1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/Utils.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetFrameLowering.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 #define DEBUG_TYPE "legalizer" 34 35 using namespace llvm; 36 using namespace LegalizeActions; 37 using namespace MIPatternMatch; 38 39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 40 /// 41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 42 /// with any leftover piece as type \p LeftoverTy 43 /// 44 /// Returns -1 in the first element of the pair if the breakdown is not 45 /// satisfiable. 46 static std::pair<int, int> 47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 48 assert(!LeftoverTy.isValid() && "this is an out argument"); 49 50 unsigned Size = OrigTy.getSizeInBits(); 51 unsigned NarrowSize = NarrowTy.getSizeInBits(); 52 unsigned NumParts = Size / NarrowSize; 53 unsigned LeftoverSize = Size - NumParts * NarrowSize; 54 assert(Size > NarrowSize); 55 56 if (LeftoverSize == 0) 57 return {NumParts, 0}; 58 59 if (NarrowTy.isVector()) { 60 unsigned EltSize = OrigTy.getScalarSizeInBits(); 61 if (LeftoverSize % EltSize != 0) 62 return {-1, -1}; 63 LeftoverTy = LLT::scalarOrVector( 64 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 65 } else { 66 LeftoverTy = LLT::scalar(LeftoverSize); 67 } 68 69 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 70 return std::make_pair(NumParts, NumLeftover); 71 } 72 73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 74 75 if (!Ty.isScalar()) 76 return nullptr; 77 78 switch (Ty.getSizeInBits()) { 79 case 16: 80 return Type::getHalfTy(Ctx); 81 case 32: 82 return Type::getFloatTy(Ctx); 83 case 64: 84 return Type::getDoubleTy(Ctx); 85 case 80: 86 return Type::getX86_FP80Ty(Ctx); 87 case 128: 88 return Type::getFP128Ty(Ctx); 89 default: 90 return nullptr; 91 } 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &Builder) 97 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 98 LI(*MF.getSubtarget().getLegalizerInfo()), 99 TLI(*MF.getSubtarget().getTargetLowering()) { } 100 101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 102 GISelChangeObserver &Observer, 103 MachineIRBuilder &B) 104 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 105 TLI(*MF.getSubtarget().getTargetLowering()) { } 106 107 LegalizerHelper::LegalizeResult 108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 109 LostDebugLocObserver &LocObserver) { 110 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 111 112 MIRBuilder.setInstrAndDebugLoc(MI); 113 114 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 115 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 116 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 117 auto Step = LI.getAction(MI, MRI); 118 switch (Step.Action) { 119 case Legal: 120 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 121 return AlreadyLegal; 122 case Libcall: 123 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 124 return libcall(MI, LocObserver); 125 case NarrowScalar: 126 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 127 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 128 case WidenScalar: 129 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 130 return widenScalar(MI, Step.TypeIdx, Step.NewType); 131 case Bitcast: 132 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 133 return bitcast(MI, Step.TypeIdx, Step.NewType); 134 case Lower: 135 LLVM_DEBUG(dbgs() << ".. Lower\n"); 136 return lower(MI, Step.TypeIdx, Step.NewType); 137 case FewerElements: 138 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 139 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 140 case MoreElements: 141 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 142 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 143 case Custom: 144 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 145 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 146 default: 147 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 148 return UnableToLegalize; 149 } 150 } 151 152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 153 SmallVectorImpl<Register> &VRegs) { 154 for (int i = 0; i < NumParts; ++i) 155 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 156 MIRBuilder.buildUnmerge(VRegs, Reg); 157 } 158 159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 160 LLT MainTy, LLT &LeftoverTy, 161 SmallVectorImpl<Register> &VRegs, 162 SmallVectorImpl<Register> &LeftoverRegs) { 163 assert(!LeftoverTy.isValid() && "this is an out argument"); 164 165 unsigned RegSize = RegTy.getSizeInBits(); 166 unsigned MainSize = MainTy.getSizeInBits(); 167 unsigned NumParts = RegSize / MainSize; 168 unsigned LeftoverSize = RegSize - NumParts * MainSize; 169 170 // Use an unmerge when possible. 171 if (LeftoverSize == 0) { 172 for (unsigned I = 0; I < NumParts; ++I) 173 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 174 MIRBuilder.buildUnmerge(VRegs, Reg); 175 return true; 176 } 177 178 if (MainTy.isVector()) { 179 unsigned EltSize = MainTy.getScalarSizeInBits(); 180 if (LeftoverSize % EltSize != 0) 181 return false; 182 LeftoverTy = LLT::scalarOrVector( 183 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 184 } else { 185 LeftoverTy = LLT::scalar(LeftoverSize); 186 } 187 188 // For irregular sizes, extract the individual parts. 189 for (unsigned I = 0; I != NumParts; ++I) { 190 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 191 VRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 193 } 194 195 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 196 Offset += LeftoverSize) { 197 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 198 LeftoverRegs.push_back(NewReg); 199 MIRBuilder.buildExtract(NewReg, Reg, Offset); 200 } 201 202 return true; 203 } 204 205 void LegalizerHelper::insertParts(Register DstReg, 206 LLT ResultTy, LLT PartTy, 207 ArrayRef<Register> PartRegs, 208 LLT LeftoverTy, 209 ArrayRef<Register> LeftoverRegs) { 210 if (!LeftoverTy.isValid()) { 211 assert(LeftoverRegs.empty()); 212 213 if (!ResultTy.isVector()) { 214 MIRBuilder.buildMerge(DstReg, PartRegs); 215 return; 216 } 217 218 if (PartTy.isVector()) 219 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 220 else 221 MIRBuilder.buildBuildVector(DstReg, PartRegs); 222 return; 223 } 224 225 SmallVector<Register> GCDRegs; 226 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 227 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 228 extractGCDType(GCDRegs, GCDTy, PartReg); 229 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 230 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 231 } 232 233 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 234 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 235 const MachineInstr &MI) { 236 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 237 238 const int StartIdx = Regs.size(); 239 const int NumResults = MI.getNumOperands() - 1; 240 Regs.resize(Regs.size() + NumResults); 241 for (int I = 0; I != NumResults; ++I) 242 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 243 } 244 245 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 246 LLT GCDTy, Register SrcReg) { 247 LLT SrcTy = MRI.getType(SrcReg); 248 if (SrcTy == GCDTy) { 249 // If the source already evenly divides the result type, we don't need to do 250 // anything. 251 Parts.push_back(SrcReg); 252 } else { 253 // Need to split into common type sized pieces. 254 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 255 getUnmergeResults(Parts, *Unmerge); 256 } 257 } 258 259 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 260 LLT NarrowTy, Register SrcReg) { 261 LLT SrcTy = MRI.getType(SrcReg); 262 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 263 extractGCDType(Parts, GCDTy, SrcReg); 264 return GCDTy; 265 } 266 267 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 268 SmallVectorImpl<Register> &VRegs, 269 unsigned PadStrategy) { 270 LLT LCMTy = getLCMType(DstTy, NarrowTy); 271 272 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 273 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 274 int NumOrigSrc = VRegs.size(); 275 276 Register PadReg; 277 278 // Get a value we can use to pad the source value if the sources won't evenly 279 // cover the result type. 280 if (NumOrigSrc < NumParts * NumSubParts) { 281 if (PadStrategy == TargetOpcode::G_ZEXT) 282 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 283 else if (PadStrategy == TargetOpcode::G_ANYEXT) 284 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 285 else { 286 assert(PadStrategy == TargetOpcode::G_SEXT); 287 288 // Shift the sign bit of the low register through the high register. 289 auto ShiftAmt = 290 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 291 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 292 } 293 } 294 295 // Registers for the final merge to be produced. 296 SmallVector<Register, 4> Remerge(NumParts); 297 298 // Registers needed for intermediate merges, which will be merged into a 299 // source for Remerge. 300 SmallVector<Register, 4> SubMerge(NumSubParts); 301 302 // Once we've fully read off the end of the original source bits, we can reuse 303 // the same high bits for remaining padding elements. 304 Register AllPadReg; 305 306 // Build merges to the LCM type to cover the original result type. 307 for (int I = 0; I != NumParts; ++I) { 308 bool AllMergePartsArePadding = true; 309 310 // Build the requested merges to the requested type. 311 for (int J = 0; J != NumSubParts; ++J) { 312 int Idx = I * NumSubParts + J; 313 if (Idx >= NumOrigSrc) { 314 SubMerge[J] = PadReg; 315 continue; 316 } 317 318 SubMerge[J] = VRegs[Idx]; 319 320 // There are meaningful bits here we can't reuse later. 321 AllMergePartsArePadding = false; 322 } 323 324 // If we've filled up a complete piece with padding bits, we can directly 325 // emit the natural sized constant if applicable, rather than a merge of 326 // smaller constants. 327 if (AllMergePartsArePadding && !AllPadReg) { 328 if (PadStrategy == TargetOpcode::G_ANYEXT) 329 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 330 else if (PadStrategy == TargetOpcode::G_ZEXT) 331 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 332 333 // If this is a sign extension, we can't materialize a trivial constant 334 // with the right type and have to produce a merge. 335 } 336 337 if (AllPadReg) { 338 // Avoid creating additional instructions if we're just adding additional 339 // copies of padding bits. 340 Remerge[I] = AllPadReg; 341 continue; 342 } 343 344 if (NumSubParts == 1) 345 Remerge[I] = SubMerge[0]; 346 else 347 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 348 349 // In the sign extend padding case, re-use the first all-signbit merge. 350 if (AllMergePartsArePadding && !AllPadReg) 351 AllPadReg = Remerge[I]; 352 } 353 354 VRegs = std::move(Remerge); 355 return LCMTy; 356 } 357 358 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 359 ArrayRef<Register> RemergeRegs) { 360 LLT DstTy = MRI.getType(DstReg); 361 362 // Create the merge to the widened source, and extract the relevant bits into 363 // the result. 364 365 if (DstTy == LCMTy) { 366 MIRBuilder.buildMerge(DstReg, RemergeRegs); 367 return; 368 } 369 370 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 371 if (DstTy.isScalar() && LCMTy.isScalar()) { 372 MIRBuilder.buildTrunc(DstReg, Remerge); 373 return; 374 } 375 376 if (LCMTy.isVector()) { 377 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 378 SmallVector<Register, 8> UnmergeDefs(NumDefs); 379 UnmergeDefs[0] = DstReg; 380 for (unsigned I = 1; I != NumDefs; ++I) 381 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 382 383 MIRBuilder.buildUnmerge(UnmergeDefs, 384 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 385 return; 386 } 387 388 llvm_unreachable("unhandled case"); 389 } 390 391 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 392 #define RTLIBCASE_INT(LibcallPrefix) \ 393 do { \ 394 switch (Size) { \ 395 case 32: \ 396 return RTLIB::LibcallPrefix##32; \ 397 case 64: \ 398 return RTLIB::LibcallPrefix##64; \ 399 case 128: \ 400 return RTLIB::LibcallPrefix##128; \ 401 default: \ 402 llvm_unreachable("unexpected size"); \ 403 } \ 404 } while (0) 405 406 #define RTLIBCASE(LibcallPrefix) \ 407 do { \ 408 switch (Size) { \ 409 case 32: \ 410 return RTLIB::LibcallPrefix##32; \ 411 case 64: \ 412 return RTLIB::LibcallPrefix##64; \ 413 case 80: \ 414 return RTLIB::LibcallPrefix##80; \ 415 case 128: \ 416 return RTLIB::LibcallPrefix##128; \ 417 default: \ 418 llvm_unreachable("unexpected size"); \ 419 } \ 420 } while (0) 421 422 switch (Opcode) { 423 case TargetOpcode::G_SDIV: 424 RTLIBCASE_INT(SDIV_I); 425 case TargetOpcode::G_UDIV: 426 RTLIBCASE_INT(UDIV_I); 427 case TargetOpcode::G_SREM: 428 RTLIBCASE_INT(SREM_I); 429 case TargetOpcode::G_UREM: 430 RTLIBCASE_INT(UREM_I); 431 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 432 RTLIBCASE_INT(CTLZ_I); 433 case TargetOpcode::G_FADD: 434 RTLIBCASE(ADD_F); 435 case TargetOpcode::G_FSUB: 436 RTLIBCASE(SUB_F); 437 case TargetOpcode::G_FMUL: 438 RTLIBCASE(MUL_F); 439 case TargetOpcode::G_FDIV: 440 RTLIBCASE(DIV_F); 441 case TargetOpcode::G_FEXP: 442 RTLIBCASE(EXP_F); 443 case TargetOpcode::G_FEXP2: 444 RTLIBCASE(EXP2_F); 445 case TargetOpcode::G_FREM: 446 RTLIBCASE(REM_F); 447 case TargetOpcode::G_FPOW: 448 RTLIBCASE(POW_F); 449 case TargetOpcode::G_FMA: 450 RTLIBCASE(FMA_F); 451 case TargetOpcode::G_FSIN: 452 RTLIBCASE(SIN_F); 453 case TargetOpcode::G_FCOS: 454 RTLIBCASE(COS_F); 455 case TargetOpcode::G_FLOG10: 456 RTLIBCASE(LOG10_F); 457 case TargetOpcode::G_FLOG: 458 RTLIBCASE(LOG_F); 459 case TargetOpcode::G_FLOG2: 460 RTLIBCASE(LOG2_F); 461 case TargetOpcode::G_FCEIL: 462 RTLIBCASE(CEIL_F); 463 case TargetOpcode::G_FFLOOR: 464 RTLIBCASE(FLOOR_F); 465 case TargetOpcode::G_FMINNUM: 466 RTLIBCASE(FMIN_F); 467 case TargetOpcode::G_FMAXNUM: 468 RTLIBCASE(FMAX_F); 469 case TargetOpcode::G_FSQRT: 470 RTLIBCASE(SQRT_F); 471 case TargetOpcode::G_FRINT: 472 RTLIBCASE(RINT_F); 473 case TargetOpcode::G_FNEARBYINT: 474 RTLIBCASE(NEARBYINT_F); 475 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 476 RTLIBCASE(ROUNDEVEN_F); 477 } 478 llvm_unreachable("Unknown libcall function"); 479 } 480 481 /// True if an instruction is in tail position in its caller. Intended for 482 /// legalizing libcalls as tail calls when possible. 483 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 484 MachineInstr &MI) { 485 MachineBasicBlock &MBB = *MI.getParent(); 486 const Function &F = MBB.getParent()->getFunction(); 487 488 // Conservatively require the attributes of the call to match those of 489 // the return. Ignore NoAlias and NonNull because they don't affect the 490 // call sequence. 491 AttributeList CallerAttrs = F.getAttributes(); 492 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 493 .removeAttribute(Attribute::NoAlias) 494 .removeAttribute(Attribute::NonNull) 495 .hasAttributes()) 496 return false; 497 498 // It's not safe to eliminate the sign / zero extension of the return value. 499 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 500 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 501 return false; 502 503 // Only tail call if the following instruction is a standard return. 504 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 505 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 506 return false; 507 508 return true; 509 } 510 511 LegalizerHelper::LegalizeResult 512 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 513 const CallLowering::ArgInfo &Result, 514 ArrayRef<CallLowering::ArgInfo> Args, 515 const CallingConv::ID CC) { 516 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 517 518 CallLowering::CallLoweringInfo Info; 519 Info.CallConv = CC; 520 Info.Callee = MachineOperand::CreateES(Name); 521 Info.OrigRet = Result; 522 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 523 if (!CLI.lowerCall(MIRBuilder, Info)) 524 return LegalizerHelper::UnableToLegalize; 525 526 return LegalizerHelper::Legalized; 527 } 528 529 LegalizerHelper::LegalizeResult 530 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 531 const CallLowering::ArgInfo &Result, 532 ArrayRef<CallLowering::ArgInfo> Args) { 533 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 534 const char *Name = TLI.getLibcallName(Libcall); 535 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 536 return createLibcall(MIRBuilder, Name, Result, Args, CC); 537 } 538 539 // Useful for libcalls where all operands have the same type. 540 static LegalizerHelper::LegalizeResult 541 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 542 Type *OpType) { 543 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 544 545 // FIXME: What does the original arg index mean here? 546 SmallVector<CallLowering::ArgInfo, 3> Args; 547 for (unsigned i = 1; i < MI.getNumOperands(); i++) 548 Args.push_back({MI.getOperand(i).getReg(), OpType, 0}); 549 return createLibcall(MIRBuilder, Libcall, 550 {MI.getOperand(0).getReg(), OpType, 0}, Args); 551 } 552 553 LegalizerHelper::LegalizeResult 554 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 555 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 556 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 557 558 SmallVector<CallLowering::ArgInfo, 3> Args; 559 // Add all the args, except for the last which is an imm denoting 'tail'. 560 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 561 Register Reg = MI.getOperand(i).getReg(); 562 563 // Need derive an IR type for call lowering. 564 LLT OpLLT = MRI.getType(Reg); 565 Type *OpTy = nullptr; 566 if (OpLLT.isPointer()) 567 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 568 else 569 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 570 Args.push_back({Reg, OpTy, 0}); 571 } 572 573 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 574 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 575 RTLIB::Libcall RTLibcall; 576 unsigned Opc = MI.getOpcode(); 577 switch (Opc) { 578 case TargetOpcode::G_BZERO: 579 RTLibcall = RTLIB::BZERO; 580 break; 581 case TargetOpcode::G_MEMCPY: 582 RTLibcall = RTLIB::MEMCPY; 583 break; 584 case TargetOpcode::G_MEMMOVE: 585 RTLibcall = RTLIB::MEMMOVE; 586 break; 587 case TargetOpcode::G_MEMSET: 588 RTLibcall = RTLIB::MEMSET; 589 break; 590 default: 591 return LegalizerHelper::UnableToLegalize; 592 } 593 const char *Name = TLI.getLibcallName(RTLibcall); 594 595 // Unsupported libcall on the target. 596 if (!Name) { 597 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 598 << MIRBuilder.getTII().getName(Opc) << "\n"); 599 return LegalizerHelper::UnableToLegalize; 600 } 601 602 CallLowering::CallLoweringInfo Info; 603 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 604 Info.Callee = MachineOperand::CreateES(Name); 605 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 606 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 607 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 608 609 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 610 if (!CLI.lowerCall(MIRBuilder, Info)) 611 return LegalizerHelper::UnableToLegalize; 612 613 614 if (Info.LoweredTailCall) { 615 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 616 617 // Check debug locations before removing the return. 618 LocObserver.checkpoint(true); 619 620 // We must have a return following the call (or debug insts) to get past 621 // isLibCallInTailPosition. 622 do { 623 MachineInstr *Next = MI.getNextNode(); 624 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 625 "Expected instr following MI to be return or debug inst?"); 626 // We lowered a tail call, so the call is now the return from the block. 627 // Delete the old return. 628 Next->eraseFromParent(); 629 } while (MI.getNextNode()); 630 631 // We expect to lose the debug location from the return. 632 LocObserver.checkpoint(false); 633 } 634 635 return LegalizerHelper::Legalized; 636 } 637 638 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 639 Type *FromType) { 640 auto ToMVT = MVT::getVT(ToType); 641 auto FromMVT = MVT::getVT(FromType); 642 643 switch (Opcode) { 644 case TargetOpcode::G_FPEXT: 645 return RTLIB::getFPEXT(FromMVT, ToMVT); 646 case TargetOpcode::G_FPTRUNC: 647 return RTLIB::getFPROUND(FromMVT, ToMVT); 648 case TargetOpcode::G_FPTOSI: 649 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 650 case TargetOpcode::G_FPTOUI: 651 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 652 case TargetOpcode::G_SITOFP: 653 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 654 case TargetOpcode::G_UITOFP: 655 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 656 } 657 llvm_unreachable("Unsupported libcall function"); 658 } 659 660 static LegalizerHelper::LegalizeResult 661 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 662 Type *FromType) { 663 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 664 return createLibcall(MIRBuilder, Libcall, 665 {MI.getOperand(0).getReg(), ToType, 0}, 666 {{MI.getOperand(1).getReg(), FromType, 0}}); 667 } 668 669 LegalizerHelper::LegalizeResult 670 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 671 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 672 unsigned Size = LLTy.getSizeInBits(); 673 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 674 675 switch (MI.getOpcode()) { 676 default: 677 return UnableToLegalize; 678 case TargetOpcode::G_SDIV: 679 case TargetOpcode::G_UDIV: 680 case TargetOpcode::G_SREM: 681 case TargetOpcode::G_UREM: 682 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 683 Type *HLTy = IntegerType::get(Ctx, Size); 684 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 685 if (Status != Legalized) 686 return Status; 687 break; 688 } 689 case TargetOpcode::G_FADD: 690 case TargetOpcode::G_FSUB: 691 case TargetOpcode::G_FMUL: 692 case TargetOpcode::G_FDIV: 693 case TargetOpcode::G_FMA: 694 case TargetOpcode::G_FPOW: 695 case TargetOpcode::G_FREM: 696 case TargetOpcode::G_FCOS: 697 case TargetOpcode::G_FSIN: 698 case TargetOpcode::G_FLOG10: 699 case TargetOpcode::G_FLOG: 700 case TargetOpcode::G_FLOG2: 701 case TargetOpcode::G_FEXP: 702 case TargetOpcode::G_FEXP2: 703 case TargetOpcode::G_FCEIL: 704 case TargetOpcode::G_FFLOOR: 705 case TargetOpcode::G_FMINNUM: 706 case TargetOpcode::G_FMAXNUM: 707 case TargetOpcode::G_FSQRT: 708 case TargetOpcode::G_FRINT: 709 case TargetOpcode::G_FNEARBYINT: 710 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 711 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 712 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 713 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 714 return UnableToLegalize; 715 } 716 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 717 if (Status != Legalized) 718 return Status; 719 break; 720 } 721 case TargetOpcode::G_FPEXT: 722 case TargetOpcode::G_FPTRUNC: { 723 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 724 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 725 if (!FromTy || !ToTy) 726 return UnableToLegalize; 727 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 728 if (Status != Legalized) 729 return Status; 730 break; 731 } 732 case TargetOpcode::G_FPTOSI: 733 case TargetOpcode::G_FPTOUI: { 734 // FIXME: Support other types 735 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 736 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 737 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 738 return UnableToLegalize; 739 LegalizeResult Status = conversionLibcall( 740 MI, MIRBuilder, 741 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 742 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 743 if (Status != Legalized) 744 return Status; 745 break; 746 } 747 case TargetOpcode::G_SITOFP: 748 case TargetOpcode::G_UITOFP: { 749 // FIXME: Support other types 750 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 751 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 752 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 753 return UnableToLegalize; 754 LegalizeResult Status = conversionLibcall( 755 MI, MIRBuilder, 756 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 757 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 758 if (Status != Legalized) 759 return Status; 760 break; 761 } 762 case TargetOpcode::G_BZERO: 763 case TargetOpcode::G_MEMCPY: 764 case TargetOpcode::G_MEMMOVE: 765 case TargetOpcode::G_MEMSET: { 766 LegalizeResult Result = 767 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 768 if (Result != Legalized) 769 return Result; 770 MI.eraseFromParent(); 771 return Result; 772 } 773 } 774 775 MI.eraseFromParent(); 776 return Legalized; 777 } 778 779 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 780 unsigned TypeIdx, 781 LLT NarrowTy) { 782 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 783 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 784 785 switch (MI.getOpcode()) { 786 default: 787 return UnableToLegalize; 788 case TargetOpcode::G_IMPLICIT_DEF: { 789 Register DstReg = MI.getOperand(0).getReg(); 790 LLT DstTy = MRI.getType(DstReg); 791 792 // If SizeOp0 is not an exact multiple of NarrowSize, emit 793 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 794 // FIXME: Although this would also be legal for the general case, it causes 795 // a lot of regressions in the emitted code (superfluous COPYs, artifact 796 // combines not being hit). This seems to be a problem related to the 797 // artifact combiner. 798 if (SizeOp0 % NarrowSize != 0) { 799 LLT ImplicitTy = NarrowTy; 800 if (DstTy.isVector()) 801 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 802 803 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 804 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 805 806 MI.eraseFromParent(); 807 return Legalized; 808 } 809 810 int NumParts = SizeOp0 / NarrowSize; 811 812 SmallVector<Register, 2> DstRegs; 813 for (int i = 0; i < NumParts; ++i) 814 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 815 816 if (DstTy.isVector()) 817 MIRBuilder.buildBuildVector(DstReg, DstRegs); 818 else 819 MIRBuilder.buildMerge(DstReg, DstRegs); 820 MI.eraseFromParent(); 821 return Legalized; 822 } 823 case TargetOpcode::G_CONSTANT: { 824 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 825 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 826 unsigned TotalSize = Ty.getSizeInBits(); 827 unsigned NarrowSize = NarrowTy.getSizeInBits(); 828 int NumParts = TotalSize / NarrowSize; 829 830 SmallVector<Register, 4> PartRegs; 831 for (int I = 0; I != NumParts; ++I) { 832 unsigned Offset = I * NarrowSize; 833 auto K = MIRBuilder.buildConstant(NarrowTy, 834 Val.lshr(Offset).trunc(NarrowSize)); 835 PartRegs.push_back(K.getReg(0)); 836 } 837 838 LLT LeftoverTy; 839 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 840 SmallVector<Register, 1> LeftoverRegs; 841 if (LeftoverBits != 0) { 842 LeftoverTy = LLT::scalar(LeftoverBits); 843 auto K = MIRBuilder.buildConstant( 844 LeftoverTy, 845 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 846 LeftoverRegs.push_back(K.getReg(0)); 847 } 848 849 insertParts(MI.getOperand(0).getReg(), 850 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 851 852 MI.eraseFromParent(); 853 return Legalized; 854 } 855 case TargetOpcode::G_SEXT: 856 case TargetOpcode::G_ZEXT: 857 case TargetOpcode::G_ANYEXT: 858 return narrowScalarExt(MI, TypeIdx, NarrowTy); 859 case TargetOpcode::G_TRUNC: { 860 if (TypeIdx != 1) 861 return UnableToLegalize; 862 863 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 864 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 865 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 866 return UnableToLegalize; 867 } 868 869 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 870 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 871 MI.eraseFromParent(); 872 return Legalized; 873 } 874 875 case TargetOpcode::G_FREEZE: 876 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 877 case TargetOpcode::G_ADD: 878 case TargetOpcode::G_SUB: 879 case TargetOpcode::G_SADDO: 880 case TargetOpcode::G_SSUBO: 881 case TargetOpcode::G_SADDE: 882 case TargetOpcode::G_SSUBE: 883 case TargetOpcode::G_UADDO: 884 case TargetOpcode::G_USUBO: 885 case TargetOpcode::G_UADDE: 886 case TargetOpcode::G_USUBE: 887 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 888 case TargetOpcode::G_MUL: 889 case TargetOpcode::G_UMULH: 890 return narrowScalarMul(MI, NarrowTy); 891 case TargetOpcode::G_EXTRACT: 892 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 893 case TargetOpcode::G_INSERT: 894 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 895 case TargetOpcode::G_LOAD: { 896 auto &MMO = **MI.memoperands_begin(); 897 Register DstReg = MI.getOperand(0).getReg(); 898 LLT DstTy = MRI.getType(DstReg); 899 if (DstTy.isVector()) 900 return UnableToLegalize; 901 902 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 903 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 904 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 905 MIRBuilder.buildAnyExt(DstReg, TmpReg); 906 MI.eraseFromParent(); 907 return Legalized; 908 } 909 910 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 911 } 912 case TargetOpcode::G_ZEXTLOAD: 913 case TargetOpcode::G_SEXTLOAD: { 914 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 915 Register DstReg = MI.getOperand(0).getReg(); 916 Register PtrReg = MI.getOperand(1).getReg(); 917 918 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 919 auto &MMO = **MI.memoperands_begin(); 920 unsigned MemSize = MMO.getSizeInBits(); 921 922 if (MemSize == NarrowSize) { 923 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 924 } else if (MemSize < NarrowSize) { 925 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 926 } else if (MemSize > NarrowSize) { 927 // FIXME: Need to split the load. 928 return UnableToLegalize; 929 } 930 931 if (ZExt) 932 MIRBuilder.buildZExt(DstReg, TmpReg); 933 else 934 MIRBuilder.buildSExt(DstReg, TmpReg); 935 936 MI.eraseFromParent(); 937 return Legalized; 938 } 939 case TargetOpcode::G_STORE: { 940 const auto &MMO = **MI.memoperands_begin(); 941 942 Register SrcReg = MI.getOperand(0).getReg(); 943 LLT SrcTy = MRI.getType(SrcReg); 944 if (SrcTy.isVector()) 945 return UnableToLegalize; 946 947 int NumParts = SizeOp0 / NarrowSize; 948 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 949 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 950 if (SrcTy.isVector() && LeftoverBits != 0) 951 return UnableToLegalize; 952 953 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 954 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 955 auto &MMO = **MI.memoperands_begin(); 956 MIRBuilder.buildTrunc(TmpReg, SrcReg); 957 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 958 MI.eraseFromParent(); 959 return Legalized; 960 } 961 962 return reduceLoadStoreWidth(MI, 0, NarrowTy); 963 } 964 case TargetOpcode::G_SELECT: 965 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 966 case TargetOpcode::G_AND: 967 case TargetOpcode::G_OR: 968 case TargetOpcode::G_XOR: { 969 // Legalize bitwise operation: 970 // A = BinOp<Ty> B, C 971 // into: 972 // B1, ..., BN = G_UNMERGE_VALUES B 973 // C1, ..., CN = G_UNMERGE_VALUES C 974 // A1 = BinOp<Ty/N> B1, C2 975 // ... 