1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 90 MIRBuilder.setMF(MF); 91 MIRBuilder.setChangeObserver(Observer); 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &B) 97 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 98 MIRBuilder.setMF(MF); 99 MIRBuilder.setChangeObserver(Observer); 100 } 101 LegalizerHelper::LegalizeResult 102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 103 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 auto Step = LI.getAction(MI, MRI); 110 switch (Step.Action) { 111 case Legal: 112 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 113 return AlreadyLegal; 114 case Libcall: 115 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 116 return libcall(MI); 117 case NarrowScalar: 118 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 119 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 120 case WidenScalar: 121 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 122 return widenScalar(MI, Step.TypeIdx, Step.NewType); 123 case Bitcast: 124 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 125 return bitcast(MI, Step.TypeIdx, Step.NewType); 126 case Lower: 127 LLVM_DEBUG(dbgs() << ".. Lower\n"); 128 return lower(MI, Step.TypeIdx, Step.NewType); 129 case FewerElements: 130 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 131 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 132 case MoreElements: 133 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 134 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case Custom: 136 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 137 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 138 : UnableToLegalize; 139 default: 140 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 141 return UnableToLegalize; 142 } 143 } 144 145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 146 SmallVectorImpl<Register> &VRegs) { 147 for (int i = 0; i < NumParts; ++i) 148 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 149 MIRBuilder.buildUnmerge(VRegs, Reg); 150 } 151 152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 153 LLT MainTy, LLT &LeftoverTy, 154 SmallVectorImpl<Register> &VRegs, 155 SmallVectorImpl<Register> &LeftoverRegs) { 156 assert(!LeftoverTy.isValid() && "this is an out argument"); 157 158 unsigned RegSize = RegTy.getSizeInBits(); 159 unsigned MainSize = MainTy.getSizeInBits(); 160 unsigned NumParts = RegSize / MainSize; 161 unsigned LeftoverSize = RegSize - NumParts * MainSize; 162 163 // Use an unmerge when possible. 164 if (LeftoverSize == 0) { 165 for (unsigned I = 0; I < NumParts; ++I) 166 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 167 MIRBuilder.buildUnmerge(VRegs, Reg); 168 return true; 169 } 170 171 if (MainTy.isVector()) { 172 unsigned EltSize = MainTy.getScalarSizeInBits(); 173 if (LeftoverSize % EltSize != 0) 174 return false; 175 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 176 } else { 177 LeftoverTy = LLT::scalar(LeftoverSize); 178 } 179 180 // For irregular sizes, extract the individual parts. 181 for (unsigned I = 0; I != NumParts; ++I) { 182 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 183 VRegs.push_back(NewReg); 184 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 185 } 186 187 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 188 Offset += LeftoverSize) { 189 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 190 LeftoverRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, Offset); 192 } 193 194 return true; 195 } 196 197 void LegalizerHelper::insertParts(Register DstReg, 198 LLT ResultTy, LLT PartTy, 199 ArrayRef<Register> PartRegs, 200 LLT LeftoverTy, 201 ArrayRef<Register> LeftoverRegs) { 202 if (!LeftoverTy.isValid()) { 203 assert(LeftoverRegs.empty()); 204 205 if (!ResultTy.isVector()) { 206 MIRBuilder.buildMerge(DstReg, PartRegs); 207 return; 208 } 209 210 if (PartTy.isVector()) 211 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 212 else 213 MIRBuilder.buildBuildVector(DstReg, PartRegs); 214 return; 215 } 216 217 unsigned PartSize = PartTy.getSizeInBits(); 218 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 219 220 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 221 MIRBuilder.buildUndef(CurResultReg); 222 223 unsigned Offset = 0; 224 for (Register PartReg : PartRegs) { 225 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 226 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 227 CurResultReg = NewResultReg; 228 Offset += PartSize; 229 } 230 231 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 232 // Use the original output register for the final insert to avoid a copy. 233 Register NewResultReg = (I + 1 == E) ? 234 DstReg : MRI.createGenericVirtualRegister(ResultTy); 235 236 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 237 CurResultReg = NewResultReg; 238 Offset += LeftoverPartSize; 239 } 240 } 241 242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 244 const MachineInstr &MI) { 245 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 246 247 const int NumResults = MI.getNumOperands() - 1; 248 Regs.resize(NumResults); 249 for (int I = 0; I != NumResults; ++I) 250 Regs[I] = MI.getOperand(I).getReg(); 251 } 252 253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 254 LLT NarrowTy, Register SrcReg) { 255 LLT SrcTy = MRI.getType(SrcReg); 256 257 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 MIRBuilder.buildExtract(DstReg, Remerge, 0); 382 return; 383 } 384 385 llvm_unreachable("unhandled case"); 386 } 387 388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 389 #define RTLIBCASE(LibcallPrefix) \ 390 do { \ 391 switch (Size) { \ 392 case 32: \ 393 return RTLIB::LibcallPrefix##32; \ 394 case 64: \ 395 return RTLIB::LibcallPrefix##64; \ 396 case 128: \ 397 return RTLIB::LibcallPrefix##128; \ 398 default: \ 399 llvm_unreachable("unexpected size"); \ 400 } \ 401 } while (0) 402 403 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 404 405 switch (Opcode) { 406 case TargetOpcode::G_SDIV: 407 RTLIBCASE(SDIV_I); 408 case TargetOpcode::G_UDIV: 409 RTLIBCASE(UDIV_I); 410 case TargetOpcode::G_SREM: 411 RTLIBCASE(SREM_I); 412 case TargetOpcode::G_UREM: 413 RTLIBCASE(UREM_I); 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 415 RTLIBCASE(CTLZ_I); 416 case TargetOpcode::G_FADD: 417 RTLIBCASE(ADD_F); 418 case TargetOpcode::G_FSUB: 419 RTLIBCASE(SUB_F); 420 case TargetOpcode::G_FMUL: 421 RTLIBCASE(MUL_F); 422 case TargetOpcode::G_FDIV: 423 RTLIBCASE(DIV_F); 424 case TargetOpcode::G_FEXP: 425 RTLIBCASE(EXP_F); 426 case TargetOpcode::G_FEXP2: 427 RTLIBCASE(EXP2_F); 428 case TargetOpcode::G_FREM: 429 RTLIBCASE(REM_F); 430 case TargetOpcode::G_FPOW: 431 RTLIBCASE(POW_F); 432 case TargetOpcode::G_FMA: 433 RTLIBCASE(FMA_F); 434 case TargetOpcode::G_FSIN: 435 RTLIBCASE(SIN_F); 436 case TargetOpcode::G_FCOS: 437 RTLIBCASE(COS_F); 438 case TargetOpcode::G_FLOG10: 439 RTLIBCASE(LOG10_F); 440 case TargetOpcode::G_FLOG: 441 RTLIBCASE(LOG_F); 442 case TargetOpcode::G_FLOG2: 443 RTLIBCASE(LOG2_F); 444 case TargetOpcode::G_FCEIL: 445 RTLIBCASE(CEIL_F); 446 case TargetOpcode::G_FFLOOR: 447 RTLIBCASE(FLOOR_F); 448 case TargetOpcode::G_FMINNUM: 449 RTLIBCASE(FMIN_F); 450 case TargetOpcode::G_FMAXNUM: 451 RTLIBCASE(FMAX_F); 452 case TargetOpcode::G_FSQRT: 453 RTLIBCASE(SQRT_F); 454 case TargetOpcode::G_FRINT: 455 RTLIBCASE(RINT_F); 456 case TargetOpcode::G_FNEARBYINT: 457 RTLIBCASE(NEARBYINT_F); 458 } 459 llvm_unreachable("Unknown libcall function"); 460 } 461 462 /// True if an instruction is in tail position in its caller. Intended for 463 /// legalizing libcalls as tail calls when possible. 464 static bool isLibCallInTailPosition(MachineInstr &MI) { 465 const Function &F = MI.getParent()->getParent()->getFunction(); 466 467 // Conservatively require the attributes of the call to match those of 468 // the return. Ignore NoAlias and NonNull because they don't affect the 469 // call sequence. 470 AttributeList CallerAttrs = F.getAttributes(); 471 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 472 .removeAttribute(Attribute::NoAlias) 473 .removeAttribute(Attribute::NonNull) 474 .hasAttributes()) 475 return false; 476 477 // It's not safe to eliminate the sign / zero extension of the return value. 478 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 479 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 480 return false; 481 482 // Only tail call if the following instruction is a standard return. 483 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 484 MachineInstr *Next = MI.getNextNode(); 485 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 486 return false; 487 488 return true; 489 } 490 491 LegalizerHelper::LegalizeResult 492 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 493 const CallLowering::ArgInfo &Result, 494 ArrayRef<CallLowering::ArgInfo> Args, 495 const CallingConv::ID CC) { 496 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 497 498 CallLowering::CallLoweringInfo Info; 499 Info.CallConv = CC; 500 Info.Callee = MachineOperand::CreateES(Name); 501 Info.OrigRet = Result; 502 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 503 if (!CLI.lowerCall(MIRBuilder, Info)) 504 return LegalizerHelper::UnableToLegalize; 505 506 return LegalizerHelper::Legalized; 507 } 508 509 LegalizerHelper::LegalizeResult 510 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 511 const CallLowering::ArgInfo &Result, 512 ArrayRef<CallLowering::ArgInfo> Args) { 513 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 514 const char *Name = TLI.getLibcallName(Libcall); 515 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 516 return createLibcall(MIRBuilder, Name, Result, Args, CC); 517 } 518 519 // Useful for libcalls where all operands have the same type. 520 static LegalizerHelper::LegalizeResult 521 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 522 Type *OpType) { 523 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 524 525 SmallVector<CallLowering::ArgInfo, 3> Args; 526 for (unsigned i = 1; i < MI.getNumOperands(); i++) 527 Args.push_back({MI.getOperand(i).getReg(), OpType}); 528 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 529 Args); 530 } 531 532 LegalizerHelper::LegalizeResult 533 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 534 MachineInstr &MI) { 535 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 536 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 537 538 SmallVector<CallLowering::ArgInfo, 3> Args; 539 // Add all the args, except for the last which is an imm denoting 'tail'. 540 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 541 Register Reg = MI.getOperand(i).getReg(); 542 543 // Need derive an IR type for call lowering. 544 LLT OpLLT = MRI.getType(Reg); 545 Type *OpTy = nullptr; 546 if (OpLLT.isPointer()) 547 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 548 else 549 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 550 Args.push_back({Reg, OpTy}); 551 } 552 553 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 554 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 555 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 556 RTLIB::Libcall RTLibcall; 557 switch (ID) { 558 case Intrinsic::memcpy: 559 RTLibcall = RTLIB::MEMCPY; 560 break; 561 case Intrinsic::memset: 562 RTLibcall = RTLIB::MEMSET; 563 break; 564 case Intrinsic::memmove: 565 RTLibcall = RTLIB::MEMMOVE; 566 break; 567 default: 568 return LegalizerHelper::UnableToLegalize; 569 } 570 const char *Name = TLI.getLibcallName(RTLibcall); 571 572 MIRBuilder.setInstr(MI); 573 574 CallLowering::CallLoweringInfo Info; 575 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 576 Info.Callee = MachineOperand::CreateES(Name); 577 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 578 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 579 isLibCallInTailPosition(MI); 580 581 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 582 if (!CLI.lowerCall(MIRBuilder, Info)) 583 return LegalizerHelper::UnableToLegalize; 584 585 if (Info.LoweredTailCall) { 586 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 587 // We must have a return following the call to get past 588 // isLibCallInTailPosition. 589 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 590 "Expected instr following MI to be a return?"); 591 592 // We lowered a tail call, so the call is now the return from the block. 593 // Delete the old return. 594 MI.getNextNode()->eraseFromParent(); 595 } 596 597 return LegalizerHelper::Legalized; 598 } 599 600 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 601 Type *FromType) { 602 auto ToMVT = MVT::getVT(ToType); 603 auto FromMVT = MVT::getVT(FromType); 604 605 switch (Opcode) { 606 case TargetOpcode::G_FPEXT: 607 return RTLIB::getFPEXT(FromMVT, ToMVT); 608 case TargetOpcode::G_FPTRUNC: 609 return RTLIB::getFPROUND(FromMVT, ToMVT); 610 case TargetOpcode::G_FPTOSI: 611 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 612 case TargetOpcode::G_FPTOUI: 613 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 614 case TargetOpcode::G_SITOFP: 615 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 616 case TargetOpcode::G_UITOFP: 617 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 618 } 619 llvm_unreachable("Unsupported libcall function"); 620 } 621 622 static LegalizerHelper::LegalizeResult 623 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 624 Type *FromType) { 625 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 626 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 627 {{MI.getOperand(1).getReg(), FromType}}); 628 } 629 630 LegalizerHelper::LegalizeResult 631 LegalizerHelper::libcall(MachineInstr &MI) { 632 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 633 unsigned Size = LLTy.getSizeInBits(); 634 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 635 636 MIRBuilder.setInstr(MI); 637 MIRBuilder.setDebugLoc(MI.getDebugLoc()); 638 639 switch (MI.getOpcode()) { 640 default: 641 return UnableToLegalize; 642 case TargetOpcode::G_SDIV: 643 case TargetOpcode::G_UDIV: 644 case TargetOpcode::G_SREM: 645 case TargetOpcode::G_UREM: 646 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 647 Type *HLTy = IntegerType::get(Ctx, Size); 648 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 649 if (Status != Legalized) 650 return Status; 651 break; 652 } 653 case TargetOpcode::G_FADD: 654 case TargetOpcode::G_FSUB: 655 case TargetOpcode::G_FMUL: 656 case TargetOpcode::G_FDIV: 657 case TargetOpcode::G_FMA: 658 case TargetOpcode::G_FPOW: 659 case TargetOpcode::G_FREM: 660 case TargetOpcode::G_FCOS: 661 case TargetOpcode::G_FSIN: 662 case TargetOpcode::G_FLOG10: 663 case TargetOpcode::G_FLOG: 664 case TargetOpcode::G_FLOG2: 665 case TargetOpcode::G_FEXP: 666 case TargetOpcode::G_FEXP2: 667 case TargetOpcode::G_FCEIL: 668 case TargetOpcode::G_FFLOOR: 669 case TargetOpcode::G_FMINNUM: 670 case TargetOpcode::G_FMAXNUM: 671 case TargetOpcode::G_FSQRT: 672 case TargetOpcode::G_FRINT: 673 case TargetOpcode::G_FNEARBYINT: { 674 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 675 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 676 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 677 return UnableToLegalize; 678 } 679 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 680 if (Status != Legalized) 681 return Status; 682 break; 683 } 684 case TargetOpcode::G_FPEXT: 685 case TargetOpcode::G_FPTRUNC: { 686 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 687 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 688 if (!FromTy || !ToTy) 689 return UnableToLegalize; 690 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 691 if (Status != Legalized) 692 return Status; 693 break; 694 } 695 case TargetOpcode::G_FPTOSI: 696 case TargetOpcode::G_FPTOUI: { 697 // FIXME: Support other types 698 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 699 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 700 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 701 return UnableToLegalize; 702 LegalizeResult Status = conversionLibcall( 703 MI, MIRBuilder, 704 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 705 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_SITOFP: 711 case TargetOpcode::G_UITOFP: { 712 // FIXME: Support other types 713 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 714 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 715 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 716 return UnableToLegalize; 717 LegalizeResult Status = conversionLibcall( 718 MI, MIRBuilder, 719 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 720 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 721 if (Status != Legalized) 722 return Status; 723 break; 724 } 725 } 726 727 MI.eraseFromParent(); 728 return Legalized; 729 } 730 731 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 732 unsigned TypeIdx, 733 LLT NarrowTy) { 734 MIRBuilder.setInstr(MI); 735 MIRBuilder.setDebugLoc(MI.getDebugLoc()); 736 737 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 738 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 739 740 switch (MI.getOpcode()) { 741 default: 742 return UnableToLegalize; 743 case TargetOpcode::G_IMPLICIT_DEF: { 744 Register DstReg = MI.getOperand(0).getReg(); 745 LLT DstTy = MRI.getType(DstReg); 746 747 // If SizeOp0 is not an exact multiple of NarrowSize, emit 748 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 749 // FIXME: Although this would also be legal for the general case, it causes 750 // a lot of regressions in the emitted code (superfluous COPYs, artifact 751 // combines not being hit). This seems to be a problem related to the 752 // artifact combiner. 753 if (SizeOp0 % NarrowSize != 0) { 754 LLT ImplicitTy = NarrowTy; 755 if (DstTy.isVector()) 756 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 757 758 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 759 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 760 761 MI.eraseFromParent(); 762 return Legalized; 763 } 764 765 int NumParts = SizeOp0 / NarrowSize; 766 767 SmallVector<Register, 2> DstRegs; 768 for (int i = 0; i < NumParts; ++i) 769 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 770 771 if (DstTy.isVector()) 772 MIRBuilder.buildBuildVector(DstReg, DstRegs); 773 else 774 MIRBuilder.buildMerge(DstReg, DstRegs); 775 MI.eraseFromParent(); 776 return Legalized; 777 } 778 case TargetOpcode::G_CONSTANT: { 779 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 780 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 781 unsigned TotalSize = Ty.getSizeInBits(); 782 unsigned NarrowSize = NarrowTy.getSizeInBits(); 783 int NumParts = TotalSize / NarrowSize; 784 785 SmallVector<Register, 4> PartRegs; 786 for (int I = 0; I != NumParts; ++I) { 787 unsigned Offset = I * NarrowSize; 788 auto K = MIRBuilder.buildConstant(NarrowTy, 789 Val.lshr(Offset).trunc(NarrowSize)); 790 PartRegs.push_back(K.getReg(0)); 791 } 792 793 LLT LeftoverTy; 794 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 795 SmallVector<Register, 1> LeftoverRegs; 796 if (LeftoverBits != 0) { 797 LeftoverTy = LLT::scalar(LeftoverBits); 798 auto K = MIRBuilder.buildConstant( 799 LeftoverTy, 800 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 801 LeftoverRegs.push_back(K.getReg(0)); 802 } 803 804 insertParts(MI.getOperand(0).getReg(), 805 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 806 807 MI.eraseFromParent(); 808 return Legalized; 809 } 810 case TargetOpcode::G_SEXT: 811 case TargetOpcode::G_ZEXT: 812 case TargetOpcode::G_ANYEXT: 813 return narrowScalarExt(MI, TypeIdx, NarrowTy); 814 case TargetOpcode::G_TRUNC: { 815 if (TypeIdx != 1) 816 return UnableToLegalize; 817 818 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 819 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 820 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 821 return UnableToLegalize; 822 } 823 824 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 825 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 826 MI.eraseFromParent(); 827 return Legalized; 828 } 829 830 case TargetOpcode::G_ADD: { 831 // FIXME: add support for when SizeOp0 isn't an exact multiple of 832 // NarrowSize. 833 if (SizeOp0 % NarrowSize != 0) 834 return UnableToLegalize; 835 // Expand in terms of carry-setting/consuming G_ADDE instructions. 836 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 837 838 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 839 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 840 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 841 842 Register CarryIn; 843 for (int i = 0; i < NumParts; ++i) { 844 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 845 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 846 847 if (i == 0) 848 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 849 else { 850 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 851 Src2Regs[i], CarryIn); 852 } 853 854 DstRegs.push_back(DstReg); 855 CarryIn = CarryOut; 856 } 857 Register DstReg = MI.getOperand(0).getReg(); 858 if(MRI.getType(DstReg).isVector()) 859 MIRBuilder.buildBuildVector(DstReg, DstRegs); 860 else 861 MIRBuilder.buildMerge(DstReg, DstRegs); 862 MI.eraseFromParent(); 863 return Legalized; 864 } 865 case TargetOpcode::G_SUB: { 866 // FIXME: add support for when SizeOp0 isn't an exact multiple of 867 // NarrowSize. 