1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()) { 94 MIRBuilder.setChangeObserver(Observer); 95 } 96 97 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 98 GISelChangeObserver &Observer, 99 MachineIRBuilder &B) 100 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) { 101 MIRBuilder.setChangeObserver(Observer); 102 } 103 LegalizerHelper::LegalizeResult 104 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 105 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 106 107 MIRBuilder.setInstrAndDebugLoc(MI); 108 109 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 110 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 111 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 112 auto Step = LI.getAction(MI, MRI); 113 switch (Step.Action) { 114 case Legal: 115 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 116 return AlreadyLegal; 117 case Libcall: 118 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 119 return libcall(MI); 120 case NarrowScalar: 121 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 122 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 123 case WidenScalar: 124 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 125 return widenScalar(MI, Step.TypeIdx, Step.NewType); 126 case Bitcast: 127 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 128 return bitcast(MI, Step.TypeIdx, Step.NewType); 129 case Lower: 130 LLVM_DEBUG(dbgs() << ".. Lower\n"); 131 return lower(MI, Step.TypeIdx, Step.NewType); 132 case FewerElements: 133 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 134 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case MoreElements: 136 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 137 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 138 case Custom: 139 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 140 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 141 default: 142 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 143 return UnableToLegalize; 144 } 145 } 146 147 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 148 SmallVectorImpl<Register> &VRegs) { 149 for (int i = 0; i < NumParts; ++i) 150 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 151 MIRBuilder.buildUnmerge(VRegs, Reg); 152 } 153 154 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 155 LLT MainTy, LLT &LeftoverTy, 156 SmallVectorImpl<Register> &VRegs, 157 SmallVectorImpl<Register> &LeftoverRegs) { 158 assert(!LeftoverTy.isValid() && "this is an out argument"); 159 160 unsigned RegSize = RegTy.getSizeInBits(); 161 unsigned MainSize = MainTy.getSizeInBits(); 162 unsigned NumParts = RegSize / MainSize; 163 unsigned LeftoverSize = RegSize - NumParts * MainSize; 164 165 // Use an unmerge when possible. 166 if (LeftoverSize == 0) { 167 for (unsigned I = 0; I < NumParts; ++I) 168 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 169 MIRBuilder.buildUnmerge(VRegs, Reg); 170 return true; 171 } 172 173 if (MainTy.isVector()) { 174 unsigned EltSize = MainTy.getScalarSizeInBits(); 175 if (LeftoverSize % EltSize != 0) 176 return false; 177 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 178 } else { 179 LeftoverTy = LLT::scalar(LeftoverSize); 180 } 181 182 // For irregular sizes, extract the individual parts. 183 for (unsigned I = 0; I != NumParts; ++I) { 184 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 185 VRegs.push_back(NewReg); 186 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 187 } 188 189 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 190 Offset += LeftoverSize) { 191 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 192 LeftoverRegs.push_back(NewReg); 193 MIRBuilder.buildExtract(NewReg, Reg, Offset); 194 } 195 196 return true; 197 } 198 199 void LegalizerHelper::insertParts(Register DstReg, 200 LLT ResultTy, LLT PartTy, 201 ArrayRef<Register> PartRegs, 202 LLT LeftoverTy, 203 ArrayRef<Register> LeftoverRegs) { 204 if (!LeftoverTy.isValid()) { 205 assert(LeftoverRegs.empty()); 206 207 if (!ResultTy.isVector()) { 208 MIRBuilder.buildMerge(DstReg, PartRegs); 209 return; 210 } 211 212 if (PartTy.isVector()) 213 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 214 else 215 MIRBuilder.buildBuildVector(DstReg, PartRegs); 216 return; 217 } 218 219 unsigned PartSize = PartTy.getSizeInBits(); 220 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 221 222 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 223 MIRBuilder.buildUndef(CurResultReg); 224 225 unsigned Offset = 0; 226 for (Register PartReg : PartRegs) { 227 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 228 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 229 CurResultReg = NewResultReg; 230 Offset += PartSize; 231 } 232 233 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 234 // Use the original output register for the final insert to avoid a copy. 235 Register NewResultReg = (I + 1 == E) ? 236 DstReg : MRI.createGenericVirtualRegister(ResultTy); 237 238 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 239 CurResultReg = NewResultReg; 240 Offset += LeftoverPartSize; 241 } 242 } 243 244 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 245 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 246 const MachineInstr &MI) { 247 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 248 249 const int NumResults = MI.getNumOperands() - 1; 250 Regs.resize(NumResults); 251 for (int I = 0; I != NumResults; ++I) 252 Regs[I] = MI.getOperand(I).getReg(); 253 } 254 255 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 256 LLT NarrowTy, Register SrcReg) { 257 LLT SrcTy = MRI.getType(SrcReg); 258 259 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 260 if (SrcTy == GCDTy) { 261 // If the source already evenly divides the result type, we don't need to do 262 // anything. 263 Parts.push_back(SrcReg); 264 } else { 265 // Need to split into common type sized pieces. 266 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 267 getUnmergeResults(Parts, *Unmerge); 268 } 269 270 return GCDTy; 271 } 272 273 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 274 SmallVectorImpl<Register> &VRegs, 275 unsigned PadStrategy) { 276 LLT LCMTy = getLCMType(DstTy, NarrowTy); 277 278 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 279 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 280 int NumOrigSrc = VRegs.size(); 281 282 Register PadReg; 283 284 // Get a value we can use to pad the source value if the sources won't evenly 285 // cover the result type. 286 if (NumOrigSrc < NumParts * NumSubParts) { 287 if (PadStrategy == TargetOpcode::G_ZEXT) 288 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 289 else if (PadStrategy == TargetOpcode::G_ANYEXT) 290 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 291 else { 292 assert(PadStrategy == TargetOpcode::G_SEXT); 293 294 // Shift the sign bit of the low register through the high register. 295 auto ShiftAmt = 296 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 297 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 298 } 299 } 300 301 // Registers for the final merge to be produced. 302 SmallVector<Register, 4> Remerge(NumParts); 303 304 // Registers needed for intermediate merges, which will be merged into a 305 // source for Remerge. 306 SmallVector<Register, 4> SubMerge(NumSubParts); 307 308 // Once we've fully read off the end of the original source bits, we can reuse 309 // the same high bits for remaining padding elements. 310 Register AllPadReg; 311 312 // Build merges to the LCM type to cover the original result type. 313 for (int I = 0; I != NumParts; ++I) { 314 bool AllMergePartsArePadding = true; 315 316 // Build the requested merges to the requested type. 317 for (int J = 0; J != NumSubParts; ++J) { 318 int Idx = I * NumSubParts + J; 319 if (Idx >= NumOrigSrc) { 320 SubMerge[J] = PadReg; 321 continue; 322 } 323 324 SubMerge[J] = VRegs[Idx]; 325 326 // There are meaningful bits here we can't reuse later. 327 AllMergePartsArePadding = false; 328 } 329 330 // If we've filled up a complete piece with padding bits, we can directly 331 // emit the natural sized constant if applicable, rather than a merge of 332 // smaller constants. 333 if (AllMergePartsArePadding && !AllPadReg) { 334 if (PadStrategy == TargetOpcode::G_ANYEXT) 335 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 336 else if (PadStrategy == TargetOpcode::G_ZEXT) 337 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 338 339 // If this is a sign extension, we can't materialize a trivial constant 340 // with the right type and have to produce a merge. 341 } 342 343 if (AllPadReg) { 344 // Avoid creating additional instructions if we're just adding additional 345 // copies of padding bits. 346 Remerge[I] = AllPadReg; 347 continue; 348 } 349 350 if (NumSubParts == 1) 351 Remerge[I] = SubMerge[0]; 352 else 353 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 354 355 // In the sign extend padding case, re-use the first all-signbit merge. 356 if (AllMergePartsArePadding && !AllPadReg) 357 AllPadReg = Remerge[I]; 358 } 359 360 VRegs = std::move(Remerge); 361 return LCMTy; 362 } 363 364 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 365 ArrayRef<Register> RemergeRegs) { 366 LLT DstTy = MRI.getType(DstReg); 367 368 // Create the merge to the widened source, and extract the relevant bits into 369 // the result. 370 371 if (DstTy == LCMTy) { 372 MIRBuilder.buildMerge(DstReg, RemergeRegs); 373 return; 374 } 375 376 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 377 if (DstTy.isScalar() && LCMTy.isScalar()) { 378 MIRBuilder.buildTrunc(DstReg, Remerge); 379 return; 380 } 381 382 if (LCMTy.isVector()) { 383 MIRBuilder.buildExtract(DstReg, Remerge, 0); 384 return; 385 } 386 387 llvm_unreachable("unhandled case"); 388 } 389 390 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 391 #define RTLIBCASE_INT(LibcallPrefix) \ 392 do { \ 393 switch (Size) { \ 394 case 32: \ 395 return RTLIB::LibcallPrefix##32; \ 396 case 64: \ 397 return RTLIB::LibcallPrefix##64; \ 398 case 128: \ 399 return RTLIB::LibcallPrefix##128; \ 400 default: \ 401 llvm_unreachable("unexpected size"); \ 402 } \ 403 } while (0) 404 405 #define RTLIBCASE(LibcallPrefix) \ 406 do { \ 407 switch (Size) { \ 408 case 32: \ 409 return RTLIB::LibcallPrefix##32; \ 410 case 64: \ 411 return RTLIB::LibcallPrefix##64; \ 412 case 80: \ 413 return RTLIB::LibcallPrefix##80; \ 414 case 128: \ 415 return RTLIB::LibcallPrefix##128; \ 416 default: \ 417 llvm_unreachable("unexpected size"); \ 418 } \ 419 } while (0) 420 421 switch (Opcode) { 422 case TargetOpcode::G_SDIV: 423 RTLIBCASE_INT(SDIV_I); 424 case TargetOpcode::G_UDIV: 425 RTLIBCASE_INT(UDIV_I); 426 case TargetOpcode::G_SREM: 427 RTLIBCASE_INT(SREM_I); 428 case TargetOpcode::G_UREM: 429 RTLIBCASE_INT(UREM_I); 430 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 431 RTLIBCASE_INT(CTLZ_I); 432 case TargetOpcode::G_FADD: 433 RTLIBCASE(ADD_F); 434 case TargetOpcode::G_FSUB: 435 RTLIBCASE(SUB_F); 436 case TargetOpcode::G_FMUL: 437 RTLIBCASE(MUL_F); 438 case TargetOpcode::G_FDIV: 439 RTLIBCASE(DIV_F); 440 case TargetOpcode::G_FEXP: 441 RTLIBCASE(EXP_F); 442 case TargetOpcode::G_FEXP2: 443 RTLIBCASE(EXP2_F); 444 case TargetOpcode::G_FREM: 445 RTLIBCASE(REM_F); 446 case TargetOpcode::G_FPOW: 447 RTLIBCASE(POW_F); 448 case TargetOpcode::G_FMA: 449 RTLIBCASE(FMA_F); 450 case TargetOpcode::G_FSIN: 451 RTLIBCASE(SIN_F); 452 case TargetOpcode::G_FCOS: 453 RTLIBCASE(COS_F); 454 case TargetOpcode::G_FLOG10: 455 RTLIBCASE(LOG10_F); 456 case TargetOpcode::G_FLOG: 457 RTLIBCASE(LOG_F); 458 case TargetOpcode::G_FLOG2: 459 RTLIBCASE(LOG2_F); 460 case TargetOpcode::G_FCEIL: 461 RTLIBCASE(CEIL_F); 462 case TargetOpcode::G_FFLOOR: 463 RTLIBCASE(FLOOR_F); 464 case TargetOpcode::G_FMINNUM: 465 RTLIBCASE(FMIN_F); 466 case TargetOpcode::G_FMAXNUM: 467 RTLIBCASE(FMAX_F); 468 case TargetOpcode::G_FSQRT: 469 RTLIBCASE(SQRT_F); 470 case TargetOpcode::G_FRINT: 471 RTLIBCASE(RINT_F); 472 case TargetOpcode::G_FNEARBYINT: 473 RTLIBCASE(NEARBYINT_F); 474 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 475 RTLIBCASE(ROUNDEVEN_F); 476 } 477 llvm_unreachable("Unknown libcall function"); 478 } 479 480 /// True if an instruction is in tail position in its caller. Intended for 481 /// legalizing libcalls as tail calls when possible. 482 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 483 MachineInstr &MI) { 484 MachineBasicBlock &MBB = *MI.getParent(); 485 const Function &F = MBB.getParent()->getFunction(); 486 487 // Conservatively require the attributes of the call to match those of 488 // the return. Ignore NoAlias and NonNull because they don't affect the 489 // call sequence. 490 AttributeList CallerAttrs = F.getAttributes(); 491 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 492 .removeAttribute(Attribute::NoAlias) 493 .removeAttribute(Attribute::NonNull) 494 .hasAttributes()) 495 return false; 496 497 // It's not safe to eliminate the sign / zero extension of the return value. 498 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 499 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 500 return false; 501 502 // Only tail call if the following instruction is a standard return. 503 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 504 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 505 return false; 506 507 return true; 508 } 509 510 LegalizerHelper::LegalizeResult 511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 512 const CallLowering::ArgInfo &Result, 513 ArrayRef<CallLowering::ArgInfo> Args, 514 const CallingConv::ID CC) { 515 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 516 517 CallLowering::CallLoweringInfo Info; 518 Info.CallConv = CC; 519 Info.Callee = MachineOperand::CreateES(Name); 520 Info.OrigRet = Result; 521 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 522 if (!CLI.lowerCall(MIRBuilder, Info)) 523 return LegalizerHelper::UnableToLegalize; 524 525 return LegalizerHelper::Legalized; 526 } 527 528 LegalizerHelper::LegalizeResult 529 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 530 const CallLowering::ArgInfo &Result, 531 ArrayRef<CallLowering::ArgInfo> Args) { 532 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 533 const char *Name = TLI.getLibcallName(Libcall); 534 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 535 return createLibcall(MIRBuilder, Name, Result, Args, CC); 536 } 537 538 // Useful for libcalls where all operands have the same type. 539 static LegalizerHelper::LegalizeResult 540 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 541 Type *OpType) { 542 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 543 544 SmallVector<CallLowering::ArgInfo, 3> Args; 545 for (unsigned i = 1; i < MI.getNumOperands(); i++) 546 Args.push_back({MI.getOperand(i).getReg(), OpType}); 547 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 548 Args); 549 } 550 551 LegalizerHelper::LegalizeResult 552 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 553 MachineInstr &MI) { 554 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 555 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 556 557 SmallVector<CallLowering::ArgInfo, 3> Args; 558 // Add all the args, except for the last which is an imm denoting 'tail'. 559 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 560 Register Reg = MI.getOperand(i).getReg(); 561 562 // Need derive an IR type for call lowering. 563 LLT OpLLT = MRI.getType(Reg); 564 Type *OpTy = nullptr; 565 if (OpLLT.isPointer()) 566 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 567 else 568 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 569 Args.push_back({Reg, OpTy}); 570 } 571 572 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 573 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 574 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 575 RTLIB::Libcall RTLibcall; 576 switch (ID) { 577 case Intrinsic::memcpy: 578 RTLibcall = RTLIB::MEMCPY; 579 break; 580 case Intrinsic::memset: 581 RTLibcall = RTLIB::MEMSET; 582 break; 583 case Intrinsic::memmove: 584 RTLibcall = RTLIB::MEMMOVE; 585 break; 586 default: 587 return LegalizerHelper::UnableToLegalize; 588 } 589 const char *Name = TLI.getLibcallName(RTLibcall); 590 591 MIRBuilder.setInstrAndDebugLoc(MI); 592 593 CallLowering::CallLoweringInfo Info; 594 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 595 Info.Callee = MachineOperand::CreateES(Name); 596 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 597 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 598 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 599 600 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 601 if (!CLI.lowerCall(MIRBuilder, Info)) 602 return LegalizerHelper::UnableToLegalize; 603 604 if (Info.LoweredTailCall) { 605 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 606 // We must have a return following the call (or debug insts) to get past 607 // isLibCallInTailPosition. 608 do { 609 MachineInstr *Next = MI.getNextNode(); 610 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 611 "Expected instr following MI to be return or debug inst?"); 612 // We lowered a tail call, so the call is now the return from the block. 613 // Delete the old return. 614 Next->eraseFromParent(); 615 } while (MI.getNextNode()); 616 } 617 618 return LegalizerHelper::Legalized; 619 } 620 621 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 622 Type *FromType) { 623 auto ToMVT = MVT::getVT(ToType); 624 auto FromMVT = MVT::getVT(FromType); 625 626 switch (Opcode) { 627 case TargetOpcode::G_FPEXT: 628 return RTLIB::getFPEXT(FromMVT, ToMVT); 629 case TargetOpcode::G_FPTRUNC: 630 return RTLIB::getFPROUND(FromMVT, ToMVT); 631 case TargetOpcode::G_FPTOSI: 632 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 633 case TargetOpcode::G_FPTOUI: 634 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 635 case TargetOpcode::G_SITOFP: 636 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 637 case TargetOpcode::G_UITOFP: 638 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 639 } 640 llvm_unreachable("Unsupported libcall function"); 641 } 642 643 static LegalizerHelper::LegalizeResult 644 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 645 Type *FromType) { 646 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 647 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 648 {{MI.getOperand(1).getReg(), FromType}}); 649 } 650 651 LegalizerHelper::LegalizeResult 652 LegalizerHelper::libcall(MachineInstr &MI) { 653 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 654 unsigned Size = LLTy.getSizeInBits(); 655 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 656 657 switch (MI.getOpcode()) { 658 default: 659 return UnableToLegalize; 660 case TargetOpcode::G_SDIV: 661 case TargetOpcode::G_UDIV: 662 case TargetOpcode::G_SREM: 663 case TargetOpcode::G_UREM: 664 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 665 Type *HLTy = IntegerType::get(Ctx, Size); 666 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 667 if (Status != Legalized) 668 return Status; 669 break; 670 } 671 case TargetOpcode::G_FADD: 672 case TargetOpcode::G_FSUB: 673 case TargetOpcode::G_FMUL: 674 case TargetOpcode::G_FDIV: 675 case TargetOpcode::G_FMA: 676 case TargetOpcode::G_FPOW: 677 case TargetOpcode::G_FREM: 678 case TargetOpcode::G_FCOS: 679 case TargetOpcode::G_FSIN: 680 case TargetOpcode::G_FLOG10: 681 case TargetOpcode::G_FLOG: 682 case TargetOpcode::G_FLOG2: 683 case TargetOpcode::G_FEXP: 684 case TargetOpcode::G_FEXP2: 685 case TargetOpcode::G_FCEIL: 686 case TargetOpcode::G_FFLOOR: 687 case TargetOpcode::G_FMINNUM: 688 case TargetOpcode::G_FMAXNUM: 689 case TargetOpcode::G_FSQRT: 690 case TargetOpcode::G_FRINT: 691 case TargetOpcode::G_FNEARBYINT: 692 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 693 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 694 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 695 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 696 return UnableToLegalize; 697 } 698 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 699 if (Status != Legalized) 700 return Status; 701 break; 702 } 703 case TargetOpcode::G_FPEXT: 704 case TargetOpcode::G_FPTRUNC: { 705 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 706 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 707 if (!FromTy || !ToTy) 708 return UnableToLegalize; 709 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 710 if (Status != Legalized) 711 return Status; 712 break; 713 } 714 case TargetOpcode::G_FPTOSI: 715 case TargetOpcode::G_FPTOUI: { 716 // FIXME: Support other types 717 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 718 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 719 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 720 return UnableToLegalize; 721 LegalizeResult Status = conversionLibcall( 722 MI, MIRBuilder, 723 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 724 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 725 if (Status != Legalized) 726 return Status; 727 break; 728 } 729 case TargetOpcode::G_SITOFP: 730 case TargetOpcode::G_UITOFP: { 731 // FIXME: Support other types 732 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 733 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 734 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 735 return UnableToLegalize; 736 LegalizeResult Status = conversionLibcall( 737 MI, MIRBuilder, 738 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 739 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 740 if (Status != Legalized) 741 return Status; 742 break; 743 } 744 } 745 746 MI.eraseFromParent(); 747 return Legalized; 748 } 749 750 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 751 unsigned TypeIdx, 752 LLT NarrowTy) { 753 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 754 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 755 756 switch (MI.getOpcode()) { 757 default: 758 return UnableToLegalize; 759 case TargetOpcode::G_IMPLICIT_DEF: { 760 Register DstReg = MI.getOperand(0).getReg(); 761 LLT DstTy = MRI.getType(DstReg); 762 763 // If SizeOp0 is not an exact multiple of NarrowSize, emit 764 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 765 // FIXME: Although this would also be legal for the general case, it causes 766 // a lot of regressions in the emitted code (superfluous COPYs, artifact 767 // combines not being hit). This seems to be a problem related to the 768 // artifact combiner. 769 if (SizeOp0 % NarrowSize != 0) { 770 LLT ImplicitTy = NarrowTy; 771 if (DstTy.isVector()) 772 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 773 774 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 775 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 776 777 MI.eraseFromParent(); 778 return Legalized; 779 } 780 781 int NumParts = SizeOp0 / NarrowSize; 782 783 SmallVector<Register, 2> DstRegs; 784 for (int i = 0; i < NumParts; ++i) 785 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 786 787 if (DstTy.isVector()) 788 MIRBuilder.buildBuildVector(DstReg, DstRegs); 789 else 790 MIRBuilder.buildMerge(DstReg, DstRegs); 791 MI.eraseFromParent(); 792 return Legalized; 793 } 794 case TargetOpcode::G_CONSTANT: { 795 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 796 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 797 unsigned TotalSize = Ty.getSizeInBits(); 798 unsigned NarrowSize = NarrowTy.getSizeInBits(); 799 int NumParts = TotalSize / NarrowSize; 800 801 SmallVector<Register, 4> PartRegs; 802 for (int I = 0; I != NumParts; ++I) { 803 unsigned Offset = I * NarrowSize; 804 auto K = MIRBuilder.buildConstant(NarrowTy, 805 Val.lshr(Offset).trunc(NarrowSize)); 806 PartRegs.push_back(K.getReg(0)); 807 } 808 809 LLT LeftoverTy; 810 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 811 SmallVector<Register, 1> LeftoverRegs; 812 if (LeftoverBits != 0) { 813 LeftoverTy = LLT::scalar(LeftoverBits); 814 auto K = MIRBuilder.buildConstant( 815 LeftoverTy, 816 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 817 LeftoverRegs.push_back(K.getReg(0)); 818 } 819 820 insertParts(MI.getOperand(0).getReg(), 821 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 822 823 MI.eraseFromParent(); 824 return Legalized; 825 } 826 case TargetOpcode::G_SEXT: 827 case TargetOpcode::G_ZEXT: 828 case TargetOpcode::G_ANYEXT: 829 return narrowScalarExt(MI, TypeIdx, NarrowTy); 830 case TargetOpcode::G_TRUNC: { 831 if (TypeIdx != 1) 832 return UnableToLegalize; 833 834 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 835 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 836 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 837 return UnableToLegalize; 838 } 839 840 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 841 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 842 MI.eraseFromParent(); 843 return Legalized; 844 } 845 846 case TargetOpcode::G_FREEZE: 847 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 848 849 case TargetOpcode::G_ADD: { 850 // FIXME: add support for when SizeOp0 isn't an exact multiple of 851 // NarrowSize. 852 if (SizeOp0 % NarrowSize != 0) 853 return UnableToLegalize; 854 // Expand in terms of carry-setting/consuming G_ADDE instructions. 855 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 856 857 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 858 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 859 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 860 861 Register CarryIn; 862 for (int i = 0; i < NumParts; ++i) { 863 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 864 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 865 866 if (i == 0) 867 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 868 else { 869 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 870 Src2Regs[i], CarryIn); 871 } 872 873 DstRegs.push_back(DstReg); 874 CarryIn = CarryOut; 875 } 876 Register DstReg = MI.getOperand(0).getReg(); 877 if(MRI.getType(DstReg).isVector()) 878 MIRBuilder.buildBuildVector(DstReg, DstRegs); 879 else 880 MIRBuilder.buildMerge(DstReg, DstRegs); 881 MI.eraseFromParent(); 882 return Legalized; 883 } 884 case TargetOpcode::G_SUB: { 885 // FIXME: add support for when SizeOp0 isn't an exact multiple of 886 // NarrowSize. 