976 // AN = BinOp<Ty/N> BN, CN 977 // A = G_MERGE_VALUES A1, ..., AN 978 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 979 } 980 case TargetOpcode::G_SHL: 981 case TargetOpcode::G_LSHR: 982 case TargetOpcode::G_ASHR: 983 return narrowScalarShift(MI, TypeIdx, NarrowTy); 984 case TargetOpcode::G_CTLZ: 985 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 986 case TargetOpcode::G_CTTZ: 987 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 988 case TargetOpcode::G_CTPOP: 989 if (TypeIdx == 1) 990 switch (MI.getOpcode()) { 991 case TargetOpcode::G_CTLZ: 992 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 993 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 994 case TargetOpcode::G_CTTZ: 995 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 996 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 997 case TargetOpcode::G_CTPOP: 998 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 999 default: 1000 return UnableToLegalize; 1001 } 1002 1003 Observer.changingInstr(MI); 1004 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1005 Observer.changedInstr(MI); 1006 return Legalized; 1007 case TargetOpcode::G_INTTOPTR: 1008 if (TypeIdx != 1) 1009 return UnableToLegalize; 1010 1011 Observer.changingInstr(MI); 1012 narrowScalarSrc(MI, NarrowTy, 1); 1013 Observer.changedInstr(MI); 1014 return Legalized; 1015 case TargetOpcode::G_PTRTOINT: 1016 if (TypeIdx != 0) 1017 return UnableToLegalize; 1018 1019 Observer.changingInstr(MI); 1020 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1021 Observer.changedInstr(MI); 1022 return Legalized; 1023 case TargetOpcode::G_PHI: { 1024 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1025 // NarrowSize. 1026 if (SizeOp0 % NarrowSize != 0) 1027 return UnableToLegalize; 1028 1029 unsigned NumParts = SizeOp0 / NarrowSize; 1030 SmallVector<Register, 2> DstRegs(NumParts); 1031 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1032 Observer.changingInstr(MI); 1033 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1034 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1035 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1036 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1037 SrcRegs[i / 2]); 1038 } 1039 MachineBasicBlock &MBB = *MI.getParent(); 1040 MIRBuilder.setInsertPt(MBB, MI); 1041 for (unsigned i = 0; i < NumParts; ++i) { 1042 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1043 MachineInstrBuilder MIB = 1044 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1045 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1046 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1047 } 1048 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1049 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1050 Observer.changedInstr(MI); 1051 MI.eraseFromParent(); 1052 return Legalized; 1053 } 1054 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1055 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1056 if (TypeIdx != 2) 1057 return UnableToLegalize; 1058 1059 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1060 Observer.changingInstr(MI); 1061 narrowScalarSrc(MI, NarrowTy, OpIdx); 1062 Observer.changedInstr(MI); 1063 return Legalized; 1064 } 1065 case TargetOpcode::G_ICMP: { 1066 Register LHS = MI.getOperand(2).getReg(); 1067 LLT SrcTy = MRI.getType(LHS); 1068 uint64_t SrcSize = SrcTy.getSizeInBits(); 1069 CmpInst::Predicate Pred = 1070 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1071 1072 // TODO: Handle the non-equality case for weird sizes. 1073 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1074 return UnableToLegalize; 1075 1076 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1077 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1078 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1079 LHSLeftoverRegs)) 1080 return UnableToLegalize; 1081 1082 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1083 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1084 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1085 RHSPartRegs, RHSLeftoverRegs)) 1086 return UnableToLegalize; 1087 1088 // We now have the LHS and RHS of the compare split into narrow-type 1089 // registers, plus potentially some leftover type. 1090 Register Dst = MI.getOperand(0).getReg(); 1091 LLT ResTy = MRI.getType(Dst); 1092 if (ICmpInst::isEquality(Pred)) { 1093 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1094 // them together. For each equal part, the result should be all 0s. For 1095 // each non-equal part, we'll get at least one 1. 1096 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1097 SmallVector<Register, 4> Xors; 1098 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1099 auto LHS = std::get<0>(LHSAndRHS); 1100 auto RHS = std::get<1>(LHSAndRHS); 1101 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1102 Xors.push_back(Xor); 1103 } 1104 1105 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1106 // to the desired narrow type so that we can OR them together later. 1107 SmallVector<Register, 4> WidenedXors; 1108 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1109 auto LHS = std::get<0>(LHSAndRHS); 1110 auto RHS = std::get<1>(LHSAndRHS); 1111 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1112 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1113 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1114 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1115 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1116 } 1117 1118 // Now, for each part we broke up, we know if they are equal/not equal 1119 // based off the G_XOR. We can OR these all together and compare against 1120 // 0 to get the result. 1121 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1122 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1123 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1124 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1125 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1126 } else { 1127 // TODO: Handle non-power-of-two types. 1128 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1129 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1130 Register LHSL = LHSPartRegs[0]; 1131 Register LHSH = LHSPartRegs[1]; 1132 Register RHSL = RHSPartRegs[0]; 1133 Register RHSH = RHSPartRegs[1]; 1134 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1135 MachineInstrBuilder CmpHEQ = 1136 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1137 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1138 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1139 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1140 } 1141 MI.eraseFromParent(); 1142 return Legalized; 1143 } 1144 case TargetOpcode::G_SEXT_INREG: { 1145 if (TypeIdx != 0) 1146 return UnableToLegalize; 1147 1148 int64_t SizeInBits = MI.getOperand(2).getImm(); 1149 1150 // So long as the new type has more bits than the bits we're extending we 1151 // don't need to break it apart. 1152 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1153 Observer.changingInstr(MI); 1154 // We don't lose any non-extension bits by truncating the src and 1155 // sign-extending the dst. 1156 MachineOperand &MO1 = MI.getOperand(1); 1157 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1158 MO1.setReg(TruncMIB.getReg(0)); 1159 1160 MachineOperand &MO2 = MI.getOperand(0); 1161 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1162 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1163 MIRBuilder.buildSExt(MO2, DstExt); 1164 MO2.setReg(DstExt); 1165 Observer.changedInstr(MI); 1166 return Legalized; 1167 } 1168 1169 // Break it apart. Components below the extension point are unmodified. The 1170 // component containing the extension point becomes a narrower SEXT_INREG. 1171 // Components above it are ashr'd from the component containing the 1172 // extension point. 1173 if (SizeOp0 % NarrowSize != 0) 1174 return UnableToLegalize; 1175 int NumParts = SizeOp0 / NarrowSize; 1176 1177 // List the registers where the destination will be scattered. 1178 SmallVector<Register, 2> DstRegs; 1179 // List the registers where the source will be split. 1180 SmallVector<Register, 2> SrcRegs; 1181 1182 // Create all the temporary registers. 1183 for (int i = 0; i < NumParts; ++i) { 1184 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1185 1186 SrcRegs.push_back(SrcReg); 1187 } 1188 1189 // Explode the big arguments into smaller chunks. 1190 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1191 1192 Register AshrCstReg = 1193 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1194 .getReg(0); 1195 Register FullExtensionReg = 0; 1196 Register PartialExtensionReg = 0; 1197 1198 // Do the operation on each small part. 1199 for (int i = 0; i < NumParts; ++i) { 1200 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1201 DstRegs.push_back(SrcRegs[i]); 1202 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1203 assert(PartialExtensionReg && 1204 "Expected to visit partial extension before full"); 1205 if (FullExtensionReg) { 1206 DstRegs.push_back(FullExtensionReg); 1207 continue; 1208 } 1209 DstRegs.push_back( 1210 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1211 .getReg(0)); 1212 FullExtensionReg = DstRegs.back(); 1213 } else { 1214 DstRegs.push_back( 1215 MIRBuilder 1216 .buildInstr( 1217 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1218 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1219 .getReg(0)); 1220 PartialExtensionReg = DstRegs.back(); 1221 } 1222 } 1223 1224 // Gather the destination registers into the final destination. 1225 Register DstReg = MI.getOperand(0).getReg(); 1226 MIRBuilder.buildMerge(DstReg, DstRegs); 1227 MI.eraseFromParent(); 1228 return Legalized; 1229 } 1230 case TargetOpcode::G_BSWAP: 1231 case TargetOpcode::G_BITREVERSE: { 1232 if (SizeOp0 % NarrowSize != 0) 1233 return UnableToLegalize; 1234 1235 Observer.changingInstr(MI); 1236 SmallVector<Register, 2> SrcRegs, DstRegs; 1237 unsigned NumParts = SizeOp0 / NarrowSize; 1238 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1239 1240 for (unsigned i = 0; i < NumParts; ++i) { 1241 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1242 {SrcRegs[NumParts - 1 - i]}); 1243 DstRegs.push_back(DstPart.getReg(0)); 1244 } 1245 1246 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1247 1248 Observer.changedInstr(MI); 1249 MI.eraseFromParent(); 1250 return Legalized; 1251 } 1252 case TargetOpcode::G_PTR_ADD: 1253 case TargetOpcode::G_PTRMASK: { 1254 if (TypeIdx != 1) 1255 return UnableToLegalize; 1256 Observer.changingInstr(MI); 1257 narrowScalarSrc(MI, NarrowTy, 2); 1258 Observer.changedInstr(MI); 1259 return Legalized; 1260 } 1261 case TargetOpcode::G_FPTOUI: 1262 case TargetOpcode::G_FPTOSI: 1263 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1264 case TargetOpcode::G_FPEXT: 1265 if (TypeIdx != 0) 1266 return UnableToLegalize; 1267 Observer.changingInstr(MI); 1268 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1269 Observer.changedInstr(MI); 1270 return Legalized; 1271 } 1272 } 1273 1274 Register LegalizerHelper::coerceToScalar(Register Val) { 1275 LLT Ty = MRI.getType(Val); 1276 if (Ty.isScalar()) 1277 return Val; 1278 1279 const DataLayout &DL = MIRBuilder.getDataLayout(); 1280 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1281 if (Ty.isPointer()) { 1282 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1283 return Register(); 1284 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1285 } 1286 1287 Register NewVal = Val; 1288 1289 assert(Ty.isVector()); 1290 LLT EltTy = Ty.getElementType(); 1291 if (EltTy.isPointer()) 1292 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1293 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1294 } 1295 1296 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1297 unsigned OpIdx, unsigned ExtOpcode) { 1298 MachineOperand &MO = MI.getOperand(OpIdx); 1299 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1300 MO.setReg(ExtB.getReg(0)); 1301 } 1302 1303 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1304 unsigned OpIdx) { 1305 MachineOperand &MO = MI.getOperand(OpIdx); 1306 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1307 MO.setReg(ExtB.getReg(0)); 1308 } 1309 1310 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1311 unsigned OpIdx, unsigned TruncOpcode) { 1312 MachineOperand &MO = MI.getOperand(OpIdx); 1313 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1314 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1315 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1316 MO.setReg(DstExt); 1317 } 1318 1319 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1320 unsigned OpIdx, unsigned ExtOpcode) { 1321 MachineOperand &MO = MI.getOperand(OpIdx); 1322 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1323 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1324 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1325 MO.setReg(DstTrunc); 1326 } 1327 1328 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1329 unsigned OpIdx) { 1330 MachineOperand &MO = MI.getOperand(OpIdx); 1331 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1332 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1333 } 1334 1335 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1336 unsigned OpIdx) { 1337 MachineOperand &MO = MI.getOperand(OpIdx); 1338 1339 LLT OldTy = MRI.getType(MO.getReg()); 1340 unsigned OldElts = OldTy.getNumElements(); 1341 unsigned NewElts = MoreTy.getNumElements(); 1342 1343 unsigned NumParts = NewElts / OldElts; 1344 1345 // Use concat_vectors if the result is a multiple of the number of elements. 1346 if (NumParts * OldElts == NewElts) { 1347 SmallVector<Register, 8> Parts; 1348 Parts.push_back(MO.getReg()); 1349 1350 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1351 for (unsigned I = 1; I != NumParts; ++I) 1352 Parts.push_back(ImpDef); 1353 1354 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1355 MO.setReg(Concat.getReg(0)); 1356 return; 1357 } 1358 1359 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1360 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1361 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1362 MO.setReg(MoreReg); 1363 } 1364 1365 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1366 MachineOperand &Op = MI.getOperand(OpIdx); 1367 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1368 } 1369 1370 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1371 MachineOperand &MO = MI.getOperand(OpIdx); 1372 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1373 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1374 MIRBuilder.buildBitcast(MO, CastDst); 1375 MO.setReg(CastDst); 1376 } 1377 1378 LegalizerHelper::LegalizeResult 1379 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1380 LLT WideTy) { 1381 if (TypeIdx != 1) 1382 return UnableToLegalize; 1383 1384 Register DstReg = MI.getOperand(0).getReg(); 1385 LLT DstTy = MRI.getType(DstReg); 1386 if (DstTy.isVector()) 1387 return UnableToLegalize; 1388 1389 Register Src1 = MI.getOperand(1).getReg(); 1390 LLT SrcTy = MRI.getType(Src1); 1391 const int DstSize = DstTy.getSizeInBits(); 1392 const int SrcSize = SrcTy.getSizeInBits(); 1393 const int WideSize = WideTy.getSizeInBits(); 1394 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1395 1396 unsigned NumOps = MI.getNumOperands(); 1397 unsigned NumSrc = MI.getNumOperands() - 1; 1398 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1399 1400 if (WideSize >= DstSize) { 1401 // Directly pack the bits in the target type. 1402 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1403 1404 for (unsigned I = 2; I != NumOps; ++I) { 1405 const unsigned Offset = (I - 1) * PartSize; 1406 1407 Register SrcReg = MI.getOperand(I).getReg(); 1408 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1409 1410 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1411 1412 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1413 MRI.createGenericVirtualRegister(WideTy); 1414 1415 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1416 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1417 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1418 ResultReg = NextResult; 1419 } 1420 1421 if (WideSize > DstSize) 1422 MIRBuilder.buildTrunc(DstReg, ResultReg); 1423 else if (DstTy.isPointer()) 1424 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1425 1426 MI.eraseFromParent(); 1427 return Legalized; 1428 } 1429 1430 // Unmerge the original values to the GCD type, and recombine to the next 1431 // multiple greater than the original type. 1432 // 1433 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1434 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1435 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1436 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1437 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1438 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1439 // %12:_(s12) = G_MERGE_VALUES %10, %11 1440 // 1441 // Padding with undef if necessary: 1442 // 1443 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1444 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1445 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1446 // %7:_(s2) = G_IMPLICIT_DEF 1447 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1448 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1449 // %10:_(s12) = G_MERGE_VALUES %8, %9 1450 1451 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1452 LLT GCDTy = LLT::scalar(GCD); 1453 1454 SmallVector<Register, 8> Parts; 1455 SmallVector<Register, 8> NewMergeRegs; 1456 SmallVector<Register, 8> Unmerges; 1457 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1458 1459 // Decompose the original operands if they don't evenly divide. 1460 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1461 Register SrcReg = MI.getOperand(I).getReg(); 1462 if (GCD == SrcSize) { 1463 Unmerges.push_back(SrcReg); 1464 } else { 1465 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1466 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1467 Unmerges.push_back(Unmerge.getReg(J)); 1468 } 1469 } 1470 1471 // Pad with undef to the next size that is a multiple of the requested size. 1472 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1473 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1474 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1475 Unmerges.push_back(UndefReg); 1476 } 1477 1478 const int PartsPerGCD = WideSize / GCD; 1479 1480 // Build merges of each piece. 1481 ArrayRef<Register> Slicer(Unmerges); 1482 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1483 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1484 NewMergeRegs.push_back(Merge.getReg(0)); 1485 } 1486 1487 // A truncate may be necessary if the requested type doesn't evenly divide the 1488 // original result type. 1489 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1490 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1491 } else { 1492 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1493 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1494 } 1495 1496 MI.eraseFromParent(); 1497 return Legalized; 1498 } 1499 1500 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1501 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1502 LLT OrigTy = MRI.getType(OrigReg); 1503 LLT LCMTy = getLCMType(WideTy, OrigTy); 1504 1505 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1506 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1507 1508 Register UnmergeSrc = WideReg; 1509 1510 // Create a merge to the LCM type, padding with undef 1511 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1512 // => 1513 // %1:_(<4 x s32>) = G_FOO 1514 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1515 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1516 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1517 if (NumMergeParts > 1) { 1518 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1519 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1520 MergeParts[0] = WideReg; 1521 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1522 } 1523 1524 // Unmerge to the original register and pad with dead defs. 1525 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1526 UnmergeResults[0] = OrigReg; 1527 for (int I = 1; I != NumUnmergeParts; ++I) 1528 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1529 1530 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1531 return WideReg; 1532 } 1533 1534 LegalizerHelper::LegalizeResult 1535 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1536 LLT WideTy) { 1537 if (TypeIdx != 0) 1538 return UnableToLegalize; 1539 1540 int NumDst = MI.getNumOperands() - 1; 1541 Register SrcReg = MI.getOperand(NumDst).getReg(); 1542 LLT SrcTy = MRI.getType(SrcReg); 1543 if (SrcTy.isVector()) 1544 return UnableToLegalize; 1545 1546 Register Dst0Reg = MI.getOperand(0).getReg(); 1547 LLT DstTy = MRI.getType(Dst0Reg); 1548 if (!DstTy.isScalar()) 1549 return UnableToLegalize; 1550 1551 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1552 if (SrcTy.isPointer()) { 1553 const DataLayout &DL = MIRBuilder.getDataLayout(); 1554 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1555 LLVM_DEBUG( 1556 dbgs() << "Not casting non-integral address space integer\n"); 1557 return UnableToLegalize; 1558 } 1559 1560 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1561 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1562 } 1563 1564 // Widen SrcTy to WideTy. This does not affect the result, but since the 1565 // user requested this size, it is probably better handled than SrcTy and 1566 // should reduce the total number of legalization artifacts 1567 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1568 SrcTy = WideTy; 1569 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1570 } 1571 1572 // Theres no unmerge type to target. Directly extract the bits from the 1573 // source type 1574 unsigned DstSize = DstTy.getSizeInBits(); 1575 1576 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1577 for (int I = 1; I != NumDst; ++I) { 1578 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1579 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1580 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1581 } 1582 1583 MI.eraseFromParent(); 1584 return Legalized; 1585 } 1586 1587 // Extend the source to a wider type. 1588 LLT LCMTy = getLCMType(SrcTy, WideTy); 1589 1590 Register WideSrc = SrcReg; 1591 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1592 // TODO: If this is an integral address space, cast to integer and anyext. 1593 if (SrcTy.isPointer()) { 1594 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1595 return UnableToLegalize; 1596 } 1597 1598 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1599 } 1600 1601 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1602 1603 // Create a sequence of unmerges and merges to the original results. Since we 1604 // may have widened the source, we will need to pad the results with dead defs 1605 // to cover the source register. 1606 // e.g. widen s48 to s64: 1607 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1608 // 1609 // => 1610 // %4:_(s192) = G_ANYEXT %0:_(s96) 1611 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1612 // ; unpack to GCD type, with extra dead defs 1613 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1614 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1615 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1616 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1617 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1618 const LLT GCDTy = getGCDType(WideTy, DstTy); 1619 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1620 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1621 1622 // Directly unmerge to the destination without going through a GCD type 1623 // if possible 1624 if (PartsPerRemerge == 1) { 1625 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1626 1627 for (int I = 0; I != NumUnmerge; ++I) { 1628 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1629 1630 for (int J = 0; J != PartsPerUnmerge; ++J) { 1631 int Idx = I * PartsPerUnmerge + J; 1632 if (Idx < NumDst) 1633 MIB.addDef(MI.getOperand(Idx).getReg()); 1634 else { 1635 // Create dead def for excess components. 1636 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1637 } 1638 } 1639 1640 MIB.addUse(Unmerge.getReg(I)); 1641 } 1642 } else { 1643 SmallVector<Register, 16> Parts; 1644 for (int J = 0; J != NumUnmerge; ++J) 1645 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1646 1647 SmallVector<Register, 8> RemergeParts; 1648 for (int I = 0; I != NumDst; ++I) { 1649 for (int J = 0; J < PartsPerRemerge; ++J) { 1650 const int Idx = I * PartsPerRemerge + J; 1651 RemergeParts.emplace_back(Parts[Idx]); 1652 } 1653 1654 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1655 RemergeParts.clear(); 1656 } 1657 } 1658 1659 MI.eraseFromParent(); 1660 return Legalized; 1661 } 1662 1663 LegalizerHelper::LegalizeResult 1664 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1665 LLT WideTy) { 1666 Register DstReg = MI.getOperand(0).getReg(); 1667 Register SrcReg = MI.getOperand(1).getReg(); 1668 LLT SrcTy = MRI.getType(SrcReg); 1669 1670 LLT DstTy = MRI.getType(DstReg); 1671 unsigned Offset = MI.getOperand(2).getImm(); 1672 1673 if (TypeIdx == 0) { 1674 if (SrcTy.isVector() || DstTy.isVector()) 1675 return UnableToLegalize; 1676 1677 SrcOp Src(SrcReg); 1678 if (SrcTy.isPointer()) { 1679 // Extracts from pointers can be handled only if they are really just 1680 // simple integers. 1681 const DataLayout &DL = MIRBuilder.getDataLayout(); 1682 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1683 return UnableToLegalize; 1684 1685 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1686 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1687 SrcTy = SrcAsIntTy; 1688 } 1689 1690 if (DstTy.isPointer()) 1691 return UnableToLegalize; 1692 1693 if (Offset == 0) { 1694 // Avoid a shift in the degenerate case. 1695 MIRBuilder.buildTrunc(DstReg, 1696 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1697 MI.eraseFromParent(); 1698 return Legalized; 1699 } 1700 1701 // Do a shift in the source type. 1702 LLT ShiftTy = SrcTy; 1703 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1704 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1705 ShiftTy = WideTy; 1706 } 1707 1708 auto LShr = MIRBuilder.buildLShr( 1709 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1710 MIRBuilder.buildTrunc(DstReg, LShr); 1711 MI.eraseFromParent(); 1712 return Legalized; 1713 } 1714 1715 if (SrcTy.isScalar()) { 1716 Observer.changingInstr(MI); 1717 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1718 Observer.changedInstr(MI); 1719 return Legalized; 1720 } 1721 1722 if (!SrcTy.isVector()) 1723 return UnableToLegalize; 1724 1725 if (DstTy != SrcTy.getElementType()) 1726 return UnableToLegalize; 1727 1728 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1729 return UnableToLegalize; 1730 1731 Observer.changingInstr(MI); 1732 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1733 1734 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1735 Offset); 1736 widenScalarDst(MI, WideTy.getScalarType(), 0); 1737 Observer.changedInstr(MI); 1738 return Legalized; 1739 } 1740 1741 LegalizerHelper::LegalizeResult 1742 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1743 LLT WideTy) { 1744 if (TypeIdx != 0 || WideTy.isVector()) 1745 return UnableToLegalize; 1746 Observer.changingInstr(MI); 1747 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1748 widenScalarDst(MI, WideTy); 1749 Observer.changedInstr(MI); 1750 return Legalized; 1751 } 1752 1753 LegalizerHelper::LegalizeResult 1754 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1755 LLT WideTy) { 1756 if (TypeIdx == 1) 1757 return UnableToLegalize; // TODO 1758 1759 unsigned Opcode; 1760 unsigned ExtOpcode; 1761 Optional<Register> CarryIn = None; 1762 switch (MI.getOpcode()) { 1763 default: 1764 llvm_unreachable("Unexpected opcode!"); 1765 case TargetOpcode::G_SADDO: 1766 Opcode = TargetOpcode::G_ADD; 1767 ExtOpcode = TargetOpcode::G_SEXT; 1768 break; 1769 case TargetOpcode::G_SSUBO: 1770 Opcode = TargetOpcode::G_SUB; 1771 ExtOpcode = TargetOpcode::G_SEXT; 1772 break; 1773 case TargetOpcode::G_UADDO: 1774 Opcode = TargetOpcode::G_ADD; 1775 ExtOpcode = TargetOpcode::G_ZEXT; 1776 break; 1777 case TargetOpcode::G_USUBO: 1778 Opcode = TargetOpcode::G_SUB; 1779 ExtOpcode = TargetOpcode::G_ZEXT; 1780 break; 1781 case TargetOpcode::G_SADDE: 1782 Opcode = TargetOpcode::G_UADDE; 1783 ExtOpcode = TargetOpcode::G_SEXT; 1784 CarryIn = MI.getOperand(4).getReg(); 1785 break; 1786 case TargetOpcode::G_SSUBE: 1787 Opcode = TargetOpcode::G_USUBE; 1788 ExtOpcode = TargetOpcode::G_SEXT; 1789 CarryIn = MI.getOperand(4).getReg(); 1790 break; 1791 case TargetOpcode::G_UADDE: 1792 Opcode = TargetOpcode::G_UADDE; 1793 ExtOpcode = TargetOpcode::G_ZEXT; 1794 CarryIn = MI.getOperand(4).getReg(); 1795 break; 1796 case TargetOpcode::G_USUBE: 1797 Opcode = TargetOpcode::G_USUBE; 1798 ExtOpcode = TargetOpcode::G_ZEXT; 1799 CarryIn = MI.getOperand(4).getReg(); 1800 break; 1801 } 1802 1803 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1804 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1805 // Do the arithmetic in the larger type. 1806 Register NewOp; 1807 if (CarryIn) { 1808 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1809 NewOp = MIRBuilder 1810 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1811 {LHSExt, RHSExt, *CarryIn}) 1812 .getReg(0); 1813 } else { 1814 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1815 } 1816 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1817 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1818 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1819 // There is no overflow if the ExtOp is the same as NewOp. 1820 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1821 // Now trunc the NewOp to the original result. 1822 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1823 MI.eraseFromParent(); 1824 return Legalized; 1825 } 1826 1827 LegalizerHelper::LegalizeResult 1828 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1829 LLT WideTy) { 1830 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1831 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1832 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1833 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1834 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1835 // We can convert this to: 1836 // 1. Any extend iN to iM 1837 // 2. SHL by M-N 1838 // 3. [US][ADD|SUB|SHL]SAT 1839 // 4. L/ASHR by M-N 1840 // 1841 // It may be more efficient to lower this to a min and a max operation in 1842 // the higher precision arithmetic if the promoted operation isn't legal, 1843 // but this decision is up to the target's lowering request. 1844 Register DstReg = MI.getOperand(0).getReg(); 1845 1846 unsigned NewBits = WideTy.getScalarSizeInBits(); 1847 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1848 1849 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1850 // must not left shift the RHS to preserve the shift amount. 