1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
64   } else {
65     LeftoverTy = LLT::scalar(LeftoverSize);
66   }
67 
68   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
69   return std::make_pair(NumParts, NumLeftover);
70 }
71 
72 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
73 
74   if (!Ty.isScalar())
75     return nullptr;
76 
77   switch (Ty.getSizeInBits()) {
78   case 16:
79     return Type::getHalfTy(Ctx);
80   case 32:
81     return Type::getFloatTy(Ctx);
82   case 64:
83     return Type::getDoubleTy(Ctx);
84   case 80:
85     return Type::getX86_FP80Ty(Ctx);
86   case 128:
87     return Type::getFP128Ty(Ctx);
88   default:
89     return nullptr;
90   }
91 }
92 
93 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
94                                  GISelChangeObserver &Observer,
95                                  MachineIRBuilder &Builder)
96     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
97       LI(*MF.getSubtarget().getLegalizerInfo()),
98       TLI(*MF.getSubtarget().getTargetLowering()) { }
99 
100 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
101                                  GISelChangeObserver &Observer,
102                                  MachineIRBuilder &B)
103   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
104     TLI(*MF.getSubtarget().getTargetLowering()) { }
105 
106 LegalizerHelper::LegalizeResult
107 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
108                                    LostDebugLocObserver &LocObserver) {
109   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
110 
111   MIRBuilder.setInstrAndDebugLoc(MI);
112 
113   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
114       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
115     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
116   auto Step = LI.getAction(MI, MRI);
117   switch (Step.Action) {
118   case Legal:
119     LLVM_DEBUG(dbgs() << ".. Already legal\n");
120     return AlreadyLegal;
121   case Libcall:
122     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
123     return libcall(MI, LocObserver);
124   case NarrowScalar:
125     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
126     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
127   case WidenScalar:
128     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
129     return widenScalar(MI, Step.TypeIdx, Step.NewType);
130   case Bitcast:
131     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
132     return bitcast(MI, Step.TypeIdx, Step.NewType);
133   case Lower:
134     LLVM_DEBUG(dbgs() << ".. Lower\n");
135     return lower(MI, Step.TypeIdx, Step.NewType);
136   case FewerElements:
137     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
138     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
139   case MoreElements:
140     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
141     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
142   case Custom:
143     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
144     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
145   default:
146     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
147     return UnableToLegalize;
148   }
149 }
150 
151 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
152                                    SmallVectorImpl<Register> &VRegs) {
153   for (int i = 0; i < NumParts; ++i)
154     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
155   MIRBuilder.buildUnmerge(VRegs, Reg);
156 }
157 
158 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
159                                    LLT MainTy, LLT &LeftoverTy,
160                                    SmallVectorImpl<Register> &VRegs,
161                                    SmallVectorImpl<Register> &LeftoverRegs) {
162   assert(!LeftoverTy.isValid() && "this is an out argument");
163 
164   unsigned RegSize = RegTy.getSizeInBits();
165   unsigned MainSize = MainTy.getSizeInBits();
166   unsigned NumParts = RegSize / MainSize;
167   unsigned LeftoverSize = RegSize - NumParts * MainSize;
168 
169   // Use an unmerge when possible.
170   if (LeftoverSize == 0) {
171     for (unsigned I = 0; I < NumParts; ++I)
172       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
173     MIRBuilder.buildUnmerge(VRegs, Reg);
174     return true;
175   }
176 
177   if (MainTy.isVector()) {
178     unsigned EltSize = MainTy.getScalarSizeInBits();
179     if (LeftoverSize % EltSize != 0)
180       return false;
181     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
182   } else {
183     LeftoverTy = LLT::scalar(LeftoverSize);
184   }
185 
186   // For irregular sizes, extract the individual parts.
187   for (unsigned I = 0; I != NumParts; ++I) {
188     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
189     VRegs.push_back(NewReg);
190     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
191   }
192 
193   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
194        Offset += LeftoverSize) {
195     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
196     LeftoverRegs.push_back(NewReg);
197     MIRBuilder.buildExtract(NewReg, Reg, Offset);
198   }
199 
200   return true;
201 }
202 
203 void LegalizerHelper::insertParts(Register DstReg,
204                                   LLT ResultTy, LLT PartTy,
205                                   ArrayRef<Register> PartRegs,
206                                   LLT LeftoverTy,
207                                   ArrayRef<Register> LeftoverRegs) {
208   if (!LeftoverTy.isValid()) {
209     assert(LeftoverRegs.empty());
210 
211     if (!ResultTy.isVector()) {
212       MIRBuilder.buildMerge(DstReg, PartRegs);
213       return;
214     }
215 
216     if (PartTy.isVector())
217       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
218     else
219       MIRBuilder.buildBuildVector(DstReg, PartRegs);
220     return;
221   }
222 
223   unsigned PartSize = PartTy.getSizeInBits();
224   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
225 
226   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
227   MIRBuilder.buildUndef(CurResultReg);
228 
229   unsigned Offset = 0;
230   for (Register PartReg : PartRegs) {
231     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
232     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
233     CurResultReg = NewResultReg;
234     Offset += PartSize;
235   }
236 
237   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
238     // Use the original output register for the final insert to avoid a copy.
239     Register NewResultReg = (I + 1 == E) ?
240       DstReg : MRI.createGenericVirtualRegister(ResultTy);
241 
242     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
243     CurResultReg = NewResultReg;
244     Offset += LeftoverPartSize;
245   }
246 }
247 
248 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
249 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
250                               const MachineInstr &MI) {
251   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
252 
253   const int StartIdx = Regs.size();
254   const int NumResults = MI.getNumOperands() - 1;
255   Regs.resize(Regs.size() + NumResults);
256   for (int I = 0; I != NumResults; ++I)
257     Regs[StartIdx + I] = MI.getOperand(I).getReg();
258 }
259 
260 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
261                                      LLT GCDTy, Register SrcReg) {
262   LLT SrcTy = MRI.getType(SrcReg);
263   if (SrcTy == GCDTy) {
264     // If the source already evenly divides the result type, we don't need to do
265     // anything.
266     Parts.push_back(SrcReg);
267   } else {
268     // Need to split into common type sized pieces.
269     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
270     getUnmergeResults(Parts, *Unmerge);
271   }
272 }
273 
274 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
275                                     LLT NarrowTy, Register SrcReg) {
276   LLT SrcTy = MRI.getType(SrcReg);
277   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
278   extractGCDType(Parts, GCDTy, SrcReg);
279   return GCDTy;
280 }
281 
282 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
283                                          SmallVectorImpl<Register> &VRegs,
284                                          unsigned PadStrategy) {
285   LLT LCMTy = getLCMType(DstTy, NarrowTy);
286 
287   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
288   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
289   int NumOrigSrc = VRegs.size();
290 
291   Register PadReg;
292 
293   // Get a value we can use to pad the source value if the sources won't evenly
294   // cover the result type.
295   if (NumOrigSrc < NumParts * NumSubParts) {
296     if (PadStrategy == TargetOpcode::G_ZEXT)
297       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
298     else if (PadStrategy == TargetOpcode::G_ANYEXT)
299       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
300     else {
301       assert(PadStrategy == TargetOpcode::G_SEXT);
302 
303       // Shift the sign bit of the low register through the high register.
304       auto ShiftAmt =
305         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
306       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
307     }
308   }
309 
310   // Registers for the final merge to be produced.
311   SmallVector<Register, 4> Remerge(NumParts);
312 
313   // Registers needed for intermediate merges, which will be merged into a
314   // source for Remerge.
315   SmallVector<Register, 4> SubMerge(NumSubParts);
316 
317   // Once we've fully read off the end of the original source bits, we can reuse
318   // the same high bits for remaining padding elements.
319   Register AllPadReg;
320 
321   // Build merges to the LCM type to cover the original result type.
322   for (int I = 0; I != NumParts; ++I) {
323     bool AllMergePartsArePadding = true;
324 
325     // Build the requested merges to the requested type.
326     for (int J = 0; J != NumSubParts; ++J) {
327       int Idx = I * NumSubParts + J;
328       if (Idx >= NumOrigSrc) {
329         SubMerge[J] = PadReg;
330         continue;
331       }
332 
333       SubMerge[J] = VRegs[Idx];
334 
335       // There are meaningful bits here we can't reuse later.
336       AllMergePartsArePadding = false;
337     }
338 
339     // If we've filled up a complete piece with padding bits, we can directly
340     // emit the natural sized constant if applicable, rather than a merge of
341     // smaller constants.
342     if (AllMergePartsArePadding && !AllPadReg) {
343       if (PadStrategy == TargetOpcode::G_ANYEXT)
344         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
345       else if (PadStrategy == TargetOpcode::G_ZEXT)
346         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
347 
348       // If this is a sign extension, we can't materialize a trivial constant
349       // with the right type and have to produce a merge.
350     }
351 
352     if (AllPadReg) {
353       // Avoid creating additional instructions if we're just adding additional
354       // copies of padding bits.
355       Remerge[I] = AllPadReg;
356       continue;
357     }
358 
359     if (NumSubParts == 1)
360       Remerge[I] = SubMerge[0];
361     else
362       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
363 
364     // In the sign extend padding case, re-use the first all-signbit merge.
365     if (AllMergePartsArePadding && !AllPadReg)
366       AllPadReg = Remerge[I];
367   }
368 
369   VRegs = std::move(Remerge);
370   return LCMTy;
371 }
372 
373 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
374                                                ArrayRef<Register> RemergeRegs) {
375   LLT DstTy = MRI.getType(DstReg);
376 
377   // Create the merge to the widened source, and extract the relevant bits into
378   // the result.
379 
380   if (DstTy == LCMTy) {
381     MIRBuilder.buildMerge(DstReg, RemergeRegs);
382     return;
383   }
384 
385   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
386   if (DstTy.isScalar() && LCMTy.isScalar()) {
387     MIRBuilder.buildTrunc(DstReg, Remerge);
388     return;
389   }
390 
391   if (LCMTy.isVector()) {
392     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
393     SmallVector<Register, 8> UnmergeDefs(NumDefs);
394     UnmergeDefs[0] = DstReg;
395     for (unsigned I = 1; I != NumDefs; ++I)
396       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
397 
398     MIRBuilder.buildUnmerge(UnmergeDefs,
399                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
400     return;
401   }
402 
403   llvm_unreachable("unhandled case");
404 }
405 
406 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
407 #define RTLIBCASE_INT(LibcallPrefix)                                           \
408   do {                                                                         \
409     switch (Size) {                                                            \
410     case 32:                                                                   \
411       return RTLIB::LibcallPrefix##32;                                         \
412     case 64:                                                                   \
413       return RTLIB::LibcallPrefix##64;                                         \
414     case 128:                                                                  \
415       return RTLIB::LibcallPrefix##128;                                        \
416     default:                                                                   \
417       llvm_unreachable("unexpected size");                                     \
418     }                                                                          \
419   } while (0)
420 
421 #define RTLIBCASE(LibcallPrefix)                                               \
422   do {                                                                         \
423     switch (Size) {                                                            \
424     case 32:                                                                   \
425       return RTLIB::LibcallPrefix##32;                                         \
426     case 64:                                                                   \
427       return RTLIB::LibcallPrefix##64;                                         \
428     case 80:                                                                   \
429       return RTLIB::LibcallPrefix##80;                                         \
430     case 128:                                                                  \
431       return RTLIB::LibcallPrefix##128;                                        \
432     default:                                                                   \
433       llvm_unreachable("unexpected size");                                     \
434     }                                                                          \
435   } while (0)
436 
437   switch (Opcode) {
438   case TargetOpcode::G_SDIV:
439     RTLIBCASE_INT(SDIV_I);
440   case TargetOpcode::G_UDIV:
441     RTLIBCASE_INT(UDIV_I);
442   case TargetOpcode::G_SREM:
443     RTLIBCASE_INT(SREM_I);
444   case TargetOpcode::G_UREM:
445     RTLIBCASE_INT(UREM_I);
446   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
447     RTLIBCASE_INT(CTLZ_I);
448   case TargetOpcode::G_FADD:
449     RTLIBCASE(ADD_F);
450   case TargetOpcode::G_FSUB:
451     RTLIBCASE(SUB_F);
452   case TargetOpcode::G_FMUL:
453     RTLIBCASE(MUL_F);
454   case TargetOpcode::G_FDIV:
455     RTLIBCASE(DIV_F);
456   case TargetOpcode::G_FEXP:
457     RTLIBCASE(EXP_F);
458   case TargetOpcode::G_FEXP2:
459     RTLIBCASE(EXP2_F);
460   case TargetOpcode::G_FREM:
461     RTLIBCASE(REM_F);
462   case TargetOpcode::G_FPOW:
463     RTLIBCASE(POW_F);
464   case TargetOpcode::G_FMA:
465     RTLIBCASE(FMA_F);
466   case TargetOpcode::G_FSIN:
467     RTLIBCASE(SIN_F);
468   case TargetOpcode::G_FCOS:
469     RTLIBCASE(COS_F);
470   case TargetOpcode::G_FLOG10:
471     RTLIBCASE(LOG10_F);
472   case TargetOpcode::G_FLOG:
473     RTLIBCASE(LOG_F);
474   case TargetOpcode::G_FLOG2:
475     RTLIBCASE(LOG2_F);
476   case TargetOpcode::G_FCEIL:
477     RTLIBCASE(CEIL_F);
478   case TargetOpcode::G_FFLOOR:
479     RTLIBCASE(FLOOR_F);
480   case TargetOpcode::G_FMINNUM:
481     RTLIBCASE(FMIN_F);
482   case TargetOpcode::G_FMAXNUM:
483     RTLIBCASE(FMAX_F);
484   case TargetOpcode::G_FSQRT:
485     RTLIBCASE(SQRT_F);
486   case TargetOpcode::G_FRINT:
487     RTLIBCASE(RINT_F);
488   case TargetOpcode::G_FNEARBYINT:
489     RTLIBCASE(NEARBYINT_F);
490   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
491     RTLIBCASE(ROUNDEVEN_F);
492   }
493   llvm_unreachable("Unknown libcall function");
494 }
495 
496 /// True if an instruction is in tail position in its caller. Intended for
497 /// legalizing libcalls as tail calls when possible.
498 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
499                                     MachineInstr &MI) {
500   MachineBasicBlock &MBB = *MI.getParent();
501   const Function &F = MBB.getParent()->getFunction();
502 
503   // Conservatively require the attributes of the call to match those of
504   // the return. Ignore NoAlias and NonNull because they don't affect the
505   // call sequence.
506   AttributeList CallerAttrs = F.getAttributes();
507   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
508           .removeAttribute(Attribute::NoAlias)
509           .removeAttribute(Attribute::NonNull)
510           .hasAttributes())
511     return false;
512 
513   // It's not safe to eliminate the sign / zero extension of the return value.
514   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
515       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
516     return false;
517 
518   // Only tail call if the following instruction is a standard return.
519   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
520   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
521     return false;
522 
523   return true;
524 }
525 
526 LegalizerHelper::LegalizeResult
527 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
528                     const CallLowering::ArgInfo &Result,
529                     ArrayRef<CallLowering::ArgInfo> Args,
530                     const CallingConv::ID CC) {
531   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
532 
533   CallLowering::CallLoweringInfo Info;
534   Info.CallConv = CC;
535   Info.Callee = MachineOperand::CreateES(Name);
536   Info.OrigRet = Result;
537   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
538   if (!CLI.lowerCall(MIRBuilder, Info))
539     return LegalizerHelper::UnableToLegalize;
540 
541   return LegalizerHelper::Legalized;
542 }
543 
544 LegalizerHelper::LegalizeResult
545 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
546                     const CallLowering::ArgInfo &Result,
547                     ArrayRef<CallLowering::ArgInfo> Args) {
548   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
549   const char *Name = TLI.getLibcallName(Libcall);
550   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
551   return createLibcall(MIRBuilder, Name, Result, Args, CC);
552 }
553 
554 // Useful for libcalls where all operands have the same type.
555 static LegalizerHelper::LegalizeResult
556 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
557               Type *OpType) {
558   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
559 
560   SmallVector<CallLowering::ArgInfo, 3> Args;
561   for (unsigned i = 1; i < MI.getNumOperands(); i++)
562     Args.push_back({MI.getOperand(i).getReg(), OpType});
563   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
564                        Args);
565 }
566 
567 LegalizerHelper::LegalizeResult
568 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
569                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
570   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
571 
572   SmallVector<CallLowering::ArgInfo, 3> Args;
573   // Add all the args, except for the last which is an imm denoting 'tail'.
574   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
575     Register Reg = MI.getOperand(i).getReg();
576 
577     // Need derive an IR type for call lowering.
578     LLT OpLLT = MRI.getType(Reg);
579     Type *OpTy = nullptr;
580     if (OpLLT.isPointer())
581       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
582     else
583       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
584     Args.push_back({Reg, OpTy});
585   }
586 
587   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
588   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
589   RTLIB::Libcall RTLibcall;
590   unsigned Opc = MI.getOpcode();
591   switch (Opc) {
592   case TargetOpcode::G_BZERO:
593     RTLibcall = RTLIB::BZERO;
594     break;
595   case TargetOpcode::G_MEMCPY:
596     RTLibcall = RTLIB::MEMCPY;
597     break;
598   case TargetOpcode::G_MEMMOVE:
599     RTLibcall = RTLIB::MEMMOVE;
600     break;
601   case TargetOpcode::G_MEMSET:
602     RTLibcall = RTLIB::MEMSET;
603     break;
604   default:
605     return LegalizerHelper::UnableToLegalize;
606   }
607   const char *Name = TLI.getLibcallName(RTLibcall);
608 
609   // Unsupported libcall on the target.
610   if (!Name) {
611     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
612                       << MIRBuilder.getTII().getName(Opc) << "\n");
613     return LegalizerHelper::UnableToLegalize;
614   }
615 
616   CallLowering::CallLoweringInfo Info;
617   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
618   Info.Callee = MachineOperand::CreateES(Name);
619   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
620   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
621                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
622 
623   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
624   if (!CLI.lowerCall(MIRBuilder, Info))
625     return LegalizerHelper::UnableToLegalize;
626 
627 
628   if (Info.LoweredTailCall) {
629     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
630 
631     // Check debug locations before removing the return.
632     LocObserver.checkpoint(true);
633 
634     // We must have a return following the call (or debug insts) to get past
635     // isLibCallInTailPosition.
636     do {
637       MachineInstr *Next = MI.getNextNode();
638       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
639              "Expected instr following MI to be return or debug inst?");
640       // We lowered a tail call, so the call is now the return from the block.
641       // Delete the old return.
642       Next->eraseFromParent();
643     } while (MI.getNextNode());
644 
645     // We expect to lose the debug location from the return.
646     LocObserver.checkpoint(false);
647   }
648 
649   return LegalizerHelper::Legalized;
650 }
651 
652 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
653                                        Type *FromType) {
654   auto ToMVT = MVT::getVT(ToType);
655   auto FromMVT = MVT::getVT(FromType);
656 
657   switch (Opcode) {
658   case TargetOpcode::G_FPEXT:
659     return RTLIB::getFPEXT(FromMVT, ToMVT);
660   case TargetOpcode::G_FPTRUNC:
661     return RTLIB::getFPROUND(FromMVT, ToMVT);
662   case TargetOpcode::G_FPTOSI:
663     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
664   case TargetOpcode::G_FPTOUI:
665     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
666   case TargetOpcode::G_SITOFP:
667     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
668   case TargetOpcode::G_UITOFP:
669     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
670   }
671   llvm_unreachable("Unsupported libcall function");
672 }
673 
674 static LegalizerHelper::LegalizeResult
675 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
676                   Type *FromType) {
677   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
678   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
679                        {{MI.getOperand(1).getReg(), FromType}});
680 }
681 
682 LegalizerHelper::LegalizeResult
683 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
684   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
685   unsigned Size = LLTy.getSizeInBits();
686   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
687 
688   switch (MI.getOpcode()) {
689   default:
690     return UnableToLegalize;
691   case TargetOpcode::G_SDIV:
692   case TargetOpcode::G_UDIV:
693   case TargetOpcode::G_SREM:
694   case TargetOpcode::G_UREM:
695   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
696     Type *HLTy = IntegerType::get(Ctx, Size);
697     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
698     if (Status != Legalized)
699       return Status;
700     break;
701   }
702   case TargetOpcode::G_FADD:
703   case TargetOpcode::G_FSUB:
704   case TargetOpcode::G_FMUL:
705   case TargetOpcode::G_FDIV:
706   case TargetOpcode::G_FMA:
707   case TargetOpcode::G_FPOW:
708   case TargetOpcode::G_FREM:
709   case TargetOpcode::G_FCOS:
710   case TargetOpcode::G_FSIN:
711   case TargetOpcode::G_FLOG10:
712   case TargetOpcode::G_FLOG:
713   case TargetOpcode::G_FLOG2:
714   case TargetOpcode::G_FEXP:
715   case TargetOpcode::G_FEXP2:
716   case TargetOpcode::G_FCEIL:
717   case TargetOpcode::G_FFLOOR:
718   case TargetOpcode::G_FMINNUM:
719   case TargetOpcode::G_FMAXNUM:
720   case TargetOpcode::G_FSQRT:
721   case TargetOpcode::G_FRINT:
722   case TargetOpcode::G_FNEARBYINT:
723   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
724     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
725     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
726       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
727       return UnableToLegalize;
728     }
729     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
730     if (Status != Legalized)
731       return Status;
732     break;
733   }
734   case TargetOpcode::G_FPEXT:
735   case TargetOpcode::G_FPTRUNC: {
736     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
737     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
738     if (!FromTy || !ToTy)
739       return UnableToLegalize;
740     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
741     if (Status != Legalized)
742       return Status;
743     break;
744   }
745   case TargetOpcode::G_FPTOSI:
746   case TargetOpcode::G_FPTOUI: {
747     // FIXME: Support other types
748     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
749     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
750     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
751       return UnableToLegalize;
752     LegalizeResult Status = conversionLibcall(
753         MI, MIRBuilder,
754         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
755         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
756     if (Status != Legalized)
757       return Status;
758     break;
759   }
760   case TargetOpcode::G_SITOFP:
761   case TargetOpcode::G_UITOFP: {
762     // FIXME: Support other types
763     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
764     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
765     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
766       return UnableToLegalize;
767     LegalizeResult Status = conversionLibcall(
768         MI, MIRBuilder,
769         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
770         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
771     if (Status != Legalized)
772       return Status;
773     break;
774   }
775   case TargetOpcode::G_BZERO:
776   case TargetOpcode::G_MEMCPY:
777   case TargetOpcode::G_MEMMOVE:
778   case TargetOpcode::G_MEMSET: {
779     LegalizeResult Result =
780         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
781     if (Result != Legalized)
782       return Result;
783     MI.eraseFromParent();
784     return Result;
785   }
786   }
787 
788   MI.eraseFromParent();
789   return Legalized;
790 }
791 
792 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
793                                                               unsigned TypeIdx,
794                                                               LLT NarrowTy) {
795   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
796   uint64_t NarrowSize = NarrowTy.getSizeInBits();
797 
798   switch (MI.getOpcode()) {
799   default:
800     return UnableToLegalize;
801   case TargetOpcode::G_IMPLICIT_DEF: {
802     Register DstReg = MI.getOperand(0).getReg();
803     LLT DstTy = MRI.getType(DstReg);
804 
805     // If SizeOp0 is not an exact multiple of NarrowSize, emit
806     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
807     // FIXME: Although this would also be legal for the general case, it causes
808     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
809     //  combines not being hit). This seems to be a problem related to the
810     //  artifact combiner.
811     if (SizeOp0 % NarrowSize != 0) {
812       LLT ImplicitTy = NarrowTy;
813       if (DstTy.isVector())
814         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
815 
816       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
817       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
818 
819       MI.eraseFromParent();
820       return Legalized;
821     }
822 
823     int NumParts = SizeOp0 / NarrowSize;
824 
825     SmallVector<Register, 2> DstRegs;
826     for (int i = 0; i < NumParts; ++i)
827       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
828 
829     if (DstTy.isVector())
830       MIRBuilder.buildBuildVector(DstReg, DstRegs);
831     else
832       MIRBuilder.buildMerge(DstReg, DstRegs);
833     MI.eraseFromParent();
834     return Legalized;
835   }
836   case TargetOpcode::G_CONSTANT: {
837     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
838     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
839     unsigned TotalSize = Ty.getSizeInBits();
840     unsigned NarrowSize = NarrowTy.getSizeInBits();
841     int NumParts = TotalSize / NarrowSize;
842 
843     SmallVector<Register, 4> PartRegs;
844     for (int I = 0; I != NumParts; ++I) {
845       unsigned Offset = I * NarrowSize;
846       auto K = MIRBuilder.buildConstant(NarrowTy,
847                                         Val.lshr(Offset).trunc(NarrowSize));
848       PartRegs.push_back(K.getReg(0));
849     }
850 
851     LLT LeftoverTy;
852     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
853     SmallVector<Register, 1> LeftoverRegs;
854     if (LeftoverBits != 0) {
855       LeftoverTy = LLT::scalar(LeftoverBits);
856       auto K = MIRBuilder.buildConstant(
857         LeftoverTy,
858         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
859       LeftoverRegs.push_back(K.getReg(0));
860     }
861 
862     insertParts(MI.getOperand(0).getReg(),
863                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
864 
865     MI.eraseFromParent();
866     return Legalized;
867   }
868   case TargetOpcode::G_SEXT:
869   case TargetOpcode::G_ZEXT:
870   case TargetOpcode::G_ANYEXT:
871     return narrowScalarExt(MI, TypeIdx, NarrowTy);
872   case TargetOpcode::G_TRUNC: {
873     if (TypeIdx != 1)
874       return UnableToLegalize;
875 
876     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
877     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
878       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
879       return UnableToLegalize;
880     }
881 
882     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
883     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
884     MI.eraseFromParent();
885     return Legalized;
886   }
887 
888   case TargetOpcode::G_FREEZE:
889     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
890   case TargetOpcode::G_ADD:
891   case TargetOpcode::G_SUB:
892   case TargetOpcode::G_SADDO:
893   case TargetOpcode::G_SSUBO:
894   case TargetOpcode::G_SADDE:
895   case TargetOpcode::G_SSUBE:
896   case TargetOpcode::G_UADDO:
897   case TargetOpcode::G_USUBO:
898   case TargetOpcode::G_UADDE:
899   case TargetOpcode::G_USUBE:
900     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
901   case TargetOpcode::G_MUL:
902   case TargetOpcode::G_UMULH:
903     return narrowScalarMul(MI, NarrowTy);
904   case TargetOpcode::G_EXTRACT:
905     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
906   case TargetOpcode::G_INSERT:
907     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
908   case TargetOpcode::G_LOAD: {
909     auto &MMO = **MI.memoperands_begin();
910     Register DstReg = MI.getOperand(0).getReg();
911     LLT DstTy = MRI.getType(DstReg);
912     if (DstTy.isVector())
913       return UnableToLegalize;
914 
915     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
916       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
917       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
918       MIRBuilder.buildAnyExt(DstReg, TmpReg);
919       MI.eraseFromParent();
920       return Legalized;
921     }
922 
923     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
924   }
925   case TargetOpcode::G_ZEXTLOAD:
926   case TargetOpcode::G_SEXTLOAD: {
927     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
928     Register DstReg = MI.getOperand(0).getReg();
929     Register PtrReg = MI.getOperand(1).getReg();
930 
931     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
932     auto &MMO = **MI.memoperands_begin();
933     unsigned MemSize = MMO.getSizeInBits();
934 
935     if (MemSize == NarrowSize) {
936       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
937     } else if (MemSize < NarrowSize) {
938       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
939     } else if (MemSize > NarrowSize) {
940       // FIXME: Need to split the load.
