1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 90 MIRBuilder.setMF(MF); 91 MIRBuilder.setChangeObserver(Observer); 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &B) 97 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 98 MIRBuilder.setMF(MF); 99 MIRBuilder.setChangeObserver(Observer); 100 } 101 LegalizerHelper::LegalizeResult 102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 103 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 auto Step = LI.getAction(MI, MRI); 110 switch (Step.Action) { 111 case Legal: 112 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 113 return AlreadyLegal; 114 case Libcall: 115 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 116 return libcall(MI); 117 case NarrowScalar: 118 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 119 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 120 case WidenScalar: 121 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 122 return widenScalar(MI, Step.TypeIdx, Step.NewType); 123 case Lower: 124 LLVM_DEBUG(dbgs() << ".. Lower\n"); 125 return lower(MI, Step.TypeIdx, Step.NewType); 126 case FewerElements: 127 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 128 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 129 case MoreElements: 130 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 131 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 132 case Custom: 133 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 134 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 135 : UnableToLegalize; 136 default: 137 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 138 return UnableToLegalize; 139 } 140 } 141 142 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 143 SmallVectorImpl<Register> &VRegs) { 144 for (int i = 0; i < NumParts; ++i) 145 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 146 MIRBuilder.buildUnmerge(VRegs, Reg); 147 } 148 149 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 150 LLT MainTy, LLT &LeftoverTy, 151 SmallVectorImpl<Register> &VRegs, 152 SmallVectorImpl<Register> &LeftoverRegs) { 153 assert(!LeftoverTy.isValid() && "this is an out argument"); 154 155 unsigned RegSize = RegTy.getSizeInBits(); 156 unsigned MainSize = MainTy.getSizeInBits(); 157 unsigned NumParts = RegSize / MainSize; 158 unsigned LeftoverSize = RegSize - NumParts * MainSize; 159 160 // Use an unmerge when possible. 161 if (LeftoverSize == 0) { 162 for (unsigned I = 0; I < NumParts; ++I) 163 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 164 MIRBuilder.buildUnmerge(VRegs, Reg); 165 return true; 166 } 167 168 if (MainTy.isVector()) { 169 unsigned EltSize = MainTy.getScalarSizeInBits(); 170 if (LeftoverSize % EltSize != 0) 171 return false; 172 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 173 } else { 174 LeftoverTy = LLT::scalar(LeftoverSize); 175 } 176 177 // For irregular sizes, extract the individual parts. 178 for (unsigned I = 0; I != NumParts; ++I) { 179 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 180 VRegs.push_back(NewReg); 181 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 182 } 183 184 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 185 Offset += LeftoverSize) { 186 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 187 LeftoverRegs.push_back(NewReg); 188 MIRBuilder.buildExtract(NewReg, Reg, Offset); 189 } 190 191 return true; 192 } 193 194 void LegalizerHelper::insertParts(Register DstReg, 195 LLT ResultTy, LLT PartTy, 196 ArrayRef<Register> PartRegs, 197 LLT LeftoverTy, 198 ArrayRef<Register> LeftoverRegs) { 199 if (!LeftoverTy.isValid()) { 200 assert(LeftoverRegs.empty()); 201 202 if (!ResultTy.isVector()) { 203 MIRBuilder.buildMerge(DstReg, PartRegs); 204 return; 205 } 206 207 if (PartTy.isVector()) 208 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 209 else 210 MIRBuilder.buildBuildVector(DstReg, PartRegs); 211 return; 212 } 213 214 unsigned PartSize = PartTy.getSizeInBits(); 215 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 216 217 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 218 MIRBuilder.buildUndef(CurResultReg); 219 220 unsigned Offset = 0; 221 for (Register PartReg : PartRegs) { 222 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 223 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 224 CurResultReg = NewResultReg; 225 Offset += PartSize; 226 } 227 228 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 229 // Use the original output register for the final insert to avoid a copy. 230 Register NewResultReg = (I + 1 == E) ? 231 DstReg : MRI.createGenericVirtualRegister(ResultTy); 232 233 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 234 CurResultReg = NewResultReg; 235 Offset += LeftoverPartSize; 236 } 237 } 238 239 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 240 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 241 const MachineInstr &MI) { 242 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 243 244 const int NumResults = MI.getNumOperands() - 1; 245 Regs.resize(NumResults); 246 for (int I = 0; I != NumResults; ++I) 247 Regs[I] = MI.getOperand(I).getReg(); 248 } 249 250 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 251 LLT NarrowTy, Register SrcReg) { 252 LLT SrcTy = MRI.getType(SrcReg); 253 254 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 255 if (SrcTy == GCDTy) { 256 // If the source already evenly divides the result type, we don't need to do 257 // anything. 258 Parts.push_back(SrcReg); 259 } else { 260 // Need to split into common type sized pieces. 261 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 262 getUnmergeResults(Parts, *Unmerge); 263 } 264 265 return GCDTy; 266 } 267 268 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 269 SmallVectorImpl<Register> &VRegs, 270 unsigned PadStrategy) { 271 LLT LCMTy = getLCMType(DstTy, NarrowTy); 272 273 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 274 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 275 int NumOrigSrc = VRegs.size(); 276 277 Register PadReg; 278 279 // Get a value we can use to pad the source value if the sources won't evenly 280 // cover the result type. 281 if (NumOrigSrc < NumParts * NumSubParts) { 282 if (PadStrategy == TargetOpcode::G_ZEXT) 283 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 284 else if (PadStrategy == TargetOpcode::G_ANYEXT) 285 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 286 else { 287 assert(PadStrategy == TargetOpcode::G_SEXT); 288 289 // Shift the sign bit of the low register through the high register. 290 auto ShiftAmt = 291 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 292 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 293 } 294 } 295 296 // Registers for the final merge to be produced. 297 SmallVector<Register, 4> Remerge(NumParts); 298 299 // Registers needed for intermediate merges, which will be merged into a 300 // source for Remerge. 301 SmallVector<Register, 4> SubMerge(NumSubParts); 302 303 // Once we've fully read off the end of the original source bits, we can reuse 304 // the same high bits for remaining padding elements. 305 Register AllPadReg; 306 307 // Build merges to the LCM type to cover the original result type. 308 for (int I = 0; I != NumParts; ++I) { 309 bool AllMergePartsArePadding = true; 310 311 // Build the requested merges to the requested type. 312 for (int J = 0; J != NumSubParts; ++J) { 313 int Idx = I * NumSubParts + J; 314 if (Idx >= NumOrigSrc) { 315 SubMerge[J] = PadReg; 316 continue; 317 } 318 319 SubMerge[J] = VRegs[Idx]; 320 321 // There are meaningful bits here we can't reuse later. 322 AllMergePartsArePadding = false; 323 } 324 325 // If we've filled up a complete piece with padding bits, we can directly 326 // emit the natural sized constant if applicable, rather than a merge of 327 // smaller constants. 328 if (AllMergePartsArePadding && !AllPadReg) { 329 if (PadStrategy == TargetOpcode::G_ANYEXT) 330 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 331 else if (PadStrategy == TargetOpcode::G_ZEXT) 332 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 333 334 // If this is a sign extension, we can't materialize a trivial constant 335 // with the right type and have to produce a merge. 336 } 337 338 if (AllPadReg) { 339 // Avoid creating additional instructions if we're just adding additional 340 // copies of padding bits. 341 Remerge[I] = AllPadReg; 342 continue; 343 } 344 345 if (NumSubParts == 1) 346 Remerge[I] = SubMerge[0]; 347 else 348 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 349 350 // In the sign extend padding case, re-use the first all-signbit merge. 351 if (AllMergePartsArePadding && !AllPadReg) 352 AllPadReg = Remerge[I]; 353 } 354 355 VRegs = std::move(Remerge); 356 return LCMTy; 357 } 358 359 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 360 ArrayRef<Register> RemergeRegs) { 361 LLT DstTy = MRI.getType(DstReg); 362 363 // Create the merge to the widened source, and extract the relevant bits into 364 // the result. 365 366 if (DstTy == LCMTy) { 367 MIRBuilder.buildMerge(DstReg, RemergeRegs); 368 return; 369 } 370 371 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 372 if (DstTy.isScalar() && LCMTy.isScalar()) { 373 MIRBuilder.buildTrunc(DstReg, Remerge); 374 return; 375 } 376 377 if (LCMTy.isVector()) { 378 MIRBuilder.buildExtract(DstReg, Remerge, 0); 379 return; 380 } 381 382 llvm_unreachable("unhandled case"); 383 } 384 385 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 386 #define RTLIBCASE(LibcallPrefix) \ 387 do { \ 388 switch (Size) { \ 389 case 32: \ 390 return RTLIB::LibcallPrefix##32; \ 391 case 64: \ 392 return RTLIB::LibcallPrefix##64; \ 393 case 128: \ 394 return RTLIB::LibcallPrefix##128; \ 395 default: \ 396 llvm_unreachable("unexpected size"); \ 397 } \ 398 } while (0) 399 400 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 401 402 switch (Opcode) { 403 case TargetOpcode::G_SDIV: 404 RTLIBCASE(SDIV_I); 405 case TargetOpcode::G_UDIV: 406 RTLIBCASE(UDIV_I); 407 case TargetOpcode::G_SREM: 408 RTLIBCASE(SREM_I); 409 case TargetOpcode::G_UREM: 410 RTLIBCASE(UREM_I); 411 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 412 RTLIBCASE(CTLZ_I); 413 case TargetOpcode::G_FADD: 414 RTLIBCASE(ADD_F); 415 case TargetOpcode::G_FSUB: 416 RTLIBCASE(SUB_F); 417 case TargetOpcode::G_FMUL: 418 RTLIBCASE(MUL_F); 419 case TargetOpcode::G_FDIV: 420 RTLIBCASE(DIV_F); 421 case TargetOpcode::G_FEXP: 422 RTLIBCASE(EXP_F); 423 case TargetOpcode::G_FEXP2: 424 RTLIBCASE(EXP2_F); 425 case TargetOpcode::G_FREM: 426 RTLIBCASE(REM_F); 427 case TargetOpcode::G_FPOW: 428 RTLIBCASE(POW_F); 429 case TargetOpcode::G_FMA: 430 RTLIBCASE(FMA_F); 431 case TargetOpcode::G_FSIN: 432 RTLIBCASE(SIN_F); 433 case TargetOpcode::G_FCOS: 434 RTLIBCASE(COS_F); 435 case TargetOpcode::G_FLOG10: 436 RTLIBCASE(LOG10_F); 437 case TargetOpcode::G_FLOG: 438 RTLIBCASE(LOG_F); 439 case TargetOpcode::G_FLOG2: 440 RTLIBCASE(LOG2_F); 441 case TargetOpcode::G_FCEIL: 442 RTLIBCASE(CEIL_F); 443 case TargetOpcode::G_FFLOOR: 444 RTLIBCASE(FLOOR_F); 445 case TargetOpcode::G_FMINNUM: 446 RTLIBCASE(FMIN_F); 447 case TargetOpcode::G_FMAXNUM: 448 RTLIBCASE(FMAX_F); 449 case TargetOpcode::G_FSQRT: 450 RTLIBCASE(SQRT_F); 451 case TargetOpcode::G_FRINT: 452 RTLIBCASE(RINT_F); 453 case TargetOpcode::G_FNEARBYINT: 454 RTLIBCASE(NEARBYINT_F); 455 } 456 llvm_unreachable("Unknown libcall function"); 457 } 458 459 /// True if an instruction is in tail position in its caller. Intended for 460 /// legalizing libcalls as tail calls when possible. 461 static bool isLibCallInTailPosition(MachineInstr &MI) { 462 const Function &F = MI.getParent()->getParent()->getFunction(); 463 464 // Conservatively require the attributes of the call to match those of 465 // the return. Ignore NoAlias and NonNull because they don't affect the 466 // call sequence. 467 AttributeList CallerAttrs = F.getAttributes(); 468 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 469 .removeAttribute(Attribute::NoAlias) 470 .removeAttribute(Attribute::NonNull) 471 .hasAttributes()) 472 return false; 473 474 // It's not safe to eliminate the sign / zero extension of the return value. 475 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 476 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 477 return false; 478 479 // Only tail call if the following instruction is a standard return. 480 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 481 MachineInstr *Next = MI.getNextNode(); 482 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 483 return false; 484 485 return true; 486 } 487 488 LegalizerHelper::LegalizeResult 489 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 490 const CallLowering::ArgInfo &Result, 491 ArrayRef<CallLowering::ArgInfo> Args) { 492 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 493 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 494 const char *Name = TLI.getLibcallName(Libcall); 495 496 CallLowering::CallLoweringInfo Info; 497 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 498 Info.Callee = MachineOperand::CreateES(Name); 499 Info.OrigRet = Result; 500 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 501 if (!CLI.lowerCall(MIRBuilder, Info)) 502 return LegalizerHelper::UnableToLegalize; 503 504 return LegalizerHelper::Legalized; 505 } 506 507 // Useful for libcalls where all operands have the same type. 508 static LegalizerHelper::LegalizeResult 509 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 510 Type *OpType) { 511 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 512 513 SmallVector<CallLowering::ArgInfo, 3> Args; 514 for (unsigned i = 1; i < MI.getNumOperands(); i++) 515 Args.push_back({MI.getOperand(i).getReg(), OpType}); 516 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 517 Args); 518 } 519 520 LegalizerHelper::LegalizeResult 521 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 522 MachineInstr &MI) { 523 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 524 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 525 526 SmallVector<CallLowering::ArgInfo, 3> Args; 527 // Add all the args, except for the last which is an imm denoting 'tail'. 528 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 529 Register Reg = MI.getOperand(i).getReg(); 530 531 // Need derive an IR type for call lowering. 532 LLT OpLLT = MRI.getType(Reg); 533 Type *OpTy = nullptr; 534 if (OpLLT.isPointer()) 535 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 536 else 537 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 538 Args.push_back({Reg, OpTy}); 539 } 540 541 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 542 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 543 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 544 RTLIB::Libcall RTLibcall; 545 switch (ID) { 546 case Intrinsic::memcpy: 547 RTLibcall = RTLIB::MEMCPY; 548 break; 549 case Intrinsic::memset: 550 RTLibcall = RTLIB::MEMSET; 551 break; 552 case Intrinsic::memmove: 553 RTLibcall = RTLIB::MEMMOVE; 554 break; 555 default: 556 return LegalizerHelper::UnableToLegalize; 557 } 558 const char *Name = TLI.getLibcallName(RTLibcall); 559 560 MIRBuilder.setInstr(MI); 561 562 CallLowering::CallLoweringInfo Info; 563 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 564 Info.Callee = MachineOperand::CreateES(Name); 565 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 566 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 567 isLibCallInTailPosition(MI); 568 569 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 570 if (!CLI.lowerCall(MIRBuilder, Info)) 571 return LegalizerHelper::UnableToLegalize; 572 573 if (Info.LoweredTailCall) { 574 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 575 // We must have a return following the call to get past 576 // isLibCallInTailPosition. 577 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 578 "Expected instr following MI to be a return?"); 579 580 // We lowered a tail call, so the call is now the return from the block. 581 // Delete the old return. 582 MI.getNextNode()->eraseFromParent(); 583 } 584 585 return LegalizerHelper::Legalized; 586 } 587 588 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 589 Type *FromType) { 590 auto ToMVT = MVT::getVT(ToType); 591 auto FromMVT = MVT::getVT(FromType); 592 593 switch (Opcode) { 594 case TargetOpcode::G_FPEXT: 595 return RTLIB::getFPEXT(FromMVT, ToMVT); 596 case TargetOpcode::G_FPTRUNC: 597 return RTLIB::getFPROUND(FromMVT, ToMVT); 598 case TargetOpcode::G_FPTOSI: 599 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 600 case TargetOpcode::G_FPTOUI: 601 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 602 case TargetOpcode::G_SITOFP: 603 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 604 case TargetOpcode::G_UITOFP: 605 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 606 } 607 llvm_unreachable("Unsupported libcall function"); 608 } 609 610 static LegalizerHelper::LegalizeResult 611 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 612 Type *FromType) { 613 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 614 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 615 {{MI.getOperand(1).getReg(), FromType}}); 616 } 617 618 LegalizerHelper::LegalizeResult 619 LegalizerHelper::libcall(MachineInstr &MI) { 620 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 621 unsigned Size = LLTy.getSizeInBits(); 622 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 623 624 MIRBuilder.setInstr(MI); 625 626 switch (MI.getOpcode()) { 627 default: 628 return UnableToLegalize; 629 case TargetOpcode::G_SDIV: 630 case TargetOpcode::G_UDIV: 631 case TargetOpcode::G_SREM: 632 case TargetOpcode::G_UREM: 633 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 634 Type *HLTy = IntegerType::get(Ctx, Size); 635 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 636 if (Status != Legalized) 637 return Status; 638 break; 639 } 640 case TargetOpcode::G_FADD: 641 case TargetOpcode::G_FSUB: 642 case TargetOpcode::G_FMUL: 643 case TargetOpcode::G_FDIV: 644 case TargetOpcode::G_FMA: 645 case TargetOpcode::G_FPOW: 646 case TargetOpcode::G_FREM: 647 case TargetOpcode::G_FCOS: 648 case TargetOpcode::G_FSIN: 649 case TargetOpcode::G_FLOG10: 650 case TargetOpcode::G_FLOG: 651 case TargetOpcode::G_FLOG2: 652 case TargetOpcode::G_FEXP: 653 case TargetOpcode::G_FEXP2: 654 case TargetOpcode::G_FCEIL: 655 case TargetOpcode::G_FFLOOR: 656 case TargetOpcode::G_FMINNUM: 657 case TargetOpcode::G_FMAXNUM: 658 case TargetOpcode::G_FSQRT: 659 case TargetOpcode::G_FRINT: 660 case TargetOpcode::G_FNEARBYINT: { 661 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 662 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 663 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 664 return UnableToLegalize; 665 } 666 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 667 if (Status != Legalized) 668 return Status; 669 break; 670 } 671 case TargetOpcode::G_FPEXT: 672 case TargetOpcode::G_FPTRUNC: { 673 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 674 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 675 if (!FromTy || !ToTy) 676 return UnableToLegalize; 677 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 678 if (Status != Legalized) 679 return Status; 680 break; 681 } 682 case TargetOpcode::G_FPTOSI: 683 case TargetOpcode::G_FPTOUI: { 684 // FIXME: Support other types 685 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 686 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 687 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 688 return UnableToLegalize; 689 LegalizeResult Status = conversionLibcall( 690 MI, MIRBuilder, 691 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 692 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 693 if (Status != Legalized) 694 return Status; 695 break; 696 } 697 case TargetOpcode::G_SITOFP: 698 case TargetOpcode::G_UITOFP: { 699 // FIXME: Support other types 700 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 701 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 702 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 703 return UnableToLegalize; 704 LegalizeResult Status = conversionLibcall( 705 MI, MIRBuilder, 706 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 707 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 708 if (Status != Legalized) 709 return Status; 710 break; 711 } 712 } 713 714 MI.eraseFromParent(); 715 return Legalized; 716 } 717 718 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 719 unsigned TypeIdx, 720 LLT NarrowTy) { 721 MIRBuilder.setInstr(MI); 722 723 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 724 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 725 726 switch (MI.getOpcode()) { 727 default: 728 return UnableToLegalize; 729 case TargetOpcode::G_IMPLICIT_DEF: { 730 // FIXME: add support for when SizeOp0 isn't an exact multiple of 731 // NarrowSize. 