1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) {
95   MIRBuilder.setChangeObserver(Observer);
96 }
97 
98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
99                                  GISelChangeObserver &Observer,
100                                  MachineIRBuilder &B)
101   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
102     TLI(*MF.getSubtarget().getTargetLowering()) {
103   MIRBuilder.setChangeObserver(Observer);
104 }
105 LegalizerHelper::LegalizeResult
106 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
107   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
108 
109   MIRBuilder.setInstrAndDebugLoc(MI);
110 
111   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
112       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
113     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
114   auto Step = LI.getAction(MI, MRI);
115   switch (Step.Action) {
116   case Legal:
117     LLVM_DEBUG(dbgs() << ".. Already legal\n");
118     return AlreadyLegal;
119   case Libcall:
120     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
121     return libcall(MI);
122   case NarrowScalar:
123     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
124     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
125   case WidenScalar:
126     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
127     return widenScalar(MI, Step.TypeIdx, Step.NewType);
128   case Bitcast:
129     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
130     return bitcast(MI, Step.TypeIdx, Step.NewType);
131   case Lower:
132     LLVM_DEBUG(dbgs() << ".. Lower\n");
133     return lower(MI, Step.TypeIdx, Step.NewType);
134   case FewerElements:
135     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
136     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case MoreElements:
138     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
139     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case Custom:
141     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
142     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
143   default:
144     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
145     return UnableToLegalize;
146   }
147 }
148 
149 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
150                                    SmallVectorImpl<Register> &VRegs) {
151   for (int i = 0; i < NumParts; ++i)
152     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
153   MIRBuilder.buildUnmerge(VRegs, Reg);
154 }
155 
156 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
157                                    LLT MainTy, LLT &LeftoverTy,
158                                    SmallVectorImpl<Register> &VRegs,
159                                    SmallVectorImpl<Register> &LeftoverRegs) {
160   assert(!LeftoverTy.isValid() && "this is an out argument");
161 
162   unsigned RegSize = RegTy.getSizeInBits();
163   unsigned MainSize = MainTy.getSizeInBits();
164   unsigned NumParts = RegSize / MainSize;
165   unsigned LeftoverSize = RegSize - NumParts * MainSize;
166 
167   // Use an unmerge when possible.
168   if (LeftoverSize == 0) {
169     for (unsigned I = 0; I < NumParts; ++I)
170       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
171     MIRBuilder.buildUnmerge(VRegs, Reg);
172     return true;
173   }
174 
175   if (MainTy.isVector()) {
176     unsigned EltSize = MainTy.getScalarSizeInBits();
177     if (LeftoverSize % EltSize != 0)
178       return false;
179     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
180   } else {
181     LeftoverTy = LLT::scalar(LeftoverSize);
182   }
183 
184   // For irregular sizes, extract the individual parts.
185   for (unsigned I = 0; I != NumParts; ++I) {
186     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
187     VRegs.push_back(NewReg);
188     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
189   }
190 
191   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
192        Offset += LeftoverSize) {
193     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
194     LeftoverRegs.push_back(NewReg);
195     MIRBuilder.buildExtract(NewReg, Reg, Offset);
196   }
197 
198   return true;
199 }
200 
201 void LegalizerHelper::insertParts(Register DstReg,
202                                   LLT ResultTy, LLT PartTy,
203                                   ArrayRef<Register> PartRegs,
204                                   LLT LeftoverTy,
205                                   ArrayRef<Register> LeftoverRegs) {
206   if (!LeftoverTy.isValid()) {
207     assert(LeftoverRegs.empty());
208 
209     if (!ResultTy.isVector()) {
210       MIRBuilder.buildMerge(DstReg, PartRegs);
211       return;
212     }
213 
214     if (PartTy.isVector())
215       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
216     else
217       MIRBuilder.buildBuildVector(DstReg, PartRegs);
218     return;
219   }
220 
221   unsigned PartSize = PartTy.getSizeInBits();
222   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
223 
224   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
225   MIRBuilder.buildUndef(CurResultReg);
226 
227   unsigned Offset = 0;
228   for (Register PartReg : PartRegs) {
229     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
230     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
231     CurResultReg = NewResultReg;
232     Offset += PartSize;
233   }
234 
235   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
236     // Use the original output register for the final insert to avoid a copy.
237     Register NewResultReg = (I + 1 == E) ?
238       DstReg : MRI.createGenericVirtualRegister(ResultTy);
239 
240     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
241     CurResultReg = NewResultReg;
242     Offset += LeftoverPartSize;
243   }
244 }
245 
246 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
247 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
248                               const MachineInstr &MI) {
249   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
250 
251   const int StartIdx = Regs.size();
252   const int NumResults = MI.getNumOperands() - 1;
253   Regs.resize(Regs.size() + NumResults);
254   for (int I = 0; I != NumResults; ++I)
255     Regs[StartIdx + I] = MI.getOperand(I).getReg();
256 }
257 
258 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
259                                      LLT GCDTy, Register SrcReg) {
260   LLT SrcTy = MRI.getType(SrcReg);
261   if (SrcTy == GCDTy) {
262     // If the source already evenly divides the result type, we don't need to do
263     // anything.
264     Parts.push_back(SrcReg);
265   } else {
266     // Need to split into common type sized pieces.
267     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
268     getUnmergeResults(Parts, *Unmerge);
269   }
270 }
271 
272 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
273                                     LLT NarrowTy, Register SrcReg) {
274   LLT SrcTy = MRI.getType(SrcReg);
275   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
276   extractGCDType(Parts, GCDTy, SrcReg);
277   return GCDTy;
278 }
279 
280 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
281                                          SmallVectorImpl<Register> &VRegs,
282                                          unsigned PadStrategy) {
283   LLT LCMTy = getLCMType(DstTy, NarrowTy);
284 
285   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
286   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
287   int NumOrigSrc = VRegs.size();
288 
289   Register PadReg;
290 
291   // Get a value we can use to pad the source value if the sources won't evenly
292   // cover the result type.
293   if (NumOrigSrc < NumParts * NumSubParts) {
294     if (PadStrategy == TargetOpcode::G_ZEXT)
295       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
296     else if (PadStrategy == TargetOpcode::G_ANYEXT)
297       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
298     else {
299       assert(PadStrategy == TargetOpcode::G_SEXT);
300 
301       // Shift the sign bit of the low register through the high register.
302       auto ShiftAmt =
303         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
304       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
305     }
306   }
307 
308   // Registers for the final merge to be produced.
309   SmallVector<Register, 4> Remerge(NumParts);
310 
311   // Registers needed for intermediate merges, which will be merged into a
312   // source for Remerge.
313   SmallVector<Register, 4> SubMerge(NumSubParts);
314 
315   // Once we've fully read off the end of the original source bits, we can reuse
316   // the same high bits for remaining padding elements.
317   Register AllPadReg;
318 
319   // Build merges to the LCM type to cover the original result type.
320   for (int I = 0; I != NumParts; ++I) {
321     bool AllMergePartsArePadding = true;
322 
323     // Build the requested merges to the requested type.
324     for (int J = 0; J != NumSubParts; ++J) {
325       int Idx = I * NumSubParts + J;
326       if (Idx >= NumOrigSrc) {
327         SubMerge[J] = PadReg;
328         continue;
329       }
330 
331       SubMerge[J] = VRegs[Idx];
332 
333       // There are meaningful bits here we can't reuse later.
334       AllMergePartsArePadding = false;
335     }
336 
337     // If we've filled up a complete piece with padding bits, we can directly
338     // emit the natural sized constant if applicable, rather than a merge of
339     // smaller constants.
340     if (AllMergePartsArePadding && !AllPadReg) {
341       if (PadStrategy == TargetOpcode::G_ANYEXT)
342         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
343       else if (PadStrategy == TargetOpcode::G_ZEXT)
344         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
345 
346       // If this is a sign extension, we can't materialize a trivial constant
347       // with the right type and have to produce a merge.
348     }
349 
350     if (AllPadReg) {
351       // Avoid creating additional instructions if we're just adding additional
352       // copies of padding bits.
353       Remerge[I] = AllPadReg;
354       continue;
355     }
356 
357     if (NumSubParts == 1)
358       Remerge[I] = SubMerge[0];
359     else
360       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
361 
362     // In the sign extend padding case, re-use the first all-signbit merge.
363     if (AllMergePartsArePadding && !AllPadReg)
364       AllPadReg = Remerge[I];
365   }
366 
367   VRegs = std::move(Remerge);
368   return LCMTy;
369 }
370 
371 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
372                                                ArrayRef<Register> RemergeRegs) {
373   LLT DstTy = MRI.getType(DstReg);
374 
375   // Create the merge to the widened source, and extract the relevant bits into
376   // the result.
377 
378   if (DstTy == LCMTy) {
379     MIRBuilder.buildMerge(DstReg, RemergeRegs);
380     return;
381   }
382 
383   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
384   if (DstTy.isScalar() && LCMTy.isScalar()) {
385     MIRBuilder.buildTrunc(DstReg, Remerge);
386     return;
387   }
388 
389   if (LCMTy.isVector()) {
390     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
391     SmallVector<Register, 8> UnmergeDefs(NumDefs);
392     UnmergeDefs[0] = DstReg;
393     for (unsigned I = 1; I != NumDefs; ++I)
394       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
395 
396     MIRBuilder.buildUnmerge(UnmergeDefs,
397                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
398     return;
399   }
400 
401   llvm_unreachable("unhandled case");
402 }
403 
404 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
405 #define RTLIBCASE_INT(LibcallPrefix)                                           \
406   do {                                                                         \
407     switch (Size) {                                                            \
408     case 32:                                                                   \
409       return RTLIB::LibcallPrefix##32;                                         \
410     case 64:                                                                   \
411       return RTLIB::LibcallPrefix##64;                                         \
412     case 128:                                                                  \
413       return RTLIB::LibcallPrefix##128;                                        \
414     default:                                                                   \
415       llvm_unreachable("unexpected size");                                     \
416     }                                                                          \
417   } while (0)
418 
419 #define RTLIBCASE(LibcallPrefix)                                               \
420   do {                                                                         \
421     switch (Size) {                                                            \
422     case 32:                                                                   \
423       return RTLIB::LibcallPrefix##32;                                         \
424     case 64:                                                                   \
425       return RTLIB::LibcallPrefix##64;                                         \
426     case 80:                                                                   \
427       return RTLIB::LibcallPrefix##80;                                         \
428     case 128:                                                                  \
429       return RTLIB::LibcallPrefix##128;                                        \
430     default:                                                                   \
431       llvm_unreachable("unexpected size");                                     \
432     }                                                                          \
433   } while (0)
434 
435   switch (Opcode) {
436   case TargetOpcode::G_SDIV:
437     RTLIBCASE_INT(SDIV_I);
438   case TargetOpcode::G_UDIV:
439     RTLIBCASE_INT(UDIV_I);
440   case TargetOpcode::G_SREM:
441     RTLIBCASE_INT(SREM_I);
442   case TargetOpcode::G_UREM:
443     RTLIBCASE_INT(UREM_I);
444   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
445     RTLIBCASE_INT(CTLZ_I);
446   case TargetOpcode::G_FADD:
447     RTLIBCASE(ADD_F);
448   case TargetOpcode::G_FSUB:
449     RTLIBCASE(SUB_F);
450   case TargetOpcode::G_FMUL:
451     RTLIBCASE(MUL_F);
452   case TargetOpcode::G_FDIV:
453     RTLIBCASE(DIV_F);
454   case TargetOpcode::G_FEXP:
455     RTLIBCASE(EXP_F);
456   case TargetOpcode::G_FEXP2:
457     RTLIBCASE(EXP2_F);
458   case TargetOpcode::G_FREM:
459     RTLIBCASE(REM_F);
460   case TargetOpcode::G_FPOW:
461     RTLIBCASE(POW_F);
462   case TargetOpcode::G_FMA:
463     RTLIBCASE(FMA_F);
464   case TargetOpcode::G_FSIN:
465     RTLIBCASE(SIN_F);
466   case TargetOpcode::G_FCOS:
467     RTLIBCASE(COS_F);
468   case TargetOpcode::G_FLOG10:
469     RTLIBCASE(LOG10_F);
470   case TargetOpcode::G_FLOG:
471     RTLIBCASE(LOG_F);
472   case TargetOpcode::G_FLOG2:
473     RTLIBCASE(LOG2_F);
474   case TargetOpcode::G_FCEIL:
475     RTLIBCASE(CEIL_F);
476   case TargetOpcode::G_FFLOOR:
477     RTLIBCASE(FLOOR_F);
478   case TargetOpcode::G_FMINNUM:
479     RTLIBCASE(FMIN_F);
480   case TargetOpcode::G_FMAXNUM:
481     RTLIBCASE(FMAX_F);
482   case TargetOpcode::G_FSQRT:
483     RTLIBCASE(SQRT_F);
484   case TargetOpcode::G_FRINT:
485     RTLIBCASE(RINT_F);
486   case TargetOpcode::G_FNEARBYINT:
487     RTLIBCASE(NEARBYINT_F);
488   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
489     RTLIBCASE(ROUNDEVEN_F);
490   }
491   llvm_unreachable("Unknown libcall function");
492 }
493 
494 /// True if an instruction is in tail position in its caller. Intended for
495 /// legalizing libcalls as tail calls when possible.
496 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
497                                     MachineInstr &MI) {
498   MachineBasicBlock &MBB = *MI.getParent();
499   const Function &F = MBB.getParent()->getFunction();
500 
501   // Conservatively require the attributes of the call to match those of
502   // the return. Ignore NoAlias and NonNull because they don't affect the
503   // call sequence.
504   AttributeList CallerAttrs = F.getAttributes();
505   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
506           .removeAttribute(Attribute::NoAlias)
507           .removeAttribute(Attribute::NonNull)
508           .hasAttributes())
509     return false;
510 
511   // It's not safe to eliminate the sign / zero extension of the return value.
512   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
513       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
514     return false;
515 
516   // Only tail call if the following instruction is a standard return.
517   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
518   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
519     return false;
520 
521   return true;
522 }
523 
524 LegalizerHelper::LegalizeResult
525 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
526                     const CallLowering::ArgInfo &Result,
527                     ArrayRef<CallLowering::ArgInfo> Args,
528                     const CallingConv::ID CC) {
529   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
530 
531   CallLowering::CallLoweringInfo Info;
532   Info.CallConv = CC;
533   Info.Callee = MachineOperand::CreateES(Name);
534   Info.OrigRet = Result;
535   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
536   if (!CLI.lowerCall(MIRBuilder, Info))
537     return LegalizerHelper::UnableToLegalize;
538 
539   return LegalizerHelper::Legalized;
540 }
541 
542 LegalizerHelper::LegalizeResult
543 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
544                     const CallLowering::ArgInfo &Result,
545                     ArrayRef<CallLowering::ArgInfo> Args) {
546   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
547   const char *Name = TLI.getLibcallName(Libcall);
548   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
549   return createLibcall(MIRBuilder, Name, Result, Args, CC);
550 }
551 
552 // Useful for libcalls where all operands have the same type.
553 static LegalizerHelper::LegalizeResult
554 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
555               Type *OpType) {
556   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
557 
558   SmallVector<CallLowering::ArgInfo, 3> Args;
559   for (unsigned i = 1; i < MI.getNumOperands(); i++)
560     Args.push_back({MI.getOperand(i).getReg(), OpType});
561   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
562                        Args);
563 }
564 
565 LegalizerHelper::LegalizeResult
566 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
567                        MachineInstr &MI) {
568   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
569 
570   SmallVector<CallLowering::ArgInfo, 3> Args;
571   // Add all the args, except for the last which is an imm denoting 'tail'.
572   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
573     Register Reg = MI.getOperand(i).getReg();
574 
575     // Need derive an IR type for call lowering.
576     LLT OpLLT = MRI.getType(Reg);
577     Type *OpTy = nullptr;
578     if (OpLLT.isPointer())
579       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
580     else
581       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
582     Args.push_back({Reg, OpTy});
583   }
584 
585   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
586   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
587   RTLIB::Libcall RTLibcall;
588   switch (MI.getOpcode()) {
589   case TargetOpcode::G_MEMCPY:
590     RTLibcall = RTLIB::MEMCPY;
591     break;
592   case TargetOpcode::G_MEMMOVE:
593     RTLibcall = RTLIB::MEMMOVE;
594     break;
595   case TargetOpcode::G_MEMSET:
596     RTLibcall = RTLIB::MEMSET;
597     break;
598   default:
599     return LegalizerHelper::UnableToLegalize;
600   }
601   const char *Name = TLI.getLibcallName(RTLibcall);
602 
603   CallLowering::CallLoweringInfo Info;
604   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
605   Info.Callee = MachineOperand::CreateES(Name);
606   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
607   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
608                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
609 
610   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
611   if (!CLI.lowerCall(MIRBuilder, Info))
612     return LegalizerHelper::UnableToLegalize;
613 
614   if (Info.LoweredTailCall) {
615     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
616     // We must have a return following the call (or debug insts) to get past
617     // isLibCallInTailPosition.
618     do {
619       MachineInstr *Next = MI.getNextNode();
620       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
621              "Expected instr following MI to be return or debug inst?");
622       // We lowered a tail call, so the call is now the return from the block.
623       // Delete the old return.
624       Next->eraseFromParent();
625     } while (MI.getNextNode());
626   }
627 
628   return LegalizerHelper::Legalized;
629 }
630 
631 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
632                                        Type *FromType) {
633   auto ToMVT = MVT::getVT(ToType);
634   auto FromMVT = MVT::getVT(FromType);
635 
636   switch (Opcode) {
637   case TargetOpcode::G_FPEXT:
638     return RTLIB::getFPEXT(FromMVT, ToMVT);
639   case TargetOpcode::G_FPTRUNC:
640     return RTLIB::getFPROUND(FromMVT, ToMVT);
641   case TargetOpcode::G_FPTOSI:
642     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
643   case TargetOpcode::G_FPTOUI:
644     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
645   case TargetOpcode::G_SITOFP:
646     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
647   case TargetOpcode::G_UITOFP:
648     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
649   }
650   llvm_unreachable("Unsupported libcall function");
651 }
652 
653 static LegalizerHelper::LegalizeResult
654 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
655                   Type *FromType) {
656   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
657   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
658                        {{MI.getOperand(1).getReg(), FromType}});
659 }
660 
661 LegalizerHelper::LegalizeResult
662 LegalizerHelper::libcall(MachineInstr &MI) {
663   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
664   unsigned Size = LLTy.getSizeInBits();
665   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
666 
667   switch (MI.getOpcode()) {
668   default:
669     return UnableToLegalize;
670   case TargetOpcode::G_SDIV:
671   case TargetOpcode::G_UDIV:
672   case TargetOpcode::G_SREM:
673   case TargetOpcode::G_UREM:
674   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
675     Type *HLTy = IntegerType::get(Ctx, Size);
676     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
677     if (Status != Legalized)
678       return Status;
679     break;
680   }
681   case TargetOpcode::G_FADD:
682   case TargetOpcode::G_FSUB:
683   case TargetOpcode::G_FMUL:
684   case TargetOpcode::G_FDIV:
685   case TargetOpcode::G_FMA:
686   case TargetOpcode::G_FPOW:
687   case TargetOpcode::G_FREM:
688   case TargetOpcode::G_FCOS:
689   case TargetOpcode::G_FSIN:
690   case TargetOpcode::G_FLOG10:
691   case TargetOpcode::G_FLOG:
692   case TargetOpcode::G_FLOG2:
693   case TargetOpcode::G_FEXP:
694   case TargetOpcode::G_FEXP2:
695   case TargetOpcode::G_FCEIL:
696   case TargetOpcode::G_FFLOOR:
697   case TargetOpcode::G_FMINNUM:
698   case TargetOpcode::G_FMAXNUM:
699   case TargetOpcode::G_FSQRT:
700   case TargetOpcode::G_FRINT:
701   case TargetOpcode::G_FNEARBYINT:
702   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
703     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
704     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
705       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
706       return UnableToLegalize;
707     }
708     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
709     if (Status != Legalized)
710       return Status;
711     break;
712   }
713   case TargetOpcode::G_FPEXT:
714   case TargetOpcode::G_FPTRUNC: {
715     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
716     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
717     if (!FromTy || !ToTy)
718       return UnableToLegalize;
719     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
720     if (Status != Legalized)
721       return Status;
722     break;
723   }
724   case TargetOpcode::G_FPTOSI:
725   case TargetOpcode::G_FPTOUI: {
726     // FIXME: Support other types
727     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
728     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
729     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
730       return UnableToLegalize;
731     LegalizeResult Status = conversionLibcall(
732         MI, MIRBuilder,
733         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
734         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
735     if (Status != Legalized)
736       return Status;
737     break;
738   }
739   case TargetOpcode::G_SITOFP:
740   case TargetOpcode::G_UITOFP: {
741     // FIXME: Support other types
742     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
743     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
744     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
745       return UnableToLegalize;
746     LegalizeResult Status = conversionLibcall(
747         MI, MIRBuilder,
748         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
749         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
750     if (Status != Legalized)
751       return Status;
752     break;
753   }
754   case TargetOpcode::G_MEMCPY:
755   case TargetOpcode::G_MEMMOVE:
756   case TargetOpcode::G_MEMSET: {
757     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
758     MI.eraseFromParent();
759     return Result;
760   }
761   }
762 
763   MI.eraseFromParent();
764   return Legalized;
765 }
766 
767 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
768                                                               unsigned TypeIdx,
769                                                               LLT NarrowTy) {
770   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
771   uint64_t NarrowSize = NarrowTy.getSizeInBits();
772 
773   switch (MI.getOpcode()) {
774   default:
775     return UnableToLegalize;
776   case TargetOpcode::G_IMPLICIT_DEF: {
777     Register DstReg = MI.getOperand(0).getReg();
778     LLT DstTy = MRI.getType(DstReg);
779 
780     // If SizeOp0 is not an exact multiple of NarrowSize, emit
781     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
782     // FIXME: Although this would also be legal for the general case, it causes
783     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
784     //  combines not being hit). This seems to be a problem related to the
785     //  artifact combiner.