941       return UnableToLegalize;
942     }
943 
944     if (ZExt)
945       MIRBuilder.buildZExt(DstReg, TmpReg);
946     else
947       MIRBuilder.buildSExt(DstReg, TmpReg);
948 
949     MI.eraseFromParent();
950     return Legalized;
951   }
952   case TargetOpcode::G_STORE: {
953     const auto &MMO = **MI.memoperands_begin();
954 
955     Register SrcReg = MI.getOperand(0).getReg();
956     LLT SrcTy = MRI.getType(SrcReg);
957     if (SrcTy.isVector())
958       return UnableToLegalize;
959 
960     int NumParts = SizeOp0 / NarrowSize;
961     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
962     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
963     if (SrcTy.isVector() && LeftoverBits != 0)
964       return UnableToLegalize;
965 
966     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
967       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
968       auto &MMO = **MI.memoperands_begin();
969       MIRBuilder.buildTrunc(TmpReg, SrcReg);
970       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
971       MI.eraseFromParent();
972       return Legalized;
973     }
974 
975     return reduceLoadStoreWidth(MI, 0, NarrowTy);
976   }
977   case TargetOpcode::G_SELECT:
978     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
979   case TargetOpcode::G_AND:
980   case TargetOpcode::G_OR:
981   case TargetOpcode::G_XOR: {
982     // Legalize bitwise operation:
983     // A = BinOp<Ty> B, C
984     // into:
985     // B1, ..., BN = G_UNMERGE_VALUES B
986     // C1, ..., CN = G_UNMERGE_VALUES C
987     // A1 = BinOp<Ty/N> B1, C2
988     // ...
989     // AN = BinOp<Ty/N> BN, CN
990     // A = G_MERGE_VALUES A1, ..., AN
991     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
992   }
993   case TargetOpcode::G_SHL:
994   case TargetOpcode::G_LSHR:
995   case TargetOpcode::G_ASHR:
996     return narrowScalarShift(MI, TypeIdx, NarrowTy);
997   case TargetOpcode::G_CTLZ:
998   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
999   case TargetOpcode::G_CTTZ:
1000   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1001   case TargetOpcode::G_CTPOP:
1002     if (TypeIdx == 1)
1003       switch (MI.getOpcode()) {
1004       case TargetOpcode::G_CTLZ:
1005       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1006         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1007       case TargetOpcode::G_CTTZ:
1008       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1009         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1010       case TargetOpcode::G_CTPOP:
1011         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1012       default:
1013         return UnableToLegalize;
1014       }
1015 
1016     Observer.changingInstr(MI);
1017     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1018     Observer.changedInstr(MI);
1019     return Legalized;
1020   case TargetOpcode::G_INTTOPTR:
1021     if (TypeIdx != 1)
1022       return UnableToLegalize;
1023 
1024     Observer.changingInstr(MI);
1025     narrowScalarSrc(MI, NarrowTy, 1);
1026     Observer.changedInstr(MI);
1027     return Legalized;
1028   case TargetOpcode::G_PTRTOINT:
1029     if (TypeIdx != 0)
1030       return UnableToLegalize;
1031 
1032     Observer.changingInstr(MI);
1033     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1034     Observer.changedInstr(MI);
1035     return Legalized;
1036   case TargetOpcode::G_PHI: {
1037     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1038     // NarrowSize.
1039     if (SizeOp0 % NarrowSize != 0)
1040       return UnableToLegalize;
1041 
1042     unsigned NumParts = SizeOp0 / NarrowSize;
1043     SmallVector<Register, 2> DstRegs(NumParts);
1044     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1045     Observer.changingInstr(MI);
1046     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1047       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1048       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1049       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1050                    SrcRegs[i / 2]);
1051     }
1052     MachineBasicBlock &MBB = *MI.getParent();
1053     MIRBuilder.setInsertPt(MBB, MI);
1054     for (unsigned i = 0; i < NumParts; ++i) {
1055       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1056       MachineInstrBuilder MIB =
1057           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1058       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1059         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1060     }
1061     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1062     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1063     Observer.changedInstr(MI);
1064     MI.eraseFromParent();
1065     return Legalized;
1066   }
1067   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1068   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1069     if (TypeIdx != 2)
1070       return UnableToLegalize;
1071 
1072     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1073     Observer.changingInstr(MI);
1074     narrowScalarSrc(MI, NarrowTy, OpIdx);
1075     Observer.changedInstr(MI);
1076     return Legalized;
1077   }
1078   case TargetOpcode::G_ICMP: {
1079     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1080     if (NarrowSize * 2 != SrcSize)
1081       return UnableToLegalize;
1082 
1083     Observer.changingInstr(MI);
1084     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1085     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1086     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1087 
1088     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1089     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1090     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1091 
1092     CmpInst::Predicate Pred =
1093         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1094     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1095 
1096     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1097       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1098       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1099       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1100       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1101       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1102     } else {
1103       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1104       MachineInstrBuilder CmpHEQ =
1105           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1106       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1107           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1108       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1109     }
1110     Observer.changedInstr(MI);
1111     MI.eraseFromParent();
1112     return Legalized;
1113   }
1114   case TargetOpcode::G_SEXT_INREG: {
1115     if (TypeIdx != 0)
1116       return UnableToLegalize;
1117 
1118     int64_t SizeInBits = MI.getOperand(2).getImm();
1119 
1120     // So long as the new type has more bits than the bits we're extending we
1121     // don't need to break it apart.
1122     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1123       Observer.changingInstr(MI);
1124       // We don't lose any non-extension bits by truncating the src and
1125       // sign-extending the dst.
1126       MachineOperand &MO1 = MI.getOperand(1);
1127       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1128       MO1.setReg(TruncMIB.getReg(0));
1129 
1130       MachineOperand &MO2 = MI.getOperand(0);
1131       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1132       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1133       MIRBuilder.buildSExt(MO2, DstExt);
1134       MO2.setReg(DstExt);
1135       Observer.changedInstr(MI);
1136       return Legalized;
1137     }
1138 
1139     // Break it apart. Components below the extension point are unmodified. The
1140     // component containing the extension point becomes a narrower SEXT_INREG.
1141     // Components above it are ashr'd from the component containing the
1142     // extension point.
1143     if (SizeOp0 % NarrowSize != 0)
1144       return UnableToLegalize;
1145     int NumParts = SizeOp0 / NarrowSize;
1146 
1147     // List the registers where the destination will be scattered.
1148     SmallVector<Register, 2> DstRegs;
1149     // List the registers where the source will be split.
1150     SmallVector<Register, 2> SrcRegs;
1151 
1152     // Create all the temporary registers.
1153     for (int i = 0; i < NumParts; ++i) {
1154       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1155 
1156       SrcRegs.push_back(SrcReg);
1157     }
1158 
1159     // Explode the big arguments into smaller chunks.
1160     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1161 
1162     Register AshrCstReg =
1163         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1164             .getReg(0);
1165     Register FullExtensionReg = 0;
1166     Register PartialExtensionReg = 0;
1167 
1168     // Do the operation on each small part.
1169     for (int i = 0; i < NumParts; ++i) {
1170       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1171         DstRegs.push_back(SrcRegs[i]);
1172       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1173         assert(PartialExtensionReg &&
1174                "Expected to visit partial extension before full");
1175         if (FullExtensionReg) {
1176           DstRegs.push_back(FullExtensionReg);
1177           continue;
1178         }
1179         DstRegs.push_back(
1180             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1181                 .getReg(0));
1182         FullExtensionReg = DstRegs.back();
1183       } else {
1184         DstRegs.push_back(
1185             MIRBuilder
1186                 .buildInstr(
1187                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1188                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1189                 .getReg(0));
1190         PartialExtensionReg = DstRegs.back();
1191       }
1192     }
1193 
1194     // Gather the destination registers into the final destination.
1195     Register DstReg = MI.getOperand(0).getReg();
1196     MIRBuilder.buildMerge(DstReg, DstRegs);
1197     MI.eraseFromParent();
1198     return Legalized;
1199   }
1200   case TargetOpcode::G_BSWAP:
1201   case TargetOpcode::G_BITREVERSE: {
1202     if (SizeOp0 % NarrowSize != 0)
1203       return UnableToLegalize;
1204 
1205     Observer.changingInstr(MI);
1206     SmallVector<Register, 2> SrcRegs, DstRegs;
1207     unsigned NumParts = SizeOp0 / NarrowSize;
1208     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1209 
1210     for (unsigned i = 0; i < NumParts; ++i) {
1211       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1212                                            {SrcRegs[NumParts - 1 - i]});
1213       DstRegs.push_back(DstPart.getReg(0));
1214     }
1215 
1216     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1217 
1218     Observer.changedInstr(MI);
1219     MI.eraseFromParent();
1220     return Legalized;
1221   }
1222   case TargetOpcode::G_PTR_ADD:
1223   case TargetOpcode::G_PTRMASK: {
1224     if (TypeIdx != 1)
1225       return UnableToLegalize;
1226     Observer.changingInstr(MI);
1227     narrowScalarSrc(MI, NarrowTy, 2);
1228     Observer.changedInstr(MI);
1229     return Legalized;
1230   }
1231   case TargetOpcode::G_FPTOUI:
1232   case TargetOpcode::G_FPTOSI:
1233     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1234   case TargetOpcode::G_FPEXT:
1235     if (TypeIdx != 0)
1236       return UnableToLegalize;
1237     Observer.changingInstr(MI);
1238     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1239     Observer.changedInstr(MI);
1240     return Legalized;
1241   }
1242 }
1243 
1244 Register LegalizerHelper::coerceToScalar(Register Val) {
1245   LLT Ty = MRI.getType(Val);
1246   if (Ty.isScalar())
1247     return Val;
1248 
1249   const DataLayout &DL = MIRBuilder.getDataLayout();
1250   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1251   if (Ty.isPointer()) {
1252     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1253       return Register();
1254     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1255   }
1256 
1257   Register NewVal = Val;
1258 
1259   assert(Ty.isVector());
1260   LLT EltTy = Ty.getElementType();
1261   if (EltTy.isPointer())
1262     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1263   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1264 }
1265 
1266 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1267                                      unsigned OpIdx, unsigned ExtOpcode) {
1268   MachineOperand &MO = MI.getOperand(OpIdx);
1269   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1270   MO.setReg(ExtB.getReg(0));
1271 }
1272 
1273 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1274                                       unsigned OpIdx) {
1275   MachineOperand &MO = MI.getOperand(OpIdx);
1276   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1277   MO.setReg(ExtB.getReg(0));
1278 }
1279 
1280 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1281                                      unsigned OpIdx, unsigned TruncOpcode) {
1282   MachineOperand &MO = MI.getOperand(OpIdx);
1283   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1284   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1285   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1286   MO.setReg(DstExt);
1287 }
1288 
1289 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1290                                       unsigned OpIdx, unsigned ExtOpcode) {
1291   MachineOperand &MO = MI.getOperand(OpIdx);
1292   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1293   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1294   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1295   MO.setReg(DstTrunc);
1296 }
1297 
1298 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1299                                             unsigned OpIdx) {
1300   MachineOperand &MO = MI.getOperand(OpIdx);
1301   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1302   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1303 }
1304 
1305 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1306                                             unsigned OpIdx) {
1307   MachineOperand &MO = MI.getOperand(OpIdx);
1308 
1309   LLT OldTy = MRI.getType(MO.getReg());
1310   unsigned OldElts = OldTy.getNumElements();
1311   unsigned NewElts = MoreTy.getNumElements();
1312 
1313   unsigned NumParts = NewElts / OldElts;
1314 
1315   // Use concat_vectors if the result is a multiple of the number of elements.
1316   if (NumParts * OldElts == NewElts) {
1317     SmallVector<Register, 8> Parts;
1318     Parts.push_back(MO.getReg());
1319 
1320     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1321     for (unsigned I = 1; I != NumParts; ++I)
1322       Parts.push_back(ImpDef);
1323 
1324     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1325     MO.setReg(Concat.getReg(0));
1326     return;
1327   }
1328 
1329   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1330   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1331   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1332   MO.setReg(MoreReg);
1333 }
1334 
1335 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1336   MachineOperand &Op = MI.getOperand(OpIdx);
1337   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1338 }
1339 
1340 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1341   MachineOperand &MO = MI.getOperand(OpIdx);
1342   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1343   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1344   MIRBuilder.buildBitcast(MO, CastDst);
1345   MO.setReg(CastDst);
1346 }
1347 
1348 LegalizerHelper::LegalizeResult
1349 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1350                                         LLT WideTy) {
1351   if (TypeIdx != 1)
1352     return UnableToLegalize;
1353 
1354   Register DstReg = MI.getOperand(0).getReg();
1355   LLT DstTy = MRI.getType(DstReg);
1356   if (DstTy.isVector())
1357     return UnableToLegalize;
1358 
1359   Register Src1 = MI.getOperand(1).getReg();
1360   LLT SrcTy = MRI.getType(Src1);
1361   const int DstSize = DstTy.getSizeInBits();
1362   const int SrcSize = SrcTy.getSizeInBits();
1363   const int WideSize = WideTy.getSizeInBits();
1364   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1365 
1366   unsigned NumOps = MI.getNumOperands();
1367   unsigned NumSrc = MI.getNumOperands() - 1;
1368   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1369 
1370   if (WideSize >= DstSize) {
1371     // Directly pack the bits in the target type.
1372     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1373 
1374     for (unsigned I = 2; I != NumOps; ++I) {
1375       const unsigned Offset = (I - 1) * PartSize;
1376 
1377       Register SrcReg = MI.getOperand(I).getReg();
1378       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1379 
1380       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1381 
1382       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1383         MRI.createGenericVirtualRegister(WideTy);
1384 
1385       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1386       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1387       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1388       ResultReg = NextResult;
1389     }
1390 
1391     if (WideSize > DstSize)
1392       MIRBuilder.buildTrunc(DstReg, ResultReg);
1393     else if (DstTy.isPointer())
1394       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1395 
1396     MI.eraseFromParent();
1397     return Legalized;
1398   }
1399 
1400   // Unmerge the original values to the GCD type, and recombine to the next
1401   // multiple greater than the original type.
1402   //
1403   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1404   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1405   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1406   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1407   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1408   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1409   // %12:_(s12) = G_MERGE_VALUES %10, %11
1410   //
1411   // Padding with undef if necessary:
1412   //
1413   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1414   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1415   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1416   // %7:_(s2) = G_IMPLICIT_DEF
1417   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1418   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1419   // %10:_(s12) = G_MERGE_VALUES %8, %9
1420 
1421   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1422   LLT GCDTy = LLT::scalar(GCD);
1423 
1424   SmallVector<Register, 8> Parts;
1425   SmallVector<Register, 8> NewMergeRegs;
1426   SmallVector<Register, 8> Unmerges;
1427   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1428 
1429   // Decompose the original operands if they don't evenly divide.
1430   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1431     Register SrcReg = MI.getOperand(I).getReg();
1432     if (GCD == SrcSize) {
1433       Unmerges.push_back(SrcReg);
1434     } else {
1435       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1436       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1437         Unmerges.push_back(Unmerge.getReg(J));
1438     }
1439   }
1440 
1441   // Pad with undef to the next size that is a multiple of the requested size.
1442   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1443     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1444     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1445       Unmerges.push_back(UndefReg);
1446   }
1447 
1448   const int PartsPerGCD = WideSize / GCD;
1449 
1450   // Build merges of each piece.
1451   ArrayRef<Register> Slicer(Unmerges);
1452   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1453     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1454     NewMergeRegs.push_back(Merge.getReg(0));
1455   }
1456 
1457   // A truncate may be necessary if the requested type doesn't evenly divide the
1458   // original result type.
1459   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1460     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1461   } else {
1462     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1463     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1464   }
1465 
1466   MI.eraseFromParent();
1467   return Legalized;
1468 }
1469 
1470 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1471   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1472   LLT OrigTy = MRI.getType(OrigReg);
1473   LLT LCMTy = getLCMType(WideTy, OrigTy);
1474 
1475   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1476   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1477 
1478   Register UnmergeSrc = WideReg;
1479 
1480   // Create a merge to the LCM type, padding with undef
1481   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1482   // =>
1483   // %1:_(<4 x s32>) = G_FOO
1484   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1485   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1486   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1487   if (NumMergeParts > 1) {
1488     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1489     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1490     MergeParts[0] = WideReg;
1491     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1492   }
1493 
1494   // Unmerge to the original register and pad with dead defs.
1495   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1496   UnmergeResults[0] = OrigReg;
1497   for (int I = 1; I != NumUnmergeParts; ++I)
1498     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1499 
1500   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1501   return WideReg;
1502 }
1503 
1504 LegalizerHelper::LegalizeResult
1505 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1506                                           LLT WideTy) {
1507   if (TypeIdx != 0)
1508     return UnableToLegalize;
1509 
1510   int NumDst = MI.getNumOperands() - 1;
1511   Register SrcReg = MI.getOperand(NumDst).getReg();
1512   LLT SrcTy = MRI.getType(SrcReg);
1513   if (SrcTy.isVector())
1514     return UnableToLegalize;
1515 
1516   Register Dst0Reg = MI.getOperand(0).getReg();
1517   LLT DstTy = MRI.getType(Dst0Reg);
1518   if (!DstTy.isScalar())
1519     return UnableToLegalize;
1520 
1521   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1522     if (SrcTy.isPointer()) {
1523       const DataLayout &DL = MIRBuilder.getDataLayout();
1524       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1525         LLVM_DEBUG(
1526             dbgs() << "Not casting non-integral address space integer\n");
1527         return UnableToLegalize;
1528       }
1529 
1530       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1531       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1532     }
1533 
1534     // Widen SrcTy to WideTy. This does not affect the result, but since the
1535     // user requested this size, it is probably better handled than SrcTy and
1536     // should reduce the total number of legalization artifacts
1537     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1538       SrcTy = WideTy;
1539       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1540     }
1541 
1542     // Theres no unmerge type to target. Directly extract the bits from the
1543     // source type
1544     unsigned DstSize = DstTy.getSizeInBits();
1545 
1546     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1547     for (int I = 1; I != NumDst; ++I) {
1548       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1549       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1550       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1551     }
1552 
1553     MI.eraseFromParent();
1554     return Legalized;
1555   }
1556 
1557   // Extend the source to a wider type.
1558   LLT LCMTy = getLCMType(SrcTy, WideTy);
1559 
1560   Register WideSrc = SrcReg;
1561   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1562     // TODO: If this is an integral address space, cast to integer and anyext.
1563     if (SrcTy.isPointer()) {
1564       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1565       return UnableToLegalize;
1566     }
1567 
1568     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1569   }
1570 
1571   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1572 
1573   // Create a sequence of unmerges and merges to the original results. Since we
1574   // may have widened the source, we will need to pad the results with dead defs
1575   // to cover the source register.
1576   // e.g. widen s48 to s64:
1577   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1578   //
1579   // =>
1580   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1581   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1582   //  ; unpack to GCD type, with extra dead defs
1583   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1584   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1585   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1586   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1587   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1588   const LLT GCDTy = getGCDType(WideTy, DstTy);
1589   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1590   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1591 
1592   // Directly unmerge to the destination without going through a GCD type
1593   // if possible
1594   if (PartsPerRemerge == 1) {
1595     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1596 
1597     for (int I = 0; I != NumUnmerge; ++I) {
1598       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1599 
1600       for (int J = 0; J != PartsPerUnmerge; ++J) {
1601         int Idx = I * PartsPerUnmerge + J;
1602         if (Idx < NumDst)
1603           MIB.addDef(MI.getOperand(Idx).getReg());
1604         else {
1605           // Create dead def for excess components.
1606           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1607         }
1608       }
1609 
1610       MIB.addUse(Unmerge.getReg(I));
1611     }
1612   } else {
1613     SmallVector<Register, 16> Parts;
1614     for (int J = 0; J != NumUnmerge; ++J)
1615       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1616 
1617     SmallVector<Register, 8> RemergeParts;
1618     for (int I = 0; I != NumDst; ++I) {
1619       for (int J = 0; J < PartsPerRemerge; ++J) {
1620         const int Idx = I * PartsPerRemerge + J;
1621         RemergeParts.emplace_back(Parts[Idx]);
1622       }
1623 
1624       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1625       RemergeParts.clear();
1626     }
1627   }
1628 
1629   MI.eraseFromParent();
1630   return Legalized;
1631 }
1632 
1633 LegalizerHelper::LegalizeResult
1634 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1635                                     LLT WideTy) {
1636   Register DstReg = MI.getOperand(0).getReg();
1637   Register SrcReg = MI.getOperand(1).getReg();
1638   LLT SrcTy = MRI.getType(SrcReg);
1639 
1640   LLT DstTy = MRI.getType(DstReg);
1641   unsigned Offset = MI.getOperand(2).getImm();
1642 
1643   if (TypeIdx == 0) {
1644     if (SrcTy.isVector() || DstTy.isVector())
1645       return UnableToLegalize;
1646 
1647     SrcOp Src(SrcReg);
1648     if (SrcTy.isPointer()) {
1649       // Extracts from pointers can be handled only if they are really just
1650       // simple integers.
1651       const DataLayout &DL = MIRBuilder.getDataLayout();
1652       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1653         return UnableToLegalize;
1654 
1655       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1656       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1657       SrcTy = SrcAsIntTy;
1658     }
1659 
1660     if (DstTy.isPointer())
1661       return UnableToLegalize;
1662 
1663     if (Offset == 0) {
1664       // Avoid a shift in the degenerate case.
1665       MIRBuilder.buildTrunc(DstReg,
1666                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1667       MI.eraseFromParent();
1668       return Legalized;
1669     }
1670 
1671     // Do a shift in the source type.
1672     LLT ShiftTy = SrcTy;
1673     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1674       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1675       ShiftTy = WideTy;
1676     }
1677 
1678     auto LShr = MIRBuilder.buildLShr(
1679       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1680     MIRBuilder.buildTrunc(DstReg, LShr);
1681     MI.eraseFromParent();
1682     return Legalized;
1683   }
1684 
1685   if (SrcTy.isScalar()) {
1686     Observer.changingInstr(MI);
1687     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1688     Observer.changedInstr(MI);
1689     return Legalized;
1690   }
1691 
1692   if (!SrcTy.isVector())
1693     return UnableToLegalize;
1694 
1695   if (DstTy != SrcTy.getElementType())
1696     return UnableToLegalize;
1697 
1698   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1699     return UnableToLegalize;
1700 
1701   Observer.changingInstr(MI);
1702   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1703 
1704   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1705                           Offset);
1706   widenScalarDst(MI, WideTy.getScalarType(), 0);
1707   Observer.changedInstr(MI);
1708   return Legalized;
1709 }
1710 
1711 LegalizerHelper::LegalizeResult
1712 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1713                                    LLT WideTy) {
1714   if (TypeIdx != 0 || WideTy.isVector())
1715     return UnableToLegalize;
1716   Observer.changingInstr(MI);
1717   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1718   widenScalarDst(MI, WideTy);
1719   Observer.changedInstr(MI);
1720   return Legalized;
1721 }
1722 
1723 LegalizerHelper::LegalizeResult
1724 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1725                                            LLT WideTy) {
1726   if (TypeIdx == 1)
1727     return UnableToLegalize; // TODO
1728 
1729   unsigned Opcode;
1730   unsigned ExtOpcode;
1731   Optional<Register> CarryIn = None;
1732   switch (MI.getOpcode()) {
1733   default:
1734     llvm_unreachable("Unexpected opcode!");
1735   case TargetOpcode::G_SADDO:
1736     Opcode = TargetOpcode::G_ADD;
1737     ExtOpcode = TargetOpcode::G_SEXT;
1738     break;
1739   case TargetOpcode::G_SSUBO:
1740     Opcode = TargetOpcode::G_SUB;
1741     ExtOpcode = TargetOpcode::G_SEXT;
1742     break;
1743   case TargetOpcode::G_UADDO:
1744     Opcode = TargetOpcode::G_ADD;
1745     ExtOpcode = TargetOpcode::G_ZEXT;
1746     break;
1747   case TargetOpcode::G_USUBO:
1748     Opcode = TargetOpcode::G_SUB;
1749     ExtOpcode = TargetOpcode::G_ZEXT;
1750     break;
1751   case TargetOpcode::G_SADDE:
1752     Opcode = TargetOpcode::G_UADDE;
1753     ExtOpcode = TargetOpcode::G_SEXT;
1754     CarryIn = MI.getOperand(4).getReg();
1755     break;
1756   case TargetOpcode::G_SSUBE:
1757     Opcode = TargetOpcode::G_USUBE;
1758     ExtOpcode = TargetOpcode::G_SEXT;
1759     CarryIn = MI.getOperand(4).getReg();
1760     break;
1761   case TargetOpcode::G_UADDE:
1762     Opcode = TargetOpcode::G_UADDE;
1763     ExtOpcode = TargetOpcode::G_ZEXT;
1764     CarryIn = MI.getOperand(4).getReg();
1765     break;
1766   case TargetOpcode::G_USUBE:
1767     Opcode = TargetOpcode::G_USUBE;
1768     ExtOpcode = TargetOpcode::G_ZEXT;
1769     CarryIn = MI.getOperand(4).getReg();
1770     break;
1771   }
1772 
1773   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1774   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1775   // Do the arithmetic in the larger type.