868 if (SizeOp0 % NarrowSize != 0) 869 return UnableToLegalize; 870 871 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 872 873 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 874 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 875 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 876 877 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 878 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 879 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 880 {Src1Regs[0], Src2Regs[0]}); 881 DstRegs.push_back(DstReg); 882 Register BorrowIn = BorrowOut; 883 for (int i = 1; i < NumParts; ++i) { 884 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 885 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 886 887 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 888 {Src1Regs[i], Src2Regs[i], BorrowIn}); 889 890 DstRegs.push_back(DstReg); 891 BorrowIn = BorrowOut; 892 } 893 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 894 MI.eraseFromParent(); 895 return Legalized; 896 } 897 case TargetOpcode::G_MUL: 898 case TargetOpcode::G_UMULH: 899 return narrowScalarMul(MI, NarrowTy); 900 case TargetOpcode::G_EXTRACT: 901 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_INSERT: 903 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 904 case TargetOpcode::G_LOAD: { 905 const auto &MMO = **MI.memoperands_begin(); 906 Register DstReg = MI.getOperand(0).getReg(); 907 LLT DstTy = MRI.getType(DstReg); 908 if (DstTy.isVector()) 909 return UnableToLegalize; 910 911 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 912 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 913 auto &MMO = **MI.memoperands_begin(); 914 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 915 MIRBuilder.buildAnyExt(DstReg, TmpReg); 916 MI.eraseFromParent(); 917 return Legalized; 918 } 919 920 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 921 } 922 case TargetOpcode::G_ZEXTLOAD: 923 case TargetOpcode::G_SEXTLOAD: { 924 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 925 Register DstReg = MI.getOperand(0).getReg(); 926 Register PtrReg = MI.getOperand(1).getReg(); 927 928 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 929 auto &MMO = **MI.memoperands_begin(); 930 if (MMO.getSizeInBits() == NarrowSize) { 931 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 932 } else { 933 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 934 } 935 936 if (ZExt) 937 MIRBuilder.buildZExt(DstReg, TmpReg); 938 else 939 MIRBuilder.buildSExt(DstReg, TmpReg); 940 941 MI.eraseFromParent(); 942 return Legalized; 943 } 944 case TargetOpcode::G_STORE: { 945 const auto &MMO = **MI.memoperands_begin(); 946 947 Register SrcReg = MI.getOperand(0).getReg(); 948 LLT SrcTy = MRI.getType(SrcReg); 949 if (SrcTy.isVector()) 950 return UnableToLegalize; 951 952 int NumParts = SizeOp0 / NarrowSize; 953 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 954 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 955 if (SrcTy.isVector() && LeftoverBits != 0) 956 return UnableToLegalize; 957 958 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 959 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 960 auto &MMO = **MI.memoperands_begin(); 961 MIRBuilder.buildTrunc(TmpReg, SrcReg); 962 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 963 MI.eraseFromParent(); 964 return Legalized; 965 } 966 967 return reduceLoadStoreWidth(MI, 0, NarrowTy); 968 } 969 case TargetOpcode::G_SELECT: 970 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 971 case TargetOpcode::G_AND: 972 case TargetOpcode::G_OR: 973 case TargetOpcode::G_XOR: { 974 // Legalize bitwise operation: 975 // A = BinOp<Ty> B, C 976 // into: 977 // B1, ..., BN = G_UNMERGE_VALUES B 978 // C1, ..., CN = G_UNMERGE_VALUES C 979 // A1 = BinOp<Ty/N> B1, C2 980 // ... 981 // AN = BinOp<Ty/N> BN, CN 982 // A = G_MERGE_VALUES A1, ..., AN 983 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 984 } 985 case TargetOpcode::G_SHL: 986 case TargetOpcode::G_LSHR: 987 case TargetOpcode::G_ASHR: 988 return narrowScalarShift(MI, TypeIdx, NarrowTy); 989 case TargetOpcode::G_CTLZ: 990 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 991 case TargetOpcode::G_CTTZ: 992 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 993 case TargetOpcode::G_CTPOP: 994 if (TypeIdx == 1) 995 switch (MI.getOpcode()) { 996 case TargetOpcode::G_CTLZ: 997 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 998 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 999 case TargetOpcode::G_CTTZ: 1000 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1001 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1002 case TargetOpcode::G_CTPOP: 1003 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1004 default: 1005 return UnableToLegalize; 1006 } 1007 1008 Observer.changingInstr(MI); 1009 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1010 Observer.changedInstr(MI); 1011 return Legalized; 1012 case TargetOpcode::G_INTTOPTR: 1013 if (TypeIdx != 1) 1014 return UnableToLegalize; 1015 1016 Observer.changingInstr(MI); 1017 narrowScalarSrc(MI, NarrowTy, 1); 1018 Observer.changedInstr(MI); 1019 return Legalized; 1020 case TargetOpcode::G_PTRTOINT: 1021 if (TypeIdx != 0) 1022 return UnableToLegalize; 1023 1024 Observer.changingInstr(MI); 1025 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1026 Observer.changedInstr(MI); 1027 return Legalized; 1028 case TargetOpcode::G_PHI: { 1029 unsigned NumParts = SizeOp0 / NarrowSize; 1030 SmallVector<Register, 2> DstRegs(NumParts); 1031 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1032 Observer.changingInstr(MI); 1033 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1034 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1035 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1036 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1037 SrcRegs[i / 2]); 1038 } 1039 MachineBasicBlock &MBB = *MI.getParent(); 1040 MIRBuilder.setInsertPt(MBB, MI); 1041 for (unsigned i = 0; i < NumParts; ++i) { 1042 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1043 MachineInstrBuilder MIB = 1044 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1045 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1046 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1047 } 1048 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1049 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1050 Observer.changedInstr(MI); 1051 MI.eraseFromParent(); 1052 return Legalized; 1053 } 1054 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1055 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1056 if (TypeIdx != 2) 1057 return UnableToLegalize; 1058 1059 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1060 Observer.changingInstr(MI); 1061 narrowScalarSrc(MI, NarrowTy, OpIdx); 1062 Observer.changedInstr(MI); 1063 return Legalized; 1064 } 1065 case TargetOpcode::G_ICMP: { 1066 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1067 if (NarrowSize * 2 != SrcSize) 1068 return UnableToLegalize; 1069 1070 Observer.changingInstr(MI); 1071 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1072 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1073 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1074 1075 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1076 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1077 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1078 1079 CmpInst::Predicate Pred = 1080 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1081 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1082 1083 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1084 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1085 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1086 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1087 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1088 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1089 } else { 1090 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1091 MachineInstrBuilder CmpHEQ = 1092 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1093 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1094 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1095 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1096 } 1097 Observer.changedInstr(MI); 1098 MI.eraseFromParent(); 1099 return Legalized; 1100 } 1101 case TargetOpcode::G_SEXT_INREG: { 1102 if (TypeIdx != 0) 1103 return UnableToLegalize; 1104 1105 int64_t SizeInBits = MI.getOperand(2).getImm(); 1106 1107 // So long as the new type has more bits than the bits we're extending we 1108 // don't need to break it apart. 1109 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1110 Observer.changingInstr(MI); 1111 // We don't lose any non-extension bits by truncating the src and 1112 // sign-extending the dst. 1113 MachineOperand &MO1 = MI.getOperand(1); 1114 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1115 MO1.setReg(TruncMIB.getReg(0)); 1116 1117 MachineOperand &MO2 = MI.getOperand(0); 1118 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1119 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1120 MIRBuilder.buildSExt(MO2, DstExt); 1121 MO2.setReg(DstExt); 1122 Observer.changedInstr(MI); 1123 return Legalized; 1124 } 1125 1126 // Break it apart. Components below the extension point are unmodified. The 1127 // component containing the extension point becomes a narrower SEXT_INREG. 1128 // Components above it are ashr'd from the component containing the 1129 // extension point. 1130 if (SizeOp0 % NarrowSize != 0) 1131 return UnableToLegalize; 1132 int NumParts = SizeOp0 / NarrowSize; 1133 1134 // List the registers where the destination will be scattered. 1135 SmallVector<Register, 2> DstRegs; 1136 // List the registers where the source will be split. 1137 SmallVector<Register, 2> SrcRegs; 1138 1139 // Create all the temporary registers. 1140 for (int i = 0; i < NumParts; ++i) { 1141 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1142 1143 SrcRegs.push_back(SrcReg); 1144 } 1145 1146 // Explode the big arguments into smaller chunks. 1147 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1148 1149 Register AshrCstReg = 1150 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1151 .getReg(0); 1152 Register FullExtensionReg = 0; 1153 Register PartialExtensionReg = 0; 1154 1155 // Do the operation on each small part. 1156 for (int i = 0; i < NumParts; ++i) { 1157 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1158 DstRegs.push_back(SrcRegs[i]); 1159 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1160 assert(PartialExtensionReg && 1161 "Expected to visit partial extension before full"); 1162 if (FullExtensionReg) { 1163 DstRegs.push_back(FullExtensionReg); 1164 continue; 1165 } 1166 DstRegs.push_back( 1167 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1168 .getReg(0)); 1169 FullExtensionReg = DstRegs.back(); 1170 } else { 1171 DstRegs.push_back( 1172 MIRBuilder 1173 .buildInstr( 1174 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1175 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1176 .getReg(0)); 1177 PartialExtensionReg = DstRegs.back(); 1178 } 1179 } 1180 1181 // Gather the destination registers into the final destination. 1182 Register DstReg = MI.getOperand(0).getReg(); 1183 MIRBuilder.buildMerge(DstReg, DstRegs); 1184 MI.eraseFromParent(); 1185 return Legalized; 1186 } 1187 case TargetOpcode::G_BSWAP: 1188 case TargetOpcode::G_BITREVERSE: { 1189 if (SizeOp0 % NarrowSize != 0) 1190 return UnableToLegalize; 1191 1192 Observer.changingInstr(MI); 1193 SmallVector<Register, 2> SrcRegs, DstRegs; 1194 unsigned NumParts = SizeOp0 / NarrowSize; 1195 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1196 1197 for (unsigned i = 0; i < NumParts; ++i) { 1198 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1199 {SrcRegs[NumParts - 1 - i]}); 1200 DstRegs.push_back(DstPart.getReg(0)); 1201 } 1202 1203 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1204 1205 Observer.changedInstr(MI); 1206 MI.eraseFromParent(); 1207 return Legalized; 1208 } 1209 } 1210 } 1211 1212 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1213 unsigned OpIdx, unsigned ExtOpcode) { 1214 MachineOperand &MO = MI.getOperand(OpIdx); 1215 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1216 MO.setReg(ExtB.getReg(0)); 1217 } 1218 1219 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1220 unsigned OpIdx) { 1221 MachineOperand &MO = MI.getOperand(OpIdx); 1222 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1223 MO.setReg(ExtB.getReg(0)); 1224 } 1225 1226 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1227 unsigned OpIdx, unsigned TruncOpcode) { 1228 MachineOperand &MO = MI.getOperand(OpIdx); 1229 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1230 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1231 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1232 MO.setReg(DstExt); 1233 } 1234 1235 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1236 unsigned OpIdx, unsigned ExtOpcode) { 1237 MachineOperand &MO = MI.getOperand(OpIdx); 1238 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1239 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1240 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1241 MO.setReg(DstTrunc); 1242 } 1243 1244 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1245 unsigned OpIdx) { 1246 MachineOperand &MO = MI.getOperand(OpIdx); 1247 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1248 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1249 MIRBuilder.buildExtract(MO, DstExt, 0); 1250 MO.setReg(DstExt); 1251 } 1252 1253 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1254 unsigned OpIdx) { 1255 MachineOperand &MO = MI.getOperand(OpIdx); 1256 1257 LLT OldTy = MRI.getType(MO.getReg()); 1258 unsigned OldElts = OldTy.getNumElements(); 1259 unsigned NewElts = MoreTy.getNumElements(); 1260 1261 unsigned NumParts = NewElts / OldElts; 1262 1263 // Use concat_vectors if the result is a multiple of the number of elements. 1264 if (NumParts * OldElts == NewElts) { 1265 SmallVector<Register, 8> Parts; 1266 Parts.push_back(MO.getReg()); 1267 1268 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1269 for (unsigned I = 1; I != NumParts; ++I) 1270 Parts.push_back(ImpDef); 1271 1272 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1273 MO.setReg(Concat.getReg(0)); 1274 return; 1275 } 1276 1277 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1278 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1279 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1280 MO.setReg(MoreReg); 1281 } 1282 1283 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1284 MachineOperand &Op = MI.getOperand(OpIdx); 1285 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1286 } 1287 1288 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1289 MachineOperand &MO = MI.getOperand(OpIdx); 1290 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1291 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1292 MIRBuilder.buildBitcast(MO, CastDst); 1293 MO.setReg(CastDst); 1294 } 1295 1296 LegalizerHelper::LegalizeResult 1297 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1298 LLT WideTy) { 1299 if (TypeIdx != 1) 1300 return UnableToLegalize; 1301 1302 Register DstReg = MI.getOperand(0).getReg(); 1303 LLT DstTy = MRI.getType(DstReg); 1304 if (DstTy.isVector()) 1305 return UnableToLegalize; 1306 1307 Register Src1 = MI.getOperand(1).getReg(); 1308 LLT SrcTy = MRI.getType(Src1); 1309 const int DstSize = DstTy.getSizeInBits(); 1310 const int SrcSize = SrcTy.getSizeInBits(); 1311 const int WideSize = WideTy.getSizeInBits(); 1312 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1313 1314 unsigned NumOps = MI.getNumOperands(); 1315 unsigned NumSrc = MI.getNumOperands() - 1; 1316 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1317 1318 if (WideSize >= DstSize) { 1319 // Directly pack the bits in the target type. 1320 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1321 1322 for (unsigned I = 2; I != NumOps; ++I) { 1323 const unsigned Offset = (I - 1) * PartSize; 1324 1325 Register SrcReg = MI.getOperand(I).getReg(); 1326 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1327 1328 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1329 1330 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1331 MRI.createGenericVirtualRegister(WideTy); 1332 1333 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1334 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1335 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1336 ResultReg = NextResult; 1337 } 1338 1339 if (WideSize > DstSize) 1340 MIRBuilder.buildTrunc(DstReg, ResultReg); 1341 else if (DstTy.isPointer()) 1342 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1343 1344 MI.eraseFromParent(); 1345 return Legalized; 1346 } 1347 1348 // Unmerge the original values to the GCD type, and recombine to the next 1349 // multiple greater than the original type. 1350 // 1351 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1352 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1353 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1354 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1355 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1356 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1357 // %12:_(s12) = G_MERGE_VALUES %10, %11 1358 // 1359 // Padding with undef if necessary: 1360 // 1361 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1362 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1363 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1364 // %7:_(s2) = G_IMPLICIT_DEF 1365 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1366 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1367 // %10:_(s12) = G_MERGE_VALUES %8, %9 1368 1369 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1370 LLT GCDTy = LLT::scalar(GCD); 1371 1372 SmallVector<Register, 8> Parts; 1373 SmallVector<Register, 8> NewMergeRegs; 1374 SmallVector<Register, 8> Unmerges; 1375 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1376 1377 // Decompose the original operands if they don't evenly divide. 1378 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1379 Register SrcReg = MI.getOperand(I).getReg(); 1380 if (GCD == SrcSize) { 1381 Unmerges.push_back(SrcReg); 1382 } else { 1383 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1384 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1385 Unmerges.push_back(Unmerge.getReg(J)); 1386 } 1387 } 1388 1389 // Pad with undef to the next size that is a multiple of the requested size. 1390 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1391 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1392 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1393 Unmerges.push_back(UndefReg); 1394 } 1395 1396 const int PartsPerGCD = WideSize / GCD; 1397 1398 // Build merges of each piece. 1399 ArrayRef<Register> Slicer(Unmerges); 1400 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1401 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1402 NewMergeRegs.push_back(Merge.getReg(0)); 1403 } 1404 1405 // A truncate may be necessary if the requested type doesn't evenly divide the 1406 // original result type. 1407 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1408 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1409 } else { 1410 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1411 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1412 } 1413 1414 MI.eraseFromParent(); 1415 return Legalized; 1416 } 1417 1418 LegalizerHelper::LegalizeResult 1419 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1420 LLT WideTy) { 1421 if (TypeIdx != 0) 1422 return UnableToLegalize; 1423 1424 int NumDst = MI.getNumOperands() - 1; 1425 Register SrcReg = MI.getOperand(NumDst).getReg(); 1426 LLT SrcTy = MRI.getType(SrcReg); 1427 if (SrcTy.isVector()) 1428 return UnableToLegalize; 1429 1430 Register Dst0Reg = MI.getOperand(0).getReg(); 1431 LLT DstTy = MRI.getType(Dst0Reg); 1432 if (!DstTy.isScalar()) 1433 return UnableToLegalize; 1434 1435 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1436 if (SrcTy.isPointer()) { 1437 const DataLayout &DL = MIRBuilder.getDataLayout(); 1438 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1439 LLVM_DEBUG( 1440 dbgs() << "Not casting non-integral address space integer\n"); 1441 return UnableToLegalize; 1442 } 1443 1444 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1445 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1446 } 1447 1448 // Widen SrcTy to WideTy. This does not affect the result, but since the 1449 // user requested this size, it is probably better handled than SrcTy and 1450 // should reduce the total number of legalization artifacts 1451 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1452 SrcTy = WideTy; 1453 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1454 } 1455 1456 // Theres no unmerge type to target. Directly extract the bits from the 1457 // source type 1458 unsigned DstSize = DstTy.getSizeInBits(); 1459 1460 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1461 for (int I = 1; I != NumDst; ++I) { 1462 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1463 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1464 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1465 } 1466 1467 MI.eraseFromParent(); 1468 return Legalized; 1469 } 1470 1471 // Extend the source to a wider type. 1472 LLT LCMTy = getLCMType(SrcTy, WideTy); 1473 1474 Register WideSrc = SrcReg; 1475 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1476 // TODO: If this is an integral address space, cast to integer and anyext. 