887 if (SizeOp0 % NarrowSize != 0) 888 return UnableToLegalize; 889 890 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 891 892 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 893 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 894 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 895 896 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 897 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 898 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 899 {Src1Regs[0], Src2Regs[0]}); 900 DstRegs.push_back(DstReg); 901 Register BorrowIn = BorrowOut; 902 for (int i = 1; i < NumParts; ++i) { 903 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 904 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 905 906 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 907 {Src1Regs[i], Src2Regs[i], BorrowIn}); 908 909 DstRegs.push_back(DstReg); 910 BorrowIn = BorrowOut; 911 } 912 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 913 MI.eraseFromParent(); 914 return Legalized; 915 } 916 case TargetOpcode::G_MUL: 917 case TargetOpcode::G_UMULH: 918 return narrowScalarMul(MI, NarrowTy); 919 case TargetOpcode::G_EXTRACT: 920 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 921 case TargetOpcode::G_INSERT: 922 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 923 case TargetOpcode::G_LOAD: { 924 auto &MMO = **MI.memoperands_begin(); 925 Register DstReg = MI.getOperand(0).getReg(); 926 LLT DstTy = MRI.getType(DstReg); 927 if (DstTy.isVector()) 928 return UnableToLegalize; 929 930 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 931 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 932 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 933 MIRBuilder.buildAnyExt(DstReg, TmpReg); 934 MI.eraseFromParent(); 935 return Legalized; 936 } 937 938 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 939 } 940 case TargetOpcode::G_ZEXTLOAD: 941 case TargetOpcode::G_SEXTLOAD: { 942 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 943 Register DstReg = MI.getOperand(0).getReg(); 944 Register PtrReg = MI.getOperand(1).getReg(); 945 946 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 947 auto &MMO = **MI.memoperands_begin(); 948 if (MMO.getSizeInBits() == NarrowSize) { 949 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 950 } else { 951 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 952 } 953 954 if (ZExt) 955 MIRBuilder.buildZExt(DstReg, TmpReg); 956 else 957 MIRBuilder.buildSExt(DstReg, TmpReg); 958 959 MI.eraseFromParent(); 960 return Legalized; 961 } 962 case TargetOpcode::G_STORE: { 963 const auto &MMO = **MI.memoperands_begin(); 964 965 Register SrcReg = MI.getOperand(0).getReg(); 966 LLT SrcTy = MRI.getType(SrcReg); 967 if (SrcTy.isVector()) 968 return UnableToLegalize; 969 970 int NumParts = SizeOp0 / NarrowSize; 971 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 972 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 973 if (SrcTy.isVector() && LeftoverBits != 0) 974 return UnableToLegalize; 975 976 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 977 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 978 auto &MMO = **MI.memoperands_begin(); 979 MIRBuilder.buildTrunc(TmpReg, SrcReg); 980 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 981 MI.eraseFromParent(); 982 return Legalized; 983 } 984 985 return reduceLoadStoreWidth(MI, 0, NarrowTy); 986 } 987 case TargetOpcode::G_SELECT: 988 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 989 case TargetOpcode::G_AND: 990 case TargetOpcode::G_OR: 991 case TargetOpcode::G_XOR: { 992 // Legalize bitwise operation: 993 // A = BinOp<Ty> B, C 994 // into: 995 // B1, ..., BN = G_UNMERGE_VALUES B 996 // C1, ..., CN = G_UNMERGE_VALUES C 997 // A1 = BinOp<Ty/N> B1, C2 998 // ... 999 // AN = BinOp<Ty/N> BN, CN 1000 // A = G_MERGE_VALUES A1, ..., AN 1001 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1002 } 1003 case TargetOpcode::G_SHL: 1004 case TargetOpcode::G_LSHR: 1005 case TargetOpcode::G_ASHR: 1006 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1007 case TargetOpcode::G_CTLZ: 1008 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1009 case TargetOpcode::G_CTTZ: 1010 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1011 case TargetOpcode::G_CTPOP: 1012 if (TypeIdx == 1) 1013 switch (MI.getOpcode()) { 1014 case TargetOpcode::G_CTLZ: 1015 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1016 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1017 case TargetOpcode::G_CTTZ: 1018 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1019 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1020 case TargetOpcode::G_CTPOP: 1021 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1022 default: 1023 return UnableToLegalize; 1024 } 1025 1026 Observer.changingInstr(MI); 1027 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1028 Observer.changedInstr(MI); 1029 return Legalized; 1030 case TargetOpcode::G_INTTOPTR: 1031 if (TypeIdx != 1) 1032 return UnableToLegalize; 1033 1034 Observer.changingInstr(MI); 1035 narrowScalarSrc(MI, NarrowTy, 1); 1036 Observer.changedInstr(MI); 1037 return Legalized; 1038 case TargetOpcode::G_PTRTOINT: 1039 if (TypeIdx != 0) 1040 return UnableToLegalize; 1041 1042 Observer.changingInstr(MI); 1043 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1044 Observer.changedInstr(MI); 1045 return Legalized; 1046 case TargetOpcode::G_PHI: { 1047 unsigned NumParts = SizeOp0 / NarrowSize; 1048 SmallVector<Register, 2> DstRegs(NumParts); 1049 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1050 Observer.changingInstr(MI); 1051 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1052 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1053 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1054 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1055 SrcRegs[i / 2]); 1056 } 1057 MachineBasicBlock &MBB = *MI.getParent(); 1058 MIRBuilder.setInsertPt(MBB, MI); 1059 for (unsigned i = 0; i < NumParts; ++i) { 1060 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1061 MachineInstrBuilder MIB = 1062 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1063 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1064 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1065 } 1066 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1067 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1068 Observer.changedInstr(MI); 1069 MI.eraseFromParent(); 1070 return Legalized; 1071 } 1072 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1073 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1074 if (TypeIdx != 2) 1075 return UnableToLegalize; 1076 1077 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1078 Observer.changingInstr(MI); 1079 narrowScalarSrc(MI, NarrowTy, OpIdx); 1080 Observer.changedInstr(MI); 1081 return Legalized; 1082 } 1083 case TargetOpcode::G_ICMP: { 1084 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1085 if (NarrowSize * 2 != SrcSize) 1086 return UnableToLegalize; 1087 1088 Observer.changingInstr(MI); 1089 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1090 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1091 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1092 1093 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1094 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1095 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1096 1097 CmpInst::Predicate Pred = 1098 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1099 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1100 1101 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1102 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1103 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1104 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1105 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1106 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1107 } else { 1108 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1109 MachineInstrBuilder CmpHEQ = 1110 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1111 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1112 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1113 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1114 } 1115 Observer.changedInstr(MI); 1116 MI.eraseFromParent(); 1117 return Legalized; 1118 } 1119 case TargetOpcode::G_SEXT_INREG: { 1120 if (TypeIdx != 0) 1121 return UnableToLegalize; 1122 1123 int64_t SizeInBits = MI.getOperand(2).getImm(); 1124 1125 // So long as the new type has more bits than the bits we're extending we 1126 // don't need to break it apart. 1127 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1128 Observer.changingInstr(MI); 1129 // We don't lose any non-extension bits by truncating the src and 1130 // sign-extending the dst. 1131 MachineOperand &MO1 = MI.getOperand(1); 1132 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1133 MO1.setReg(TruncMIB.getReg(0)); 1134 1135 MachineOperand &MO2 = MI.getOperand(0); 1136 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1137 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1138 MIRBuilder.buildSExt(MO2, DstExt); 1139 MO2.setReg(DstExt); 1140 Observer.changedInstr(MI); 1141 return Legalized; 1142 } 1143 1144 // Break it apart. Components below the extension point are unmodified. The 1145 // component containing the extension point becomes a narrower SEXT_INREG. 1146 // Components above it are ashr'd from the component containing the 1147 // extension point. 1148 if (SizeOp0 % NarrowSize != 0) 1149 return UnableToLegalize; 1150 int NumParts = SizeOp0 / NarrowSize; 1151 1152 // List the registers where the destination will be scattered. 1153 SmallVector<Register, 2> DstRegs; 1154 // List the registers where the source will be split. 1155 SmallVector<Register, 2> SrcRegs; 1156 1157 // Create all the temporary registers. 1158 for (int i = 0; i < NumParts; ++i) { 1159 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1160 1161 SrcRegs.push_back(SrcReg); 1162 } 1163 1164 // Explode the big arguments into smaller chunks. 1165 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1166 1167 Register AshrCstReg = 1168 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1169 .getReg(0); 1170 Register FullExtensionReg = 0; 1171 Register PartialExtensionReg = 0; 1172 1173 // Do the operation on each small part. 1174 for (int i = 0; i < NumParts; ++i) { 1175 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1176 DstRegs.push_back(SrcRegs[i]); 1177 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1178 assert(PartialExtensionReg && 1179 "Expected to visit partial extension before full"); 1180 if (FullExtensionReg) { 1181 DstRegs.push_back(FullExtensionReg); 1182 continue; 1183 } 1184 DstRegs.push_back( 1185 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1186 .getReg(0)); 1187 FullExtensionReg = DstRegs.back(); 1188 } else { 1189 DstRegs.push_back( 1190 MIRBuilder 1191 .buildInstr( 1192 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1193 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1194 .getReg(0)); 1195 PartialExtensionReg = DstRegs.back(); 1196 } 1197 } 1198 1199 // Gather the destination registers into the final destination. 1200 Register DstReg = MI.getOperand(0).getReg(); 1201 MIRBuilder.buildMerge(DstReg, DstRegs); 1202 MI.eraseFromParent(); 1203 return Legalized; 1204 } 1205 case TargetOpcode::G_BSWAP: 1206 case TargetOpcode::G_BITREVERSE: { 1207 if (SizeOp0 % NarrowSize != 0) 1208 return UnableToLegalize; 1209 1210 Observer.changingInstr(MI); 1211 SmallVector<Register, 2> SrcRegs, DstRegs; 1212 unsigned NumParts = SizeOp0 / NarrowSize; 1213 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1214 1215 for (unsigned i = 0; i < NumParts; ++i) { 1216 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1217 {SrcRegs[NumParts - 1 - i]}); 1218 DstRegs.push_back(DstPart.getReg(0)); 1219 } 1220 1221 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1222 1223 Observer.changedInstr(MI); 1224 MI.eraseFromParent(); 1225 return Legalized; 1226 } 1227 case TargetOpcode::G_PTR_ADD: 1228 case TargetOpcode::G_PTRMASK: { 1229 if (TypeIdx != 1) 1230 return UnableToLegalize; 1231 Observer.changingInstr(MI); 1232 narrowScalarSrc(MI, NarrowTy, 2); 1233 Observer.changedInstr(MI); 1234 return Legalized; 1235 } 1236 case TargetOpcode::G_FPTOUI: { 1237 if (TypeIdx != 0) 1238 return UnableToLegalize; 1239 Observer.changingInstr(MI); 1240 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1241 Observer.changedInstr(MI); 1242 return Legalized; 1243 } 1244 case TargetOpcode::G_FPTOSI: { 1245 if (TypeIdx != 0) 1246 return UnableToLegalize; 1247 Observer.changingInstr(MI); 1248 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1249 Observer.changedInstr(MI); 1250 return Legalized; 1251 } 1252 case TargetOpcode::G_FPEXT: 1253 if (TypeIdx != 0) 1254 return UnableToLegalize; 1255 Observer.changingInstr(MI); 1256 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1257 Observer.changedInstr(MI); 1258 return Legalized; 1259 } 1260 } 1261 1262 Register LegalizerHelper::coerceToScalar(Register Val) { 1263 LLT Ty = MRI.getType(Val); 1264 if (Ty.isScalar()) 1265 return Val; 1266 1267 const DataLayout &DL = MIRBuilder.getDataLayout(); 1268 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1269 if (Ty.isPointer()) { 1270 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1271 return Register(); 1272 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1273 } 1274 1275 Register NewVal = Val; 1276 1277 assert(Ty.isVector()); 1278 LLT EltTy = Ty.getElementType(); 1279 if (EltTy.isPointer()) 1280 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1281 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1282 } 1283 1284 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1285 unsigned OpIdx, unsigned ExtOpcode) { 1286 MachineOperand &MO = MI.getOperand(OpIdx); 1287 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1288 MO.setReg(ExtB.getReg(0)); 1289 } 1290 1291 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1292 unsigned OpIdx) { 1293 MachineOperand &MO = MI.getOperand(OpIdx); 1294 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1295 MO.setReg(ExtB.getReg(0)); 1296 } 1297 1298 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1299 unsigned OpIdx, unsigned TruncOpcode) { 1300 MachineOperand &MO = MI.getOperand(OpIdx); 1301 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1302 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1303 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1304 MO.setReg(DstExt); 1305 } 1306 1307 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1308 unsigned OpIdx, unsigned ExtOpcode) { 1309 MachineOperand &MO = MI.getOperand(OpIdx); 1310 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1311 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1312 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1313 MO.setReg(DstTrunc); 1314 } 1315 1316 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1317 unsigned OpIdx) { 1318 MachineOperand &MO = MI.getOperand(OpIdx); 1319 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1320 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1321 } 1322 1323 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1324 unsigned OpIdx) { 1325 MachineOperand &MO = MI.getOperand(OpIdx); 1326 1327 LLT OldTy = MRI.getType(MO.getReg()); 1328 unsigned OldElts = OldTy.getNumElements(); 1329 unsigned NewElts = MoreTy.getNumElements(); 1330 1331 unsigned NumParts = NewElts / OldElts; 1332 1333 // Use concat_vectors if the result is a multiple of the number of elements. 1334 if (NumParts * OldElts == NewElts) { 1335 SmallVector<Register, 8> Parts; 1336 Parts.push_back(MO.getReg()); 1337 1338 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1339 for (unsigned I = 1; I != NumParts; ++I) 1340 Parts.push_back(ImpDef); 1341 1342 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1343 MO.setReg(Concat.getReg(0)); 1344 return; 1345 } 1346 1347 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1348 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1349 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1350 MO.setReg(MoreReg); 1351 } 1352 1353 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1354 MachineOperand &Op = MI.getOperand(OpIdx); 1355 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1356 } 1357 1358 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1359 MachineOperand &MO = MI.getOperand(OpIdx); 1360 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1361 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1362 MIRBuilder.buildBitcast(MO, CastDst); 1363 MO.setReg(CastDst); 1364 } 1365 1366 LegalizerHelper::LegalizeResult 1367 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1368 LLT WideTy) { 1369 if (TypeIdx != 1) 1370 return UnableToLegalize; 1371 1372 Register DstReg = MI.getOperand(0).getReg(); 1373 LLT DstTy = MRI.getType(DstReg); 1374 if (DstTy.isVector()) 1375 return UnableToLegalize; 1376 1377 Register Src1 = MI.getOperand(1).getReg(); 1378 LLT SrcTy = MRI.getType(Src1); 1379 const int DstSize = DstTy.getSizeInBits(); 1380 const int SrcSize = SrcTy.getSizeInBits(); 1381 const int WideSize = WideTy.getSizeInBits(); 1382 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1383 1384 unsigned NumOps = MI.getNumOperands(); 1385 unsigned NumSrc = MI.getNumOperands() - 1; 1386 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1387 1388 if (WideSize >= DstSize) { 1389 // Directly pack the bits in the target type. 1390 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1391 1392 for (unsigned I = 2; I != NumOps; ++I) { 1393 const unsigned Offset = (I - 1) * PartSize; 1394 1395 Register SrcReg = MI.getOperand(I).getReg(); 1396 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1397 1398 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1399 1400 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1401 MRI.createGenericVirtualRegister(WideTy); 1402 1403 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1404 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1405 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1406 ResultReg = NextResult; 1407 } 1408 1409 if (WideSize > DstSize) 1410 MIRBuilder.buildTrunc(DstReg, ResultReg); 1411 else if (DstTy.isPointer()) 1412 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1413 1414 MI.eraseFromParent(); 1415 return Legalized; 1416 } 1417 1418 // Unmerge the original values to the GCD type, and recombine to the next 1419 // multiple greater than the original type. 1420 // 1421 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1422 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1423 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1424 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1425 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1426 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1427 // %12:_(s12) = G_MERGE_VALUES %10, %11 1428 // 1429 // Padding with undef if necessary: 1430 // 1431 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1432 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1433 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1434 // %7:_(s2) = G_IMPLICIT_DEF 1435 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1436 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1437 // %10:_(s12) = G_MERGE_VALUES %8, %9 1438 1439 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1440 LLT GCDTy = LLT::scalar(GCD); 1441 1442 SmallVector<Register, 8> Parts; 1443 SmallVector<Register, 8> NewMergeRegs; 1444 SmallVector<Register, 8> Unmerges; 1445 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1446 1447 // Decompose the original operands if they don't evenly divide. 1448 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1449 Register SrcReg = MI.getOperand(I).getReg(); 1450 if (GCD == SrcSize) { 1451 Unmerges.push_back(SrcReg); 1452 } else { 1453 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1454 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1455 Unmerges.push_back(Unmerge.getReg(J)); 1456 } 1457 } 1458 1459 // Pad with undef to the next size that is a multiple of the requested size. 1460 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1461 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1462 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1463 Unmerges.push_back(UndefReg); 1464 } 1465 1466 const int PartsPerGCD = WideSize / GCD; 1467 1468 // Build merges of each piece. 1469 ArrayRef<Register> Slicer(Unmerges); 1470 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1471 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1472 NewMergeRegs.push_back(Merge.getReg(0)); 1473 } 1474 1475 // A truncate may be necessary if the requested type doesn't evenly divide the 1476 // original result type. 1477 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1478 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1479 } else { 1480 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1481 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1482 } 1483 1484 MI.eraseFromParent(); 1485 return Legalized; 1486 } 1487 1488 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1489 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1490 LLT OrigTy = MRI.getType(OrigReg); 1491 LLT LCMTy = getLCMType(WideTy, OrigTy); 1492 1493 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1494 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1495 1496 Register UnmergeSrc = WideReg; 1497 1498 // Create a merge to the LCM type, padding with undef 1499 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1500 // => 1501 // %1:_(<4 x s32>) = G_FOO 1502 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1503 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1504 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1505 if (NumMergeParts > 1) { 1506 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1507 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1508 MergeParts[0] = WideReg; 1509 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1510 } 1511 1512 // Unmerge to the original register and pad with dead defs. 1513 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1514 UnmergeResults[0] = OrigReg; 1515 for (int I = 1; I != NumUnmergeParts; ++I) 1516 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1517 1518 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1519 return WideReg; 1520 } 1521 1522 LegalizerHelper::LegalizeResult 1523 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1524 LLT WideTy) { 1525 if (TypeIdx != 0) 1526 return UnableToLegalize; 1527 1528 int NumDst = MI.getNumOperands() - 1; 1529 Register SrcReg = MI.getOperand(NumDst).getReg(); 1530 LLT SrcTy = MRI.getType(SrcReg); 1531 if (SrcTy.isVector()) 1532 return UnableToLegalize; 1533 1534 Register Dst0Reg = MI.getOperand(0).getReg(); 1535 LLT DstTy = MRI.getType(Dst0Reg); 1536 if (!DstTy.isScalar()) 1537 return UnableToLegalize; 1538 1539 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1540 if (SrcTy.isPointer()) { 1541 const DataLayout &DL = MIRBuilder.getDataLayout(); 1542 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1543 LLVM_DEBUG( 1544 dbgs() << "Not casting non-integral address space integer\n"); 1545 return UnableToLegalize; 1546 } 1547 1548 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1549 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1550 } 1551 1552 // Widen SrcTy to WideTy. This does not affect the result, but since the 1553 // user requested this size, it is probably better handled than SrcTy and 1554 // should reduce the total number of legalization artifacts 1555 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1556 SrcTy = WideTy; 1557 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1558 } 1559 1560 // Theres no unmerge type to target. Directly extract the bits from the 1561 // source type 1562 unsigned DstSize = DstTy.getSizeInBits(); 1563 1564 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1565 for (int I = 1; I != NumDst; ++I) { 1566 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1567 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1568 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1569 } 1570 1571 MI.eraseFromParent(); 1572 return Legalized; 1573 } 1574 1575 // Extend the source to a wider type. 1576 LLT LCMTy = getLCMType(SrcTy, WideTy); 1577 1578 Register WideSrc = SrcReg; 1579 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1580 // TODO: If this is an integral address space, cast to integer and anyext. 1581 if (SrcTy.isPointer()) { 1582 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1583 return UnableToLegalize; 1584 } 1585 1586 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1587 } 1588 1589 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1590 1591 // Create a sequence of unmerges to the original results. since we may have 1592 // widened the source, we will need to pad the results with dead defs to cover 1593 // the source register. 1594 // e.g. widen s16 to s32: 1595 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1596 // 1597 // => 1598 // %4:_(s64) = G_ANYEXT %0:_(s48) 1599 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1600 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1601 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1602 1603 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1604 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1605 1606 for (int I = 0; I != NumUnmerge; ++I) { 1607 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1608 1609 for (int J = 0; J != PartsPerUnmerge; ++J) { 1610 int Idx = I * PartsPerUnmerge + J; 1611 if (Idx < NumDst) 1612 MIB.addDef(MI.getOperand(Idx).getReg()); 1613 else { 1614 // Create dead def for excess components. 