1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
90   MIRBuilder.setMF(MF);
91   MIRBuilder.setChangeObserver(Observer);
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &B)
97     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
98   MIRBuilder.setMF(MF);
99   MIRBuilder.setChangeObserver(Observer);
100 }
101 LegalizerHelper::LegalizeResult
102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
103   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized
108                                                           : UnableToLegalize;
109   auto Step = LI.getAction(MI, MRI);
110   switch (Step.Action) {
111   case Legal:
112     LLVM_DEBUG(dbgs() << ".. Already legal\n");
113     return AlreadyLegal;
114   case Libcall:
115     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
116     return libcall(MI);
117   case NarrowScalar:
118     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
119     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
120   case WidenScalar:
121     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
122     return widenScalar(MI, Step.TypeIdx, Step.NewType);
123   case Bitcast:
124     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
125     return bitcast(MI, Step.TypeIdx, Step.NewType);
126   case Lower:
127     LLVM_DEBUG(dbgs() << ".. Lower\n");
128     return lower(MI, Step.TypeIdx, Step.NewType);
129   case FewerElements:
130     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
131     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
132   case MoreElements:
133     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
134     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case Custom:
136     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
137     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
138                                                             : UnableToLegalize;
139   default:
140     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
141     return UnableToLegalize;
142   }
143 }
144 
145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
146                                    SmallVectorImpl<Register> &VRegs) {
147   for (int i = 0; i < NumParts; ++i)
148     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
149   MIRBuilder.buildUnmerge(VRegs, Reg);
150 }
151 
152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
153                                    LLT MainTy, LLT &LeftoverTy,
154                                    SmallVectorImpl<Register> &VRegs,
155                                    SmallVectorImpl<Register> &LeftoverRegs) {
156   assert(!LeftoverTy.isValid() && "this is an out argument");
157 
158   unsigned RegSize = RegTy.getSizeInBits();
159   unsigned MainSize = MainTy.getSizeInBits();
160   unsigned NumParts = RegSize / MainSize;
161   unsigned LeftoverSize = RegSize - NumParts * MainSize;
162 
163   // Use an unmerge when possible.
164   if (LeftoverSize == 0) {
165     for (unsigned I = 0; I < NumParts; ++I)
166       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
167     MIRBuilder.buildUnmerge(VRegs, Reg);
168     return true;
169   }
170 
171   if (MainTy.isVector()) {
172     unsigned EltSize = MainTy.getScalarSizeInBits();
173     if (LeftoverSize % EltSize != 0)
174       return false;
175     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
176   } else {
177     LeftoverTy = LLT::scalar(LeftoverSize);
178   }
179 
180   // For irregular sizes, extract the individual parts.
181   for (unsigned I = 0; I != NumParts; ++I) {
182     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
183     VRegs.push_back(NewReg);
184     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
185   }
186 
187   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
188        Offset += LeftoverSize) {
189     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
190     LeftoverRegs.push_back(NewReg);
191     MIRBuilder.buildExtract(NewReg, Reg, Offset);
192   }
193 
194   return true;
195 }
196 
197 void LegalizerHelper::insertParts(Register DstReg,
198                                   LLT ResultTy, LLT PartTy,
199                                   ArrayRef<Register> PartRegs,
200                                   LLT LeftoverTy,
201                                   ArrayRef<Register> LeftoverRegs) {
202   if (!LeftoverTy.isValid()) {
203     assert(LeftoverRegs.empty());
204 
205     if (!ResultTy.isVector()) {
206       MIRBuilder.buildMerge(DstReg, PartRegs);
207       return;
208     }
209 
210     if (PartTy.isVector())
211       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
212     else
213       MIRBuilder.buildBuildVector(DstReg, PartRegs);
214     return;
215   }
216 
217   unsigned PartSize = PartTy.getSizeInBits();
218   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
219 
220   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
221   MIRBuilder.buildUndef(CurResultReg);
222 
223   unsigned Offset = 0;
224   for (Register PartReg : PartRegs) {
225     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
226     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
227     CurResultReg = NewResultReg;
228     Offset += PartSize;
229   }
230 
231   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
232     // Use the original output register for the final insert to avoid a copy.
233     Register NewResultReg = (I + 1 == E) ?
234       DstReg : MRI.createGenericVirtualRegister(ResultTy);
235 
236     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
237     CurResultReg = NewResultReg;
238     Offset += LeftoverPartSize;
239   }
240 }
241 
242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
244                               const MachineInstr &MI) {
245   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
246 
247   const int NumResults = MI.getNumOperands() - 1;
248   Regs.resize(NumResults);
249   for (int I = 0; I != NumResults; ++I)
250     Regs[I] = MI.getOperand(I).getReg();
251 }
252 
253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
254                                     LLT NarrowTy, Register SrcReg) {
255   LLT SrcTy = MRI.getType(SrcReg);
256 
257   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     MIRBuilder.buildExtract(DstReg, Remerge, 0);
382     return;
383   }
384 
385   llvm_unreachable("unhandled case");
386 }
387 
388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
389 #define RTLIBCASE(LibcallPrefix)                                               \
390   do {                                                                         \
391     switch (Size) {                                                            \
392     case 32:                                                                   \
393       return RTLIB::LibcallPrefix##32;                                         \
394     case 64:                                                                   \
395       return RTLIB::LibcallPrefix##64;                                         \
396     case 128:                                                                  \
397       return RTLIB::LibcallPrefix##128;                                        \
398     default:                                                                   \
399       llvm_unreachable("unexpected size");                                     \
400     }                                                                          \
401   } while (0)
402 
403   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
404 
405   switch (Opcode) {
406   case TargetOpcode::G_SDIV:
407     RTLIBCASE(SDIV_I);
408   case TargetOpcode::G_UDIV:
409     RTLIBCASE(UDIV_I);
410   case TargetOpcode::G_SREM:
411     RTLIBCASE(SREM_I);
412   case TargetOpcode::G_UREM:
413     RTLIBCASE(UREM_I);
414   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
415     RTLIBCASE(CTLZ_I);
416   case TargetOpcode::G_FADD:
417     RTLIBCASE(ADD_F);
418   case TargetOpcode::G_FSUB:
419     RTLIBCASE(SUB_F);
420   case TargetOpcode::G_FMUL:
421     RTLIBCASE(MUL_F);
422   case TargetOpcode::G_FDIV:
423     RTLIBCASE(DIV_F);
424   case TargetOpcode::G_FEXP:
425     RTLIBCASE(EXP_F);
426   case TargetOpcode::G_FEXP2:
427     RTLIBCASE(EXP2_F);
428   case TargetOpcode::G_FREM:
429     RTLIBCASE(REM_F);
430   case TargetOpcode::G_FPOW:
431     RTLIBCASE(POW_F);
432   case TargetOpcode::G_FMA:
433     RTLIBCASE(FMA_F);
434   case TargetOpcode::G_FSIN:
435     RTLIBCASE(SIN_F);
436   case TargetOpcode::G_FCOS:
437     RTLIBCASE(COS_F);
438   case TargetOpcode::G_FLOG10:
439     RTLIBCASE(LOG10_F);
440   case TargetOpcode::G_FLOG:
441     RTLIBCASE(LOG_F);
442   case TargetOpcode::G_FLOG2:
443     RTLIBCASE(LOG2_F);
444   case TargetOpcode::G_FCEIL:
445     RTLIBCASE(CEIL_F);
446   case TargetOpcode::G_FFLOOR:
447     RTLIBCASE(FLOOR_F);
448   case TargetOpcode::G_FMINNUM:
449     RTLIBCASE(FMIN_F);
450   case TargetOpcode::G_FMAXNUM:
451     RTLIBCASE(FMAX_F);
452   case TargetOpcode::G_FSQRT:
453     RTLIBCASE(SQRT_F);
454   case TargetOpcode::G_FRINT:
455     RTLIBCASE(RINT_F);
456   case TargetOpcode::G_FNEARBYINT:
457     RTLIBCASE(NEARBYINT_F);
458   }
459   llvm_unreachable("Unknown libcall function");
460 }
461 
462 /// True if an instruction is in tail position in its caller. Intended for
463 /// legalizing libcalls as tail calls when possible.
464 static bool isLibCallInTailPosition(MachineInstr &MI) {
465   const Function &F = MI.getParent()->getParent()->getFunction();
466 
467   // Conservatively require the attributes of the call to match those of
468   // the return. Ignore NoAlias and NonNull because they don't affect the
469   // call sequence.
470   AttributeList CallerAttrs = F.getAttributes();
471   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
472           .removeAttribute(Attribute::NoAlias)
473           .removeAttribute(Attribute::NonNull)
474           .hasAttributes())
475     return false;
476 
477   // It's not safe to eliminate the sign / zero extension of the return value.
478   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
479       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
480     return false;
481 
482   // Only tail call if the following instruction is a standard return.
483   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
484   MachineInstr *Next = MI.getNextNode();
485   if (!Next || TII.isTailCall(*Next) || !Next->isReturn())
486     return false;
487 
488   return true;
489 }
490 
491 LegalizerHelper::LegalizeResult
492 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
493                     const CallLowering::ArgInfo &Result,
494                     ArrayRef<CallLowering::ArgInfo> Args,
495                     const CallingConv::ID CC) {
496   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
497 
498   CallLowering::CallLoweringInfo Info;
499   Info.CallConv = CC;
500   Info.Callee = MachineOperand::CreateES(Name);
501   Info.OrigRet = Result;
502   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
503   if (!CLI.lowerCall(MIRBuilder, Info))
504     return LegalizerHelper::UnableToLegalize;
505 
506   return LegalizerHelper::Legalized;
507 }
508 
509 LegalizerHelper::LegalizeResult
510 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
511                     const CallLowering::ArgInfo &Result,
512                     ArrayRef<CallLowering::ArgInfo> Args) {
513   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
514   const char *Name = TLI.getLibcallName(Libcall);
515   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
516   return createLibcall(MIRBuilder, Name, Result, Args, CC);
517 }
518 
519 // Useful for libcalls where all operands have the same type.
520 static LegalizerHelper::LegalizeResult
521 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
522               Type *OpType) {
523   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
524 
525   SmallVector<CallLowering::ArgInfo, 3> Args;
526   for (unsigned i = 1; i < MI.getNumOperands(); i++)
527     Args.push_back({MI.getOperand(i).getReg(), OpType});
528   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
529                        Args);
530 }
531 
532 LegalizerHelper::LegalizeResult
533 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
534                        MachineInstr &MI) {
535   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
536   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
537 
538   SmallVector<CallLowering::ArgInfo, 3> Args;
539   // Add all the args, except for the last which is an imm denoting 'tail'.
540   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
541     Register Reg = MI.getOperand(i).getReg();
542 
543     // Need derive an IR type for call lowering.
544     LLT OpLLT = MRI.getType(Reg);
545     Type *OpTy = nullptr;
546     if (OpLLT.isPointer())
547       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
548     else
549       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
550     Args.push_back({Reg, OpTy});
551   }
552 
553   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
554   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
555   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
556   RTLIB::Libcall RTLibcall;
557   switch (ID) {
558   case Intrinsic::memcpy:
559     RTLibcall = RTLIB::MEMCPY;
560     break;
561   case Intrinsic::memset:
562     RTLibcall = RTLIB::MEMSET;
563     break;
564   case Intrinsic::memmove:
565     RTLibcall = RTLIB::MEMMOVE;
566     break;
567   default:
568     return LegalizerHelper::UnableToLegalize;
569   }
570   const char *Name = TLI.getLibcallName(RTLibcall);
571 
572   MIRBuilder.setInstr(MI);
573 
574   CallLowering::CallLoweringInfo Info;
575   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
576   Info.Callee = MachineOperand::CreateES(Name);
577   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
578   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
579                     isLibCallInTailPosition(MI);
580 
581   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
582   if (!CLI.lowerCall(MIRBuilder, Info))
583     return LegalizerHelper::UnableToLegalize;
584 
585   if (Info.LoweredTailCall) {
586     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
587     // We must have a return following the call to get past
588     // isLibCallInTailPosition.
589     assert(MI.getNextNode() && MI.getNextNode()->isReturn() &&
590            "Expected instr following MI to be a return?");
591 
592     // We lowered a tail call, so the call is now the return from the block.
593     // Delete the old return.
594     MI.getNextNode()->eraseFromParent();
595   }
596 
597   return LegalizerHelper::Legalized;
598 }
599 
600 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
601                                        Type *FromType) {
602   auto ToMVT = MVT::getVT(ToType);
603   auto FromMVT = MVT::getVT(FromType);
604 
605   switch (Opcode) {
606   case TargetOpcode::G_FPEXT:
607     return RTLIB::getFPEXT(FromMVT, ToMVT);
608   case TargetOpcode::G_FPTRUNC:
609     return RTLIB::getFPROUND(FromMVT, ToMVT);
610   case TargetOpcode::G_FPTOSI:
611     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
612   case TargetOpcode::G_FPTOUI:
613     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
614   case TargetOpcode::G_SITOFP:
615     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
616   case TargetOpcode::G_UITOFP:
617     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
618   }
619   llvm_unreachable("Unsupported libcall function");
620 }
621 
622 static LegalizerHelper::LegalizeResult
623 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
624                   Type *FromType) {
625   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
626   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
627                        {{MI.getOperand(1).getReg(), FromType}});
628 }
629 
630 LegalizerHelper::LegalizeResult
631 LegalizerHelper::libcall(MachineInstr &MI) {
632   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
633   unsigned Size = LLTy.getSizeInBits();
634   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
635 
636   MIRBuilder.setInstr(MI);
637   MIRBuilder.setDebugLoc(MI.getDebugLoc());
638 
639   switch (MI.getOpcode()) {
640   default:
641     return UnableToLegalize;
642   case TargetOpcode::G_SDIV:
643   case TargetOpcode::G_UDIV:
644   case TargetOpcode::G_SREM:
645   case TargetOpcode::G_UREM:
646   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
647     Type *HLTy = IntegerType::get(Ctx, Size);
648     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
649     if (Status != Legalized)
650       return Status;
651     break;
652   }
653   case TargetOpcode::G_FADD:
654   case TargetOpcode::G_FSUB:
655   case TargetOpcode::G_FMUL:
656   case TargetOpcode::G_FDIV:
657   case TargetOpcode::G_FMA:
658   case TargetOpcode::G_FPOW:
659   case TargetOpcode::G_FREM:
660   case TargetOpcode::G_FCOS:
661   case TargetOpcode::G_FSIN:
662   case TargetOpcode::G_FLOG10:
663   case TargetOpcode::G_FLOG:
664   case TargetOpcode::G_FLOG2:
665   case TargetOpcode::G_FEXP:
666   case TargetOpcode::G_FEXP2:
667   case TargetOpcode::G_FCEIL:
668   case TargetOpcode::G_FFLOOR:
669   case TargetOpcode::G_FMINNUM:
670   case TargetOpcode::G_FMAXNUM:
671   case TargetOpcode::G_FSQRT:
672   case TargetOpcode::G_FRINT:
673   case TargetOpcode::G_FNEARBYINT: {
674     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
675     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
676       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
677       return UnableToLegalize;
678     }
679     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
680     if (Status != Legalized)
681       return Status;
682     break;
683   }
684   case TargetOpcode::G_FPEXT:
685   case TargetOpcode::G_FPTRUNC: {
686     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
687     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
688     if (!FromTy || !ToTy)
689       return UnableToLegalize;
690     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
691     if (Status != Legalized)
692       return Status;
693     break;
694   }
695   case TargetOpcode::G_FPTOSI:
696   case TargetOpcode::G_FPTOUI: {
697     // FIXME: Support other types
698     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
699     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
700     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
701       return UnableToLegalize;
702     LegalizeResult Status = conversionLibcall(
703         MI, MIRBuilder,
704         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
705         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_SITOFP:
711   case TargetOpcode::G_UITOFP: {
712     // FIXME: Support other types
713     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
714     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
715     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
716       return UnableToLegalize;
717     LegalizeResult Status = conversionLibcall(
718         MI, MIRBuilder,
719         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
720         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
721     if (Status != Legalized)
722       return Status;
723     break;
724   }
725   }
726 
727   MI.eraseFromParent();
728   return Legalized;
729 }
730 
731 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
732                                                               unsigned TypeIdx,
733                                                               LLT NarrowTy) {
734   MIRBuilder.setInstr(MI);
735   MIRBuilder.setDebugLoc(MI.getDebugLoc());
736 
737   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
738   uint64_t NarrowSize = NarrowTy.getSizeInBits();
739 
740   switch (MI.getOpcode()) {
741   default:
742     return UnableToLegalize;
743   case TargetOpcode::G_IMPLICIT_DEF: {
744     Register DstReg = MI.getOperand(0).getReg();
745     LLT DstTy = MRI.getType(DstReg);
746 
747     // If SizeOp0 is not an exact multiple of NarrowSize, emit
748     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
749     // FIXME: Although this would also be legal for the general case, it causes
750     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
751     //  combines not being hit). This seems to be a problem related to the
752     //  artifact combiner.
753     if (SizeOp0 % NarrowSize != 0) {
754       LLT ImplicitTy = NarrowTy;
755       if (DstTy.isVector())
756         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
757 
758       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
759       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
760 
761       MI.eraseFromParent();
762       return Legalized;
763     }
764 
765     int NumParts = SizeOp0 / NarrowSize;
766 
767     SmallVector<Register, 2> DstRegs;
768     for (int i = 0; i < NumParts; ++i)
769       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
770 
771     if (DstTy.isVector())
772       MIRBuilder.buildBuildVector(DstReg, DstRegs);
773     else
774       MIRBuilder.buildMerge(DstReg, DstRegs);
775     MI.eraseFromParent();
776     return Legalized;
777   }
778   case TargetOpcode::G_CONSTANT: {
779     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
780     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
781     unsigned TotalSize = Ty.getSizeInBits();
782     unsigned NarrowSize = NarrowTy.getSizeInBits();
783     int NumParts = TotalSize / NarrowSize;
784 
785     SmallVector<Register, 4> PartRegs;
786     for (int I = 0; I != NumParts; ++I) {
787       unsigned Offset = I * NarrowSize;
788       auto K = MIRBuilder.buildConstant(NarrowTy,
789                                         Val.lshr(Offset).trunc(NarrowSize));
790       PartRegs.push_back(K.getReg(0));
791     }
792 
793     LLT LeftoverTy;
794     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
795     SmallVector<Register, 1> LeftoverRegs;
796     if (LeftoverBits != 0) {
797       LeftoverTy = LLT::scalar(LeftoverBits);
798       auto K = MIRBuilder.buildConstant(
799         LeftoverTy,
800         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
801       LeftoverRegs.push_back(K.getReg(0));
802     }
803 
804     insertParts(MI.getOperand(0).getReg(),
805                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
806 
807     MI.eraseFromParent();
808     return Legalized;
809   }
810   case TargetOpcode::G_SEXT:
811   case TargetOpcode::G_ZEXT:
812   case TargetOpcode::G_ANYEXT:
813     return narrowScalarExt(MI, TypeIdx, NarrowTy);
814   case TargetOpcode::G_TRUNC: {
815     if (TypeIdx != 1)
816       return UnableToLegalize;
817 
818     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
819     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
820       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
821       return UnableToLegalize;
822     }
823 
824     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
825     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
826     MI.eraseFromParent();
827     return Legalized;
828   }
829 
830   case TargetOpcode::G_ADD: {
831     // FIXME: add support for when SizeOp0 isn't an exact multiple of
832     // NarrowSize.