1477 if (SrcTy.isPointer()) { 1478 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1479 return UnableToLegalize; 1480 } 1481 1482 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1483 } 1484 1485 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1486 1487 // Create a sequence of unmerges to the original results. since we may have 1488 // widened the source, we will need to pad the results with dead defs to cover 1489 // the source register. 1490 // e.g. widen s16 to s32: 1491 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1492 // 1493 // => 1494 // %4:_(s64) = G_ANYEXT %0:_(s48) 1495 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1496 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1497 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1498 1499 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1500 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1501 1502 for (int I = 0; I != NumUnmerge; ++I) { 1503 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1504 1505 for (int J = 0; J != PartsPerUnmerge; ++J) { 1506 int Idx = I * PartsPerUnmerge + J; 1507 if (Idx < NumDst) 1508 MIB.addDef(MI.getOperand(Idx).getReg()); 1509 else { 1510 // Create dead def for excess components. 1511 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1512 } 1513 } 1514 1515 MIB.addUse(Unmerge.getReg(I)); 1516 } 1517 1518 MI.eraseFromParent(); 1519 return Legalized; 1520 } 1521 1522 LegalizerHelper::LegalizeResult 1523 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1524 LLT WideTy) { 1525 Register DstReg = MI.getOperand(0).getReg(); 1526 Register SrcReg = MI.getOperand(1).getReg(); 1527 LLT SrcTy = MRI.getType(SrcReg); 1528 1529 LLT DstTy = MRI.getType(DstReg); 1530 unsigned Offset = MI.getOperand(2).getImm(); 1531 1532 if (TypeIdx == 0) { 1533 if (SrcTy.isVector() || DstTy.isVector()) 1534 return UnableToLegalize; 1535 1536 SrcOp Src(SrcReg); 1537 if (SrcTy.isPointer()) { 1538 // Extracts from pointers can be handled only if they are really just 1539 // simple integers. 1540 const DataLayout &DL = MIRBuilder.getDataLayout(); 1541 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1542 return UnableToLegalize; 1543 1544 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1545 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1546 SrcTy = SrcAsIntTy; 1547 } 1548 1549 if (DstTy.isPointer()) 1550 return UnableToLegalize; 1551 1552 if (Offset == 0) { 1553 // Avoid a shift in the degenerate case. 1554 MIRBuilder.buildTrunc(DstReg, 1555 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1556 MI.eraseFromParent(); 1557 return Legalized; 1558 } 1559 1560 // Do a shift in the source type. 1561 LLT ShiftTy = SrcTy; 1562 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1563 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1564 ShiftTy = WideTy; 1565 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1566 return UnableToLegalize; 1567 1568 auto LShr = MIRBuilder.buildLShr( 1569 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1570 MIRBuilder.buildTrunc(DstReg, LShr); 1571 MI.eraseFromParent(); 1572 return Legalized; 1573 } 1574 1575 if (SrcTy.isScalar()) { 1576 Observer.changingInstr(MI); 1577 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1578 Observer.changedInstr(MI); 1579 return Legalized; 1580 } 1581 1582 if (!SrcTy.isVector()) 1583 return UnableToLegalize; 1584 1585 if (DstTy != SrcTy.getElementType()) 1586 return UnableToLegalize; 1587 1588 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1589 return UnableToLegalize; 1590 1591 Observer.changingInstr(MI); 1592 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1593 1594 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1595 Offset); 1596 widenScalarDst(MI, WideTy.getScalarType(), 0); 1597 Observer.changedInstr(MI); 1598 return Legalized; 1599 } 1600 1601 LegalizerHelper::LegalizeResult 1602 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1603 LLT WideTy) { 1604 if (TypeIdx != 0) 1605 return UnableToLegalize; 1606 Observer.changingInstr(MI); 1607 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1608 widenScalarDst(MI, WideTy); 1609 Observer.changedInstr(MI); 1610 return Legalized; 1611 } 1612 1613 LegalizerHelper::LegalizeResult 1614 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1615 MIRBuilder.setInstr(MI); 1616 MIRBuilder.setDebugLoc(MI.getDebugLoc()); 1617 1618 switch (MI.getOpcode()) { 1619 default: 1620 return UnableToLegalize; 1621 case TargetOpcode::G_EXTRACT: 1622 return widenScalarExtract(MI, TypeIdx, WideTy); 1623 case TargetOpcode::G_INSERT: 1624 return widenScalarInsert(MI, TypeIdx, WideTy); 1625 case TargetOpcode::G_MERGE_VALUES: 1626 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1627 case TargetOpcode::G_UNMERGE_VALUES: 1628 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1629 case TargetOpcode::G_UADDO: 1630 case TargetOpcode::G_USUBO: { 1631 if (TypeIdx == 1) 1632 return UnableToLegalize; // TODO 1633 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1634 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1635 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1636 ? TargetOpcode::G_ADD 1637 : TargetOpcode::G_SUB; 1638 // Do the arithmetic in the larger type. 1639 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1640 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1641 APInt Mask = 1642 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1643 auto AndOp = MIRBuilder.buildAnd( 1644 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1645 // There is no overflow if the AndOp is the same as NewOp. 1646 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1647 // Now trunc the NewOp to the original result. 1648 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1649 MI.eraseFromParent(); 1650 return Legalized; 1651 } 1652 case TargetOpcode::G_CTTZ: 1653 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1654 case TargetOpcode::G_CTLZ: 1655 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1656 case TargetOpcode::G_CTPOP: { 1657 if (TypeIdx == 0) { 1658 Observer.changingInstr(MI); 1659 widenScalarDst(MI, WideTy, 0); 1660 Observer.changedInstr(MI); 1661 return Legalized; 1662 } 1663 1664 Register SrcReg = MI.getOperand(1).getReg(); 1665 1666 // First ZEXT the input. 1667 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1668 LLT CurTy = MRI.getType(SrcReg); 1669 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1670 // The count is the same in the larger type except if the original 1671 // value was zero. This can be handled by setting the bit just off 1672 // the top of the original type. 1673 auto TopBit = 1674 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1675 MIBSrc = MIRBuilder.buildOr( 1676 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1677 } 1678 1679 // Perform the operation at the larger size. 1680 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1681 // This is already the correct result for CTPOP and CTTZs 1682 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1683 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1684 // The correct result is NewOp - (Difference in widety and current ty). 1685 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1686 MIBNewOp = MIRBuilder.buildSub( 1687 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1688 } 1689 1690 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1691 MI.eraseFromParent(); 1692 return Legalized; 1693 } 1694 case TargetOpcode::G_BSWAP: { 1695 Observer.changingInstr(MI); 1696 Register DstReg = MI.getOperand(0).getReg(); 1697 1698 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1699 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1700 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1701 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1702 1703 MI.getOperand(0).setReg(DstExt); 1704 1705 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1706 1707 LLT Ty = MRI.getType(DstReg); 1708 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1709 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1710 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1711 1712 MIRBuilder.buildTrunc(DstReg, ShrReg); 1713 Observer.changedInstr(MI); 1714 return Legalized; 1715 } 1716 case TargetOpcode::G_BITREVERSE: { 1717 Observer.changingInstr(MI); 1718 1719 Register DstReg = MI.getOperand(0).getReg(); 1720 LLT Ty = MRI.getType(DstReg); 1721 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1722 1723 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1724 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1725 MI.getOperand(0).setReg(DstExt); 1726 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1727 1728 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1729 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1730 MIRBuilder.buildTrunc(DstReg, Shift); 1731 Observer.changedInstr(MI); 1732 return Legalized; 1733 } 1734 case TargetOpcode::G_ADD: 1735 case TargetOpcode::G_AND: 1736 case TargetOpcode::G_MUL: 1737 case TargetOpcode::G_OR: 1738 case TargetOpcode::G_XOR: 1739 case TargetOpcode::G_SUB: 1740 // Perform operation at larger width (any extension is fines here, high bits 1741 // don't affect the result) and then truncate the result back to the 1742 // original type. 1743 Observer.changingInstr(MI); 1744 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1745 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1746 widenScalarDst(MI, WideTy); 1747 Observer.changedInstr(MI); 1748 return Legalized; 1749 1750 case TargetOpcode::G_SHL: 1751 Observer.changingInstr(MI); 1752 1753 if (TypeIdx == 0) { 1754 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1755 widenScalarDst(MI, WideTy); 1756 } else { 1757 assert(TypeIdx == 1); 1758 // The "number of bits to shift" operand must preserve its value as an 1759 // unsigned integer: 1760 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1761 } 1762 1763 Observer.changedInstr(MI); 1764 return Legalized; 1765 1766 case TargetOpcode::G_SDIV: 1767 case TargetOpcode::G_SREM: 1768 case TargetOpcode::G_SMIN: 1769 case TargetOpcode::G_SMAX: 1770 Observer.changingInstr(MI); 1771 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1772 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1773 widenScalarDst(MI, WideTy); 1774 Observer.changedInstr(MI); 1775 return Legalized; 1776 1777 case TargetOpcode::G_ASHR: 1778 case TargetOpcode::G_LSHR: 1779 Observer.changingInstr(MI); 1780 1781 if (TypeIdx == 0) { 1782 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1783 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1784 1785 widenScalarSrc(MI, WideTy, 1, CvtOp); 1786 widenScalarDst(MI, WideTy); 1787 } else { 1788 assert(TypeIdx == 1); 1789 // The "number of bits to shift" operand must preserve its value as an 1790 // unsigned integer: 1791 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1792 } 1793 1794 Observer.changedInstr(MI); 1795 return Legalized; 1796 case TargetOpcode::G_UDIV: 1797 case TargetOpcode::G_UREM: 1798 case TargetOpcode::G_UMIN: 1799 case TargetOpcode::G_UMAX: 1800 Observer.changingInstr(MI); 1801 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1802 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1803 widenScalarDst(MI, WideTy); 1804 Observer.changedInstr(MI); 1805 return Legalized; 1806 1807 case TargetOpcode::G_SELECT: 1808 Observer.changingInstr(MI); 1809 if (TypeIdx == 0) { 1810 // Perform operation at larger width (any extension is fine here, high 1811 // bits don't affect the result) and then truncate the result back to the 1812 // original type. 1813 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1814 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1815 widenScalarDst(MI, WideTy); 1816 } else { 1817 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1818 // Explicit extension is required here since high bits affect the result. 1819 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1820 } 1821 Observer.changedInstr(MI); 1822 return Legalized; 1823 1824 case TargetOpcode::G_FPTOSI: 1825 case TargetOpcode::G_FPTOUI: 1826 Observer.changingInstr(MI); 1827 1828 if (TypeIdx == 0) 1829 widenScalarDst(MI, WideTy); 1830 else 1831 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1832 1833 Observer.changedInstr(MI); 1834 return Legalized; 1835 case TargetOpcode::G_SITOFP: 1836 if (TypeIdx != 1) 1837 return UnableToLegalize; 1838 Observer.changingInstr(MI); 1839 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1840 Observer.changedInstr(MI); 1841 return Legalized; 1842 1843 case TargetOpcode::G_UITOFP: 1844 if (TypeIdx != 1) 1845 return UnableToLegalize; 1846 Observer.changingInstr(MI); 1847 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1848 Observer.changedInstr(MI); 1849 return Legalized; 1850 1851 case TargetOpcode::G_LOAD: 1852 case TargetOpcode::G_SEXTLOAD: 1853 case TargetOpcode::G_ZEXTLOAD: 1854 Observer.changingInstr(MI); 1855 widenScalarDst(MI, WideTy); 1856 Observer.changedInstr(MI); 1857 return Legalized; 1858 1859 case TargetOpcode::G_STORE: { 1860 if (TypeIdx != 0) 1861 return UnableToLegalize; 1862 1863 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1864 if (!isPowerOf2_32(Ty.getSizeInBits())) 1865 return UnableToLegalize; 1866 1867 Observer.changingInstr(MI); 1868 1869 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1870 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1871 widenScalarSrc(MI, WideTy, 0, ExtType); 1872 1873 Observer.changedInstr(MI); 1874 return Legalized; 1875 } 1876 case TargetOpcode::G_CONSTANT: { 1877 MachineOperand &SrcMO = MI.getOperand(1); 1878 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1879 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1880 MRI.getType(MI.getOperand(0).getReg())); 1881 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1882 ExtOpc == TargetOpcode::G_ANYEXT) && 1883 "Illegal Extend"); 1884 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1885 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1886 ? SrcVal.sext(WideTy.getSizeInBits()) 1887 : SrcVal.zext(WideTy.getSizeInBits()); 1888 Observer.changingInstr(MI); 1889 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1890 1891 widenScalarDst(MI, WideTy); 1892 Observer.changedInstr(MI); 1893 return Legalized; 1894 } 1895 case TargetOpcode::G_FCONSTANT: { 1896 MachineOperand &SrcMO = MI.getOperand(1); 1897 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1898 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1899 bool LosesInfo; 1900 switch (WideTy.getSizeInBits()) { 1901 case 32: 1902 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1903 &LosesInfo); 1904 break; 1905 case 64: 1906 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1907 &LosesInfo); 1908 break; 1909 default: 1910 return UnableToLegalize; 1911 } 1912 1913 assert(!LosesInfo && "extend should always be lossless"); 1914 1915 Observer.changingInstr(MI); 1916 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1917 1918 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1919 Observer.changedInstr(MI); 1920 return Legalized; 1921 } 1922 case TargetOpcode::G_IMPLICIT_DEF: { 1923 Observer.changingInstr(MI); 1924 widenScalarDst(MI, WideTy); 1925 Observer.changedInstr(MI); 1926 return Legalized; 1927 } 1928 case TargetOpcode::G_BRCOND: 1929 Observer.changingInstr(MI); 1930 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1931 Observer.changedInstr(MI); 1932 return Legalized; 1933 1934 case TargetOpcode::G_FCMP: 1935 Observer.changingInstr(MI); 1936 if (TypeIdx == 0) 1937 widenScalarDst(MI, WideTy); 1938 else { 1939 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1940 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1941 } 1942 Observer.changedInstr(MI); 1943 return Legalized; 1944 1945 case TargetOpcode::G_ICMP: 1946 Observer.changingInstr(MI); 1947 if (TypeIdx == 0) 1948 widenScalarDst(MI, WideTy); 1949 else { 1950 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1951 MI.getOperand(1).getPredicate())) 1952 ? TargetOpcode::G_SEXT 1953 : TargetOpcode::G_ZEXT; 1954 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1955 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1956 } 1957 Observer.changedInstr(MI); 1958 return Legalized; 1959 1960 case TargetOpcode::G_PTR_ADD: 1961 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1962 Observer.changingInstr(MI); 1963 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1964 Observer.changedInstr(MI); 1965 return Legalized; 1966 1967 case TargetOpcode::G_PHI: { 1968 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1969 1970 Observer.changingInstr(MI); 1971 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1972 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1973 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1974 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1975 } 1976 1977 MachineBasicBlock &MBB = *MI.getParent(); 1978 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1979 widenScalarDst(MI, WideTy); 1980 Observer.changedInstr(MI); 1981 return Legalized; 1982 } 1983 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1984 if (TypeIdx == 0) { 1985 Register VecReg = MI.getOperand(1).getReg(); 1986 LLT VecTy = MRI.getType(VecReg); 1987 Observer.changingInstr(MI); 1988 1989 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1990 WideTy.getSizeInBits()), 1991 1, TargetOpcode::G_SEXT); 1992 1993 widenScalarDst(MI, WideTy, 0); 1994 Observer.changedInstr(MI); 1995 return Legalized; 1996 } 1997 1998 if (TypeIdx != 2) 1999 return UnableToLegalize; 2000 Observer.changingInstr(MI); 2001 // TODO: Probably should be zext 2002 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2003 Observer.changedInstr(MI); 2004 return Legalized; 2005 } 2006 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2007 if (TypeIdx == 1) { 2008 Observer.changingInstr(MI); 2009 2010 Register VecReg = MI.getOperand(1).getReg(); 2011 LLT VecTy = MRI.getType(VecReg); 2012 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2013 2014 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2015 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2016 widenScalarDst(MI, WideVecTy, 0); 2017 Observer.changedInstr(MI); 2018 return Legalized; 2019 } 2020 2021 if (TypeIdx == 2) { 2022 Observer.changingInstr(MI); 2023 // TODO: Probably should be zext 2024 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2025 Observer.changedInstr(MI); 2026 } 2027 2028 return Legalized; 2029 } 2030 case TargetOpcode::G_FADD: 2031 case TargetOpcode::G_FMUL: 2032 case TargetOpcode::G_FSUB: 2033 case TargetOpcode::G_FMA: 2034 case TargetOpcode::G_FMAD: 2035 case TargetOpcode::G_FNEG: 2036 case TargetOpcode::G_FABS: 2037 case TargetOpcode::G_FCANONICALIZE: 2038 case TargetOpcode::G_FMINNUM: 2039 case TargetOpcode::G_FMAXNUM: 2040 case TargetOpcode::G_FMINNUM_IEEE: 2041 case TargetOpcode::G_FMAXNUM_IEEE: 2042 case TargetOpcode::G_FMINIMUM: 2043 case TargetOpcode::G_FMAXIMUM: 2044 case TargetOpcode::G_FDIV: 2045 case TargetOpcode::G_FREM: 2046 case TargetOpcode::G_FCEIL: 2047 case TargetOpcode::G_FFLOOR: 2048 case TargetOpcode::G_FCOS: 2049 case TargetOpcode::G_FSIN: 2050 case TargetOpcode::G_FLOG10: 2051 case TargetOpcode::G_FLOG: 2052 case TargetOpcode::G_FLOG2: 2053 case TargetOpcode::G_FRINT: 2054 case TargetOpcode::G_FNEARBYINT: 2055 case TargetOpcode::G_FSQRT: 2056 case TargetOpcode::G_FEXP: 2057 case TargetOpcode::G_FEXP2: 2058 case TargetOpcode::G_FPOW: 2059 case TargetOpcode::G_INTRINSIC_TRUNC: 2060 case TargetOpcode::G_INTRINSIC_ROUND: 2061 assert(TypeIdx == 0); 2062 Observer.changingInstr(MI); 2063 2064 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2065 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2066 2067 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2068 Observer.changedInstr(MI); 2069 return Legalized; 2070 case TargetOpcode::G_INTTOPTR: 2071 if (TypeIdx != 1) 2072 return UnableToLegalize; 2073 2074 Observer.changingInstr(MI); 2075 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2076 Observer.changedInstr(MI); 2077 return Legalized; 2078 case TargetOpcode::G_PTRTOINT: 2079 if (TypeIdx != 0) 2080 return UnableToLegalize; 2081 2082 Observer.changingInstr(MI); 2083 widenScalarDst(MI, WideTy, 0); 2084 Observer.changedInstr(MI); 2085 return Legalized; 2086 case TargetOpcode::G_BUILD_VECTOR: { 2087 Observer.changingInstr(MI); 2088 2089 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2090 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2091 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2092 2093 // Avoid changing the result vector type if the source element type was 2094 // requested. 