1851 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1852 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1853 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1854 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1855 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1856 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1857 1858 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1859 {ShiftL, ShiftR}, MI.getFlags()); 1860 1861 // Use a shift that will preserve the number of sign bits when the trunc is 1862 // folded away. 1863 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1864 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1865 1866 MIRBuilder.buildTrunc(DstReg, Result); 1867 MI.eraseFromParent(); 1868 return Legalized; 1869 } 1870 1871 LegalizerHelper::LegalizeResult 1872 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1873 LLT WideTy) { 1874 if (TypeIdx == 1) 1875 return UnableToLegalize; 1876 1877 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1878 Register Result = MI.getOperand(0).getReg(); 1879 Register OriginalOverflow = MI.getOperand(1).getReg(); 1880 Register LHS = MI.getOperand(2).getReg(); 1881 Register RHS = MI.getOperand(3).getReg(); 1882 LLT SrcTy = MRI.getType(LHS); 1883 LLT OverflowTy = MRI.getType(OriginalOverflow); 1884 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1885 1886 // To determine if the result overflowed in the larger type, we extend the 1887 // input to the larger type, do the multiply (checking if it overflows), 1888 // then also check the high bits of the result to see if overflow happened 1889 // there. 1890 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1891 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 1892 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 1893 1894 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 1895 {LeftOperand, RightOperand}); 1896 auto Mul = Mulo->getOperand(0); 1897 MIRBuilder.buildTrunc(Result, Mul); 1898 1899 MachineInstrBuilder ExtResult; 1900 // Overflow occurred if it occurred in the larger type, or if the high part 1901 // of the result does not zero/sign-extend the low part. Check this second 1902 // possibility first. 1903 if (IsSigned) { 1904 // For signed, overflow occurred when the high part does not sign-extend 1905 // the low part. 1906 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 1907 } else { 1908 // Unsigned overflow occurred when the high part does not zero-extend the 1909 // low part. 1910 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 1911 } 1912 1913 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 1914 // so we don't need to check the overflow result of larger type Mulo. 1915 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 1916 auto Overflow = 1917 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 1918 // Finally check if the multiplication in the larger type itself overflowed. 1919 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 1920 } else { 1921 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 1922 } 1923 MI.eraseFromParent(); 1924 return Legalized; 1925 } 1926 1927 LegalizerHelper::LegalizeResult 1928 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1929 switch (MI.getOpcode()) { 1930 default: 1931 return UnableToLegalize; 1932 case TargetOpcode::G_EXTRACT: 1933 return widenScalarExtract(MI, TypeIdx, WideTy); 1934 case TargetOpcode::G_INSERT: 1935 return widenScalarInsert(MI, TypeIdx, WideTy); 1936 case TargetOpcode::G_MERGE_VALUES: 1937 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1938 case TargetOpcode::G_UNMERGE_VALUES: 1939 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1940 case TargetOpcode::G_SADDO: 1941 case TargetOpcode::G_SSUBO: 1942 case TargetOpcode::G_UADDO: 1943 case TargetOpcode::G_USUBO: 1944 case TargetOpcode::G_SADDE: 1945 case TargetOpcode::G_SSUBE: 1946 case TargetOpcode::G_UADDE: 1947 case TargetOpcode::G_USUBE: 1948 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 1949 case TargetOpcode::G_UMULO: 1950 case TargetOpcode::G_SMULO: 1951 return widenScalarMulo(MI, TypeIdx, WideTy); 1952 case TargetOpcode::G_SADDSAT: 1953 case TargetOpcode::G_SSUBSAT: 1954 case TargetOpcode::G_SSHLSAT: 1955 case TargetOpcode::G_UADDSAT: 1956 case TargetOpcode::G_USUBSAT: 1957 case TargetOpcode::G_USHLSAT: 1958 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1959 case TargetOpcode::G_CTTZ: 1960 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1961 case TargetOpcode::G_CTLZ: 1962 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1963 case TargetOpcode::G_CTPOP: { 1964 if (TypeIdx == 0) { 1965 Observer.changingInstr(MI); 1966 widenScalarDst(MI, WideTy, 0); 1967 Observer.changedInstr(MI); 1968 return Legalized; 1969 } 1970 1971 Register SrcReg = MI.getOperand(1).getReg(); 1972 1973 // First ZEXT the input. 1974 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1975 LLT CurTy = MRI.getType(SrcReg); 1976 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1977 // The count is the same in the larger type except if the original 1978 // value was zero. This can be handled by setting the bit just off 1979 // the top of the original type. 1980 auto TopBit = 1981 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1982 MIBSrc = MIRBuilder.buildOr( 1983 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1984 } 1985 1986 // Perform the operation at the larger size. 1987 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1988 // This is already the correct result for CTPOP and CTTZs 1989 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1990 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1991 // The correct result is NewOp - (Difference in widety and current ty). 1992 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1993 MIBNewOp = MIRBuilder.buildSub( 1994 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1995 } 1996 1997 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1998 MI.eraseFromParent(); 1999 return Legalized; 2000 } 2001 case TargetOpcode::G_BSWAP: { 2002 Observer.changingInstr(MI); 2003 Register DstReg = MI.getOperand(0).getReg(); 2004 2005 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2006 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2007 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2008 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2009 2010 MI.getOperand(0).setReg(DstExt); 2011 2012 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2013 2014 LLT Ty = MRI.getType(DstReg); 2015 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2016 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2017 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2018 2019 MIRBuilder.buildTrunc(DstReg, ShrReg); 2020 Observer.changedInstr(MI); 2021 return Legalized; 2022 } 2023 case TargetOpcode::G_BITREVERSE: { 2024 Observer.changingInstr(MI); 2025 2026 Register DstReg = MI.getOperand(0).getReg(); 2027 LLT Ty = MRI.getType(DstReg); 2028 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2029 2030 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2031 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2032 MI.getOperand(0).setReg(DstExt); 2033 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2034 2035 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2036 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2037 MIRBuilder.buildTrunc(DstReg, Shift); 2038 Observer.changedInstr(MI); 2039 return Legalized; 2040 } 2041 case TargetOpcode::G_FREEZE: 2042 Observer.changingInstr(MI); 2043 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2044 widenScalarDst(MI, WideTy); 2045 Observer.changedInstr(MI); 2046 return Legalized; 2047 2048 case TargetOpcode::G_ABS: 2049 Observer.changingInstr(MI); 2050 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2051 widenScalarDst(MI, WideTy); 2052 Observer.changedInstr(MI); 2053 return Legalized; 2054 2055 case TargetOpcode::G_ADD: 2056 case TargetOpcode::G_AND: 2057 case TargetOpcode::G_MUL: 2058 case TargetOpcode::G_OR: 2059 case TargetOpcode::G_XOR: 2060 case TargetOpcode::G_SUB: 2061 // Perform operation at larger width (any extension is fines here, high bits 2062 // don't affect the result) and then truncate the result back to the 2063 // original type. 2064 Observer.changingInstr(MI); 2065 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2066 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2067 widenScalarDst(MI, WideTy); 2068 Observer.changedInstr(MI); 2069 return Legalized; 2070 2071 case TargetOpcode::G_SBFX: 2072 case TargetOpcode::G_UBFX: 2073 Observer.changingInstr(MI); 2074 2075 if (TypeIdx == 0) { 2076 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2077 widenScalarDst(MI, WideTy); 2078 } else { 2079 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2080 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2081 } 2082 2083 Observer.changedInstr(MI); 2084 return Legalized; 2085 2086 case TargetOpcode::G_SHL: 2087 Observer.changingInstr(MI); 2088 2089 if (TypeIdx == 0) { 2090 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2091 widenScalarDst(MI, WideTy); 2092 } else { 2093 assert(TypeIdx == 1); 2094 // The "number of bits to shift" operand must preserve its value as an 2095 // unsigned integer: 2096 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2097 } 2098 2099 Observer.changedInstr(MI); 2100 return Legalized; 2101 2102 case TargetOpcode::G_SDIV: 2103 case TargetOpcode::G_SREM: 2104 case TargetOpcode::G_SMIN: 2105 case TargetOpcode::G_SMAX: 2106 Observer.changingInstr(MI); 2107 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2108 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2109 widenScalarDst(MI, WideTy); 2110 Observer.changedInstr(MI); 2111 return Legalized; 2112 2113 case TargetOpcode::G_SDIVREM: 2114 Observer.changingInstr(MI); 2115 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2116 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2117 widenScalarDst(MI, WideTy); 2118 widenScalarDst(MI, WideTy, 1); 2119 Observer.changedInstr(MI); 2120 return Legalized; 2121 2122 case TargetOpcode::G_ASHR: 2123 case TargetOpcode::G_LSHR: 2124 Observer.changingInstr(MI); 2125 2126 if (TypeIdx == 0) { 2127 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2128 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2129 2130 widenScalarSrc(MI, WideTy, 1, CvtOp); 2131 widenScalarDst(MI, WideTy); 2132 } else { 2133 assert(TypeIdx == 1); 2134 // The "number of bits to shift" operand must preserve its value as an 2135 // unsigned integer: 2136 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2137 } 2138 2139 Observer.changedInstr(MI); 2140 return Legalized; 2141 case TargetOpcode::G_UDIV: 2142 case TargetOpcode::G_UREM: 2143 case TargetOpcode::G_UMIN: 2144 case TargetOpcode::G_UMAX: 2145 Observer.changingInstr(MI); 2146 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2147 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2148 widenScalarDst(MI, WideTy); 2149 Observer.changedInstr(MI); 2150 return Legalized; 2151 2152 case TargetOpcode::G_UDIVREM: 2153 Observer.changingInstr(MI); 2154 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2155 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2156 widenScalarDst(MI, WideTy); 2157 widenScalarDst(MI, WideTy, 1); 2158 Observer.changedInstr(MI); 2159 return Legalized; 2160 2161 case TargetOpcode::G_SELECT: 2162 Observer.changingInstr(MI); 2163 if (TypeIdx == 0) { 2164 // Perform operation at larger width (any extension is fine here, high 2165 // bits don't affect the result) and then truncate the result back to the 2166 // original type. 2167 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2168 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2169 widenScalarDst(MI, WideTy); 2170 } else { 2171 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2172 // Explicit extension is required here since high bits affect the result. 2173 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2174 } 2175 Observer.changedInstr(MI); 2176 return Legalized; 2177 2178 case TargetOpcode::G_FPTOSI: 2179 case TargetOpcode::G_FPTOUI: 2180 Observer.changingInstr(MI); 2181 2182 if (TypeIdx == 0) 2183 widenScalarDst(MI, WideTy); 2184 else 2185 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2186 2187 Observer.changedInstr(MI); 2188 return Legalized; 2189 case TargetOpcode::G_SITOFP: 2190 Observer.changingInstr(MI); 2191 2192 if (TypeIdx == 0) 2193 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2194 else 2195 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2196 2197 Observer.changedInstr(MI); 2198 return Legalized; 2199 case TargetOpcode::G_UITOFP: 2200 Observer.changingInstr(MI); 2201 2202 if (TypeIdx == 0) 2203 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2204 else 2205 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2206 2207 Observer.changedInstr(MI); 2208 return Legalized; 2209 case TargetOpcode::G_LOAD: 2210 case TargetOpcode::G_SEXTLOAD: 2211 case TargetOpcode::G_ZEXTLOAD: 2212 Observer.changingInstr(MI); 2213 widenScalarDst(MI, WideTy); 2214 Observer.changedInstr(MI); 2215 return Legalized; 2216 2217 case TargetOpcode::G_STORE: { 2218 if (TypeIdx != 0) 2219 return UnableToLegalize; 2220 2221 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2222 if (!Ty.isScalar()) 2223 return UnableToLegalize; 2224 2225 Observer.changingInstr(MI); 2226 2227 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2228 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2229 widenScalarSrc(MI, WideTy, 0, ExtType); 2230 2231 Observer.changedInstr(MI); 2232 return Legalized; 2233 } 2234 case TargetOpcode::G_CONSTANT: { 2235 MachineOperand &SrcMO = MI.getOperand(1); 2236 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2237 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2238 MRI.getType(MI.getOperand(0).getReg())); 2239 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2240 ExtOpc == TargetOpcode::G_ANYEXT) && 2241 "Illegal Extend"); 2242 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2243 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2244 ? SrcVal.sext(WideTy.getSizeInBits()) 2245 : SrcVal.zext(WideTy.getSizeInBits()); 2246 Observer.changingInstr(MI); 2247 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2248 2249 widenScalarDst(MI, WideTy); 2250 Observer.changedInstr(MI); 2251 return Legalized; 2252 } 2253 case TargetOpcode::G_FCONSTANT: { 2254 MachineOperand &SrcMO = MI.getOperand(1); 2255 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2256 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2257 bool LosesInfo; 2258 switch (WideTy.getSizeInBits()) { 2259 case 32: 2260 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2261 &LosesInfo); 2262 break; 2263 case 64: 2264 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2265 &LosesInfo); 2266 break; 2267 default: 2268 return UnableToLegalize; 2269 } 2270 2271 assert(!LosesInfo && "extend should always be lossless"); 2272 2273 Observer.changingInstr(MI); 2274 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2275 2276 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2277 Observer.changedInstr(MI); 2278 return Legalized; 2279 } 2280 case TargetOpcode::G_IMPLICIT_DEF: { 2281 Observer.changingInstr(MI); 2282 widenScalarDst(MI, WideTy); 2283 Observer.changedInstr(MI); 2284 return Legalized; 2285 } 2286 case TargetOpcode::G_BRCOND: 2287 Observer.changingInstr(MI); 2288 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2289 Observer.changedInstr(MI); 2290 return Legalized; 2291 2292 case TargetOpcode::G_FCMP: 2293 Observer.changingInstr(MI); 2294 if (TypeIdx == 0) 2295 widenScalarDst(MI, WideTy); 2296 else { 2297 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2298 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2299 } 2300 Observer.changedInstr(MI); 2301 return Legalized; 2302 2303 case TargetOpcode::G_ICMP: 2304 Observer.changingInstr(MI); 2305 if (TypeIdx == 0) 2306 widenScalarDst(MI, WideTy); 2307 else { 2308 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2309 MI.getOperand(1).getPredicate())) 2310 ? TargetOpcode::G_SEXT 2311 : TargetOpcode::G_ZEXT; 2312 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2313 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2314 } 2315 Observer.changedInstr(MI); 2316 return Legalized; 2317 2318 case TargetOpcode::G_PTR_ADD: 2319 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2320 Observer.changingInstr(MI); 2321 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2322 Observer.changedInstr(MI); 2323 return Legalized; 2324 2325 case TargetOpcode::G_PHI: { 2326 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2327 2328 Observer.changingInstr(MI); 2329 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2330 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2331 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2332 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2333 } 2334 2335 MachineBasicBlock &MBB = *MI.getParent(); 2336 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2337 widenScalarDst(MI, WideTy); 2338 Observer.changedInstr(MI); 2339 return Legalized; 2340 } 2341 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2342 if (TypeIdx == 0) { 2343 Register VecReg = MI.getOperand(1).getReg(); 2344 LLT VecTy = MRI.getType(VecReg); 2345 Observer.changingInstr(MI); 2346 2347 widenScalarSrc( 2348 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2349 TargetOpcode::G_SEXT); 2350 2351 widenScalarDst(MI, WideTy, 0); 2352 Observer.changedInstr(MI); 2353 return Legalized; 2354 } 2355 2356 if (TypeIdx != 2) 2357 return UnableToLegalize; 2358 Observer.changingInstr(MI); 2359 // TODO: Probably should be zext 2360 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2361 Observer.changedInstr(MI); 2362 return Legalized; 2363 } 2364 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2365 if (TypeIdx == 1) { 2366 Observer.changingInstr(MI); 2367 2368 Register VecReg = MI.getOperand(1).getReg(); 2369 LLT VecTy = MRI.getType(VecReg); 2370 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2371 2372 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2373 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2374 widenScalarDst(MI, WideVecTy, 0); 2375 Observer.changedInstr(MI); 2376 return Legalized; 2377 } 2378 2379 if (TypeIdx == 2) { 2380 Observer.changingInstr(MI); 2381 // TODO: Probably should be zext 2382 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2383 Observer.changedInstr(MI); 2384 return Legalized; 2385 } 2386 2387 return UnableToLegalize; 2388 } 2389 case TargetOpcode::G_FADD: 2390 case TargetOpcode::G_FMUL: 2391 case TargetOpcode::G_FSUB: 2392 case TargetOpcode::G_FMA: 2393 case TargetOpcode::G_FMAD: 2394 case TargetOpcode::G_FNEG: 2395 case TargetOpcode::G_FABS: 2396 case TargetOpcode::G_FCANONICALIZE: 2397 case TargetOpcode::G_FMINNUM: 2398 case TargetOpcode::G_FMAXNUM: 2399 case TargetOpcode::G_FMINNUM_IEEE: 2400 case TargetOpcode::G_FMAXNUM_IEEE: 2401 case TargetOpcode::G_FMINIMUM: 2402 case TargetOpcode::G_FMAXIMUM: 2403 case TargetOpcode::G_FDIV: 2404 case TargetOpcode::G_FREM: 2405 case TargetOpcode::G_FCEIL: 2406 case TargetOpcode::G_FFLOOR: 2407 case TargetOpcode::G_FCOS: 2408 case TargetOpcode::G_FSIN: 2409 case TargetOpcode::G_FLOG10: 2410 case TargetOpcode::G_FLOG: 2411 case TargetOpcode::G_FLOG2: 2412 case TargetOpcode::G_FRINT: 2413 case TargetOpcode::G_FNEARBYINT: 2414 case TargetOpcode::G_FSQRT: 2415 case TargetOpcode::G_FEXP: 2416 case TargetOpcode::G_FEXP2: 2417 case TargetOpcode::G_FPOW: 2418 case TargetOpcode::G_INTRINSIC_TRUNC: 2419 case TargetOpcode::G_INTRINSIC_ROUND: 2420 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2421 assert(TypeIdx == 0); 2422 Observer.changingInstr(MI); 2423 2424 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2425 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2426 2427 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2428 Observer.changedInstr(MI); 2429 return Legalized; 2430 case TargetOpcode::G_FPOWI: { 2431 if (TypeIdx != 0) 2432 return UnableToLegalize; 2433 Observer.changingInstr(MI); 2434 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2435 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2436 Observer.changedInstr(MI); 2437 return Legalized; 2438 } 2439 case TargetOpcode::G_INTTOPTR: 2440 if (TypeIdx != 1) 2441 return UnableToLegalize; 2442 2443 Observer.changingInstr(MI); 2444 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2445 Observer.changedInstr(MI); 2446 return Legalized; 2447 case TargetOpcode::G_PTRTOINT: 2448 if (TypeIdx != 0) 2449 return UnableToLegalize; 2450 2451 Observer.changingInstr(MI); 2452 widenScalarDst(MI, WideTy, 0); 2453 Observer.changedInstr(MI); 2454 return Legalized; 2455 case TargetOpcode::G_BUILD_VECTOR: { 2456 Observer.changingInstr(MI); 2457 2458 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2459 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2460 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2461 2462 // Avoid changing the result vector type if the source element type was 2463 // requested. 2464 if (TypeIdx == 1) { 2465 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2466 } else { 2467 widenScalarDst(MI, WideTy, 0); 2468 } 2469 2470 Observer.changedInstr(MI); 2471 return Legalized; 2472 } 2473 case TargetOpcode::G_SEXT_INREG: 2474 if (TypeIdx != 0) 2475 return UnableToLegalize; 2476 2477 Observer.changingInstr(MI); 2478 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2479 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2480 Observer.changedInstr(MI); 2481 return Legalized; 2482 case TargetOpcode::G_PTRMASK: { 2483 if (TypeIdx != 1) 2484 return UnableToLegalize; 2485 Observer.changingInstr(MI); 2486 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2487 Observer.changedInstr(MI); 2488 return Legalized; 2489 } 2490 } 2491 } 2492 2493 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2494 MachineIRBuilder &B, Register Src, LLT Ty) { 2495 auto Unmerge = B.buildUnmerge(Ty, Src); 2496 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2497 Pieces.push_back(Unmerge.getReg(I)); 2498 } 2499 2500 LegalizerHelper::LegalizeResult 2501 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2502 Register Dst = MI.getOperand(0).getReg(); 2503 Register Src = MI.getOperand(1).getReg(); 2504 LLT DstTy = MRI.getType(Dst); 2505 LLT SrcTy = MRI.getType(Src); 2506 2507 if (SrcTy.isVector()) { 2508 LLT SrcEltTy = SrcTy.getElementType(); 2509 SmallVector<Register, 8> SrcRegs; 2510 2511 if (DstTy.isVector()) { 2512 int NumDstElt = DstTy.getNumElements(); 2513 int NumSrcElt = SrcTy.getNumElements(); 2514 2515 LLT DstEltTy = DstTy.getElementType(); 2516 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2517 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2518 2519 // If there's an element size mismatch, insert intermediate casts to match 2520 // the result element type. 2521 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2522 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2523 // 2524 // => 2525 // 2526 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2527 // %3:_(<2 x s8>) = G_BITCAST %2 2528 // %4:_(<2 x s8>) = G_BITCAST %3 2529 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2530 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2531 SrcPartTy = SrcEltTy; 2532 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2533 // 2534 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2535 // 2536 // => 2537 // 2538 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2539 // %3:_(s16) = G_BITCAST %2 2540 // %4:_(s16) = G_BITCAST %3 2541 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2542 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2543 DstCastTy = DstEltTy; 2544 } 2545 2546 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2547 for (Register &SrcReg : SrcRegs) 2548 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2549 } else 2550 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2551 2552 MIRBuilder.buildMerge(Dst, SrcRegs); 2553 MI.eraseFromParent(); 2554 return Legalized; 2555 } 2556 2557 if (DstTy.isVector()) { 2558 SmallVector<Register, 8> SrcRegs; 2559 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2560 MIRBuilder.buildMerge(Dst, SrcRegs); 2561 MI.eraseFromParent(); 2562 return Legalized; 2563 } 2564 2565 return UnableToLegalize; 2566 } 2567 2568 /// Figure out the bit offset into a register when coercing a vector index for 2569 /// the wide element type. This is only for the case when promoting vector to 2570 /// one with larger elements. 2571 // 2572 /// 2573 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2574 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2575 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2576 Register Idx, 2577 unsigned NewEltSize, 2578 unsigned OldEltSize) { 2579 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2580 LLT IdxTy = B.getMRI()->getType(Idx); 2581 2582 // Now figure out the amount we need to shift to get the target bits. 2583 auto OffsetMask = B.buildConstant( 2584 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2585 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2586 return B.buildShl(IdxTy, OffsetIdx, 2587 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2588 } 2589 2590 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2591 /// is casting to a vector with a smaller element size, perform multiple element 2592 /// extracts and merge the results. If this is coercing to a vector with larger 2593 /// elements, index the bitcasted vector and extract the target element with bit 2594 /// operations. This is intended to force the indexing in the native register 2595 /// size for architectures that can dynamically index the register file. 2596 LegalizerHelper::LegalizeResult 2597 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2598 LLT CastTy) { 2599 if (TypeIdx != 1) 2600 return UnableToLegalize; 2601 2602 Register Dst = MI.getOperand(0).getReg(); 2603 Register SrcVec = MI.getOperand(1).getReg(); 2604 Register Idx = MI.getOperand(2).getReg(); 2605 LLT SrcVecTy = MRI.getType(SrcVec); 2606 LLT IdxTy = MRI.getType(Idx); 2607 2608 LLT SrcEltTy = SrcVecTy.getElementType(); 2609 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2610 unsigned OldNumElts = SrcVecTy.getNumElements(); 2611 2612 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2613 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2614 2615 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2616 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2617 if (NewNumElts > OldNumElts) { 2618 // Decreasing the vector element size 2619 // 2620 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2621 // => 2622 // v4i32:castx = bitcast x:v2i64 2623 // 2624 // i64 = bitcast 2625 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2626 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2627 // 2628 if (NewNumElts % OldNumElts != 0) 2629 return UnableToLegalize; 2630 2631 // Type of the intermediate result vector. 2632 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2633 LLT MidTy = 2634 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2635 2636 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2637 2638 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2639 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2640 2641 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2642 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2643 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2644 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2645 NewOps[I] = Elt.getReg(0); 2646 } 2647 2648 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2649 MIRBuilder.buildBitcast(Dst, NewVec); 2650 MI.eraseFromParent(); 2651 return Legalized; 2652 } 2653 2654 if (NewNumElts < OldNumElts) { 2655 if (NewEltSize % OldEltSize != 0) 2656 return UnableToLegalize; 2657 2658 // This only depends on powers of 2 because we use bit tricks to figure out 2659 // the bit offset we need to shift to get the target element. A general 2660 // expansion could emit division/multiply. 2661 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2662 return UnableToLegalize; 2663 2664 // Increasing the vector element size. 2665 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2666 // 2667 // => 2668 // 2669 // %cast = G_BITCAST %vec 2670 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2671 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2672 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2673 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2674 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2675 // %elt = G_TRUNC %elt_bits 2676 2677 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2678 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2679 2680 // Divide to get the index in the wider element type. 2681 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2682 2683 Register WideElt = CastVec; 2684 if (CastTy.isVector()) { 2685 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2686 ScaledIdx).getReg(0); 2687 } 2688 2689 // Compute the bit offset into the register of the target element. 2690 Register OffsetBits = getBitcastWiderVectorElementOffset( 2691 MIRBuilder, Idx, NewEltSize, OldEltSize); 2692 2693 // Shift the wide element to get the target element. 2694 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2695 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2696 MI.eraseFromParent(); 2697 return Legalized; 2698 } 2699 2700 return UnableToLegalize; 2701 } 2702 2703 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2704 /// TargetReg, while preserving other bits in \p TargetReg. 2705 /// 2706 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2707 static Register buildBitFieldInsert(MachineIRBuilder &B, 2708 Register TargetReg, Register InsertReg, 2709 Register OffsetBits) { 2710 LLT TargetTy = B.getMRI()->getType(TargetReg); 2711 LLT InsertTy = B.getMRI()->getType(InsertReg); 2712 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2713 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2714 2715 // Produce a bitmask of the value to insert 2716 auto EltMask = B.buildConstant( 2717 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2718 InsertTy.getSizeInBits())); 2719 // Shift it into position 2720 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2721 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2722 2723 // Clear out the bits in the wide element 2724 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2725 2726 // The value to insert has all zeros already, so stick it into the masked 2727 // wide element. 2728 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2729 } 2730 2731 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2732 /// is increasing the element size, perform the indexing in the target element 2733 /// type, and use bit operations to insert at the element position. This is 2734 /// intended for architectures that can dynamically index the register file and 2735 /// want to force indexing in the native register size. 2736 LegalizerHelper::LegalizeResult 2737 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2738 LLT CastTy) { 2739 if (TypeIdx != 0) 2740 return UnableToLegalize; 2741 2742 Register Dst = MI.getOperand(0).getReg(); 2743 Register SrcVec = MI.getOperand(1).getReg(); 2744 Register Val = MI.getOperand(2).getReg(); 2745 Register Idx = MI.getOperand(3).getReg(); 2746 2747 LLT VecTy = MRI.getType(Dst); 2748 LLT IdxTy = MRI.getType(Idx); 2749 2750 LLT VecEltTy = VecTy.getElementType(); 2751 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2752 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2753 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2754 2755 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2756 unsigned OldNumElts = VecTy.getNumElements(); 2757 2758 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2759 if (NewNumElts < OldNumElts) { 2760 if (NewEltSize % OldEltSize != 0) 2761 return UnableToLegalize; 2762 2763 // This only depends on powers of 2 because we use bit tricks to figure out 2764 // the bit offset we need to shift to get the target element. A general 2765 // expansion could emit division/multiply. 