833     if (SizeOp0 % NarrowSize != 0)
834       return UnableToLegalize;
835     // Expand in terms of carry-setting/consuming G_ADDE instructions.
836     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
837 
838     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
839     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
840     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
841 
842     Register CarryIn;
843     for (int i = 0; i < NumParts; ++i) {
844       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
845       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
846 
847       if (i == 0)
848         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
849       else {
850         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
851                               Src2Regs[i], CarryIn);
852       }
853 
854       DstRegs.push_back(DstReg);
855       CarryIn = CarryOut;
856     }
857     Register DstReg = MI.getOperand(0).getReg();
858     if(MRI.getType(DstReg).isVector())
859       MIRBuilder.buildBuildVector(DstReg, DstRegs);
860     else
861       MIRBuilder.buildMerge(DstReg, DstRegs);
862     MI.eraseFromParent();
863     return Legalized;
864   }
865   case TargetOpcode::G_SUB: {
866     // FIXME: add support for when SizeOp0 isn't an exact multiple of
867     // NarrowSize.
868     if (SizeOp0 % NarrowSize != 0)
869       return UnableToLegalize;
870 
871     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
872 
873     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
874     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
875     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
876 
877     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
878     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
879     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
880                           {Src1Regs[0], Src2Regs[0]});
881     DstRegs.push_back(DstReg);
882     Register BorrowIn = BorrowOut;
883     for (int i = 1; i < NumParts; ++i) {
884       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
885       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
886 
887       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
888                             {Src1Regs[i], Src2Regs[i], BorrowIn});
889 
890       DstRegs.push_back(DstReg);
891       BorrowIn = BorrowOut;
892     }
893     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
894     MI.eraseFromParent();
895     return Legalized;
896   }
897   case TargetOpcode::G_MUL:
898   case TargetOpcode::G_UMULH:
899     return narrowScalarMul(MI, NarrowTy);
900   case TargetOpcode::G_EXTRACT:
901     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
902   case TargetOpcode::G_INSERT:
903     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
904   case TargetOpcode::G_LOAD: {
905     const auto &MMO = **MI.memoperands_begin();
906     Register DstReg = MI.getOperand(0).getReg();
907     LLT DstTy = MRI.getType(DstReg);
908     if (DstTy.isVector())
909       return UnableToLegalize;
910 
911     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
912       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
913       auto &MMO = **MI.memoperands_begin();
914       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
915       MIRBuilder.buildAnyExt(DstReg, TmpReg);
916       MI.eraseFromParent();
917       return Legalized;
918     }
919 
920     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
921   }
922   case TargetOpcode::G_ZEXTLOAD:
923   case TargetOpcode::G_SEXTLOAD: {
924     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
925     Register DstReg = MI.getOperand(0).getReg();
926     Register PtrReg = MI.getOperand(1).getReg();
927 
928     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
929     auto &MMO = **MI.memoperands_begin();
930     if (MMO.getSizeInBits() == NarrowSize) {
931       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
932     } else {
933       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
934     }
935 
936     if (ZExt)
937       MIRBuilder.buildZExt(DstReg, TmpReg);
938     else
939       MIRBuilder.buildSExt(DstReg, TmpReg);
940 
941     MI.eraseFromParent();
942     return Legalized;
943   }
944   case TargetOpcode::G_STORE: {
945     const auto &MMO = **MI.memoperands_begin();
946 
947     Register SrcReg = MI.getOperand(0).getReg();
948     LLT SrcTy = MRI.getType(SrcReg);
949     if (SrcTy.isVector())
950       return UnableToLegalize;
951 
952     int NumParts = SizeOp0 / NarrowSize;
953     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
954     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
955     if (SrcTy.isVector() && LeftoverBits != 0)
956       return UnableToLegalize;
957 
958     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
959       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
960       auto &MMO = **MI.memoperands_begin();
961       MIRBuilder.buildTrunc(TmpReg, SrcReg);
962       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
963       MI.eraseFromParent();
964       return Legalized;
965     }
966 
967     return reduceLoadStoreWidth(MI, 0, NarrowTy);
968   }
969   case TargetOpcode::G_SELECT:
970     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
971   case TargetOpcode::G_AND:
972   case TargetOpcode::G_OR:
973   case TargetOpcode::G_XOR: {
974     // Legalize bitwise operation:
975     // A = BinOp<Ty> B, C
976     // into:
977     // B1, ..., BN = G_UNMERGE_VALUES B
978     // C1, ..., CN = G_UNMERGE_VALUES C
979     // A1 = BinOp<Ty/N> B1, C2
980     // ...
981     // AN = BinOp<Ty/N> BN, CN
982     // A = G_MERGE_VALUES A1, ..., AN
983     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
984   }
985   case TargetOpcode::G_SHL:
986   case TargetOpcode::G_LSHR:
987   case TargetOpcode::G_ASHR:
988     return narrowScalarShift(MI, TypeIdx, NarrowTy);
989   case TargetOpcode::G_CTLZ:
990   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
991   case TargetOpcode::G_CTTZ:
992   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
993   case TargetOpcode::G_CTPOP:
994     if (TypeIdx == 1)
995       switch (MI.getOpcode()) {
996       case TargetOpcode::G_CTLZ:
997       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
998         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
999       case TargetOpcode::G_CTTZ:
1000       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1001         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1002       case TargetOpcode::G_CTPOP:
1003         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1004       default:
1005         return UnableToLegalize;
1006       }
1007 
1008     Observer.changingInstr(MI);
1009     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1010     Observer.changedInstr(MI);
1011     return Legalized;
1012   case TargetOpcode::G_INTTOPTR:
1013     if (TypeIdx != 1)
1014       return UnableToLegalize;
1015 
1016     Observer.changingInstr(MI);
1017     narrowScalarSrc(MI, NarrowTy, 1);
1018     Observer.changedInstr(MI);
1019     return Legalized;
1020   case TargetOpcode::G_PTRTOINT:
1021     if (TypeIdx != 0)
1022       return UnableToLegalize;
1023 
1024     Observer.changingInstr(MI);
1025     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1026     Observer.changedInstr(MI);
1027     return Legalized;
1028   case TargetOpcode::G_PHI: {
1029     unsigned NumParts = SizeOp0 / NarrowSize;
1030     SmallVector<Register, 2> DstRegs(NumParts);
1031     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1032     Observer.changingInstr(MI);
1033     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1034       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1035       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1036       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1037                    SrcRegs[i / 2]);
1038     }
1039     MachineBasicBlock &MBB = *MI.getParent();
1040     MIRBuilder.setInsertPt(MBB, MI);
1041     for (unsigned i = 0; i < NumParts; ++i) {
1042       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1043       MachineInstrBuilder MIB =
1044           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1045       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1046         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1047     }
1048     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1049     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1050     Observer.changedInstr(MI);
1051     MI.eraseFromParent();
1052     return Legalized;
1053   }
1054   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1055   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1056     if (TypeIdx != 2)
1057       return UnableToLegalize;
1058 
1059     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1060     Observer.changingInstr(MI);
1061     narrowScalarSrc(MI, NarrowTy, OpIdx);
1062     Observer.changedInstr(MI);
1063     return Legalized;
1064   }
1065   case TargetOpcode::G_ICMP: {
1066     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1067     if (NarrowSize * 2 != SrcSize)
1068       return UnableToLegalize;
1069 
1070     Observer.changingInstr(MI);
1071     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1072     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1073     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1074 
1075     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1076     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1077     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1078 
1079     CmpInst::Predicate Pred =
1080         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1081     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1082 
1083     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1084       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1085       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1086       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1087       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1088       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1089     } else {
1090       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1091       MachineInstrBuilder CmpHEQ =
1092           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1093       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1094           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1095       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1096     }
1097     Observer.changedInstr(MI);
1098     MI.eraseFromParent();
1099     return Legalized;
1100   }
1101   case TargetOpcode::G_SEXT_INREG: {
1102     if (TypeIdx != 0)
1103       return UnableToLegalize;
1104 
1105     int64_t SizeInBits = MI.getOperand(2).getImm();
1106 
1107     // So long as the new type has more bits than the bits we're extending we
1108     // don't need to break it apart.
1109     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1110       Observer.changingInstr(MI);
1111       // We don't lose any non-extension bits by truncating the src and
1112       // sign-extending the dst.
1113       MachineOperand &MO1 = MI.getOperand(1);
1114       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1115       MO1.setReg(TruncMIB.getReg(0));
1116 
1117       MachineOperand &MO2 = MI.getOperand(0);
1118       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1119       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1120       MIRBuilder.buildSExt(MO2, DstExt);
1121       MO2.setReg(DstExt);
1122       Observer.changedInstr(MI);
1123       return Legalized;
1124     }
1125 
1126     // Break it apart. Components below the extension point are unmodified. The
1127     // component containing the extension point becomes a narrower SEXT_INREG.
1128     // Components above it are ashr'd from the component containing the
1129     // extension point.
1130     if (SizeOp0 % NarrowSize != 0)
1131       return UnableToLegalize;
1132     int NumParts = SizeOp0 / NarrowSize;
1133 
1134     // List the registers where the destination will be scattered.
1135     SmallVector<Register, 2> DstRegs;
1136     // List the registers where the source will be split.
1137     SmallVector<Register, 2> SrcRegs;
1138 
1139     // Create all the temporary registers.
1140     for (int i = 0; i < NumParts; ++i) {
1141       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1142 
1143       SrcRegs.push_back(SrcReg);
1144     }
1145 
1146     // Explode the big arguments into smaller chunks.
1147     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1148 
1149     Register AshrCstReg =
1150         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1151             .getReg(0);
1152     Register FullExtensionReg = 0;
1153     Register PartialExtensionReg = 0;
1154 
1155     // Do the operation on each small part.
1156     for (int i = 0; i < NumParts; ++i) {
1157       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1158         DstRegs.push_back(SrcRegs[i]);
1159       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1160         assert(PartialExtensionReg &&
1161                "Expected to visit partial extension before full");
1162         if (FullExtensionReg) {
1163           DstRegs.push_back(FullExtensionReg);
1164           continue;
1165         }
1166         DstRegs.push_back(
1167             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1168                 .getReg(0));
1169         FullExtensionReg = DstRegs.back();
1170       } else {
1171         DstRegs.push_back(
1172             MIRBuilder
1173                 .buildInstr(
1174                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1175                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1176                 .getReg(0));
1177         PartialExtensionReg = DstRegs.back();
1178       }
1179     }
1180 
1181     // Gather the destination registers into the final destination.
1182     Register DstReg = MI.getOperand(0).getReg();
1183     MIRBuilder.buildMerge(DstReg, DstRegs);
1184     MI.eraseFromParent();
1185     return Legalized;
1186   }
1187   case TargetOpcode::G_BSWAP:
1188   case TargetOpcode::G_BITREVERSE: {
1189     if (SizeOp0 % NarrowSize != 0)
1190       return UnableToLegalize;
1191 
1192     Observer.changingInstr(MI);
1193     SmallVector<Register, 2> SrcRegs, DstRegs;
1194     unsigned NumParts = SizeOp0 / NarrowSize;
1195     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1196 
1197     for (unsigned i = 0; i < NumParts; ++i) {
1198       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1199                                            {SrcRegs[NumParts - 1 - i]});
1200       DstRegs.push_back(DstPart.getReg(0));
1201     }
1202 
1203     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1204 
1205     Observer.changedInstr(MI);
1206     MI.eraseFromParent();
1207     return Legalized;
1208   }
1209   }
1210 }
1211 
1212 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1213                                      unsigned OpIdx, unsigned ExtOpcode) {
1214   MachineOperand &MO = MI.getOperand(OpIdx);
1215   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1216   MO.setReg(ExtB.getReg(0));
1217 }
1218 
1219 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1220                                       unsigned OpIdx) {
1221   MachineOperand &MO = MI.getOperand(OpIdx);
1222   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1223   MO.setReg(ExtB.getReg(0));
1224 }
1225 
1226 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1227                                      unsigned OpIdx, unsigned TruncOpcode) {
1228   MachineOperand &MO = MI.getOperand(OpIdx);
1229   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1230   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1231   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1232   MO.setReg(DstExt);
1233 }
1234 
1235 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1236                                       unsigned OpIdx, unsigned ExtOpcode) {
1237   MachineOperand &MO = MI.getOperand(OpIdx);
1238   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1239   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1240   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1241   MO.setReg(DstTrunc);
1242 }
1243 
1244 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1245                                             unsigned OpIdx) {
1246   MachineOperand &MO = MI.getOperand(OpIdx);
1247   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1248   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1249   MIRBuilder.buildExtract(MO, DstExt, 0);
1250   MO.setReg(DstExt);
1251 }
1252 
1253 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1254                                             unsigned OpIdx) {
1255   MachineOperand &MO = MI.getOperand(OpIdx);
1256 
1257   LLT OldTy = MRI.getType(MO.getReg());
1258   unsigned OldElts = OldTy.getNumElements();
1259   unsigned NewElts = MoreTy.getNumElements();
1260 
1261   unsigned NumParts = NewElts / OldElts;
1262 
1263   // Use concat_vectors if the result is a multiple of the number of elements.
1264   if (NumParts * OldElts == NewElts) {
1265     SmallVector<Register, 8> Parts;
1266     Parts.push_back(MO.getReg());
1267 
1268     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1269     for (unsigned I = 1; I != NumParts; ++I)
1270       Parts.push_back(ImpDef);
1271 
1272     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1273     MO.setReg(Concat.getReg(0));
1274     return;
1275   }
1276 
1277   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1278   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1279   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1280   MO.setReg(MoreReg);
1281 }
1282 
1283 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1284   MachineOperand &Op = MI.getOperand(OpIdx);
1285   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1286 }
1287 
1288 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1289   MachineOperand &MO = MI.getOperand(OpIdx);
1290   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1291   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1292   MIRBuilder.buildBitcast(MO, CastDst);
1293   MO.setReg(CastDst);
1294 }
1295 
1296 LegalizerHelper::LegalizeResult
1297 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1298                                         LLT WideTy) {
1299   if (TypeIdx != 1)
1300     return UnableToLegalize;
1301 
1302   Register DstReg = MI.getOperand(0).getReg();
1303   LLT DstTy = MRI.getType(DstReg);
1304   if (DstTy.isVector())
1305     return UnableToLegalize;
1306 
1307   Register Src1 = MI.getOperand(1).getReg();
1308   LLT SrcTy = MRI.getType(Src1);
1309   const int DstSize = DstTy.getSizeInBits();
1310   const int SrcSize = SrcTy.getSizeInBits();
1311   const int WideSize = WideTy.getSizeInBits();
1312   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1313 
1314   unsigned NumOps = MI.getNumOperands();
1315   unsigned NumSrc = MI.getNumOperands() - 1;
1316   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1317 
1318   if (WideSize >= DstSize) {
1319     // Directly pack the bits in the target type.
1320     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1321 
1322     for (unsigned I = 2; I != NumOps; ++I) {
1323       const unsigned Offset = (I - 1) * PartSize;
1324 
1325       Register SrcReg = MI.getOperand(I).getReg();
1326       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1327 
1328       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1329 
1330       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1331         MRI.createGenericVirtualRegister(WideTy);
1332 
1333       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1334       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1335       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1336       ResultReg = NextResult;
1337     }
1338 
1339     if (WideSize > DstSize)
1340       MIRBuilder.buildTrunc(DstReg, ResultReg);
1341     else if (DstTy.isPointer())
1342       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1343 
1344     MI.eraseFromParent();
1345     return Legalized;
1346   }
1347 
1348   // Unmerge the original values to the GCD type, and recombine to the next
1349   // multiple greater than the original type.
1350   //
1351   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1352   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1353   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1354   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1355   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1356   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1357   // %12:_(s12) = G_MERGE_VALUES %10, %11
1358   //
1359   // Padding with undef if necessary:
1360   //
1361   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1362   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1363   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1364   // %7:_(s2) = G_IMPLICIT_DEF
1365   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1366   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1367   // %10:_(s12) = G_MERGE_VALUES %8, %9
1368 
1369   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1370   LLT GCDTy = LLT::scalar(GCD);
1371 
1372   SmallVector<Register, 8> Parts;
1373   SmallVector<Register, 8> NewMergeRegs;
1374   SmallVector<Register, 8> Unmerges;
1375   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1376 
1377   // Decompose the original operands if they don't evenly divide.
1378   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1379     Register SrcReg = MI.getOperand(I).getReg();
1380     if (GCD == SrcSize) {
1381       Unmerges.push_back(SrcReg);
1382     } else {
1383       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1384       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1385         Unmerges.push_back(Unmerge.getReg(J));
1386     }
1387   }
1388 
1389   // Pad with undef to the next size that is a multiple of the requested size.
1390   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1391     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1392     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1393       Unmerges.push_back(UndefReg);
1394   }
1395 
1396   const int PartsPerGCD = WideSize / GCD;
1397 
1398   // Build merges of each piece.
1399   ArrayRef<Register> Slicer(Unmerges);
1400   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1401     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1402     NewMergeRegs.push_back(Merge.getReg(0));
1403   }
1404 
1405   // A truncate may be necessary if the requested type doesn't evenly divide the
1406   // original result type.