2095 if (TypeIdx == 1) { 2096 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2097 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2098 } else { 2099 widenScalarDst(MI, WideTy, 0); 2100 } 2101 2102 Observer.changedInstr(MI); 2103 return Legalized; 2104 } 2105 case TargetOpcode::G_SEXT_INREG: 2106 if (TypeIdx != 0) 2107 return UnableToLegalize; 2108 2109 Observer.changingInstr(MI); 2110 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2111 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2112 Observer.changedInstr(MI); 2113 return Legalized; 2114 } 2115 } 2116 2117 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2118 MachineIRBuilder &B, Register Src, LLT Ty) { 2119 auto Unmerge = B.buildUnmerge(Ty, Src); 2120 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2121 Pieces.push_back(Unmerge.getReg(I)); 2122 } 2123 2124 LegalizerHelper::LegalizeResult 2125 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2126 Register Dst = MI.getOperand(0).getReg(); 2127 Register Src = MI.getOperand(1).getReg(); 2128 LLT DstTy = MRI.getType(Dst); 2129 LLT SrcTy = MRI.getType(Src); 2130 2131 if (SrcTy.isVector() && !DstTy.isVector()) { 2132 SmallVector<Register, 8> SrcRegs; 2133 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2134 MIRBuilder.buildMerge(Dst, SrcRegs); 2135 MI.eraseFromParent(); 2136 return Legalized; 2137 } 2138 2139 if (DstTy.isVector() && !SrcTy.isVector()) { 2140 SmallVector<Register, 8> SrcRegs; 2141 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2142 MIRBuilder.buildMerge(Dst, SrcRegs); 2143 MI.eraseFromParent(); 2144 return Legalized; 2145 } 2146 2147 return UnableToLegalize; 2148 } 2149 2150 LegalizerHelper::LegalizeResult 2151 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2152 MIRBuilder.setInstr(MI); 2153 2154 switch (MI.getOpcode()) { 2155 case TargetOpcode::G_LOAD: { 2156 if (TypeIdx != 0) 2157 return UnableToLegalize; 2158 2159 Observer.changingInstr(MI); 2160 bitcastDst(MI, CastTy, 0); 2161 Observer.changedInstr(MI); 2162 return Legalized; 2163 } 2164 case TargetOpcode::G_STORE: { 2165 if (TypeIdx != 0) 2166 return UnableToLegalize; 2167 2168 Observer.changingInstr(MI); 2169 bitcastSrc(MI, CastTy, 0); 2170 Observer.changedInstr(MI); 2171 return Legalized; 2172 } 2173 case TargetOpcode::G_SELECT: { 2174 if (TypeIdx != 0) 2175 return UnableToLegalize; 2176 2177 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2178 LLVM_DEBUG( 2179 dbgs() << "bitcast action not implemented for vector select\n"); 2180 return UnableToLegalize; 2181 } 2182 2183 Observer.changingInstr(MI); 2184 bitcastSrc(MI, CastTy, 2); 2185 bitcastSrc(MI, CastTy, 3); 2186 bitcastDst(MI, CastTy, 0); 2187 Observer.changedInstr(MI); 2188 return Legalized; 2189 } 2190 case TargetOpcode::G_AND: 2191 case TargetOpcode::G_OR: 2192 case TargetOpcode::G_XOR: { 2193 Observer.changingInstr(MI); 2194 bitcastSrc(MI, CastTy, 1); 2195 bitcastSrc(MI, CastTy, 2); 2196 bitcastDst(MI, CastTy, 0); 2197 Observer.changedInstr(MI); 2198 return Legalized; 2199 } 2200 default: 2201 return UnableToLegalize; 2202 } 2203 } 2204 2205 LegalizerHelper::LegalizeResult 2206 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2207 using namespace TargetOpcode; 2208 MIRBuilder.setInstr(MI); 2209 MIRBuilder.setDebugLoc(MI.getDebugLoc()); 2210 2211 switch(MI.getOpcode()) { 2212 default: 2213 return UnableToLegalize; 2214 case TargetOpcode::G_BITCAST: 2215 return lowerBitcast(MI); 2216 case TargetOpcode::G_SREM: 2217 case TargetOpcode::G_UREM: { 2218 auto Quot = 2219 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2220 {MI.getOperand(1), MI.getOperand(2)}); 2221 2222 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2223 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2224 MI.eraseFromParent(); 2225 return Legalized; 2226 } 2227 case TargetOpcode::G_SADDO: 2228 case TargetOpcode::G_SSUBO: 2229 return lowerSADDO_SSUBO(MI); 2230 case TargetOpcode::G_SMULO: 2231 case TargetOpcode::G_UMULO: { 2232 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2233 // result. 2234 Register Res = MI.getOperand(0).getReg(); 2235 Register Overflow = MI.getOperand(1).getReg(); 2236 Register LHS = MI.getOperand(2).getReg(); 2237 Register RHS = MI.getOperand(3).getReg(); 2238 2239 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2240 ? TargetOpcode::G_SMULH 2241 : TargetOpcode::G_UMULH; 2242 2243 Observer.changingInstr(MI); 2244 const auto &TII = MIRBuilder.getTII(); 2245 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2246 MI.RemoveOperand(1); 2247 Observer.changedInstr(MI); 2248 2249 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2250 2251 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2252 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2253 2254 // For *signed* multiply, overflow is detected by checking: 2255 // (hi != (lo >> bitwidth-1)) 2256 if (Opcode == TargetOpcode::G_SMULH) { 2257 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2258 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2259 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2260 } else { 2261 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2262 } 2263 return Legalized; 2264 } 2265 case TargetOpcode::G_FNEG: { 2266 // TODO: Handle vector types once we are able to 2267 // represent them. 2268 if (Ty.isVector()) 2269 return UnableToLegalize; 2270 Register Res = MI.getOperand(0).getReg(); 2271 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2272 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2273 if (!ZeroTy) 2274 return UnableToLegalize; 2275 ConstantFP &ZeroForNegation = 2276 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2277 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2278 Register SubByReg = MI.getOperand(1).getReg(); 2279 Register ZeroReg = Zero.getReg(0); 2280 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2281 MI.eraseFromParent(); 2282 return Legalized; 2283 } 2284 case TargetOpcode::G_FSUB: { 2285 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2286 // First, check if G_FNEG is marked as Lower. If so, we may 2287 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2288 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2289 return UnableToLegalize; 2290 Register Res = MI.getOperand(0).getReg(); 2291 Register LHS = MI.getOperand(1).getReg(); 2292 Register RHS = MI.getOperand(2).getReg(); 2293 Register Neg = MRI.createGenericVirtualRegister(Ty); 2294 MIRBuilder.buildFNeg(Neg, RHS); 2295 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2296 MI.eraseFromParent(); 2297 return Legalized; 2298 } 2299 case TargetOpcode::G_FMAD: 2300 return lowerFMad(MI); 2301 case TargetOpcode::G_FFLOOR: 2302 return lowerFFloor(MI); 2303 case TargetOpcode::G_INTRINSIC_ROUND: 2304 return lowerIntrinsicRound(MI); 2305 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2306 Register OldValRes = MI.getOperand(0).getReg(); 2307 Register SuccessRes = MI.getOperand(1).getReg(); 2308 Register Addr = MI.getOperand(2).getReg(); 2309 Register CmpVal = MI.getOperand(3).getReg(); 2310 Register NewVal = MI.getOperand(4).getReg(); 2311 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2312 **MI.memoperands_begin()); 2313 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2314 MI.eraseFromParent(); 2315 return Legalized; 2316 } 2317 case TargetOpcode::G_LOAD: 2318 case TargetOpcode::G_SEXTLOAD: 2319 case TargetOpcode::G_ZEXTLOAD: { 2320 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2321 Register DstReg = MI.getOperand(0).getReg(); 2322 Register PtrReg = MI.getOperand(1).getReg(); 2323 LLT DstTy = MRI.getType(DstReg); 2324 auto &MMO = **MI.memoperands_begin(); 2325 2326 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2327 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2328 // This load needs splitting into power of 2 sized loads. 2329 if (DstTy.isVector()) 2330 return UnableToLegalize; 2331 if (isPowerOf2_32(DstTy.getSizeInBits())) 2332 return UnableToLegalize; // Don't know what we're being asked to do. 2333 2334 // Our strategy here is to generate anyextending loads for the smaller 2335 // types up to next power-2 result type, and then combine the two larger 2336 // result values together, before truncating back down to the non-pow-2 2337 // type. 2338 // E.g. v1 = i24 load => 2339 // v2 = i32 zextload (2 byte) 2340 // v3 = i32 load (1 byte) 2341 // v4 = i32 shl v3, 16 2342 // v5 = i32 or v4, v2 2343 // v1 = i24 trunc v5 2344 // By doing this we generate the correct truncate which should get 2345 // combined away as an artifact with a matching extend. 2346 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2347 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2348 2349 MachineFunction &MF = MIRBuilder.getMF(); 2350 MachineMemOperand *LargeMMO = 2351 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2352 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2353 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2354 2355 LLT PtrTy = MRI.getType(PtrReg); 2356 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2357 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2358 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2359 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2360 auto LargeLoad = MIRBuilder.buildLoadInstr( 2361 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2362 2363 auto OffsetCst = MIRBuilder.buildConstant( 2364 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2365 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2366 auto SmallPtr = 2367 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2368 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2369 *SmallMMO); 2370 2371 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2372 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2373 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2374 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2375 MI.eraseFromParent(); 2376 return Legalized; 2377 } 2378 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2379 MI.eraseFromParent(); 2380 return Legalized; 2381 } 2382 2383 if (DstTy.isScalar()) { 2384 Register TmpReg = 2385 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2386 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2387 switch (MI.getOpcode()) { 2388 default: 2389 llvm_unreachable("Unexpected opcode"); 2390 case TargetOpcode::G_LOAD: 2391 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2392 break; 2393 case TargetOpcode::G_SEXTLOAD: 2394 MIRBuilder.buildSExt(DstReg, TmpReg); 2395 break; 2396 case TargetOpcode::G_ZEXTLOAD: 2397 MIRBuilder.buildZExt(DstReg, TmpReg); 2398 break; 2399 } 2400 MI.eraseFromParent(); 2401 return Legalized; 2402 } 2403 2404 return UnableToLegalize; 2405 } 2406 case TargetOpcode::G_STORE: { 2407 // Lower a non-power of 2 store into multiple pow-2 stores. 2408 // E.g. split an i24 store into an i16 store + i8 store. 2409 // We do this by first extending the stored value to the next largest power 2410 // of 2 type, and then using truncating stores to store the components. 2411 // By doing this, likewise with G_LOAD, generate an extend that can be 2412 // artifact-combined away instead of leaving behind extracts. 2413 Register SrcReg = MI.getOperand(0).getReg(); 2414 Register PtrReg = MI.getOperand(1).getReg(); 2415 LLT SrcTy = MRI.getType(SrcReg); 2416 MachineMemOperand &MMO = **MI.memoperands_begin(); 2417 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2418 return UnableToLegalize; 2419 if (SrcTy.isVector()) 2420 return UnableToLegalize; 2421 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2422 return UnableToLegalize; // Don't know what we're being asked to do. 2423 2424 // Extend to the next pow-2. 2425 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2426 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2427 2428 // Obtain the smaller value by shifting away the larger value. 2429 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2430 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2431 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2432 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2433 2434 // Generate the PtrAdd and truncating stores. 2435 LLT PtrTy = MRI.getType(PtrReg); 2436 auto OffsetCst = MIRBuilder.buildConstant( 2437 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2438 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2439 auto SmallPtr = 2440 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2441 2442 MachineFunction &MF = MIRBuilder.getMF(); 2443 MachineMemOperand *LargeMMO = 2444 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2445 MachineMemOperand *SmallMMO = 2446 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2447 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2448 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2449 MI.eraseFromParent(); 2450 return Legalized; 2451 } 2452 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2453 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2454 case TargetOpcode::G_CTLZ: 2455 case TargetOpcode::G_CTTZ: 2456 case TargetOpcode::G_CTPOP: 2457 return lowerBitCount(MI, TypeIdx, Ty); 2458 case G_UADDO: { 2459 Register Res = MI.getOperand(0).getReg(); 2460 Register CarryOut = MI.getOperand(1).getReg(); 2461 Register LHS = MI.getOperand(2).getReg(); 2462 Register RHS = MI.getOperand(3).getReg(); 2463 2464 MIRBuilder.buildAdd(Res, LHS, RHS); 2465 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2466 2467 MI.eraseFromParent(); 2468 return Legalized; 2469 } 2470 case G_UADDE: { 2471 Register Res = MI.getOperand(0).getReg(); 2472 Register CarryOut = MI.getOperand(1).getReg(); 2473 Register LHS = MI.getOperand(2).getReg(); 2474 Register RHS = MI.getOperand(3).getReg(); 2475 Register CarryIn = MI.getOperand(4).getReg(); 2476 LLT Ty = MRI.getType(Res); 2477 2478 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2479 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2480 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2481 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2482 2483 MI.eraseFromParent(); 2484 return Legalized; 2485 } 2486 case G_USUBO: { 2487 Register Res = MI.getOperand(0).getReg(); 2488 Register BorrowOut = MI.getOperand(1).getReg(); 2489 Register LHS = MI.getOperand(2).getReg(); 2490 Register RHS = MI.getOperand(3).getReg(); 2491 2492 MIRBuilder.buildSub(Res, LHS, RHS); 2493 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2494 2495 MI.eraseFromParent(); 2496 return Legalized; 2497 } 2498 case G_USUBE: { 2499 Register Res = MI.getOperand(0).getReg(); 2500 Register BorrowOut = MI.getOperand(1).getReg(); 2501 Register LHS = MI.getOperand(2).getReg(); 2502 Register RHS = MI.getOperand(3).getReg(); 2503 Register BorrowIn = MI.getOperand(4).getReg(); 2504 const LLT CondTy = MRI.getType(BorrowOut); 2505 const LLT Ty = MRI.getType(Res); 2506 2507 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2508 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2509 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2510 2511 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2512 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2513 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2514 2515 MI.eraseFromParent(); 2516 return Legalized; 2517 } 2518 case G_UITOFP: 2519 return lowerUITOFP(MI, TypeIdx, Ty); 2520 case G_SITOFP: 2521 return lowerSITOFP(MI, TypeIdx, Ty); 2522 case G_FPTOUI: 2523 return lowerFPTOUI(MI, TypeIdx, Ty); 2524 case G_FPTOSI: 2525 return lowerFPTOSI(MI); 2526 case G_FPTRUNC: 2527 return lowerFPTRUNC(MI, TypeIdx, Ty); 2528 case G_SMIN: 2529 case G_SMAX: 2530 case G_UMIN: 2531 case G_UMAX: 2532 return lowerMinMax(MI, TypeIdx, Ty); 2533 case G_FCOPYSIGN: 2534 return lowerFCopySign(MI, TypeIdx, Ty); 2535 case G_FMINNUM: 2536 case G_FMAXNUM: 2537 return lowerFMinNumMaxNum(MI); 2538 case G_UNMERGE_VALUES: 2539 return lowerUnmergeValues(MI); 2540 case TargetOpcode::G_SEXT_INREG: { 2541 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2542 int64_t SizeInBits = MI.getOperand(2).getImm(); 2543 2544 Register DstReg = MI.getOperand(0).getReg(); 2545 Register SrcReg = MI.getOperand(1).getReg(); 2546 LLT DstTy = MRI.getType(DstReg); 2547 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2548 2549 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2550 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2551 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2552 MI.eraseFromParent(); 2553 return Legalized; 2554 } 2555 case G_SHUFFLE_VECTOR: 2556 return lowerShuffleVector(MI); 2557 case G_DYN_STACKALLOC: 2558 return lowerDynStackAlloc(MI); 2559 case G_EXTRACT: 2560 return lowerExtract(MI); 2561 case G_INSERT: 2562 return lowerInsert(MI); 2563 case G_BSWAP: 2564 return lowerBswap(MI); 2565 case G_BITREVERSE: 2566 return lowerBitreverse(MI); 2567 case G_READ_REGISTER: 2568 case G_WRITE_REGISTER: 2569 return lowerReadWriteRegister(MI); 2570 } 2571 } 2572 2573 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2574 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2575 SmallVector<Register, 2> DstRegs; 2576 2577 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2578 Register DstReg = MI.getOperand(0).getReg(); 2579 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2580 int NumParts = Size / NarrowSize; 2581 // FIXME: Don't know how to handle the situation where the small vectors 2582 // aren't all the same size yet. 2583 if (Size % NarrowSize != 0) 2584 return UnableToLegalize; 2585 2586 for (int i = 0; i < NumParts; ++i) { 2587 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2588 MIRBuilder.buildUndef(TmpReg); 2589 DstRegs.push_back(TmpReg); 2590 } 2591 2592 if (NarrowTy.isVector()) 2593 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2594 else 2595 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2596 2597 MI.eraseFromParent(); 2598 return Legalized; 2599 } 2600 2601 // Handles operands with different types, but all must have the same number of 2602 // elements. There will be multiple type indexes. NarrowTy is expected to have 2603 // the result element type. 2604 LegalizerHelper::LegalizeResult 2605 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2606 LLT NarrowTy) { 2607 assert(TypeIdx == 0 && "only one type index expected"); 2608 2609 const unsigned Opc = MI.getOpcode(); 2610 const int NumOps = MI.getNumOperands() - 1; 2611 const Register DstReg = MI.getOperand(0).getReg(); 2612 const unsigned Flags = MI.getFlags(); 2613 2614 assert(NumOps <= 3 && "expected instrution with 1 result and 1-3 sources"); 2615 2616 SmallVector<Register, 8> ExtractedRegs[3]; 2617 SmallVector<Register, 8> Parts; 2618 2619 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2620 2621 // Break down all the sources into NarrowTy pieces we can operate on. This may 2622 // involve creating merges to a wider type, padded with undef. 2623 for (int I = 0; I != NumOps; ++I) { 2624 Register SrcReg = MI.getOperand(I + 1).getReg(); 2625 LLT SrcTy = MRI.getType(SrcReg); 2626 2627 // Each operand may have its own type, but only the number of elements 2628 // matters. 2629 LLT OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 2630 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 2631 2632 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 2633 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, 2634 ExtractedRegs[I], TargetOpcode::G_ANYEXT); 2635 } 2636 2637 SmallVector<Register, 8> ResultRegs; 2638 2639 // Input operands for each sub-instruction. 2640 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 2641 2642 int NumParts = ExtractedRegs[0].size(); 2643 const LLT DstTy = MRI.getType(DstReg); 2644 const unsigned DstSize = DstTy.getSizeInBits(); 2645 LLT DstLCMTy = getLCMType(DstTy, NarrowTy); 2646 2647 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2648 2649 // We widened the source registers to satisfy merge/unmerge size 2650 // constraints. We'll have some extra fully undef parts. 2651 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 2652 2653 for (int I = 0; I != NumRealParts; ++I) { 2654 // Emit this instruction on each of the split pieces. 2655 for (int J = 0; J != NumOps; ++J) 2656 InputRegs[J] = ExtractedRegs[J][I]; 2657 2658 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags); 2659 ResultRegs.push_back(Inst.getReg(0)); 2660 } 2661 2662 // Fill out the widened result with undef instead of creating instructions 2663 // with undef inputs. 2664 int NumUndefParts = NumParts - NumRealParts; 2665 if (NumUndefParts != 0) 2666 ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0)); 2667 2668 // Extract the possibly padded result to the original result register. 2669 buildWidenedRemergeToDst(DstReg, DstLCMTy, ResultRegs); 2670 2671 MI.eraseFromParent(); 2672 return Legalized; 2673 } 2674 2675 // Handle splitting vector operations which need to have the same number of 2676 // elements in each type index, but each type index may have a different element 2677 // type. 2678 // 2679 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2680 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2681 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2682 // 2683 // Also handles some irregular breakdown cases, e.g. 2684 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2685 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2686 // s64 = G_SHL s64, s32 2687 LegalizerHelper::LegalizeResult 2688 LegalizerHelper::fewerElementsVectorMultiEltType( 2689 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2690 if (TypeIdx != 0) 2691 return UnableToLegalize; 2692 2693 const LLT NarrowTy0 = NarrowTyArg; 2694 const unsigned NewNumElts = 2695 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2696 2697 const Register DstReg = MI.getOperand(0).getReg(); 2698 LLT DstTy = MRI.getType(DstReg); 2699 LLT LeftoverTy0; 2700 2701 // All of the operands need to have the same number of elements, so if we can 2702 // determine a type breakdown for the result type, we can for all of the 2703 // source types. 