732 if (SizeOp0 % NarrowSize != 0) 733 return UnableToLegalize; 734 int NumParts = SizeOp0 / NarrowSize; 735 736 SmallVector<Register, 2> DstRegs; 737 for (int i = 0; i < NumParts; ++i) 738 DstRegs.push_back( 739 MIRBuilder.buildUndef(NarrowTy).getReg(0)); 740 741 Register DstReg = MI.getOperand(0).getReg(); 742 if(MRI.getType(DstReg).isVector()) 743 MIRBuilder.buildBuildVector(DstReg, DstRegs); 744 else 745 MIRBuilder.buildMerge(DstReg, DstRegs); 746 MI.eraseFromParent(); 747 return Legalized; 748 } 749 case TargetOpcode::G_CONSTANT: { 750 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 751 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 752 unsigned TotalSize = Ty.getSizeInBits(); 753 unsigned NarrowSize = NarrowTy.getSizeInBits(); 754 int NumParts = TotalSize / NarrowSize; 755 756 SmallVector<Register, 4> PartRegs; 757 for (int I = 0; I != NumParts; ++I) { 758 unsigned Offset = I * NarrowSize; 759 auto K = MIRBuilder.buildConstant(NarrowTy, 760 Val.lshr(Offset).trunc(NarrowSize)); 761 PartRegs.push_back(K.getReg(0)); 762 } 763 764 LLT LeftoverTy; 765 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 766 SmallVector<Register, 1> LeftoverRegs; 767 if (LeftoverBits != 0) { 768 LeftoverTy = LLT::scalar(LeftoverBits); 769 auto K = MIRBuilder.buildConstant( 770 LeftoverTy, 771 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 772 LeftoverRegs.push_back(K.getReg(0)); 773 } 774 775 insertParts(MI.getOperand(0).getReg(), 776 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 777 778 MI.eraseFromParent(); 779 return Legalized; 780 } 781 case TargetOpcode::G_SEXT: 782 case TargetOpcode::G_ZEXT: 783 case TargetOpcode::G_ANYEXT: 784 return narrowScalarExt(MI, TypeIdx, NarrowTy); 785 case TargetOpcode::G_TRUNC: { 786 if (TypeIdx != 1) 787 return UnableToLegalize; 788 789 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 790 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 791 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 792 return UnableToLegalize; 793 } 794 795 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 796 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 797 MI.eraseFromParent(); 798 return Legalized; 799 } 800 801 case TargetOpcode::G_ADD: { 802 // FIXME: add support for when SizeOp0 isn't an exact multiple of 803 // NarrowSize. 804 if (SizeOp0 % NarrowSize != 0) 805 return UnableToLegalize; 806 // Expand in terms of carry-setting/consuming G_ADDE instructions. 807 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 808 809 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 810 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 811 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 812 813 Register CarryIn; 814 for (int i = 0; i < NumParts; ++i) { 815 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 816 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 817 818 if (i == 0) 819 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 820 else { 821 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 822 Src2Regs[i], CarryIn); 823 } 824 825 DstRegs.push_back(DstReg); 826 CarryIn = CarryOut; 827 } 828 Register DstReg = MI.getOperand(0).getReg(); 829 if(MRI.getType(DstReg).isVector()) 830 MIRBuilder.buildBuildVector(DstReg, DstRegs); 831 else 832 MIRBuilder.buildMerge(DstReg, DstRegs); 833 MI.eraseFromParent(); 834 return Legalized; 835 } 836 case TargetOpcode::G_SUB: { 837 // FIXME: add support for when SizeOp0 isn't an exact multiple of 838 // NarrowSize. 839 if (SizeOp0 % NarrowSize != 0) 840 return UnableToLegalize; 841 842 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 843 844 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 845 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 846 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 847 848 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 849 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 850 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 851 {Src1Regs[0], Src2Regs[0]}); 852 DstRegs.push_back(DstReg); 853 Register BorrowIn = BorrowOut; 854 for (int i = 1; i < NumParts; ++i) { 855 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 856 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 857 858 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 859 {Src1Regs[i], Src2Regs[i], BorrowIn}); 860 861 DstRegs.push_back(DstReg); 862 BorrowIn = BorrowOut; 863 } 864 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 865 MI.eraseFromParent(); 866 return Legalized; 867 } 868 case TargetOpcode::G_MUL: 869 case TargetOpcode::G_UMULH: 870 return narrowScalarMul(MI, NarrowTy); 871 case TargetOpcode::G_EXTRACT: 872 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 873 case TargetOpcode::G_INSERT: 874 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 875 case TargetOpcode::G_LOAD: { 876 const auto &MMO = **MI.memoperands_begin(); 877 Register DstReg = MI.getOperand(0).getReg(); 878 LLT DstTy = MRI.getType(DstReg); 879 if (DstTy.isVector()) 880 return UnableToLegalize; 881 882 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 883 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 884 auto &MMO = **MI.memoperands_begin(); 885 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 886 MIRBuilder.buildAnyExt(DstReg, TmpReg); 887 MI.eraseFromParent(); 888 return Legalized; 889 } 890 891 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 892 } 893 case TargetOpcode::G_ZEXTLOAD: 894 case TargetOpcode::G_SEXTLOAD: { 895 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 896 Register DstReg = MI.getOperand(0).getReg(); 897 Register PtrReg = MI.getOperand(1).getReg(); 898 899 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 900 auto &MMO = **MI.memoperands_begin(); 901 if (MMO.getSizeInBits() == NarrowSize) { 902 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 903 } else { 904 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 905 } 906 907 if (ZExt) 908 MIRBuilder.buildZExt(DstReg, TmpReg); 909 else 910 MIRBuilder.buildSExt(DstReg, TmpReg); 911 912 MI.eraseFromParent(); 913 return Legalized; 914 } 915 case TargetOpcode::G_STORE: { 916 const auto &MMO = **MI.memoperands_begin(); 917 918 Register SrcReg = MI.getOperand(0).getReg(); 919 LLT SrcTy = MRI.getType(SrcReg); 920 if (SrcTy.isVector()) 921 return UnableToLegalize; 922 923 int NumParts = SizeOp0 / NarrowSize; 924 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 925 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 926 if (SrcTy.isVector() && LeftoverBits != 0) 927 return UnableToLegalize; 928 929 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 930 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 931 auto &MMO = **MI.memoperands_begin(); 932 MIRBuilder.buildTrunc(TmpReg, SrcReg); 933 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 934 MI.eraseFromParent(); 935 return Legalized; 936 } 937 938 return reduceLoadStoreWidth(MI, 0, NarrowTy); 939 } 940 case TargetOpcode::G_SELECT: 941 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 942 case TargetOpcode::G_AND: 943 case TargetOpcode::G_OR: 944 case TargetOpcode::G_XOR: { 945 // Legalize bitwise operation: 946 // A = BinOp<Ty> B, C 947 // into: 948 // B1, ..., BN = G_UNMERGE_VALUES B 949 // C1, ..., CN = G_UNMERGE_VALUES C 950 // A1 = BinOp<Ty/N> B1, C2 951 // ... 952 // AN = BinOp<Ty/N> BN, CN 953 // A = G_MERGE_VALUES A1, ..., AN 954 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 955 } 956 case TargetOpcode::G_SHL: 957 case TargetOpcode::G_LSHR: 958 case TargetOpcode::G_ASHR: 959 return narrowScalarShift(MI, TypeIdx, NarrowTy); 960 case TargetOpcode::G_CTLZ: 961 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 962 case TargetOpcode::G_CTTZ: 963 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 964 case TargetOpcode::G_CTPOP: 965 if (TypeIdx == 1) 966 switch (MI.getOpcode()) { 967 case TargetOpcode::G_CTLZ: 968 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 969 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 970 case TargetOpcode::G_CTTZ: 971 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 972 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 973 case TargetOpcode::G_CTPOP: 974 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 975 default: 976 return UnableToLegalize; 977 } 978 979 Observer.changingInstr(MI); 980 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 981 Observer.changedInstr(MI); 982 return Legalized; 983 case TargetOpcode::G_INTTOPTR: 984 if (TypeIdx != 1) 985 return UnableToLegalize; 986 987 Observer.changingInstr(MI); 988 narrowScalarSrc(MI, NarrowTy, 1); 989 Observer.changedInstr(MI); 990 return Legalized; 991 case TargetOpcode::G_PTRTOINT: 992 if (TypeIdx != 0) 993 return UnableToLegalize; 994 995 Observer.changingInstr(MI); 996 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 997 Observer.changedInstr(MI); 998 return Legalized; 999 case TargetOpcode::G_PHI: { 1000 unsigned NumParts = SizeOp0 / NarrowSize; 1001 SmallVector<Register, 2> DstRegs(NumParts); 1002 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1003 Observer.changingInstr(MI); 1004 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1005 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1006 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1007 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1008 SrcRegs[i / 2]); 1009 } 1010 MachineBasicBlock &MBB = *MI.getParent(); 1011 MIRBuilder.setInsertPt(MBB, MI); 1012 for (unsigned i = 0; i < NumParts; ++i) { 1013 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1014 MachineInstrBuilder MIB = 1015 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1016 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1017 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1018 } 1019 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1020 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1021 Observer.changedInstr(MI); 1022 MI.eraseFromParent(); 1023 return Legalized; 1024 } 1025 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1026 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1027 if (TypeIdx != 2) 1028 return UnableToLegalize; 1029 1030 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1031 Observer.changingInstr(MI); 1032 narrowScalarSrc(MI, NarrowTy, OpIdx); 1033 Observer.changedInstr(MI); 1034 return Legalized; 1035 } 1036 case TargetOpcode::G_ICMP: { 1037 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1038 if (NarrowSize * 2 != SrcSize) 1039 return UnableToLegalize; 1040 1041 Observer.changingInstr(MI); 1042 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1043 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1044 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1045 1046 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1047 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1048 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1049 1050 CmpInst::Predicate Pred = 1051 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1052 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1053 1054 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1055 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1056 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1057 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1058 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1059 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1060 } else { 1061 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1062 MachineInstrBuilder CmpHEQ = 1063 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1064 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1065 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1066 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1067 } 1068 Observer.changedInstr(MI); 1069 MI.eraseFromParent(); 1070 return Legalized; 1071 } 1072 case TargetOpcode::G_SEXT_INREG: { 1073 if (TypeIdx != 0) 1074 return UnableToLegalize; 1075 1076 int64_t SizeInBits = MI.getOperand(2).getImm(); 1077 1078 // So long as the new type has more bits than the bits we're extending we 1079 // don't need to break it apart. 1080 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1081 Observer.changingInstr(MI); 1082 // We don't lose any non-extension bits by truncating the src and 1083 // sign-extending the dst. 1084 MachineOperand &MO1 = MI.getOperand(1); 1085 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1086 MO1.setReg(TruncMIB.getReg(0)); 1087 1088 MachineOperand &MO2 = MI.getOperand(0); 1089 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1090 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1091 MIRBuilder.buildSExt(MO2, DstExt); 1092 MO2.setReg(DstExt); 1093 Observer.changedInstr(MI); 1094 return Legalized; 1095 } 1096 1097 // Break it apart. Components below the extension point are unmodified. The 1098 // component containing the extension point becomes a narrower SEXT_INREG. 1099 // Components above it are ashr'd from the component containing the 1100 // extension point. 1101 if (SizeOp0 % NarrowSize != 0) 1102 return UnableToLegalize; 1103 int NumParts = SizeOp0 / NarrowSize; 1104 1105 // List the registers where the destination will be scattered. 1106 SmallVector<Register, 2> DstRegs; 1107 // List the registers where the source will be split. 1108 SmallVector<Register, 2> SrcRegs; 1109 1110 // Create all the temporary registers. 1111 for (int i = 0; i < NumParts; ++i) { 1112 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1113 1114 SrcRegs.push_back(SrcReg); 1115 } 1116 1117 // Explode the big arguments into smaller chunks. 1118 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1119 1120 Register AshrCstReg = 1121 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1122 .getReg(0); 1123 Register FullExtensionReg = 0; 1124 Register PartialExtensionReg = 0; 1125 1126 // Do the operation on each small part. 1127 for (int i = 0; i < NumParts; ++i) { 1128 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1129 DstRegs.push_back(SrcRegs[i]); 1130 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1131 assert(PartialExtensionReg && 1132 "Expected to visit partial extension before full"); 1133 if (FullExtensionReg) { 1134 DstRegs.push_back(FullExtensionReg); 1135 continue; 1136 } 1137 DstRegs.push_back( 1138 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1139 .getReg(0)); 1140 FullExtensionReg = DstRegs.back(); 1141 } else { 1142 DstRegs.push_back( 1143 MIRBuilder 1144 .buildInstr( 1145 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1146 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1147 .getReg(0)); 1148 PartialExtensionReg = DstRegs.back(); 1149 } 1150 } 1151 1152 // Gather the destination registers into the final destination. 1153 Register DstReg = MI.getOperand(0).getReg(); 1154 MIRBuilder.buildMerge(DstReg, DstRegs); 1155 MI.eraseFromParent(); 1156 return Legalized; 1157 } 1158 case TargetOpcode::G_BSWAP: 1159 case TargetOpcode::G_BITREVERSE: { 1160 if (SizeOp0 % NarrowSize != 0) 1161 return UnableToLegalize; 1162 1163 Observer.changingInstr(MI); 1164 SmallVector<Register, 2> SrcRegs, DstRegs; 1165 unsigned NumParts = SizeOp0 / NarrowSize; 1166 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1167 1168 for (unsigned i = 0; i < NumParts; ++i) { 1169 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1170 {SrcRegs[NumParts - 1 - i]}); 1171 DstRegs.push_back(DstPart.getReg(0)); 1172 } 1173 1174 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1175 1176 Observer.changedInstr(MI); 1177 MI.eraseFromParent(); 1178 return Legalized; 1179 } 1180 } 1181 } 1182 1183 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1184 unsigned OpIdx, unsigned ExtOpcode) { 1185 MachineOperand &MO = MI.getOperand(OpIdx); 1186 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1187 MO.setReg(ExtB.getReg(0)); 1188 } 1189 1190 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1191 unsigned OpIdx) { 1192 MachineOperand &MO = MI.getOperand(OpIdx); 1193 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1194 MO.setReg(ExtB.getReg(0)); 1195 } 1196 1197 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1198 unsigned OpIdx, unsigned TruncOpcode) { 1199 MachineOperand &MO = MI.getOperand(OpIdx); 1200 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1201 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1202 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1203 MO.setReg(DstExt); 1204 } 1205 1206 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1207 unsigned OpIdx, unsigned ExtOpcode) { 1208 MachineOperand &MO = MI.getOperand(OpIdx); 1209 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1210 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1211 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1212 MO.setReg(DstTrunc); 1213 } 1214 1215 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1216 unsigned OpIdx) { 1217 MachineOperand &MO = MI.getOperand(OpIdx); 1218 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1219 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1220 MIRBuilder.buildExtract(MO, DstExt, 0); 1221 MO.setReg(DstExt); 1222 } 1223 1224 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1225 unsigned OpIdx) { 1226 MachineOperand &MO = MI.getOperand(OpIdx); 1227 1228 LLT OldTy = MRI.getType(MO.getReg()); 1229 unsigned OldElts = OldTy.getNumElements(); 1230 unsigned NewElts = MoreTy.getNumElements(); 1231 1232 unsigned NumParts = NewElts / OldElts; 1233 1234 // Use concat_vectors if the result is a multiple of the number of elements. 1235 if (NumParts * OldElts == NewElts) { 1236 SmallVector<Register, 8> Parts; 1237 Parts.push_back(MO.getReg()); 1238 1239 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1240 for (unsigned I = 1; I != NumParts; ++I) 1241 Parts.push_back(ImpDef); 1242 1243 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1244 MO.setReg(Concat.getReg(0)); 1245 return; 1246 } 1247 1248 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1249 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1250 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1251 MO.setReg(MoreReg); 1252 } 1253 1254 LegalizerHelper::LegalizeResult 1255 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1256 LLT WideTy) { 1257 if (TypeIdx != 1) 1258 return UnableToLegalize; 1259 1260 Register DstReg = MI.getOperand(0).getReg(); 1261 LLT DstTy = MRI.getType(DstReg); 1262 if (DstTy.isVector()) 1263 return UnableToLegalize; 1264 1265 Register Src1 = MI.getOperand(1).getReg(); 1266 LLT SrcTy = MRI.getType(Src1); 1267 const int DstSize = DstTy.getSizeInBits(); 1268 const int SrcSize = SrcTy.getSizeInBits(); 1269 const int WideSize = WideTy.getSizeInBits(); 1270 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1271 1272 unsigned NumOps = MI.getNumOperands(); 1273 unsigned NumSrc = MI.getNumOperands() - 1; 1274 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1275 1276 if (WideSize >= DstSize) { 1277 // Directly pack the bits in the target type. 1278 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1279 1280 for (unsigned I = 2; I != NumOps; ++I) { 1281 const unsigned Offset = (I - 1) * PartSize; 1282 1283 Register SrcReg = MI.getOperand(I).getReg(); 1284 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1285 1286 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1287 1288 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1289 MRI.createGenericVirtualRegister(WideTy); 1290 1291 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1292 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1293 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1294 ResultReg = NextResult; 1295 } 1296 1297 if (WideSize > DstSize) 1298 MIRBuilder.buildTrunc(DstReg, ResultReg); 1299 else if (DstTy.isPointer()) 1300 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1301 1302 MI.eraseFromParent(); 1303 return Legalized; 1304 } 1305 1306 // Unmerge the original values to the GCD type, and recombine to the next 1307 // multiple greater than the original type. 1308 // 1309 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1310 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1311 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1312 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1313 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1314 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1315 // %12:_(s12) = G_MERGE_VALUES %10, %11 1316 // 1317 // Padding with undef if necessary: 1318 // 1319 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1320 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1321 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1322 // %7:_(s2) = G_IMPLICIT_DEF 1323 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1324 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1325 // %10:_(s12) = G_MERGE_VALUES %8, %9 1326 1327 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1328 LLT GCDTy = LLT::scalar(GCD); 1329 1330 SmallVector<Register, 8> Parts; 1331 SmallVector<Register, 8> NewMergeRegs; 1332 SmallVector<Register, 8> Unmerges; 1333 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1334 1335 // Decompose the original operands if they don't evenly divide. 