1407   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1408     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1409   } else {
1410     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1411     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1412   }
1413 
1414   MI.eraseFromParent();
1415   return Legalized;
1416 }
1417 
1418 LegalizerHelper::LegalizeResult
1419 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1420                                           LLT WideTy) {
1421   if (TypeIdx != 0)
1422     return UnableToLegalize;
1423 
1424   int NumDst = MI.getNumOperands() - 1;
1425   Register SrcReg = MI.getOperand(NumDst).getReg();
1426   LLT SrcTy = MRI.getType(SrcReg);
1427   if (SrcTy.isVector())
1428     return UnableToLegalize;
1429 
1430   Register Dst0Reg = MI.getOperand(0).getReg();
1431   LLT DstTy = MRI.getType(Dst0Reg);
1432   if (!DstTy.isScalar())
1433     return UnableToLegalize;
1434 
1435   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1436     if (SrcTy.isPointer()) {
1437       const DataLayout &DL = MIRBuilder.getDataLayout();
1438       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1439         LLVM_DEBUG(
1440             dbgs() << "Not casting non-integral address space integer\n");
1441         return UnableToLegalize;
1442       }
1443 
1444       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1445       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1446     }
1447 
1448     // Widen SrcTy to WideTy. This does not affect the result, but since the
1449     // user requested this size, it is probably better handled than SrcTy and
1450     // should reduce the total number of legalization artifacts
1451     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1452       SrcTy = WideTy;
1453       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1454     }
1455 
1456     // Theres no unmerge type to target. Directly extract the bits from the
1457     // source type
1458     unsigned DstSize = DstTy.getSizeInBits();
1459 
1460     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1461     for (int I = 1; I != NumDst; ++I) {
1462       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1463       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1464       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1465     }
1466 
1467     MI.eraseFromParent();
1468     return Legalized;
1469   }
1470 
1471   // Extend the source to a wider type.
1472   LLT LCMTy = getLCMType(SrcTy, WideTy);
1473 
1474   Register WideSrc = SrcReg;
1475   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1476     // TODO: If this is an integral address space, cast to integer and anyext.
1477     if (SrcTy.isPointer()) {
1478       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1479       return UnableToLegalize;
1480     }
1481 
1482     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1483   }
1484 
1485   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1486 
1487   // Create a sequence of unmerges to the original results. since we may have
1488   // widened the source, we will need to pad the results with dead defs to cover
1489   // the source register.
1490   // e.g. widen s16 to s32:
1491   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1492   //
1493   // =>
1494   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1495   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1496   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1497   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1498 
1499   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1500   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1501 
1502   for (int I = 0; I != NumUnmerge; ++I) {
1503     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1504 
1505     for (int J = 0; J != PartsPerUnmerge; ++J) {
1506       int Idx = I * PartsPerUnmerge + J;
1507       if (Idx < NumDst)
1508         MIB.addDef(MI.getOperand(Idx).getReg());
1509       else {
1510         // Create dead def for excess components.
1511         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1512       }
1513     }
1514 
1515     MIB.addUse(Unmerge.getReg(I));
1516   }
1517 
1518   MI.eraseFromParent();
1519   return Legalized;
1520 }
1521 
1522 LegalizerHelper::LegalizeResult
1523 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1524                                     LLT WideTy) {
1525   Register DstReg = MI.getOperand(0).getReg();
1526   Register SrcReg = MI.getOperand(1).getReg();
1527   LLT SrcTy = MRI.getType(SrcReg);
1528 
1529   LLT DstTy = MRI.getType(DstReg);
1530   unsigned Offset = MI.getOperand(2).getImm();
1531 
1532   if (TypeIdx == 0) {
1533     if (SrcTy.isVector() || DstTy.isVector())
1534       return UnableToLegalize;
1535 
1536     SrcOp Src(SrcReg);
1537     if (SrcTy.isPointer()) {
1538       // Extracts from pointers can be handled only if they are really just
1539       // simple integers.
1540       const DataLayout &DL = MIRBuilder.getDataLayout();
1541       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1542         return UnableToLegalize;
1543 
1544       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1545       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1546       SrcTy = SrcAsIntTy;
1547     }
1548 
1549     if (DstTy.isPointer())
1550       return UnableToLegalize;
1551 
1552     if (Offset == 0) {
1553       // Avoid a shift in the degenerate case.
1554       MIRBuilder.buildTrunc(DstReg,
1555                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1556       MI.eraseFromParent();
1557       return Legalized;
1558     }
1559 
1560     // Do a shift in the source type.
1561     LLT ShiftTy = SrcTy;
1562     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1563       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1564       ShiftTy = WideTy;
1565     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1566       return UnableToLegalize;
1567 
1568     auto LShr = MIRBuilder.buildLShr(
1569       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1570     MIRBuilder.buildTrunc(DstReg, LShr);
1571     MI.eraseFromParent();
1572     return Legalized;
1573   }
1574 
1575   if (SrcTy.isScalar()) {
1576     Observer.changingInstr(MI);
1577     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1578     Observer.changedInstr(MI);
1579     return Legalized;
1580   }
1581 
1582   if (!SrcTy.isVector())
1583     return UnableToLegalize;
1584 
1585   if (DstTy != SrcTy.getElementType())
1586     return UnableToLegalize;
1587 
1588   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1589     return UnableToLegalize;
1590 
1591   Observer.changingInstr(MI);
1592   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1593 
1594   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1595                           Offset);
1596   widenScalarDst(MI, WideTy.getScalarType(), 0);
1597   Observer.changedInstr(MI);
1598   return Legalized;
1599 }
1600 
1601 LegalizerHelper::LegalizeResult
1602 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1603                                    LLT WideTy) {
1604   if (TypeIdx != 0)
1605     return UnableToLegalize;
1606   Observer.changingInstr(MI);
1607   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1608   widenScalarDst(MI, WideTy);
1609   Observer.changedInstr(MI);
1610   return Legalized;
1611 }
1612 
1613 LegalizerHelper::LegalizeResult
1614 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1615   MIRBuilder.setInstr(MI);
1616   MIRBuilder.setDebugLoc(MI.getDebugLoc());
1617 
1618   switch (MI.getOpcode()) {
1619   default:
1620     return UnableToLegalize;
1621   case TargetOpcode::G_EXTRACT:
1622     return widenScalarExtract(MI, TypeIdx, WideTy);
1623   case TargetOpcode::G_INSERT:
1624     return widenScalarInsert(MI, TypeIdx, WideTy);
1625   case TargetOpcode::G_MERGE_VALUES:
1626     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1627   case TargetOpcode::G_UNMERGE_VALUES:
1628     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1629   case TargetOpcode::G_UADDO:
1630   case TargetOpcode::G_USUBO: {
1631     if (TypeIdx == 1)
1632       return UnableToLegalize; // TODO
1633     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1634     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1635     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1636                           ? TargetOpcode::G_ADD
1637                           : TargetOpcode::G_SUB;
1638     // Do the arithmetic in the larger type.
1639     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1640     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1641     APInt Mask =
1642         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1643     auto AndOp = MIRBuilder.buildAnd(
1644         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1645     // There is no overflow if the AndOp is the same as NewOp.
1646     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1647     // Now trunc the NewOp to the original result.
1648     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1649     MI.eraseFromParent();
1650     return Legalized;
1651   }
1652   case TargetOpcode::G_CTTZ:
1653   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1654   case TargetOpcode::G_CTLZ:
1655   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1656   case TargetOpcode::G_CTPOP: {
1657     if (TypeIdx == 0) {
1658       Observer.changingInstr(MI);
1659       widenScalarDst(MI, WideTy, 0);
1660       Observer.changedInstr(MI);
1661       return Legalized;
1662     }
1663 
1664     Register SrcReg = MI.getOperand(1).getReg();
1665 
1666     // First ZEXT the input.
1667     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1668     LLT CurTy = MRI.getType(SrcReg);
1669     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1670       // The count is the same in the larger type except if the original
1671       // value was zero.  This can be handled by setting the bit just off
1672       // the top of the original type.
1673       auto TopBit =
1674           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1675       MIBSrc = MIRBuilder.buildOr(
1676         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1677     }
1678 
1679     // Perform the operation at the larger size.
1680     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1681     // This is already the correct result for CTPOP and CTTZs
1682     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1683         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1684       // The correct result is NewOp - (Difference in widety and current ty).
1685       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1686       MIBNewOp = MIRBuilder.buildSub(
1687           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1688     }
1689 
1690     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1691     MI.eraseFromParent();
1692     return Legalized;
1693   }
1694   case TargetOpcode::G_BSWAP: {
1695     Observer.changingInstr(MI);
1696     Register DstReg = MI.getOperand(0).getReg();
1697 
1698     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1699     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1700     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1701     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1702 
1703     MI.getOperand(0).setReg(DstExt);
1704 
1705     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1706 
1707     LLT Ty = MRI.getType(DstReg);
1708     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1709     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1710     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1711 
1712     MIRBuilder.buildTrunc(DstReg, ShrReg);
1713     Observer.changedInstr(MI);
1714     return Legalized;
1715   }
1716   case TargetOpcode::G_BITREVERSE: {
1717     Observer.changingInstr(MI);
1718 
1719     Register DstReg = MI.getOperand(0).getReg();
1720     LLT Ty = MRI.getType(DstReg);
1721     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1722 
1723     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1724     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1725     MI.getOperand(0).setReg(DstExt);
1726     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1727 
1728     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1729     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1730     MIRBuilder.buildTrunc(DstReg, Shift);
1731     Observer.changedInstr(MI);
1732     return Legalized;
1733   }
1734   case TargetOpcode::G_ADD:
1735   case TargetOpcode::G_AND:
1736   case TargetOpcode::G_MUL:
1737   case TargetOpcode::G_OR:
1738   case TargetOpcode::G_XOR:
1739   case TargetOpcode::G_SUB:
1740     // Perform operation at larger width (any extension is fines here, high bits
1741     // don't affect the result) and then truncate the result back to the
1742     // original type.
1743     Observer.changingInstr(MI);
1744     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1745     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1746     widenScalarDst(MI, WideTy);
1747     Observer.changedInstr(MI);
1748     return Legalized;
1749 
1750   case TargetOpcode::G_SHL:
1751     Observer.changingInstr(MI);
1752 
1753     if (TypeIdx == 0) {
1754       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1755       widenScalarDst(MI, WideTy);
1756     } else {
1757       assert(TypeIdx == 1);
1758       // The "number of bits to shift" operand must preserve its value as an
1759       // unsigned integer:
1760       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1761     }
1762 
1763     Observer.changedInstr(MI);
1764     return Legalized;
1765 
1766   case TargetOpcode::G_SDIV:
1767   case TargetOpcode::G_SREM:
1768   case TargetOpcode::G_SMIN:
1769   case TargetOpcode::G_SMAX:
1770     Observer.changingInstr(MI);
1771     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1772     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1773     widenScalarDst(MI, WideTy);
1774     Observer.changedInstr(MI);
1775     return Legalized;
1776 
1777   case TargetOpcode::G_ASHR:
1778   case TargetOpcode::G_LSHR:
1779     Observer.changingInstr(MI);
1780 
1781     if (TypeIdx == 0) {
1782       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1783         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1784 
1785       widenScalarSrc(MI, WideTy, 1, CvtOp);
1786       widenScalarDst(MI, WideTy);
1787     } else {
1788       assert(TypeIdx == 1);
1789       // The "number of bits to shift" operand must preserve its value as an
1790       // unsigned integer:
1791       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1792     }
1793 
1794     Observer.changedInstr(MI);
1795     return Legalized;
1796   case TargetOpcode::G_UDIV:
1797   case TargetOpcode::G_UREM:
1798   case TargetOpcode::G_UMIN:
1799   case TargetOpcode::G_UMAX:
1800     Observer.changingInstr(MI);
1801     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1802     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1803     widenScalarDst(MI, WideTy);
1804     Observer.changedInstr(MI);
1805     return Legalized;
1806 
1807   case TargetOpcode::G_SELECT:
1808     Observer.changingInstr(MI);
1809     if (TypeIdx == 0) {
1810       // Perform operation at larger width (any extension is fine here, high
1811       // bits don't affect the result) and then truncate the result back to the
1812       // original type.
1813       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1814       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1815       widenScalarDst(MI, WideTy);
1816     } else {
1817       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1818       // Explicit extension is required here since high bits affect the result.
1819       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1820     }
1821     Observer.changedInstr(MI);
1822     return Legalized;
1823 
1824   case TargetOpcode::G_FPTOSI:
1825   case TargetOpcode::G_FPTOUI:
1826     Observer.changingInstr(MI);
1827 
1828     if (TypeIdx == 0)
1829       widenScalarDst(MI, WideTy);
1830     else
1831       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1832 
1833     Observer.changedInstr(MI);
1834     return Legalized;
1835   case TargetOpcode::G_SITOFP:
1836     if (TypeIdx != 1)
1837       return UnableToLegalize;
1838     Observer.changingInstr(MI);
1839     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1840     Observer.changedInstr(MI);
1841     return Legalized;
1842 
1843   case TargetOpcode::G_UITOFP:
1844     if (TypeIdx != 1)
1845       return UnableToLegalize;
1846     Observer.changingInstr(MI);
1847     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1848     Observer.changedInstr(MI);
1849     return Legalized;
1850 
1851   case TargetOpcode::G_LOAD:
1852   case TargetOpcode::G_SEXTLOAD:
1853   case TargetOpcode::G_ZEXTLOAD:
1854     Observer.changingInstr(MI);
1855     widenScalarDst(MI, WideTy);
1856     Observer.changedInstr(MI);
1857     return Legalized;
1858 
1859   case TargetOpcode::G_STORE: {
1860     if (TypeIdx != 0)
1861       return UnableToLegalize;
1862 
1863     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1864     if (!isPowerOf2_32(Ty.getSizeInBits()))
1865       return UnableToLegalize;
1866 
1867     Observer.changingInstr(MI);
1868 
1869     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1870       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1871     widenScalarSrc(MI, WideTy, 0, ExtType);
1872 
1873     Observer.changedInstr(MI);
1874     return Legalized;
1875   }
1876   case TargetOpcode::G_CONSTANT: {
1877     MachineOperand &SrcMO = MI.getOperand(1);
1878     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1879     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1880         MRI.getType(MI.getOperand(0).getReg()));
1881     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1882             ExtOpc == TargetOpcode::G_ANYEXT) &&
1883            "Illegal Extend");
1884     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1885     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1886                            ? SrcVal.sext(WideTy.getSizeInBits())
1887                            : SrcVal.zext(WideTy.getSizeInBits());
1888     Observer.changingInstr(MI);
1889     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1890 
1891     widenScalarDst(MI, WideTy);
1892     Observer.changedInstr(MI);
1893     return Legalized;
1894   }
1895   case TargetOpcode::G_FCONSTANT: {
1896     MachineOperand &SrcMO = MI.getOperand(1);
1897     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1898     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1899     bool LosesInfo;
1900     switch (WideTy.getSizeInBits()) {
1901     case 32:
1902       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1903                   &LosesInfo);
1904       break;
1905     case 64:
1906       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1907                   &LosesInfo);
1908       break;
1909     default:
1910       return UnableToLegalize;
1911     }
1912 
1913     assert(!LosesInfo && "extend should always be lossless");
1914 
1915     Observer.changingInstr(MI);
1916     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1917 
1918     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1919     Observer.changedInstr(MI);
1920     return Legalized;
1921   }
1922   case TargetOpcode::G_IMPLICIT_DEF: {
1923     Observer.changingInstr(MI);
1924     widenScalarDst(MI, WideTy);
1925     Observer.changedInstr(MI);
1926     return Legalized;
1927   }
1928   case TargetOpcode::G_BRCOND:
1929     Observer.changingInstr(MI);
1930     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1931     Observer.changedInstr(MI);
1932     return Legalized;
1933 
1934   case TargetOpcode::G_FCMP:
1935     Observer.changingInstr(MI);
1936     if (TypeIdx == 0)
1937       widenScalarDst(MI, WideTy);
1938     else {
1939       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1940       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1941     }
1942     Observer.changedInstr(MI);
1943     return Legalized;
1944 
1945   case TargetOpcode::G_ICMP:
1946     Observer.changingInstr(MI);
1947     if (TypeIdx == 0)
1948       widenScalarDst(MI, WideTy);
1949     else {
1950       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1951                                MI.getOperand(1).getPredicate()))
1952                                ? TargetOpcode::G_SEXT
1953                                : TargetOpcode::G_ZEXT;
1954       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1955       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1956     }
1957     Observer.changedInstr(MI);
1958     return Legalized;
1959 
1960   case TargetOpcode::G_PTR_ADD:
1961     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1962     Observer.changingInstr(MI);
1963     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1964     Observer.changedInstr(MI);
1965     return Legalized;
1966 
1967   case TargetOpcode::G_PHI: {
1968     assert(TypeIdx == 0 && "Expecting only Idx 0");
1969 
1970     Observer.changingInstr(MI);
1971     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1972       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1973       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1974       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1975     }
1976 
1977     MachineBasicBlock &MBB = *MI.getParent();
1978     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1979     widenScalarDst(MI, WideTy);
1980     Observer.changedInstr(MI);
1981     return Legalized;
1982   }
1983   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1984     if (TypeIdx == 0) {
1985       Register VecReg = MI.getOperand(1).getReg();
1986       LLT VecTy = MRI.getType(VecReg);
1987       Observer.changingInstr(MI);
1988 
1989       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1990                                      WideTy.getSizeInBits()),
1991                      1, TargetOpcode::G_SEXT);
1992 
1993       widenScalarDst(MI, WideTy, 0);
1994       Observer.changedInstr(MI);
1995       return Legalized;
1996     }
1997 
1998     if (TypeIdx != 2)
1999       return UnableToLegalize;
2000     Observer.changingInstr(MI);
2001     // TODO: Probably should be zext
2002     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2003     Observer.changedInstr(MI);
2004     return Legalized;
2005   }
2006   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2007     if (TypeIdx == 1) {
2008       Observer.changingInstr(MI);
2009 
2010       Register VecReg = MI.getOperand(1).getReg();
2011       LLT VecTy = MRI.getType(VecReg);
2012       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2013 
2014       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2015       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2016       widenScalarDst(MI, WideVecTy, 0);
2017       Observer.changedInstr(MI);
2018       return Legalized;
2019     }
2020 
2021     if (TypeIdx == 2) {
2022       Observer.changingInstr(MI);
2023       // TODO: Probably should be zext
2024       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2025       Observer.changedInstr(MI);
2026     }
2027 
2028     return Legalized;
2029   }
2030   case TargetOpcode::G_FADD:
2031   case TargetOpcode::G_FMUL:
2032   case TargetOpcode::G_FSUB:
2033   case TargetOpcode::G_FMA:
2034   case TargetOpcode::G_FMAD:
2035   case TargetOpcode::G_FNEG:
2036   case TargetOpcode::G_FABS:
2037   case TargetOpcode::G_FCANONICALIZE:
2038   case TargetOpcode::G_FMINNUM:
2039   case TargetOpcode::G_FMAXNUM:
2040   case TargetOpcode::G_FMINNUM_IEEE:
2041   case TargetOpcode::G_FMAXNUM_IEEE:
2042   case TargetOpcode::G_FMINIMUM:
2043   case TargetOpcode::G_FMAXIMUM:
2044   case TargetOpcode::G_FDIV:
2045   case TargetOpcode::G_FREM:
2046   case TargetOpcode::G_FCEIL:
2047   case TargetOpcode::G_FFLOOR:
2048   case TargetOpcode::G_FCOS:
2049   case TargetOpcode::G_FSIN:
2050   case TargetOpcode::G_FLOG10:
2051   case TargetOpcode::G_FLOG:
2052   case TargetOpcode::G_FLOG2:
2053   case TargetOpcode::G_FRINT:
2054   case TargetOpcode::G_FNEARBYINT:
2055   case TargetOpcode::G_FSQRT:
2056   case TargetOpcode::G_FEXP:
2057   case TargetOpcode::G_FEXP2:
2058   case TargetOpcode::G_FPOW:
2059   case TargetOpcode::G_INTRINSIC_TRUNC:
2060   case TargetOpcode::G_INTRINSIC_ROUND:
2061     assert(TypeIdx == 0);
2062     Observer.changingInstr(MI);
2063 
2064     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2065       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2066 
2067     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2068     Observer.changedInstr(MI);
2069     return Legalized;
2070   case TargetOpcode::G_INTTOPTR:
2071     if (TypeIdx != 1)
2072       return UnableToLegalize;
2073 
2074     Observer.changingInstr(MI);
2075     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2076     Observer.changedInstr(MI);
2077     return Legalized;
2078   case TargetOpcode::G_PTRTOINT:
2079     if (TypeIdx != 0)
2080       return UnableToLegalize;
2081 
2082     Observer.changingInstr(MI);
2083     widenScalarDst(MI, WideTy, 0);
2084     Observer.changedInstr(MI);
2085     return Legalized;
2086   case TargetOpcode::G_BUILD_VECTOR: {
2087     Observer.changingInstr(MI);
2088 
2089     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2090     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2091       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2092 
2093     // Avoid changing the result vector type if the source element type was
2094     // requested.