2766 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2767 return UnableToLegalize; 2768 2769 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2770 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2771 2772 // Divide to get the index in the wider element type. 2773 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2774 2775 Register ExtractedElt = CastVec; 2776 if (CastTy.isVector()) { 2777 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2778 ScaledIdx).getReg(0); 2779 } 2780 2781 // Compute the bit offset into the register of the target element. 2782 Register OffsetBits = getBitcastWiderVectorElementOffset( 2783 MIRBuilder, Idx, NewEltSize, OldEltSize); 2784 2785 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2786 Val, OffsetBits); 2787 if (CastTy.isVector()) { 2788 InsertedElt = MIRBuilder.buildInsertVectorElement( 2789 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2790 } 2791 2792 MIRBuilder.buildBitcast(Dst, InsertedElt); 2793 MI.eraseFromParent(); 2794 return Legalized; 2795 } 2796 2797 return UnableToLegalize; 2798 } 2799 2800 LegalizerHelper::LegalizeResult 2801 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2802 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2803 Register DstReg = MI.getOperand(0).getReg(); 2804 Register PtrReg = MI.getOperand(1).getReg(); 2805 LLT DstTy = MRI.getType(DstReg); 2806 MachineMemOperand &MMO = **MI.memoperands_begin(); 2807 LLT MemTy = MMO.getMemoryType(); 2808 MachineFunction &MF = MIRBuilder.getMF(); 2809 if (MemTy.isVector()) 2810 return UnableToLegalize; 2811 2812 unsigned MemSizeInBits = MemTy.getSizeInBits(); 2813 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2814 2815 if (MemSizeInBits != MemStoreSizeInBits) { 2816 // Promote to a byte-sized load if not loading an integral number of 2817 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2818 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 2819 MachineMemOperand *NewMMO = 2820 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 2821 2822 Register LoadReg = DstReg; 2823 LLT LoadTy = DstTy; 2824 2825 // If this wasn't already an extending load, we need to widen the result 2826 // register to avoid creating a load with a narrower result than the source. 2827 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 2828 LoadTy = WideMemTy; 2829 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 2830 } 2831 2832 if (MI.getOpcode() == TargetOpcode::G_SEXTLOAD) { 2833 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2834 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 2835 } else if (MI.getOpcode() == TargetOpcode::G_ZEXTLOAD || 2836 WideMemTy == DstTy) { 2837 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2838 // The extra bits are guaranteed to be zero, since we stored them that 2839 // way. A zext load from Wide thus automatically gives zext from MemVT. 2840 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 2841 } else { 2842 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 2843 } 2844 2845 if (DstTy != LoadTy) 2846 MIRBuilder.buildTrunc(DstReg, LoadReg); 2847 2848 MI.eraseFromParent(); 2849 return Legalized; 2850 } 2851 2852 if (DstTy.getSizeInBits() != MMO.getSizeInBits()) 2853 return UnableToLegalize; 2854 2855 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2856 // This load needs splitting into power of 2 sized loads. 2857 if (DstTy.isVector()) 2858 return UnableToLegalize; 2859 if (isPowerOf2_32(DstTy.getSizeInBits())) 2860 return UnableToLegalize; // Don't know what we're being asked to do. 2861 2862 // Our strategy here is to generate anyextending loads for the smaller 2863 // types up to next power-2 result type, and then combine the two larger 2864 // result values together, before truncating back down to the non-pow-2 2865 // type. 2866 // E.g. v1 = i24 load => 2867 // v2 = i32 zextload (2 byte) 2868 // v3 = i32 load (1 byte) 2869 // v4 = i32 shl v3, 16 2870 // v5 = i32 or v4, v2 2871 // v1 = i24 trunc v5 2872 // By doing this we generate the correct truncate which should get 2873 // combined away as an artifact with a matching extend. 2874 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2875 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2876 2877 MachineFunction &MF = MIRBuilder.getMF(); 2878 MachineMemOperand *LargeMMO = 2879 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2880 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2881 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2882 2883 LLT PtrTy = MRI.getType(PtrReg); 2884 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2885 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2886 auto LargeLoad = MIRBuilder.buildLoadInstr( 2887 TargetOpcode::G_ZEXTLOAD, AnyExtTy, PtrReg, *LargeMMO); 2888 2889 auto OffsetCst = MIRBuilder.buildConstant( 2890 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2891 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2892 auto SmallPtr = 2893 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 2894 auto SmallLoad = MIRBuilder.buildLoad(AnyExtTy, SmallPtr, 2895 *SmallMMO); 2896 2897 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2898 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2899 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2900 MIRBuilder.buildTrunc(DstReg, {Or}); 2901 MI.eraseFromParent(); 2902 return Legalized; 2903 } 2904 2905 return UnableToLegalize; 2906 } 2907 2908 LegalizerHelper::LegalizeResult 2909 LegalizerHelper::lowerStore(MachineInstr &MI) { 2910 // Lower a non-power of 2 store into multiple pow-2 stores. 2911 // E.g. split an i24 store into an i16 store + i8 store. 2912 // We do this by first extending the stored value to the next largest power 2913 // of 2 type, and then using truncating stores to store the components. 2914 // By doing this, likewise with G_LOAD, generate an extend that can be 2915 // artifact-combined away instead of leaving behind extracts. 2916 Register SrcReg = MI.getOperand(0).getReg(); 2917 Register PtrReg = MI.getOperand(1).getReg(); 2918 LLT SrcTy = MRI.getType(SrcReg); 2919 MachineFunction &MF = MIRBuilder.getMF(); 2920 MachineMemOperand &MMO = **MI.memoperands_begin(); 2921 LLT MemTy = MMO.getMemoryType(); 2922 2923 if (SrcTy.isVector()) 2924 return UnableToLegalize; 2925 2926 unsigned StoreWidth = MemTy.getSizeInBits(); 2927 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2928 2929 if (StoreWidth != StoreSizeInBits) { 2930 // Promote to a byte-sized store with upper bits zero if not 2931 // storing an integral number of bytes. For example, promote 2932 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2933 LLT WideTy = LLT::scalar(StoreSizeInBits); 2934 2935 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 2936 // Avoid creating a store with a narrower source than result. 2937 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 2938 SrcTy = WideTy; 2939 } 2940 2941 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 2942 2943 MachineMemOperand *NewMMO = 2944 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 2945 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 2946 MI.eraseFromParent(); 2947 return Legalized; 2948 } 2949 2950 if (isPowerOf2_32(MemTy.getSizeInBits())) 2951 return UnableToLegalize; // Don't know what we're being asked to do. 2952 2953 // Extend to the next pow-2. 2954 const LLT ExtendTy = LLT::scalar(NextPowerOf2(MemTy.getSizeInBits())); 2955 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2956 2957 // Obtain the smaller value by shifting away the larger value. 2958 uint64_t LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); 2959 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2960 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2961 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2962 2963 // Generate the PtrAdd and truncating stores. 2964 LLT PtrTy = MRI.getType(PtrReg); 2965 auto OffsetCst = MIRBuilder.buildConstant( 2966 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2967 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2968 auto SmallPtr = 2969 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 2970 2971 MachineMemOperand *LargeMMO = 2972 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2973 MachineMemOperand *SmallMMO = 2974 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2975 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 2976 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 2977 MI.eraseFromParent(); 2978 return Legalized; 2979 } 2980 2981 LegalizerHelper::LegalizeResult 2982 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2983 switch (MI.getOpcode()) { 2984 case TargetOpcode::G_LOAD: { 2985 if (TypeIdx != 0) 2986 return UnableToLegalize; 2987 2988 Observer.changingInstr(MI); 2989 bitcastDst(MI, CastTy, 0); 2990 Observer.changedInstr(MI); 2991 return Legalized; 2992 } 2993 case TargetOpcode::G_STORE: { 2994 if (TypeIdx != 0) 2995 return UnableToLegalize; 2996 2997 Observer.changingInstr(MI); 2998 bitcastSrc(MI, CastTy, 0); 2999 Observer.changedInstr(MI); 3000 return Legalized; 3001 } 3002 case TargetOpcode::G_SELECT: { 3003 if (TypeIdx != 0) 3004 return UnableToLegalize; 3005 3006 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3007 LLVM_DEBUG( 3008 dbgs() << "bitcast action not implemented for vector select\n"); 3009 return UnableToLegalize; 3010 } 3011 3012 Observer.changingInstr(MI); 3013 bitcastSrc(MI, CastTy, 2); 3014 bitcastSrc(MI, CastTy, 3); 3015 bitcastDst(MI, CastTy, 0); 3016 Observer.changedInstr(MI); 3017 return Legalized; 3018 } 3019 case TargetOpcode::G_AND: 3020 case TargetOpcode::G_OR: 3021 case TargetOpcode::G_XOR: { 3022 Observer.changingInstr(MI); 3023 bitcastSrc(MI, CastTy, 1); 3024 bitcastSrc(MI, CastTy, 2); 3025 bitcastDst(MI, CastTy, 0); 3026 Observer.changedInstr(MI); 3027 return Legalized; 3028 } 3029 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3030 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3031 case TargetOpcode::G_INSERT_VECTOR_ELT: 3032 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3033 default: 3034 return UnableToLegalize; 3035 } 3036 } 3037 3038 // Legalize an instruction by changing the opcode in place. 3039 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3040 Observer.changingInstr(MI); 3041 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3042 Observer.changedInstr(MI); 3043 } 3044 3045 LegalizerHelper::LegalizeResult 3046 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3047 using namespace TargetOpcode; 3048 3049 switch(MI.getOpcode()) { 3050 default: 3051 return UnableToLegalize; 3052 case TargetOpcode::G_BITCAST: 3053 return lowerBitcast(MI); 3054 case TargetOpcode::G_SREM: 3055 case TargetOpcode::G_UREM: { 3056 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3057 auto Quot = 3058 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3059 {MI.getOperand(1), MI.getOperand(2)}); 3060 3061 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3062 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3063 MI.eraseFromParent(); 3064 return Legalized; 3065 } 3066 case TargetOpcode::G_SADDO: 3067 case TargetOpcode::G_SSUBO: 3068 return lowerSADDO_SSUBO(MI); 3069 case TargetOpcode::G_UMULH: 3070 case TargetOpcode::G_SMULH: 3071 return lowerSMULH_UMULH(MI); 3072 case TargetOpcode::G_SMULO: 3073 case TargetOpcode::G_UMULO: { 3074 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3075 // result. 3076 Register Res = MI.getOperand(0).getReg(); 3077 Register Overflow = MI.getOperand(1).getReg(); 3078 Register LHS = MI.getOperand(2).getReg(); 3079 Register RHS = MI.getOperand(3).getReg(); 3080 LLT Ty = MRI.getType(Res); 3081 3082 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3083 ? TargetOpcode::G_SMULH 3084 : TargetOpcode::G_UMULH; 3085 3086 Observer.changingInstr(MI); 3087 const auto &TII = MIRBuilder.getTII(); 3088 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3089 MI.RemoveOperand(1); 3090 Observer.changedInstr(MI); 3091 3092 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3093 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3094 3095 // Move insert point forward so we can use the Res register if needed. 3096 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3097 3098 // For *signed* multiply, overflow is detected by checking: 3099 // (hi != (lo >> bitwidth-1)) 3100 if (Opcode == TargetOpcode::G_SMULH) { 3101 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3102 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3103 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3104 } else { 3105 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3106 } 3107 return Legalized; 3108 } 3109 case TargetOpcode::G_FNEG: { 3110 Register Res = MI.getOperand(0).getReg(); 3111 LLT Ty = MRI.getType(Res); 3112 3113 // TODO: Handle vector types once we are able to 3114 // represent them. 3115 if (Ty.isVector()) 3116 return UnableToLegalize; 3117 auto SignMask = 3118 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3119 Register SubByReg = MI.getOperand(1).getReg(); 3120 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3121 MI.eraseFromParent(); 3122 return Legalized; 3123 } 3124 case TargetOpcode::G_FSUB: { 3125 Register Res = MI.getOperand(0).getReg(); 3126 LLT Ty = MRI.getType(Res); 3127 3128 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3129 // First, check if G_FNEG is marked as Lower. If so, we may 3130 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3131 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3132 return UnableToLegalize; 3133 Register LHS = MI.getOperand(1).getReg(); 3134 Register RHS = MI.getOperand(2).getReg(); 3135 Register Neg = MRI.createGenericVirtualRegister(Ty); 3136 MIRBuilder.buildFNeg(Neg, RHS); 3137 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3138 MI.eraseFromParent(); 3139 return Legalized; 3140 } 3141 case TargetOpcode::G_FMAD: 3142 return lowerFMad(MI); 3143 case TargetOpcode::G_FFLOOR: 3144 return lowerFFloor(MI); 3145 case TargetOpcode::G_INTRINSIC_ROUND: 3146 return lowerIntrinsicRound(MI); 3147 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3148 // Since round even is the assumed rounding mode for unconstrained FP 3149 // operations, rint and roundeven are the same operation. 3150 changeOpcode(MI, TargetOpcode::G_FRINT); 3151 return Legalized; 3152 } 3153 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3154 Register OldValRes = MI.getOperand(0).getReg(); 3155 Register SuccessRes = MI.getOperand(1).getReg(); 3156 Register Addr = MI.getOperand(2).getReg(); 3157 Register CmpVal = MI.getOperand(3).getReg(); 3158 Register NewVal = MI.getOperand(4).getReg(); 3159 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3160 **MI.memoperands_begin()); 3161 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3162 MI.eraseFromParent(); 3163 return Legalized; 3164 } 3165 case TargetOpcode::G_LOAD: 3166 case TargetOpcode::G_SEXTLOAD: 3167 case TargetOpcode::G_ZEXTLOAD: 3168 return lowerLoad(MI); 3169 case TargetOpcode::G_STORE: 3170 return lowerStore(MI); 3171 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3172 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3173 case TargetOpcode::G_CTLZ: 3174 case TargetOpcode::G_CTTZ: 3175 case TargetOpcode::G_CTPOP: 3176 return lowerBitCount(MI); 3177 case G_UADDO: { 3178 Register Res = MI.getOperand(0).getReg(); 3179 Register CarryOut = MI.getOperand(1).getReg(); 3180 Register LHS = MI.getOperand(2).getReg(); 3181 Register RHS = MI.getOperand(3).getReg(); 3182 3183 MIRBuilder.buildAdd(Res, LHS, RHS); 3184 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3185 3186 MI.eraseFromParent(); 3187 return Legalized; 3188 } 3189 case G_UADDE: { 3190 Register Res = MI.getOperand(0).getReg(); 3191 Register CarryOut = MI.getOperand(1).getReg(); 3192 Register LHS = MI.getOperand(2).getReg(); 3193 Register RHS = MI.getOperand(3).getReg(); 3194 Register CarryIn = MI.getOperand(4).getReg(); 3195 LLT Ty = MRI.getType(Res); 3196 3197 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3198 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3199 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3200 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3201 3202 MI.eraseFromParent(); 3203 return Legalized; 3204 } 3205 case G_USUBO: { 3206 Register Res = MI.getOperand(0).getReg(); 3207 Register BorrowOut = MI.getOperand(1).getReg(); 3208 Register LHS = MI.getOperand(2).getReg(); 3209 Register RHS = MI.getOperand(3).getReg(); 3210 3211 MIRBuilder.buildSub(Res, LHS, RHS); 3212 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3213 3214 MI.eraseFromParent(); 3215 return Legalized; 3216 } 3217 case G_USUBE: { 3218 Register Res = MI.getOperand(0).getReg(); 3219 Register BorrowOut = MI.getOperand(1).getReg(); 3220 Register LHS = MI.getOperand(2).getReg(); 3221 Register RHS = MI.getOperand(3).getReg(); 3222 Register BorrowIn = MI.getOperand(4).getReg(); 3223 const LLT CondTy = MRI.getType(BorrowOut); 3224 const LLT Ty = MRI.getType(Res); 3225 3226 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3227 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3228 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3229 3230 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3231 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3232 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3233 3234 MI.eraseFromParent(); 3235 return Legalized; 3236 } 3237 case G_UITOFP: 3238 return lowerUITOFP(MI); 3239 case G_SITOFP: 3240 return lowerSITOFP(MI); 3241 case G_FPTOUI: 3242 return lowerFPTOUI(MI); 3243 case G_FPTOSI: 3244 return lowerFPTOSI(MI); 3245 case G_FPTRUNC: 3246 return lowerFPTRUNC(MI); 3247 case G_FPOWI: 3248 return lowerFPOWI(MI); 3249 case G_SMIN: 3250 case G_SMAX: 3251 case G_UMIN: 3252 case G_UMAX: 3253 return lowerMinMax(MI); 3254 case G_FCOPYSIGN: 3255 return lowerFCopySign(MI); 3256 case G_FMINNUM: 3257 case G_FMAXNUM: 3258 return lowerFMinNumMaxNum(MI); 3259 case G_MERGE_VALUES: 3260 return lowerMergeValues(MI); 3261 case G_UNMERGE_VALUES: 3262 return lowerUnmergeValues(MI); 3263 case TargetOpcode::G_SEXT_INREG: { 3264 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3265 int64_t SizeInBits = MI.getOperand(2).getImm(); 3266 3267 Register DstReg = MI.getOperand(0).getReg(); 3268 Register SrcReg = MI.getOperand(1).getReg(); 3269 LLT DstTy = MRI.getType(DstReg); 3270 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3271 3272 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3273 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3274 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3275 MI.eraseFromParent(); 3276 return Legalized; 3277 } 3278 case G_EXTRACT_VECTOR_ELT: 3279 case G_INSERT_VECTOR_ELT: 3280 return lowerExtractInsertVectorElt(MI); 3281 case G_SHUFFLE_VECTOR: 3282 return lowerShuffleVector(MI); 3283 case G_DYN_STACKALLOC: 3284 return lowerDynStackAlloc(MI); 3285 case G_EXTRACT: 3286 return lowerExtract(MI); 3287 case G_INSERT: 3288 return lowerInsert(MI); 3289 case G_BSWAP: 3290 return lowerBswap(MI); 3291 case G_BITREVERSE: 3292 return lowerBitreverse(MI); 3293 case G_READ_REGISTER: 3294 case G_WRITE_REGISTER: 3295 return lowerReadWriteRegister(MI); 3296 case G_UADDSAT: 3297 case G_USUBSAT: { 3298 // Try to make a reasonable guess about which lowering strategy to use. The 3299 // target can override this with custom lowering and calling the 3300 // implementation functions. 3301 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3302 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3303 return lowerAddSubSatToMinMax(MI); 3304 return lowerAddSubSatToAddoSubo(MI); 3305 } 3306 case G_SADDSAT: 3307 case G_SSUBSAT: { 3308 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3309 3310 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3311 // since it's a shorter expansion. However, we would need to figure out the 3312 // preferred boolean type for the carry out for the query. 3313 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3314 return lowerAddSubSatToMinMax(MI); 3315 return lowerAddSubSatToAddoSubo(MI); 3316 } 3317 case G_SSHLSAT: 3318 case G_USHLSAT: 3319 return lowerShlSat(MI); 3320 case G_ABS: 3321 return lowerAbsToAddXor(MI); 3322 case G_SELECT: 3323 return lowerSelect(MI); 3324 case G_SDIVREM: 3325 case G_UDIVREM: 3326 return lowerDIVREM(MI); 3327 case G_FSHL: 3328 case G_FSHR: 3329 return lowerFunnelShift(MI); 3330 case G_ROTL: 3331 case G_ROTR: 3332 return lowerRotate(MI); 3333 } 3334 } 3335 3336 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3337 Align MinAlign) const { 3338 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3339 // datalayout for the preferred alignment. Also there should be a target hook 3340 // for this to allow targets to reduce the alignment and ignore the 3341 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3342 // the type. 3343 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3344 } 3345 3346 MachineInstrBuilder 3347 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3348 MachinePointerInfo &PtrInfo) { 3349 MachineFunction &MF = MIRBuilder.getMF(); 3350 const DataLayout &DL = MIRBuilder.getDataLayout(); 3351 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3352 3353 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3354 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3355 3356 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3357 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3358 } 3359 3360 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3361 LLT VecTy) { 3362 int64_t IdxVal; 3363 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3364 return IdxReg; 3365 3366 LLT IdxTy = B.getMRI()->getType(IdxReg); 3367 unsigned NElts = VecTy.getNumElements(); 3368 if (isPowerOf2_32(NElts)) { 3369 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3370 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3371 } 3372 3373 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3374 .getReg(0); 3375 } 3376 3377 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3378 Register Index) { 3379 LLT EltTy = VecTy.getElementType(); 3380 3381 // Calculate the element offset and add it to the pointer. 3382 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3383 assert(EltSize * 8 == EltTy.getSizeInBits() && 3384 "Converting bits to bytes lost precision"); 3385 3386 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3387 3388 LLT IdxTy = MRI.getType(Index); 3389 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3390 MIRBuilder.buildConstant(IdxTy, EltSize)); 3391 3392 LLT PtrTy = MRI.getType(VecPtr); 3393 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3394 } 3395 3396 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3397 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3398 Register DstReg = MI.getOperand(0).getReg(); 3399 LLT DstTy = MRI.getType(DstReg); 3400 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3401 3402 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3403 3404 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3405 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3406 3407 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3408 MI.eraseFromParent(); 3409 return Legalized; 3410 } 3411 3412 // Handle splitting vector operations which need to have the same number of 3413 // elements in each type index, but each type index may have a different element 3414 // type. 3415 // 3416 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3417 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3418 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3419 // 3420 // Also handles some irregular breakdown cases, e.g. 3421 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3422 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3423 // s64 = G_SHL s64, s32 3424 LegalizerHelper::LegalizeResult 3425 LegalizerHelper::fewerElementsVectorMultiEltType( 3426 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3427 if (TypeIdx != 0) 3428 return UnableToLegalize; 3429 3430 const LLT NarrowTy0 = NarrowTyArg; 3431 const Register DstReg = MI.getOperand(0).getReg(); 3432 LLT DstTy = MRI.getType(DstReg); 3433 LLT LeftoverTy0; 3434 3435 // All of the operands need to have the same number of elements, so if we can 3436 // determine a type breakdown for the result type, we can for all of the 3437 // source types. 3438 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3439 if (NumParts < 0) 3440 return UnableToLegalize; 3441 3442 SmallVector<MachineInstrBuilder, 4> NewInsts; 3443 3444 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3445 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3446 3447 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3448 Register SrcReg = MI.getOperand(I).getReg(); 3449 LLT SrcTyI = MRI.getType(SrcReg); 3450 const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount() 3451 : ElementCount::getFixed(1); 3452 LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType()); 3453 LLT LeftoverTyI; 3454 3455 // Split this operand into the requested typed registers, and any leftover 3456 // required to reproduce the original type. 3457 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3458 LeftoverRegs)) 3459 return UnableToLegalize; 3460 3461 if (I == 1) { 3462 // For the first operand, create an instruction for each part and setup 3463 // the result. 3464 for (Register PartReg : PartRegs) { 3465 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3466 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3467 .addDef(PartDstReg) 3468 .addUse(PartReg)); 3469 DstRegs.push_back(PartDstReg); 3470 } 3471 3472 for (Register LeftoverReg : LeftoverRegs) { 3473 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3474 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3475 .addDef(PartDstReg) 3476 .addUse(LeftoverReg)); 3477 LeftoverDstRegs.push_back(PartDstReg); 3478 } 3479 } else { 3480 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3481 3482 // Add the newly created operand splits to the existing instructions. The 3483 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3484 // pieces. 3485 unsigned InstCount = 0; 3486 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3487 NewInsts[InstCount++].addUse(PartRegs[J]); 3488 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3489 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3490 } 3491 3492 PartRegs.clear(); 3493 LeftoverRegs.clear(); 3494 } 3495 3496 // Insert the newly built operations and rebuild the result register. 3497 for (auto &MIB : NewInsts) 3498 MIRBuilder.insertInstr(MIB); 3499 3500 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3501 3502 MI.eraseFromParent(); 3503 return Legalized; 3504 } 3505 3506 LegalizerHelper::LegalizeResult 3507 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3508 LLT NarrowTy) { 3509 if (TypeIdx != 0) 3510 return UnableToLegalize; 3511 3512 Register DstReg = MI.getOperand(0).getReg(); 3513 Register SrcReg = MI.getOperand(1).getReg(); 3514 LLT DstTy = MRI.getType(DstReg); 3515 LLT SrcTy = MRI.getType(SrcReg); 3516 3517 LLT NarrowTy0 = NarrowTy; 3518 LLT NarrowTy1; 3519 unsigned NumParts; 3520 3521 if (NarrowTy.isVector()) { 3522 // Uneven breakdown not handled. 3523 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3524 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3525 return UnableToLegalize; 3526 3527 NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType()); 3528 } else { 3529 NumParts = DstTy.getNumElements(); 3530 NarrowTy1 = SrcTy.getElementType(); 3531 } 3532 3533 SmallVector<Register, 4> SrcRegs, DstRegs; 3534 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3535 3536 for (unsigned I = 0; I < NumParts; ++I) { 3537 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3538 MachineInstr *NewInst = 3539 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3540 3541 NewInst->setFlags(MI.getFlags()); 3542 DstRegs.push_back(DstReg); 3543 } 3544 3545 if (NarrowTy.isVector()) 3546 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3547 else 3548 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3549 3550 MI.eraseFromParent(); 3551 return Legalized; 3552 } 3553 3554 LegalizerHelper::LegalizeResult 3555 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3556 LLT NarrowTy) { 3557 Register DstReg = MI.getOperand(0).getReg(); 3558 Register Src0Reg = MI.getOperand(2).getReg(); 3559 LLT DstTy = MRI.getType(DstReg); 3560 LLT SrcTy = MRI.getType(Src0Reg); 3561 3562 unsigned NumParts; 3563 LLT NarrowTy0, NarrowTy1; 3564 3565 if (TypeIdx == 0) { 3566 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3567 unsigned OldElts = DstTy.getNumElements(); 3568 3569 NarrowTy0 = NarrowTy; 3570 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3571 NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(), 3572 SrcTy.getScalarSizeInBits()) 3573 : SrcTy.getElementType(); 3574 3575 } else { 3576 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3577 unsigned OldElts = SrcTy.getNumElements(); 3578 3579 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3580 NarrowTy.getNumElements(); 3581 NarrowTy0 = 3582 LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits()); 3583 NarrowTy1 = NarrowTy; 3584 } 3585 3586 // FIXME: Don't know how to handle the situation where the small vectors 3587 // aren't all the same size yet. 3588 if (NarrowTy1.isVector() && 3589 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3590 return UnableToLegalize; 3591 3592 CmpInst::Predicate Pred 3593 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3594 3595 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3596 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3597 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3598 3599 for (unsigned I = 0; I < NumParts; ++I) { 3600 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3601 DstRegs.push_back(DstReg); 3602 3603 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3604 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3605 else { 3606 MachineInstr *NewCmp 3607 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3608 NewCmp->setFlags(MI.getFlags()); 3609 } 3610 } 3611 3612 if (NarrowTy1.isVector()) 3613 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3614 else 3615 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3616 3617 MI.eraseFromParent(); 3618 return Legalized; 3619 } 3620 3621 LegalizerHelper::LegalizeResult 3622 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3623 LLT NarrowTy) { 3624 Register DstReg = MI.getOperand(0).getReg(); 3625 Register CondReg = MI.getOperand(1).getReg(); 3626 3627 unsigned NumParts = 0; 3628 LLT NarrowTy0, NarrowTy1; 3629 3630 LLT DstTy = MRI.getType(DstReg); 3631 LLT CondTy = MRI.getType(CondReg); 3632 unsigned Size = DstTy.getSizeInBits(); 3633 3634 assert(TypeIdx == 0 || CondTy.isVector()); 3635 3636 if (TypeIdx == 0) { 3637 NarrowTy0 = NarrowTy; 3638 NarrowTy1 = CondTy; 3639 3640 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3641 // FIXME: Don't know how to handle the situation where the small vectors 3642 // aren't all the same size yet. 3643 if (Size % NarrowSize != 0) 3644 return UnableToLegalize; 3645 3646 NumParts = Size / NarrowSize; 3647 3648 // Need to break down the condition type 3649 if (CondTy.isVector()) { 3650 if (CondTy.getNumElements() == NumParts) 3651 NarrowTy1 = CondTy.getElementType(); 3652 else 3653 NarrowTy1 = 3654 LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts), 3655 CondTy.getScalarSizeInBits()); 3656 } 3657 } else { 3658 NumParts = CondTy.getNumElements(); 3659 if (NarrowTy.isVector()) { 3660 // TODO: Handle uneven breakdown. 