786     if (SizeOp0 % NarrowSize != 0) {
787       LLT ImplicitTy = NarrowTy;
788       if (DstTy.isVector())
789         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
790 
791       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
792       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
793 
794       MI.eraseFromParent();
795       return Legalized;
796     }
797 
798     int NumParts = SizeOp0 / NarrowSize;
799 
800     SmallVector<Register, 2> DstRegs;
801     for (int i = 0; i < NumParts; ++i)
802       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
803 
804     if (DstTy.isVector())
805       MIRBuilder.buildBuildVector(DstReg, DstRegs);
806     else
807       MIRBuilder.buildMerge(DstReg, DstRegs);
808     MI.eraseFromParent();
809     return Legalized;
810   }
811   case TargetOpcode::G_CONSTANT: {
812     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
813     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
814     unsigned TotalSize = Ty.getSizeInBits();
815     unsigned NarrowSize = NarrowTy.getSizeInBits();
816     int NumParts = TotalSize / NarrowSize;
817 
818     SmallVector<Register, 4> PartRegs;
819     for (int I = 0; I != NumParts; ++I) {
820       unsigned Offset = I * NarrowSize;
821       auto K = MIRBuilder.buildConstant(NarrowTy,
822                                         Val.lshr(Offset).trunc(NarrowSize));
823       PartRegs.push_back(K.getReg(0));
824     }
825 
826     LLT LeftoverTy;
827     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
828     SmallVector<Register, 1> LeftoverRegs;
829     if (LeftoverBits != 0) {
830       LeftoverTy = LLT::scalar(LeftoverBits);
831       auto K = MIRBuilder.buildConstant(
832         LeftoverTy,
833         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
834       LeftoverRegs.push_back(K.getReg(0));
835     }
836 
837     insertParts(MI.getOperand(0).getReg(),
838                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
839 
840     MI.eraseFromParent();
841     return Legalized;
842   }
843   case TargetOpcode::G_SEXT:
844   case TargetOpcode::G_ZEXT:
845   case TargetOpcode::G_ANYEXT:
846     return narrowScalarExt(MI, TypeIdx, NarrowTy);
847   case TargetOpcode::G_TRUNC: {
848     if (TypeIdx != 1)
849       return UnableToLegalize;
850 
851     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
852     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
853       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
854       return UnableToLegalize;
855     }
856 
857     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
858     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
859     MI.eraseFromParent();
860     return Legalized;
861   }
862 
863   case TargetOpcode::G_FREEZE:
864     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
865 
866   case TargetOpcode::G_ADD: {
867     // FIXME: add support for when SizeOp0 isn't an exact multiple of
868     // NarrowSize.
869     if (SizeOp0 % NarrowSize != 0)
870       return UnableToLegalize;
871     // Expand in terms of carry-setting/consuming G_ADDE instructions.
872     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
873 
874     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
875     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
876     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
877 
878     Register CarryIn;
879     for (int i = 0; i < NumParts; ++i) {
880       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
881       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
882 
883       if (i == 0)
884         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
885       else {
886         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
887                               Src2Regs[i], CarryIn);
888       }
889 
890       DstRegs.push_back(DstReg);
891       CarryIn = CarryOut;
892     }
893     Register DstReg = MI.getOperand(0).getReg();
894     if(MRI.getType(DstReg).isVector())
895       MIRBuilder.buildBuildVector(DstReg, DstRegs);
896     else
897       MIRBuilder.buildMerge(DstReg, DstRegs);
898     MI.eraseFromParent();
899     return Legalized;
900   }
901   case TargetOpcode::G_SUB: {
902     // FIXME: add support for when SizeOp0 isn't an exact multiple of
903     // NarrowSize.
904     if (SizeOp0 % NarrowSize != 0)
905       return UnableToLegalize;
906 
907     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
908 
909     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
910     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
911     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
912 
913     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
914     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
915     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
916                           {Src1Regs[0], Src2Regs[0]});
917     DstRegs.push_back(DstReg);
918     Register BorrowIn = BorrowOut;
919     for (int i = 1; i < NumParts; ++i) {
920       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
921       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
922 
923       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
924                             {Src1Regs[i], Src2Regs[i], BorrowIn});
925 
926       DstRegs.push_back(DstReg);
927       BorrowIn = BorrowOut;
928     }
929     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
930     MI.eraseFromParent();
931     return Legalized;
932   }
933   case TargetOpcode::G_MUL:
934   case TargetOpcode::G_UMULH:
935     return narrowScalarMul(MI, NarrowTy);
936   case TargetOpcode::G_EXTRACT:
937     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
938   case TargetOpcode::G_INSERT:
939     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
940   case TargetOpcode::G_LOAD: {
941     auto &MMO = **MI.memoperands_begin();
942     Register DstReg = MI.getOperand(0).getReg();
943     LLT DstTy = MRI.getType(DstReg);
944     if (DstTy.isVector())
945       return UnableToLegalize;
946 
947     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
948       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
949       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
950       MIRBuilder.buildAnyExt(DstReg, TmpReg);
951       MI.eraseFromParent();
952       return Legalized;
953     }
954 
955     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
956   }
957   case TargetOpcode::G_ZEXTLOAD:
958   case TargetOpcode::G_SEXTLOAD: {
959     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
960     Register DstReg = MI.getOperand(0).getReg();
961     Register PtrReg = MI.getOperand(1).getReg();
962 
963     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
964     auto &MMO = **MI.memoperands_begin();
965     unsigned MemSize = MMO.getSizeInBits();
966 
967     if (MemSize == NarrowSize) {
968       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
969     } else if (MemSize < NarrowSize) {
970       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
971     } else if (MemSize > NarrowSize) {
972       // FIXME: Need to split the load.
973       return UnableToLegalize;
974     }
975 
976     if (ZExt)
977       MIRBuilder.buildZExt(DstReg, TmpReg);
978     else
979       MIRBuilder.buildSExt(DstReg, TmpReg);
980 
981     MI.eraseFromParent();
982     return Legalized;
983   }
984   case TargetOpcode::G_STORE: {
985     const auto &MMO = **MI.memoperands_begin();
986 
987     Register SrcReg = MI.getOperand(0).getReg();
988     LLT SrcTy = MRI.getType(SrcReg);
989     if (SrcTy.isVector())
990       return UnableToLegalize;
991 
992     int NumParts = SizeOp0 / NarrowSize;
993     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
994     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
995     if (SrcTy.isVector() && LeftoverBits != 0)
996       return UnableToLegalize;
997 
998     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
999       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1000       auto &MMO = **MI.memoperands_begin();
1001       MIRBuilder.buildTrunc(TmpReg, SrcReg);
1002       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
1003       MI.eraseFromParent();
1004       return Legalized;
1005     }
1006 
1007     return reduceLoadStoreWidth(MI, 0, NarrowTy);
1008   }
1009   case TargetOpcode::G_SELECT:
1010     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1011   case TargetOpcode::G_AND:
1012   case TargetOpcode::G_OR:
1013   case TargetOpcode::G_XOR: {
1014     // Legalize bitwise operation:
1015     // A = BinOp<Ty> B, C
1016     // into:
1017     // B1, ..., BN = G_UNMERGE_VALUES B
1018     // C1, ..., CN = G_UNMERGE_VALUES C
1019     // A1 = BinOp<Ty/N> B1, C2
1020     // ...
1021     // AN = BinOp<Ty/N> BN, CN
1022     // A = G_MERGE_VALUES A1, ..., AN
1023     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1024   }
1025   case TargetOpcode::G_SHL:
1026   case TargetOpcode::G_LSHR:
1027   case TargetOpcode::G_ASHR:
1028     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1029   case TargetOpcode::G_CTLZ:
1030   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1031   case TargetOpcode::G_CTTZ:
1032   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1033   case TargetOpcode::G_CTPOP:
1034     if (TypeIdx == 1)
1035       switch (MI.getOpcode()) {
1036       case TargetOpcode::G_CTLZ:
1037       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1038         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1039       case TargetOpcode::G_CTTZ:
1040       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1041         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1042       case TargetOpcode::G_CTPOP:
1043         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1044       default:
1045         return UnableToLegalize;
1046       }
1047 
1048     Observer.changingInstr(MI);
1049     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1050     Observer.changedInstr(MI);
1051     return Legalized;
1052   case TargetOpcode::G_INTTOPTR:
1053     if (TypeIdx != 1)
1054       return UnableToLegalize;
1055 
1056     Observer.changingInstr(MI);
1057     narrowScalarSrc(MI, NarrowTy, 1);
1058     Observer.changedInstr(MI);
1059     return Legalized;
1060   case TargetOpcode::G_PTRTOINT:
1061     if (TypeIdx != 0)
1062       return UnableToLegalize;
1063 
1064     Observer.changingInstr(MI);
1065     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1066     Observer.changedInstr(MI);
1067     return Legalized;
1068   case TargetOpcode::G_PHI: {
1069     unsigned NumParts = SizeOp0 / NarrowSize;
1070     SmallVector<Register, 2> DstRegs(NumParts);
1071     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1072     Observer.changingInstr(MI);
1073     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1074       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1075       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1076       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1077                    SrcRegs[i / 2]);
1078     }
1079     MachineBasicBlock &MBB = *MI.getParent();
1080     MIRBuilder.setInsertPt(MBB, MI);
1081     for (unsigned i = 0; i < NumParts; ++i) {
1082       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1083       MachineInstrBuilder MIB =
1084           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1085       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1086         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1087     }
1088     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1089     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1090     Observer.changedInstr(MI);
1091     MI.eraseFromParent();
1092     return Legalized;
1093   }
1094   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1095   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1096     if (TypeIdx != 2)
1097       return UnableToLegalize;
1098 
1099     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1100     Observer.changingInstr(MI);
1101     narrowScalarSrc(MI, NarrowTy, OpIdx);
1102     Observer.changedInstr(MI);
1103     return Legalized;
1104   }
1105   case TargetOpcode::G_ICMP: {
1106     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1107     if (NarrowSize * 2 != SrcSize)
1108       return UnableToLegalize;
1109 
1110     Observer.changingInstr(MI);
1111     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1112     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1113     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1114 
1115     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1116     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1117     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1118 
1119     CmpInst::Predicate Pred =
1120         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1121     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1122 
1123     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1124       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1125       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1126       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1127       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1128       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1129     } else {
1130       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1131       MachineInstrBuilder CmpHEQ =
1132           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1133       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1134           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1135       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1136     }
1137     Observer.changedInstr(MI);
1138     MI.eraseFromParent();
1139     return Legalized;
1140   }
1141   case TargetOpcode::G_SEXT_INREG: {
1142     if (TypeIdx != 0)
1143       return UnableToLegalize;
1144 
1145     int64_t SizeInBits = MI.getOperand(2).getImm();
1146 
1147     // So long as the new type has more bits than the bits we're extending we
1148     // don't need to break it apart.
1149     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1150       Observer.changingInstr(MI);
1151       // We don't lose any non-extension bits by truncating the src and
1152       // sign-extending the dst.
1153       MachineOperand &MO1 = MI.getOperand(1);
1154       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1155       MO1.setReg(TruncMIB.getReg(0));
1156 
1157       MachineOperand &MO2 = MI.getOperand(0);
1158       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1159       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1160       MIRBuilder.buildSExt(MO2, DstExt);
1161       MO2.setReg(DstExt);
1162       Observer.changedInstr(MI);
1163       return Legalized;
1164     }
1165 
1166     // Break it apart. Components below the extension point are unmodified. The
1167     // component containing the extension point becomes a narrower SEXT_INREG.
1168     // Components above it are ashr'd from the component containing the
1169     // extension point.
1170     if (SizeOp0 % NarrowSize != 0)
1171       return UnableToLegalize;
1172     int NumParts = SizeOp0 / NarrowSize;
1173 
1174     // List the registers where the destination will be scattered.
1175     SmallVector<Register, 2> DstRegs;
1176     // List the registers where the source will be split.
1177     SmallVector<Register, 2> SrcRegs;
1178 
1179     // Create all the temporary registers.
1180     for (int i = 0; i < NumParts; ++i) {
1181       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1182 
1183       SrcRegs.push_back(SrcReg);
1184     }
1185 
1186     // Explode the big arguments into smaller chunks.
1187     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1188 
1189     Register AshrCstReg =
1190         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1191             .getReg(0);
1192     Register FullExtensionReg = 0;
1193     Register PartialExtensionReg = 0;
1194 
1195     // Do the operation on each small part.
1196     for (int i = 0; i < NumParts; ++i) {
1197       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1198         DstRegs.push_back(SrcRegs[i]);
1199       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1200         assert(PartialExtensionReg &&
1201                "Expected to visit partial extension before full");
1202         if (FullExtensionReg) {
1203           DstRegs.push_back(FullExtensionReg);
1204           continue;
1205         }
1206         DstRegs.push_back(
1207             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1208                 .getReg(0));
1209         FullExtensionReg = DstRegs.back();
1210       } else {
1211         DstRegs.push_back(
1212             MIRBuilder
1213                 .buildInstr(
1214                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1215                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1216                 .getReg(0));
1217         PartialExtensionReg = DstRegs.back();
1218       }
1219     }
1220 
1221     // Gather the destination registers into the final destination.
1222     Register DstReg = MI.getOperand(0).getReg();
1223     MIRBuilder.buildMerge(DstReg, DstRegs);
1224     MI.eraseFromParent();
1225     return Legalized;
1226   }
1227   case TargetOpcode::G_BSWAP:
1228   case TargetOpcode::G_BITREVERSE: {
1229     if (SizeOp0 % NarrowSize != 0)
1230       return UnableToLegalize;
1231 
1232     Observer.changingInstr(MI);
1233     SmallVector<Register, 2> SrcRegs, DstRegs;
1234     unsigned NumParts = SizeOp0 / NarrowSize;
1235     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1236 
1237     for (unsigned i = 0; i < NumParts; ++i) {
1238       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1239                                            {SrcRegs[NumParts - 1 - i]});
1240       DstRegs.push_back(DstPart.getReg(0));
1241     }
1242 
1243     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1244 
1245     Observer.changedInstr(MI);
1246     MI.eraseFromParent();
1247     return Legalized;
1248   }
1249   case TargetOpcode::G_PTR_ADD:
1250   case TargetOpcode::G_PTRMASK: {
1251     if (TypeIdx != 1)
1252       return UnableToLegalize;
1253     Observer.changingInstr(MI);
1254     narrowScalarSrc(MI, NarrowTy, 2);
1255     Observer.changedInstr(MI);
1256     return Legalized;
1257   }
1258   case TargetOpcode::G_FPTOUI: {
1259     if (TypeIdx != 0)
1260       return UnableToLegalize;
1261     Observer.changingInstr(MI);
1262     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1263     Observer.changedInstr(MI);
1264     return Legalized;
1265   }
1266   case TargetOpcode::G_FPTOSI: {
1267     if (TypeIdx != 0)
1268       return UnableToLegalize;
1269     Observer.changingInstr(MI);
1270     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1271     Observer.changedInstr(MI);
1272     return Legalized;
1273   }
1274   case TargetOpcode::G_FPEXT:
1275     if (TypeIdx != 0)
1276       return UnableToLegalize;
1277     Observer.changingInstr(MI);
1278     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1279     Observer.changedInstr(MI);
1280     return Legalized;
1281   }
1282 }
1283 
1284 Register LegalizerHelper::coerceToScalar(Register Val) {
1285   LLT Ty = MRI.getType(Val);
1286   if (Ty.isScalar())
1287     return Val;
1288 
1289   const DataLayout &DL = MIRBuilder.getDataLayout();
1290   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1291   if (Ty.isPointer()) {
1292     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1293       return Register();
1294     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1295   }
1296 
1297   Register NewVal = Val;
1298 
1299   assert(Ty.isVector());
1300   LLT EltTy = Ty.getElementType();
1301   if (EltTy.isPointer())
1302     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1303   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1304 }
1305 
1306 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1307                                      unsigned OpIdx, unsigned ExtOpcode) {
1308   MachineOperand &MO = MI.getOperand(OpIdx);
1309   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1310   MO.setReg(ExtB.getReg(0));
1311 }
1312 
1313 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1314                                       unsigned OpIdx) {
1315   MachineOperand &MO = MI.getOperand(OpIdx);
1316   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1317   MO.setReg(ExtB.getReg(0));
1318 }
1319 
1320 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1321                                      unsigned OpIdx, unsigned TruncOpcode) {
1322   MachineOperand &MO = MI.getOperand(OpIdx);
1323   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1324   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1325   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1326   MO.setReg(DstExt);
1327 }
1328 
1329 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1330                                       unsigned OpIdx, unsigned ExtOpcode) {
1331   MachineOperand &MO = MI.getOperand(OpIdx);
1332   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1333   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1334   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1335   MO.setReg(DstTrunc);
1336 }
1337 
1338 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1339                                             unsigned OpIdx) {
1340   MachineOperand &MO = MI.getOperand(OpIdx);
1341   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1342   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1343 }
1344 
1345 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1346                                             unsigned OpIdx) {
1347   MachineOperand &MO = MI.getOperand(OpIdx);
1348 
1349   LLT OldTy = MRI.getType(MO.getReg());
1350   unsigned OldElts = OldTy.getNumElements();
1351   unsigned NewElts = MoreTy.getNumElements();
1352 
1353   unsigned NumParts = NewElts / OldElts;
1354 
1355   // Use concat_vectors if the result is a multiple of the number of elements.
1356   if (NumParts * OldElts == NewElts) {
1357     SmallVector<Register, 8> Parts;
1358     Parts.push_back(MO.getReg());
1359 
1360     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1361     for (unsigned I = 1; I != NumParts; ++I)
1362       Parts.push_back(ImpDef);
1363 
1364     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1365     MO.setReg(Concat.getReg(0));
1366     return;
1367   }
1368 
1369   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1370   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1371   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1372   MO.setReg(MoreReg);
1373 }
1374 
1375 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1376   MachineOperand &Op = MI.getOperand(OpIdx);
1377   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1378 }
1379 
1380 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1381   MachineOperand &MO = MI.getOperand(OpIdx);
1382   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1383   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1384   MIRBuilder.buildBitcast(MO, CastDst);
1385   MO.setReg(CastDst);
1386 }
1387 
1388 LegalizerHelper::LegalizeResult
1389 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1390                                         LLT WideTy) {
1391   if (TypeIdx != 1)
1392     return UnableToLegalize;
1393 
1394   Register DstReg = MI.getOperand(0).getReg();
1395   LLT DstTy = MRI.getType(DstReg);
1396   if (DstTy.isVector())
1397     return UnableToLegalize;
1398 
1399   Register Src1 = MI.getOperand(1).getReg();
1400   LLT SrcTy = MRI.getType(Src1);
1401   const int DstSize = DstTy.getSizeInBits();
1402   const int SrcSize = SrcTy.getSizeInBits();
1403   const int WideSize = WideTy.getSizeInBits();
1404   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1405 
1406   unsigned NumOps = MI.getNumOperands();
1407   unsigned NumSrc = MI.getNumOperands() - 1;
1408   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1409 
1410   if (WideSize >= DstSize) {
1411     // Directly pack the bits in the target type.
1412     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1413 
1414     for (unsigned I = 2; I != NumOps; ++I) {
1415       const unsigned Offset = (I - 1) * PartSize;
1416 
1417       Register SrcReg = MI.getOperand(I).getReg();
1418       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1419 
1420       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1421 
1422       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1423         MRI.createGenericVirtualRegister(WideTy);
1424 
1425       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1426       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1427       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1428       ResultReg = NextResult;
1429     }
1430 
1431     if (WideSize > DstSize)
1432       MIRBuilder.buildTrunc(DstReg, ResultReg);
1433     else if (DstTy.isPointer())
1434       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1435 
1436     MI.eraseFromParent();
1437     return Legalized;
1438   }
1439 
1440   // Unmerge the original values to the GCD type, and recombine to the next
1441   // multiple greater than the original type.
1442   //
1443   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1444   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1445   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1446   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1447   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1448   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1449   // %12:_(s12) = G_MERGE_VALUES %10, %11
1450   //
1451   // Padding with undef if necessary:
1452   //
1453   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1454   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1455   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1456   // %7:_(s2) = G_IMPLICIT_DEF
1457   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1458   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1459   // %10:_(s12) = G_MERGE_VALUES %8, %9
1460 
1461   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1462   LLT GCDTy = LLT::scalar(GCD);
1463 
1464   SmallVector<Register, 8> Parts;
1465   SmallVector<Register, 8> NewMergeRegs;
1466   SmallVector<Register, 8> Unmerges;
1467   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1468 
1469   // Decompose the original operands if they don't evenly divide.
1470   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1471     Register SrcReg = MI.getOperand(I).getReg();
1472     if (GCD == SrcSize) {
1473       Unmerges.push_back(SrcReg);
1474     } else {
1475       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1476       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1477         Unmerges.push_back(Unmerge.getReg(J));
1478     }
1479   }
1480 
1481   // Pad with undef to the next size that is a multiple of the requested size.
1482   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1483     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1484     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1485       Unmerges.push_back(UndefReg);
1486   }
1487 
1488   const int PartsPerGCD = WideSize / GCD;
1489 
1490   // Build merges of each piece.
1491   ArrayRef<Register> Slicer(Unmerges);
1492   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1493     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1494     NewMergeRegs.push_back(Merge.getReg(0));
1495   }
1496 
1497   // A truncate may be necessary if the requested type doesn't evenly divide the
1498   // original result type.
1499   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1500     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1501   } else {
1502     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1503     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1504   }
1505 
1506   MI.eraseFromParent();
1507   return Legalized;
1508 }
1509 
1510 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1511   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1512   LLT OrigTy = MRI.getType(OrigReg);
1513   LLT LCMTy = getLCMType(WideTy, OrigTy);
1514 
1515   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1516   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1517 
1518   Register UnmergeSrc = WideReg;
1519 
1520   // Create a merge to the LCM type, padding with undef
1521   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1522   // =>
1523   // %1:_(<4 x s32>) = G_FOO
1524   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1525   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1526   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1527   if (NumMergeParts > 1) {
1528     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1529     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1530     MergeParts[0] = WideReg;
1531     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1532   }
1533 
1534   // Unmerge to the original register and pad with dead defs.
1535   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1536   UnmergeResults[0] = OrigReg;
1537   for (int I = 1; I != NumUnmergeParts; ++I)
1538     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1539 
1540   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1541   return WideReg;
1542 }
1543 
1544 LegalizerHelper::LegalizeResult
1545 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1546                                           LLT WideTy) {
1547   if (TypeIdx != 0)
1548     return UnableToLegalize;
1549 
1550   int NumDst = MI.getNumOperands() - 1;
1551   Register SrcReg = MI.getOperand(NumDst).getReg();
1552   LLT SrcTy = MRI.getType(SrcReg);
1553   if (SrcTy.isVector())
1554     return UnableToLegalize;
1555 
1556   Register Dst0Reg = MI.getOperand(0).getReg();
1557   LLT DstTy = MRI.getType(Dst0Reg);
1558   if (!DstTy.isScalar())
1559     return UnableToLegalize;
1560 
1561   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1562     if (SrcTy.isPointer()) {
1563       const DataLayout &DL = MIRBuilder.getDataLayout();
1564       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1565         LLVM_DEBUG(
1566             dbgs() << "Not casting non-integral address space integer\n");
1567         return UnableToLegalize;
1568       }
1569 
1570       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1571       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1572     }
1573 
1574     // Widen SrcTy to WideTy. This does not affect the result, but since the
1575     // user requested this size, it is probably better handled than SrcTy and
1576     // should reduce the total number of legalization artifacts
1577     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1578       SrcTy = WideTy;
1579       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1580     }
1581 
1582     // Theres no unmerge type to target. Directly extract the bits from the
1583     // source type
1584     unsigned DstSize = DstTy.getSizeInBits();
1585 
1586     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1587     for (int I = 1; I != NumDst; ++I) {
1588       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1589       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1590       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1591     }
1592 
1593     MI.eraseFromParent();
1594     return Legalized;
1595   }
1596 
1597   // Extend the source to a wider type.