1776   Register NewOp;
1777   if (CarryIn) {
1778     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1779     NewOp = MIRBuilder
1780                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1781                             {LHSExt, RHSExt, *CarryIn})
1782                 .getReg(0);
1783   } else {
1784     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1785   }
1786   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1787   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1788   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1789   // There is no overflow if the ExtOp is the same as NewOp.
1790   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1791   // Now trunc the NewOp to the original result.
1792   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1793   MI.eraseFromParent();
1794   return Legalized;
1795 }
1796 
1797 LegalizerHelper::LegalizeResult
1798 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1799                                          LLT WideTy) {
1800   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1801                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1802                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1803   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1804                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1805   // We can convert this to:
1806   //   1. Any extend iN to iM
1807   //   2. SHL by M-N
1808   //   3. [US][ADD|SUB|SHL]SAT
1809   //   4. L/ASHR by M-N
1810   //
1811   // It may be more efficient to lower this to a min and a max operation in
1812   // the higher precision arithmetic if the promoted operation isn't legal,
1813   // but this decision is up to the target's lowering request.
1814   Register DstReg = MI.getOperand(0).getReg();
1815 
1816   unsigned NewBits = WideTy.getScalarSizeInBits();
1817   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1818 
1819   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1820   // must not left shift the RHS to preserve the shift amount.
1821   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1822   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1823                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1824   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1825   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1826   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1827 
1828   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1829                                         {ShiftL, ShiftR}, MI.getFlags());
1830 
1831   // Use a shift that will preserve the number of sign bits when the trunc is
1832   // folded away.
1833   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1834                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1835 
1836   MIRBuilder.buildTrunc(DstReg, Result);
1837   MI.eraseFromParent();
1838   return Legalized;
1839 }
1840 
1841 LegalizerHelper::LegalizeResult
1842 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1843                                  LLT WideTy) {
1844   if (TypeIdx == 1)
1845     return UnableToLegalize;
1846 
1847   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1848   Register Result = MI.getOperand(0).getReg();
1849   Register OriginalOverflow = MI.getOperand(1).getReg();
1850   Register LHS = MI.getOperand(2).getReg();
1851   Register RHS = MI.getOperand(3).getReg();
1852   LLT SrcTy = MRI.getType(LHS);
1853   LLT OverflowTy = MRI.getType(OriginalOverflow);
1854   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1855 
1856   // To determine if the result overflowed in the larger type, we extend the
1857   // input to the larger type, do the multiply (checking if it overflows),
1858   // then also check the high bits of the result to see if overflow happened
1859   // there.
1860   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1861   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1862   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1863 
1864   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1865                                     {LeftOperand, RightOperand});
1866   auto Mul = Mulo->getOperand(0);
1867   MIRBuilder.buildTrunc(Result, Mul);
1868 
1869   MachineInstrBuilder ExtResult;
1870   // Overflow occurred if it occurred in the larger type, or if the high part
1871   // of the result does not zero/sign-extend the low part.  Check this second
1872   // possibility first.
1873   if (IsSigned) {
1874     // For signed, overflow occurred when the high part does not sign-extend
1875     // the low part.
1876     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1877   } else {
1878     // Unsigned overflow occurred when the high part does not zero-extend the
1879     // low part.
1880     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1881   }
1882 
1883   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1884   // so we don't need to check the overflow result of larger type Mulo.
1885   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1886     auto Overflow =
1887         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1888     // Finally check if the multiplication in the larger type itself overflowed.
1889     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1890   } else {
1891     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1892   }
1893   MI.eraseFromParent();
1894   return Legalized;
1895 }
1896 
1897 LegalizerHelper::LegalizeResult
1898 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1899   switch (MI.getOpcode()) {
1900   default:
1901     return UnableToLegalize;
1902   case TargetOpcode::G_EXTRACT:
1903     return widenScalarExtract(MI, TypeIdx, WideTy);
1904   case TargetOpcode::G_INSERT:
1905     return widenScalarInsert(MI, TypeIdx, WideTy);
1906   case TargetOpcode::G_MERGE_VALUES:
1907     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1908   case TargetOpcode::G_UNMERGE_VALUES:
1909     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1910   case TargetOpcode::G_SADDO:
1911   case TargetOpcode::G_SSUBO:
1912   case TargetOpcode::G_UADDO:
1913   case TargetOpcode::G_USUBO:
1914   case TargetOpcode::G_SADDE:
1915   case TargetOpcode::G_SSUBE:
1916   case TargetOpcode::G_UADDE:
1917   case TargetOpcode::G_USUBE:
1918     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1919   case TargetOpcode::G_UMULO:
1920   case TargetOpcode::G_SMULO:
1921     return widenScalarMulo(MI, TypeIdx, WideTy);
1922   case TargetOpcode::G_SADDSAT:
1923   case TargetOpcode::G_SSUBSAT:
1924   case TargetOpcode::G_SSHLSAT:
1925   case TargetOpcode::G_UADDSAT:
1926   case TargetOpcode::G_USUBSAT:
1927   case TargetOpcode::G_USHLSAT:
1928     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1929   case TargetOpcode::G_CTTZ:
1930   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1931   case TargetOpcode::G_CTLZ:
1932   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1933   case TargetOpcode::G_CTPOP: {
1934     if (TypeIdx == 0) {
1935       Observer.changingInstr(MI);
1936       widenScalarDst(MI, WideTy, 0);
1937       Observer.changedInstr(MI);
1938       return Legalized;
1939     }
1940 
1941     Register SrcReg = MI.getOperand(1).getReg();
1942 
1943     // First ZEXT the input.
1944     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1945     LLT CurTy = MRI.getType(SrcReg);
1946     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1947       // The count is the same in the larger type except if the original
1948       // value was zero.  This can be handled by setting the bit just off
1949       // the top of the original type.
1950       auto TopBit =
1951           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1952       MIBSrc = MIRBuilder.buildOr(
1953         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1954     }
1955 
1956     // Perform the operation at the larger size.
1957     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1958     // This is already the correct result for CTPOP and CTTZs
1959     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1960         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1961       // The correct result is NewOp - (Difference in widety and current ty).
1962       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1963       MIBNewOp = MIRBuilder.buildSub(
1964           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1965     }
1966 
1967     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1968     MI.eraseFromParent();
1969     return Legalized;
1970   }
1971   case TargetOpcode::G_BSWAP: {
1972     Observer.changingInstr(MI);
1973     Register DstReg = MI.getOperand(0).getReg();
1974 
1975     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1976     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1977     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1978     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1979 
1980     MI.getOperand(0).setReg(DstExt);
1981 
1982     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1983 
1984     LLT Ty = MRI.getType(DstReg);
1985     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1986     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1987     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1988 
1989     MIRBuilder.buildTrunc(DstReg, ShrReg);
1990     Observer.changedInstr(MI);
1991     return Legalized;
1992   }
1993   case TargetOpcode::G_BITREVERSE: {
1994     Observer.changingInstr(MI);
1995 
1996     Register DstReg = MI.getOperand(0).getReg();
1997     LLT Ty = MRI.getType(DstReg);
1998     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1999 
2000     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2001     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2002     MI.getOperand(0).setReg(DstExt);
2003     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2004 
2005     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2006     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2007     MIRBuilder.buildTrunc(DstReg, Shift);
2008     Observer.changedInstr(MI);
2009     return Legalized;
2010   }
2011   case TargetOpcode::G_FREEZE:
2012     Observer.changingInstr(MI);
2013     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2014     widenScalarDst(MI, WideTy);
2015     Observer.changedInstr(MI);
2016     return Legalized;
2017 
2018   case TargetOpcode::G_ABS:
2019     Observer.changingInstr(MI);
2020     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2021     widenScalarDst(MI, WideTy);
2022     Observer.changedInstr(MI);
2023     return Legalized;
2024 
2025   case TargetOpcode::G_ADD:
2026   case TargetOpcode::G_AND:
2027   case TargetOpcode::G_MUL:
2028   case TargetOpcode::G_OR:
2029   case TargetOpcode::G_XOR:
2030   case TargetOpcode::G_SUB:
2031     // Perform operation at larger width (any extension is fines here, high bits
2032     // don't affect the result) and then truncate the result back to the
2033     // original type.
2034     Observer.changingInstr(MI);
2035     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2036     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2037     widenScalarDst(MI, WideTy);
2038     Observer.changedInstr(MI);
2039     return Legalized;
2040 
2041   case TargetOpcode::G_SHL:
2042     Observer.changingInstr(MI);
2043 
2044     if (TypeIdx == 0) {
2045       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2046       widenScalarDst(MI, WideTy);
2047     } else {
2048       assert(TypeIdx == 1);
2049       // The "number of bits to shift" operand must preserve its value as an
2050       // unsigned integer:
2051       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2052     }
2053 
2054     Observer.changedInstr(MI);
2055     return Legalized;
2056 
2057   case TargetOpcode::G_SDIV:
2058   case TargetOpcode::G_SREM:
2059   case TargetOpcode::G_SMIN:
2060   case TargetOpcode::G_SMAX:
2061     Observer.changingInstr(MI);
2062     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2063     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2064     widenScalarDst(MI, WideTy);
2065     Observer.changedInstr(MI);
2066     return Legalized;
2067 
2068   case TargetOpcode::G_SDIVREM:
2069     Observer.changingInstr(MI);
2070     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2071     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2072     widenScalarDst(MI, WideTy);
2073     widenScalarDst(MI, WideTy, 1);
2074     Observer.changedInstr(MI);
2075     return Legalized;
2076 
2077   case TargetOpcode::G_ASHR:
2078   case TargetOpcode::G_LSHR:
2079     Observer.changingInstr(MI);
2080 
2081     if (TypeIdx == 0) {
2082       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2083         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2084 
2085       widenScalarSrc(MI, WideTy, 1, CvtOp);
2086       widenScalarDst(MI, WideTy);
2087     } else {
2088       assert(TypeIdx == 1);
2089       // The "number of bits to shift" operand must preserve its value as an
2090       // unsigned integer:
2091       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2092     }
2093 
2094     Observer.changedInstr(MI);
2095     return Legalized;
2096   case TargetOpcode::G_UDIV:
2097   case TargetOpcode::G_UREM:
2098   case TargetOpcode::G_UMIN:
2099   case TargetOpcode::G_UMAX:
2100     Observer.changingInstr(MI);
2101     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2102     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2103     widenScalarDst(MI, WideTy);
2104     Observer.changedInstr(MI);
2105     return Legalized;
2106 
2107   case TargetOpcode::G_UDIVREM:
2108     Observer.changingInstr(MI);
2109     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2110     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2111     widenScalarDst(MI, WideTy);
2112     widenScalarDst(MI, WideTy, 1);
2113     Observer.changedInstr(MI);
2114     return Legalized;
2115 
2116   case TargetOpcode::G_SELECT:
2117     Observer.changingInstr(MI);
2118     if (TypeIdx == 0) {
2119       // Perform operation at larger width (any extension is fine here, high
2120       // bits don't affect the result) and then truncate the result back to the
2121       // original type.
2122       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2123       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2124       widenScalarDst(MI, WideTy);
2125     } else {
2126       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2127       // Explicit extension is required here since high bits affect the result.
2128       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2129     }
2130     Observer.changedInstr(MI);
2131     return Legalized;
2132 
2133   case TargetOpcode::G_FPTOSI:
2134   case TargetOpcode::G_FPTOUI:
2135     Observer.changingInstr(MI);
2136 
2137     if (TypeIdx == 0)
2138       widenScalarDst(MI, WideTy);
2139     else
2140       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2141 
2142     Observer.changedInstr(MI);
2143     return Legalized;
2144   case TargetOpcode::G_SITOFP:
2145     Observer.changingInstr(MI);
2146 
2147     if (TypeIdx == 0)
2148       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2149     else
2150       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2151 
2152     Observer.changedInstr(MI);
2153     return Legalized;
2154   case TargetOpcode::G_UITOFP:
2155     Observer.changingInstr(MI);
2156 
2157     if (TypeIdx == 0)
2158       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2159     else
2160       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2161 
2162     Observer.changedInstr(MI);
2163     return Legalized;
2164   case TargetOpcode::G_LOAD:
2165   case TargetOpcode::G_SEXTLOAD:
2166   case TargetOpcode::G_ZEXTLOAD:
2167     Observer.changingInstr(MI);
2168     widenScalarDst(MI, WideTy);
2169     Observer.changedInstr(MI);
2170     return Legalized;
2171 
2172   case TargetOpcode::G_STORE: {
2173     if (TypeIdx != 0)
2174       return UnableToLegalize;
2175 
2176     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2177     if (!Ty.isScalar())
2178       return UnableToLegalize;
2179 
2180     Observer.changingInstr(MI);
2181 
2182     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2183       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2184     widenScalarSrc(MI, WideTy, 0, ExtType);
2185 
2186     Observer.changedInstr(MI);
2187     return Legalized;
2188   }
2189   case TargetOpcode::G_CONSTANT: {
2190     MachineOperand &SrcMO = MI.getOperand(1);
2191     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2192     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2193         MRI.getType(MI.getOperand(0).getReg()));
2194     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2195             ExtOpc == TargetOpcode::G_ANYEXT) &&
2196            "Illegal Extend");
2197     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2198     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2199                            ? SrcVal.sext(WideTy.getSizeInBits())
2200                            : SrcVal.zext(WideTy.getSizeInBits());
2201     Observer.changingInstr(MI);
2202     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2203 
2204     widenScalarDst(MI, WideTy);
2205     Observer.changedInstr(MI);
2206     return Legalized;
2207   }
2208   case TargetOpcode::G_FCONSTANT: {
2209     MachineOperand &SrcMO = MI.getOperand(1);
2210     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2211     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2212     bool LosesInfo;
2213     switch (WideTy.getSizeInBits()) {
2214     case 32:
2215       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2216                   &LosesInfo);
2217       break;
2218     case 64:
2219       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2220                   &LosesInfo);
2221       break;
2222     default:
2223       return UnableToLegalize;
2224     }
2225 
2226     assert(!LosesInfo && "extend should always be lossless");
2227 
2228     Observer.changingInstr(MI);
2229     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2230 
2231     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2232     Observer.changedInstr(MI);
2233     return Legalized;
2234   }
2235   case TargetOpcode::G_IMPLICIT_DEF: {
2236     Observer.changingInstr(MI);
2237     widenScalarDst(MI, WideTy);
2238     Observer.changedInstr(MI);
2239     return Legalized;
2240   }
2241   case TargetOpcode::G_BRCOND:
2242     Observer.changingInstr(MI);
2243     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2244     Observer.changedInstr(MI);
2245     return Legalized;
2246 
2247   case TargetOpcode::G_FCMP:
2248     Observer.changingInstr(MI);
2249     if (TypeIdx == 0)
2250       widenScalarDst(MI, WideTy);
2251     else {
2252       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2253       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2254     }
2255     Observer.changedInstr(MI);
2256     return Legalized;
2257 
2258   case TargetOpcode::G_ICMP:
2259     Observer.changingInstr(MI);
2260     if (TypeIdx == 0)
2261       widenScalarDst(MI, WideTy);
2262     else {
2263       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2264                                MI.getOperand(1).getPredicate()))
2265                                ? TargetOpcode::G_SEXT
2266                                : TargetOpcode::G_ZEXT;
2267       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2268       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2269     }
2270     Observer.changedInstr(MI);
2271     return Legalized;
2272 
2273   case TargetOpcode::G_PTR_ADD:
2274     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2275     Observer.changingInstr(MI);
2276     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2277     Observer.changedInstr(MI);
2278     return Legalized;
2279 
2280   case TargetOpcode::G_PHI: {
2281     assert(TypeIdx == 0 && "Expecting only Idx 0");
2282 
2283     Observer.changingInstr(MI);
2284     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2285       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2286       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2287       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2288     }
2289 
2290     MachineBasicBlock &MBB = *MI.getParent();
2291     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2292     widenScalarDst(MI, WideTy);
2293     Observer.changedInstr(MI);
2294     return Legalized;
2295   }
2296   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2297     if (TypeIdx == 0) {
2298       Register VecReg = MI.getOperand(1).getReg();
2299       LLT VecTy = MRI.getType(VecReg);
2300       Observer.changingInstr(MI);
2301 
2302       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2303                                      WideTy.getSizeInBits()),
2304                      1, TargetOpcode::G_SEXT);
2305 
2306       widenScalarDst(MI, WideTy, 0);
2307       Observer.changedInstr(MI);
2308       return Legalized;
2309     }
2310 
2311     if (TypeIdx != 2)
2312       return UnableToLegalize;
2313     Observer.changingInstr(MI);
2314     // TODO: Probably should be zext
2315     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2316     Observer.changedInstr(MI);
2317     return Legalized;
2318   }
2319   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2320     if (TypeIdx == 1) {
2321       Observer.changingInstr(MI);
2322 
2323       Register VecReg = MI.getOperand(1).getReg();
2324       LLT VecTy = MRI.getType(VecReg);
2325       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2326 
2327       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2328       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2329       widenScalarDst(MI, WideVecTy, 0);
2330       Observer.changedInstr(MI);
2331       return Legalized;
2332     }
2333 
2334     if (TypeIdx == 2) {
2335       Observer.changingInstr(MI);
2336       // TODO: Probably should be zext
2337       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2338       Observer.changedInstr(MI);
2339       return Legalized;
2340     }
2341 
2342     return UnableToLegalize;
2343   }
2344   case TargetOpcode::G_FADD:
2345   case TargetOpcode::G_FMUL:
2346   case TargetOpcode::G_FSUB:
2347   case TargetOpcode::G_FMA:
2348   case TargetOpcode::G_FMAD:
2349   case TargetOpcode::G_FNEG:
2350   case TargetOpcode::G_FABS:
2351   case TargetOpcode::G_FCANONICALIZE:
2352   case TargetOpcode::G_FMINNUM:
2353   case TargetOpcode::G_FMAXNUM:
2354   case TargetOpcode::G_FMINNUM_IEEE:
2355   case TargetOpcode::G_FMAXNUM_IEEE:
2356   case TargetOpcode::G_FMINIMUM:
2357   case TargetOpcode::G_FMAXIMUM:
2358   case TargetOpcode::G_FDIV:
2359   case TargetOpcode::G_FREM:
2360   case TargetOpcode::G_FCEIL:
2361   case TargetOpcode::G_FFLOOR:
2362   case TargetOpcode::G_FCOS:
2363   case TargetOpcode::G_FSIN:
2364   case TargetOpcode::G_FLOG10:
2365   case TargetOpcode::G_FLOG:
2366   case TargetOpcode::G_FLOG2:
2367   case TargetOpcode::G_FRINT:
2368   case TargetOpcode::G_FNEARBYINT:
2369   case TargetOpcode::G_FSQRT:
2370   case TargetOpcode::G_FEXP:
2371   case TargetOpcode::G_FEXP2:
2372   case TargetOpcode::G_FPOW:
2373   case TargetOpcode::G_INTRINSIC_TRUNC:
2374   case TargetOpcode::G_INTRINSIC_ROUND:
2375   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2376     assert(TypeIdx == 0);
2377     Observer.changingInstr(MI);
2378 
2379     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2380       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2381 
2382     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2383     Observer.changedInstr(MI);
2384     return Legalized;
2385   case TargetOpcode::G_FPOWI: {
2386     if (TypeIdx != 0)
2387       return UnableToLegalize;
2388     Observer.changingInstr(MI);
2389     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2390     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2391     Observer.changedInstr(MI);
2392     return Legalized;
2393   }
2394   case TargetOpcode::G_INTTOPTR:
2395     if (TypeIdx != 1)
2396       return UnableToLegalize;
2397 
2398     Observer.changingInstr(MI);
2399     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2400     Observer.changedInstr(MI);
2401     return Legalized;
2402   case TargetOpcode::G_PTRTOINT:
2403     if (TypeIdx != 0)
2404       return UnableToLegalize;
2405 
2406     Observer.changingInstr(MI);
2407     widenScalarDst(MI, WideTy, 0);
2408     Observer.changedInstr(MI);
2409     return Legalized;
2410   case TargetOpcode::G_BUILD_VECTOR: {
2411     Observer.changingInstr(MI);
2412 
2413     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2414     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2415       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2416 
2417     // Avoid changing the result vector type if the source element type was
2418     // requested.
2419     if (TypeIdx == 1) {
2420       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2421     } else {
2422       widenScalarDst(MI, WideTy, 0);
2423     }
2424 
2425     Observer.changedInstr(MI);
2426     return Legalized;
2427   }
2428   case TargetOpcode::G_SEXT_INREG:
2429     if (TypeIdx != 0)
2430       return UnableToLegalize;
2431 
2432     Observer.changingInstr(MI);
2433     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2434     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2435     Observer.changedInstr(MI);
2436     return Legalized;
2437   case TargetOpcode::G_PTRMASK: {
2438     if (TypeIdx != 1)
2439       return UnableToLegalize;
2440     Observer.changingInstr(MI);
2441     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2442     Observer.changedInstr(MI);
2443     return Legalized;
2444   }
2445   }
2446 }
2447 
2448 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2449                              MachineIRBuilder &B, Register Src, LLT Ty) {
2450   auto Unmerge = B.buildUnmerge(Ty, Src);
2451   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2452     Pieces.push_back(Unmerge.getReg(I));
2453 }
2454 
2455 LegalizerHelper::LegalizeResult
2456 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2457   Register Dst = MI.getOperand(0).getReg();
2458   Register Src = MI.getOperand(1).getReg();
2459   LLT DstTy = MRI.getType(Dst);
2460   LLT SrcTy = MRI.getType(Src);
2461 
2462   if (SrcTy.isVector()) {
2463     LLT SrcEltTy = SrcTy.getElementType();
2464     SmallVector<Register, 8> SrcRegs;
2465 
2466     if (DstTy.isVector()) {
2467       int NumDstElt = DstTy.getNumElements();
2468       int NumSrcElt = SrcTy.getNumElements();
2469 
2470       LLT DstEltTy = DstTy.getElementType();
2471       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2472       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2473 
2474       // If there's an element size mismatch, insert intermediate casts to match
2475       // the result element type.
2476       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2477         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2478         //
2479         // =>
2480         //
2481         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2482         // %3:_(<2 x s8>) = G_BITCAST %2
2483         // %4:_(<2 x s8>) = G_BITCAST %3
2484         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2485         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2486         SrcPartTy = SrcEltTy;
2487       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2488         //
2489         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2490         //
2491         // =>
2492         //
2493         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2494         // %3:_(s16) = G_BITCAST %2
2495         // %4:_(s16) = G_BITCAST %3
2496         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2497         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2498         DstCastTy = DstEltTy;
2499       }
2500 
2501       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2502       for (Register &SrcReg : SrcRegs)
2503         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2504     } else
2505       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2506 
2507     MIRBuilder.buildMerge(Dst, SrcRegs);
2508     MI.eraseFromParent();
2509     return Legalized;
2510   }
2511 
2512   if (DstTy.isVector()) {
2513     SmallVector<Register, 8> SrcRegs;
2514     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2515     MIRBuilder.buildMerge(Dst, SrcRegs);
2516     MI.eraseFromParent();
2517     return Legalized;
2518   }
2519 
2520   return UnableToLegalize;
2521 }
2522 
2523 /// Figure out the bit offset into a register when coercing a vector index for
2524 /// the wide element type. This is only for the case when promoting vector to
2525 /// one with larger elements.
2526 //
2527 ///
2528 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2529 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2530 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2531                                                    Register Idx,
2532                                                    unsigned NewEltSize,
2533                                                    unsigned OldEltSize) {
2534   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2535   LLT IdxTy = B.getMRI()->getType(Idx);
2536 
2537   // Now figure out the amount we need to shift to get the target bits.
2538   auto OffsetMask = B.buildConstant(
2539     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2540   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2541   return B.buildShl(IdxTy, OffsetIdx,
2542                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2543 }
2544 
2545 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2546 /// is casting to a vector with a smaller element size, perform multiple element
2547 /// extracts and merge the results. If this is coercing to a vector with larger
2548 /// elements, index the bitcasted vector and extract the target element with bit
2549 /// operations. This is intended to force the indexing in the native register
2550 /// size for architectures that can dynamically index the register file.
2551 LegalizerHelper::LegalizeResult
2552 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2553                                          LLT CastTy) {
2554   if (TypeIdx != 1)
2555     return UnableToLegalize;
2556 
2557   Register Dst = MI.getOperand(0).getReg();
2558   Register SrcVec = MI.getOperand(1).getReg();
2559   Register Idx = MI.getOperand(2).getReg();
2560   LLT SrcVecTy = MRI.getType(SrcVec);
2561   LLT IdxTy = MRI.getType(Idx);
2562 
2563   LLT SrcEltTy = SrcVecTy.getElementType();
2564   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2565   unsigned OldNumElts = SrcVecTy.getNumElements();
2566 
2567   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2568   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2569 
2570   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2571   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2572   if (NewNumElts > OldNumElts) {
2573     // Decreasing the vector element size
2574     //
2575     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2576     //  =>
2577     //  v4i32:castx = bitcast x:v2i64
2578     //
2579     // i64 = bitcast
2580     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2581     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2582     //
2583     if (NewNumElts % OldNumElts != 0)
2584       return UnableToLegalize;
2585 
2586     // Type of the intermediate result vector.
2587     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2588     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2589 
2590     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2591 
2592     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2593     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2594 
2595     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2596       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2597       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2598       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2599       NewOps[I] = Elt.getReg(0);
2600     }
2601 
2602     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2603     MIRBuilder.buildBitcast(Dst, NewVec);
2604     MI.eraseFromParent();
2605     return Legalized;
2606   }
2607 
2608   if (NewNumElts < OldNumElts) {
2609     if (NewEltSize % OldEltSize != 0)
2610       return UnableToLegalize;
2611 
2612     // This only depends on powers of 2 because we use bit tricks to figure out
2613     // the bit offset we need to shift to get the target element. A general
2614     // expansion could emit division/multiply.
2615     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2616       return UnableToLegalize;
2617 
2618     // Increasing the vector element size.
2619     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2620     //
2621     //   =>
2622     //
2623     // %cast = G_BITCAST %vec
2624     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2625     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2626     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2627     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2628     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2629     // %elt = G_TRUNC %elt_bits
2630 
2631     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2632     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2633 
2634     // Divide to get the index in the wider element type.
