1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 21 #include "llvm/CodeGen/GlobalISel/Utils.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetFrameLowering.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 #define DEBUG_TYPE "legalizer" 34 35 using namespace llvm; 36 using namespace LegalizeActions; 37 using namespace MIPatternMatch; 38 39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 40 /// 41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 42 /// with any leftover piece as type \p LeftoverTy 43 /// 44 /// Returns -1 in the first element of the pair if the breakdown is not 45 /// satisfiable. 46 static std::pair<int, int> 47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 48 assert(!LeftoverTy.isValid() && "this is an out argument"); 49 50 unsigned Size = OrigTy.getSizeInBits(); 51 unsigned NarrowSize = NarrowTy.getSizeInBits(); 52 unsigned NumParts = Size / NarrowSize; 53 unsigned LeftoverSize = Size - NumParts * NarrowSize; 54 assert(Size > NarrowSize); 55 56 if (LeftoverSize == 0) 57 return {NumParts, 0}; 58 59 if (NarrowTy.isVector()) { 60 unsigned EltSize = OrigTy.getScalarSizeInBits(); 61 if (LeftoverSize % EltSize != 0) 62 return {-1, -1}; 63 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 64 } else { 65 LeftoverTy = LLT::scalar(LeftoverSize); 66 } 67 68 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 69 return std::make_pair(NumParts, NumLeftover); 70 } 71 72 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 73 74 if (!Ty.isScalar()) 75 return nullptr; 76 77 switch (Ty.getSizeInBits()) { 78 case 16: 79 return Type::getHalfTy(Ctx); 80 case 32: 81 return Type::getFloatTy(Ctx); 82 case 64: 83 return Type::getDoubleTy(Ctx); 84 case 80: 85 return Type::getX86_FP80Ty(Ctx); 86 case 128: 87 return Type::getFP128Ty(Ctx); 88 default: 89 return nullptr; 90 } 91 } 92 93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 94 GISelChangeObserver &Observer, 95 MachineIRBuilder &Builder) 96 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 97 LI(*MF.getSubtarget().getLegalizerInfo()), 98 TLI(*MF.getSubtarget().getTargetLowering()) { } 99 100 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 101 GISelChangeObserver &Observer, 102 MachineIRBuilder &B) 103 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 104 TLI(*MF.getSubtarget().getTargetLowering()) { } 105 106 LegalizerHelper::LegalizeResult 107 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 108 LostDebugLocObserver &LocObserver) { 109 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 110 111 MIRBuilder.setInstrAndDebugLoc(MI); 112 113 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 114 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 115 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 116 auto Step = LI.getAction(MI, MRI); 117 switch (Step.Action) { 118 case Legal: 119 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 120 return AlreadyLegal; 121 case Libcall: 122 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 123 return libcall(MI, LocObserver); 124 case NarrowScalar: 125 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 126 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 127 case WidenScalar: 128 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 129 return widenScalar(MI, Step.TypeIdx, Step.NewType); 130 case Bitcast: 131 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 132 return bitcast(MI, Step.TypeIdx, Step.NewType); 133 case Lower: 134 LLVM_DEBUG(dbgs() << ".. Lower\n"); 135 return lower(MI, Step.TypeIdx, Step.NewType); 136 case FewerElements: 137 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 138 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 139 case MoreElements: 140 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 141 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 142 case Custom: 143 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 144 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 145 default: 146 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 147 return UnableToLegalize; 148 } 149 } 150 151 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 152 SmallVectorImpl<Register> &VRegs) { 153 for (int i = 0; i < NumParts; ++i) 154 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 155 MIRBuilder.buildUnmerge(VRegs, Reg); 156 } 157 158 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 159 LLT MainTy, LLT &LeftoverTy, 160 SmallVectorImpl<Register> &VRegs, 161 SmallVectorImpl<Register> &LeftoverRegs) { 162 assert(!LeftoverTy.isValid() && "this is an out argument"); 163 164 unsigned RegSize = RegTy.getSizeInBits(); 165 unsigned MainSize = MainTy.getSizeInBits(); 166 unsigned NumParts = RegSize / MainSize; 167 unsigned LeftoverSize = RegSize - NumParts * MainSize; 168 169 // Use an unmerge when possible. 170 if (LeftoverSize == 0) { 171 for (unsigned I = 0; I < NumParts; ++I) 172 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 173 MIRBuilder.buildUnmerge(VRegs, Reg); 174 return true; 175 } 176 177 if (MainTy.isVector()) { 178 unsigned EltSize = MainTy.getScalarSizeInBits(); 179 if (LeftoverSize % EltSize != 0) 180 return false; 181 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 182 } else { 183 LeftoverTy = LLT::scalar(LeftoverSize); 184 } 185 186 // For irregular sizes, extract the individual parts. 187 for (unsigned I = 0; I != NumParts; ++I) { 188 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 189 VRegs.push_back(NewReg); 190 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 191 } 192 193 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 194 Offset += LeftoverSize) { 195 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 196 LeftoverRegs.push_back(NewReg); 197 MIRBuilder.buildExtract(NewReg, Reg, Offset); 198 } 199 200 return true; 201 } 202 203 void LegalizerHelper::insertParts(Register DstReg, 204 LLT ResultTy, LLT PartTy, 205 ArrayRef<Register> PartRegs, 206 LLT LeftoverTy, 207 ArrayRef<Register> LeftoverRegs) { 208 if (!LeftoverTy.isValid()) { 209 assert(LeftoverRegs.empty()); 210 211 if (!ResultTy.isVector()) { 212 MIRBuilder.buildMerge(DstReg, PartRegs); 213 return; 214 } 215 216 if (PartTy.isVector()) 217 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 218 else 219 MIRBuilder.buildBuildVector(DstReg, PartRegs); 220 return; 221 } 222 223 unsigned PartSize = PartTy.getSizeInBits(); 224 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 225 226 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 227 MIRBuilder.buildUndef(CurResultReg); 228 229 unsigned Offset = 0; 230 for (Register PartReg : PartRegs) { 231 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 232 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 233 CurResultReg = NewResultReg; 234 Offset += PartSize; 235 } 236 237 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 238 // Use the original output register for the final insert to avoid a copy. 239 Register NewResultReg = (I + 1 == E) ? 240 DstReg : MRI.createGenericVirtualRegister(ResultTy); 241 242 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 243 CurResultReg = NewResultReg; 244 Offset += LeftoverPartSize; 245 } 246 } 247 248 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 249 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 250 const MachineInstr &MI) { 251 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 252 253 const int StartIdx = Regs.size(); 254 const int NumResults = MI.getNumOperands() - 1; 255 Regs.resize(Regs.size() + NumResults); 256 for (int I = 0; I != NumResults; ++I) 257 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 258 } 259 260 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 261 LLT GCDTy, Register SrcReg) { 262 LLT SrcTy = MRI.getType(SrcReg); 263 if (SrcTy == GCDTy) { 264 // If the source already evenly divides the result type, we don't need to do 265 // anything. 266 Parts.push_back(SrcReg); 267 } else { 268 // Need to split into common type sized pieces. 269 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 270 getUnmergeResults(Parts, *Unmerge); 271 } 272 } 273 274 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 275 LLT NarrowTy, Register SrcReg) { 276 LLT SrcTy = MRI.getType(SrcReg); 277 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 278 extractGCDType(Parts, GCDTy, SrcReg); 279 return GCDTy; 280 } 281 282 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 283 SmallVectorImpl<Register> &VRegs, 284 unsigned PadStrategy) { 285 LLT LCMTy = getLCMType(DstTy, NarrowTy); 286 287 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 288 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 289 int NumOrigSrc = VRegs.size(); 290 291 Register PadReg; 292 293 // Get a value we can use to pad the source value if the sources won't evenly 294 // cover the result type. 295 if (NumOrigSrc < NumParts * NumSubParts) { 296 if (PadStrategy == TargetOpcode::G_ZEXT) 297 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 298 else if (PadStrategy == TargetOpcode::G_ANYEXT) 299 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 300 else { 301 assert(PadStrategy == TargetOpcode::G_SEXT); 302 303 // Shift the sign bit of the low register through the high register. 304 auto ShiftAmt = 305 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 306 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 307 } 308 } 309 310 // Registers for the final merge to be produced. 311 SmallVector<Register, 4> Remerge(NumParts); 312 313 // Registers needed for intermediate merges, which will be merged into a 314 // source for Remerge. 315 SmallVector<Register, 4> SubMerge(NumSubParts); 316 317 // Once we've fully read off the end of the original source bits, we can reuse 318 // the same high bits for remaining padding elements. 319 Register AllPadReg; 320 321 // Build merges to the LCM type to cover the original result type. 322 for (int I = 0; I != NumParts; ++I) { 323 bool AllMergePartsArePadding = true; 324 325 // Build the requested merges to the requested type. 326 for (int J = 0; J != NumSubParts; ++J) { 327 int Idx = I * NumSubParts + J; 328 if (Idx >= NumOrigSrc) { 329 SubMerge[J] = PadReg; 330 continue; 331 } 332 333 SubMerge[J] = VRegs[Idx]; 334 335 // There are meaningful bits here we can't reuse later. 336 AllMergePartsArePadding = false; 337 } 338 339 // If we've filled up a complete piece with padding bits, we can directly 340 // emit the natural sized constant if applicable, rather than a merge of 341 // smaller constants. 342 if (AllMergePartsArePadding && !AllPadReg) { 343 if (PadStrategy == TargetOpcode::G_ANYEXT) 344 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 345 else if (PadStrategy == TargetOpcode::G_ZEXT) 346 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 347 348 // If this is a sign extension, we can't materialize a trivial constant 349 // with the right type and have to produce a merge. 350 } 351 352 if (AllPadReg) { 353 // Avoid creating additional instructions if we're just adding additional 354 // copies of padding bits. 355 Remerge[I] = AllPadReg; 356 continue; 357 } 358 359 if (NumSubParts == 1) 360 Remerge[I] = SubMerge[0]; 361 else 362 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 363 364 // In the sign extend padding case, re-use the first all-signbit merge. 365 if (AllMergePartsArePadding && !AllPadReg) 366 AllPadReg = Remerge[I]; 367 } 368 369 VRegs = std::move(Remerge); 370 return LCMTy; 371 } 372 373 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 374 ArrayRef<Register> RemergeRegs) { 375 LLT DstTy = MRI.getType(DstReg); 376 377 // Create the merge to the widened source, and extract the relevant bits into 378 // the result. 379 380 if (DstTy == LCMTy) { 381 MIRBuilder.buildMerge(DstReg, RemergeRegs); 382 return; 383 } 384 385 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 386 if (DstTy.isScalar() && LCMTy.isScalar()) { 387 MIRBuilder.buildTrunc(DstReg, Remerge); 388 return; 389 } 390 391 if (LCMTy.isVector()) { 392 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 393 SmallVector<Register, 8> UnmergeDefs(NumDefs); 394 UnmergeDefs[0] = DstReg; 395 for (unsigned I = 1; I != NumDefs; ++I) 396 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 397 398 MIRBuilder.buildUnmerge(UnmergeDefs, 399 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 400 return; 401 } 402 403 llvm_unreachable("unhandled case"); 404 } 405 406 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 407 #define RTLIBCASE_INT(LibcallPrefix) \ 408 do { \ 409 switch (Size) { \ 410 case 32: \ 411 return RTLIB::LibcallPrefix##32; \ 412 case 64: \ 413 return RTLIB::LibcallPrefix##64; \ 414 case 128: \ 415 return RTLIB::LibcallPrefix##128; \ 416 default: \ 417 llvm_unreachable("unexpected size"); \ 418 } \ 419 } while (0) 420 421 #define RTLIBCASE(LibcallPrefix) \ 422 do { \ 423 switch (Size) { \ 424 case 32: \ 425 return RTLIB::LibcallPrefix##32; \ 426 case 64: \ 427 return RTLIB::LibcallPrefix##64; \ 428 case 80: \ 429 return RTLIB::LibcallPrefix##80; \ 430 case 128: \ 431 return RTLIB::LibcallPrefix##128; \ 432 default: \ 433 llvm_unreachable("unexpected size"); \ 434 } \ 435 } while (0) 436 437 switch (Opcode) { 438 case TargetOpcode::G_SDIV: 439 RTLIBCASE_INT(SDIV_I); 440 case TargetOpcode::G_UDIV: 441 RTLIBCASE_INT(UDIV_I); 442 case TargetOpcode::G_SREM: 443 RTLIBCASE_INT(SREM_I); 444 case TargetOpcode::G_UREM: 445 RTLIBCASE_INT(UREM_I); 446 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 447 RTLIBCASE_INT(CTLZ_I); 448 case TargetOpcode::G_FADD: 449 RTLIBCASE(ADD_F); 450 case TargetOpcode::G_FSUB: 451 RTLIBCASE(SUB_F); 452 case TargetOpcode::G_FMUL: 453 RTLIBCASE(MUL_F); 454 case TargetOpcode::G_FDIV: 455 RTLIBCASE(DIV_F); 456 case TargetOpcode::G_FEXP: 457 RTLIBCASE(EXP_F); 458 case TargetOpcode::G_FEXP2: 459 RTLIBCASE(EXP2_F); 460 case TargetOpcode::G_FREM: 461 RTLIBCASE(REM_F); 462 case TargetOpcode::G_FPOW: 463 RTLIBCASE(POW_F); 464 case TargetOpcode::G_FMA: 465 RTLIBCASE(FMA_F); 466 case TargetOpcode::G_FSIN: 467 RTLIBCASE(SIN_F); 468 case TargetOpcode::G_FCOS: 469 RTLIBCASE(COS_F); 470 case TargetOpcode::G_FLOG10: 471 RTLIBCASE(LOG10_F); 472 case TargetOpcode::G_FLOG: 473 RTLIBCASE(LOG_F); 474 case TargetOpcode::G_FLOG2: 475 RTLIBCASE(LOG2_F); 476 case TargetOpcode::G_FCEIL: 477 RTLIBCASE(CEIL_F); 478 case TargetOpcode::G_FFLOOR: 479 RTLIBCASE(FLOOR_F); 480 case TargetOpcode::G_FMINNUM: 481 RTLIBCASE(FMIN_F); 482 case TargetOpcode::G_FMAXNUM: 483 RTLIBCASE(FMAX_F); 484 case TargetOpcode::G_FSQRT: 485 RTLIBCASE(SQRT_F); 486 case TargetOpcode::G_FRINT: 487 RTLIBCASE(RINT_F); 488 case TargetOpcode::G_FNEARBYINT: 489 RTLIBCASE(NEARBYINT_F); 490 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 491 RTLIBCASE(ROUNDEVEN_F); 492 } 493 llvm_unreachable("Unknown libcall function"); 494 } 495 496 /// True if an instruction is in tail position in its caller. Intended for 497 /// legalizing libcalls as tail calls when possible. 498 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 499 MachineInstr &MI) { 500 MachineBasicBlock &MBB = *MI.getParent(); 501 const Function &F = MBB.getParent()->getFunction(); 502 503 // Conservatively require the attributes of the call to match those of 504 // the return. Ignore NoAlias and NonNull because they don't affect the 505 // call sequence. 506 AttributeList CallerAttrs = F.getAttributes(); 507 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 508 .removeAttribute(Attribute::NoAlias) 509 .removeAttribute(Attribute::NonNull) 510 .hasAttributes()) 511 return false; 512 513 // It's not safe to eliminate the sign / zero extension of the return value. 514 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 515 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 516 return false; 517 518 // Only tail call if the following instruction is a standard return. 519 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 520 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 521 return false; 522 523 return true; 524 } 525 526 LegalizerHelper::LegalizeResult 527 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 528 const CallLowering::ArgInfo &Result, 529 ArrayRef<CallLowering::ArgInfo> Args, 530 const CallingConv::ID CC) { 531 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 532 533 CallLowering::CallLoweringInfo Info; 534 Info.CallConv = CC; 535 Info.Callee = MachineOperand::CreateES(Name); 536 Info.OrigRet = Result; 537 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 538 if (!CLI.lowerCall(MIRBuilder, Info)) 539 return LegalizerHelper::UnableToLegalize; 540 541 return LegalizerHelper::Legalized; 542 } 543 544 LegalizerHelper::LegalizeResult 545 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 546 const CallLowering::ArgInfo &Result, 547 ArrayRef<CallLowering::ArgInfo> Args) { 548 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 549 const char *Name = TLI.getLibcallName(Libcall); 550 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 551 return createLibcall(MIRBuilder, Name, Result, Args, CC); 552 } 553 554 // Useful for libcalls where all operands have the same type. 555 static LegalizerHelper::LegalizeResult 556 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 557 Type *OpType) { 558 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 559 560 SmallVector<CallLowering::ArgInfo, 3> Args; 561 for (unsigned i = 1; i < MI.getNumOperands(); i++) 562 Args.push_back({MI.getOperand(i).getReg(), OpType}); 563 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 564 Args); 565 } 566 567 LegalizerHelper::LegalizeResult 568 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 569 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 570 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 571 572 SmallVector<CallLowering::ArgInfo, 3> Args; 573 // Add all the args, except for the last which is an imm denoting 'tail'. 574 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 575 Register Reg = MI.getOperand(i).getReg(); 576 577 // Need derive an IR type for call lowering. 578 LLT OpLLT = MRI.getType(Reg); 579 Type *OpTy = nullptr; 580 if (OpLLT.isPointer()) 581 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 582 else 583 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 584 Args.push_back({Reg, OpTy}); 585 } 586 587 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 588 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 589 RTLIB::Libcall RTLibcall; 590 unsigned Opc = MI.getOpcode(); 591 switch (Opc) { 592 case TargetOpcode::G_BZERO: 593 RTLibcall = RTLIB::BZERO; 594 break; 595 case TargetOpcode::G_MEMCPY: 596 RTLibcall = RTLIB::MEMCPY; 597 break; 598 case TargetOpcode::G_MEMMOVE: 599 RTLibcall = RTLIB::MEMMOVE; 600 break; 601 case TargetOpcode::G_MEMSET: 602 RTLibcall = RTLIB::MEMSET; 603 break; 604 default: 605 return LegalizerHelper::UnableToLegalize; 606 } 607 const char *Name = TLI.getLibcallName(RTLibcall); 608 609 // Unsupported libcall on the target. 610 if (!Name) { 611 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 612 << MIRBuilder.getTII().getName(Opc) << "\n"); 613 return LegalizerHelper::UnableToLegalize; 614 } 615 616 CallLowering::CallLoweringInfo Info; 617 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 618 Info.Callee = MachineOperand::CreateES(Name); 619 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 620 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 621 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 622 623 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 624 if (!CLI.lowerCall(MIRBuilder, Info)) 625 return LegalizerHelper::UnableToLegalize; 626 627 628 if (Info.LoweredTailCall) { 629 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 630 631 // Check debug locations before removing the return. 632 LocObserver.checkpoint(true); 633 634 // We must have a return following the call (or debug insts) to get past 635 // isLibCallInTailPosition. 636 do { 637 MachineInstr *Next = MI.getNextNode(); 638 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 639 "Expected instr following MI to be return or debug inst?"); 640 // We lowered a tail call, so the call is now the return from the block. 641 // Delete the old return. 642 Next->eraseFromParent(); 643 } while (MI.getNextNode()); 644 645 // We expect to lose the debug location from the return. 646 LocObserver.checkpoint(false); 647 } 648 649 return LegalizerHelper::Legalized; 650 } 651 652 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 653 Type *FromType) { 654 auto ToMVT = MVT::getVT(ToType); 655 auto FromMVT = MVT::getVT(FromType); 656 657 switch (Opcode) { 658 case TargetOpcode::G_FPEXT: 659 return RTLIB::getFPEXT(FromMVT, ToMVT); 660 case TargetOpcode::G_FPTRUNC: 661 return RTLIB::getFPROUND(FromMVT, ToMVT); 662 case TargetOpcode::G_FPTOSI: 663 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 664 case TargetOpcode::G_FPTOUI: 665 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 666 case TargetOpcode::G_SITOFP: 667 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 668 case TargetOpcode::G_UITOFP: 669 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 670 } 671 llvm_unreachable("Unsupported libcall function"); 672 } 673 674 static LegalizerHelper::LegalizeResult 675 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 676 Type *FromType) { 677 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 678 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 679 {{MI.getOperand(1).getReg(), FromType}}); 680 } 681 682 LegalizerHelper::LegalizeResult 683 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 684 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 685 unsigned Size = LLTy.getSizeInBits(); 686 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 687 688 switch (MI.getOpcode()) { 689 default: 690 return UnableToLegalize; 691 case TargetOpcode::G_SDIV: 692 case TargetOpcode::G_UDIV: 693 case TargetOpcode::G_SREM: 694 case TargetOpcode::G_UREM: 695 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 696 Type *HLTy = IntegerType::get(Ctx, Size); 697 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 698 if (Status != Legalized) 699 return Status; 700 break; 701 } 702 case TargetOpcode::G_FADD: 703 case TargetOpcode::G_FSUB: 704 case TargetOpcode::G_FMUL: 705 case TargetOpcode::G_FDIV: 706 case TargetOpcode::G_FMA: 707 case TargetOpcode::G_FPOW: 708 case TargetOpcode::G_FREM: 709 case TargetOpcode::G_FCOS: 710 case TargetOpcode::G_FSIN: 711 case TargetOpcode::G_FLOG10: 712 case TargetOpcode::G_FLOG: 713 case TargetOpcode::G_FLOG2: 714 case TargetOpcode::G_FEXP: 715 case TargetOpcode::G_FEXP2: 716 case TargetOpcode::G_FCEIL: 717 case TargetOpcode::G_FFLOOR: 718 case TargetOpcode::G_FMINNUM: 719 case TargetOpcode::G_FMAXNUM: 720 case TargetOpcode::G_FSQRT: 721 case TargetOpcode::G_FRINT: 722 case TargetOpcode::G_FNEARBYINT: 723 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 724 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 725 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 726 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 727 return UnableToLegalize; 728 } 729 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 730 if (Status != Legalized) 731 return Status; 732 break; 733 } 734 case TargetOpcode::G_FPEXT: 735 case TargetOpcode::G_FPTRUNC: { 736 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 737 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 738 if (!FromTy || !ToTy) 739 return UnableToLegalize; 740 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 741 if (Status != Legalized) 742 return Status; 743 break; 744 } 745 case TargetOpcode::G_FPTOSI: 746 case TargetOpcode::G_FPTOUI: { 747 // FIXME: Support other types 748 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 749 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 750 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 751 return UnableToLegalize; 752 LegalizeResult Status = conversionLibcall( 753 MI, MIRBuilder, 754 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 755 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 756 if (Status != Legalized) 757 return Status; 758 break; 759 } 760 case TargetOpcode::G_SITOFP: 761 case TargetOpcode::G_UITOFP: { 762 // FIXME: Support other types 763 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 764 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 765 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 766 return UnableToLegalize; 767 LegalizeResult Status = conversionLibcall( 768 MI, MIRBuilder, 769 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 770 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 771 if (Status != Legalized) 772 return Status; 773 break; 774 } 775 case TargetOpcode::G_BZERO: 776 case TargetOpcode::G_MEMCPY: 777 case TargetOpcode::G_MEMMOVE: 778 case TargetOpcode::G_MEMSET: { 779 LegalizeResult Result = 780 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 781 if (Result != Legalized) 782 return Result; 783 MI.eraseFromParent(); 784 return Result; 785 } 786 } 787 788 MI.eraseFromParent(); 789 return Legalized; 790 } 791 792 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 793 unsigned TypeIdx, 794 LLT NarrowTy) { 795 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 796 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 797 798 switch (MI.getOpcode()) { 799 default: 800 return UnableToLegalize; 801 case TargetOpcode::G_IMPLICIT_DEF: { 802 Register DstReg = MI.getOperand(0).getReg(); 803 LLT DstTy = MRI.getType(DstReg); 804 805 // If SizeOp0 is not an exact multiple of NarrowSize, emit 806 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 807 // FIXME: Although this would also be legal for the general case, it causes 808 // a lot of regressions in the emitted code (superfluous COPYs, artifact 809 // combines not being hit). This seems to be a problem related to the 810 // artifact combiner. 811 if (SizeOp0 % NarrowSize != 0) { 812 LLT ImplicitTy = NarrowTy; 813 if (DstTy.isVector()) 814 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 815 816 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 817 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 818 819 MI.eraseFromParent(); 820 return Legalized; 821 } 822 823 int NumParts = SizeOp0 / NarrowSize; 824 825 SmallVector<Register, 2> DstRegs; 826 for (int i = 0; i < NumParts; ++i) 827 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 828 829 if (DstTy.isVector()) 830 MIRBuilder.buildBuildVector(DstReg, DstRegs); 831 else 832 MIRBuilder.buildMerge(DstReg, DstRegs); 833 MI.eraseFromParent(); 834 return Legalized; 835 } 836 case TargetOpcode::G_CONSTANT: { 837 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 838 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 839 unsigned TotalSize = Ty.getSizeInBits(); 840 unsigned NarrowSize = NarrowTy.getSizeInBits(); 841 int NumParts = TotalSize / NarrowSize; 842 843 SmallVector<Register, 4> PartRegs; 844 for (int I = 0; I != NumParts; ++I) { 845 unsigned Offset = I * NarrowSize; 846 auto K = MIRBuilder.buildConstant(NarrowTy, 847 Val.lshr(Offset).trunc(NarrowSize)); 848 PartRegs.push_back(K.getReg(0)); 849 } 850 851 LLT LeftoverTy; 852 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 853 SmallVector<Register, 1> LeftoverRegs; 854 if (LeftoverBits != 0) { 855 LeftoverTy = LLT::scalar(LeftoverBits); 856 auto K = MIRBuilder.buildConstant( 857 LeftoverTy, 858 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 859 LeftoverRegs.push_back(K.getReg(0)); 860 } 861 862 insertParts(MI.getOperand(0).getReg(), 863 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 864 865 MI.eraseFromParent(); 866 return Legalized; 867 } 868 case TargetOpcode::G_SEXT: 869 case TargetOpcode::G_ZEXT: 870 case TargetOpcode::G_ANYEXT: 871 return narrowScalarExt(MI, TypeIdx, NarrowTy); 872 case TargetOpcode::G_TRUNC: { 873 if (TypeIdx != 1) 874 return UnableToLegalize; 875 876 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 877 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 878 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 879 return UnableToLegalize; 880 } 881 882 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 883 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 884 MI.eraseFromParent(); 885 return Legalized; 886 } 887 888 case TargetOpcode::G_FREEZE: 889 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 890 case TargetOpcode::G_ADD: 891 case TargetOpcode::G_SUB: 892 case TargetOpcode::G_SADDO: 893 case TargetOpcode::G_SSUBO: 894 case TargetOpcode::G_SADDE: 895 case TargetOpcode::G_SSUBE: 896 case TargetOpcode::G_UADDO: 897 case TargetOpcode::G_USUBO: 898 case TargetOpcode::G_UADDE: 899 case TargetOpcode::G_USUBE: 900 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 901 case TargetOpcode::G_MUL: 902 case TargetOpcode::G_UMULH: 903 return narrowScalarMul(MI, NarrowTy); 904 case TargetOpcode::G_EXTRACT: 905 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 906 case TargetOpcode::G_INSERT: 907 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 908 case TargetOpcode::G_LOAD: { 909 auto &MMO = **MI.memoperands_begin(); 910 Register DstReg = MI.getOperand(0).getReg(); 911 LLT DstTy = MRI.getType(DstReg); 912 if (DstTy.isVector()) 913 return UnableToLegalize; 914 915 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 916 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 917 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 918 MIRBuilder.buildAnyExt(DstReg, TmpReg); 919 MI.eraseFromParent(); 920 return Legalized; 921 } 922 923 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 924 } 925 case TargetOpcode::G_ZEXTLOAD: 926 case TargetOpcode::G_SEXTLOAD: { 927 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 928 Register DstReg = MI.getOperand(0).getReg(); 929 Register PtrReg = MI.getOperand(1).getReg(); 930 931 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 932 auto &MMO = **MI.memoperands_begin(); 933 unsigned MemSize = MMO.getSizeInBits(); 934 935 if (MemSize == NarrowSize) { 936 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 937 } else if (MemSize < NarrowSize) { 938 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 939 } else if (MemSize > NarrowSize) { 940 // FIXME: Need to split the load. 941 return UnableToLegalize; 942 } 943 944 if (ZExt) 945 MIRBuilder.buildZExt(DstReg, TmpReg); 946 else 947 MIRBuilder.buildSExt(DstReg, TmpReg); 948 949 MI.eraseFromParent(); 950 return Legalized; 951 } 952 case TargetOpcode::G_STORE: { 953 const auto &MMO = **MI.memoperands_begin(); 954 955 Register SrcReg = MI.getOperand(0).getReg(); 956 LLT SrcTy = MRI.getType(SrcReg); 957 if (SrcTy.isVector()) 958 return UnableToLegalize; 959 960 int NumParts = SizeOp0 / NarrowSize; 961 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 962 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 963 if (SrcTy.isVector() && LeftoverBits != 0) 964 return UnableToLegalize; 965 966 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 967 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 968 auto &MMO = **MI.memoperands_begin(); 969 MIRBuilder.buildTrunc(TmpReg, SrcReg); 970 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 971 MI.eraseFromParent(); 972 return Legalized; 973 } 974 975 return reduceLoadStoreWidth(MI, 0, NarrowTy); 976 } 977 case TargetOpcode::G_SELECT: 978 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 979 case TargetOpcode::G_AND: 980 case TargetOpcode::G_OR: 981 case TargetOpcode::G_XOR: { 982 // Legalize bitwise operation: 983 // A = BinOp<Ty> B, C 984 // into: 985 // B1, ..., BN = G_UNMERGE_VALUES B 986 // C1, ..., CN = G_UNMERGE_VALUES C 987 // A1 = BinOp<Ty/N> B1, C2 988 // ... 