::LegalizeResult
6017 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6018   Register Dst = MI.getOperand(0).getReg();
6019   Register Src = MI.getOperand(1).getReg();
6020   const LLT Ty = MRI.getType(Src);
6021   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6022   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6023 
6024   // Swap most and least significant byte, set remaining bytes in Res to zero.
6025   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6026   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6027   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6028   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6029 
6030   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6031   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6032     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6033     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6034     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6035     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6036     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6037     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6038     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6039     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6040     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6041     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6042     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6043     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6044   }
6045   Res.getInstr()->getOperand(0).setReg(Dst);
6046 
6047   MI.eraseFromParent();
6048   return Legalized;
6049 }
6050 
6051 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6052 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6053                                  MachineInstrBuilder Src, APInt Mask) {
6054   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6055   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6056   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6057   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6058   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6059   return B.buildOr(Dst, LHS, RHS);
6060 }
6061 
6062 LegalizerHelper::LegalizeResult
6063 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6064   Register Dst = MI.getOperand(0).getReg();
6065   Register Src = MI.getOperand(1).getReg();
6066   const LLT Ty = MRI.getType(Src);
6067   unsigned Size = Ty.getSizeInBits();
6068 
6069   MachineInstrBuilder BSWAP =
6070       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6071 
6072   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6073   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6074   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6075   MachineInstrBuilder Swap4 =
6076       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6077 
6078   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6079   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6080   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6081   MachineInstrBuilder Swap2 =
6082       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6083 
6084   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6085   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6086   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6087   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6088 
6089   MI.eraseFromParent();
6090   return Legalized;
6091 }
6092 
6093 LegalizerHelper::LegalizeResult
6094 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6095   MachineFunction &MF = MIRBuilder.getMF();
6096   const TargetSubtargetInfo &STI = MF.getSubtarget();
6097   const TargetLowering *TLI = STI.getTargetLowering();
6098 
6099   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6100   int NameOpIdx = IsRead ? 1 : 0;
6101   int ValRegIndex = IsRead ? 0 : 1;
6102 
6103   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6104   const LLT Ty = MRI.getType(ValReg);
6105   const MDString *RegStr = cast<MDString>(
6106     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6107 
6108   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
6109   if (!PhysReg.isValid())
6110     return UnableToLegalize;
6111 
6112   if (IsRead)
6113     MIRBuilder.buildCopy(ValReg, PhysReg);
6114   else
6115     MIRBuilder.buildCopy(PhysReg, ValReg);
6116 
6117   MI.eraseFromParent();
6118   return Legalized;
6119 }
6120