1615 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1616 } 1617 } 1618 1619 MIB.addUse(Unmerge.getReg(I)); 1620 } 1621 1622 MI.eraseFromParent(); 1623 return Legalized; 1624 } 1625 1626 LegalizerHelper::LegalizeResult 1627 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1628 LLT WideTy) { 1629 Register DstReg = MI.getOperand(0).getReg(); 1630 Register SrcReg = MI.getOperand(1).getReg(); 1631 LLT SrcTy = MRI.getType(SrcReg); 1632 1633 LLT DstTy = MRI.getType(DstReg); 1634 unsigned Offset = MI.getOperand(2).getImm(); 1635 1636 if (TypeIdx == 0) { 1637 if (SrcTy.isVector() || DstTy.isVector()) 1638 return UnableToLegalize; 1639 1640 SrcOp Src(SrcReg); 1641 if (SrcTy.isPointer()) { 1642 // Extracts from pointers can be handled only if they are really just 1643 // simple integers. 1644 const DataLayout &DL = MIRBuilder.getDataLayout(); 1645 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1646 return UnableToLegalize; 1647 1648 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1649 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1650 SrcTy = SrcAsIntTy; 1651 } 1652 1653 if (DstTy.isPointer()) 1654 return UnableToLegalize; 1655 1656 if (Offset == 0) { 1657 // Avoid a shift in the degenerate case. 1658 MIRBuilder.buildTrunc(DstReg, 1659 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1660 MI.eraseFromParent(); 1661 return Legalized; 1662 } 1663 1664 // Do a shift in the source type. 1665 LLT ShiftTy = SrcTy; 1666 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1667 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1668 ShiftTy = WideTy; 1669 } 1670 1671 auto LShr = MIRBuilder.buildLShr( 1672 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1673 MIRBuilder.buildTrunc(DstReg, LShr); 1674 MI.eraseFromParent(); 1675 return Legalized; 1676 } 1677 1678 if (SrcTy.isScalar()) { 1679 Observer.changingInstr(MI); 1680 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1681 Observer.changedInstr(MI); 1682 return Legalized; 1683 } 1684 1685 if (!SrcTy.isVector()) 1686 return UnableToLegalize; 1687 1688 if (DstTy != SrcTy.getElementType()) 1689 return UnableToLegalize; 1690 1691 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1692 return UnableToLegalize; 1693 1694 Observer.changingInstr(MI); 1695 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1696 1697 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1698 Offset); 1699 widenScalarDst(MI, WideTy.getScalarType(), 0); 1700 Observer.changedInstr(MI); 1701 return Legalized; 1702 } 1703 1704 LegalizerHelper::LegalizeResult 1705 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1706 LLT WideTy) { 1707 if (TypeIdx != 0 || WideTy.isVector()) 1708 return UnableToLegalize; 1709 Observer.changingInstr(MI); 1710 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1711 widenScalarDst(MI, WideTy); 1712 Observer.changedInstr(MI); 1713 return Legalized; 1714 } 1715 1716 LegalizerHelper::LegalizeResult 1717 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1718 LLT WideTy) { 1719 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1720 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1721 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1722 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1723 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1724 // We can convert this to: 1725 // 1. Any extend iN to iM 1726 // 2. SHL by M-N 1727 // 3. [US][ADD|SUB|SHL]SAT 1728 // 4. L/ASHR by M-N 1729 // 1730 // It may be more efficient to lower this to a min and a max operation in 1731 // the higher precision arithmetic if the promoted operation isn't legal, 1732 // but this decision is up to the target's lowering request. 1733 Register DstReg = MI.getOperand(0).getReg(); 1734 1735 unsigned NewBits = WideTy.getScalarSizeInBits(); 1736 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1737 1738 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1739 // must not left shift the RHS to preserve the shift amount. 1740 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1741 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1742 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1743 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1744 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1745 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1746 1747 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1748 {ShiftL, ShiftR}, MI.getFlags()); 1749 1750 // Use a shift that will preserve the number of sign bits when the trunc is 1751 // folded away. 1752 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1753 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1754 1755 MIRBuilder.buildTrunc(DstReg, Result); 1756 MI.eraseFromParent(); 1757 return Legalized; 1758 } 1759 1760 LegalizerHelper::LegalizeResult 1761 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1762 switch (MI.getOpcode()) { 1763 default: 1764 return UnableToLegalize; 1765 case TargetOpcode::G_EXTRACT: 1766 return widenScalarExtract(MI, TypeIdx, WideTy); 1767 case TargetOpcode::G_INSERT: 1768 return widenScalarInsert(MI, TypeIdx, WideTy); 1769 case TargetOpcode::G_MERGE_VALUES: 1770 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1771 case TargetOpcode::G_UNMERGE_VALUES: 1772 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1773 case TargetOpcode::G_UADDO: 1774 case TargetOpcode::G_USUBO: { 1775 if (TypeIdx == 1) 1776 return UnableToLegalize; // TODO 1777 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1778 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1779 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1780 ? TargetOpcode::G_ADD 1781 : TargetOpcode::G_SUB; 1782 // Do the arithmetic in the larger type. 1783 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1784 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1785 APInt Mask = 1786 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1787 auto AndOp = MIRBuilder.buildAnd( 1788 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1789 // There is no overflow if the AndOp is the same as NewOp. 1790 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1791 // Now trunc the NewOp to the original result. 1792 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1793 MI.eraseFromParent(); 1794 return Legalized; 1795 } 1796 case TargetOpcode::G_SADDSAT: 1797 case TargetOpcode::G_SSUBSAT: 1798 case TargetOpcode::G_SSHLSAT: 1799 case TargetOpcode::G_UADDSAT: 1800 case TargetOpcode::G_USUBSAT: 1801 case TargetOpcode::G_USHLSAT: 1802 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1803 case TargetOpcode::G_CTTZ: 1804 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1805 case TargetOpcode::G_CTLZ: 1806 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1807 case TargetOpcode::G_CTPOP: { 1808 if (TypeIdx == 0) { 1809 Observer.changingInstr(MI); 1810 widenScalarDst(MI, WideTy, 0); 1811 Observer.changedInstr(MI); 1812 return Legalized; 1813 } 1814 1815 Register SrcReg = MI.getOperand(1).getReg(); 1816 1817 // First ZEXT the input. 1818 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1819 LLT CurTy = MRI.getType(SrcReg); 1820 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1821 // The count is the same in the larger type except if the original 1822 // value was zero. This can be handled by setting the bit just off 1823 // the top of the original type. 1824 auto TopBit = 1825 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1826 MIBSrc = MIRBuilder.buildOr( 1827 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1828 } 1829 1830 // Perform the operation at the larger size. 1831 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1832 // This is already the correct result for CTPOP and CTTZs 1833 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1834 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1835 // The correct result is NewOp - (Difference in widety and current ty). 1836 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1837 MIBNewOp = MIRBuilder.buildSub( 1838 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1839 } 1840 1841 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1842 MI.eraseFromParent(); 1843 return Legalized; 1844 } 1845 case TargetOpcode::G_BSWAP: { 1846 Observer.changingInstr(MI); 1847 Register DstReg = MI.getOperand(0).getReg(); 1848 1849 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1850 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1851 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1852 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1853 1854 MI.getOperand(0).setReg(DstExt); 1855 1856 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1857 1858 LLT Ty = MRI.getType(DstReg); 1859 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1860 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1861 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1862 1863 MIRBuilder.buildTrunc(DstReg, ShrReg); 1864 Observer.changedInstr(MI); 1865 return Legalized; 1866 } 1867 case TargetOpcode::G_BITREVERSE: { 1868 Observer.changingInstr(MI); 1869 1870 Register DstReg = MI.getOperand(0).getReg(); 1871 LLT Ty = MRI.getType(DstReg); 1872 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1873 1874 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1875 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1876 MI.getOperand(0).setReg(DstExt); 1877 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1878 1879 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1880 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1881 MIRBuilder.buildTrunc(DstReg, Shift); 1882 Observer.changedInstr(MI); 1883 return Legalized; 1884 } 1885 case TargetOpcode::G_FREEZE: 1886 Observer.changingInstr(MI); 1887 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1888 widenScalarDst(MI, WideTy); 1889 Observer.changedInstr(MI); 1890 return Legalized; 1891 1892 case TargetOpcode::G_ADD: 1893 case TargetOpcode::G_AND: 1894 case TargetOpcode::G_MUL: 1895 case TargetOpcode::G_OR: 1896 case TargetOpcode::G_XOR: 1897 case TargetOpcode::G_SUB: 1898 // Perform operation at larger width (any extension is fines here, high bits 1899 // don't affect the result) and then truncate the result back to the 1900 // original type. 1901 Observer.changingInstr(MI); 1902 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1903 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1904 widenScalarDst(MI, WideTy); 1905 Observer.changedInstr(MI); 1906 return Legalized; 1907 1908 case TargetOpcode::G_SHL: 1909 Observer.changingInstr(MI); 1910 1911 if (TypeIdx == 0) { 1912 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1913 widenScalarDst(MI, WideTy); 1914 } else { 1915 assert(TypeIdx == 1); 1916 // The "number of bits to shift" operand must preserve its value as an 1917 // unsigned integer: 1918 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1919 } 1920 1921 Observer.changedInstr(MI); 1922 return Legalized; 1923 1924 case TargetOpcode::G_SDIV: 1925 case TargetOpcode::G_SREM: 1926 case TargetOpcode::G_SMIN: 1927 case TargetOpcode::G_SMAX: 1928 Observer.changingInstr(MI); 1929 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1930 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1931 widenScalarDst(MI, WideTy); 1932 Observer.changedInstr(MI); 1933 return Legalized; 1934 1935 case TargetOpcode::G_ASHR: 1936 case TargetOpcode::G_LSHR: 1937 Observer.changingInstr(MI); 1938 1939 if (TypeIdx == 0) { 1940 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1941 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1942 1943 widenScalarSrc(MI, WideTy, 1, CvtOp); 1944 widenScalarDst(MI, WideTy); 1945 } else { 1946 assert(TypeIdx == 1); 1947 // The "number of bits to shift" operand must preserve its value as an 1948 // unsigned integer: 1949 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1950 } 1951 1952 Observer.changedInstr(MI); 1953 return Legalized; 1954 case TargetOpcode::G_UDIV: 1955 case TargetOpcode::G_UREM: 1956 case TargetOpcode::G_UMIN: 1957 case TargetOpcode::G_UMAX: 1958 Observer.changingInstr(MI); 1959 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1960 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1961 widenScalarDst(MI, WideTy); 1962 Observer.changedInstr(MI); 1963 return Legalized; 1964 1965 case TargetOpcode::G_SELECT: 1966 Observer.changingInstr(MI); 1967 if (TypeIdx == 0) { 1968 // Perform operation at larger width (any extension is fine here, high 1969 // bits don't affect the result) and then truncate the result back to the 1970 // original type. 1971 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1972 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1973 widenScalarDst(MI, WideTy); 1974 } else { 1975 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1976 // Explicit extension is required here since high bits affect the result. 1977 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1978 } 1979 Observer.changedInstr(MI); 1980 return Legalized; 1981 1982 case TargetOpcode::G_FPTOSI: 1983 case TargetOpcode::G_FPTOUI: 1984 Observer.changingInstr(MI); 1985 1986 if (TypeIdx == 0) 1987 widenScalarDst(MI, WideTy); 1988 else 1989 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1990 1991 Observer.changedInstr(MI); 1992 return Legalized; 1993 case TargetOpcode::G_SITOFP: 1994 Observer.changingInstr(MI); 1995 1996 if (TypeIdx == 0) 1997 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1998 else 1999 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2000 2001 Observer.changedInstr(MI); 2002 return Legalized; 2003 case TargetOpcode::G_UITOFP: 2004 Observer.changingInstr(MI); 2005 2006 if (TypeIdx == 0) 2007 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2008 else 2009 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2010 2011 Observer.changedInstr(MI); 2012 return Legalized; 2013 case TargetOpcode::G_LOAD: 2014 case TargetOpcode::G_SEXTLOAD: 2015 case TargetOpcode::G_ZEXTLOAD: 2016 Observer.changingInstr(MI); 2017 widenScalarDst(MI, WideTy); 2018 Observer.changedInstr(MI); 2019 return Legalized; 2020 2021 case TargetOpcode::G_STORE: { 2022 if (TypeIdx != 0) 2023 return UnableToLegalize; 2024 2025 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2026 if (!isPowerOf2_32(Ty.getSizeInBits())) 2027 return UnableToLegalize; 2028 2029 Observer.changingInstr(MI); 2030 2031 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2032 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2033 widenScalarSrc(MI, WideTy, 0, ExtType); 2034 2035 Observer.changedInstr(MI); 2036 return Legalized; 2037 } 2038 case TargetOpcode::G_CONSTANT: { 2039 MachineOperand &SrcMO = MI.getOperand(1); 2040 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2041 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2042 MRI.getType(MI.getOperand(0).getReg())); 2043 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2044 ExtOpc == TargetOpcode::G_ANYEXT) && 2045 "Illegal Extend"); 2046 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2047 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2048 ? SrcVal.sext(WideTy.getSizeInBits()) 2049 : SrcVal.zext(WideTy.getSizeInBits()); 2050 Observer.changingInstr(MI); 2051 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2052 2053 widenScalarDst(MI, WideTy); 2054 Observer.changedInstr(MI); 2055 return Legalized; 2056 } 2057 case TargetOpcode::G_FCONSTANT: { 2058 MachineOperand &SrcMO = MI.getOperand(1); 2059 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2060 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2061 bool LosesInfo; 2062 switch (WideTy.getSizeInBits()) { 2063 case 32: 2064 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2065 &LosesInfo); 2066 break; 2067 case 64: 2068 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2069 &LosesInfo); 2070 break; 2071 default: 2072 return UnableToLegalize; 2073 } 2074 2075 assert(!LosesInfo && "extend should always be lossless"); 2076 2077 Observer.changingInstr(MI); 2078 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2079 2080 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2081 Observer.changedInstr(MI); 2082 return Legalized; 2083 } 2084 case TargetOpcode::G_IMPLICIT_DEF: { 2085 Observer.changingInstr(MI); 2086 widenScalarDst(MI, WideTy); 2087 Observer.changedInstr(MI); 2088 return Legalized; 2089 } 2090 case TargetOpcode::G_BRCOND: 2091 Observer.changingInstr(MI); 2092 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2093 Observer.changedInstr(MI); 2094 return Legalized; 2095 2096 case TargetOpcode::G_FCMP: 2097 Observer.changingInstr(MI); 2098 if (TypeIdx == 0) 2099 widenScalarDst(MI, WideTy); 2100 else { 2101 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2102 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2103 } 2104 Observer.changedInstr(MI); 2105 return Legalized; 2106 2107 case TargetOpcode::G_ICMP: 2108 Observer.changingInstr(MI); 2109 if (TypeIdx == 0) 2110 widenScalarDst(MI, WideTy); 2111 else { 2112 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2113 MI.getOperand(1).getPredicate())) 2114 ? TargetOpcode::G_SEXT 2115 : TargetOpcode::G_ZEXT; 2116 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2117 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2118 } 2119 Observer.changedInstr(MI); 2120 return Legalized; 2121 2122 case TargetOpcode::G_PTR_ADD: 2123 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2124 Observer.changingInstr(MI); 2125 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2126 Observer.changedInstr(MI); 2127 return Legalized; 2128 2129 case TargetOpcode::G_PHI: { 2130 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2131 2132 Observer.changingInstr(MI); 2133 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2134 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2135 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2136 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2137 } 2138 2139 MachineBasicBlock &MBB = *MI.getParent(); 2140 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2141 widenScalarDst(MI, WideTy); 2142 Observer.changedInstr(MI); 2143 return Legalized; 2144 } 2145 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2146 if (TypeIdx == 0) { 2147 Register VecReg = MI.getOperand(1).getReg(); 2148 LLT VecTy = MRI.getType(VecReg); 2149 Observer.changingInstr(MI); 2150 2151 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2152 WideTy.getSizeInBits()), 2153 1, TargetOpcode::G_SEXT); 2154 2155 widenScalarDst(MI, WideTy, 0); 2156 Observer.changedInstr(MI); 2157 return Legalized; 2158 } 2159 2160 if (TypeIdx != 2) 2161 return UnableToLegalize; 2162 Observer.changingInstr(MI); 2163 // TODO: Probably should be zext 2164 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2165 Observer.changedInstr(MI); 2166 return Legalized; 2167 } 2168 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2169 if (TypeIdx == 1) { 2170 Observer.changingInstr(MI); 2171 2172 Register VecReg = MI.getOperand(1).getReg(); 2173 LLT VecTy = MRI.getType(VecReg); 2174 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2175 2176 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2177 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2178 widenScalarDst(MI, WideVecTy, 0); 2179 Observer.changedInstr(MI); 2180 return Legalized; 2181 } 2182 2183 if (TypeIdx == 2) { 2184 Observer.changingInstr(MI); 2185 // TODO: Probably should be zext 2186 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2187 Observer.changedInstr(MI); 2188 return Legalized; 2189 } 2190 2191 return UnableToLegalize; 2192 } 2193 case TargetOpcode::G_FADD: 2194 case TargetOpcode::G_FMUL: 2195 case TargetOpcode::G_FSUB: 2196 case TargetOpcode::G_FMA: 2197 case TargetOpcode::G_FMAD: 2198 case TargetOpcode::G_FNEG: 2199 case TargetOpcode::G_FABS: 2200 case TargetOpcode::G_FCANONICALIZE: 2201 case TargetOpcode::G_FMINNUM: 2202 case TargetOpcode::G_FMAXNUM: 2203 case TargetOpcode::G_FMINNUM_IEEE: 2204 case TargetOpcode::G_FMAXNUM_IEEE: 2205 case TargetOpcode::G_FMINIMUM: 2206 case TargetOpcode::G_FMAXIMUM: 2207 case TargetOpcode::G_FDIV: 2208 case TargetOpcode::G_FREM: 2209 case TargetOpcode::G_FCEIL: 2210 case TargetOpcode::G_FFLOOR: 2211 case TargetOpcode::G_FCOS: 2212 case TargetOpcode::G_FSIN: 2213 case TargetOpcode::G_FLOG10: 2214 case TargetOpcode::G_FLOG: 2215 case TargetOpcode::G_FLOG2: 2216 case TargetOpcode::G_FRINT: 2217 case TargetOpcode::G_FNEARBYINT: 2218 case TargetOpcode::G_FSQRT: 2219 case TargetOpcode::G_FEXP: 2220 case TargetOpcode::G_FEXP2: 2221 case TargetOpcode::G_FPOW: 2222 case TargetOpcode::G_INTRINSIC_TRUNC: 2223 case TargetOpcode::G_INTRINSIC_ROUND: 2224 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2225 assert(TypeIdx == 0); 2226 Observer.changingInstr(MI); 2227 2228 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2229 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2230 2231 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2232 Observer.changedInstr(MI); 2233 return Legalized; 2234 case TargetOpcode::G_FPOWI: { 2235 if (TypeIdx != 0) 2236 return UnableToLegalize; 2237 Observer.changingInstr(MI); 2238 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2239 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2240 Observer.changedInstr(MI); 2241 return Legalized; 2242 } 2243 case TargetOpcode::G_INTTOPTR: 2244 if (TypeIdx != 1) 2245 return UnableToLegalize; 2246 2247 Observer.changingInstr(MI); 2248 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2249 Observer.changedInstr(MI); 2250 return Legalized; 2251 case TargetOpcode::G_PTRTOINT: 2252 if (TypeIdx != 0) 2253 return UnableToLegalize; 2254 2255 Observer.changingInstr(MI); 2256 widenScalarDst(MI, WideTy, 0); 2257 Observer.changedInstr(MI); 2258 return Legalized; 2259 case TargetOpcode::G_BUILD_VECTOR: { 2260 Observer.changingInstr(MI); 2261 2262 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2263 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2264 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2265 2266 // Avoid changing the result vector type if the source element type was 2267 // requested. 2268 if (TypeIdx == 1) { 2269 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2270 } else { 2271 widenScalarDst(MI, WideTy, 0); 2272 } 2273 2274 Observer.changedInstr(MI); 2275 return Legalized; 2276 } 2277 case TargetOpcode::G_SEXT_INREG: 2278 if (TypeIdx != 0) 2279 return UnableToLegalize; 2280 2281 Observer.changingInstr(MI); 2282 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2283 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2284 Observer.changedInstr(MI); 2285 return Legalized; 2286 case TargetOpcode::G_PTRMASK: { 2287 if (TypeIdx != 1) 2288 return UnableToLegalize; 2289 Observer.changingInstr(MI); 2290 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2291 Observer.changedInstr(MI); 2292 return Legalized; 2293 } 2294 } 2295 } 2296 2297 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2298 MachineIRBuilder &B, Register Src, LLT Ty) { 2299 auto Unmerge = B.buildUnmerge(Ty, Src); 2300 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2301 Pieces.push_back(Unmerge.getReg(I)); 2302 } 2303 2304 LegalizerHelper::LegalizeResult 2305 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2306 Register Dst = MI.getOperand(0).getReg(); 2307 Register Src = MI.getOperand(1).getReg(); 2308 LLT DstTy = MRI.getType(Dst); 2309 LLT SrcTy = MRI.getType(Src); 2310 2311 if (SrcTy.isVector()) { 2312 LLT SrcEltTy = SrcTy.getElementType(); 2313 SmallVector<Register, 8> SrcRegs; 2314 2315 if (DstTy.isVector()) { 2316 int NumDstElt = DstTy.getNumElements(); 2317 int NumSrcElt = SrcTy.getNumElements(); 2318 2319 LLT DstEltTy = DstTy.getElementType(); 2320 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2321 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2322 2323 // If there's an element size mismatch, insert intermediate casts to match 2324 // the result element type. 2325 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2326 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2327 // 2328 // => 2329 // 2330 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2331 // %3:_(<2 x s8>) = G_BITCAST %2 2332 // %4:_(<2 x s8>) = G_BITCAST %3 2333 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2334 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2335 SrcPartTy = SrcEltTy; 2336 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2337 // 2338 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2339 // 2340 // => 2341 // 2342 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2343 // %3:_(s16) = G_BITCAST %2 2344 // %4:_(s16) = G_BITCAST %3 2345 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2346 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2347 DstCastTy = DstEltTy; 2348 } 2349 2350 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2351 for (Register &SrcReg : SrcRegs) 2352 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2353 } else 2354 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2355 2356 MIRBuilder.buildMerge(Dst, SrcRegs); 2357 MI.eraseFromParent(); 2358 return Legalized; 2359 } 2360 2361 if (DstTy.isVector()) { 2362 SmallVector<Register, 8> SrcRegs; 2363 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2364 MIRBuilder.buildMerge(Dst, SrcRegs); 2365 MI.eraseFromParent(); 2366 return Legalized; 2367 } 2368 2369 return UnableToLegalize; 2370 } 2371 2372 /// Figure out the bit offset into a register when coercing a vector index for 2373 /// the wide element type. This is only for the case when promoting vector to 2374 /// one with larger elements. 