989 // AN = BinOp<Ty/N> BN, CN 990 // A = G_MERGE_VALUES A1, ..., AN 991 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 992 } 993 case TargetOpcode::G_SHL: 994 case TargetOpcode::G_LSHR: 995 case TargetOpcode::G_ASHR: 996 return narrowScalarShift(MI, TypeIdx, NarrowTy); 997 case TargetOpcode::G_CTLZ: 998 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 999 case TargetOpcode::G_CTTZ: 1000 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1001 case TargetOpcode::G_CTPOP: 1002 if (TypeIdx == 1) 1003 switch (MI.getOpcode()) { 1004 case TargetOpcode::G_CTLZ: 1005 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1006 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1007 case TargetOpcode::G_CTTZ: 1008 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1009 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1010 case TargetOpcode::G_CTPOP: 1011 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1012 default: 1013 return UnableToLegalize; 1014 } 1015 1016 Observer.changingInstr(MI); 1017 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1018 Observer.changedInstr(MI); 1019 return Legalized; 1020 case TargetOpcode::G_INTTOPTR: 1021 if (TypeIdx != 1) 1022 return UnableToLegalize; 1023 1024 Observer.changingInstr(MI); 1025 narrowScalarSrc(MI, NarrowTy, 1); 1026 Observer.changedInstr(MI); 1027 return Legalized; 1028 case TargetOpcode::G_PTRTOINT: 1029 if (TypeIdx != 0) 1030 return UnableToLegalize; 1031 1032 Observer.changingInstr(MI); 1033 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1034 Observer.changedInstr(MI); 1035 return Legalized; 1036 case TargetOpcode::G_PHI: { 1037 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1038 // NarrowSize. 1039 if (SizeOp0 % NarrowSize != 0) 1040 return UnableToLegalize; 1041 1042 unsigned NumParts = SizeOp0 / NarrowSize; 1043 SmallVector<Register, 2> DstRegs(NumParts); 1044 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1045 Observer.changingInstr(MI); 1046 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1047 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1048 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1049 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1050 SrcRegs[i / 2]); 1051 } 1052 MachineBasicBlock &MBB = *MI.getParent(); 1053 MIRBuilder.setInsertPt(MBB, MI); 1054 for (unsigned i = 0; i < NumParts; ++i) { 1055 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1056 MachineInstrBuilder MIB = 1057 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1058 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1059 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1060 } 1061 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1062 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1063 Observer.changedInstr(MI); 1064 MI.eraseFromParent(); 1065 return Legalized; 1066 } 1067 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1068 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1069 if (TypeIdx != 2) 1070 return UnableToLegalize; 1071 1072 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1073 Observer.changingInstr(MI); 1074 narrowScalarSrc(MI, NarrowTy, OpIdx); 1075 Observer.changedInstr(MI); 1076 return Legalized; 1077 } 1078 case TargetOpcode::G_ICMP: { 1079 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1080 if (NarrowSize * 2 != SrcSize) 1081 return UnableToLegalize; 1082 1083 Observer.changingInstr(MI); 1084 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1085 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1086 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1087 1088 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1089 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1090 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1091 1092 CmpInst::Predicate Pred = 1093 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1094 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1095 1096 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1097 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1098 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1099 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1100 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1101 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1102 } else { 1103 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1104 MachineInstrBuilder CmpHEQ = 1105 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1106 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1107 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1108 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1109 } 1110 Observer.changedInstr(MI); 1111 MI.eraseFromParent(); 1112 return Legalized; 1113 } 1114 case TargetOpcode::G_SEXT_INREG: { 1115 if (TypeIdx != 0) 1116 return UnableToLegalize; 1117 1118 int64_t SizeInBits = MI.getOperand(2).getImm(); 1119 1120 // So long as the new type has more bits than the bits we're extending we 1121 // don't need to break it apart. 1122 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1123 Observer.changingInstr(MI); 1124 // We don't lose any non-extension bits by truncating the src and 1125 // sign-extending the dst. 1126 MachineOperand &MO1 = MI.getOperand(1); 1127 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1128 MO1.setReg(TruncMIB.getReg(0)); 1129 1130 MachineOperand &MO2 = MI.getOperand(0); 1131 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1132 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1133 MIRBuilder.buildSExt(MO2, DstExt); 1134 MO2.setReg(DstExt); 1135 Observer.changedInstr(MI); 1136 return Legalized; 1137 } 1138 1139 // Break it apart. Components below the extension point are unmodified. The 1140 // component containing the extension point becomes a narrower SEXT_INREG. 1141 // Components above it are ashr'd from the component containing the 1142 // extension point. 1143 if (SizeOp0 % NarrowSize != 0) 1144 return UnableToLegalize; 1145 int NumParts = SizeOp0 / NarrowSize; 1146 1147 // List the registers where the destination will be scattered. 1148 SmallVector<Register, 2> DstRegs; 1149 // List the registers where the source will be split. 1150 SmallVector<Register, 2> SrcRegs; 1151 1152 // Create all the temporary registers. 1153 for (int i = 0; i < NumParts; ++i) { 1154 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1155 1156 SrcRegs.push_back(SrcReg); 1157 } 1158 1159 // Explode the big arguments into smaller chunks. 1160 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1161 1162 Register AshrCstReg = 1163 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1164 .getReg(0); 1165 Register FullExtensionReg = 0; 1166 Register PartialExtensionReg = 0; 1167 1168 // Do the operation on each small part. 1169 for (int i = 0; i < NumParts; ++i) { 1170 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1171 DstRegs.push_back(SrcRegs[i]); 1172 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1173 assert(PartialExtensionReg && 1174 "Expected to visit partial extension before full"); 1175 if (FullExtensionReg) { 1176 DstRegs.push_back(FullExtensionReg); 1177 continue; 1178 } 1179 DstRegs.push_back( 1180 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1181 .getReg(0)); 1182 FullExtensionReg = DstRegs.back(); 1183 } else { 1184 DstRegs.push_back( 1185 MIRBuilder 1186 .buildInstr( 1187 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1188 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1189 .getReg(0)); 1190 PartialExtensionReg = DstRegs.back(); 1191 } 1192 } 1193 1194 // Gather the destination registers into the final destination. 1195 Register DstReg = MI.getOperand(0).getReg(); 1196 MIRBuilder.buildMerge(DstReg, DstRegs); 1197 MI.eraseFromParent(); 1198 return Legalized; 1199 } 1200 case TargetOpcode::G_BSWAP: 1201 case TargetOpcode::G_BITREVERSE: { 1202 if (SizeOp0 % NarrowSize != 0) 1203 return UnableToLegalize; 1204 1205 Observer.changingInstr(MI); 1206 SmallVector<Register, 2> SrcRegs, DstRegs; 1207 unsigned NumParts = SizeOp0 / NarrowSize; 1208 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1209 1210 for (unsigned i = 0; i < NumParts; ++i) { 1211 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1212 {SrcRegs[NumParts - 1 - i]}); 1213 DstRegs.push_back(DstPart.getReg(0)); 1214 } 1215 1216 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1217 1218 Observer.changedInstr(MI); 1219 MI.eraseFromParent(); 1220 return Legalized; 1221 } 1222 case TargetOpcode::G_PTR_ADD: 1223 case TargetOpcode::G_PTRMASK: { 1224 if (TypeIdx != 1) 1225 return UnableToLegalize; 1226 Observer.changingInstr(MI); 1227 narrowScalarSrc(MI, NarrowTy, 2); 1228 Observer.changedInstr(MI); 1229 return Legalized; 1230 } 1231 case TargetOpcode::G_FPTOUI: 1232 case TargetOpcode::G_FPTOSI: 1233 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1234 case TargetOpcode::G_FPEXT: 1235 if (TypeIdx != 0) 1236 return UnableToLegalize; 1237 Observer.changingInstr(MI); 1238 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1239 Observer.changedInstr(MI); 1240 return Legalized; 1241 } 1242 } 1243 1244 Register LegalizerHelper::coerceToScalar(Register Val) { 1245 LLT Ty = MRI.getType(Val); 1246 if (Ty.isScalar()) 1247 return Val; 1248 1249 const DataLayout &DL = MIRBuilder.getDataLayout(); 1250 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1251 if (Ty.isPointer()) { 1252 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1253 return Register(); 1254 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1255 } 1256 1257 Register NewVal = Val; 1258 1259 assert(Ty.isVector()); 1260 LLT EltTy = Ty.getElementType(); 1261 if (EltTy.isPointer()) 1262 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1263 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1264 } 1265 1266 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1267 unsigned OpIdx, unsigned ExtOpcode) { 1268 MachineOperand &MO = MI.getOperand(OpIdx); 1269 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1270 MO.setReg(ExtB.getReg(0)); 1271 } 1272 1273 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1274 unsigned OpIdx) { 1275 MachineOperand &MO = MI.getOperand(OpIdx); 1276 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1277 MO.setReg(ExtB.getReg(0)); 1278 } 1279 1280 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1281 unsigned OpIdx, unsigned TruncOpcode) { 1282 MachineOperand &MO = MI.getOperand(OpIdx); 1283 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1284 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1285 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1286 MO.setReg(DstExt); 1287 } 1288 1289 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1290 unsigned OpIdx, unsigned ExtOpcode) { 1291 MachineOperand &MO = MI.getOperand(OpIdx); 1292 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1293 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1294 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1295 MO.setReg(DstTrunc); 1296 } 1297 1298 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1299 unsigned OpIdx) { 1300 MachineOperand &MO = MI.getOperand(OpIdx); 1301 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1302 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1303 } 1304 1305 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1306 unsigned OpIdx) { 1307 MachineOperand &MO = MI.getOperand(OpIdx); 1308 1309 LLT OldTy = MRI.getType(MO.getReg()); 1310 unsigned OldElts = OldTy.getNumElements(); 1311 unsigned NewElts = MoreTy.getNumElements(); 1312 1313 unsigned NumParts = NewElts / OldElts; 1314 1315 // Use concat_vectors if the result is a multiple of the number of elements. 1316 if (NumParts * OldElts == NewElts) { 1317 SmallVector<Register, 8> Parts; 1318 Parts.push_back(MO.getReg()); 1319 1320 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1321 for (unsigned I = 1; I != NumParts; ++I) 1322 Parts.push_back(ImpDef); 1323 1324 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1325 MO.setReg(Concat.getReg(0)); 1326 return; 1327 } 1328 1329 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1330 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1331 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1332 MO.setReg(MoreReg); 1333 } 1334 1335 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1336 MachineOperand &Op = MI.getOperand(OpIdx); 1337 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1338 } 1339 1340 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1341 MachineOperand &MO = MI.getOperand(OpIdx); 1342 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1343 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1344 MIRBuilder.buildBitcast(MO, CastDst); 1345 MO.setReg(CastDst); 1346 } 1347 1348 LegalizerHelper::LegalizeResult 1349 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1350 LLT WideTy) { 1351 if (TypeIdx != 1) 1352 return UnableToLegalize; 1353 1354 Register DstReg = MI.getOperand(0).getReg(); 1355 LLT DstTy = MRI.getType(DstReg); 1356 if (DstTy.isVector()) 1357 return UnableToLegalize; 1358 1359 Register Src1 = MI.getOperand(1).getReg(); 1360 LLT SrcTy = MRI.getType(Src1); 1361 const int DstSize = DstTy.getSizeInBits(); 1362 const int SrcSize = SrcTy.getSizeInBits(); 1363 const int WideSize = WideTy.getSizeInBits(); 1364 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1365 1366 unsigned NumOps = MI.getNumOperands(); 1367 unsigned NumSrc = MI.getNumOperands() - 1; 1368 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1369 1370 if (WideSize >= DstSize) { 1371 // Directly pack the bits in the target type. 1372 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1373 1374 for (unsigned I = 2; I != NumOps; ++I) { 1375 const unsigned Offset = (I - 1) * PartSize; 1376 1377 Register SrcReg = MI.getOperand(I).getReg(); 1378 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1379 1380 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1381 1382 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1383 MRI.createGenericVirtualRegister(WideTy); 1384 1385 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1386 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1387 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1388 ResultReg = NextResult; 1389 } 1390 1391 if (WideSize > DstSize) 1392 MIRBuilder.buildTrunc(DstReg, ResultReg); 1393 else if (DstTy.isPointer()) 1394 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1395 1396 MI.eraseFromParent(); 1397 return Legalized; 1398 } 1399 1400 // Unmerge the original values to the GCD type, and recombine to the next 1401 // multiple greater than the original type. 1402 // 1403 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1404 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1405 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1406 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1407 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1408 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1409 // %12:_(s12) = G_MERGE_VALUES %10, %11 1410 // 1411 // Padding with undef if necessary: 1412 // 1413 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1414 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1415 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1416 // %7:_(s2) = G_IMPLICIT_DEF 1417 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1418 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1419 // %10:_(s12) = G_MERGE_VALUES %8, %9 1420 1421 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1422 LLT GCDTy = LLT::scalar(GCD); 1423 1424 SmallVector<Register, 8> Parts; 1425 SmallVector<Register, 8> NewMergeRegs; 1426 SmallVector<Register, 8> Unmerges; 1427 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1428 1429 // Decompose the original operands if they don't evenly divide. 1430 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1431 Register SrcReg = MI.getOperand(I).getReg(); 1432 if (GCD == SrcSize) { 1433 Unmerges.push_back(SrcReg); 1434 } else { 1435 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1436 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1437 Unmerges.push_back(Unmerge.getReg(J)); 1438 } 1439 } 1440 1441 // Pad with undef to the next size that is a multiple of the requested size. 1442 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1443 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1444 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1445 Unmerges.push_back(UndefReg); 1446 } 1447 1448 const int PartsPerGCD = WideSize / GCD; 1449 1450 // Build merges of each piece. 1451 ArrayRef<Register> Slicer(Unmerges); 1452 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1453 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1454 NewMergeRegs.push_back(Merge.getReg(0)); 1455 } 1456 1457 // A truncate may be necessary if the requested type doesn't evenly divide the 1458 // original result type. 1459 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1460 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1461 } else { 1462 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1463 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1464 } 1465 1466 MI.eraseFromParent(); 1467 return Legalized; 1468 } 1469 1470 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1471 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1472 LLT OrigTy = MRI.getType(OrigReg); 1473 LLT LCMTy = getLCMType(WideTy, OrigTy); 1474 1475 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1476 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1477 1478 Register UnmergeSrc = WideReg; 1479 1480 // Create a merge to the LCM type, padding with undef 1481 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1482 // => 1483 // %1:_(<4 x s32>) = G_FOO 1484 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1485 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1486 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1487 if (NumMergeParts > 1) { 1488 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1489 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1490 MergeParts[0] = WideReg; 1491 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1492 } 1493 1494 // Unmerge to the original register and pad with dead defs. 1495 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1496 UnmergeResults[0] = OrigReg; 1497 for (int I = 1; I != NumUnmergeParts; ++I) 1498 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1499 1500 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1501 return WideReg; 1502 } 1503 1504 LegalizerHelper::LegalizeResult 1505 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1506 LLT WideTy) { 1507 if (TypeIdx != 0) 1508 return UnableToLegalize; 1509 1510 int NumDst = MI.getNumOperands() - 1; 1511 Register SrcReg = MI.getOperand(NumDst).getReg(); 1512 LLT SrcTy = MRI.getType(SrcReg); 1513 if (SrcTy.isVector()) 1514 return UnableToLegalize; 1515 1516 Register Dst0Reg = MI.getOperand(0).getReg(); 1517 LLT DstTy = MRI.getType(Dst0Reg); 1518 if (!DstTy.isScalar()) 1519 return UnableToLegalize; 1520 1521 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1522 if (SrcTy.isPointer()) { 1523 const DataLayout &DL = MIRBuilder.getDataLayout(); 1524 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1525 LLVM_DEBUG( 1526 dbgs() << "Not casting non-integral address space integer\n"); 1527 return UnableToLegalize; 1528 } 1529 1530 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1531 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1532 } 1533 1534 // Widen SrcTy to WideTy. This does not affect the result, but since the 1535 // user requested this size, it is probably better handled than SrcTy and 1536 // should reduce the total number of legalization artifacts 1537 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1538 SrcTy = WideTy; 1539 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1540 } 1541 1542 // Theres no unmerge type to target. Directly extract the bits from the 1543 // source type 1544 unsigned DstSize = DstTy.getSizeInBits(); 1545 1546 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1547 for (int I = 1; I != NumDst; ++I) { 1548 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1549 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1550 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1551 } 1552 1553 MI.eraseFromParent(); 1554 return Legalized; 1555 } 1556 1557 // Extend the source to a wider type. 1558 LLT LCMTy = getLCMType(SrcTy, WideTy); 1559 1560 Register WideSrc = SrcReg; 1561 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1562 // TODO: If this is an integral address space, cast to integer and anyext. 1563 if (SrcTy.isPointer()) { 1564 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1565 return UnableToLegalize; 1566 } 1567 1568 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1569 } 1570 1571 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1572 1573 // Create a sequence of unmerges and merges to the original results. Since we 1574 // may have widened the source, we will need to pad the results with dead defs 1575 // to cover the source register. 1576 // e.g. widen s48 to s64: 1577 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1578 // 1579 // => 1580 // %4:_(s192) = G_ANYEXT %0:_(s96) 1581 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1582 // ; unpack to GCD type, with extra dead defs 1583 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1584 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1585 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1586 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1587 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1588 const LLT GCDTy = getGCDType(WideTy, DstTy); 1589 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1590 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1591 1592 // Directly unmerge to the destination without going through a GCD type 1593 // if possible 1594 if (PartsPerRemerge == 1) { 1595 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1596 1597 for (int I = 0; I != NumUnmerge; ++I) { 1598 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1599 1600 for (int J = 0; J != PartsPerUnmerge; ++J) { 1601 int Idx = I * PartsPerUnmerge + J; 1602 if (Idx < NumDst) 1603 MIB.addDef(MI.getOperand(Idx).getReg()); 1604 else { 1605 // Create dead def for excess components. 1606 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1607 } 1608 } 1609 1610 MIB.addUse(Unmerge.getReg(I)); 1611 } 1612 } else { 1613 SmallVector<Register, 16> Parts; 1614 for (int J = 0; J != NumUnmerge; ++J) 1615 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1616 1617 SmallVector<Register, 8> RemergeParts; 1618 for (int I = 0; I != NumDst; ++I) { 1619 for (int J = 0; J < PartsPerRemerge; ++J) { 1620 const int Idx = I * PartsPerRemerge + J; 1621 RemergeParts.emplace_back(Parts[Idx]); 1622 } 1623 1624 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1625 RemergeParts.clear(); 1626 } 1627 } 1628 1629 MI.eraseFromParent(); 1630 return Legalized; 1631 } 1632 1633 LegalizerHelper::LegalizeResult 1634 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1635 LLT WideTy) { 1636 Register DstReg = MI.getOperand(0).getReg(); 1637 Register SrcReg = MI.getOperand(1).getReg(); 1638 LLT SrcTy = MRI.getType(SrcReg); 1639 1640 LLT DstTy = MRI.getType(DstReg); 1641 unsigned Offset = MI.getOperand(2).getImm(); 1642 1643 if (TypeIdx == 0) { 1644 if (SrcTy.isVector() || DstTy.isVector()) 1645 return UnableToLegalize; 1646 1647 SrcOp Src(SrcReg); 1648 if (SrcTy.isPointer()) { 1649 // Extracts from pointers can be handled only if they are really just 1650 // simple integers. 1651 const DataLayout &DL = MIRBuilder.getDataLayout(); 1652 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1653 return UnableToLegalize; 1654 1655 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1656 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1657 SrcTy = SrcAsIntTy; 1658 } 1659 1660 if (DstTy.isPointer()) 1661 return UnableToLegalize; 1662 1663 if (Offset == 0) { 1664 // Avoid a shift in the degenerate case. 1665 MIRBuilder.buildTrunc(DstReg, 1666 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1667 MI.eraseFromParent(); 1668 return Legalized; 1669 } 1670 1671 // Do a shift in the source type. 1672 LLT ShiftTy = SrcTy; 1673 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1674 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1675 ShiftTy = WideTy; 1676 } 1677 1678 auto LShr = MIRBuilder.buildLShr( 1679 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1680 MIRBuilder.buildTrunc(DstReg, LShr); 1681 MI.eraseFromParent(); 1682 return Legalized; 1683 } 1684 1685 if (SrcTy.isScalar()) { 1686 Observer.changingInstr(MI); 1687 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1688 Observer.changedInstr(MI); 1689 return Legalized; 1690 } 1691 1692 if (!SrcTy.isVector()) 1693 return UnableToLegalize; 1694 1695 if (DstTy != SrcTy.getElementType()) 1696 return UnableToLegalize; 1697 1698 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1699 return UnableToLegalize; 1700 1701 Observer.changingInstr(MI); 1702 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1703 1704 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1705 Offset); 1706 widenScalarDst(MI, WideTy.getScalarType(), 0); 1707 Observer.changedInstr(MI); 1708 return Legalized; 1709 } 1710 1711 LegalizerHelper::LegalizeResult 1712 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1713 LLT WideTy) { 1714 if (TypeIdx != 0 || WideTy.isVector()) 1715 return UnableToLegalize; 1716 Observer.changingInstr(MI); 1717 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1718 widenScalarDst(MI, WideTy); 1719 Observer.changedInstr(MI); 1720 return Legalized; 1721 } 1722 1723 LegalizerHelper::LegalizeResult 1724 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1725 LLT WideTy) { 1726 if (TypeIdx == 1) 1727 return UnableToLegalize; // TODO 1728 1729 unsigned Opcode; 1730 unsigned ExtOpcode; 1731 Optional<Register> CarryIn = None; 1732 switch (MI.getOpcode()) { 1733 default: 1734 llvm_unreachable("Unexpected opcode!"); 1735 case TargetOpcode::G_SADDO: 1736 Opcode = TargetOpcode::G_ADD; 1737 ExtOpcode = TargetOpcode::G_SEXT; 1738 break; 1739 case TargetOpcode::G_SSUBO: 1740 Opcode = TargetOpcode::G_SUB; 1741 ExtOpcode = TargetOpcode::G_SEXT; 1742 break; 1743 case TargetOpcode::G_UADDO: 1744 Opcode = TargetOpcode::G_ADD; 1745 ExtOpcode = TargetOpcode::G_ZEXT; 1746 break; 1747 case TargetOpcode::G_USUBO: 1748 Opcode = TargetOpcode::G_SUB; 1749 ExtOpcode = TargetOpcode::G_ZEXT; 1750 break; 1751 case TargetOpcode::G_SADDE: 1752 Opcode = TargetOpcode::G_UADDE; 1753 ExtOpcode = TargetOpcode::G_SEXT; 1754 CarryIn = MI.getOperand(4).getReg(); 1755 break; 1756 case TargetOpcode::G_SSUBE: 1757 Opcode = TargetOpcode::G_USUBE; 1758 ExtOpcode = TargetOpcode::G_SEXT; 1759 CarryIn = MI.getOperand(4).getReg(); 1760 break; 1761 case TargetOpcode::G_UADDE: 1762 Opcode = TargetOpcode::G_UADDE; 1763 ExtOpcode = TargetOpcode::G_ZEXT; 1764 CarryIn = MI.getOperand(4).getReg(); 1765 break; 1766 case TargetOpcode::G_USUBE: 1767 Opcode = TargetOpcode::G_USUBE; 1768 ExtOpcode = TargetOpcode::G_ZEXT; 1769 CarryIn = MI.getOperand(4).getReg(); 1770 break; 1771 } 1772 1773 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1774 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1775 // Do the arithmetic in the larger type. 1776 Register NewOp; 1777 if (CarryIn) { 1778 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1779 NewOp = MIRBuilder 1780 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1781 {LHSExt, RHSExt, *CarryIn}) 1782 .getReg(0); 1783 } else { 1784 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1785 } 1786 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1787 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1788 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1789 // There is no overflow if the ExtOp is the same as NewOp. 