1598   LLT LCMTy = getLCMType(SrcTy, WideTy);
1599 
1600   Register WideSrc = SrcReg;
1601   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1602     // TODO: If this is an integral address space, cast to integer and anyext.
1603     if (SrcTy.isPointer()) {
1604       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1605       return UnableToLegalize;
1606     }
1607 
1608     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1609   }
1610 
1611   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1612 
1613   // Create a sequence of unmerges and merges to the original results. Since we
1614   // may have widened the source, we will need to pad the results with dead defs
1615   // to cover the source register.
1616   // e.g. widen s48 to s64:
1617   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1618   //
1619   // =>
1620   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1621   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1622   //  ; unpack to GCD type, with extra dead defs
1623   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1624   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1625   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1626   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1627   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1628   const LLT GCDTy = getGCDType(WideTy, DstTy);
1629   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1630   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1631 
1632   // Directly unmerge to the destination without going through a GCD type
1633   // if possible
1634   if (PartsPerRemerge == 1) {
1635     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1636 
1637     for (int I = 0; I != NumUnmerge; ++I) {
1638       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1639 
1640       for (int J = 0; J != PartsPerUnmerge; ++J) {
1641         int Idx = I * PartsPerUnmerge + J;
1642         if (Idx < NumDst)
1643           MIB.addDef(MI.getOperand(Idx).getReg());
1644         else {
1645           // Create dead def for excess components.
1646           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1647         }
1648       }
1649 
1650       MIB.addUse(Unmerge.getReg(I));
1651     }
1652   } else {
1653     SmallVector<Register, 16> Parts;
1654     for (int J = 0; J != NumUnmerge; ++J)
1655       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1656 
1657     SmallVector<Register, 8> RemergeParts;
1658     for (int I = 0; I != NumDst; ++I) {
1659       for (int J = 0; J < PartsPerRemerge; ++J) {
1660         const int Idx = I * PartsPerRemerge + J;
1661         RemergeParts.emplace_back(Parts[Idx]);
1662       }
1663 
1664       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1665       RemergeParts.clear();
1666     }
1667   }
1668 
1669   MI.eraseFromParent();
1670   return Legalized;
1671 }
1672 
1673 LegalizerHelper::LegalizeResult
1674 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1675                                     LLT WideTy) {
1676   Register DstReg = MI.getOperand(0).getReg();
1677   Register SrcReg = MI.getOperand(1).getReg();
1678   LLT SrcTy = MRI.getType(SrcReg);
1679 
1680   LLT DstTy = MRI.getType(DstReg);
1681   unsigned Offset = MI.getOperand(2).getImm();
1682 
1683   if (TypeIdx == 0) {
1684     if (SrcTy.isVector() || DstTy.isVector())
1685       return UnableToLegalize;
1686 
1687     SrcOp Src(SrcReg);
1688     if (SrcTy.isPointer()) {
1689       // Extracts from pointers can be handled only if they are really just
1690       // simple integers.
1691       const DataLayout &DL = MIRBuilder.getDataLayout();
1692       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1693         return UnableToLegalize;
1694 
1695       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1696       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1697       SrcTy = SrcAsIntTy;
1698     }
1699 
1700     if (DstTy.isPointer())
1701       return UnableToLegalize;
1702 
1703     if (Offset == 0) {
1704       // Avoid a shift in the degenerate case.
1705       MIRBuilder.buildTrunc(DstReg,
1706                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1707       MI.eraseFromParent();
1708       return Legalized;
1709     }
1710 
1711     // Do a shift in the source type.
1712     LLT ShiftTy = SrcTy;
1713     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1714       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1715       ShiftTy = WideTy;
1716     }
1717 
1718     auto LShr = MIRBuilder.buildLShr(
1719       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1720     MIRBuilder.buildTrunc(DstReg, LShr);
1721     MI.eraseFromParent();
1722     return Legalized;
1723   }
1724 
1725   if (SrcTy.isScalar()) {
1726     Observer.changingInstr(MI);
1727     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1728     Observer.changedInstr(MI);
1729     return Legalized;
1730   }
1731 
1732   if (!SrcTy.isVector())
1733     return UnableToLegalize;
1734 
1735   if (DstTy != SrcTy.getElementType())
1736     return UnableToLegalize;
1737 
1738   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1739     return UnableToLegalize;
1740 
1741   Observer.changingInstr(MI);
1742   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1743 
1744   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1745                           Offset);
1746   widenScalarDst(MI, WideTy.getScalarType(), 0);
1747   Observer.changedInstr(MI);
1748   return Legalized;
1749 }
1750 
1751 LegalizerHelper::LegalizeResult
1752 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1753                                    LLT WideTy) {
1754   if (TypeIdx != 0 || WideTy.isVector())
1755     return UnableToLegalize;
1756   Observer.changingInstr(MI);
1757   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1758   widenScalarDst(MI, WideTy);
1759   Observer.changedInstr(MI);
1760   return Legalized;
1761 }
1762 
1763 LegalizerHelper::LegalizeResult
1764 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1765                                          LLT WideTy) {
1766   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1767                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1768                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1769   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1770                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1771   // We can convert this to:
1772   //   1. Any extend iN to iM
1773   //   2. SHL by M-N
1774   //   3. [US][ADD|SUB|SHL]SAT
1775   //   4. L/ASHR by M-N
1776   //
1777   // It may be more efficient to lower this to a min and a max operation in
1778   // the higher precision arithmetic if the promoted operation isn't legal,
1779   // but this decision is up to the target's lowering request.
1780   Register DstReg = MI.getOperand(0).getReg();
1781 
1782   unsigned NewBits = WideTy.getScalarSizeInBits();
1783   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1784 
1785   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1786   // must not left shift the RHS to preserve the shift amount.
1787   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1788   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1789                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1790   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1791   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1792   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1793 
1794   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1795                                         {ShiftL, ShiftR}, MI.getFlags());
1796 
1797   // Use a shift that will preserve the number of sign bits when the trunc is
1798   // folded away.
1799   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1800                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1801 
1802   MIRBuilder.buildTrunc(DstReg, Result);
1803   MI.eraseFromParent();
1804   return Legalized;
1805 }
1806 
1807 LegalizerHelper::LegalizeResult
1808 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1809   switch (MI.getOpcode()) {
1810   default:
1811     return UnableToLegalize;
1812   case TargetOpcode::G_EXTRACT:
1813     return widenScalarExtract(MI, TypeIdx, WideTy);
1814   case TargetOpcode::G_INSERT:
1815     return widenScalarInsert(MI, TypeIdx, WideTy);
1816   case TargetOpcode::G_MERGE_VALUES:
1817     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1818   case TargetOpcode::G_UNMERGE_VALUES:
1819     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1820   case TargetOpcode::G_UADDO:
1821   case TargetOpcode::G_USUBO: {
1822     if (TypeIdx == 1)
1823       return UnableToLegalize; // TODO
1824     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1825     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1826     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1827                           ? TargetOpcode::G_ADD
1828                           : TargetOpcode::G_SUB;
1829     // Do the arithmetic in the larger type.
1830     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1831     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1832     APInt Mask =
1833         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1834     auto AndOp = MIRBuilder.buildAnd(
1835         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1836     // There is no overflow if the AndOp is the same as NewOp.
1837     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1838     // Now trunc the NewOp to the original result.
1839     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1840     MI.eraseFromParent();
1841     return Legalized;
1842   }
1843   case TargetOpcode::G_SADDSAT:
1844   case TargetOpcode::G_SSUBSAT:
1845   case TargetOpcode::G_SSHLSAT:
1846   case TargetOpcode::G_UADDSAT:
1847   case TargetOpcode::G_USUBSAT:
1848   case TargetOpcode::G_USHLSAT:
1849     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1850   case TargetOpcode::G_CTTZ:
1851   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1852   case TargetOpcode::G_CTLZ:
1853   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1854   case TargetOpcode::G_CTPOP: {
1855     if (TypeIdx == 0) {
1856       Observer.changingInstr(MI);
1857       widenScalarDst(MI, WideTy, 0);
1858       Observer.changedInstr(MI);
1859       return Legalized;
1860     }
1861 
1862     Register SrcReg = MI.getOperand(1).getReg();
1863 
1864     // First ZEXT the input.
1865     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1866     LLT CurTy = MRI.getType(SrcReg);
1867     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1868       // The count is the same in the larger type except if the original
1869       // value was zero.  This can be handled by setting the bit just off
1870       // the top of the original type.
1871       auto TopBit =
1872           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1873       MIBSrc = MIRBuilder.buildOr(
1874         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1875     }
1876 
1877     // Perform the operation at the larger size.
1878     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1879     // This is already the correct result for CTPOP and CTTZs
1880     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1881         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1882       // The correct result is NewOp - (Difference in widety and current ty).
1883       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1884       MIBNewOp = MIRBuilder.buildSub(
1885           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1886     }
1887 
1888     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1889     MI.eraseFromParent();
1890     return Legalized;
1891   }
1892   case TargetOpcode::G_BSWAP: {
1893     Observer.changingInstr(MI);
1894     Register DstReg = MI.getOperand(0).getReg();
1895 
1896     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1897     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1898     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1899     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1900 
1901     MI.getOperand(0).setReg(DstExt);
1902 
1903     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1904 
1905     LLT Ty = MRI.getType(DstReg);
1906     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1907     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1908     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1909 
1910     MIRBuilder.buildTrunc(DstReg, ShrReg);
1911     Observer.changedInstr(MI);
1912     return Legalized;
1913   }
1914   case TargetOpcode::G_BITREVERSE: {
1915     Observer.changingInstr(MI);
1916 
1917     Register DstReg = MI.getOperand(0).getReg();
1918     LLT Ty = MRI.getType(DstReg);
1919     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1920 
1921     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1922     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1923     MI.getOperand(0).setReg(DstExt);
1924     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1925 
1926     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1927     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1928     MIRBuilder.buildTrunc(DstReg, Shift);
1929     Observer.changedInstr(MI);
1930     return Legalized;
1931   }
1932   case TargetOpcode::G_FREEZE:
1933     Observer.changingInstr(MI);
1934     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1935     widenScalarDst(MI, WideTy);
1936     Observer.changedInstr(MI);
1937     return Legalized;
1938 
1939   case TargetOpcode::G_ADD:
1940   case TargetOpcode::G_AND:
1941   case TargetOpcode::G_MUL:
1942   case TargetOpcode::G_OR:
1943   case TargetOpcode::G_XOR:
1944   case TargetOpcode::G_SUB:
1945     // Perform operation at larger width (any extension is fines here, high bits
1946     // don't affect the result) and then truncate the result back to the
1947     // original type.
1948     Observer.changingInstr(MI);
1949     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1950     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1951     widenScalarDst(MI, WideTy);
1952     Observer.changedInstr(MI);
1953     return Legalized;
1954 
1955   case TargetOpcode::G_SHL:
1956     Observer.changingInstr(MI);
1957 
1958     if (TypeIdx == 0) {
1959       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1960       widenScalarDst(MI, WideTy);
1961     } else {
1962       assert(TypeIdx == 1);
1963       // The "number of bits to shift" operand must preserve its value as an
1964       // unsigned integer:
1965       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1966     }
1967 
1968     Observer.changedInstr(MI);
1969     return Legalized;
1970 
1971   case TargetOpcode::G_SDIV:
1972   case TargetOpcode::G_SREM:
1973   case TargetOpcode::G_SMIN:
1974   case TargetOpcode::G_SMAX:
1975     Observer.changingInstr(MI);
1976     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1977     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1978     widenScalarDst(MI, WideTy);
1979     Observer.changedInstr(MI);
1980     return Legalized;
1981 
1982   case TargetOpcode::G_ASHR:
1983   case TargetOpcode::G_LSHR:
1984     Observer.changingInstr(MI);
1985 
1986     if (TypeIdx == 0) {
1987       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1988         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1989 
1990       widenScalarSrc(MI, WideTy, 1, CvtOp);
1991       widenScalarDst(MI, WideTy);
1992     } else {
1993       assert(TypeIdx == 1);
1994       // The "number of bits to shift" operand must preserve its value as an
1995       // unsigned integer:
1996       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1997     }
1998 
1999     Observer.changedInstr(MI);
2000     return Legalized;
2001   case TargetOpcode::G_UDIV:
2002   case TargetOpcode::G_UREM:
2003   case TargetOpcode::G_UMIN:
2004   case TargetOpcode::G_UMAX:
2005     Observer.changingInstr(MI);
2006     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2007     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2008     widenScalarDst(MI, WideTy);
2009     Observer.changedInstr(MI);
2010     return Legalized;
2011 
2012   case TargetOpcode::G_SELECT:
2013     Observer.changingInstr(MI);
2014     if (TypeIdx == 0) {
2015       // Perform operation at larger width (any extension is fine here, high
2016       // bits don't affect the result) and then truncate the result back to the
2017       // original type.
2018       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2019       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2020       widenScalarDst(MI, WideTy);
2021     } else {
2022       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2023       // Explicit extension is required here since high bits affect the result.
2024       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2025     }
2026     Observer.changedInstr(MI);
2027     return Legalized;
2028 
2029   case TargetOpcode::G_FPTOSI:
2030   case TargetOpcode::G_FPTOUI:
2031     Observer.changingInstr(MI);
2032 
2033     if (TypeIdx == 0)
2034       widenScalarDst(MI, WideTy);
2035     else
2036       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2037 
2038     Observer.changedInstr(MI);
2039     return Legalized;
2040   case TargetOpcode::G_SITOFP:
2041     Observer.changingInstr(MI);
2042 
2043     if (TypeIdx == 0)
2044       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2045     else
2046       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2047 
2048     Observer.changedInstr(MI);
2049     return Legalized;
2050   case TargetOpcode::G_UITOFP:
2051     Observer.changingInstr(MI);
2052 
2053     if (TypeIdx == 0)
2054       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2055     else
2056       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2057 
2058     Observer.changedInstr(MI);
2059     return Legalized;
2060   case TargetOpcode::G_LOAD:
2061   case TargetOpcode::G_SEXTLOAD:
2062   case TargetOpcode::G_ZEXTLOAD:
2063     Observer.changingInstr(MI);
2064     widenScalarDst(MI, WideTy);
2065     Observer.changedInstr(MI);
2066     return Legalized;
2067 
2068   case TargetOpcode::G_STORE: {
2069     if (TypeIdx != 0)
2070       return UnableToLegalize;
2071 
2072     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2073     if (!Ty.isScalar())
2074       return UnableToLegalize;
2075 
2076     Observer.changingInstr(MI);
2077 
2078     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2079       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2080     widenScalarSrc(MI, WideTy, 0, ExtType);
2081 
2082     Observer.changedInstr(MI);
2083     return Legalized;
2084   }
2085   case TargetOpcode::G_CONSTANT: {
2086     MachineOperand &SrcMO = MI.getOperand(1);
2087     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2088     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2089         MRI.getType(MI.getOperand(0).getReg()));
2090     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2091             ExtOpc == TargetOpcode::G_ANYEXT) &&
2092            "Illegal Extend");
2093     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2094     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2095                            ? SrcVal.sext(WideTy.getSizeInBits())
2096                            : SrcVal.zext(WideTy.getSizeInBits());
2097     Observer.changingInstr(MI);
2098     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2099 
2100     widenScalarDst(MI, WideTy);
2101     Observer.changedInstr(MI);
2102     return Legalized;
2103   }
2104   case TargetOpcode::G_FCONSTANT: {
2105     MachineOperand &SrcMO = MI.getOperand(1);
2106     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2107     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2108     bool LosesInfo;
2109     switch (WideTy.getSizeInBits()) {
2110     case 32:
2111       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2112                   &LosesInfo);
2113       break;
2114     case 64:
2115       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2116                   &LosesInfo);
2117       break;
2118     default:
2119       return UnableToLegalize;
2120     }
2121 
2122     assert(!LosesInfo && "extend should always be lossless");
2123 
2124     Observer.changingInstr(MI);
2125     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2126 
2127     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2128     Observer.changedInstr(MI);
2129     return Legalized;
2130   }
2131   case TargetOpcode::G_IMPLICIT_DEF: {
2132     Observer.changingInstr(MI);
2133     widenScalarDst(MI, WideTy);
2134     Observer.changedInstr(MI);
2135     return Legalized;
2136   }
2137   case TargetOpcode::G_BRCOND:
2138     Observer.changingInstr(MI);
2139     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2140     Observer.changedInstr(MI);
2141     return Legalized;
2142 
2143   case TargetOpcode::G_FCMP:
2144     Observer.changingInstr(MI);
2145     if (TypeIdx == 0)
2146       widenScalarDst(MI, WideTy);
2147     else {
2148       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2149       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2150     }
2151     Observer.changedInstr(MI);
2152     return Legalized;
2153 
2154   case TargetOpcode::G_ICMP:
2155     Observer.changingInstr(MI);
2156     if (TypeIdx == 0)
2157       widenScalarDst(MI, WideTy);
2158     else {
2159       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2160                                MI.getOperand(1).getPredicate()))
2161                                ? TargetOpcode::G_SEXT
2162                                : TargetOpcode::G_ZEXT;
2163       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2164       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2165     }
2166     Observer.changedInstr(MI);
2167     return Legalized;
2168 
2169   case TargetOpcode::G_PTR_ADD:
2170     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2171     Observer.changingInstr(MI);
2172     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2173     Observer.changedInstr(MI);
2174     return Legalized;
2175 
2176   case TargetOpcode::G_PHI: {
2177     assert(TypeIdx == 0 && "Expecting only Idx 0");
2178 
2179     Observer.changingInstr(MI);
2180     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2181       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2182       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2183       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2184     }
2185 
2186     MachineBasicBlock &MBB = *MI.getParent();
2187     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2188     widenScalarDst(MI, WideTy);
2189     Observer.changedInstr(MI);
2190     return Legalized;
2191   }
2192   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2193     if (TypeIdx == 0) {
2194       Register VecReg = MI.getOperand(1).getReg();
2195       LLT VecTy = MRI.getType(VecReg);
2196       Observer.changingInstr(MI);
2197 
2198       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2199                                      WideTy.getSizeInBits()),
2200                      1, TargetOpcode::G_SEXT);
2201 
2202       widenScalarDst(MI, WideTy, 0);
2203       Observer.changedInstr(MI);
2204       return Legalized;
2205     }
2206 
2207     if (TypeIdx != 2)
2208       return UnableToLegalize;
2209     Observer.changingInstr(MI);
2210     // TODO: Probably should be zext
2211     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2212     Observer.changedInstr(MI);
2213     return Legalized;
2214   }
2215   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2216     if (TypeIdx == 1) {
2217       Observer.changingInstr(MI);
2218 
2219       Register VecReg = MI.getOperand(1).getReg();
2220       LLT VecTy = MRI.getType(VecReg);
2221       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2222 
2223       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2224       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2225       widenScalarDst(MI, WideVecTy, 0);
2226       Observer.changedInstr(MI);
2227       return Legalized;
2228     }
2229 
2230     if (TypeIdx == 2) {
2231       Observer.changingInstr(MI);
2232       // TODO: Probably should be zext
2233       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2234       Observer.changedInstr(MI);
2235       return Legalized;
2236     }
2237 
2238     return UnableToLegalize;
2239   }
2240   case TargetOpcode::G_FADD:
2241   case TargetOpcode::G_FMUL:
2242   case TargetOpcode::G_FSUB:
2243   case TargetOpcode::G_FMA:
2244   case TargetOpcode::G_FMAD:
2245   case TargetOpcode::G_FNEG:
2246   case TargetOpcode::G_FABS:
2247   case TargetOpcode::G_FCANONICALIZE:
2248   case TargetOpcode::G_FMINNUM:
2249   case TargetOpcode::G_FMAXNUM:
2250   case TargetOpcode::G_FMINNUM_IEEE:
2251   case TargetOpcode::G_FMAXNUM_IEEE:
2252   case TargetOpcode::G_FMINIMUM:
2253   case TargetOpcode::G_FMAXIMUM:
2254   case TargetOpcode::G_FDIV:
2255   case TargetOpcode::G_FREM:
2256   case TargetOpcode::G_FCEIL:
2257   case TargetOpcode::G_FFLOOR:
2258   case TargetOpcode::G_FCOS:
2259   case TargetOpcode::G_FSIN:
2260   case TargetOpcode::G_FLOG10:
2261   case TargetOpcode::G_FLOG:
2262   case TargetOpcode::G_FLOG2:
2263   case TargetOpcode::G_FRINT:
2264   case TargetOpcode::G_FNEARBYINT:
2265   case TargetOpcode::G_FSQRT:
2266   case TargetOpcode::G_FEXP:
2267   case TargetOpcode::G_FEXP2:
2268   case TargetOpcode::G_FPOW:
2269   case TargetOpcode::G_INTRINSIC_TRUNC:
2270   case TargetOpcode::G_INTRINSIC_ROUND:
2271   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2272     assert(TypeIdx == 0);
2273     Observer.changingInstr(MI);
2274 
2275     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2276       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2277 
2278     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2279     Observer.changedInstr(MI);
2280     return Legalized;
2281   case TargetOpcode::G_FPOWI: {
2282     if (TypeIdx != 0)
2283       return UnableToLegalize;
2284     Observer.changingInstr(MI);
2285     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2286     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2287     Observer.changedInstr(MI);
2288     return Legalized;
2289   }
2290   case TargetOpcode::G_INTTOPTR:
2291     if (TypeIdx != 1)
2292       return UnableToLegalize;
2293 
2294     Observer.changingInstr(MI);
2295     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2296     Observer.changedInstr(MI);
2297     return Legalized;
2298   case TargetOpcode::G_PTRTOINT:
2299     if (TypeIdx != 0)
2300       return UnableToLegalize;
2301 
2302     Observer.changingInstr(MI);
2303     widenScalarDst(MI, WideTy, 0);
2304     Observer.changedInstr(MI);
2305     return Legalized;
2306   case TargetOpcode::G_BUILD_VECTOR: {
2307     Observer.changingInstr(MI);
2308 
2309     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2310     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2311       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2312 
2313     // Avoid changing the result vector type if the source element type was
2314     // requested.
2315     if (TypeIdx == 1) {
2316       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2317     } else {
2318       widenScalarDst(MI, WideTy, 0);
2319     }
2320 
2321     Observer.changedInstr(MI);
2322     return Legalized;
2323   }
2324   case TargetOpcode::G_SEXT_INREG:
2325     if (TypeIdx != 0)
2326       return UnableToLegalize;
2327 
2328     Observer.changingInstr(MI);
2329     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2330     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2331     Observer.changedInstr(MI);
2332     return Legalized;
2333   case TargetOpcode::G_PTRMASK: {
2334     if (TypeIdx != 1)
2335       return UnableToLegalize;
2336     Observer.changingInstr(MI);
2337     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2338     Observer.changedInstr(MI);
2339     return Legalized;
2340   }
2341   }
2342 }
2343 
2344 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2345                              MachineIRBuilder &B, Register Src, LLT Ty) {
2346   auto Unmerge = B.buildUnmerge(Ty, Src);
2347   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2348     Pieces.push_back(Unmerge.getReg(I));
2349 }
2350 
2351 LegalizerHelper::LegalizeResult
2352 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2353   Register Dst = MI.getOperand(0).getReg();
2354   Register Src = MI.getOperand(1).getReg();
2355   LLT DstTy = MRI.getType(Dst);
2356   LLT SrcTy = MRI.getType(Src);
2357 
2358   if (SrcTy.isVector()) {
2359     LLT SrcEltTy = SrcTy.getElementType();
2360     SmallVector<Register, 8> SrcRegs;
2361 
2362     if (DstTy.isVector()) {
2363       int NumDstElt = DstTy.getNumElements();
2364       int NumSrcElt = SrcTy.getNumElements();
2365 
2366       LLT DstEltTy = DstTy.getElementType();
2367       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2368       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2369 
2370       // If there's an element size mismatch, insert intermediate casts to match
2371       // the result element type.