1336 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1337 Register SrcReg = MI.getOperand(I).getReg(); 1338 if (GCD == SrcSize) { 1339 Unmerges.push_back(SrcReg); 1340 } else { 1341 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1342 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1343 Unmerges.push_back(Unmerge.getReg(J)); 1344 } 1345 } 1346 1347 // Pad with undef to the next size that is a multiple of the requested size. 1348 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1349 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1350 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1351 Unmerges.push_back(UndefReg); 1352 } 1353 1354 const int PartsPerGCD = WideSize / GCD; 1355 1356 // Build merges of each piece. 1357 ArrayRef<Register> Slicer(Unmerges); 1358 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1359 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1360 NewMergeRegs.push_back(Merge.getReg(0)); 1361 } 1362 1363 // A truncate may be necessary if the requested type doesn't evenly divide the 1364 // original result type. 1365 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1366 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1367 } else { 1368 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1369 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1370 } 1371 1372 MI.eraseFromParent(); 1373 return Legalized; 1374 } 1375 1376 LegalizerHelper::LegalizeResult 1377 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1378 LLT WideTy) { 1379 if (TypeIdx != 0) 1380 return UnableToLegalize; 1381 1382 int NumDst = MI.getNumOperands() - 1; 1383 Register SrcReg = MI.getOperand(NumDst).getReg(); 1384 LLT SrcTy = MRI.getType(SrcReg); 1385 if (SrcTy.isVector()) 1386 return UnableToLegalize; 1387 1388 Register Dst0Reg = MI.getOperand(0).getReg(); 1389 LLT DstTy = MRI.getType(Dst0Reg); 1390 if (!DstTy.isScalar()) 1391 return UnableToLegalize; 1392 1393 if (WideTy.getSizeInBits() == SrcTy.getSizeInBits()) { 1394 if (SrcTy.isPointer()) { 1395 const DataLayout &DL = MIRBuilder.getDataLayout(); 1396 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1397 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 1398 return UnableToLegalize; 1399 } 1400 1401 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1402 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1403 } 1404 1405 // Theres no unmerge type to target. Directly extract the bits from the 1406 // source type 1407 unsigned DstSize = DstTy.getSizeInBits(); 1408 1409 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1410 for (int I = 1; I != NumDst; ++I) { 1411 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1412 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1413 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1414 } 1415 1416 MI.eraseFromParent(); 1417 return Legalized; 1418 } 1419 1420 // TODO 1421 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1422 return UnableToLegalize; 1423 1424 // Extend the source to a wider type. 1425 LLT LCMTy = getLCMType(SrcTy, WideTy); 1426 1427 Register WideSrc = SrcReg; 1428 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1429 // TODO: If this is an integral address space, cast to integer and anyext. 1430 if (SrcTy.isPointer()) { 1431 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1432 return UnableToLegalize; 1433 } 1434 1435 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1436 } 1437 1438 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1439 1440 // Create a sequence of unmerges to the original results. since we may have 1441 // widened the source, we will need to pad the results with dead defs to cover 1442 // the source register. 1443 // e.g. widen s16 to s32: 1444 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1445 // 1446 // => 1447 // %4:_(s64) = G_ANYEXT %0:_(s48) 1448 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1449 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1450 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1451 1452 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1453 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1454 1455 for (int I = 0; I != NumUnmerge; ++I) { 1456 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1457 1458 for (int J = 0; J != PartsPerUnmerge; ++J) { 1459 int Idx = I * PartsPerUnmerge + J; 1460 if (Idx < NumDst) 1461 MIB.addDef(MI.getOperand(Idx).getReg()); 1462 else { 1463 // Create dead def for excess components. 1464 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1465 } 1466 } 1467 1468 MIB.addUse(Unmerge.getReg(I)); 1469 } 1470 1471 MI.eraseFromParent(); 1472 return Legalized; 1473 } 1474 1475 LegalizerHelper::LegalizeResult 1476 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1477 LLT WideTy) { 1478 Register DstReg = MI.getOperand(0).getReg(); 1479 Register SrcReg = MI.getOperand(1).getReg(); 1480 LLT SrcTy = MRI.getType(SrcReg); 1481 1482 LLT DstTy = MRI.getType(DstReg); 1483 unsigned Offset = MI.getOperand(2).getImm(); 1484 1485 if (TypeIdx == 0) { 1486 if (SrcTy.isVector() || DstTy.isVector()) 1487 return UnableToLegalize; 1488 1489 SrcOp Src(SrcReg); 1490 if (SrcTy.isPointer()) { 1491 // Extracts from pointers can be handled only if they are really just 1492 // simple integers. 1493 const DataLayout &DL = MIRBuilder.getDataLayout(); 1494 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1495 return UnableToLegalize; 1496 1497 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1498 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1499 SrcTy = SrcAsIntTy; 1500 } 1501 1502 if (DstTy.isPointer()) 1503 return UnableToLegalize; 1504 1505 if (Offset == 0) { 1506 // Avoid a shift in the degenerate case. 1507 MIRBuilder.buildTrunc(DstReg, 1508 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1509 MI.eraseFromParent(); 1510 return Legalized; 1511 } 1512 1513 // Do a shift in the source type. 1514 LLT ShiftTy = SrcTy; 1515 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1516 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1517 ShiftTy = WideTy; 1518 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1519 return UnableToLegalize; 1520 1521 auto LShr = MIRBuilder.buildLShr( 1522 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1523 MIRBuilder.buildTrunc(DstReg, LShr); 1524 MI.eraseFromParent(); 1525 return Legalized; 1526 } 1527 1528 if (SrcTy.isScalar()) { 1529 Observer.changingInstr(MI); 1530 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1531 Observer.changedInstr(MI); 1532 return Legalized; 1533 } 1534 1535 if (!SrcTy.isVector()) 1536 return UnableToLegalize; 1537 1538 if (DstTy != SrcTy.getElementType()) 1539 return UnableToLegalize; 1540 1541 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1542 return UnableToLegalize; 1543 1544 Observer.changingInstr(MI); 1545 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1546 1547 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1548 Offset); 1549 widenScalarDst(MI, WideTy.getScalarType(), 0); 1550 Observer.changedInstr(MI); 1551 return Legalized; 1552 } 1553 1554 LegalizerHelper::LegalizeResult 1555 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1556 LLT WideTy) { 1557 if (TypeIdx != 0) 1558 return UnableToLegalize; 1559 Observer.changingInstr(MI); 1560 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1561 widenScalarDst(MI, WideTy); 1562 Observer.changedInstr(MI); 1563 return Legalized; 1564 } 1565 1566 LegalizerHelper::LegalizeResult 1567 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1568 MIRBuilder.setInstr(MI); 1569 1570 switch (MI.getOpcode()) { 1571 default: 1572 return UnableToLegalize; 1573 case TargetOpcode::G_EXTRACT: 1574 return widenScalarExtract(MI, TypeIdx, WideTy); 1575 case TargetOpcode::G_INSERT: 1576 return widenScalarInsert(MI, TypeIdx, WideTy); 1577 case TargetOpcode::G_MERGE_VALUES: 1578 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1579 case TargetOpcode::G_UNMERGE_VALUES: 1580 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1581 case TargetOpcode::G_UADDO: 1582 case TargetOpcode::G_USUBO: { 1583 if (TypeIdx == 1) 1584 return UnableToLegalize; // TODO 1585 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1586 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1587 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1588 ? TargetOpcode::G_ADD 1589 : TargetOpcode::G_SUB; 1590 // Do the arithmetic in the larger type. 1591 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1592 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1593 APInt Mask = 1594 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1595 auto AndOp = MIRBuilder.buildAnd( 1596 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1597 // There is no overflow if the AndOp is the same as NewOp. 1598 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1599 // Now trunc the NewOp to the original result. 1600 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1601 MI.eraseFromParent(); 1602 return Legalized; 1603 } 1604 case TargetOpcode::G_CTTZ: 1605 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1606 case TargetOpcode::G_CTLZ: 1607 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1608 case TargetOpcode::G_CTPOP: { 1609 if (TypeIdx == 0) { 1610 Observer.changingInstr(MI); 1611 widenScalarDst(MI, WideTy, 0); 1612 Observer.changedInstr(MI); 1613 return Legalized; 1614 } 1615 1616 Register SrcReg = MI.getOperand(1).getReg(); 1617 1618 // First ZEXT the input. 1619 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1620 LLT CurTy = MRI.getType(SrcReg); 1621 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1622 // The count is the same in the larger type except if the original 1623 // value was zero. This can be handled by setting the bit just off 1624 // the top of the original type. 1625 auto TopBit = 1626 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1627 MIBSrc = MIRBuilder.buildOr( 1628 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1629 } 1630 1631 // Perform the operation at the larger size. 1632 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1633 // This is already the correct result for CTPOP and CTTZs 1634 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1635 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1636 // The correct result is NewOp - (Difference in widety and current ty). 1637 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1638 MIBNewOp = MIRBuilder.buildSub( 1639 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1640 } 1641 1642 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1643 MI.eraseFromParent(); 1644 return Legalized; 1645 } 1646 case TargetOpcode::G_BSWAP: { 1647 Observer.changingInstr(MI); 1648 Register DstReg = MI.getOperand(0).getReg(); 1649 1650 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1651 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1652 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1653 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1654 1655 MI.getOperand(0).setReg(DstExt); 1656 1657 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1658 1659 LLT Ty = MRI.getType(DstReg); 1660 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1661 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1662 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1663 1664 MIRBuilder.buildTrunc(DstReg, ShrReg); 1665 Observer.changedInstr(MI); 1666 return Legalized; 1667 } 1668 case TargetOpcode::G_BITREVERSE: { 1669 Observer.changingInstr(MI); 1670 1671 Register DstReg = MI.getOperand(0).getReg(); 1672 LLT Ty = MRI.getType(DstReg); 1673 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1674 1675 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1676 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1677 MI.getOperand(0).setReg(DstExt); 1678 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1679 1680 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1681 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1682 MIRBuilder.buildTrunc(DstReg, Shift); 1683 Observer.changedInstr(MI); 1684 return Legalized; 1685 } 1686 case TargetOpcode::G_ADD: 1687 case TargetOpcode::G_AND: 1688 case TargetOpcode::G_MUL: 1689 case TargetOpcode::G_OR: 1690 case TargetOpcode::G_XOR: 1691 case TargetOpcode::G_SUB: 1692 // Perform operation at larger width (any extension is fines here, high bits 1693 // don't affect the result) and then truncate the result back to the 1694 // original type. 1695 Observer.changingInstr(MI); 1696 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1697 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1698 widenScalarDst(MI, WideTy); 1699 Observer.changedInstr(MI); 1700 return Legalized; 1701 1702 case TargetOpcode::G_SHL: 1703 Observer.changingInstr(MI); 1704 1705 if (TypeIdx == 0) { 1706 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1707 widenScalarDst(MI, WideTy); 1708 } else { 1709 assert(TypeIdx == 1); 1710 // The "number of bits to shift" operand must preserve its value as an 1711 // unsigned integer: 1712 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1713 } 1714 1715 Observer.changedInstr(MI); 1716 return Legalized; 1717 1718 case TargetOpcode::G_SDIV: 1719 case TargetOpcode::G_SREM: 1720 case TargetOpcode::G_SMIN: 1721 case TargetOpcode::G_SMAX: 1722 Observer.changingInstr(MI); 1723 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1724 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1725 widenScalarDst(MI, WideTy); 1726 Observer.changedInstr(MI); 1727 return Legalized; 1728 1729 case TargetOpcode::G_ASHR: 1730 case TargetOpcode::G_LSHR: 1731 Observer.changingInstr(MI); 1732 1733 if (TypeIdx == 0) { 1734 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1735 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1736 1737 widenScalarSrc(MI, WideTy, 1, CvtOp); 1738 widenScalarDst(MI, WideTy); 1739 } else { 1740 assert(TypeIdx == 1); 1741 // The "number of bits to shift" operand must preserve its value as an 1742 // unsigned integer: 1743 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1744 } 1745 1746 Observer.changedInstr(MI); 1747 return Legalized; 1748 case TargetOpcode::G_UDIV: 1749 case TargetOpcode::G_UREM: 1750 case TargetOpcode::G_UMIN: 1751 case TargetOpcode::G_UMAX: 1752 Observer.changingInstr(MI); 1753 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1754 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1755 widenScalarDst(MI, WideTy); 1756 Observer.changedInstr(MI); 1757 return Legalized; 1758 1759 case TargetOpcode::G_SELECT: 1760 Observer.changingInstr(MI); 1761 if (TypeIdx == 0) { 1762 // Perform operation at larger width (any extension is fine here, high 1763 // bits don't affect the result) and then truncate the result back to the 1764 // original type. 1765 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1766 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1767 widenScalarDst(MI, WideTy); 1768 } else { 1769 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1770 // Explicit extension is required here since high bits affect the result. 1771 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1772 } 1773 Observer.changedInstr(MI); 1774 return Legalized; 1775 1776 case TargetOpcode::G_FPTOSI: 1777 case TargetOpcode::G_FPTOUI: 1778 Observer.changingInstr(MI); 1779 1780 if (TypeIdx == 0) 1781 widenScalarDst(MI, WideTy); 1782 else 1783 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1784 1785 Observer.changedInstr(MI); 1786 return Legalized; 1787 case TargetOpcode::G_SITOFP: 1788 if (TypeIdx != 1) 1789 return UnableToLegalize; 1790 Observer.changingInstr(MI); 1791 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1792 Observer.changedInstr(MI); 1793 return Legalized; 1794 1795 case TargetOpcode::G_UITOFP: 1796 if (TypeIdx != 1) 1797 return UnableToLegalize; 1798 Observer.changingInstr(MI); 1799 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1800 Observer.changedInstr(MI); 1801 return Legalized; 1802 1803 case TargetOpcode::G_LOAD: 1804 case TargetOpcode::G_SEXTLOAD: 1805 case TargetOpcode::G_ZEXTLOAD: 1806 Observer.changingInstr(MI); 1807 widenScalarDst(MI, WideTy); 1808 Observer.changedInstr(MI); 1809 return Legalized; 1810 1811 case TargetOpcode::G_STORE: { 1812 if (TypeIdx != 0) 1813 return UnableToLegalize; 1814 1815 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1816 if (!isPowerOf2_32(Ty.getSizeInBits())) 1817 return UnableToLegalize; 1818 1819 Observer.changingInstr(MI); 1820 1821 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1822 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1823 widenScalarSrc(MI, WideTy, 0, ExtType); 1824 1825 Observer.changedInstr(MI); 1826 return Legalized; 1827 } 1828 case TargetOpcode::G_CONSTANT: { 1829 MachineOperand &SrcMO = MI.getOperand(1); 1830 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1831 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1832 MRI.getType(MI.getOperand(0).getReg())); 1833 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1834 ExtOpc == TargetOpcode::G_ANYEXT) && 1835 "Illegal Extend"); 1836 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1837 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1838 ? SrcVal.sext(WideTy.getSizeInBits()) 1839 : SrcVal.zext(WideTy.getSizeInBits()); 1840 Observer.changingInstr(MI); 1841 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1842 1843 widenScalarDst(MI, WideTy); 1844 Observer.changedInstr(MI); 1845 return Legalized; 1846 } 1847 case TargetOpcode::G_FCONSTANT: { 1848 MachineOperand &SrcMO = MI.getOperand(1); 1849 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1850 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1851 bool LosesInfo; 1852 switch (WideTy.getSizeInBits()) { 1853 case 32: 1854 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1855 &LosesInfo); 1856 break; 1857 case 64: 1858 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1859 &LosesInfo); 1860 break; 1861 default: 1862 return UnableToLegalize; 1863 } 1864 1865 assert(!LosesInfo && "extend should always be lossless"); 1866 1867 Observer.changingInstr(MI); 1868 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1869 1870 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1871 Observer.changedInstr(MI); 1872 return Legalized; 1873 } 1874 case TargetOpcode::G_IMPLICIT_DEF: { 1875 Observer.changingInstr(MI); 1876 widenScalarDst(MI, WideTy); 1877 Observer.changedInstr(MI); 1878 return Legalized; 1879 } 1880 case TargetOpcode::G_BRCOND: 1881 Observer.changingInstr(MI); 1882 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1883 Observer.changedInstr(MI); 1884 return Legalized; 1885 1886 case TargetOpcode::G_FCMP: 1887 Observer.changingInstr(MI); 1888 if (TypeIdx == 0) 1889 widenScalarDst(MI, WideTy); 1890 else { 1891 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1892 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1893 } 1894 Observer.changedInstr(MI); 1895 return Legalized; 1896 1897 case TargetOpcode::G_ICMP: 1898 Observer.changingInstr(MI); 1899 if (TypeIdx == 0) 1900 widenScalarDst(MI, WideTy); 1901 else { 1902 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1903 MI.getOperand(1).getPredicate())) 1904 ? TargetOpcode::G_SEXT 1905 : TargetOpcode::G_ZEXT; 1906 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1907 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1908 } 1909 Observer.changedInstr(MI); 1910 return Legalized; 1911 1912 case TargetOpcode::G_PTR_ADD: 1913 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1914 Observer.changingInstr(MI); 1915 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1916 Observer.changedInstr(MI); 1917 return Legalized; 1918 1919 case TargetOpcode::G_PHI: { 1920 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1921 1922 Observer.changingInstr(MI); 1923 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1924 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1925 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1926 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1927 } 1928 1929 MachineBasicBlock &MBB = *MI.getParent(); 1930 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1931 widenScalarDst(MI, WideTy); 1932 Observer.changedInstr(MI); 1933 return Legalized; 1934 } 1935 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1936 if (TypeIdx == 0) { 1937 Register VecReg = MI.getOperand(1).getReg(); 1938 LLT VecTy = MRI.getType(VecReg); 1939 Observer.changingInstr(MI); 1940 1941 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1942 WideTy.getSizeInBits()), 1943 1, TargetOpcode::G_SEXT); 1944 1945 widenScalarDst(MI, WideTy, 0); 1946 Observer.changedInstr(MI); 1947 return Legalized; 1948 } 1949 1950 if (TypeIdx != 2) 1951 return UnableToLegalize; 1952 Observer.changingInstr(MI); 1953 // TODO: Probably should be zext 1954 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1955 Observer.changedInstr(MI); 1956 return Legalized; 1957 } 1958 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1959 if (TypeIdx == 1) { 1960 Observer.changingInstr(MI); 1961 1962 Register VecReg = MI.getOperand(1).getReg(); 1963 LLT VecTy = MRI.getType(VecReg); 1964 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 1965 1966 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 1967 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1968 widenScalarDst(MI, WideVecTy, 0); 1969 Observer.changedInstr(MI); 1970 return Legalized; 1971 } 1972 1973 if (TypeIdx == 2) { 1974 Observer.changingInstr(MI); 1975 // TODO: Probably should be zext 1976 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 1977 Observer.changedInstr(MI); 1978 } 1979 1980 return Legalized; 1981 } 1982 case TargetOpcode::G_FADD: 1983 case TargetOpcode::G_FMUL: 1984 case TargetOpcode::G_FSUB: 1985 case TargetOpcode::G_FMA: 1986 case TargetOpcode::G_FMAD: 1987 case TargetOpcode::G_FNEG: 1988 case TargetOpcode::G_FABS: 1989 case TargetOpcode::G_FCANONICALIZE: 1990 case TargetOpcode::G_FMINNUM: 1991 case TargetOpcode::G_FMAXNUM: 1992 case TargetOpcode::G_FMINNUM_IEEE: 1993 case TargetOpcode::G_FMAXNUM_IEEE: 1994 case TargetOpcode::G_FMINIMUM: 1995 case TargetOpcode::G_FMAXIMUM: 1996 case TargetOpcode::G_FDIV: 1997 case TargetOpcode::G_FREM: 1998 case TargetOpcode::G_FCEIL: 1999 case TargetOpcode::G_FFLOOR: 2000 case TargetOpcode::G_FCOS: 2001 case TargetOpcode::G_FSIN: 2002 case TargetOpcode::G_FLOG10: 2003 case TargetOpcode::G_FLOG: 2004 case TargetOpcode::G_FLOG2: 2005 case TargetOpcode::G_FRINT: 2006 case TargetOpcode::G_FNEARBYINT: 2007 case TargetOpcode::G_FSQRT: 2008 case TargetOpcode::G_FEXP: 2009 case TargetOpcode::G_FEXP2: 2010 case TargetOpcode::G_FPOW: 2011 case TargetOpcode::G_INTRINSIC_TRUNC: 2012 case TargetOpcode::G_INTRINSIC_ROUND: 2013 assert(TypeIdx == 0); 2014 Observer.changingInstr(MI); 2015 2016 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2017 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2018 2019 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2020 Observer.changedInstr(MI); 2021 return Legalized; 2022 case TargetOpcode::G_INTTOPTR: 2023 if (TypeIdx != 1) 2024 return UnableToLegalize; 2025 2026 Observer.changingInstr(MI); 2027 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2028 Observer.changedInstr(MI); 2029 return Legalized; 2030 case TargetOpcode::G_PTRTOINT: 2031 if (TypeIdx != 0) 2032 return UnableToLegalize; 2033 2034 Observer.changingInstr(MI); 2035 widenScalarDst(MI, WideTy, 0); 2036 Observer.changedInstr(MI); 2037 return Legalized; 2038 case TargetOpcode::G_BUILD_VECTOR: { 2039 Observer.changingInstr(MI); 2040 2041 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2042 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2043 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2044 2045 // Avoid changing the result vector type if the source element type was 2046 // requested. 