3661 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3662 return UnableToLegalize; 3663 3664 return UnableToLegalize; 3665 } else { 3666 NarrowTy0 = DstTy.getElementType(); 3667 NarrowTy1 = NarrowTy; 3668 } 3669 } 3670 3671 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3672 if (CondTy.isVector()) 3673 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3674 3675 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3676 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3677 3678 for (unsigned i = 0; i < NumParts; ++i) { 3679 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3680 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3681 Src1Regs[i], Src2Regs[i]); 3682 DstRegs.push_back(DstReg); 3683 } 3684 3685 if (NarrowTy0.isVector()) 3686 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3687 else 3688 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3689 3690 MI.eraseFromParent(); 3691 return Legalized; 3692 } 3693 3694 LegalizerHelper::LegalizeResult 3695 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3696 LLT NarrowTy) { 3697 const Register DstReg = MI.getOperand(0).getReg(); 3698 LLT PhiTy = MRI.getType(DstReg); 3699 LLT LeftoverTy; 3700 3701 // All of the operands need to have the same number of elements, so if we can 3702 // determine a type breakdown for the result type, we can for all of the 3703 // source types. 3704 int NumParts, NumLeftover; 3705 std::tie(NumParts, NumLeftover) 3706 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3707 if (NumParts < 0) 3708 return UnableToLegalize; 3709 3710 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3711 SmallVector<MachineInstrBuilder, 4> NewInsts; 3712 3713 const int TotalNumParts = NumParts + NumLeftover; 3714 3715 // Insert the new phis in the result block first. 3716 for (int I = 0; I != TotalNumParts; ++I) { 3717 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3718 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3719 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3720 .addDef(PartDstReg)); 3721 if (I < NumParts) 3722 DstRegs.push_back(PartDstReg); 3723 else 3724 LeftoverDstRegs.push_back(PartDstReg); 3725 } 3726 3727 MachineBasicBlock *MBB = MI.getParent(); 3728 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3729 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3730 3731 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3732 3733 // Insert code to extract the incoming values in each predecessor block. 3734 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3735 PartRegs.clear(); 3736 LeftoverRegs.clear(); 3737 3738 Register SrcReg = MI.getOperand(I).getReg(); 3739 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3740 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3741 3742 LLT Unused; 3743 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3744 LeftoverRegs)) 3745 return UnableToLegalize; 3746 3747 // Add the newly created operand splits to the existing instructions. The 3748 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3749 // pieces. 3750 for (int J = 0; J != TotalNumParts; ++J) { 3751 MachineInstrBuilder MIB = NewInsts[J]; 3752 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3753 MIB.addMBB(&OpMBB); 3754 } 3755 } 3756 3757 MI.eraseFromParent(); 3758 return Legalized; 3759 } 3760 3761 LegalizerHelper::LegalizeResult 3762 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3763 unsigned TypeIdx, 3764 LLT NarrowTy) { 3765 if (TypeIdx != 1) 3766 return UnableToLegalize; 3767 3768 const int NumDst = MI.getNumOperands() - 1; 3769 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3770 LLT SrcTy = MRI.getType(SrcReg); 3771 3772 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3773 3774 // TODO: Create sequence of extracts. 3775 if (DstTy == NarrowTy) 3776 return UnableToLegalize; 3777 3778 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3779 if (DstTy == GCDTy) { 3780 // This would just be a copy of the same unmerge. 3781 // TODO: Create extracts, pad with undef and create intermediate merges. 3782 return UnableToLegalize; 3783 } 3784 3785 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3786 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3787 const int PartsPerUnmerge = NumDst / NumUnmerge; 3788 3789 for (int I = 0; I != NumUnmerge; ++I) { 3790 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3791 3792 for (int J = 0; J != PartsPerUnmerge; ++J) 3793 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3794 MIB.addUse(Unmerge.getReg(I)); 3795 } 3796 3797 MI.eraseFromParent(); 3798 return Legalized; 3799 } 3800 3801 LegalizerHelper::LegalizeResult 3802 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx, 3803 LLT NarrowTy) { 3804 Register Result = MI.getOperand(0).getReg(); 3805 Register Overflow = MI.getOperand(1).getReg(); 3806 Register LHS = MI.getOperand(2).getReg(); 3807 Register RHS = MI.getOperand(3).getReg(); 3808 3809 LLT SrcTy = MRI.getType(LHS); 3810 if (!SrcTy.isVector()) 3811 return UnableToLegalize; 3812 3813 LLT ElementType = SrcTy.getElementType(); 3814 LLT OverflowElementTy = MRI.getType(Overflow).getElementType(); 3815 const ElementCount NumResult = SrcTy.getElementCount(); 3816 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3817 3818 // Unmerge the operands to smaller parts of GCD type. 3819 auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS); 3820 auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS); 3821 3822 const int NumOps = UnmergeLHS->getNumOperands() - 1; 3823 const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps); 3824 LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy); 3825 LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType); 3826 3827 // Perform the operation over unmerged parts. 3828 SmallVector<Register, 8> ResultParts; 3829 SmallVector<Register, 8> OverflowParts; 3830 for (int I = 0; I != NumOps; ++I) { 3831 Register Operand1 = UnmergeLHS->getOperand(I).getReg(); 3832 Register Operand2 = UnmergeRHS->getOperand(I).getReg(); 3833 auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy}, 3834 {Operand1, Operand2}); 3835 ResultParts.push_back(PartMul->getOperand(0).getReg()); 3836 OverflowParts.push_back(PartMul->getOperand(1).getReg()); 3837 } 3838 3839 LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts); 3840 LLT OverflowLCMTy = 3841 LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy); 3842 3843 // Recombine the pieces to the original result and overflow registers. 3844 buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts); 3845 buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts); 3846 MI.eraseFromParent(); 3847 return Legalized; 3848 } 3849 3850 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3851 // a vector 3852 // 3853 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3854 // undef as necessary. 3855 // 3856 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3857 // -> <2 x s16> 3858 // 3859 // %4:_(s16) = G_IMPLICIT_DEF 3860 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3861 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3862 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3863 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3864 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3865 LegalizerHelper::LegalizeResult 3866 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3867 LLT NarrowTy) { 3868 Register DstReg = MI.getOperand(0).getReg(); 3869 LLT DstTy = MRI.getType(DstReg); 3870 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3871 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3872 3873 // Break into a common type 3874 SmallVector<Register, 16> Parts; 3875 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3876 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3877 3878 // Build the requested new merge, padding with undef. 3879 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3880 TargetOpcode::G_ANYEXT); 3881 3882 // Pack into the original result register. 3883 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3884 3885 MI.eraseFromParent(); 3886 return Legalized; 3887 } 3888 3889 LegalizerHelper::LegalizeResult 3890 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3891 unsigned TypeIdx, 3892 LLT NarrowVecTy) { 3893 Register DstReg = MI.getOperand(0).getReg(); 3894 Register SrcVec = MI.getOperand(1).getReg(); 3895 Register InsertVal; 3896 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3897 3898 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3899 if (IsInsert) 3900 InsertVal = MI.getOperand(2).getReg(); 3901 3902 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3903 3904 // TODO: Handle total scalarization case. 3905 if (!NarrowVecTy.isVector()) 3906 return UnableToLegalize; 3907 3908 LLT VecTy = MRI.getType(SrcVec); 3909 3910 // If the index is a constant, we can really break this down as you would 3911 // expect, and index into the target size pieces. 3912 int64_t IdxVal; 3913 auto MaybeCst = 3914 getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true, 3915 /*HandleFConstants*/ false); 3916 if (MaybeCst) { 3917 IdxVal = MaybeCst->Value.getSExtValue(); 3918 // Avoid out of bounds indexing the pieces. 3919 if (IdxVal >= VecTy.getNumElements()) { 3920 MIRBuilder.buildUndef(DstReg); 3921 MI.eraseFromParent(); 3922 return Legalized; 3923 } 3924 3925 SmallVector<Register, 8> VecParts; 3926 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3927 3928 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3929 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3930 TargetOpcode::G_ANYEXT); 3931 3932 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3933 3934 LLT IdxTy = MRI.getType(Idx); 3935 int64_t PartIdx = IdxVal / NewNumElts; 3936 auto NewIdx = 3937 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3938 3939 if (IsInsert) { 3940 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3941 3942 // Use the adjusted index to insert into one of the subvectors. 3943 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3944 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3945 VecParts[PartIdx] = InsertPart.getReg(0); 3946 3947 // Recombine the inserted subvector with the others to reform the result 3948 // vector. 3949 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3950 } else { 3951 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3952 } 3953 3954 MI.eraseFromParent(); 3955 return Legalized; 3956 } 3957 3958 // With a variable index, we can't perform the operation in a smaller type, so 3959 // we're forced to expand this. 3960 // 3961 // TODO: We could emit a chain of compare/select to figure out which piece to 3962 // index. 3963 return lowerExtractInsertVectorElt(MI); 3964 } 3965 3966 LegalizerHelper::LegalizeResult 3967 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3968 LLT NarrowTy) { 3969 // FIXME: Don't know how to handle secondary types yet. 3970 if (TypeIdx != 0) 3971 return UnableToLegalize; 3972 3973 MachineMemOperand *MMO = *MI.memoperands_begin(); 3974 3975 // This implementation doesn't work for atomics. Give up instead of doing 3976 // something invalid. 3977 if (MMO->isAtomic()) 3978 return UnableToLegalize; 3979 3980 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3981 Register ValReg = MI.getOperand(0).getReg(); 3982 Register AddrReg = MI.getOperand(1).getReg(); 3983 LLT ValTy = MRI.getType(ValReg); 3984 3985 // FIXME: Do we need a distinct NarrowMemory legalize action? 3986 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3987 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3988 return UnableToLegalize; 3989 } 3990 3991 int NumParts = -1; 3992 int NumLeftover = -1; 3993 LLT LeftoverTy; 3994 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3995 if (IsLoad) { 3996 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3997 } else { 3998 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3999 NarrowLeftoverRegs)) { 4000 NumParts = NarrowRegs.size(); 4001 NumLeftover = NarrowLeftoverRegs.size(); 4002 } 4003 } 4004 4005 if (NumParts == -1) 4006 return UnableToLegalize; 4007 4008 LLT PtrTy = MRI.getType(AddrReg); 4009 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4010 4011 unsigned TotalSize = ValTy.getSizeInBits(); 4012 4013 // Split the load/store into PartTy sized pieces starting at Offset. If this 4014 // is a load, return the new registers in ValRegs. For a store, each elements 4015 // of ValRegs should be PartTy. Returns the next offset that needs to be 4016 // handled. 4017 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4018 unsigned Offset) -> unsigned { 4019 MachineFunction &MF = MIRBuilder.getMF(); 4020 unsigned PartSize = PartTy.getSizeInBits(); 4021 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4022 Offset += PartSize, ++Idx) { 4023 unsigned ByteOffset = Offset / 8; 4024 Register NewAddrReg; 4025 4026 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4027 4028 MachineMemOperand *NewMMO = 4029 MF.getMachineMemOperand(MMO, ByteOffset, PartTy); 4030 4031 if (IsLoad) { 4032 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4033 ValRegs.push_back(Dst); 4034 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4035 } else { 4036 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4037 } 4038 } 4039 4040 return Offset; 4041 }; 4042 4043 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 4044 4045 // Handle the rest of the register if this isn't an even type breakdown. 4046 if (LeftoverTy.isValid()) 4047 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 4048 4049 if (IsLoad) { 4050 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4051 LeftoverTy, NarrowLeftoverRegs); 4052 } 4053 4054 MI.eraseFromParent(); 4055 return Legalized; 4056 } 4057 4058 LegalizerHelper::LegalizeResult 4059 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 4060 LLT NarrowTy) { 4061 assert(TypeIdx == 0 && "only one type index expected"); 4062 4063 const unsigned Opc = MI.getOpcode(); 4064 const int NumDefOps = MI.getNumExplicitDefs(); 4065 const int NumSrcOps = MI.getNumOperands() - NumDefOps; 4066 const unsigned Flags = MI.getFlags(); 4067 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 4068 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 4069 4070 assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 " 4071 "result and 1-3 sources or 2 results and " 4072 "1-2 sources"); 4073 4074 SmallVector<Register, 2> DstRegs; 4075 for (int I = 0; I < NumDefOps; ++I) 4076 DstRegs.push_back(MI.getOperand(I).getReg()); 4077 4078 // First of all check whether we are narrowing (changing the element type) 4079 // or reducing the vector elements 4080 const LLT DstTy = MRI.getType(DstRegs[0]); 4081 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 4082 4083 SmallVector<Register, 8> ExtractedRegs[3]; 4084 SmallVector<Register, 8> Parts; 4085 4086 // Break down all the sources into NarrowTy pieces we can operate on. This may 4087 // involve creating merges to a wider type, padded with undef. 4088 for (int I = 0; I != NumSrcOps; ++I) { 4089 Register SrcReg = MI.getOperand(I + NumDefOps).getReg(); 4090 LLT SrcTy = MRI.getType(SrcReg); 4091 4092 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 4093 // For fewerElements, this is a smaller vector with the same element type. 4094 LLT OpNarrowTy; 4095 if (IsNarrow) { 4096 OpNarrowTy = NarrowScalarTy; 4097 4098 // In case of narrowing, we need to cast vectors to scalars for this to 4099 // work properly 4100 // FIXME: Can we do without the bitcast here if we're narrowing? 4101 if (SrcTy.isVector()) { 4102 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 4103 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 4104 } 4105 } else { 4106 auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount() 4107 : ElementCount::getFixed(1); 4108 OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType()); 4109 } 4110 4111 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 4112 4113 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 4114 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 4115 TargetOpcode::G_ANYEXT); 4116 } 4117 4118 SmallVector<Register, 8> ResultRegs[2]; 4119 4120 // Input operands for each sub-instruction. 4121 SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register()); 4122 4123 int NumParts = ExtractedRegs[0].size(); 4124 const unsigned DstSize = DstTy.getSizeInBits(); 4125 const LLT DstScalarTy = LLT::scalar(DstSize); 4126 4127 // Narrowing needs to use scalar types 4128 LLT DstLCMTy, NarrowDstTy; 4129 if (IsNarrow) { 4130 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 4131 NarrowDstTy = NarrowScalarTy; 4132 } else { 4133 DstLCMTy = getLCMType(DstTy, NarrowTy); 4134 NarrowDstTy = NarrowTy; 4135 } 4136 4137 // We widened the source registers to satisfy merge/unmerge size 4138 // constraints. We'll have some extra fully undef parts. 4139 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 4140 4141 for (int I = 0; I != NumRealParts; ++I) { 4142 // Emit this instruction on each of the split pieces. 4143 for (int J = 0; J != NumSrcOps; ++J) 4144 InputRegs[J] = ExtractedRegs[J][I]; 4145 4146 MachineInstrBuilder Inst; 4147 if (NumDefOps == 1) 4148 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 4149 else 4150 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs, 4151 Flags); 4152 4153 for (int J = 0; J != NumDefOps; ++J) 4154 ResultRegs[J].push_back(Inst.getReg(J)); 4155 } 4156 4157 // Fill out the widened result with undef instead of creating instructions 4158 // with undef inputs. 4159 int NumUndefParts = NumParts - NumRealParts; 4160 if (NumUndefParts != 0) { 4161 Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0); 4162 for (int I = 0; I != NumDefOps; ++I) 4163 ResultRegs[I].append(NumUndefParts, Undef); 4164 } 4165 4166 // Extract the possibly padded result. Use a scratch register if we need to do 4167 // a final bitcast, otherwise use the original result register. 4168 Register MergeDstReg; 4169 for (int I = 0; I != NumDefOps; ++I) { 4170 if (IsNarrow && DstTy.isVector()) 4171 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 4172 else 4173 MergeDstReg = DstRegs[I]; 4174 4175 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]); 4176 4177 // Recast to vector if we narrowed a vector 4178 if (IsNarrow && DstTy.isVector()) 4179 MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg); 4180 } 4181 4182 MI.eraseFromParent(); 4183 return Legalized; 4184 } 4185 4186 LegalizerHelper::LegalizeResult 4187 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 4188 LLT NarrowTy) { 4189 Register DstReg = MI.getOperand(0).getReg(); 4190 Register SrcReg = MI.getOperand(1).getReg(); 4191 int64_t Imm = MI.getOperand(2).getImm(); 4192 4193 LLT DstTy = MRI.getType(DstReg); 4194 4195 SmallVector<Register, 8> Parts; 4196 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4197 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 4198 4199 for (Register &R : Parts) 4200 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 4201 4202 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4203 4204 MI.eraseFromParent(); 4205 return Legalized; 4206 } 4207 4208 LegalizerHelper::LegalizeResult 4209 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4210 LLT NarrowTy) { 4211 using namespace TargetOpcode; 4212 4213 switch (MI.getOpcode()) { 4214 case G_IMPLICIT_DEF: 4215 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 4216 case G_TRUNC: 4217 case G_AND: 4218 case G_OR: 4219 case G_XOR: 4220 case G_ADD: 4221 case G_SUB: 4222 case G_MUL: 4223 case G_PTR_ADD: 4224 case G_SMULH: 4225 case G_UMULH: 4226 case G_FADD: 4227 case G_FMUL: 4228 case G_FSUB: 4229 case G_FNEG: 4230 case G_FABS: 4231 case G_FCANONICALIZE: 4232 case G_FDIV: 4233 case G_FREM: 4234 case G_FMA: 4235 case G_FMAD: 4236 case G_FPOW: 4237 case G_FEXP: 4238 case G_FEXP2: 4239 case G_FLOG: 4240 case G_FLOG2: 4241 case G_FLOG10: 4242 case G_FNEARBYINT: 4243 case G_FCEIL: 4244 case G_FFLOOR: 4245 case G_FRINT: 4246 case G_INTRINSIC_ROUND: 4247 case G_INTRINSIC_ROUNDEVEN: 4248 case G_INTRINSIC_TRUNC: 4249 case G_FCOS: 4250 case G_FSIN: 4251 case G_FSQRT: 4252 case G_BSWAP: 4253 case G_BITREVERSE: 4254 case G_SDIV: 4255 case G_UDIV: 4256 case G_SREM: 4257 case G_UREM: 4258 case G_SDIVREM: 4259 case G_UDIVREM: 4260 case G_SMIN: 4261 case G_SMAX: 4262 case G_UMIN: 4263 case G_UMAX: 4264 case G_ABS: 4265 case G_FMINNUM: 4266 case G_FMAXNUM: 4267 case G_FMINNUM_IEEE: 4268 case G_FMAXNUM_IEEE: 4269 case G_FMINIMUM: 4270 case G_FMAXIMUM: 4271 case G_FSHL: 4272 case G_FSHR: 4273 case G_FREEZE: 4274 case G_SADDSAT: 4275 case G_SSUBSAT: 4276 case G_UADDSAT: 4277 case G_USUBSAT: 4278 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4279 case G_UMULO: 4280 case G_SMULO: 4281 return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy); 4282 case G_SHL: 4283 case G_LSHR: 4284 case G_ASHR: 4285 case G_SSHLSAT: 4286 case G_USHLSAT: 4287 case G_CTLZ: 4288 case G_CTLZ_ZERO_UNDEF: 4289 case G_CTTZ: 4290 case G_CTTZ_ZERO_UNDEF: 4291 case G_CTPOP: 4292 case G_FCOPYSIGN: 4293 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4294 case G_ZEXT: 4295 case G_SEXT: 4296 case G_ANYEXT: 4297 case G_FPEXT: 4298 case G_FPTRUNC: 4299 case G_SITOFP: 4300 case G_UITOFP: 4301 case G_FPTOSI: 4302 case G_FPTOUI: 4303 case G_INTTOPTR: 4304 case G_PTRTOINT: 4305 case G_ADDRSPACE_CAST: 4306 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4307 case G_ICMP: 4308 case G_FCMP: 4309 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4310 case G_SELECT: 4311 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4312 case G_PHI: 4313 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4314 case G_UNMERGE_VALUES: 4315 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4316 case G_BUILD_VECTOR: 4317 assert(TypeIdx == 0 && "not a vector type index"); 4318 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4319 case G_CONCAT_VECTORS: 4320 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4321 return UnableToLegalize; 4322 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4323 case G_EXTRACT_VECTOR_ELT: 4324 case G_INSERT_VECTOR_ELT: 4325 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4326 case G_LOAD: 4327 case G_STORE: 4328 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4329 case G_SEXT_INREG: 4330 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4331 GISEL_VECREDUCE_CASES_NONSEQ 4332 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4333 case G_SHUFFLE_VECTOR: 4334 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4335 default: 4336 return UnableToLegalize; 4337 } 4338 } 4339 4340 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4341 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4342 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4343 if (TypeIdx != 0) 4344 return UnableToLegalize; 4345 4346 Register DstReg = MI.getOperand(0).getReg(); 4347 Register Src1Reg = MI.getOperand(1).getReg(); 4348 Register Src2Reg = MI.getOperand(2).getReg(); 4349 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4350 LLT DstTy = MRI.getType(DstReg); 4351 LLT Src1Ty = MRI.getType(Src1Reg); 4352 LLT Src2Ty = MRI.getType(Src2Reg); 4353 // The shuffle should be canonicalized by now. 4354 if (DstTy != Src1Ty) 4355 return UnableToLegalize; 4356 if (DstTy != Src2Ty) 4357 return UnableToLegalize; 4358 4359 if (!isPowerOf2_32(DstTy.getNumElements())) 4360 return UnableToLegalize; 4361 4362 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4363 // Further legalization attempts will be needed to do split further. 4364 NarrowTy = 4365 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4366 unsigned NewElts = NarrowTy.getNumElements(); 4367 4368 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4369 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4370 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4371 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4372 SplitSrc2Regs[1]}; 4373 4374 Register Hi, Lo; 4375 4376 // If Lo or Hi uses elements from at most two of the four input vectors, then 4377 // express it as a vector shuffle of those two inputs. Otherwise extract the 4378 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4379 SmallVector<int, 16> Ops; 4380 for (unsigned High = 0; High < 2; ++High) { 4381 Register &Output = High ? Hi : Lo; 4382 4383 // Build a shuffle mask for the output, discovering on the fly which 4384 // input vectors to use as shuffle operands (recorded in InputUsed). 4385 // If building a suitable shuffle vector proves too hard, then bail 4386 // out with useBuildVector set. 4387 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4388 unsigned FirstMaskIdx = High * NewElts; 4389 bool UseBuildVector = false; 4390 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4391 // The mask element. This indexes into the input. 4392 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4393 4394 // The input vector this mask element indexes into. 4395 unsigned Input = (unsigned)Idx / NewElts; 4396 4397 if (Input >= array_lengthof(Inputs)) { 4398 // The mask element does not index into any input vector. 4399 Ops.push_back(-1); 4400 continue; 4401 } 4402 4403 // Turn the index into an offset from the start of the input vector. 4404 Idx -= Input * NewElts; 4405 4406 // Find or create a shuffle vector operand to hold this input. 4407 unsigned OpNo; 4408 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4409 if (InputUsed[OpNo] == Input) { 4410 // This input vector is already an operand. 4411 break; 4412 } else if (InputUsed[OpNo] == -1U) { 4413 // Create a new operand for this input vector. 4414 InputUsed[OpNo] = Input; 4415 break; 4416 } 4417 } 4418 4419 if (OpNo >= array_lengthof(InputUsed)) { 4420 // More than two input vectors used! Give up on trying to create a 4421 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4422 UseBuildVector = true; 4423 break; 4424 } 4425 4426 // Add the mask index for the new shuffle vector. 4427 Ops.push_back(Idx + OpNo * NewElts); 4428 } 4429 4430 if (UseBuildVector) { 4431 LLT EltTy = NarrowTy.getElementType(); 4432 SmallVector<Register, 16> SVOps; 4433 4434 // Extract the input elements by hand. 4435 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4436 // The mask element. This indexes into the input. 4437 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4438 4439 // The input vector this mask element indexes into. 4440 unsigned Input = (unsigned)Idx / NewElts; 4441 4442 if (Input >= array_lengthof(Inputs)) { 4443 // The mask element is "undef" or indexes off the end of the input. 4444 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4445 continue; 4446 } 4447 4448 // Turn the index into an offset from the start of the input vector. 4449 Idx -= Input * NewElts; 4450 4451 // Extract the vector element by hand. 4452 SVOps.push_back(MIRBuilder 4453 .buildExtractVectorElement( 4454 EltTy, Inputs[Input], 4455 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4456 .getReg(0)); 4457 } 4458 4459 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4460 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4461 } else if (InputUsed[0] == -1U) { 4462 // No input vectors were used! The result is undefined. 4463 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4464 } else { 4465 Register Op0 = Inputs[InputUsed[0]]; 4466 // If only one input was used, use an undefined vector for the other. 4467 Register Op1 = InputUsed[1] == -1U 4468 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4469 : Inputs[InputUsed[1]]; 4470 // At least one input vector was used. Create a new shuffle vector. 4471 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4472 } 4473 4474 Ops.clear(); 4475 } 4476 4477 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4478 MI.eraseFromParent(); 4479 return Legalized; 4480 } 4481 4482 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4483 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4484 unsigned Opc = MI.getOpcode(); 4485 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4486 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4487 "Sequential reductions not expected"); 4488 4489 if (TypeIdx != 1) 4490 return UnableToLegalize; 4491 4492 // The semantics of the normal non-sequential reductions allow us to freely 4493 // re-associate the operation. 4494 Register SrcReg = MI.getOperand(1).getReg(); 4495 LLT SrcTy = MRI.getType(SrcReg); 4496 Register DstReg = MI.getOperand(0).getReg(); 4497 LLT DstTy = MRI.getType(DstReg); 4498 4499 if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0) 4500 return UnableToLegalize; 4501 4502 SmallVector<Register> SplitSrcs; 4503 const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements(); 4504 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4505 SmallVector<Register> PartialReductions; 4506 for (unsigned Part = 0; Part < NumParts; ++Part) { 4507 PartialReductions.push_back( 4508 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4509 } 4510 4511 unsigned ScalarOpc; 4512 switch (Opc) { 4513 case TargetOpcode::G_VECREDUCE_FADD: 4514 ScalarOpc = TargetOpcode::G_FADD; 4515 break; 4516 case TargetOpcode::G_VECREDUCE_FMUL: 4517 ScalarOpc = TargetOpcode::G_FMUL; 4518 break; 4519 case TargetOpcode::G_VECREDUCE_FMAX: 4520 ScalarOpc = TargetOpcode::G_FMAXNUM; 4521 break; 4522 case TargetOpcode::G_VECREDUCE_FMIN: 4523 ScalarOpc = TargetOpcode::G_FMINNUM; 4524 break; 4525 case TargetOpcode::G_VECREDUCE_ADD: 4526 ScalarOpc = TargetOpcode::G_ADD; 4527 break; 4528 case TargetOpcode::G_VECREDUCE_MUL: 4529 ScalarOpc = TargetOpcode::G_MUL; 4530 break; 4531 case TargetOpcode::G_VECREDUCE_AND: 4532 ScalarOpc = TargetOpcode::G_AND; 4533 break; 4534 case TargetOpcode::G_VECREDUCE_OR: 4535 ScalarOpc = TargetOpcode::G_OR; 4536 break; 4537 case TargetOpcode::G_VECREDUCE_XOR: 4538 ScalarOpc = TargetOpcode::G_XOR; 4539 break; 4540 case TargetOpcode::G_VECREDUCE_SMAX: 4541 ScalarOpc = TargetOpcode::G_SMAX; 4542 break; 4543 case TargetOpcode::G_VECREDUCE_SMIN: 4544 ScalarOpc = TargetOpcode::G_SMIN; 4545 break; 4546 case TargetOpcode::G_VECREDUCE_UMAX: 4547 ScalarOpc = TargetOpcode::G_UMAX; 4548 break; 4549 case TargetOpcode::G_VECREDUCE_UMIN: 4550 ScalarOpc = TargetOpcode::G_UMIN; 4551 break; 4552 default: 4553 LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n"); 4554 return UnableToLegalize; 4555 } 4556 4557 // If the types involved are powers of 2, we can generate intermediate vector 4558 // ops, before generating a final reduction operation. 4559 if (isPowerOf2_32(SrcTy.getNumElements()) && 4560 isPowerOf2_32(NarrowTy.getNumElements())) { 4561 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4562 } 4563 4564 Register Acc = PartialReductions[0]; 4565 for (unsigned Part = 1; Part < NumParts; ++Part) { 4566 if (Part == NumParts - 1) { 4567 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4568 {Acc, PartialReductions[Part]}); 4569 } else { 4570 Acc = MIRBuilder 4571 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4572 .getReg(0); 4573 } 4574 } 4575 MI.eraseFromParent(); 4576 return Legalized; 4577 } 4578 4579 LegalizerHelper::LegalizeResult 4580 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4581 LLT SrcTy, LLT NarrowTy, 4582 unsigned ScalarOpc) { 4583 SmallVector<Register> SplitSrcs; 4584 // Split the sources into NarrowTy size pieces. 