2372       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2373         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2374         //
2375         // =>
2376         //
2377         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2378         // %3:_(<2 x s8>) = G_BITCAST %2
2379         // %4:_(<2 x s8>) = G_BITCAST %3
2380         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2381         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2382         SrcPartTy = SrcEltTy;
2383       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2384         //
2385         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2386         //
2387         // =>
2388         //
2389         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2390         // %3:_(s16) = G_BITCAST %2
2391         // %4:_(s16) = G_BITCAST %3
2392         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2393         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2394         DstCastTy = DstEltTy;
2395       }
2396 
2397       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2398       for (Register &SrcReg : SrcRegs)
2399         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2400     } else
2401       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2402 
2403     MIRBuilder.buildMerge(Dst, SrcRegs);
2404     MI.eraseFromParent();
2405     return Legalized;
2406   }
2407 
2408   if (DstTy.isVector()) {
2409     SmallVector<Register, 8> SrcRegs;
2410     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2411     MIRBuilder.buildMerge(Dst, SrcRegs);
2412     MI.eraseFromParent();
2413     return Legalized;
2414   }
2415 
2416   return UnableToLegalize;
2417 }
2418 
2419 /// Figure out the bit offset into a register when coercing a vector index for
2420 /// the wide element type. This is only for the case when promoting vector to
2421 /// one with larger elements.
2422 //
2423 ///
2424 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2425 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2426 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2427                                                    Register Idx,
2428                                                    unsigned NewEltSize,
2429                                                    unsigned OldEltSize) {
2430   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2431   LLT IdxTy = B.getMRI()->getType(Idx);
2432 
2433   // Now figure out the amount we need to shift to get the target bits.
2434   auto OffsetMask = B.buildConstant(
2435     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2436   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2437   return B.buildShl(IdxTy, OffsetIdx,
2438                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2439 }
2440 
2441 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2442 /// is casting to a vector with a smaller element size, perform multiple element
2443 /// extracts and merge the results. If this is coercing to a vector with larger
2444 /// elements, index the bitcasted vector and extract the target element with bit
2445 /// operations. This is intended to force the indexing in the native register
2446 /// size for architectures that can dynamically index the register file.
2447 LegalizerHelper::LegalizeResult
2448 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2449                                          LLT CastTy) {
2450   if (TypeIdx != 1)
2451     return UnableToLegalize;
2452 
2453   Register Dst = MI.getOperand(0).getReg();
2454   Register SrcVec = MI.getOperand(1).getReg();
2455   Register Idx = MI.getOperand(2).getReg();
2456   LLT SrcVecTy = MRI.getType(SrcVec);
2457   LLT IdxTy = MRI.getType(Idx);
2458 
2459   LLT SrcEltTy = SrcVecTy.getElementType();
2460   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2461   unsigned OldNumElts = SrcVecTy.getNumElements();
2462 
2463   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2464   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2465 
2466   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2467   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2468   if (NewNumElts > OldNumElts) {
2469     // Decreasing the vector element size
2470     //
2471     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2472     //  =>
2473     //  v4i32:castx = bitcast x:v2i64
2474     //
2475     // i64 = bitcast
2476     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2477     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2478     //
2479     if (NewNumElts % OldNumElts != 0)
2480       return UnableToLegalize;
2481 
2482     // Type of the intermediate result vector.
2483     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2484     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2485 
2486     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2487 
2488     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2489     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2490 
2491     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2492       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2493       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2494       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2495       NewOps[I] = Elt.getReg(0);
2496     }
2497 
2498     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2499     MIRBuilder.buildBitcast(Dst, NewVec);
2500     MI.eraseFromParent();
2501     return Legalized;
2502   }
2503 
2504   if (NewNumElts < OldNumElts) {
2505     if (NewEltSize % OldEltSize != 0)
2506       return UnableToLegalize;
2507 
2508     // This only depends on powers of 2 because we use bit tricks to figure out
2509     // the bit offset we need to shift to get the target element. A general
2510     // expansion could emit division/multiply.
2511     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2512       return UnableToLegalize;
2513 
2514     // Increasing the vector element size.
2515     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2516     //
2517     //   =>
2518     //
2519     // %cast = G_BITCAST %vec
2520     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2521     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2522     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2523     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2524     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2525     // %elt = G_TRUNC %elt_bits
2526 
2527     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2528     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2529 
2530     // Divide to get the index in the wider element type.
2531     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2532 
2533     Register WideElt = CastVec;
2534     if (CastTy.isVector()) {
2535       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2536                                                      ScaledIdx).getReg(0);
2537     }
2538 
2539     // Compute the bit offset into the register of the target element.
2540     Register OffsetBits = getBitcastWiderVectorElementOffset(
2541       MIRBuilder, Idx, NewEltSize, OldEltSize);
2542 
2543     // Shift the wide element to get the target element.
2544     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2545     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2546     MI.eraseFromParent();
2547     return Legalized;
2548   }
2549 
2550   return UnableToLegalize;
2551 }
2552 
2553 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2554 /// TargetReg, while preserving other bits in \p TargetReg.
2555 ///
2556 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2557 static Register buildBitFieldInsert(MachineIRBuilder &B,
2558                                     Register TargetReg, Register InsertReg,
2559                                     Register OffsetBits) {
2560   LLT TargetTy = B.getMRI()->getType(TargetReg);
2561   LLT InsertTy = B.getMRI()->getType(InsertReg);
2562   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2563   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2564 
2565   // Produce a bitmask of the value to insert
2566   auto EltMask = B.buildConstant(
2567     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2568                                    InsertTy.getSizeInBits()));
2569   // Shift it into position
2570   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2571   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2572 
2573   // Clear out the bits in the wide element
2574   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2575 
2576   // The value to insert has all zeros already, so stick it into the masked
2577   // wide element.
2578   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2579 }
2580 
2581 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2582 /// is increasing the element size, perform the indexing in the target element
2583 /// type, and use bit operations to insert at the element position. This is
2584 /// intended for architectures that can dynamically index the register file and
2585 /// want to force indexing in the native register size.
2586 LegalizerHelper::LegalizeResult
2587 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2588                                         LLT CastTy) {
2589   if (TypeIdx != 0)
2590     return UnableToLegalize;
2591 
2592   Register Dst = MI.getOperand(0).getReg();
2593   Register SrcVec = MI.getOperand(1).getReg();
2594   Register Val = MI.getOperand(2).getReg();
2595   Register Idx = MI.getOperand(3).getReg();
2596 
2597   LLT VecTy = MRI.getType(Dst);
2598   LLT IdxTy = MRI.getType(Idx);
2599 
2600   LLT VecEltTy = VecTy.getElementType();
2601   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2602   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2603   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2604 
2605   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2606   unsigned OldNumElts = VecTy.getNumElements();
2607 
2608   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2609   if (NewNumElts < OldNumElts) {
2610     if (NewEltSize % OldEltSize != 0)
2611       return UnableToLegalize;
2612 
2613     // This only depends on powers of 2 because we use bit tricks to figure out
2614     // the bit offset we need to shift to get the target element. A general
2615     // expansion could emit division/multiply.
2616     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2617       return UnableToLegalize;
2618 
2619     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2620     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2621 
2622     // Divide to get the index in the wider element type.
2623     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2624 
2625     Register ExtractedElt = CastVec;
2626     if (CastTy.isVector()) {
2627       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2628                                                           ScaledIdx).getReg(0);
2629     }
2630 
2631     // Compute the bit offset into the register of the target element.
2632     Register OffsetBits = getBitcastWiderVectorElementOffset(
2633       MIRBuilder, Idx, NewEltSize, OldEltSize);
2634 
2635     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2636                                                Val, OffsetBits);
2637     if (CastTy.isVector()) {
2638       InsertedElt = MIRBuilder.buildInsertVectorElement(
2639         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2640     }
2641 
2642     MIRBuilder.buildBitcast(Dst, InsertedElt);
2643     MI.eraseFromParent();
2644     return Legalized;
2645   }
2646 
2647   return UnableToLegalize;
2648 }
2649 
2650 LegalizerHelper::LegalizeResult
2651 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2652   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2653   Register DstReg = MI.getOperand(0).getReg();
2654   Register PtrReg = MI.getOperand(1).getReg();
2655   LLT DstTy = MRI.getType(DstReg);
2656   auto &MMO = **MI.memoperands_begin();
2657 
2658   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2659     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2660       // This load needs splitting into power of 2 sized loads.
2661       if (DstTy.isVector())
2662         return UnableToLegalize;
2663       if (isPowerOf2_32(DstTy.getSizeInBits()))
2664         return UnableToLegalize; // Don't know what we're being asked to do.
2665 
2666       // Our strategy here is to generate anyextending loads for the smaller
2667       // types up to next power-2 result type, and then combine the two larger
2668       // result values together, before truncating back down to the non-pow-2
2669       // type.
2670       // E.g. v1 = i24 load =>
2671       // v2 = i32 zextload (2 byte)
2672       // v3 = i32 load (1 byte)
2673       // v4 = i32 shl v3, 16
2674       // v5 = i32 or v4, v2
2675       // v1 = i24 trunc v5
2676       // By doing this we generate the correct truncate which should get
2677       // combined away as an artifact with a matching extend.
2678       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2679       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2680 
2681       MachineFunction &MF = MIRBuilder.getMF();
2682       MachineMemOperand *LargeMMO =
2683         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2684       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2685         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2686 
2687       LLT PtrTy = MRI.getType(PtrReg);
2688       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2689       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2690       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2691       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2692       auto LargeLoad = MIRBuilder.buildLoadInstr(
2693         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2694 
2695       auto OffsetCst = MIRBuilder.buildConstant(
2696         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2697       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2698       auto SmallPtr =
2699         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2700       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2701                                             *SmallMMO);
2702 
2703       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2704       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2705       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2706       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2707       MI.eraseFromParent();
2708       return Legalized;
2709     }
2710 
2711     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2712     MI.eraseFromParent();
2713     return Legalized;
2714   }
2715 
2716   if (DstTy.isScalar()) {
2717     Register TmpReg =
2718       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2719     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2720     switch (MI.getOpcode()) {
2721     default:
2722       llvm_unreachable("Unexpected opcode");
2723     case TargetOpcode::G_LOAD:
2724       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2725       break;
2726     case TargetOpcode::G_SEXTLOAD:
2727       MIRBuilder.buildSExt(DstReg, TmpReg);
2728       break;
2729     case TargetOpcode::G_ZEXTLOAD:
2730       MIRBuilder.buildZExt(DstReg, TmpReg);
2731       break;
2732     }
2733 
2734     MI.eraseFromParent();
2735     return Legalized;
2736   }
2737 
2738   return UnableToLegalize;
2739 }
2740 
2741 LegalizerHelper::LegalizeResult
2742 LegalizerHelper::lowerStore(MachineInstr &MI) {
2743   // Lower a non-power of 2 store into multiple pow-2 stores.
2744   // E.g. split an i24 store into an i16 store + i8 store.
2745   // We do this by first extending the stored value to the next largest power
2746   // of 2 type, and then using truncating stores to store the components.
2747   // By doing this, likewise with G_LOAD, generate an extend that can be
2748   // artifact-combined away instead of leaving behind extracts.
2749   Register SrcReg = MI.getOperand(0).getReg();
2750   Register PtrReg = MI.getOperand(1).getReg();
2751   LLT SrcTy = MRI.getType(SrcReg);
2752   MachineMemOperand &MMO = **MI.memoperands_begin();
2753   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2754     return UnableToLegalize;
2755   if (SrcTy.isVector())
2756     return UnableToLegalize;
2757   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2758     return UnableToLegalize; // Don't know what we're being asked to do.
2759 
2760   // Extend to the next pow-2.
2761   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2762   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2763 
2764   // Obtain the smaller value by shifting away the larger value.
2765   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2766   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2767   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2768   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2769 
2770   // Generate the PtrAdd and truncating stores.
2771   LLT PtrTy = MRI.getType(PtrReg);
2772   auto OffsetCst = MIRBuilder.buildConstant(
2773     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2774   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2775   auto SmallPtr =
2776     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2777 
2778   MachineFunction &MF = MIRBuilder.getMF();
2779   MachineMemOperand *LargeMMO =
2780     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2781   MachineMemOperand *SmallMMO =
2782     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2783   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2784   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2785   MI.eraseFromParent();
2786   return Legalized;
2787 }
2788 
2789 LegalizerHelper::LegalizeResult
2790 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2791   switch (MI.getOpcode()) {
2792   case TargetOpcode::G_LOAD: {
2793     if (TypeIdx != 0)
2794       return UnableToLegalize;
2795 
2796     Observer.changingInstr(MI);
2797     bitcastDst(MI, CastTy, 0);
2798     Observer.changedInstr(MI);
2799     return Legalized;
2800   }
2801   case TargetOpcode::G_STORE: {
2802     if (TypeIdx != 0)
2803       return UnableToLegalize;
2804 
2805     Observer.changingInstr(MI);
2806     bitcastSrc(MI, CastTy, 0);
2807     Observer.changedInstr(MI);
2808     return Legalized;
2809   }
2810   case TargetOpcode::G_SELECT: {
2811     if (TypeIdx != 0)
2812       return UnableToLegalize;
2813 
2814     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2815       LLVM_DEBUG(
2816           dbgs() << "bitcast action not implemented for vector select\n");
2817       return UnableToLegalize;
2818     }
2819 
2820     Observer.changingInstr(MI);
2821     bitcastSrc(MI, CastTy, 2);
2822     bitcastSrc(MI, CastTy, 3);
2823     bitcastDst(MI, CastTy, 0);
2824     Observer.changedInstr(MI);
2825     return Legalized;
2826   }
2827   case TargetOpcode::G_AND:
2828   case TargetOpcode::G_OR:
2829   case TargetOpcode::G_XOR: {
2830     Observer.changingInstr(MI);
2831     bitcastSrc(MI, CastTy, 1);
2832     bitcastSrc(MI, CastTy, 2);
2833     bitcastDst(MI, CastTy, 0);
2834     Observer.changedInstr(MI);
2835     return Legalized;
2836   }
2837   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2838     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2839   case TargetOpcode::G_INSERT_VECTOR_ELT:
2840     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2841   default:
2842     return UnableToLegalize;
2843   }
2844 }
2845 
2846 // Legalize an instruction by changing the opcode in place.
2847 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2848     Observer.changingInstr(MI);
2849     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2850     Observer.changedInstr(MI);
2851 }
2852 
2853 LegalizerHelper::LegalizeResult
2854 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2855   using namespace TargetOpcode;
2856 
2857   switch(MI.getOpcode()) {
2858   default:
2859     return UnableToLegalize;
2860   case TargetOpcode::G_BITCAST:
2861     return lowerBitcast(MI);
2862   case TargetOpcode::G_SREM:
2863   case TargetOpcode::G_UREM: {
2864     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2865     auto Quot =
2866         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2867                               {MI.getOperand(1), MI.getOperand(2)});
2868 
2869     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2870     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2871     MI.eraseFromParent();
2872     return Legalized;
2873   }
2874   case TargetOpcode::G_SADDO:
2875   case TargetOpcode::G_SSUBO:
2876     return lowerSADDO_SSUBO(MI);
2877   case TargetOpcode::G_UMULH:
2878   case TargetOpcode::G_SMULH:
2879     return lowerSMULH_UMULH(MI);
2880   case TargetOpcode::G_SMULO:
2881   case TargetOpcode::G_UMULO: {
2882     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2883     // result.
2884     Register Res = MI.getOperand(0).getReg();
2885     Register Overflow = MI.getOperand(1).getReg();
2886     Register LHS = MI.getOperand(2).getReg();
2887     Register RHS = MI.getOperand(3).getReg();
2888     LLT Ty = MRI.getType(Res);
2889 
2890     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2891                           ? TargetOpcode::G_SMULH
2892                           : TargetOpcode::G_UMULH;
2893 
2894     Observer.changingInstr(MI);
2895     const auto &TII = MIRBuilder.getTII();
2896     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2897     MI.RemoveOperand(1);
2898     Observer.changedInstr(MI);
2899 
2900     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2901     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2902 
2903     // Move insert point forward so we can use the Res register if needed.
2904     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2905 
2906     // For *signed* multiply, overflow is detected by checking:
2907     // (hi != (lo >> bitwidth-1))
2908     if (Opcode == TargetOpcode::G_SMULH) {
2909       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2910       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2911       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2912     } else {
2913       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2914     }
2915     return Legalized;
2916   }
2917   case TargetOpcode::G_FNEG: {
2918     Register Res = MI.getOperand(0).getReg();
2919     LLT Ty = MRI.getType(Res);
2920 
2921     // TODO: Handle vector types once we are able to
2922     // represent them.
2923     if (Ty.isVector())
2924       return UnableToLegalize;
2925     auto SignMask =
2926         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2927     Register SubByReg = MI.getOperand(1).getReg();
2928     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2929     MI.eraseFromParent();
2930     return Legalized;
2931   }
2932   case TargetOpcode::G_FSUB: {
2933     Register Res = MI.getOperand(0).getReg();
2934     LLT Ty = MRI.getType(Res);
2935 
2936     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2937     // First, check if G_FNEG is marked as Lower. If so, we may
2938     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2939     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2940       return UnableToLegalize;
2941     Register LHS = MI.getOperand(1).getReg();
2942     Register RHS = MI.getOperand(2).getReg();
2943     Register Neg = MRI.createGenericVirtualRegister(Ty);
2944     MIRBuilder.buildFNeg(Neg, RHS);
2945     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2946     MI.eraseFromParent();
2947     return Legalized;
2948   }
2949   case TargetOpcode::G_FMAD:
2950     return lowerFMad(MI);
2951   case TargetOpcode::G_FFLOOR:
2952     return lowerFFloor(MI);
2953   case TargetOpcode::G_INTRINSIC_ROUND:
2954     return lowerIntrinsicRound(MI);
2955   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2956     // Since round even is the assumed rounding mode for unconstrained FP
2957     // operations, rint and roundeven are the same operation.
2958     changeOpcode(MI, TargetOpcode::G_FRINT);
2959     return Legalized;
2960   }
2961   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2962     Register OldValRes = MI.getOperand(0).getReg();
2963     Register SuccessRes = MI.getOperand(1).getReg();
2964     Register Addr = MI.getOperand(2).getReg();
2965     Register CmpVal = MI.getOperand(3).getReg();
2966     Register NewVal = MI.getOperand(4).getReg();
2967     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2968                                   **MI.memoperands_begin());
2969     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2970     MI.eraseFromParent();
2971     return Legalized;
2972   }
2973   case TargetOpcode::G_LOAD:
2974   case TargetOpcode::G_SEXTLOAD:
2975   case TargetOpcode::G_ZEXTLOAD:
2976     return lowerLoad(MI);
2977   case TargetOpcode::G_STORE:
2978     return lowerStore(MI);
2979   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2980   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2981   case TargetOpcode::G_CTLZ:
2982   case TargetOpcode::G_CTTZ:
2983   case TargetOpcode::G_CTPOP:
2984     return lowerBitCount(MI);
2985   case G_UADDO: {
2986     Register Res = MI.getOperand(0).getReg();
2987     Register CarryOut = MI.getOperand(1).getReg();
2988     Register LHS = MI.getOperand(2).getReg();
2989     Register RHS = MI.getOperand(3).getReg();
2990 
2991     MIRBuilder.buildAdd(Res, LHS, RHS);
2992     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2993 
2994     MI.eraseFromParent();
2995     return Legalized;
2996   }
2997   case G_UADDE: {
2998     Register Res = MI.getOperand(0).getReg();
2999     Register CarryOut = MI.getOperand(1).getReg();
3000     Register LHS = MI.getOperand(2).getReg();
3001     Register RHS = MI.getOperand(3).getReg();
3002     Register CarryIn = MI.getOperand(4).getReg();
3003     LLT Ty = MRI.getType(Res);
3004 
3005     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3006     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3007     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3008     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3009 
3010     MI.eraseFromParent();
3011     return Legalized;
3012   }
3013   case G_USUBO: {
3014     Register Res = MI.getOperand(0).getReg();
3015     Register BorrowOut = MI.getOperand(1).getReg();
3016     Register LHS = MI.getOperand(2).getReg();
3017     Register RHS = MI.getOperand(3).getReg();
3018 
3019     MIRBuilder.buildSub(Res, LHS, RHS);
3020     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3021 
3022     MI.eraseFromParent();
3023     return Legalized;
3024   }
3025   case G_USUBE: {
3026     Register Res = MI.getOperand(0).getReg();
3027     Register BorrowOut = MI.getOperand(1).getReg();
3028     Register LHS = MI.getOperand(2).getReg();
3029     Register RHS = MI.getOperand(3).getReg();
3030     Register BorrowIn = MI.getOperand(4).getReg();
3031     const LLT CondTy = MRI.getType(BorrowOut);
3032     const LLT Ty = MRI.getType(Res);
3033 
3034     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3035     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3036     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3037 
3038     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3039     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3040     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3041 
3042     MI.eraseFromParent();
3043     return Legalized;
3044   }
3045   case G_UITOFP:
3046     return lowerUITOFP(MI);
3047   case G_SITOFP:
3048     return lowerSITOFP(MI);
3049   case G_FPTOUI:
3050     return lowerFPTOUI(MI);
3051   case G_FPTOSI:
3052     return lowerFPTOSI(MI);
3053   case G_FPTRUNC:
3054     return lowerFPTRUNC(MI);
3055   case G_FPOWI:
3056     return lowerFPOWI(MI);
3057   case G_SMIN:
3058   case G_SMAX:
3059   case G_UMIN:
3060   case G_UMAX:
3061     return lowerMinMax(MI);
3062   case G_FCOPYSIGN:
3063     return lowerFCopySign(MI);
3064   case G_FMINNUM:
3065   case G_FMAXNUM:
3066     return lowerFMinNumMaxNum(MI);
3067   case G_MERGE_VALUES:
3068     return lowerMergeValues(MI);
3069   case G_UNMERGE_VALUES:
3070     return lowerUnmergeValues(MI);
3071   case TargetOpcode::G_SEXT_INREG: {
3072     assert(MI.getOperand(2).isImm() && "Expected immediate");
3073     int64_t SizeInBits = MI.getOperand(2).getImm();
3074 
3075     Register DstReg = MI.getOperand(0).getReg();
3076     Register SrcReg = MI.getOperand(1).getReg();
3077     LLT DstTy = MRI.getType(DstReg);
3078     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3079 
3080     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3081     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3082     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3083     MI.eraseFromParent();
3084     return Legalized;
3085   }
3086   case G_EXTRACT_VECTOR_ELT:
3087   case G_INSERT_VECTOR_ELT:
3088     return lowerExtractInsertVectorElt(MI);
3089   case G_SHUFFLE_VECTOR:
3090     return lowerShuffleVector(MI);
3091   case G_DYN_STACKALLOC:
3092     return lowerDynStackAlloc(MI);
3093   case G_EXTRACT:
3094     return lowerExtract(MI);
3095   case G_INSERT:
3096     return lowerInsert(MI);
3097   case G_BSWAP:
3098     return lowerBswap(MI);
3099   case G_BITREVERSE:
3100     return lowerBitreverse(MI);
3101   case G_READ_REGISTER:
3102   case G_WRITE_REGISTER:
3103     return lowerReadWriteRegister(MI);
3104   case G_UADDSAT:
3105   case G_USUBSAT: {
3106     // Try to make a reasonable guess about which lowering strategy to use. The
3107     // target can override this with custom lowering and calling the
3108     // implementation functions.