2375 // 2376 /// 2377 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2378 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2379 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2380 Register Idx, 2381 unsigned NewEltSize, 2382 unsigned OldEltSize) { 2383 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2384 LLT IdxTy = B.getMRI()->getType(Idx); 2385 2386 // Now figure out the amount we need to shift to get the target bits. 2387 auto OffsetMask = B.buildConstant( 2388 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2389 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2390 return B.buildShl(IdxTy, OffsetIdx, 2391 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2392 } 2393 2394 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2395 /// is casting to a vector with a smaller element size, perform multiple element 2396 /// extracts and merge the results. If this is coercing to a vector with larger 2397 /// elements, index the bitcasted vector and extract the target element with bit 2398 /// operations. This is intended to force the indexing in the native register 2399 /// size for architectures that can dynamically index the register file. 2400 LegalizerHelper::LegalizeResult 2401 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2402 LLT CastTy) { 2403 if (TypeIdx != 1) 2404 return UnableToLegalize; 2405 2406 Register Dst = MI.getOperand(0).getReg(); 2407 Register SrcVec = MI.getOperand(1).getReg(); 2408 Register Idx = MI.getOperand(2).getReg(); 2409 LLT SrcVecTy = MRI.getType(SrcVec); 2410 LLT IdxTy = MRI.getType(Idx); 2411 2412 LLT SrcEltTy = SrcVecTy.getElementType(); 2413 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2414 unsigned OldNumElts = SrcVecTy.getNumElements(); 2415 2416 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2417 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2418 2419 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2420 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2421 if (NewNumElts > OldNumElts) { 2422 // Decreasing the vector element size 2423 // 2424 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2425 // => 2426 // v4i32:castx = bitcast x:v2i64 2427 // 2428 // i64 = bitcast 2429 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2430 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2431 // 2432 if (NewNumElts % OldNumElts != 0) 2433 return UnableToLegalize; 2434 2435 // Type of the intermediate result vector. 2436 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2437 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2438 2439 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2440 2441 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2442 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2443 2444 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2445 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2446 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2447 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2448 NewOps[I] = Elt.getReg(0); 2449 } 2450 2451 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2452 MIRBuilder.buildBitcast(Dst, NewVec); 2453 MI.eraseFromParent(); 2454 return Legalized; 2455 } 2456 2457 if (NewNumElts < OldNumElts) { 2458 if (NewEltSize % OldEltSize != 0) 2459 return UnableToLegalize; 2460 2461 // This only depends on powers of 2 because we use bit tricks to figure out 2462 // the bit offset we need to shift to get the target element. A general 2463 // expansion could emit division/multiply. 2464 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2465 return UnableToLegalize; 2466 2467 // Increasing the vector element size. 2468 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2469 // 2470 // => 2471 // 2472 // %cast = G_BITCAST %vec 2473 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2474 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2475 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2476 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2477 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2478 // %elt = G_TRUNC %elt_bits 2479 2480 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2481 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2482 2483 // Divide to get the index in the wider element type. 2484 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2485 2486 Register WideElt = CastVec; 2487 if (CastTy.isVector()) { 2488 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2489 ScaledIdx).getReg(0); 2490 } 2491 2492 // Compute the bit offset into the register of the target element. 2493 Register OffsetBits = getBitcastWiderVectorElementOffset( 2494 MIRBuilder, Idx, NewEltSize, OldEltSize); 2495 2496 // Shift the wide element to get the target element. 2497 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2498 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2499 MI.eraseFromParent(); 2500 return Legalized; 2501 } 2502 2503 return UnableToLegalize; 2504 } 2505 2506 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2507 /// TargetReg, while preserving other bits in \p TargetReg. 2508 /// 2509 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2510 static Register buildBitFieldInsert(MachineIRBuilder &B, 2511 Register TargetReg, Register InsertReg, 2512 Register OffsetBits) { 2513 LLT TargetTy = B.getMRI()->getType(TargetReg); 2514 LLT InsertTy = B.getMRI()->getType(InsertReg); 2515 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2516 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2517 2518 // Produce a bitmask of the value to insert 2519 auto EltMask = B.buildConstant( 2520 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2521 InsertTy.getSizeInBits())); 2522 // Shift it into position 2523 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2524 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2525 2526 // Clear out the bits in the wide element 2527 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2528 2529 // The value to insert has all zeros already, so stick it into the masked 2530 // wide element. 2531 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2532 } 2533 2534 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2535 /// is increasing the element size, perform the indexing in the target element 2536 /// type, and use bit operations to insert at the element position. This is 2537 /// intended for architectures that can dynamically index the register file and 2538 /// want to force indexing in the native register size. 2539 LegalizerHelper::LegalizeResult 2540 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2541 LLT CastTy) { 2542 if (TypeIdx != 0) 2543 return UnableToLegalize; 2544 2545 Register Dst = MI.getOperand(0).getReg(); 2546 Register SrcVec = MI.getOperand(1).getReg(); 2547 Register Val = MI.getOperand(2).getReg(); 2548 Register Idx = MI.getOperand(3).getReg(); 2549 2550 LLT VecTy = MRI.getType(Dst); 2551 LLT IdxTy = MRI.getType(Idx); 2552 2553 LLT VecEltTy = VecTy.getElementType(); 2554 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2555 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2556 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2557 2558 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2559 unsigned OldNumElts = VecTy.getNumElements(); 2560 2561 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2562 if (NewNumElts < OldNumElts) { 2563 if (NewEltSize % OldEltSize != 0) 2564 return UnableToLegalize; 2565 2566 // This only depends on powers of 2 because we use bit tricks to figure out 2567 // the bit offset we need to shift to get the target element. A general 2568 // expansion could emit division/multiply. 2569 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2570 return UnableToLegalize; 2571 2572 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2573 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2574 2575 // Divide to get the index in the wider element type. 2576 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2577 2578 Register ExtractedElt = CastVec; 2579 if (CastTy.isVector()) { 2580 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2581 ScaledIdx).getReg(0); 2582 } 2583 2584 // Compute the bit offset into the register of the target element. 2585 Register OffsetBits = getBitcastWiderVectorElementOffset( 2586 MIRBuilder, Idx, NewEltSize, OldEltSize); 2587 2588 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2589 Val, OffsetBits); 2590 if (CastTy.isVector()) { 2591 InsertedElt = MIRBuilder.buildInsertVectorElement( 2592 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2593 } 2594 2595 MIRBuilder.buildBitcast(Dst, InsertedElt); 2596 MI.eraseFromParent(); 2597 return Legalized; 2598 } 2599 2600 return UnableToLegalize; 2601 } 2602 2603 LegalizerHelper::LegalizeResult 2604 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2605 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2606 Register DstReg = MI.getOperand(0).getReg(); 2607 Register PtrReg = MI.getOperand(1).getReg(); 2608 LLT DstTy = MRI.getType(DstReg); 2609 auto &MMO = **MI.memoperands_begin(); 2610 2611 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2612 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2613 // This load needs splitting into power of 2 sized loads. 2614 if (DstTy.isVector()) 2615 return UnableToLegalize; 2616 if (isPowerOf2_32(DstTy.getSizeInBits())) 2617 return UnableToLegalize; // Don't know what we're being asked to do. 2618 2619 // Our strategy here is to generate anyextending loads for the smaller 2620 // types up to next power-2 result type, and then combine the two larger 2621 // result values together, before truncating back down to the non-pow-2 2622 // type. 2623 // E.g. v1 = i24 load => 2624 // v2 = i32 zextload (2 byte) 2625 // v3 = i32 load (1 byte) 2626 // v4 = i32 shl v3, 16 2627 // v5 = i32 or v4, v2 2628 // v1 = i24 trunc v5 2629 // By doing this we generate the correct truncate which should get 2630 // combined away as an artifact with a matching extend. 2631 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2632 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2633 2634 MachineFunction &MF = MIRBuilder.getMF(); 2635 MachineMemOperand *LargeMMO = 2636 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2637 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2638 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2639 2640 LLT PtrTy = MRI.getType(PtrReg); 2641 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2642 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2643 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2644 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2645 auto LargeLoad = MIRBuilder.buildLoadInstr( 2646 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2647 2648 auto OffsetCst = MIRBuilder.buildConstant( 2649 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2650 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2651 auto SmallPtr = 2652 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2653 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2654 *SmallMMO); 2655 2656 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2657 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2658 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2659 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2660 MI.eraseFromParent(); 2661 return Legalized; 2662 } 2663 2664 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2665 MI.eraseFromParent(); 2666 return Legalized; 2667 } 2668 2669 if (DstTy.isScalar()) { 2670 Register TmpReg = 2671 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2672 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2673 switch (MI.getOpcode()) { 2674 default: 2675 llvm_unreachable("Unexpected opcode"); 2676 case TargetOpcode::G_LOAD: 2677 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2678 break; 2679 case TargetOpcode::G_SEXTLOAD: 2680 MIRBuilder.buildSExt(DstReg, TmpReg); 2681 break; 2682 case TargetOpcode::G_ZEXTLOAD: 2683 MIRBuilder.buildZExt(DstReg, TmpReg); 2684 break; 2685 } 2686 2687 MI.eraseFromParent(); 2688 return Legalized; 2689 } 2690 2691 return UnableToLegalize; 2692 } 2693 2694 LegalizerHelper::LegalizeResult 2695 LegalizerHelper::lowerStore(MachineInstr &MI) { 2696 // Lower a non-power of 2 store into multiple pow-2 stores. 2697 // E.g. split an i24 store into an i16 store + i8 store. 2698 // We do this by first extending the stored value to the next largest power 2699 // of 2 type, and then using truncating stores to store the components. 2700 // By doing this, likewise with G_LOAD, generate an extend that can be 2701 // artifact-combined away instead of leaving behind extracts. 2702 Register SrcReg = MI.getOperand(0).getReg(); 2703 Register PtrReg = MI.getOperand(1).getReg(); 2704 LLT SrcTy = MRI.getType(SrcReg); 2705 MachineMemOperand &MMO = **MI.memoperands_begin(); 2706 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2707 return UnableToLegalize; 2708 if (SrcTy.isVector()) 2709 return UnableToLegalize; 2710 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2711 return UnableToLegalize; // Don't know what we're being asked to do. 2712 2713 // Extend to the next pow-2. 2714 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2715 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2716 2717 // Obtain the smaller value by shifting away the larger value. 2718 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2719 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2720 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2721 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2722 2723 // Generate the PtrAdd and truncating stores. 2724 LLT PtrTy = MRI.getType(PtrReg); 2725 auto OffsetCst = MIRBuilder.buildConstant( 2726 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2727 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2728 auto SmallPtr = 2729 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2730 2731 MachineFunction &MF = MIRBuilder.getMF(); 2732 MachineMemOperand *LargeMMO = 2733 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2734 MachineMemOperand *SmallMMO = 2735 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2736 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2737 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2738 MI.eraseFromParent(); 2739 return Legalized; 2740 } 2741 2742 LegalizerHelper::LegalizeResult 2743 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2744 switch (MI.getOpcode()) { 2745 case TargetOpcode::G_LOAD: { 2746 if (TypeIdx != 0) 2747 return UnableToLegalize; 2748 2749 Observer.changingInstr(MI); 2750 bitcastDst(MI, CastTy, 0); 2751 Observer.changedInstr(MI); 2752 return Legalized; 2753 } 2754 case TargetOpcode::G_STORE: { 2755 if (TypeIdx != 0) 2756 return UnableToLegalize; 2757 2758 Observer.changingInstr(MI); 2759 bitcastSrc(MI, CastTy, 0); 2760 Observer.changedInstr(MI); 2761 return Legalized; 2762 } 2763 case TargetOpcode::G_SELECT: { 2764 if (TypeIdx != 0) 2765 return UnableToLegalize; 2766 2767 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2768 LLVM_DEBUG( 2769 dbgs() << "bitcast action not implemented for vector select\n"); 2770 return UnableToLegalize; 2771 } 2772 2773 Observer.changingInstr(MI); 2774 bitcastSrc(MI, CastTy, 2); 2775 bitcastSrc(MI, CastTy, 3); 2776 bitcastDst(MI, CastTy, 0); 2777 Observer.changedInstr(MI); 2778 return Legalized; 2779 } 2780 case TargetOpcode::G_AND: 2781 case TargetOpcode::G_OR: 2782 case TargetOpcode::G_XOR: { 2783 Observer.changingInstr(MI); 2784 bitcastSrc(MI, CastTy, 1); 2785 bitcastSrc(MI, CastTy, 2); 2786 bitcastDst(MI, CastTy, 0); 2787 Observer.changedInstr(MI); 2788 return Legalized; 2789 } 2790 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2791 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2792 case TargetOpcode::G_INSERT_VECTOR_ELT: 2793 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2794 default: 2795 return UnableToLegalize; 2796 } 2797 } 2798 2799 // Legalize an instruction by changing the opcode in place. 2800 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2801 Observer.changingInstr(MI); 2802 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2803 Observer.changedInstr(MI); 2804 } 2805 2806 LegalizerHelper::LegalizeResult 2807 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2808 using namespace TargetOpcode; 2809 2810 switch(MI.getOpcode()) { 2811 default: 2812 return UnableToLegalize; 2813 case TargetOpcode::G_BITCAST: 2814 return lowerBitcast(MI); 2815 case TargetOpcode::G_SREM: 2816 case TargetOpcode::G_UREM: { 2817 auto Quot = 2818 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2819 {MI.getOperand(1), MI.getOperand(2)}); 2820 2821 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2822 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2823 MI.eraseFromParent(); 2824 return Legalized; 2825 } 2826 case TargetOpcode::G_SADDO: 2827 case TargetOpcode::G_SSUBO: 2828 return lowerSADDO_SSUBO(MI); 2829 case TargetOpcode::G_SMULO: 2830 case TargetOpcode::G_UMULO: { 2831 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2832 // result. 2833 Register Res = MI.getOperand(0).getReg(); 2834 Register Overflow = MI.getOperand(1).getReg(); 2835 Register LHS = MI.getOperand(2).getReg(); 2836 Register RHS = MI.getOperand(3).getReg(); 2837 2838 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2839 ? TargetOpcode::G_SMULH 2840 : TargetOpcode::G_UMULH; 2841 2842 Observer.changingInstr(MI); 2843 const auto &TII = MIRBuilder.getTII(); 2844 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2845 MI.RemoveOperand(1); 2846 Observer.changedInstr(MI); 2847 2848 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2849 2850 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2851 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2852 2853 // For *signed* multiply, overflow is detected by checking: 2854 // (hi != (lo >> bitwidth-1)) 2855 if (Opcode == TargetOpcode::G_SMULH) { 2856 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2857 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2858 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2859 } else { 2860 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2861 } 2862 return Legalized; 2863 } 2864 case TargetOpcode::G_FNEG: { 2865 // TODO: Handle vector types once we are able to 2866 // represent them. 2867 if (Ty.isVector()) 2868 return UnableToLegalize; 2869 Register Res = MI.getOperand(0).getReg(); 2870 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2871 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2872 if (!ZeroTy) 2873 return UnableToLegalize; 2874 ConstantFP &ZeroForNegation = 2875 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2876 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2877 Register SubByReg = MI.getOperand(1).getReg(); 2878 Register ZeroReg = Zero.getReg(0); 2879 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2880 MI.eraseFromParent(); 2881 return Legalized; 2882 } 2883 case TargetOpcode::G_FSUB: { 2884 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2885 // First, check if G_FNEG is marked as Lower. If so, we may 2886 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2887 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2888 return UnableToLegalize; 2889 Register Res = MI.getOperand(0).getReg(); 2890 Register LHS = MI.getOperand(1).getReg(); 2891 Register RHS = MI.getOperand(2).getReg(); 2892 Register Neg = MRI.createGenericVirtualRegister(Ty); 2893 MIRBuilder.buildFNeg(Neg, RHS); 2894 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2895 MI.eraseFromParent(); 2896 return Legalized; 2897 } 2898 case TargetOpcode::G_FMAD: 2899 return lowerFMad(MI); 2900 case TargetOpcode::G_FFLOOR: 2901 return lowerFFloor(MI); 2902 case TargetOpcode::G_INTRINSIC_ROUND: 2903 return lowerIntrinsicRound(MI); 2904 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2905 // Since round even is the assumed rounding mode for unconstrained FP 2906 // operations, rint and roundeven are the same operation. 2907 changeOpcode(MI, TargetOpcode::G_FRINT); 2908 return Legalized; 2909 } 2910 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2911 Register OldValRes = MI.getOperand(0).getReg(); 2912 Register SuccessRes = MI.getOperand(1).getReg(); 2913 Register Addr = MI.getOperand(2).getReg(); 2914 Register CmpVal = MI.getOperand(3).getReg(); 2915 Register NewVal = MI.getOperand(4).getReg(); 2916 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2917 **MI.memoperands_begin()); 2918 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2919 MI.eraseFromParent(); 2920 return Legalized; 2921 } 2922 case TargetOpcode::G_LOAD: 2923 case TargetOpcode::G_SEXTLOAD: 2924 case TargetOpcode::G_ZEXTLOAD: 2925 return lowerLoad(MI); 2926 case TargetOpcode::G_STORE: 2927 return lowerStore(MI); 2928 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2929 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2930 case TargetOpcode::G_CTLZ: 2931 case TargetOpcode::G_CTTZ: 2932 case TargetOpcode::G_CTPOP: 2933 return lowerBitCount(MI, TypeIdx, Ty); 2934 case G_UADDO: { 2935 Register Res = MI.getOperand(0).getReg(); 2936 Register CarryOut = MI.getOperand(1).getReg(); 2937 Register LHS = MI.getOperand(2).getReg(); 2938 Register RHS = MI.getOperand(3).getReg(); 2939 2940 MIRBuilder.buildAdd(Res, LHS, RHS); 2941 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2942 2943 MI.eraseFromParent(); 2944 return Legalized; 2945 } 2946 case G_UADDE: { 2947 Register Res = MI.getOperand(0).getReg(); 2948 Register CarryOut = MI.getOperand(1).getReg(); 2949 Register LHS = MI.getOperand(2).getReg(); 2950 Register RHS = MI.getOperand(3).getReg(); 2951 Register CarryIn = MI.getOperand(4).getReg(); 2952 LLT Ty = MRI.getType(Res); 2953 2954 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2955 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2956 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2957 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2958 2959 MI.eraseFromParent(); 2960 return Legalized; 2961 } 2962 case G_USUBO: { 2963 Register Res = MI.getOperand(0).getReg(); 2964 Register BorrowOut = MI.getOperand(1).getReg(); 2965 Register LHS = MI.getOperand(2).getReg(); 2966 Register RHS = MI.getOperand(3).getReg(); 2967 2968 MIRBuilder.buildSub(Res, LHS, RHS); 2969 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2970 2971 MI.eraseFromParent(); 2972 return Legalized; 2973 } 2974 case G_USUBE: { 2975 Register Res = MI.getOperand(0).getReg(); 2976 Register BorrowOut = MI.getOperand(1).getReg(); 2977 Register LHS = MI.getOperand(2).getReg(); 2978 Register RHS = MI.getOperand(3).getReg(); 2979 Register BorrowIn = MI.getOperand(4).getReg(); 2980 const LLT CondTy = MRI.getType(BorrowOut); 2981 const LLT Ty = MRI.getType(Res); 2982 2983 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2984 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2985 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2986 2987 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2988 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2989 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2990 2991 MI.eraseFromParent(); 2992 return Legalized; 2993 } 2994 case G_UITOFP: 2995 return lowerUITOFP(MI, TypeIdx, Ty); 2996 case G_SITOFP: 2997 return lowerSITOFP(MI, TypeIdx, Ty); 2998 case G_FPTOUI: 2999 return lowerFPTOUI(MI, TypeIdx, Ty); 3000 case G_FPTOSI: 3001 return lowerFPTOSI(MI); 3002 case G_FPTRUNC: 3003 return lowerFPTRUNC(MI, TypeIdx, Ty); 3004 case G_FPOWI: 3005 return lowerFPOWI(MI); 3006 case G_SMIN: 3007 case G_SMAX: 3008 case G_UMIN: 3009 case G_UMAX: 3010 return lowerMinMax(MI, TypeIdx, Ty); 3011 case G_FCOPYSIGN: 3012 return lowerFCopySign(MI, TypeIdx, Ty); 3013 case G_FMINNUM: 3014 case G_FMAXNUM: 3015 return lowerFMinNumMaxNum(MI); 3016 case G_MERGE_VALUES: 3017 return lowerMergeValues(MI); 3018 case G_UNMERGE_VALUES: 3019 return lowerUnmergeValues(MI); 3020 case TargetOpcode::G_SEXT_INREG: { 3021 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3022 int64_t SizeInBits = MI.getOperand(2).getImm(); 3023 3024 Register DstReg = MI.getOperand(0).getReg(); 3025 Register SrcReg = MI.getOperand(1).getReg(); 3026 LLT DstTy = MRI.getType(DstReg); 3027 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3028 3029 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3030 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3031 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3032 MI.eraseFromParent(); 3033 return Legalized; 3034 } 3035 case G_EXTRACT_VECTOR_ELT: 3036 case G_INSERT_VECTOR_ELT: 3037 return lowerExtractInsertVectorElt(MI); 3038 case G_SHUFFLE_VECTOR: 3039 return lowerShuffleVector(MI); 3040 case G_DYN_STACKALLOC: 3041 return lowerDynStackAlloc(MI); 3042 case G_EXTRACT: 3043 return lowerExtract(MI); 3044 case G_INSERT: 3045 return lowerInsert(MI); 3046 case G_BSWAP: 3047 return lowerBswap(MI); 3048 case G_BITREVERSE: 3049 return lowerBitreverse(MI); 3050 case G_READ_REGISTER: 3051 case G_WRITE_REGISTER: 3052 return lowerReadWriteRegister(MI); 3053 case G_UADDSAT: 3054 case G_USUBSAT: { 3055 // Try to make a reasonable guess about which lowering strategy to use. The 3056 // target can override this with custom lowering and calling the 3057 // implementation functions. 3058 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3059 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3060 return lowerAddSubSatToMinMax(MI); 3061 return lowerAddSubSatToAddoSubo(MI); 3062 } 3063 case G_SADDSAT: 3064 case G_SSUBSAT: { 3065 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3066 3067 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3068 // since it's a shorter expansion. However, we would need to figure out the 3069 // preferred boolean type for the carry out for the query. 3070 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3071 return lowerAddSubSatToMinMax(MI); 3072 return lowerAddSubSatToAddoSubo(MI); 3073 } 3074 case G_SSHLSAT: 3075 case G_USHLSAT: 3076 return lowerShlSat(MI); 3077 } 3078 } 3079 3080 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3081 Align MinAlign) const { 3082 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3083 // datalayout for the preferred alignment. Also there should be a target hook 3084 // for this to allow targets to reduce the alignment and ignore the 3085 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3086 // the type. 3087 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3088 } 3089 3090 MachineInstrBuilder 3091 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3092 MachinePointerInfo &PtrInfo) { 3093 MachineFunction &MF = MIRBuilder.getMF(); 3094 const DataLayout &DL = MIRBuilder.getDataLayout(); 3095 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3096 3097 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3098 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3099 3100 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3101 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3102 } 3103 3104 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3105 LLT VecTy) { 3106 int64_t IdxVal; 3107 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3108 return IdxReg; 3109 3110 LLT IdxTy = B.getMRI()->getType(IdxReg); 3111 unsigned NElts = VecTy.getNumElements(); 3112 if (isPowerOf2_32(NElts)) { 3113 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3114 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3115 } 3116 3117 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3118 .getReg(0); 3119 } 3120 3121 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3122 Register Index) { 3123 LLT EltTy = VecTy.getElementType(); 3124 3125 // Calculate the element offset and add it to the pointer. 