4585 extractParts(SrcReg, NarrowTy, 4586 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4587 // We're going to do a tree reduction using vector operations until we have 4588 // one NarrowTy size value left. 4589 while (SplitSrcs.size() > 1) { 4590 SmallVector<Register> PartialRdxs; 4591 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4592 Register LHS = SplitSrcs[Idx]; 4593 Register RHS = SplitSrcs[Idx + 1]; 4594 // Create the intermediate vector op. 4595 Register Res = 4596 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4597 PartialRdxs.push_back(Res); 4598 } 4599 SplitSrcs = std::move(PartialRdxs); 4600 } 4601 // Finally generate the requested NarrowTy based reduction. 4602 Observer.changingInstr(MI); 4603 MI.getOperand(1).setReg(SplitSrcs[0]); 4604 Observer.changedInstr(MI); 4605 return Legalized; 4606 } 4607 4608 LegalizerHelper::LegalizeResult 4609 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4610 const LLT HalfTy, const LLT AmtTy) { 4611 4612 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4613 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4614 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4615 4616 if (Amt.isNullValue()) { 4617 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4618 MI.eraseFromParent(); 4619 return Legalized; 4620 } 4621 4622 LLT NVT = HalfTy; 4623 unsigned NVTBits = HalfTy.getSizeInBits(); 4624 unsigned VTBits = 2 * NVTBits; 4625 4626 SrcOp Lo(Register(0)), Hi(Register(0)); 4627 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4628 if (Amt.ugt(VTBits)) { 4629 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4630 } else if (Amt.ugt(NVTBits)) { 4631 Lo = MIRBuilder.buildConstant(NVT, 0); 4632 Hi = MIRBuilder.buildShl(NVT, InL, 4633 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4634 } else if (Amt == NVTBits) { 4635 Lo = MIRBuilder.buildConstant(NVT, 0); 4636 Hi = InL; 4637 } else { 4638 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4639 auto OrLHS = 4640 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4641 auto OrRHS = MIRBuilder.buildLShr( 4642 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4643 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4644 } 4645 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4646 if (Amt.ugt(VTBits)) { 4647 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4648 } else if (Amt.ugt(NVTBits)) { 4649 Lo = MIRBuilder.buildLShr(NVT, InH, 4650 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4651 Hi = MIRBuilder.buildConstant(NVT, 0); 4652 } else if (Amt == NVTBits) { 4653 Lo = InH; 4654 Hi = MIRBuilder.buildConstant(NVT, 0); 4655 } else { 4656 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4657 4658 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4659 auto OrRHS = MIRBuilder.buildShl( 4660 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4661 4662 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4663 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4664 } 4665 } else { 4666 if (Amt.ugt(VTBits)) { 4667 Hi = Lo = MIRBuilder.buildAShr( 4668 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4669 } else if (Amt.ugt(NVTBits)) { 4670 Lo = MIRBuilder.buildAShr(NVT, InH, 4671 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4672 Hi = MIRBuilder.buildAShr(NVT, InH, 4673 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4674 } else if (Amt == NVTBits) { 4675 Lo = InH; 4676 Hi = MIRBuilder.buildAShr(NVT, InH, 4677 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4678 } else { 4679 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4680 4681 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4682 auto OrRHS = MIRBuilder.buildShl( 4683 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4684 4685 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4686 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4687 } 4688 } 4689 4690 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4691 MI.eraseFromParent(); 4692 4693 return Legalized; 4694 } 4695 4696 // TODO: Optimize if constant shift amount. 4697 LegalizerHelper::LegalizeResult 4698 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4699 LLT RequestedTy) { 4700 if (TypeIdx == 1) { 4701 Observer.changingInstr(MI); 4702 narrowScalarSrc(MI, RequestedTy, 2); 4703 Observer.changedInstr(MI); 4704 return Legalized; 4705 } 4706 4707 Register DstReg = MI.getOperand(0).getReg(); 4708 LLT DstTy = MRI.getType(DstReg); 4709 if (DstTy.isVector()) 4710 return UnableToLegalize; 4711 4712 Register Amt = MI.getOperand(2).getReg(); 4713 LLT ShiftAmtTy = MRI.getType(Amt); 4714 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4715 if (DstEltSize % 2 != 0) 4716 return UnableToLegalize; 4717 4718 // Ignore the input type. We can only go to exactly half the size of the 4719 // input. If that isn't small enough, the resulting pieces will be further 4720 // legalized. 4721 const unsigned NewBitSize = DstEltSize / 2; 4722 const LLT HalfTy = LLT::scalar(NewBitSize); 4723 const LLT CondTy = LLT::scalar(1); 4724 4725 if (const MachineInstr *KShiftAmt = 4726 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4727 return narrowScalarShiftByConstant( 4728 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4729 } 4730 4731 // TODO: Expand with known bits. 4732 4733 // Handle the fully general expansion by an unknown amount. 4734 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4735 4736 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4737 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4738 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4739 4740 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4741 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4742 4743 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4744 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4745 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4746 4747 Register ResultRegs[2]; 4748 switch (MI.getOpcode()) { 4749 case TargetOpcode::G_SHL: { 4750 // Short: ShAmt < NewBitSize 4751 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4752 4753 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4754 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4755 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4756 4757 // Long: ShAmt >= NewBitSize 4758 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4759 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4760 4761 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4762 auto Hi = MIRBuilder.buildSelect( 4763 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4764 4765 ResultRegs[0] = Lo.getReg(0); 4766 ResultRegs[1] = Hi.getReg(0); 4767 break; 4768 } 4769 case TargetOpcode::G_LSHR: 4770 case TargetOpcode::G_ASHR: { 4771 // Short: ShAmt < NewBitSize 4772 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4773 4774 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4775 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4776 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4777 4778 // Long: ShAmt >= NewBitSize 4779 MachineInstrBuilder HiL; 4780 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4781 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4782 } else { 4783 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4784 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4785 } 4786 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4787 {InH, AmtExcess}); // Lo from Hi part. 4788 4789 auto Lo = MIRBuilder.buildSelect( 4790 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4791 4792 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4793 4794 ResultRegs[0] = Lo.getReg(0); 4795 ResultRegs[1] = Hi.getReg(0); 4796 break; 4797 } 4798 default: 4799 llvm_unreachable("not a shift"); 4800 } 4801 4802 MIRBuilder.buildMerge(DstReg, ResultRegs); 4803 MI.eraseFromParent(); 4804 return Legalized; 4805 } 4806 4807 LegalizerHelper::LegalizeResult 4808 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4809 LLT MoreTy) { 4810 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4811 4812 Observer.changingInstr(MI); 4813 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4814 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4815 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4816 moreElementsVectorSrc(MI, MoreTy, I); 4817 } 4818 4819 MachineBasicBlock &MBB = *MI.getParent(); 4820 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4821 moreElementsVectorDst(MI, MoreTy, 0); 4822 Observer.changedInstr(MI); 4823 return Legalized; 4824 } 4825 4826 LegalizerHelper::LegalizeResult 4827 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4828 LLT MoreTy) { 4829 unsigned Opc = MI.getOpcode(); 4830 switch (Opc) { 4831 case TargetOpcode::G_IMPLICIT_DEF: 4832 case TargetOpcode::G_LOAD: { 4833 if (TypeIdx != 0) 4834 return UnableToLegalize; 4835 Observer.changingInstr(MI); 4836 moreElementsVectorDst(MI, MoreTy, 0); 4837 Observer.changedInstr(MI); 4838 return Legalized; 4839 } 4840 case TargetOpcode::G_STORE: 4841 if (TypeIdx != 0) 4842 return UnableToLegalize; 4843 Observer.changingInstr(MI); 4844 moreElementsVectorSrc(MI, MoreTy, 0); 4845 Observer.changedInstr(MI); 4846 return Legalized; 4847 case TargetOpcode::G_AND: 4848 case TargetOpcode::G_OR: 4849 case TargetOpcode::G_XOR: 4850 case TargetOpcode::G_SMIN: 4851 case TargetOpcode::G_SMAX: 4852 case TargetOpcode::G_UMIN: 4853 case TargetOpcode::G_UMAX: 4854 case TargetOpcode::G_FMINNUM: 4855 case TargetOpcode::G_FMAXNUM: 4856 case TargetOpcode::G_FMINNUM_IEEE: 4857 case TargetOpcode::G_FMAXNUM_IEEE: 4858 case TargetOpcode::G_FMINIMUM: 4859 case TargetOpcode::G_FMAXIMUM: { 4860 Observer.changingInstr(MI); 4861 moreElementsVectorSrc(MI, MoreTy, 1); 4862 moreElementsVectorSrc(MI, MoreTy, 2); 4863 moreElementsVectorDst(MI, MoreTy, 0); 4864 Observer.changedInstr(MI); 4865 return Legalized; 4866 } 4867 case TargetOpcode::G_EXTRACT: 4868 if (TypeIdx != 1) 4869 return UnableToLegalize; 4870 Observer.changingInstr(MI); 4871 moreElementsVectorSrc(MI, MoreTy, 1); 4872 Observer.changedInstr(MI); 4873 return Legalized; 4874 case TargetOpcode::G_INSERT: 4875 case TargetOpcode::G_FREEZE: 4876 if (TypeIdx != 0) 4877 return UnableToLegalize; 4878 Observer.changingInstr(MI); 4879 moreElementsVectorSrc(MI, MoreTy, 1); 4880 moreElementsVectorDst(MI, MoreTy, 0); 4881 Observer.changedInstr(MI); 4882 return Legalized; 4883 case TargetOpcode::G_SELECT: 4884 if (TypeIdx != 0) 4885 return UnableToLegalize; 4886 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4887 return UnableToLegalize; 4888 4889 Observer.changingInstr(MI); 4890 moreElementsVectorSrc(MI, MoreTy, 2); 4891 moreElementsVectorSrc(MI, MoreTy, 3); 4892 moreElementsVectorDst(MI, MoreTy, 0); 4893 Observer.changedInstr(MI); 4894 return Legalized; 4895 case TargetOpcode::G_UNMERGE_VALUES: { 4896 if (TypeIdx != 1) 4897 return UnableToLegalize; 4898 4899 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4900 int NumDst = MI.getNumOperands() - 1; 4901 moreElementsVectorSrc(MI, MoreTy, NumDst); 4902 4903 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4904 for (int I = 0; I != NumDst; ++I) 4905 MIB.addDef(MI.getOperand(I).getReg()); 4906 4907 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4908 for (int I = NumDst; I != NewNumDst; ++I) 4909 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4910 4911 MIB.addUse(MI.getOperand(NumDst).getReg()); 4912 MI.eraseFromParent(); 4913 return Legalized; 4914 } 4915 case TargetOpcode::G_PHI: 4916 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4917 case TargetOpcode::G_SHUFFLE_VECTOR: 4918 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 4919 default: 4920 return UnableToLegalize; 4921 } 4922 } 4923 4924 LegalizerHelper::LegalizeResult 4925 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 4926 unsigned int TypeIdx, LLT MoreTy) { 4927 if (TypeIdx != 0) 4928 return UnableToLegalize; 4929 4930 Register DstReg = MI.getOperand(0).getReg(); 4931 Register Src1Reg = MI.getOperand(1).getReg(); 4932 Register Src2Reg = MI.getOperand(2).getReg(); 4933 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4934 LLT DstTy = MRI.getType(DstReg); 4935 LLT Src1Ty = MRI.getType(Src1Reg); 4936 LLT Src2Ty = MRI.getType(Src2Reg); 4937 unsigned NumElts = DstTy.getNumElements(); 4938 unsigned WidenNumElts = MoreTy.getNumElements(); 4939 4940 // Expect a canonicalized shuffle. 4941 if (DstTy != Src1Ty || DstTy != Src2Ty) 4942 return UnableToLegalize; 4943 4944 moreElementsVectorSrc(MI, MoreTy, 1); 4945 moreElementsVectorSrc(MI, MoreTy, 2); 4946 4947 // Adjust mask based on new input vector length. 4948 SmallVector<int, 16> NewMask; 4949 for (unsigned I = 0; I != NumElts; ++I) { 4950 int Idx = Mask[I]; 4951 if (Idx < static_cast<int>(NumElts)) 4952 NewMask.push_back(Idx); 4953 else 4954 NewMask.push_back(Idx - NumElts + WidenNumElts); 4955 } 4956 for (unsigned I = NumElts; I != WidenNumElts; ++I) 4957 NewMask.push_back(-1); 4958 moreElementsVectorDst(MI, MoreTy, 0); 4959 MIRBuilder.setInstrAndDebugLoc(MI); 4960 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 4961 MI.getOperand(1).getReg(), 4962 MI.getOperand(2).getReg(), NewMask); 4963 MI.eraseFromParent(); 4964 return Legalized; 4965 } 4966 4967 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4968 ArrayRef<Register> Src1Regs, 4969 ArrayRef<Register> Src2Regs, 4970 LLT NarrowTy) { 4971 MachineIRBuilder &B = MIRBuilder; 4972 unsigned SrcParts = Src1Regs.size(); 4973 unsigned DstParts = DstRegs.size(); 4974 4975 unsigned DstIdx = 0; // Low bits of the result. 4976 Register FactorSum = 4977 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4978 DstRegs[DstIdx] = FactorSum; 4979 4980 unsigned CarrySumPrevDstIdx; 4981 SmallVector<Register, 4> Factors; 4982 4983 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4984 // Collect low parts of muls for DstIdx. 4985 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4986 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4987 MachineInstrBuilder Mul = 4988 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4989 Factors.push_back(Mul.getReg(0)); 4990 } 4991 // Collect high parts of muls from previous DstIdx. 4992 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4993 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4994 MachineInstrBuilder Umulh = 4995 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4996 Factors.push_back(Umulh.getReg(0)); 4997 } 4998 // Add CarrySum from additions calculated for previous DstIdx. 4999 if (DstIdx != 1) { 5000 Factors.push_back(CarrySumPrevDstIdx); 5001 } 5002 5003 Register CarrySum; 5004 // Add all factors and accumulate all carries into CarrySum. 5005 if (DstIdx != DstParts - 1) { 5006 MachineInstrBuilder Uaddo = 5007 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5008 FactorSum = Uaddo.getReg(0); 5009 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5010 for (unsigned i = 2; i < Factors.size(); ++i) { 5011 MachineInstrBuilder Uaddo = 5012 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5013 FactorSum = Uaddo.getReg(0); 5014 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5015 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5016 } 5017 } else { 5018 // Since value for the next index is not calculated, neither is CarrySum. 5019 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5020 for (unsigned i = 2; i < Factors.size(); ++i) 5021 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5022 } 5023 5024 CarrySumPrevDstIdx = CarrySum; 5025 DstRegs[DstIdx] = FactorSum; 5026 Factors.clear(); 5027 } 5028 } 5029 5030 LegalizerHelper::LegalizeResult 5031 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5032 LLT NarrowTy) { 5033 if (TypeIdx != 0) 5034 return UnableToLegalize; 5035 5036 Register DstReg = MI.getOperand(0).getReg(); 5037 LLT DstType = MRI.getType(DstReg); 5038 // FIXME: add support for vector types 5039 if (DstType.isVector()) 5040 return UnableToLegalize; 5041 5042 unsigned Opcode = MI.getOpcode(); 5043 unsigned OpO, OpE, OpF; 5044 switch (Opcode) { 5045 case TargetOpcode::G_SADDO: 5046 case TargetOpcode::G_SADDE: 5047 case TargetOpcode::G_UADDO: 5048 case TargetOpcode::G_UADDE: 5049 case TargetOpcode::G_ADD: 5050 OpO = TargetOpcode::G_UADDO; 5051 OpE = TargetOpcode::G_UADDE; 5052 OpF = TargetOpcode::G_UADDE; 5053 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5054 OpF = TargetOpcode::G_SADDE; 5055 break; 5056 case TargetOpcode::G_SSUBO: 5057 case TargetOpcode::G_SSUBE: 5058 case TargetOpcode::G_USUBO: 5059 case TargetOpcode::G_USUBE: 5060 case TargetOpcode::G_SUB: 5061 OpO = TargetOpcode::G_USUBO; 5062 OpE = TargetOpcode::G_USUBE; 5063 OpF = TargetOpcode::G_USUBE; 5064 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5065 OpF = TargetOpcode::G_SSUBE; 5066 break; 5067 default: 5068 llvm_unreachable("Unexpected add/sub opcode!"); 5069 } 5070 5071 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5072 unsigned NumDefs = MI.getNumExplicitDefs(); 5073 Register Src1 = MI.getOperand(NumDefs).getReg(); 5074 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5075 Register CarryDst, CarryIn; 5076 if (NumDefs == 2) 5077 CarryDst = MI.getOperand(1).getReg(); 5078 if (MI.getNumOperands() == NumDefs + 3) 5079 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5080 5081 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5082 LLT LeftoverTy, DummyTy; 5083 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5084 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 5085 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5086 5087 int NarrowParts = Src1Regs.size(); 5088 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5089 Src1Regs.push_back(Src1Left[I]); 5090 Src2Regs.push_back(Src2Left[I]); 5091 } 5092 DstRegs.reserve(Src1Regs.size()); 5093 5094 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5095 Register DstReg = 5096 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5097 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5098 // Forward the final carry-out to the destination register 5099 if (i == e - 1 && CarryDst) 5100 CarryOut = CarryDst; 5101 5102 if (!CarryIn) { 5103 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5104 {Src1Regs[i], Src2Regs[i]}); 5105 } else if (i == e - 1) { 5106 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5107 {Src1Regs[i], Src2Regs[i], CarryIn}); 5108 } else { 5109 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5110 {Src1Regs[i], Src2Regs[i], CarryIn}); 5111 } 5112 5113 DstRegs.push_back(DstReg); 5114 CarryIn = CarryOut; 5115 } 5116 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5117 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5118 makeArrayRef(DstRegs).drop_front(NarrowParts)); 5119 5120 MI.eraseFromParent(); 5121 return Legalized; 5122 } 5123 5124 LegalizerHelper::LegalizeResult 5125 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5126 Register DstReg = MI.getOperand(0).getReg(); 5127 Register Src1 = MI.getOperand(1).getReg(); 5128 Register Src2 = MI.getOperand(2).getReg(); 5129 5130 LLT Ty = MRI.getType(DstReg); 5131 if (Ty.isVector()) 5132 return UnableToLegalize; 5133 5134 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 5135 unsigned DstSize = Ty.getSizeInBits(); 5136 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5137 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 5138 return UnableToLegalize; 5139 5140 unsigned NumDstParts = DstSize / NarrowSize; 5141 unsigned NumSrcParts = SrcSize / NarrowSize; 5142 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5143 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 5144 5145 SmallVector<Register, 2> Src1Parts, Src2Parts; 5146 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5147 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 5148 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 5149 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5150 5151 // Take only high half of registers if this is high mul. 5152 ArrayRef<Register> DstRegs( 5153 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 5154 MIRBuilder.buildMerge(DstReg, DstRegs); 5155 MI.eraseFromParent(); 5156 return Legalized; 5157 } 5158 5159 LegalizerHelper::LegalizeResult 5160 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5161 LLT NarrowTy) { 5162 if (TypeIdx != 0) 5163 return UnableToLegalize; 5164 5165 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5166 5167 Register Src = MI.getOperand(1).getReg(); 5168 LLT SrcTy = MRI.getType(Src); 5169 5170 // If all finite floats fit into the narrowed integer type, we can just swap 5171 // out the result type. This is practically only useful for conversions from 5172 // half to at least 16-bits, so just handle the one case. 5173 if (SrcTy.getScalarType() != LLT::scalar(16) || 5174 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5175 return UnableToLegalize; 5176 5177 Observer.changingInstr(MI); 5178 narrowScalarDst(MI, NarrowTy, 0, 5179 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5180 Observer.changedInstr(MI); 5181 return Legalized; 5182 } 5183 5184 LegalizerHelper::LegalizeResult 5185 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5186 LLT NarrowTy) { 5187 if (TypeIdx != 1) 5188 return UnableToLegalize; 5189 5190 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5191 5192 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5193 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5194 // NarrowSize. 5195 if (SizeOp1 % NarrowSize != 0) 5196 return UnableToLegalize; 5197 int NumParts = SizeOp1 / NarrowSize; 5198 5199 SmallVector<Register, 2> SrcRegs, DstRegs; 5200 SmallVector<uint64_t, 2> Indexes; 5201 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5202 5203 Register OpReg = MI.getOperand(0).getReg(); 5204 uint64_t OpStart = MI.getOperand(2).getImm(); 5205 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5206 for (int i = 0; i < NumParts; ++i) { 5207 unsigned SrcStart = i * NarrowSize; 5208 5209 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5210 // No part of the extract uses this subregister, ignore it. 5211 continue; 5212 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5213 // The entire subregister is extracted, forward the value. 5214 DstRegs.push_back(SrcRegs[i]); 5215 continue; 5216 } 5217 5218 // OpSegStart is where this destination segment would start in OpReg if it 5219 // extended infinitely in both directions. 5220 int64_t ExtractOffset; 5221 uint64_t SegSize; 5222 if (OpStart < SrcStart) { 5223 ExtractOffset = 0; 5224 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5225 } else { 5226 ExtractOffset = OpStart - SrcStart; 5227 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5228 } 5229 5230 Register SegReg = SrcRegs[i]; 5231 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5232 // A genuine extract is needed. 5233 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5234 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5235 } 5236 5237 DstRegs.push_back(SegReg); 5238 } 5239 5240 Register DstReg = MI.getOperand(0).getReg(); 5241 if (MRI.getType(DstReg).isVector()) 5242 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5243 else if (DstRegs.size() > 1) 5244 MIRBuilder.buildMerge(DstReg, DstRegs); 5245 else 5246 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5247 MI.eraseFromParent(); 5248 return Legalized; 5249 } 5250 5251 LegalizerHelper::LegalizeResult 5252 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5253 LLT NarrowTy) { 5254 // FIXME: Don't know how to handle secondary types yet. 5255 if (TypeIdx != 0) 5256 return UnableToLegalize; 5257 5258 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5259 SmallVector<uint64_t, 2> Indexes; 5260 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5261 LLT LeftoverTy; 5262 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5263 LeftoverRegs); 5264 5265 for (Register Reg : LeftoverRegs) 5266 SrcRegs.push_back(Reg); 5267 5268 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5269 Register OpReg = MI.getOperand(2).getReg(); 5270 uint64_t OpStart = MI.getOperand(3).getImm(); 5271 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5272 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5273 unsigned DstStart = I * NarrowSize; 5274 5275 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5276 // The entire subregister is defined by this insert, forward the new 5277 // value. 5278 DstRegs.push_back(OpReg); 5279 continue; 5280 } 5281 5282 Register SrcReg = SrcRegs[I]; 5283 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5284 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5285 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5286 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5287 } 5288 5289 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5290 // No part of the insert affects this subregister, forward the original. 5291 DstRegs.push_back(SrcReg); 5292 continue; 5293 } 5294 5295 // OpSegStart is where this destination segment would start in OpReg if it 5296 // extended infinitely in both directions. 5297 int64_t ExtractOffset, InsertOffset; 5298 uint64_t SegSize; 5299 if (OpStart < DstStart) { 5300 InsertOffset = 0; 5301 ExtractOffset = DstStart - OpStart; 5302 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5303 } else { 5304 InsertOffset = OpStart - DstStart; 5305 ExtractOffset = 0; 5306 SegSize = 5307 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5308 } 5309 5310 Register SegReg = OpReg; 5311 if (ExtractOffset != 0 || SegSize != OpSize) { 5312 // A genuine extract is needed. 5313 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5314 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5315 } 5316 5317 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5318 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5319 DstRegs.push_back(DstReg); 5320 } 5321 5322 uint64_t WideSize = DstRegs.size() * NarrowSize; 5323 Register DstReg = MI.getOperand(0).getReg(); 5324 if (WideSize > RegTy.getSizeInBits()) { 5325 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5326 MIRBuilder.buildMerge(MergeReg, DstRegs); 5327 MIRBuilder.buildTrunc(DstReg, MergeReg); 5328 } else 5329 MIRBuilder.buildMerge(DstReg, DstRegs); 5330 5331 MI.eraseFromParent(); 5332 return Legalized; 5333 } 5334 5335 LegalizerHelper::LegalizeResult 5336 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5337 LLT NarrowTy) { 5338 Register DstReg = MI.getOperand(0).getReg(); 5339 LLT DstTy = MRI.getType(DstReg); 5340 5341 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5342 5343 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5344 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5345 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5346 LLT LeftoverTy; 5347 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5348 Src0Regs, Src0LeftoverRegs)) 5349 return UnableToLegalize; 5350 5351 LLT Unused; 5352 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5353 Src1Regs, Src1LeftoverRegs)) 5354 llvm_unreachable("inconsistent extractParts result"); 5355 5356 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5357 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5358 {Src0Regs[I], Src1Regs[I]}); 5359 DstRegs.push_back(Inst.getReg(0)); 5360 } 5361 5362 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5363 auto Inst = MIRBuilder.buildInstr( 5364 MI.getOpcode(), 5365 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5366 DstLeftoverRegs.push_back(Inst.getReg(0)); 5367 } 5368 5369 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5370 LeftoverTy, DstLeftoverRegs); 5371 5372 MI.eraseFromParent(); 5373 return Legalized; 5374 } 5375 5376 LegalizerHelper::LegalizeResult 5377 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5378 LLT NarrowTy) { 5379 if (TypeIdx != 0) 5380 return UnableToLegalize; 5381 5382 Register DstReg = MI.getOperand(0).getReg(); 5383 Register SrcReg = MI.getOperand(1).getReg(); 5384 5385 LLT DstTy = MRI.getType(DstReg); 5386 if (DstTy.isVector()) 5387 return UnableToLegalize; 5388 5389 SmallVector<Register, 8> Parts; 5390 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5391 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5392 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5393 5394 MI.eraseFromParent(); 5395 return Legalized; 5396 } 5397 5398 LegalizerHelper::LegalizeResult 5399 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5400 LLT NarrowTy) { 5401 if (TypeIdx != 0) 5402 return UnableToLegalize; 5403 5404 Register CondReg = MI.getOperand(1).getReg(); 5405 LLT CondTy = MRI.getType(CondReg); 5406 if (CondTy.isVector()) // TODO: Handle vselect 5407 return UnableToLegalize; 5408 5409 Register DstReg = MI.getOperand(0).getReg(); 5410 LLT DstTy = MRI.getType(DstReg); 5411 5412 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5413 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5414 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5415 LLT LeftoverTy; 5416 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5417 Src1Regs, Src1LeftoverRegs)) 5418 return UnableToLegalize; 5419 5420 LLT Unused; 5421 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5422 Src2Regs, Src2LeftoverRegs)) 5423 llvm_unreachable("inconsistent extractParts result"); 5424 5425 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5426 auto Select = MIRBuilder.buildSelect(NarrowTy, 5427 CondReg, Src1Regs[I], Src2Regs[I]); 5428 DstRegs.push_back(Select.getReg(0)); 5429 } 5430 5431 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5432 auto Select = MIRBuilder.buildSelect( 5433 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5434 DstLeftoverRegs.push_back(Select.getReg(0)); 5435 } 5436 5437 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5438 LeftoverTy, DstLeftoverRegs); 5439 5440 MI.eraseFromParent(); 5441 return Legalized; 5442 } 5443 5444 LegalizerHelper::LegalizeResult 5445 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5446 LLT NarrowTy) { 5447 if (TypeIdx != 1) 5448 return UnableToLegalize; 5449 5450 Register DstReg = MI.getOperand(0).getReg(); 5451 Register SrcReg = MI.getOperand(1).getReg(); 5452 LLT DstTy = MRI.getType(DstReg); 5453 LLT SrcTy = MRI.getType(SrcReg); 5454 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5455 5456 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5457 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5458 5459 MachineIRBuilder &B = MIRBuilder; 5460 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5461 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5462 auto C_0 = B.buildConstant(NarrowTy, 0); 5463 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5464 UnmergeSrc.getReg(1), C_0); 5465 auto LoCTLZ = IsUndef ? 5466 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5467 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5468 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5469 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5470 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5471 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5472 5473 MI.eraseFromParent(); 5474 return Legalized; 5475 } 5476 5477 return UnableToLegalize; 5478 } 5479 5480 LegalizerHelper::LegalizeResult 5481 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5482 LLT NarrowTy) { 5483 if (TypeIdx != 1) 5484 return UnableToLegalize; 5485 5486 Register DstReg = MI.getOperand(0).getReg(); 5487 Register SrcReg = MI.getOperand(1).getReg(); 5488 LLT DstTy = MRI.getType(DstReg); 5489 LLT SrcTy = MRI.getType(SrcReg); 5490 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5491 5492 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5493 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5494 5495 MachineIRBuilder &B = MIRBuilder; 5496 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5497 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5498 auto C_0 = B.buildConstant(NarrowTy, 0); 5499 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5500 UnmergeSrc.getReg(0), C_0); 5501 auto HiCTTZ = IsUndef ? 