3109     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3110     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3111       return lowerAddSubSatToMinMax(MI);
3112     return lowerAddSubSatToAddoSubo(MI);
3113   }
3114   case G_SADDSAT:
3115   case G_SSUBSAT: {
3116     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3117 
3118     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3119     // since it's a shorter expansion. However, we would need to figure out the
3120     // preferred boolean type for the carry out for the query.
3121     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3122       return lowerAddSubSatToMinMax(MI);
3123     return lowerAddSubSatToAddoSubo(MI);
3124   }
3125   case G_SSHLSAT:
3126   case G_USHLSAT:
3127     return lowerShlSat(MI);
3128   case G_ABS: {
3129     // Expand %res = G_ABS %a into:
3130     // %v1 = G_ASHR %a, scalar_size-1
3131     // %v2 = G_ADD %a, %v1
3132     // %res = G_XOR %v2, %v1
3133     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3134     Register OpReg = MI.getOperand(1).getReg();
3135     auto ShiftAmt =
3136         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3137     auto Shift =
3138         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3139     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3140     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3141     MI.eraseFromParent();
3142     return Legalized;
3143   }
3144   case G_SELECT:
3145     return lowerSelect(MI);
3146   }
3147 }
3148 
3149 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3150                                                   Align MinAlign) const {
3151   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3152   // datalayout for the preferred alignment. Also there should be a target hook
3153   // for this to allow targets to reduce the alignment and ignore the
3154   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3155   // the type.
3156   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3157 }
3158 
3159 MachineInstrBuilder
3160 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3161                                       MachinePointerInfo &PtrInfo) {
3162   MachineFunction &MF = MIRBuilder.getMF();
3163   const DataLayout &DL = MIRBuilder.getDataLayout();
3164   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3165 
3166   unsigned AddrSpace = DL.getAllocaAddrSpace();
3167   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3168 
3169   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3170   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3171 }
3172 
3173 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3174                                         LLT VecTy) {
3175   int64_t IdxVal;
3176   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3177     return IdxReg;
3178 
3179   LLT IdxTy = B.getMRI()->getType(IdxReg);
3180   unsigned NElts = VecTy.getNumElements();
3181   if (isPowerOf2_32(NElts)) {
3182     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3183     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3184   }
3185 
3186   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3187       .getReg(0);
3188 }
3189 
3190 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3191                                                   Register Index) {
3192   LLT EltTy = VecTy.getElementType();
3193 
3194   // Calculate the element offset and add it to the pointer.
3195   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3196   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3197          "Converting bits to bytes lost precision");
3198 
3199   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3200 
3201   LLT IdxTy = MRI.getType(Index);
3202   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3203                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3204 
3205   LLT PtrTy = MRI.getType(VecPtr);
3206   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3207 }
3208 
3209 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3210     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3211   Register DstReg = MI.getOperand(0).getReg();
3212   LLT DstTy = MRI.getType(DstReg);
3213   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3214 
3215   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3216 
3217   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3218   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3219 
3220   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3221   MI.eraseFromParent();
3222   return Legalized;
3223 }
3224 
3225 // Handle splitting vector operations which need to have the same number of
3226 // elements in each type index, but each type index may have a different element
3227 // type.
3228 //
3229 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3230 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3231 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3232 //
3233 // Also handles some irregular breakdown cases, e.g.
3234 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3235 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3236 //             s64 = G_SHL s64, s32
3237 LegalizerHelper::LegalizeResult
3238 LegalizerHelper::fewerElementsVectorMultiEltType(
3239   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3240   if (TypeIdx != 0)
3241     return UnableToLegalize;
3242 
3243   const LLT NarrowTy0 = NarrowTyArg;
3244   const unsigned NewNumElts =
3245       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3246 
3247   const Register DstReg = MI.getOperand(0).getReg();
3248   LLT DstTy = MRI.getType(DstReg);
3249   LLT LeftoverTy0;
3250 
3251   // All of the operands need to have the same number of elements, so if we can
3252   // determine a type breakdown for the result type, we can for all of the
3253   // source types.
3254   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3255   if (NumParts < 0)
3256     return UnableToLegalize;
3257 
3258   SmallVector<MachineInstrBuilder, 4> NewInsts;
3259 
3260   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3261   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3262 
3263   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3264     Register SrcReg = MI.getOperand(I).getReg();
3265     LLT SrcTyI = MRI.getType(SrcReg);
3266     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3267     LLT LeftoverTyI;
3268 
3269     // Split this operand into the requested typed registers, and any leftover
3270     // required to reproduce the original type.
3271     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3272                       LeftoverRegs))
3273       return UnableToLegalize;
3274 
3275     if (I == 1) {
3276       // For the first operand, create an instruction for each part and setup
3277       // the result.
3278       for (Register PartReg : PartRegs) {
3279         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3280         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3281                                .addDef(PartDstReg)
3282                                .addUse(PartReg));
3283         DstRegs.push_back(PartDstReg);
3284       }
3285 
3286       for (Register LeftoverReg : LeftoverRegs) {
3287         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3288         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3289                                .addDef(PartDstReg)
3290                                .addUse(LeftoverReg));
3291         LeftoverDstRegs.push_back(PartDstReg);
3292       }
3293     } else {
3294       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3295 
3296       // Add the newly created operand splits to the existing instructions. The
3297       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3298       // pieces.
3299       unsigned InstCount = 0;
3300       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3301         NewInsts[InstCount++].addUse(PartRegs[J]);
3302       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3303         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3304     }
3305 
3306     PartRegs.clear();
3307     LeftoverRegs.clear();
3308   }
3309 
3310   // Insert the newly built operations and rebuild the result register.
3311   for (auto &MIB : NewInsts)
3312     MIRBuilder.insertInstr(MIB);
3313 
3314   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3315 
3316   MI.eraseFromParent();
3317   return Legalized;
3318 }
3319 
3320 LegalizerHelper::LegalizeResult
3321 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3322                                           LLT NarrowTy) {
3323   if (TypeIdx != 0)
3324     return UnableToLegalize;
3325 
3326   Register DstReg = MI.getOperand(0).getReg();
3327   Register SrcReg = MI.getOperand(1).getReg();
3328   LLT DstTy = MRI.getType(DstReg);
3329   LLT SrcTy = MRI.getType(SrcReg);
3330 
3331   LLT NarrowTy0 = NarrowTy;
3332   LLT NarrowTy1;
3333   unsigned NumParts;
3334 
3335   if (NarrowTy.isVector()) {
3336     // Uneven breakdown not handled.
3337     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3338     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3339       return UnableToLegalize;
3340 
3341     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3342   } else {
3343     NumParts = DstTy.getNumElements();
3344     NarrowTy1 = SrcTy.getElementType();
3345   }
3346 
3347   SmallVector<Register, 4> SrcRegs, DstRegs;
3348   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3349 
3350   for (unsigned I = 0; I < NumParts; ++I) {
3351     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3352     MachineInstr *NewInst =
3353         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3354 
3355     NewInst->setFlags(MI.getFlags());
3356     DstRegs.push_back(DstReg);
3357   }
3358 
3359   if (NarrowTy.isVector())
3360     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3361   else
3362     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3363 
3364   MI.eraseFromParent();
3365   return Legalized;
3366 }
3367 
3368 LegalizerHelper::LegalizeResult
3369 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3370                                         LLT NarrowTy) {
3371   Register DstReg = MI.getOperand(0).getReg();
3372   Register Src0Reg = MI.getOperand(2).getReg();
3373   LLT DstTy = MRI.getType(DstReg);
3374   LLT SrcTy = MRI.getType(Src0Reg);
3375 
3376   unsigned NumParts;
3377   LLT NarrowTy0, NarrowTy1;
3378 
3379   if (TypeIdx == 0) {
3380     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3381     unsigned OldElts = DstTy.getNumElements();
3382 
3383     NarrowTy0 = NarrowTy;
3384     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3385     NarrowTy1 = NarrowTy.isVector() ?
3386       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3387       SrcTy.getElementType();
3388 
3389   } else {
3390     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3391     unsigned OldElts = SrcTy.getNumElements();
3392 
3393     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3394       NarrowTy.getNumElements();
3395     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3396                             DstTy.getScalarSizeInBits());
3397     NarrowTy1 = NarrowTy;
3398   }
3399 
3400   // FIXME: Don't know how to handle the situation where the small vectors
3401   // aren't all the same size yet.
3402   if (NarrowTy1.isVector() &&
3403       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3404     return UnableToLegalize;
3405 
3406   CmpInst::Predicate Pred
3407     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3408 
3409   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3410   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3411   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3412 
3413   for (unsigned I = 0; I < NumParts; ++I) {
3414     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3415     DstRegs.push_back(DstReg);
3416 
3417     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3418       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3419     else {
3420       MachineInstr *NewCmp
3421         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3422       NewCmp->setFlags(MI.getFlags());
3423     }
3424   }
3425 
3426   if (NarrowTy1.isVector())
3427     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3428   else
3429     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3430 
3431   MI.eraseFromParent();
3432   return Legalized;
3433 }
3434 
3435 LegalizerHelper::LegalizeResult
3436 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3437                                            LLT NarrowTy) {
3438   Register DstReg = MI.getOperand(0).getReg();
3439   Register CondReg = MI.getOperand(1).getReg();
3440 
3441   unsigned NumParts = 0;
3442   LLT NarrowTy0, NarrowTy1;
3443 
3444   LLT DstTy = MRI.getType(DstReg);
3445   LLT CondTy = MRI.getType(CondReg);
3446   unsigned Size = DstTy.getSizeInBits();
3447 
3448   assert(TypeIdx == 0 || CondTy.isVector());
3449 
3450   if (TypeIdx == 0) {
3451     NarrowTy0 = NarrowTy;
3452     NarrowTy1 = CondTy;
3453 
3454     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3455     // FIXME: Don't know how to handle the situation where the small vectors
3456     // aren't all the same size yet.
3457     if (Size % NarrowSize != 0)
3458       return UnableToLegalize;
3459 
3460     NumParts = Size / NarrowSize;
3461 
3462     // Need to break down the condition type
3463     if (CondTy.isVector()) {
3464       if (CondTy.getNumElements() == NumParts)
3465         NarrowTy1 = CondTy.getElementType();
3466       else
3467         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3468                                 CondTy.getScalarSizeInBits());
3469     }
3470   } else {
3471     NumParts = CondTy.getNumElements();
3472     if (NarrowTy.isVector()) {
3473       // TODO: Handle uneven breakdown.
3474       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3475         return UnableToLegalize;
3476 
3477       return UnableToLegalize;
3478     } else {
3479       NarrowTy0 = DstTy.getElementType();
3480       NarrowTy1 = NarrowTy;
3481     }
3482   }
3483 
3484   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3485   if (CondTy.isVector())
3486     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3487 
3488   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3489   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3490 
3491   for (unsigned i = 0; i < NumParts; ++i) {
3492     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3493     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3494                            Src1Regs[i], Src2Regs[i]);
3495     DstRegs.push_back(DstReg);
3496   }
3497 
3498   if (NarrowTy0.isVector())
3499     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3500   else
3501     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3502 
3503   MI.eraseFromParent();
3504   return Legalized;
3505 }
3506 
3507 LegalizerHelper::LegalizeResult
3508 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3509                                         LLT NarrowTy) {
3510   const Register DstReg = MI.getOperand(0).getReg();
3511   LLT PhiTy = MRI.getType(DstReg);
3512   LLT LeftoverTy;
3513 
3514   // All of the operands need to have the same number of elements, so if we can
3515   // determine a type breakdown for the result type, we can for all of the
3516   // source types.
3517   int NumParts, NumLeftover;
3518   std::tie(NumParts, NumLeftover)
3519     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3520   if (NumParts < 0)
3521     return UnableToLegalize;
3522 
3523   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3524   SmallVector<MachineInstrBuilder, 4> NewInsts;
3525 
3526   const int TotalNumParts = NumParts + NumLeftover;
3527 
3528   // Insert the new phis in the result block first.
3529   for (int I = 0; I != TotalNumParts; ++I) {
3530     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3531     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3532     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3533                        .addDef(PartDstReg));
3534     if (I < NumParts)
3535       DstRegs.push_back(PartDstReg);
3536     else
3537       LeftoverDstRegs.push_back(PartDstReg);
3538   }
3539 
3540   MachineBasicBlock *MBB = MI.getParent();
3541   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3542   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3543 
3544   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3545 
3546   // Insert code to extract the incoming values in each predecessor block.
3547   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3548     PartRegs.clear();
3549     LeftoverRegs.clear();
3550 
3551     Register SrcReg = MI.getOperand(I).getReg();
3552     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3553     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3554 
3555     LLT Unused;
3556     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3557                       LeftoverRegs))
3558       return UnableToLegalize;
3559 
3560     // Add the newly created operand splits to the existing instructions. The
3561     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3562     // pieces.
3563     for (int J = 0; J != TotalNumParts; ++J) {
3564       MachineInstrBuilder MIB = NewInsts[J];
3565       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3566       MIB.addMBB(&OpMBB);
3567     }
3568   }
3569 
3570   MI.eraseFromParent();
3571   return Legalized;
3572 }
3573 
3574 LegalizerHelper::LegalizeResult
3575 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3576                                                   unsigned TypeIdx,
3577                                                   LLT NarrowTy) {
3578   if (TypeIdx != 1)
3579     return UnableToLegalize;
3580 
3581   const int NumDst = MI.getNumOperands() - 1;
3582   const Register SrcReg = MI.getOperand(NumDst).getReg();
3583   LLT SrcTy = MRI.getType(SrcReg);
3584 
3585   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3586 
3587   // TODO: Create sequence of extracts.
3588   if (DstTy == NarrowTy)
3589     return UnableToLegalize;
3590 
3591   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3592   if (DstTy == GCDTy) {
3593     // This would just be a copy of the same unmerge.
3594     // TODO: Create extracts, pad with undef and create intermediate merges.
3595     return UnableToLegalize;
3596   }
3597 
3598   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3599   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3600   const int PartsPerUnmerge = NumDst / NumUnmerge;
3601 
3602   for (int I = 0; I != NumUnmerge; ++I) {
3603     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3604 
3605     for (int J = 0; J != PartsPerUnmerge; ++J)
3606       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3607     MIB.addUse(Unmerge.getReg(I));
3608   }
3609 
3610   MI.eraseFromParent();
3611   return Legalized;
3612 }
3613 
3614 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3615 // a vector
3616 //
3617 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3618 // undef as necessary.
3619 //
3620 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3621 //   -> <2 x s16>
3622 //
3623 // %4:_(s16) = G_IMPLICIT_DEF
3624 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3625 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3626 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3627 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3628 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3629 LegalizerHelper::LegalizeResult
3630 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3631                                           LLT NarrowTy) {
3632   Register DstReg = MI.getOperand(0).getReg();
3633   LLT DstTy = MRI.getType(DstReg);
3634   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3635   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3636 
3637   // Break into a common type
3638   SmallVector<Register, 16> Parts;
3639   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3640     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3641 
3642   // Build the requested new merge, padding with undef.
3643   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3644                                   TargetOpcode::G_ANYEXT);
3645 
3646   // Pack into the original result register.
3647   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3648 
3649   MI.eraseFromParent();
3650   return Legalized;
3651 }
3652 
3653 LegalizerHelper::LegalizeResult
3654 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3655                                                            unsigned TypeIdx,
3656                                                            LLT NarrowVecTy) {
3657   Register DstReg = MI.getOperand(0).getReg();
3658   Register SrcVec = MI.getOperand(1).getReg();
3659   Register InsertVal;
3660   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3661 
3662   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3663   if (IsInsert)
3664     InsertVal = MI.getOperand(2).getReg();
3665 
3666   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3667 
3668   // TODO: Handle total scalarization case.
3669   if (!NarrowVecTy.isVector())
3670     return UnableToLegalize;
3671 
3672   LLT VecTy = MRI.getType(SrcVec);
3673 
3674   // If the index is a constant, we can really break this down as you would
3675   // expect, and index into the target size pieces.
3676   int64_t IdxVal;
3677   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3678     // Avoid out of bounds indexing the pieces.
3679     if (IdxVal >= VecTy.getNumElements()) {
3680       MIRBuilder.buildUndef(DstReg);
3681       MI.eraseFromParent();
3682       return Legalized;
3683     }
3684 
3685     SmallVector<Register, 8> VecParts;
3686     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3687 
3688     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3689     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3690                                     TargetOpcode::G_ANYEXT);
3691 
3692     unsigned NewNumElts = NarrowVecTy.getNumElements();
3693 
3694     LLT IdxTy = MRI.getType(Idx);
3695     int64_t PartIdx = IdxVal / NewNumElts;
3696     auto NewIdx =
3697         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3698 
3699     if (IsInsert) {
3700       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3701 
3702       // Use the adjusted index to insert into one of the subvectors.
3703       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3704           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3705       VecParts[PartIdx] = InsertPart.getReg(0);
3706 
3707       // Recombine the inserted subvector with the others to reform the result
3708       // vector.
3709       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3710     } else {
3711       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3712     }
3713 
3714     MI.eraseFromParent();
3715     return Legalized;
3716   }
3717 
3718   // With a variable index, we can't perform the operation in a smaller type, so
3719   // we're forced to expand this.
3720   //
3721   // TODO: We could emit a chain of compare/select to figure out which piece to
3722   // index.
3723   return lowerExtractInsertVectorElt(MI);
3724 }
3725 
3726 LegalizerHelper::LegalizeResult
3727 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3728                                       LLT NarrowTy) {
3729   // FIXME: Don't know how to handle secondary types yet.
3730   if (TypeIdx != 0)
3731     return UnableToLegalize;
3732 
3733   MachineMemOperand *MMO = *MI.memoperands_begin();
3734 
3735   // This implementation doesn't work for atomics. Give up instead of doing
3736   // something invalid.
3737   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3738       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3739     return UnableToLegalize;
3740 
3741   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3742   Register ValReg = MI.getOperand(0).getReg();
3743   Register AddrReg = MI.getOperand(1).getReg();
3744   LLT ValTy = MRI.getType(ValReg);
3745 
3746   // FIXME: Do we need a distinct NarrowMemory legalize action?
3747   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3748     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3749     return UnableToLegalize;
3750   }
3751 
3752   int NumParts = -1;
3753   int NumLeftover = -1;
3754   LLT LeftoverTy;
3755   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3756   if (IsLoad) {
3757     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3758   } else {
3759     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3760                      NarrowLeftoverRegs)) {
3761       NumParts = NarrowRegs.size();
3762       NumLeftover = NarrowLeftoverRegs.size();
3763     }
3764   }
3765 
3766   if (NumParts == -1)
3767     return UnableToLegalize;
3768 
3769   LLT PtrTy = MRI.getType(AddrReg);
3770   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3771 
3772   unsigned TotalSize = ValTy.getSizeInBits();
3773 
3774   // Split the load/store into PartTy sized pieces starting at Offset. If this
3775   // is a load, return the new registers in ValRegs. For a store, each elements
3776   // of ValRegs should be PartTy. Returns the next offset that needs to be
3777   // handled.
3778   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3779                              unsigned Offset) -> unsigned {
3780     MachineFunction &MF = MIRBuilder.getMF();
3781     unsigned PartSize = PartTy.getSizeInBits();
3782     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3783          Offset += PartSize, ++Idx) {
3784       unsigned ByteSize = PartSize / 8;
3785       unsigned ByteOffset = Offset / 8;
3786       Register NewAddrReg;
3787 
3788       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3789 
3790       MachineMemOperand *NewMMO =
3791         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3792 
3793       if (IsLoad) {
3794         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3795         ValRegs.push_back(Dst);
3796         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3797       } else {
3798         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3799       }
3800     }
3801 
3802     return Offset;
3803   };
3804 
3805   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3806 
3807   // Handle the rest of the register if this isn't an even type breakdown.
3808   if (LeftoverTy.isValid())
3809     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3810 
3811   if (IsLoad) {
3812     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3813                 LeftoverTy, NarrowLeftoverRegs);
3814   }
3815 
3816   MI.eraseFromParent();
3817   return Legalized;
3818 }
3819 
3820 LegalizerHelper::LegalizeResult
3821 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3822                                       LLT NarrowTy) {
3823   assert(TypeIdx == 0 && "only one type index expected");
3824 
3825   const unsigned Opc = MI.getOpcode();
3826   const int NumOps = MI.getNumOperands() - 1;
3827   const Register DstReg = MI.getOperand(0).getReg();
3828   const unsigned Flags = MI.getFlags();
3829   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3830   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3831 
3832   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3833 
3834   // First of all check whether we are narrowing (changing the element type)
3835   // or reducing the vector elements
3836   const LLT DstTy = MRI.getType(DstReg);
3837   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3838 
3839   SmallVector<Register, 8> ExtractedRegs[3];
3840   SmallVector<Register, 8> Parts;
3841 
3842   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3843 
3844   // Break down all the sources into NarrowTy pieces we can operate on. This may
3845   // involve creating merges to a wider type, padded with undef.
3846   for (int I = 0; I != NumOps; ++I) {
3847     Register SrcReg = MI.getOperand(I + 1).getReg();
3848     LLT SrcTy = MRI.getType(SrcReg);
3849 
3850     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3851     // For fewerElements, this is a smaller vector with the same element type.
3852     LLT OpNarrowTy;
3853     if (IsNarrow) {
3854       OpNarrowTy = NarrowScalarTy;
3855 
3856       // In case of narrowing, we need to cast vectors to scalars for this to
3857       // work properly
3858       // FIXME: Can we do without the bitcast here if we're narrowing?
3859       if (SrcTy.isVector()) {
3860         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3861         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3862       }
3863     } else {
3864       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3865     }
3866 
3867     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3868 
3869     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3870     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3871                         TargetOpcode::G_ANYEXT);
3872   }
3873 
3874   SmallVector<Register, 8> ResultRegs;
3875 
3876   // Input operands for each sub-instruction.