3126 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3127 assert(EltSize * 8 == EltTy.getSizeInBits() && 3128 "Converting bits to bytes lost precision"); 3129 3130 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3131 3132 LLT IdxTy = MRI.getType(Index); 3133 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3134 MIRBuilder.buildConstant(IdxTy, EltSize)); 3135 3136 LLT PtrTy = MRI.getType(VecPtr); 3137 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3138 } 3139 3140 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3141 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3142 Register DstReg = MI.getOperand(0).getReg(); 3143 LLT DstTy = MRI.getType(DstReg); 3144 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3145 3146 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3147 3148 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3149 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3150 3151 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3152 MI.eraseFromParent(); 3153 return Legalized; 3154 } 3155 3156 // Handle splitting vector operations which need to have the same number of 3157 // elements in each type index, but each type index may have a different element 3158 // type. 3159 // 3160 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3161 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3162 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3163 // 3164 // Also handles some irregular breakdown cases, e.g. 3165 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3166 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3167 // s64 = G_SHL s64, s32 3168 LegalizerHelper::LegalizeResult 3169 LegalizerHelper::fewerElementsVectorMultiEltType( 3170 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3171 if (TypeIdx != 0) 3172 return UnableToLegalize; 3173 3174 const LLT NarrowTy0 = NarrowTyArg; 3175 const unsigned NewNumElts = 3176 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3177 3178 const Register DstReg = MI.getOperand(0).getReg(); 3179 LLT DstTy = MRI.getType(DstReg); 3180 LLT LeftoverTy0; 3181 3182 // All of the operands need to have the same number of elements, so if we can 3183 // determine a type breakdown for the result type, we can for all of the 3184 // source types. 3185 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3186 if (NumParts < 0) 3187 return UnableToLegalize; 3188 3189 SmallVector<MachineInstrBuilder, 4> NewInsts; 3190 3191 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3192 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3193 3194 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3195 Register SrcReg = MI.getOperand(I).getReg(); 3196 LLT SrcTyI = MRI.getType(SrcReg); 3197 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3198 LLT LeftoverTyI; 3199 3200 // Split this operand into the requested typed registers, and any leftover 3201 // required to reproduce the original type. 3202 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3203 LeftoverRegs)) 3204 return UnableToLegalize; 3205 3206 if (I == 1) { 3207 // For the first operand, create an instruction for each part and setup 3208 // the result. 3209 for (Register PartReg : PartRegs) { 3210 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3211 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3212 .addDef(PartDstReg) 3213 .addUse(PartReg)); 3214 DstRegs.push_back(PartDstReg); 3215 } 3216 3217 for (Register LeftoverReg : LeftoverRegs) { 3218 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3219 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3220 .addDef(PartDstReg) 3221 .addUse(LeftoverReg)); 3222 LeftoverDstRegs.push_back(PartDstReg); 3223 } 3224 } else { 3225 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3226 3227 // Add the newly created operand splits to the existing instructions. The 3228 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3229 // pieces. 3230 unsigned InstCount = 0; 3231 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3232 NewInsts[InstCount++].addUse(PartRegs[J]); 3233 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3234 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3235 } 3236 3237 PartRegs.clear(); 3238 LeftoverRegs.clear(); 3239 } 3240 3241 // Insert the newly built operations and rebuild the result register. 3242 for (auto &MIB : NewInsts) 3243 MIRBuilder.insertInstr(MIB); 3244 3245 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3246 3247 MI.eraseFromParent(); 3248 return Legalized; 3249 } 3250 3251 LegalizerHelper::LegalizeResult 3252 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3253 LLT NarrowTy) { 3254 if (TypeIdx != 0) 3255 return UnableToLegalize; 3256 3257 Register DstReg = MI.getOperand(0).getReg(); 3258 Register SrcReg = MI.getOperand(1).getReg(); 3259 LLT DstTy = MRI.getType(DstReg); 3260 LLT SrcTy = MRI.getType(SrcReg); 3261 3262 LLT NarrowTy0 = NarrowTy; 3263 LLT NarrowTy1; 3264 unsigned NumParts; 3265 3266 if (NarrowTy.isVector()) { 3267 // Uneven breakdown not handled. 3268 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3269 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3270 return UnableToLegalize; 3271 3272 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 3273 } else { 3274 NumParts = DstTy.getNumElements(); 3275 NarrowTy1 = SrcTy.getElementType(); 3276 } 3277 3278 SmallVector<Register, 4> SrcRegs, DstRegs; 3279 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3280 3281 for (unsigned I = 0; I < NumParts; ++I) { 3282 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3283 MachineInstr *NewInst = 3284 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3285 3286 NewInst->setFlags(MI.getFlags()); 3287 DstRegs.push_back(DstReg); 3288 } 3289 3290 if (NarrowTy.isVector()) 3291 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3292 else 3293 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3294 3295 MI.eraseFromParent(); 3296 return Legalized; 3297 } 3298 3299 LegalizerHelper::LegalizeResult 3300 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3301 LLT NarrowTy) { 3302 Register DstReg = MI.getOperand(0).getReg(); 3303 Register Src0Reg = MI.getOperand(2).getReg(); 3304 LLT DstTy = MRI.getType(DstReg); 3305 LLT SrcTy = MRI.getType(Src0Reg); 3306 3307 unsigned NumParts; 3308 LLT NarrowTy0, NarrowTy1; 3309 3310 if (TypeIdx == 0) { 3311 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3312 unsigned OldElts = DstTy.getNumElements(); 3313 3314 NarrowTy0 = NarrowTy; 3315 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3316 NarrowTy1 = NarrowTy.isVector() ? 3317 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3318 SrcTy.getElementType(); 3319 3320 } else { 3321 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3322 unsigned OldElts = SrcTy.getNumElements(); 3323 3324 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3325 NarrowTy.getNumElements(); 3326 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3327 DstTy.getScalarSizeInBits()); 3328 NarrowTy1 = NarrowTy; 3329 } 3330 3331 // FIXME: Don't know how to handle the situation where the small vectors 3332 // aren't all the same size yet. 3333 if (NarrowTy1.isVector() && 3334 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3335 return UnableToLegalize; 3336 3337 CmpInst::Predicate Pred 3338 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3339 3340 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3341 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3342 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3343 3344 for (unsigned I = 0; I < NumParts; ++I) { 3345 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3346 DstRegs.push_back(DstReg); 3347 3348 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3349 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3350 else { 3351 MachineInstr *NewCmp 3352 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3353 NewCmp->setFlags(MI.getFlags()); 3354 } 3355 } 3356 3357 if (NarrowTy1.isVector()) 3358 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3359 else 3360 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3361 3362 MI.eraseFromParent(); 3363 return Legalized; 3364 } 3365 3366 LegalizerHelper::LegalizeResult 3367 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3368 LLT NarrowTy) { 3369 Register DstReg = MI.getOperand(0).getReg(); 3370 Register CondReg = MI.getOperand(1).getReg(); 3371 3372 unsigned NumParts = 0; 3373 LLT NarrowTy0, NarrowTy1; 3374 3375 LLT DstTy = MRI.getType(DstReg); 3376 LLT CondTy = MRI.getType(CondReg); 3377 unsigned Size = DstTy.getSizeInBits(); 3378 3379 assert(TypeIdx == 0 || CondTy.isVector()); 3380 3381 if (TypeIdx == 0) { 3382 NarrowTy0 = NarrowTy; 3383 NarrowTy1 = CondTy; 3384 3385 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3386 // FIXME: Don't know how to handle the situation where the small vectors 3387 // aren't all the same size yet. 3388 if (Size % NarrowSize != 0) 3389 return UnableToLegalize; 3390 3391 NumParts = Size / NarrowSize; 3392 3393 // Need to break down the condition type 3394 if (CondTy.isVector()) { 3395 if (CondTy.getNumElements() == NumParts) 3396 NarrowTy1 = CondTy.getElementType(); 3397 else 3398 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3399 CondTy.getScalarSizeInBits()); 3400 } 3401 } else { 3402 NumParts = CondTy.getNumElements(); 3403 if (NarrowTy.isVector()) { 3404 // TODO: Handle uneven breakdown. 3405 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3406 return UnableToLegalize; 3407 3408 return UnableToLegalize; 3409 } else { 3410 NarrowTy0 = DstTy.getElementType(); 3411 NarrowTy1 = NarrowTy; 3412 } 3413 } 3414 3415 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3416 if (CondTy.isVector()) 3417 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3418 3419 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3420 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3421 3422 for (unsigned i = 0; i < NumParts; ++i) { 3423 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3424 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3425 Src1Regs[i], Src2Regs[i]); 3426 DstRegs.push_back(DstReg); 3427 } 3428 3429 if (NarrowTy0.isVector()) 3430 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3431 else 3432 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3433 3434 MI.eraseFromParent(); 3435 return Legalized; 3436 } 3437 3438 LegalizerHelper::LegalizeResult 3439 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3440 LLT NarrowTy) { 3441 const Register DstReg = MI.getOperand(0).getReg(); 3442 LLT PhiTy = MRI.getType(DstReg); 3443 LLT LeftoverTy; 3444 3445 // All of the operands need to have the same number of elements, so if we can 3446 // determine a type breakdown for the result type, we can for all of the 3447 // source types. 3448 int NumParts, NumLeftover; 3449 std::tie(NumParts, NumLeftover) 3450 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3451 if (NumParts < 0) 3452 return UnableToLegalize; 3453 3454 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3455 SmallVector<MachineInstrBuilder, 4> NewInsts; 3456 3457 const int TotalNumParts = NumParts + NumLeftover; 3458 3459 // Insert the new phis in the result block first. 3460 for (int I = 0; I != TotalNumParts; ++I) { 3461 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3462 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3463 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3464 .addDef(PartDstReg)); 3465 if (I < NumParts) 3466 DstRegs.push_back(PartDstReg); 3467 else 3468 LeftoverDstRegs.push_back(PartDstReg); 3469 } 3470 3471 MachineBasicBlock *MBB = MI.getParent(); 3472 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3473 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3474 3475 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3476 3477 // Insert code to extract the incoming values in each predecessor block. 3478 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3479 PartRegs.clear(); 3480 LeftoverRegs.clear(); 3481 3482 Register SrcReg = MI.getOperand(I).getReg(); 3483 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3484 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3485 3486 LLT Unused; 3487 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3488 LeftoverRegs)) 3489 return UnableToLegalize; 3490 3491 // Add the newly created operand splits to the existing instructions. The 3492 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3493 // pieces. 3494 for (int J = 0; J != TotalNumParts; ++J) { 3495 MachineInstrBuilder MIB = NewInsts[J]; 3496 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3497 MIB.addMBB(&OpMBB); 3498 } 3499 } 3500 3501 MI.eraseFromParent(); 3502 return Legalized; 3503 } 3504 3505 LegalizerHelper::LegalizeResult 3506 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3507 unsigned TypeIdx, 3508 LLT NarrowTy) { 3509 if (TypeIdx != 1) 3510 return UnableToLegalize; 3511 3512 const int NumDst = MI.getNumOperands() - 1; 3513 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3514 LLT SrcTy = MRI.getType(SrcReg); 3515 3516 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3517 3518 // TODO: Create sequence of extracts. 3519 if (DstTy == NarrowTy) 3520 return UnableToLegalize; 3521 3522 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3523 if (DstTy == GCDTy) { 3524 // This would just be a copy of the same unmerge. 3525 // TODO: Create extracts, pad with undef and create intermediate merges. 3526 return UnableToLegalize; 3527 } 3528 3529 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3530 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3531 const int PartsPerUnmerge = NumDst / NumUnmerge; 3532 3533 for (int I = 0; I != NumUnmerge; ++I) { 3534 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3535 3536 for (int J = 0; J != PartsPerUnmerge; ++J) 3537 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3538 MIB.addUse(Unmerge.getReg(I)); 3539 } 3540 3541 MI.eraseFromParent(); 3542 return Legalized; 3543 } 3544 3545 LegalizerHelper::LegalizeResult 3546 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3547 unsigned TypeIdx, 3548 LLT NarrowTy) { 3549 assert(TypeIdx == 0 && "not a vector type index"); 3550 Register DstReg = MI.getOperand(0).getReg(); 3551 LLT DstTy = MRI.getType(DstReg); 3552 LLT SrcTy = DstTy.getElementType(); 3553 3554 int DstNumElts = DstTy.getNumElements(); 3555 int NarrowNumElts = NarrowTy.getNumElements(); 3556 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3557 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3558 3559 SmallVector<Register, 8> ConcatOps; 3560 SmallVector<Register, 8> SubBuildVector; 3561 3562 Register UndefReg; 3563 if (WidenedDstTy != DstTy) 3564 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3565 3566 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3567 // necessary. 3568 // 3569 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3570 // -> <2 x s16> 3571 // 3572 // %4:_(s16) = G_IMPLICIT_DEF 3573 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3574 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3575 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3576 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3577 for (int I = 0; I != NumConcat; ++I) { 3578 for (int J = 0; J != NarrowNumElts; ++J) { 3579 int SrcIdx = NarrowNumElts * I + J; 3580 3581 if (SrcIdx < DstNumElts) { 3582 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3583 SubBuildVector.push_back(SrcReg); 3584 } else 3585 SubBuildVector.push_back(UndefReg); 3586 } 3587 3588 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3589 ConcatOps.push_back(BuildVec.getReg(0)); 3590 SubBuildVector.clear(); 3591 } 3592 3593 if (DstTy == WidenedDstTy) 3594 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3595 else { 3596 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3597 MIRBuilder.buildExtract(DstReg, Concat, 0); 3598 } 3599 3600 MI.eraseFromParent(); 3601 return Legalized; 3602 } 3603 3604 LegalizerHelper::LegalizeResult 3605 LegalizerHelper::fewerElementsVectorExtractVectorElt(MachineInstr &MI, 3606 unsigned TypeIdx, 3607 LLT NarrowVecTy) { 3608 assert(TypeIdx == 1 && "not a vector type index"); 3609 3610 // TODO: Handle total scalarization case. 3611 if (!NarrowVecTy.isVector()) 3612 return UnableToLegalize; 3613 3614 Register DstReg = MI.getOperand(0).getReg(); 3615 Register SrcVec = MI.getOperand(1).getReg(); 3616 Register Idx = MI.getOperand(2).getReg(); 3617 LLT VecTy = MRI.getType(SrcVec); 3618 3619 // If the index is a constant, we can really break this down as you would 3620 // expect, and index into the target size pieces. 3621 int64_t IdxVal; 3622 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3623 // Avoid out of bounds indexing the pieces. 3624 if (IdxVal >= VecTy.getNumElements()) { 3625 MIRBuilder.buildUndef(DstReg); 3626 MI.eraseFromParent(); 3627 return Legalized; 3628 } 3629 3630 SmallVector<Register, 8> VecParts; 3631 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3632 3633 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3634 buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3635 TargetOpcode::G_ANYEXT); 3636 3637 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3638 3639 LLT IdxTy = MRI.getType(Idx); 3640 int64_t PartIdx = IdxVal / NewNumElts; 3641 auto NewIdx = 3642 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3643 3644 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3645 MI.eraseFromParent(); 3646 return Legalized; 3647 } 3648 3649 // With a variable index, we can't perform the extract in a smaller type, so 3650 // we're forced to expand this. 3651 // 3652 // TODO: We could emit a chain of compare/select to figure out which piece to 3653 // index. 3654 return lowerExtractInsertVectorElt(MI); 3655 } 3656 3657 LegalizerHelper::LegalizeResult 3658 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3659 LLT NarrowTy) { 3660 // FIXME: Don't know how to handle secondary types yet. 3661 if (TypeIdx != 0) 3662 return UnableToLegalize; 3663 3664 MachineMemOperand *MMO = *MI.memoperands_begin(); 3665 3666 // This implementation doesn't work for atomics. Give up instead of doing 3667 // something invalid. 3668 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3669 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3670 return UnableToLegalize; 3671 3672 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3673 Register ValReg = MI.getOperand(0).getReg(); 3674 Register AddrReg = MI.getOperand(1).getReg(); 3675 LLT ValTy = MRI.getType(ValReg); 3676 3677 // FIXME: Do we need a distinct NarrowMemory legalize action? 3678 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3679 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3680 return UnableToLegalize; 3681 } 3682 3683 int NumParts = -1; 3684 int NumLeftover = -1; 3685 LLT LeftoverTy; 3686 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3687 if (IsLoad) { 3688 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3689 } else { 3690 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3691 NarrowLeftoverRegs)) { 3692 NumParts = NarrowRegs.size(); 3693 NumLeftover = NarrowLeftoverRegs.size(); 3694 } 3695 } 3696 3697 if (NumParts == -1) 3698 return UnableToLegalize; 3699 3700 LLT PtrTy = MRI.getType(AddrReg); 3701 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3702 3703 unsigned TotalSize = ValTy.getSizeInBits(); 3704 3705 // Split the load/store into PartTy sized pieces starting at Offset. If this 3706 // is a load, return the new registers in ValRegs. For a store, each elements 3707 // of ValRegs should be PartTy. Returns the next offset that needs to be 3708 // handled. 3709 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3710 unsigned Offset) -> unsigned { 3711 MachineFunction &MF = MIRBuilder.getMF(); 3712 unsigned PartSize = PartTy.getSizeInBits(); 3713 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3714 Offset += PartSize, ++Idx) { 3715 unsigned ByteSize = PartSize / 8; 3716 unsigned ByteOffset = Offset / 8; 3717 Register NewAddrReg; 3718 3719 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3720 3721 MachineMemOperand *NewMMO = 3722 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3723 3724 if (IsLoad) { 3725 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3726 ValRegs.push_back(Dst); 3727 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3728 } else { 3729 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3730 } 3731 } 3732 3733 return Offset; 3734 }; 3735 3736 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3737 3738 // Handle the rest of the register if this isn't an even type breakdown. 3739 if (LeftoverTy.isValid()) 3740 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3741 3742 if (IsLoad) { 3743 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3744 LeftoverTy, NarrowLeftoverRegs); 3745 } 3746 3747 MI.eraseFromParent(); 3748 return Legalized; 3749 } 3750 3751 LegalizerHelper::LegalizeResult 3752 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3753 LLT NarrowTy) { 3754 assert(TypeIdx == 0 && "only one type index expected"); 3755 3756 const unsigned Opc = MI.getOpcode(); 3757 const int NumOps = MI.getNumOperands() - 1; 3758 const Register DstReg = MI.getOperand(0).getReg(); 3759 const unsigned Flags = MI.getFlags(); 3760 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3761 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3762 3763 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3764 3765 // First of all check whether we are narrowing (changing the element type) 3766 // or reducing the vector elements 3767 const LLT DstTy = MRI.getType(DstReg); 3768 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3769 3770 SmallVector<Register, 8> ExtractedRegs[3]; 3771 SmallVector<Register, 8> Parts; 3772 3773 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3774 3775 // Break down all the sources into NarrowTy pieces we can operate on. This may 3776 // involve creating merges to a wider type, padded with undef. 3777 for (int I = 0; I != NumOps; ++I) { 3778 Register SrcReg = MI.getOperand(I + 1).getReg(); 3779 LLT SrcTy = MRI.getType(SrcReg); 3780 3781 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3782 // For fewerElements, this is a smaller vector with the same element type. 3783 LLT OpNarrowTy; 3784 if (IsNarrow) { 3785 OpNarrowTy = NarrowScalarTy; 3786 3787 // In case of narrowing, we need to cast vectors to scalars for this to 3788 // work properly 3789 // FIXME: Can we do without the bitcast here if we're narrowing? 3790 if (SrcTy.isVector()) { 3791 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3792 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3793 } 3794 } else { 3795 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3796 } 3797 3798 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3799 3800 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3801 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3802 TargetOpcode::G_ANYEXT); 3803 } 3804 3805 SmallVector<Register, 8> ResultRegs; 3806 3807 // Input operands for each sub-instruction. 3808 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3809 3810 int NumParts = ExtractedRegs[0].size(); 3811 const unsigned DstSize = DstTy.getSizeInBits(); 3812 const LLT DstScalarTy = LLT::scalar(DstSize); 3813 3814 // Narrowing needs to use scalar types 3815 LLT DstLCMTy, NarrowDstTy; 3816 if (IsNarrow) { 3817 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3818 NarrowDstTy = NarrowScalarTy; 3819 } else { 3820 DstLCMTy = getLCMType(DstTy, NarrowTy); 3821 NarrowDstTy = NarrowTy; 3822 } 3823 3824 // We widened the source registers to satisfy merge/unmerge size 3825 // constraints. We'll have some extra fully undef parts. 3826 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3827 3828 for (int I = 0; I != NumRealParts; ++I) { 3829 // Emit this instruction on each of the split pieces. 3830 for (int J = 0; J != NumOps; ++J) 3831 InputRegs[J] = ExtractedRegs[J][I]; 3832 3833 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3834 ResultRegs.push_back(Inst.getReg(0)); 3835 } 3836 3837 // Fill out the widened result with undef instead of creating instructions 3838 // with undef inputs. 3839 int NumUndefParts = NumParts - NumRealParts; 3840 if (NumUndefParts != 0) 3841 ResultRegs.append(NumUndefParts, 3842 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3843 3844 // Extract the possibly padded result. Use a scratch register if we need to do 3845 // a final bitcast, otherwise use the original result register. 