2095     if (TypeIdx == 1) {
2096       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2097       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2098     } else {
2099       widenScalarDst(MI, WideTy, 0);
2100     }
2101 
2102     Observer.changedInstr(MI);
2103     return Legalized;
2104   }
2105   case TargetOpcode::G_SEXT_INREG:
2106     if (TypeIdx != 0)
2107       return UnableToLegalize;
2108 
2109     Observer.changingInstr(MI);
2110     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2111     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2112     Observer.changedInstr(MI);
2113     return Legalized;
2114   }
2115 }
2116 
2117 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2118                              MachineIRBuilder &B, Register Src, LLT Ty) {
2119   auto Unmerge = B.buildUnmerge(Ty, Src);
2120   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2121     Pieces.push_back(Unmerge.getReg(I));
2122 }
2123 
2124 LegalizerHelper::LegalizeResult
2125 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2126   Register Dst = MI.getOperand(0).getReg();
2127   Register Src = MI.getOperand(1).getReg();
2128   LLT DstTy = MRI.getType(Dst);
2129   LLT SrcTy = MRI.getType(Src);
2130 
2131   if (SrcTy.isVector() && !DstTy.isVector()) {
2132     SmallVector<Register, 8> SrcRegs;
2133     getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType());
2134     MIRBuilder.buildMerge(Dst, SrcRegs);
2135     MI.eraseFromParent();
2136     return Legalized;
2137   }
2138 
2139   if (DstTy.isVector() && !SrcTy.isVector()) {
2140     SmallVector<Register, 8> SrcRegs;
2141     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2142     MIRBuilder.buildMerge(Dst, SrcRegs);
2143     MI.eraseFromParent();
2144     return Legalized;
2145   }
2146 
2147   return UnableToLegalize;
2148 }
2149 
2150 LegalizerHelper::LegalizeResult
2151 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2152   MIRBuilder.setInstr(MI);
2153 
2154   switch (MI.getOpcode()) {
2155   case TargetOpcode::G_LOAD: {
2156     if (TypeIdx != 0)
2157       return UnableToLegalize;
2158 
2159     Observer.changingInstr(MI);
2160     bitcastDst(MI, CastTy, 0);
2161     Observer.changedInstr(MI);
2162     return Legalized;
2163   }
2164   case TargetOpcode::G_STORE: {
2165     if (TypeIdx != 0)
2166       return UnableToLegalize;
2167 
2168     Observer.changingInstr(MI);
2169     bitcastSrc(MI, CastTy, 0);
2170     Observer.changedInstr(MI);
2171     return Legalized;
2172   }
2173   case TargetOpcode::G_SELECT: {
2174     if (TypeIdx != 0)
2175       return UnableToLegalize;
2176 
2177     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2178       LLVM_DEBUG(
2179           dbgs() << "bitcast action not implemented for vector select\n");
2180       return UnableToLegalize;
2181     }
2182 
2183     Observer.changingInstr(MI);
2184     bitcastSrc(MI, CastTy, 2);
2185     bitcastSrc(MI, CastTy, 3);
2186     bitcastDst(MI, CastTy, 0);
2187     Observer.changedInstr(MI);
2188     return Legalized;
2189   }
2190   case TargetOpcode::G_AND:
2191   case TargetOpcode::G_OR:
2192   case TargetOpcode::G_XOR: {
2193     Observer.changingInstr(MI);
2194     bitcastSrc(MI, CastTy, 1);
2195     bitcastSrc(MI, CastTy, 2);
2196     bitcastDst(MI, CastTy, 0);
2197     Observer.changedInstr(MI);
2198     return Legalized;
2199   }
2200   default:
2201     return UnableToLegalize;
2202   }
2203 }
2204 
2205 LegalizerHelper::LegalizeResult
2206 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2207   using namespace TargetOpcode;
2208   MIRBuilder.setInstr(MI);
2209   MIRBuilder.setDebugLoc(MI.getDebugLoc());
2210 
2211   switch(MI.getOpcode()) {
2212   default:
2213     return UnableToLegalize;
2214   case TargetOpcode::G_BITCAST:
2215     return lowerBitcast(MI);
2216   case TargetOpcode::G_SREM:
2217   case TargetOpcode::G_UREM: {
2218     auto Quot =
2219         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2220                               {MI.getOperand(1), MI.getOperand(2)});
2221 
2222     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2223     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2224     MI.eraseFromParent();
2225     return Legalized;
2226   }
2227   case TargetOpcode::G_SADDO:
2228   case TargetOpcode::G_SSUBO:
2229     return lowerSADDO_SSUBO(MI);
2230   case TargetOpcode::G_SMULO:
2231   case TargetOpcode::G_UMULO: {
2232     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2233     // result.
2234     Register Res = MI.getOperand(0).getReg();
2235     Register Overflow = MI.getOperand(1).getReg();
2236     Register LHS = MI.getOperand(2).getReg();
2237     Register RHS = MI.getOperand(3).getReg();
2238 
2239     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2240                           ? TargetOpcode::G_SMULH
2241                           : TargetOpcode::G_UMULH;
2242 
2243     Observer.changingInstr(MI);
2244     const auto &TII = MIRBuilder.getTII();
2245     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2246     MI.RemoveOperand(1);
2247     Observer.changedInstr(MI);
2248 
2249     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2250 
2251     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2252     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2253 
2254     // For *signed* multiply, overflow is detected by checking:
2255     // (hi != (lo >> bitwidth-1))
2256     if (Opcode == TargetOpcode::G_SMULH) {
2257       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2258       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2259       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2260     } else {
2261       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2262     }
2263     return Legalized;
2264   }
2265   case TargetOpcode::G_FNEG: {
2266     // TODO: Handle vector types once we are able to
2267     // represent them.
2268     if (Ty.isVector())
2269       return UnableToLegalize;
2270     Register Res = MI.getOperand(0).getReg();
2271     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2272     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2273     if (!ZeroTy)
2274       return UnableToLegalize;
2275     ConstantFP &ZeroForNegation =
2276         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2277     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2278     Register SubByReg = MI.getOperand(1).getReg();
2279     Register ZeroReg = Zero.getReg(0);
2280     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2281     MI.eraseFromParent();
2282     return Legalized;
2283   }
2284   case TargetOpcode::G_FSUB: {
2285     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2286     // First, check if G_FNEG is marked as Lower. If so, we may
2287     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2288     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2289       return UnableToLegalize;
2290     Register Res = MI.getOperand(0).getReg();
2291     Register LHS = MI.getOperand(1).getReg();
2292     Register RHS = MI.getOperand(2).getReg();
2293     Register Neg = MRI.createGenericVirtualRegister(Ty);
2294     MIRBuilder.buildFNeg(Neg, RHS);
2295     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2296     MI.eraseFromParent();
2297     return Legalized;
2298   }
2299   case TargetOpcode::G_FMAD:
2300     return lowerFMad(MI);
2301   case TargetOpcode::G_FFLOOR:
2302     return lowerFFloor(MI);
2303   case TargetOpcode::G_INTRINSIC_ROUND:
2304     return lowerIntrinsicRound(MI);
2305   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2306     Register OldValRes = MI.getOperand(0).getReg();
2307     Register SuccessRes = MI.getOperand(1).getReg();
2308     Register Addr = MI.getOperand(2).getReg();
2309     Register CmpVal = MI.getOperand(3).getReg();
2310     Register NewVal = MI.getOperand(4).getReg();
2311     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2312                                   **MI.memoperands_begin());
2313     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2314     MI.eraseFromParent();
2315     return Legalized;
2316   }
2317   case TargetOpcode::G_LOAD:
2318   case TargetOpcode::G_SEXTLOAD:
2319   case TargetOpcode::G_ZEXTLOAD: {
2320     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2321     Register DstReg = MI.getOperand(0).getReg();
2322     Register PtrReg = MI.getOperand(1).getReg();
2323     LLT DstTy = MRI.getType(DstReg);
2324     auto &MMO = **MI.memoperands_begin();
2325 
2326     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2327       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2328         // This load needs splitting into power of 2 sized loads.
2329         if (DstTy.isVector())
2330           return UnableToLegalize;
2331         if (isPowerOf2_32(DstTy.getSizeInBits()))
2332           return UnableToLegalize; // Don't know what we're being asked to do.
2333 
2334         // Our strategy here is to generate anyextending loads for the smaller
2335         // types up to next power-2 result type, and then combine the two larger
2336         // result values together, before truncating back down to the non-pow-2
2337         // type.
2338         // E.g. v1 = i24 load =>
2339         // v2 = i32 zextload (2 byte)
2340         // v3 = i32 load (1 byte)
2341         // v4 = i32 shl v3, 16
2342         // v5 = i32 or v4, v2
2343         // v1 = i24 trunc v5
2344         // By doing this we generate the correct truncate which should get
2345         // combined away as an artifact with a matching extend.
2346         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2347         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2348 
2349         MachineFunction &MF = MIRBuilder.getMF();
2350         MachineMemOperand *LargeMMO =
2351             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2352         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2353             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2354 
2355         LLT PtrTy = MRI.getType(PtrReg);
2356         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2357         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2358         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2359         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2360         auto LargeLoad = MIRBuilder.buildLoadInstr(
2361             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2362 
2363         auto OffsetCst = MIRBuilder.buildConstant(
2364             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2365         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2366         auto SmallPtr =
2367             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2368         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2369                                               *SmallMMO);
2370 
2371         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2372         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2373         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2374         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2375         MI.eraseFromParent();
2376         return Legalized;
2377       }
2378       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2379       MI.eraseFromParent();
2380       return Legalized;
2381     }
2382 
2383     if (DstTy.isScalar()) {
2384       Register TmpReg =
2385           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2386       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2387       switch (MI.getOpcode()) {
2388       default:
2389         llvm_unreachable("Unexpected opcode");
2390       case TargetOpcode::G_LOAD:
2391         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2392         break;
2393       case TargetOpcode::G_SEXTLOAD:
2394         MIRBuilder.buildSExt(DstReg, TmpReg);
2395         break;
2396       case TargetOpcode::G_ZEXTLOAD:
2397         MIRBuilder.buildZExt(DstReg, TmpReg);
2398         break;
2399       }
2400       MI.eraseFromParent();
2401       return Legalized;
2402     }
2403 
2404     return UnableToLegalize;
2405   }
2406   case TargetOpcode::G_STORE: {
2407     // Lower a non-power of 2 store into multiple pow-2 stores.
2408     // E.g. split an i24 store into an i16 store + i8 store.
2409     // We do this by first extending the stored value to the next largest power
2410     // of 2 type, and then using truncating stores to store the components.
2411     // By doing this, likewise with G_LOAD, generate an extend that can be
2412     // artifact-combined away instead of leaving behind extracts.
2413     Register SrcReg = MI.getOperand(0).getReg();
2414     Register PtrReg = MI.getOperand(1).getReg();
2415     LLT SrcTy = MRI.getType(SrcReg);
2416     MachineMemOperand &MMO = **MI.memoperands_begin();
2417     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2418       return UnableToLegalize;
2419     if (SrcTy.isVector())
2420       return UnableToLegalize;
2421     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2422       return UnableToLegalize; // Don't know what we're being asked to do.
2423 
2424     // Extend to the next pow-2.
2425     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2426     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2427 
2428     // Obtain the smaller value by shifting away the larger value.
2429     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2430     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2431     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2432     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2433 
2434     // Generate the PtrAdd and truncating stores.
2435     LLT PtrTy = MRI.getType(PtrReg);
2436     auto OffsetCst = MIRBuilder.buildConstant(
2437             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2438     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2439     auto SmallPtr =
2440         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2441 
2442     MachineFunction &MF = MIRBuilder.getMF();
2443     MachineMemOperand *LargeMMO =
2444         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2445     MachineMemOperand *SmallMMO =
2446         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2447     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2448     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2449     MI.eraseFromParent();
2450     return Legalized;
2451   }
2452   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2453   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2454   case TargetOpcode::G_CTLZ:
2455   case TargetOpcode::G_CTTZ:
2456   case TargetOpcode::G_CTPOP:
2457     return lowerBitCount(MI, TypeIdx, Ty);
2458   case G_UADDO: {
2459     Register Res = MI.getOperand(0).getReg();
2460     Register CarryOut = MI.getOperand(1).getReg();
2461     Register LHS = MI.getOperand(2).getReg();
2462     Register RHS = MI.getOperand(3).getReg();
2463 
2464     MIRBuilder.buildAdd(Res, LHS, RHS);
2465     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2466 
2467     MI.eraseFromParent();
2468     return Legalized;
2469   }
2470   case G_UADDE: {
2471     Register Res = MI.getOperand(0).getReg();
2472     Register CarryOut = MI.getOperand(1).getReg();
2473     Register LHS = MI.getOperand(2).getReg();
2474     Register RHS = MI.getOperand(3).getReg();
2475     Register CarryIn = MI.getOperand(4).getReg();
2476     LLT Ty = MRI.getType(Res);
2477 
2478     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2479     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2480     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2481     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2482 
2483     MI.eraseFromParent();
2484     return Legalized;
2485   }
2486   case G_USUBO: {
2487     Register Res = MI.getOperand(0).getReg();
2488     Register BorrowOut = MI.getOperand(1).getReg();
2489     Register LHS = MI.getOperand(2).getReg();
2490     Register RHS = MI.getOperand(3).getReg();
2491 
2492     MIRBuilder.buildSub(Res, LHS, RHS);
2493     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2494 
2495     MI.eraseFromParent();
2496     return Legalized;
2497   }
2498   case G_USUBE: {
2499     Register Res = MI.getOperand(0).getReg();
2500     Register BorrowOut = MI.getOperand(1).getReg();
2501     Register LHS = MI.getOperand(2).getReg();
2502     Register RHS = MI.getOperand(3).getReg();
2503     Register BorrowIn = MI.getOperand(4).getReg();
2504     const LLT CondTy = MRI.getType(BorrowOut);
2505     const LLT Ty = MRI.getType(Res);
2506 
2507     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2508     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2509     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2510 
2511     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2512     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2513     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2514 
2515     MI.eraseFromParent();
2516     return Legalized;
2517   }
2518   case G_UITOFP:
2519     return lowerUITOFP(MI, TypeIdx, Ty);
2520   case G_SITOFP:
2521     return lowerSITOFP(MI, TypeIdx, Ty);
2522   case G_FPTOUI:
2523     return lowerFPTOUI(MI, TypeIdx, Ty);
2524   case G_FPTOSI:
2525     return lowerFPTOSI(MI);
2526   case G_FPTRUNC:
2527     return lowerFPTRUNC(MI, TypeIdx, Ty);
2528   case G_SMIN:
2529   case G_SMAX:
2530   case G_UMIN:
2531   case G_UMAX:
2532     return lowerMinMax(MI, TypeIdx, Ty);
2533   case G_FCOPYSIGN:
2534     return lowerFCopySign(MI, TypeIdx, Ty);
2535   case G_FMINNUM:
2536   case G_FMAXNUM:
2537     return lowerFMinNumMaxNum(MI);
2538   case G_UNMERGE_VALUES:
2539     return lowerUnmergeValues(MI);
2540   case TargetOpcode::G_SEXT_INREG: {
2541     assert(MI.getOperand(2).isImm() && "Expected immediate");
2542     int64_t SizeInBits = MI.getOperand(2).getImm();
2543 
2544     Register DstReg = MI.getOperand(0).getReg();
2545     Register SrcReg = MI.getOperand(1).getReg();
2546     LLT DstTy = MRI.getType(DstReg);
2547     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2548 
2549     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2550     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2551     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2552     MI.eraseFromParent();
2553     return Legalized;
2554   }
2555   case G_SHUFFLE_VECTOR:
2556     return lowerShuffleVector(MI);
2557   case G_DYN_STACKALLOC:
2558     return lowerDynStackAlloc(MI);
2559   case G_EXTRACT:
2560     return lowerExtract(MI);
2561   case G_INSERT:
2562     return lowerInsert(MI);
2563   case G_BSWAP:
2564     return lowerBswap(MI);
2565   case G_BITREVERSE:
2566     return lowerBitreverse(MI);
2567   case G_READ_REGISTER:
2568   case G_WRITE_REGISTER:
2569     return lowerReadWriteRegister(MI);
2570   }
2571 }
2572 
2573 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2574     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2575   SmallVector<Register, 2> DstRegs;
2576 
2577   unsigned NarrowSize = NarrowTy.getSizeInBits();
2578   Register DstReg = MI.getOperand(0).getReg();
2579   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2580   int NumParts = Size / NarrowSize;
2581   // FIXME: Don't know how to handle the situation where the small vectors
2582   // aren't all the same size yet.
2583   if (Size % NarrowSize != 0)
2584     return UnableToLegalize;
2585 
2586   for (int i = 0; i < NumParts; ++i) {
2587     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2588     MIRBuilder.buildUndef(TmpReg);
2589     DstRegs.push_back(TmpReg);
2590   }
2591 
2592   if (NarrowTy.isVector())
2593     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2594   else
2595     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2596 
2597   MI.eraseFromParent();
2598   return Legalized;
2599 }
2600 
2601 // Handles operands with different types, but all must have the same number of
2602 // elements. There will be multiple type indexes. NarrowTy is expected to have
2603 // the result element type.