3877   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3878 
3879   int NumParts = ExtractedRegs[0].size();
3880   const unsigned DstSize = DstTy.getSizeInBits();
3881   const LLT DstScalarTy = LLT::scalar(DstSize);
3882 
3883   // Narrowing needs to use scalar types
3884   LLT DstLCMTy, NarrowDstTy;
3885   if (IsNarrow) {
3886     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3887     NarrowDstTy = NarrowScalarTy;
3888   } else {
3889     DstLCMTy = getLCMType(DstTy, NarrowTy);
3890     NarrowDstTy = NarrowTy;
3891   }
3892 
3893   // We widened the source registers to satisfy merge/unmerge size
3894   // constraints. We'll have some extra fully undef parts.
3895   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3896 
3897   for (int I = 0; I != NumRealParts; ++I) {
3898     // Emit this instruction on each of the split pieces.
3899     for (int J = 0; J != NumOps; ++J)
3900       InputRegs[J] = ExtractedRegs[J][I];
3901 
3902     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3903     ResultRegs.push_back(Inst.getReg(0));
3904   }
3905 
3906   // Fill out the widened result with undef instead of creating instructions
3907   // with undef inputs.
3908   int NumUndefParts = NumParts - NumRealParts;
3909   if (NumUndefParts != 0)
3910     ResultRegs.append(NumUndefParts,
3911                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3912 
3913   // Extract the possibly padded result. Use a scratch register if we need to do
3914   // a final bitcast, otherwise use the original result register.
3915   Register MergeDstReg;
3916   if (IsNarrow && DstTy.isVector())
3917     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3918   else
3919     MergeDstReg = DstReg;
3920 
3921   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3922 
3923   // Recast to vector if we narrowed a vector
3924   if (IsNarrow && DstTy.isVector())
3925     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3926 
3927   MI.eraseFromParent();
3928   return Legalized;
3929 }
3930 
3931 LegalizerHelper::LegalizeResult
3932 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3933                                               LLT NarrowTy) {
3934   Register DstReg = MI.getOperand(0).getReg();
3935   Register SrcReg = MI.getOperand(1).getReg();
3936   int64_t Imm = MI.getOperand(2).getImm();
3937 
3938   LLT DstTy = MRI.getType(DstReg);
3939 
3940   SmallVector<Register, 8> Parts;
3941   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3942   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3943 
3944   for (Register &R : Parts)
3945     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3946 
3947   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3948 
3949   MI.eraseFromParent();
3950   return Legalized;
3951 }
3952 
3953 LegalizerHelper::LegalizeResult
3954 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3955                                      LLT NarrowTy) {
3956   using namespace TargetOpcode;
3957 
3958   switch (MI.getOpcode()) {
3959   case G_IMPLICIT_DEF:
3960     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3961   case G_TRUNC:
3962   case G_AND:
3963   case G_OR:
3964   case G_XOR:
3965   case G_ADD:
3966   case G_SUB:
3967   case G_MUL:
3968   case G_PTR_ADD:
3969   case G_SMULH:
3970   case G_UMULH:
3971   case G_FADD:
3972   case G_FMUL:
3973   case G_FSUB:
3974   case G_FNEG:
3975   case G_FABS:
3976   case G_FCANONICALIZE:
3977   case G_FDIV:
3978   case G_FREM:
3979   case G_FMA:
3980   case G_FMAD:
3981   case G_FPOW:
3982   case G_FEXP:
3983   case G_FEXP2:
3984   case G_FLOG:
3985   case G_FLOG2:
3986   case G_FLOG10:
3987   case G_FNEARBYINT:
3988   case G_FCEIL:
3989   case G_FFLOOR:
3990   case G_FRINT:
3991   case G_INTRINSIC_ROUND:
3992   case G_INTRINSIC_ROUNDEVEN:
3993   case G_INTRINSIC_TRUNC:
3994   case G_FCOS:
3995   case G_FSIN:
3996   case G_FSQRT:
3997   case G_BSWAP:
3998   case G_BITREVERSE:
3999   case G_SDIV:
4000   case G_UDIV:
4001   case G_SREM:
4002   case G_UREM:
4003   case G_SMIN:
4004   case G_SMAX:
4005   case G_UMIN:
4006   case G_UMAX:
4007   case G_FMINNUM:
4008   case G_FMAXNUM:
4009   case G_FMINNUM_IEEE:
4010   case G_FMAXNUM_IEEE:
4011   case G_FMINIMUM:
4012   case G_FMAXIMUM:
4013   case G_FSHL:
4014   case G_FSHR:
4015   case G_FREEZE:
4016   case G_SADDSAT:
4017   case G_SSUBSAT:
4018   case G_UADDSAT:
4019   case G_USUBSAT:
4020     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4021   case G_SHL:
4022   case G_LSHR:
4023   case G_ASHR:
4024   case G_SSHLSAT:
4025   case G_USHLSAT:
4026   case G_CTLZ:
4027   case G_CTLZ_ZERO_UNDEF:
4028   case G_CTTZ:
4029   case G_CTTZ_ZERO_UNDEF:
4030   case G_CTPOP:
4031   case G_FCOPYSIGN:
4032     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4033   case G_ZEXT:
4034   case G_SEXT:
4035   case G_ANYEXT:
4036   case G_FPEXT:
4037   case G_FPTRUNC:
4038   case G_SITOFP:
4039   case G_UITOFP:
4040   case G_FPTOSI:
4041   case G_FPTOUI:
4042   case G_INTTOPTR:
4043   case G_PTRTOINT:
4044   case G_ADDRSPACE_CAST:
4045     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4046   case G_ICMP:
4047   case G_FCMP:
4048     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4049   case G_SELECT:
4050     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4051   case G_PHI:
4052     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4053   case G_UNMERGE_VALUES:
4054     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4055   case G_BUILD_VECTOR:
4056     assert(TypeIdx == 0 && "not a vector type index");
4057     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4058   case G_CONCAT_VECTORS:
4059     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4060       return UnableToLegalize;
4061     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4062   case G_EXTRACT_VECTOR_ELT:
4063   case G_INSERT_VECTOR_ELT:
4064     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4065   case G_LOAD:
4066   case G_STORE:
4067     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4068   case G_SEXT_INREG:
4069     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4070   default:
4071     return UnableToLegalize;
4072   }
4073 }
4074 
4075 LegalizerHelper::LegalizeResult
4076 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4077                                              const LLT HalfTy, const LLT AmtTy) {
4078 
4079   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4080   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4081   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4082 
4083   if (Amt.isNullValue()) {
4084     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4085     MI.eraseFromParent();
4086     return Legalized;
4087   }
4088 
4089   LLT NVT = HalfTy;
4090   unsigned NVTBits = HalfTy.getSizeInBits();
4091   unsigned VTBits = 2 * NVTBits;
4092 
4093   SrcOp Lo(Register(0)), Hi(Register(0));
4094   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4095     if (Amt.ugt(VTBits)) {
4096       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4097     } else if (Amt.ugt(NVTBits)) {
4098       Lo = MIRBuilder.buildConstant(NVT, 0);
4099       Hi = MIRBuilder.buildShl(NVT, InL,
4100                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4101     } else if (Amt == NVTBits) {
4102       Lo = MIRBuilder.buildConstant(NVT, 0);
4103       Hi = InL;
4104     } else {
4105       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4106       auto OrLHS =
4107           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4108       auto OrRHS = MIRBuilder.buildLShr(
4109           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4110       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4111     }
4112   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4113     if (Amt.ugt(VTBits)) {
4114       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4115     } else if (Amt.ugt(NVTBits)) {
4116       Lo = MIRBuilder.buildLShr(NVT, InH,
4117                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4118       Hi = MIRBuilder.buildConstant(NVT, 0);
4119     } else if (Amt == NVTBits) {
4120       Lo = InH;
4121       Hi = MIRBuilder.buildConstant(NVT, 0);
4122     } else {
4123       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4124 
4125       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4126       auto OrRHS = MIRBuilder.buildShl(
4127           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4128 
4129       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4130       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4131     }
4132   } else {
4133     if (Amt.ugt(VTBits)) {
4134       Hi = Lo = MIRBuilder.buildAShr(
4135           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4136     } else if (Amt.ugt(NVTBits)) {
4137       Lo = MIRBuilder.buildAShr(NVT, InH,
4138                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4139       Hi = MIRBuilder.buildAShr(NVT, InH,
4140                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4141     } else if (Amt == NVTBits) {
4142       Lo = InH;
4143       Hi = MIRBuilder.buildAShr(NVT, InH,
4144                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4145     } else {
4146       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4147 
4148       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4149       auto OrRHS = MIRBuilder.buildShl(
4150           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4151 
4152       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4153       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4154     }
4155   }
4156 
4157   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4158   MI.eraseFromParent();
4159 
4160   return Legalized;
4161 }
4162 
4163 // TODO: Optimize if constant shift amount.
4164 LegalizerHelper::LegalizeResult
4165 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4166                                    LLT RequestedTy) {
4167   if (TypeIdx == 1) {
4168     Observer.changingInstr(MI);
4169     narrowScalarSrc(MI, RequestedTy, 2);
4170     Observer.changedInstr(MI);
4171     return Legalized;
4172   }
4173 
4174   Register DstReg = MI.getOperand(0).getReg();
4175   LLT DstTy = MRI.getType(DstReg);
4176   if (DstTy.isVector())
4177     return UnableToLegalize;
4178 
4179   Register Amt = MI.getOperand(2).getReg();
4180   LLT ShiftAmtTy = MRI.getType(Amt);
4181   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4182   if (DstEltSize % 2 != 0)
4183     return UnableToLegalize;
4184 
4185   // Ignore the input type. We can only go to exactly half the size of the
4186   // input. If that isn't small enough, the resulting pieces will be further
4187   // legalized.
4188   const unsigned NewBitSize = DstEltSize / 2;
4189   const LLT HalfTy = LLT::scalar(NewBitSize);
4190   const LLT CondTy = LLT::scalar(1);
4191 
4192   if (const MachineInstr *KShiftAmt =
4193           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4194     return narrowScalarShiftByConstant(
4195         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4196   }
4197 
4198   // TODO: Expand with known bits.
4199 
4200   // Handle the fully general expansion by an unknown amount.
4201   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4202 
4203   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4204   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4205   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4206 
4207   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4208   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4209 
4210   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4211   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4212   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4213 
4214   Register ResultRegs[2];
4215   switch (MI.getOpcode()) {
4216   case TargetOpcode::G_SHL: {
4217     // Short: ShAmt < NewBitSize
4218     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4219 
4220     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4221     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4222     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4223 
4224     // Long: ShAmt >= NewBitSize
4225     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4226     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4227 
4228     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4229     auto Hi = MIRBuilder.buildSelect(
4230         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4231 
4232     ResultRegs[0] = Lo.getReg(0);
4233     ResultRegs[1] = Hi.getReg(0);
4234     break;
4235   }
4236   case TargetOpcode::G_LSHR:
4237   case TargetOpcode::G_ASHR: {
4238     // Short: ShAmt < NewBitSize
4239     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4240 
4241     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4242     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4243     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4244 
4245     // Long: ShAmt >= NewBitSize
4246     MachineInstrBuilder HiL;
4247     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4248       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4249     } else {
4250       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4251       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4252     }
4253     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4254                                      {InH, AmtExcess});     // Lo from Hi part.
4255 
4256     auto Lo = MIRBuilder.buildSelect(
4257         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4258 
4259     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4260 
4261     ResultRegs[0] = Lo.getReg(0);
4262     ResultRegs[1] = Hi.getReg(0);
4263     break;
4264   }
4265   default:
4266     llvm_unreachable("not a shift");
4267   }
4268 
4269   MIRBuilder.buildMerge(DstReg, ResultRegs);
4270   MI.eraseFromParent();
4271   return Legalized;
4272 }
4273 
4274 LegalizerHelper::LegalizeResult
4275 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4276                                        LLT MoreTy) {
4277   assert(TypeIdx == 0 && "Expecting only Idx 0");
4278 
4279   Observer.changingInstr(MI);
4280   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4281     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4282     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4283     moreElementsVectorSrc(MI, MoreTy, I);
4284   }
4285 
4286   MachineBasicBlock &MBB = *MI.getParent();
4287   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4288   moreElementsVectorDst(MI, MoreTy, 0);
4289   Observer.changedInstr(MI);
4290   return Legalized;
4291 }
4292 
4293 LegalizerHelper::LegalizeResult
4294 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4295                                     LLT MoreTy) {
4296   unsigned Opc = MI.getOpcode();
4297   switch (Opc) {
4298   case TargetOpcode::G_IMPLICIT_DEF:
4299   case TargetOpcode::G_LOAD: {
4300     if (TypeIdx != 0)
4301       return UnableToLegalize;
4302     Observer.changingInstr(MI);
4303     moreElementsVectorDst(MI, MoreTy, 0);
4304     Observer.changedInstr(MI);
4305     return Legalized;
4306   }
4307   case TargetOpcode::G_STORE:
4308     if (TypeIdx != 0)
4309       return UnableToLegalize;
4310     Observer.changingInstr(MI);
4311     moreElementsVectorSrc(MI, MoreTy, 0);
4312     Observer.changedInstr(MI);
4313     return Legalized;
4314   case TargetOpcode::G_AND:
4315   case TargetOpcode::G_OR:
4316   case TargetOpcode::G_XOR:
4317   case TargetOpcode::G_SMIN:
4318   case TargetOpcode::G_SMAX:
4319   case TargetOpcode::G_UMIN:
4320   case TargetOpcode::G_UMAX:
4321   case TargetOpcode::G_FMINNUM:
4322   case TargetOpcode::G_FMAXNUM:
4323   case TargetOpcode::G_FMINNUM_IEEE:
4324   case TargetOpcode::G_FMAXNUM_IEEE:
4325   case TargetOpcode::G_FMINIMUM:
4326   case TargetOpcode::G_FMAXIMUM: {
4327     Observer.changingInstr(MI);
4328     moreElementsVectorSrc(MI, MoreTy, 1);
4329     moreElementsVectorSrc(MI, MoreTy, 2);
4330     moreElementsVectorDst(MI, MoreTy, 0);
4331     Observer.changedInstr(MI);
4332     return Legalized;
4333   }
4334   case TargetOpcode::G_EXTRACT:
4335     if (TypeIdx != 1)
4336       return UnableToLegalize;
4337     Observer.changingInstr(MI);
4338     moreElementsVectorSrc(MI, MoreTy, 1);
4339     Observer.changedInstr(MI);
4340     return Legalized;
4341   case TargetOpcode::G_INSERT:
4342   case TargetOpcode::G_FREEZE:
4343     if (TypeIdx != 0)
4344       return UnableToLegalize;
4345     Observer.changingInstr(MI);
4346     moreElementsVectorSrc(MI, MoreTy, 1);
4347     moreElementsVectorDst(MI, MoreTy, 0);
4348     Observer.changedInstr(MI);
4349     return Legalized;
4350   case TargetOpcode::G_SELECT:
4351     if (TypeIdx != 0)
4352       return UnableToLegalize;
4353     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4354       return UnableToLegalize;
4355 
4356     Observer.changingInstr(MI);
4357     moreElementsVectorSrc(MI, MoreTy, 2);
4358     moreElementsVectorSrc(MI, MoreTy, 3);
4359     moreElementsVectorDst(MI, MoreTy, 0);
4360     Observer.changedInstr(MI);
4361     return Legalized;
4362   case TargetOpcode::G_UNMERGE_VALUES: {
4363     if (TypeIdx != 1)
4364       return UnableToLegalize;
4365 
4366     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4367     int NumDst = MI.getNumOperands() - 1;
4368     moreElementsVectorSrc(MI, MoreTy, NumDst);
4369 
4370     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4371     for (int I = 0; I != NumDst; ++I)
4372       MIB.addDef(MI.getOperand(I).getReg());
4373 
4374     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4375     for (int I = NumDst; I != NewNumDst; ++I)
4376       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4377 
4378     MIB.addUse(MI.getOperand(NumDst).getReg());
4379     MI.eraseFromParent();
4380     return Legalized;
4381   }
4382   case TargetOpcode::G_PHI:
4383     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4384   default:
4385     return UnableToLegalize;
4386   }
4387 }
4388 
4389 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4390                                         ArrayRef<Register> Src1Regs,
4391                                         ArrayRef<Register> Src2Regs,
4392                                         LLT NarrowTy) {
4393   MachineIRBuilder &B = MIRBuilder;
4394   unsigned SrcParts = Src1Regs.size();
4395   unsigned DstParts = DstRegs.size();
4396 
4397   unsigned DstIdx = 0; // Low bits of the result.
4398   Register FactorSum =
4399       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4400   DstRegs[DstIdx] = FactorSum;
4401 
4402   unsigned CarrySumPrevDstIdx;
4403   SmallVector<Register, 4> Factors;
4404 
4405   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4406     // Collect low parts of muls for DstIdx.
4407     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4408          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4409       MachineInstrBuilder Mul =
4410           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4411       Factors.push_back(Mul.getReg(0));
4412     }
4413     // Collect high parts of muls from previous DstIdx.
4414     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4415          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4416       MachineInstrBuilder Umulh =
4417           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4418       Factors.push_back(Umulh.getReg(0));
4419     }
4420     // Add CarrySum from additions calculated for previous DstIdx.
4421     if (DstIdx != 1) {
4422       Factors.push_back(CarrySumPrevDstIdx);
4423     }
4424 
4425     Register CarrySum;
4426     // Add all factors and accumulate all carries into CarrySum.
4427     if (DstIdx != DstParts - 1) {
4428       MachineInstrBuilder Uaddo =
4429           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4430       FactorSum = Uaddo.getReg(0);
4431       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4432       for (unsigned i = 2; i < Factors.size(); ++i) {
4433         MachineInstrBuilder Uaddo =
4434             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4435         FactorSum = Uaddo.getReg(0);
4436         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4437         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4438       }
4439     } else {
4440       // Since value for the next index is not calculated, neither is CarrySum.
4441       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4442       for (unsigned i = 2; i < Factors.size(); ++i)
4443         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4444     }
4445 
4446     CarrySumPrevDstIdx = CarrySum;
4447     DstRegs[DstIdx] = FactorSum;
4448     Factors.clear();
4449   }
4450 }
4451 
4452 LegalizerHelper::LegalizeResult
4453 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4454   Register DstReg = MI.getOperand(0).getReg();
4455   Register Src1 = MI.getOperand(1).getReg();
4456   Register Src2 = MI.getOperand(2).getReg();
4457 
4458   LLT Ty = MRI.getType(DstReg);
4459   if (Ty.isVector())
4460     return UnableToLegalize;
4461 
4462   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4463   unsigned DstSize = Ty.getSizeInBits();
4464   unsigned NarrowSize = NarrowTy.getSizeInBits();
4465   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4466     return UnableToLegalize;
4467 
4468   unsigned NumDstParts = DstSize / NarrowSize;
4469   unsigned NumSrcParts = SrcSize / NarrowSize;
4470   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4471   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4472 
4473   SmallVector<Register, 2> Src1Parts, Src2Parts;
4474   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4475   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4476   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4477   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4478 
4479   // Take only high half of registers if this is high mul.
4480   ArrayRef<Register> DstRegs(
4481       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4482   MIRBuilder.buildMerge(DstReg, DstRegs);
4483   MI.eraseFromParent();
4484   return Legalized;
4485 }
4486 
4487 LegalizerHelper::LegalizeResult
4488 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4489                                      LLT NarrowTy) {
4490   if (TypeIdx != 1)
4491     return UnableToLegalize;
4492 
4493   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4494 
4495   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4496   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4497   // NarrowSize.
4498   if (SizeOp1 % NarrowSize != 0)
4499     return UnableToLegalize;
4500   int NumParts = SizeOp1 / NarrowSize;
4501 
4502   SmallVector<Register, 2> SrcRegs, DstRegs;
4503   SmallVector<uint64_t, 2> Indexes;
4504   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4505 
4506   Register OpReg = MI.getOperand(0).getReg();
4507   uint64_t OpStart = MI.getOperand(2).getImm();
4508   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4509   for (int i = 0; i < NumParts; ++i) {
4510     unsigned SrcStart = i * NarrowSize;
4511 
4512     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4513       // No part of the extract uses this subregister, ignore it.
4514       continue;
4515     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4516       // The entire subregister is extracted, forward the value.
4517       DstRegs.push_back(SrcRegs[i]);
4518       continue;
4519     }
4520 
4521     // OpSegStart is where this destination segment would start in OpReg if it
4522     // extended infinitely in both directions.
4523     int64_t ExtractOffset;
4524     uint64_t SegSize;
4525     if (OpStart < SrcStart) {
4526       ExtractOffset = 0;
4527       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4528     } else {
4529       ExtractOffset = OpStart - SrcStart;
4530       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4531     }
4532 
4533     Register SegReg = SrcRegs[i];
4534     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4535       // A genuine extract is needed.
4536       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4537       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4538     }
4539 
4540     DstRegs.push_back(SegReg);
4541   }
4542 
4543   Register DstReg = MI.getOperand(0).getReg();
4544   if (MRI.getType(DstReg).isVector())
4545     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4546   else if (DstRegs.size() > 1)
4547     MIRBuilder.buildMerge(DstReg, DstRegs);
4548   else
4549     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4550   MI.eraseFromParent();
4551   return Legalized;
4552 }
4553 
4554 LegalizerHelper::LegalizeResult
4555 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4556                                     LLT NarrowTy) {
4557   // FIXME: Don't know how to handle secondary types yet.
4558   if (TypeIdx != 0)
4559     return UnableToLegalize;
4560 
4561   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4562   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4563 
4564   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4565   // NarrowSize.
4566   if (SizeOp0 % NarrowSize != 0)
4567     return UnableToLegalize;
4568 
4569   int NumParts = SizeOp0 / NarrowSize;
4570 
4571   SmallVector<Register, 2> SrcRegs, DstRegs;
4572   SmallVector<uint64_t, 2> Indexes;
4573   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4574 
4575   Register OpReg = MI.getOperand(2).getReg();
4576   uint64_t OpStart = MI.getOperand(3).getImm();
4577   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4578   for (int i = 0; i < NumParts; ++i) {
4579     unsigned DstStart = i * NarrowSize;
4580 
4581     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4582       // No part of the insert affects this subregister, forward the original.
4583       DstRegs.push_back(SrcRegs[i]);
4584       continue;
4585     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4586       // The entire subregister is defined by this insert, forward the new
4587       // value.
4588       DstRegs.push_back(OpReg);
4589       continue;
4590     }
4591 
4592     // OpSegStart is where this destination segment would start in OpReg if it
4593     // extended infinitely in both directions.
4594     int64_t ExtractOffset, InsertOffset;
4595     uint64_t SegSize;
4596     if (OpStart < DstStart) {
4597       InsertOffset = 0;
4598       ExtractOffset = DstStart - OpStart;
4599       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4600     } else {
4601       InsertOffset = OpStart - DstStart;
4602       ExtractOffset = 0;
4603       SegSize =
4604         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4605     }
4606 
4607     Register SegReg = OpReg;
4608     if (ExtractOffset != 0 || SegSize != OpSize) {
4609       // A genuine extract is needed.