3846 Register MergeDstReg; 3847 if (IsNarrow && DstTy.isVector()) 3848 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3849 else 3850 MergeDstReg = DstReg; 3851 3852 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3853 3854 // Recast to vector if we narrowed a vector 3855 if (IsNarrow && DstTy.isVector()) 3856 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3857 3858 MI.eraseFromParent(); 3859 return Legalized; 3860 } 3861 3862 LegalizerHelper::LegalizeResult 3863 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3864 LLT NarrowTy) { 3865 Register DstReg = MI.getOperand(0).getReg(); 3866 Register SrcReg = MI.getOperand(1).getReg(); 3867 int64_t Imm = MI.getOperand(2).getImm(); 3868 3869 LLT DstTy = MRI.getType(DstReg); 3870 3871 SmallVector<Register, 8> Parts; 3872 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3873 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3874 3875 for (Register &R : Parts) 3876 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3877 3878 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3879 3880 MI.eraseFromParent(); 3881 return Legalized; 3882 } 3883 3884 LegalizerHelper::LegalizeResult 3885 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3886 LLT NarrowTy) { 3887 using namespace TargetOpcode; 3888 3889 switch (MI.getOpcode()) { 3890 case G_IMPLICIT_DEF: 3891 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3892 case G_TRUNC: 3893 case G_AND: 3894 case G_OR: 3895 case G_XOR: 3896 case G_ADD: 3897 case G_SUB: 3898 case G_MUL: 3899 case G_PTR_ADD: 3900 case G_SMULH: 3901 case G_UMULH: 3902 case G_FADD: 3903 case G_FMUL: 3904 case G_FSUB: 3905 case G_FNEG: 3906 case G_FABS: 3907 case G_FCANONICALIZE: 3908 case G_FDIV: 3909 case G_FREM: 3910 case G_FMA: 3911 case G_FMAD: 3912 case G_FPOW: 3913 case G_FEXP: 3914 case G_FEXP2: 3915 case G_FLOG: 3916 case G_FLOG2: 3917 case G_FLOG10: 3918 case G_FNEARBYINT: 3919 case G_FCEIL: 3920 case G_FFLOOR: 3921 case G_FRINT: 3922 case G_INTRINSIC_ROUND: 3923 case G_INTRINSIC_ROUNDEVEN: 3924 case G_INTRINSIC_TRUNC: 3925 case G_FCOS: 3926 case G_FSIN: 3927 case G_FSQRT: 3928 case G_BSWAP: 3929 case G_BITREVERSE: 3930 case G_SDIV: 3931 case G_UDIV: 3932 case G_SREM: 3933 case G_UREM: 3934 case G_SMIN: 3935 case G_SMAX: 3936 case G_UMIN: 3937 case G_UMAX: 3938 case G_FMINNUM: 3939 case G_FMAXNUM: 3940 case G_FMINNUM_IEEE: 3941 case G_FMAXNUM_IEEE: 3942 case G_FMINIMUM: 3943 case G_FMAXIMUM: 3944 case G_FSHL: 3945 case G_FSHR: 3946 case G_FREEZE: 3947 case G_SADDSAT: 3948 case G_SSUBSAT: 3949 case G_UADDSAT: 3950 case G_USUBSAT: 3951 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3952 case G_SHL: 3953 case G_LSHR: 3954 case G_ASHR: 3955 case G_SSHLSAT: 3956 case G_USHLSAT: 3957 case G_CTLZ: 3958 case G_CTLZ_ZERO_UNDEF: 3959 case G_CTTZ: 3960 case G_CTTZ_ZERO_UNDEF: 3961 case G_CTPOP: 3962 case G_FCOPYSIGN: 3963 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3964 case G_ZEXT: 3965 case G_SEXT: 3966 case G_ANYEXT: 3967 case G_FPEXT: 3968 case G_FPTRUNC: 3969 case G_SITOFP: 3970 case G_UITOFP: 3971 case G_FPTOSI: 3972 case G_FPTOUI: 3973 case G_INTTOPTR: 3974 case G_PTRTOINT: 3975 case G_ADDRSPACE_CAST: 3976 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3977 case G_ICMP: 3978 case G_FCMP: 3979 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3980 case G_SELECT: 3981 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3982 case G_PHI: 3983 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3984 case G_UNMERGE_VALUES: 3985 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3986 case G_BUILD_VECTOR: 3987 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3988 case G_EXTRACT_VECTOR_ELT: 3989 return fewerElementsVectorExtractVectorElt(MI, TypeIdx, NarrowTy); 3990 case G_LOAD: 3991 case G_STORE: 3992 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3993 case G_SEXT_INREG: 3994 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3995 default: 3996 return UnableToLegalize; 3997 } 3998 } 3999 4000 LegalizerHelper::LegalizeResult 4001 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4002 const LLT HalfTy, const LLT AmtTy) { 4003 4004 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4005 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4006 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4007 4008 if (Amt.isNullValue()) { 4009 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4010 MI.eraseFromParent(); 4011 return Legalized; 4012 } 4013 4014 LLT NVT = HalfTy; 4015 unsigned NVTBits = HalfTy.getSizeInBits(); 4016 unsigned VTBits = 2 * NVTBits; 4017 4018 SrcOp Lo(Register(0)), Hi(Register(0)); 4019 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4020 if (Amt.ugt(VTBits)) { 4021 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4022 } else if (Amt.ugt(NVTBits)) { 4023 Lo = MIRBuilder.buildConstant(NVT, 0); 4024 Hi = MIRBuilder.buildShl(NVT, InL, 4025 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4026 } else if (Amt == NVTBits) { 4027 Lo = MIRBuilder.buildConstant(NVT, 0); 4028 Hi = InL; 4029 } else { 4030 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4031 auto OrLHS = 4032 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4033 auto OrRHS = MIRBuilder.buildLShr( 4034 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4035 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4036 } 4037 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4038 if (Amt.ugt(VTBits)) { 4039 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4040 } else if (Amt.ugt(NVTBits)) { 4041 Lo = MIRBuilder.buildLShr(NVT, InH, 4042 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4043 Hi = MIRBuilder.buildConstant(NVT, 0); 4044 } else if (Amt == NVTBits) { 4045 Lo = InH; 4046 Hi = MIRBuilder.buildConstant(NVT, 0); 4047 } else { 4048 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4049 4050 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4051 auto OrRHS = MIRBuilder.buildShl( 4052 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4053 4054 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4055 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4056 } 4057 } else { 4058 if (Amt.ugt(VTBits)) { 4059 Hi = Lo = MIRBuilder.buildAShr( 4060 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4061 } else if (Amt.ugt(NVTBits)) { 4062 Lo = MIRBuilder.buildAShr(NVT, InH, 4063 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4064 Hi = MIRBuilder.buildAShr(NVT, InH, 4065 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4066 } else if (Amt == NVTBits) { 4067 Lo = InH; 4068 Hi = MIRBuilder.buildAShr(NVT, InH, 4069 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4070 } else { 4071 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4072 4073 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4074 auto OrRHS = MIRBuilder.buildShl( 4075 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4076 4077 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4078 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4079 } 4080 } 4081 4082 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4083 MI.eraseFromParent(); 4084 4085 return Legalized; 4086 } 4087 4088 // TODO: Optimize if constant shift amount. 4089 LegalizerHelper::LegalizeResult 4090 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4091 LLT RequestedTy) { 4092 if (TypeIdx == 1) { 4093 Observer.changingInstr(MI); 4094 narrowScalarSrc(MI, RequestedTy, 2); 4095 Observer.changedInstr(MI); 4096 return Legalized; 4097 } 4098 4099 Register DstReg = MI.getOperand(0).getReg(); 4100 LLT DstTy = MRI.getType(DstReg); 4101 if (DstTy.isVector()) 4102 return UnableToLegalize; 4103 4104 Register Amt = MI.getOperand(2).getReg(); 4105 LLT ShiftAmtTy = MRI.getType(Amt); 4106 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4107 if (DstEltSize % 2 != 0) 4108 return UnableToLegalize; 4109 4110 // Ignore the input type. We can only go to exactly half the size of the 4111 // input. If that isn't small enough, the resulting pieces will be further 4112 // legalized. 4113 const unsigned NewBitSize = DstEltSize / 2; 4114 const LLT HalfTy = LLT::scalar(NewBitSize); 4115 const LLT CondTy = LLT::scalar(1); 4116 4117 if (const MachineInstr *KShiftAmt = 4118 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4119 return narrowScalarShiftByConstant( 4120 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4121 } 4122 4123 // TODO: Expand with known bits. 4124 4125 // Handle the fully general expansion by an unknown amount. 4126 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4127 4128 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4129 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4130 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4131 4132 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4133 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4134 4135 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4136 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4137 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4138 4139 Register ResultRegs[2]; 4140 switch (MI.getOpcode()) { 4141 case TargetOpcode::G_SHL: { 4142 // Short: ShAmt < NewBitSize 4143 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4144 4145 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4146 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4147 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4148 4149 // Long: ShAmt >= NewBitSize 4150 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4151 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4152 4153 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4154 auto Hi = MIRBuilder.buildSelect( 4155 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4156 4157 ResultRegs[0] = Lo.getReg(0); 4158 ResultRegs[1] = Hi.getReg(0); 4159 break; 4160 } 4161 case TargetOpcode::G_LSHR: 4162 case TargetOpcode::G_ASHR: { 4163 // Short: ShAmt < NewBitSize 4164 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4165 4166 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4167 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4168 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4169 4170 // Long: ShAmt >= NewBitSize 4171 MachineInstrBuilder HiL; 4172 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4173 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4174 } else { 4175 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4176 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4177 } 4178 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4179 {InH, AmtExcess}); // Lo from Hi part. 4180 4181 auto Lo = MIRBuilder.buildSelect( 4182 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4183 4184 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4185 4186 ResultRegs[0] = Lo.getReg(0); 4187 ResultRegs[1] = Hi.getReg(0); 4188 break; 4189 } 4190 default: 4191 llvm_unreachable("not a shift"); 4192 } 4193 4194 MIRBuilder.buildMerge(DstReg, ResultRegs); 4195 MI.eraseFromParent(); 4196 return Legalized; 4197 } 4198 4199 LegalizerHelper::LegalizeResult 4200 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4201 LLT MoreTy) { 4202 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4203 4204 Observer.changingInstr(MI); 4205 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4206 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4207 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4208 moreElementsVectorSrc(MI, MoreTy, I); 4209 } 4210 4211 MachineBasicBlock &MBB = *MI.getParent(); 4212 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4213 moreElementsVectorDst(MI, MoreTy, 0); 4214 Observer.changedInstr(MI); 4215 return Legalized; 4216 } 4217 4218 LegalizerHelper::LegalizeResult 4219 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4220 LLT MoreTy) { 4221 unsigned Opc = MI.getOpcode(); 4222 switch (Opc) { 4223 case TargetOpcode::G_IMPLICIT_DEF: 4224 case TargetOpcode::G_LOAD: { 4225 if (TypeIdx != 0) 4226 return UnableToLegalize; 4227 Observer.changingInstr(MI); 4228 moreElementsVectorDst(MI, MoreTy, 0); 4229 Observer.changedInstr(MI); 4230 return Legalized; 4231 } 4232 case TargetOpcode::G_STORE: 4233 if (TypeIdx != 0) 4234 return UnableToLegalize; 4235 Observer.changingInstr(MI); 4236 moreElementsVectorSrc(MI, MoreTy, 0); 4237 Observer.changedInstr(MI); 4238 return Legalized; 4239 case TargetOpcode::G_AND: 4240 case TargetOpcode::G_OR: 4241 case TargetOpcode::G_XOR: 4242 case TargetOpcode::G_SMIN: 4243 case TargetOpcode::G_SMAX: 4244 case TargetOpcode::G_UMIN: 4245 case TargetOpcode::G_UMAX: 4246 case TargetOpcode::G_FMINNUM: 4247 case TargetOpcode::G_FMAXNUM: 4248 case TargetOpcode::G_FMINNUM_IEEE: 4249 case TargetOpcode::G_FMAXNUM_IEEE: 4250 case TargetOpcode::G_FMINIMUM: 4251 case TargetOpcode::G_FMAXIMUM: { 4252 Observer.changingInstr(MI); 4253 moreElementsVectorSrc(MI, MoreTy, 1); 4254 moreElementsVectorSrc(MI, MoreTy, 2); 4255 moreElementsVectorDst(MI, MoreTy, 0); 4256 Observer.changedInstr(MI); 4257 return Legalized; 4258 } 4259 case TargetOpcode::G_EXTRACT: 4260 if (TypeIdx != 1) 4261 return UnableToLegalize; 4262 Observer.changingInstr(MI); 4263 moreElementsVectorSrc(MI, MoreTy, 1); 4264 Observer.changedInstr(MI); 4265 return Legalized; 4266 case TargetOpcode::G_INSERT: 4267 case TargetOpcode::G_FREEZE: 4268 if (TypeIdx != 0) 4269 return UnableToLegalize; 4270 Observer.changingInstr(MI); 4271 moreElementsVectorSrc(MI, MoreTy, 1); 4272 moreElementsVectorDst(MI, MoreTy, 0); 4273 Observer.changedInstr(MI); 4274 return Legalized; 4275 case TargetOpcode::G_SELECT: 4276 if (TypeIdx != 0) 4277 return UnableToLegalize; 4278 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4279 return UnableToLegalize; 4280 4281 Observer.changingInstr(MI); 4282 moreElementsVectorSrc(MI, MoreTy, 2); 4283 moreElementsVectorSrc(MI, MoreTy, 3); 4284 moreElementsVectorDst(MI, MoreTy, 0); 4285 Observer.changedInstr(MI); 4286 return Legalized; 4287 case TargetOpcode::G_UNMERGE_VALUES: { 4288 if (TypeIdx != 1) 4289 return UnableToLegalize; 4290 4291 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4292 int NumDst = MI.getNumOperands() - 1; 4293 moreElementsVectorSrc(MI, MoreTy, NumDst); 4294 4295 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4296 for (int I = 0; I != NumDst; ++I) 4297 MIB.addDef(MI.getOperand(I).getReg()); 4298 4299 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4300 for (int I = NumDst; I != NewNumDst; ++I) 4301 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4302 4303 MIB.addUse(MI.getOperand(NumDst).getReg()); 4304 MI.eraseFromParent(); 4305 return Legalized; 4306 } 4307 case TargetOpcode::G_PHI: 4308 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4309 default: 4310 return UnableToLegalize; 4311 } 4312 } 4313 4314 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4315 ArrayRef<Register> Src1Regs, 4316 ArrayRef<Register> Src2Regs, 4317 LLT NarrowTy) { 4318 MachineIRBuilder &B = MIRBuilder; 4319 unsigned SrcParts = Src1Regs.size(); 4320 unsigned DstParts = DstRegs.size(); 4321 4322 unsigned DstIdx = 0; // Low bits of the result. 4323 Register FactorSum = 4324 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4325 DstRegs[DstIdx] = FactorSum; 4326 4327 unsigned CarrySumPrevDstIdx; 4328 SmallVector<Register, 4> Factors; 4329 4330 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4331 // Collect low parts of muls for DstIdx. 4332 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4333 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4334 MachineInstrBuilder Mul = 4335 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4336 Factors.push_back(Mul.getReg(0)); 4337 } 4338 // Collect high parts of muls from previous DstIdx. 4339 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4340 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4341 MachineInstrBuilder Umulh = 4342 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4343 Factors.push_back(Umulh.getReg(0)); 4344 } 4345 // Add CarrySum from additions calculated for previous DstIdx. 4346 if (DstIdx != 1) { 4347 Factors.push_back(CarrySumPrevDstIdx); 4348 } 4349 4350 Register CarrySum; 4351 // Add all factors and accumulate all carries into CarrySum. 4352 if (DstIdx != DstParts - 1) { 4353 MachineInstrBuilder Uaddo = 4354 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4355 FactorSum = Uaddo.getReg(0); 4356 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4357 for (unsigned i = 2; i < Factors.size(); ++i) { 4358 MachineInstrBuilder Uaddo = 4359 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4360 FactorSum = Uaddo.getReg(0); 4361 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4362 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4363 } 4364 } else { 4365 // Since value for the next index is not calculated, neither is CarrySum. 4366 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4367 for (unsigned i = 2; i < Factors.size(); ++i) 4368 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4369 } 4370 4371 CarrySumPrevDstIdx = CarrySum; 4372 DstRegs[DstIdx] = FactorSum; 4373 Factors.clear(); 4374 } 4375 } 4376 4377 LegalizerHelper::LegalizeResult 4378 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4379 Register DstReg = MI.getOperand(0).getReg(); 4380 Register Src1 = MI.getOperand(1).getReg(); 4381 Register Src2 = MI.getOperand(2).getReg(); 4382 4383 LLT Ty = MRI.getType(DstReg); 4384 if (Ty.isVector()) 4385 return UnableToLegalize; 4386 4387 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4388 unsigned DstSize = Ty.getSizeInBits(); 4389 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4390 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4391 return UnableToLegalize; 4392 4393 unsigned NumDstParts = DstSize / NarrowSize; 4394 unsigned NumSrcParts = SrcSize / NarrowSize; 4395 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4396 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4397 4398 SmallVector<Register, 2> Src1Parts, Src2Parts; 4399 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4400 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4401 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4402 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4403 4404 // Take only high half of registers if this is high mul. 4405 ArrayRef<Register> DstRegs( 4406 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4407 MIRBuilder.buildMerge(DstReg, DstRegs); 4408 MI.eraseFromParent(); 4409 return Legalized; 4410 } 4411 4412 LegalizerHelper::LegalizeResult 4413 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4414 LLT NarrowTy) { 4415 if (TypeIdx != 1) 4416 return UnableToLegalize; 4417 4418 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4419 4420 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4421 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4422 // NarrowSize. 4423 if (SizeOp1 % NarrowSize != 0) 4424 return UnableToLegalize; 4425 int NumParts = SizeOp1 / NarrowSize; 4426 4427 SmallVector<Register, 2> SrcRegs, DstRegs; 4428 SmallVector<uint64_t, 2> Indexes; 4429 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4430 4431 Register OpReg = MI.getOperand(0).getReg(); 4432 uint64_t OpStart = MI.getOperand(2).getImm(); 4433 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4434 for (int i = 0; i < NumParts; ++i) { 4435 unsigned SrcStart = i * NarrowSize; 4436 4437 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4438 // No part of the extract uses this subregister, ignore it. 4439 continue; 4440 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4441 // The entire subregister is extracted, forward the value. 4442 DstRegs.push_back(SrcRegs[i]); 4443 continue; 4444 } 4445 4446 // OpSegStart is where this destination segment would start in OpReg if it 4447 // extended infinitely in both directions. 4448 int64_t ExtractOffset; 4449 uint64_t SegSize; 4450 if (OpStart < SrcStart) { 4451 ExtractOffset = 0; 4452 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4453 } else { 4454 ExtractOffset = OpStart - SrcStart; 4455 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4456 } 4457 4458 Register SegReg = SrcRegs[i]; 4459 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4460 // A genuine extract is needed. 4461 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4462 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4463 } 4464 4465 DstRegs.push_back(SegReg); 4466 } 4467 4468 Register DstReg = MI.getOperand(0).getReg(); 4469 if (MRI.getType(DstReg).isVector()) 4470 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4471 else if (DstRegs.size() > 1) 4472 MIRBuilder.buildMerge(DstReg, DstRegs); 4473 else 4474 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4475 MI.eraseFromParent(); 4476 return Legalized; 4477 } 4478 4479 LegalizerHelper::LegalizeResult 4480 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4481 LLT NarrowTy) { 4482 // FIXME: Don't know how to handle secondary types yet. 4483 if (TypeIdx != 0) 4484 return UnableToLegalize; 4485 4486 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4487 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4488 4489 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4490 // NarrowSize. 4491 if (SizeOp0 % NarrowSize != 0) 4492 return UnableToLegalize; 4493 4494 int NumParts = SizeOp0 / NarrowSize; 4495 4496 SmallVector<Register, 2> SrcRegs, DstRegs; 4497 SmallVector<uint64_t, 2> Indexes; 4498 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4499 4500 Register OpReg = MI.getOperand(2).getReg(); 4501 uint64_t OpStart = MI.getOperand(3).getImm(); 4502 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4503 for (int i = 0; i < NumParts; ++i) { 4504 unsigned DstStart = i * NarrowSize; 4505 4506 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4507 // No part of the insert affects this subregister, forward the original. 4508 DstRegs.push_back(SrcRegs[i]); 4509 continue; 4510 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4511 // The entire subregister is defined by this insert, forward the new 4512 // value. 4513 DstRegs.push_back(OpReg); 4514 continue; 4515 } 4516 4517 // OpSegStart is where this destination segment would start in OpReg if it 4518 // extended infinitely in both directions. 4519 int64_t ExtractOffset, InsertOffset; 4520 uint64_t SegSize; 4521 if (OpStart < DstStart) { 4522 InsertOffset = 0; 4523 ExtractOffset = DstStart - OpStart; 4524 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4525 } else { 4526 InsertOffset = OpStart - DstStart; 4527 ExtractOffset = 0; 4528 SegSize = 4529 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4530 } 4531 4532 Register SegReg = OpReg; 4533 if (ExtractOffset != 0 || SegSize != OpSize) { 4534 // A genuine extract is needed. 4535 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4536 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4537 } 4538 4539 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4540 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4541 DstRegs.push_back(DstReg); 4542 } 4543 4544 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4545 Register DstReg = MI.getOperand(0).getReg(); 4546 if(MRI.getType(DstReg).isVector()) 4547 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4548 else 4549 MIRBuilder.buildMerge(DstReg, DstRegs); 4550 MI.eraseFromParent(); 4551 return Legalized; 4552 } 4553 4554 LegalizerHelper::LegalizeResult 4555 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4556 LLT NarrowTy) { 4557 Register DstReg = MI.getOperand(0).getReg(); 4558 LLT DstTy = MRI.getType(DstReg); 4559 4560 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4561 4562 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4563 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4564 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4565 LLT LeftoverTy; 4566 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4567 Src0Regs, Src0LeftoverRegs)) 4568 return UnableToLegalize; 4569 4570 LLT Unused; 4571 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4572 Src1Regs, Src1LeftoverRegs)) 4573 llvm_unreachable("inconsistent extractParts result"); 4574 4575 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4576 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4577 {Src0Regs[I], Src1Regs[I]}); 4578 DstRegs.push_back(Inst.getReg(0)); 4579 } 4580 4581 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4582 auto Inst = MIRBuilder.buildInstr( 4583 MI.getOpcode(), 4584 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4585 DstLeftoverRegs.push_back(Inst.getReg(0)); 4586 } 4587 4588 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4589 LeftoverTy, DstLeftoverRegs); 4590 4591 MI.eraseFromParent(); 4592 return Legalized; 4593 } 4594 4595 LegalizerHelper::LegalizeResult 4596 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4597 LLT NarrowTy) { 4598 if (TypeIdx != 0) 4599 return UnableToLegalize; 4600 4601 Register DstReg = MI.getOperand(0).getReg(); 4602 Register SrcReg = MI.getOperand(1).getReg(); 4603 4604 LLT DstTy = MRI.getType(DstReg); 4605 if (DstTy.isVector()) 4606 return UnableToLegalize; 4607 4608 SmallVector<Register, 8> Parts; 4609 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4610 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4611 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4612 4613 MI.eraseFromParent(); 4614 return Legalized; 4615 } 4616 4617 LegalizerHelper::LegalizeResult 4618 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4619 LLT NarrowTy) { 4620 if (TypeIdx != 0) 4621 return UnableToLegalize; 4622 4623 Register CondReg = MI.getOperand(1).getReg(); 4624 LLT CondTy = MRI.getType(CondReg); 4625 if (CondTy.isVector()) // TODO: Handle vselect 4626 return UnableToLegalize; 4627 4628 Register DstReg = MI.getOperand(0).getReg(); 4629 LLT DstTy = MRI.getType(DstReg); 4630 4631 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4632 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4633 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4634 LLT LeftoverTy; 4635 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4636 Src1Regs, Src1LeftoverRegs)) 4637 return UnableToLegalize; 4638 4639 LLT Unused; 4640 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4641 Src2Regs, Src2LeftoverRegs)) 4642 llvm_unreachable("inconsistent extractParts result"); 4643 4644 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4645 auto Select = MIRBuilder.buildSelect(NarrowTy, 4646 CondReg, Src1Regs[I], Src2Regs[I]); 4647 DstRegs.push_back(Select.getReg(0)); 4648 } 4649 4650 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4651 auto Select = MIRBuilder.buildSelect( 4652 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4653 DstLeftoverRegs.push_back(Select.getReg(0)); 4654 } 4655 4656 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4657 LeftoverTy, DstLeftoverRegs); 4658 4659 MI.eraseFromParent(); 4660 return Legalized; 4661 } 4662 4663 LegalizerHelper::LegalizeResult 4664 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4665 LLT NarrowTy) { 4666 if (TypeIdx != 1) 4667 return UnableToLegalize; 4668 4669 Register DstReg = MI.getOperand(0).getReg(); 4670 Register SrcReg = MI.getOperand(1).getReg(); 4671 LLT DstTy = MRI.getType(DstReg); 4672 LLT SrcTy = MRI.getType(SrcReg); 4673 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4674 4675 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4676 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4677 4678 MachineIRBuilder &B = MIRBuilder; 4679 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4680 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4681 auto C_0 = B.buildConstant(NarrowTy, 0); 4682 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4683 UnmergeSrc.getReg(1), C_0); 4684 auto LoCTLZ = IsUndef ? 