5502 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5503 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5504 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5505 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5506 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5507 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5508 5509 MI.eraseFromParent(); 5510 return Legalized; 5511 } 5512 5513 return UnableToLegalize; 5514 } 5515 5516 LegalizerHelper::LegalizeResult 5517 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5518 LLT NarrowTy) { 5519 if (TypeIdx != 1) 5520 return UnableToLegalize; 5521 5522 Register DstReg = MI.getOperand(0).getReg(); 5523 LLT DstTy = MRI.getType(DstReg); 5524 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5525 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5526 5527 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5528 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5529 5530 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5531 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5532 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5533 5534 MI.eraseFromParent(); 5535 return Legalized; 5536 } 5537 5538 return UnableToLegalize; 5539 } 5540 5541 LegalizerHelper::LegalizeResult 5542 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5543 unsigned Opc = MI.getOpcode(); 5544 const auto &TII = MIRBuilder.getTII(); 5545 auto isSupported = [this](const LegalityQuery &Q) { 5546 auto QAction = LI.getAction(Q).Action; 5547 return QAction == Legal || QAction == Libcall || QAction == Custom; 5548 }; 5549 switch (Opc) { 5550 default: 5551 return UnableToLegalize; 5552 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5553 // This trivially expands to CTLZ. 5554 Observer.changingInstr(MI); 5555 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5556 Observer.changedInstr(MI); 5557 return Legalized; 5558 } 5559 case TargetOpcode::G_CTLZ: { 5560 Register DstReg = MI.getOperand(0).getReg(); 5561 Register SrcReg = MI.getOperand(1).getReg(); 5562 LLT DstTy = MRI.getType(DstReg); 5563 LLT SrcTy = MRI.getType(SrcReg); 5564 unsigned Len = SrcTy.getSizeInBits(); 5565 5566 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5567 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5568 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5569 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5570 auto ICmp = MIRBuilder.buildICmp( 5571 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5572 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5573 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5574 MI.eraseFromParent(); 5575 return Legalized; 5576 } 5577 // for now, we do this: 5578 // NewLen = NextPowerOf2(Len); 5579 // x = x | (x >> 1); 5580 // x = x | (x >> 2); 5581 // ... 5582 // x = x | (x >>16); 5583 // x = x | (x >>32); // for 64-bit input 5584 // Upto NewLen/2 5585 // return Len - popcount(x); 5586 // 5587 // Ref: "Hacker's Delight" by Henry Warren 5588 Register Op = SrcReg; 5589 unsigned NewLen = PowerOf2Ceil(Len); 5590 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5591 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5592 auto MIBOp = MIRBuilder.buildOr( 5593 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5594 Op = MIBOp.getReg(0); 5595 } 5596 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5597 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5598 MIBPop); 5599 MI.eraseFromParent(); 5600 return Legalized; 5601 } 5602 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5603 // This trivially expands to CTTZ. 5604 Observer.changingInstr(MI); 5605 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5606 Observer.changedInstr(MI); 5607 return Legalized; 5608 } 5609 case TargetOpcode::G_CTTZ: { 5610 Register DstReg = MI.getOperand(0).getReg(); 5611 Register SrcReg = MI.getOperand(1).getReg(); 5612 LLT DstTy = MRI.getType(DstReg); 5613 LLT SrcTy = MRI.getType(SrcReg); 5614 5615 unsigned Len = SrcTy.getSizeInBits(); 5616 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5617 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5618 // zero. 5619 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5620 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5621 auto ICmp = MIRBuilder.buildICmp( 5622 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5623 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5624 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5625 MI.eraseFromParent(); 5626 return Legalized; 5627 } 5628 // for now, we use: { return popcount(~x & (x - 1)); } 5629 // unless the target has ctlz but not ctpop, in which case we use: 5630 // { return 32 - nlz(~x & (x-1)); } 5631 // Ref: "Hacker's Delight" by Henry Warren 5632 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5633 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5634 auto MIBTmp = MIRBuilder.buildAnd( 5635 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5636 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5637 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5638 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5639 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5640 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5641 MI.eraseFromParent(); 5642 return Legalized; 5643 } 5644 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5645 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5646 return Legalized; 5647 } 5648 case TargetOpcode::G_CTPOP: { 5649 Register SrcReg = MI.getOperand(1).getReg(); 5650 LLT Ty = MRI.getType(SrcReg); 5651 unsigned Size = Ty.getSizeInBits(); 5652 MachineIRBuilder &B = MIRBuilder; 5653 5654 // Count set bits in blocks of 2 bits. Default approach would be 5655 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5656 // We use following formula instead: 5657 // B2Count = val - { (val >> 1) & 0x55555555 } 5658 // since it gives same result in blocks of 2 with one instruction less. 5659 auto C_1 = B.buildConstant(Ty, 1); 5660 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5661 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5662 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5663 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5664 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5665 5666 // In order to get count in blocks of 4 add values from adjacent block of 2. 5667 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5668 auto C_2 = B.buildConstant(Ty, 2); 5669 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5670 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5671 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5672 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5673 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5674 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5675 5676 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5677 // addition since count value sits in range {0,...,8} and 4 bits are enough 5678 // to hold such binary values. After addition high 4 bits still hold count 5679 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5680 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5681 auto C_4 = B.buildConstant(Ty, 4); 5682 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5683 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5684 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5685 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5686 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5687 5688 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5689 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5690 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5691 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5692 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5693 5694 // Shift count result from 8 high bits to low bits. 5695 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5696 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5697 5698 MI.eraseFromParent(); 5699 return Legalized; 5700 } 5701 } 5702 } 5703 5704 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5705 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5706 Register Reg, unsigned BW) { 5707 return matchUnaryPredicate( 5708 MRI, Reg, 5709 [=](const Constant *C) { 5710 // Null constant here means an undef. 5711 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5712 return !CI || CI->getValue().urem(BW) != 0; 5713 }, 5714 /*AllowUndefs*/ true); 5715 } 5716 5717 LegalizerHelper::LegalizeResult 5718 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5719 Register Dst = MI.getOperand(0).getReg(); 5720 Register X = MI.getOperand(1).getReg(); 5721 Register Y = MI.getOperand(2).getReg(); 5722 Register Z = MI.getOperand(3).getReg(); 5723 LLT Ty = MRI.getType(Dst); 5724 LLT ShTy = MRI.getType(Z); 5725 5726 unsigned BW = Ty.getScalarSizeInBits(); 5727 5728 if (!isPowerOf2_32(BW)) 5729 return UnableToLegalize; 5730 5731 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5732 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5733 5734 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5735 // fshl X, Y, Z -> fshr X, Y, -Z 5736 // fshr X, Y, Z -> fshl X, Y, -Z 5737 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5738 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5739 } else { 5740 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5741 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5742 auto One = MIRBuilder.buildConstant(ShTy, 1); 5743 if (IsFSHL) { 5744 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5745 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5746 } else { 5747 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5748 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5749 } 5750 5751 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5752 } 5753 5754 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5755 MI.eraseFromParent(); 5756 return Legalized; 5757 } 5758 5759 LegalizerHelper::LegalizeResult 5760 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5761 Register Dst = MI.getOperand(0).getReg(); 5762 Register X = MI.getOperand(1).getReg(); 5763 Register Y = MI.getOperand(2).getReg(); 5764 Register Z = MI.getOperand(3).getReg(); 5765 LLT Ty = MRI.getType(Dst); 5766 LLT ShTy = MRI.getType(Z); 5767 5768 const unsigned BW = Ty.getScalarSizeInBits(); 5769 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5770 5771 Register ShX, ShY; 5772 Register ShAmt, InvShAmt; 5773 5774 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5775 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5776 // fshl: X << C | Y >> (BW - C) 5777 // fshr: X << (BW - C) | Y >> C 5778 // where C = Z % BW is not zero 5779 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5780 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5781 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5782 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5783 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5784 } else { 5785 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5786 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5787 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5788 if (isPowerOf2_32(BW)) { 5789 // Z % BW -> Z & (BW - 1) 5790 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5791 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5792 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5793 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5794 } else { 5795 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5796 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5797 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5798 } 5799 5800 auto One = MIRBuilder.buildConstant(ShTy, 1); 5801 if (IsFSHL) { 5802 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5803 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5804 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5805 } else { 5806 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5807 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5808 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5809 } 5810 } 5811 5812 MIRBuilder.buildOr(Dst, ShX, ShY); 5813 MI.eraseFromParent(); 5814 return Legalized; 5815 } 5816 5817 LegalizerHelper::LegalizeResult 5818 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5819 // These operations approximately do the following (while avoiding undefined 5820 // shifts by BW): 5821 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5822 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5823 Register Dst = MI.getOperand(0).getReg(); 5824 LLT Ty = MRI.getType(Dst); 5825 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5826 5827 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5828 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5829 5830 // TODO: Use smarter heuristic that accounts for vector legalization. 5831 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5832 return lowerFunnelShiftAsShifts(MI); 5833 5834 // This only works for powers of 2, fallback to shifts if it fails. 5835 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5836 if (Result == UnableToLegalize) 5837 return lowerFunnelShiftAsShifts(MI); 5838 return Result; 5839 } 5840 5841 LegalizerHelper::LegalizeResult 5842 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5843 Register Dst = MI.getOperand(0).getReg(); 5844 Register Src = MI.getOperand(1).getReg(); 5845 Register Amt = MI.getOperand(2).getReg(); 5846 LLT AmtTy = MRI.getType(Amt); 5847 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5848 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5849 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5850 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5851 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5852 MI.eraseFromParent(); 5853 return Legalized; 5854 } 5855 5856 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5857 Register Dst = MI.getOperand(0).getReg(); 5858 Register Src = MI.getOperand(1).getReg(); 5859 Register Amt = MI.getOperand(2).getReg(); 5860 LLT DstTy = MRI.getType(Dst); 5861 LLT SrcTy = MRI.getType(Dst); 5862 LLT AmtTy = MRI.getType(Amt); 5863 5864 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5865 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5866 5867 MIRBuilder.setInstrAndDebugLoc(MI); 5868 5869 // If a rotate in the other direction is supported, use it. 5870 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5871 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5872 isPowerOf2_32(EltSizeInBits)) 5873 return lowerRotateWithReverseRotate(MI); 5874 5875 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5876 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5877 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5878 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5879 Register ShVal; 5880 Register RevShiftVal; 5881 if (isPowerOf2_32(EltSizeInBits)) { 5882 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5883 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5884 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5885 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5886 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5887 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5888 RevShiftVal = 5889 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5890 } else { 5891 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5892 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5893 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5894 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5895 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5896 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5897 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5898 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5899 RevShiftVal = 5900 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5901 } 5902 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5903 MI.eraseFromParent(); 5904 return Legalized; 5905 } 5906 5907 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5908 // representation. 5909 LegalizerHelper::LegalizeResult 5910 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5911 Register Dst = MI.getOperand(0).getReg(); 5912 Register Src = MI.getOperand(1).getReg(); 5913 const LLT S64 = LLT::scalar(64); 5914 const LLT S32 = LLT::scalar(32); 5915 const LLT S1 = LLT::scalar(1); 5916 5917 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5918 5919 // unsigned cul2f(ulong u) { 5920 // uint lz = clz(u); 5921 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5922 // u = (u << lz) & 0x7fffffffffffffffUL; 5923 // ulong t = u & 0xffffffffffUL; 5924 // uint v = (e << 23) | (uint)(u >> 40); 5925 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5926 // return as_float(v + r); 5927 // } 5928 5929 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5930 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5931 5932 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5933 5934 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5935 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5936 5937 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5938 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5939 5940 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5941 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5942 5943 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5944 5945 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5946 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5947 5948 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5949 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5950 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5951 5952 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5953 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5954 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5955 auto One = MIRBuilder.buildConstant(S32, 1); 5956 5957 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5958 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5959 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5960 MIRBuilder.buildAdd(Dst, V, R); 5961 5962 MI.eraseFromParent(); 5963 return Legalized; 5964 } 5965 5966 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5967 Register Dst = MI.getOperand(0).getReg(); 5968 Register Src = MI.getOperand(1).getReg(); 5969 LLT DstTy = MRI.getType(Dst); 5970 LLT SrcTy = MRI.getType(Src); 5971 5972 if (SrcTy == LLT::scalar(1)) { 5973 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5974 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5975 MIRBuilder.buildSelect(Dst, Src, True, False); 5976 MI.eraseFromParent(); 5977 return Legalized; 5978 } 5979 5980 if (SrcTy != LLT::scalar(64)) 5981 return UnableToLegalize; 5982 5983 if (DstTy == LLT::scalar(32)) { 5984 // TODO: SelectionDAG has several alternative expansions to port which may 5985 // be more reasonble depending on the available instructions. If a target 5986 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5987 // intermediate type, this is probably worse. 5988 return lowerU64ToF32BitOps(MI); 5989 } 5990 5991 return UnableToLegalize; 5992 } 5993 5994 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5995 Register Dst = MI.getOperand(0).getReg(); 5996 Register Src = MI.getOperand(1).getReg(); 5997 LLT DstTy = MRI.getType(Dst); 5998 LLT SrcTy = MRI.getType(Src); 5999 6000 const LLT S64 = LLT::scalar(64); 6001 const LLT S32 = LLT::scalar(32); 6002 const LLT S1 = LLT::scalar(1); 6003 6004 if (SrcTy == S1) { 6005 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6006 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6007 MIRBuilder.buildSelect(Dst, Src, True, False); 6008 MI.eraseFromParent(); 6009 return Legalized; 6010 } 6011 6012 if (SrcTy != S64) 6013 return UnableToLegalize; 6014 6015 if (DstTy == S32) { 6016 // signed cl2f(long l) { 6017 // long s = l >> 63; 6018 // float r = cul2f((l + s) ^ s); 6019 // return s ? -r : r; 6020 // } 6021 Register L = Src; 6022 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6023 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6024 6025 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6026 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6027 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6028 6029 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6030 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6031 MIRBuilder.buildConstant(S64, 0)); 6032 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6033 MI.eraseFromParent(); 6034 return Legalized; 6035 } 6036 6037 return UnableToLegalize; 6038 } 6039 6040 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 6041 Register Dst = MI.getOperand(0).getReg(); 6042 Register Src = MI.getOperand(1).getReg(); 6043 LLT DstTy = MRI.getType(Dst); 6044 LLT SrcTy = MRI.getType(Src); 6045 const LLT S64 = LLT::scalar(64); 6046 const LLT S32 = LLT::scalar(32); 6047 6048 if (SrcTy != S64 && SrcTy != S32) 6049 return UnableToLegalize; 6050 if (DstTy != S32 && DstTy != S64) 6051 return UnableToLegalize; 6052 6053 // FPTOSI gives same result as FPTOUI for positive signed integers. 6054 // FPTOUI needs to deal with fp values that convert to unsigned integers 6055 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 6056 6057 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 6058 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 6059 : APFloat::IEEEdouble(), 6060 APInt::getNullValue(SrcTy.getSizeInBits())); 6061 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 6062 6063 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 6064 6065 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 6066 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 6067 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 6068 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 6069 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 6070 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 6071 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 6072 6073 const LLT S1 = LLT::scalar(1); 6074 6075 MachineInstrBuilder FCMP = 6076 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 6077 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 6078 6079 MI.eraseFromParent(); 6080 return Legalized; 6081 } 6082 6083 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 6084 Register Dst = MI.getOperand(0).getReg(); 6085 Register Src = MI.getOperand(1).getReg(); 6086 LLT DstTy = MRI.getType(Dst); 6087 LLT SrcTy = MRI.getType(Src); 6088 const LLT S64 = LLT::scalar(64); 6089 const LLT S32 = LLT::scalar(32); 6090 6091 // FIXME: Only f32 to i64 conversions are supported. 6092 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6093 return UnableToLegalize; 6094 6095 // Expand f32 -> i64 conversion 6096 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6097 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6098 6099 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6100 6101 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6102 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6103 6104 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6105 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6106 6107 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6108 APInt::getSignMask(SrcEltBits)); 6109 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6110 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6111 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6112 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6113 6114 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6115 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6116 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6117 6118 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6119 R = MIRBuilder.buildZExt(DstTy, R); 6120 6121 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6122 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6123 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6124 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6125 6126 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6127 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6128 6129 const LLT S1 = LLT::scalar(1); 6130 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6131 S1, Exponent, ExponentLoBit); 6132 6133 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6134 6135 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6136 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6137 6138 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6139 6140 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6141 S1, Exponent, ZeroSrcTy); 6142 6143 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6144 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6145 6146 MI.eraseFromParent(); 6147 return Legalized; 6148 } 6149 6150 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6151 LegalizerHelper::LegalizeResult 6152 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6153 Register Dst = MI.getOperand(0).getReg(); 6154 Register Src = MI.getOperand(1).getReg(); 6155 6156 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6157 return UnableToLegalize; 6158 6159 const unsigned ExpMask = 0x7ff; 6160 const unsigned ExpBiasf64 = 1023; 6161 const unsigned ExpBiasf16 = 15; 6162 const LLT S32 = LLT::scalar(32); 6163 const LLT S1 = LLT::scalar(1); 6164 6165 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6166 Register U = Unmerge.getReg(0); 6167 Register UH = Unmerge.getReg(1); 6168 6169 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6170 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6171 6172 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6173 // add the f16 bias (15) to get the biased exponent for the f16 format. 6174 E = MIRBuilder.buildAdd( 6175 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6176 6177 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6178 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6179 6180 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6181 MIRBuilder.buildConstant(S32, 0x1ff)); 6182 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6183 6184 auto Zero = MIRBuilder.buildConstant(S32, 0); 6185 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6186 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6187 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6188 6189 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6190 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6191 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6192 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6193 6194 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6195 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6196 6197 // N = M | (E << 12); 6198 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6199 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6200 6201 // B = clamp(1-E, 0, 13); 6202 auto One = MIRBuilder.buildConstant(S32, 1); 6203 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6204 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6205 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6206 6207 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6208 MIRBuilder.buildConstant(S32, 0x1000)); 6209 6210 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6211 auto D0 = MIRBuilder.buildShl(S32, D, B); 6212 6213 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6214 D0, SigSetHigh); 6215 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6216 D = MIRBuilder.buildOr(S32, D, D1); 6217 6218 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6219 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6220 6221 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6222 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6223 6224 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6225 MIRBuilder.buildConstant(S32, 3)); 6226 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6227 6228 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6229 MIRBuilder.buildConstant(S32, 5)); 6230 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6231 6232 V1 = MIRBuilder.buildOr(S32, V0, V1); 6233 V = MIRBuilder.buildAdd(S32, V, V1); 6234 6235 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6236 E, MIRBuilder.buildConstant(S32, 30)); 6237 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6238 MIRBuilder.buildConstant(S32, 0x7c00), V); 6239 6240 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6241 E, MIRBuilder.buildConstant(S32, 1039)); 6242 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6243 6244 // Extract the sign bit. 6245 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6246 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6247 6248 // Insert the sign bit 6249 V = MIRBuilder.buildOr(S32, Sign, V); 6250 6251 MIRBuilder.buildTrunc(Dst, V); 6252 MI.eraseFromParent(); 6253 return Legalized; 6254 } 6255 6256 LegalizerHelper::LegalizeResult 6257 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6258 Register Dst = MI.getOperand(0).getReg(); 6259 Register Src = MI.getOperand(1).getReg(); 6260 6261 LLT DstTy = MRI.getType(Dst); 6262 LLT SrcTy = MRI.getType(Src); 6263 const LLT S64 = LLT::scalar(64); 6264 const LLT S16 = LLT::scalar(16); 6265 6266 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6267 return lowerFPTRUNC_F64_TO_F16(MI); 6268 6269 return UnableToLegalize; 6270 } 6271 6272 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6273 // multiplication tree. 6274 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6275 Register Dst = MI.getOperand(0).getReg(); 6276 Register Src0 = MI.getOperand(1).getReg(); 6277 Register Src1 = MI.getOperand(2).getReg(); 6278 LLT Ty = MRI.getType(Dst); 6279 6280 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6281 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6282 MI.eraseFromParent(); 6283 return Legalized; 6284 } 6285 6286 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6287 switch (Opc) { 6288 case TargetOpcode::G_SMIN: 6289 return CmpInst::ICMP_SLT; 6290 case TargetOpcode::G_SMAX: 6291 return CmpInst::ICMP_SGT; 6292 case TargetOpcode::G_UMIN: 6293 return CmpInst::ICMP_ULT; 6294 case TargetOpcode::G_UMAX: 6295 return CmpInst::ICMP_UGT; 6296 default: 6297 llvm_unreachable("not in integer min/max"); 6298 } 6299 } 6300 6301 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6302 Register Dst = MI.getOperand(0).getReg(); 6303 Register Src0 = MI.getOperand(1).getReg(); 6304 Register Src1 = MI.getOperand(2).getReg(); 6305 6306 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6307 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6308 6309 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6310 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6311 6312 MI.eraseFromParent(); 6313 return Legalized; 6314 } 6315 6316 LegalizerHelper::LegalizeResult 6317 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6318 Register Dst = MI.getOperand(0).getReg(); 6319 Register Src0 = MI.getOperand(1).getReg(); 6320 Register Src1 = MI.getOperand(2).getReg(); 6321 6322 const LLT Src0Ty = MRI.getType(Src0); 6323 const LLT Src1Ty = MRI.getType(Src1); 6324 6325 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6326 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6327 6328 auto SignBitMask = MIRBuilder.buildConstant( 6329 Src0Ty, APInt::getSignMask(Src0Size)); 6330 6331 auto NotSignBitMask = MIRBuilder.buildConstant( 6332 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6333 6334 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6335 Register And1; 6336 if (Src0Ty == Src1Ty) { 6337 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6338 } else if (Src0Size > Src1Size) { 6339 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6340 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6341 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6342 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6343 } else { 6344 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6345 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6346 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6347 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6348 } 6349 6350 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6351 // constants are a nan and -0.0, but the final result should preserve 6352 // everything. 