2047 if (TypeIdx == 1) { 2048 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2049 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2050 } else { 2051 widenScalarDst(MI, WideTy, 0); 2052 } 2053 2054 Observer.changedInstr(MI); 2055 return Legalized; 2056 } 2057 case TargetOpcode::G_SEXT_INREG: 2058 if (TypeIdx != 0) 2059 return UnableToLegalize; 2060 2061 Observer.changingInstr(MI); 2062 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2063 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2064 Observer.changedInstr(MI); 2065 return Legalized; 2066 } 2067 } 2068 2069 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2070 MachineIRBuilder &B, Register Src, LLT Ty) { 2071 auto Unmerge = B.buildUnmerge(Ty, Src); 2072 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2073 Pieces.push_back(Unmerge.getReg(I)); 2074 } 2075 2076 LegalizerHelper::LegalizeResult 2077 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2078 Register Dst = MI.getOperand(0).getReg(); 2079 Register Src = MI.getOperand(1).getReg(); 2080 LLT DstTy = MRI.getType(Dst); 2081 LLT SrcTy = MRI.getType(Src); 2082 2083 if (SrcTy.isVector() && !DstTy.isVector()) { 2084 SmallVector<Register, 8> SrcRegs; 2085 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2086 MIRBuilder.buildMerge(Dst, SrcRegs); 2087 MI.eraseFromParent(); 2088 return Legalized; 2089 } 2090 2091 if (DstTy.isVector() && !SrcTy.isVector()) { 2092 SmallVector<Register, 8> SrcRegs; 2093 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2094 MIRBuilder.buildMerge(Dst, SrcRegs); 2095 MI.eraseFromParent(); 2096 return Legalized; 2097 } 2098 2099 return UnableToLegalize; 2100 } 2101 2102 LegalizerHelper::LegalizeResult 2103 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2104 using namespace TargetOpcode; 2105 MIRBuilder.setInstr(MI); 2106 2107 switch(MI.getOpcode()) { 2108 default: 2109 return UnableToLegalize; 2110 case TargetOpcode::G_BITCAST: 2111 return lowerBitcast(MI); 2112 case TargetOpcode::G_SREM: 2113 case TargetOpcode::G_UREM: { 2114 auto Quot = 2115 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2116 {MI.getOperand(1), MI.getOperand(2)}); 2117 2118 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2119 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2120 MI.eraseFromParent(); 2121 return Legalized; 2122 } 2123 case TargetOpcode::G_SADDO: 2124 case TargetOpcode::G_SSUBO: 2125 return lowerSADDO_SSUBO(MI); 2126 case TargetOpcode::G_SMULO: 2127 case TargetOpcode::G_UMULO: { 2128 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2129 // result. 2130 Register Res = MI.getOperand(0).getReg(); 2131 Register Overflow = MI.getOperand(1).getReg(); 2132 Register LHS = MI.getOperand(2).getReg(); 2133 Register RHS = MI.getOperand(3).getReg(); 2134 2135 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2136 ? TargetOpcode::G_SMULH 2137 : TargetOpcode::G_UMULH; 2138 2139 Observer.changingInstr(MI); 2140 const auto &TII = MIRBuilder.getTII(); 2141 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2142 MI.RemoveOperand(1); 2143 Observer.changedInstr(MI); 2144 2145 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2146 2147 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2148 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2149 2150 // For *signed* multiply, overflow is detected by checking: 2151 // (hi != (lo >> bitwidth-1)) 2152 if (Opcode == TargetOpcode::G_SMULH) { 2153 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2154 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2155 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2156 } else { 2157 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2158 } 2159 return Legalized; 2160 } 2161 case TargetOpcode::G_FNEG: { 2162 // TODO: Handle vector types once we are able to 2163 // represent them. 2164 if (Ty.isVector()) 2165 return UnableToLegalize; 2166 Register Res = MI.getOperand(0).getReg(); 2167 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2168 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2169 if (!ZeroTy) 2170 return UnableToLegalize; 2171 ConstantFP &ZeroForNegation = 2172 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2173 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2174 Register SubByReg = MI.getOperand(1).getReg(); 2175 Register ZeroReg = Zero.getReg(0); 2176 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2177 MI.eraseFromParent(); 2178 return Legalized; 2179 } 2180 case TargetOpcode::G_FSUB: { 2181 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2182 // First, check if G_FNEG is marked as Lower. If so, we may 2183 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2184 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2185 return UnableToLegalize; 2186 Register Res = MI.getOperand(0).getReg(); 2187 Register LHS = MI.getOperand(1).getReg(); 2188 Register RHS = MI.getOperand(2).getReg(); 2189 Register Neg = MRI.createGenericVirtualRegister(Ty); 2190 MIRBuilder.buildFNeg(Neg, RHS); 2191 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2192 MI.eraseFromParent(); 2193 return Legalized; 2194 } 2195 case TargetOpcode::G_FMAD: 2196 return lowerFMad(MI); 2197 case TargetOpcode::G_INTRINSIC_ROUND: 2198 return lowerIntrinsicRound(MI); 2199 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2200 Register OldValRes = MI.getOperand(0).getReg(); 2201 Register SuccessRes = MI.getOperand(1).getReg(); 2202 Register Addr = MI.getOperand(2).getReg(); 2203 Register CmpVal = MI.getOperand(3).getReg(); 2204 Register NewVal = MI.getOperand(4).getReg(); 2205 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2206 **MI.memoperands_begin()); 2207 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2208 MI.eraseFromParent(); 2209 return Legalized; 2210 } 2211 case TargetOpcode::G_LOAD: 2212 case TargetOpcode::G_SEXTLOAD: 2213 case TargetOpcode::G_ZEXTLOAD: { 2214 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2215 Register DstReg = MI.getOperand(0).getReg(); 2216 Register PtrReg = MI.getOperand(1).getReg(); 2217 LLT DstTy = MRI.getType(DstReg); 2218 auto &MMO = **MI.memoperands_begin(); 2219 2220 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2221 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2222 // This load needs splitting into power of 2 sized loads. 2223 if (DstTy.isVector()) 2224 return UnableToLegalize; 2225 if (isPowerOf2_32(DstTy.getSizeInBits())) 2226 return UnableToLegalize; // Don't know what we're being asked to do. 2227 2228 // Our strategy here is to generate anyextending loads for the smaller 2229 // types up to next power-2 result type, and then combine the two larger 2230 // result values together, before truncating back down to the non-pow-2 2231 // type. 2232 // E.g. v1 = i24 load => 2233 // v2 = i32 zextload (2 byte) 2234 // v3 = i32 load (1 byte) 2235 // v4 = i32 shl v3, 16 2236 // v5 = i32 or v4, v2 2237 // v1 = i24 trunc v5 2238 // By doing this we generate the correct truncate which should get 2239 // combined away as an artifact with a matching extend. 2240 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2241 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2242 2243 MachineFunction &MF = MIRBuilder.getMF(); 2244 MachineMemOperand *LargeMMO = 2245 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2246 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2247 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2248 2249 LLT PtrTy = MRI.getType(PtrReg); 2250 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2251 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2252 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2253 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2254 auto LargeLoad = MIRBuilder.buildLoadInstr( 2255 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2256 2257 auto OffsetCst = MIRBuilder.buildConstant( 2258 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2259 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2260 auto SmallPtr = 2261 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2262 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2263 *SmallMMO); 2264 2265 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2266 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2267 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2268 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2269 MI.eraseFromParent(); 2270 return Legalized; 2271 } 2272 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2273 MI.eraseFromParent(); 2274 return Legalized; 2275 } 2276 2277 if (DstTy.isScalar()) { 2278 Register TmpReg = 2279 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2280 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2281 switch (MI.getOpcode()) { 2282 default: 2283 llvm_unreachable("Unexpected opcode"); 2284 case TargetOpcode::G_LOAD: 2285 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2286 break; 2287 case TargetOpcode::G_SEXTLOAD: 2288 MIRBuilder.buildSExt(DstReg, TmpReg); 2289 break; 2290 case TargetOpcode::G_ZEXTLOAD: 2291 MIRBuilder.buildZExt(DstReg, TmpReg); 2292 break; 2293 } 2294 MI.eraseFromParent(); 2295 return Legalized; 2296 } 2297 2298 return UnableToLegalize; 2299 } 2300 case TargetOpcode::G_STORE: { 2301 // Lower a non-power of 2 store into multiple pow-2 stores. 2302 // E.g. split an i24 store into an i16 store + i8 store. 2303 // We do this by first extending the stored value to the next largest power 2304 // of 2 type, and then using truncating stores to store the components. 2305 // By doing this, likewise with G_LOAD, generate an extend that can be 2306 // artifact-combined away instead of leaving behind extracts. 2307 Register SrcReg = MI.getOperand(0).getReg(); 2308 Register PtrReg = MI.getOperand(1).getReg(); 2309 LLT SrcTy = MRI.getType(SrcReg); 2310 MachineMemOperand &MMO = **MI.memoperands_begin(); 2311 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2312 return UnableToLegalize; 2313 if (SrcTy.isVector()) 2314 return UnableToLegalize; 2315 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2316 return UnableToLegalize; // Don't know what we're being asked to do. 2317 2318 // Extend to the next pow-2. 2319 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2320 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2321 2322 // Obtain the smaller value by shifting away the larger value. 2323 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2324 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2325 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2326 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2327 2328 // Generate the PtrAdd and truncating stores. 2329 LLT PtrTy = MRI.getType(PtrReg); 2330 auto OffsetCst = MIRBuilder.buildConstant( 2331 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2332 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2333 auto SmallPtr = 2334 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2335 2336 MachineFunction &MF = MIRBuilder.getMF(); 2337 MachineMemOperand *LargeMMO = 2338 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2339 MachineMemOperand *SmallMMO = 2340 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2341 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2342 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2343 MI.eraseFromParent(); 2344 return Legalized; 2345 } 2346 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2347 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2348 case TargetOpcode::G_CTLZ: 2349 case TargetOpcode::G_CTTZ: 2350 case TargetOpcode::G_CTPOP: 2351 return lowerBitCount(MI, TypeIdx, Ty); 2352 case G_UADDO: { 2353 Register Res = MI.getOperand(0).getReg(); 2354 Register CarryOut = MI.getOperand(1).getReg(); 2355 Register LHS = MI.getOperand(2).getReg(); 2356 Register RHS = MI.getOperand(3).getReg(); 2357 2358 MIRBuilder.buildAdd(Res, LHS, RHS); 2359 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2360 2361 MI.eraseFromParent(); 2362 return Legalized; 2363 } 2364 case G_UADDE: { 2365 Register Res = MI.getOperand(0).getReg(); 2366 Register CarryOut = MI.getOperand(1).getReg(); 2367 Register LHS = MI.getOperand(2).getReg(); 2368 Register RHS = MI.getOperand(3).getReg(); 2369 Register CarryIn = MI.getOperand(4).getReg(); 2370 LLT Ty = MRI.getType(Res); 2371 2372 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2373 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2374 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2375 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2376 2377 MI.eraseFromParent(); 2378 return Legalized; 2379 } 2380 case G_USUBO: { 2381 Register Res = MI.getOperand(0).getReg(); 2382 Register BorrowOut = MI.getOperand(1).getReg(); 2383 Register LHS = MI.getOperand(2).getReg(); 2384 Register RHS = MI.getOperand(3).getReg(); 2385 2386 MIRBuilder.buildSub(Res, LHS, RHS); 2387 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2388 2389 MI.eraseFromParent(); 2390 return Legalized; 2391 } 2392 case G_USUBE: { 2393 Register Res = MI.getOperand(0).getReg(); 2394 Register BorrowOut = MI.getOperand(1).getReg(); 2395 Register LHS = MI.getOperand(2).getReg(); 2396 Register RHS = MI.getOperand(3).getReg(); 2397 Register BorrowIn = MI.getOperand(4).getReg(); 2398 const LLT CondTy = MRI.getType(BorrowOut); 2399 const LLT Ty = MRI.getType(Res); 2400 2401 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2402 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2403 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2404 2405 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2406 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2407 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2408 2409 MI.eraseFromParent(); 2410 return Legalized; 2411 } 2412 case G_UITOFP: 2413 return lowerUITOFP(MI, TypeIdx, Ty); 2414 case G_SITOFP: 2415 return lowerSITOFP(MI, TypeIdx, Ty); 2416 case G_FPTOUI: 2417 return lowerFPTOUI(MI, TypeIdx, Ty); 2418 case G_FPTOSI: 2419 return lowerFPTOSI(MI); 2420 case G_FPTRUNC: 2421 return lowerFPTRUNC(MI, TypeIdx, Ty); 2422 case G_SMIN: 2423 case G_SMAX: 2424 case G_UMIN: 2425 case G_UMAX: 2426 return lowerMinMax(MI, TypeIdx, Ty); 2427 case G_FCOPYSIGN: 2428 return lowerFCopySign(MI, TypeIdx, Ty); 2429 case G_FMINNUM: 2430 case G_FMAXNUM: 2431 return lowerFMinNumMaxNum(MI); 2432 case G_UNMERGE_VALUES: 2433 return lowerUnmergeValues(MI); 2434 case TargetOpcode::G_SEXT_INREG: { 2435 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2436 int64_t SizeInBits = MI.getOperand(2).getImm(); 2437 2438 Register DstReg = MI.getOperand(0).getReg(); 2439 Register SrcReg = MI.getOperand(1).getReg(); 2440 LLT DstTy = MRI.getType(DstReg); 2441 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2442 2443 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2444 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2445 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2446 MI.eraseFromParent(); 2447 return Legalized; 2448 } 2449 case G_SHUFFLE_VECTOR: 2450 return lowerShuffleVector(MI); 2451 case G_DYN_STACKALLOC: 2452 return lowerDynStackAlloc(MI); 2453 case G_EXTRACT: 2454 return lowerExtract(MI); 2455 case G_INSERT: 2456 return lowerInsert(MI); 2457 case G_BSWAP: 2458 return lowerBswap(MI); 2459 case G_BITREVERSE: 2460 return lowerBitreverse(MI); 2461 case G_READ_REGISTER: 2462 case G_WRITE_REGISTER: 2463 return lowerReadWriteRegister(MI); 2464 } 2465 } 2466 2467 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2468 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2469 SmallVector<Register, 2> DstRegs; 2470 2471 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2472 Register DstReg = MI.getOperand(0).getReg(); 2473 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2474 int NumParts = Size / NarrowSize; 2475 // FIXME: Don't know how to handle the situation where the small vectors 2476 // aren't all the same size yet. 2477 if (Size % NarrowSize != 0) 2478 return UnableToLegalize; 2479 2480 for (int i = 0; i < NumParts; ++i) { 2481 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2482 MIRBuilder.buildUndef(TmpReg); 2483 DstRegs.push_back(TmpReg); 2484 } 2485 2486 if (NarrowTy.isVector()) 2487 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2488 else 2489 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2490 2491 MI.eraseFromParent(); 2492 return Legalized; 2493 } 2494 2495 LegalizerHelper::LegalizeResult 2496 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2497 LLT NarrowTy) { 2498 assert(TypeIdx == 0 && "only one type index expected"); 2499 2500 const unsigned Opc = MI.getOpcode(); 2501 const int NumOps = MI.getNumOperands() - 1; 2502 const Register DstReg = MI.getOperand(0).getReg(); 2503 const unsigned Flags = MI.getFlags(); 2504 2505 assert(NumOps <= 3 && "expected instrution with 1 result and 1-3 sources"); 2506 2507 SmallVector<Register, 8> ExtractedRegs[3]; 2508 SmallVector<Register, 8> Parts; 2509 2510 // Break down all the sources into NarrowTy pieces we can operate on. This may 2511 // involve creating merges to a wider type, padded with undef. 2512 for (int I = 0; I != NumOps; ++I) { 2513 Register SrcReg = MI.getOperand(I + 1).getReg(); 2514 LLT SrcTy = MRI.getType(SrcReg); 2515 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, NarrowTy, SrcReg); 2516 2517 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 2518 buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ExtractedRegs[I], 2519 TargetOpcode::G_ANYEXT); 2520 } 2521 2522 SmallVector<Register, 8> ResultRegs; 2523 2524 // Input operands for each sub-instruction. 2525 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 2526 2527 int NumParts = ExtractedRegs[0].size(); 2528 const unsigned DstSize = MRI.getType(DstReg).getSizeInBits(); 2529 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2530 2531 // We widened the source registers to satisfy merge/unmerge size 2532 // constraints. We'll have some extra fully undef parts. 2533 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 2534 2535 for (int I = 0; I != NumRealParts; ++I) { 2536 // Emit this instruction on each of the split pieces. 2537 for (int J = 0; J != NumOps; ++J) 2538 InputRegs[J] = ExtractedRegs[J][I]; 2539 2540 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags); 2541 ResultRegs.push_back(Inst.getReg(0)); 2542 } 2543 2544 // Fill out the widened result with undef instead of creating instructions 2545 // with undef inputs. 2546 int NumUndefParts = NumParts - NumRealParts; 2547 if (NumUndefParts != 0) 2548 ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0)); 2549 2550 // Extract the possibly padded result to the original result register. 