4685 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4686 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4687 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4688 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4689 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4690 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4691 4692 MI.eraseFromParent(); 4693 return Legalized; 4694 } 4695 4696 return UnableToLegalize; 4697 } 4698 4699 LegalizerHelper::LegalizeResult 4700 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4701 LLT NarrowTy) { 4702 if (TypeIdx != 1) 4703 return UnableToLegalize; 4704 4705 Register DstReg = MI.getOperand(0).getReg(); 4706 Register SrcReg = MI.getOperand(1).getReg(); 4707 LLT DstTy = MRI.getType(DstReg); 4708 LLT SrcTy = MRI.getType(SrcReg); 4709 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4710 4711 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4712 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4713 4714 MachineIRBuilder &B = MIRBuilder; 4715 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4716 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4717 auto C_0 = B.buildConstant(NarrowTy, 0); 4718 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4719 UnmergeSrc.getReg(0), C_0); 4720 auto HiCTTZ = IsUndef ? 4721 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4722 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4723 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4724 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4725 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4726 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4727 4728 MI.eraseFromParent(); 4729 return Legalized; 4730 } 4731 4732 return UnableToLegalize; 4733 } 4734 4735 LegalizerHelper::LegalizeResult 4736 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4737 LLT NarrowTy) { 4738 if (TypeIdx != 1) 4739 return UnableToLegalize; 4740 4741 Register DstReg = MI.getOperand(0).getReg(); 4742 LLT DstTy = MRI.getType(DstReg); 4743 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4744 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4745 4746 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4747 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4748 4749 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4750 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4751 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4752 4753 MI.eraseFromParent(); 4754 return Legalized; 4755 } 4756 4757 return UnableToLegalize; 4758 } 4759 4760 LegalizerHelper::LegalizeResult 4761 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4762 unsigned Opc = MI.getOpcode(); 4763 const auto &TII = MIRBuilder.getTII(); 4764 auto isSupported = [this](const LegalityQuery &Q) { 4765 auto QAction = LI.getAction(Q).Action; 4766 return QAction == Legal || QAction == Libcall || QAction == Custom; 4767 }; 4768 switch (Opc) { 4769 default: 4770 return UnableToLegalize; 4771 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4772 // This trivially expands to CTLZ. 4773 Observer.changingInstr(MI); 4774 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4775 Observer.changedInstr(MI); 4776 return Legalized; 4777 } 4778 case TargetOpcode::G_CTLZ: { 4779 Register DstReg = MI.getOperand(0).getReg(); 4780 Register SrcReg = MI.getOperand(1).getReg(); 4781 LLT DstTy = MRI.getType(DstReg); 4782 LLT SrcTy = MRI.getType(SrcReg); 4783 unsigned Len = SrcTy.getSizeInBits(); 4784 4785 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4786 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4787 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4788 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4789 auto ICmp = MIRBuilder.buildICmp( 4790 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4791 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4792 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4793 MI.eraseFromParent(); 4794 return Legalized; 4795 } 4796 // for now, we do this: 4797 // NewLen = NextPowerOf2(Len); 4798 // x = x | (x >> 1); 4799 // x = x | (x >> 2); 4800 // ... 4801 // x = x | (x >>16); 4802 // x = x | (x >>32); // for 64-bit input 4803 // Upto NewLen/2 4804 // return Len - popcount(x); 4805 // 4806 // Ref: "Hacker's Delight" by Henry Warren 4807 Register Op = SrcReg; 4808 unsigned NewLen = PowerOf2Ceil(Len); 4809 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4810 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4811 auto MIBOp = MIRBuilder.buildOr( 4812 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4813 Op = MIBOp.getReg(0); 4814 } 4815 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4816 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4817 MIBPop); 4818 MI.eraseFromParent(); 4819 return Legalized; 4820 } 4821 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4822 // This trivially expands to CTTZ. 4823 Observer.changingInstr(MI); 4824 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4825 Observer.changedInstr(MI); 4826 return Legalized; 4827 } 4828 case TargetOpcode::G_CTTZ: { 4829 Register DstReg = MI.getOperand(0).getReg(); 4830 Register SrcReg = MI.getOperand(1).getReg(); 4831 LLT DstTy = MRI.getType(DstReg); 4832 LLT SrcTy = MRI.getType(SrcReg); 4833 4834 unsigned Len = SrcTy.getSizeInBits(); 4835 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4836 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4837 // zero. 4838 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4839 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4840 auto ICmp = MIRBuilder.buildICmp( 4841 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4842 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4843 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4844 MI.eraseFromParent(); 4845 return Legalized; 4846 } 4847 // for now, we use: { return popcount(~x & (x - 1)); } 4848 // unless the target has ctlz but not ctpop, in which case we use: 4849 // { return 32 - nlz(~x & (x-1)); } 4850 // Ref: "Hacker's Delight" by Henry Warren 4851 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4852 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4853 auto MIBTmp = MIRBuilder.buildAnd( 4854 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4855 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4856 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4857 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4858 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4859 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4860 MI.eraseFromParent(); 4861 return Legalized; 4862 } 4863 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4864 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4865 return Legalized; 4866 } 4867 case TargetOpcode::G_CTPOP: { 4868 unsigned Size = Ty.getSizeInBits(); 4869 MachineIRBuilder &B = MIRBuilder; 4870 4871 // Count set bits in blocks of 2 bits. Default approach would be 4872 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4873 // We use following formula instead: 4874 // B2Count = val - { (val >> 1) & 0x55555555 } 4875 // since it gives same result in blocks of 2 with one instruction less. 4876 auto C_1 = B.buildConstant(Ty, 1); 4877 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4878 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4879 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4880 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4881 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4882 4883 // In order to get count in blocks of 4 add values from adjacent block of 2. 4884 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4885 auto C_2 = B.buildConstant(Ty, 2); 4886 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4887 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4888 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4889 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4890 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4891 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4892 4893 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4894 // addition since count value sits in range {0,...,8} and 4 bits are enough 4895 // to hold such binary values. After addition high 4 bits still hold count 4896 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4897 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4898 auto C_4 = B.buildConstant(Ty, 4); 4899 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4900 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4901 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4902 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4903 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4904 4905 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4906 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4907 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4908 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4909 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4910 4911 // Shift count result from 8 high bits to low bits. 4912 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4913 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4914 4915 MI.eraseFromParent(); 4916 return Legalized; 4917 } 4918 } 4919 } 4920 4921 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4922 // representation. 4923 LegalizerHelper::LegalizeResult 4924 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4925 Register Dst = MI.getOperand(0).getReg(); 4926 Register Src = MI.getOperand(1).getReg(); 4927 const LLT S64 = LLT::scalar(64); 4928 const LLT S32 = LLT::scalar(32); 4929 const LLT S1 = LLT::scalar(1); 4930 4931 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4932 4933 // unsigned cul2f(ulong u) { 4934 // uint lz = clz(u); 4935 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4936 // u = (u << lz) & 0x7fffffffffffffffUL; 4937 // ulong t = u & 0xffffffffffUL; 4938 // uint v = (e << 23) | (uint)(u >> 40); 4939 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4940 // return as_float(v + r); 4941 // } 4942 4943 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4944 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4945 4946 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4947 4948 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4949 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4950 4951 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4952 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4953 4954 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4955 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4956 4957 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4958 4959 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4960 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4961 4962 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4963 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4964 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4965 4966 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4967 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4968 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4969 auto One = MIRBuilder.buildConstant(S32, 1); 4970 4971 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4972 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4973 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4974 MIRBuilder.buildAdd(Dst, V, R); 4975 4976 MI.eraseFromParent(); 4977 return Legalized; 4978 } 4979 4980 LegalizerHelper::LegalizeResult 4981 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4982 Register Dst = MI.getOperand(0).getReg(); 4983 Register Src = MI.getOperand(1).getReg(); 4984 LLT DstTy = MRI.getType(Dst); 4985 LLT SrcTy = MRI.getType(Src); 4986 4987 if (SrcTy == LLT::scalar(1)) { 4988 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4989 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4990 MIRBuilder.buildSelect(Dst, Src, True, False); 4991 MI.eraseFromParent(); 4992 return Legalized; 4993 } 4994 4995 if (SrcTy != LLT::scalar(64)) 4996 return UnableToLegalize; 4997 4998 if (DstTy == LLT::scalar(32)) { 4999 // TODO: SelectionDAG has several alternative expansions to port which may 5000 // be more reasonble depending on the available instructions. If a target 5001 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5002 // intermediate type, this is probably worse. 5003 return lowerU64ToF32BitOps(MI); 5004 } 5005 5006 return UnableToLegalize; 5007 } 5008 5009 LegalizerHelper::LegalizeResult 5010 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 5011 Register Dst = MI.getOperand(0).getReg(); 5012 Register Src = MI.getOperand(1).getReg(); 5013 LLT DstTy = MRI.getType(Dst); 5014 LLT SrcTy = MRI.getType(Src); 5015 5016 const LLT S64 = LLT::scalar(64); 5017 const LLT S32 = LLT::scalar(32); 5018 const LLT S1 = LLT::scalar(1); 5019 5020 if (SrcTy == S1) { 5021 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5022 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5023 MIRBuilder.buildSelect(Dst, Src, True, False); 5024 MI.eraseFromParent(); 5025 return Legalized; 5026 } 5027 5028 if (SrcTy != S64) 5029 return UnableToLegalize; 5030 5031 if (DstTy == S32) { 5032 // signed cl2f(long l) { 5033 // long s = l >> 63; 5034 // float r = cul2f((l + s) ^ s); 5035 // return s ? -r : r; 5036 // } 5037 Register L = Src; 5038 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5039 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5040 5041 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5042 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5043 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5044 5045 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5046 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5047 MIRBuilder.buildConstant(S64, 0)); 5048 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5049 MI.eraseFromParent(); 5050 return Legalized; 5051 } 5052 5053 return UnableToLegalize; 5054 } 5055 5056 LegalizerHelper::LegalizeResult 5057 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 5058 Register Dst = MI.getOperand(0).getReg(); 5059 Register Src = MI.getOperand(1).getReg(); 5060 LLT DstTy = MRI.getType(Dst); 5061 LLT SrcTy = MRI.getType(Src); 5062 const LLT S64 = LLT::scalar(64); 5063 const LLT S32 = LLT::scalar(32); 5064 5065 if (SrcTy != S64 && SrcTy != S32) 5066 return UnableToLegalize; 5067 if (DstTy != S32 && DstTy != S64) 5068 return UnableToLegalize; 5069 5070 // FPTOSI gives same result as FPTOUI for positive signed integers. 5071 // FPTOUI needs to deal with fp values that convert to unsigned integers 5072 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5073 5074 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5075 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5076 : APFloat::IEEEdouble(), 5077 APInt::getNullValue(SrcTy.getSizeInBits())); 5078 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5079 5080 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5081 5082 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5083 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5084 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5085 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5086 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5087 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5088 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5089 5090 const LLT S1 = LLT::scalar(1); 5091 5092 MachineInstrBuilder FCMP = 5093 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5094 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5095 5096 MI.eraseFromParent(); 5097 return Legalized; 5098 } 5099 5100 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5101 Register Dst = MI.getOperand(0).getReg(); 5102 Register Src = MI.getOperand(1).getReg(); 5103 LLT DstTy = MRI.getType(Dst); 5104 LLT SrcTy = MRI.getType(Src); 5105 const LLT S64 = LLT::scalar(64); 5106 const LLT S32 = LLT::scalar(32); 5107 5108 // FIXME: Only f32 to i64 conversions are supported. 5109 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5110 return UnableToLegalize; 5111 5112 // Expand f32 -> i64 conversion 5113 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5114 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5115 5116 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5117 5118 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5119 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5120 5121 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5122 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5123 5124 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5125 APInt::getSignMask(SrcEltBits)); 5126 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5127 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5128 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5129 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5130 5131 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5132 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5133 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5134 5135 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5136 R = MIRBuilder.buildZExt(DstTy, R); 5137 5138 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5139 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5140 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5141 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5142 5143 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5144 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5145 5146 const LLT S1 = LLT::scalar(1); 5147 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5148 S1, Exponent, ExponentLoBit); 5149 5150 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5151 5152 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5153 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5154 5155 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5156 5157 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5158 S1, Exponent, ZeroSrcTy); 5159 5160 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5161 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5162 5163 MI.eraseFromParent(); 5164 return Legalized; 5165 } 5166 5167 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5168 LegalizerHelper::LegalizeResult 5169 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5170 Register Dst = MI.getOperand(0).getReg(); 5171 Register Src = MI.getOperand(1).getReg(); 5172 5173 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5174 return UnableToLegalize; 5175 5176 const unsigned ExpMask = 0x7ff; 5177 const unsigned ExpBiasf64 = 1023; 5178 const unsigned ExpBiasf16 = 15; 5179 const LLT S32 = LLT::scalar(32); 5180 const LLT S1 = LLT::scalar(1); 5181 5182 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5183 Register U = Unmerge.getReg(0); 5184 Register UH = Unmerge.getReg(1); 5185 5186 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5187 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5188 5189 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5190 // add the f16 bias (15) to get the biased exponent for the f16 format. 5191 E = MIRBuilder.buildAdd( 5192 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5193 5194 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5195 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5196 5197 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5198 MIRBuilder.buildConstant(S32, 0x1ff)); 5199 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5200 5201 auto Zero = MIRBuilder.buildConstant(S32, 0); 5202 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5203 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5204 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5205 5206 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5207 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5208 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5209 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5210 5211 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5212 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5213 5214 // N = M | (E << 12); 5215 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5216 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5217 5218 // B = clamp(1-E, 0, 13); 5219 auto One = MIRBuilder.buildConstant(S32, 1); 5220 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5221 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5222 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5223 5224 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5225 MIRBuilder.buildConstant(S32, 0x1000)); 5226 5227 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5228 auto D0 = MIRBuilder.buildShl(S32, D, B); 5229 5230 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5231 D0, SigSetHigh); 5232 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5233 D = MIRBuilder.buildOr(S32, D, D1); 5234 5235 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5236 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5237 5238 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5239 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5240 5241 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5242 MIRBuilder.buildConstant(S32, 3)); 5243 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5244 5245 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5246 MIRBuilder.buildConstant(S32, 5)); 5247 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5248 5249 V1 = MIRBuilder.buildOr(S32, V0, V1); 5250 V = MIRBuilder.buildAdd(S32, V, V1); 5251 5252 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5253 E, MIRBuilder.buildConstant(S32, 30)); 5254 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5255 MIRBuilder.buildConstant(S32, 0x7c00), V); 5256 5257 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5258 E, MIRBuilder.buildConstant(S32, 1039)); 5259 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5260 5261 // Extract the sign bit. 5262 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5263 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5264 5265 // Insert the sign bit 5266 V = MIRBuilder.buildOr(S32, Sign, V); 5267 5268 MIRBuilder.buildTrunc(Dst, V); 5269 MI.eraseFromParent(); 5270 return Legalized; 5271 } 5272 5273 LegalizerHelper::LegalizeResult 5274 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 5275 Register Dst = MI.getOperand(0).getReg(); 5276 Register Src = MI.getOperand(1).getReg(); 5277 5278 LLT DstTy = MRI.getType(Dst); 5279 LLT SrcTy = MRI.getType(Src); 5280 const LLT S64 = LLT::scalar(64); 5281 const LLT S16 = LLT::scalar(16); 5282 5283 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5284 return lowerFPTRUNC_F64_TO_F16(MI); 5285 5286 return UnableToLegalize; 5287 } 5288 5289 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5290 // multiplication tree. 5291 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5292 Register Dst = MI.getOperand(0).getReg(); 5293 Register Src0 = MI.getOperand(1).getReg(); 5294 Register Src1 = MI.getOperand(2).getReg(); 5295 LLT Ty = MRI.getType(Dst); 5296 5297 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5298 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5299 MI.eraseFromParent(); 5300 return Legalized; 5301 } 5302 5303 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5304 switch (Opc) { 5305 case TargetOpcode::G_SMIN: 5306 return CmpInst::ICMP_SLT; 5307 case TargetOpcode::G_SMAX: 5308 return CmpInst::ICMP_SGT; 5309 case TargetOpcode::G_UMIN: 5310 return CmpInst::ICMP_ULT; 5311 case TargetOpcode::G_UMAX: 5312 return CmpInst::ICMP_UGT; 5313 default: 5314 llvm_unreachable("not in integer min/max"); 5315 } 5316 } 5317 5318 LegalizerHelper::LegalizeResult 5319 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 5320 Register Dst = MI.getOperand(0).getReg(); 5321 Register Src0 = MI.getOperand(1).getReg(); 5322 Register Src1 = MI.getOperand(2).getReg(); 5323 5324 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5325 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5326 5327 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5328 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5329 5330 MI.eraseFromParent(); 5331 return Legalized; 5332 } 5333 5334 LegalizerHelper::LegalizeResult 5335 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 5336 Register Dst = MI.getOperand(0).getReg(); 5337 Register Src0 = MI.getOperand(1).getReg(); 5338 Register Src1 = MI.getOperand(2).getReg(); 5339 5340 const LLT Src0Ty = MRI.getType(Src0); 5341 const LLT Src1Ty = MRI.getType(Src1); 5342 5343 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5344 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5345 5346 auto SignBitMask = MIRBuilder.buildConstant( 5347 Src0Ty, APInt::getSignMask(Src0Size)); 5348 5349 auto NotSignBitMask = MIRBuilder.buildConstant( 5350 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5351 5352 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 5353 MachineInstr *Or; 5354 5355 if (Src0Ty == Src1Ty) { 5356 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 5357 Or = MIRBuilder.buildOr(Dst, And0, And1); 5358 } else if (Src0Size > Src1Size) { 5359 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5360 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5361 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5362 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 5363 Or = MIRBuilder.buildOr(Dst, And0, And1); 5364 } else { 5365 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5366 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5367 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5368 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 5369 Or = MIRBuilder.buildOr(Dst, And0, And1); 5370 } 5371 5372 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5373 // constants are a nan and -0.0, but the final result should preserve 5374 // everything. 