2635     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2636 
2637     Register WideElt = CastVec;
2638     if (CastTy.isVector()) {
2639       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2640                                                      ScaledIdx).getReg(0);
2641     }
2642 
2643     // Compute the bit offset into the register of the target element.
2644     Register OffsetBits = getBitcastWiderVectorElementOffset(
2645       MIRBuilder, Idx, NewEltSize, OldEltSize);
2646 
2647     // Shift the wide element to get the target element.
2648     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2649     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2650     MI.eraseFromParent();
2651     return Legalized;
2652   }
2653 
2654   return UnableToLegalize;
2655 }
2656 
2657 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2658 /// TargetReg, while preserving other bits in \p TargetReg.
2659 ///
2660 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2661 static Register buildBitFieldInsert(MachineIRBuilder &B,
2662                                     Register TargetReg, Register InsertReg,
2663                                     Register OffsetBits) {
2664   LLT TargetTy = B.getMRI()->getType(TargetReg);
2665   LLT InsertTy = B.getMRI()->getType(InsertReg);
2666   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2667   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2668 
2669   // Produce a bitmask of the value to insert
2670   auto EltMask = B.buildConstant(
2671     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2672                                    InsertTy.getSizeInBits()));
2673   // Shift it into position
2674   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2675   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2676 
2677   // Clear out the bits in the wide element
2678   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2679 
2680   // The value to insert has all zeros already, so stick it into the masked
2681   // wide element.
2682   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2683 }
2684 
2685 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2686 /// is increasing the element size, perform the indexing in the target element
2687 /// type, and use bit operations to insert at the element position. This is
2688 /// intended for architectures that can dynamically index the register file and
2689 /// want to force indexing in the native register size.
2690 LegalizerHelper::LegalizeResult
2691 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2692                                         LLT CastTy) {
2693   if (TypeIdx != 0)
2694     return UnableToLegalize;
2695 
2696   Register Dst = MI.getOperand(0).getReg();
2697   Register SrcVec = MI.getOperand(1).getReg();
2698   Register Val = MI.getOperand(2).getReg();
2699   Register Idx = MI.getOperand(3).getReg();
2700 
2701   LLT VecTy = MRI.getType(Dst);
2702   LLT IdxTy = MRI.getType(Idx);
2703 
2704   LLT VecEltTy = VecTy.getElementType();
2705   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2706   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2707   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2708 
2709   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2710   unsigned OldNumElts = VecTy.getNumElements();
2711 
2712   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2713   if (NewNumElts < OldNumElts) {
2714     if (NewEltSize % OldEltSize != 0)
2715       return UnableToLegalize;
2716 
2717     // This only depends on powers of 2 because we use bit tricks to figure out
2718     // the bit offset we need to shift to get the target element. A general
2719     // expansion could emit division/multiply.
2720     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2721       return UnableToLegalize;
2722 
2723     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2724     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2725 
2726     // Divide to get the index in the wider element type.
2727     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2728 
2729     Register ExtractedElt = CastVec;
2730     if (CastTy.isVector()) {
2731       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2732                                                           ScaledIdx).getReg(0);
2733     }
2734 
2735     // Compute the bit offset into the register of the target element.
2736     Register OffsetBits = getBitcastWiderVectorElementOffset(
2737       MIRBuilder, Idx, NewEltSize, OldEltSize);
2738 
2739     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2740                                                Val, OffsetBits);
2741     if (CastTy.isVector()) {
2742       InsertedElt = MIRBuilder.buildInsertVectorElement(
2743         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2744     }
2745 
2746     MIRBuilder.buildBitcast(Dst, InsertedElt);
2747     MI.eraseFromParent();
2748     return Legalized;
2749   }
2750 
2751   return UnableToLegalize;
2752 }
2753 
2754 LegalizerHelper::LegalizeResult
2755 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2756   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2757   Register DstReg = MI.getOperand(0).getReg();
2758   Register PtrReg = MI.getOperand(1).getReg();
2759   LLT DstTy = MRI.getType(DstReg);
2760   auto &MMO = **MI.memoperands_begin();
2761 
2762   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2763     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2764       // This load needs splitting into power of 2 sized loads.
2765       if (DstTy.isVector())
2766         return UnableToLegalize;
2767       if (isPowerOf2_32(DstTy.getSizeInBits()))
2768         return UnableToLegalize; // Don't know what we're being asked to do.
2769 
2770       // Our strategy here is to generate anyextending loads for the smaller
2771       // types up to next power-2 result type, and then combine the two larger
2772       // result values together, before truncating back down to the non-pow-2
2773       // type.
2774       // E.g. v1 = i24 load =>
2775       // v2 = i32 zextload (2 byte)
2776       // v3 = i32 load (1 byte)
2777       // v4 = i32 shl v3, 16
2778       // v5 = i32 or v4, v2
2779       // v1 = i24 trunc v5
2780       // By doing this we generate the correct truncate which should get
2781       // combined away as an artifact with a matching extend.
2782       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2783       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2784 
2785       MachineFunction &MF = MIRBuilder.getMF();
2786       MachineMemOperand *LargeMMO =
2787         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2788       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2789         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2790 
2791       LLT PtrTy = MRI.getType(PtrReg);
2792       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2793       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2794       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2795       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2796       auto LargeLoad = MIRBuilder.buildLoadInstr(
2797         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2798 
2799       auto OffsetCst = MIRBuilder.buildConstant(
2800         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2801       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2802       auto SmallPtr =
2803         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2804       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr,
2805                                             *SmallMMO);
2806 
2807       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2808       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2809       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2810       MIRBuilder.buildTrunc(DstReg, {Or});
2811       MI.eraseFromParent();
2812       return Legalized;
2813     }
2814 
2815     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2816     MI.eraseFromParent();
2817     return Legalized;
2818   }
2819 
2820   return UnableToLegalize;
2821 }
2822 
2823 LegalizerHelper::LegalizeResult
2824 LegalizerHelper::lowerStore(MachineInstr &MI) {
2825   // Lower a non-power of 2 store into multiple pow-2 stores.
2826   // E.g. split an i24 store into an i16 store + i8 store.
2827   // We do this by first extending the stored value to the next largest power
2828   // of 2 type, and then using truncating stores to store the components.
2829   // By doing this, likewise with G_LOAD, generate an extend that can be
2830   // artifact-combined away instead of leaving behind extracts.
2831   Register SrcReg = MI.getOperand(0).getReg();
2832   Register PtrReg = MI.getOperand(1).getReg();
2833   LLT SrcTy = MRI.getType(SrcReg);
2834   MachineMemOperand &MMO = **MI.memoperands_begin();
2835   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2836     return UnableToLegalize;
2837   if (SrcTy.isVector())
2838     return UnableToLegalize;
2839   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2840     return UnableToLegalize; // Don't know what we're being asked to do.
2841 
2842   // Extend to the next pow-2.
2843   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2844   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2845 
2846   // Obtain the smaller value by shifting away the larger value.
2847   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2848   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2849   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2850   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2851 
2852   // Generate the PtrAdd and truncating stores.
2853   LLT PtrTy = MRI.getType(PtrReg);
2854   auto OffsetCst = MIRBuilder.buildConstant(
2855     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2856   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2857   auto SmallPtr =
2858     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2859 
2860   MachineFunction &MF = MIRBuilder.getMF();
2861   MachineMemOperand *LargeMMO =
2862     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2863   MachineMemOperand *SmallMMO =
2864     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2865   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
2866   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
2867   MI.eraseFromParent();
2868   return Legalized;
2869 }
2870 
2871 LegalizerHelper::LegalizeResult
2872 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2873   switch (MI.getOpcode()) {
2874   case TargetOpcode::G_LOAD: {
2875     if (TypeIdx != 0)
2876       return UnableToLegalize;
2877 
2878     Observer.changingInstr(MI);
2879     bitcastDst(MI, CastTy, 0);
2880     Observer.changedInstr(MI);
2881     return Legalized;
2882   }
2883   case TargetOpcode::G_STORE: {
2884     if (TypeIdx != 0)
2885       return UnableToLegalize;
2886 
2887     Observer.changingInstr(MI);
2888     bitcastSrc(MI, CastTy, 0);
2889     Observer.changedInstr(MI);
2890     return Legalized;
2891   }
2892   case TargetOpcode::G_SELECT: {
2893     if (TypeIdx != 0)
2894       return UnableToLegalize;
2895 
2896     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2897       LLVM_DEBUG(
2898           dbgs() << "bitcast action not implemented for vector select\n");
2899       return UnableToLegalize;
2900     }
2901 
2902     Observer.changingInstr(MI);
2903     bitcastSrc(MI, CastTy, 2);
2904     bitcastSrc(MI, CastTy, 3);
2905     bitcastDst(MI, CastTy, 0);
2906     Observer.changedInstr(MI);
2907     return Legalized;
2908   }
2909   case TargetOpcode::G_AND:
2910   case TargetOpcode::G_OR:
2911   case TargetOpcode::G_XOR: {
2912     Observer.changingInstr(MI);
2913     bitcastSrc(MI, CastTy, 1);
2914     bitcastSrc(MI, CastTy, 2);
2915     bitcastDst(MI, CastTy, 0);
2916     Observer.changedInstr(MI);
2917     return Legalized;
2918   }
2919   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2920     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2921   case TargetOpcode::G_INSERT_VECTOR_ELT:
2922     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2923   default:
2924     return UnableToLegalize;
2925   }
2926 }
2927 
2928 // Legalize an instruction by changing the opcode in place.
2929 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2930     Observer.changingInstr(MI);
2931     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2932     Observer.changedInstr(MI);
2933 }
2934 
2935 LegalizerHelper::LegalizeResult
2936 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2937   using namespace TargetOpcode;
2938 
2939   switch(MI.getOpcode()) {
2940   default:
2941     return UnableToLegalize;
2942   case TargetOpcode::G_BITCAST:
2943     return lowerBitcast(MI);
2944   case TargetOpcode::G_SREM:
2945   case TargetOpcode::G_UREM: {
2946     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2947     auto Quot =
2948         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2949                               {MI.getOperand(1), MI.getOperand(2)});
2950 
2951     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2952     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2953     MI.eraseFromParent();
2954     return Legalized;
2955   }
2956   case TargetOpcode::G_SADDO:
2957   case TargetOpcode::G_SSUBO:
2958     return lowerSADDO_SSUBO(MI);
2959   case TargetOpcode::G_UMULH:
2960   case TargetOpcode::G_SMULH:
2961     return lowerSMULH_UMULH(MI);
2962   case TargetOpcode::G_SMULO:
2963   case TargetOpcode::G_UMULO: {
2964     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2965     // result.
2966     Register Res = MI.getOperand(0).getReg();
2967     Register Overflow = MI.getOperand(1).getReg();
2968     Register LHS = MI.getOperand(2).getReg();
2969     Register RHS = MI.getOperand(3).getReg();
2970     LLT Ty = MRI.getType(Res);
2971 
2972     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2973                           ? TargetOpcode::G_SMULH
2974                           : TargetOpcode::G_UMULH;
2975 
2976     Observer.changingInstr(MI);
2977     const auto &TII = MIRBuilder.getTII();
2978     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2979     MI.RemoveOperand(1);
2980     Observer.changedInstr(MI);
2981 
2982     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2983     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2984 
2985     // Move insert point forward so we can use the Res register if needed.
2986     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2987 
2988     // For *signed* multiply, overflow is detected by checking:
2989     // (hi != (lo >> bitwidth-1))
2990     if (Opcode == TargetOpcode::G_SMULH) {
2991       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2992       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2993       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2994     } else {
2995       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2996     }
2997     return Legalized;
2998   }
2999   case TargetOpcode::G_FNEG: {
3000     Register Res = MI.getOperand(0).getReg();
3001     LLT Ty = MRI.getType(Res);
3002 
3003     // TODO: Handle vector types once we are able to
3004     // represent them.
3005     if (Ty.isVector())
3006       return UnableToLegalize;
3007     auto SignMask =
3008         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3009     Register SubByReg = MI.getOperand(1).getReg();
3010     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3011     MI.eraseFromParent();
3012     return Legalized;
3013   }
3014   case TargetOpcode::G_FSUB: {
3015     Register Res = MI.getOperand(0).getReg();
3016     LLT Ty = MRI.getType(Res);
3017 
3018     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3019     // First, check if G_FNEG is marked as Lower. If so, we may
3020     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3021     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3022       return UnableToLegalize;
3023     Register LHS = MI.getOperand(1).getReg();
3024     Register RHS = MI.getOperand(2).getReg();
3025     Register Neg = MRI.createGenericVirtualRegister(Ty);
3026     MIRBuilder.buildFNeg(Neg, RHS);
3027     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3028     MI.eraseFromParent();
3029     return Legalized;
3030   }
3031   case TargetOpcode::G_FMAD:
3032     return lowerFMad(MI);
3033   case TargetOpcode::G_FFLOOR:
3034     return lowerFFloor(MI);
3035   case TargetOpcode::G_INTRINSIC_ROUND:
3036     return lowerIntrinsicRound(MI);
3037   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3038     // Since round even is the assumed rounding mode for unconstrained FP
3039     // operations, rint and roundeven are the same operation.
3040     changeOpcode(MI, TargetOpcode::G_FRINT);
3041     return Legalized;
3042   }
3043   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3044     Register OldValRes = MI.getOperand(0).getReg();
3045     Register SuccessRes = MI.getOperand(1).getReg();
3046     Register Addr = MI.getOperand(2).getReg();
3047     Register CmpVal = MI.getOperand(3).getReg();
3048     Register NewVal = MI.getOperand(4).getReg();
3049     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3050                                   **MI.memoperands_begin());
3051     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3052     MI.eraseFromParent();
3053     return Legalized;
3054   }
3055   case TargetOpcode::G_LOAD:
3056   case TargetOpcode::G_SEXTLOAD:
3057   case TargetOpcode::G_ZEXTLOAD:
3058     return lowerLoad(MI);
3059   case TargetOpcode::G_STORE:
3060     return lowerStore(MI);
3061   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3062   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3063   case TargetOpcode::G_CTLZ:
3064   case TargetOpcode::G_CTTZ:
3065   case TargetOpcode::G_CTPOP:
3066     return lowerBitCount(MI);
3067   case G_UADDO: {
3068     Register Res = MI.getOperand(0).getReg();
3069     Register CarryOut = MI.getOperand(1).getReg();
3070     Register LHS = MI.getOperand(2).getReg();
3071     Register RHS = MI.getOperand(3).getReg();
3072 
3073     MIRBuilder.buildAdd(Res, LHS, RHS);
3074     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3075 
3076     MI.eraseFromParent();
3077     return Legalized;
3078   }
3079   case G_UADDE: {
3080     Register Res = MI.getOperand(0).getReg();
3081     Register CarryOut = MI.getOperand(1).getReg();
3082     Register LHS = MI.getOperand(2).getReg();
3083     Register RHS = MI.getOperand(3).getReg();
3084     Register CarryIn = MI.getOperand(4).getReg();
3085     LLT Ty = MRI.getType(Res);
3086 
3087     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3088     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3089     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3090     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3091 
3092     MI.eraseFromParent();
3093     return Legalized;
3094   }
3095   case G_USUBO: {
3096     Register Res = MI.getOperand(0).getReg();
3097     Register BorrowOut = MI.getOperand(1).getReg();
3098     Register LHS = MI.getOperand(2).getReg();
3099     Register RHS = MI.getOperand(3).getReg();
3100 
3101     MIRBuilder.buildSub(Res, LHS, RHS);
3102     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3103 
3104     MI.eraseFromParent();
3105     return Legalized;
3106   }
3107   case G_USUBE: {
3108     Register Res = MI.getOperand(0).getReg();
3109     Register BorrowOut = MI.getOperand(1).getReg();
3110     Register LHS = MI.getOperand(2).getReg();
3111     Register RHS = MI.getOperand(3).getReg();
3112     Register BorrowIn = MI.getOperand(4).getReg();
3113     const LLT CondTy = MRI.getType(BorrowOut);
3114     const LLT Ty = MRI.getType(Res);
3115 
3116     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3117     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3118     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3119 
3120     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3121     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3122     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3123 
3124     MI.eraseFromParent();
3125     return Legalized;
3126   }
3127   case G_UITOFP:
3128     return lowerUITOFP(MI);
3129   case G_SITOFP:
3130     return lowerSITOFP(MI);
3131   case G_FPTOUI:
3132     return lowerFPTOUI(MI);
3133   case G_FPTOSI:
3134     return lowerFPTOSI(MI);
3135   case G_FPTRUNC:
3136     return lowerFPTRUNC(MI);
3137   case G_FPOWI:
3138     return lowerFPOWI(MI);
3139   case G_SMIN:
3140   case G_SMAX:
3141   case G_UMIN:
3142   case G_UMAX:
3143     return lowerMinMax(MI);
3144   case G_FCOPYSIGN:
3145     return lowerFCopySign(MI);
3146   case G_FMINNUM:
3147   case G_FMAXNUM:
3148     return lowerFMinNumMaxNum(MI);
3149   case G_MERGE_VALUES:
3150     return lowerMergeValues(MI);
3151   case G_UNMERGE_VALUES:
3152     return lowerUnmergeValues(MI);
3153   case TargetOpcode::G_SEXT_INREG: {
3154     assert(MI.getOperand(2).isImm() && "Expected immediate");
3155     int64_t SizeInBits = MI.getOperand(2).getImm();
3156 
3157     Register DstReg = MI.getOperand(0).getReg();
3158     Register SrcReg = MI.getOperand(1).getReg();
3159     LLT DstTy = MRI.getType(DstReg);
3160     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3161 
3162     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3163     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3164     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3165     MI.eraseFromParent();
3166     return Legalized;
3167   }
3168   case G_EXTRACT_VECTOR_ELT:
3169   case G_INSERT_VECTOR_ELT:
3170     return lowerExtractInsertVectorElt(MI);
3171   case G_SHUFFLE_VECTOR:
3172     return lowerShuffleVector(MI);
3173   case G_DYN_STACKALLOC:
3174     return lowerDynStackAlloc(MI);
3175   case G_EXTRACT:
3176     return lowerExtract(MI);
3177   case G_INSERT:
3178     return lowerInsert(MI);
3179   case G_BSWAP:
3180     return lowerBswap(MI);
3181   case G_BITREVERSE:
3182     return lowerBitreverse(MI);
3183   case G_READ_REGISTER:
3184   case G_WRITE_REGISTER:
3185     return lowerReadWriteRegister(MI);
3186   case G_UADDSAT:
3187   case G_USUBSAT: {
3188     // Try to make a reasonable guess about which lowering strategy to use. The
3189     // target can override this with custom lowering and calling the
3190     // implementation functions.
3191     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3192     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3193       return lowerAddSubSatToMinMax(MI);
3194     return lowerAddSubSatToAddoSubo(MI);
3195   }
3196   case G_SADDSAT:
3197   case G_SSUBSAT: {
3198     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3199 
3200     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3201     // since it's a shorter expansion. However, we would need to figure out the
3202     // preferred boolean type for the carry out for the query.
3203     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3204       return lowerAddSubSatToMinMax(MI);
3205     return lowerAddSubSatToAddoSubo(MI);
3206   }
3207   case G_SSHLSAT:
3208   case G_USHLSAT:
3209     return lowerShlSat(MI);
3210   case G_ABS:
3211     return lowerAbsToAddXor(MI);
3212   case G_SELECT:
3213     return lowerSelect(MI);
3214   case G_SDIVREM:
3215   case G_UDIVREM:
3216     return lowerDIVREM(MI);
3217   case G_FSHL:
3218   case G_FSHR:
3219     return lowerFunnelShift(MI);
3220   case G_ROTL:
3221   case G_ROTR:
3222     return lowerRotate(MI);
3223   }
3224 }
3225 
3226 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3227                                                   Align MinAlign) const {
3228   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3229   // datalayout for the preferred alignment. Also there should be a target hook
3230   // for this to allow targets to reduce the alignment and ignore the
3231   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3232   // the type.
3233   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3234 }
3235 
3236 MachineInstrBuilder
3237 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3238                                       MachinePointerInfo &PtrInfo) {
3239   MachineFunction &MF = MIRBuilder.getMF();
3240   const DataLayout &DL = MIRBuilder.getDataLayout();
3241   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3242 
3243   unsigned AddrSpace = DL.getAllocaAddrSpace();
3244   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3245 
3246   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3247   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3248 }
3249 
3250 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3251                                         LLT VecTy) {
3252   int64_t IdxVal;
3253   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3254     return IdxReg;
3255 
3256   LLT IdxTy = B.getMRI()->getType(IdxReg);
3257   unsigned NElts = VecTy.getNumElements();
3258   if (isPowerOf2_32(NElts)) {
3259     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3260     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3261   }
3262 
3263   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3264       .getReg(0);
3265 }
3266 
3267 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3268                                                   Register Index) {
3269   LLT EltTy = VecTy.getElementType();
3270 
3271   // Calculate the element offset and add it to the pointer.
3272   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3273   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3274          "Converting bits to bytes lost precision");
3275 
3276   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3277 
3278   LLT IdxTy = MRI.getType(Index);
3279   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3280                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3281 
3282   LLT PtrTy = MRI.getType(VecPtr);
3283   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3284 }
3285 
3286 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3287     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3288   Register DstReg = MI.getOperand(0).getReg();
3289   LLT DstTy = MRI.getType(DstReg);
3290   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3291 
3292   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3293 
3294   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3295   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3296 
3297   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3298   MI.eraseFromParent();
3299   return Legalized;
3300 }
3301 
3302 // Handle splitting vector operations which need to have the same number of
3303 // elements in each type index, but each type index may have a different element
3304 // type.
3305 //
3306 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3307 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3308 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3309 //
3310 // Also handles some irregular breakdown cases, e.g.
3311 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3312 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3313 //             s64 = G_SHL s64, s32
3314 LegalizerHelper::LegalizeResult
3315 LegalizerHelper::fewerElementsVectorMultiEltType(
3316   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3317   if (TypeIdx != 0)
3318     return UnableToLegalize;
3319 
3320   const LLT NarrowTy0 = NarrowTyArg;
3321   const unsigned NewNumElts =
3322       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3323 
3324   const Register DstReg = MI.getOperand(0).getReg();
3325   LLT DstTy = MRI.getType(DstReg);
3326   LLT LeftoverTy0;
3327 
3328   // All of the operands need to have the same number of elements, so if we can
3329   // determine a type breakdown for the result type, we can for all of the
3330   // source types.
3331   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3332   if (NumParts < 0)
3333     return UnableToLegalize;
3334 
3335   SmallVector<MachineInstrBuilder, 4> NewInsts;
3336 
3337   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3338   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3339 
3340   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3341     Register SrcReg = MI.getOperand(I).getReg();
3342     LLT SrcTyI = MRI.getType(SrcReg);
3343     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3344     LLT LeftoverTyI;
3345 
3346     // Split this operand into the requested typed registers, and any leftover
3347     // required to reproduce the original type.
3348     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3349                       LeftoverRegs))
3350       return UnableToLegalize;
3351 
3352     if (I == 1) {
3353       // For the first operand, create an instruction for each part and setup
3354       // the result.
3355       for (Register PartReg : PartRegs) {
3356         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3357         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3358                                .addDef(PartDstReg)
3359                                .addUse(PartReg));
3360         DstRegs.push_back(PartDstReg);
3361       }
3362 
3363       for (Register LeftoverReg : LeftoverRegs) {
3364         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3365         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3366                                .addDef(PartDstReg)
3367                                .addUse(LeftoverReg));
3368         LeftoverDstRegs.push_back(PartDstReg);
3369       }
3370     } else {
3371       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3372 
3373       // Add the newly created operand splits to the existing instructions. The
3374       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3375       // pieces.
3376       unsigned InstCount = 0;
3377       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3378         NewInsts[InstCount++].addUse(PartRegs[J]);
3379       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3380         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3381     }
3382 
3383     PartRegs.clear();
3384     LeftoverRegs.clear();
3385   }
3386 
3387   // Insert the newly built operations and rebuild the result register.
3388   for (auto &MIB : NewInsts)
3389     MIRBuilder.insertInstr(MIB);
3390 
3391   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3392 
3393   MI.eraseFromParent();
3394   return Legalized;
3395 }
3396 
3397 LegalizerHelper::LegalizeResult
3398 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3399                                           LLT NarrowTy) {
3400   if (TypeIdx != 0)
3401     return UnableToLegalize;
3402 
3403   Register DstReg = MI.getOperand(0).getReg();
3404   Register SrcReg = MI.getOperand(1).getReg();
3405   LLT DstTy = MRI.getType(DstReg);
3406   LLT SrcTy = MRI.getType(SrcReg);
3407 
3408   LLT NarrowTy0 = NarrowTy;
3409   LLT NarrowTy1;
3410   unsigned NumParts;
3411 
3412   if (NarrowTy.isVector()) {
3413     // Uneven breakdown not handled.
3414     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3415     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3416       return UnableToLegalize;
3417 
3418     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3419   } else {
3420     NumParts = DstTy.getNumElements();
3421     NarrowTy1 = SrcTy.getElementType();
3422   }
3423 
3424   SmallVector<Register, 4> SrcRegs, DstRegs;
3425   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3426 
3427   for (unsigned I = 0; I < NumParts; ++I) {
3428     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3429     MachineInstr *NewInst =
3430         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3431 
3432     NewInst->setFlags(MI.getFlags());
3433     DstRegs.push_back(DstReg);
3434   }
3435 
3436   if (NarrowTy.isVector())
3437     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3438   else
3439     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3440 
3441   MI.eraseFromParent();
3442   return Legalized;
3443 }
3444 
3445 LegalizerHelper::LegalizeResult
3446 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3447                                         LLT NarrowTy) {
3448   Register DstReg = MI.getOperand(0).getReg();
3449   Register Src0Reg = MI.getOperand(2).getReg();
3450   LLT DstTy = MRI.getType(DstReg);
3451   LLT SrcTy = MRI.getType(Src0Reg);
3452 
3453   unsigned NumParts;
3454   LLT NarrowTy0, NarrowTy1;
3455 
3456   if (TypeIdx == 0) {
3457     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3458     unsigned OldElts = DstTy.getNumElements();
3459 
3460     NarrowTy0 = NarrowTy;
3461     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3462     NarrowTy1 = NarrowTy.isVector() ?