2551 LLT DstTy = MRI.getType(DstReg); 2552 LLT LCMTy = getLCMType(DstTy, NarrowTy); 2553 buildWidenedRemergeToDst(DstReg, LCMTy, ResultRegs); 2554 2555 MI.eraseFromParent(); 2556 return Legalized; 2557 } 2558 2559 // Handle splitting vector operations which need to have the same number of 2560 // elements in each type index, but each type index may have a different element 2561 // type. 2562 // 2563 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2564 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2565 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2566 // 2567 // Also handles some irregular breakdown cases, e.g. 2568 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2569 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2570 // s64 = G_SHL s64, s32 2571 LegalizerHelper::LegalizeResult 2572 LegalizerHelper::fewerElementsVectorMultiEltType( 2573 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2574 if (TypeIdx != 0) 2575 return UnableToLegalize; 2576 2577 const LLT NarrowTy0 = NarrowTyArg; 2578 const unsigned NewNumElts = 2579 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2580 2581 const Register DstReg = MI.getOperand(0).getReg(); 2582 LLT DstTy = MRI.getType(DstReg); 2583 LLT LeftoverTy0; 2584 2585 // All of the operands need to have the same number of elements, so if we can 2586 // determine a type breakdown for the result type, we can for all of the 2587 // source types. 2588 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2589 if (NumParts < 0) 2590 return UnableToLegalize; 2591 2592 SmallVector<MachineInstrBuilder, 4> NewInsts; 2593 2594 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2595 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2596 2597 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2598 LLT LeftoverTy; 2599 Register SrcReg = MI.getOperand(I).getReg(); 2600 LLT SrcTyI = MRI.getType(SrcReg); 2601 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2602 LLT LeftoverTyI; 2603 2604 // Split this operand into the requested typed registers, and any leftover 2605 // required to reproduce the original type. 2606 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2607 LeftoverRegs)) 2608 return UnableToLegalize; 2609 2610 if (I == 1) { 2611 // For the first operand, create an instruction for each part and setup 2612 // the result. 2613 for (Register PartReg : PartRegs) { 2614 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2615 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2616 .addDef(PartDstReg) 2617 .addUse(PartReg)); 2618 DstRegs.push_back(PartDstReg); 2619 } 2620 2621 for (Register LeftoverReg : LeftoverRegs) { 2622 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2623 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2624 .addDef(PartDstReg) 2625 .addUse(LeftoverReg)); 2626 LeftoverDstRegs.push_back(PartDstReg); 2627 } 2628 } else { 2629 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2630 2631 // Add the newly created operand splits to the existing instructions. The 2632 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2633 // pieces. 2634 unsigned InstCount = 0; 2635 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2636 NewInsts[InstCount++].addUse(PartRegs[J]); 2637 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2638 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2639 } 2640 2641 PartRegs.clear(); 2642 LeftoverRegs.clear(); 2643 } 2644 2645 // Insert the newly built operations and rebuild the result register. 2646 for (auto &MIB : NewInsts) 2647 MIRBuilder.insertInstr(MIB); 2648 2649 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2650 2651 MI.eraseFromParent(); 2652 return Legalized; 2653 } 2654 2655 LegalizerHelper::LegalizeResult 2656 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2657 LLT NarrowTy) { 2658 if (TypeIdx != 0) 2659 return UnableToLegalize; 2660 2661 Register DstReg = MI.getOperand(0).getReg(); 2662 Register SrcReg = MI.getOperand(1).getReg(); 2663 LLT DstTy = MRI.getType(DstReg); 2664 LLT SrcTy = MRI.getType(SrcReg); 2665 2666 LLT NarrowTy0 = NarrowTy; 2667 LLT NarrowTy1; 2668 unsigned NumParts; 2669 2670 if (NarrowTy.isVector()) { 2671 // Uneven breakdown not handled. 2672 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2673 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2674 return UnableToLegalize; 2675 2676 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2677 } else { 2678 NumParts = DstTy.getNumElements(); 2679 NarrowTy1 = SrcTy.getElementType(); 2680 } 2681 2682 SmallVector<Register, 4> SrcRegs, DstRegs; 2683 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2684 2685 for (unsigned I = 0; I < NumParts; ++I) { 2686 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2687 MachineInstr *NewInst = 2688 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2689 2690 NewInst->setFlags(MI.getFlags()); 2691 DstRegs.push_back(DstReg); 2692 } 2693 2694 if (NarrowTy.isVector()) 2695 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2696 else 2697 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2698 2699 MI.eraseFromParent(); 2700 return Legalized; 2701 } 2702 2703 LegalizerHelper::LegalizeResult 2704 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2705 LLT NarrowTy) { 2706 Register DstReg = MI.getOperand(0).getReg(); 2707 Register Src0Reg = MI.getOperand(2).getReg(); 2708 LLT DstTy = MRI.getType(DstReg); 2709 LLT SrcTy = MRI.getType(Src0Reg); 2710 2711 unsigned NumParts; 2712 LLT NarrowTy0, NarrowTy1; 2713 2714 if (TypeIdx == 0) { 2715 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2716 unsigned OldElts = DstTy.getNumElements(); 2717 2718 NarrowTy0 = NarrowTy; 2719 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2720 NarrowTy1 = NarrowTy.isVector() ? 2721 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2722 SrcTy.getElementType(); 2723 2724 } else { 2725 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2726 unsigned OldElts = SrcTy.getNumElements(); 2727 2728 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2729 NarrowTy.getNumElements(); 2730 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2731 DstTy.getScalarSizeInBits()); 2732 NarrowTy1 = NarrowTy; 2733 } 2734 2735 // FIXME: Don't know how to handle the situation where the small vectors 2736 // aren't all the same size yet. 2737 if (NarrowTy1.isVector() && 2738 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2739 return UnableToLegalize; 2740 2741 CmpInst::Predicate Pred 2742 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2743 2744 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2745 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2746 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2747 2748 for (unsigned I = 0; I < NumParts; ++I) { 2749 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2750 DstRegs.push_back(DstReg); 2751 2752 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2753 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2754 else { 2755 MachineInstr *NewCmp 2756 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2757 NewCmp->setFlags(MI.getFlags()); 2758 } 2759 } 2760 2761 if (NarrowTy1.isVector()) 2762 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2763 else 2764 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2765 2766 MI.eraseFromParent(); 2767 return Legalized; 2768 } 2769 2770 LegalizerHelper::LegalizeResult 2771 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2772 LLT NarrowTy) { 2773 Register DstReg = MI.getOperand(0).getReg(); 2774 Register CondReg = MI.getOperand(1).getReg(); 2775 2776 unsigned NumParts = 0; 2777 LLT NarrowTy0, NarrowTy1; 2778 2779 LLT DstTy = MRI.getType(DstReg); 2780 LLT CondTy = MRI.getType(CondReg); 2781 unsigned Size = DstTy.getSizeInBits(); 2782 2783 assert(TypeIdx == 0 || CondTy.isVector()); 2784 2785 if (TypeIdx == 0) { 2786 NarrowTy0 = NarrowTy; 2787 NarrowTy1 = CondTy; 2788 2789 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2790 // FIXME: Don't know how to handle the situation where the small vectors 2791 // aren't all the same size yet. 2792 if (Size % NarrowSize != 0) 2793 return UnableToLegalize; 2794 2795 NumParts = Size / NarrowSize; 2796 2797 // Need to break down the condition type 2798 if (CondTy.isVector()) { 2799 if (CondTy.getNumElements() == NumParts) 2800 NarrowTy1 = CondTy.getElementType(); 2801 else 2802 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2803 CondTy.getScalarSizeInBits()); 2804 } 2805 } else { 2806 NumParts = CondTy.getNumElements(); 2807 if (NarrowTy.isVector()) { 2808 // TODO: Handle uneven breakdown. 2809 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2810 return UnableToLegalize; 2811 2812 return UnableToLegalize; 2813 } else { 2814 NarrowTy0 = DstTy.getElementType(); 2815 NarrowTy1 = NarrowTy; 2816 } 2817 } 2818 2819 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2820 if (CondTy.isVector()) 2821 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2822 2823 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2824 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2825 2826 for (unsigned i = 0; i < NumParts; ++i) { 2827 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2828 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2829 Src1Regs[i], Src2Regs[i]); 2830 DstRegs.push_back(DstReg); 2831 } 2832 2833 if (NarrowTy0.isVector()) 2834 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2835 else 2836 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2837 2838 MI.eraseFromParent(); 2839 return Legalized; 2840 } 2841 2842 LegalizerHelper::LegalizeResult 2843 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2844 LLT NarrowTy) { 2845 const Register DstReg = MI.getOperand(0).getReg(); 2846 LLT PhiTy = MRI.getType(DstReg); 2847 LLT LeftoverTy; 2848 2849 // All of the operands need to have the same number of elements, so if we can 2850 // determine a type breakdown for the result type, we can for all of the 2851 // source types. 2852 int NumParts, NumLeftover; 2853 std::tie(NumParts, NumLeftover) 2854 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2855 if (NumParts < 0) 2856 return UnableToLegalize; 2857 2858 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2859 SmallVector<MachineInstrBuilder, 4> NewInsts; 2860 2861 const int TotalNumParts = NumParts + NumLeftover; 2862 2863 // Insert the new phis in the result block first. 2864 for (int I = 0; I != TotalNumParts; ++I) { 2865 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2866 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2867 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2868 .addDef(PartDstReg)); 2869 if (I < NumParts) 2870 DstRegs.push_back(PartDstReg); 2871 else 2872 LeftoverDstRegs.push_back(PartDstReg); 2873 } 2874 2875 MachineBasicBlock *MBB = MI.getParent(); 2876 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2877 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2878 2879 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2880 2881 // Insert code to extract the incoming values in each predecessor block. 2882 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2883 PartRegs.clear(); 2884 LeftoverRegs.clear(); 2885 2886 Register SrcReg = MI.getOperand(I).getReg(); 2887 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2888 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2889 2890 LLT Unused; 2891 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2892 LeftoverRegs)) 2893 return UnableToLegalize; 2894 2895 // Add the newly created operand splits to the existing instructions. The 2896 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2897 // pieces. 2898 for (int J = 0; J != TotalNumParts; ++J) { 2899 MachineInstrBuilder MIB = NewInsts[J]; 2900 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2901 MIB.addMBB(&OpMBB); 2902 } 2903 } 2904 2905 MI.eraseFromParent(); 2906 return Legalized; 2907 } 2908 2909 LegalizerHelper::LegalizeResult 2910 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2911 unsigned TypeIdx, 2912 LLT NarrowTy) { 2913 if (TypeIdx != 1) 2914 return UnableToLegalize; 2915 2916 const int NumDst = MI.getNumOperands() - 1; 2917 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2918 LLT SrcTy = MRI.getType(SrcReg); 2919 2920 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2921 2922 // TODO: Create sequence of extracts. 2923 if (DstTy == NarrowTy) 2924 return UnableToLegalize; 2925 2926 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 2927 if (DstTy == GCDTy) { 2928 // This would just be a copy of the same unmerge. 2929 // TODO: Create extracts, pad with undef and create intermediate merges. 2930 return UnableToLegalize; 2931 } 2932 2933 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2934 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2935 const int PartsPerUnmerge = NumDst / NumUnmerge; 2936 2937 for (int I = 0; I != NumUnmerge; ++I) { 2938 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2939 2940 for (int J = 0; J != PartsPerUnmerge; ++J) 2941 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 2942 MIB.addUse(Unmerge.getReg(I)); 2943 } 2944 2945 MI.eraseFromParent(); 2946 return Legalized; 2947 } 2948 2949 LegalizerHelper::LegalizeResult 2950 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 2951 unsigned TypeIdx, 2952 LLT NarrowTy) { 2953 assert(TypeIdx == 0 && "not a vector type index"); 2954 Register DstReg = MI.getOperand(0).getReg(); 2955 LLT DstTy = MRI.getType(DstReg); 2956 LLT SrcTy = DstTy.getElementType(); 2957 2958 int DstNumElts = DstTy.getNumElements(); 2959 int NarrowNumElts = NarrowTy.getNumElements(); 2960 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 2961 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 2962 2963 SmallVector<Register, 8> ConcatOps; 2964 SmallVector<Register, 8> SubBuildVector; 2965 2966 Register UndefReg; 2967 if (WidenedDstTy != DstTy) 2968 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 2969 2970 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 2971 // necessary. 2972 // 2973 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 2974 // -> <2 x s16> 2975 // 2976 // %4:_(s16) = G_IMPLICIT_DEF 2977 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 2978 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 2979 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 2980 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 2981 for (int I = 0; I != NumConcat; ++I) { 2982 for (int J = 0; J != NarrowNumElts; ++J) { 2983 int SrcIdx = NarrowNumElts * I + J; 2984 2985 if (SrcIdx < DstNumElts) { 2986 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 2987 SubBuildVector.push_back(SrcReg); 2988 } else 2989 SubBuildVector.push_back(UndefReg); 2990 } 2991 2992 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 2993 ConcatOps.push_back(BuildVec.getReg(0)); 2994 SubBuildVector.clear(); 2995 } 2996 2997 if (DstTy == WidenedDstTy) 2998 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 2999 else { 3000 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3001 MIRBuilder.buildExtract(DstReg, Concat, 0); 3002 } 3003 3004 MI.eraseFromParent(); 3005 return Legalized; 3006 } 3007 3008 LegalizerHelper::LegalizeResult 3009 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3010 LLT NarrowTy) { 3011 // FIXME: Don't know how to handle secondary types yet. 3012 if (TypeIdx != 0) 3013 return UnableToLegalize; 3014 3015 MachineMemOperand *MMO = *MI.memoperands_begin(); 3016 3017 // This implementation doesn't work for atomics. Give up instead of doing 3018 // something invalid. 3019 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3020 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3021 return UnableToLegalize; 3022 3023 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3024 Register ValReg = MI.getOperand(0).getReg(); 3025 Register AddrReg = MI.getOperand(1).getReg(); 3026 LLT ValTy = MRI.getType(ValReg); 3027 3028 int NumParts = -1; 3029 int NumLeftover = -1; 3030 LLT LeftoverTy; 3031 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3032 if (IsLoad) { 3033 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3034 } else { 3035 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3036 NarrowLeftoverRegs)) { 3037 NumParts = NarrowRegs.size(); 3038 NumLeftover = NarrowLeftoverRegs.size(); 3039 } 3040 } 3041 3042 if (NumParts == -1) 3043 return UnableToLegalize; 3044 3045 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3046 3047 unsigned TotalSize = ValTy.getSizeInBits(); 3048 3049 // Split the load/store into PartTy sized pieces starting at Offset. If this 3050 // is a load, return the new registers in ValRegs. For a store, each elements 3051 // of ValRegs should be PartTy. Returns the next offset that needs to be 3052 // handled. 3053 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3054 unsigned Offset) -> unsigned { 3055 MachineFunction &MF = MIRBuilder.getMF(); 3056 unsigned PartSize = PartTy.getSizeInBits(); 3057 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3058 Offset += PartSize, ++Idx) { 3059 unsigned ByteSize = PartSize / 8; 3060 unsigned ByteOffset = Offset / 8; 3061 Register NewAddrReg; 3062 3063 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3064 3065 MachineMemOperand *NewMMO = 3066 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3067 3068 if (IsLoad) { 3069 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3070 ValRegs.push_back(Dst); 3071 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3072 } else { 3073 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3074 } 3075 } 3076 3077 return Offset; 3078 }; 3079 3080 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3081 3082 // Handle the rest of the register if this isn't an even type breakdown. 3083 if (LeftoverTy.isValid()) 3084 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3085 3086 if (IsLoad) { 3087 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3088 LeftoverTy, NarrowLeftoverRegs); 3089 } 3090 3091 MI.eraseFromParent(); 3092 return Legalized; 3093 } 3094 3095 LegalizerHelper::LegalizeResult 3096 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3097 LLT NarrowTy) { 3098 Register DstReg = MI.getOperand(0).getReg(); 3099 Register SrcReg = MI.getOperand(1).getReg(); 3100 int64_t Imm = MI.getOperand(2).getImm(); 3101 3102 LLT DstTy = MRI.getType(DstReg); 3103 3104 SmallVector<Register, 8> Parts; 3105 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3106 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3107 3108 for (Register &R : Parts) 3109 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3110 3111 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3112 3113 MI.eraseFromParent(); 3114 return Legalized; 3115 } 3116 3117 LegalizerHelper::LegalizeResult 3118 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3119 LLT NarrowTy) { 3120 using namespace TargetOpcode; 3121 3122 MIRBuilder.setInstr(MI); 3123 switch (MI.getOpcode()) { 3124 case G_IMPLICIT_DEF: 3125 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3126 case G_AND: 3127 case G_OR: 3128 case G_XOR: 3129 case G_ADD: 3130 case G_SUB: 3131 case G_MUL: 3132 case G_SMULH: 3133 case G_UMULH: 3134 case G_FADD: 3135 case G_FMUL: 3136 case G_FSUB: 3137 case G_FNEG: 3138 case G_FABS: 3139 case G_FCANONICALIZE: 3140 case G_FDIV: 3141 case G_FREM: 3142 case G_FMA: 3143 case G_FMAD: 3144 case G_FPOW: 3145 case G_FEXP: 3146 case G_FEXP2: 3147 case G_FLOG: 3148 case G_FLOG2: 3149 case G_FLOG10: 3150 case G_FNEARBYINT: 3151 case G_FCEIL: 3152 case G_FFLOOR: 3153 case G_FRINT: 3154 case G_INTRINSIC_ROUND: 3155 case G_INTRINSIC_TRUNC: 3156 case G_FCOS: 3157 case G_FSIN: 3158 case G_FSQRT: 3159 case G_BSWAP: 3160 case G_BITREVERSE: 3161 case G_SDIV: 3162 case G_UDIV: 3163 case G_SREM: 3164 case G_UREM: 3165 case G_SMIN: 3166 case G_SMAX: 3167 case G_UMIN: 3168 case G_UMAX: 3169 case G_FMINNUM: 3170 case G_FMAXNUM: 3171 case G_FMINNUM_IEEE: 3172 case G_FMAXNUM_IEEE: 3173 case G_FMINIMUM: 3174 case G_FMAXIMUM: 3175 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3176 case G_SHL: 3177 case G_LSHR: 3178 case G_ASHR: 3179 case G_CTLZ: 3180 case G_CTLZ_ZERO_UNDEF: 3181 case G_CTTZ: 3182 case G_CTTZ_ZERO_UNDEF: 3183 case G_CTPOP: 3184 case G_FCOPYSIGN: 3185 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3186 case G_ZEXT: 3187 case G_SEXT: 3188 case G_ANYEXT: 3189 case G_FPEXT: 3190 case G_FPTRUNC: 3191 case G_SITOFP: 3192 case G_UITOFP: 3193 case G_FPTOSI: 3194 case G_FPTOUI: 3195 case G_INTTOPTR: 3196 case G_PTRTOINT: 3197 case G_ADDRSPACE_CAST: 3198 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3199 case G_ICMP: 3200 case G_FCMP: 3201 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3202 case G_SELECT: 3203 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3204 case G_PHI: 3205 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3206 case G_UNMERGE_VALUES: 3207 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3208 case G_BUILD_VECTOR: 3209 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3210 case G_LOAD: 3211 case G_STORE: 3212 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3213 case G_SEXT_INREG: 3214 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3215 default: 3216 return UnableToLegalize; 3217 } 3218 } 3219 3220 LegalizerHelper::LegalizeResult 3221 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3222 const LLT HalfTy, const LLT AmtTy) { 3223 3224 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3225 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3226 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3227 3228 if (Amt.isNullValue()) { 3229 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3230 MI.eraseFromParent(); 3231 return Legalized; 3232 } 3233 3234 LLT NVT = HalfTy; 3235 unsigned NVTBits = HalfTy.getSizeInBits(); 3236 unsigned VTBits = 2 * NVTBits; 3237 3238 SrcOp Lo(Register(0)), Hi(Register(0)); 3239 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3240 if (Amt.ugt(VTBits)) { 3241 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3242 } else if (Amt.ugt(NVTBits)) { 3243 Lo = MIRBuilder.buildConstant(NVT, 0); 3244 Hi = MIRBuilder.buildShl(NVT, InL, 3245 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3246 } else if (Amt == NVTBits) { 3247 Lo = MIRBuilder.buildConstant(NVT, 0); 3248 Hi = InL; 3249 } else { 3250 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3251 auto OrLHS = 3252 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3253 auto OrRHS = MIRBuilder.buildLShr( 3254 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3255 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3256 } 3257 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3258 if (Amt.ugt(VTBits)) { 3259 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3260 } else if (Amt.ugt(NVTBits)) { 3261 Lo = MIRBuilder.buildLShr(NVT, InH, 3262 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3263 Hi = MIRBuilder.buildConstant(NVT, 0); 3264 } else if (Amt == NVTBits) { 3265 Lo = InH; 3266 Hi = MIRBuilder.buildConstant(NVT, 0); 3267 } else { 3268 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3269 3270 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3271 auto OrRHS = MIRBuilder.buildShl( 3272 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3273 3274 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3275 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3276 } 3277 } else { 3278 if (Amt.ugt(VTBits)) { 3279 Hi = Lo = MIRBuilder.buildAShr( 3280 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3281 } else if (Amt.ugt(NVTBits)) { 3282 Lo = MIRBuilder.buildAShr(NVT, InH, 3283 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3284 Hi = MIRBuilder.buildAShr(NVT, InH, 3285 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3286 } else if (Amt == NVTBits) { 3287 Lo = InH; 3288 Hi = MIRBuilder.buildAShr(NVT, InH, 3289 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3290 } else { 3291 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3292 3293 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3294 auto OrRHS = MIRBuilder.buildShl( 3295 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3296 3297 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3298 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3299 } 3300 } 3301 3302 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3303 MI.eraseFromParent(); 3304 3305 return Legalized; 3306 } 3307 3308 // TODO: Optimize if constant shift amount. 