1790 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1791 // Now trunc the NewOp to the original result. 1792 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1793 MI.eraseFromParent(); 1794 return Legalized; 1795 } 1796 1797 LegalizerHelper::LegalizeResult 1798 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1799 LLT WideTy) { 1800 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1801 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1802 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1803 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1804 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1805 // We can convert this to: 1806 // 1. Any extend iN to iM 1807 // 2. SHL by M-N 1808 // 3. [US][ADD|SUB|SHL]SAT 1809 // 4. L/ASHR by M-N 1810 // 1811 // It may be more efficient to lower this to a min and a max operation in 1812 // the higher precision arithmetic if the promoted operation isn't legal, 1813 // but this decision is up to the target's lowering request. 1814 Register DstReg = MI.getOperand(0).getReg(); 1815 1816 unsigned NewBits = WideTy.getScalarSizeInBits(); 1817 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1818 1819 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1820 // must not left shift the RHS to preserve the shift amount. 1821 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1822 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1823 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1824 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1825 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1826 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1827 1828 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1829 {ShiftL, ShiftR}, MI.getFlags()); 1830 1831 // Use a shift that will preserve the number of sign bits when the trunc is 1832 // folded away. 1833 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1834 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1835 1836 MIRBuilder.buildTrunc(DstReg, Result); 1837 MI.eraseFromParent(); 1838 return Legalized; 1839 } 1840 1841 LegalizerHelper::LegalizeResult 1842 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1843 LLT WideTy) { 1844 if (TypeIdx == 1) 1845 return UnableToLegalize; 1846 1847 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1848 Register Result = MI.getOperand(0).getReg(); 1849 Register OriginalOverflow = MI.getOperand(1).getReg(); 1850 Register LHS = MI.getOperand(2).getReg(); 1851 Register RHS = MI.getOperand(3).getReg(); 1852 LLT SrcTy = MRI.getType(LHS); 1853 LLT OverflowTy = MRI.getType(OriginalOverflow); 1854 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1855 1856 // To determine if the result overflowed in the larger type, we extend the 1857 // input to the larger type, do the multiply (checking if it overflows), 1858 // then also check the high bits of the result to see if overflow happened 1859 // there. 1860 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1861 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 1862 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 1863 1864 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 1865 {LeftOperand, RightOperand}); 1866 auto Mul = Mulo->getOperand(0); 1867 MIRBuilder.buildTrunc(Result, Mul); 1868 1869 MachineInstrBuilder ExtResult; 1870 // Overflow occurred if it occurred in the larger type, or if the high part 1871 // of the result does not zero/sign-extend the low part. Check this second 1872 // possibility first. 1873 if (IsSigned) { 1874 // For signed, overflow occurred when the high part does not sign-extend 1875 // the low part. 1876 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 1877 } else { 1878 // Unsigned overflow occurred when the high part does not zero-extend the 1879 // low part. 1880 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 1881 } 1882 1883 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 1884 // so we don't need to check the overflow result of larger type Mulo. 1885 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 1886 auto Overflow = 1887 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 1888 // Finally check if the multiplication in the larger type itself overflowed. 1889 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 1890 } else { 1891 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 1892 } 1893 MI.eraseFromParent(); 1894 return Legalized; 1895 } 1896 1897 LegalizerHelper::LegalizeResult 1898 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1899 switch (MI.getOpcode()) { 1900 default: 1901 return UnableToLegalize; 1902 case TargetOpcode::G_EXTRACT: 1903 return widenScalarExtract(MI, TypeIdx, WideTy); 1904 case TargetOpcode::G_INSERT: 1905 return widenScalarInsert(MI, TypeIdx, WideTy); 1906 case TargetOpcode::G_MERGE_VALUES: 1907 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1908 case TargetOpcode::G_UNMERGE_VALUES: 1909 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1910 case TargetOpcode::G_SADDO: 1911 case TargetOpcode::G_SSUBO: 1912 case TargetOpcode::G_UADDO: 1913 case TargetOpcode::G_USUBO: 1914 case TargetOpcode::G_SADDE: 1915 case TargetOpcode::G_SSUBE: 1916 case TargetOpcode::G_UADDE: 1917 case TargetOpcode::G_USUBE: 1918 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 1919 case TargetOpcode::G_UMULO: 1920 case TargetOpcode::G_SMULO: 1921 return widenScalarMulo(MI, TypeIdx, WideTy); 1922 case TargetOpcode::G_SADDSAT: 1923 case TargetOpcode::G_SSUBSAT: 1924 case TargetOpcode::G_SSHLSAT: 1925 case TargetOpcode::G_UADDSAT: 1926 case TargetOpcode::G_USUBSAT: 1927 case TargetOpcode::G_USHLSAT: 1928 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1929 case TargetOpcode::G_CTTZ: 1930 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1931 case TargetOpcode::G_CTLZ: 1932 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1933 case TargetOpcode::G_CTPOP: { 1934 if (TypeIdx == 0) { 1935 Observer.changingInstr(MI); 1936 widenScalarDst(MI, WideTy, 0); 1937 Observer.changedInstr(MI); 1938 return Legalized; 1939 } 1940 1941 Register SrcReg = MI.getOperand(1).getReg(); 1942 1943 // First ZEXT the input. 1944 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1945 LLT CurTy = MRI.getType(SrcReg); 1946 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1947 // The count is the same in the larger type except if the original 1948 // value was zero. This can be handled by setting the bit just off 1949 // the top of the original type. 1950 auto TopBit = 1951 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1952 MIBSrc = MIRBuilder.buildOr( 1953 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1954 } 1955 1956 // Perform the operation at the larger size. 1957 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1958 // This is already the correct result for CTPOP and CTTZs 1959 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1960 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1961 // The correct result is NewOp - (Difference in widety and current ty). 1962 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1963 MIBNewOp = MIRBuilder.buildSub( 1964 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1965 } 1966 1967 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1968 MI.eraseFromParent(); 1969 return Legalized; 1970 } 1971 case TargetOpcode::G_BSWAP: { 1972 Observer.changingInstr(MI); 1973 Register DstReg = MI.getOperand(0).getReg(); 1974 1975 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1976 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1977 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1978 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1979 1980 MI.getOperand(0).setReg(DstExt); 1981 1982 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1983 1984 LLT Ty = MRI.getType(DstReg); 1985 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1986 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1987 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1988 1989 MIRBuilder.buildTrunc(DstReg, ShrReg); 1990 Observer.changedInstr(MI); 1991 return Legalized; 1992 } 1993 case TargetOpcode::G_BITREVERSE: { 1994 Observer.changingInstr(MI); 1995 1996 Register DstReg = MI.getOperand(0).getReg(); 1997 LLT Ty = MRI.getType(DstReg); 1998 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1999 2000 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2001 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2002 MI.getOperand(0).setReg(DstExt); 2003 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2004 2005 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2006 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2007 MIRBuilder.buildTrunc(DstReg, Shift); 2008 Observer.changedInstr(MI); 2009 return Legalized; 2010 } 2011 case TargetOpcode::G_FREEZE: 2012 Observer.changingInstr(MI); 2013 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2014 widenScalarDst(MI, WideTy); 2015 Observer.changedInstr(MI); 2016 return Legalized; 2017 2018 case TargetOpcode::G_ABS: 2019 Observer.changingInstr(MI); 2020 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2021 widenScalarDst(MI, WideTy); 2022 Observer.changedInstr(MI); 2023 return Legalized; 2024 2025 case TargetOpcode::G_ADD: 2026 case TargetOpcode::G_AND: 2027 case TargetOpcode::G_MUL: 2028 case TargetOpcode::G_OR: 2029 case TargetOpcode::G_XOR: 2030 case TargetOpcode::G_SUB: 2031 // Perform operation at larger width (any extension is fines here, high bits 2032 // don't affect the result) and then truncate the result back to the 2033 // original type. 2034 Observer.changingInstr(MI); 2035 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2036 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2037 widenScalarDst(MI, WideTy); 2038 Observer.changedInstr(MI); 2039 return Legalized; 2040 2041 case TargetOpcode::G_SHL: 2042 Observer.changingInstr(MI); 2043 2044 if (TypeIdx == 0) { 2045 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2046 widenScalarDst(MI, WideTy); 2047 } else { 2048 assert(TypeIdx == 1); 2049 // The "number of bits to shift" operand must preserve its value as an 2050 // unsigned integer: 2051 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2052 } 2053 2054 Observer.changedInstr(MI); 2055 return Legalized; 2056 2057 case TargetOpcode::G_SDIV: 2058 case TargetOpcode::G_SREM: 2059 case TargetOpcode::G_SMIN: 2060 case TargetOpcode::G_SMAX: 2061 Observer.changingInstr(MI); 2062 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2063 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2064 widenScalarDst(MI, WideTy); 2065 Observer.changedInstr(MI); 2066 return Legalized; 2067 2068 case TargetOpcode::G_SDIVREM: 2069 Observer.changingInstr(MI); 2070 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2071 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2072 widenScalarDst(MI, WideTy); 2073 widenScalarDst(MI, WideTy, 1); 2074 Observer.changedInstr(MI); 2075 return Legalized; 2076 2077 case TargetOpcode::G_ASHR: 2078 case TargetOpcode::G_LSHR: 2079 Observer.changingInstr(MI); 2080 2081 if (TypeIdx == 0) { 2082 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2083 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2084 2085 widenScalarSrc(MI, WideTy, 1, CvtOp); 2086 widenScalarDst(MI, WideTy); 2087 } else { 2088 assert(TypeIdx == 1); 2089 // The "number of bits to shift" operand must preserve its value as an 2090 // unsigned integer: 2091 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2092 } 2093 2094 Observer.changedInstr(MI); 2095 return Legalized; 2096 case TargetOpcode::G_UDIV: 2097 case TargetOpcode::G_UREM: 2098 case TargetOpcode::G_UMIN: 2099 case TargetOpcode::G_UMAX: 2100 Observer.changingInstr(MI); 2101 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2102 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2103 widenScalarDst(MI, WideTy); 2104 Observer.changedInstr(MI); 2105 return Legalized; 2106 2107 case TargetOpcode::G_UDIVREM: 2108 Observer.changingInstr(MI); 2109 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2110 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2111 widenScalarDst(MI, WideTy); 2112 widenScalarDst(MI, WideTy, 1); 2113 Observer.changedInstr(MI); 2114 return Legalized; 2115 2116 case TargetOpcode::G_SELECT: 2117 Observer.changingInstr(MI); 2118 if (TypeIdx == 0) { 2119 // Perform operation at larger width (any extension is fine here, high 2120 // bits don't affect the result) and then truncate the result back to the 2121 // original type. 2122 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2123 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2124 widenScalarDst(MI, WideTy); 2125 } else { 2126 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2127 // Explicit extension is required here since high bits affect the result. 2128 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2129 } 2130 Observer.changedInstr(MI); 2131 return Legalized; 2132 2133 case TargetOpcode::G_FPTOSI: 2134 case TargetOpcode::G_FPTOUI: 2135 Observer.changingInstr(MI); 2136 2137 if (TypeIdx == 0) 2138 widenScalarDst(MI, WideTy); 2139 else 2140 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2141 2142 Observer.changedInstr(MI); 2143 return Legalized; 2144 case TargetOpcode::G_SITOFP: 2145 Observer.changingInstr(MI); 2146 2147 if (TypeIdx == 0) 2148 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2149 else 2150 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2151 2152 Observer.changedInstr(MI); 2153 return Legalized; 2154 case TargetOpcode::G_UITOFP: 2155 Observer.changingInstr(MI); 2156 2157 if (TypeIdx == 0) 2158 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2159 else 2160 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2161 2162 Observer.changedInstr(MI); 2163 return Legalized; 2164 case TargetOpcode::G_LOAD: 2165 case TargetOpcode::G_SEXTLOAD: 2166 case TargetOpcode::G_ZEXTLOAD: 2167 Observer.changingInstr(MI); 2168 widenScalarDst(MI, WideTy); 2169 Observer.changedInstr(MI); 2170 return Legalized; 2171 2172 case TargetOpcode::G_STORE: { 2173 if (TypeIdx != 0) 2174 return UnableToLegalize; 2175 2176 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2177 if (!Ty.isScalar()) 2178 return UnableToLegalize; 2179 2180 Observer.changingInstr(MI); 2181 2182 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2183 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2184 widenScalarSrc(MI, WideTy, 0, ExtType); 2185 2186 Observer.changedInstr(MI); 2187 return Legalized; 2188 } 2189 case TargetOpcode::G_CONSTANT: { 2190 MachineOperand &SrcMO = MI.getOperand(1); 2191 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2192 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2193 MRI.getType(MI.getOperand(0).getReg())); 2194 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2195 ExtOpc == TargetOpcode::G_ANYEXT) && 2196 "Illegal Extend"); 2197 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2198 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2199 ? SrcVal.sext(WideTy.getSizeInBits()) 2200 : SrcVal.zext(WideTy.getSizeInBits()); 2201 Observer.changingInstr(MI); 2202 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2203 2204 widenScalarDst(MI, WideTy); 2205 Observer.changedInstr(MI); 2206 return Legalized; 2207 } 2208 case TargetOpcode::G_FCONSTANT: { 2209 MachineOperand &SrcMO = MI.getOperand(1); 2210 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2211 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2212 bool LosesInfo; 2213 switch (WideTy.getSizeInBits()) { 2214 case 32: 2215 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2216 &LosesInfo); 2217 break; 2218 case 64: 2219 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2220 &LosesInfo); 2221 break; 2222 default: 2223 return UnableToLegalize; 2224 } 2225 2226 assert(!LosesInfo && "extend should always be lossless"); 2227 2228 Observer.changingInstr(MI); 2229 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2230 2231 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2232 Observer.changedInstr(MI); 2233 return Legalized; 2234 } 2235 case TargetOpcode::G_IMPLICIT_DEF: { 2236 Observer.changingInstr(MI); 2237 widenScalarDst(MI, WideTy); 2238 Observer.changedInstr(MI); 2239 return Legalized; 2240 } 2241 case TargetOpcode::G_BRCOND: 2242 Observer.changingInstr(MI); 2243 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2244 Observer.changedInstr(MI); 2245 return Legalized; 2246 2247 case TargetOpcode::G_FCMP: 2248 Observer.changingInstr(MI); 2249 if (TypeIdx == 0) 2250 widenScalarDst(MI, WideTy); 2251 else { 2252 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2253 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2254 } 2255 Observer.changedInstr(MI); 2256 return Legalized; 2257 2258 case TargetOpcode::G_ICMP: 2259 Observer.changingInstr(MI); 2260 if (TypeIdx == 0) 2261 widenScalarDst(MI, WideTy); 2262 else { 2263 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2264 MI.getOperand(1).getPredicate())) 2265 ? TargetOpcode::G_SEXT 2266 : TargetOpcode::G_ZEXT; 2267 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2268 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2269 } 2270 Observer.changedInstr(MI); 2271 return Legalized; 2272 2273 case TargetOpcode::G_PTR_ADD: 2274 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2275 Observer.changingInstr(MI); 2276 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2277 Observer.changedInstr(MI); 2278 return Legalized; 2279 2280 case TargetOpcode::G_PHI: { 2281 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2282 2283 Observer.changingInstr(MI); 2284 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2285 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2286 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2287 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2288 } 2289 2290 MachineBasicBlock &MBB = *MI.getParent(); 2291 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2292 widenScalarDst(MI, WideTy); 2293 Observer.changedInstr(MI); 2294 return Legalized; 2295 } 2296 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2297 if (TypeIdx == 0) { 2298 Register VecReg = MI.getOperand(1).getReg(); 2299 LLT VecTy = MRI.getType(VecReg); 2300 Observer.changingInstr(MI); 2301 2302 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2303 WideTy.getSizeInBits()), 2304 1, TargetOpcode::G_SEXT); 2305 2306 widenScalarDst(MI, WideTy, 0); 2307 Observer.changedInstr(MI); 2308 return Legalized; 2309 } 2310 2311 if (TypeIdx != 2) 2312 return UnableToLegalize; 2313 Observer.changingInstr(MI); 2314 // TODO: Probably should be zext 2315 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2316 Observer.changedInstr(MI); 2317 return Legalized; 2318 } 2319 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2320 if (TypeIdx == 1) { 2321 Observer.changingInstr(MI); 2322 2323 Register VecReg = MI.getOperand(1).getReg(); 2324 LLT VecTy = MRI.getType(VecReg); 2325 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2326 2327 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2328 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2329 widenScalarDst(MI, WideVecTy, 0); 2330 Observer.changedInstr(MI); 2331 return Legalized; 2332 } 2333 2334 if (TypeIdx == 2) { 2335 Observer.changingInstr(MI); 2336 // TODO: Probably should be zext 2337 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2338 Observer.changedInstr(MI); 2339 return Legalized; 2340 } 2341 2342 return UnableToLegalize; 2343 } 2344 case TargetOpcode::G_FADD: 2345 case TargetOpcode::G_FMUL: 2346 case TargetOpcode::G_FSUB: 2347 case TargetOpcode::G_FMA: 2348 case TargetOpcode::G_FMAD: 2349 case TargetOpcode::G_FNEG: 2350 case TargetOpcode::G_FABS: 2351 case TargetOpcode::G_FCANONICALIZE: 2352 case TargetOpcode::G_FMINNUM: 2353 case TargetOpcode::G_FMAXNUM: 2354 case TargetOpcode::G_FMINNUM_IEEE: 2355 case TargetOpcode::G_FMAXNUM_IEEE: 2356 case TargetOpcode::G_FMINIMUM: 2357 case TargetOpcode::G_FMAXIMUM: 2358 case TargetOpcode::G_FDIV: 2359 case TargetOpcode::G_FREM: 2360 case TargetOpcode::G_FCEIL: 2361 case TargetOpcode::G_FFLOOR: 2362 case TargetOpcode::G_FCOS: 2363 case TargetOpcode::G_FSIN: 2364 case TargetOpcode::G_FLOG10: 2365 case TargetOpcode::G_FLOG: 2366 case TargetOpcode::G_FLOG2: 2367 case TargetOpcode::G_FRINT: 2368 case TargetOpcode::G_FNEARBYINT: 2369 case TargetOpcode::G_FSQRT: 2370 case TargetOpcode::G_FEXP: 2371 case TargetOpcode::G_FEXP2: 2372 case TargetOpcode::G_FPOW: 2373 case TargetOpcode::G_INTRINSIC_TRUNC: 2374 case TargetOpcode::G_INTRINSIC_ROUND: 2375 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2376 assert(TypeIdx == 0); 2377 Observer.changingInstr(MI); 2378 2379 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2380 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2381 2382 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2383 Observer.changedInstr(MI); 2384 return Legalized; 2385 case TargetOpcode::G_FPOWI: { 2386 if (TypeIdx != 0) 2387 return UnableToLegalize; 2388 Observer.changingInstr(MI); 2389 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2390 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2391 Observer.changedInstr(MI); 2392 return Legalized; 2393 } 2394 case TargetOpcode::G_INTTOPTR: 2395 if (TypeIdx != 1) 2396 return UnableToLegalize; 2397 2398 Observer.changingInstr(MI); 2399 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2400 Observer.changedInstr(MI); 2401 return Legalized; 2402 case TargetOpcode::G_PTRTOINT: 2403 if (TypeIdx != 0) 2404 return UnableToLegalize; 2405 2406 Observer.changingInstr(MI); 2407 widenScalarDst(MI, WideTy, 0); 2408 Observer.changedInstr(MI); 2409 return Legalized; 2410 case TargetOpcode::G_BUILD_VECTOR: { 2411 Observer.changingInstr(MI); 2412 2413 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2414 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2415 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2416 2417 // Avoid changing the result vector type if the source element type was 2418 // requested. 2419 if (TypeIdx == 1) { 2420 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2421 } else { 2422 widenScalarDst(MI, WideTy, 0); 2423 } 2424 2425 Observer.changedInstr(MI); 2426 return Legalized; 2427 } 2428 case TargetOpcode::G_SEXT_INREG: 2429 if (TypeIdx != 0) 2430 return UnableToLegalize; 2431 2432 Observer.changingInstr(MI); 2433 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2434 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2435 Observer.changedInstr(MI); 2436 return Legalized; 2437 case TargetOpcode::G_PTRMASK: { 2438 if (TypeIdx != 1) 2439 return UnableToLegalize; 2440 Observer.changingInstr(MI); 2441 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2442 Observer.changedInstr(MI); 2443 return Legalized; 2444 } 2445 } 2446 } 2447 2448 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2449 MachineIRBuilder &B, Register Src, LLT Ty) { 2450 auto Unmerge = B.buildUnmerge(Ty, Src); 2451 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2452 Pieces.push_back(Unmerge.getReg(I)); 2453 } 2454 2455 LegalizerHelper::LegalizeResult 2456 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2457 Register Dst = MI.getOperand(0).getReg(); 2458 Register Src = MI.getOperand(1).getReg(); 2459 LLT DstTy = MRI.getType(Dst); 2460 LLT SrcTy = MRI.getType(Src); 2461 2462 if (SrcTy.isVector()) { 2463 LLT SrcEltTy = SrcTy.getElementType(); 2464 SmallVector<Register, 8> SrcRegs; 2465 2466 if (DstTy.isVector()) { 2467 int NumDstElt = DstTy.getNumElements(); 2468 int NumSrcElt = SrcTy.getNumElements(); 2469 2470 LLT DstEltTy = DstTy.getElementType(); 2471 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2472 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2473 2474 // If there's an element size mismatch, insert intermediate casts to match 2475 // the result element type. 2476 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2477 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2478 // 2479 // => 2480 // 2481 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2482 // %3:_(<2 x s8>) = G_BITCAST %2 2483 // %4:_(<2 x s8>) = G_BITCAST %3 2484 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2485 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2486 SrcPartTy = SrcEltTy; 2487 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2488 // 2489 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2490 // 2491 // => 2492 // 2493 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2494 // %3:_(s16) = G_BITCAST %2 2495 // %4:_(s16) = G_BITCAST %3 2496 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2497 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2498 DstCastTy = DstEltTy; 2499 } 2500 2501 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2502 for (Register &SrcReg : SrcRegs) 2503 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2504 } else 2505 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2506 2507 MIRBuilder.buildMerge(Dst, SrcRegs); 2508 MI.eraseFromParent(); 2509 return Legalized; 2510 } 2511 2512 if (DstTy.isVector()) { 2513 SmallVector<Register, 8> SrcRegs; 2514 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2515 MIRBuilder.buildMerge(Dst, SrcRegs); 2516 MI.eraseFromParent(); 2517 return Legalized; 2518 } 2519 2520 return UnableToLegalize; 2521 } 2522 2523 /// Figure out the bit offset into a register when coercing a vector index for 2524 /// the wide element type. This is only for the case when promoting vector to 2525 /// one with larger elements. 2526 // 2527 /// 2528 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2529 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2530 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2531 Register Idx, 2532 unsigned NewEltSize, 2533 unsigned OldEltSize) { 2534 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2535 LLT IdxTy = B.getMRI()->getType(Idx); 2536 2537 // Now figure out the amount we need to shift to get the target bits. 2538 auto OffsetMask = B.buildConstant( 2539 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2540 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2541 return B.buildShl(IdxTy, OffsetIdx, 2542 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2543 } 2544 2545 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2546 /// is casting to a vector with a smaller element size, perform multiple element 2547 /// extracts and merge the results. If this is coercing to a vector with larger 2548 /// elements, index the bitcasted vector and extract the target element with bit 2549 /// operations. This is intended to force the indexing in the native register 2550 /// size for architectures that can dynamically index the register file. 2551 LegalizerHelper::LegalizeResult 2552 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2553 LLT CastTy) { 2554 if (TypeIdx != 1) 2555 return UnableToLegalize; 2556 2557 Register Dst = MI.getOperand(0).getReg(); 2558 Register SrcVec = MI.getOperand(1).getReg(); 2559 Register Idx = MI.getOperand(2).getReg(); 2560 LLT SrcVecTy = MRI.getType(SrcVec); 2561 LLT IdxTy = MRI.getType(Idx); 2562 2563 LLT SrcEltTy = SrcVecTy.getElementType(); 2564 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2565 unsigned OldNumElts = SrcVecTy.getNumElements(); 2566 2567 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2568 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2569 2570 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2571 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2572 if (NewNumElts > OldNumElts) { 2573 // Decreasing the vector element size 2574 // 2575 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2576 // => 2577 // v4i32:castx = bitcast x:v2i64 2578 // 2579 // i64 = bitcast 2580 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2581 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2582 // 2583 if (NewNumElts % OldNumElts != 0) 2584 return UnableToLegalize; 2585 2586 // Type of the intermediate result vector. 2587 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2588 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2589 2590 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2591 2592 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2593 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2594 2595 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2596 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2597 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2598 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2599 NewOps[I] = Elt.getReg(0); 2600 } 2601 2602 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2603 MIRBuilder.buildBitcast(Dst, NewVec); 2604 MI.eraseFromParent(); 2605 return Legalized; 2606 } 2607 2608 if (NewNumElts < OldNumElts) { 2609 if (NewEltSize % OldEltSize != 0) 2610 return UnableToLegalize; 2611 2612 // This only depends on powers of 2 because we use bit tricks to figure out 2613 // the bit offset we need to shift to get the target element. A general 2614 // expansion could emit division/multiply. 