3463       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3464       SrcTy.getElementType();
3465 
3466   } else {
3467     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3468     unsigned OldElts = SrcTy.getNumElements();
3469 
3470     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3471       NarrowTy.getNumElements();
3472     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3473                             DstTy.getScalarSizeInBits());
3474     NarrowTy1 = NarrowTy;
3475   }
3476 
3477   // FIXME: Don't know how to handle the situation where the small vectors
3478   // aren't all the same size yet.
3479   if (NarrowTy1.isVector() &&
3480       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3481     return UnableToLegalize;
3482 
3483   CmpInst::Predicate Pred
3484     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3485 
3486   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3487   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3488   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3489 
3490   for (unsigned I = 0; I < NumParts; ++I) {
3491     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3492     DstRegs.push_back(DstReg);
3493 
3494     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3495       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3496     else {
3497       MachineInstr *NewCmp
3498         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3499       NewCmp->setFlags(MI.getFlags());
3500     }
3501   }
3502 
3503   if (NarrowTy1.isVector())
3504     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3505   else
3506     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3507 
3508   MI.eraseFromParent();
3509   return Legalized;
3510 }
3511 
3512 LegalizerHelper::LegalizeResult
3513 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3514                                            LLT NarrowTy) {
3515   Register DstReg = MI.getOperand(0).getReg();
3516   Register CondReg = MI.getOperand(1).getReg();
3517 
3518   unsigned NumParts = 0;
3519   LLT NarrowTy0, NarrowTy1;
3520 
3521   LLT DstTy = MRI.getType(DstReg);
3522   LLT CondTy = MRI.getType(CondReg);
3523   unsigned Size = DstTy.getSizeInBits();
3524 
3525   assert(TypeIdx == 0 || CondTy.isVector());
3526 
3527   if (TypeIdx == 0) {
3528     NarrowTy0 = NarrowTy;
3529     NarrowTy1 = CondTy;
3530 
3531     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3532     // FIXME: Don't know how to handle the situation where the small vectors
3533     // aren't all the same size yet.
3534     if (Size % NarrowSize != 0)
3535       return UnableToLegalize;
3536 
3537     NumParts = Size / NarrowSize;
3538 
3539     // Need to break down the condition type
3540     if (CondTy.isVector()) {
3541       if (CondTy.getNumElements() == NumParts)
3542         NarrowTy1 = CondTy.getElementType();
3543       else
3544         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3545                                 CondTy.getScalarSizeInBits());
3546     }
3547   } else {
3548     NumParts = CondTy.getNumElements();
3549     if (NarrowTy.isVector()) {
3550       // TODO: Handle uneven breakdown.
3551       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3552         return UnableToLegalize;
3553 
3554       return UnableToLegalize;
3555     } else {
3556       NarrowTy0 = DstTy.getElementType();
3557       NarrowTy1 = NarrowTy;
3558     }
3559   }
3560 
3561   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3562   if (CondTy.isVector())
3563     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3564 
3565   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3566   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3567 
3568   for (unsigned i = 0; i < NumParts; ++i) {
3569     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3570     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3571                            Src1Regs[i], Src2Regs[i]);
3572     DstRegs.push_back(DstReg);
3573   }
3574 
3575   if (NarrowTy0.isVector())
3576     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3577   else
3578     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3579 
3580   MI.eraseFromParent();
3581   return Legalized;
3582 }
3583 
3584 LegalizerHelper::LegalizeResult
3585 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3586                                         LLT NarrowTy) {
3587   const Register DstReg = MI.getOperand(0).getReg();
3588   LLT PhiTy = MRI.getType(DstReg);
3589   LLT LeftoverTy;
3590 
3591   // All of the operands need to have the same number of elements, so if we can
3592   // determine a type breakdown for the result type, we can for all of the
3593   // source types.
3594   int NumParts, NumLeftover;
3595   std::tie(NumParts, NumLeftover)
3596     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3597   if (NumParts < 0)
3598     return UnableToLegalize;
3599 
3600   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3601   SmallVector<MachineInstrBuilder, 4> NewInsts;
3602 
3603   const int TotalNumParts = NumParts + NumLeftover;
3604 
3605   // Insert the new phis in the result block first.
3606   for (int I = 0; I != TotalNumParts; ++I) {
3607     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3608     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3609     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3610                        .addDef(PartDstReg));
3611     if (I < NumParts)
3612       DstRegs.push_back(PartDstReg);
3613     else
3614       LeftoverDstRegs.push_back(PartDstReg);
3615   }
3616 
3617   MachineBasicBlock *MBB = MI.getParent();
3618   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3619   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3620 
3621   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3622 
3623   // Insert code to extract the incoming values in each predecessor block.
3624   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3625     PartRegs.clear();
3626     LeftoverRegs.clear();
3627 
3628     Register SrcReg = MI.getOperand(I).getReg();
3629     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3630     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3631 
3632     LLT Unused;
3633     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3634                       LeftoverRegs))
3635       return UnableToLegalize;
3636 
3637     // Add the newly created operand splits to the existing instructions. The
3638     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3639     // pieces.
3640     for (int J = 0; J != TotalNumParts; ++J) {
3641       MachineInstrBuilder MIB = NewInsts[J];
3642       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3643       MIB.addMBB(&OpMBB);
3644     }
3645   }
3646 
3647   MI.eraseFromParent();
3648   return Legalized;
3649 }
3650 
3651 LegalizerHelper::LegalizeResult
3652 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3653                                                   unsigned TypeIdx,
3654                                                   LLT NarrowTy) {
3655   if (TypeIdx != 1)
3656     return UnableToLegalize;
3657 
3658   const int NumDst = MI.getNumOperands() - 1;
3659   const Register SrcReg = MI.getOperand(NumDst).getReg();
3660   LLT SrcTy = MRI.getType(SrcReg);
3661 
3662   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3663 
3664   // TODO: Create sequence of extracts.
3665   if (DstTy == NarrowTy)
3666     return UnableToLegalize;
3667 
3668   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3669   if (DstTy == GCDTy) {
3670     // This would just be a copy of the same unmerge.
3671     // TODO: Create extracts, pad with undef and create intermediate merges.
3672     return UnableToLegalize;
3673   }
3674 
3675   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3676   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3677   const int PartsPerUnmerge = NumDst / NumUnmerge;
3678 
3679   for (int I = 0; I != NumUnmerge; ++I) {
3680     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3681 
3682     for (int J = 0; J != PartsPerUnmerge; ++J)
3683       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3684     MIB.addUse(Unmerge.getReg(I));
3685   }
3686 
3687   MI.eraseFromParent();
3688   return Legalized;
3689 }
3690 
3691 LegalizerHelper::LegalizeResult
3692 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3693                                          LLT NarrowTy) {
3694   Register Result = MI.getOperand(0).getReg();
3695   Register Overflow = MI.getOperand(1).getReg();
3696   Register LHS = MI.getOperand(2).getReg();
3697   Register RHS = MI.getOperand(3).getReg();
3698 
3699   LLT SrcTy = MRI.getType(LHS);
3700   if (!SrcTy.isVector())
3701     return UnableToLegalize;
3702 
3703   LLT ElementType = SrcTy.getElementType();
3704   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3705   const int NumResult = SrcTy.getNumElements();
3706   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3707 
3708   // Unmerge the operands to smaller parts of GCD type.
3709   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3710   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3711 
3712   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3713   const int PartsPerUnmerge = NumResult / NumOps;
3714   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3715   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3716 
3717   // Perform the operation over unmerged parts.
3718   SmallVector<Register, 8> ResultParts;
3719   SmallVector<Register, 8> OverflowParts;
3720   for (int I = 0; I != NumOps; ++I) {
3721     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3722     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3723     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3724                                          {Operand1, Operand2});
3725     ResultParts.push_back(PartMul->getOperand(0).getReg());
3726     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3727   }
3728 
3729   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3730   LLT OverflowLCMTy =
3731       LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy);
3732 
3733   // Recombine the pieces to the original result and overflow registers.
3734   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3735   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3736   MI.eraseFromParent();
3737   return Legalized;
3738 }
3739 
3740 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3741 // a vector
3742 //
3743 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3744 // undef as necessary.
3745 //
3746 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3747 //   -> <2 x s16>
3748 //
3749 // %4:_(s16) = G_IMPLICIT_DEF
3750 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3751 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3752 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3753 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3754 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3755 LegalizerHelper::LegalizeResult
3756 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3757                                           LLT NarrowTy) {
3758   Register DstReg = MI.getOperand(0).getReg();
3759   LLT DstTy = MRI.getType(DstReg);
3760   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3761   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3762 
3763   // Break into a common type
3764   SmallVector<Register, 16> Parts;
3765   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3766     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3767 
3768   // Build the requested new merge, padding with undef.
3769   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3770                                   TargetOpcode::G_ANYEXT);
3771 
3772   // Pack into the original result register.
3773   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3774 
3775   MI.eraseFromParent();
3776   return Legalized;
3777 }
3778 
3779 LegalizerHelper::LegalizeResult
3780 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3781                                                            unsigned TypeIdx,
3782                                                            LLT NarrowVecTy) {
3783   Register DstReg = MI.getOperand(0).getReg();
3784   Register SrcVec = MI.getOperand(1).getReg();
3785   Register InsertVal;
3786   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3787 
3788   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3789   if (IsInsert)
3790     InsertVal = MI.getOperand(2).getReg();
3791 
3792   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3793 
3794   // TODO: Handle total scalarization case.
3795   if (!NarrowVecTy.isVector())
3796     return UnableToLegalize;
3797 
3798   LLT VecTy = MRI.getType(SrcVec);
3799 
3800   // If the index is a constant, we can really break this down as you would
3801   // expect, and index into the target size pieces.
3802   int64_t IdxVal;
3803   auto MaybeCst =
3804       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
3805                                         /*HandleFConstants*/ false);
3806   if (MaybeCst) {
3807     IdxVal = MaybeCst->Value.getSExtValue();
3808     // Avoid out of bounds indexing the pieces.
3809     if (IdxVal >= VecTy.getNumElements()) {
3810       MIRBuilder.buildUndef(DstReg);
3811       MI.eraseFromParent();
3812       return Legalized;
3813     }
3814 
3815     SmallVector<Register, 8> VecParts;
3816     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3817 
3818     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3819     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3820                                     TargetOpcode::G_ANYEXT);
3821 
3822     unsigned NewNumElts = NarrowVecTy.getNumElements();
3823 
3824     LLT IdxTy = MRI.getType(Idx);
3825     int64_t PartIdx = IdxVal / NewNumElts;
3826     auto NewIdx =
3827         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3828 
3829     if (IsInsert) {
3830       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3831 
3832       // Use the adjusted index to insert into one of the subvectors.
3833       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3834           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3835       VecParts[PartIdx] = InsertPart.getReg(0);
3836 
3837       // Recombine the inserted subvector with the others to reform the result
3838       // vector.
3839       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3840     } else {
3841       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3842     }
3843 
3844     MI.eraseFromParent();
3845     return Legalized;
3846   }
3847 
3848   // With a variable index, we can't perform the operation in a smaller type, so
3849   // we're forced to expand this.
3850   //
3851   // TODO: We could emit a chain of compare/select to figure out which piece to
3852   // index.
3853   return lowerExtractInsertVectorElt(MI);
3854 }
3855 
3856 LegalizerHelper::LegalizeResult
3857 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3858                                       LLT NarrowTy) {
3859   // FIXME: Don't know how to handle secondary types yet.
3860   if (TypeIdx != 0)
3861     return UnableToLegalize;
3862 
3863   MachineMemOperand *MMO = *MI.memoperands_begin();
3864 
3865   // This implementation doesn't work for atomics. Give up instead of doing
3866   // something invalid.
3867   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3868       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3869     return UnableToLegalize;
3870 
3871   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3872   Register ValReg = MI.getOperand(0).getReg();
3873   Register AddrReg = MI.getOperand(1).getReg();
3874   LLT ValTy = MRI.getType(ValReg);
3875 
3876   // FIXME: Do we need a distinct NarrowMemory legalize action?
3877   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3878     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3879     return UnableToLegalize;
3880   }
3881 
3882   int NumParts = -1;
3883   int NumLeftover = -1;
3884   LLT LeftoverTy;
3885   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3886   if (IsLoad) {
3887     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3888   } else {
3889     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3890                      NarrowLeftoverRegs)) {
3891       NumParts = NarrowRegs.size();
3892       NumLeftover = NarrowLeftoverRegs.size();
3893     }
3894   }
3895 
3896   if (NumParts == -1)
3897     return UnableToLegalize;
3898 
3899   LLT PtrTy = MRI.getType(AddrReg);
3900   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3901 
3902   unsigned TotalSize = ValTy.getSizeInBits();
3903 
3904   // Split the load/store into PartTy sized pieces starting at Offset. If this
3905   // is a load, return the new registers in ValRegs. For a store, each elements
3906   // of ValRegs should be PartTy. Returns the next offset that needs to be
3907   // handled.
3908   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3909                              unsigned Offset) -> unsigned {
3910     MachineFunction &MF = MIRBuilder.getMF();
3911     unsigned PartSize = PartTy.getSizeInBits();
3912     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3913          Offset += PartSize, ++Idx) {
3914       unsigned ByteSize = PartSize / 8;
3915       unsigned ByteOffset = Offset / 8;
3916       Register NewAddrReg;
3917 
3918       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3919 
3920       MachineMemOperand *NewMMO =
3921         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3922 
3923       if (IsLoad) {
3924         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3925         ValRegs.push_back(Dst);
3926         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3927       } else {
3928         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3929       }
3930     }
3931 
3932     return Offset;
3933   };
3934 
3935   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3936 
3937   // Handle the rest of the register if this isn't an even type breakdown.
3938   if (LeftoverTy.isValid())
3939     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3940 
3941   if (IsLoad) {
3942     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3943                 LeftoverTy, NarrowLeftoverRegs);
3944   }
3945 
3946   MI.eraseFromParent();
3947   return Legalized;
3948 }
3949 
3950 LegalizerHelper::LegalizeResult
3951 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3952                                       LLT NarrowTy) {
3953   assert(TypeIdx == 0 && "only one type index expected");
3954 
3955   const unsigned Opc = MI.getOpcode();
3956   const int NumDefOps = MI.getNumExplicitDefs();
3957   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
3958   const unsigned Flags = MI.getFlags();
3959   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3960   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3961 
3962   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
3963                                      "result and 1-3 sources or 2 results and "
3964                                      "1-2 sources");
3965 
3966   SmallVector<Register, 2> DstRegs;
3967   for (int I = 0; I < NumDefOps; ++I)
3968     DstRegs.push_back(MI.getOperand(I).getReg());
3969 
3970   // First of all check whether we are narrowing (changing the element type)
3971   // or reducing the vector elements
3972   const LLT DstTy = MRI.getType(DstRegs[0]);
3973   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3974 
3975   SmallVector<Register, 8> ExtractedRegs[3];
3976   SmallVector<Register, 8> Parts;
3977 
3978   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3979 
3980   // Break down all the sources into NarrowTy pieces we can operate on. This may
3981   // involve creating merges to a wider type, padded with undef.
3982   for (int I = 0; I != NumSrcOps; ++I) {
3983     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
3984     LLT SrcTy = MRI.getType(SrcReg);
3985 
3986     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3987     // For fewerElements, this is a smaller vector with the same element type.
3988     LLT OpNarrowTy;
3989     if (IsNarrow) {
3990       OpNarrowTy = NarrowScalarTy;
3991 
3992       // In case of narrowing, we need to cast vectors to scalars for this to
3993       // work properly
3994       // FIXME: Can we do without the bitcast here if we're narrowing?
3995       if (SrcTy.isVector()) {
3996         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3997         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3998       }
3999     } else {
4000       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
4001     }
4002 
4003     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4004 
4005     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4006     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4007                         TargetOpcode::G_ANYEXT);
4008   }
4009 
4010   SmallVector<Register, 8> ResultRegs[2];
4011 
4012   // Input operands for each sub-instruction.
4013   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4014 
4015   int NumParts = ExtractedRegs[0].size();
4016   const unsigned DstSize = DstTy.getSizeInBits();
4017   const LLT DstScalarTy = LLT::scalar(DstSize);
4018 
4019   // Narrowing needs to use scalar types
4020   LLT DstLCMTy, NarrowDstTy;
4021   if (IsNarrow) {
4022     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4023     NarrowDstTy = NarrowScalarTy;
4024   } else {
4025     DstLCMTy = getLCMType(DstTy, NarrowTy);
4026     NarrowDstTy = NarrowTy;
4027   }
4028 
4029   // We widened the source registers to satisfy merge/unmerge size
4030   // constraints. We'll have some extra fully undef parts.
4031   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4032 
4033   for (int I = 0; I != NumRealParts; ++I) {
4034     // Emit this instruction on each of the split pieces.
4035     for (int J = 0; J != NumSrcOps; ++J)
4036       InputRegs[J] = ExtractedRegs[J][I];
4037 
4038     MachineInstrBuilder Inst;
4039     if (NumDefOps == 1)
4040       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4041     else
4042       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4043                                    Flags);
4044 
4045     for (int J = 0; J != NumDefOps; ++J)
4046       ResultRegs[J].push_back(Inst.getReg(J));
4047   }
4048 
4049   // Fill out the widened result with undef instead of creating instructions
4050   // with undef inputs.
4051   int NumUndefParts = NumParts - NumRealParts;
4052   if (NumUndefParts != 0) {
4053     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4054     for (int I = 0; I != NumDefOps; ++I)
4055       ResultRegs[I].append(NumUndefParts, Undef);
4056   }
4057 
4058   // Extract the possibly padded result. Use a scratch register if we need to do
4059   // a final bitcast, otherwise use the original result register.
4060   Register MergeDstReg;
4061   for (int I = 0; I != NumDefOps; ++I) {
4062     if (IsNarrow && DstTy.isVector())
4063       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4064     else
4065       MergeDstReg = DstRegs[I];
4066 
4067     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4068 
4069     // Recast to vector if we narrowed a vector
4070     if (IsNarrow && DstTy.isVector())
4071       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4072   }
4073 
4074   MI.eraseFromParent();
4075   return Legalized;
4076 }
4077 
4078 LegalizerHelper::LegalizeResult
4079 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4080                                               LLT NarrowTy) {
4081   Register DstReg = MI.getOperand(0).getReg();
4082   Register SrcReg = MI.getOperand(1).getReg();
4083   int64_t Imm = MI.getOperand(2).getImm();
4084 
4085   LLT DstTy = MRI.getType(DstReg);
4086 
4087   SmallVector<Register, 8> Parts;
4088   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4089   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4090 
4091   for (Register &R : Parts)
4092     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4093 
4094   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4095 
4096   MI.eraseFromParent();
4097   return Legalized;
4098 }
4099 
4100 LegalizerHelper::LegalizeResult
4101 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4102                                      LLT NarrowTy) {
4103   using namespace TargetOpcode;
4104 
4105   switch (MI.getOpcode()) {
4106   case G_IMPLICIT_DEF:
4107     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4108   case G_TRUNC:
4109   case G_AND:
4110   case G_OR:
4111   case G_XOR:
4112   case G_ADD:
4113   case G_SUB:
4114   case G_MUL:
4115   case G_PTR_ADD:
4116   case G_SMULH:
4117   case G_UMULH:
4118   case G_FADD:
4119   case G_FMUL:
4120   case G_FSUB:
4121   case G_FNEG:
4122   case G_FABS:
4123   case G_FCANONICALIZE:
4124   case G_FDIV:
4125   case G_FREM:
4126   case G_FMA:
4127   case G_FMAD:
4128   case G_FPOW:
4129   case G_FEXP:
4130   case G_FEXP2:
4131   case G_FLOG:
4132   case G_FLOG2:
4133   case G_FLOG10:
4134   case G_FNEARBYINT:
4135   case G_FCEIL:
4136   case G_FFLOOR:
4137   case G_FRINT:
4138   case G_INTRINSIC_ROUND:
4139   case G_INTRINSIC_ROUNDEVEN:
4140   case G_INTRINSIC_TRUNC:
4141   case G_FCOS:
4142   case G_FSIN:
4143   case G_FSQRT:
4144   case G_BSWAP:
4145   case G_BITREVERSE:
4146   case G_SDIV:
4147   case G_UDIV:
4148   case G_SREM:
4149   case G_UREM:
4150   case G_SDIVREM:
4151   case G_UDIVREM:
4152   case G_SMIN:
4153   case G_SMAX:
4154   case G_UMIN:
4155   case G_UMAX:
4156   case G_ABS:
4157   case G_FMINNUM:
4158   case G_FMAXNUM:
4159   case G_FMINNUM_IEEE:
4160   case G_FMAXNUM_IEEE:
4161   case G_FMINIMUM:
4162   case G_FMAXIMUM:
4163   case G_FSHL:
4164   case G_FSHR:
4165   case G_FREEZE:
4166   case G_SADDSAT:
4167   case G_SSUBSAT:
4168   case G_UADDSAT:
4169   case G_USUBSAT:
4170     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4171   case G_UMULO:
4172   case G_SMULO:
4173     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4174   case G_SHL:
4175   case G_LSHR:
4176   case G_ASHR:
4177   case G_SSHLSAT:
4178   case G_USHLSAT:
4179   case G_CTLZ:
4180   case G_CTLZ_ZERO_UNDEF:
4181   case G_CTTZ:
4182   case G_CTTZ_ZERO_UNDEF:
4183   case G_CTPOP:
4184   case G_FCOPYSIGN:
4185     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4186   case G_ZEXT:
4187   case G_SEXT:
4188   case G_ANYEXT:
4189   case G_FPEXT:
4190   case G_FPTRUNC:
4191   case G_SITOFP:
4192   case G_UITOFP:
4193   case G_FPTOSI:
4194   case G_FPTOUI:
4195   case G_INTTOPTR:
4196   case G_PTRTOINT:
4197   case G_ADDRSPACE_CAST:
4198     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4199   case G_ICMP:
4200   case G_FCMP:
4201     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4202   case G_SELECT:
4203     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4204   case G_PHI:
4205     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4206   case G_UNMERGE_VALUES:
4207     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4208   case G_BUILD_VECTOR:
4209     assert(TypeIdx == 0 && "not a vector type index");
4210     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4211   case G_CONCAT_VECTORS:
4212     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4213       return UnableToLegalize;
4214     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4215   case G_EXTRACT_VECTOR_ELT:
4216   case G_INSERT_VECTOR_ELT:
4217     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4218   case G_LOAD:
4219   case G_STORE:
4220     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4221   case G_SEXT_INREG:
4222     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4223   GISEL_VECREDUCE_CASES_NONSEQ
4224     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4225   case G_SHUFFLE_VECTOR:
4226     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4227   default:
4228     return UnableToLegalize;
4229   }
4230 }
4231 
4232 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4233     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4234   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4235   if (TypeIdx != 0)
4236     return UnableToLegalize;
4237 
4238   Register DstReg = MI.getOperand(0).getReg();
4239   Register Src1Reg = MI.getOperand(1).getReg();
4240   Register Src2Reg = MI.getOperand(2).getReg();
4241   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4242   LLT DstTy = MRI.getType(DstReg);
4243   LLT Src1Ty = MRI.getType(Src1Reg);
4244   LLT Src2Ty = MRI.getType(Src2Reg);
4245   // The shuffle should be canonicalized by now.
4246   if (DstTy != Src1Ty)
4247     return UnableToLegalize;
4248   if (DstTy != Src2Ty)
4249     return UnableToLegalize;
4250 
4251   if (!isPowerOf2_32(DstTy.getNumElements()))
4252     return UnableToLegalize;
4253 
4254   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4255   // Further legalization attempts will be needed to do split further.
4256   NarrowTy = DstTy.changeNumElements(DstTy.getNumElements() / 2);
4257   unsigned NewElts = NarrowTy.getNumElements();
4258 
4259   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4260   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4261   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4262   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4263                         SplitSrc2Regs[1]};
4264 
4265   Register Hi, Lo;
4266 
4267   // If Lo or Hi uses elements from at most two of the four input vectors, then
4268   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4269   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4270   SmallVector<int, 16> Ops;
4271   for (unsigned High = 0; High < 2; ++High) {
4272     Register &Output = High ? Hi : Lo;
4273 
4274     // Build a shuffle mask for the output, discovering on the fly which
4275     // input vectors to use as shuffle operands (recorded in InputUsed).
4276     // If building a suitable shuffle vector proves too hard, then bail
4277     // out with useBuildVector set.
4278     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4279     unsigned FirstMaskIdx = High * NewElts;
4280     bool UseBuildVector = false;
4281     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4282       // The mask element.  This indexes into the input.
4283       int Idx = Mask[FirstMaskIdx + MaskOffset];
4284 
4285       // The input vector this mask element indexes into.
4286       unsigned Input = (unsigned)Idx / NewElts;
4287 
4288       if (Input >= array_lengthof(Inputs)) {
4289         // The mask element does not index into any input vector.
4290         Ops.push_back(-1);
4291         continue;
4292       }
4293 
4294       // Turn the index into an offset from the start of the input vector.
4295       Idx -= Input * NewElts;
4296 
4297       // Find or create a shuffle vector operand to hold this input.
4298       unsigned OpNo;
4299       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4300         if (InputUsed[OpNo] == Input) {
4301           // This input vector is already an operand.
4302           break;
4303         } else if (InputUsed[OpNo] == -1U) {
4304           // Create a new operand for this input vector.
4305           InputUsed[OpNo] = Input;
4306           break;
4307         }
4308       }
4309 
4310       if (OpNo >= array_lengthof(InputUsed)) {
4311         // More than two input vectors used!  Give up on trying to create a
4312         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4313         UseBuildVector = true;
4314         break;
4315       }
4316 
4317       // Add the mask index for the new shuffle vector.
4318       Ops.push_back(Idx + OpNo * NewElts);
4319     }
4320 
4321     if (UseBuildVector) {
4322       LLT EltTy = NarrowTy.getElementType();
4323       SmallVector<Register, 16> SVOps;
4324 
4325       // Extract the input elements by hand.
4326       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4327         // The mask element.  This indexes into the input.
4328         int Idx = Mask[FirstMaskIdx + MaskOffset];
4329 
4330         // The input vector this mask element indexes into.
4331         unsigned Input = (unsigned)Idx / NewElts;
4332 
4333         if (Input >= array_lengthof(Inputs)) {
4334           // The mask element is "undef" or indexes off the end of the input.