3309 LegalizerHelper::LegalizeResult 3310 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3311 LLT RequestedTy) { 3312 if (TypeIdx == 1) { 3313 Observer.changingInstr(MI); 3314 narrowScalarSrc(MI, RequestedTy, 2); 3315 Observer.changedInstr(MI); 3316 return Legalized; 3317 } 3318 3319 Register DstReg = MI.getOperand(0).getReg(); 3320 LLT DstTy = MRI.getType(DstReg); 3321 if (DstTy.isVector()) 3322 return UnableToLegalize; 3323 3324 Register Amt = MI.getOperand(2).getReg(); 3325 LLT ShiftAmtTy = MRI.getType(Amt); 3326 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3327 if (DstEltSize % 2 != 0) 3328 return UnableToLegalize; 3329 3330 // Ignore the input type. We can only go to exactly half the size of the 3331 // input. If that isn't small enough, the resulting pieces will be further 3332 // legalized. 3333 const unsigned NewBitSize = DstEltSize / 2; 3334 const LLT HalfTy = LLT::scalar(NewBitSize); 3335 const LLT CondTy = LLT::scalar(1); 3336 3337 if (const MachineInstr *KShiftAmt = 3338 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3339 return narrowScalarShiftByConstant( 3340 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3341 } 3342 3343 // TODO: Expand with known bits. 3344 3345 // Handle the fully general expansion by an unknown amount. 3346 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3347 3348 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3349 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3350 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3351 3352 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3353 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3354 3355 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3356 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3357 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3358 3359 Register ResultRegs[2]; 3360 switch (MI.getOpcode()) { 3361 case TargetOpcode::G_SHL: { 3362 // Short: ShAmt < NewBitSize 3363 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3364 3365 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3366 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3367 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3368 3369 // Long: ShAmt >= NewBitSize 3370 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3371 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3372 3373 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3374 auto Hi = MIRBuilder.buildSelect( 3375 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3376 3377 ResultRegs[0] = Lo.getReg(0); 3378 ResultRegs[1] = Hi.getReg(0); 3379 break; 3380 } 3381 case TargetOpcode::G_LSHR: 3382 case TargetOpcode::G_ASHR: { 3383 // Short: ShAmt < NewBitSize 3384 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3385 3386 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3387 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3388 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3389 3390 // Long: ShAmt >= NewBitSize 3391 MachineInstrBuilder HiL; 3392 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3393 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3394 } else { 3395 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3396 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3397 } 3398 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3399 {InH, AmtExcess}); // Lo from Hi part. 3400 3401 auto Lo = MIRBuilder.buildSelect( 3402 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3403 3404 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3405 3406 ResultRegs[0] = Lo.getReg(0); 3407 ResultRegs[1] = Hi.getReg(0); 3408 break; 3409 } 3410 default: 3411 llvm_unreachable("not a shift"); 3412 } 3413 3414 MIRBuilder.buildMerge(DstReg, ResultRegs); 3415 MI.eraseFromParent(); 3416 return Legalized; 3417 } 3418 3419 LegalizerHelper::LegalizeResult 3420 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3421 LLT MoreTy) { 3422 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3423 3424 Observer.changingInstr(MI); 3425 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3426 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3427 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3428 moreElementsVectorSrc(MI, MoreTy, I); 3429 } 3430 3431 MachineBasicBlock &MBB = *MI.getParent(); 3432 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3433 moreElementsVectorDst(MI, MoreTy, 0); 3434 Observer.changedInstr(MI); 3435 return Legalized; 3436 } 3437 3438 LegalizerHelper::LegalizeResult 3439 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3440 LLT MoreTy) { 3441 MIRBuilder.setInstr(MI); 3442 unsigned Opc = MI.getOpcode(); 3443 switch (Opc) { 3444 case TargetOpcode::G_IMPLICIT_DEF: 3445 case TargetOpcode::G_LOAD: { 3446 if (TypeIdx != 0) 3447 return UnableToLegalize; 3448 Observer.changingInstr(MI); 3449 moreElementsVectorDst(MI, MoreTy, 0); 3450 Observer.changedInstr(MI); 3451 return Legalized; 3452 } 3453 case TargetOpcode::G_STORE: 3454 if (TypeIdx != 0) 3455 return UnableToLegalize; 3456 Observer.changingInstr(MI); 3457 moreElementsVectorSrc(MI, MoreTy, 0); 3458 Observer.changedInstr(MI); 3459 return Legalized; 3460 case TargetOpcode::G_AND: 3461 case TargetOpcode::G_OR: 3462 case TargetOpcode::G_XOR: 3463 case TargetOpcode::G_SMIN: 3464 case TargetOpcode::G_SMAX: 3465 case TargetOpcode::G_UMIN: 3466 case TargetOpcode::G_UMAX: 3467 case TargetOpcode::G_FMINNUM: 3468 case TargetOpcode::G_FMAXNUM: 3469 case TargetOpcode::G_FMINNUM_IEEE: 3470 case TargetOpcode::G_FMAXNUM_IEEE: 3471 case TargetOpcode::G_FMINIMUM: 3472 case TargetOpcode::G_FMAXIMUM: { 3473 Observer.changingInstr(MI); 3474 moreElementsVectorSrc(MI, MoreTy, 1); 3475 moreElementsVectorSrc(MI, MoreTy, 2); 3476 moreElementsVectorDst(MI, MoreTy, 0); 3477 Observer.changedInstr(MI); 3478 return Legalized; 3479 } 3480 case TargetOpcode::G_EXTRACT: 3481 if (TypeIdx != 1) 3482 return UnableToLegalize; 3483 Observer.changingInstr(MI); 3484 moreElementsVectorSrc(MI, MoreTy, 1); 3485 Observer.changedInstr(MI); 3486 return Legalized; 3487 case TargetOpcode::G_INSERT: 3488 if (TypeIdx != 0) 3489 return UnableToLegalize; 3490 Observer.changingInstr(MI); 3491 moreElementsVectorSrc(MI, MoreTy, 1); 3492 moreElementsVectorDst(MI, MoreTy, 0); 3493 Observer.changedInstr(MI); 3494 return Legalized; 3495 case TargetOpcode::G_SELECT: 3496 if (TypeIdx != 0) 3497 return UnableToLegalize; 3498 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3499 return UnableToLegalize; 3500 3501 Observer.changingInstr(MI); 3502 moreElementsVectorSrc(MI, MoreTy, 2); 3503 moreElementsVectorSrc(MI, MoreTy, 3); 3504 moreElementsVectorDst(MI, MoreTy, 0); 3505 Observer.changedInstr(MI); 3506 return Legalized; 3507 case TargetOpcode::G_UNMERGE_VALUES: { 3508 if (TypeIdx != 1) 3509 return UnableToLegalize; 3510 3511 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3512 int NumDst = MI.getNumOperands() - 1; 3513 moreElementsVectorSrc(MI, MoreTy, NumDst); 3514 3515 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3516 for (int I = 0; I != NumDst; ++I) 3517 MIB.addDef(MI.getOperand(I).getReg()); 3518 3519 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3520 for (int I = NumDst; I != NewNumDst; ++I) 3521 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3522 3523 MIB.addUse(MI.getOperand(NumDst).getReg()); 3524 MI.eraseFromParent(); 3525 return Legalized; 3526 } 3527 case TargetOpcode::G_PHI: 3528 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3529 default: 3530 return UnableToLegalize; 3531 } 3532 } 3533 3534 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3535 ArrayRef<Register> Src1Regs, 3536 ArrayRef<Register> Src2Regs, 3537 LLT NarrowTy) { 3538 MachineIRBuilder &B = MIRBuilder; 3539 unsigned SrcParts = Src1Regs.size(); 3540 unsigned DstParts = DstRegs.size(); 3541 3542 unsigned DstIdx = 0; // Low bits of the result. 3543 Register FactorSum = 3544 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3545 DstRegs[DstIdx] = FactorSum; 3546 3547 unsigned CarrySumPrevDstIdx; 3548 SmallVector<Register, 4> Factors; 3549 3550 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3551 // Collect low parts of muls for DstIdx. 3552 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3553 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3554 MachineInstrBuilder Mul = 3555 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3556 Factors.push_back(Mul.getReg(0)); 3557 } 3558 // Collect high parts of muls from previous DstIdx. 3559 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3560 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3561 MachineInstrBuilder Umulh = 3562 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3563 Factors.push_back(Umulh.getReg(0)); 3564 } 3565 // Add CarrySum from additions calculated for previous DstIdx. 3566 if (DstIdx != 1) { 3567 Factors.push_back(CarrySumPrevDstIdx); 3568 } 3569 3570 Register CarrySum; 3571 // Add all factors and accumulate all carries into CarrySum. 3572 if (DstIdx != DstParts - 1) { 3573 MachineInstrBuilder Uaddo = 3574 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3575 FactorSum = Uaddo.getReg(0); 3576 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3577 for (unsigned i = 2; i < Factors.size(); ++i) { 3578 MachineInstrBuilder Uaddo = 3579 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3580 FactorSum = Uaddo.getReg(0); 3581 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3582 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3583 } 3584 } else { 3585 // Since value for the next index is not calculated, neither is CarrySum. 3586 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3587 for (unsigned i = 2; i < Factors.size(); ++i) 3588 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3589 } 3590 3591 CarrySumPrevDstIdx = CarrySum; 3592 DstRegs[DstIdx] = FactorSum; 3593 Factors.clear(); 3594 } 3595 } 3596 3597 LegalizerHelper::LegalizeResult 3598 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3599 Register DstReg = MI.getOperand(0).getReg(); 3600 Register Src1 = MI.getOperand(1).getReg(); 3601 Register Src2 = MI.getOperand(2).getReg(); 3602 3603 LLT Ty = MRI.getType(DstReg); 3604 if (Ty.isVector()) 3605 return UnableToLegalize; 3606 3607 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3608 unsigned DstSize = Ty.getSizeInBits(); 3609 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3610 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3611 return UnableToLegalize; 3612 3613 unsigned NumDstParts = DstSize / NarrowSize; 3614 unsigned NumSrcParts = SrcSize / NarrowSize; 3615 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3616 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3617 3618 SmallVector<Register, 2> Src1Parts, Src2Parts; 3619 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3620 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3621 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3622 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3623 3624 // Take only high half of registers if this is high mul. 3625 ArrayRef<Register> DstRegs( 3626 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3627 MIRBuilder.buildMerge(DstReg, DstRegs); 3628 MI.eraseFromParent(); 3629 return Legalized; 3630 } 3631 3632 LegalizerHelper::LegalizeResult 3633 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3634 LLT NarrowTy) { 3635 if (TypeIdx != 1) 3636 return UnableToLegalize; 3637 3638 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3639 3640 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3641 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3642 // NarrowSize. 3643 if (SizeOp1 % NarrowSize != 0) 3644 return UnableToLegalize; 3645 int NumParts = SizeOp1 / NarrowSize; 3646 3647 SmallVector<Register, 2> SrcRegs, DstRegs; 3648 SmallVector<uint64_t, 2> Indexes; 3649 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3650 3651 Register OpReg = MI.getOperand(0).getReg(); 3652 uint64_t OpStart = MI.getOperand(2).getImm(); 3653 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3654 for (int i = 0; i < NumParts; ++i) { 3655 unsigned SrcStart = i * NarrowSize; 3656 3657 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3658 // No part of the extract uses this subregister, ignore it. 3659 continue; 3660 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3661 // The entire subregister is extracted, forward the value. 3662 DstRegs.push_back(SrcRegs[i]); 3663 continue; 3664 } 3665 3666 // OpSegStart is where this destination segment would start in OpReg if it 3667 // extended infinitely in both directions. 3668 int64_t ExtractOffset; 3669 uint64_t SegSize; 3670 if (OpStart < SrcStart) { 3671 ExtractOffset = 0; 3672 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3673 } else { 3674 ExtractOffset = OpStart - SrcStart; 3675 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3676 } 3677 3678 Register SegReg = SrcRegs[i]; 3679 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3680 // A genuine extract is needed. 3681 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3682 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3683 } 3684 3685 DstRegs.push_back(SegReg); 3686 } 3687 3688 Register DstReg = MI.getOperand(0).getReg(); 3689 if(MRI.getType(DstReg).isVector()) 3690 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3691 else 3692 MIRBuilder.buildMerge(DstReg, DstRegs); 3693 MI.eraseFromParent(); 3694 return Legalized; 3695 } 3696 3697 LegalizerHelper::LegalizeResult 3698 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3699 LLT NarrowTy) { 3700 // FIXME: Don't know how to handle secondary types yet. 3701 if (TypeIdx != 0) 3702 return UnableToLegalize; 3703 3704 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3705 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3706 3707 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3708 // NarrowSize. 3709 if (SizeOp0 % NarrowSize != 0) 3710 return UnableToLegalize; 3711 3712 int NumParts = SizeOp0 / NarrowSize; 3713 3714 SmallVector<Register, 2> SrcRegs, DstRegs; 3715 SmallVector<uint64_t, 2> Indexes; 3716 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3717 3718 Register OpReg = MI.getOperand(2).getReg(); 3719 uint64_t OpStart = MI.getOperand(3).getImm(); 3720 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3721 for (int i = 0; i < NumParts; ++i) { 3722 unsigned DstStart = i * NarrowSize; 3723 3724 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3725 // No part of the insert affects this subregister, forward the original. 3726 DstRegs.push_back(SrcRegs[i]); 3727 continue; 3728 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3729 // The entire subregister is defined by this insert, forward the new 3730 // value. 3731 DstRegs.push_back(OpReg); 3732 continue; 3733 } 3734 3735 // OpSegStart is where this destination segment would start in OpReg if it 3736 // extended infinitely in both directions. 3737 int64_t ExtractOffset, InsertOffset; 3738 uint64_t SegSize; 3739 if (OpStart < DstStart) { 3740 InsertOffset = 0; 3741 ExtractOffset = DstStart - OpStart; 3742 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3743 } else { 3744 InsertOffset = OpStart - DstStart; 3745 ExtractOffset = 0; 3746 SegSize = 3747 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3748 } 3749 3750 Register SegReg = OpReg; 3751 if (ExtractOffset != 0 || SegSize != OpSize) { 3752 // A genuine extract is needed. 3753 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3754 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3755 } 3756 3757 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3758 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3759 DstRegs.push_back(DstReg); 3760 } 3761 3762 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3763 Register DstReg = MI.getOperand(0).getReg(); 3764 if(MRI.getType(DstReg).isVector()) 3765 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3766 else 3767 MIRBuilder.buildMerge(DstReg, DstRegs); 3768 MI.eraseFromParent(); 3769 return Legalized; 3770 } 3771 3772 LegalizerHelper::LegalizeResult 3773 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3774 LLT NarrowTy) { 3775 Register DstReg = MI.getOperand(0).getReg(); 3776 LLT DstTy = MRI.getType(DstReg); 3777 3778 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3779 3780 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3781 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3782 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3783 LLT LeftoverTy; 3784 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3785 Src0Regs, Src0LeftoverRegs)) 3786 return UnableToLegalize; 3787 3788 LLT Unused; 3789 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3790 Src1Regs, Src1LeftoverRegs)) 3791 llvm_unreachable("inconsistent extractParts result"); 3792 3793 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3794 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3795 {Src0Regs[I], Src1Regs[I]}); 3796 DstRegs.push_back(Inst.getReg(0)); 3797 } 3798 3799 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3800 auto Inst = MIRBuilder.buildInstr( 3801 MI.getOpcode(), 3802 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3803 DstLeftoverRegs.push_back(Inst.getReg(0)); 3804 } 3805 3806 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3807 LeftoverTy, DstLeftoverRegs); 3808 3809 MI.eraseFromParent(); 3810 return Legalized; 3811 } 3812 3813 LegalizerHelper::LegalizeResult 3814 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3815 LLT NarrowTy) { 3816 if (TypeIdx != 0) 3817 return UnableToLegalize; 3818 3819 Register DstReg = MI.getOperand(0).getReg(); 3820 Register SrcReg = MI.getOperand(1).getReg(); 3821 3822 LLT DstTy = MRI.getType(DstReg); 3823 if (DstTy.isVector()) 3824 return UnableToLegalize; 3825 3826 SmallVector<Register, 8> Parts; 3827 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3828 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3829 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3830 3831 MI.eraseFromParent(); 3832 return Legalized; 3833 } 3834 3835 LegalizerHelper::LegalizeResult 3836 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3837 LLT NarrowTy) { 3838 if (TypeIdx != 0) 3839 return UnableToLegalize; 3840 3841 Register CondReg = MI.getOperand(1).getReg(); 3842 LLT CondTy = MRI.getType(CondReg); 3843 if (CondTy.isVector()) // TODO: Handle vselect 3844 return UnableToLegalize; 3845 3846 Register DstReg = MI.getOperand(0).getReg(); 3847 LLT DstTy = MRI.getType(DstReg); 3848 3849 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3850 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3851 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3852 LLT LeftoverTy; 3853 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3854 Src1Regs, Src1LeftoverRegs)) 3855 return UnableToLegalize; 3856 3857 LLT Unused; 3858 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3859 Src2Regs, Src2LeftoverRegs)) 3860 llvm_unreachable("inconsistent extractParts result"); 3861 3862 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3863 auto Select = MIRBuilder.buildSelect(NarrowTy, 3864 CondReg, Src1Regs[I], Src2Regs[I]); 3865 DstRegs.push_back(Select.getReg(0)); 3866 } 3867 3868 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3869 auto Select = MIRBuilder.buildSelect( 3870 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3871 DstLeftoverRegs.push_back(Select.getReg(0)); 3872 } 3873 3874 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3875 LeftoverTy, DstLeftoverRegs); 3876 3877 MI.eraseFromParent(); 3878 return Legalized; 3879 } 3880 3881 LegalizerHelper::LegalizeResult 3882 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 3883 LLT NarrowTy) { 3884 if (TypeIdx != 1) 3885 return UnableToLegalize; 3886 3887 Register DstReg = MI.getOperand(0).getReg(); 3888 Register SrcReg = MI.getOperand(1).getReg(); 3889 LLT DstTy = MRI.getType(DstReg); 3890 LLT SrcTy = MRI.getType(SrcReg); 3891 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3892 3893 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 3894 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 3895 3896 MachineIRBuilder &B = MIRBuilder; 3897 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 3898 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 3899 auto C_0 = B.buildConstant(NarrowTy, 0); 3900 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3901 UnmergeSrc.getReg(1), C_0); 3902 auto LoCTLZ = IsUndef ? 