2704 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2705 if (NumParts < 0) 2706 return UnableToLegalize; 2707 2708 SmallVector<MachineInstrBuilder, 4> NewInsts; 2709 2710 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2711 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2712 2713 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2714 LLT LeftoverTy; 2715 Register SrcReg = MI.getOperand(I).getReg(); 2716 LLT SrcTyI = MRI.getType(SrcReg); 2717 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2718 LLT LeftoverTyI; 2719 2720 // Split this operand into the requested typed registers, and any leftover 2721 // required to reproduce the original type. 2722 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2723 LeftoverRegs)) 2724 return UnableToLegalize; 2725 2726 if (I == 1) { 2727 // For the first operand, create an instruction for each part and setup 2728 // the result. 2729 for (Register PartReg : PartRegs) { 2730 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2731 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2732 .addDef(PartDstReg) 2733 .addUse(PartReg)); 2734 DstRegs.push_back(PartDstReg); 2735 } 2736 2737 for (Register LeftoverReg : LeftoverRegs) { 2738 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2739 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2740 .addDef(PartDstReg) 2741 .addUse(LeftoverReg)); 2742 LeftoverDstRegs.push_back(PartDstReg); 2743 } 2744 } else { 2745 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2746 2747 // Add the newly created operand splits to the existing instructions. The 2748 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2749 // pieces. 2750 unsigned InstCount = 0; 2751 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2752 NewInsts[InstCount++].addUse(PartRegs[J]); 2753 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2754 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2755 } 2756 2757 PartRegs.clear(); 2758 LeftoverRegs.clear(); 2759 } 2760 2761 // Insert the newly built operations and rebuild the result register. 2762 for (auto &MIB : NewInsts) 2763 MIRBuilder.insertInstr(MIB); 2764 2765 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2766 2767 MI.eraseFromParent(); 2768 return Legalized; 2769 } 2770 2771 LegalizerHelper::LegalizeResult 2772 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2773 LLT NarrowTy) { 2774 if (TypeIdx != 0) 2775 return UnableToLegalize; 2776 2777 Register DstReg = MI.getOperand(0).getReg(); 2778 Register SrcReg = MI.getOperand(1).getReg(); 2779 LLT DstTy = MRI.getType(DstReg); 2780 LLT SrcTy = MRI.getType(SrcReg); 2781 2782 LLT NarrowTy0 = NarrowTy; 2783 LLT NarrowTy1; 2784 unsigned NumParts; 2785 2786 if (NarrowTy.isVector()) { 2787 // Uneven breakdown not handled. 2788 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2789 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2790 return UnableToLegalize; 2791 2792 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2793 } else { 2794 NumParts = DstTy.getNumElements(); 2795 NarrowTy1 = SrcTy.getElementType(); 2796 } 2797 2798 SmallVector<Register, 4> SrcRegs, DstRegs; 2799 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2800 2801 for (unsigned I = 0; I < NumParts; ++I) { 2802 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2803 MachineInstr *NewInst = 2804 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2805 2806 NewInst->setFlags(MI.getFlags()); 2807 DstRegs.push_back(DstReg); 2808 } 2809 2810 if (NarrowTy.isVector()) 2811 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2812 else 2813 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2814 2815 MI.eraseFromParent(); 2816 return Legalized; 2817 } 2818 2819 LegalizerHelper::LegalizeResult 2820 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2821 LLT NarrowTy) { 2822 Register DstReg = MI.getOperand(0).getReg(); 2823 Register Src0Reg = MI.getOperand(2).getReg(); 2824 LLT DstTy = MRI.getType(DstReg); 2825 LLT SrcTy = MRI.getType(Src0Reg); 2826 2827 unsigned NumParts; 2828 LLT NarrowTy0, NarrowTy1; 2829 2830 if (TypeIdx == 0) { 2831 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2832 unsigned OldElts = DstTy.getNumElements(); 2833 2834 NarrowTy0 = NarrowTy; 2835 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2836 NarrowTy1 = NarrowTy.isVector() ? 2837 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2838 SrcTy.getElementType(); 2839 2840 } else { 2841 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2842 unsigned OldElts = SrcTy.getNumElements(); 2843 2844 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2845 NarrowTy.getNumElements(); 2846 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2847 DstTy.getScalarSizeInBits()); 2848 NarrowTy1 = NarrowTy; 2849 } 2850 2851 // FIXME: Don't know how to handle the situation where the small vectors 2852 // aren't all the same size yet. 2853 if (NarrowTy1.isVector() && 2854 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2855 return UnableToLegalize; 2856 2857 CmpInst::Predicate Pred 2858 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2859 2860 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2861 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2862 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2863 2864 for (unsigned I = 0; I < NumParts; ++I) { 2865 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2866 DstRegs.push_back(DstReg); 2867 2868 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2869 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2870 else { 2871 MachineInstr *NewCmp 2872 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2873 NewCmp->setFlags(MI.getFlags()); 2874 } 2875 } 2876 2877 if (NarrowTy1.isVector()) 2878 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2879 else 2880 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2881 2882 MI.eraseFromParent(); 2883 return Legalized; 2884 } 2885 2886 LegalizerHelper::LegalizeResult 2887 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2888 LLT NarrowTy) { 2889 Register DstReg = MI.getOperand(0).getReg(); 2890 Register CondReg = MI.getOperand(1).getReg(); 2891 2892 unsigned NumParts = 0; 2893 LLT NarrowTy0, NarrowTy1; 2894 2895 LLT DstTy = MRI.getType(DstReg); 2896 LLT CondTy = MRI.getType(CondReg); 2897 unsigned Size = DstTy.getSizeInBits(); 2898 2899 assert(TypeIdx == 0 || CondTy.isVector()); 2900 2901 if (TypeIdx == 0) { 2902 NarrowTy0 = NarrowTy; 2903 NarrowTy1 = CondTy; 2904 2905 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2906 // FIXME: Don't know how to handle the situation where the small vectors 2907 // aren't all the same size yet. 2908 if (Size % NarrowSize != 0) 2909 return UnableToLegalize; 2910 2911 NumParts = Size / NarrowSize; 2912 2913 // Need to break down the condition type 2914 if (CondTy.isVector()) { 2915 if (CondTy.getNumElements() == NumParts) 2916 NarrowTy1 = CondTy.getElementType(); 2917 else 2918 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2919 CondTy.getScalarSizeInBits()); 2920 } 2921 } else { 2922 NumParts = CondTy.getNumElements(); 2923 if (NarrowTy.isVector()) { 2924 // TODO: Handle uneven breakdown. 2925 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2926 return UnableToLegalize; 2927 2928 return UnableToLegalize; 2929 } else { 2930 NarrowTy0 = DstTy.getElementType(); 2931 NarrowTy1 = NarrowTy; 2932 } 2933 } 2934 2935 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2936 if (CondTy.isVector()) 2937 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2938 2939 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2940 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2941 2942 for (unsigned i = 0; i < NumParts; ++i) { 2943 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2944 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2945 Src1Regs[i], Src2Regs[i]); 2946 DstRegs.push_back(DstReg); 2947 } 2948 2949 if (NarrowTy0.isVector()) 2950 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2951 else 2952 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2953 2954 MI.eraseFromParent(); 2955 return Legalized; 2956 } 2957 2958 LegalizerHelper::LegalizeResult 2959 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2960 LLT NarrowTy) { 2961 const Register DstReg = MI.getOperand(0).getReg(); 2962 LLT PhiTy = MRI.getType(DstReg); 2963 LLT LeftoverTy; 2964 2965 // All of the operands need to have the same number of elements, so if we can 2966 // determine a type breakdown for the result type, we can for all of the 2967 // source types. 2968 int NumParts, NumLeftover; 2969 std::tie(NumParts, NumLeftover) 2970 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2971 if (NumParts < 0) 2972 return UnableToLegalize; 2973 2974 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2975 SmallVector<MachineInstrBuilder, 4> NewInsts; 2976 2977 const int TotalNumParts = NumParts + NumLeftover; 2978 2979 // Insert the new phis in the result block first. 2980 for (int I = 0; I != TotalNumParts; ++I) { 2981 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2982 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2983 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2984 .addDef(PartDstReg)); 2985 if (I < NumParts) 2986 DstRegs.push_back(PartDstReg); 2987 else 2988 LeftoverDstRegs.push_back(PartDstReg); 2989 } 2990 2991 MachineBasicBlock *MBB = MI.getParent(); 2992 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2993 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2994 2995 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2996 2997 // Insert code to extract the incoming values in each predecessor block. 2998 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2999 PartRegs.clear(); 3000 LeftoverRegs.clear(); 3001 3002 Register SrcReg = MI.getOperand(I).getReg(); 3003 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3004 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3005 3006 LLT Unused; 3007 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3008 LeftoverRegs)) 3009 return UnableToLegalize; 3010 3011 // Add the newly created operand splits to the existing instructions. The 3012 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3013 // pieces. 3014 for (int J = 0; J != TotalNumParts; ++J) { 3015 MachineInstrBuilder MIB = NewInsts[J]; 3016 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3017 MIB.addMBB(&OpMBB); 3018 } 3019 } 3020 3021 MI.eraseFromParent(); 3022 return Legalized; 3023 } 3024 3025 LegalizerHelper::LegalizeResult 3026 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3027 unsigned TypeIdx, 3028 LLT NarrowTy) { 3029 if (TypeIdx != 1) 3030 return UnableToLegalize; 3031 3032 const int NumDst = MI.getNumOperands() - 1; 3033 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3034 LLT SrcTy = MRI.getType(SrcReg); 3035 3036 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3037 3038 // TODO: Create sequence of extracts. 3039 if (DstTy == NarrowTy) 3040 return UnableToLegalize; 3041 3042 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3043 if (DstTy == GCDTy) { 3044 // This would just be a copy of the same unmerge. 3045 // TODO: Create extracts, pad with undef and create intermediate merges. 3046 return UnableToLegalize; 3047 } 3048 3049 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3050 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3051 const int PartsPerUnmerge = NumDst / NumUnmerge; 3052 3053 for (int I = 0; I != NumUnmerge; ++I) { 3054 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3055 3056 for (int J = 0; J != PartsPerUnmerge; ++J) 3057 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3058 MIB.addUse(Unmerge.getReg(I)); 3059 } 3060 3061 MI.eraseFromParent(); 3062 return Legalized; 3063 } 3064 3065 LegalizerHelper::LegalizeResult 3066 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3067 unsigned TypeIdx, 3068 LLT NarrowTy) { 3069 assert(TypeIdx == 0 && "not a vector type index"); 3070 Register DstReg = MI.getOperand(0).getReg(); 3071 LLT DstTy = MRI.getType(DstReg); 3072 LLT SrcTy = DstTy.getElementType(); 3073 3074 int DstNumElts = DstTy.getNumElements(); 3075 int NarrowNumElts = NarrowTy.getNumElements(); 3076 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3077 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3078 3079 SmallVector<Register, 8> ConcatOps; 3080 SmallVector<Register, 8> SubBuildVector; 3081 3082 Register UndefReg; 3083 if (WidenedDstTy != DstTy) 3084 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3085 3086 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3087 // necessary. 3088 // 3089 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3090 // -> <2 x s16> 3091 // 3092 // %4:_(s16) = G_IMPLICIT_DEF 3093 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3094 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3095 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3096 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3097 for (int I = 0; I != NumConcat; ++I) { 3098 for (int J = 0; J != NarrowNumElts; ++J) { 3099 int SrcIdx = NarrowNumElts * I + J; 3100 3101 if (SrcIdx < DstNumElts) { 3102 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3103 SubBuildVector.push_back(SrcReg); 3104 } else 3105 SubBuildVector.push_back(UndefReg); 3106 } 3107 3108 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3109 ConcatOps.push_back(BuildVec.getReg(0)); 3110 SubBuildVector.clear(); 3111 } 3112 3113 if (DstTy == WidenedDstTy) 3114 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3115 else { 3116 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3117 MIRBuilder.buildExtract(DstReg, Concat, 0); 3118 } 3119 3120 MI.eraseFromParent(); 3121 return Legalized; 3122 } 3123 3124 LegalizerHelper::LegalizeResult 3125 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3126 LLT NarrowTy) { 3127 // FIXME: Don't know how to handle secondary types yet. 3128 if (TypeIdx != 0) 3129 return UnableToLegalize; 3130 3131 MachineMemOperand *MMO = *MI.memoperands_begin(); 3132 3133 // This implementation doesn't work for atomics. Give up instead of doing 3134 // something invalid. 3135 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3136 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3137 return UnableToLegalize; 3138 3139 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3140 Register ValReg = MI.getOperand(0).getReg(); 3141 Register AddrReg = MI.getOperand(1).getReg(); 3142 LLT ValTy = MRI.getType(ValReg); 3143 3144 // FIXME: Do we need a distinct NarrowMemory legalize action? 3145 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3146 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3147 return UnableToLegalize; 3148 } 3149 3150 int NumParts = -1; 3151 int NumLeftover = -1; 3152 LLT LeftoverTy; 3153 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3154 if (IsLoad) { 3155 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3156 } else { 3157 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3158 NarrowLeftoverRegs)) { 3159 NumParts = NarrowRegs.size(); 3160 NumLeftover = NarrowLeftoverRegs.size(); 3161 } 3162 } 3163 3164 if (NumParts == -1) 3165 return UnableToLegalize; 3166 3167 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3168 3169 unsigned TotalSize = ValTy.getSizeInBits(); 3170 3171 // Split the load/store into PartTy sized pieces starting at Offset. If this 3172 // is a load, return the new registers in ValRegs. For a store, each elements 3173 // of ValRegs should be PartTy. Returns the next offset that needs to be 3174 // handled. 3175 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3176 unsigned Offset) -> unsigned { 3177 MachineFunction &MF = MIRBuilder.getMF(); 3178 unsigned PartSize = PartTy.getSizeInBits(); 3179 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3180 Offset += PartSize, ++Idx) { 3181 unsigned ByteSize = PartSize / 8; 3182 unsigned ByteOffset = Offset / 8; 3183 Register NewAddrReg; 3184 3185 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3186 3187 MachineMemOperand *NewMMO = 3188 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3189 3190 if (IsLoad) { 3191 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3192 ValRegs.push_back(Dst); 3193 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3194 } else { 3195 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3196 } 3197 } 3198 3199 return Offset; 3200 }; 3201 3202 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3203 3204 // Handle the rest of the register if this isn't an even type breakdown. 3205 if (LeftoverTy.isValid()) 3206 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3207 3208 if (IsLoad) { 3209 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3210 LeftoverTy, NarrowLeftoverRegs); 3211 } 3212 3213 MI.eraseFromParent(); 3214 return Legalized; 3215 } 3216 3217 LegalizerHelper::LegalizeResult 3218 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3219 LLT NarrowTy) { 3220 Register DstReg = MI.getOperand(0).getReg(); 3221 Register SrcReg = MI.getOperand(1).getReg(); 3222 int64_t Imm = MI.getOperand(2).getImm(); 3223 3224 LLT DstTy = MRI.getType(DstReg); 3225 3226 SmallVector<Register, 8> Parts; 3227 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3228 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3229 3230 for (Register &R : Parts) 3231 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3232 3233 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3234 3235 MI.eraseFromParent(); 3236 return Legalized; 3237 } 3238 3239 LegalizerHelper::LegalizeResult 3240 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3241 LLT NarrowTy) { 3242 using namespace TargetOpcode; 3243 3244 MIRBuilder.setInstr(MI); 3245 MIRBuilder.setDebugLoc(MI.getDebugLoc()); 3246 switch (MI.getOpcode()) { 3247 case G_IMPLICIT_DEF: 3248 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3249 case G_TRUNC: 3250 case G_AND: 3251 case G_OR: 3252 case G_XOR: 3253 case G_ADD: 3254 case G_SUB: 3255 case G_MUL: 3256 case G_SMULH: 3257 case G_UMULH: 3258 case G_FADD: 3259 case G_FMUL: 3260 case G_FSUB: 3261 case G_FNEG: 3262 case G_FABS: 3263 case G_FCANONICALIZE: 3264 case G_FDIV: 3265 case G_FREM: 3266 case G_FMA: 3267 case G_FMAD: 3268 case G_FPOW: 3269 case G_FEXP: 3270 case G_FEXP2: 3271 case G_FLOG: 3272 case G_FLOG2: 3273 case G_FLOG10: 3274 case G_FNEARBYINT: 3275 case G_FCEIL: 3276 case G_FFLOOR: 3277 case G_FRINT: 3278 case G_INTRINSIC_ROUND: 3279 case G_INTRINSIC_TRUNC: 3280 case G_FCOS: 3281 case G_FSIN: 3282 case G_FSQRT: 3283 case G_BSWAP: 3284 case G_BITREVERSE: 3285 case G_SDIV: 3286 case G_UDIV: 3287 case G_SREM: 3288 case G_UREM: 3289 case G_SMIN: 3290 case G_SMAX: 3291 case G_UMIN: 3292 case G_UMAX: 3293 case G_FMINNUM: 3294 case G_FMAXNUM: 3295 case G_FMINNUM_IEEE: 3296 case G_FMAXNUM_IEEE: 3297 case G_FMINIMUM: 3298 case G_FMAXIMUM: 3299 case G_FSHL: 3300 case G_FSHR: 3301 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3302 case G_SHL: 3303 case G_LSHR: 3304 case G_ASHR: 3305 case G_CTLZ: 3306 case G_CTLZ_ZERO_UNDEF: 3307 case G_CTTZ: 3308 case G_CTTZ_ZERO_UNDEF: 3309 case G_CTPOP: 3310 case G_FCOPYSIGN: 3311 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3312 case G_ZEXT: 3313 case G_SEXT: 3314 case G_ANYEXT: 3315 case G_FPEXT: 3316 case G_FPTRUNC: 3317 case G_SITOFP: 3318 case G_UITOFP: 3319 case G_FPTOSI: 3320 case G_FPTOUI: 3321 case G_INTTOPTR: 3322 case G_PTRTOINT: 3323 case G_ADDRSPACE_CAST: 3324 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3325 case G_ICMP: 3326 case G_FCMP: 3327 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3328 case G_SELECT: 3329 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3330 case G_PHI: 3331 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3332 case G_UNMERGE_VALUES: 3333 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3334 case G_BUILD_VECTOR: 3335 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3336 case G_LOAD: 3337 case G_STORE: 3338 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3339 case G_SEXT_INREG: 3340 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3341 default: 3342 return UnableToLegalize; 3343 } 3344 } 3345 3346 LegalizerHelper::LegalizeResult 3347 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3348 const LLT HalfTy, const LLT AmtTy) { 3349 3350 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3351 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3352 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3353 3354 if (Amt.isNullValue()) { 3355 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3356 MI.eraseFromParent(); 3357 return Legalized; 3358 } 3359 3360 LLT NVT = HalfTy; 3361 unsigned NVTBits = HalfTy.getSizeInBits(); 3362 unsigned VTBits = 2 * NVTBits; 3363 3364 SrcOp Lo(Register(0)), Hi(Register(0)); 3365 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3366 if (Amt.ugt(VTBits)) { 3367 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3368 } else if (Amt.ugt(NVTBits)) { 3369 Lo = MIRBuilder.buildConstant(NVT, 0); 3370 Hi = MIRBuilder.buildShl(NVT, InL, 3371 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3372 } else if (Amt == NVTBits) { 3373 Lo = MIRBuilder.buildConstant(NVT, 0); 3374 Hi = InL; 3375 } else { 3376 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3377 auto OrLHS = 3378 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3379 auto OrRHS = MIRBuilder.buildLShr( 3380 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3381 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3382 } 3383 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3384 if (Amt.ugt(VTBits)) { 3385 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3386 } else if (Amt.ugt(NVTBits)) { 3387 Lo = MIRBuilder.buildLShr(NVT, InH, 3388 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3389 Hi = MIRBuilder.buildConstant(NVT, 0); 3390 } else if (Amt == NVTBits) { 3391 Lo = InH; 3392 Hi = MIRBuilder.buildConstant(NVT, 0); 3393 } else { 3394 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3395 3396 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3397 auto OrRHS = MIRBuilder.buildShl( 3398 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3399 3400 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3401 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3402 } 3403 } else { 3404 if (Amt.ugt(VTBits)) { 3405 Hi = Lo = MIRBuilder.buildAShr( 3406 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3407 } else if (Amt.ugt(NVTBits)) { 3408 Lo = MIRBuilder.buildAShr(NVT, InH, 3409 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3410 Hi = MIRBuilder.buildAShr(NVT, InH, 3411 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3412 } else if (Amt == NVTBits) { 3413 Lo = InH; 3414 Hi = MIRBuilder.buildAShr(NVT, InH, 3415 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3416 } else { 3417 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3418 3419 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3420 auto OrRHS = MIRBuilder.buildShl( 3421 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3422 3423 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3424 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3425 } 3426 } 3427 3428 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3429 MI.eraseFromParent(); 3430 3431 return Legalized; 3432 } 3433 3434 // TODO: Optimize if constant shift amount. 