2615 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2616 return UnableToLegalize; 2617 2618 // Increasing the vector element size. 2619 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2620 // 2621 // => 2622 // 2623 // %cast = G_BITCAST %vec 2624 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2625 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2626 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2627 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2628 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2629 // %elt = G_TRUNC %elt_bits 2630 2631 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2632 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2633 2634 // Divide to get the index in the wider element type. 2635 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2636 2637 Register WideElt = CastVec; 2638 if (CastTy.isVector()) { 2639 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2640 ScaledIdx).getReg(0); 2641 } 2642 2643 // Compute the bit offset into the register of the target element. 2644 Register OffsetBits = getBitcastWiderVectorElementOffset( 2645 MIRBuilder, Idx, NewEltSize, OldEltSize); 2646 2647 // Shift the wide element to get the target element. 2648 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2649 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2650 MI.eraseFromParent(); 2651 return Legalized; 2652 } 2653 2654 return UnableToLegalize; 2655 } 2656 2657 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2658 /// TargetReg, while preserving other bits in \p TargetReg. 2659 /// 2660 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2661 static Register buildBitFieldInsert(MachineIRBuilder &B, 2662 Register TargetReg, Register InsertReg, 2663 Register OffsetBits) { 2664 LLT TargetTy = B.getMRI()->getType(TargetReg); 2665 LLT InsertTy = B.getMRI()->getType(InsertReg); 2666 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2667 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2668 2669 // Produce a bitmask of the value to insert 2670 auto EltMask = B.buildConstant( 2671 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2672 InsertTy.getSizeInBits())); 2673 // Shift it into position 2674 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2675 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2676 2677 // Clear out the bits in the wide element 2678 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2679 2680 // The value to insert has all zeros already, so stick it into the masked 2681 // wide element. 2682 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2683 } 2684 2685 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2686 /// is increasing the element size, perform the indexing in the target element 2687 /// type, and use bit operations to insert at the element position. This is 2688 /// intended for architectures that can dynamically index the register file and 2689 /// want to force indexing in the native register size. 2690 LegalizerHelper::LegalizeResult 2691 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2692 LLT CastTy) { 2693 if (TypeIdx != 0) 2694 return UnableToLegalize; 2695 2696 Register Dst = MI.getOperand(0).getReg(); 2697 Register SrcVec = MI.getOperand(1).getReg(); 2698 Register Val = MI.getOperand(2).getReg(); 2699 Register Idx = MI.getOperand(3).getReg(); 2700 2701 LLT VecTy = MRI.getType(Dst); 2702 LLT IdxTy = MRI.getType(Idx); 2703 2704 LLT VecEltTy = VecTy.getElementType(); 2705 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2706 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2707 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2708 2709 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2710 unsigned OldNumElts = VecTy.getNumElements(); 2711 2712 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2713 if (NewNumElts < OldNumElts) { 2714 if (NewEltSize % OldEltSize != 0) 2715 return UnableToLegalize; 2716 2717 // This only depends on powers of 2 because we use bit tricks to figure out 2718 // the bit offset we need to shift to get the target element. A general 2719 // expansion could emit division/multiply. 2720 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2721 return UnableToLegalize; 2722 2723 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2724 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2725 2726 // Divide to get the index in the wider element type. 2727 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2728 2729 Register ExtractedElt = CastVec; 2730 if (CastTy.isVector()) { 2731 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2732 ScaledIdx).getReg(0); 2733 } 2734 2735 // Compute the bit offset into the register of the target element. 2736 Register OffsetBits = getBitcastWiderVectorElementOffset( 2737 MIRBuilder, Idx, NewEltSize, OldEltSize); 2738 2739 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2740 Val, OffsetBits); 2741 if (CastTy.isVector()) { 2742 InsertedElt = MIRBuilder.buildInsertVectorElement( 2743 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2744 } 2745 2746 MIRBuilder.buildBitcast(Dst, InsertedElt); 2747 MI.eraseFromParent(); 2748 return Legalized; 2749 } 2750 2751 return UnableToLegalize; 2752 } 2753 2754 LegalizerHelper::LegalizeResult 2755 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2756 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2757 Register DstReg = MI.getOperand(0).getReg(); 2758 Register PtrReg = MI.getOperand(1).getReg(); 2759 LLT DstTy = MRI.getType(DstReg); 2760 auto &MMO = **MI.memoperands_begin(); 2761 2762 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2763 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2764 // This load needs splitting into power of 2 sized loads. 2765 if (DstTy.isVector()) 2766 return UnableToLegalize; 2767 if (isPowerOf2_32(DstTy.getSizeInBits())) 2768 return UnableToLegalize; // Don't know what we're being asked to do. 2769 2770 // Our strategy here is to generate anyextending loads for the smaller 2771 // types up to next power-2 result type, and then combine the two larger 2772 // result values together, before truncating back down to the non-pow-2 2773 // type. 2774 // E.g. v1 = i24 load => 2775 // v2 = i32 zextload (2 byte) 2776 // v3 = i32 load (1 byte) 2777 // v4 = i32 shl v3, 16 2778 // v5 = i32 or v4, v2 2779 // v1 = i24 trunc v5 2780 // By doing this we generate the correct truncate which should get 2781 // combined away as an artifact with a matching extend. 2782 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2783 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2784 2785 MachineFunction &MF = MIRBuilder.getMF(); 2786 MachineMemOperand *LargeMMO = 2787 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2788 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2789 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2790 2791 LLT PtrTy = MRI.getType(PtrReg); 2792 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2793 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2794 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2795 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2796 auto LargeLoad = MIRBuilder.buildLoadInstr( 2797 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2798 2799 auto OffsetCst = MIRBuilder.buildConstant( 2800 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2801 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2802 auto SmallPtr = 2803 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 2804 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr, 2805 *SmallMMO); 2806 2807 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2808 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2809 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2810 MIRBuilder.buildTrunc(DstReg, {Or}); 2811 MI.eraseFromParent(); 2812 return Legalized; 2813 } 2814 2815 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2816 MI.eraseFromParent(); 2817 return Legalized; 2818 } 2819 2820 return UnableToLegalize; 2821 } 2822 2823 LegalizerHelper::LegalizeResult 2824 LegalizerHelper::lowerStore(MachineInstr &MI) { 2825 // Lower a non-power of 2 store into multiple pow-2 stores. 2826 // E.g. split an i24 store into an i16 store + i8 store. 2827 // We do this by first extending the stored value to the next largest power 2828 // of 2 type, and then using truncating stores to store the components. 2829 // By doing this, likewise with G_LOAD, generate an extend that can be 2830 // artifact-combined away instead of leaving behind extracts. 2831 Register SrcReg = MI.getOperand(0).getReg(); 2832 Register PtrReg = MI.getOperand(1).getReg(); 2833 LLT SrcTy = MRI.getType(SrcReg); 2834 MachineMemOperand &MMO = **MI.memoperands_begin(); 2835 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2836 return UnableToLegalize; 2837 if (SrcTy.isVector()) 2838 return UnableToLegalize; 2839 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2840 return UnableToLegalize; // Don't know what we're being asked to do. 2841 2842 // Extend to the next pow-2. 2843 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2844 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2845 2846 // Obtain the smaller value by shifting away the larger value. 2847 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2848 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2849 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2850 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2851 2852 // Generate the PtrAdd and truncating stores. 2853 LLT PtrTy = MRI.getType(PtrReg); 2854 auto OffsetCst = MIRBuilder.buildConstant( 2855 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2856 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2857 auto SmallPtr = 2858 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 2859 2860 MachineFunction &MF = MIRBuilder.getMF(); 2861 MachineMemOperand *LargeMMO = 2862 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2863 MachineMemOperand *SmallMMO = 2864 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2865 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 2866 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 2867 MI.eraseFromParent(); 2868 return Legalized; 2869 } 2870 2871 LegalizerHelper::LegalizeResult 2872 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2873 switch (MI.getOpcode()) { 2874 case TargetOpcode::G_LOAD: { 2875 if (TypeIdx != 0) 2876 return UnableToLegalize; 2877 2878 Observer.changingInstr(MI); 2879 bitcastDst(MI, CastTy, 0); 2880 Observer.changedInstr(MI); 2881 return Legalized; 2882 } 2883 case TargetOpcode::G_STORE: { 2884 if (TypeIdx != 0) 2885 return UnableToLegalize; 2886 2887 Observer.changingInstr(MI); 2888 bitcastSrc(MI, CastTy, 0); 2889 Observer.changedInstr(MI); 2890 return Legalized; 2891 } 2892 case TargetOpcode::G_SELECT: { 2893 if (TypeIdx != 0) 2894 return UnableToLegalize; 2895 2896 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2897 LLVM_DEBUG( 2898 dbgs() << "bitcast action not implemented for vector select\n"); 2899 return UnableToLegalize; 2900 } 2901 2902 Observer.changingInstr(MI); 2903 bitcastSrc(MI, CastTy, 2); 2904 bitcastSrc(MI, CastTy, 3); 2905 bitcastDst(MI, CastTy, 0); 2906 Observer.changedInstr(MI); 2907 return Legalized; 2908 } 2909 case TargetOpcode::G_AND: 2910 case TargetOpcode::G_OR: 2911 case TargetOpcode::G_XOR: { 2912 Observer.changingInstr(MI); 2913 bitcastSrc(MI, CastTy, 1); 2914 bitcastSrc(MI, CastTy, 2); 2915 bitcastDst(MI, CastTy, 0); 2916 Observer.changedInstr(MI); 2917 return Legalized; 2918 } 2919 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2920 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2921 case TargetOpcode::G_INSERT_VECTOR_ELT: 2922 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2923 default: 2924 return UnableToLegalize; 2925 } 2926 } 2927 2928 // Legalize an instruction by changing the opcode in place. 2929 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2930 Observer.changingInstr(MI); 2931 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2932 Observer.changedInstr(MI); 2933 } 2934 2935 LegalizerHelper::LegalizeResult 2936 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2937 using namespace TargetOpcode; 2938 2939 switch(MI.getOpcode()) { 2940 default: 2941 return UnableToLegalize; 2942 case TargetOpcode::G_BITCAST: 2943 return lowerBitcast(MI); 2944 case TargetOpcode::G_SREM: 2945 case TargetOpcode::G_UREM: { 2946 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2947 auto Quot = 2948 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2949 {MI.getOperand(1), MI.getOperand(2)}); 2950 2951 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2952 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2953 MI.eraseFromParent(); 2954 return Legalized; 2955 } 2956 case TargetOpcode::G_SADDO: 2957 case TargetOpcode::G_SSUBO: 2958 return lowerSADDO_SSUBO(MI); 2959 case TargetOpcode::G_UMULH: 2960 case TargetOpcode::G_SMULH: 2961 return lowerSMULH_UMULH(MI); 2962 case TargetOpcode::G_SMULO: 2963 case TargetOpcode::G_UMULO: { 2964 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2965 // result. 2966 Register Res = MI.getOperand(0).getReg(); 2967 Register Overflow = MI.getOperand(1).getReg(); 2968 Register LHS = MI.getOperand(2).getReg(); 2969 Register RHS = MI.getOperand(3).getReg(); 2970 LLT Ty = MRI.getType(Res); 2971 2972 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2973 ? TargetOpcode::G_SMULH 2974 : TargetOpcode::G_UMULH; 2975 2976 Observer.changingInstr(MI); 2977 const auto &TII = MIRBuilder.getTII(); 2978 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2979 MI.RemoveOperand(1); 2980 Observer.changedInstr(MI); 2981 2982 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2983 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2984 2985 // Move insert point forward so we can use the Res register if needed. 2986 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2987 2988 // For *signed* multiply, overflow is detected by checking: 2989 // (hi != (lo >> bitwidth-1)) 2990 if (Opcode == TargetOpcode::G_SMULH) { 2991 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2992 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2993 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2994 } else { 2995 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2996 } 2997 return Legalized; 2998 } 2999 case TargetOpcode::G_FNEG: { 3000 Register Res = MI.getOperand(0).getReg(); 3001 LLT Ty = MRI.getType(Res); 3002 3003 // TODO: Handle vector types once we are able to 3004 // represent them. 3005 if (Ty.isVector()) 3006 return UnableToLegalize; 3007 auto SignMask = 3008 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3009 Register SubByReg = MI.getOperand(1).getReg(); 3010 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3011 MI.eraseFromParent(); 3012 return Legalized; 3013 } 3014 case TargetOpcode::G_FSUB: { 3015 Register Res = MI.getOperand(0).getReg(); 3016 LLT Ty = MRI.getType(Res); 3017 3018 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3019 // First, check if G_FNEG is marked as Lower. If so, we may 3020 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3021 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3022 return UnableToLegalize; 3023 Register LHS = MI.getOperand(1).getReg(); 3024 Register RHS = MI.getOperand(2).getReg(); 3025 Register Neg = MRI.createGenericVirtualRegister(Ty); 3026 MIRBuilder.buildFNeg(Neg, RHS); 3027 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3028 MI.eraseFromParent(); 3029 return Legalized; 3030 } 3031 case TargetOpcode::G_FMAD: 3032 return lowerFMad(MI); 3033 case TargetOpcode::G_FFLOOR: 3034 return lowerFFloor(MI); 3035 case TargetOpcode::G_INTRINSIC_ROUND: 3036 return lowerIntrinsicRound(MI); 3037 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3038 // Since round even is the assumed rounding mode for unconstrained FP 3039 // operations, rint and roundeven are the same operation. 3040 changeOpcode(MI, TargetOpcode::G_FRINT); 3041 return Legalized; 3042 } 3043 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3044 Register OldValRes = MI.getOperand(0).getReg(); 3045 Register SuccessRes = MI.getOperand(1).getReg(); 3046 Register Addr = MI.getOperand(2).getReg(); 3047 Register CmpVal = MI.getOperand(3).getReg(); 3048 Register NewVal = MI.getOperand(4).getReg(); 3049 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3050 **MI.memoperands_begin()); 3051 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3052 MI.eraseFromParent(); 3053 return Legalized; 3054 } 3055 case TargetOpcode::G_LOAD: 3056 case TargetOpcode::G_SEXTLOAD: 3057 case TargetOpcode::G_ZEXTLOAD: 3058 return lowerLoad(MI); 3059 case TargetOpcode::G_STORE: 3060 return lowerStore(MI); 3061 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3062 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3063 case TargetOpcode::G_CTLZ: 3064 case TargetOpcode::G_CTTZ: 3065 case TargetOpcode::G_CTPOP: 3066 return lowerBitCount(MI); 3067 case G_UADDO: { 3068 Register Res = MI.getOperand(0).getReg(); 3069 Register CarryOut = MI.getOperand(1).getReg(); 3070 Register LHS = MI.getOperand(2).getReg(); 3071 Register RHS = MI.getOperand(3).getReg(); 3072 3073 MIRBuilder.buildAdd(Res, LHS, RHS); 3074 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3075 3076 MI.eraseFromParent(); 3077 return Legalized; 3078 } 3079 case G_UADDE: { 3080 Register Res = MI.getOperand(0).getReg(); 3081 Register CarryOut = MI.getOperand(1).getReg(); 3082 Register LHS = MI.getOperand(2).getReg(); 3083 Register RHS = MI.getOperand(3).getReg(); 3084 Register CarryIn = MI.getOperand(4).getReg(); 3085 LLT Ty = MRI.getType(Res); 3086 3087 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3088 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3089 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3090 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3091 3092 MI.eraseFromParent(); 3093 return Legalized; 3094 } 3095 case G_USUBO: { 3096 Register Res = MI.getOperand(0).getReg(); 3097 Register BorrowOut = MI.getOperand(1).getReg(); 3098 Register LHS = MI.getOperand(2).getReg(); 3099 Register RHS = MI.getOperand(3).getReg(); 3100 3101 MIRBuilder.buildSub(Res, LHS, RHS); 3102 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3103 3104 MI.eraseFromParent(); 3105 return Legalized; 3106 } 3107 case G_USUBE: { 3108 Register Res = MI.getOperand(0).getReg(); 3109 Register BorrowOut = MI.getOperand(1).getReg(); 3110 Register LHS = MI.getOperand(2).getReg(); 3111 Register RHS = MI.getOperand(3).getReg(); 3112 Register BorrowIn = MI.getOperand(4).getReg(); 3113 const LLT CondTy = MRI.getType(BorrowOut); 3114 const LLT Ty = MRI.getType(Res); 3115 3116 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3117 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3118 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3119 3120 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3121 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3122 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3123 3124 MI.eraseFromParent(); 3125 return Legalized; 3126 } 3127 case G_UITOFP: 3128 return lowerUITOFP(MI); 3129 case G_SITOFP: 3130 return lowerSITOFP(MI); 3131 case G_FPTOUI: 3132 return lowerFPTOUI(MI); 3133 case G_FPTOSI: 3134 return lowerFPTOSI(MI); 3135 case G_FPTRUNC: 3136 return lowerFPTRUNC(MI); 3137 case G_FPOWI: 3138 return lowerFPOWI(MI); 3139 case G_SMIN: 3140 case G_SMAX: 3141 case G_UMIN: 3142 case G_UMAX: 3143 return lowerMinMax(MI); 3144 case G_FCOPYSIGN: 3145 return lowerFCopySign(MI); 3146 case G_FMINNUM: 3147 case G_FMAXNUM: 3148 return lowerFMinNumMaxNum(MI); 3149 case G_MERGE_VALUES: 3150 return lowerMergeValues(MI); 3151 case G_UNMERGE_VALUES: 3152 return lowerUnmergeValues(MI); 3153 case TargetOpcode::G_SEXT_INREG: { 3154 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3155 int64_t SizeInBits = MI.getOperand(2).getImm(); 3156 3157 Register DstReg = MI.getOperand(0).getReg(); 3158 Register SrcReg = MI.getOperand(1).getReg(); 3159 LLT DstTy = MRI.getType(DstReg); 3160 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3161 3162 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3163 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3164 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3165 MI.eraseFromParent(); 3166 return Legalized; 3167 } 3168 case G_EXTRACT_VECTOR_ELT: 3169 case G_INSERT_VECTOR_ELT: 3170 return lowerExtractInsertVectorElt(MI); 3171 case G_SHUFFLE_VECTOR: 3172 return lowerShuffleVector(MI); 3173 case G_DYN_STACKALLOC: 3174 return lowerDynStackAlloc(MI); 3175 case G_EXTRACT: 3176 return lowerExtract(MI); 3177 case G_INSERT: 3178 return lowerInsert(MI); 3179 case G_BSWAP: 3180 return lowerBswap(MI); 3181 case G_BITREVERSE: 3182 return lowerBitreverse(MI); 3183 case G_READ_REGISTER: 3184 case G_WRITE_REGISTER: 3185 return lowerReadWriteRegister(MI); 3186 case G_UADDSAT: 3187 case G_USUBSAT: { 3188 // Try to make a reasonable guess about which lowering strategy to use. The 3189 // target can override this with custom lowering and calling the 3190 // implementation functions. 3191 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3192 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3193 return lowerAddSubSatToMinMax(MI); 3194 return lowerAddSubSatToAddoSubo(MI); 3195 } 3196 case G_SADDSAT: 3197 case G_SSUBSAT: { 3198 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3199 3200 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3201 // since it's a shorter expansion. However, we would need to figure out the 3202 // preferred boolean type for the carry out for the query. 3203 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3204 return lowerAddSubSatToMinMax(MI); 3205 return lowerAddSubSatToAddoSubo(MI); 3206 } 3207 case G_SSHLSAT: 3208 case G_USHLSAT: 3209 return lowerShlSat(MI); 3210 case G_ABS: 3211 return lowerAbsToAddXor(MI); 3212 case G_SELECT: 3213 return lowerSelect(MI); 3214 case G_SDIVREM: 3215 case G_UDIVREM: 3216 return lowerDIVREM(MI); 3217 case G_FSHL: 3218 case G_FSHR: 3219 return lowerFunnelShift(MI); 3220 case G_ROTL: 3221 case G_ROTR: 3222 return lowerRotate(MI); 3223 } 3224 } 3225 3226 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3227 Align MinAlign) const { 3228 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3229 // datalayout for the preferred alignment. Also there should be a target hook 3230 // for this to allow targets to reduce the alignment and ignore the 3231 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3232 // the type. 3233 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3234 } 3235 3236 MachineInstrBuilder 3237 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3238 MachinePointerInfo &PtrInfo) { 3239 MachineFunction &MF = MIRBuilder.getMF(); 3240 const DataLayout &DL = MIRBuilder.getDataLayout(); 3241 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3242 3243 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3244 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3245 3246 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3247 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3248 } 3249 3250 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3251 LLT VecTy) { 3252 int64_t IdxVal; 3253 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3254 return IdxReg; 3255 3256 LLT IdxTy = B.getMRI()->getType(IdxReg); 3257 unsigned NElts = VecTy.getNumElements(); 3258 if (isPowerOf2_32(NElts)) { 3259 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3260 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3261 } 3262 3263 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3264 .getReg(0); 3265 } 3266 3267 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3268 Register Index) { 3269 LLT EltTy = VecTy.getElementType(); 3270 3271 // Calculate the element offset and add it to the pointer. 3272 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3273 assert(EltSize * 8 == EltTy.getSizeInBits() && 3274 "Converting bits to bytes lost precision"); 3275 3276 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3277 3278 LLT IdxTy = MRI.getType(Index); 3279 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3280 MIRBuilder.buildConstant(IdxTy, EltSize)); 3281 3282 LLT PtrTy = MRI.getType(VecPtr); 3283 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3284 } 3285 3286 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3287 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3288 Register DstReg = MI.getOperand(0).getReg(); 3289 LLT DstTy = MRI.getType(DstReg); 3290 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3291 3292 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3293 3294 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3295 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3296 3297 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3298 MI.eraseFromParent(); 3299 return Legalized; 3300 } 3301 3302 // Handle splitting vector operations which need to have the same number of 3303 // elements in each type index, but each type index may have a different element 3304 // type. 3305 // 3306 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3307 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3308 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3309 // 3310 // Also handles some irregular breakdown cases, e.g. 3311 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3312 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3313 // s64 = G_SHL s64, s32 3314 LegalizerHelper::LegalizeResult 3315 LegalizerHelper::fewerElementsVectorMultiEltType( 3316 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3317 if (TypeIdx != 0) 3318 return UnableToLegalize; 3319 3320 const LLT NarrowTy0 = NarrowTyArg; 3321 const unsigned NewNumElts = 3322 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3323 3324 const Register DstReg = MI.getOperand(0).getReg(); 3325 LLT DstTy = MRI.getType(DstReg); 3326 LLT LeftoverTy0; 3327 3328 // All of the operands need to have the same number of elements, so if we can 3329 // determine a type breakdown for the result type, we can for all of the 3330 // source types. 3331 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3332 if (NumParts < 0) 3333 return UnableToLegalize; 3334 3335 SmallVector<MachineInstrBuilder, 4> NewInsts; 3336 3337 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3338 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3339 3340 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3341 Register SrcReg = MI.getOperand(I).getReg(); 3342 LLT SrcTyI = MRI.getType(SrcReg); 3343 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3344 LLT LeftoverTyI; 3345 3346 // Split this operand into the requested typed registers, and any leftover 3347 // required to reproduce the original type. 3348 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3349 LeftoverRegs)) 3350 return UnableToLegalize; 3351 3352 if (I == 1) { 3353 // For the first operand, create an instruction for each part and setup 3354 // the result. 3355 for (Register PartReg : PartRegs) { 3356 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3357 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3358 .addDef(PartDstReg) 3359 .addUse(PartReg)); 3360 DstRegs.push_back(PartDstReg); 3361 } 3362 3363 for (Register LeftoverReg : LeftoverRegs) { 3364 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3365 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3366 .addDef(PartDstReg) 3367 .addUse(LeftoverReg)); 3368 LeftoverDstRegs.push_back(PartDstReg); 3369 } 3370 } else { 3371 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3372 3373 // Add the newly created operand splits to the existing instructions. The 3374 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3375 // pieces. 3376 unsigned InstCount = 0; 3377 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3378 NewInsts[InstCount++].addUse(PartRegs[J]); 3379 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3380 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3381 } 3382 3383 PartRegs.clear(); 3384 LeftoverRegs.clear(); 3385 } 3386 3387 // Insert the newly built operations and rebuild the result register. 3388 for (auto &MIB : NewInsts) 3389 MIRBuilder.insertInstr(MIB); 3390 3391 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3392 3393 MI.eraseFromParent(); 3394 return Legalized; 3395 } 3396 3397 LegalizerHelper::LegalizeResult 3398 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3399 LLT NarrowTy) { 3400 if (TypeIdx != 0) 3401 return UnableToLegalize; 3402 3403 Register DstReg = MI.getOperand(0).getReg(); 3404 Register SrcReg = MI.getOperand(1).getReg(); 3405 LLT DstTy = MRI.getType(DstReg); 3406 LLT SrcTy = MRI.getType(SrcReg); 3407 3408 LLT NarrowTy0 = NarrowTy; 3409 LLT NarrowTy1; 3410 unsigned NumParts; 3411 3412 if (NarrowTy.isVector()) { 3413 // Uneven breakdown not handled. 3414 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3415 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3416 return UnableToLegalize; 3417 3418 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3419 } else { 3420 NumParts = DstTy.getNumElements(); 3421 NarrowTy1 = SrcTy.getElementType(); 3422 } 3423 3424 SmallVector<Register, 4> SrcRegs, DstRegs; 3425 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3426 3427 for (unsigned I = 0; I < NumParts; ++I) { 3428 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3429 MachineInstr *NewInst = 3430 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3431 3432 NewInst->setFlags(MI.getFlags()); 3433 DstRegs.push_back(DstReg); 3434 } 3435 3436 if (NarrowTy.isVector()) 3437 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3438 else 3439 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3440 3441 MI.eraseFromParent(); 3442 return Legalized; 3443 } 3444 3445 LegalizerHelper::LegalizeResult 3446 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3447 LLT NarrowTy) { 3448 Register DstReg = MI.getOperand(0).getReg(); 3449 Register Src0Reg = MI.getOperand(2).getReg(); 3450 LLT DstTy = MRI.getType(DstReg); 3451 LLT SrcTy = MRI.getType(Src0Reg); 3452 3453 unsigned NumParts; 3454 LLT NarrowTy0, NarrowTy1; 3455 3456 if (TypeIdx == 0) { 3457 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3458 unsigned OldElts = DstTy.getNumElements(); 3459 3460 NarrowTy0 = NarrowTy; 3461 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3462 NarrowTy1 = NarrowTy.isVector() ? 