5375 if (unsigned Flags = MI.getFlags()) 5376 Or->setFlags(Flags); 5377 5378 MI.eraseFromParent(); 5379 return Legalized; 5380 } 5381 5382 LegalizerHelper::LegalizeResult 5383 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5384 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5385 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5386 5387 Register Dst = MI.getOperand(0).getReg(); 5388 Register Src0 = MI.getOperand(1).getReg(); 5389 Register Src1 = MI.getOperand(2).getReg(); 5390 LLT Ty = MRI.getType(Dst); 5391 5392 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5393 // Insert canonicalizes if it's possible we need to quiet to get correct 5394 // sNaN behavior. 5395 5396 // Note this must be done here, and not as an optimization combine in the 5397 // absence of a dedicate quiet-snan instruction as we're using an 5398 // omni-purpose G_FCANONICALIZE. 5399 if (!isKnownNeverSNaN(Src0, MRI)) 5400 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5401 5402 if (!isKnownNeverSNaN(Src1, MRI)) 5403 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5404 } 5405 5406 // If there are no nans, it's safe to simply replace this with the non-IEEE 5407 // version. 5408 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5409 MI.eraseFromParent(); 5410 return Legalized; 5411 } 5412 5413 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5414 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5415 Register DstReg = MI.getOperand(0).getReg(); 5416 LLT Ty = MRI.getType(DstReg); 5417 unsigned Flags = MI.getFlags(); 5418 5419 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5420 Flags); 5421 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5422 MI.eraseFromParent(); 5423 return Legalized; 5424 } 5425 5426 LegalizerHelper::LegalizeResult 5427 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5428 Register DstReg = MI.getOperand(0).getReg(); 5429 Register X = MI.getOperand(1).getReg(); 5430 const unsigned Flags = MI.getFlags(); 5431 const LLT Ty = MRI.getType(DstReg); 5432 const LLT CondTy = Ty.changeElementSize(1); 5433 5434 // round(x) => 5435 // t = trunc(x); 5436 // d = fabs(x - t); 5437 // o = copysign(1.0f, x); 5438 // return t + (d >= 0.5 ? o : 0.0); 5439 5440 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5441 5442 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5443 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5444 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5445 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5446 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5447 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5448 5449 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5450 Flags); 5451 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5452 5453 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5454 5455 MI.eraseFromParent(); 5456 return Legalized; 5457 } 5458 5459 LegalizerHelper::LegalizeResult 5460 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5461 Register DstReg = MI.getOperand(0).getReg(); 5462 Register SrcReg = MI.getOperand(1).getReg(); 5463 unsigned Flags = MI.getFlags(); 5464 LLT Ty = MRI.getType(DstReg); 5465 const LLT CondTy = Ty.changeElementSize(1); 5466 5467 // result = trunc(src); 5468 // if (src < 0.0 && src != result) 5469 // result += -1.0. 5470 5471 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5472 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5473 5474 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5475 SrcReg, Zero, Flags); 5476 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5477 SrcReg, Trunc, Flags); 5478 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5479 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5480 5481 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5482 MI.eraseFromParent(); 5483 return Legalized; 5484 } 5485 5486 LegalizerHelper::LegalizeResult 5487 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5488 const unsigned NumOps = MI.getNumOperands(); 5489 Register DstReg = MI.getOperand(0).getReg(); 5490 Register Src0Reg = MI.getOperand(1).getReg(); 5491 LLT DstTy = MRI.getType(DstReg); 5492 LLT SrcTy = MRI.getType(Src0Reg); 5493 unsigned PartSize = SrcTy.getSizeInBits(); 5494 5495 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5496 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5497 5498 for (unsigned I = 2; I != NumOps; ++I) { 5499 const unsigned Offset = (I - 1) * PartSize; 5500 5501 Register SrcReg = MI.getOperand(I).getReg(); 5502 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5503 5504 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5505 MRI.createGenericVirtualRegister(WideTy); 5506 5507 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5508 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5509 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5510 ResultReg = NextResult; 5511 } 5512 5513 if (DstTy.isPointer()) { 5514 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5515 DstTy.getAddressSpace())) { 5516 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5517 return UnableToLegalize; 5518 } 5519 5520 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5521 } 5522 5523 MI.eraseFromParent(); 5524 return Legalized; 5525 } 5526 5527 LegalizerHelper::LegalizeResult 5528 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5529 const unsigned NumDst = MI.getNumOperands() - 1; 5530 Register SrcReg = MI.getOperand(NumDst).getReg(); 5531 Register Dst0Reg = MI.getOperand(0).getReg(); 5532 LLT DstTy = MRI.getType(Dst0Reg); 5533 if (DstTy.isPointer()) 5534 return UnableToLegalize; // TODO 5535 5536 SrcReg = coerceToScalar(SrcReg); 5537 if (!SrcReg) 5538 return UnableToLegalize; 5539 5540 // Expand scalarizing unmerge as bitcast to integer and shift. 5541 LLT IntTy = MRI.getType(SrcReg); 5542 5543 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5544 5545 const unsigned DstSize = DstTy.getSizeInBits(); 5546 unsigned Offset = DstSize; 5547 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5548 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5549 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5550 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5551 } 5552 5553 MI.eraseFromParent(); 5554 return Legalized; 5555 } 5556 5557 /// Lower a vector extract or insert by writing the vector to a stack temporary 5558 /// and reloading the element or vector. 5559 /// 5560 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5561 /// => 5562 /// %stack_temp = G_FRAME_INDEX 5563 /// G_STORE %vec, %stack_temp 5564 /// %idx = clamp(%idx, %vec.getNumElements()) 5565 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5566 /// %dst = G_LOAD %element_ptr 5567 LegalizerHelper::LegalizeResult 5568 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5569 Register DstReg = MI.getOperand(0).getReg(); 5570 Register SrcVec = MI.getOperand(1).getReg(); 5571 Register InsertVal; 5572 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5573 InsertVal = MI.getOperand(2).getReg(); 5574 5575 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5576 5577 LLT VecTy = MRI.getType(SrcVec); 5578 LLT EltTy = VecTy.getElementType(); 5579 if (!EltTy.isByteSized()) { // Not implemented. 5580 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5581 return UnableToLegalize; 5582 } 5583 5584 unsigned EltBytes = EltTy.getSizeInBytes(); 5585 Align VecAlign = getStackTemporaryAlignment(VecTy); 5586 Align EltAlign; 5587 5588 MachinePointerInfo PtrInfo; 5589 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5590 VecAlign, PtrInfo); 5591 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5592 5593 // Get the pointer to the element, and be sure not to hit undefined behavior 5594 // if the index is out of bounds. 5595 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5596 5597 int64_t IdxVal; 5598 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5599 int64_t Offset = IdxVal * EltBytes; 5600 PtrInfo = PtrInfo.getWithOffset(Offset); 5601 EltAlign = commonAlignment(VecAlign, Offset); 5602 } else { 5603 // We lose information with a variable offset. 5604 EltAlign = getStackTemporaryAlignment(EltTy); 5605 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5606 } 5607 5608 if (InsertVal) { 5609 // Write the inserted element 5610 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5611 5612 // Reload the whole vector. 5613 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5614 } else { 5615 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5616 } 5617 5618 MI.eraseFromParent(); 5619 return Legalized; 5620 } 5621 5622 LegalizerHelper::LegalizeResult 5623 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5624 Register DstReg = MI.getOperand(0).getReg(); 5625 Register Src0Reg = MI.getOperand(1).getReg(); 5626 Register Src1Reg = MI.getOperand(2).getReg(); 5627 LLT Src0Ty = MRI.getType(Src0Reg); 5628 LLT DstTy = MRI.getType(DstReg); 5629 LLT IdxTy = LLT::scalar(32); 5630 5631 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5632 5633 if (DstTy.isScalar()) { 5634 if (Src0Ty.isVector()) 5635 return UnableToLegalize; 5636 5637 // This is just a SELECT. 5638 assert(Mask.size() == 1 && "Expected a single mask element"); 5639 Register Val; 5640 if (Mask[0] < 0 || Mask[0] > 1) 5641 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5642 else 5643 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5644 MIRBuilder.buildCopy(DstReg, Val); 5645 MI.eraseFromParent(); 5646 return Legalized; 5647 } 5648 5649 Register Undef; 5650 SmallVector<Register, 32> BuildVec; 5651 LLT EltTy = DstTy.getElementType(); 5652 5653 for (int Idx : Mask) { 5654 if (Idx < 0) { 5655 if (!Undef.isValid()) 5656 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5657 BuildVec.push_back(Undef); 5658 continue; 5659 } 5660 5661 if (Src0Ty.isScalar()) { 5662 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5663 } else { 5664 int NumElts = Src0Ty.getNumElements(); 5665 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5666 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5667 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5668 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5669 BuildVec.push_back(Extract.getReg(0)); 5670 } 5671 } 5672 5673 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5674 MI.eraseFromParent(); 5675 return Legalized; 5676 } 5677 5678 LegalizerHelper::LegalizeResult 5679 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5680 const auto &MF = *MI.getMF(); 5681 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5682 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5683 return UnableToLegalize; 5684 5685 Register Dst = MI.getOperand(0).getReg(); 5686 Register AllocSize = MI.getOperand(1).getReg(); 5687 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5688 5689 LLT PtrTy = MRI.getType(Dst); 5690 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5691 5692 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5693 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5694 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5695 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5696 5697 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5698 // have to generate an extra instruction to negate the alloc and then use 5699 // G_PTR_ADD to add the negative offset. 5700 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5701 if (Alignment > Align(1)) { 5702 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5703 AlignMask.negate(); 5704 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5705 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5706 } 5707 5708 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5709 MIRBuilder.buildCopy(SPReg, SPTmp); 5710 MIRBuilder.buildCopy(Dst, SPTmp); 5711 5712 MI.eraseFromParent(); 5713 return Legalized; 5714 } 5715 5716 LegalizerHelper::LegalizeResult 5717 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5718 Register Dst = MI.getOperand(0).getReg(); 5719 Register Src = MI.getOperand(1).getReg(); 5720 unsigned Offset = MI.getOperand(2).getImm(); 5721 5722 LLT DstTy = MRI.getType(Dst); 5723 LLT SrcTy = MRI.getType(Src); 5724 5725 if (DstTy.isScalar() && 5726 (SrcTy.isScalar() || 5727 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5728 LLT SrcIntTy = SrcTy; 5729 if (!SrcTy.isScalar()) { 5730 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5731 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5732 } 5733 5734 if (Offset == 0) 5735 MIRBuilder.buildTrunc(Dst, Src); 5736 else { 5737 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5738 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5739 MIRBuilder.buildTrunc(Dst, Shr); 5740 } 5741 5742 MI.eraseFromParent(); 5743 return Legalized; 5744 } 5745 5746 return UnableToLegalize; 5747 } 5748 5749 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5750 Register Dst = MI.getOperand(0).getReg(); 5751 Register Src = MI.getOperand(1).getReg(); 5752 Register InsertSrc = MI.getOperand(2).getReg(); 5753 uint64_t Offset = MI.getOperand(3).getImm(); 5754 5755 LLT DstTy = MRI.getType(Src); 5756 LLT InsertTy = MRI.getType(InsertSrc); 5757 5758 if (InsertTy.isVector() || 5759 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5760 return UnableToLegalize; 5761 5762 const DataLayout &DL = MIRBuilder.getDataLayout(); 5763 if ((DstTy.isPointer() && 5764 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5765 (InsertTy.isPointer() && 5766 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5767 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5768 return UnableToLegalize; 5769 } 5770 5771 LLT IntDstTy = DstTy; 5772 5773 if (!DstTy.isScalar()) { 5774 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5775 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5776 } 5777 5778 if (!InsertTy.isScalar()) { 5779 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5780 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5781 } 5782 5783 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5784 if (Offset != 0) { 5785 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5786 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5787 } 5788 5789 APInt MaskVal = APInt::getBitsSetWithWrap( 5790 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5791 5792 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5793 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5794 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5795 5796 MIRBuilder.buildCast(Dst, Or); 5797 MI.eraseFromParent(); 5798 return Legalized; 5799 } 5800 5801 LegalizerHelper::LegalizeResult 5802 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5803 Register Dst0 = MI.getOperand(0).getReg(); 5804 Register Dst1 = MI.getOperand(1).getReg(); 5805 Register LHS = MI.getOperand(2).getReg(); 5806 Register RHS = MI.getOperand(3).getReg(); 5807 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5808 5809 LLT Ty = MRI.getType(Dst0); 5810 LLT BoolTy = MRI.getType(Dst1); 5811 5812 if (IsAdd) 5813 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5814 else 5815 MIRBuilder.buildSub(Dst0, LHS, RHS); 5816 5817 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5818 5819 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5820 5821 // For an addition, the result should be less than one of the operands (LHS) 5822 // if and only if the other operand (RHS) is negative, otherwise there will 5823 // be overflow. 5824 // For a subtraction, the result should be less than one of the operands 5825 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5826 // otherwise there will be overflow. 5827 auto ResultLowerThanLHS = 5828 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5829 auto ConditionRHS = MIRBuilder.buildICmp( 5830 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5831 5832 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5833 MI.eraseFromParent(); 5834 return Legalized; 5835 } 5836 5837 LegalizerHelper::LegalizeResult 5838 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5839 Register Res = MI.getOperand(0).getReg(); 5840 Register LHS = MI.getOperand(1).getReg(); 5841 Register RHS = MI.getOperand(2).getReg(); 5842 LLT Ty = MRI.getType(Res); 5843 bool IsSigned; 5844 bool IsAdd; 5845 unsigned BaseOp; 5846 switch (MI.getOpcode()) { 5847 default: 5848 llvm_unreachable("unexpected addsat/subsat opcode"); 5849 case TargetOpcode::G_UADDSAT: 5850 IsSigned = false; 5851 IsAdd = true; 5852 BaseOp = TargetOpcode::G_ADD; 5853 break; 5854 case TargetOpcode::G_SADDSAT: 5855 IsSigned = true; 5856 IsAdd = true; 5857 BaseOp = TargetOpcode::G_ADD; 5858 break; 5859 case TargetOpcode::G_USUBSAT: 5860 IsSigned = false; 5861 IsAdd = false; 5862 BaseOp = TargetOpcode::G_SUB; 5863 break; 5864 case TargetOpcode::G_SSUBSAT: 5865 IsSigned = true; 5866 IsAdd = false; 5867 BaseOp = TargetOpcode::G_SUB; 5868 break; 5869 } 5870 5871 if (IsSigned) { 5872 // sadd.sat(a, b) -> 5873 // hi = 0x7fffffff - smax(a, 0) 5874 // lo = 0x80000000 - smin(a, 0) 5875 // a + smin(smax(lo, b), hi) 5876 // ssub.sat(a, b) -> 5877 // lo = smax(a, -1) - 0x7fffffff 5878 // hi = smin(a, -1) - 0x80000000 5879 // a - smin(smax(lo, b), hi) 5880 // TODO: AMDGPU can use a "median of 3" instruction here: 5881 // a +/- med3(lo, b, hi) 5882 uint64_t NumBits = Ty.getScalarSizeInBits(); 5883 auto MaxVal = 5884 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5885 auto MinVal = 5886 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5887 MachineInstrBuilder Hi, Lo; 5888 if (IsAdd) { 5889 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5890 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5891 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5892 } else { 5893 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5894 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5895 MaxVal); 5896 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5897 MinVal); 5898 } 5899 auto RHSClamped = 5900 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5901 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5902 } else { 5903 // uadd.sat(a, b) -> a + umin(~a, b) 5904 // usub.sat(a, b) -> a - umin(a, b) 5905 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 5906 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 5907 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 5908 } 5909 5910 MI.eraseFromParent(); 5911 return Legalized; 5912 } 5913 5914 LegalizerHelper::LegalizeResult 5915 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 5916 Register Res = MI.getOperand(0).getReg(); 5917 Register LHS = MI.getOperand(1).getReg(); 5918 Register RHS = MI.getOperand(2).getReg(); 5919 LLT Ty = MRI.getType(Res); 5920 LLT BoolTy = Ty.changeElementSize(1); 5921 bool IsSigned; 5922 bool IsAdd; 5923 unsigned OverflowOp; 5924 switch (MI.getOpcode()) { 5925 default: 5926 llvm_unreachable("unexpected addsat/subsat opcode"); 5927 case TargetOpcode::G_UADDSAT: 5928 IsSigned = false; 5929 IsAdd = true; 5930 OverflowOp = TargetOpcode::G_UADDO; 5931 break; 5932 case TargetOpcode::G_SADDSAT: 5933 IsSigned = true; 5934 IsAdd = true; 5935 OverflowOp = TargetOpcode::G_SADDO; 5936 break; 5937 case TargetOpcode::G_USUBSAT: 5938 IsSigned = false; 5939 IsAdd = false; 5940 OverflowOp = TargetOpcode::G_USUBO; 5941 break; 5942 case TargetOpcode::G_SSUBSAT: 5943 IsSigned = true; 5944 IsAdd = false; 5945 OverflowOp = TargetOpcode::G_SSUBO; 5946 break; 5947 } 5948 5949 auto OverflowRes = 5950 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 5951 Register Tmp = OverflowRes.getReg(0); 5952 Register Ov = OverflowRes.getReg(1); 5953 MachineInstrBuilder Clamp; 5954 if (IsSigned) { 5955 // sadd.sat(a, b) -> 5956 // {tmp, ov} = saddo(a, b) 5957 // ov ? (tmp >>s 31) + 0x80000000 : r 5958 // ssub.sat(a, b) -> 5959 // {tmp, ov} = ssubo(a, b) 5960 // ov ? (tmp >>s 31) + 0x80000000 : r 5961 uint64_t NumBits = Ty.getScalarSizeInBits(); 5962 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 5963 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 5964 auto MinVal = 5965 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5966 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 5967 } else { 5968 // uadd.sat(a, b) -> 5969 // {tmp, ov} = uaddo(a, b) 5970 // ov ? 0xffffffff : tmp 5971 // usub.sat(a, b) -> 5972 // {tmp, ov} = usubo(a, b) 5973 // ov ? 0 : tmp 5974 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 5975 } 5976 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 5977 5978 MI.eraseFromParent(); 5979 return Legalized; 5980 } 5981 5982 LegalizerHelper::LegalizeResult 5983 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 5984 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 5985 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 5986 "Expected shlsat opcode!"); 5987 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 5988 Register Res = MI.getOperand(0).getReg(); 5989 Register LHS = MI.getOperand(1).getReg(); 5990 Register RHS = MI.getOperand(2).getReg(); 5991 LLT Ty = MRI.getType(Res); 5992 LLT BoolTy = Ty.changeElementSize(1); 5993 5994 unsigned BW = Ty.getScalarSizeInBits(); 5995 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 5996 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 5997 : MIRBuilder.buildLShr(Ty, Result, RHS); 5998 5999 MachineInstrBuilder SatVal; 6000 if (IsSigned) { 6001 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6002 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6003 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6004 MIRBuilder.buildConstant(Ty, 0)); 6005 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6006 } else { 6007 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6008 } 6009 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, Ty, LHS, Orig); 6010 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6011 6012 MI.eraseFromParent(); 6013 return Legalized; 6014 } 6015 6016 LegalizerHelper::LegalizeResult 6017 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6018 Register Dst = MI.getOperand(0).getReg(); 6019 Register Src = MI.getOperand(1).getReg(); 6020 const LLT Ty = MRI.getType(Src); 6021 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6022 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6023 6024 // Swap most and least significant byte, set remaining bytes in Res to zero. 6025 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6026 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6027 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6028 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6029 6030 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6031 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6032 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6033 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6034 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6035 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6036 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6037 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6038 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6039 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6040 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6041 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6042 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6043 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6044 } 6045 Res.getInstr()->getOperand(0).setReg(Dst); 6046 6047 MI.eraseFromParent(); 6048 return Legalized; 6049 } 6050 6051 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6052 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6053 MachineInstrBuilder Src, APInt Mask) { 6054 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6055 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6056 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6057 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6058 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6059 return B.buildOr(Dst, LHS, RHS); 6060 } 6061 6062 LegalizerHelper::LegalizeResult 6063 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6064 Register Dst = MI.getOperand(0).getReg(); 6065 Register Src = MI.getOperand(1).getReg(); 6066 const LLT Ty = MRI.getType(Src); 6067 unsigned Size = Ty.getSizeInBits(); 6068 6069 MachineInstrBuilder BSWAP = 6070 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6071 6072 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6073 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6074 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6075 MachineInstrBuilder Swap4 = 6076 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6077 6078 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6079 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6080 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6081 MachineInstrBuilder Swap2 = 6082 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6083 6084 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6085 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6086 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6087 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6088 6089 MI.eraseFromParent(); 6090 return Legalized; 6091 } 6092 6093 LegalizerHelper::LegalizeResult 6094 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6095 MachineFunction &MF = MIRBuilder.getMF(); 6096 const TargetSubtargetInfo &STI = MF.getSubtarget(); 6097 const TargetLowering *TLI = STI.getTargetLowering(); 6098 6099 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6100 int NameOpIdx = IsRead ? 1 : 0; 6101 int ValRegIndex = IsRead ? 0 : 1; 6102 6103 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6104 const LLT Ty = MRI.getType(ValReg); 6105 const MDString *RegStr = cast<MDString>( 6106 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6107 6108 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 6109 if (!PhysReg.isValid()) 6110 return UnableToLegalize; 6111 6112 if (IsRead) 6113 MIRBuilder.buildCopy(ValReg, PhysReg); 6114 else 6115 MIRBuilder.buildCopy(PhysReg, ValReg); 6116 6117 MI.eraseFromParent(); 6118 return Legalized; 6119 } 6120