4335           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4336           continue;
4337         }
4338 
4339         // Turn the index into an offset from the start of the input vector.
4340         Idx -= Input * NewElts;
4341 
4342         // Extract the vector element by hand.
4343         SVOps.push_back(MIRBuilder
4344                             .buildExtractVectorElement(
4345                                 EltTy, Inputs[Input],
4346                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4347                             .getReg(0));
4348       }
4349 
4350       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4351       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4352     } else if (InputUsed[0] == -1U) {
4353       // No input vectors were used! The result is undefined.
4354       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4355     } else {
4356       Register Op0 = Inputs[InputUsed[0]];
4357       // If only one input was used, use an undefined vector for the other.
4358       Register Op1 = InputUsed[1] == -1U
4359                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4360                          : Inputs[InputUsed[1]];
4361       // At least one input vector was used. Create a new shuffle vector.
4362       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4363     }
4364 
4365     Ops.clear();
4366   }
4367 
4368   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4369   MI.eraseFromParent();
4370   return Legalized;
4371 }
4372 
4373 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4374     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4375   unsigned Opc = MI.getOpcode();
4376   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4377          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4378          "Sequential reductions not expected");
4379 
4380   if (TypeIdx != 1)
4381     return UnableToLegalize;
4382 
4383   // The semantics of the normal non-sequential reductions allow us to freely
4384   // re-associate the operation.
4385   Register SrcReg = MI.getOperand(1).getReg();
4386   LLT SrcTy = MRI.getType(SrcReg);
4387   Register DstReg = MI.getOperand(0).getReg();
4388   LLT DstTy = MRI.getType(DstReg);
4389 
4390   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4391     return UnableToLegalize;
4392 
4393   SmallVector<Register> SplitSrcs;
4394   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4395   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4396   SmallVector<Register> PartialReductions;
4397   for (unsigned Part = 0; Part < NumParts; ++Part) {
4398     PartialReductions.push_back(
4399         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4400   }
4401 
4402   unsigned ScalarOpc;
4403   switch (Opc) {
4404   case TargetOpcode::G_VECREDUCE_FADD:
4405     ScalarOpc = TargetOpcode::G_FADD;
4406     break;
4407   case TargetOpcode::G_VECREDUCE_FMUL:
4408     ScalarOpc = TargetOpcode::G_FMUL;
4409     break;
4410   case TargetOpcode::G_VECREDUCE_FMAX:
4411     ScalarOpc = TargetOpcode::G_FMAXNUM;
4412     break;
4413   case TargetOpcode::G_VECREDUCE_FMIN:
4414     ScalarOpc = TargetOpcode::G_FMINNUM;
4415     break;
4416   case TargetOpcode::G_VECREDUCE_ADD:
4417     ScalarOpc = TargetOpcode::G_ADD;
4418     break;
4419   case TargetOpcode::G_VECREDUCE_MUL:
4420     ScalarOpc = TargetOpcode::G_MUL;
4421     break;
4422   case TargetOpcode::G_VECREDUCE_AND:
4423     ScalarOpc = TargetOpcode::G_AND;
4424     break;
4425   case TargetOpcode::G_VECREDUCE_OR:
4426     ScalarOpc = TargetOpcode::G_OR;
4427     break;
4428   case TargetOpcode::G_VECREDUCE_XOR:
4429     ScalarOpc = TargetOpcode::G_XOR;
4430     break;
4431   case TargetOpcode::G_VECREDUCE_SMAX:
4432     ScalarOpc = TargetOpcode::G_SMAX;
4433     break;
4434   case TargetOpcode::G_VECREDUCE_SMIN:
4435     ScalarOpc = TargetOpcode::G_SMIN;
4436     break;
4437   case TargetOpcode::G_VECREDUCE_UMAX:
4438     ScalarOpc = TargetOpcode::G_UMAX;
4439     break;
4440   case TargetOpcode::G_VECREDUCE_UMIN:
4441     ScalarOpc = TargetOpcode::G_UMIN;
4442     break;
4443   default:
4444     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4445     return UnableToLegalize;
4446   }
4447 
4448   // If the types involved are powers of 2, we can generate intermediate vector
4449   // ops, before generating a final reduction operation.
4450   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4451       isPowerOf2_32(NarrowTy.getNumElements())) {
4452     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4453   }
4454 
4455   Register Acc = PartialReductions[0];
4456   for (unsigned Part = 1; Part < NumParts; ++Part) {
4457     if (Part == NumParts - 1) {
4458       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4459                             {Acc, PartialReductions[Part]});
4460     } else {
4461       Acc = MIRBuilder
4462                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4463                 .getReg(0);
4464     }
4465   }
4466   MI.eraseFromParent();
4467   return Legalized;
4468 }
4469 
4470 LegalizerHelper::LegalizeResult
4471 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4472                                         LLT SrcTy, LLT NarrowTy,
4473                                         unsigned ScalarOpc) {
4474   SmallVector<Register> SplitSrcs;
4475   // Split the sources into NarrowTy size pieces.
4476   extractParts(SrcReg, NarrowTy,
4477                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4478   // We're going to do a tree reduction using vector operations until we have
4479   // one NarrowTy size value left.
4480   while (SplitSrcs.size() > 1) {
4481     SmallVector<Register> PartialRdxs;
4482     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4483       Register LHS = SplitSrcs[Idx];
4484       Register RHS = SplitSrcs[Idx + 1];
4485       // Create the intermediate vector op.
4486       Register Res =
4487           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4488       PartialRdxs.push_back(Res);
4489     }
4490     SplitSrcs = std::move(PartialRdxs);
4491   }
4492   // Finally generate the requested NarrowTy based reduction.
4493   Observer.changingInstr(MI);
4494   MI.getOperand(1).setReg(SplitSrcs[0]);
4495   Observer.changedInstr(MI);
4496   return Legalized;
4497 }
4498 
4499 LegalizerHelper::LegalizeResult
4500 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4501                                              const LLT HalfTy, const LLT AmtTy) {
4502 
4503   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4504   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4505   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4506 
4507   if (Amt.isNullValue()) {
4508     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4509     MI.eraseFromParent();
4510     return Legalized;
4511   }
4512 
4513   LLT NVT = HalfTy;
4514   unsigned NVTBits = HalfTy.getSizeInBits();
4515   unsigned VTBits = 2 * NVTBits;
4516 
4517   SrcOp Lo(Register(0)), Hi(Register(0));
4518   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4519     if (Amt.ugt(VTBits)) {
4520       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4521     } else if (Amt.ugt(NVTBits)) {
4522       Lo = MIRBuilder.buildConstant(NVT, 0);
4523       Hi = MIRBuilder.buildShl(NVT, InL,
4524                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4525     } else if (Amt == NVTBits) {
4526       Lo = MIRBuilder.buildConstant(NVT, 0);
4527       Hi = InL;
4528     } else {
4529       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4530       auto OrLHS =
4531           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4532       auto OrRHS = MIRBuilder.buildLShr(
4533           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4534       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4535     }
4536   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4537     if (Amt.ugt(VTBits)) {
4538       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4539     } else if (Amt.ugt(NVTBits)) {
4540       Lo = MIRBuilder.buildLShr(NVT, InH,
4541                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4542       Hi = MIRBuilder.buildConstant(NVT, 0);
4543     } else if (Amt == NVTBits) {
4544       Lo = InH;
4545       Hi = MIRBuilder.buildConstant(NVT, 0);
4546     } else {
4547       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4548 
4549       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4550       auto OrRHS = MIRBuilder.buildShl(
4551           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4552 
4553       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4554       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4555     }
4556   } else {
4557     if (Amt.ugt(VTBits)) {
4558       Hi = Lo = MIRBuilder.buildAShr(
4559           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4560     } else if (Amt.ugt(NVTBits)) {
4561       Lo = MIRBuilder.buildAShr(NVT, InH,
4562                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4563       Hi = MIRBuilder.buildAShr(NVT, InH,
4564                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4565     } else if (Amt == NVTBits) {
4566       Lo = InH;
4567       Hi = MIRBuilder.buildAShr(NVT, InH,
4568                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4569     } else {
4570       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4571 
4572       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4573       auto OrRHS = MIRBuilder.buildShl(
4574           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4575 
4576       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4577       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4578     }
4579   }
4580 
4581   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4582   MI.eraseFromParent();
4583 
4584   return Legalized;
4585 }
4586 
4587 // TODO: Optimize if constant shift amount.
4588 LegalizerHelper::LegalizeResult
4589 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4590                                    LLT RequestedTy) {
4591   if (TypeIdx == 1) {
4592     Observer.changingInstr(MI);
4593     narrowScalarSrc(MI, RequestedTy, 2);
4594     Observer.changedInstr(MI);
4595     return Legalized;
4596   }
4597 
4598   Register DstReg = MI.getOperand(0).getReg();
4599   LLT DstTy = MRI.getType(DstReg);
4600   if (DstTy.isVector())
4601     return UnableToLegalize;
4602 
4603   Register Amt = MI.getOperand(2).getReg();
4604   LLT ShiftAmtTy = MRI.getType(Amt);
4605   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4606   if (DstEltSize % 2 != 0)
4607     return UnableToLegalize;
4608 
4609   // Ignore the input type. We can only go to exactly half the size of the
4610   // input. If that isn't small enough, the resulting pieces will be further
4611   // legalized.
4612   const unsigned NewBitSize = DstEltSize / 2;
4613   const LLT HalfTy = LLT::scalar(NewBitSize);
4614   const LLT CondTy = LLT::scalar(1);
4615 
4616   if (const MachineInstr *KShiftAmt =
4617           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4618     return narrowScalarShiftByConstant(
4619         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4620   }
4621 
4622   // TODO: Expand with known bits.
4623 
4624   // Handle the fully general expansion by an unknown amount.
4625   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4626 
4627   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4628   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4629   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4630 
4631   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4632   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4633 
4634   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4635   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4636   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4637 
4638   Register ResultRegs[2];
4639   switch (MI.getOpcode()) {
4640   case TargetOpcode::G_SHL: {
4641     // Short: ShAmt < NewBitSize
4642     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4643 
4644     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4645     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4646     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4647 
4648     // Long: ShAmt >= NewBitSize
4649     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4650     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4651 
4652     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4653     auto Hi = MIRBuilder.buildSelect(
4654         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4655 
4656     ResultRegs[0] = Lo.getReg(0);
4657     ResultRegs[1] = Hi.getReg(0);
4658     break;
4659   }
4660   case TargetOpcode::G_LSHR:
4661   case TargetOpcode::G_ASHR: {
4662     // Short: ShAmt < NewBitSize
4663     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4664 
4665     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4666     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4667     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4668 
4669     // Long: ShAmt >= NewBitSize
4670     MachineInstrBuilder HiL;
4671     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4672       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4673     } else {
4674       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4675       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4676     }
4677     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4678                                      {InH, AmtExcess});     // Lo from Hi part.
4679 
4680     auto Lo = MIRBuilder.buildSelect(
4681         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4682 
4683     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4684 
4685     ResultRegs[0] = Lo.getReg(0);
4686     ResultRegs[1] = Hi.getReg(0);
4687     break;
4688   }
4689   default:
4690     llvm_unreachable("not a shift");
4691   }
4692 
4693   MIRBuilder.buildMerge(DstReg, ResultRegs);
4694   MI.eraseFromParent();
4695   return Legalized;
4696 }
4697 
4698 LegalizerHelper::LegalizeResult
4699 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4700                                        LLT MoreTy) {
4701   assert(TypeIdx == 0 && "Expecting only Idx 0");
4702 
4703   Observer.changingInstr(MI);
4704   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4705     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4706     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4707     moreElementsVectorSrc(MI, MoreTy, I);
4708   }
4709 
4710   MachineBasicBlock &MBB = *MI.getParent();
4711   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4712   moreElementsVectorDst(MI, MoreTy, 0);
4713   Observer.changedInstr(MI);
4714   return Legalized;
4715 }
4716 
4717 LegalizerHelper::LegalizeResult
4718 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4719                                     LLT MoreTy) {
4720   unsigned Opc = MI.getOpcode();
4721   switch (Opc) {
4722   case TargetOpcode::G_IMPLICIT_DEF:
4723   case TargetOpcode::G_LOAD: {
4724     if (TypeIdx != 0)
4725       return UnableToLegalize;
4726     Observer.changingInstr(MI);
4727     moreElementsVectorDst(MI, MoreTy, 0);
4728     Observer.changedInstr(MI);
4729     return Legalized;
4730   }
4731   case TargetOpcode::G_STORE:
4732     if (TypeIdx != 0)
4733       return UnableToLegalize;
4734     Observer.changingInstr(MI);
4735     moreElementsVectorSrc(MI, MoreTy, 0);
4736     Observer.changedInstr(MI);
4737     return Legalized;
4738   case TargetOpcode::G_AND:
4739   case TargetOpcode::G_OR:
4740   case TargetOpcode::G_XOR:
4741   case TargetOpcode::G_SMIN:
4742   case TargetOpcode::G_SMAX:
4743   case TargetOpcode::G_UMIN:
4744   case TargetOpcode::G_UMAX:
4745   case TargetOpcode::G_FMINNUM:
4746   case TargetOpcode::G_FMAXNUM:
4747   case TargetOpcode::G_FMINNUM_IEEE:
4748   case TargetOpcode::G_FMAXNUM_IEEE:
4749   case TargetOpcode::G_FMINIMUM:
4750   case TargetOpcode::G_FMAXIMUM: {
4751     Observer.changingInstr(MI);
4752     moreElementsVectorSrc(MI, MoreTy, 1);
4753     moreElementsVectorSrc(MI, MoreTy, 2);
4754     moreElementsVectorDst(MI, MoreTy, 0);
4755     Observer.changedInstr(MI);
4756     return Legalized;
4757   }
4758   case TargetOpcode::G_EXTRACT:
4759     if (TypeIdx != 1)
4760       return UnableToLegalize;
4761     Observer.changingInstr(MI);
4762     moreElementsVectorSrc(MI, MoreTy, 1);
4763     Observer.changedInstr(MI);
4764     return Legalized;
4765   case TargetOpcode::G_INSERT:
4766   case TargetOpcode::G_FREEZE:
4767     if (TypeIdx != 0)
4768       return UnableToLegalize;
4769     Observer.changingInstr(MI);
4770     moreElementsVectorSrc(MI, MoreTy, 1);
4771     moreElementsVectorDst(MI, MoreTy, 0);
4772     Observer.changedInstr(MI);
4773     return Legalized;
4774   case TargetOpcode::G_SELECT:
4775     if (TypeIdx != 0)
4776       return UnableToLegalize;
4777     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4778       return UnableToLegalize;
4779 
4780     Observer.changingInstr(MI);
4781     moreElementsVectorSrc(MI, MoreTy, 2);
4782     moreElementsVectorSrc(MI, MoreTy, 3);
4783     moreElementsVectorDst(MI, MoreTy, 0);
4784     Observer.changedInstr(MI);
4785     return Legalized;
4786   case TargetOpcode::G_UNMERGE_VALUES: {
4787     if (TypeIdx != 1)
4788       return UnableToLegalize;
4789 
4790     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4791     int NumDst = MI.getNumOperands() - 1;
4792     moreElementsVectorSrc(MI, MoreTy, NumDst);
4793 
4794     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4795     for (int I = 0; I != NumDst; ++I)
4796       MIB.addDef(MI.getOperand(I).getReg());
4797 
4798     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4799     for (int I = NumDst; I != NewNumDst; ++I)
4800       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4801 
4802     MIB.addUse(MI.getOperand(NumDst).getReg());
4803     MI.eraseFromParent();
4804     return Legalized;
4805   }
4806   case TargetOpcode::G_PHI:
4807     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4808   default:
4809     return UnableToLegalize;
4810   }
4811 }
4812 
4813 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4814                                         ArrayRef<Register> Src1Regs,
4815                                         ArrayRef<Register> Src2Regs,
4816                                         LLT NarrowTy) {
4817   MachineIRBuilder &B = MIRBuilder;
4818   unsigned SrcParts = Src1Regs.size();
4819   unsigned DstParts = DstRegs.size();
4820 
4821   unsigned DstIdx = 0; // Low bits of the result.
4822   Register FactorSum =
4823       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4824   DstRegs[DstIdx] = FactorSum;
4825 
4826   unsigned CarrySumPrevDstIdx;
4827   SmallVector<Register, 4> Factors;
4828 
4829   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4830     // Collect low parts of muls for DstIdx.
4831     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4832          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4833       MachineInstrBuilder Mul =
4834           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4835       Factors.push_back(Mul.getReg(0));
4836     }
4837     // Collect high parts of muls from previous DstIdx.
4838     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4839          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4840       MachineInstrBuilder Umulh =
4841           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4842       Factors.push_back(Umulh.getReg(0));
4843     }
4844     // Add CarrySum from additions calculated for previous DstIdx.
4845     if (DstIdx != 1) {
4846       Factors.push_back(CarrySumPrevDstIdx);
4847     }
4848 
4849     Register CarrySum;
4850     // Add all factors and accumulate all carries into CarrySum.
4851     if (DstIdx != DstParts - 1) {
4852       MachineInstrBuilder Uaddo =
4853           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4854       FactorSum = Uaddo.getReg(0);
4855       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4856       for (unsigned i = 2; i < Factors.size(); ++i) {
4857         MachineInstrBuilder Uaddo =
4858             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4859         FactorSum = Uaddo.getReg(0);
4860         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4861         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4862       }
4863     } else {
4864       // Since value for the next index is not calculated, neither is CarrySum.
4865       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4866       for (unsigned i = 2; i < Factors.size(); ++i)
4867         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4868     }
4869 
4870     CarrySumPrevDstIdx = CarrySum;
4871     DstRegs[DstIdx] = FactorSum;
4872     Factors.clear();
4873   }
4874 }
4875 
4876 LegalizerHelper::LegalizeResult
4877 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4878                                     LLT NarrowTy) {
4879   if (TypeIdx != 0)
4880     return UnableToLegalize;
4881 
4882   Register DstReg = MI.getOperand(0).getReg();
4883   LLT DstType = MRI.getType(DstReg);
4884   // FIXME: add support for vector types
4885   if (DstType.isVector())
4886     return UnableToLegalize;
4887 
4888   uint64_t SizeOp0 = DstType.getSizeInBits();
4889   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4890 
4891   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4892   // NarrowSize.
4893   if (SizeOp0 % NarrowSize != 0)
4894     return UnableToLegalize;
4895 
4896   // Expand in terms of carry-setting/consuming G_<Op>E instructions.
4897   int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
4898 
4899   unsigned Opcode = MI.getOpcode();
4900   unsigned OpO, OpE, OpF;
4901   switch (Opcode) {
4902   case TargetOpcode::G_SADDO:
4903   case TargetOpcode::G_SADDE:
4904   case TargetOpcode::G_UADDO:
4905   case TargetOpcode::G_UADDE:
4906   case TargetOpcode::G_ADD:
4907     OpO = TargetOpcode::G_UADDO;
4908     OpE = TargetOpcode::G_UADDE;
4909     OpF = TargetOpcode::G_UADDE;
4910     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4911       OpF = TargetOpcode::G_SADDE;
4912     break;
4913   case TargetOpcode::G_SSUBO:
4914   case TargetOpcode::G_SSUBE:
4915   case TargetOpcode::G_USUBO:
4916   case TargetOpcode::G_USUBE:
4917   case TargetOpcode::G_SUB:
4918     OpO = TargetOpcode::G_USUBO;
4919     OpE = TargetOpcode::G_USUBE;
4920     OpF = TargetOpcode::G_USUBE;
4921     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4922       OpF = TargetOpcode::G_SSUBE;
4923     break;
4924   default:
4925     llvm_unreachable("Unexpected add/sub opcode!");
4926   }
4927 
4928   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4929   unsigned NumDefs = MI.getNumExplicitDefs();
4930   Register Src1 = MI.getOperand(NumDefs).getReg();
4931   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4932   Register CarryDst;
4933   if (NumDefs == 2)
4934     CarryDst = MI.getOperand(1).getReg();
4935   Register CarryIn;
4936   if (MI.getNumOperands() == NumDefs + 3)
4937     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4938 
4939   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
4940   extractParts(Src1, NarrowTy, NumParts, Src1Regs);
4941   extractParts(Src2, NarrowTy, NumParts, Src2Regs);
4942 
4943   for (int i = 0; i < NumParts; ++i) {
4944     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4945     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4946     // Forward the final carry-out to the destination register
4947     if (i == NumParts - 1 && CarryDst)
4948       CarryOut = CarryDst;
4949 
4950     if (!CarryIn) {
4951       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4952                             {Src1Regs[i], Src2Regs[i]});
4953     } else if (i == NumParts - 1) {
4954       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4955                             {Src1Regs[i], Src2Regs[i], CarryIn});
4956     } else {
4957       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4958                             {Src1Regs[i], Src2Regs[i], CarryIn});
4959     }
4960 
4961     DstRegs.push_back(DstReg);
4962     CarryIn = CarryOut;
4963   }
4964   MIRBuilder.buildMerge(DstReg, DstRegs);
4965   MI.eraseFromParent();
4966   return Legalized;
4967 }
4968 
4969 LegalizerHelper::LegalizeResult
4970 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4971   Register DstReg = MI.getOperand(0).getReg();
4972   Register Src1 = MI.getOperand(1).getReg();
4973   Register Src2 = MI.getOperand(2).getReg();
4974 
4975   LLT Ty = MRI.getType(DstReg);
4976   if (Ty.isVector())
4977     return UnableToLegalize;
4978 
4979   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4980   unsigned DstSize = Ty.getSizeInBits();
4981   unsigned NarrowSize = NarrowTy.getSizeInBits();
4982   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4983     return UnableToLegalize;
4984 
4985   unsigned NumDstParts = DstSize / NarrowSize;
4986   unsigned NumSrcParts = SrcSize / NarrowSize;
4987   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4988   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4989 
4990   SmallVector<Register, 2> Src1Parts, Src2Parts;
4991   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4992   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4993   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4994   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4995 
4996   // Take only high half of registers if this is high mul.
4997   ArrayRef<Register> DstRegs(
4998       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4999   MIRBuilder.buildMerge(DstReg, DstRegs);
5000   MI.eraseFromParent();
5001   return Legalized;
5002 }
5003 
5004 LegalizerHelper::LegalizeResult
5005 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5006                                    LLT NarrowTy) {
5007   if (TypeIdx != 0)
5008     return UnableToLegalize;
5009 
5010   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5011 
5012   Register Src = MI.getOperand(1).getReg();
5013   LLT SrcTy = MRI.getType(Src);
5014 
5015   // If all finite floats fit into the narrowed integer type, we can just swap
5016   // out the result type. This is practically only useful for conversions from
5017   // half to at least 16-bits, so just handle the one case.
5018   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5019       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5020     return UnableToLegalize;
5021 
5022   Observer.changingInstr(MI);
5023   narrowScalarDst(MI, NarrowTy, 0,
5024                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5025   Observer.changedInstr(MI);
5026   return Legalized;
5027 }
5028 
5029 LegalizerHelper::LegalizeResult
5030 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5031                                      LLT NarrowTy) {
5032   if (TypeIdx != 1)
5033     return UnableToLegalize;
5034 
5035   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5036 
5037   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5038   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5039   // NarrowSize.
5040   if (SizeOp1 % NarrowSize != 0)
5041     return UnableToLegalize;
5042   int NumParts = SizeOp1 / NarrowSize;
5043 
5044   SmallVector<Register, 2> SrcRegs, DstRegs;
5045   SmallVector<uint64_t, 2> Indexes;
5046   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5047 
5048   Register OpReg = MI.getOperand(0).getReg();
5049   uint64_t OpStart = MI.getOperand(2).getImm();
5050   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5051   for (int i = 0; i < NumParts; ++i) {
5052     unsigned SrcStart = i * NarrowSize;
5053 
5054     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5055       // No part of the extract uses this subregister, ignore it.
5056       continue;
5057     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5058       // The entire subregister is extracted, forward the value.
5059       DstRegs.push_back(SrcRegs[i]);
5060       continue;
5061     }
5062 
5063     // OpSegStart is where this destination segment would start in OpReg if it
5064     // extended infinitely in both directions.
5065     int64_t ExtractOffset;
5066     uint64_t SegSize;
5067     if (OpStart < SrcStart) {
5068       ExtractOffset = 0;
5069       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5070     } else {
5071       ExtractOffset = OpStart - SrcStart;
5072       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5073     }
5074 
5075     Register SegReg = SrcRegs[i];
5076     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5077       // A genuine extract is needed.
5078       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5079       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5080     }
5081 
5082     DstRegs.push_back(SegReg);
5083   }
5084 
5085   Register DstReg = MI.getOperand(0).getReg();
5086   if (MRI.getType(DstReg).isVector())
5087     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5088   else if (DstRegs.size() > 1)
5089     MIRBuilder.buildMerge(DstReg, DstRegs);
5090   else
5091     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5092   MI.eraseFromParent();
5093   return Legalized;
5094 }
5095 
5096 LegalizerHelper::LegalizeResult
5097 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5098                                     LLT NarrowTy) {
5099   // FIXME: Don't know how to handle secondary types yet.
5100   if (TypeIdx != 0)
5101     return UnableToLegalize;
5102 
5103   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
5104   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5105 
5106   // FIXME: add support for when SizeOp0 isn't an exact multiple of
5107   // NarrowSize.
5108   if (SizeOp0 % NarrowSize != 0)
5109     return UnableToLegalize;
5110 
5111   int NumParts = SizeOp0 / NarrowSize;
5112 
5113   SmallVector<Register, 2> SrcRegs, DstRegs;
5114   SmallVector<uint64_t, 2> Indexes;
5115   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5116 
5117   Register OpReg = MI.getOperand(2).getReg();
5118   uint64_t OpStart = MI.getOperand(3).getImm();
5119   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5120   for (int i = 0; i < NumParts; ++i) {
5121     unsigned DstStart = i * NarrowSize;
5122 
5123     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5124       // No part of the insert affects this subregister, forward the original.
5125       DstRegs.push_back(SrcRegs[i]);
5126       continue;
5127     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5128       // The entire subregister is defined by this insert, forward the new
5129       // value.
5130       DstRegs.push_back(OpReg);
5131       continue;
5132     }
5133 
5134     // OpSegStart is where this destination segment would start in OpReg if it
5135     // extended infinitely in both directions.