3463 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3464 SrcTy.getElementType(); 3465 3466 } else { 3467 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3468 unsigned OldElts = SrcTy.getNumElements(); 3469 3470 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3471 NarrowTy.getNumElements(); 3472 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3473 DstTy.getScalarSizeInBits()); 3474 NarrowTy1 = NarrowTy; 3475 } 3476 3477 // FIXME: Don't know how to handle the situation where the small vectors 3478 // aren't all the same size yet. 3479 if (NarrowTy1.isVector() && 3480 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3481 return UnableToLegalize; 3482 3483 CmpInst::Predicate Pred 3484 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3485 3486 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3487 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3488 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3489 3490 for (unsigned I = 0; I < NumParts; ++I) { 3491 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3492 DstRegs.push_back(DstReg); 3493 3494 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3495 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3496 else { 3497 MachineInstr *NewCmp 3498 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3499 NewCmp->setFlags(MI.getFlags()); 3500 } 3501 } 3502 3503 if (NarrowTy1.isVector()) 3504 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3505 else 3506 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3507 3508 MI.eraseFromParent(); 3509 return Legalized; 3510 } 3511 3512 LegalizerHelper::LegalizeResult 3513 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3514 LLT NarrowTy) { 3515 Register DstReg = MI.getOperand(0).getReg(); 3516 Register CondReg = MI.getOperand(1).getReg(); 3517 3518 unsigned NumParts = 0; 3519 LLT NarrowTy0, NarrowTy1; 3520 3521 LLT DstTy = MRI.getType(DstReg); 3522 LLT CondTy = MRI.getType(CondReg); 3523 unsigned Size = DstTy.getSizeInBits(); 3524 3525 assert(TypeIdx == 0 || CondTy.isVector()); 3526 3527 if (TypeIdx == 0) { 3528 NarrowTy0 = NarrowTy; 3529 NarrowTy1 = CondTy; 3530 3531 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3532 // FIXME: Don't know how to handle the situation where the small vectors 3533 // aren't all the same size yet. 3534 if (Size % NarrowSize != 0) 3535 return UnableToLegalize; 3536 3537 NumParts = Size / NarrowSize; 3538 3539 // Need to break down the condition type 3540 if (CondTy.isVector()) { 3541 if (CondTy.getNumElements() == NumParts) 3542 NarrowTy1 = CondTy.getElementType(); 3543 else 3544 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3545 CondTy.getScalarSizeInBits()); 3546 } 3547 } else { 3548 NumParts = CondTy.getNumElements(); 3549 if (NarrowTy.isVector()) { 3550 // TODO: Handle uneven breakdown. 3551 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3552 return UnableToLegalize; 3553 3554 return UnableToLegalize; 3555 } else { 3556 NarrowTy0 = DstTy.getElementType(); 3557 NarrowTy1 = NarrowTy; 3558 } 3559 } 3560 3561 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3562 if (CondTy.isVector()) 3563 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3564 3565 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3566 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3567 3568 for (unsigned i = 0; i < NumParts; ++i) { 3569 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3570 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3571 Src1Regs[i], Src2Regs[i]); 3572 DstRegs.push_back(DstReg); 3573 } 3574 3575 if (NarrowTy0.isVector()) 3576 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3577 else 3578 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3579 3580 MI.eraseFromParent(); 3581 return Legalized; 3582 } 3583 3584 LegalizerHelper::LegalizeResult 3585 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3586 LLT NarrowTy) { 3587 const Register DstReg = MI.getOperand(0).getReg(); 3588 LLT PhiTy = MRI.getType(DstReg); 3589 LLT LeftoverTy; 3590 3591 // All of the operands need to have the same number of elements, so if we can 3592 // determine a type breakdown for the result type, we can for all of the 3593 // source types. 3594 int NumParts, NumLeftover; 3595 std::tie(NumParts, NumLeftover) 3596 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3597 if (NumParts < 0) 3598 return UnableToLegalize; 3599 3600 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3601 SmallVector<MachineInstrBuilder, 4> NewInsts; 3602 3603 const int TotalNumParts = NumParts + NumLeftover; 3604 3605 // Insert the new phis in the result block first. 3606 for (int I = 0; I != TotalNumParts; ++I) { 3607 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3608 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3609 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3610 .addDef(PartDstReg)); 3611 if (I < NumParts) 3612 DstRegs.push_back(PartDstReg); 3613 else 3614 LeftoverDstRegs.push_back(PartDstReg); 3615 } 3616 3617 MachineBasicBlock *MBB = MI.getParent(); 3618 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3619 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3620 3621 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3622 3623 // Insert code to extract the incoming values in each predecessor block. 3624 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3625 PartRegs.clear(); 3626 LeftoverRegs.clear(); 3627 3628 Register SrcReg = MI.getOperand(I).getReg(); 3629 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3630 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3631 3632 LLT Unused; 3633 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3634 LeftoverRegs)) 3635 return UnableToLegalize; 3636 3637 // Add the newly created operand splits to the existing instructions. The 3638 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3639 // pieces. 3640 for (int J = 0; J != TotalNumParts; ++J) { 3641 MachineInstrBuilder MIB = NewInsts[J]; 3642 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3643 MIB.addMBB(&OpMBB); 3644 } 3645 } 3646 3647 MI.eraseFromParent(); 3648 return Legalized; 3649 } 3650 3651 LegalizerHelper::LegalizeResult 3652 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3653 unsigned TypeIdx, 3654 LLT NarrowTy) { 3655 if (TypeIdx != 1) 3656 return UnableToLegalize; 3657 3658 const int NumDst = MI.getNumOperands() - 1; 3659 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3660 LLT SrcTy = MRI.getType(SrcReg); 3661 3662 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3663 3664 // TODO: Create sequence of extracts. 3665 if (DstTy == NarrowTy) 3666 return UnableToLegalize; 3667 3668 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3669 if (DstTy == GCDTy) { 3670 // This would just be a copy of the same unmerge. 3671 // TODO: Create extracts, pad with undef and create intermediate merges. 3672 return UnableToLegalize; 3673 } 3674 3675 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3676 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3677 const int PartsPerUnmerge = NumDst / NumUnmerge; 3678 3679 for (int I = 0; I != NumUnmerge; ++I) { 3680 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3681 3682 for (int J = 0; J != PartsPerUnmerge; ++J) 3683 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3684 MIB.addUse(Unmerge.getReg(I)); 3685 } 3686 3687 MI.eraseFromParent(); 3688 return Legalized; 3689 } 3690 3691 LegalizerHelper::LegalizeResult 3692 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx, 3693 LLT NarrowTy) { 3694 Register Result = MI.getOperand(0).getReg(); 3695 Register Overflow = MI.getOperand(1).getReg(); 3696 Register LHS = MI.getOperand(2).getReg(); 3697 Register RHS = MI.getOperand(3).getReg(); 3698 3699 LLT SrcTy = MRI.getType(LHS); 3700 if (!SrcTy.isVector()) 3701 return UnableToLegalize; 3702 3703 LLT ElementType = SrcTy.getElementType(); 3704 LLT OverflowElementTy = MRI.getType(Overflow).getElementType(); 3705 const int NumResult = SrcTy.getNumElements(); 3706 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3707 3708 // Unmerge the operands to smaller parts of GCD type. 3709 auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS); 3710 auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS); 3711 3712 const int NumOps = UnmergeLHS->getNumOperands() - 1; 3713 const int PartsPerUnmerge = NumResult / NumOps; 3714 LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy); 3715 LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType); 3716 3717 // Perform the operation over unmerged parts. 3718 SmallVector<Register, 8> ResultParts; 3719 SmallVector<Register, 8> OverflowParts; 3720 for (int I = 0; I != NumOps; ++I) { 3721 Register Operand1 = UnmergeLHS->getOperand(I).getReg(); 3722 Register Operand2 = UnmergeRHS->getOperand(I).getReg(); 3723 auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy}, 3724 {Operand1, Operand2}); 3725 ResultParts.push_back(PartMul->getOperand(0).getReg()); 3726 OverflowParts.push_back(PartMul->getOperand(1).getReg()); 3727 } 3728 3729 LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts); 3730 LLT OverflowLCMTy = 3731 LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy); 3732 3733 // Recombine the pieces to the original result and overflow registers. 3734 buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts); 3735 buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts); 3736 MI.eraseFromParent(); 3737 return Legalized; 3738 } 3739 3740 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3741 // a vector 3742 // 3743 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3744 // undef as necessary. 3745 // 3746 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3747 // -> <2 x s16> 3748 // 3749 // %4:_(s16) = G_IMPLICIT_DEF 3750 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3751 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3752 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3753 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3754 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3755 LegalizerHelper::LegalizeResult 3756 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3757 LLT NarrowTy) { 3758 Register DstReg = MI.getOperand(0).getReg(); 3759 LLT DstTy = MRI.getType(DstReg); 3760 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3761 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3762 3763 // Break into a common type 3764 SmallVector<Register, 16> Parts; 3765 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3766 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3767 3768 // Build the requested new merge, padding with undef. 3769 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3770 TargetOpcode::G_ANYEXT); 3771 3772 // Pack into the original result register. 3773 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3774 3775 MI.eraseFromParent(); 3776 return Legalized; 3777 } 3778 3779 LegalizerHelper::LegalizeResult 3780 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3781 unsigned TypeIdx, 3782 LLT NarrowVecTy) { 3783 Register DstReg = MI.getOperand(0).getReg(); 3784 Register SrcVec = MI.getOperand(1).getReg(); 3785 Register InsertVal; 3786 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3787 3788 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3789 if (IsInsert) 3790 InsertVal = MI.getOperand(2).getReg(); 3791 3792 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3793 3794 // TODO: Handle total scalarization case. 3795 if (!NarrowVecTy.isVector()) 3796 return UnableToLegalize; 3797 3798 LLT VecTy = MRI.getType(SrcVec); 3799 3800 // If the index is a constant, we can really break this down as you would 3801 // expect, and index into the target size pieces. 3802 int64_t IdxVal; 3803 auto MaybeCst = 3804 getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true, 3805 /*HandleFConstants*/ false); 3806 if (MaybeCst) { 3807 IdxVal = MaybeCst->Value.getSExtValue(); 3808 // Avoid out of bounds indexing the pieces. 3809 if (IdxVal >= VecTy.getNumElements()) { 3810 MIRBuilder.buildUndef(DstReg); 3811 MI.eraseFromParent(); 3812 return Legalized; 3813 } 3814 3815 SmallVector<Register, 8> VecParts; 3816 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3817 3818 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3819 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3820 TargetOpcode::G_ANYEXT); 3821 3822 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3823 3824 LLT IdxTy = MRI.getType(Idx); 3825 int64_t PartIdx = IdxVal / NewNumElts; 3826 auto NewIdx = 3827 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3828 3829 if (IsInsert) { 3830 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3831 3832 // Use the adjusted index to insert into one of the subvectors. 3833 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3834 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3835 VecParts[PartIdx] = InsertPart.getReg(0); 3836 3837 // Recombine the inserted subvector with the others to reform the result 3838 // vector. 3839 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3840 } else { 3841 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3842 } 3843 3844 MI.eraseFromParent(); 3845 return Legalized; 3846 } 3847 3848 // With a variable index, we can't perform the operation in a smaller type, so 3849 // we're forced to expand this. 3850 // 3851 // TODO: We could emit a chain of compare/select to figure out which piece to 3852 // index. 3853 return lowerExtractInsertVectorElt(MI); 3854 } 3855 3856 LegalizerHelper::LegalizeResult 3857 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3858 LLT NarrowTy) { 3859 // FIXME: Don't know how to handle secondary types yet. 3860 if (TypeIdx != 0) 3861 return UnableToLegalize; 3862 3863 MachineMemOperand *MMO = *MI.memoperands_begin(); 3864 3865 // This implementation doesn't work for atomics. Give up instead of doing 3866 // something invalid. 3867 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3868 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3869 return UnableToLegalize; 3870 3871 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3872 Register ValReg = MI.getOperand(0).getReg(); 3873 Register AddrReg = MI.getOperand(1).getReg(); 3874 LLT ValTy = MRI.getType(ValReg); 3875 3876 // FIXME: Do we need a distinct NarrowMemory legalize action? 3877 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3878 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3879 return UnableToLegalize; 3880 } 3881 3882 int NumParts = -1; 3883 int NumLeftover = -1; 3884 LLT LeftoverTy; 3885 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3886 if (IsLoad) { 3887 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3888 } else { 3889 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3890 NarrowLeftoverRegs)) { 3891 NumParts = NarrowRegs.size(); 3892 NumLeftover = NarrowLeftoverRegs.size(); 3893 } 3894 } 3895 3896 if (NumParts == -1) 3897 return UnableToLegalize; 3898 3899 LLT PtrTy = MRI.getType(AddrReg); 3900 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3901 3902 unsigned TotalSize = ValTy.getSizeInBits(); 3903 3904 // Split the load/store into PartTy sized pieces starting at Offset. If this 3905 // is a load, return the new registers in ValRegs. For a store, each elements 3906 // of ValRegs should be PartTy. Returns the next offset that needs to be 3907 // handled. 3908 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3909 unsigned Offset) -> unsigned { 3910 MachineFunction &MF = MIRBuilder.getMF(); 3911 unsigned PartSize = PartTy.getSizeInBits(); 3912 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3913 Offset += PartSize, ++Idx) { 3914 unsigned ByteSize = PartSize / 8; 3915 unsigned ByteOffset = Offset / 8; 3916 Register NewAddrReg; 3917 3918 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3919 3920 MachineMemOperand *NewMMO = 3921 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3922 3923 if (IsLoad) { 3924 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3925 ValRegs.push_back(Dst); 3926 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3927 } else { 3928 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3929 } 3930 } 3931 3932 return Offset; 3933 }; 3934 3935 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3936 3937 // Handle the rest of the register if this isn't an even type breakdown. 3938 if (LeftoverTy.isValid()) 3939 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3940 3941 if (IsLoad) { 3942 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3943 LeftoverTy, NarrowLeftoverRegs); 3944 } 3945 3946 MI.eraseFromParent(); 3947 return Legalized; 3948 } 3949 3950 LegalizerHelper::LegalizeResult 3951 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3952 LLT NarrowTy) { 3953 assert(TypeIdx == 0 && "only one type index expected"); 3954 3955 const unsigned Opc = MI.getOpcode(); 3956 const int NumDefOps = MI.getNumExplicitDefs(); 3957 const int NumSrcOps = MI.getNumOperands() - NumDefOps; 3958 const unsigned Flags = MI.getFlags(); 3959 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3960 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3961 3962 assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 " 3963 "result and 1-3 sources or 2 results and " 3964 "1-2 sources"); 3965 3966 SmallVector<Register, 2> DstRegs; 3967 for (int I = 0; I < NumDefOps; ++I) 3968 DstRegs.push_back(MI.getOperand(I).getReg()); 3969 3970 // First of all check whether we are narrowing (changing the element type) 3971 // or reducing the vector elements 3972 const LLT DstTy = MRI.getType(DstRegs[0]); 3973 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3974 3975 SmallVector<Register, 8> ExtractedRegs[3]; 3976 SmallVector<Register, 8> Parts; 3977 3978 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3979 3980 // Break down all the sources into NarrowTy pieces we can operate on. This may 3981 // involve creating merges to a wider type, padded with undef. 3982 for (int I = 0; I != NumSrcOps; ++I) { 3983 Register SrcReg = MI.getOperand(I + NumDefOps).getReg(); 3984 LLT SrcTy = MRI.getType(SrcReg); 3985 3986 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3987 // For fewerElements, this is a smaller vector with the same element type. 3988 LLT OpNarrowTy; 3989 if (IsNarrow) { 3990 OpNarrowTy = NarrowScalarTy; 3991 3992 // In case of narrowing, we need to cast vectors to scalars for this to 3993 // work properly 3994 // FIXME: Can we do without the bitcast here if we're narrowing? 3995 if (SrcTy.isVector()) { 3996 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3997 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3998 } 3999 } else { 4000 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 4001 } 4002 4003 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 4004 4005 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 4006 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 4007 TargetOpcode::G_ANYEXT); 4008 } 4009 4010 SmallVector<Register, 8> ResultRegs[2]; 4011 4012 // Input operands for each sub-instruction. 4013 SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register()); 4014 4015 int NumParts = ExtractedRegs[0].size(); 4016 const unsigned DstSize = DstTy.getSizeInBits(); 4017 const LLT DstScalarTy = LLT::scalar(DstSize); 4018 4019 // Narrowing needs to use scalar types 4020 LLT DstLCMTy, NarrowDstTy; 4021 if (IsNarrow) { 4022 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 4023 NarrowDstTy = NarrowScalarTy; 4024 } else { 4025 DstLCMTy = getLCMType(DstTy, NarrowTy); 4026 NarrowDstTy = NarrowTy; 4027 } 4028 4029 // We widened the source registers to satisfy merge/unmerge size 4030 // constraints. We'll have some extra fully undef parts. 4031 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 4032 4033 for (int I = 0; I != NumRealParts; ++I) { 4034 // Emit this instruction on each of the split pieces. 4035 for (int J = 0; J != NumSrcOps; ++J) 4036 InputRegs[J] = ExtractedRegs[J][I]; 4037 4038 MachineInstrBuilder Inst; 4039 if (NumDefOps == 1) 4040 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 4041 else 4042 Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs, 4043 Flags); 4044 4045 for (int J = 0; J != NumDefOps; ++J) 4046 ResultRegs[J].push_back(Inst.getReg(J)); 4047 } 4048 4049 // Fill out the widened result with undef instead of creating instructions 4050 // with undef inputs. 4051 int NumUndefParts = NumParts - NumRealParts; 4052 if (NumUndefParts != 0) { 4053 Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0); 4054 for (int I = 0; I != NumDefOps; ++I) 4055 ResultRegs[I].append(NumUndefParts, Undef); 4056 } 4057 4058 // Extract the possibly padded result. Use a scratch register if we need to do 4059 // a final bitcast, otherwise use the original result register. 4060 Register MergeDstReg; 4061 for (int I = 0; I != NumDefOps; ++I) { 4062 if (IsNarrow && DstTy.isVector()) 4063 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 4064 else 4065 MergeDstReg = DstRegs[I]; 4066 4067 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]); 4068 4069 // Recast to vector if we narrowed a vector 4070 if (IsNarrow && DstTy.isVector()) 4071 MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg); 4072 } 4073 4074 MI.eraseFromParent(); 4075 return Legalized; 4076 } 4077 4078 LegalizerHelper::LegalizeResult 4079 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 4080 LLT NarrowTy) { 4081 Register DstReg = MI.getOperand(0).getReg(); 4082 Register SrcReg = MI.getOperand(1).getReg(); 4083 int64_t Imm = MI.getOperand(2).getImm(); 4084 4085 LLT DstTy = MRI.getType(DstReg); 4086 4087 SmallVector<Register, 8> Parts; 4088 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4089 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 4090 4091 for (Register &R : Parts) 4092 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 4093 4094 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4095 4096 MI.eraseFromParent(); 4097 return Legalized; 4098 } 4099 4100 LegalizerHelper::LegalizeResult 4101 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4102 LLT NarrowTy) { 4103 using namespace TargetOpcode; 4104 4105 switch (MI.getOpcode()) { 4106 case G_IMPLICIT_DEF: 4107 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 4108 case G_TRUNC: 4109 case G_AND: 4110 case G_OR: 4111 case G_XOR: 4112 case G_ADD: 4113 case G_SUB: 4114 case G_MUL: 4115 case G_PTR_ADD: 4116 case G_SMULH: 4117 case G_UMULH: 4118 case G_FADD: 4119 case G_FMUL: 4120 case G_FSUB: 4121 case G_FNEG: 4122 case G_FABS: 4123 case G_FCANONICALIZE: 4124 case G_FDIV: 4125 case G_FREM: 4126 case G_FMA: 4127 case G_FMAD: 4128 case G_FPOW: 4129 case G_FEXP: 4130 case G_FEXP2: 4131 case G_FLOG: 4132 case G_FLOG2: 4133 case G_FLOG10: 4134 case G_FNEARBYINT: 4135 case G_FCEIL: 4136 case G_FFLOOR: 4137 case G_FRINT: 4138 case G_INTRINSIC_ROUND: 4139 case G_INTRINSIC_ROUNDEVEN: 4140 case G_INTRINSIC_TRUNC: 4141 case G_FCOS: 4142 case G_FSIN: 4143 case G_FSQRT: 4144 case G_BSWAP: 4145 case G_BITREVERSE: 4146 case G_SDIV: 4147 case G_UDIV: 4148 case G_SREM: 4149 case G_UREM: 4150 case G_SDIVREM: 4151 case G_UDIVREM: 4152 case G_SMIN: 4153 case G_SMAX: 4154 case G_UMIN: 4155 case G_UMAX: 4156 case G_ABS: 4157 case G_FMINNUM: 4158 case G_FMAXNUM: 4159 case G_FMINNUM_IEEE: 4160 case G_FMAXNUM_IEEE: 4161 case G_FMINIMUM: 4162 case G_FMAXIMUM: 4163 case G_FSHL: 4164 case G_FSHR: 4165 case G_FREEZE: 4166 case G_SADDSAT: 4167 case G_SSUBSAT: 4168 case G_UADDSAT: 4169 case G_USUBSAT: 4170 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4171 case G_UMULO: 4172 case G_SMULO: 4173 return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy); 4174 case G_SHL: 4175 case G_LSHR: 4176 case G_ASHR: 4177 case G_SSHLSAT: 4178 case G_USHLSAT: 4179 case G_CTLZ: 4180 case G_CTLZ_ZERO_UNDEF: 4181 case G_CTTZ: 4182 case G_CTTZ_ZERO_UNDEF: 4183 case G_CTPOP: 4184 case G_FCOPYSIGN: 4185 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4186 case G_ZEXT: 4187 case G_SEXT: 4188 case G_ANYEXT: 4189 case G_FPEXT: 4190 case G_FPTRUNC: 4191 case G_SITOFP: 4192 case G_UITOFP: 4193 case G_FPTOSI: 4194 case G_FPTOUI: 4195 case G_INTTOPTR: 4196 case G_PTRTOINT: 4197 case G_ADDRSPACE_CAST: 4198 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4199 case G_ICMP: 4200 case G_FCMP: 4201 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4202 case G_SELECT: 4203 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4204 case G_PHI: 4205 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4206 case G_UNMERGE_VALUES: 4207 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4208 case G_BUILD_VECTOR: 4209 assert(TypeIdx == 0 && "not a vector type index"); 4210 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4211 case G_CONCAT_VECTORS: 4212 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4213 return UnableToLegalize; 4214 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4215 case G_EXTRACT_VECTOR_ELT: 4216 case G_INSERT_VECTOR_ELT: 4217 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4218 case G_LOAD: 4219 case G_STORE: 4220 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4221 case G_SEXT_INREG: 4222 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4223 GISEL_VECREDUCE_CASES_NONSEQ 4224 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4225 case G_SHUFFLE_VECTOR: 4226 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4227 default: 4228 return UnableToLegalize; 4229 } 4230 } 4231 4232 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4233 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4234 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4235 if (TypeIdx != 0) 4236 return UnableToLegalize; 4237 4238 Register DstReg = MI.getOperand(0).getReg(); 4239 Register Src1Reg = MI.getOperand(1).getReg(); 4240 Register Src2Reg = MI.getOperand(2).getReg(); 4241 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4242 LLT DstTy = MRI.getType(DstReg); 4243 LLT Src1Ty = MRI.getType(Src1Reg); 4244 LLT Src2Ty = MRI.getType(Src2Reg); 4245 // The shuffle should be canonicalized by now. 4246 if (DstTy != Src1Ty) 4247 return UnableToLegalize; 4248 if (DstTy != Src2Ty) 4249 return UnableToLegalize; 4250 4251 if (!isPowerOf2_32(DstTy.getNumElements())) 4252 return UnableToLegalize; 4253 4254 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4255 // Further legalization attempts will be needed to do split further. 4256 NarrowTy = DstTy.changeNumElements(DstTy.getNumElements() / 2); 4257 unsigned NewElts = NarrowTy.getNumElements(); 4258 4259 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4260 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4261 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4262 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4263 SplitSrc2Regs[1]}; 4264 4265 Register Hi, Lo; 4266 4267 // If Lo or Hi uses elements from at most two of the four input vectors, then 4268 // express it as a vector shuffle of those two inputs. Otherwise extract the 4269 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4270 SmallVector<int, 16> Ops; 4271 for (unsigned High = 0; High < 2; ++High) { 4272 Register &Output = High ? Hi : Lo; 4273 4274 // Build a shuffle mask for the output, discovering on the fly which 4275 // input vectors to use as shuffle operands (recorded in InputUsed). 4276 // If building a suitable shuffle vector proves too hard, then bail 4277 // out with useBuildVector set. 4278 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4279 unsigned FirstMaskIdx = High * NewElts; 4280 bool UseBuildVector = false; 4281 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4282 // The mask element. This indexes into the input. 4283 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4284 4285 // The input vector this mask element indexes into. 4286 unsigned Input = (unsigned)Idx / NewElts; 4287 4288 if (Input >= array_lengthof(Inputs)) { 4289 // The mask element does not index into any input vector. 4290 Ops.push_back(-1); 4291 continue; 4292 } 4293 4294 // Turn the index into an offset from the start of the input vector. 4295 Idx -= Input * NewElts; 4296 4297 // Find or create a shuffle vector operand to hold this input. 4298 unsigned OpNo; 4299 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4300 if (InputUsed[OpNo] == Input) { 4301 // This input vector is already an operand. 4302 break; 4303 } else if (InputUsed[OpNo] == -1U) { 4304 // Create a new operand for this input vector. 4305 InputUsed[OpNo] = Input; 4306 break; 4307 } 4308 } 4309 4310 if (OpNo >= array_lengthof(InputUsed)) { 4311 // More than two input vectors used! Give up on trying to create a 4312 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4313 UseBuildVector = true; 4314 break; 4315 } 4316 4317 // Add the mask index for the new shuffle vector. 4318 Ops.push_back(Idx + OpNo * NewElts); 4319 } 4320 4321 if (UseBuildVector) { 4322 LLT EltTy = NarrowTy.getElementType(); 4323 SmallVector<Register, 16> SVOps; 4324 4325 // Extract the input elements by hand. 4326 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4327 // The mask element. This indexes into the input. 