2604 LegalizerHelper::LegalizeResult
2605 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
2606                                           LLT NarrowTy) {
2607   assert(TypeIdx == 0 && "only one type index expected");
2608 
2609   const unsigned Opc = MI.getOpcode();
2610   const int NumOps = MI.getNumOperands() - 1;
2611   const Register DstReg = MI.getOperand(0).getReg();
2612   const unsigned Flags = MI.getFlags();
2613 
2614   assert(NumOps <= 3 && "expected instrution with 1 result and 1-3 sources");
2615 
2616   SmallVector<Register, 8> ExtractedRegs[3];
2617   SmallVector<Register, 8> Parts;
2618 
2619   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2620 
2621   // Break down all the sources into NarrowTy pieces we can operate on. This may
2622   // involve creating merges to a wider type, padded with undef.
2623   for (int I = 0; I != NumOps; ++I) {
2624     Register SrcReg =  MI.getOperand(I + 1).getReg();
2625     LLT SrcTy = MRI.getType(SrcReg);
2626 
2627     // Each operand may have its own type, but only the number of elements
2628     // matters.
2629     LLT OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
2630     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
2631 
2632     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
2633     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy,
2634                         ExtractedRegs[I], TargetOpcode::G_ANYEXT);
2635   }
2636 
2637   SmallVector<Register, 8> ResultRegs;
2638 
2639   // Input operands for each sub-instruction.
2640   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
2641 
2642   int NumParts = ExtractedRegs[0].size();
2643   const LLT DstTy = MRI.getType(DstReg);
2644   const unsigned DstSize = DstTy.getSizeInBits();
2645   LLT DstLCMTy = getLCMType(DstTy, NarrowTy);
2646 
2647   const unsigned NarrowSize = NarrowTy.getSizeInBits();
2648 
2649   // We widened the source registers to satisfy merge/unmerge size
2650   // constraints. We'll have some extra fully undef parts.
2651   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
2652 
2653   for (int I = 0; I != NumRealParts; ++I) {
2654     // Emit this instruction on each of the split pieces.
2655     for (int J = 0; J != NumOps; ++J)
2656       InputRegs[J] = ExtractedRegs[J][I];
2657 
2658     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags);
2659     ResultRegs.push_back(Inst.getReg(0));
2660   }
2661 
2662   // Fill out the widened result with undef instead of creating instructions
2663   // with undef inputs.
2664   int NumUndefParts = NumParts - NumRealParts;
2665   if (NumUndefParts != 0)
2666     ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0));
2667 
2668   // Extract the possibly padded result to the original result register.
2669   buildWidenedRemergeToDst(DstReg, DstLCMTy, ResultRegs);
2670 
2671   MI.eraseFromParent();
2672   return Legalized;
2673 }
2674 
2675 // Handle splitting vector operations which need to have the same number of
2676 // elements in each type index, but each type index may have a different element
2677 // type.
2678 //
2679 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2680 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2681 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2682 //
2683 // Also handles some irregular breakdown cases, e.g.
2684 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2685 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2686 //             s64 = G_SHL s64, s32
2687 LegalizerHelper::LegalizeResult
2688 LegalizerHelper::fewerElementsVectorMultiEltType(
2689   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2690   if (TypeIdx != 0)
2691     return UnableToLegalize;
2692 
2693   const LLT NarrowTy0 = NarrowTyArg;
2694   const unsigned NewNumElts =
2695       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2696 
2697   const Register DstReg = MI.getOperand(0).getReg();
2698   LLT DstTy = MRI.getType(DstReg);
2699   LLT LeftoverTy0;
2700 
2701   // All of the operands need to have the same number of elements, so if we can
2702   // determine a type breakdown for the result type, we can for all of the
2703   // source types.
2704   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2705   if (NumParts < 0)
2706     return UnableToLegalize;
2707 
2708   SmallVector<MachineInstrBuilder, 4> NewInsts;
2709 
2710   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2711   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2712 
2713   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2714     LLT LeftoverTy;
2715     Register SrcReg = MI.getOperand(I).getReg();
2716     LLT SrcTyI = MRI.getType(SrcReg);
2717     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2718     LLT LeftoverTyI;
2719 
2720     // Split this operand into the requested typed registers, and any leftover
2721     // required to reproduce the original type.
2722     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2723                       LeftoverRegs))
2724       return UnableToLegalize;
2725 
2726     if (I == 1) {
2727       // For the first operand, create an instruction for each part and setup
2728       // the result.
2729       for (Register PartReg : PartRegs) {
2730         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2731         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2732                                .addDef(PartDstReg)
2733                                .addUse(PartReg));
2734         DstRegs.push_back(PartDstReg);
2735       }
2736 
2737       for (Register LeftoverReg : LeftoverRegs) {
2738         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2739         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2740                                .addDef(PartDstReg)
2741                                .addUse(LeftoverReg));
2742         LeftoverDstRegs.push_back(PartDstReg);
2743       }
2744     } else {
2745       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2746 
2747       // Add the newly created operand splits to the existing instructions. The
2748       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2749       // pieces.
2750       unsigned InstCount = 0;
2751       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2752         NewInsts[InstCount++].addUse(PartRegs[J]);
2753       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2754         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2755     }
2756 
2757     PartRegs.clear();
2758     LeftoverRegs.clear();
2759   }
2760 
2761   // Insert the newly built operations and rebuild the result register.
2762   for (auto &MIB : NewInsts)
2763     MIRBuilder.insertInstr(MIB);
2764 
2765   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2766 
2767   MI.eraseFromParent();
2768   return Legalized;
2769 }
2770 
2771 LegalizerHelper::LegalizeResult
2772 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2773                                           LLT NarrowTy) {
2774   if (TypeIdx != 0)
2775     return UnableToLegalize;
2776 
2777   Register DstReg = MI.getOperand(0).getReg();
2778   Register SrcReg = MI.getOperand(1).getReg();
2779   LLT DstTy = MRI.getType(DstReg);
2780   LLT SrcTy = MRI.getType(SrcReg);
2781 
2782   LLT NarrowTy0 = NarrowTy;
2783   LLT NarrowTy1;
2784   unsigned NumParts;
2785 
2786   if (NarrowTy.isVector()) {
2787     // Uneven breakdown not handled.
2788     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2789     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2790       return UnableToLegalize;
2791 
2792     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2793   } else {
2794     NumParts = DstTy.getNumElements();
2795     NarrowTy1 = SrcTy.getElementType();
2796   }
2797 
2798   SmallVector<Register, 4> SrcRegs, DstRegs;
2799   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2800 
2801   for (unsigned I = 0; I < NumParts; ++I) {
2802     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2803     MachineInstr *NewInst =
2804         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2805 
2806     NewInst->setFlags(MI.getFlags());
2807     DstRegs.push_back(DstReg);
2808   }
2809 
2810   if (NarrowTy.isVector())
2811     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2812   else
2813     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2814 
2815   MI.eraseFromParent();
2816   return Legalized;
2817 }
2818 
2819 LegalizerHelper::LegalizeResult
2820 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2821                                         LLT NarrowTy) {
2822   Register DstReg = MI.getOperand(0).getReg();
2823   Register Src0Reg = MI.getOperand(2).getReg();
2824   LLT DstTy = MRI.getType(DstReg);
2825   LLT SrcTy = MRI.getType(Src0Reg);
2826 
2827   unsigned NumParts;
2828   LLT NarrowTy0, NarrowTy1;
2829 
2830   if (TypeIdx == 0) {
2831     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2832     unsigned OldElts = DstTy.getNumElements();
2833 
2834     NarrowTy0 = NarrowTy;
2835     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2836     NarrowTy1 = NarrowTy.isVector() ?
2837       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2838       SrcTy.getElementType();
2839 
2840   } else {
2841     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2842     unsigned OldElts = SrcTy.getNumElements();
2843 
2844     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2845       NarrowTy.getNumElements();
2846     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2847                             DstTy.getScalarSizeInBits());
2848     NarrowTy1 = NarrowTy;
2849   }
2850 
2851   // FIXME: Don't know how to handle the situation where the small vectors
2852   // aren't all the same size yet.
2853   if (NarrowTy1.isVector() &&
2854       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2855     return UnableToLegalize;
2856 
2857   CmpInst::Predicate Pred
2858     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2859 
2860   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2861   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2862   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2863 
2864   for (unsigned I = 0; I < NumParts; ++I) {
2865     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2866     DstRegs.push_back(DstReg);
2867 
2868     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2869       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2870     else {
2871       MachineInstr *NewCmp
2872         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2873       NewCmp->setFlags(MI.getFlags());
2874     }
2875   }
2876 
2877   if (NarrowTy1.isVector())
2878     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2879   else
2880     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2881 
2882   MI.eraseFromParent();
2883   return Legalized;
2884 }
2885 
2886 LegalizerHelper::LegalizeResult
2887 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2888                                            LLT NarrowTy) {
2889   Register DstReg = MI.getOperand(0).getReg();
2890   Register CondReg = MI.getOperand(1).getReg();
2891 
2892   unsigned NumParts = 0;
2893   LLT NarrowTy0, NarrowTy1;
2894 
2895   LLT DstTy = MRI.getType(DstReg);
2896   LLT CondTy = MRI.getType(CondReg);
2897   unsigned Size = DstTy.getSizeInBits();
2898 
2899   assert(TypeIdx == 0 || CondTy.isVector());
2900 
2901   if (TypeIdx == 0) {
2902     NarrowTy0 = NarrowTy;
2903     NarrowTy1 = CondTy;
2904 
2905     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2906     // FIXME: Don't know how to handle the situation where the small vectors
2907     // aren't all the same size yet.
2908     if (Size % NarrowSize != 0)
2909       return UnableToLegalize;
2910 
2911     NumParts = Size / NarrowSize;
2912 
2913     // Need to break down the condition type
2914     if (CondTy.isVector()) {
2915       if (CondTy.getNumElements() == NumParts)
2916         NarrowTy1 = CondTy.getElementType();
2917       else
2918         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2919                                 CondTy.getScalarSizeInBits());
2920     }
2921   } else {
2922     NumParts = CondTy.getNumElements();
2923     if (NarrowTy.isVector()) {
2924       // TODO: Handle uneven breakdown.
2925       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2926         return UnableToLegalize;
2927 
2928       return UnableToLegalize;
2929     } else {
2930       NarrowTy0 = DstTy.getElementType();
2931       NarrowTy1 = NarrowTy;
2932     }
2933   }
2934 
2935   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2936   if (CondTy.isVector())
2937     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2938 
2939   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2940   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2941 
2942   for (unsigned i = 0; i < NumParts; ++i) {
2943     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2944     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2945                            Src1Regs[i], Src2Regs[i]);
2946     DstRegs.push_back(DstReg);
2947   }
2948 
2949   if (NarrowTy0.isVector())
2950     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2951   else
2952     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2953 
2954   MI.eraseFromParent();
2955   return Legalized;
2956 }
2957 
2958 LegalizerHelper::LegalizeResult
2959 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2960                                         LLT NarrowTy) {
2961   const Register DstReg = MI.getOperand(0).getReg();
2962   LLT PhiTy = MRI.getType(DstReg);
2963   LLT LeftoverTy;
2964 
2965   // All of the operands need to have the same number of elements, so if we can
2966   // determine a type breakdown for the result type, we can for all of the
2967   // source types.
2968   int NumParts, NumLeftover;
2969   std::tie(NumParts, NumLeftover)
2970     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2971   if (NumParts < 0)
2972     return UnableToLegalize;
2973 
2974   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2975   SmallVector<MachineInstrBuilder, 4> NewInsts;
2976 
2977   const int TotalNumParts = NumParts + NumLeftover;
2978 
2979   // Insert the new phis in the result block first.
2980   for (int I = 0; I != TotalNumParts; ++I) {
2981     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2982     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2983     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2984                        .addDef(PartDstReg));
2985     if (I < NumParts)
2986       DstRegs.push_back(PartDstReg);
2987     else
2988       LeftoverDstRegs.push_back(PartDstReg);
2989   }
2990 
2991   MachineBasicBlock *MBB = MI.getParent();
2992   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2993   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2994 
2995   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2996 
2997   // Insert code to extract the incoming values in each predecessor block.
2998   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2999     PartRegs.clear();
3000     LeftoverRegs.clear();
3001 
3002     Register SrcReg = MI.getOperand(I).getReg();
3003     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3004     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3005 
3006     LLT Unused;
3007     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3008                       LeftoverRegs))
3009       return UnableToLegalize;
3010 
3011     // Add the newly created operand splits to the existing instructions. The
3012     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3013     // pieces.
3014     for (int J = 0; J != TotalNumParts; ++J) {
3015       MachineInstrBuilder MIB = NewInsts[J];
3016       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3017       MIB.addMBB(&OpMBB);
3018     }
3019   }
3020 
3021   MI.eraseFromParent();
3022   return Legalized;
3023 }
3024 
3025 LegalizerHelper::LegalizeResult
3026 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3027                                                   unsigned TypeIdx,
3028                                                   LLT NarrowTy) {
3029   if (TypeIdx != 1)
3030     return UnableToLegalize;
3031 
3032   const int NumDst = MI.getNumOperands() - 1;
3033   const Register SrcReg = MI.getOperand(NumDst).getReg();
3034   LLT SrcTy = MRI.getType(SrcReg);
3035 
3036   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3037 
3038   // TODO: Create sequence of extracts.
3039   if (DstTy == NarrowTy)
3040     return UnableToLegalize;
3041 
3042   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3043   if (DstTy == GCDTy) {
3044     // This would just be a copy of the same unmerge.
3045     // TODO: Create extracts, pad with undef and create intermediate merges.
3046     return UnableToLegalize;
3047   }
3048 
3049   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3050   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3051   const int PartsPerUnmerge = NumDst / NumUnmerge;
3052 
3053   for (int I = 0; I != NumUnmerge; ++I) {
3054     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3055 
3056     for (int J = 0; J != PartsPerUnmerge; ++J)
3057       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3058     MIB.addUse(Unmerge.getReg(I));
3059   }
3060 
3061   MI.eraseFromParent();
3062   return Legalized;
3063 }
3064 
3065 LegalizerHelper::LegalizeResult
3066 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3067                                                 unsigned TypeIdx,
3068                                                 LLT NarrowTy) {
3069   assert(TypeIdx == 0 && "not a vector type index");
3070   Register DstReg = MI.getOperand(0).getReg();
3071   LLT DstTy = MRI.getType(DstReg);
3072   LLT SrcTy = DstTy.getElementType();
3073 
3074   int DstNumElts = DstTy.getNumElements();
3075   int NarrowNumElts = NarrowTy.getNumElements();
3076   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3077   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3078 
3079   SmallVector<Register, 8> ConcatOps;
3080   SmallVector<Register, 8> SubBuildVector;
3081 
3082   Register UndefReg;
3083   if (WidenedDstTy != DstTy)
3084     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3085 
3086   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3087   // necessary.
3088   //
3089   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3090   //   -> <2 x s16>
3091   //
3092   // %4:_(s16) = G_IMPLICIT_DEF
3093   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3094   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3095   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3096   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3097   for (int I = 0; I != NumConcat; ++I) {
3098     for (int J = 0; J != NarrowNumElts; ++J) {
3099       int SrcIdx = NarrowNumElts * I + J;
3100 
3101       if (SrcIdx < DstNumElts) {
3102         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3103         SubBuildVector.push_back(SrcReg);
3104       } else
3105         SubBuildVector.push_back(UndefReg);
3106     }
3107 
3108     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3109     ConcatOps.push_back(BuildVec.getReg(0));
3110     SubBuildVector.clear();
3111   }
3112 
3113   if (DstTy == WidenedDstTy)
3114     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3115   else {
3116     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3117     MIRBuilder.buildExtract(DstReg, Concat, 0);
3118   }
3119 
3120   MI.eraseFromParent();
3121   return Legalized;
3122 }
3123 
3124 LegalizerHelper::LegalizeResult
3125 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3126                                       LLT NarrowTy) {
3127   // FIXME: Don't know how to handle secondary types yet.
3128   if (TypeIdx != 0)
3129     return UnableToLegalize;
3130 
3131   MachineMemOperand *MMO = *MI.memoperands_begin();
3132 
3133   // This implementation doesn't work for atomics. Give up instead of doing
3134   // something invalid.
3135   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3136       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3137     return UnableToLegalize;
3138 
3139   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3140   Register ValReg = MI.getOperand(0).getReg();
3141   Register AddrReg = MI.getOperand(1).getReg();
3142   LLT ValTy = MRI.getType(ValReg);
3143 
3144   // FIXME: Do we need a distinct NarrowMemory legalize action?
3145   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3146     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3147     return UnableToLegalize;
3148   }
3149 
3150   int NumParts = -1;
3151   int NumLeftover = -1;
3152   LLT LeftoverTy;
3153   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3154   if (IsLoad) {
3155     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3156   } else {
3157     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3158                      NarrowLeftoverRegs)) {
3159       NumParts = NarrowRegs.size();
3160       NumLeftover = NarrowLeftoverRegs.size();
3161     }
3162   }
3163 
3164   if (NumParts == -1)
3165     return UnableToLegalize;
3166 
3167   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3168 
3169   unsigned TotalSize = ValTy.getSizeInBits();
3170 
3171   // Split the load/store into PartTy sized pieces starting at Offset. If this
3172   // is a load, return the new registers in ValRegs. For a store, each elements
3173   // of ValRegs should be PartTy. Returns the next offset that needs to be
3174   // handled.
3175   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3176                              unsigned Offset) -> unsigned {
3177     MachineFunction &MF = MIRBuilder.getMF();
3178     unsigned PartSize = PartTy.getSizeInBits();
3179     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3180          Offset += PartSize, ++Idx) {
3181       unsigned ByteSize = PartSize / 8;
3182       unsigned ByteOffset = Offset / 8;
3183       Register NewAddrReg;
3184 
3185       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3186 
3187       MachineMemOperand *NewMMO =
3188         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3189 
3190       if (IsLoad) {
3191         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3192         ValRegs.push_back(Dst);
3193         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3194       } else {
3195         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3196       }
3197     }
3198 
3199     return Offset;
3200   };
3201 
3202   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3203 
3204   // Handle the rest of the register if this isn't an even type breakdown.