6353 unsigned Flags = MI.getFlags(); 6354 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6355 6356 MI.eraseFromParent(); 6357 return Legalized; 6358 } 6359 6360 LegalizerHelper::LegalizeResult 6361 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6362 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6363 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6364 6365 Register Dst = MI.getOperand(0).getReg(); 6366 Register Src0 = MI.getOperand(1).getReg(); 6367 Register Src1 = MI.getOperand(2).getReg(); 6368 LLT Ty = MRI.getType(Dst); 6369 6370 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6371 // Insert canonicalizes if it's possible we need to quiet to get correct 6372 // sNaN behavior. 6373 6374 // Note this must be done here, and not as an optimization combine in the 6375 // absence of a dedicate quiet-snan instruction as we're using an 6376 // omni-purpose G_FCANONICALIZE. 6377 if (!isKnownNeverSNaN(Src0, MRI)) 6378 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6379 6380 if (!isKnownNeverSNaN(Src1, MRI)) 6381 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6382 } 6383 6384 // If there are no nans, it's safe to simply replace this with the non-IEEE 6385 // version. 6386 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6387 MI.eraseFromParent(); 6388 return Legalized; 6389 } 6390 6391 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6392 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6393 Register DstReg = MI.getOperand(0).getReg(); 6394 LLT Ty = MRI.getType(DstReg); 6395 unsigned Flags = MI.getFlags(); 6396 6397 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6398 Flags); 6399 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6400 MI.eraseFromParent(); 6401 return Legalized; 6402 } 6403 6404 LegalizerHelper::LegalizeResult 6405 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6406 Register DstReg = MI.getOperand(0).getReg(); 6407 Register X = MI.getOperand(1).getReg(); 6408 const unsigned Flags = MI.getFlags(); 6409 const LLT Ty = MRI.getType(DstReg); 6410 const LLT CondTy = Ty.changeElementSize(1); 6411 6412 // round(x) => 6413 // t = trunc(x); 6414 // d = fabs(x - t); 6415 // o = copysign(1.0f, x); 6416 // return t + (d >= 0.5 ? o : 0.0); 6417 6418 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6419 6420 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6421 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6422 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6423 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6424 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6425 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6426 6427 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6428 Flags); 6429 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6430 6431 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6432 6433 MI.eraseFromParent(); 6434 return Legalized; 6435 } 6436 6437 LegalizerHelper::LegalizeResult 6438 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6439 Register DstReg = MI.getOperand(0).getReg(); 6440 Register SrcReg = MI.getOperand(1).getReg(); 6441 unsigned Flags = MI.getFlags(); 6442 LLT Ty = MRI.getType(DstReg); 6443 const LLT CondTy = Ty.changeElementSize(1); 6444 6445 // result = trunc(src); 6446 // if (src < 0.0 && src != result) 6447 // result += -1.0. 6448 6449 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6450 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6451 6452 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6453 SrcReg, Zero, Flags); 6454 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6455 SrcReg, Trunc, Flags); 6456 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6457 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6458 6459 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6460 MI.eraseFromParent(); 6461 return Legalized; 6462 } 6463 6464 LegalizerHelper::LegalizeResult 6465 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6466 const unsigned NumOps = MI.getNumOperands(); 6467 Register DstReg = MI.getOperand(0).getReg(); 6468 Register Src0Reg = MI.getOperand(1).getReg(); 6469 LLT DstTy = MRI.getType(DstReg); 6470 LLT SrcTy = MRI.getType(Src0Reg); 6471 unsigned PartSize = SrcTy.getSizeInBits(); 6472 6473 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6474 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6475 6476 for (unsigned I = 2; I != NumOps; ++I) { 6477 const unsigned Offset = (I - 1) * PartSize; 6478 6479 Register SrcReg = MI.getOperand(I).getReg(); 6480 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6481 6482 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6483 MRI.createGenericVirtualRegister(WideTy); 6484 6485 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6486 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6487 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6488 ResultReg = NextResult; 6489 } 6490 6491 if (DstTy.isPointer()) { 6492 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6493 DstTy.getAddressSpace())) { 6494 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6495 return UnableToLegalize; 6496 } 6497 6498 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6499 } 6500 6501 MI.eraseFromParent(); 6502 return Legalized; 6503 } 6504 6505 LegalizerHelper::LegalizeResult 6506 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6507 const unsigned NumDst = MI.getNumOperands() - 1; 6508 Register SrcReg = MI.getOperand(NumDst).getReg(); 6509 Register Dst0Reg = MI.getOperand(0).getReg(); 6510 LLT DstTy = MRI.getType(Dst0Reg); 6511 if (DstTy.isPointer()) 6512 return UnableToLegalize; // TODO 6513 6514 SrcReg = coerceToScalar(SrcReg); 6515 if (!SrcReg) 6516 return UnableToLegalize; 6517 6518 // Expand scalarizing unmerge as bitcast to integer and shift. 6519 LLT IntTy = MRI.getType(SrcReg); 6520 6521 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6522 6523 const unsigned DstSize = DstTy.getSizeInBits(); 6524 unsigned Offset = DstSize; 6525 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6526 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6527 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6528 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6529 } 6530 6531 MI.eraseFromParent(); 6532 return Legalized; 6533 } 6534 6535 /// Lower a vector extract or insert by writing the vector to a stack temporary 6536 /// and reloading the element or vector. 6537 /// 6538 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6539 /// => 6540 /// %stack_temp = G_FRAME_INDEX 6541 /// G_STORE %vec, %stack_temp 6542 /// %idx = clamp(%idx, %vec.getNumElements()) 6543 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6544 /// %dst = G_LOAD %element_ptr 6545 LegalizerHelper::LegalizeResult 6546 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6547 Register DstReg = MI.getOperand(0).getReg(); 6548 Register SrcVec = MI.getOperand(1).getReg(); 6549 Register InsertVal; 6550 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6551 InsertVal = MI.getOperand(2).getReg(); 6552 6553 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6554 6555 LLT VecTy = MRI.getType(SrcVec); 6556 LLT EltTy = VecTy.getElementType(); 6557 if (!EltTy.isByteSized()) { // Not implemented. 6558 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6559 return UnableToLegalize; 6560 } 6561 6562 unsigned EltBytes = EltTy.getSizeInBytes(); 6563 Align VecAlign = getStackTemporaryAlignment(VecTy); 6564 Align EltAlign; 6565 6566 MachinePointerInfo PtrInfo; 6567 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6568 VecAlign, PtrInfo); 6569 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6570 6571 // Get the pointer to the element, and be sure not to hit undefined behavior 6572 // if the index is out of bounds. 6573 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6574 6575 int64_t IdxVal; 6576 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6577 int64_t Offset = IdxVal * EltBytes; 6578 PtrInfo = PtrInfo.getWithOffset(Offset); 6579 EltAlign = commonAlignment(VecAlign, Offset); 6580 } else { 6581 // We lose information with a variable offset. 6582 EltAlign = getStackTemporaryAlignment(EltTy); 6583 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6584 } 6585 6586 if (InsertVal) { 6587 // Write the inserted element 6588 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6589 6590 // Reload the whole vector. 6591 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6592 } else { 6593 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6594 } 6595 6596 MI.eraseFromParent(); 6597 return Legalized; 6598 } 6599 6600 LegalizerHelper::LegalizeResult 6601 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6602 Register DstReg = MI.getOperand(0).getReg(); 6603 Register Src0Reg = MI.getOperand(1).getReg(); 6604 Register Src1Reg = MI.getOperand(2).getReg(); 6605 LLT Src0Ty = MRI.getType(Src0Reg); 6606 LLT DstTy = MRI.getType(DstReg); 6607 LLT IdxTy = LLT::scalar(32); 6608 6609 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6610 6611 if (DstTy.isScalar()) { 6612 if (Src0Ty.isVector()) 6613 return UnableToLegalize; 6614 6615 // This is just a SELECT. 6616 assert(Mask.size() == 1 && "Expected a single mask element"); 6617 Register Val; 6618 if (Mask[0] < 0 || Mask[0] > 1) 6619 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6620 else 6621 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6622 MIRBuilder.buildCopy(DstReg, Val); 6623 MI.eraseFromParent(); 6624 return Legalized; 6625 } 6626 6627 Register Undef; 6628 SmallVector<Register, 32> BuildVec; 6629 LLT EltTy = DstTy.getElementType(); 6630 6631 for (int Idx : Mask) { 6632 if (Idx < 0) { 6633 if (!Undef.isValid()) 6634 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6635 BuildVec.push_back(Undef); 6636 continue; 6637 } 6638 6639 if (Src0Ty.isScalar()) { 6640 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6641 } else { 6642 int NumElts = Src0Ty.getNumElements(); 6643 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6644 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6645 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6646 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6647 BuildVec.push_back(Extract.getReg(0)); 6648 } 6649 } 6650 6651 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6652 MI.eraseFromParent(); 6653 return Legalized; 6654 } 6655 6656 LegalizerHelper::LegalizeResult 6657 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6658 const auto &MF = *MI.getMF(); 6659 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6660 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6661 return UnableToLegalize; 6662 6663 Register Dst = MI.getOperand(0).getReg(); 6664 Register AllocSize = MI.getOperand(1).getReg(); 6665 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6666 6667 LLT PtrTy = MRI.getType(Dst); 6668 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6669 6670 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6671 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6672 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6673 6674 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6675 // have to generate an extra instruction to negate the alloc and then use 6676 // G_PTR_ADD to add the negative offset. 6677 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6678 if (Alignment > Align(1)) { 6679 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6680 AlignMask.negate(); 6681 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6682 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6683 } 6684 6685 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6686 MIRBuilder.buildCopy(SPReg, SPTmp); 6687 MIRBuilder.buildCopy(Dst, SPTmp); 6688 6689 MI.eraseFromParent(); 6690 return Legalized; 6691 } 6692 6693 LegalizerHelper::LegalizeResult 6694 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6695 Register Dst = MI.getOperand(0).getReg(); 6696 Register Src = MI.getOperand(1).getReg(); 6697 unsigned Offset = MI.getOperand(2).getImm(); 6698 6699 LLT DstTy = MRI.getType(Dst); 6700 LLT SrcTy = MRI.getType(Src); 6701 6702 if (DstTy.isScalar() && 6703 (SrcTy.isScalar() || 6704 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6705 LLT SrcIntTy = SrcTy; 6706 if (!SrcTy.isScalar()) { 6707 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6708 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6709 } 6710 6711 if (Offset == 0) 6712 MIRBuilder.buildTrunc(Dst, Src); 6713 else { 6714 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6715 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6716 MIRBuilder.buildTrunc(Dst, Shr); 6717 } 6718 6719 MI.eraseFromParent(); 6720 return Legalized; 6721 } 6722 6723 return UnableToLegalize; 6724 } 6725 6726 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6727 Register Dst = MI.getOperand(0).getReg(); 6728 Register Src = MI.getOperand(1).getReg(); 6729 Register InsertSrc = MI.getOperand(2).getReg(); 6730 uint64_t Offset = MI.getOperand(3).getImm(); 6731 6732 LLT DstTy = MRI.getType(Src); 6733 LLT InsertTy = MRI.getType(InsertSrc); 6734 6735 if (InsertTy.isVector() || 6736 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6737 return UnableToLegalize; 6738 6739 const DataLayout &DL = MIRBuilder.getDataLayout(); 6740 if ((DstTy.isPointer() && 6741 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6742 (InsertTy.isPointer() && 6743 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6744 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6745 return UnableToLegalize; 6746 } 6747 6748 LLT IntDstTy = DstTy; 6749 6750 if (!DstTy.isScalar()) { 6751 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6752 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6753 } 6754 6755 if (!InsertTy.isScalar()) { 6756 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6757 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6758 } 6759 6760 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6761 if (Offset != 0) { 6762 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6763 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6764 } 6765 6766 APInt MaskVal = APInt::getBitsSetWithWrap( 6767 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6768 6769 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6770 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6771 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6772 6773 MIRBuilder.buildCast(Dst, Or); 6774 MI.eraseFromParent(); 6775 return Legalized; 6776 } 6777 6778 LegalizerHelper::LegalizeResult 6779 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6780 Register Dst0 = MI.getOperand(0).getReg(); 6781 Register Dst1 = MI.getOperand(1).getReg(); 6782 Register LHS = MI.getOperand(2).getReg(); 6783 Register RHS = MI.getOperand(3).getReg(); 6784 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6785 6786 LLT Ty = MRI.getType(Dst0); 6787 LLT BoolTy = MRI.getType(Dst1); 6788 6789 if (IsAdd) 6790 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6791 else 6792 MIRBuilder.buildSub(Dst0, LHS, RHS); 6793 6794 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6795 6796 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6797 6798 // For an addition, the result should be less than one of the operands (LHS) 6799 // if and only if the other operand (RHS) is negative, otherwise there will 6800 // be overflow. 6801 // For a subtraction, the result should be less than one of the operands 6802 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6803 // otherwise there will be overflow. 6804 auto ResultLowerThanLHS = 6805 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6806 auto ConditionRHS = MIRBuilder.buildICmp( 6807 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6808 6809 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6810 MI.eraseFromParent(); 6811 return Legalized; 6812 } 6813 6814 LegalizerHelper::LegalizeResult 6815 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6816 Register Res = MI.getOperand(0).getReg(); 6817 Register LHS = MI.getOperand(1).getReg(); 6818 Register RHS = MI.getOperand(2).getReg(); 6819 LLT Ty = MRI.getType(Res); 6820 bool IsSigned; 6821 bool IsAdd; 6822 unsigned BaseOp; 6823 switch (MI.getOpcode()) { 6824 default: 6825 llvm_unreachable("unexpected addsat/subsat opcode"); 6826 case TargetOpcode::G_UADDSAT: 6827 IsSigned = false; 6828 IsAdd = true; 6829 BaseOp = TargetOpcode::G_ADD; 6830 break; 6831 case TargetOpcode::G_SADDSAT: 6832 IsSigned = true; 6833 IsAdd = true; 6834 BaseOp = TargetOpcode::G_ADD; 6835 break; 6836 case TargetOpcode::G_USUBSAT: 6837 IsSigned = false; 6838 IsAdd = false; 6839 BaseOp = TargetOpcode::G_SUB; 6840 break; 6841 case TargetOpcode::G_SSUBSAT: 6842 IsSigned = true; 6843 IsAdd = false; 6844 BaseOp = TargetOpcode::G_SUB; 6845 break; 6846 } 6847 6848 if (IsSigned) { 6849 // sadd.sat(a, b) -> 6850 // hi = 0x7fffffff - smax(a, 0) 6851 // lo = 0x80000000 - smin(a, 0) 6852 // a + smin(smax(lo, b), hi) 6853 // ssub.sat(a, b) -> 6854 // lo = smax(a, -1) - 0x7fffffff 6855 // hi = smin(a, -1) - 0x80000000 6856 // a - smin(smax(lo, b), hi) 6857 // TODO: AMDGPU can use a "median of 3" instruction here: 6858 // a +/- med3(lo, b, hi) 6859 uint64_t NumBits = Ty.getScalarSizeInBits(); 6860 auto MaxVal = 6861 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6862 auto MinVal = 6863 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6864 MachineInstrBuilder Hi, Lo; 6865 if (IsAdd) { 6866 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6867 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6868 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6869 } else { 6870 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6871 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6872 MaxVal); 6873 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6874 MinVal); 6875 } 6876 auto RHSClamped = 6877 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6878 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6879 } else { 6880 // uadd.sat(a, b) -> a + umin(~a, b) 6881 // usub.sat(a, b) -> a - umin(a, b) 6882 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6883 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6884 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6885 } 6886 6887 MI.eraseFromParent(); 6888 return Legalized; 6889 } 6890 6891 LegalizerHelper::LegalizeResult 6892 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6893 Register Res = MI.getOperand(0).getReg(); 6894 Register LHS = MI.getOperand(1).getReg(); 6895 Register RHS = MI.getOperand(2).getReg(); 6896 LLT Ty = MRI.getType(Res); 6897 LLT BoolTy = Ty.changeElementSize(1); 6898 bool IsSigned; 6899 bool IsAdd; 6900 unsigned OverflowOp; 6901 switch (MI.getOpcode()) { 6902 default: 6903 llvm_unreachable("unexpected addsat/subsat opcode"); 6904 case TargetOpcode::G_UADDSAT: 6905 IsSigned = false; 6906 IsAdd = true; 6907 OverflowOp = TargetOpcode::G_UADDO; 6908 break; 6909 case TargetOpcode::G_SADDSAT: 6910 IsSigned = true; 6911 IsAdd = true; 6912 OverflowOp = TargetOpcode::G_SADDO; 6913 break; 6914 case TargetOpcode::G_USUBSAT: 6915 IsSigned = false; 6916 IsAdd = false; 6917 OverflowOp = TargetOpcode::G_USUBO; 6918 break; 6919 case TargetOpcode::G_SSUBSAT: 6920 IsSigned = true; 6921 IsAdd = false; 6922 OverflowOp = TargetOpcode::G_SSUBO; 6923 break; 6924 } 6925 6926 auto OverflowRes = 6927 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6928 Register Tmp = OverflowRes.getReg(0); 6929 Register Ov = OverflowRes.getReg(1); 6930 MachineInstrBuilder Clamp; 6931 if (IsSigned) { 6932 // sadd.sat(a, b) -> 6933 // {tmp, ov} = saddo(a, b) 6934 // ov ? (tmp >>s 31) + 0x80000000 : r 6935 // ssub.sat(a, b) -> 6936 // {tmp, ov} = ssubo(a, b) 6937 // ov ? (tmp >>s 31) + 0x80000000 : r 6938 uint64_t NumBits = Ty.getScalarSizeInBits(); 6939 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6940 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6941 auto MinVal = 6942 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6943 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6944 } else { 6945 // uadd.sat(a, b) -> 6946 // {tmp, ov} = uaddo(a, b) 6947 // ov ? 0xffffffff : tmp 6948 // usub.sat(a, b) -> 6949 // {tmp, ov} = usubo(a, b) 6950 // ov ? 0 : tmp 6951 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6952 } 6953 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6954 6955 MI.eraseFromParent(); 6956 return Legalized; 6957 } 6958 6959 LegalizerHelper::LegalizeResult 6960 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6961 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6962 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6963 "Expected shlsat opcode!"); 6964 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6965 Register Res = MI.getOperand(0).getReg(); 6966 Register LHS = MI.getOperand(1).getReg(); 6967 Register RHS = MI.getOperand(2).getReg(); 6968 LLT Ty = MRI.getType(Res); 6969 LLT BoolTy = Ty.changeElementSize(1); 6970 6971 unsigned BW = Ty.getScalarSizeInBits(); 6972 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6973 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6974 : MIRBuilder.buildLShr(Ty, Result, RHS); 6975 6976 MachineInstrBuilder SatVal; 6977 if (IsSigned) { 6978 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6979 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6980 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6981 MIRBuilder.buildConstant(Ty, 0)); 6982 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6983 } else { 6984 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6985 } 6986 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6987 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6988 6989 MI.eraseFromParent(); 6990 return Legalized; 6991 } 6992 6993 LegalizerHelper::LegalizeResult 6994 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6995 Register Dst = MI.getOperand(0).getReg(); 6996 Register Src = MI.getOperand(1).getReg(); 6997 const LLT Ty = MRI.getType(Src); 6998 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6999 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 7000 7001 // Swap most and least significant byte, set remaining bytes in Res to zero. 7002 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 7003 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 7004 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7005 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 7006 7007 // Set i-th high/low byte in Res to i-th low/high byte from Src. 7008 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 7009 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 7010 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 7011 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 7012 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 7013 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 7014 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 7015 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 7016 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 7017 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 7018 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7019 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 7020 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 7021 } 7022 Res.getInstr()->getOperand(0).setReg(Dst); 7023 7024 MI.eraseFromParent(); 7025 return Legalized; 7026 } 7027 7028 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 7029 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 7030 MachineInstrBuilder Src, APInt Mask) { 7031 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 7032 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 7033 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 7034 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 7035 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 7036 return B.buildOr(Dst, LHS, RHS); 7037 } 7038 7039 LegalizerHelper::LegalizeResult 7040 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 7041 Register Dst = MI.getOperand(0).getReg(); 7042 Register Src = MI.getOperand(1).getReg(); 7043 const LLT Ty = MRI.getType(Src); 7044 unsigned Size = Ty.getSizeInBits(); 7045 7046 MachineInstrBuilder BSWAP = 7047 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 7048 7049 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 7050 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 7051 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 7052 MachineInstrBuilder Swap4 = 7053 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 7054 7055 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 7056 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 7057 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 7058 MachineInstrBuilder Swap2 = 7059 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 7060 7061 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 7062 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 7063 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 7064 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 7065 7066 MI.eraseFromParent(); 7067 return Legalized; 7068 } 7069 7070 LegalizerHelper::LegalizeResult 7071 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 7072 MachineFunction &MF = MIRBuilder.getMF(); 7073 7074 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 7075 int NameOpIdx = IsRead ? 1 : 0; 7076 int ValRegIndex = IsRead ? 0 : 1; 7077 7078 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 7079 const LLT Ty = MRI.getType(ValReg); 7080 const MDString *RegStr = cast<MDString>( 7081 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 7082 7083 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 7084 if (!PhysReg.isValid()) 7085 return UnableToLegalize; 7086 7087 if (IsRead) 7088 MIRBuilder.buildCopy(ValReg, PhysReg); 7089 else 7090 MIRBuilder.buildCopy(PhysReg, ValReg); 7091 7092 MI.eraseFromParent(); 7093 return Legalized; 7094 } 7095 7096 LegalizerHelper::LegalizeResult 7097 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7098 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7099 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7100 Register Result = MI.getOperand(0).getReg(); 7101 LLT OrigTy = MRI.getType(Result); 7102 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7103 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7104 7105 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7106 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7107 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7108 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7109 7110 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7111 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7112 MIRBuilder.buildTrunc(Result, Shifted); 7113 7114 MI.eraseFromParent(); 7115 return Legalized; 7116 } 7117 7118 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 7119 // Implement vector G_SELECT in terms of XOR, AND, OR. 7120 Register DstReg = MI.getOperand(0).getReg(); 7121 Register MaskReg = MI.getOperand(1).getReg(); 7122 Register Op1Reg = MI.getOperand(2).getReg(); 7123 Register Op2Reg = MI.getOperand(3).getReg(); 7124 LLT DstTy = MRI.getType(DstReg); 7125 LLT MaskTy = MRI.getType(MaskReg); 7126 LLT Op1Ty = MRI.getType(Op1Reg); 7127 if (!DstTy.isVector()) 7128 return UnableToLegalize; 7129 7130 // Vector selects can have a scalar predicate. If so, splat into a vector and 7131 // finish for later legalization attempts to try again. 7132 if (MaskTy.isScalar()) { 7133 Register MaskElt = MaskReg; 7134 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 7135 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 7136 // Generate a vector splat idiom to be pattern matched later. 7137 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 7138 Observer.changingInstr(MI); 7139 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 7140 Observer.changedInstr(MI); 7141 return Legalized; 7142 } 7143 7144 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 7145 return UnableToLegalize; 7146 } 7147 7148 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 7149 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 7150 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 7151 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 7152 MI.eraseFromParent(); 7153 return Legalized; 7154 } 7155 7156 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7157 // Split DIVREM into individual instructions. 7158 unsigned Opcode = MI.getOpcode(); 7159 7160 MIRBuilder.buildInstr( 7161 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7162 : TargetOpcode::G_UDIV, 7163 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7164 MIRBuilder.buildInstr( 7165 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7166 : TargetOpcode::G_UREM, 7167 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7168 MI.eraseFromParent(); 7169 return Legalized; 7170 } 7171 7172 LegalizerHelper::LegalizeResult 7173 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7174 // Expand %res = G_ABS %a into: 7175 // %v1 = G_ASHR %a, scalar_size-1 7176 // %v2 = G_ADD %a, %v1 7177 // %res = G_XOR %v2, %v1 7178 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7179 Register OpReg = MI.getOperand(1).getReg(); 7180 auto ShiftAmt = 7181 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7182 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7183 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7184 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7185 MI.eraseFromParent(); 7186 return Legalized; 7187 } 7188 7189 LegalizerHelper::LegalizeResult 7190 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7191 // Expand %res = G_ABS %a into: 7192 // %v1 = G_CONSTANT 0 7193 // %v2 = G_SUB %v1, %a 7194 // %res = G_SMAX %a, %v2 7195 Register SrcReg = MI.getOperand(1).getReg(); 7196 LLT Ty = MRI.getType(SrcReg); 7197 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7198 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7199 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7200 MI.eraseFromParent(); 7201 return Legalized; 7202 } 7203