4328 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4329 4330 // The input vector this mask element indexes into. 4331 unsigned Input = (unsigned)Idx / NewElts; 4332 4333 if (Input >= array_lengthof(Inputs)) { 4334 // The mask element is "undef" or indexes off the end of the input. 4335 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4336 continue; 4337 } 4338 4339 // Turn the index into an offset from the start of the input vector. 4340 Idx -= Input * NewElts; 4341 4342 // Extract the vector element by hand. 4343 SVOps.push_back(MIRBuilder 4344 .buildExtractVectorElement( 4345 EltTy, Inputs[Input], 4346 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4347 .getReg(0)); 4348 } 4349 4350 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4351 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4352 } else if (InputUsed[0] == -1U) { 4353 // No input vectors were used! The result is undefined. 4354 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4355 } else { 4356 Register Op0 = Inputs[InputUsed[0]]; 4357 // If only one input was used, use an undefined vector for the other. 4358 Register Op1 = InputUsed[1] == -1U 4359 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4360 : Inputs[InputUsed[1]]; 4361 // At least one input vector was used. Create a new shuffle vector. 4362 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4363 } 4364 4365 Ops.clear(); 4366 } 4367 4368 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4369 MI.eraseFromParent(); 4370 return Legalized; 4371 } 4372 4373 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4374 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4375 unsigned Opc = MI.getOpcode(); 4376 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4377 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4378 "Sequential reductions not expected"); 4379 4380 if (TypeIdx != 1) 4381 return UnableToLegalize; 4382 4383 // The semantics of the normal non-sequential reductions allow us to freely 4384 // re-associate the operation. 4385 Register SrcReg = MI.getOperand(1).getReg(); 4386 LLT SrcTy = MRI.getType(SrcReg); 4387 Register DstReg = MI.getOperand(0).getReg(); 4388 LLT DstTy = MRI.getType(DstReg); 4389 4390 if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0) 4391 return UnableToLegalize; 4392 4393 SmallVector<Register> SplitSrcs; 4394 const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements(); 4395 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4396 SmallVector<Register> PartialReductions; 4397 for (unsigned Part = 0; Part < NumParts; ++Part) { 4398 PartialReductions.push_back( 4399 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4400 } 4401 4402 unsigned ScalarOpc; 4403 switch (Opc) { 4404 case TargetOpcode::G_VECREDUCE_FADD: 4405 ScalarOpc = TargetOpcode::G_FADD; 4406 break; 4407 case TargetOpcode::G_VECREDUCE_FMUL: 4408 ScalarOpc = TargetOpcode::G_FMUL; 4409 break; 4410 case TargetOpcode::G_VECREDUCE_FMAX: 4411 ScalarOpc = TargetOpcode::G_FMAXNUM; 4412 break; 4413 case TargetOpcode::G_VECREDUCE_FMIN: 4414 ScalarOpc = TargetOpcode::G_FMINNUM; 4415 break; 4416 case TargetOpcode::G_VECREDUCE_ADD: 4417 ScalarOpc = TargetOpcode::G_ADD; 4418 break; 4419 case TargetOpcode::G_VECREDUCE_MUL: 4420 ScalarOpc = TargetOpcode::G_MUL; 4421 break; 4422 case TargetOpcode::G_VECREDUCE_AND: 4423 ScalarOpc = TargetOpcode::G_AND; 4424 break; 4425 case TargetOpcode::G_VECREDUCE_OR: 4426 ScalarOpc = TargetOpcode::G_OR; 4427 break; 4428 case TargetOpcode::G_VECREDUCE_XOR: 4429 ScalarOpc = TargetOpcode::G_XOR; 4430 break; 4431 case TargetOpcode::G_VECREDUCE_SMAX: 4432 ScalarOpc = TargetOpcode::G_SMAX; 4433 break; 4434 case TargetOpcode::G_VECREDUCE_SMIN: 4435 ScalarOpc = TargetOpcode::G_SMIN; 4436 break; 4437 case TargetOpcode::G_VECREDUCE_UMAX: 4438 ScalarOpc = TargetOpcode::G_UMAX; 4439 break; 4440 case TargetOpcode::G_VECREDUCE_UMIN: 4441 ScalarOpc = TargetOpcode::G_UMIN; 4442 break; 4443 default: 4444 LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n"); 4445 return UnableToLegalize; 4446 } 4447 4448 // If the types involved are powers of 2, we can generate intermediate vector 4449 // ops, before generating a final reduction operation. 4450 if (isPowerOf2_32(SrcTy.getNumElements()) && 4451 isPowerOf2_32(NarrowTy.getNumElements())) { 4452 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4453 } 4454 4455 Register Acc = PartialReductions[0]; 4456 for (unsigned Part = 1; Part < NumParts; ++Part) { 4457 if (Part == NumParts - 1) { 4458 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4459 {Acc, PartialReductions[Part]}); 4460 } else { 4461 Acc = MIRBuilder 4462 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4463 .getReg(0); 4464 } 4465 } 4466 MI.eraseFromParent(); 4467 return Legalized; 4468 } 4469 4470 LegalizerHelper::LegalizeResult 4471 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4472 LLT SrcTy, LLT NarrowTy, 4473 unsigned ScalarOpc) { 4474 SmallVector<Register> SplitSrcs; 4475 // Split the sources into NarrowTy size pieces. 4476 extractParts(SrcReg, NarrowTy, 4477 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4478 // We're going to do a tree reduction using vector operations until we have 4479 // one NarrowTy size value left. 4480 while (SplitSrcs.size() > 1) { 4481 SmallVector<Register> PartialRdxs; 4482 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4483 Register LHS = SplitSrcs[Idx]; 4484 Register RHS = SplitSrcs[Idx + 1]; 4485 // Create the intermediate vector op. 4486 Register Res = 4487 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4488 PartialRdxs.push_back(Res); 4489 } 4490 SplitSrcs = std::move(PartialRdxs); 4491 } 4492 // Finally generate the requested NarrowTy based reduction. 4493 Observer.changingInstr(MI); 4494 MI.getOperand(1).setReg(SplitSrcs[0]); 4495 Observer.changedInstr(MI); 4496 return Legalized; 4497 } 4498 4499 LegalizerHelper::LegalizeResult 4500 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4501 const LLT HalfTy, const LLT AmtTy) { 4502 4503 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4504 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4505 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4506 4507 if (Amt.isNullValue()) { 4508 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4509 MI.eraseFromParent(); 4510 return Legalized; 4511 } 4512 4513 LLT NVT = HalfTy; 4514 unsigned NVTBits = HalfTy.getSizeInBits(); 4515 unsigned VTBits = 2 * NVTBits; 4516 4517 SrcOp Lo(Register(0)), Hi(Register(0)); 4518 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4519 if (Amt.ugt(VTBits)) { 4520 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4521 } else if (Amt.ugt(NVTBits)) { 4522 Lo = MIRBuilder.buildConstant(NVT, 0); 4523 Hi = MIRBuilder.buildShl(NVT, InL, 4524 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4525 } else if (Amt == NVTBits) { 4526 Lo = MIRBuilder.buildConstant(NVT, 0); 4527 Hi = InL; 4528 } else { 4529 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4530 auto OrLHS = 4531 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4532 auto OrRHS = MIRBuilder.buildLShr( 4533 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4534 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4535 } 4536 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4537 if (Amt.ugt(VTBits)) { 4538 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4539 } else if (Amt.ugt(NVTBits)) { 4540 Lo = MIRBuilder.buildLShr(NVT, InH, 4541 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4542 Hi = MIRBuilder.buildConstant(NVT, 0); 4543 } else if (Amt == NVTBits) { 4544 Lo = InH; 4545 Hi = MIRBuilder.buildConstant(NVT, 0); 4546 } else { 4547 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4548 4549 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4550 auto OrRHS = MIRBuilder.buildShl( 4551 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4552 4553 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4554 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4555 } 4556 } else { 4557 if (Amt.ugt(VTBits)) { 4558 Hi = Lo = MIRBuilder.buildAShr( 4559 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4560 } else if (Amt.ugt(NVTBits)) { 4561 Lo = MIRBuilder.buildAShr(NVT, InH, 4562 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4563 Hi = MIRBuilder.buildAShr(NVT, InH, 4564 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4565 } else if (Amt == NVTBits) { 4566 Lo = InH; 4567 Hi = MIRBuilder.buildAShr(NVT, InH, 4568 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4569 } else { 4570 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4571 4572 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4573 auto OrRHS = MIRBuilder.buildShl( 4574 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4575 4576 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4577 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4578 } 4579 } 4580 4581 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4582 MI.eraseFromParent(); 4583 4584 return Legalized; 4585 } 4586 4587 // TODO: Optimize if constant shift amount. 4588 LegalizerHelper::LegalizeResult 4589 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4590 LLT RequestedTy) { 4591 if (TypeIdx == 1) { 4592 Observer.changingInstr(MI); 4593 narrowScalarSrc(MI, RequestedTy, 2); 4594 Observer.changedInstr(MI); 4595 return Legalized; 4596 } 4597 4598 Register DstReg = MI.getOperand(0).getReg(); 4599 LLT DstTy = MRI.getType(DstReg); 4600 if (DstTy.isVector()) 4601 return UnableToLegalize; 4602 4603 Register Amt = MI.getOperand(2).getReg(); 4604 LLT ShiftAmtTy = MRI.getType(Amt); 4605 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4606 if (DstEltSize % 2 != 0) 4607 return UnableToLegalize; 4608 4609 // Ignore the input type. We can only go to exactly half the size of the 4610 // input. If that isn't small enough, the resulting pieces will be further 4611 // legalized. 4612 const unsigned NewBitSize = DstEltSize / 2; 4613 const LLT HalfTy = LLT::scalar(NewBitSize); 4614 const LLT CondTy = LLT::scalar(1); 4615 4616 if (const MachineInstr *KShiftAmt = 4617 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4618 return narrowScalarShiftByConstant( 4619 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4620 } 4621 4622 // TODO: Expand with known bits. 4623 4624 // Handle the fully general expansion by an unknown amount. 4625 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4626 4627 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4628 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4629 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4630 4631 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4632 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4633 4634 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4635 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4636 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4637 4638 Register ResultRegs[2]; 4639 switch (MI.getOpcode()) { 4640 case TargetOpcode::G_SHL: { 4641 // Short: ShAmt < NewBitSize 4642 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4643 4644 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4645 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4646 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4647 4648 // Long: ShAmt >= NewBitSize 4649 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4650 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4651 4652 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4653 auto Hi = MIRBuilder.buildSelect( 4654 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4655 4656 ResultRegs[0] = Lo.getReg(0); 4657 ResultRegs[1] = Hi.getReg(0); 4658 break; 4659 } 4660 case TargetOpcode::G_LSHR: 4661 case TargetOpcode::G_ASHR: { 4662 // Short: ShAmt < NewBitSize 4663 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4664 4665 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4666 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4667 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4668 4669 // Long: ShAmt >= NewBitSize 4670 MachineInstrBuilder HiL; 4671 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4672 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4673 } else { 4674 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4675 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4676 } 4677 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4678 {InH, AmtExcess}); // Lo from Hi part. 4679 4680 auto Lo = MIRBuilder.buildSelect( 4681 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4682 4683 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4684 4685 ResultRegs[0] = Lo.getReg(0); 4686 ResultRegs[1] = Hi.getReg(0); 4687 break; 4688 } 4689 default: 4690 llvm_unreachable("not a shift"); 4691 } 4692 4693 MIRBuilder.buildMerge(DstReg, ResultRegs); 4694 MI.eraseFromParent(); 4695 return Legalized; 4696 } 4697 4698 LegalizerHelper::LegalizeResult 4699 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4700 LLT MoreTy) { 4701 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4702 4703 Observer.changingInstr(MI); 4704 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4705 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4706 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4707 moreElementsVectorSrc(MI, MoreTy, I); 4708 } 4709 4710 MachineBasicBlock &MBB = *MI.getParent(); 4711 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4712 moreElementsVectorDst(MI, MoreTy, 0); 4713 Observer.changedInstr(MI); 4714 return Legalized; 4715 } 4716 4717 LegalizerHelper::LegalizeResult 4718 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4719 LLT MoreTy) { 4720 unsigned Opc = MI.getOpcode(); 4721 switch (Opc) { 4722 case TargetOpcode::G_IMPLICIT_DEF: 4723 case TargetOpcode::G_LOAD: { 4724 if (TypeIdx != 0) 4725 return UnableToLegalize; 4726 Observer.changingInstr(MI); 4727 moreElementsVectorDst(MI, MoreTy, 0); 4728 Observer.changedInstr(MI); 4729 return Legalized; 4730 } 4731 case TargetOpcode::G_STORE: 4732 if (TypeIdx != 0) 4733 return UnableToLegalize; 4734 Observer.changingInstr(MI); 4735 moreElementsVectorSrc(MI, MoreTy, 0); 4736 Observer.changedInstr(MI); 4737 return Legalized; 4738 case TargetOpcode::G_AND: 4739 case TargetOpcode::G_OR: 4740 case TargetOpcode::G_XOR: 4741 case TargetOpcode::G_SMIN: 4742 case TargetOpcode::G_SMAX: 4743 case TargetOpcode::G_UMIN: 4744 case TargetOpcode::G_UMAX: 4745 case TargetOpcode::G_FMINNUM: 4746 case TargetOpcode::G_FMAXNUM: 4747 case TargetOpcode::G_FMINNUM_IEEE: 4748 case TargetOpcode::G_FMAXNUM_IEEE: 4749 case TargetOpcode::G_FMINIMUM: 4750 case TargetOpcode::G_FMAXIMUM: { 4751 Observer.changingInstr(MI); 4752 moreElementsVectorSrc(MI, MoreTy, 1); 4753 moreElementsVectorSrc(MI, MoreTy, 2); 4754 moreElementsVectorDst(MI, MoreTy, 0); 4755 Observer.changedInstr(MI); 4756 return Legalized; 4757 } 4758 case TargetOpcode::G_EXTRACT: 4759 if (TypeIdx != 1) 4760 return UnableToLegalize; 4761 Observer.changingInstr(MI); 4762 moreElementsVectorSrc(MI, MoreTy, 1); 4763 Observer.changedInstr(MI); 4764 return Legalized; 4765 case TargetOpcode::G_INSERT: 4766 case TargetOpcode::G_FREEZE: 4767 if (TypeIdx != 0) 4768 return UnableToLegalize; 4769 Observer.changingInstr(MI); 4770 moreElementsVectorSrc(MI, MoreTy, 1); 4771 moreElementsVectorDst(MI, MoreTy, 0); 4772 Observer.changedInstr(MI); 4773 return Legalized; 4774 case TargetOpcode::G_SELECT: 4775 if (TypeIdx != 0) 4776 return UnableToLegalize; 4777 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4778 return UnableToLegalize; 4779 4780 Observer.changingInstr(MI); 4781 moreElementsVectorSrc(MI, MoreTy, 2); 4782 moreElementsVectorSrc(MI, MoreTy, 3); 4783 moreElementsVectorDst(MI, MoreTy, 0); 4784 Observer.changedInstr(MI); 4785 return Legalized; 4786 case TargetOpcode::G_UNMERGE_VALUES: { 4787 if (TypeIdx != 1) 4788 return UnableToLegalize; 4789 4790 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4791 int NumDst = MI.getNumOperands() - 1; 4792 moreElementsVectorSrc(MI, MoreTy, NumDst); 4793 4794 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4795 for (int I = 0; I != NumDst; ++I) 4796 MIB.addDef(MI.getOperand(I).getReg()); 4797 4798 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4799 for (int I = NumDst; I != NewNumDst; ++I) 4800 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4801 4802 MIB.addUse(MI.getOperand(NumDst).getReg()); 4803 MI.eraseFromParent(); 4804 return Legalized; 4805 } 4806 case TargetOpcode::G_PHI: 4807 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4808 default: 4809 return UnableToLegalize; 4810 } 4811 } 4812 4813 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4814 ArrayRef<Register> Src1Regs, 4815 ArrayRef<Register> Src2Regs, 4816 LLT NarrowTy) { 4817 MachineIRBuilder &B = MIRBuilder; 4818 unsigned SrcParts = Src1Regs.size(); 4819 unsigned DstParts = DstRegs.size(); 4820 4821 unsigned DstIdx = 0; // Low bits of the result. 4822 Register FactorSum = 4823 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4824 DstRegs[DstIdx] = FactorSum; 4825 4826 unsigned CarrySumPrevDstIdx; 4827 SmallVector<Register, 4> Factors; 4828 4829 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4830 // Collect low parts of muls for DstIdx. 4831 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4832 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4833 MachineInstrBuilder Mul = 4834 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4835 Factors.push_back(Mul.getReg(0)); 4836 } 4837 // Collect high parts of muls from previous DstIdx. 4838 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4839 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4840 MachineInstrBuilder Umulh = 4841 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4842 Factors.push_back(Umulh.getReg(0)); 4843 } 4844 // Add CarrySum from additions calculated for previous DstIdx. 4845 if (DstIdx != 1) { 4846 Factors.push_back(CarrySumPrevDstIdx); 4847 } 4848 4849 Register CarrySum; 4850 // Add all factors and accumulate all carries into CarrySum. 4851 if (DstIdx != DstParts - 1) { 4852 MachineInstrBuilder Uaddo = 4853 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4854 FactorSum = Uaddo.getReg(0); 4855 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4856 for (unsigned i = 2; i < Factors.size(); ++i) { 4857 MachineInstrBuilder Uaddo = 4858 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4859 FactorSum = Uaddo.getReg(0); 4860 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4861 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4862 } 4863 } else { 4864 // Since value for the next index is not calculated, neither is CarrySum. 4865 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4866 for (unsigned i = 2; i < Factors.size(); ++i) 4867 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4868 } 4869 4870 CarrySumPrevDstIdx = CarrySum; 4871 DstRegs[DstIdx] = FactorSum; 4872 Factors.clear(); 4873 } 4874 } 4875 4876 LegalizerHelper::LegalizeResult 4877 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 4878 LLT NarrowTy) { 4879 if (TypeIdx != 0) 4880 return UnableToLegalize; 4881 4882 Register DstReg = MI.getOperand(0).getReg(); 4883 LLT DstType = MRI.getType(DstReg); 4884 // FIXME: add support for vector types 4885 if (DstType.isVector()) 4886 return UnableToLegalize; 4887 4888 uint64_t SizeOp0 = DstType.getSizeInBits(); 4889 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4890 4891 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4892 // NarrowSize. 4893 if (SizeOp0 % NarrowSize != 0) 4894 return UnableToLegalize; 4895 4896 // Expand in terms of carry-setting/consuming G_<Op>E instructions. 4897 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 4898 4899 unsigned Opcode = MI.getOpcode(); 4900 unsigned OpO, OpE, OpF; 4901 switch (Opcode) { 4902 case TargetOpcode::G_SADDO: 4903 case TargetOpcode::G_SADDE: 4904 case TargetOpcode::G_UADDO: 4905 case TargetOpcode::G_UADDE: 4906 case TargetOpcode::G_ADD: 4907 OpO = TargetOpcode::G_UADDO; 4908 OpE = TargetOpcode::G_UADDE; 4909 OpF = TargetOpcode::G_UADDE; 4910 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 4911 OpF = TargetOpcode::G_SADDE; 4912 break; 4913 case TargetOpcode::G_SSUBO: 4914 case TargetOpcode::G_SSUBE: 4915 case TargetOpcode::G_USUBO: 4916 case TargetOpcode::G_USUBE: 4917 case TargetOpcode::G_SUB: 4918 OpO = TargetOpcode::G_USUBO; 4919 OpE = TargetOpcode::G_USUBE; 4920 OpF = TargetOpcode::G_USUBE; 4921 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 4922 OpF = TargetOpcode::G_SSUBE; 4923 break; 4924 default: 4925 llvm_unreachable("Unexpected add/sub opcode!"); 4926 } 4927 4928 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 4929 unsigned NumDefs = MI.getNumExplicitDefs(); 4930 Register Src1 = MI.getOperand(NumDefs).getReg(); 4931 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 4932 Register CarryDst; 4933 if (NumDefs == 2) 4934 CarryDst = MI.getOperand(1).getReg(); 4935 Register CarryIn; 4936 if (MI.getNumOperands() == NumDefs + 3) 4937 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 4938 4939 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 4940 extractParts(Src1, NarrowTy, NumParts, Src1Regs); 4941 extractParts(Src2, NarrowTy, NumParts, Src2Regs); 4942 4943 for (int i = 0; i < NumParts; ++i) { 4944 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4945 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 4946 // Forward the final carry-out to the destination register 4947 if (i == NumParts - 1 && CarryDst) 4948 CarryOut = CarryDst; 4949 4950 if (!CarryIn) { 4951 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 4952 {Src1Regs[i], Src2Regs[i]}); 4953 } else if (i == NumParts - 1) { 4954 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 4955 {Src1Regs[i], Src2Regs[i], CarryIn}); 4956 } else { 4957 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 4958 {Src1Regs[i], Src2Regs[i], CarryIn}); 4959 } 4960 4961 DstRegs.push_back(DstReg); 4962 CarryIn = CarryOut; 4963 } 4964 MIRBuilder.buildMerge(DstReg, DstRegs); 4965 MI.eraseFromParent(); 4966 return Legalized; 4967 } 4968 4969 LegalizerHelper::LegalizeResult 4970 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4971 Register DstReg = MI.getOperand(0).getReg(); 4972 Register Src1 = MI.getOperand(1).getReg(); 4973 Register Src2 = MI.getOperand(2).getReg(); 4974 4975 LLT Ty = MRI.getType(DstReg); 4976 if (Ty.isVector()) 4977 return UnableToLegalize; 4978 4979 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4980 unsigned DstSize = Ty.getSizeInBits(); 4981 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4982 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4983 return UnableToLegalize; 4984 4985 unsigned NumDstParts = DstSize / NarrowSize; 4986 unsigned NumSrcParts = SrcSize / NarrowSize; 4987 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4988 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4989 4990 SmallVector<Register, 2> Src1Parts, Src2Parts; 4991 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4992 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4993 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4994 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4995 4996 // Take only high half of registers if this is high mul. 4997 ArrayRef<Register> DstRegs( 4998 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4999 MIRBuilder.buildMerge(DstReg, DstRegs); 5000 MI.eraseFromParent(); 5001 return Legalized; 5002 } 5003 5004 LegalizerHelper::LegalizeResult 5005 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5006 LLT NarrowTy) { 5007 if (TypeIdx != 0) 5008 return UnableToLegalize; 5009 5010 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5011 5012 Register Src = MI.getOperand(1).getReg(); 5013 LLT SrcTy = MRI.getType(Src); 5014 5015 // If all finite floats fit into the narrowed integer type, we can just swap 5016 // out the result type. This is practically only useful for conversions from 5017 // half to at least 16-bits, so just handle the one case. 5018 if (SrcTy.getScalarType() != LLT::scalar(16) || 5019 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5020 return UnableToLegalize; 5021 5022 Observer.changingInstr(MI); 5023 narrowScalarDst(MI, NarrowTy, 0, 5024 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5025 Observer.changedInstr(MI); 5026 return Legalized; 5027 } 5028 5029 LegalizerHelper::LegalizeResult 5030 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5031 LLT NarrowTy) { 5032 if (TypeIdx != 1) 5033 return UnableToLegalize; 5034 5035 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5036 5037 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5038 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5039 // NarrowSize. 5040 if (SizeOp1 % NarrowSize != 0) 5041 return UnableToLegalize; 5042 int NumParts = SizeOp1 / NarrowSize; 5043 5044 SmallVector<Register, 2> SrcRegs, DstRegs; 5045 SmallVector<uint64_t, 2> Indexes; 5046 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5047 5048 Register OpReg = MI.getOperand(0).getReg(); 5049 uint64_t OpStart = MI.getOperand(2).getImm(); 5050 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5051 for (int i = 0; i < NumParts; ++i) { 5052 unsigned SrcStart = i * NarrowSize; 5053 5054 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5055 // No part of the extract uses this subregister, ignore it. 5056 continue; 5057 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5058 // The entire subregister is extracted, forward the value. 5059 DstRegs.push_back(SrcRegs[i]); 5060 continue; 5061 } 5062 5063 // OpSegStart is where this destination segment would start in OpReg if it 5064 // extended infinitely in both directions. 5065 int64_t ExtractOffset; 5066 uint64_t SegSize; 5067 if (OpStart < SrcStart) { 5068 ExtractOffset = 0; 5069 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5070 } else { 5071 ExtractOffset = OpStart - SrcStart; 5072 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5073 } 5074 5075 Register SegReg = SrcRegs[i]; 5076 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5077 // A genuine extract is needed. 5078 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5079 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5080 } 5081 5082 DstRegs.push_back(SegReg); 5083 } 5084 5085 Register DstReg = MI.getOperand(0).getReg(); 5086 if (MRI.getType(DstReg).isVector()) 5087 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5088 else if (DstRegs.size() > 1) 5089 MIRBuilder.buildMerge(DstReg, DstRegs); 5090 else 5091 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5092 MI.eraseFromParent(); 5093 return Legalized; 5094 } 5095 5096 LegalizerHelper::LegalizeResult 5097 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5098 LLT NarrowTy) { 5099 // FIXME: Don't know how to handle secondary types yet. 5100 if (TypeIdx != 0) 5101 return UnableToLegalize; 5102 5103 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 5104 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5105 5106 // FIXME: add support for when SizeOp0 isn't an exact multiple of 5107 // NarrowSize. 5108 if (SizeOp0 % NarrowSize != 0) 5109 return UnableToLegalize; 5110 5111 int NumParts = SizeOp0 / NarrowSize; 5112 5113 SmallVector<Register, 2> SrcRegs, DstRegs; 5114 SmallVector<uint64_t, 2> Indexes; 5115 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5116 5117 Register OpReg = MI.getOperand(2).getReg(); 5118 uint64_t OpStart = MI.getOperand(3).getImm(); 5119 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5120 for (int i = 0; i < NumParts; ++i) { 5121 unsigned DstStart = i * NarrowSize; 5122 5123 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5124 // No part of the insert affects this subregister, forward the original. 5125 DstRegs.push_back(SrcRegs[i]); 5126 continue; 5127 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5128 // The entire subregister is defined by this insert, forward the new 5129 // value. 5130 DstRegs.push_back(OpReg); 5131 continue; 5132 } 5133 5134 // OpSegStart is where this destination segment would start in OpReg if it 5135 // extended infinitely in both directions. 5136 int64_t ExtractOffset, InsertOffset; 5137 uint64_t SegSize; 5138 if (OpStart < DstStart) { 5139 InsertOffset = 0; 5140 ExtractOffset = DstStart - OpStart; 5141 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5142 } else { 5143 InsertOffset = OpStart - DstStart; 5144 ExtractOffset = 0; 5145 SegSize = 5146 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5147 } 5148 5149 Register SegReg = OpReg; 5150 if (ExtractOffset != 0 || SegSize != OpSize) { 5151 // A genuine extract is needed. 