3903 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 3904 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 3905 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 3906 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 3907 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 3908 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 3909 3910 MI.eraseFromParent(); 3911 return Legalized; 3912 } 3913 3914 return UnableToLegalize; 3915 } 3916 3917 LegalizerHelper::LegalizeResult 3918 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 3919 LLT NarrowTy) { 3920 if (TypeIdx != 1) 3921 return UnableToLegalize; 3922 3923 Register DstReg = MI.getOperand(0).getReg(); 3924 Register SrcReg = MI.getOperand(1).getReg(); 3925 LLT DstTy = MRI.getType(DstReg); 3926 LLT SrcTy = MRI.getType(SrcReg); 3927 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3928 3929 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 3930 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 3931 3932 MachineIRBuilder &B = MIRBuilder; 3933 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 3934 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 3935 auto C_0 = B.buildConstant(NarrowTy, 0); 3936 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3937 UnmergeSrc.getReg(0), C_0); 3938 auto HiCTTZ = IsUndef ? 3939 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 3940 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 3941 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 3942 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 3943 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 3944 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 3945 3946 MI.eraseFromParent(); 3947 return Legalized; 3948 } 3949 3950 return UnableToLegalize; 3951 } 3952 3953 LegalizerHelper::LegalizeResult 3954 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 3955 LLT NarrowTy) { 3956 if (TypeIdx != 1) 3957 return UnableToLegalize; 3958 3959 Register DstReg = MI.getOperand(0).getReg(); 3960 LLT DstTy = MRI.getType(DstReg); 3961 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3962 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3963 3964 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 3965 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 3966 3967 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 3968 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 3969 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 3970 3971 MI.eraseFromParent(); 3972 return Legalized; 3973 } 3974 3975 return UnableToLegalize; 3976 } 3977 3978 LegalizerHelper::LegalizeResult 3979 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3980 unsigned Opc = MI.getOpcode(); 3981 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 3982 auto isSupported = [this](const LegalityQuery &Q) { 3983 auto QAction = LI.getAction(Q).Action; 3984 return QAction == Legal || QAction == Libcall || QAction == Custom; 3985 }; 3986 switch (Opc) { 3987 default: 3988 return UnableToLegalize; 3989 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 3990 // This trivially expands to CTLZ. 3991 Observer.changingInstr(MI); 3992 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 3993 Observer.changedInstr(MI); 3994 return Legalized; 3995 } 3996 case TargetOpcode::G_CTLZ: { 3997 Register DstReg = MI.getOperand(0).getReg(); 3998 Register SrcReg = MI.getOperand(1).getReg(); 3999 LLT DstTy = MRI.getType(DstReg); 4000 LLT SrcTy = MRI.getType(SrcReg); 4001 unsigned Len = SrcTy.getSizeInBits(); 4002 4003 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4004 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4005 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4006 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4007 auto ICmp = MIRBuilder.buildICmp( 4008 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4009 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4010 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4011 MI.eraseFromParent(); 4012 return Legalized; 4013 } 4014 // for now, we do this: 4015 // NewLen = NextPowerOf2(Len); 4016 // x = x | (x >> 1); 4017 // x = x | (x >> 2); 4018 // ... 4019 // x = x | (x >>16); 4020 // x = x | (x >>32); // for 64-bit input 4021 // Upto NewLen/2 4022 // return Len - popcount(x); 4023 // 4024 // Ref: "Hacker's Delight" by Henry Warren 4025 Register Op = SrcReg; 4026 unsigned NewLen = PowerOf2Ceil(Len); 4027 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4028 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4029 auto MIBOp = MIRBuilder.buildOr( 4030 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4031 Op = MIBOp.getReg(0); 4032 } 4033 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4034 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4035 MIBPop); 4036 MI.eraseFromParent(); 4037 return Legalized; 4038 } 4039 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4040 // This trivially expands to CTTZ. 4041 Observer.changingInstr(MI); 4042 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4043 Observer.changedInstr(MI); 4044 return Legalized; 4045 } 4046 case TargetOpcode::G_CTTZ: { 4047 Register DstReg = MI.getOperand(0).getReg(); 4048 Register SrcReg = MI.getOperand(1).getReg(); 4049 LLT DstTy = MRI.getType(DstReg); 4050 LLT SrcTy = MRI.getType(SrcReg); 4051 4052 unsigned Len = SrcTy.getSizeInBits(); 4053 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4054 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4055 // zero. 4056 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4057 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4058 auto ICmp = MIRBuilder.buildICmp( 4059 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4060 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4061 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4062 MI.eraseFromParent(); 4063 return Legalized; 4064 } 4065 // for now, we use: { return popcount(~x & (x - 1)); } 4066 // unless the target has ctlz but not ctpop, in which case we use: 4067 // { return 32 - nlz(~x & (x-1)); } 4068 // Ref: "Hacker's Delight" by Henry Warren 4069 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4070 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4071 auto MIBTmp = MIRBuilder.buildAnd( 4072 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4073 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4074 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4075 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4076 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4077 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4078 MI.eraseFromParent(); 4079 return Legalized; 4080 } 4081 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4082 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4083 return Legalized; 4084 } 4085 case TargetOpcode::G_CTPOP: { 4086 unsigned Size = Ty.getSizeInBits(); 4087 MachineIRBuilder &B = MIRBuilder; 4088 4089 // Count set bits in blocks of 2 bits. Default approach would be 4090 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4091 // We use following formula instead: 4092 // B2Count = val - { (val >> 1) & 0x55555555 } 4093 // since it gives same result in blocks of 2 with one instruction less. 4094 auto C_1 = B.buildConstant(Ty, 1); 4095 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4096 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4097 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4098 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4099 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4100 4101 // In order to get count in blocks of 4 add values from adjacent block of 2. 4102 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4103 auto C_2 = B.buildConstant(Ty, 2); 4104 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4105 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4106 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4107 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4108 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4109 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4110 4111 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4112 // addition since count value sits in range {0,...,8} and 4 bits are enough 4113 // to hold such binary values. After addition high 4 bits still hold count 4114 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4115 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4116 auto C_4 = B.buildConstant(Ty, 4); 4117 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4118 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4119 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4120 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4121 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4122 4123 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4124 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4125 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4126 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4127 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4128 4129 // Shift count result from 8 high bits to low bits. 4130 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4131 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4132 4133 MI.eraseFromParent(); 4134 return Legalized; 4135 } 4136 } 4137 } 4138 4139 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4140 // representation. 4141 LegalizerHelper::LegalizeResult 4142 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4143 Register Dst = MI.getOperand(0).getReg(); 4144 Register Src = MI.getOperand(1).getReg(); 4145 const LLT S64 = LLT::scalar(64); 4146 const LLT S32 = LLT::scalar(32); 4147 const LLT S1 = LLT::scalar(1); 4148 4149 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4150 4151 // unsigned cul2f(ulong u) { 4152 // uint lz = clz(u); 4153 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4154 // u = (u << lz) & 0x7fffffffffffffffUL; 4155 // ulong t = u & 0xffffffffffUL; 4156 // uint v = (e << 23) | (uint)(u >> 40); 4157 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4158 // return as_float(v + r); 4159 // } 4160 4161 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4162 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4163 4164 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4165 4166 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4167 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4168 4169 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4170 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4171 4172 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4173 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4174 4175 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4176 4177 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4178 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4179 4180 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4181 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4182 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4183 4184 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4185 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4186 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4187 auto One = MIRBuilder.buildConstant(S32, 1); 4188 4189 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4190 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4191 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4192 MIRBuilder.buildAdd(Dst, V, R); 4193 4194 return Legalized; 4195 } 4196 4197 LegalizerHelper::LegalizeResult 4198 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4199 Register Dst = MI.getOperand(0).getReg(); 4200 Register Src = MI.getOperand(1).getReg(); 4201 LLT DstTy = MRI.getType(Dst); 4202 LLT SrcTy = MRI.getType(Src); 4203 4204 if (SrcTy == LLT::scalar(1)) { 4205 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4206 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4207 MIRBuilder.buildSelect(Dst, Src, True, False); 4208 MI.eraseFromParent(); 4209 return Legalized; 4210 } 4211 4212 if (SrcTy != LLT::scalar(64)) 4213 return UnableToLegalize; 4214 4215 if (DstTy == LLT::scalar(32)) { 4216 // TODO: SelectionDAG has several alternative expansions to port which may 4217 // be more reasonble depending on the available instructions. If a target 4218 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4219 // intermediate type, this is probably worse. 4220 return lowerU64ToF32BitOps(MI); 4221 } 4222 4223 return UnableToLegalize; 4224 } 4225 4226 LegalizerHelper::LegalizeResult 4227 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4228 Register Dst = MI.getOperand(0).getReg(); 4229 Register Src = MI.getOperand(1).getReg(); 4230 LLT DstTy = MRI.getType(Dst); 4231 LLT SrcTy = MRI.getType(Src); 4232 4233 const LLT S64 = LLT::scalar(64); 4234 const LLT S32 = LLT::scalar(32); 4235 const LLT S1 = LLT::scalar(1); 4236 4237 if (SrcTy == S1) { 4238 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4239 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4240 MIRBuilder.buildSelect(Dst, Src, True, False); 4241 MI.eraseFromParent(); 4242 return Legalized; 4243 } 4244 4245 if (SrcTy != S64) 4246 return UnableToLegalize; 4247 4248 if (DstTy == S32) { 4249 // signed cl2f(long l) { 4250 // long s = l >> 63; 4251 // float r = cul2f((l + s) ^ s); 4252 // return s ? -r : r; 4253 // } 4254 Register L = Src; 4255 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4256 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4257 4258 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4259 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4260 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4261 4262 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4263 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4264 MIRBuilder.buildConstant(S64, 0)); 4265 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4266 return Legalized; 4267 } 4268 4269 return UnableToLegalize; 4270 } 4271 4272 LegalizerHelper::LegalizeResult 4273 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4274 Register Dst = MI.getOperand(0).getReg(); 4275 Register Src = MI.getOperand(1).getReg(); 4276 LLT DstTy = MRI.getType(Dst); 4277 LLT SrcTy = MRI.getType(Src); 4278 const LLT S64 = LLT::scalar(64); 4279 const LLT S32 = LLT::scalar(32); 4280 4281 if (SrcTy != S64 && SrcTy != S32) 4282 return UnableToLegalize; 4283 if (DstTy != S32 && DstTy != S64) 4284 return UnableToLegalize; 4285 4286 // FPTOSI gives same result as FPTOUI for positive signed integers. 4287 // FPTOUI needs to deal with fp values that convert to unsigned integers 4288 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4289 4290 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4291 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4292 : APFloat::IEEEdouble(), 4293 APInt::getNullValue(SrcTy.getSizeInBits())); 4294 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4295 4296 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4297 4298 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4299 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4300 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4301 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4302 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4303 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4304 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4305 4306 const LLT S1 = LLT::scalar(1); 4307 4308 MachineInstrBuilder FCMP = 4309 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4310 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4311 4312 MI.eraseFromParent(); 4313 return Legalized; 4314 } 4315 4316 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4317 Register Dst = MI.getOperand(0).getReg(); 4318 Register Src = MI.getOperand(1).getReg(); 4319 LLT DstTy = MRI.getType(Dst); 4320 LLT SrcTy = MRI.getType(Src); 4321 const LLT S64 = LLT::scalar(64); 4322 const LLT S32 = LLT::scalar(32); 4323 4324 // FIXME: Only f32 to i64 conversions are supported. 4325 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4326 return UnableToLegalize; 4327 4328 // Expand f32 -> i64 conversion 4329 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4330 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4331 4332 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4333 4334 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4335 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4336 4337 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4338 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4339 4340 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4341 APInt::getSignMask(SrcEltBits)); 4342 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4343 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4344 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4345 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4346 4347 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4348 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4349 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4350 4351 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4352 R = MIRBuilder.buildZExt(DstTy, R); 4353 4354 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4355 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4356 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4357 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4358 4359 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4360 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4361 4362 const LLT S1 = LLT::scalar(1); 4363 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4364 S1, Exponent, ExponentLoBit); 4365 4366 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4367 4368 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4369 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4370 4371 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4372 4373 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4374 S1, Exponent, ZeroSrcTy); 4375 4376 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4377 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4378 4379 MI.eraseFromParent(); 4380 return Legalized; 4381 } 4382 4383 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4384 LegalizerHelper::LegalizeResult 4385 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4386 Register Dst = MI.getOperand(0).getReg(); 4387 Register Src = MI.getOperand(1).getReg(); 4388 4389 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4390 return UnableToLegalize; 4391 4392 const unsigned ExpMask = 0x7ff; 4393 const unsigned ExpBiasf64 = 1023; 4394 const unsigned ExpBiasf16 = 15; 4395 const LLT S32 = LLT::scalar(32); 4396 const LLT S1 = LLT::scalar(1); 4397 4398 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4399 Register U = Unmerge.getReg(0); 4400 Register UH = Unmerge.getReg(1); 4401 4402 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4403 4404 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4405 // add the f16 bias (15) to get the biased exponent for the f16 format. 