5136     int64_t ExtractOffset, InsertOffset;
5137     uint64_t SegSize;
5138     if (OpStart < DstStart) {
5139       InsertOffset = 0;
5140       ExtractOffset = DstStart - OpStart;
5141       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5142     } else {
5143       InsertOffset = OpStart - DstStart;
5144       ExtractOffset = 0;
5145       SegSize =
5146         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5147     }
5148 
5149     Register SegReg = OpReg;
5150     if (ExtractOffset != 0 || SegSize != OpSize) {
5151       // A genuine extract is needed.
5152       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5153       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5154     }
5155 
5156     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5157     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
5158     DstRegs.push_back(DstReg);
5159   }
5160 
5161   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
5162   Register DstReg = MI.getOperand(0).getReg();
5163   if(MRI.getType(DstReg).isVector())
5164     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5165   else
5166     MIRBuilder.buildMerge(DstReg, DstRegs);
5167   MI.eraseFromParent();
5168   return Legalized;
5169 }
5170 
5171 LegalizerHelper::LegalizeResult
5172 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5173                                    LLT NarrowTy) {
5174   Register DstReg = MI.getOperand(0).getReg();
5175   LLT DstTy = MRI.getType(DstReg);
5176 
5177   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5178 
5179   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5180   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5181   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5182   LLT LeftoverTy;
5183   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5184                     Src0Regs, Src0LeftoverRegs))
5185     return UnableToLegalize;
5186 
5187   LLT Unused;
5188   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5189                     Src1Regs, Src1LeftoverRegs))
5190     llvm_unreachable("inconsistent extractParts result");
5191 
5192   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5193     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5194                                         {Src0Regs[I], Src1Regs[I]});
5195     DstRegs.push_back(Inst.getReg(0));
5196   }
5197 
5198   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5199     auto Inst = MIRBuilder.buildInstr(
5200       MI.getOpcode(),
5201       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5202     DstLeftoverRegs.push_back(Inst.getReg(0));
5203   }
5204 
5205   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5206               LeftoverTy, DstLeftoverRegs);
5207 
5208   MI.eraseFromParent();
5209   return Legalized;
5210 }
5211 
5212 LegalizerHelper::LegalizeResult
5213 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5214                                  LLT NarrowTy) {
5215   if (TypeIdx != 0)
5216     return UnableToLegalize;
5217 
5218   Register DstReg = MI.getOperand(0).getReg();
5219   Register SrcReg = MI.getOperand(1).getReg();
5220 
5221   LLT DstTy = MRI.getType(DstReg);
5222   if (DstTy.isVector())
5223     return UnableToLegalize;
5224 
5225   SmallVector<Register, 8> Parts;
5226   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5227   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5228   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5229 
5230   MI.eraseFromParent();
5231   return Legalized;
5232 }
5233 
5234 LegalizerHelper::LegalizeResult
5235 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5236                                     LLT NarrowTy) {
5237   if (TypeIdx != 0)
5238     return UnableToLegalize;
5239 
5240   Register CondReg = MI.getOperand(1).getReg();
5241   LLT CondTy = MRI.getType(CondReg);
5242   if (CondTy.isVector()) // TODO: Handle vselect
5243     return UnableToLegalize;
5244 
5245   Register DstReg = MI.getOperand(0).getReg();
5246   LLT DstTy = MRI.getType(DstReg);
5247 
5248   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5249   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5250   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5251   LLT LeftoverTy;
5252   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5253                     Src1Regs, Src1LeftoverRegs))
5254     return UnableToLegalize;
5255 
5256   LLT Unused;
5257   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5258                     Src2Regs, Src2LeftoverRegs))
5259     llvm_unreachable("inconsistent extractParts result");
5260 
5261   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5262     auto Select = MIRBuilder.buildSelect(NarrowTy,
5263                                          CondReg, Src1Regs[I], Src2Regs[I]);
5264     DstRegs.push_back(Select.getReg(0));
5265   }
5266 
5267   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5268     auto Select = MIRBuilder.buildSelect(
5269       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5270     DstLeftoverRegs.push_back(Select.getReg(0));
5271   }
5272 
5273   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5274               LeftoverTy, DstLeftoverRegs);
5275 
5276   MI.eraseFromParent();
5277   return Legalized;
5278 }
5279 
5280 LegalizerHelper::LegalizeResult
5281 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5282                                   LLT NarrowTy) {
5283   if (TypeIdx != 1)
5284     return UnableToLegalize;
5285 
5286   Register DstReg = MI.getOperand(0).getReg();
5287   Register SrcReg = MI.getOperand(1).getReg();
5288   LLT DstTy = MRI.getType(DstReg);
5289   LLT SrcTy = MRI.getType(SrcReg);
5290   unsigned NarrowSize = NarrowTy.getSizeInBits();
5291 
5292   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5293     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5294 
5295     MachineIRBuilder &B = MIRBuilder;
5296     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5297     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5298     auto C_0 = B.buildConstant(NarrowTy, 0);
5299     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5300                                 UnmergeSrc.getReg(1), C_0);
5301     auto LoCTLZ = IsUndef ?
5302       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5303       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5304     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5305     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5306     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5307     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5308 
5309     MI.eraseFromParent();
5310     return Legalized;
5311   }
5312 
5313   return UnableToLegalize;
5314 }
5315 
5316 LegalizerHelper::LegalizeResult
5317 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5318                                   LLT NarrowTy) {
5319   if (TypeIdx != 1)
5320     return UnableToLegalize;
5321 
5322   Register DstReg = MI.getOperand(0).getReg();
5323   Register SrcReg = MI.getOperand(1).getReg();
5324   LLT DstTy = MRI.getType(DstReg);
5325   LLT SrcTy = MRI.getType(SrcReg);
5326   unsigned NarrowSize = NarrowTy.getSizeInBits();
5327 
5328   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5329     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5330 
5331     MachineIRBuilder &B = MIRBuilder;
5332     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5333     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5334     auto C_0 = B.buildConstant(NarrowTy, 0);
5335     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5336                                 UnmergeSrc.getReg(0), C_0);
5337     auto HiCTTZ = IsUndef ?
5338       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5339       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5340     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5341     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5342     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5343     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5344 
5345     MI.eraseFromParent();
5346     return Legalized;
5347   }
5348 
5349   return UnableToLegalize;
5350 }
5351 
5352 LegalizerHelper::LegalizeResult
5353 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5354                                    LLT NarrowTy) {
5355   if (TypeIdx != 1)
5356     return UnableToLegalize;
5357 
5358   Register DstReg = MI.getOperand(0).getReg();
5359   LLT DstTy = MRI.getType(DstReg);
5360   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5361   unsigned NarrowSize = NarrowTy.getSizeInBits();
5362 
5363   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5364     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5365 
5366     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5367     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5368     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5369 
5370     MI.eraseFromParent();
5371     return Legalized;
5372   }
5373 
5374   return UnableToLegalize;
5375 }
5376 
5377 LegalizerHelper::LegalizeResult
5378 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5379   unsigned Opc = MI.getOpcode();
5380   const auto &TII = MIRBuilder.getTII();
5381   auto isSupported = [this](const LegalityQuery &Q) {
5382     auto QAction = LI.getAction(Q).Action;
5383     return QAction == Legal || QAction == Libcall || QAction == Custom;
5384   };
5385   switch (Opc) {
5386   default:
5387     return UnableToLegalize;
5388   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5389     // This trivially expands to CTLZ.
5390     Observer.changingInstr(MI);
5391     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5392     Observer.changedInstr(MI);
5393     return Legalized;
5394   }
5395   case TargetOpcode::G_CTLZ: {
5396     Register DstReg = MI.getOperand(0).getReg();
5397     Register SrcReg = MI.getOperand(1).getReg();
5398     LLT DstTy = MRI.getType(DstReg);
5399     LLT SrcTy = MRI.getType(SrcReg);
5400     unsigned Len = SrcTy.getSizeInBits();
5401 
5402     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5403       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5404       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5405       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5406       auto ICmp = MIRBuilder.buildICmp(
5407           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5408       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5409       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5410       MI.eraseFromParent();
5411       return Legalized;
5412     }
5413     // for now, we do this:
5414     // NewLen = NextPowerOf2(Len);
5415     // x = x | (x >> 1);
5416     // x = x | (x >> 2);
5417     // ...
5418     // x = x | (x >>16);
5419     // x = x | (x >>32); // for 64-bit input
5420     // Upto NewLen/2
5421     // return Len - popcount(x);
5422     //
5423     // Ref: "Hacker's Delight" by Henry Warren
5424     Register Op = SrcReg;
5425     unsigned NewLen = PowerOf2Ceil(Len);
5426     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5427       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5428       auto MIBOp = MIRBuilder.buildOr(
5429           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5430       Op = MIBOp.getReg(0);
5431     }
5432     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5433     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5434                         MIBPop);
5435     MI.eraseFromParent();
5436     return Legalized;
5437   }
5438   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5439     // This trivially expands to CTTZ.
5440     Observer.changingInstr(MI);
5441     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5442     Observer.changedInstr(MI);
5443     return Legalized;
5444   }
5445   case TargetOpcode::G_CTTZ: {
5446     Register DstReg = MI.getOperand(0).getReg();
5447     Register SrcReg = MI.getOperand(1).getReg();
5448     LLT DstTy = MRI.getType(DstReg);
5449     LLT SrcTy = MRI.getType(SrcReg);
5450 
5451     unsigned Len = SrcTy.getSizeInBits();
5452     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5453       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5454       // zero.
5455       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5456       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5457       auto ICmp = MIRBuilder.buildICmp(
5458           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5459       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5460       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5461       MI.eraseFromParent();
5462       return Legalized;
5463     }
5464     // for now, we use: { return popcount(~x & (x - 1)); }
5465     // unless the target has ctlz but not ctpop, in which case we use:
5466     // { return 32 - nlz(~x & (x-1)); }
5467     // Ref: "Hacker's Delight" by Henry Warren
5468     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5469     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5470     auto MIBTmp = MIRBuilder.buildAnd(
5471         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5472     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5473         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5474       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5475       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5476                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5477       MI.eraseFromParent();
5478       return Legalized;
5479     }
5480     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5481     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5482     return Legalized;
5483   }
5484   case TargetOpcode::G_CTPOP: {
5485     Register SrcReg = MI.getOperand(1).getReg();
5486     LLT Ty = MRI.getType(SrcReg);
5487     unsigned Size = Ty.getSizeInBits();
5488     MachineIRBuilder &B = MIRBuilder;
5489 
5490     // Count set bits in blocks of 2 bits. Default approach would be
5491     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5492     // We use following formula instead:
5493     // B2Count = val - { (val >> 1) & 0x55555555 }
5494     // since it gives same result in blocks of 2 with one instruction less.
5495     auto C_1 = B.buildConstant(Ty, 1);
5496     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5497     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5498     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5499     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5500     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5501 
5502     // In order to get count in blocks of 4 add values from adjacent block of 2.
5503     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5504     auto C_2 = B.buildConstant(Ty, 2);
5505     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5506     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5507     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5508     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5509     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5510     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5511 
5512     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5513     // addition since count value sits in range {0,...,8} and 4 bits are enough
5514     // to hold such binary values. After addition high 4 bits still hold count
5515     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5516     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5517     auto C_4 = B.buildConstant(Ty, 4);
5518     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5519     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5520     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5521     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5522     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5523 
5524     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5525     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5526     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5527     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5528     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5529 
5530     // Shift count result from 8 high bits to low bits.
5531     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5532     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5533 
5534     MI.eraseFromParent();
5535     return Legalized;
5536   }
5537   }
5538 }
5539 
5540 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5541 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5542                                         Register Reg, unsigned BW) {
5543   return matchUnaryPredicate(
5544       MRI, Reg,
5545       [=](const Constant *C) {
5546         // Null constant here means an undef.
5547         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5548         return !CI || CI->getValue().urem(BW) != 0;
5549       },
5550       /*AllowUndefs*/ true);
5551 }
5552 
5553 LegalizerHelper::LegalizeResult
5554 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5555   Register Dst = MI.getOperand(0).getReg();
5556   Register X = MI.getOperand(1).getReg();
5557   Register Y = MI.getOperand(2).getReg();
5558   Register Z = MI.getOperand(3).getReg();
5559   LLT Ty = MRI.getType(Dst);
5560   LLT ShTy = MRI.getType(Z);
5561 
5562   unsigned BW = Ty.getScalarSizeInBits();
5563 
5564   if (!isPowerOf2_32(BW))
5565     return UnableToLegalize;
5566 
5567   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5568   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5569 
5570   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5571     // fshl X, Y, Z -> fshr X, Y, -Z
5572     // fshr X, Y, Z -> fshl X, Y, -Z
5573     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5574     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5575   } else {
5576     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5577     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5578     auto One = MIRBuilder.buildConstant(ShTy, 1);
5579     if (IsFSHL) {
5580       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5581       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5582     } else {
5583       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5584       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5585     }
5586 
5587     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5588   }
5589 
5590   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5591   MI.eraseFromParent();
5592   return Legalized;
5593 }
5594 
5595 LegalizerHelper::LegalizeResult
5596 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5597   Register Dst = MI.getOperand(0).getReg();
5598   Register X = MI.getOperand(1).getReg();
5599   Register Y = MI.getOperand(2).getReg();
5600   Register Z = MI.getOperand(3).getReg();
5601   LLT Ty = MRI.getType(Dst);
5602   LLT ShTy = MRI.getType(Z);
5603 
5604   const unsigned BW = Ty.getScalarSizeInBits();
5605   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5606 
5607   Register ShX, ShY;
5608   Register ShAmt, InvShAmt;
5609 
5610   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5611   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5612     // fshl: X << C | Y >> (BW - C)
5613     // fshr: X << (BW - C) | Y >> C
5614     // where C = Z % BW is not zero
5615     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5616     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5617     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5618     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5619     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5620   } else {
5621     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5622     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5623     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5624     if (isPowerOf2_32(BW)) {
5625       // Z % BW -> Z & (BW - 1)
5626       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5627       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5628       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5629       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5630     } else {
5631       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5632       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5633       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5634     }
5635 
5636     auto One = MIRBuilder.buildConstant(ShTy, 1);
5637     if (IsFSHL) {
5638       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5639       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5640       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5641     } else {
5642       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5643       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5644       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5645     }
5646   }
5647 
5648   MIRBuilder.buildOr(Dst, ShX, ShY);
5649   MI.eraseFromParent();
5650   return Legalized;
5651 }
5652 
5653 LegalizerHelper::LegalizeResult
5654 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5655   // These operations approximately do the following (while avoiding undefined
5656   // shifts by BW):
5657   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5658   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5659   Register Dst = MI.getOperand(0).getReg();
5660   LLT Ty = MRI.getType(Dst);
5661   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5662 
5663   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5664   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5665 
5666   // TODO: Use smarter heuristic that accounts for vector legalization.
5667   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5668     return lowerFunnelShiftAsShifts(MI);
5669 
5670   // This only works for powers of 2, fallback to shifts if it fails.
5671   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5672   if (Result == UnableToLegalize)
5673     return lowerFunnelShiftAsShifts(MI);
5674   return Result;
5675 }
5676 
5677 LegalizerHelper::LegalizeResult
5678 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5679   Register Dst = MI.getOperand(0).getReg();
5680   Register Src = MI.getOperand(1).getReg();
5681   Register Amt = MI.getOperand(2).getReg();
5682   LLT AmtTy = MRI.getType(Amt);
5683   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5684   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5685   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5686   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5687   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5688   MI.eraseFromParent();
5689   return Legalized;
5690 }
5691 
5692 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5693   Register Dst = MI.getOperand(0).getReg();
5694   Register Src = MI.getOperand(1).getReg();
5695   Register Amt = MI.getOperand(2).getReg();
5696   LLT DstTy = MRI.getType(Dst);
5697   LLT SrcTy = MRI.getType(Dst);
5698   LLT AmtTy = MRI.getType(Amt);
5699 
5700   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5701   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5702 
5703   MIRBuilder.setInstrAndDebugLoc(MI);
5704 
5705   // If a rotate in the other direction is supported, use it.
5706   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5707   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5708       isPowerOf2_32(EltSizeInBits))
5709     return lowerRotateWithReverseRotate(MI);
5710 
5711   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5712   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5713   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5714   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5715   Register ShVal;
5716   Register RevShiftVal;
5717   if (isPowerOf2_32(EltSizeInBits)) {
5718     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5719     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5720     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5721     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5722     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5723     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5724     RevShiftVal =
5725         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5726   } else {
5727     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5728     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5729     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5730     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5731     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5732     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5733     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5734     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5735     RevShiftVal =
5736         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5737   }
5738   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5739   MI.eraseFromParent();
5740   return Legalized;
5741 }
5742 
5743 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5744 // representation.
5745 LegalizerHelper::LegalizeResult
5746 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5747   Register Dst = MI.getOperand(0).getReg();
5748   Register Src = MI.getOperand(1).getReg();
5749   const LLT S64 = LLT::scalar(64);
5750   const LLT S32 = LLT::scalar(32);
5751   const LLT S1 = LLT::scalar(1);
5752 
5753   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5754 
5755   // unsigned cul2f(ulong u) {
5756   //   uint lz = clz(u);
5757   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5758   //   u = (u << lz) & 0x7fffffffffffffffUL;
5759   //   ulong t = u & 0xffffffffffUL;
5760   //   uint v = (e << 23) | (uint)(u >> 40);
5761   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5762   //   return as_float(v + r);
5763   // }
5764 
5765   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5766   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5767 
5768   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5769 
5770   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5771   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5772 
5773   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5774   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5775 
5776   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5777   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5778 
5779   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5780 
5781   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5782   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5783 
5784   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5785   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5786   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5787 
5788   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5789   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5790   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5791   auto One = MIRBuilder.buildConstant(S32, 1);
5792 
5793   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5794   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5795   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5796   MIRBuilder.buildAdd(Dst, V, R);
5797 
5798   MI.eraseFromParent();
5799   return Legalized;
5800 }
5801 
5802 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5803   Register Dst = MI.getOperand(0).getReg();
5804   Register Src = MI.getOperand(1).getReg();
5805   LLT DstTy = MRI.getType(Dst);
5806   LLT SrcTy = MRI.getType(Src);
5807 
5808   if (SrcTy == LLT::scalar(1)) {
5809     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5810     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5811     MIRBuilder.buildSelect(Dst, Src, True, False);
5812     MI.eraseFromParent();
5813     return Legalized;
5814   }
5815 
5816   if (SrcTy != LLT::scalar(64))
5817     return UnableToLegalize;
5818 
5819   if (DstTy == LLT::scalar(32)) {
5820     // TODO: SelectionDAG has several alternative expansions to port which may
5821     // be more reasonble depending on the available instructions. If a target
5822     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5823     // intermediate type, this is probably worse.
5824     return lowerU64ToF32BitOps(MI);
5825   }
5826 
5827   return UnableToLegalize;
5828 }
5829 
5830 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5831   Register Dst = MI.getOperand(0).getReg();
5832   Register Src = MI.getOperand(1).getReg();
5833   LLT DstTy = MRI.getType(Dst);
5834   LLT SrcTy = MRI.getType(Src);
5835 
5836   const LLT S64 = LLT::scalar(64);
5837   const LLT S32 = LLT::scalar(32);
5838   const LLT S1 = LLT::scalar(1);
5839 
5840   if (SrcTy == S1) {
5841     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5842     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5843     MIRBuilder.buildSelect(Dst, Src, True, False);
5844     MI.eraseFromParent();
5845     return Legalized;
5846   }
5847 
5848   if (SrcTy != S64)
5849     return UnableToLegalize;
5850 
5851   if (DstTy == S32) {
5852     // signed cl2f(long l) {
5853     //   long s = l >> 63;
5854     //   float r = cul2f((l + s) ^ s);
5855     //   return s ? -r : r;
5856     // }
5857     Register L = Src;
5858     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5859     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5860 
5861     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5862     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5863     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5864 
5865     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5866     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5867                                             MIRBuilder.buildConstant(S64, 0));
5868     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5869     MI.eraseFromParent();
5870     return Legalized;
5871   }
5872 
5873   return UnableToLegalize;
5874 }
5875 
5876 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5877   Register Dst = MI.getOperand(0).getReg();
5878   Register Src = MI.getOperand(1).getReg();
5879   LLT DstTy = MRI.getType(Dst);
5880   LLT SrcTy = MRI.getType(Src);
5881   const LLT S64 = LLT::scalar(64);
5882   const LLT S32 = LLT::scalar(32);
5883 
5884   if (SrcTy != S64 && SrcTy != S32)
5885     return UnableToLegalize;
5886   if (DstTy != S32 && DstTy != S64)
5887     return UnableToLegalize;
5888 
5889   // FPTOSI gives same result as FPTOUI for positive signed integers.
5890   // FPTOUI needs to deal with fp values that convert to unsigned integers
5891   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5892 
5893   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5894   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5895                                                 : APFloat::IEEEdouble(),
5896                     APInt::getNullValue(SrcTy.getSizeInBits()));
5897   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5898 
5899   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5900 
5901   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5902   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5903   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5904   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5905   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5906   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5907   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5908 
5909   const LLT S1 = LLT::scalar(1);
5910 
5911   MachineInstrBuilder FCMP =
5912       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5913   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5914 
5915   MI.eraseFromParent();
5916   return Legalized;
5917 }
5918 
5919 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5920   Register Dst = MI.getOperand(0).getReg();
5921   Register Src = MI.getOperand(1).getReg();
5922   LLT DstTy = MRI.getType(Dst);
5923   LLT SrcTy = MRI.getType(Src);
5924   const LLT S64 = LLT::scalar(64);
5925   const LLT S32 = LLT::scalar(32);
5926 
5927   // FIXME: Only f32 to i64 conversions are supported.
5928   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5929     return UnableToLegalize;
5930 
5931   // Expand f32 -> i64 conversion
5932   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5933   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5934 
5935   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5936 
5937   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5938   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5939 
5940   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5941   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5942 
5943   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5944                                            APInt::getSignMask(SrcEltBits));
5945   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5946   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5947   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5948   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5949 
5950   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5951   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5952   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5953 
5954   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5955   R = MIRBuilder.buildZExt(DstTy, R);
5956 
5957   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5958   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5959   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5960   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5961 
5962   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5963   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5964 
5965   const LLT S1 = LLT::scalar(1);
5966   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5967                                     S1, Exponent, ExponentLoBit);
5968 
5969   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5970 
5971   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5972   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5973 
5974   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5975 
5976   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5977                                           S1, Exponent, ZeroSrcTy);
5978 
5979   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5980   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5981 
5982   MI.eraseFromParent();
5983   return Legalized;
5984 }
5985 
5986 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5987 LegalizerHelper::LegalizeResult
5988 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5989   Register Dst = MI.getOperand(0).getReg();
5990   Register Src = MI.getOperand(1).getReg();
5991 
5992   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5993     return UnableToLegalize;
5994 
5995   const unsigned ExpMask = 0x7ff;
5996   const unsigned ExpBiasf64 = 1023;
5997   const unsigned ExpBiasf16 = 15;
5998   const LLT S32 = LLT::scalar(32);
5999   const LLT S1 = LLT::scalar(1);
6000 
6001   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6002   Register U = Unmerge.getReg(0);
6003   Register UH = Unmerge.getReg(1);
6004 
6005   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6006   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6007 
6008   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6009   // add the f16 bias (15) to get the biased exponent for the f16 format.
6010   E = MIRBuilder.buildAdd(
6011     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6012 
6013   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6014   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6015 
6016   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6017                                        MIRBuilder.buildConstant(S32, 0x1ff));
6018   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6019 
6020   auto Zero = MIRBuilder.buildConstant(S32, 0);
6021   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6022   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6023   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6024 
6025   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6026   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6027   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6028   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6029 
6030   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6031   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6032 
6033   // N = M | (E << 12);
6034   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6035   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6036 
6037   // B = clamp(1-E, 0, 13);
6038   auto One = MIRBuilder.buildConstant(S32, 1);
6039   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6040   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6041   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6042 
6043   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6044                                        MIRBuilder.buildConstant(S32, 0x1000));
6045 
6046   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6047   auto D0 = MIRBuilder.buildShl(S32, D, B);
6048 
6049   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6050                                              D0, SigSetHigh);
6051   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6052   D = MIRBuilder.buildOr(S32, D, D1);
6053 
6054   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6055   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6056 
6057   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6058   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6059 
6060   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6061                                        MIRBuilder.buildConstant(S32, 3));
6062   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6063 
6064   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6065                                        MIRBuilder.buildConstant(S32, 5));
6066   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6067 
6068   V1 = MIRBuilder.buildOr(S32, V0, V1);
6069   V = MIRBuilder.buildAdd(S32, V, V1);
6070 
6071   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6072                                        E, MIRBuilder.buildConstant(S32, 30));
6073   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6074                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6075 
6076   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6077                                          E, MIRBuilder.buildConstant(S32, 1039));
6078   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6079 
6080   // Extract the sign bit.
6081   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6082   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6083 
6084   // Insert the sign bit
6085   V = MIRBuilder.buildOr(S32, Sign, V);
6086 
6087   MIRBuilder.buildTrunc(Dst, V);
6088   MI.eraseFromParent();
6089   return Legalized;
6090 }
6091 
6092 LegalizerHelper::LegalizeResult
6093 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6094   Register Dst = MI.getOperand(0).getReg();
6095   Register Src = MI.getOperand(1).getReg();
6096 
6097   LLT DstTy = MRI.getType(Dst);
6098   LLT SrcTy = MRI.getType(Src);
6099   const LLT S64 = LLT::scalar(64);
6100   const LLT S16 = LLT::scalar(16);
6101 
6102   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6103     return lowerFPTRUNC_F64_TO_F16(MI);
6104 
6105   return UnableToLegalize;
6106 }
6107 
6108 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6109 // multiplication tree.