4610       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4611       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4612     }
4613 
4614     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4615     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4616     DstRegs.push_back(DstReg);
4617   }
4618 
4619   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4620   Register DstReg = MI.getOperand(0).getReg();
4621   if(MRI.getType(DstReg).isVector())
4622     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4623   else
4624     MIRBuilder.buildMerge(DstReg, DstRegs);
4625   MI.eraseFromParent();
4626   return Legalized;
4627 }
4628 
4629 LegalizerHelper::LegalizeResult
4630 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4631                                    LLT NarrowTy) {
4632   Register DstReg = MI.getOperand(0).getReg();
4633   LLT DstTy = MRI.getType(DstReg);
4634 
4635   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4636 
4637   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4638   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4639   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4640   LLT LeftoverTy;
4641   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4642                     Src0Regs, Src0LeftoverRegs))
4643     return UnableToLegalize;
4644 
4645   LLT Unused;
4646   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4647                     Src1Regs, Src1LeftoverRegs))
4648     llvm_unreachable("inconsistent extractParts result");
4649 
4650   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4651     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4652                                         {Src0Regs[I], Src1Regs[I]});
4653     DstRegs.push_back(Inst.getReg(0));
4654   }
4655 
4656   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4657     auto Inst = MIRBuilder.buildInstr(
4658       MI.getOpcode(),
4659       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4660     DstLeftoverRegs.push_back(Inst.getReg(0));
4661   }
4662 
4663   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4664               LeftoverTy, DstLeftoverRegs);
4665 
4666   MI.eraseFromParent();
4667   return Legalized;
4668 }
4669 
4670 LegalizerHelper::LegalizeResult
4671 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4672                                  LLT NarrowTy) {
4673   if (TypeIdx != 0)
4674     return UnableToLegalize;
4675 
4676   Register DstReg = MI.getOperand(0).getReg();
4677   Register SrcReg = MI.getOperand(1).getReg();
4678 
4679   LLT DstTy = MRI.getType(DstReg);
4680   if (DstTy.isVector())
4681     return UnableToLegalize;
4682 
4683   SmallVector<Register, 8> Parts;
4684   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4685   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4686   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4687 
4688   MI.eraseFromParent();
4689   return Legalized;
4690 }
4691 
4692 LegalizerHelper::LegalizeResult
4693 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4694                                     LLT NarrowTy) {
4695   if (TypeIdx != 0)
4696     return UnableToLegalize;
4697 
4698   Register CondReg = MI.getOperand(1).getReg();
4699   LLT CondTy = MRI.getType(CondReg);
4700   if (CondTy.isVector()) // TODO: Handle vselect
4701     return UnableToLegalize;
4702 
4703   Register DstReg = MI.getOperand(0).getReg();
4704   LLT DstTy = MRI.getType(DstReg);
4705 
4706   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4707   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4708   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4709   LLT LeftoverTy;
4710   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4711                     Src1Regs, Src1LeftoverRegs))
4712     return UnableToLegalize;
4713 
4714   LLT Unused;
4715   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4716                     Src2Regs, Src2LeftoverRegs))
4717     llvm_unreachable("inconsistent extractParts result");
4718 
4719   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4720     auto Select = MIRBuilder.buildSelect(NarrowTy,
4721                                          CondReg, Src1Regs[I], Src2Regs[I]);
4722     DstRegs.push_back(Select.getReg(0));
4723   }
4724 
4725   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4726     auto Select = MIRBuilder.buildSelect(
4727       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4728     DstLeftoverRegs.push_back(Select.getReg(0));
4729   }
4730 
4731   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4732               LeftoverTy, DstLeftoverRegs);
4733 
4734   MI.eraseFromParent();
4735   return Legalized;
4736 }
4737 
4738 LegalizerHelper::LegalizeResult
4739 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4740                                   LLT NarrowTy) {
4741   if (TypeIdx != 1)
4742     return UnableToLegalize;
4743 
4744   Register DstReg = MI.getOperand(0).getReg();
4745   Register SrcReg = MI.getOperand(1).getReg();
4746   LLT DstTy = MRI.getType(DstReg);
4747   LLT SrcTy = MRI.getType(SrcReg);
4748   unsigned NarrowSize = NarrowTy.getSizeInBits();
4749 
4750   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4751     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4752 
4753     MachineIRBuilder &B = MIRBuilder;
4754     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4755     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4756     auto C_0 = B.buildConstant(NarrowTy, 0);
4757     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4758                                 UnmergeSrc.getReg(1), C_0);
4759     auto LoCTLZ = IsUndef ?
4760       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4761       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4762     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4763     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4764     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4765     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4766 
4767     MI.eraseFromParent();
4768     return Legalized;
4769   }
4770 
4771   return UnableToLegalize;
4772 }
4773 
4774 LegalizerHelper::LegalizeResult
4775 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4776                                   LLT NarrowTy) {
4777   if (TypeIdx != 1)
4778     return UnableToLegalize;
4779 
4780   Register DstReg = MI.getOperand(0).getReg();
4781   Register SrcReg = MI.getOperand(1).getReg();
4782   LLT DstTy = MRI.getType(DstReg);
4783   LLT SrcTy = MRI.getType(SrcReg);
4784   unsigned NarrowSize = NarrowTy.getSizeInBits();
4785 
4786   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4787     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4788 
4789     MachineIRBuilder &B = MIRBuilder;
4790     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4791     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4792     auto C_0 = B.buildConstant(NarrowTy, 0);
4793     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4794                                 UnmergeSrc.getReg(0), C_0);
4795     auto HiCTTZ = IsUndef ?
4796       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4797       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4798     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4799     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4800     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4801     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4802 
4803     MI.eraseFromParent();
4804     return Legalized;
4805   }
4806 
4807   return UnableToLegalize;
4808 }
4809 
4810 LegalizerHelper::LegalizeResult
4811 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4812                                    LLT NarrowTy) {
4813   if (TypeIdx != 1)
4814     return UnableToLegalize;
4815 
4816   Register DstReg = MI.getOperand(0).getReg();
4817   LLT DstTy = MRI.getType(DstReg);
4818   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4819   unsigned NarrowSize = NarrowTy.getSizeInBits();
4820 
4821   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4822     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4823 
4824     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4825     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4826     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4827 
4828     MI.eraseFromParent();
4829     return Legalized;
4830   }
4831 
4832   return UnableToLegalize;
4833 }
4834 
4835 LegalizerHelper::LegalizeResult
4836 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4837   unsigned Opc = MI.getOpcode();
4838   const auto &TII = MIRBuilder.getTII();
4839   auto isSupported = [this](const LegalityQuery &Q) {
4840     auto QAction = LI.getAction(Q).Action;
4841     return QAction == Legal || QAction == Libcall || QAction == Custom;
4842   };
4843   switch (Opc) {
4844   default:
4845     return UnableToLegalize;
4846   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4847     // This trivially expands to CTLZ.
4848     Observer.changingInstr(MI);
4849     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4850     Observer.changedInstr(MI);
4851     return Legalized;
4852   }
4853   case TargetOpcode::G_CTLZ: {
4854     Register DstReg = MI.getOperand(0).getReg();
4855     Register SrcReg = MI.getOperand(1).getReg();
4856     LLT DstTy = MRI.getType(DstReg);
4857     LLT SrcTy = MRI.getType(SrcReg);
4858     unsigned Len = SrcTy.getSizeInBits();
4859 
4860     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4861       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4862       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4863       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4864       auto ICmp = MIRBuilder.buildICmp(
4865           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4866       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4867       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4868       MI.eraseFromParent();
4869       return Legalized;
4870     }
4871     // for now, we do this:
4872     // NewLen = NextPowerOf2(Len);
4873     // x = x | (x >> 1);
4874     // x = x | (x >> 2);
4875     // ...
4876     // x = x | (x >>16);
4877     // x = x | (x >>32); // for 64-bit input
4878     // Upto NewLen/2
4879     // return Len - popcount(x);
4880     //
4881     // Ref: "Hacker's Delight" by Henry Warren
4882     Register Op = SrcReg;
4883     unsigned NewLen = PowerOf2Ceil(Len);
4884     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4885       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4886       auto MIBOp = MIRBuilder.buildOr(
4887           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4888       Op = MIBOp.getReg(0);
4889     }
4890     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4891     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4892                         MIBPop);
4893     MI.eraseFromParent();
4894     return Legalized;
4895   }
4896   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4897     // This trivially expands to CTTZ.
4898     Observer.changingInstr(MI);
4899     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4900     Observer.changedInstr(MI);
4901     return Legalized;
4902   }
4903   case TargetOpcode::G_CTTZ: {
4904     Register DstReg = MI.getOperand(0).getReg();
4905     Register SrcReg = MI.getOperand(1).getReg();
4906     LLT DstTy = MRI.getType(DstReg);
4907     LLT SrcTy = MRI.getType(SrcReg);
4908 
4909     unsigned Len = SrcTy.getSizeInBits();
4910     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4911       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4912       // zero.
4913       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4914       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4915       auto ICmp = MIRBuilder.buildICmp(
4916           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4917       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4918       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4919       MI.eraseFromParent();
4920       return Legalized;
4921     }
4922     // for now, we use: { return popcount(~x & (x - 1)); }
4923     // unless the target has ctlz but not ctpop, in which case we use:
4924     // { return 32 - nlz(~x & (x-1)); }
4925     // Ref: "Hacker's Delight" by Henry Warren
4926     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4927     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4928     auto MIBTmp = MIRBuilder.buildAnd(
4929         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4930     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4931         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4932       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4933       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4934                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4935       MI.eraseFromParent();
4936       return Legalized;
4937     }
4938     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4939     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4940     return Legalized;
4941   }
4942   case TargetOpcode::G_CTPOP: {
4943     Register SrcReg = MI.getOperand(1).getReg();
4944     LLT Ty = MRI.getType(SrcReg);
4945     unsigned Size = Ty.getSizeInBits();
4946     MachineIRBuilder &B = MIRBuilder;
4947 
4948     // Count set bits in blocks of 2 bits. Default approach would be
4949     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4950     // We use following formula instead:
4951     // B2Count = val - { (val >> 1) & 0x55555555 }
4952     // since it gives same result in blocks of 2 with one instruction less.
4953     auto C_1 = B.buildConstant(Ty, 1);
4954     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
4955     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4956     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4957     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4958     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
4959 
4960     // In order to get count in blocks of 4 add values from adjacent block of 2.
4961     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4962     auto C_2 = B.buildConstant(Ty, 2);
4963     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4964     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4965     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4966     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4967     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4968     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4969 
4970     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4971     // addition since count value sits in range {0,...,8} and 4 bits are enough
4972     // to hold such binary values. After addition high 4 bits still hold count
4973     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4974     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4975     auto C_4 = B.buildConstant(Ty, 4);
4976     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4977     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4978     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4979     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4980     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4981 
4982     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4983     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4984     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4985     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4986     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4987 
4988     // Shift count result from 8 high bits to low bits.
4989     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4990     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4991 
4992     MI.eraseFromParent();
4993     return Legalized;
4994   }
4995   }
4996 }
4997 
4998 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4999 // representation.
5000 LegalizerHelper::LegalizeResult
5001 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5002   Register Dst = MI.getOperand(0).getReg();
5003   Register Src = MI.getOperand(1).getReg();
5004   const LLT S64 = LLT::scalar(64);
5005   const LLT S32 = LLT::scalar(32);
5006   const LLT S1 = LLT::scalar(1);
5007 
5008   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5009 
5010   // unsigned cul2f(ulong u) {
5011   //   uint lz = clz(u);
5012   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5013   //   u = (u << lz) & 0x7fffffffffffffffUL;
5014   //   ulong t = u & 0xffffffffffUL;
5015   //   uint v = (e << 23) | (uint)(u >> 40);
5016   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5017   //   return as_float(v + r);
5018   // }
5019 
5020   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5021   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5022 
5023   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5024 
5025   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5026   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5027 
5028   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5029   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5030 
5031   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5032   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5033 
5034   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5035 
5036   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5037   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5038 
5039   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5040   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5041   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5042 
5043   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5044   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5045   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5046   auto One = MIRBuilder.buildConstant(S32, 1);
5047 
5048   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5049   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5050   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5051   MIRBuilder.buildAdd(Dst, V, R);
5052 
5053   MI.eraseFromParent();
5054   return Legalized;
5055 }
5056 
5057 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5058   Register Dst = MI.getOperand(0).getReg();
5059   Register Src = MI.getOperand(1).getReg();
5060   LLT DstTy = MRI.getType(Dst);
5061   LLT SrcTy = MRI.getType(Src);
5062 
5063   if (SrcTy == LLT::scalar(1)) {
5064     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5065     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5066     MIRBuilder.buildSelect(Dst, Src, True, False);
5067     MI.eraseFromParent();
5068     return Legalized;
5069   }
5070 
5071   if (SrcTy != LLT::scalar(64))
5072     return UnableToLegalize;
5073 
5074   if (DstTy == LLT::scalar(32)) {
5075     // TODO: SelectionDAG has several alternative expansions to port which may
5076     // be more reasonble depending on the available instructions. If a target
5077     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5078     // intermediate type, this is probably worse.
5079     return lowerU64ToF32BitOps(MI);
5080   }
5081 
5082   return UnableToLegalize;
5083 }
5084 
5085 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5086   Register Dst = MI.getOperand(0).getReg();
5087   Register Src = MI.getOperand(1).getReg();
5088   LLT DstTy = MRI.getType(Dst);
5089   LLT SrcTy = MRI.getType(Src);
5090 
5091   const LLT S64 = LLT::scalar(64);
5092   const LLT S32 = LLT::scalar(32);
5093   const LLT S1 = LLT::scalar(1);
5094 
5095   if (SrcTy == S1) {
5096     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5097     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5098     MIRBuilder.buildSelect(Dst, Src, True, False);
5099     MI.eraseFromParent();
5100     return Legalized;
5101   }
5102 
5103   if (SrcTy != S64)
5104     return UnableToLegalize;
5105 
5106   if (DstTy == S32) {
5107     // signed cl2f(long l) {
5108     //   long s = l >> 63;
5109     //   float r = cul2f((l + s) ^ s);
5110     //   return s ? -r : r;
5111     // }
5112     Register L = Src;
5113     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5114     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5115 
5116     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5117     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5118     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5119 
5120     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5121     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5122                                             MIRBuilder.buildConstant(S64, 0));
5123     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5124     MI.eraseFromParent();
5125     return Legalized;
5126   }
5127 
5128   return UnableToLegalize;
5129 }
5130 
5131 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5132   Register Dst = MI.getOperand(0).getReg();
5133   Register Src = MI.getOperand(1).getReg();
5134   LLT DstTy = MRI.getType(Dst);
5135   LLT SrcTy = MRI.getType(Src);
5136   const LLT S64 = LLT::scalar(64);
5137   const LLT S32 = LLT::scalar(32);
5138 
5139   if (SrcTy != S64 && SrcTy != S32)
5140     return UnableToLegalize;
5141   if (DstTy != S32 && DstTy != S64)
5142     return UnableToLegalize;
5143 
5144   // FPTOSI gives same result as FPTOUI for positive signed integers.
5145   // FPTOUI needs to deal with fp values that convert to unsigned integers
5146   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5147 
5148   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5149   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5150                                                 : APFloat::IEEEdouble(),
5151                     APInt::getNullValue(SrcTy.getSizeInBits()));
5152   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5153 
5154   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5155 
5156   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5157   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5158   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5159   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5160   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5161   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5162   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5163 
5164   const LLT S1 = LLT::scalar(1);
5165 
5166   MachineInstrBuilder FCMP =
5167       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5168   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5169 
5170   MI.eraseFromParent();
5171   return Legalized;
5172 }
5173 
5174 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5175   Register Dst = MI.getOperand(0).getReg();
5176   Register Src = MI.getOperand(1).getReg();
5177   LLT DstTy = MRI.getType(Dst);
5178   LLT SrcTy = MRI.getType(Src);
5179   const LLT S64 = LLT::scalar(64);
5180   const LLT S32 = LLT::scalar(32);
5181 
5182   // FIXME: Only f32 to i64 conversions are supported.
5183   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5184     return UnableToLegalize;
5185 
5186   // Expand f32 -> i64 conversion
5187   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5188   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5189 
5190   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5191 
5192   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5193   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5194 
5195   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5196   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5197 
5198   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5199                                            APInt::getSignMask(SrcEltBits));
5200   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5201   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5202   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5203   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5204 
5205   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5206   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5207   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5208 
5209   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5210   R = MIRBuilder.buildZExt(DstTy, R);
5211 
5212   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5213   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5214   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5215   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5216 
5217   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5218   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5219 
5220   const LLT S1 = LLT::scalar(1);
5221   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5222                                     S1, Exponent, ExponentLoBit);
5223 
5224   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5225 
5226   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5227   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5228 
5229   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5230 
5231   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5232                                           S1, Exponent, ZeroSrcTy);
5233 
5234   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5235   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5236 
5237   MI.eraseFromParent();
5238   return Legalized;
5239 }
5240 
5241 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5242 LegalizerHelper::LegalizeResult
5243 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5244   Register Dst = MI.getOperand(0).getReg();
5245   Register Src = MI.getOperand(1).getReg();
5246 
5247   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5248     return UnableToLegalize;
5249 
5250   const unsigned ExpMask = 0x7ff;
5251   const unsigned ExpBiasf64 = 1023;
5252   const unsigned ExpBiasf16 = 15;
5253   const LLT S32 = LLT::scalar(32);
5254   const LLT S1 = LLT::scalar(1);
5255 
5256   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5257   Register U = Unmerge.getReg(0);
5258   Register UH = Unmerge.getReg(1);
5259 
5260   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5261   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5262 
5263   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5264   // add the f16 bias (15) to get the biased exponent for the f16 format.
5265   E = MIRBuilder.buildAdd(
5266     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5267 
5268   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5269   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5270 
5271   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5272                                        MIRBuilder.buildConstant(S32, 0x1ff));
5273   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5274 
5275   auto Zero = MIRBuilder.buildConstant(S32, 0);
5276   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5277   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5278   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5279 
5280   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5281   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5282   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5283   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5284 
5285   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5286   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5287 
5288   // N = M | (E << 12);
5289   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5290   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5291 
5292   // B = clamp(1-E, 0, 13);
5293   auto One = MIRBuilder.buildConstant(S32, 1);
5294   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5295   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5296   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5297 
5298   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5299                                        MIRBuilder.buildConstant(S32, 0x1000));
5300 
5301   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5302   auto D0 = MIRBuilder.buildShl(S32, D, B);
5303 
5304   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5305                                              D0, SigSetHigh);
5306   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5307   D = MIRBuilder.buildOr(S32, D, D1);
5308 
5309   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5310   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5311 
5312   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5313   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5314 
5315   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5316                                        MIRBuilder.buildConstant(S32, 3));
5317   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5318 
5319   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5320                                        MIRBuilder.buildConstant(S32, 5));
5321   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5322 
5323   V1 = MIRBuilder.buildOr(S32, V0, V1);
5324   V = MIRBuilder.buildAdd(S32, V, V1);
5325 
5326   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5327                                        E, MIRBuilder.buildConstant(S32, 30));
5328   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5329                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5330 
5331   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5332                                          E, MIRBuilder.buildConstant(S32, 1039));
5333   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5334 
5335   // Extract the sign bit.
5336   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5337   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5338 
5339   // Insert the sign bit
5340   V = MIRBuilder.buildOr(S32, Sign, V);
5341 
5342   MIRBuilder.buildTrunc(Dst, V);
5343   MI.eraseFromParent();
5344   return Legalized;
5345 }
5346 
5347 LegalizerHelper::LegalizeResult
5348 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5349   Register Dst = MI.getOperand(0).getReg();
5350   Register Src = MI.getOperand(1).getReg();
5351 
5352   LLT DstTy = MRI.getType(Dst);
5353   LLT SrcTy = MRI.getType(Src);
5354   const LLT S64 = LLT::scalar(64);
5355   const LLT S16 = LLT::scalar(16);
5356 
5357   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5358     return lowerFPTRUNC_F64_TO_F16(MI);
5359 
5360   return UnableToLegalize;
5361 }
5362 
5363 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5364 // multiplication tree.
5365 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5366   Register Dst = MI.getOperand(0).getReg();
5367   Register Src0 = MI.getOperand(1).getReg();
5368   Register Src1 = MI.getOperand(2).getReg();
5369   LLT Ty = MRI.getType(Dst);
5370 
5371   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5372   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5373   MI.eraseFromParent();
5374   return Legalized;
5375 }
5376 
5377 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5378   switch (Opc) {
5379   case TargetOpcode::G_SMIN:
5380     return CmpInst::ICMP_SLT;
5381   case TargetOpcode::G_SMAX:
5382     return CmpInst::ICMP_SGT;
5383   case TargetOpcode::G_UMIN:
5384     return CmpInst::ICMP_ULT;
5385   case TargetOpcode::G_UMAX:
5386     return CmpInst::ICMP_UGT;
5387   default:
5388     llvm_unreachable("not in integer min/max");
5389   }
5390 }
5391 
5392 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5393   Register Dst = MI.getOperand(0).getReg();
5394   Register Src0 = MI.getOperand(1).getReg();
5395   Register Src1 = MI.getOperand(2).getReg();
5396 
5397   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5398   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5399 
5400   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5401   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5402 
5403   MI.eraseFromParent();
5404   return Legalized;
5405 }
5406 
5407 LegalizerHelper::LegalizeResult
5408 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5409   Register Dst = MI.getOperand(0).getReg();
5410   Register Src0 = MI.getOperand(1).getReg();
5411   Register Src1 = MI.getOperand(2).getReg();
5412 
5413   const LLT Src0Ty = MRI.getType(Src0);
5414   const LLT Src1Ty = MRI.getType(Src1);
5415 
5416   const int Src0Size = Src0Ty.getScalarSizeInBits();
5417   const int Src1Size = Src1Ty.getScalarSizeInBits();
5418 
5419   auto SignBitMask = MIRBuilder.buildConstant(
5420     Src0Ty, APInt::getSignMask(Src0Size));
5421 
5422   auto NotSignBitMask = MIRBuilder.buildConstant(
5423     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5424 
5425   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5426   MachineInstr *Or;
5427 
5428   if (Src0Ty == Src1Ty) {
5429     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5430     Or = MIRBuilder.buildOr(Dst, And0, And1);
5431   } else if (Src0Size > Src1Size) {
5432     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5433     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5434     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5435     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5436     Or = MIRBuilder.buildOr(Dst, And0, And1);
5437   } else {
5438     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5439     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5440     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5441     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5442     Or = MIRBuilder.buildOr(Dst, And0, And1);
5443   }
5444 
5445   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5446   // constants are a nan and -0.0, but the final result should preserve
5447   // everything.