5152 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5153 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5154 } 5155 5156 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5157 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 5158 DstRegs.push_back(DstReg); 5159 } 5160 5161 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 5162 Register DstReg = MI.getOperand(0).getReg(); 5163 if(MRI.getType(DstReg).isVector()) 5164 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5165 else 5166 MIRBuilder.buildMerge(DstReg, DstRegs); 5167 MI.eraseFromParent(); 5168 return Legalized; 5169 } 5170 5171 LegalizerHelper::LegalizeResult 5172 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5173 LLT NarrowTy) { 5174 Register DstReg = MI.getOperand(0).getReg(); 5175 LLT DstTy = MRI.getType(DstReg); 5176 5177 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5178 5179 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5180 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5181 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5182 LLT LeftoverTy; 5183 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5184 Src0Regs, Src0LeftoverRegs)) 5185 return UnableToLegalize; 5186 5187 LLT Unused; 5188 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5189 Src1Regs, Src1LeftoverRegs)) 5190 llvm_unreachable("inconsistent extractParts result"); 5191 5192 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5193 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5194 {Src0Regs[I], Src1Regs[I]}); 5195 DstRegs.push_back(Inst.getReg(0)); 5196 } 5197 5198 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5199 auto Inst = MIRBuilder.buildInstr( 5200 MI.getOpcode(), 5201 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5202 DstLeftoverRegs.push_back(Inst.getReg(0)); 5203 } 5204 5205 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5206 LeftoverTy, DstLeftoverRegs); 5207 5208 MI.eraseFromParent(); 5209 return Legalized; 5210 } 5211 5212 LegalizerHelper::LegalizeResult 5213 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5214 LLT NarrowTy) { 5215 if (TypeIdx != 0) 5216 return UnableToLegalize; 5217 5218 Register DstReg = MI.getOperand(0).getReg(); 5219 Register SrcReg = MI.getOperand(1).getReg(); 5220 5221 LLT DstTy = MRI.getType(DstReg); 5222 if (DstTy.isVector()) 5223 return UnableToLegalize; 5224 5225 SmallVector<Register, 8> Parts; 5226 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5227 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5228 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5229 5230 MI.eraseFromParent(); 5231 return Legalized; 5232 } 5233 5234 LegalizerHelper::LegalizeResult 5235 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5236 LLT NarrowTy) { 5237 if (TypeIdx != 0) 5238 return UnableToLegalize; 5239 5240 Register CondReg = MI.getOperand(1).getReg(); 5241 LLT CondTy = MRI.getType(CondReg); 5242 if (CondTy.isVector()) // TODO: Handle vselect 5243 return UnableToLegalize; 5244 5245 Register DstReg = MI.getOperand(0).getReg(); 5246 LLT DstTy = MRI.getType(DstReg); 5247 5248 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5249 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5250 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5251 LLT LeftoverTy; 5252 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5253 Src1Regs, Src1LeftoverRegs)) 5254 return UnableToLegalize; 5255 5256 LLT Unused; 5257 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5258 Src2Regs, Src2LeftoverRegs)) 5259 llvm_unreachable("inconsistent extractParts result"); 5260 5261 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5262 auto Select = MIRBuilder.buildSelect(NarrowTy, 5263 CondReg, Src1Regs[I], Src2Regs[I]); 5264 DstRegs.push_back(Select.getReg(0)); 5265 } 5266 5267 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5268 auto Select = MIRBuilder.buildSelect( 5269 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5270 DstLeftoverRegs.push_back(Select.getReg(0)); 5271 } 5272 5273 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5274 LeftoverTy, DstLeftoverRegs); 5275 5276 MI.eraseFromParent(); 5277 return Legalized; 5278 } 5279 5280 LegalizerHelper::LegalizeResult 5281 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5282 LLT NarrowTy) { 5283 if (TypeIdx != 1) 5284 return UnableToLegalize; 5285 5286 Register DstReg = MI.getOperand(0).getReg(); 5287 Register SrcReg = MI.getOperand(1).getReg(); 5288 LLT DstTy = MRI.getType(DstReg); 5289 LLT SrcTy = MRI.getType(SrcReg); 5290 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5291 5292 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5293 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5294 5295 MachineIRBuilder &B = MIRBuilder; 5296 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5297 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5298 auto C_0 = B.buildConstant(NarrowTy, 0); 5299 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5300 UnmergeSrc.getReg(1), C_0); 5301 auto LoCTLZ = IsUndef ? 5302 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5303 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5304 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5305 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5306 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5307 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5308 5309 MI.eraseFromParent(); 5310 return Legalized; 5311 } 5312 5313 return UnableToLegalize; 5314 } 5315 5316 LegalizerHelper::LegalizeResult 5317 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5318 LLT NarrowTy) { 5319 if (TypeIdx != 1) 5320 return UnableToLegalize; 5321 5322 Register DstReg = MI.getOperand(0).getReg(); 5323 Register SrcReg = MI.getOperand(1).getReg(); 5324 LLT DstTy = MRI.getType(DstReg); 5325 LLT SrcTy = MRI.getType(SrcReg); 5326 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5327 5328 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5329 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5330 5331 MachineIRBuilder &B = MIRBuilder; 5332 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5333 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5334 auto C_0 = B.buildConstant(NarrowTy, 0); 5335 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5336 UnmergeSrc.getReg(0), C_0); 5337 auto HiCTTZ = IsUndef ? 5338 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5339 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5340 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5341 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5342 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5343 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5344 5345 MI.eraseFromParent(); 5346 return Legalized; 5347 } 5348 5349 return UnableToLegalize; 5350 } 5351 5352 LegalizerHelper::LegalizeResult 5353 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5354 LLT NarrowTy) { 5355 if (TypeIdx != 1) 5356 return UnableToLegalize; 5357 5358 Register DstReg = MI.getOperand(0).getReg(); 5359 LLT DstTy = MRI.getType(DstReg); 5360 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5361 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5362 5363 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5364 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5365 5366 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5367 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5368 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5369 5370 MI.eraseFromParent(); 5371 return Legalized; 5372 } 5373 5374 return UnableToLegalize; 5375 } 5376 5377 LegalizerHelper::LegalizeResult 5378 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5379 unsigned Opc = MI.getOpcode(); 5380 const auto &TII = MIRBuilder.getTII(); 5381 auto isSupported = [this](const LegalityQuery &Q) { 5382 auto QAction = LI.getAction(Q).Action; 5383 return QAction == Legal || QAction == Libcall || QAction == Custom; 5384 }; 5385 switch (Opc) { 5386 default: 5387 return UnableToLegalize; 5388 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5389 // This trivially expands to CTLZ. 5390 Observer.changingInstr(MI); 5391 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5392 Observer.changedInstr(MI); 5393 return Legalized; 5394 } 5395 case TargetOpcode::G_CTLZ: { 5396 Register DstReg = MI.getOperand(0).getReg(); 5397 Register SrcReg = MI.getOperand(1).getReg(); 5398 LLT DstTy = MRI.getType(DstReg); 5399 LLT SrcTy = MRI.getType(SrcReg); 5400 unsigned Len = SrcTy.getSizeInBits(); 5401 5402 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5403 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5404 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5405 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5406 auto ICmp = MIRBuilder.buildICmp( 5407 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5408 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5409 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5410 MI.eraseFromParent(); 5411 return Legalized; 5412 } 5413 // for now, we do this: 5414 // NewLen = NextPowerOf2(Len); 5415 // x = x | (x >> 1); 5416 // x = x | (x >> 2); 5417 // ... 5418 // x = x | (x >>16); 5419 // x = x | (x >>32); // for 64-bit input 5420 // Upto NewLen/2 5421 // return Len - popcount(x); 5422 // 5423 // Ref: "Hacker's Delight" by Henry Warren 5424 Register Op = SrcReg; 5425 unsigned NewLen = PowerOf2Ceil(Len); 5426 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5427 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5428 auto MIBOp = MIRBuilder.buildOr( 5429 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5430 Op = MIBOp.getReg(0); 5431 } 5432 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5433 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5434 MIBPop); 5435 MI.eraseFromParent(); 5436 return Legalized; 5437 } 5438 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5439 // This trivially expands to CTTZ. 5440 Observer.changingInstr(MI); 5441 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5442 Observer.changedInstr(MI); 5443 return Legalized; 5444 } 5445 case TargetOpcode::G_CTTZ: { 5446 Register DstReg = MI.getOperand(0).getReg(); 5447 Register SrcReg = MI.getOperand(1).getReg(); 5448 LLT DstTy = MRI.getType(DstReg); 5449 LLT SrcTy = MRI.getType(SrcReg); 5450 5451 unsigned Len = SrcTy.getSizeInBits(); 5452 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5453 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5454 // zero. 5455 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5456 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5457 auto ICmp = MIRBuilder.buildICmp( 5458 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5459 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5460 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5461 MI.eraseFromParent(); 5462 return Legalized; 5463 } 5464 // for now, we use: { return popcount(~x & (x - 1)); } 5465 // unless the target has ctlz but not ctpop, in which case we use: 5466 // { return 32 - nlz(~x & (x-1)); } 5467 // Ref: "Hacker's Delight" by Henry Warren 5468 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5469 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5470 auto MIBTmp = MIRBuilder.buildAnd( 5471 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5472 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5473 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5474 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5475 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5476 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5477 MI.eraseFromParent(); 5478 return Legalized; 5479 } 5480 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5481 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5482 return Legalized; 5483 } 5484 case TargetOpcode::G_CTPOP: { 5485 Register SrcReg = MI.getOperand(1).getReg(); 5486 LLT Ty = MRI.getType(SrcReg); 5487 unsigned Size = Ty.getSizeInBits(); 5488 MachineIRBuilder &B = MIRBuilder; 5489 5490 // Count set bits in blocks of 2 bits. Default approach would be 5491 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5492 // We use following formula instead: 5493 // B2Count = val - { (val >> 1) & 0x55555555 } 5494 // since it gives same result in blocks of 2 with one instruction less. 5495 auto C_1 = B.buildConstant(Ty, 1); 5496 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5497 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5498 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5499 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5500 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5501 5502 // In order to get count in blocks of 4 add values from adjacent block of 2. 5503 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5504 auto C_2 = B.buildConstant(Ty, 2); 5505 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5506 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5507 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5508 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5509 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5510 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5511 5512 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5513 // addition since count value sits in range {0,...,8} and 4 bits are enough 5514 // to hold such binary values. After addition high 4 bits still hold count 5515 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5516 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5517 auto C_4 = B.buildConstant(Ty, 4); 5518 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5519 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5520 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5521 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5522 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5523 5524 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5525 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5526 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5527 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5528 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5529 5530 // Shift count result from 8 high bits to low bits. 5531 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5532 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5533 5534 MI.eraseFromParent(); 5535 return Legalized; 5536 } 5537 } 5538 } 5539 5540 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5541 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5542 Register Reg, unsigned BW) { 5543 return matchUnaryPredicate( 5544 MRI, Reg, 5545 [=](const Constant *C) { 5546 // Null constant here means an undef. 5547 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5548 return !CI || CI->getValue().urem(BW) != 0; 5549 }, 5550 /*AllowUndefs*/ true); 5551 } 5552 5553 LegalizerHelper::LegalizeResult 5554 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5555 Register Dst = MI.getOperand(0).getReg(); 5556 Register X = MI.getOperand(1).getReg(); 5557 Register Y = MI.getOperand(2).getReg(); 5558 Register Z = MI.getOperand(3).getReg(); 5559 LLT Ty = MRI.getType(Dst); 5560 LLT ShTy = MRI.getType(Z); 5561 5562 unsigned BW = Ty.getScalarSizeInBits(); 5563 5564 if (!isPowerOf2_32(BW)) 5565 return UnableToLegalize; 5566 5567 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5568 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5569 5570 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5571 // fshl X, Y, Z -> fshr X, Y, -Z 5572 // fshr X, Y, Z -> fshl X, Y, -Z 5573 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5574 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5575 } else { 5576 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5577 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5578 auto One = MIRBuilder.buildConstant(ShTy, 1); 5579 if (IsFSHL) { 5580 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5581 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5582 } else { 5583 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5584 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5585 } 5586 5587 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5588 } 5589 5590 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5591 MI.eraseFromParent(); 5592 return Legalized; 5593 } 5594 5595 LegalizerHelper::LegalizeResult 5596 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5597 Register Dst = MI.getOperand(0).getReg(); 5598 Register X = MI.getOperand(1).getReg(); 5599 Register Y = MI.getOperand(2).getReg(); 5600 Register Z = MI.getOperand(3).getReg(); 5601 LLT Ty = MRI.getType(Dst); 5602 LLT ShTy = MRI.getType(Z); 5603 5604 const unsigned BW = Ty.getScalarSizeInBits(); 5605 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5606 5607 Register ShX, ShY; 5608 Register ShAmt, InvShAmt; 5609 5610 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5611 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5612 // fshl: X << C | Y >> (BW - C) 5613 // fshr: X << (BW - C) | Y >> C 5614 // where C = Z % BW is not zero 5615 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5616 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5617 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5618 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5619 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5620 } else { 5621 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5622 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5623 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5624 if (isPowerOf2_32(BW)) { 5625 // Z % BW -> Z & (BW - 1) 5626 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5627 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5628 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5629 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5630 } else { 5631 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5632 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5633 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5634 } 5635 5636 auto One = MIRBuilder.buildConstant(ShTy, 1); 5637 if (IsFSHL) { 5638 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5639 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5640 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5641 } else { 5642 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5643 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5644 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5645 } 5646 } 5647 5648 MIRBuilder.buildOr(Dst, ShX, ShY); 5649 MI.eraseFromParent(); 5650 return Legalized; 5651 } 5652 5653 LegalizerHelper::LegalizeResult 5654 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5655 // These operations approximately do the following (while avoiding undefined 5656 // shifts by BW): 5657 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5658 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5659 Register Dst = MI.getOperand(0).getReg(); 5660 LLT Ty = MRI.getType(Dst); 5661 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5662 5663 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5664 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5665 5666 // TODO: Use smarter heuristic that accounts for vector legalization. 5667 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5668 return lowerFunnelShiftAsShifts(MI); 5669 5670 // This only works for powers of 2, fallback to shifts if it fails. 5671 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5672 if (Result == UnableToLegalize) 5673 return lowerFunnelShiftAsShifts(MI); 5674 return Result; 5675 } 5676 5677 LegalizerHelper::LegalizeResult 5678 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5679 Register Dst = MI.getOperand(0).getReg(); 5680 Register Src = MI.getOperand(1).getReg(); 5681 Register Amt = MI.getOperand(2).getReg(); 5682 LLT AmtTy = MRI.getType(Amt); 5683 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5684 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5685 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5686 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5687 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5688 MI.eraseFromParent(); 5689 return Legalized; 5690 } 5691 5692 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5693 Register Dst = MI.getOperand(0).getReg(); 5694 Register Src = MI.getOperand(1).getReg(); 5695 Register Amt = MI.getOperand(2).getReg(); 5696 LLT DstTy = MRI.getType(Dst); 5697 LLT SrcTy = MRI.getType(Dst); 5698 LLT AmtTy = MRI.getType(Amt); 5699 5700 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5701 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5702 5703 MIRBuilder.setInstrAndDebugLoc(MI); 5704 5705 // If a rotate in the other direction is supported, use it. 5706 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5707 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5708 isPowerOf2_32(EltSizeInBits)) 5709 return lowerRotateWithReverseRotate(MI); 5710 5711 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5712 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5713 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5714 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5715 Register ShVal; 5716 Register RevShiftVal; 5717 if (isPowerOf2_32(EltSizeInBits)) { 5718 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5719 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5720 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5721 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5722 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5723 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5724 RevShiftVal = 5725 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5726 } else { 5727 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5728 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5729 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5730 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5731 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5732 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5733 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5734 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5735 RevShiftVal = 5736 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5737 } 5738 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5739 MI.eraseFromParent(); 5740 return Legalized; 5741 } 5742 5743 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5744 // representation. 5745 LegalizerHelper::LegalizeResult 5746 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5747 Register Dst = MI.getOperand(0).getReg(); 5748 Register Src = MI.getOperand(1).getReg(); 5749 const LLT S64 = LLT::scalar(64); 5750 const LLT S32 = LLT::scalar(32); 5751 const LLT S1 = LLT::scalar(1); 5752 5753 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5754 5755 // unsigned cul2f(ulong u) { 5756 // uint lz = clz(u); 5757 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5758 // u = (u << lz) & 0x7fffffffffffffffUL; 5759 // ulong t = u & 0xffffffffffUL; 5760 // uint v = (e << 23) | (uint)(u >> 40); 5761 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5762 // return as_float(v + r); 5763 // } 5764 5765 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5766 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5767 5768 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5769 5770 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5771 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5772 5773 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5774 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5775 5776 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5777 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5778 5779 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5780 5781 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5782 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5783 5784 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5785 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5786 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5787 5788 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5789 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5790 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5791 auto One = MIRBuilder.buildConstant(S32, 1); 5792 5793 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5794 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5795 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5796 MIRBuilder.buildAdd(Dst, V, R); 5797 5798 MI.eraseFromParent(); 5799 return Legalized; 5800 } 5801 5802 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5803 Register Dst = MI.getOperand(0).getReg(); 5804 Register Src = MI.getOperand(1).getReg(); 5805 LLT DstTy = MRI.getType(Dst); 5806 LLT SrcTy = MRI.getType(Src); 5807 5808 if (SrcTy == LLT::scalar(1)) { 5809 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5810 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5811 MIRBuilder.buildSelect(Dst, Src, True, False); 5812 MI.eraseFromParent(); 5813 return Legalized; 5814 } 5815 5816 if (SrcTy != LLT::scalar(64)) 5817 return UnableToLegalize; 5818 5819 if (DstTy == LLT::scalar(32)) { 5820 // TODO: SelectionDAG has several alternative expansions to port which may 5821 // be more reasonble depending on the available instructions. If a target 5822 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5823 // intermediate type, this is probably worse. 5824 return lowerU64ToF32BitOps(MI); 5825 } 5826 5827 return UnableToLegalize; 5828 } 5829 5830 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5831 Register Dst = MI.getOperand(0).getReg(); 5832 Register Src = MI.getOperand(1).getReg(); 5833 LLT DstTy = MRI.getType(Dst); 5834 LLT SrcTy = MRI.getType(Src); 5835 5836 const LLT S64 = LLT::scalar(64); 5837 const LLT S32 = LLT::scalar(32); 5838 const LLT S1 = LLT::scalar(1); 5839 5840 if (SrcTy == S1) { 5841 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5842 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5843 MIRBuilder.buildSelect(Dst, Src, True, False); 5844 MI.eraseFromParent(); 5845 return Legalized; 5846 } 5847 5848 if (SrcTy != S64) 5849 return UnableToLegalize; 5850 5851 if (DstTy == S32) { 5852 // signed cl2f(long l) { 5853 // long s = l >> 63; 5854 // float r = cul2f((l + s) ^ s); 5855 // return s ? -r : r; 5856 // } 5857 Register L = Src; 5858 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5859 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5860 5861 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5862 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5863 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5864 5865 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5866 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5867 MIRBuilder.buildConstant(S64, 0)); 5868 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5869 MI.eraseFromParent(); 5870 return Legalized; 5871 } 5872 5873 return UnableToLegalize; 5874 } 5875 5876 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5877 Register Dst = MI.getOperand(0).getReg(); 5878 Register Src = MI.getOperand(1).getReg(); 5879 LLT DstTy = MRI.getType(Dst); 5880 LLT SrcTy = MRI.getType(Src); 5881 const LLT S64 = LLT::scalar(64); 5882 const LLT S32 = LLT::scalar(32); 5883 5884 if (SrcTy != S64 && SrcTy != S32) 5885 return UnableToLegalize; 5886 if (DstTy != S32 && DstTy != S64) 5887 return UnableToLegalize; 5888 5889 // FPTOSI gives same result as FPTOUI for positive signed integers. 5890 // FPTOUI needs to deal with fp values that convert to unsigned integers 5891 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5892 5893 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5894 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5895 : APFloat::IEEEdouble(), 5896 APInt::getNullValue(SrcTy.getSizeInBits())); 5897 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5898 5899 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5900 5901 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5902 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5903 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5904 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5905 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5906 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5907 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5908 5909 const LLT S1 = LLT::scalar(1); 5910 5911 MachineInstrBuilder FCMP = 5912 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5913 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5914 5915 MI.eraseFromParent(); 5916 return Legalized; 5917 } 5918 5919 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5920 Register Dst = MI.getOperand(0).getReg(); 5921 Register Src = MI.getOperand(1).getReg(); 5922 LLT DstTy = MRI.getType(Dst); 5923 LLT SrcTy = MRI.getType(Src); 5924 const LLT S64 = LLT::scalar(64); 5925 const LLT S32 = LLT::scalar(32); 5926 5927 // FIXME: Only f32 to i64 conversions are supported. 