6110 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6111   Register Dst = MI.getOperand(0).getReg();
6112   Register Src0 = MI.getOperand(1).getReg();
6113   Register Src1 = MI.getOperand(2).getReg();
6114   LLT Ty = MRI.getType(Dst);
6115 
6116   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6117   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6118   MI.eraseFromParent();
6119   return Legalized;
6120 }
6121 
6122 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6123   switch (Opc) {
6124   case TargetOpcode::G_SMIN:
6125     return CmpInst::ICMP_SLT;
6126   case TargetOpcode::G_SMAX:
6127     return CmpInst::ICMP_SGT;
6128   case TargetOpcode::G_UMIN:
6129     return CmpInst::ICMP_ULT;
6130   case TargetOpcode::G_UMAX:
6131     return CmpInst::ICMP_UGT;
6132   default:
6133     llvm_unreachable("not in integer min/max");
6134   }
6135 }
6136 
6137 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6138   Register Dst = MI.getOperand(0).getReg();
6139   Register Src0 = MI.getOperand(1).getReg();
6140   Register Src1 = MI.getOperand(2).getReg();
6141 
6142   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6143   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6144 
6145   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6146   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6147 
6148   MI.eraseFromParent();
6149   return Legalized;
6150 }
6151 
6152 LegalizerHelper::LegalizeResult
6153 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6154   Register Dst = MI.getOperand(0).getReg();
6155   Register Src0 = MI.getOperand(1).getReg();
6156   Register Src1 = MI.getOperand(2).getReg();
6157 
6158   const LLT Src0Ty = MRI.getType(Src0);
6159   const LLT Src1Ty = MRI.getType(Src1);
6160 
6161   const int Src0Size = Src0Ty.getScalarSizeInBits();
6162   const int Src1Size = Src1Ty.getScalarSizeInBits();
6163 
6164   auto SignBitMask = MIRBuilder.buildConstant(
6165     Src0Ty, APInt::getSignMask(Src0Size));
6166 
6167   auto NotSignBitMask = MIRBuilder.buildConstant(
6168     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6169 
6170   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6171   Register And1;
6172   if (Src0Ty == Src1Ty) {
6173     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6174   } else if (Src0Size > Src1Size) {
6175     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6176     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6177     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6178     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6179   } else {
6180     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6181     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6182     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6183     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6184   }
6185 
6186   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6187   // constants are a nan and -0.0, but the final result should preserve
6188   // everything.
6189   unsigned Flags = MI.getFlags();
6190   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6191 
6192   MI.eraseFromParent();
6193   return Legalized;
6194 }
6195 
6196 LegalizerHelper::LegalizeResult
6197 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6198   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6199     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6200 
6201   Register Dst = MI.getOperand(0).getReg();
6202   Register Src0 = MI.getOperand(1).getReg();
6203   Register Src1 = MI.getOperand(2).getReg();
6204   LLT Ty = MRI.getType(Dst);
6205 
6206   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6207     // Insert canonicalizes if it's possible we need to quiet to get correct
6208     // sNaN behavior.
6209 
6210     // Note this must be done here, and not as an optimization combine in the
6211     // absence of a dedicate quiet-snan instruction as we're using an
6212     // omni-purpose G_FCANONICALIZE.
6213     if (!isKnownNeverSNaN(Src0, MRI))
6214       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6215 
6216     if (!isKnownNeverSNaN(Src1, MRI))
6217       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6218   }
6219 
6220   // If there are no nans, it's safe to simply replace this with the non-IEEE
6221   // version.
6222   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6223   MI.eraseFromParent();
6224   return Legalized;
6225 }
6226 
6227 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6228   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6229   Register DstReg = MI.getOperand(0).getReg();
6230   LLT Ty = MRI.getType(DstReg);
6231   unsigned Flags = MI.getFlags();
6232 
6233   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6234                                   Flags);
6235   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6236   MI.eraseFromParent();
6237   return Legalized;
6238 }
6239 
6240 LegalizerHelper::LegalizeResult
6241 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6242   Register DstReg = MI.getOperand(0).getReg();
6243   Register X = MI.getOperand(1).getReg();
6244   const unsigned Flags = MI.getFlags();
6245   const LLT Ty = MRI.getType(DstReg);
6246   const LLT CondTy = Ty.changeElementSize(1);
6247 
6248   // round(x) =>
6249   //  t = trunc(x);
6250   //  d = fabs(x - t);
6251   //  o = copysign(1.0f, x);
6252   //  return t + (d >= 0.5 ? o : 0.0);
6253 
6254   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6255 
6256   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6257   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6258   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6259   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6260   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6261   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6262 
6263   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6264                                   Flags);
6265   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6266 
6267   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6268 
6269   MI.eraseFromParent();
6270   return Legalized;
6271 }
6272 
6273 LegalizerHelper::LegalizeResult
6274 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6275   Register DstReg = MI.getOperand(0).getReg();
6276   Register SrcReg = MI.getOperand(1).getReg();
6277   unsigned Flags = MI.getFlags();
6278   LLT Ty = MRI.getType(DstReg);
6279   const LLT CondTy = Ty.changeElementSize(1);
6280 
6281   // result = trunc(src);
6282   // if (src < 0.0 && src != result)
6283   //   result += -1.0.
6284 
6285   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6286   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6287 
6288   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6289                                   SrcReg, Zero, Flags);
6290   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6291                                       SrcReg, Trunc, Flags);
6292   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6293   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6294 
6295   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6296   MI.eraseFromParent();
6297   return Legalized;
6298 }
6299 
6300 LegalizerHelper::LegalizeResult
6301 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6302   const unsigned NumOps = MI.getNumOperands();
6303   Register DstReg = MI.getOperand(0).getReg();
6304   Register Src0Reg = MI.getOperand(1).getReg();
6305   LLT DstTy = MRI.getType(DstReg);
6306   LLT SrcTy = MRI.getType(Src0Reg);
6307   unsigned PartSize = SrcTy.getSizeInBits();
6308 
6309   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6310   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6311 
6312   for (unsigned I = 2; I != NumOps; ++I) {
6313     const unsigned Offset = (I - 1) * PartSize;
6314 
6315     Register SrcReg = MI.getOperand(I).getReg();
6316     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6317 
6318     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6319       MRI.createGenericVirtualRegister(WideTy);
6320 
6321     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6322     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6323     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6324     ResultReg = NextResult;
6325   }
6326 
6327   if (DstTy.isPointer()) {
6328     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6329           DstTy.getAddressSpace())) {
6330       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6331       return UnableToLegalize;
6332     }
6333 
6334     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6335   }
6336 
6337   MI.eraseFromParent();
6338   return Legalized;
6339 }
6340 
6341 LegalizerHelper::LegalizeResult
6342 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6343   const unsigned NumDst = MI.getNumOperands() - 1;
6344   Register SrcReg = MI.getOperand(NumDst).getReg();
6345   Register Dst0Reg = MI.getOperand(0).getReg();
6346   LLT DstTy = MRI.getType(Dst0Reg);
6347   if (DstTy.isPointer())
6348     return UnableToLegalize; // TODO
6349 
6350   SrcReg = coerceToScalar(SrcReg);
6351   if (!SrcReg)
6352     return UnableToLegalize;
6353 
6354   // Expand scalarizing unmerge as bitcast to integer and shift.
6355   LLT IntTy = MRI.getType(SrcReg);
6356 
6357   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6358 
6359   const unsigned DstSize = DstTy.getSizeInBits();
6360   unsigned Offset = DstSize;
6361   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6362     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6363     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6364     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6365   }
6366 
6367   MI.eraseFromParent();
6368   return Legalized;
6369 }
6370 
6371 /// Lower a vector extract or insert by writing the vector to a stack temporary
6372 /// and reloading the element or vector.
6373 ///
6374 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6375 ///  =>
6376 ///  %stack_temp = G_FRAME_INDEX
6377 ///  G_STORE %vec, %stack_temp
6378 ///  %idx = clamp(%idx, %vec.getNumElements())
6379 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6380 ///  %dst = G_LOAD %element_ptr
6381 LegalizerHelper::LegalizeResult
6382 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6383   Register DstReg = MI.getOperand(0).getReg();
6384   Register SrcVec = MI.getOperand(1).getReg();
6385   Register InsertVal;
6386   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6387     InsertVal = MI.getOperand(2).getReg();
6388 
6389   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6390 
6391   LLT VecTy = MRI.getType(SrcVec);
6392   LLT EltTy = VecTy.getElementType();
6393   if (!EltTy.isByteSized()) { // Not implemented.
6394     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6395     return UnableToLegalize;
6396   }
6397 
6398   unsigned EltBytes = EltTy.getSizeInBytes();
6399   Align VecAlign = getStackTemporaryAlignment(VecTy);
6400   Align EltAlign;
6401 
6402   MachinePointerInfo PtrInfo;
6403   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6404                                         VecAlign, PtrInfo);
6405   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6406 
6407   // Get the pointer to the element, and be sure not to hit undefined behavior
6408   // if the index is out of bounds.
6409   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6410 
6411   int64_t IdxVal;
6412   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6413     int64_t Offset = IdxVal * EltBytes;
6414     PtrInfo = PtrInfo.getWithOffset(Offset);
6415     EltAlign = commonAlignment(VecAlign, Offset);
6416   } else {
6417     // We lose information with a variable offset.
6418     EltAlign = getStackTemporaryAlignment(EltTy);
6419     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6420   }
6421 
6422   if (InsertVal) {
6423     // Write the inserted element
6424     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6425 
6426     // Reload the whole vector.
6427     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6428   } else {
6429     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6430   }
6431 
6432   MI.eraseFromParent();
6433   return Legalized;
6434 }
6435 
6436 LegalizerHelper::LegalizeResult
6437 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6438   Register DstReg = MI.getOperand(0).getReg();
6439   Register Src0Reg = MI.getOperand(1).getReg();
6440   Register Src1Reg = MI.getOperand(2).getReg();
6441   LLT Src0Ty = MRI.getType(Src0Reg);
6442   LLT DstTy = MRI.getType(DstReg);
6443   LLT IdxTy = LLT::scalar(32);
6444 
6445   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6446 
6447   if (DstTy.isScalar()) {
6448     if (Src0Ty.isVector())
6449       return UnableToLegalize;
6450 
6451     // This is just a SELECT.
6452     assert(Mask.size() == 1 && "Expected a single mask element");
6453     Register Val;
6454     if (Mask[0] < 0 || Mask[0] > 1)
6455       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6456     else
6457       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6458     MIRBuilder.buildCopy(DstReg, Val);
6459     MI.eraseFromParent();
6460     return Legalized;
6461   }
6462 
6463   Register Undef;
6464   SmallVector<Register, 32> BuildVec;
6465   LLT EltTy = DstTy.getElementType();
6466 
6467   for (int Idx : Mask) {
6468     if (Idx < 0) {
6469       if (!Undef.isValid())
6470         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6471       BuildVec.push_back(Undef);
6472       continue;
6473     }
6474 
6475     if (Src0Ty.isScalar()) {
6476       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6477     } else {
6478       int NumElts = Src0Ty.getNumElements();
6479       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6480       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6481       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6482       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6483       BuildVec.push_back(Extract.getReg(0));
6484     }
6485   }
6486 
6487   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6488   MI.eraseFromParent();
6489   return Legalized;
6490 }
6491 
6492 LegalizerHelper::LegalizeResult
6493 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6494   const auto &MF = *MI.getMF();
6495   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6496   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6497     return UnableToLegalize;
6498 
6499   Register Dst = MI.getOperand(0).getReg();
6500   Register AllocSize = MI.getOperand(1).getReg();
6501   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6502 
6503   LLT PtrTy = MRI.getType(Dst);
6504   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6505 
6506   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6507   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6508   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6509 
6510   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6511   // have to generate an extra instruction to negate the alloc and then use
6512   // G_PTR_ADD to add the negative offset.
6513   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6514   if (Alignment > Align(1)) {
6515     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6516     AlignMask.negate();
6517     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6518     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6519   }
6520 
6521   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6522   MIRBuilder.buildCopy(SPReg, SPTmp);
6523   MIRBuilder.buildCopy(Dst, SPTmp);
6524 
6525   MI.eraseFromParent();
6526   return Legalized;
6527 }
6528 
6529 LegalizerHelper::LegalizeResult
6530 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6531   Register Dst = MI.getOperand(0).getReg();
6532   Register Src = MI.getOperand(1).getReg();
6533   unsigned Offset = MI.getOperand(2).getImm();
6534 
6535   LLT DstTy = MRI.getType(Dst);
6536   LLT SrcTy = MRI.getType(Src);
6537 
6538   if (DstTy.isScalar() &&
6539       (SrcTy.isScalar() ||
6540        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6541     LLT SrcIntTy = SrcTy;
6542     if (!SrcTy.isScalar()) {
6543       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6544       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6545     }
6546 
6547     if (Offset == 0)
6548       MIRBuilder.buildTrunc(Dst, Src);
6549     else {
6550       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6551       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6552       MIRBuilder.buildTrunc(Dst, Shr);
6553     }
6554 
6555     MI.eraseFromParent();
6556     return Legalized;
6557   }
6558 
6559   return UnableToLegalize;
6560 }
6561 
6562 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6563   Register Dst = MI.getOperand(0).getReg();
6564   Register Src = MI.getOperand(1).getReg();
6565   Register InsertSrc = MI.getOperand(2).getReg();
6566   uint64_t Offset = MI.getOperand(3).getImm();
6567 
6568   LLT DstTy = MRI.getType(Src);
6569   LLT InsertTy = MRI.getType(InsertSrc);
6570 
6571   if (InsertTy.isVector() ||
6572       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6573     return UnableToLegalize;
6574 
6575   const DataLayout &DL = MIRBuilder.getDataLayout();
6576   if ((DstTy.isPointer() &&
6577        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6578       (InsertTy.isPointer() &&
6579        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6580     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6581     return UnableToLegalize;
6582   }
6583 
6584   LLT IntDstTy = DstTy;
6585 
6586   if (!DstTy.isScalar()) {
6587     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6588     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6589   }
6590 
6591   if (!InsertTy.isScalar()) {
6592     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6593     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6594   }
6595 
6596   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6597   if (Offset != 0) {
6598     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6599     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6600   }
6601 
6602   APInt MaskVal = APInt::getBitsSetWithWrap(
6603       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6604 
6605   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6606   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6607   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6608 
6609   MIRBuilder.buildCast(Dst, Or);
6610   MI.eraseFromParent();
6611   return Legalized;
6612 }
6613 
6614 LegalizerHelper::LegalizeResult
6615 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6616   Register Dst0 = MI.getOperand(0).getReg();
6617   Register Dst1 = MI.getOperand(1).getReg();
6618   Register LHS = MI.getOperand(2).getReg();
6619   Register RHS = MI.getOperand(3).getReg();
6620   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6621 
6622   LLT Ty = MRI.getType(Dst0);
6623   LLT BoolTy = MRI.getType(Dst1);
6624 
6625   if (IsAdd)
6626     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6627   else
6628     MIRBuilder.buildSub(Dst0, LHS, RHS);
6629 
6630   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6631 
6632   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6633 
6634   // For an addition, the result should be less than one of the operands (LHS)
6635   // if and only if the other operand (RHS) is negative, otherwise there will
6636   // be overflow.
6637   // For a subtraction, the result should be less than one of the operands
6638   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6639   // otherwise there will be overflow.
6640   auto ResultLowerThanLHS =
6641       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6642   auto ConditionRHS = MIRBuilder.buildICmp(
6643       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6644 
6645   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6646   MI.eraseFromParent();
6647   return Legalized;
6648 }
6649 
6650 LegalizerHelper::LegalizeResult
6651 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6652   Register Res = MI.getOperand(0).getReg();
6653   Register LHS = MI.getOperand(1).getReg();
6654   Register RHS = MI.getOperand(2).getReg();
6655   LLT Ty = MRI.getType(Res);
6656   bool IsSigned;
6657   bool IsAdd;
6658   unsigned BaseOp;
6659   switch (MI.getOpcode()) {
6660   default:
6661     llvm_unreachable("unexpected addsat/subsat opcode");
6662   case TargetOpcode::G_UADDSAT:
6663     IsSigned = false;
6664     IsAdd = true;
6665     BaseOp = TargetOpcode::G_ADD;
6666     break;
6667   case TargetOpcode::G_SADDSAT:
6668     IsSigned = true;
6669     IsAdd = true;
6670     BaseOp = TargetOpcode::G_ADD;
6671     break;
6672   case TargetOpcode::G_USUBSAT:
6673     IsSigned = false;
6674     IsAdd = false;
6675     BaseOp = TargetOpcode::G_SUB;
6676     break;
6677   case TargetOpcode::G_SSUBSAT:
6678     IsSigned = true;
6679     IsAdd = false;
6680     BaseOp = TargetOpcode::G_SUB;
6681     break;
6682   }
6683 
6684   if (IsSigned) {
6685     // sadd.sat(a, b) ->
6686     //   hi = 0x7fffffff - smax(a, 0)
6687     //   lo = 0x80000000 - smin(a, 0)
6688     //   a + smin(smax(lo, b), hi)
6689     // ssub.sat(a, b) ->
6690     //   lo = smax(a, -1) - 0x7fffffff
6691     //   hi = smin(a, -1) - 0x80000000
6692     //   a - smin(smax(lo, b), hi)
6693     // TODO: AMDGPU can use a "median of 3" instruction here:
6694     //   a +/- med3(lo, b, hi)
6695     uint64_t NumBits = Ty.getScalarSizeInBits();
6696     auto MaxVal =
6697         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6698     auto MinVal =
6699         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6700     MachineInstrBuilder Hi, Lo;
6701     if (IsAdd) {
6702       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6703       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6704       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6705     } else {
6706       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6707       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6708                                MaxVal);
6709       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6710                                MinVal);
6711     }
6712     auto RHSClamped =
6713         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6714     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6715   } else {
6716     // uadd.sat(a, b) -> a + umin(~a, b)
6717     // usub.sat(a, b) -> a - umin(a, b)
6718     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6719     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6720     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6721   }
6722 
6723   MI.eraseFromParent();
6724   return Legalized;
6725 }
6726 
6727 LegalizerHelper::LegalizeResult
6728 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6729   Register Res = MI.getOperand(0).getReg();
6730   Register LHS = MI.getOperand(1).getReg();
6731   Register RHS = MI.getOperand(2).getReg();
6732   LLT Ty = MRI.getType(Res);
6733   LLT BoolTy = Ty.changeElementSize(1);
6734   bool IsSigned;
6735   bool IsAdd;
6736   unsigned OverflowOp;
6737   switch (MI.getOpcode()) {
6738   default:
6739     llvm_unreachable("unexpected addsat/subsat opcode");
6740   case TargetOpcode::G_UADDSAT:
6741     IsSigned = false;
6742     IsAdd = true;
6743     OverflowOp = TargetOpcode::G_UADDO;
6744     break;
6745   case TargetOpcode::G_SADDSAT:
6746     IsSigned = true;
6747     IsAdd = true;
6748     OverflowOp = TargetOpcode::G_SADDO;
6749     break;
6750   case TargetOpcode::G_USUBSAT:
6751     IsSigned = false;
6752     IsAdd = false;
6753     OverflowOp = TargetOpcode::G_USUBO;
6754     break;
6755   case TargetOpcode::G_SSUBSAT:
6756     IsSigned = true;
6757     IsAdd = false;
6758     OverflowOp = TargetOpcode::G_SSUBO;
6759     break;
6760   }
6761 
6762   auto OverflowRes =
6763       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6764   Register Tmp = OverflowRes.getReg(0);
6765   Register Ov = OverflowRes.getReg(1);
6766   MachineInstrBuilder Clamp;
6767   if (IsSigned) {
6768     // sadd.sat(a, b) ->
6769     //   {tmp, ov} = saddo(a, b)
6770     //   ov ? (tmp >>s 31) + 0x80000000 : r
6771     // ssub.sat(a, b) ->
6772     //   {tmp, ov} = ssubo(a, b)
6773     //   ov ? (tmp >>s 31) + 0x80000000 : r
6774     uint64_t NumBits = Ty.getScalarSizeInBits();
6775     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6776     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6777     auto MinVal =
6778         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6779     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6780   } else {
6781     // uadd.sat(a, b) ->
6782     //   {tmp, ov} = uaddo(a, b)
6783     //   ov ? 0xffffffff : tmp
6784     // usub.sat(a, b) ->
6785     //   {tmp, ov} = usubo(a, b)
6786     //   ov ? 0 : tmp
6787     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6788   }
6789   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6790 
6791   MI.eraseFromParent();
6792   return Legalized;
6793 }
6794 
6795 LegalizerHelper::LegalizeResult
6796 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6797   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6798           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6799          "Expected shlsat opcode!");
6800   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6801   Register Res = MI.getOperand(0).getReg();
6802   Register LHS = MI.getOperand(1).getReg();
6803   Register RHS = MI.getOperand(2).getReg();
6804   LLT Ty = MRI.getType(Res);
6805   LLT BoolTy = Ty.changeElementSize(1);
6806 
6807   unsigned BW = Ty.getScalarSizeInBits();
6808   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6809   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6810                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6811 
6812   MachineInstrBuilder SatVal;
6813   if (IsSigned) {
6814     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6815     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6816     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6817                                     MIRBuilder.buildConstant(Ty, 0));
6818     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6819   } else {
6820     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6821   }
6822   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6823   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6824 
6825   MI.eraseFromParent();
6826   return Legalized;
6827 }
6828 
6829 LegalizerHelper::LegalizeResult
6830 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6831   Register Dst = MI.getOperand(0).getReg();
6832   Register Src = MI.getOperand(1).getReg();
6833   const LLT Ty = MRI.getType(Src);
6834   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6835   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6836 
6837   // Swap most and least significant byte, set remaining bytes in Res to zero.
6838   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6839   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6840   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6841   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6842 
6843   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6844   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6845     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6846     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6847     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6848     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6849     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6850     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6851     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6852     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6853     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6854     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6855     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6856     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6857   }
6858   Res.getInstr()->getOperand(0).setReg(Dst);
6859 
6860   MI.eraseFromParent();
6861   return Legalized;
6862 }
6863 
6864 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6865 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6866                                  MachineInstrBuilder Src, APInt Mask) {
6867   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6868   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6869   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6870   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6871   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6872   return B.buildOr(Dst, LHS, RHS);
6873 }
6874 
6875 LegalizerHelper::LegalizeResult
6876 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6877   Register Dst = MI.getOperand(0).getReg();
6878   Register Src = MI.getOperand(1).getReg();
6879   const LLT Ty = MRI.getType(Src);
6880   unsigned Size = Ty.getSizeInBits();
6881 
6882   MachineInstrBuilder BSWAP =
6883       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6884 
6885   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6886   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6887   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6888   MachineInstrBuilder Swap4 =
6889       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6890 
6891   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6892   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6893   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6894   MachineInstrBuilder Swap2 =
6895       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6896 
6897   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6898   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6899   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6900   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6901 
6902   MI.eraseFromParent();
6903   return Legalized;
6904 }
6905 
6906 LegalizerHelper::LegalizeResult
6907 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6908   MachineFunction &MF = MIRBuilder.getMF();
6909 
6910   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6911   int NameOpIdx = IsRead ? 1 : 0;
6912   int ValRegIndex = IsRead ? 0 : 1;
6913 
6914   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6915   const LLT Ty = MRI.getType(ValReg);
6916   const MDString *RegStr = cast<MDString>(
6917     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6918 
6919   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6920   if (!PhysReg.isValid())
6921     return UnableToLegalize;
6922 
6923   if (IsRead)
6924     MIRBuilder.buildCopy(ValReg, PhysReg);
6925   else
6926     MIRBuilder.buildCopy(PhysReg, ValReg);
6927 
6928   MI.eraseFromParent();
6929   return Legalized;
6930 }
6931 
6932 LegalizerHelper::LegalizeResult
6933 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6934   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6935   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6936   Register Result = MI.getOperand(0).getReg();
6937   LLT OrigTy = MRI.getType(Result);
6938   auto SizeInBits = OrigTy.getScalarSizeInBits();
6939   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6940 
6941   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6942   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6943   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6944   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6945 
6946   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6947   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6948   MIRBuilder.buildTrunc(Result, Shifted);
6949 
6950   MI.eraseFromParent();
6951   return Legalized;
6952 }
6953 
6954 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6955   // Implement vector G_SELECT in terms of XOR, AND, OR.
6956   Register DstReg = MI.getOperand(0).getReg();
6957   Register MaskReg = MI.getOperand(1).getReg();
6958   Register Op1Reg = MI.getOperand(2).getReg();
6959   Register Op2Reg = MI.getOperand(3).getReg();
6960   LLT DstTy = MRI.getType(DstReg);
6961   LLT MaskTy = MRI.getType(MaskReg);
6962   LLT Op1Ty = MRI.getType(Op1Reg);
6963   if (!DstTy.isVector())
6964     return UnableToLegalize;
6965 
6966   // Vector selects can have a scalar predicate. If so, splat into a vector and
6967   // finish for later legalization attempts to try again.
6968   if (MaskTy.isScalar()) {
6969     Register MaskElt = MaskReg;
6970     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6971       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6972     // Generate a vector splat idiom to be pattern matched later.
6973     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6974     Observer.changingInstr(MI);
6975     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6976     Observer.changedInstr(MI);
6977     return Legalized;
6978   }
6979 
6980   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6981     return UnableToLegalize;
6982   }
6983 
6984   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6985   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6986   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6987   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6988   MI.eraseFromParent();
6989   return Legalized;
6990 }
6991 
6992 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
6993   // Split DIVREM into individual instructions.
6994   unsigned Opcode = MI.getOpcode();
6995 
6996   MIRBuilder.buildInstr(
6997       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
6998                                         : TargetOpcode::G_UDIV,
6999       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7000   MIRBuilder.buildInstr(
7001       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7002                                         : TargetOpcode::G_UREM,
7003       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7004   MI.eraseFromParent();
7005   return Legalized;
7006 }
7007 
7008 LegalizerHelper::LegalizeResult
7009 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7010   // Expand %res = G_ABS %a into:
7011   // %v1 = G_ASHR %a, scalar_size-1
7012   // %v2 = G_ADD %a, %v1
7013   // %res = G_XOR %v2, %v1
7014   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7015   Register OpReg = MI.getOperand(1).getReg();
7016   auto ShiftAmt =
7017       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7018   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7019   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7020   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7021   MI.eraseFromParent();
7022   return Legalized;
7023 }
7024 
7025 LegalizerHelper::LegalizeResult
7026 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7027   // Expand %res = G_ABS %a into:
7028   // %v1 = G_CONSTANT 0
7029   // %v2 = G_SUB %v1, %a
7030   // %res = G_SMAX %a, %v2
7031   Register SrcReg = MI.getOperand(1).getReg();
7032   LLT Ty = MRI.getType(SrcReg);
7033   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7034   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7035   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7036   MI.eraseFromParent();
7037   return Legalized;
7038 }
7039