3435 LegalizerHelper::LegalizeResult 3436 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3437 LLT RequestedTy) { 3438 if (TypeIdx == 1) { 3439 Observer.changingInstr(MI); 3440 narrowScalarSrc(MI, RequestedTy, 2); 3441 Observer.changedInstr(MI); 3442 return Legalized; 3443 } 3444 3445 Register DstReg = MI.getOperand(0).getReg(); 3446 LLT DstTy = MRI.getType(DstReg); 3447 if (DstTy.isVector()) 3448 return UnableToLegalize; 3449 3450 Register Amt = MI.getOperand(2).getReg(); 3451 LLT ShiftAmtTy = MRI.getType(Amt); 3452 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3453 if (DstEltSize % 2 != 0) 3454 return UnableToLegalize; 3455 3456 // Ignore the input type. We can only go to exactly half the size of the 3457 // input. If that isn't small enough, the resulting pieces will be further 3458 // legalized. 3459 const unsigned NewBitSize = DstEltSize / 2; 3460 const LLT HalfTy = LLT::scalar(NewBitSize); 3461 const LLT CondTy = LLT::scalar(1); 3462 3463 if (const MachineInstr *KShiftAmt = 3464 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3465 return narrowScalarShiftByConstant( 3466 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3467 } 3468 3469 // TODO: Expand with known bits. 3470 3471 // Handle the fully general expansion by an unknown amount. 3472 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3473 3474 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3475 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3476 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3477 3478 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3479 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3480 3481 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3482 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3483 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3484 3485 Register ResultRegs[2]; 3486 switch (MI.getOpcode()) { 3487 case TargetOpcode::G_SHL: { 3488 // Short: ShAmt < NewBitSize 3489 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3490 3491 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3492 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3493 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3494 3495 // Long: ShAmt >= NewBitSize 3496 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3497 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3498 3499 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3500 auto Hi = MIRBuilder.buildSelect( 3501 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3502 3503 ResultRegs[0] = Lo.getReg(0); 3504 ResultRegs[1] = Hi.getReg(0); 3505 break; 3506 } 3507 case TargetOpcode::G_LSHR: 3508 case TargetOpcode::G_ASHR: { 3509 // Short: ShAmt < NewBitSize 3510 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3511 3512 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3513 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3514 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3515 3516 // Long: ShAmt >= NewBitSize 3517 MachineInstrBuilder HiL; 3518 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3519 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3520 } else { 3521 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3522 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3523 } 3524 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3525 {InH, AmtExcess}); // Lo from Hi part. 3526 3527 auto Lo = MIRBuilder.buildSelect( 3528 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3529 3530 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3531 3532 ResultRegs[0] = Lo.getReg(0); 3533 ResultRegs[1] = Hi.getReg(0); 3534 break; 3535 } 3536 default: 3537 llvm_unreachable("not a shift"); 3538 } 3539 3540 MIRBuilder.buildMerge(DstReg, ResultRegs); 3541 MI.eraseFromParent(); 3542 return Legalized; 3543 } 3544 3545 LegalizerHelper::LegalizeResult 3546 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3547 LLT MoreTy) { 3548 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3549 3550 Observer.changingInstr(MI); 3551 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3552 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3553 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3554 moreElementsVectorSrc(MI, MoreTy, I); 3555 } 3556 3557 MachineBasicBlock &MBB = *MI.getParent(); 3558 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3559 moreElementsVectorDst(MI, MoreTy, 0); 3560 Observer.changedInstr(MI); 3561 return Legalized; 3562 } 3563 3564 LegalizerHelper::LegalizeResult 3565 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3566 LLT MoreTy) { 3567 MIRBuilder.setInstr(MI); 3568 unsigned Opc = MI.getOpcode(); 3569 switch (Opc) { 3570 case TargetOpcode::G_IMPLICIT_DEF: 3571 case TargetOpcode::G_LOAD: { 3572 if (TypeIdx != 0) 3573 return UnableToLegalize; 3574 Observer.changingInstr(MI); 3575 moreElementsVectorDst(MI, MoreTy, 0); 3576 Observer.changedInstr(MI); 3577 return Legalized; 3578 } 3579 case TargetOpcode::G_STORE: 3580 if (TypeIdx != 0) 3581 return UnableToLegalize; 3582 Observer.changingInstr(MI); 3583 moreElementsVectorSrc(MI, MoreTy, 0); 3584 Observer.changedInstr(MI); 3585 return Legalized; 3586 case TargetOpcode::G_AND: 3587 case TargetOpcode::G_OR: 3588 case TargetOpcode::G_XOR: 3589 case TargetOpcode::G_SMIN: 3590 case TargetOpcode::G_SMAX: 3591 case TargetOpcode::G_UMIN: 3592 case TargetOpcode::G_UMAX: 3593 case TargetOpcode::G_FMINNUM: 3594 case TargetOpcode::G_FMAXNUM: 3595 case TargetOpcode::G_FMINNUM_IEEE: 3596 case TargetOpcode::G_FMAXNUM_IEEE: 3597 case TargetOpcode::G_FMINIMUM: 3598 case TargetOpcode::G_FMAXIMUM: { 3599 Observer.changingInstr(MI); 3600 moreElementsVectorSrc(MI, MoreTy, 1); 3601 moreElementsVectorSrc(MI, MoreTy, 2); 3602 moreElementsVectorDst(MI, MoreTy, 0); 3603 Observer.changedInstr(MI); 3604 return Legalized; 3605 } 3606 case TargetOpcode::G_EXTRACT: 3607 if (TypeIdx != 1) 3608 return UnableToLegalize; 3609 Observer.changingInstr(MI); 3610 moreElementsVectorSrc(MI, MoreTy, 1); 3611 Observer.changedInstr(MI); 3612 return Legalized; 3613 case TargetOpcode::G_INSERT: 3614 if (TypeIdx != 0) 3615 return UnableToLegalize; 3616 Observer.changingInstr(MI); 3617 moreElementsVectorSrc(MI, MoreTy, 1); 3618 moreElementsVectorDst(MI, MoreTy, 0); 3619 Observer.changedInstr(MI); 3620 return Legalized; 3621 case TargetOpcode::G_SELECT: 3622 if (TypeIdx != 0) 3623 return UnableToLegalize; 3624 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3625 return UnableToLegalize; 3626 3627 Observer.changingInstr(MI); 3628 moreElementsVectorSrc(MI, MoreTy, 2); 3629 moreElementsVectorSrc(MI, MoreTy, 3); 3630 moreElementsVectorDst(MI, MoreTy, 0); 3631 Observer.changedInstr(MI); 3632 return Legalized; 3633 case TargetOpcode::G_UNMERGE_VALUES: { 3634 if (TypeIdx != 1) 3635 return UnableToLegalize; 3636 3637 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3638 int NumDst = MI.getNumOperands() - 1; 3639 moreElementsVectorSrc(MI, MoreTy, NumDst); 3640 3641 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3642 for (int I = 0; I != NumDst; ++I) 3643 MIB.addDef(MI.getOperand(I).getReg()); 3644 3645 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3646 for (int I = NumDst; I != NewNumDst; ++I) 3647 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3648 3649 MIB.addUse(MI.getOperand(NumDst).getReg()); 3650 MI.eraseFromParent(); 3651 return Legalized; 3652 } 3653 case TargetOpcode::G_PHI: 3654 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3655 default: 3656 return UnableToLegalize; 3657 } 3658 } 3659 3660 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3661 ArrayRef<Register> Src1Regs, 3662 ArrayRef<Register> Src2Regs, 3663 LLT NarrowTy) { 3664 MachineIRBuilder &B = MIRBuilder; 3665 unsigned SrcParts = Src1Regs.size(); 3666 unsigned DstParts = DstRegs.size(); 3667 3668 unsigned DstIdx = 0; // Low bits of the result. 3669 Register FactorSum = 3670 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3671 DstRegs[DstIdx] = FactorSum; 3672 3673 unsigned CarrySumPrevDstIdx; 3674 SmallVector<Register, 4> Factors; 3675 3676 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3677 // Collect low parts of muls for DstIdx. 3678 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3679 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3680 MachineInstrBuilder Mul = 3681 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3682 Factors.push_back(Mul.getReg(0)); 3683 } 3684 // Collect high parts of muls from previous DstIdx. 3685 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3686 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3687 MachineInstrBuilder Umulh = 3688 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3689 Factors.push_back(Umulh.getReg(0)); 3690 } 3691 // Add CarrySum from additions calculated for previous DstIdx. 3692 if (DstIdx != 1) { 3693 Factors.push_back(CarrySumPrevDstIdx); 3694 } 3695 3696 Register CarrySum; 3697 // Add all factors and accumulate all carries into CarrySum. 3698 if (DstIdx != DstParts - 1) { 3699 MachineInstrBuilder Uaddo = 3700 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3701 FactorSum = Uaddo.getReg(0); 3702 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3703 for (unsigned i = 2; i < Factors.size(); ++i) { 3704 MachineInstrBuilder Uaddo = 3705 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3706 FactorSum = Uaddo.getReg(0); 3707 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3708 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3709 } 3710 } else { 3711 // Since value for the next index is not calculated, neither is CarrySum. 3712 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3713 for (unsigned i = 2; i < Factors.size(); ++i) 3714 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3715 } 3716 3717 CarrySumPrevDstIdx = CarrySum; 3718 DstRegs[DstIdx] = FactorSum; 3719 Factors.clear(); 3720 } 3721 } 3722 3723 LegalizerHelper::LegalizeResult 3724 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3725 Register DstReg = MI.getOperand(0).getReg(); 3726 Register Src1 = MI.getOperand(1).getReg(); 3727 Register Src2 = MI.getOperand(2).getReg(); 3728 3729 LLT Ty = MRI.getType(DstReg); 3730 if (Ty.isVector()) 3731 return UnableToLegalize; 3732 3733 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3734 unsigned DstSize = Ty.getSizeInBits(); 3735 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3736 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3737 return UnableToLegalize; 3738 3739 unsigned NumDstParts = DstSize / NarrowSize; 3740 unsigned NumSrcParts = SrcSize / NarrowSize; 3741 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3742 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3743 3744 SmallVector<Register, 2> Src1Parts, Src2Parts; 3745 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3746 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3747 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3748 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3749 3750 // Take only high half of registers if this is high mul. 3751 ArrayRef<Register> DstRegs( 3752 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3753 MIRBuilder.buildMerge(DstReg, DstRegs); 3754 MI.eraseFromParent(); 3755 return Legalized; 3756 } 3757 3758 LegalizerHelper::LegalizeResult 3759 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3760 LLT NarrowTy) { 3761 if (TypeIdx != 1) 3762 return UnableToLegalize; 3763 3764 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3765 3766 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3767 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3768 // NarrowSize. 3769 if (SizeOp1 % NarrowSize != 0) 3770 return UnableToLegalize; 3771 int NumParts = SizeOp1 / NarrowSize; 3772 3773 SmallVector<Register, 2> SrcRegs, DstRegs; 3774 SmallVector<uint64_t, 2> Indexes; 3775 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3776 3777 Register OpReg = MI.getOperand(0).getReg(); 3778 uint64_t OpStart = MI.getOperand(2).getImm(); 3779 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3780 for (int i = 0; i < NumParts; ++i) { 3781 unsigned SrcStart = i * NarrowSize; 3782 3783 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3784 // No part of the extract uses this subregister, ignore it. 3785 continue; 3786 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3787 // The entire subregister is extracted, forward the value. 3788 DstRegs.push_back(SrcRegs[i]); 3789 continue; 3790 } 3791 3792 // OpSegStart is where this destination segment would start in OpReg if it 3793 // extended infinitely in both directions. 3794 int64_t ExtractOffset; 3795 uint64_t SegSize; 3796 if (OpStart < SrcStart) { 3797 ExtractOffset = 0; 3798 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3799 } else { 3800 ExtractOffset = OpStart - SrcStart; 3801 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3802 } 3803 3804 Register SegReg = SrcRegs[i]; 3805 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3806 // A genuine extract is needed. 3807 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3808 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3809 } 3810 3811 DstRegs.push_back(SegReg); 3812 } 3813 3814 Register DstReg = MI.getOperand(0).getReg(); 3815 if (MRI.getType(DstReg).isVector()) 3816 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3817 else if (DstRegs.size() > 1) 3818 MIRBuilder.buildMerge(DstReg, DstRegs); 3819 else 3820 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3821 MI.eraseFromParent(); 3822 return Legalized; 3823 } 3824 3825 LegalizerHelper::LegalizeResult 3826 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3827 LLT NarrowTy) { 3828 // FIXME: Don't know how to handle secondary types yet. 3829 if (TypeIdx != 0) 3830 return UnableToLegalize; 3831 3832 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3833 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3834 3835 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3836 // NarrowSize. 3837 if (SizeOp0 % NarrowSize != 0) 3838 return UnableToLegalize; 3839 3840 int NumParts = SizeOp0 / NarrowSize; 3841 3842 SmallVector<Register, 2> SrcRegs, DstRegs; 3843 SmallVector<uint64_t, 2> Indexes; 3844 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3845 3846 Register OpReg = MI.getOperand(2).getReg(); 3847 uint64_t OpStart = MI.getOperand(3).getImm(); 3848 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3849 for (int i = 0; i < NumParts; ++i) { 3850 unsigned DstStart = i * NarrowSize; 3851 3852 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3853 // No part of the insert affects this subregister, forward the original. 3854 DstRegs.push_back(SrcRegs[i]); 3855 continue; 3856 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3857 // The entire subregister is defined by this insert, forward the new 3858 // value. 3859 DstRegs.push_back(OpReg); 3860 continue; 3861 } 3862 3863 // OpSegStart is where this destination segment would start in OpReg if it 3864 // extended infinitely in both directions. 3865 int64_t ExtractOffset, InsertOffset; 3866 uint64_t SegSize; 3867 if (OpStart < DstStart) { 3868 InsertOffset = 0; 3869 ExtractOffset = DstStart - OpStart; 3870 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3871 } else { 3872 InsertOffset = OpStart - DstStart; 3873 ExtractOffset = 0; 3874 SegSize = 3875 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3876 } 3877 3878 Register SegReg = OpReg; 3879 if (ExtractOffset != 0 || SegSize != OpSize) { 3880 // A genuine extract is needed. 3881 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3882 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3883 } 3884 3885 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3886 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3887 DstRegs.push_back(DstReg); 3888 } 3889 3890 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3891 Register DstReg = MI.getOperand(0).getReg(); 3892 if(MRI.getType(DstReg).isVector()) 3893 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3894 else 3895 MIRBuilder.buildMerge(DstReg, DstRegs); 3896 MI.eraseFromParent(); 3897 return Legalized; 3898 } 3899 3900 LegalizerHelper::LegalizeResult 3901 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3902 LLT NarrowTy) { 3903 Register DstReg = MI.getOperand(0).getReg(); 3904 LLT DstTy = MRI.getType(DstReg); 3905 3906 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3907 3908 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3909 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3910 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3911 LLT LeftoverTy; 3912 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3913 Src0Regs, Src0LeftoverRegs)) 3914 return UnableToLegalize; 3915 3916 LLT Unused; 3917 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3918 Src1Regs, Src1LeftoverRegs)) 3919 llvm_unreachable("inconsistent extractParts result"); 3920 3921 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3922 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3923 {Src0Regs[I], Src1Regs[I]}); 3924 DstRegs.push_back(Inst.getReg(0)); 3925 } 3926 3927 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3928 auto Inst = MIRBuilder.buildInstr( 3929 MI.getOpcode(), 3930 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3931 DstLeftoverRegs.push_back(Inst.getReg(0)); 3932 } 3933 3934 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3935 LeftoverTy, DstLeftoverRegs); 3936 3937 MI.eraseFromParent(); 3938 return Legalized; 3939 } 3940 3941 LegalizerHelper::LegalizeResult 3942 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3943 LLT NarrowTy) { 3944 if (TypeIdx != 0) 3945 return UnableToLegalize; 3946 3947 Register DstReg = MI.getOperand(0).getReg(); 3948 Register SrcReg = MI.getOperand(1).getReg(); 3949 3950 LLT DstTy = MRI.getType(DstReg); 3951 if (DstTy.isVector()) 3952 return UnableToLegalize; 3953 3954 SmallVector<Register, 8> Parts; 3955 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3956 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3957 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3958 3959 MI.eraseFromParent(); 3960 return Legalized; 3961 } 3962 3963 LegalizerHelper::LegalizeResult 3964 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3965 LLT NarrowTy) { 3966 if (TypeIdx != 0) 3967 return UnableToLegalize; 3968 3969 Register CondReg = MI.getOperand(1).getReg(); 3970 LLT CondTy = MRI.getType(CondReg); 3971 if (CondTy.isVector()) // TODO: Handle vselect 3972 return UnableToLegalize; 3973 3974 Register DstReg = MI.getOperand(0).getReg(); 3975 LLT DstTy = MRI.getType(DstReg); 3976 3977 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3978 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3979 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3980 LLT LeftoverTy; 3981 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3982 Src1Regs, Src1LeftoverRegs)) 3983 return UnableToLegalize; 3984 3985 LLT Unused; 3986 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3987 Src2Regs, Src2LeftoverRegs)) 3988 llvm_unreachable("inconsistent extractParts result"); 3989 3990 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3991 auto Select = MIRBuilder.buildSelect(NarrowTy, 3992 CondReg, Src1Regs[I], Src2Regs[I]); 3993 DstRegs.push_back(Select.getReg(0)); 3994 } 3995 3996 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3997 auto Select = MIRBuilder.buildSelect( 3998 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3999 DstLeftoverRegs.push_back(Select.getReg(0)); 4000 } 4001 4002 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4003 LeftoverTy, DstLeftoverRegs); 4004 4005 MI.eraseFromParent(); 4006 return Legalized; 4007 } 4008 4009 LegalizerHelper::LegalizeResult 4010 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4011 LLT NarrowTy) { 4012 if (TypeIdx != 1) 4013 return UnableToLegalize; 4014 4015 Register DstReg = MI.getOperand(0).getReg(); 4016 Register SrcReg = MI.getOperand(1).getReg(); 4017 LLT DstTy = MRI.getType(DstReg); 4018 LLT SrcTy = MRI.getType(SrcReg); 4019 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4020 4021 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4022 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4023 4024 MachineIRBuilder &B = MIRBuilder; 4025 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4026 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4027 auto C_0 = B.buildConstant(NarrowTy, 0); 4028 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4029 UnmergeSrc.getReg(1), C_0); 4030 auto LoCTLZ = IsUndef ? 