4406 E = MIRBuilder.buildAdd( 4407 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4408 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4409 4410 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4411 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4412 4413 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4414 MIRBuilder.buildConstant(S32, 0x1ff)); 4415 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4416 4417 auto Zero = MIRBuilder.buildConstant(S32, 0); 4418 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4419 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4420 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4421 4422 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4423 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4424 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4425 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4426 4427 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4428 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4429 4430 // N = M | (E << 12); 4431 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4432 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4433 4434 // B = clamp(1-E, 0, 13); 4435 auto One = MIRBuilder.buildConstant(S32, 1); 4436 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4437 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4438 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4439 4440 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4441 MIRBuilder.buildConstant(S32, 0x1000)); 4442 4443 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4444 auto D0 = MIRBuilder.buildShl(S32, D, B); 4445 4446 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4447 D0, SigSetHigh); 4448 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4449 D = MIRBuilder.buildOr(S32, D, D1); 4450 4451 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4452 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4453 4454 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4455 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4456 4457 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4458 MIRBuilder.buildConstant(S32, 3)); 4459 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4460 4461 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4462 MIRBuilder.buildConstant(S32, 5)); 4463 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4464 4465 V1 = MIRBuilder.buildOr(S32, V0, V1); 4466 V = MIRBuilder.buildAdd(S32, V, V1); 4467 4468 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4469 E, MIRBuilder.buildConstant(S32, 30)); 4470 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4471 MIRBuilder.buildConstant(S32, 0x7c00), V); 4472 4473 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4474 E, MIRBuilder.buildConstant(S32, 1039)); 4475 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4476 4477 // Extract the sign bit. 4478 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4479 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4480 4481 // Insert the sign bit 4482 V = MIRBuilder.buildOr(S32, Sign, V); 4483 4484 MIRBuilder.buildTrunc(Dst, V); 4485 MI.eraseFromParent(); 4486 return Legalized; 4487 } 4488 4489 LegalizerHelper::LegalizeResult 4490 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4491 Register Dst = MI.getOperand(0).getReg(); 4492 Register Src = MI.getOperand(1).getReg(); 4493 4494 LLT DstTy = MRI.getType(Dst); 4495 LLT SrcTy = MRI.getType(Src); 4496 const LLT S64 = LLT::scalar(64); 4497 const LLT S16 = LLT::scalar(16); 4498 4499 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4500 return lowerFPTRUNC_F64_TO_F16(MI); 4501 4502 return UnableToLegalize; 4503 } 4504 4505 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4506 switch (Opc) { 4507 case TargetOpcode::G_SMIN: 4508 return CmpInst::ICMP_SLT; 4509 case TargetOpcode::G_SMAX: 4510 return CmpInst::ICMP_SGT; 4511 case TargetOpcode::G_UMIN: 4512 return CmpInst::ICMP_ULT; 4513 case TargetOpcode::G_UMAX: 4514 return CmpInst::ICMP_UGT; 4515 default: 4516 llvm_unreachable("not in integer min/max"); 4517 } 4518 } 4519 4520 LegalizerHelper::LegalizeResult 4521 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4522 Register Dst = MI.getOperand(0).getReg(); 4523 Register Src0 = MI.getOperand(1).getReg(); 4524 Register Src1 = MI.getOperand(2).getReg(); 4525 4526 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4527 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4528 4529 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4530 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4531 4532 MI.eraseFromParent(); 4533 return Legalized; 4534 } 4535 4536 LegalizerHelper::LegalizeResult 4537 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4538 Register Dst = MI.getOperand(0).getReg(); 4539 Register Src0 = MI.getOperand(1).getReg(); 4540 Register Src1 = MI.getOperand(2).getReg(); 4541 4542 const LLT Src0Ty = MRI.getType(Src0); 4543 const LLT Src1Ty = MRI.getType(Src1); 4544 4545 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4546 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4547 4548 auto SignBitMask = MIRBuilder.buildConstant( 4549 Src0Ty, APInt::getSignMask(Src0Size)); 4550 4551 auto NotSignBitMask = MIRBuilder.buildConstant( 4552 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4553 4554 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4555 MachineInstr *Or; 4556 4557 if (Src0Ty == Src1Ty) { 4558 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4559 Or = MIRBuilder.buildOr(Dst, And0, And1); 4560 } else if (Src0Size > Src1Size) { 4561 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4562 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4563 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4564 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4565 Or = MIRBuilder.buildOr(Dst, And0, And1); 4566 } else { 4567 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4568 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4569 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4570 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4571 Or = MIRBuilder.buildOr(Dst, And0, And1); 4572 } 4573 4574 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4575 // constants are a nan and -0.0, but the final result should preserve 4576 // everything. 4577 if (unsigned Flags = MI.getFlags()) 4578 Or->setFlags(Flags); 4579 4580 MI.eraseFromParent(); 4581 return Legalized; 4582 } 4583 4584 LegalizerHelper::LegalizeResult 4585 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4586 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4587 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4588 4589 Register Dst = MI.getOperand(0).getReg(); 4590 Register Src0 = MI.getOperand(1).getReg(); 4591 Register Src1 = MI.getOperand(2).getReg(); 4592 LLT Ty = MRI.getType(Dst); 4593 4594 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4595 // Insert canonicalizes if it's possible we need to quiet to get correct 4596 // sNaN behavior. 4597 4598 // Note this must be done here, and not as an optimization combine in the 4599 // absence of a dedicate quiet-snan instruction as we're using an 4600 // omni-purpose G_FCANONICALIZE. 4601 if (!isKnownNeverSNaN(Src0, MRI)) 4602 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4603 4604 if (!isKnownNeverSNaN(Src1, MRI)) 4605 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4606 } 4607 4608 // If there are no nans, it's safe to simply replace this with the non-IEEE 4609 // version. 4610 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4611 MI.eraseFromParent(); 4612 return Legalized; 4613 } 4614 4615 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4616 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4617 Register DstReg = MI.getOperand(0).getReg(); 4618 LLT Ty = MRI.getType(DstReg); 4619 unsigned Flags = MI.getFlags(); 4620 4621 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4622 Flags); 4623 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4624 MI.eraseFromParent(); 4625 return Legalized; 4626 } 4627 4628 LegalizerHelper::LegalizeResult 4629 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4630 Register DstReg = MI.getOperand(0).getReg(); 4631 Register SrcReg = MI.getOperand(1).getReg(); 4632 unsigned Flags = MI.getFlags(); 4633 LLT Ty = MRI.getType(DstReg); 4634 const LLT CondTy = Ty.changeElementSize(1); 4635 4636 // result = trunc(src); 4637 // if (src < 0.0 && src != result) 4638 // result += -1.0. 4639 4640 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4641 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4642 4643 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4644 SrcReg, Zero, Flags); 4645 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4646 SrcReg, Trunc, Flags); 4647 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4648 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4649 4650 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal); 4651 MI.eraseFromParent(); 4652 return Legalized; 4653 } 4654 4655 LegalizerHelper::LegalizeResult 4656 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4657 const unsigned NumDst = MI.getNumOperands() - 1; 4658 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4659 LLT SrcTy = MRI.getType(SrcReg); 4660 4661 Register Dst0Reg = MI.getOperand(0).getReg(); 4662 LLT DstTy = MRI.getType(Dst0Reg); 4663 4664 4665 // Expand scalarizing unmerge as bitcast to integer and shift. 4666 if (!DstTy.isVector() && SrcTy.isVector() && 4667 SrcTy.getElementType() == DstTy) { 4668 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4669 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4670 4671 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4672 4673 const unsigned DstSize = DstTy.getSizeInBits(); 4674 unsigned Offset = DstSize; 4675 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4676 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4677 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4678 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4679 } 4680 4681 MI.eraseFromParent(); 4682 return Legalized; 4683 } 4684 4685 return UnableToLegalize; 4686 } 4687 4688 LegalizerHelper::LegalizeResult 4689 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4690 Register DstReg = MI.getOperand(0).getReg(); 4691 Register Src0Reg = MI.getOperand(1).getReg(); 4692 Register Src1Reg = MI.getOperand(2).getReg(); 4693 LLT Src0Ty = MRI.getType(Src0Reg); 4694 LLT DstTy = MRI.getType(DstReg); 4695 LLT IdxTy = LLT::scalar(32); 4696 4697 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4698 4699 if (DstTy.isScalar()) { 4700 if (Src0Ty.isVector()) 4701 return UnableToLegalize; 4702 4703 // This is just a SELECT. 4704 assert(Mask.size() == 1 && "Expected a single mask element"); 4705 Register Val; 4706 if (Mask[0] < 0 || Mask[0] > 1) 4707 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4708 else 4709 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4710 MIRBuilder.buildCopy(DstReg, Val); 4711 MI.eraseFromParent(); 4712 return Legalized; 4713 } 4714 4715 Register Undef; 4716 SmallVector<Register, 32> BuildVec; 4717 LLT EltTy = DstTy.getElementType(); 4718 4719 for (int Idx : Mask) { 4720 if (Idx < 0) { 4721 if (!Undef.isValid()) 4722 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4723 BuildVec.push_back(Undef); 4724 continue; 4725 } 4726 4727 if (Src0Ty.isScalar()) { 4728 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4729 } else { 4730 int NumElts = Src0Ty.getNumElements(); 4731 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4732 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4733 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4734 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4735 BuildVec.push_back(Extract.getReg(0)); 4736 } 4737 } 4738 4739 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4740 MI.eraseFromParent(); 4741 return Legalized; 4742 } 4743 4744 LegalizerHelper::LegalizeResult 4745 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4746 Register Dst = MI.getOperand(0).getReg(); 4747 Register AllocSize = MI.getOperand(1).getReg(); 4748 unsigned Align = MI.getOperand(2).getImm(); 4749 4750 const auto &MF = *MI.getMF(); 4751 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4752 4753 LLT PtrTy = MRI.getType(Dst); 4754 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4755 4756 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4757 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4758 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4759 4760 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4761 // have to generate an extra instruction to negate the alloc and then use 4762 // G_PTR_ADD to add the negative offset. 4763 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4764 if (Align) { 4765 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4766 AlignMask.negate(); 4767 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4768 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4769 } 4770 4771 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4772 MIRBuilder.buildCopy(SPReg, SPTmp); 4773 MIRBuilder.buildCopy(Dst, SPTmp); 4774 4775 MI.eraseFromParent(); 4776 return Legalized; 4777 } 4778 4779 LegalizerHelper::LegalizeResult 4780 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4781 Register Dst = MI.getOperand(0).getReg(); 4782 Register Src = MI.getOperand(1).getReg(); 4783 unsigned Offset = MI.getOperand(2).getImm(); 4784 4785 LLT DstTy = MRI.getType(Dst); 4786 LLT SrcTy = MRI.getType(Src); 4787 4788 if (DstTy.isScalar() && 4789 (SrcTy.isScalar() || 4790 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4791 LLT SrcIntTy = SrcTy; 4792 if (!SrcTy.isScalar()) { 4793 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4794 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4795 } 4796 4797 if (Offset == 0) 4798 MIRBuilder.buildTrunc(Dst, Src); 4799 else { 4800 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4801 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4802 MIRBuilder.buildTrunc(Dst, Shr); 4803 } 4804 4805 MI.eraseFromParent(); 4806 return Legalized; 4807 } 4808 4809 return UnableToLegalize; 4810 } 4811 4812 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4813 Register Dst = MI.getOperand(0).getReg(); 4814 Register Src = MI.getOperand(1).getReg(); 4815 Register InsertSrc = MI.getOperand(2).getReg(); 4816 uint64_t Offset = MI.getOperand(3).getImm(); 4817 4818 LLT DstTy = MRI.getType(Src); 4819 LLT InsertTy = MRI.getType(InsertSrc); 4820 4821 if (InsertTy.isScalar() && 4822 (DstTy.isScalar() || 4823 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4824 LLT IntDstTy = DstTy; 4825 if (!DstTy.isScalar()) { 4826 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4827 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4828 } 4829 4830 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4831 if (Offset != 0) { 4832 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4833 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4834 } 4835 4836 APInt MaskVal = APInt::getBitsSetWithWrap(DstTy.getSizeInBits(), 4837 Offset + InsertTy.getSizeInBits(), 4838 Offset); 4839 4840 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4841 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4842 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4843 4844 MIRBuilder.buildBitcast(Dst, Or); 4845 MI.eraseFromParent(); 4846 return Legalized; 4847 } 4848 4849 return UnableToLegalize; 4850 } 4851 4852 LegalizerHelper::LegalizeResult 4853 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4854 Register Dst0 = MI.getOperand(0).getReg(); 4855 Register Dst1 = MI.getOperand(1).getReg(); 4856 Register LHS = MI.getOperand(2).getReg(); 4857 Register RHS = MI.getOperand(3).getReg(); 4858 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4859 4860 LLT Ty = MRI.getType(Dst0); 4861 LLT BoolTy = MRI.getType(Dst1); 4862 4863 if (IsAdd) 4864 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4865 else 4866 MIRBuilder.buildSub(Dst0, LHS, RHS); 4867 4868 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4869 4870 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4871 4872 // For an addition, the result should be less than one of the operands (LHS) 4873 // if and only if the other operand (RHS) is negative, otherwise there will 4874 // be overflow. 4875 // For a subtraction, the result should be less than one of the operands 4876 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4877 // otherwise there will be overflow. 4878 auto ResultLowerThanLHS = 4879 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4880 auto ConditionRHS = MIRBuilder.buildICmp( 4881 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4882 4883 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4884 MI.eraseFromParent(); 4885 return Legalized; 4886 } 4887 4888 LegalizerHelper::LegalizeResult 4889 LegalizerHelper::lowerBswap(MachineInstr &MI) { 4890 Register Dst = MI.getOperand(0).getReg(); 4891 Register Src = MI.getOperand(1).getReg(); 4892 const LLT Ty = MRI.getType(Src); 4893 unsigned SizeInBytes = Ty.getSizeInBytes(); 4894 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 4895 4896 // Swap most and least significant byte, set remaining bytes in Res to zero. 4897 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 4898 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 4899 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4900 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 4901 4902 // Set i-th high/low byte in Res to i-th low/high byte from Src. 4903 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 4904 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 4905 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 4906 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 4907 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 4908 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 4909 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 4910 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 4911 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 4912 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 4913 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4914 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 4915 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 4916 } 4917 Res.getInstr()->getOperand(0).setReg(Dst); 4918 4919 MI.eraseFromParent(); 4920 return Legalized; 4921 } 4922 4923 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 4924 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 4925 MachineInstrBuilder Src, APInt Mask) { 4926 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 4927 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 4928 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 4929 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 4930 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 4931 return B.buildOr(Dst, LHS, RHS); 4932 } 4933 4934 LegalizerHelper::LegalizeResult 4935 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 4936 Register Dst = MI.getOperand(0).getReg(); 4937 Register Src = MI.getOperand(1).getReg(); 4938 const LLT Ty = MRI.getType(Src); 4939 unsigned Size = Ty.getSizeInBits(); 4940 4941 MachineInstrBuilder BSWAP = 4942 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 4943 4944 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 4945 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 4946 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 4947 MachineInstrBuilder Swap4 = 4948 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 4949 4950 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 4951 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 4952 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 4953 MachineInstrBuilder Swap2 = 4954 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 4955 4956 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 4957 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 4958 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 4959 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 4960 4961 MI.eraseFromParent(); 4962 return Legalized; 4963 } 4964 4965 LegalizerHelper::LegalizeResult 4966 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 4967 MachineFunction &MF = MIRBuilder.getMF(); 4968 const TargetSubtargetInfo &STI = MF.getSubtarget(); 4969 const TargetLowering *TLI = STI.getTargetLowering(); 4970 4971 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 4972 int NameOpIdx = IsRead ? 1 : 0; 4973 int ValRegIndex = IsRead ? 0 : 1; 4974 4975 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 4976 const LLT Ty = MRI.getType(ValReg); 4977 const MDString *RegStr = cast<MDString>( 4978 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 4979 4980 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 4981 if (!PhysReg.isValid()) 4982 return UnableToLegalize; 4983 4984 if (IsRead) 4985 MIRBuilder.buildCopy(ValReg, PhysReg); 4986 else 4987 MIRBuilder.buildCopy(PhysReg, ValReg); 4988 4989 MI.eraseFromParent(); 4990 return Legalized; 4991 } 4992