3205   if (LeftoverTy.isValid())
3206     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3207 
3208   if (IsLoad) {
3209     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3210                 LeftoverTy, NarrowLeftoverRegs);
3211   }
3212 
3213   MI.eraseFromParent();
3214   return Legalized;
3215 }
3216 
3217 LegalizerHelper::LegalizeResult
3218 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3219                                               LLT NarrowTy) {
3220   Register DstReg = MI.getOperand(0).getReg();
3221   Register SrcReg = MI.getOperand(1).getReg();
3222   int64_t Imm = MI.getOperand(2).getImm();
3223 
3224   LLT DstTy = MRI.getType(DstReg);
3225 
3226   SmallVector<Register, 8> Parts;
3227   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3228   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3229 
3230   for (Register &R : Parts)
3231     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3232 
3233   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3234 
3235   MI.eraseFromParent();
3236   return Legalized;
3237 }
3238 
3239 LegalizerHelper::LegalizeResult
3240 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3241                                      LLT NarrowTy) {
3242   using namespace TargetOpcode;
3243 
3244   MIRBuilder.setInstr(MI);
3245   MIRBuilder.setDebugLoc(MI.getDebugLoc());
3246   switch (MI.getOpcode()) {
3247   case G_IMPLICIT_DEF:
3248     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3249   case G_TRUNC:
3250   case G_AND:
3251   case G_OR:
3252   case G_XOR:
3253   case G_ADD:
3254   case G_SUB:
3255   case G_MUL:
3256   case G_SMULH:
3257   case G_UMULH:
3258   case G_FADD:
3259   case G_FMUL:
3260   case G_FSUB:
3261   case G_FNEG:
3262   case G_FABS:
3263   case G_FCANONICALIZE:
3264   case G_FDIV:
3265   case G_FREM:
3266   case G_FMA:
3267   case G_FMAD:
3268   case G_FPOW:
3269   case G_FEXP:
3270   case G_FEXP2:
3271   case G_FLOG:
3272   case G_FLOG2:
3273   case G_FLOG10:
3274   case G_FNEARBYINT:
3275   case G_FCEIL:
3276   case G_FFLOOR:
3277   case G_FRINT:
3278   case G_INTRINSIC_ROUND:
3279   case G_INTRINSIC_TRUNC:
3280   case G_FCOS:
3281   case G_FSIN:
3282   case G_FSQRT:
3283   case G_BSWAP:
3284   case G_BITREVERSE:
3285   case G_SDIV:
3286   case G_UDIV:
3287   case G_SREM:
3288   case G_UREM:
3289   case G_SMIN:
3290   case G_SMAX:
3291   case G_UMIN:
3292   case G_UMAX:
3293   case G_FMINNUM:
3294   case G_FMAXNUM:
3295   case G_FMINNUM_IEEE:
3296   case G_FMAXNUM_IEEE:
3297   case G_FMINIMUM:
3298   case G_FMAXIMUM:
3299   case G_FSHL:
3300   case G_FSHR:
3301     return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
3302   case G_SHL:
3303   case G_LSHR:
3304   case G_ASHR:
3305   case G_CTLZ:
3306   case G_CTLZ_ZERO_UNDEF:
3307   case G_CTTZ:
3308   case G_CTTZ_ZERO_UNDEF:
3309   case G_CTPOP:
3310   case G_FCOPYSIGN:
3311     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3312   case G_ZEXT:
3313   case G_SEXT:
3314   case G_ANYEXT:
3315   case G_FPEXT:
3316   case G_FPTRUNC:
3317   case G_SITOFP:
3318   case G_UITOFP:
3319   case G_FPTOSI:
3320   case G_FPTOUI:
3321   case G_INTTOPTR:
3322   case G_PTRTOINT:
3323   case G_ADDRSPACE_CAST:
3324     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3325   case G_ICMP:
3326   case G_FCMP:
3327     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3328   case G_SELECT:
3329     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3330   case G_PHI:
3331     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3332   case G_UNMERGE_VALUES:
3333     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3334   case G_BUILD_VECTOR:
3335     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3336   case G_LOAD:
3337   case G_STORE:
3338     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3339   case G_SEXT_INREG:
3340     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3341   default:
3342     return UnableToLegalize;
3343   }
3344 }
3345 
3346 LegalizerHelper::LegalizeResult
3347 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3348                                              const LLT HalfTy, const LLT AmtTy) {
3349 
3350   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3351   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3352   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3353 
3354   if (Amt.isNullValue()) {
3355     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3356     MI.eraseFromParent();
3357     return Legalized;
3358   }
3359 
3360   LLT NVT = HalfTy;
3361   unsigned NVTBits = HalfTy.getSizeInBits();
3362   unsigned VTBits = 2 * NVTBits;
3363 
3364   SrcOp Lo(Register(0)), Hi(Register(0));
3365   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3366     if (Amt.ugt(VTBits)) {
3367       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3368     } else if (Amt.ugt(NVTBits)) {
3369       Lo = MIRBuilder.buildConstant(NVT, 0);
3370       Hi = MIRBuilder.buildShl(NVT, InL,
3371                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3372     } else if (Amt == NVTBits) {
3373       Lo = MIRBuilder.buildConstant(NVT, 0);
3374       Hi = InL;
3375     } else {
3376       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3377       auto OrLHS =
3378           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3379       auto OrRHS = MIRBuilder.buildLShr(
3380           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3381       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3382     }
3383   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3384     if (Amt.ugt(VTBits)) {
3385       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3386     } else if (Amt.ugt(NVTBits)) {
3387       Lo = MIRBuilder.buildLShr(NVT, InH,
3388                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3389       Hi = MIRBuilder.buildConstant(NVT, 0);
3390     } else if (Amt == NVTBits) {
3391       Lo = InH;
3392       Hi = MIRBuilder.buildConstant(NVT, 0);
3393     } else {
3394       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3395 
3396       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3397       auto OrRHS = MIRBuilder.buildShl(
3398           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3399 
3400       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3401       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3402     }
3403   } else {
3404     if (Amt.ugt(VTBits)) {
3405       Hi = Lo = MIRBuilder.buildAShr(
3406           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3407     } else if (Amt.ugt(NVTBits)) {
3408       Lo = MIRBuilder.buildAShr(NVT, InH,
3409                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3410       Hi = MIRBuilder.buildAShr(NVT, InH,
3411                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3412     } else if (Amt == NVTBits) {
3413       Lo = InH;
3414       Hi = MIRBuilder.buildAShr(NVT, InH,
3415                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3416     } else {
3417       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3418 
3419       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3420       auto OrRHS = MIRBuilder.buildShl(
3421           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3422 
3423       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3424       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3425     }
3426   }
3427 
3428   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3429   MI.eraseFromParent();
3430 
3431   return Legalized;
3432 }
3433 
3434 // TODO: Optimize if constant shift amount.
3435 LegalizerHelper::LegalizeResult
3436 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3437                                    LLT RequestedTy) {
3438   if (TypeIdx == 1) {
3439     Observer.changingInstr(MI);
3440     narrowScalarSrc(MI, RequestedTy, 2);
3441     Observer.changedInstr(MI);
3442     return Legalized;
3443   }
3444 
3445   Register DstReg = MI.getOperand(0).getReg();
3446   LLT DstTy = MRI.getType(DstReg);
3447   if (DstTy.isVector())
3448     return UnableToLegalize;
3449 
3450   Register Amt = MI.getOperand(2).getReg();
3451   LLT ShiftAmtTy = MRI.getType(Amt);
3452   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3453   if (DstEltSize % 2 != 0)
3454     return UnableToLegalize;
3455 
3456   // Ignore the input type. We can only go to exactly half the size of the
3457   // input. If that isn't small enough, the resulting pieces will be further
3458   // legalized.
3459   const unsigned NewBitSize = DstEltSize / 2;
3460   const LLT HalfTy = LLT::scalar(NewBitSize);
3461   const LLT CondTy = LLT::scalar(1);
3462 
3463   if (const MachineInstr *KShiftAmt =
3464           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3465     return narrowScalarShiftByConstant(
3466         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3467   }
3468 
3469   // TODO: Expand with known bits.
3470 
3471   // Handle the fully general expansion by an unknown amount.
3472   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3473 
3474   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3475   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3476   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3477 
3478   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3479   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3480 
3481   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3482   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3483   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3484 
3485   Register ResultRegs[2];
3486   switch (MI.getOpcode()) {
3487   case TargetOpcode::G_SHL: {
3488     // Short: ShAmt < NewBitSize
3489     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3490 
3491     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3492     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3493     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3494 
3495     // Long: ShAmt >= NewBitSize
3496     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3497     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3498 
3499     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3500     auto Hi = MIRBuilder.buildSelect(
3501         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3502 
3503     ResultRegs[0] = Lo.getReg(0);
3504     ResultRegs[1] = Hi.getReg(0);
3505     break;
3506   }
3507   case TargetOpcode::G_LSHR:
3508   case TargetOpcode::G_ASHR: {
3509     // Short: ShAmt < NewBitSize
3510     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3511 
3512     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3513     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3514     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3515 
3516     // Long: ShAmt >= NewBitSize
3517     MachineInstrBuilder HiL;
3518     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3519       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3520     } else {
3521       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3522       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3523     }
3524     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3525                                      {InH, AmtExcess});     // Lo from Hi part.
3526 
3527     auto Lo = MIRBuilder.buildSelect(
3528         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3529 
3530     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3531 
3532     ResultRegs[0] = Lo.getReg(0);
3533     ResultRegs[1] = Hi.getReg(0);
3534     break;
3535   }
3536   default:
3537     llvm_unreachable("not a shift");
3538   }
3539 
3540   MIRBuilder.buildMerge(DstReg, ResultRegs);
3541   MI.eraseFromParent();
3542   return Legalized;
3543 }
3544 
3545 LegalizerHelper::LegalizeResult
3546 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3547                                        LLT MoreTy) {
3548   assert(TypeIdx == 0 && "Expecting only Idx 0");
3549 
3550   Observer.changingInstr(MI);
3551   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3552     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3553     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3554     moreElementsVectorSrc(MI, MoreTy, I);
3555   }
3556 
3557   MachineBasicBlock &MBB = *MI.getParent();
3558   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3559   moreElementsVectorDst(MI, MoreTy, 0);
3560   Observer.changedInstr(MI);
3561   return Legalized;
3562 }
3563 
3564 LegalizerHelper::LegalizeResult
3565 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3566                                     LLT MoreTy) {
3567   MIRBuilder.setInstr(MI);
3568   unsigned Opc = MI.getOpcode();
3569   switch (Opc) {
3570   case TargetOpcode::G_IMPLICIT_DEF:
3571   case TargetOpcode::G_LOAD: {
3572     if (TypeIdx != 0)
3573       return UnableToLegalize;
3574     Observer.changingInstr(MI);
3575     moreElementsVectorDst(MI, MoreTy, 0);
3576     Observer.changedInstr(MI);
3577     return Legalized;
3578   }
3579   case TargetOpcode::G_STORE:
3580     if (TypeIdx != 0)
3581       return UnableToLegalize;
3582     Observer.changingInstr(MI);
3583     moreElementsVectorSrc(MI, MoreTy, 0);
3584     Observer.changedInstr(MI);
3585     return Legalized;
3586   case TargetOpcode::G_AND:
3587   case TargetOpcode::G_OR:
3588   case TargetOpcode::G_XOR:
3589   case TargetOpcode::G_SMIN:
3590   case TargetOpcode::G_SMAX:
3591   case TargetOpcode::G_UMIN:
3592   case TargetOpcode::G_UMAX:
3593   case TargetOpcode::G_FMINNUM:
3594   case TargetOpcode::G_FMAXNUM:
3595   case TargetOpcode::G_FMINNUM_IEEE:
3596   case TargetOpcode::G_FMAXNUM_IEEE:
3597   case TargetOpcode::G_FMINIMUM:
3598   case TargetOpcode::G_FMAXIMUM: {
3599     Observer.changingInstr(MI);
3600     moreElementsVectorSrc(MI, MoreTy, 1);
3601     moreElementsVectorSrc(MI, MoreTy, 2);
3602     moreElementsVectorDst(MI, MoreTy, 0);
3603     Observer.changedInstr(MI);
3604     return Legalized;
3605   }
3606   case TargetOpcode::G_EXTRACT:
3607     if (TypeIdx != 1)
3608       return UnableToLegalize;
3609     Observer.changingInstr(MI);
3610     moreElementsVectorSrc(MI, MoreTy, 1);
3611     Observer.changedInstr(MI);
3612     return Legalized;
3613   case TargetOpcode::G_INSERT:
3614     if (TypeIdx != 0)
3615       return UnableToLegalize;
3616     Observer.changingInstr(MI);
3617     moreElementsVectorSrc(MI, MoreTy, 1);
3618     moreElementsVectorDst(MI, MoreTy, 0);
3619     Observer.changedInstr(MI);
3620     return Legalized;
3621   case TargetOpcode::G_SELECT:
3622     if (TypeIdx != 0)
3623       return UnableToLegalize;
3624     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3625       return UnableToLegalize;
3626 
3627     Observer.changingInstr(MI);
3628     moreElementsVectorSrc(MI, MoreTy, 2);
3629     moreElementsVectorSrc(MI, MoreTy, 3);
3630     moreElementsVectorDst(MI, MoreTy, 0);
3631     Observer.changedInstr(MI);
3632     return Legalized;
3633   case TargetOpcode::G_UNMERGE_VALUES: {
3634     if (TypeIdx != 1)
3635       return UnableToLegalize;
3636 
3637     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3638     int NumDst = MI.getNumOperands() - 1;
3639     moreElementsVectorSrc(MI, MoreTy, NumDst);
3640 
3641     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3642     for (int I = 0; I != NumDst; ++I)
3643       MIB.addDef(MI.getOperand(I).getReg());
3644 
3645     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3646     for (int I = NumDst; I != NewNumDst; ++I)
3647       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3648 
3649     MIB.addUse(MI.getOperand(NumDst).getReg());
3650     MI.eraseFromParent();
3651     return Legalized;
3652   }
3653   case TargetOpcode::G_PHI:
3654     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3655   default:
3656     return UnableToLegalize;
3657   }
3658 }
3659 
3660 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3661                                         ArrayRef<Register> Src1Regs,
3662                                         ArrayRef<Register> Src2Regs,
3663                                         LLT NarrowTy) {
3664   MachineIRBuilder &B = MIRBuilder;
3665   unsigned SrcParts = Src1Regs.size();
3666   unsigned DstParts = DstRegs.size();
3667 
3668   unsigned DstIdx = 0; // Low bits of the result.
3669   Register FactorSum =
3670       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3671   DstRegs[DstIdx] = FactorSum;
3672 
3673   unsigned CarrySumPrevDstIdx;
3674   SmallVector<Register, 4> Factors;
3675 
3676   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3677     // Collect low parts of muls for DstIdx.
3678     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3679          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3680       MachineInstrBuilder Mul =
3681           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3682       Factors.push_back(Mul.getReg(0));
3683     }
3684     // Collect high parts of muls from previous DstIdx.
3685     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3686          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3687       MachineInstrBuilder Umulh =
3688           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3689       Factors.push_back(Umulh.getReg(0));
3690     }
3691     // Add CarrySum from additions calculated for previous DstIdx.
3692     if (DstIdx != 1) {
3693       Factors.push_back(CarrySumPrevDstIdx);
3694     }
3695 
3696     Register CarrySum;
3697     // Add all factors and accumulate all carries into CarrySum.
3698     if (DstIdx != DstParts - 1) {
3699       MachineInstrBuilder Uaddo =
3700           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3701       FactorSum = Uaddo.getReg(0);
3702       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3703       for (unsigned i = 2; i < Factors.size(); ++i) {
3704         MachineInstrBuilder Uaddo =
3705             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3706         FactorSum = Uaddo.getReg(0);
3707         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3708         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3709       }
3710     } else {
3711       // Since value for the next index is not calculated, neither is CarrySum.
3712       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3713       for (unsigned i = 2; i < Factors.size(); ++i)
3714         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3715     }
3716 
3717     CarrySumPrevDstIdx = CarrySum;
3718     DstRegs[DstIdx] = FactorSum;
3719     Factors.clear();
3720   }
3721 }
3722 
3723 LegalizerHelper::LegalizeResult
3724 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3725   Register DstReg = MI.getOperand(0).getReg();
3726   Register Src1 = MI.getOperand(1).getReg();
3727   Register Src2 = MI.getOperand(2).getReg();
3728 
3729   LLT Ty = MRI.getType(DstReg);
3730   if (Ty.isVector())
3731     return UnableToLegalize;
3732 
3733   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3734   unsigned DstSize = Ty.getSizeInBits();
3735   unsigned NarrowSize = NarrowTy.getSizeInBits();
3736   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3737     return UnableToLegalize;
3738 
3739   unsigned NumDstParts = DstSize / NarrowSize;
3740   unsigned NumSrcParts = SrcSize / NarrowSize;
3741   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3742   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3743 
3744   SmallVector<Register, 2> Src1Parts, Src2Parts;
3745   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3746   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3747   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3748   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3749 
3750   // Take only high half of registers if this is high mul.
3751   ArrayRef<Register> DstRegs(
3752       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3753   MIRBuilder.buildMerge(DstReg, DstRegs);
3754   MI.eraseFromParent();
3755   return Legalized;
3756 }
3757 
3758 LegalizerHelper::LegalizeResult
3759 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3760                                      LLT NarrowTy) {
3761   if (TypeIdx != 1)
3762     return UnableToLegalize;
3763 
3764   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3765 
3766   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3767   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3768   // NarrowSize.
3769   if (SizeOp1 % NarrowSize != 0)
3770     return UnableToLegalize;
3771   int NumParts = SizeOp1 / NarrowSize;
3772 
3773   SmallVector<Register, 2> SrcRegs, DstRegs;
3774   SmallVector<uint64_t, 2> Indexes;
3775   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3776 
3777   Register OpReg = MI.getOperand(0).getReg();
3778   uint64_t OpStart = MI.getOperand(2).getImm();
3779   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3780   for (int i = 0; i < NumParts; ++i) {
3781     unsigned SrcStart = i * NarrowSize;
3782 
3783     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3784       // No part of the extract uses this subregister, ignore it.
3785       continue;
3786     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3787       // The entire subregister is extracted, forward the value.
3788       DstRegs.push_back(SrcRegs[i]);
3789       continue;
3790     }
3791 
3792     // OpSegStart is where this destination segment would start in OpReg if it
3793     // extended infinitely in both directions.
3794     int64_t ExtractOffset;
3795     uint64_t SegSize;
3796     if (OpStart < SrcStart) {
3797       ExtractOffset = 0;
3798       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3799     } else {
3800       ExtractOffset = OpStart - SrcStart;
3801       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3802     }
3803 
3804     Register SegReg = SrcRegs[i];
3805     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3806       // A genuine extract is needed.