4031 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4032 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4033 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4034 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4035 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4036 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4037 4038 MI.eraseFromParent(); 4039 return Legalized; 4040 } 4041 4042 return UnableToLegalize; 4043 } 4044 4045 LegalizerHelper::LegalizeResult 4046 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4047 LLT NarrowTy) { 4048 if (TypeIdx != 1) 4049 return UnableToLegalize; 4050 4051 Register DstReg = MI.getOperand(0).getReg(); 4052 Register SrcReg = MI.getOperand(1).getReg(); 4053 LLT DstTy = MRI.getType(DstReg); 4054 LLT SrcTy = MRI.getType(SrcReg); 4055 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4056 4057 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4058 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4059 4060 MachineIRBuilder &B = MIRBuilder; 4061 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4062 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4063 auto C_0 = B.buildConstant(NarrowTy, 0); 4064 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4065 UnmergeSrc.getReg(0), C_0); 4066 auto HiCTTZ = IsUndef ? 4067 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4068 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4069 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4070 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4071 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4072 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4073 4074 MI.eraseFromParent(); 4075 return Legalized; 4076 } 4077 4078 return UnableToLegalize; 4079 } 4080 4081 LegalizerHelper::LegalizeResult 4082 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4083 LLT NarrowTy) { 4084 if (TypeIdx != 1) 4085 return UnableToLegalize; 4086 4087 Register DstReg = MI.getOperand(0).getReg(); 4088 LLT DstTy = MRI.getType(DstReg); 4089 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4090 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4091 4092 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4093 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4094 4095 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4096 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4097 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4098 4099 MI.eraseFromParent(); 4100 return Legalized; 4101 } 4102 4103 return UnableToLegalize; 4104 } 4105 4106 LegalizerHelper::LegalizeResult 4107 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4108 unsigned Opc = MI.getOpcode(); 4109 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4110 auto isSupported = [this](const LegalityQuery &Q) { 4111 auto QAction = LI.getAction(Q).Action; 4112 return QAction == Legal || QAction == Libcall || QAction == Custom; 4113 }; 4114 switch (Opc) { 4115 default: 4116 return UnableToLegalize; 4117 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4118 // This trivially expands to CTLZ. 4119 Observer.changingInstr(MI); 4120 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4121 Observer.changedInstr(MI); 4122 return Legalized; 4123 } 4124 case TargetOpcode::G_CTLZ: { 4125 Register DstReg = MI.getOperand(0).getReg(); 4126 Register SrcReg = MI.getOperand(1).getReg(); 4127 LLT DstTy = MRI.getType(DstReg); 4128 LLT SrcTy = MRI.getType(SrcReg); 4129 unsigned Len = SrcTy.getSizeInBits(); 4130 4131 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4132 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4133 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4134 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4135 auto ICmp = MIRBuilder.buildICmp( 4136 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4137 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4138 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4139 MI.eraseFromParent(); 4140 return Legalized; 4141 } 4142 // for now, we do this: 4143 // NewLen = NextPowerOf2(Len); 4144 // x = x | (x >> 1); 4145 // x = x | (x >> 2); 4146 // ... 4147 // x = x | (x >>16); 4148 // x = x | (x >>32); // for 64-bit input 4149 // Upto NewLen/2 4150 // return Len - popcount(x); 4151 // 4152 // Ref: "Hacker's Delight" by Henry Warren 4153 Register Op = SrcReg; 4154 unsigned NewLen = PowerOf2Ceil(Len); 4155 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4156 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4157 auto MIBOp = MIRBuilder.buildOr( 4158 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4159 Op = MIBOp.getReg(0); 4160 } 4161 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4162 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4163 MIBPop); 4164 MI.eraseFromParent(); 4165 return Legalized; 4166 } 4167 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4168 // This trivially expands to CTTZ. 4169 Observer.changingInstr(MI); 4170 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4171 Observer.changedInstr(MI); 4172 return Legalized; 4173 } 4174 case TargetOpcode::G_CTTZ: { 4175 Register DstReg = MI.getOperand(0).getReg(); 4176 Register SrcReg = MI.getOperand(1).getReg(); 4177 LLT DstTy = MRI.getType(DstReg); 4178 LLT SrcTy = MRI.getType(SrcReg); 4179 4180 unsigned Len = SrcTy.getSizeInBits(); 4181 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4182 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4183 // zero. 4184 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4185 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4186 auto ICmp = MIRBuilder.buildICmp( 4187 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4188 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4189 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4190 MI.eraseFromParent(); 4191 return Legalized; 4192 } 4193 // for now, we use: { return popcount(~x & (x - 1)); } 4194 // unless the target has ctlz but not ctpop, in which case we use: 4195 // { return 32 - nlz(~x & (x-1)); } 4196 // Ref: "Hacker's Delight" by Henry Warren 4197 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4198 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4199 auto MIBTmp = MIRBuilder.buildAnd( 4200 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4201 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4202 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4203 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4204 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4205 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4206 MI.eraseFromParent(); 4207 return Legalized; 4208 } 4209 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4210 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4211 return Legalized; 4212 } 4213 case TargetOpcode::G_CTPOP: { 4214 unsigned Size = Ty.getSizeInBits(); 4215 MachineIRBuilder &B = MIRBuilder; 4216 4217 // Count set bits in blocks of 2 bits. Default approach would be 4218 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4219 // We use following formula instead: 4220 // B2Count = val - { (val >> 1) & 0x55555555 } 4221 // since it gives same result in blocks of 2 with one instruction less. 4222 auto C_1 = B.buildConstant(Ty, 1); 4223 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4224 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4225 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4226 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4227 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4228 4229 // In order to get count in blocks of 4 add values from adjacent block of 2. 4230 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4231 auto C_2 = B.buildConstant(Ty, 2); 4232 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4233 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4234 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4235 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4236 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4237 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4238 4239 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4240 // addition since count value sits in range {0,...,8} and 4 bits are enough 4241 // to hold such binary values. After addition high 4 bits still hold count 4242 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4243 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4244 auto C_4 = B.buildConstant(Ty, 4); 4245 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4246 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4247 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4248 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4249 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4250 4251 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4252 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4253 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4254 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4255 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4256 4257 // Shift count result from 8 high bits to low bits. 4258 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4259 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4260 4261 MI.eraseFromParent(); 4262 return Legalized; 4263 } 4264 } 4265 } 4266 4267 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4268 // representation. 4269 LegalizerHelper::LegalizeResult 4270 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4271 Register Dst = MI.getOperand(0).getReg(); 4272 Register Src = MI.getOperand(1).getReg(); 4273 const LLT S64 = LLT::scalar(64); 4274 const LLT S32 = LLT::scalar(32); 4275 const LLT S1 = LLT::scalar(1); 4276 4277 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4278 4279 // unsigned cul2f(ulong u) { 4280 // uint lz = clz(u); 4281 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4282 // u = (u << lz) & 0x7fffffffffffffffUL; 4283 // ulong t = u & 0xffffffffffUL; 4284 // uint v = (e << 23) | (uint)(u >> 40); 4285 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4286 // return as_float(v + r); 4287 // } 4288 4289 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4290 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4291 4292 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4293 4294 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4295 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4296 4297 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4298 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4299 4300 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4301 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4302 4303 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4304 4305 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4306 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4307 4308 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4309 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4310 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4311 4312 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4313 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4314 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4315 auto One = MIRBuilder.buildConstant(S32, 1); 4316 4317 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4318 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4319 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4320 MIRBuilder.buildAdd(Dst, V, R); 4321 4322 return Legalized; 4323 } 4324 4325 LegalizerHelper::LegalizeResult 4326 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4327 Register Dst = MI.getOperand(0).getReg(); 4328 Register Src = MI.getOperand(1).getReg(); 4329 LLT DstTy = MRI.getType(Dst); 4330 LLT SrcTy = MRI.getType(Src); 4331 4332 if (SrcTy == LLT::scalar(1)) { 4333 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4334 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4335 MIRBuilder.buildSelect(Dst, Src, True, False); 4336 MI.eraseFromParent(); 4337 return Legalized; 4338 } 4339 4340 if (SrcTy != LLT::scalar(64)) 4341 return UnableToLegalize; 4342 4343 if (DstTy == LLT::scalar(32)) { 4344 // TODO: SelectionDAG has several alternative expansions to port which may 4345 // be more reasonble depending on the available instructions. If a target 4346 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4347 // intermediate type, this is probably worse. 4348 return lowerU64ToF32BitOps(MI); 4349 } 4350 4351 return UnableToLegalize; 4352 } 4353 4354 LegalizerHelper::LegalizeResult 4355 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4356 Register Dst = MI.getOperand(0).getReg(); 4357 Register Src = MI.getOperand(1).getReg(); 4358 LLT DstTy = MRI.getType(Dst); 4359 LLT SrcTy = MRI.getType(Src); 4360 4361 const LLT S64 = LLT::scalar(64); 4362 const LLT S32 = LLT::scalar(32); 4363 const LLT S1 = LLT::scalar(1); 4364 4365 if (SrcTy == S1) { 4366 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4367 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4368 MIRBuilder.buildSelect(Dst, Src, True, False); 4369 MI.eraseFromParent(); 4370 return Legalized; 4371 } 4372 4373 if (SrcTy != S64) 4374 return UnableToLegalize; 4375 4376 if (DstTy == S32) { 4377 // signed cl2f(long l) { 4378 // long s = l >> 63; 4379 // float r = cul2f((l + s) ^ s); 4380 // return s ? -r : r; 4381 // } 4382 Register L = Src; 4383 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4384 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4385 4386 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4387 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4388 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4389 4390 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4391 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4392 MIRBuilder.buildConstant(S64, 0)); 4393 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4394 return Legalized; 4395 } 4396 4397 return UnableToLegalize; 4398 } 4399 4400 LegalizerHelper::LegalizeResult 4401 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4402 Register Dst = MI.getOperand(0).getReg(); 4403 Register Src = MI.getOperand(1).getReg(); 4404 LLT DstTy = MRI.getType(Dst); 4405 LLT SrcTy = MRI.getType(Src); 4406 const LLT S64 = LLT::scalar(64); 4407 const LLT S32 = LLT::scalar(32); 4408 4409 if (SrcTy != S64 && SrcTy != S32) 4410 return UnableToLegalize; 4411 if (DstTy != S32 && DstTy != S64) 4412 return UnableToLegalize; 4413 4414 // FPTOSI gives same result as FPTOUI for positive signed integers. 4415 // FPTOUI needs to deal with fp values that convert to unsigned integers 4416 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4417 4418 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4419 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4420 : APFloat::IEEEdouble(), 4421 APInt::getNullValue(SrcTy.getSizeInBits())); 4422 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4423 4424 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4425 4426 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4427 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4428 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4429 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4430 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4431 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4432 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4433 4434 const LLT S1 = LLT::scalar(1); 4435 4436 MachineInstrBuilder FCMP = 4437 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4438 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4439 4440 MI.eraseFromParent(); 4441 return Legalized; 4442 } 4443 4444 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4445 Register Dst = MI.getOperand(0).getReg(); 4446 Register Src = MI.getOperand(1).getReg(); 4447 LLT DstTy = MRI.getType(Dst); 4448 LLT SrcTy = MRI.getType(Src); 4449 const LLT S64 = LLT::scalar(64); 4450 const LLT S32 = LLT::scalar(32); 4451 4452 // FIXME: Only f32 to i64 conversions are supported. 4453 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4454 return UnableToLegalize; 4455 4456 // Expand f32 -> i64 conversion 4457 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4458 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4459 4460 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4461 4462 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4463 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4464 4465 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4466 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4467 4468 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4469 APInt::getSignMask(SrcEltBits)); 4470 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4471 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4472 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4473 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4474 4475 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4476 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4477 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4478 4479 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4480 R = MIRBuilder.buildZExt(DstTy, R); 4481 4482 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4483 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4484 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4485 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4486 4487 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4488 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4489 4490 const LLT S1 = LLT::scalar(1); 4491 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4492 S1, Exponent, ExponentLoBit); 4493 4494 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4495 4496 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4497 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4498 4499 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4500 4501 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4502 S1, Exponent, ZeroSrcTy); 4503 4504 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4505 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4506 4507 MI.eraseFromParent(); 4508 return Legalized; 4509 } 4510 4511 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4512 LegalizerHelper::LegalizeResult 4513 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4514 Register Dst = MI.getOperand(0).getReg(); 4515 Register Src = MI.getOperand(1).getReg(); 4516 4517 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4518 return UnableToLegalize; 4519 4520 const unsigned ExpMask = 0x7ff; 4521 const unsigned ExpBiasf64 = 1023; 4522 const unsigned ExpBiasf16 = 15; 4523 const LLT S32 = LLT::scalar(32); 4524 const LLT S1 = LLT::scalar(1); 4525 4526 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4527 Register U = Unmerge.getReg(0); 4528 Register UH = Unmerge.getReg(1); 4529 4530 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4531 4532 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4533 // add the f16 bias (15) to get the biased exponent for the f16 format. 