5448   if (unsigned Flags = MI.getFlags())
5449     Or->setFlags(Flags);
5450 
5451   MI.eraseFromParent();
5452   return Legalized;
5453 }
5454 
5455 LegalizerHelper::LegalizeResult
5456 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5457   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5458     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5459 
5460   Register Dst = MI.getOperand(0).getReg();
5461   Register Src0 = MI.getOperand(1).getReg();
5462   Register Src1 = MI.getOperand(2).getReg();
5463   LLT Ty = MRI.getType(Dst);
5464 
5465   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5466     // Insert canonicalizes if it's possible we need to quiet to get correct
5467     // sNaN behavior.
5468 
5469     // Note this must be done here, and not as an optimization combine in the
5470     // absence of a dedicate quiet-snan instruction as we're using an
5471     // omni-purpose G_FCANONICALIZE.
5472     if (!isKnownNeverSNaN(Src0, MRI))
5473       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5474 
5475     if (!isKnownNeverSNaN(Src1, MRI))
5476       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5477   }
5478 
5479   // If there are no nans, it's safe to simply replace this with the non-IEEE
5480   // version.
5481   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5482   MI.eraseFromParent();
5483   return Legalized;
5484 }
5485 
5486 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5487   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5488   Register DstReg = MI.getOperand(0).getReg();
5489   LLT Ty = MRI.getType(DstReg);
5490   unsigned Flags = MI.getFlags();
5491 
5492   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5493                                   Flags);
5494   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5495   MI.eraseFromParent();
5496   return Legalized;
5497 }
5498 
5499 LegalizerHelper::LegalizeResult
5500 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5501   Register DstReg = MI.getOperand(0).getReg();
5502   Register X = MI.getOperand(1).getReg();
5503   const unsigned Flags = MI.getFlags();
5504   const LLT Ty = MRI.getType(DstReg);
5505   const LLT CondTy = Ty.changeElementSize(1);
5506 
5507   // round(x) =>
5508   //  t = trunc(x);
5509   //  d = fabs(x - t);
5510   //  o = copysign(1.0f, x);
5511   //  return t + (d >= 0.5 ? o : 0.0);
5512 
5513   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5514 
5515   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5516   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5517   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5518   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5519   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5520   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5521 
5522   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5523                                   Flags);
5524   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5525 
5526   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5527 
5528   MI.eraseFromParent();
5529   return Legalized;
5530 }
5531 
5532 LegalizerHelper::LegalizeResult
5533 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5534   Register DstReg = MI.getOperand(0).getReg();
5535   Register SrcReg = MI.getOperand(1).getReg();
5536   unsigned Flags = MI.getFlags();
5537   LLT Ty = MRI.getType(DstReg);
5538   const LLT CondTy = Ty.changeElementSize(1);
5539 
5540   // result = trunc(src);
5541   // if (src < 0.0 && src != result)
5542   //   result += -1.0.
5543 
5544   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5545   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5546 
5547   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5548                                   SrcReg, Zero, Flags);
5549   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5550                                       SrcReg, Trunc, Flags);
5551   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5552   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5553 
5554   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5555   MI.eraseFromParent();
5556   return Legalized;
5557 }
5558 
5559 LegalizerHelper::LegalizeResult
5560 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5561   const unsigned NumOps = MI.getNumOperands();
5562   Register DstReg = MI.getOperand(0).getReg();
5563   Register Src0Reg = MI.getOperand(1).getReg();
5564   LLT DstTy = MRI.getType(DstReg);
5565   LLT SrcTy = MRI.getType(Src0Reg);
5566   unsigned PartSize = SrcTy.getSizeInBits();
5567 
5568   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5569   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5570 
5571   for (unsigned I = 2; I != NumOps; ++I) {
5572     const unsigned Offset = (I - 1) * PartSize;
5573 
5574     Register SrcReg = MI.getOperand(I).getReg();
5575     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5576 
5577     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5578       MRI.createGenericVirtualRegister(WideTy);
5579 
5580     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5581     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5582     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5583     ResultReg = NextResult;
5584   }
5585 
5586   if (DstTy.isPointer()) {
5587     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5588           DstTy.getAddressSpace())) {
5589       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5590       return UnableToLegalize;
5591     }
5592 
5593     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5594   }
5595 
5596   MI.eraseFromParent();
5597   return Legalized;
5598 }
5599 
5600 LegalizerHelper::LegalizeResult
5601 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5602   const unsigned NumDst = MI.getNumOperands() - 1;
5603   Register SrcReg = MI.getOperand(NumDst).getReg();
5604   Register Dst0Reg = MI.getOperand(0).getReg();
5605   LLT DstTy = MRI.getType(Dst0Reg);
5606   if (DstTy.isPointer())
5607     return UnableToLegalize; // TODO
5608 
5609   SrcReg = coerceToScalar(SrcReg);
5610   if (!SrcReg)
5611     return UnableToLegalize;
5612 
5613   // Expand scalarizing unmerge as bitcast to integer and shift.
5614   LLT IntTy = MRI.getType(SrcReg);
5615 
5616   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5617 
5618   const unsigned DstSize = DstTy.getSizeInBits();
5619   unsigned Offset = DstSize;
5620   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5621     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5622     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5623     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5624   }
5625 
5626   MI.eraseFromParent();
5627   return Legalized;
5628 }
5629 
5630 /// Lower a vector extract or insert by writing the vector to a stack temporary
5631 /// and reloading the element or vector.
5632 ///
5633 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5634 ///  =>
5635 ///  %stack_temp = G_FRAME_INDEX
5636 ///  G_STORE %vec, %stack_temp
5637 ///  %idx = clamp(%idx, %vec.getNumElements())
5638 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5639 ///  %dst = G_LOAD %element_ptr
5640 LegalizerHelper::LegalizeResult
5641 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5642   Register DstReg = MI.getOperand(0).getReg();
5643   Register SrcVec = MI.getOperand(1).getReg();
5644   Register InsertVal;
5645   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5646     InsertVal = MI.getOperand(2).getReg();
5647 
5648   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5649 
5650   LLT VecTy = MRI.getType(SrcVec);
5651   LLT EltTy = VecTy.getElementType();
5652   if (!EltTy.isByteSized()) { // Not implemented.
5653     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5654     return UnableToLegalize;
5655   }
5656 
5657   unsigned EltBytes = EltTy.getSizeInBytes();
5658   Align VecAlign = getStackTemporaryAlignment(VecTy);
5659   Align EltAlign;
5660 
5661   MachinePointerInfo PtrInfo;
5662   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5663                                         VecAlign, PtrInfo);
5664   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5665 
5666   // Get the pointer to the element, and be sure not to hit undefined behavior
5667   // if the index is out of bounds.
5668   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5669 
5670   int64_t IdxVal;
5671   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5672     int64_t Offset = IdxVal * EltBytes;
5673     PtrInfo = PtrInfo.getWithOffset(Offset);
5674     EltAlign = commonAlignment(VecAlign, Offset);
5675   } else {
5676     // We lose information with a variable offset.
5677     EltAlign = getStackTemporaryAlignment(EltTy);
5678     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5679   }
5680 
5681   if (InsertVal) {
5682     // Write the inserted element
5683     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5684 
5685     // Reload the whole vector.
5686     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5687   } else {
5688     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5689   }
5690 
5691   MI.eraseFromParent();
5692   return Legalized;
5693 }
5694 
5695 LegalizerHelper::LegalizeResult
5696 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5697   Register DstReg = MI.getOperand(0).getReg();
5698   Register Src0Reg = MI.getOperand(1).getReg();
5699   Register Src1Reg = MI.getOperand(2).getReg();
5700   LLT Src0Ty = MRI.getType(Src0Reg);
5701   LLT DstTy = MRI.getType(DstReg);
5702   LLT IdxTy = LLT::scalar(32);
5703 
5704   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5705 
5706   if (DstTy.isScalar()) {
5707     if (Src0Ty.isVector())
5708       return UnableToLegalize;
5709 
5710     // This is just a SELECT.
5711     assert(Mask.size() == 1 && "Expected a single mask element");
5712     Register Val;
5713     if (Mask[0] < 0 || Mask[0] > 1)
5714       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5715     else
5716       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5717     MIRBuilder.buildCopy(DstReg, Val);
5718     MI.eraseFromParent();
5719     return Legalized;
5720   }
5721 
5722   Register Undef;
5723   SmallVector<Register, 32> BuildVec;
5724   LLT EltTy = DstTy.getElementType();
5725 
5726   for (int Idx : Mask) {
5727     if (Idx < 0) {
5728       if (!Undef.isValid())
5729         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5730       BuildVec.push_back(Undef);
5731       continue;
5732     }
5733 
5734     if (Src0Ty.isScalar()) {
5735       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5736     } else {
5737       int NumElts = Src0Ty.getNumElements();
5738       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5739       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5740       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5741       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5742       BuildVec.push_back(Extract.getReg(0));
5743     }
5744   }
5745 
5746   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5747   MI.eraseFromParent();
5748   return Legalized;
5749 }
5750 
5751 LegalizerHelper::LegalizeResult
5752 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5753   const auto &MF = *MI.getMF();
5754   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5755   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5756     return UnableToLegalize;
5757 
5758   Register Dst = MI.getOperand(0).getReg();
5759   Register AllocSize = MI.getOperand(1).getReg();
5760   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5761 
5762   LLT PtrTy = MRI.getType(Dst);
5763   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5764 
5765   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5766   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5767   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5768 
5769   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5770   // have to generate an extra instruction to negate the alloc and then use
5771   // G_PTR_ADD to add the negative offset.
5772   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5773   if (Alignment > Align(1)) {
5774     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5775     AlignMask.negate();
5776     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5777     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5778   }
5779 
5780   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5781   MIRBuilder.buildCopy(SPReg, SPTmp);
5782   MIRBuilder.buildCopy(Dst, SPTmp);
5783 
5784   MI.eraseFromParent();
5785   return Legalized;
5786 }
5787 
5788 LegalizerHelper::LegalizeResult
5789 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5790   Register Dst = MI.getOperand(0).getReg();
5791   Register Src = MI.getOperand(1).getReg();
5792   unsigned Offset = MI.getOperand(2).getImm();
5793 
5794   LLT DstTy = MRI.getType(Dst);
5795   LLT SrcTy = MRI.getType(Src);
5796 
5797   if (DstTy.isScalar() &&
5798       (SrcTy.isScalar() ||
5799        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5800     LLT SrcIntTy = SrcTy;
5801     if (!SrcTy.isScalar()) {
5802       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5803       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5804     }
5805 
5806     if (Offset == 0)
5807       MIRBuilder.buildTrunc(Dst, Src);
5808     else {
5809       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5810       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5811       MIRBuilder.buildTrunc(Dst, Shr);
5812     }
5813 
5814     MI.eraseFromParent();
5815     return Legalized;
5816   }
5817 
5818   return UnableToLegalize;
5819 }
5820 
5821 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5822   Register Dst = MI.getOperand(0).getReg();
5823   Register Src = MI.getOperand(1).getReg();
5824   Register InsertSrc = MI.getOperand(2).getReg();
5825   uint64_t Offset = MI.getOperand(3).getImm();
5826 
5827   LLT DstTy = MRI.getType(Src);
5828   LLT InsertTy = MRI.getType(InsertSrc);
5829 
5830   if (InsertTy.isVector() ||
5831       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5832     return UnableToLegalize;
5833 
5834   const DataLayout &DL = MIRBuilder.getDataLayout();
5835   if ((DstTy.isPointer() &&
5836        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5837       (InsertTy.isPointer() &&
5838        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5839     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5840     return UnableToLegalize;
5841   }
5842 
5843   LLT IntDstTy = DstTy;
5844 
5845   if (!DstTy.isScalar()) {
5846     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5847     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5848   }
5849 
5850   if (!InsertTy.isScalar()) {
5851     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5852     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5853   }
5854 
5855   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5856   if (Offset != 0) {
5857     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5858     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5859   }
5860 
5861   APInt MaskVal = APInt::getBitsSetWithWrap(
5862       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5863 
5864   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5865   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5866   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5867 
5868   MIRBuilder.buildCast(Dst, Or);
5869   MI.eraseFromParent();
5870   return Legalized;
5871 }
5872 
5873 LegalizerHelper::LegalizeResult
5874 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5875   Register Dst0 = MI.getOperand(0).getReg();
5876   Register Dst1 = MI.getOperand(1).getReg();
5877   Register LHS = MI.getOperand(2).getReg();
5878   Register RHS = MI.getOperand(3).getReg();
5879   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5880 
5881   LLT Ty = MRI.getType(Dst0);
5882   LLT BoolTy = MRI.getType(Dst1);
5883 
5884   if (IsAdd)
5885     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5886   else
5887     MIRBuilder.buildSub(Dst0, LHS, RHS);
5888 
5889   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5890 
5891   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5892 
5893   // For an addition, the result should be less than one of the operands (LHS)
5894   // if and only if the other operand (RHS) is negative, otherwise there will
5895   // be overflow.
5896   // For a subtraction, the result should be less than one of the operands
5897   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5898   // otherwise there will be overflow.
5899   auto ResultLowerThanLHS =
5900       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5901   auto ConditionRHS = MIRBuilder.buildICmp(
5902       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5903 
5904   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5905   MI.eraseFromParent();
5906   return Legalized;
5907 }
5908 
5909 LegalizerHelper::LegalizeResult
5910 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5911   Register Res = MI.getOperand(0).getReg();
5912   Register LHS = MI.getOperand(1).getReg();
5913   Register RHS = MI.getOperand(2).getReg();
5914   LLT Ty = MRI.getType(Res);
5915   bool IsSigned;
5916   bool IsAdd;
5917   unsigned BaseOp;
5918   switch (MI.getOpcode()) {
5919   default:
5920     llvm_unreachable("unexpected addsat/subsat opcode");
5921   case TargetOpcode::G_UADDSAT:
5922     IsSigned = false;
5923     IsAdd = true;
5924     BaseOp = TargetOpcode::G_ADD;
5925     break;
5926   case TargetOpcode::G_SADDSAT:
5927     IsSigned = true;
5928     IsAdd = true;
5929     BaseOp = TargetOpcode::G_ADD;
5930     break;
5931   case TargetOpcode::G_USUBSAT:
5932     IsSigned = false;
5933     IsAdd = false;
5934     BaseOp = TargetOpcode::G_SUB;
5935     break;
5936   case TargetOpcode::G_SSUBSAT:
5937     IsSigned = true;
5938     IsAdd = false;
5939     BaseOp = TargetOpcode::G_SUB;
5940     break;
5941   }
5942 
5943   if (IsSigned) {
5944     // sadd.sat(a, b) ->
5945     //   hi = 0x7fffffff - smax(a, 0)
5946     //   lo = 0x80000000 - smin(a, 0)
5947     //   a + smin(smax(lo, b), hi)
5948     // ssub.sat(a, b) ->
5949     //   lo = smax(a, -1) - 0x7fffffff
5950     //   hi = smin(a, -1) - 0x80000000
5951     //   a - smin(smax(lo, b), hi)
5952     // TODO: AMDGPU can use a "median of 3" instruction here:
5953     //   a +/- med3(lo, b, hi)
5954     uint64_t NumBits = Ty.getScalarSizeInBits();
5955     auto MaxVal =
5956         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5957     auto MinVal =
5958         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5959     MachineInstrBuilder Hi, Lo;
5960     if (IsAdd) {
5961       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5962       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5963       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5964     } else {
5965       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5966       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5967                                MaxVal);
5968       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5969                                MinVal);
5970     }
5971     auto RHSClamped =
5972         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5973     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5974   } else {
5975     // uadd.sat(a, b) -> a + umin(~a, b)
5976     // usub.sat(a, b) -> a - umin(a, b)
5977     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5978     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5979     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5980   }
5981 
5982   MI.eraseFromParent();
5983   return Legalized;
5984 }
5985 
5986 LegalizerHelper::LegalizeResult
5987 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
5988   Register Res = MI.getOperand(0).getReg();
5989   Register LHS = MI.getOperand(1).getReg();
5990   Register RHS = MI.getOperand(2).getReg();
5991   LLT Ty = MRI.getType(Res);
5992   LLT BoolTy = Ty.changeElementSize(1);
5993   bool IsSigned;
5994   bool IsAdd;
5995   unsigned OverflowOp;
5996   switch (MI.getOpcode()) {
5997   default:
5998     llvm_unreachable("unexpected addsat/subsat opcode");
5999   case TargetOpcode::G_UADDSAT:
6000     IsSigned = false;
6001     IsAdd = true;
6002     OverflowOp = TargetOpcode::G_UADDO;
6003     break;
6004   case TargetOpcode::G_SADDSAT:
6005     IsSigned = true;
6006     IsAdd = true;
6007     OverflowOp = TargetOpcode::G_SADDO;
6008     break;
6009   case TargetOpcode::G_USUBSAT:
6010     IsSigned = false;
6011     IsAdd = false;
6012     OverflowOp = TargetOpcode::G_USUBO;
6013     break;
6014   case TargetOpcode::G_SSUBSAT:
6015     IsSigned = true;
6016     IsAdd = false;
6017     OverflowOp = TargetOpcode::G_SSUBO;
6018     break;
6019   }
6020 
6021   auto OverflowRes =
6022       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6023   Register Tmp = OverflowRes.getReg(0);
6024   Register Ov = OverflowRes.getReg(1);
6025   MachineInstrBuilder Clamp;
6026   if (IsSigned) {
6027     // sadd.sat(a, b) ->
6028     //   {tmp, ov} = saddo(a, b)
6029     //   ov ? (tmp >>s 31) + 0x80000000 : r
6030     // ssub.sat(a, b) ->
6031     //   {tmp, ov} = ssubo(a, b)
6032     //   ov ? (tmp >>s 31) + 0x80000000 : r
6033     uint64_t NumBits = Ty.getScalarSizeInBits();
6034     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6035     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6036     auto MinVal =
6037         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6038     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6039   } else {
6040     // uadd.sat(a, b) ->
6041     //   {tmp, ov} = uaddo(a, b)
6042     //   ov ? 0xffffffff : tmp
6043     // usub.sat(a, b) ->
6044     //   {tmp, ov} = usubo(a, b)
6045     //   ov ? 0 : tmp
6046     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6047   }
6048   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6049 
6050   MI.eraseFromParent();
6051   return Legalized;
6052 }
6053 
6054 LegalizerHelper::LegalizeResult
6055 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6056   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6057           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6058          "Expected shlsat opcode!");
6059   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6060   Register Res = MI.getOperand(0).getReg();
6061   Register LHS = MI.getOperand(1).getReg();
6062   Register RHS = MI.getOperand(2).getReg();
6063   LLT Ty = MRI.getType(Res);
6064   LLT BoolTy = Ty.changeElementSize(1);
6065 
6066   unsigned BW = Ty.getScalarSizeInBits();
6067   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6068   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6069                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6070 
6071   MachineInstrBuilder SatVal;
6072   if (IsSigned) {
6073     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6074     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6075     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6076                                     MIRBuilder.buildConstant(Ty, 0));
6077     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6078   } else {
6079     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6080   }
6081   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6082   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6083 
6084   MI.eraseFromParent();
6085   return Legalized;
6086 }
6087 
6088 LegalizerHelper::LegalizeResult
6089 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6090   Register Dst = MI.getOperand(0).getReg();
6091   Register Src = MI.getOperand(1).getReg();
6092   const LLT Ty = MRI.getType(Src);
6093   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6094   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6095 
6096   // Swap most and least significant byte, set remaining bytes in Res to zero.
6097   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6098   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6099   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6100   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6101 
6102   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6103   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6104     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6105     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6106     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6107     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6108     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6109     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6110     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6111     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6112     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6113     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6114     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6115     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6116   }
6117   Res.getInstr()->getOperand(0).setReg(Dst);
6118 
6119   MI.eraseFromParent();
6120   return Legalized;
6121 }
6122 
6123 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6124 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6125                                  MachineInstrBuilder Src, APInt Mask) {
6126   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6127   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6128   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6129   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6130   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6131   return B.buildOr(Dst, LHS, RHS);
6132 }
6133 
6134 LegalizerHelper::LegalizeResult
6135 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6136   Register Dst = MI.getOperand(0).getReg();
6137   Register Src = MI.getOperand(1).getReg();
6138   const LLT Ty = MRI.getType(Src);
6139   unsigned Size = Ty.getSizeInBits();
6140 
6141   MachineInstrBuilder BSWAP =
6142       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6143 
6144   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6145   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6146   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6147   MachineInstrBuilder Swap4 =
6148       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6149 
6150   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6151   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6152   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6153   MachineInstrBuilder Swap2 =
6154       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6155 
6156   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6157   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6158   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6159   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6160 
6161   MI.eraseFromParent();
6162   return Legalized;
6163 }
6164 
6165 LegalizerHelper::LegalizeResult
6166 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6167   MachineFunction &MF = MIRBuilder.getMF();
6168 
6169   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6170   int NameOpIdx = IsRead ? 1 : 0;
6171   int ValRegIndex = IsRead ? 0 : 1;
6172 
6173   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6174   const LLT Ty = MRI.getType(ValReg);
6175   const MDString *RegStr = cast<MDString>(
6176     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6177 
6178   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6179   if (!PhysReg.isValid())
6180     return UnableToLegalize;
6181 
6182   if (IsRead)
6183     MIRBuilder.buildCopy(ValReg, PhysReg);
6184   else
6185     MIRBuilder.buildCopy(PhysReg, ValReg);
6186 
6187   MI.eraseFromParent();
6188   return Legalized;
6189 }
6190 
6191 LegalizerHelper::LegalizeResult
6192 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6193   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6194   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6195   Register Result = MI.getOperand(0).getReg();
6196   LLT OrigTy = MRI.getType(Result);
6197   auto SizeInBits = OrigTy.getScalarSizeInBits();
6198   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6199 
6200   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6201   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6202   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6203   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6204 
6205   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6206   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6207   MIRBuilder.buildTrunc(Result, Shifted);
6208 
6209   MI.eraseFromParent();
6210   return Legalized;
6211 }
6212 
6213 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6214   // Implement vector G_SELECT in terms of XOR, AND, OR.
6215   Register DstReg = MI.getOperand(0).getReg();
6216   Register MaskReg = MI.getOperand(1).getReg();
6217   Register Op1Reg = MI.getOperand(2).getReg();
6218   Register Op2Reg = MI.getOperand(3).getReg();
6219   LLT DstTy = MRI.getType(DstReg);
6220   LLT MaskTy = MRI.getType(MaskReg);
6221   LLT Op1Ty = MRI.getType(Op1Reg);
6222   if (!DstTy.isVector())
6223     return UnableToLegalize;
6224 
6225   // Vector selects can have a scalar predicate. If so, splat into a vector and
6226   // finish for later legalization attempts to try again.
6227   if (MaskTy.isScalar()) {
6228     Register MaskElt = MaskReg;
6229     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6230       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6231     // Generate a vector splat idiom to be pattern matched later.
6232     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6233     Observer.changingInstr(MI);
6234     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6235     Observer.changedInstr(MI);
6236     return Legalized;
6237   }
6238 
6239   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6240     return UnableToLegalize;
6241   }
6242 
6243   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6244   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6245   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6246   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6247   MI.eraseFromParent();
6248   return Legalized;
6249 }
6250