3807       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3808       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3809     }
3810 
3811     DstRegs.push_back(SegReg);
3812   }
3813 
3814   Register DstReg = MI.getOperand(0).getReg();
3815   if (MRI.getType(DstReg).isVector())
3816     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3817   else if (DstRegs.size() > 1)
3818     MIRBuilder.buildMerge(DstReg, DstRegs);
3819   else
3820     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3821   MI.eraseFromParent();
3822   return Legalized;
3823 }
3824 
3825 LegalizerHelper::LegalizeResult
3826 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3827                                     LLT NarrowTy) {
3828   // FIXME: Don't know how to handle secondary types yet.
3829   if (TypeIdx != 0)
3830     return UnableToLegalize;
3831 
3832   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3833   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3834 
3835   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3836   // NarrowSize.
3837   if (SizeOp0 % NarrowSize != 0)
3838     return UnableToLegalize;
3839 
3840   int NumParts = SizeOp0 / NarrowSize;
3841 
3842   SmallVector<Register, 2> SrcRegs, DstRegs;
3843   SmallVector<uint64_t, 2> Indexes;
3844   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3845 
3846   Register OpReg = MI.getOperand(2).getReg();
3847   uint64_t OpStart = MI.getOperand(3).getImm();
3848   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3849   for (int i = 0; i < NumParts; ++i) {
3850     unsigned DstStart = i * NarrowSize;
3851 
3852     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3853       // No part of the insert affects this subregister, forward the original.
3854       DstRegs.push_back(SrcRegs[i]);
3855       continue;
3856     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3857       // The entire subregister is defined by this insert, forward the new
3858       // value.
3859       DstRegs.push_back(OpReg);
3860       continue;
3861     }
3862 
3863     // OpSegStart is where this destination segment would start in OpReg if it
3864     // extended infinitely in both directions.
3865     int64_t ExtractOffset, InsertOffset;
3866     uint64_t SegSize;
3867     if (OpStart < DstStart) {
3868       InsertOffset = 0;
3869       ExtractOffset = DstStart - OpStart;
3870       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3871     } else {
3872       InsertOffset = OpStart - DstStart;
3873       ExtractOffset = 0;
3874       SegSize =
3875         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3876     }
3877 
3878     Register SegReg = OpReg;
3879     if (ExtractOffset != 0 || SegSize != OpSize) {
3880       // A genuine extract is needed.
3881       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3882       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3883     }
3884 
3885     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3886     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3887     DstRegs.push_back(DstReg);
3888   }
3889 
3890   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3891   Register DstReg = MI.getOperand(0).getReg();
3892   if(MRI.getType(DstReg).isVector())
3893     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3894   else
3895     MIRBuilder.buildMerge(DstReg, DstRegs);
3896   MI.eraseFromParent();
3897   return Legalized;
3898 }
3899 
3900 LegalizerHelper::LegalizeResult
3901 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3902                                    LLT NarrowTy) {
3903   Register DstReg = MI.getOperand(0).getReg();
3904   LLT DstTy = MRI.getType(DstReg);
3905 
3906   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3907 
3908   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3909   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3910   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3911   LLT LeftoverTy;
3912   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3913                     Src0Regs, Src0LeftoverRegs))
3914     return UnableToLegalize;
3915 
3916   LLT Unused;
3917   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3918                     Src1Regs, Src1LeftoverRegs))
3919     llvm_unreachable("inconsistent extractParts result");
3920 
3921   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3922     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3923                                         {Src0Regs[I], Src1Regs[I]});
3924     DstRegs.push_back(Inst.getReg(0));
3925   }
3926 
3927   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3928     auto Inst = MIRBuilder.buildInstr(
3929       MI.getOpcode(),
3930       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3931     DstLeftoverRegs.push_back(Inst.getReg(0));
3932   }
3933 
3934   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3935               LeftoverTy, DstLeftoverRegs);
3936 
3937   MI.eraseFromParent();
3938   return Legalized;
3939 }
3940 
3941 LegalizerHelper::LegalizeResult
3942 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
3943                                  LLT NarrowTy) {
3944   if (TypeIdx != 0)
3945     return UnableToLegalize;
3946 
3947   Register DstReg = MI.getOperand(0).getReg();
3948   Register SrcReg = MI.getOperand(1).getReg();
3949 
3950   LLT DstTy = MRI.getType(DstReg);
3951   if (DstTy.isVector())
3952     return UnableToLegalize;
3953 
3954   SmallVector<Register, 8> Parts;
3955   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3956   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
3957   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3958 
3959   MI.eraseFromParent();
3960   return Legalized;
3961 }
3962 
3963 LegalizerHelper::LegalizeResult
3964 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
3965                                     LLT NarrowTy) {
3966   if (TypeIdx != 0)
3967     return UnableToLegalize;
3968 
3969   Register CondReg = MI.getOperand(1).getReg();
3970   LLT CondTy = MRI.getType(CondReg);
3971   if (CondTy.isVector()) // TODO: Handle vselect
3972     return UnableToLegalize;
3973 
3974   Register DstReg = MI.getOperand(0).getReg();
3975   LLT DstTy = MRI.getType(DstReg);
3976 
3977   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3978   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3979   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
3980   LLT LeftoverTy;
3981   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
3982                     Src1Regs, Src1LeftoverRegs))
3983     return UnableToLegalize;
3984 
3985   LLT Unused;
3986   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
3987                     Src2Regs, Src2LeftoverRegs))
3988     llvm_unreachable("inconsistent extractParts result");
3989 
3990   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3991     auto Select = MIRBuilder.buildSelect(NarrowTy,
3992                                          CondReg, Src1Regs[I], Src2Regs[I]);
3993     DstRegs.push_back(Select.getReg(0));
3994   }
3995 
3996   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3997     auto Select = MIRBuilder.buildSelect(
3998       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
3999     DstLeftoverRegs.push_back(Select.getReg(0));
4000   }
4001 
4002   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4003               LeftoverTy, DstLeftoverRegs);
4004 
4005   MI.eraseFromParent();
4006   return Legalized;
4007 }
4008 
4009 LegalizerHelper::LegalizeResult
4010 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4011                                   LLT NarrowTy) {
4012   if (TypeIdx != 1)
4013     return UnableToLegalize;
4014 
4015   Register DstReg = MI.getOperand(0).getReg();
4016   Register SrcReg = MI.getOperand(1).getReg();
4017   LLT DstTy = MRI.getType(DstReg);
4018   LLT SrcTy = MRI.getType(SrcReg);
4019   unsigned NarrowSize = NarrowTy.getSizeInBits();
4020 
4021   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4022     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4023 
4024     MachineIRBuilder &B = MIRBuilder;
4025     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4026     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4027     auto C_0 = B.buildConstant(NarrowTy, 0);
4028     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4029                                 UnmergeSrc.getReg(1), C_0);
4030     auto LoCTLZ = IsUndef ?
4031       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4032       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4033     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4034     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4035     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4036     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4037 
4038     MI.eraseFromParent();
4039     return Legalized;
4040   }
4041 
4042   return UnableToLegalize;
4043 }
4044 
4045 LegalizerHelper::LegalizeResult
4046 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4047                                   LLT NarrowTy) {
4048   if (TypeIdx != 1)
4049     return UnableToLegalize;
4050 
4051   Register DstReg = MI.getOperand(0).getReg();
4052   Register SrcReg = MI.getOperand(1).getReg();
4053   LLT DstTy = MRI.getType(DstReg);
4054   LLT SrcTy = MRI.getType(SrcReg);
4055   unsigned NarrowSize = NarrowTy.getSizeInBits();
4056 
4057   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4058     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4059 
4060     MachineIRBuilder &B = MIRBuilder;
4061     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4062     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4063     auto C_0 = B.buildConstant(NarrowTy, 0);
4064     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4065                                 UnmergeSrc.getReg(0), C_0);
4066     auto HiCTTZ = IsUndef ?
4067       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4068       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4069     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4070     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4071     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4072     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4073 
4074     MI.eraseFromParent();
4075     return Legalized;
4076   }
4077 
4078   return UnableToLegalize;
4079 }
4080 
4081 LegalizerHelper::LegalizeResult
4082 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4083                                    LLT NarrowTy) {
4084   if (TypeIdx != 1)
4085     return UnableToLegalize;
4086 
4087   Register DstReg = MI.getOperand(0).getReg();
4088   LLT DstTy = MRI.getType(DstReg);
4089   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4090   unsigned NarrowSize = NarrowTy.getSizeInBits();
4091 
4092   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4093     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4094 
4095     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4096     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4097     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4098 
4099     MI.eraseFromParent();
4100     return Legalized;
4101   }
4102 
4103   return UnableToLegalize;
4104 }
4105 
4106 LegalizerHelper::LegalizeResult
4107 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4108   unsigned Opc = MI.getOpcode();
4109   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4110   auto isSupported = [this](const LegalityQuery &Q) {
4111     auto QAction = LI.getAction(Q).Action;
4112     return QAction == Legal || QAction == Libcall || QAction == Custom;
4113   };
4114   switch (Opc) {
4115   default:
4116     return UnableToLegalize;
4117   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4118     // This trivially expands to CTLZ.
4119     Observer.changingInstr(MI);
4120     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4121     Observer.changedInstr(MI);
4122     return Legalized;
4123   }
4124   case TargetOpcode::G_CTLZ: {
4125     Register DstReg = MI.getOperand(0).getReg();
4126     Register SrcReg = MI.getOperand(1).getReg();
4127     LLT DstTy = MRI.getType(DstReg);
4128     LLT SrcTy = MRI.getType(SrcReg);
4129     unsigned Len = SrcTy.getSizeInBits();
4130 
4131     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4132       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4133       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4134       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4135       auto ICmp = MIRBuilder.buildICmp(
4136           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4137       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4138       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4139       MI.eraseFromParent();
4140       return Legalized;
4141     }
4142     // for now, we do this:
4143     // NewLen = NextPowerOf2(Len);
4144     // x = x | (x >> 1);
4145     // x = x | (x >> 2);
4146     // ...
4147     // x = x | (x >>16);
4148     // x = x | (x >>32); // for 64-bit input
4149     // Upto NewLen/2
4150     // return Len - popcount(x);
4151     //
4152     // Ref: "Hacker's Delight" by Henry Warren
4153     Register Op = SrcReg;
4154     unsigned NewLen = PowerOf2Ceil(Len);
4155     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4156       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4157       auto MIBOp = MIRBuilder.buildOr(
4158           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4159       Op = MIBOp.getReg(0);
4160     }
4161     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4162     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4163                         MIBPop);
4164     MI.eraseFromParent();
4165     return Legalized;
4166   }
4167   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4168     // This trivially expands to CTTZ.
4169     Observer.changingInstr(MI);
4170     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4171     Observer.changedInstr(MI);
4172     return Legalized;
4173   }
4174   case TargetOpcode::G_CTTZ: {
4175     Register DstReg = MI.getOperand(0).getReg();
4176     Register SrcReg = MI.getOperand(1).getReg();
4177     LLT DstTy = MRI.getType(DstReg);
4178     LLT SrcTy = MRI.getType(SrcReg);
4179 
4180     unsigned Len = SrcTy.getSizeInBits();
4181     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4182       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4183       // zero.
4184       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4185       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4186       auto ICmp = MIRBuilder.buildICmp(
4187           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4188       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4189       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4190       MI.eraseFromParent();
4191       return Legalized;
4192     }
4193     // for now, we use: { return popcount(~x & (x - 1)); }
4194     // unless the target has ctlz but not ctpop, in which case we use:
4195     // { return 32 - nlz(~x & (x-1)); }
4196     // Ref: "Hacker's Delight" by Henry Warren
4197     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4198     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4199     auto MIBTmp = MIRBuilder.buildAnd(
4200         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4201     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4202         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4203       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4204       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4205                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4206       MI.eraseFromParent();
4207       return Legalized;
4208     }
4209     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4210     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4211     return Legalized;
4212   }
4213   case TargetOpcode::G_CTPOP: {
4214     unsigned Size = Ty.getSizeInBits();
4215     MachineIRBuilder &B = MIRBuilder;
4216 
4217     // Count set bits in blocks of 2 bits. Default approach would be
4218     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4219     // We use following formula instead:
4220     // B2Count = val - { (val >> 1) & 0x55555555 }
4221     // since it gives same result in blocks of 2 with one instruction less.
4222     auto C_1 = B.buildConstant(Ty, 1);
4223     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4224     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4225     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4226     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4227     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4228 
4229     // In order to get count in blocks of 4 add values from adjacent block of 2.
4230     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4231     auto C_2 = B.buildConstant(Ty, 2);
4232     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4233     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4234     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4235     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4236     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4237     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4238 
4239     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4240     // addition since count value sits in range {0,...,8} and 4 bits are enough
4241     // to hold such binary values. After addition high 4 bits still hold count
4242     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4243     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4244     auto C_4 = B.buildConstant(Ty, 4);
4245     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4246     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4247     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4248     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4249     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4250 
4251     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4252     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4253     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4254     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4255     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4256 
4257     // Shift count result from 8 high bits to low bits.
4258     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4259     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4260 
4261     MI.eraseFromParent();
4262     return Legalized;
4263   }
4264   }
4265 }
4266 
4267 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4268 // representation.
4269 LegalizerHelper::LegalizeResult
4270 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4271   Register Dst = MI.getOperand(0).getReg();
4272   Register Src = MI.getOperand(1).getReg();
4273   const LLT S64 = LLT::scalar(64);
4274   const LLT S32 = LLT::scalar(32);
4275   const LLT S1 = LLT::scalar(1);
4276 
4277   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4278 
4279   // unsigned cul2f(ulong u) {
4280   //   uint lz = clz(u);
4281   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4282   //   u = (u << lz) & 0x7fffffffffffffffUL;
4283   //   ulong t = u & 0xffffffffffUL;
4284   //   uint v = (e << 23) | (uint)(u >> 40);
4285   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4286   //   return as_float(v + r);
4287   // }
4288 
4289   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4290   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4291 
4292   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4293 
4294   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4295   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4296 
4297   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4298   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4299 
4300   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4301   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4302 
4303   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4304 
4305   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4306   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4307 
4308   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4309   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4310   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4311 
4312   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4313   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4314   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4315   auto One = MIRBuilder.buildConstant(S32, 1);
4316 
4317   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4318   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4319   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4320   MIRBuilder.buildAdd(Dst, V, R);
4321 
4322   return Legalized;
4323 }
4324 
4325 LegalizerHelper::LegalizeResult
4326 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4327   Register Dst = MI.getOperand(0).getReg();
4328   Register Src = MI.getOperand(1).getReg();
4329   LLT DstTy = MRI.getType(Dst);
4330   LLT SrcTy = MRI.getType(Src);
4331 
4332   if (SrcTy == LLT::scalar(1)) {
4333     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4334     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4335     MIRBuilder.buildSelect(Dst, Src, True, False);
4336     MI.eraseFromParent();
4337     return Legalized;
4338   }
4339 
4340   if (SrcTy != LLT::scalar(64))
4341     return UnableToLegalize;
4342 
4343   if (DstTy == LLT::scalar(32)) {
4344     // TODO: SelectionDAG has several alternative expansions to port which may
4345     // be more reasonble depending on the available instructions. If a target
4346     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4347     // intermediate type, this is probably worse.
4348     return lowerU64ToF32BitOps(MI);
4349   }
4350 
4351   return UnableToLegalize;
4352 }
4353 
4354 LegalizerHelper::LegalizeResult
4355 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4356   Register Dst = MI.getOperand(0).getReg();
4357   Register Src = MI.getOperand(1).getReg();
4358   LLT DstTy = MRI.getType(Dst);
4359   LLT SrcTy = MRI.getType(Src);
4360 
4361   const LLT S64 = LLT::scalar(64);
4362   const LLT S32 = LLT::scalar(32);
4363   const LLT S1 = LLT::scalar(1);
4364 
4365   if (SrcTy == S1) {
4366     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4367     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4368     MIRBuilder.buildSelect(Dst, Src, True, False);
4369     MI.eraseFromParent();
4370     return Legalized;
4371   }
4372 
4373   if (SrcTy != S64)
4374     return UnableToLegalize;
4375 
4376   if (DstTy == S32) {
4377     // signed cl2f(long l) {
4378     //   long s = l >> 63;
4379     //   float r = cul2f((l + s) ^ s);
4380     //   return s ? -r : r;
4381     // }
4382     Register L = Src;
4383     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4384     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4385 
4386     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4387     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4388     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4389 
4390     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4391     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4392                                             MIRBuilder.buildConstant(S64, 0));
4393     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4394     return Legalized;
4395   }
4396 
4397   return UnableToLegalize;
4398 }
4399 
4400 LegalizerHelper::LegalizeResult
4401 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4402   Register Dst = MI.getOperand(0).getReg();
4403   Register Src = MI.getOperand(1).getReg();
4404   LLT DstTy = MRI.getType(Dst);
4405   LLT SrcTy = MRI.getType(Src);
4406   const LLT S64 = LLT::scalar(64);
4407   const LLT S32 = LLT::scalar(32);
4408 
4409   if (SrcTy != S64 && SrcTy != S32)
4410     return UnableToLegalize;
4411   if (DstTy != S32 && DstTy != S64)
4412     return UnableToLegalize;
4413 
4414   // FPTOSI gives same result as FPTOUI for positive signed integers.
4415   // FPTOUI needs to deal with fp values that convert to unsigned integers
4416   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4417 
4418   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4419   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4420                                                 : APFloat::IEEEdouble(),
4421                     APInt::getNullValue(SrcTy.getSizeInBits()));
4422   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4423 
4424   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4425 
4426   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4427   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4428   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4429   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4430   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4431   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4432   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4433 
4434   const LLT S1 = LLT::scalar(1);
4435 
4436   MachineInstrBuilder FCMP =
4437       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4438   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4439 
4440   MI.eraseFromParent();
4441   return Legalized;
4442 }
4443 
4444 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4445   Register Dst = MI.getOperand(0).getReg();
4446   Register Src = MI.getOperand(1).getReg();
4447   LLT DstTy = MRI.getType(Dst);
4448   LLT SrcTy = MRI.getType(Src);
4449   const LLT S64 = LLT::scalar(64);
4450   const LLT S32 = LLT::scalar(32);
4451 
4452   // FIXME: Only f32 to i64 conversions are supported.