4534 E = MIRBuilder.buildAdd( 4535 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4536 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4537 4538 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4539 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4540 4541 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4542 MIRBuilder.buildConstant(S32, 0x1ff)); 4543 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4544 4545 auto Zero = MIRBuilder.buildConstant(S32, 0); 4546 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4547 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4548 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4549 4550 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4551 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4552 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4553 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4554 4555 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4556 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4557 4558 // N = M | (E << 12); 4559 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4560 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4561 4562 // B = clamp(1-E, 0, 13); 4563 auto One = MIRBuilder.buildConstant(S32, 1); 4564 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4565 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4566 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4567 4568 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4569 MIRBuilder.buildConstant(S32, 0x1000)); 4570 4571 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4572 auto D0 = MIRBuilder.buildShl(S32, D, B); 4573 4574 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4575 D0, SigSetHigh); 4576 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4577 D = MIRBuilder.buildOr(S32, D, D1); 4578 4579 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4580 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4581 4582 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4583 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4584 4585 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4586 MIRBuilder.buildConstant(S32, 3)); 4587 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4588 4589 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4590 MIRBuilder.buildConstant(S32, 5)); 4591 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4592 4593 V1 = MIRBuilder.buildOr(S32, V0, V1); 4594 V = MIRBuilder.buildAdd(S32, V, V1); 4595 4596 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4597 E, MIRBuilder.buildConstant(S32, 30)); 4598 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4599 MIRBuilder.buildConstant(S32, 0x7c00), V); 4600 4601 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4602 E, MIRBuilder.buildConstant(S32, 1039)); 4603 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4604 4605 // Extract the sign bit. 4606 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4607 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4608 4609 // Insert the sign bit 4610 V = MIRBuilder.buildOr(S32, Sign, V); 4611 4612 MIRBuilder.buildTrunc(Dst, V); 4613 MI.eraseFromParent(); 4614 return Legalized; 4615 } 4616 4617 LegalizerHelper::LegalizeResult 4618 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4619 Register Dst = MI.getOperand(0).getReg(); 4620 Register Src = MI.getOperand(1).getReg(); 4621 4622 LLT DstTy = MRI.getType(Dst); 4623 LLT SrcTy = MRI.getType(Src); 4624 const LLT S64 = LLT::scalar(64); 4625 const LLT S16 = LLT::scalar(16); 4626 4627 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4628 return lowerFPTRUNC_F64_TO_F16(MI); 4629 4630 return UnableToLegalize; 4631 } 4632 4633 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4634 switch (Opc) { 4635 case TargetOpcode::G_SMIN: 4636 return CmpInst::ICMP_SLT; 4637 case TargetOpcode::G_SMAX: 4638 return CmpInst::ICMP_SGT; 4639 case TargetOpcode::G_UMIN: 4640 return CmpInst::ICMP_ULT; 4641 case TargetOpcode::G_UMAX: 4642 return CmpInst::ICMP_UGT; 4643 default: 4644 llvm_unreachable("not in integer min/max"); 4645 } 4646 } 4647 4648 LegalizerHelper::LegalizeResult 4649 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4650 Register Dst = MI.getOperand(0).getReg(); 4651 Register Src0 = MI.getOperand(1).getReg(); 4652 Register Src1 = MI.getOperand(2).getReg(); 4653 4654 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4655 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4656 4657 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4658 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4659 4660 MI.eraseFromParent(); 4661 return Legalized; 4662 } 4663 4664 LegalizerHelper::LegalizeResult 4665 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4666 Register Dst = MI.getOperand(0).getReg(); 4667 Register Src0 = MI.getOperand(1).getReg(); 4668 Register Src1 = MI.getOperand(2).getReg(); 4669 4670 const LLT Src0Ty = MRI.getType(Src0); 4671 const LLT Src1Ty = MRI.getType(Src1); 4672 4673 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4674 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4675 4676 auto SignBitMask = MIRBuilder.buildConstant( 4677 Src0Ty, APInt::getSignMask(Src0Size)); 4678 4679 auto NotSignBitMask = MIRBuilder.buildConstant( 4680 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4681 4682 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4683 MachineInstr *Or; 4684 4685 if (Src0Ty == Src1Ty) { 4686 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4687 Or = MIRBuilder.buildOr(Dst, And0, And1); 4688 } else if (Src0Size > Src1Size) { 4689 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4690 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4691 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4692 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4693 Or = MIRBuilder.buildOr(Dst, And0, And1); 4694 } else { 4695 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4696 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4697 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4698 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4699 Or = MIRBuilder.buildOr(Dst, And0, And1); 4700 } 4701 4702 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4703 // constants are a nan and -0.0, but the final result should preserve 4704 // everything. 4705 if (unsigned Flags = MI.getFlags()) 4706 Or->setFlags(Flags); 4707 4708 MI.eraseFromParent(); 4709 return Legalized; 4710 } 4711 4712 LegalizerHelper::LegalizeResult 4713 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4714 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4715 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4716 4717 Register Dst = MI.getOperand(0).getReg(); 4718 Register Src0 = MI.getOperand(1).getReg(); 4719 Register Src1 = MI.getOperand(2).getReg(); 4720 LLT Ty = MRI.getType(Dst); 4721 4722 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4723 // Insert canonicalizes if it's possible we need to quiet to get correct 4724 // sNaN behavior. 4725 4726 // Note this must be done here, and not as an optimization combine in the 4727 // absence of a dedicate quiet-snan instruction as we're using an 4728 // omni-purpose G_FCANONICALIZE. 4729 if (!isKnownNeverSNaN(Src0, MRI)) 4730 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4731 4732 if (!isKnownNeverSNaN(Src1, MRI)) 4733 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4734 } 4735 4736 // If there are no nans, it's safe to simply replace this with the non-IEEE 4737 // version. 4738 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4739 MI.eraseFromParent(); 4740 return Legalized; 4741 } 4742 4743 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4744 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4745 Register DstReg = MI.getOperand(0).getReg(); 4746 LLT Ty = MRI.getType(DstReg); 4747 unsigned Flags = MI.getFlags(); 4748 4749 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4750 Flags); 4751 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4752 MI.eraseFromParent(); 4753 return Legalized; 4754 } 4755 4756 LegalizerHelper::LegalizeResult 4757 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4758 Register DstReg = MI.getOperand(0).getReg(); 4759 Register X = MI.getOperand(1).getReg(); 4760 const unsigned Flags = MI.getFlags(); 4761 const LLT Ty = MRI.getType(DstReg); 4762 const LLT CondTy = Ty.changeElementSize(1); 4763 4764 // round(x) => 4765 // t = trunc(x); 4766 // d = fabs(x - t); 4767 // o = copysign(1.0f, x); 4768 // return t + (d >= 0.5 ? o : 0.0); 4769 4770 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4771 4772 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4773 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4774 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4775 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4776 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4777 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4778 4779 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4780 Flags); 4781 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4782 4783 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4784 4785 MI.eraseFromParent(); 4786 return Legalized; 4787 } 4788 4789 LegalizerHelper::LegalizeResult 4790 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4791 Register DstReg = MI.getOperand(0).getReg(); 4792 Register SrcReg = MI.getOperand(1).getReg(); 4793 unsigned Flags = MI.getFlags(); 4794 LLT Ty = MRI.getType(DstReg); 4795 const LLT CondTy = Ty.changeElementSize(1); 4796 4797 // result = trunc(src); 4798 // if (src < 0.0 && src != result) 4799 // result += -1.0. 4800 4801 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4802 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4803 4804 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4805 SrcReg, Zero, Flags); 4806 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4807 SrcReg, Trunc, Flags); 4808 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4809 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4810 4811 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4812 MI.eraseFromParent(); 4813 return Legalized; 4814 } 4815 4816 LegalizerHelper::LegalizeResult 4817 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4818 const unsigned NumDst = MI.getNumOperands() - 1; 4819 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4820 LLT SrcTy = MRI.getType(SrcReg); 4821 4822 Register Dst0Reg = MI.getOperand(0).getReg(); 4823 LLT DstTy = MRI.getType(Dst0Reg); 4824 4825 4826 // Expand scalarizing unmerge as bitcast to integer and shift. 4827 if (!DstTy.isVector() && SrcTy.isVector() && 4828 SrcTy.getElementType() == DstTy) { 4829 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4830 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4831 4832 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4833 4834 const unsigned DstSize = DstTy.getSizeInBits(); 4835 unsigned Offset = DstSize; 4836 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4837 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4838 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4839 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4840 } 4841 4842 MI.eraseFromParent(); 4843 return Legalized; 4844 } 4845 4846 return UnableToLegalize; 4847 } 4848 4849 LegalizerHelper::LegalizeResult 4850 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4851 Register DstReg = MI.getOperand(0).getReg(); 4852 Register Src0Reg = MI.getOperand(1).getReg(); 4853 Register Src1Reg = MI.getOperand(2).getReg(); 4854 LLT Src0Ty = MRI.getType(Src0Reg); 4855 LLT DstTy = MRI.getType(DstReg); 4856 LLT IdxTy = LLT::scalar(32); 4857 4858 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4859 4860 if (DstTy.isScalar()) { 4861 if (Src0Ty.isVector()) 4862 return UnableToLegalize; 4863 4864 // This is just a SELECT. 4865 assert(Mask.size() == 1 && "Expected a single mask element"); 4866 Register Val; 4867 if (Mask[0] < 0 || Mask[0] > 1) 4868 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4869 else 4870 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4871 MIRBuilder.buildCopy(DstReg, Val); 4872 MI.eraseFromParent(); 4873 return Legalized; 4874 } 4875 4876 Register Undef; 4877 SmallVector<Register, 32> BuildVec; 4878 LLT EltTy = DstTy.getElementType(); 4879 4880 for (int Idx : Mask) { 4881 if (Idx < 0) { 4882 if (!Undef.isValid()) 4883 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4884 BuildVec.push_back(Undef); 4885 continue; 4886 } 4887 4888 if (Src0Ty.isScalar()) { 4889 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4890 } else { 4891 int NumElts = Src0Ty.getNumElements(); 4892 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4893 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4894 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4895 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4896 BuildVec.push_back(Extract.getReg(0)); 4897 } 4898 } 4899 4900 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4901 MI.eraseFromParent(); 4902 return Legalized; 4903 } 4904 4905 LegalizerHelper::LegalizeResult 4906 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4907 Register Dst = MI.getOperand(0).getReg(); 4908 Register AllocSize = MI.getOperand(1).getReg(); 4909 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 4910 4911 const auto &MF = *MI.getMF(); 4912 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4913 4914 LLT PtrTy = MRI.getType(Dst); 4915 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4916 4917 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4918 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4919 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4920 4921 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4922 // have to generate an extra instruction to negate the alloc and then use 4923 // G_PTR_ADD to add the negative offset. 4924 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4925 if (Alignment > Align(1)) { 4926 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 4927 AlignMask.negate(); 4928 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4929 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4930 } 4931 4932 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4933 MIRBuilder.buildCopy(SPReg, SPTmp); 4934 MIRBuilder.buildCopy(Dst, SPTmp); 4935 4936 MI.eraseFromParent(); 4937 return Legalized; 4938 } 4939 4940 LegalizerHelper::LegalizeResult 4941 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4942 Register Dst = MI.getOperand(0).getReg(); 4943 Register Src = MI.getOperand(1).getReg(); 4944 unsigned Offset = MI.getOperand(2).getImm(); 4945 4946 LLT DstTy = MRI.getType(Dst); 4947 LLT SrcTy = MRI.getType(Src); 4948 4949 if (DstTy.isScalar() && 4950 (SrcTy.isScalar() || 4951 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4952 LLT SrcIntTy = SrcTy; 4953 if (!SrcTy.isScalar()) { 4954 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4955 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4956 } 4957 4958 if (Offset == 0) 4959 MIRBuilder.buildTrunc(Dst, Src); 4960 else { 4961 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4962 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4963 MIRBuilder.buildTrunc(Dst, Shr); 4964 } 4965 4966 MI.eraseFromParent(); 4967 return Legalized; 4968 } 4969 4970 return UnableToLegalize; 4971 } 4972 4973 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4974 Register Dst = MI.getOperand(0).getReg(); 4975 Register Src = MI.getOperand(1).getReg(); 4976 Register InsertSrc = MI.getOperand(2).getReg(); 4977 uint64_t Offset = MI.getOperand(3).getImm(); 4978 4979 LLT DstTy = MRI.getType(Src); 4980 LLT InsertTy = MRI.getType(InsertSrc); 4981 4982 if (InsertTy.isVector() || 4983 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 4984 return UnableToLegalize; 4985 4986 const DataLayout &DL = MIRBuilder.getDataLayout(); 4987 if ((DstTy.isPointer() && 4988 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 4989 (InsertTy.isPointer() && 4990 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 4991 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 4992 return UnableToLegalize; 4993 } 4994 4995 LLT IntDstTy = DstTy; 4996 4997 if (!DstTy.isScalar()) { 4998 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4999 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5000 } 5001 5002 if (!InsertTy.isScalar()) { 5003 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5004 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5005 } 5006 5007 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5008 if (Offset != 0) { 5009 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5010 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5011 } 5012 5013 APInt MaskVal = APInt::getBitsSetWithWrap( 5014 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5015 5016 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5017 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5018 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5019 5020 MIRBuilder.buildCast(Dst, Or); 5021 MI.eraseFromParent(); 5022 return Legalized; 5023 } 5024 5025 LegalizerHelper::LegalizeResult 5026 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5027 Register Dst0 = MI.getOperand(0).getReg(); 5028 Register Dst1 = MI.getOperand(1).getReg(); 5029 Register LHS = MI.getOperand(2).getReg(); 5030 Register RHS = MI.getOperand(3).getReg(); 5031 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5032 5033 LLT Ty = MRI.getType(Dst0); 5034 LLT BoolTy = MRI.getType(Dst1); 5035 5036 if (IsAdd) 5037 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5038 else 5039 MIRBuilder.buildSub(Dst0, LHS, RHS); 5040 5041 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5042 5043 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5044 5045 // For an addition, the result should be less than one of the operands (LHS) 5046 // if and only if the other operand (RHS) is negative, otherwise there will 5047 // be overflow. 5048 // For a subtraction, the result should be less than one of the operands 5049 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5050 // otherwise there will be overflow. 5051 auto ResultLowerThanLHS = 5052 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5053 auto ConditionRHS = MIRBuilder.buildICmp( 5054 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5055 5056 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5057 MI.eraseFromParent(); 5058 return Legalized; 5059 } 5060 5061 LegalizerHelper::LegalizeResult 5062 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5063 Register Dst = MI.getOperand(0).getReg(); 5064 Register Src = MI.getOperand(1).getReg(); 5065 const LLT Ty = MRI.getType(Src); 5066 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5067 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5068 5069 // Swap most and least significant byte, set remaining bytes in Res to zero. 5070 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5071 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5072 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5073 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5074 5075 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5076 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5077 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5078 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5079 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5080 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5081 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5082 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5083 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5084 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5085 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5086 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5087 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5088 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5089 } 5090 Res.getInstr()->getOperand(0).setReg(Dst); 5091 5092 MI.eraseFromParent(); 5093 return Legalized; 5094 } 5095 5096 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5097 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5098 MachineInstrBuilder Src, APInt Mask) { 5099 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5100 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5101 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5102 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5103 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5104 return B.buildOr(Dst, LHS, RHS); 5105 } 5106 5107 LegalizerHelper::LegalizeResult 5108 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5109 Register Dst = MI.getOperand(0).getReg(); 5110 Register Src = MI.getOperand(1).getReg(); 5111 const LLT Ty = MRI.getType(Src); 5112 unsigned Size = Ty.getSizeInBits(); 5113 5114 MachineInstrBuilder BSWAP = 5115 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5116 5117 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5118 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5119 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5120 MachineInstrBuilder Swap4 = 5121 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5122 5123 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5124 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5125 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5126 MachineInstrBuilder Swap2 = 5127 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5128 5129 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5130 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5131 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5132 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5133 5134 MI.eraseFromParent(); 5135 return Legalized; 5136 } 5137 5138 LegalizerHelper::LegalizeResult 5139 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5140 MachineFunction &MF = MIRBuilder.getMF(); 5141 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5142 const TargetLowering *TLI = STI.getTargetLowering(); 5143 5144 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5145 int NameOpIdx = IsRead ? 1 : 0; 5146 int ValRegIndex = IsRead ? 0 : 1; 5147 5148 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5149 const LLT Ty = MRI.getType(ValReg); 5150 const MDString *RegStr = cast<MDString>( 5151 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5152 5153 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5154 if (!PhysReg.isValid()) 5155 return UnableToLegalize; 5156 5157 if (IsRead) 5158 MIRBuilder.buildCopy(ValReg, PhysReg); 5159 else 5160 MIRBuilder.buildCopy(PhysReg, ValReg); 5161 5162 MI.eraseFromParent(); 5163 return Legalized; 5164 } 5165