4453   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4454     return UnableToLegalize;
4455 
4456   // Expand f32 -> i64 conversion
4457   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4458   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4459 
4460   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4461 
4462   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4463   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4464 
4465   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4466   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4467 
4468   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4469                                            APInt::getSignMask(SrcEltBits));
4470   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4471   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4472   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4473   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4474 
4475   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4476   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4477   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4478 
4479   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4480   R = MIRBuilder.buildZExt(DstTy, R);
4481 
4482   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4483   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4484   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4485   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4486 
4487   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4488   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4489 
4490   const LLT S1 = LLT::scalar(1);
4491   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4492                                     S1, Exponent, ExponentLoBit);
4493 
4494   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4495 
4496   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4497   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4498 
4499   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4500 
4501   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4502                                           S1, Exponent, ZeroSrcTy);
4503 
4504   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4505   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4506 
4507   MI.eraseFromParent();
4508   return Legalized;
4509 }
4510 
4511 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4512 LegalizerHelper::LegalizeResult
4513 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4514   Register Dst = MI.getOperand(0).getReg();
4515   Register Src = MI.getOperand(1).getReg();
4516 
4517   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4518     return UnableToLegalize;
4519 
4520   const unsigned ExpMask = 0x7ff;
4521   const unsigned ExpBiasf64 = 1023;
4522   const unsigned ExpBiasf16 = 15;
4523   const LLT S32 = LLT::scalar(32);
4524   const LLT S1 = LLT::scalar(1);
4525 
4526   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4527   Register U = Unmerge.getReg(0);
4528   Register UH = Unmerge.getReg(1);
4529 
4530   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4531 
4532   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4533   // add the f16 bias (15) to get the biased exponent for the f16 format.
4534   E = MIRBuilder.buildAdd(
4535     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4536   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4537 
4538   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4539   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4540 
4541   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4542                                        MIRBuilder.buildConstant(S32, 0x1ff));
4543   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4544 
4545   auto Zero = MIRBuilder.buildConstant(S32, 0);
4546   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4547   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4548   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4549 
4550   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4551   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4552   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4553   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4554 
4555   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4556   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4557 
4558   // N = M | (E << 12);
4559   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4560   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4561 
4562   // B = clamp(1-E, 0, 13);
4563   auto One = MIRBuilder.buildConstant(S32, 1);
4564   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4565   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4566   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4567 
4568   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4569                                        MIRBuilder.buildConstant(S32, 0x1000));
4570 
4571   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4572   auto D0 = MIRBuilder.buildShl(S32, D, B);
4573 
4574   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4575                                              D0, SigSetHigh);
4576   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4577   D = MIRBuilder.buildOr(S32, D, D1);
4578 
4579   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4580   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4581 
4582   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4583   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4584 
4585   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4586                                        MIRBuilder.buildConstant(S32, 3));
4587   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4588 
4589   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4590                                        MIRBuilder.buildConstant(S32, 5));
4591   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4592 
4593   V1 = MIRBuilder.buildOr(S32, V0, V1);
4594   V = MIRBuilder.buildAdd(S32, V, V1);
4595 
4596   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4597                                        E, MIRBuilder.buildConstant(S32, 30));
4598   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4599                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4600 
4601   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4602                                          E, MIRBuilder.buildConstant(S32, 1039));
4603   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4604 
4605   // Extract the sign bit.
4606   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4607   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4608 
4609   // Insert the sign bit
4610   V = MIRBuilder.buildOr(S32, Sign, V);
4611 
4612   MIRBuilder.buildTrunc(Dst, V);
4613   MI.eraseFromParent();
4614   return Legalized;
4615 }
4616 
4617 LegalizerHelper::LegalizeResult
4618 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4619   Register Dst = MI.getOperand(0).getReg();
4620   Register Src = MI.getOperand(1).getReg();
4621 
4622   LLT DstTy = MRI.getType(Dst);
4623   LLT SrcTy = MRI.getType(Src);
4624   const LLT S64 = LLT::scalar(64);
4625   const LLT S16 = LLT::scalar(16);
4626 
4627   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4628     return lowerFPTRUNC_F64_TO_F16(MI);
4629 
4630   return UnableToLegalize;
4631 }
4632 
4633 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4634   switch (Opc) {
4635   case TargetOpcode::G_SMIN:
4636     return CmpInst::ICMP_SLT;
4637   case TargetOpcode::G_SMAX:
4638     return CmpInst::ICMP_SGT;
4639   case TargetOpcode::G_UMIN:
4640     return CmpInst::ICMP_ULT;
4641   case TargetOpcode::G_UMAX:
4642     return CmpInst::ICMP_UGT;
4643   default:
4644     llvm_unreachable("not in integer min/max");
4645   }
4646 }
4647 
4648 LegalizerHelper::LegalizeResult
4649 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4650   Register Dst = MI.getOperand(0).getReg();
4651   Register Src0 = MI.getOperand(1).getReg();
4652   Register Src1 = MI.getOperand(2).getReg();
4653 
4654   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4655   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4656 
4657   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4658   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4659 
4660   MI.eraseFromParent();
4661   return Legalized;
4662 }
4663 
4664 LegalizerHelper::LegalizeResult
4665 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4666   Register Dst = MI.getOperand(0).getReg();
4667   Register Src0 = MI.getOperand(1).getReg();
4668   Register Src1 = MI.getOperand(2).getReg();
4669 
4670   const LLT Src0Ty = MRI.getType(Src0);
4671   const LLT Src1Ty = MRI.getType(Src1);
4672 
4673   const int Src0Size = Src0Ty.getScalarSizeInBits();
4674   const int Src1Size = Src1Ty.getScalarSizeInBits();
4675 
4676   auto SignBitMask = MIRBuilder.buildConstant(
4677     Src0Ty, APInt::getSignMask(Src0Size));
4678 
4679   auto NotSignBitMask = MIRBuilder.buildConstant(
4680     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4681 
4682   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4683   MachineInstr *Or;
4684 
4685   if (Src0Ty == Src1Ty) {
4686     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask);
4687     Or = MIRBuilder.buildOr(Dst, And0, And1);
4688   } else if (Src0Size > Src1Size) {
4689     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4690     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4691     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4692     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4693     Or = MIRBuilder.buildOr(Dst, And0, And1);
4694   } else {
4695     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4696     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4697     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4698     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4699     Or = MIRBuilder.buildOr(Dst, And0, And1);
4700   }
4701 
4702   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4703   // constants are a nan and -0.0, but the final result should preserve
4704   // everything.
4705   if (unsigned Flags = MI.getFlags())
4706     Or->setFlags(Flags);
4707 
4708   MI.eraseFromParent();
4709   return Legalized;
4710 }
4711 
4712 LegalizerHelper::LegalizeResult
4713 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4714   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4715     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4716 
4717   Register Dst = MI.getOperand(0).getReg();
4718   Register Src0 = MI.getOperand(1).getReg();
4719   Register Src1 = MI.getOperand(2).getReg();
4720   LLT Ty = MRI.getType(Dst);
4721 
4722   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4723     // Insert canonicalizes if it's possible we need to quiet to get correct
4724     // sNaN behavior.
4725 
4726     // Note this must be done here, and not as an optimization combine in the
4727     // absence of a dedicate quiet-snan instruction as we're using an
4728     // omni-purpose G_FCANONICALIZE.
4729     if (!isKnownNeverSNaN(Src0, MRI))
4730       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4731 
4732     if (!isKnownNeverSNaN(Src1, MRI))
4733       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4734   }
4735 
4736   // If there are no nans, it's safe to simply replace this with the non-IEEE
4737   // version.
4738   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4739   MI.eraseFromParent();
4740   return Legalized;
4741 }
4742 
4743 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4744   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4745   Register DstReg = MI.getOperand(0).getReg();
4746   LLT Ty = MRI.getType(DstReg);
4747   unsigned Flags = MI.getFlags();
4748 
4749   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4750                                   Flags);
4751   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4752   MI.eraseFromParent();
4753   return Legalized;
4754 }
4755 
4756 LegalizerHelper::LegalizeResult
4757 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4758   Register DstReg = MI.getOperand(0).getReg();
4759   Register X = MI.getOperand(1).getReg();
4760   const unsigned Flags = MI.getFlags();
4761   const LLT Ty = MRI.getType(DstReg);
4762   const LLT CondTy = Ty.changeElementSize(1);
4763 
4764   // round(x) =>
4765   //  t = trunc(x);
4766   //  d = fabs(x - t);
4767   //  o = copysign(1.0f, x);
4768   //  return t + (d >= 0.5 ? o : 0.0);
4769 
4770   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4771 
4772   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4773   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4774   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4775   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4776   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4777   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4778 
4779   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4780                                   Flags);
4781   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4782 
4783   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4784 
4785   MI.eraseFromParent();
4786   return Legalized;
4787 }
4788 
4789 LegalizerHelper::LegalizeResult
4790 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4791   Register DstReg = MI.getOperand(0).getReg();
4792   Register SrcReg = MI.getOperand(1).getReg();
4793   unsigned Flags = MI.getFlags();
4794   LLT Ty = MRI.getType(DstReg);
4795   const LLT CondTy = Ty.changeElementSize(1);
4796 
4797   // result = trunc(src);
4798   // if (src < 0.0 && src != result)
4799   //   result += -1.0.
4800 
4801   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4802   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4803 
4804   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4805                                   SrcReg, Zero, Flags);
4806   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4807                                       SrcReg, Trunc, Flags);
4808   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4809   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4810 
4811   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
4812   MI.eraseFromParent();
4813   return Legalized;
4814 }
4815 
4816 LegalizerHelper::LegalizeResult
4817 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4818   const unsigned NumDst = MI.getNumOperands() - 1;
4819   const Register SrcReg = MI.getOperand(NumDst).getReg();
4820   LLT SrcTy = MRI.getType(SrcReg);
4821 
4822   Register Dst0Reg = MI.getOperand(0).getReg();
4823   LLT DstTy = MRI.getType(Dst0Reg);
4824 
4825 
4826   // Expand scalarizing unmerge as bitcast to integer and shift.
4827   if (!DstTy.isVector() && SrcTy.isVector() &&
4828       SrcTy.getElementType() == DstTy) {
4829     LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
4830     Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
4831 
4832     MIRBuilder.buildTrunc(Dst0Reg, Cast);
4833 
4834     const unsigned DstSize = DstTy.getSizeInBits();
4835     unsigned Offset = DstSize;
4836     for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4837       auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4838       auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
4839       MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4840     }
4841 
4842     MI.eraseFromParent();
4843     return Legalized;
4844   }
4845 
4846   return UnableToLegalize;
4847 }
4848 
4849 LegalizerHelper::LegalizeResult
4850 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4851   Register DstReg = MI.getOperand(0).getReg();
4852   Register Src0Reg = MI.getOperand(1).getReg();
4853   Register Src1Reg = MI.getOperand(2).getReg();
4854   LLT Src0Ty = MRI.getType(Src0Reg);
4855   LLT DstTy = MRI.getType(DstReg);
4856   LLT IdxTy = LLT::scalar(32);
4857 
4858   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4859 
4860   if (DstTy.isScalar()) {
4861     if (Src0Ty.isVector())
4862       return UnableToLegalize;
4863 
4864     // This is just a SELECT.
4865     assert(Mask.size() == 1 && "Expected a single mask element");
4866     Register Val;
4867     if (Mask[0] < 0 || Mask[0] > 1)
4868       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4869     else
4870       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4871     MIRBuilder.buildCopy(DstReg, Val);
4872     MI.eraseFromParent();
4873     return Legalized;
4874   }
4875 
4876   Register Undef;
4877   SmallVector<Register, 32> BuildVec;
4878   LLT EltTy = DstTy.getElementType();
4879 
4880   for (int Idx : Mask) {
4881     if (Idx < 0) {
4882       if (!Undef.isValid())
4883         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
4884       BuildVec.push_back(Undef);
4885       continue;
4886     }
4887 
4888     if (Src0Ty.isScalar()) {
4889       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
4890     } else {
4891       int NumElts = Src0Ty.getNumElements();
4892       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
4893       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
4894       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
4895       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
4896       BuildVec.push_back(Extract.getReg(0));
4897     }
4898   }
4899 
4900   MIRBuilder.buildBuildVector(DstReg, BuildVec);
4901   MI.eraseFromParent();
4902   return Legalized;
4903 }
4904 
4905 LegalizerHelper::LegalizeResult
4906 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
4907   Register Dst = MI.getOperand(0).getReg();
4908   Register AllocSize = MI.getOperand(1).getReg();
4909   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
4910 
4911   const auto &MF = *MI.getMF();
4912   const auto &TLI = *MF.getSubtarget().getTargetLowering();
4913 
4914   LLT PtrTy = MRI.getType(Dst);
4915   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
4916 
4917   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
4918   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
4919   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
4920 
4921   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
4922   // have to generate an extra instruction to negate the alloc and then use
4923   // G_PTR_ADD to add the negative offset.
4924   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
4925   if (Alignment > Align(1)) {
4926     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
4927     AlignMask.negate();
4928     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
4929     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
4930   }
4931 
4932   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
4933   MIRBuilder.buildCopy(SPReg, SPTmp);
4934   MIRBuilder.buildCopy(Dst, SPTmp);
4935 
4936   MI.eraseFromParent();
4937   return Legalized;
4938 }
4939 
4940 LegalizerHelper::LegalizeResult
4941 LegalizerHelper::lowerExtract(MachineInstr &MI) {
4942   Register Dst = MI.getOperand(0).getReg();
4943   Register Src = MI.getOperand(1).getReg();
4944   unsigned Offset = MI.getOperand(2).getImm();
4945 
4946   LLT DstTy = MRI.getType(Dst);
4947   LLT SrcTy = MRI.getType(Src);
4948 
4949   if (DstTy.isScalar() &&
4950       (SrcTy.isScalar() ||
4951        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
4952     LLT SrcIntTy = SrcTy;
4953     if (!SrcTy.isScalar()) {
4954       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
4955       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
4956     }
4957 
4958     if (Offset == 0)
4959       MIRBuilder.buildTrunc(Dst, Src);
4960     else {
4961       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
4962       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
4963       MIRBuilder.buildTrunc(Dst, Shr);
4964     }
4965 
4966     MI.eraseFromParent();
4967     return Legalized;
4968   }
4969 
4970   return UnableToLegalize;
4971 }
4972 
4973 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
4974   Register Dst = MI.getOperand(0).getReg();
4975   Register Src = MI.getOperand(1).getReg();
4976   Register InsertSrc = MI.getOperand(2).getReg();
4977   uint64_t Offset = MI.getOperand(3).getImm();
4978 
4979   LLT DstTy = MRI.getType(Src);
4980   LLT InsertTy = MRI.getType(InsertSrc);
4981 
4982   if (InsertTy.isVector() ||
4983       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
4984     return UnableToLegalize;
4985 
4986   const DataLayout &DL = MIRBuilder.getDataLayout();
4987   if ((DstTy.isPointer() &&
4988        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
4989       (InsertTy.isPointer() &&
4990        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
4991     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
4992     return UnableToLegalize;
4993   }
4994 
4995   LLT IntDstTy = DstTy;
4996 
4997   if (!DstTy.isScalar()) {
4998     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
4999     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5000   }
5001 
5002   if (!InsertTy.isScalar()) {
5003     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5004     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5005   }
5006 
5007   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5008   if (Offset != 0) {
5009     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5010     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5011   }
5012 
5013   APInt MaskVal = APInt::getBitsSetWithWrap(
5014       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5015 
5016   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5017   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5018   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5019 
5020   MIRBuilder.buildCast(Dst, Or);
5021   MI.eraseFromParent();
5022   return Legalized;
5023 }
5024 
5025 LegalizerHelper::LegalizeResult
5026 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5027   Register Dst0 = MI.getOperand(0).getReg();
5028   Register Dst1 = MI.getOperand(1).getReg();
5029   Register LHS = MI.getOperand(2).getReg();
5030   Register RHS = MI.getOperand(3).getReg();
5031   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5032 
5033   LLT Ty = MRI.getType(Dst0);
5034   LLT BoolTy = MRI.getType(Dst1);
5035 
5036   if (IsAdd)
5037     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5038   else
5039     MIRBuilder.buildSub(Dst0, LHS, RHS);
5040 
5041   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5042 
5043   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5044 
5045   // For an addition, the result should be less than one of the operands (LHS)
5046   // if and only if the other operand (RHS) is negative, otherwise there will
5047   // be overflow.
5048   // For a subtraction, the result should be less than one of the operands
5049   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5050   // otherwise there will be overflow.
5051   auto ResultLowerThanLHS =
5052       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5053   auto ConditionRHS = MIRBuilder.buildICmp(
5054       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5055 
5056   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5057   MI.eraseFromParent();
5058   return Legalized;
5059 }
5060 
5061 LegalizerHelper::LegalizeResult
5062 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5063   Register Dst = MI.getOperand(0).getReg();
5064   Register Src = MI.getOperand(1).getReg();
5065   const LLT Ty = MRI.getType(Src);
5066   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5067   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5068 
5069   // Swap most and least significant byte, set remaining bytes in Res to zero.
5070   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5071   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5072   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5073   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5074 
5075   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5076   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5077     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5078     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5079     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5080     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5081     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5082     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5083     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5084     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5085     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5086     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5087     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5088     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5089   }
5090   Res.getInstr()->getOperand(0).setReg(Dst);
5091 
5092   MI.eraseFromParent();
5093   return Legalized;
5094 }
5095 
5096 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5097 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5098                                  MachineInstrBuilder Src, APInt Mask) {
5099   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5100   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5101   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5102   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5103   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5104   return B.buildOr(Dst, LHS, RHS);
5105 }
5106 
5107 LegalizerHelper::LegalizeResult
5108 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5109   Register Dst = MI.getOperand(0).getReg();
5110   Register Src = MI.getOperand(1).getReg();
5111   const LLT Ty = MRI.getType(Src);
5112   unsigned Size = Ty.getSizeInBits();
5113 
5114   MachineInstrBuilder BSWAP =
5115       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5116 
5117   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5118   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5119   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5120   MachineInstrBuilder Swap4 =
5121       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5122 
5123   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5124   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5125   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5126   MachineInstrBuilder Swap2 =
5127       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5128 
5129   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5130   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5131   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5132   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5133 
5134   MI.eraseFromParent();
5135   return Legalized;
5136 }
5137 
5138 LegalizerHelper::LegalizeResult
5139 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5140   MachineFunction &MF = MIRBuilder.getMF();
5141   const TargetSubtargetInfo &STI = MF.getSubtarget();
5142   const TargetLowering *TLI = STI.getTargetLowering();
5143 
5144   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5145   int NameOpIdx = IsRead ? 1 : 0;
5146   int ValRegIndex = IsRead ? 0 : 1;
5147 
5148   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5149   const LLT Ty = MRI.getType(ValReg);
5150   const MDString *RegStr = cast<MDString>(
5151     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5152 
5153   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5154   if (!PhysReg.isValid())
5155     return UnableToLegalize;
5156 
5157   if (IsRead)
5158     MIRBuilder.buildCopy(ValReg, PhysReg);
5159   else
5160     MIRBuilder.buildCopy(PhysReg, ValReg);
5161 
5162   MI.eraseFromParent();
5163   return Legalized;
5164 }
5165