5928 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5929 return UnableToLegalize; 5930 5931 // Expand f32 -> i64 conversion 5932 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5933 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 5934 5935 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5936 5937 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5938 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5939 5940 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5941 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5942 5943 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5944 APInt::getSignMask(SrcEltBits)); 5945 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5946 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5947 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5948 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5949 5950 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5951 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5952 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5953 5954 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5955 R = MIRBuilder.buildZExt(DstTy, R); 5956 5957 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5958 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5959 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5960 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5961 5962 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5963 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5964 5965 const LLT S1 = LLT::scalar(1); 5966 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5967 S1, Exponent, ExponentLoBit); 5968 5969 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5970 5971 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5972 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5973 5974 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5975 5976 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5977 S1, Exponent, ZeroSrcTy); 5978 5979 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5980 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5981 5982 MI.eraseFromParent(); 5983 return Legalized; 5984 } 5985 5986 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5987 LegalizerHelper::LegalizeResult 5988 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5989 Register Dst = MI.getOperand(0).getReg(); 5990 Register Src = MI.getOperand(1).getReg(); 5991 5992 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5993 return UnableToLegalize; 5994 5995 const unsigned ExpMask = 0x7ff; 5996 const unsigned ExpBiasf64 = 1023; 5997 const unsigned ExpBiasf16 = 15; 5998 const LLT S32 = LLT::scalar(32); 5999 const LLT S1 = LLT::scalar(1); 6000 6001 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6002 Register U = Unmerge.getReg(0); 6003 Register UH = Unmerge.getReg(1); 6004 6005 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6006 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6007 6008 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6009 // add the f16 bias (15) to get the biased exponent for the f16 format. 6010 E = MIRBuilder.buildAdd( 6011 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6012 6013 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6014 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6015 6016 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6017 MIRBuilder.buildConstant(S32, 0x1ff)); 6018 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6019 6020 auto Zero = MIRBuilder.buildConstant(S32, 0); 6021 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6022 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6023 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6024 6025 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6026 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6027 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6028 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6029 6030 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6031 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6032 6033 // N = M | (E << 12); 6034 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6035 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6036 6037 // B = clamp(1-E, 0, 13); 6038 auto One = MIRBuilder.buildConstant(S32, 1); 6039 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6040 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6041 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6042 6043 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6044 MIRBuilder.buildConstant(S32, 0x1000)); 6045 6046 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6047 auto D0 = MIRBuilder.buildShl(S32, D, B); 6048 6049 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6050 D0, SigSetHigh); 6051 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6052 D = MIRBuilder.buildOr(S32, D, D1); 6053 6054 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6055 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6056 6057 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6058 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6059 6060 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6061 MIRBuilder.buildConstant(S32, 3)); 6062 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6063 6064 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6065 MIRBuilder.buildConstant(S32, 5)); 6066 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6067 6068 V1 = MIRBuilder.buildOr(S32, V0, V1); 6069 V = MIRBuilder.buildAdd(S32, V, V1); 6070 6071 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6072 E, MIRBuilder.buildConstant(S32, 30)); 6073 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6074 MIRBuilder.buildConstant(S32, 0x7c00), V); 6075 6076 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6077 E, MIRBuilder.buildConstant(S32, 1039)); 6078 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6079 6080 // Extract the sign bit. 6081 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6082 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6083 6084 // Insert the sign bit 6085 V = MIRBuilder.buildOr(S32, Sign, V); 6086 6087 MIRBuilder.buildTrunc(Dst, V); 6088 MI.eraseFromParent(); 6089 return Legalized; 6090 } 6091 6092 LegalizerHelper::LegalizeResult 6093 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6094 Register Dst = MI.getOperand(0).getReg(); 6095 Register Src = MI.getOperand(1).getReg(); 6096 6097 LLT DstTy = MRI.getType(Dst); 6098 LLT SrcTy = MRI.getType(Src); 6099 const LLT S64 = LLT::scalar(64); 6100 const LLT S16 = LLT::scalar(16); 6101 6102 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6103 return lowerFPTRUNC_F64_TO_F16(MI); 6104 6105 return UnableToLegalize; 6106 } 6107 6108 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6109 // multiplication tree. 6110 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6111 Register Dst = MI.getOperand(0).getReg(); 6112 Register Src0 = MI.getOperand(1).getReg(); 6113 Register Src1 = MI.getOperand(2).getReg(); 6114 LLT Ty = MRI.getType(Dst); 6115 6116 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6117 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6118 MI.eraseFromParent(); 6119 return Legalized; 6120 } 6121 6122 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6123 switch (Opc) { 6124 case TargetOpcode::G_SMIN: 6125 return CmpInst::ICMP_SLT; 6126 case TargetOpcode::G_SMAX: 6127 return CmpInst::ICMP_SGT; 6128 case TargetOpcode::G_UMIN: 6129 return CmpInst::ICMP_ULT; 6130 case TargetOpcode::G_UMAX: 6131 return CmpInst::ICMP_UGT; 6132 default: 6133 llvm_unreachable("not in integer min/max"); 6134 } 6135 } 6136 6137 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6138 Register Dst = MI.getOperand(0).getReg(); 6139 Register Src0 = MI.getOperand(1).getReg(); 6140 Register Src1 = MI.getOperand(2).getReg(); 6141 6142 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6143 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6144 6145 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6146 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6147 6148 MI.eraseFromParent(); 6149 return Legalized; 6150 } 6151 6152 LegalizerHelper::LegalizeResult 6153 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6154 Register Dst = MI.getOperand(0).getReg(); 6155 Register Src0 = MI.getOperand(1).getReg(); 6156 Register Src1 = MI.getOperand(2).getReg(); 6157 6158 const LLT Src0Ty = MRI.getType(Src0); 6159 const LLT Src1Ty = MRI.getType(Src1); 6160 6161 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6162 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6163 6164 auto SignBitMask = MIRBuilder.buildConstant( 6165 Src0Ty, APInt::getSignMask(Src0Size)); 6166 6167 auto NotSignBitMask = MIRBuilder.buildConstant( 6168 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6169 6170 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6171 Register And1; 6172 if (Src0Ty == Src1Ty) { 6173 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6174 } else if (Src0Size > Src1Size) { 6175 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6176 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6177 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6178 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6179 } else { 6180 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6181 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6182 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6183 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6184 } 6185 6186 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6187 // constants are a nan and -0.0, but the final result should preserve 6188 // everything. 6189 unsigned Flags = MI.getFlags(); 6190 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6191 6192 MI.eraseFromParent(); 6193 return Legalized; 6194 } 6195 6196 LegalizerHelper::LegalizeResult 6197 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6198 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6199 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6200 6201 Register Dst = MI.getOperand(0).getReg(); 6202 Register Src0 = MI.getOperand(1).getReg(); 6203 Register Src1 = MI.getOperand(2).getReg(); 6204 LLT Ty = MRI.getType(Dst); 6205 6206 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6207 // Insert canonicalizes if it's possible we need to quiet to get correct 6208 // sNaN behavior. 6209 6210 // Note this must be done here, and not as an optimization combine in the 6211 // absence of a dedicate quiet-snan instruction as we're using an 6212 // omni-purpose G_FCANONICALIZE. 6213 if (!isKnownNeverSNaN(Src0, MRI)) 6214 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6215 6216 if (!isKnownNeverSNaN(Src1, MRI)) 6217 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6218 } 6219 6220 // If there are no nans, it's safe to simply replace this with the non-IEEE 6221 // version. 6222 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6223 MI.eraseFromParent(); 6224 return Legalized; 6225 } 6226 6227 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6228 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6229 Register DstReg = MI.getOperand(0).getReg(); 6230 LLT Ty = MRI.getType(DstReg); 6231 unsigned Flags = MI.getFlags(); 6232 6233 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6234 Flags); 6235 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6236 MI.eraseFromParent(); 6237 return Legalized; 6238 } 6239 6240 LegalizerHelper::LegalizeResult 6241 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6242 Register DstReg = MI.getOperand(0).getReg(); 6243 Register X = MI.getOperand(1).getReg(); 6244 const unsigned Flags = MI.getFlags(); 6245 const LLT Ty = MRI.getType(DstReg); 6246 const LLT CondTy = Ty.changeElementSize(1); 6247 6248 // round(x) => 6249 // t = trunc(x); 6250 // d = fabs(x - t); 6251 // o = copysign(1.0f, x); 6252 // return t + (d >= 0.5 ? o : 0.0); 6253 6254 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6255 6256 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6257 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6258 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6259 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6260 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6261 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6262 6263 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6264 Flags); 6265 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6266 6267 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6268 6269 MI.eraseFromParent(); 6270 return Legalized; 6271 } 6272 6273 LegalizerHelper::LegalizeResult 6274 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6275 Register DstReg = MI.getOperand(0).getReg(); 6276 Register SrcReg = MI.getOperand(1).getReg(); 6277 unsigned Flags = MI.getFlags(); 6278 LLT Ty = MRI.getType(DstReg); 6279 const LLT CondTy = Ty.changeElementSize(1); 6280 6281 // result = trunc(src); 6282 // if (src < 0.0 && src != result) 6283 // result += -1.0. 6284 6285 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6286 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6287 6288 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6289 SrcReg, Zero, Flags); 6290 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6291 SrcReg, Trunc, Flags); 6292 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6293 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6294 6295 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6296 MI.eraseFromParent(); 6297 return Legalized; 6298 } 6299 6300 LegalizerHelper::LegalizeResult 6301 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6302 const unsigned NumOps = MI.getNumOperands(); 6303 Register DstReg = MI.getOperand(0).getReg(); 6304 Register Src0Reg = MI.getOperand(1).getReg(); 6305 LLT DstTy = MRI.getType(DstReg); 6306 LLT SrcTy = MRI.getType(Src0Reg); 6307 unsigned PartSize = SrcTy.getSizeInBits(); 6308 6309 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6310 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6311 6312 for (unsigned I = 2; I != NumOps; ++I) { 6313 const unsigned Offset = (I - 1) * PartSize; 6314 6315 Register SrcReg = MI.getOperand(I).getReg(); 6316 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6317 6318 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6319 MRI.createGenericVirtualRegister(WideTy); 6320 6321 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6322 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6323 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6324 ResultReg = NextResult; 6325 } 6326 6327 if (DstTy.isPointer()) { 6328 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6329 DstTy.getAddressSpace())) { 6330 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6331 return UnableToLegalize; 6332 } 6333 6334 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6335 } 6336 6337 MI.eraseFromParent(); 6338 return Legalized; 6339 } 6340 6341 LegalizerHelper::LegalizeResult 6342 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6343 const unsigned NumDst = MI.getNumOperands() - 1; 6344 Register SrcReg = MI.getOperand(NumDst).getReg(); 6345 Register Dst0Reg = MI.getOperand(0).getReg(); 6346 LLT DstTy = MRI.getType(Dst0Reg); 6347 if (DstTy.isPointer()) 6348 return UnableToLegalize; // TODO 6349 6350 SrcReg = coerceToScalar(SrcReg); 6351 if (!SrcReg) 6352 return UnableToLegalize; 6353 6354 // Expand scalarizing unmerge as bitcast to integer and shift. 6355 LLT IntTy = MRI.getType(SrcReg); 6356 6357 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6358 6359 const unsigned DstSize = DstTy.getSizeInBits(); 6360 unsigned Offset = DstSize; 6361 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6362 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6363 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6364 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6365 } 6366 6367 MI.eraseFromParent(); 6368 return Legalized; 6369 } 6370 6371 /// Lower a vector extract or insert by writing the vector to a stack temporary 6372 /// and reloading the element or vector. 6373 /// 6374 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6375 /// => 6376 /// %stack_temp = G_FRAME_INDEX 6377 /// G_STORE %vec, %stack_temp 6378 /// %idx = clamp(%idx, %vec.getNumElements()) 6379 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6380 /// %dst = G_LOAD %element_ptr 6381 LegalizerHelper::LegalizeResult 6382 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6383 Register DstReg = MI.getOperand(0).getReg(); 6384 Register SrcVec = MI.getOperand(1).getReg(); 6385 Register InsertVal; 6386 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6387 InsertVal = MI.getOperand(2).getReg(); 6388 6389 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6390 6391 LLT VecTy = MRI.getType(SrcVec); 6392 LLT EltTy = VecTy.getElementType(); 6393 if (!EltTy.isByteSized()) { // Not implemented. 6394 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6395 return UnableToLegalize; 6396 } 6397 6398 unsigned EltBytes = EltTy.getSizeInBytes(); 6399 Align VecAlign = getStackTemporaryAlignment(VecTy); 6400 Align EltAlign; 6401 6402 MachinePointerInfo PtrInfo; 6403 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6404 VecAlign, PtrInfo); 6405 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6406 6407 // Get the pointer to the element, and be sure not to hit undefined behavior 6408 // if the index is out of bounds. 6409 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6410 6411 int64_t IdxVal; 6412 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6413 int64_t Offset = IdxVal * EltBytes; 6414 PtrInfo = PtrInfo.getWithOffset(Offset); 6415 EltAlign = commonAlignment(VecAlign, Offset); 6416 } else { 6417 // We lose information with a variable offset. 6418 EltAlign = getStackTemporaryAlignment(EltTy); 6419 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6420 } 6421 6422 if (InsertVal) { 6423 // Write the inserted element 6424 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6425 6426 // Reload the whole vector. 6427 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6428 } else { 6429 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6430 } 6431 6432 MI.eraseFromParent(); 6433 return Legalized; 6434 } 6435 6436 LegalizerHelper::LegalizeResult 6437 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6438 Register DstReg = MI.getOperand(0).getReg(); 6439 Register Src0Reg = MI.getOperand(1).getReg(); 6440 Register Src1Reg = MI.getOperand(2).getReg(); 6441 LLT Src0Ty = MRI.getType(Src0Reg); 6442 LLT DstTy = MRI.getType(DstReg); 6443 LLT IdxTy = LLT::scalar(32); 6444 6445 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6446 6447 if (DstTy.isScalar()) { 6448 if (Src0Ty.isVector()) 6449 return UnableToLegalize; 6450 6451 // This is just a SELECT. 6452 assert(Mask.size() == 1 && "Expected a single mask element"); 6453 Register Val; 6454 if (Mask[0] < 0 || Mask[0] > 1) 6455 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6456 else 6457 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6458 MIRBuilder.buildCopy(DstReg, Val); 6459 MI.eraseFromParent(); 6460 return Legalized; 6461 } 6462 6463 Register Undef; 6464 SmallVector<Register, 32> BuildVec; 6465 LLT EltTy = DstTy.getElementType(); 6466 6467 for (int Idx : Mask) { 6468 if (Idx < 0) { 6469 if (!Undef.isValid()) 6470 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6471 BuildVec.push_back(Undef); 6472 continue; 6473 } 6474 6475 if (Src0Ty.isScalar()) { 6476 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6477 } else { 6478 int NumElts = Src0Ty.getNumElements(); 6479 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6480 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6481 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6482 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6483 BuildVec.push_back(Extract.getReg(0)); 6484 } 6485 } 6486 6487 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6488 MI.eraseFromParent(); 6489 return Legalized; 6490 } 6491 6492 LegalizerHelper::LegalizeResult 6493 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6494 const auto &MF = *MI.getMF(); 6495 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6496 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6497 return UnableToLegalize; 6498 6499 Register Dst = MI.getOperand(0).getReg(); 6500 Register AllocSize = MI.getOperand(1).getReg(); 6501 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6502 6503 LLT PtrTy = MRI.getType(Dst); 6504 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6505 6506 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6507 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6508 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6509 6510 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6511 // have to generate an extra instruction to negate the alloc and then use 6512 // G_PTR_ADD to add the negative offset. 6513 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6514 if (Alignment > Align(1)) { 6515 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6516 AlignMask.negate(); 6517 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6518 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6519 } 6520 6521 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6522 MIRBuilder.buildCopy(SPReg, SPTmp); 6523 MIRBuilder.buildCopy(Dst, SPTmp); 6524 6525 MI.eraseFromParent(); 6526 return Legalized; 6527 } 6528 6529 LegalizerHelper::LegalizeResult 6530 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6531 Register Dst = MI.getOperand(0).getReg(); 6532 Register Src = MI.getOperand(1).getReg(); 6533 unsigned Offset = MI.getOperand(2).getImm(); 6534 6535 LLT DstTy = MRI.getType(Dst); 6536 LLT SrcTy = MRI.getType(Src); 6537 6538 if (DstTy.isScalar() && 6539 (SrcTy.isScalar() || 6540 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6541 LLT SrcIntTy = SrcTy; 6542 if (!SrcTy.isScalar()) { 6543 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6544 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6545 } 6546 6547 if (Offset == 0) 6548 MIRBuilder.buildTrunc(Dst, Src); 6549 else { 6550 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6551 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6552 MIRBuilder.buildTrunc(Dst, Shr); 6553 } 6554 6555 MI.eraseFromParent(); 6556 return Legalized; 6557 } 6558 6559 return UnableToLegalize; 6560 } 6561 6562 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6563 Register Dst = MI.getOperand(0).getReg(); 6564 Register Src = MI.getOperand(1).getReg(); 6565 Register InsertSrc = MI.getOperand(2).getReg(); 6566 uint64_t Offset = MI.getOperand(3).getImm(); 6567 6568 LLT DstTy = MRI.getType(Src); 6569 LLT InsertTy = MRI.getType(InsertSrc); 6570 6571 if (InsertTy.isVector() || 6572 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6573 return UnableToLegalize; 6574 6575 const DataLayout &DL = MIRBuilder.getDataLayout(); 6576 if ((DstTy.isPointer() && 6577 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6578 (InsertTy.isPointer() && 6579 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6580 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6581 return UnableToLegalize; 6582 } 6583 6584 LLT IntDstTy = DstTy; 6585 6586 if (!DstTy.isScalar()) { 6587 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6588 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6589 } 6590 6591 if (!InsertTy.isScalar()) { 6592 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6593 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6594 } 6595 6596 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6597 if (Offset != 0) { 6598 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6599 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6600 } 6601 6602 APInt MaskVal = APInt::getBitsSetWithWrap( 6603 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6604 6605 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6606 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6607 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6608 6609 MIRBuilder.buildCast(Dst, Or); 6610 MI.eraseFromParent(); 6611 return Legalized; 6612 } 6613 6614 LegalizerHelper::LegalizeResult 6615 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6616 Register Dst0 = MI.getOperand(0).getReg(); 6617 Register Dst1 = MI.getOperand(1).getReg(); 6618 Register LHS = MI.getOperand(2).getReg(); 6619 Register RHS = MI.getOperand(3).getReg(); 6620 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6621 6622 LLT Ty = MRI.getType(Dst0); 6623 LLT BoolTy = MRI.getType(Dst1); 6624 6625 if (IsAdd) 6626 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6627 else 6628 MIRBuilder.buildSub(Dst0, LHS, RHS); 6629 6630 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6631 6632 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6633 6634 // For an addition, the result should be less than one of the operands (LHS) 6635 // if and only if the other operand (RHS) is negative, otherwise there will 6636 // be overflow. 6637 // For a subtraction, the result should be less than one of the operands 6638 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6639 // otherwise there will be overflow. 6640 auto ResultLowerThanLHS = 6641 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6642 auto ConditionRHS = MIRBuilder.buildICmp( 6643 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6644 6645 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6646 MI.eraseFromParent(); 6647 return Legalized; 6648 } 6649 6650 LegalizerHelper::LegalizeResult 6651 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6652 Register Res = MI.getOperand(0).getReg(); 6653 Register LHS = MI.getOperand(1).getReg(); 6654 Register RHS = MI.getOperand(2).getReg(); 6655 LLT Ty = MRI.getType(Res); 6656 bool IsSigned; 6657 bool IsAdd; 6658 unsigned BaseOp; 6659 switch (MI.getOpcode()) { 6660 default: 6661 llvm_unreachable("unexpected addsat/subsat opcode"); 6662 case TargetOpcode::G_UADDSAT: 6663 IsSigned = false; 6664 IsAdd = true; 6665 BaseOp = TargetOpcode::G_ADD; 6666 break; 6667 case TargetOpcode::G_SADDSAT: 6668 IsSigned = true; 6669 IsAdd = true; 6670 BaseOp = TargetOpcode::G_ADD; 6671 break; 6672 case TargetOpcode::G_USUBSAT: 6673 IsSigned = false; 6674 IsAdd = false; 6675 BaseOp = TargetOpcode::G_SUB; 6676 break; 6677 case TargetOpcode::G_SSUBSAT: 6678 IsSigned = true; 6679 IsAdd = false; 6680 BaseOp = TargetOpcode::G_SUB; 6681 break; 6682 } 6683 6684 if (IsSigned) { 6685 // sadd.sat(a, b) -> 6686 // hi = 0x7fffffff - smax(a, 0) 6687 // lo = 0x80000000 - smin(a, 0) 6688 // a + smin(smax(lo, b), hi) 6689 // ssub.sat(a, b) -> 6690 // lo = smax(a, -1) - 0x7fffffff 6691 // hi = smin(a, -1) - 0x80000000 6692 // a - smin(smax(lo, b), hi) 6693 // TODO: AMDGPU can use a "median of 3" instruction here: 6694 // a +/- med3(lo, b, hi) 6695 uint64_t NumBits = Ty.getScalarSizeInBits(); 6696 auto MaxVal = 6697 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6698 auto MinVal = 6699 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6700 MachineInstrBuilder Hi, Lo; 6701 if (IsAdd) { 6702 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6703 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6704 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6705 } else { 6706 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6707 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6708 MaxVal); 6709 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6710 MinVal); 6711 } 6712 auto RHSClamped = 6713 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6714 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6715 } else { 6716 // uadd.sat(a, b) -> a + umin(~a, b) 6717 // usub.sat(a, b) -> a - umin(a, b) 6718 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6719 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6720 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6721 } 6722 6723 MI.eraseFromParent(); 6724 return Legalized; 6725 } 6726 6727 LegalizerHelper::LegalizeResult 6728 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6729 Register Res = MI.getOperand(0).getReg(); 6730 Register LHS = MI.getOperand(1).getReg(); 6731 Register RHS = MI.getOperand(2).getReg(); 6732 LLT Ty = MRI.getType(Res); 6733 LLT BoolTy = Ty.changeElementSize(1); 6734 bool IsSigned; 6735 bool IsAdd; 6736 unsigned OverflowOp; 6737 switch (MI.getOpcode()) { 6738 default: 6739 llvm_unreachable("unexpected addsat/subsat opcode"); 6740 case TargetOpcode::G_UADDSAT: 6741 IsSigned = false; 6742 IsAdd = true; 6743 OverflowOp = TargetOpcode::G_UADDO; 6744 break; 6745 case TargetOpcode::G_SADDSAT: 6746 IsSigned = true; 6747 IsAdd = true; 6748 OverflowOp = TargetOpcode::G_SADDO; 6749 break; 6750 case TargetOpcode::G_USUBSAT: 6751 IsSigned = false; 6752 IsAdd = false; 6753 OverflowOp = TargetOpcode::G_USUBO; 6754 break; 6755 case TargetOpcode::G_SSUBSAT: 6756 IsSigned = true; 6757 IsAdd = false; 6758 OverflowOp = TargetOpcode::G_SSUBO; 6759 break; 6760 } 6761 6762 auto OverflowRes = 6763 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6764 Register Tmp = OverflowRes.getReg(0); 6765 Register Ov = OverflowRes.getReg(1); 6766 MachineInstrBuilder Clamp; 6767 if (IsSigned) { 6768 // sadd.sat(a, b) -> 6769 // {tmp, ov} = saddo(a, b) 6770 // ov ? (tmp >>s 31) + 0x80000000 : r 6771 // ssub.sat(a, b) -> 6772 // {tmp, ov} = ssubo(a, b) 6773 // ov ? (tmp >>s 31) + 0x80000000 : r 6774 uint64_t NumBits = Ty.getScalarSizeInBits(); 6775 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6776 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6777 auto MinVal = 6778 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6779 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6780 } else { 6781 // uadd.sat(a, b) -> 6782 // {tmp, ov} = uaddo(a, b) 6783 // ov ? 0xffffffff : tmp 6784 // usub.sat(a, b) -> 6785 // {tmp, ov} = usubo(a, b) 6786 // ov ? 0 : tmp 6787 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6788 } 6789 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6790 6791 MI.eraseFromParent(); 6792 return Legalized; 6793 } 6794 6795 LegalizerHelper::LegalizeResult 6796 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6797 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6798 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6799 "Expected shlsat opcode!"); 6800 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6801 Register Res = MI.getOperand(0).getReg(); 6802 Register LHS = MI.getOperand(1).getReg(); 6803 Register RHS = MI.getOperand(2).getReg(); 6804 LLT Ty = MRI.getType(Res); 6805 LLT BoolTy = Ty.changeElementSize(1); 6806 6807 unsigned BW = Ty.getScalarSizeInBits(); 6808 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6809 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6810 : MIRBuilder.buildLShr(Ty, Result, RHS); 6811 6812 MachineInstrBuilder SatVal; 6813 if (IsSigned) { 6814 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6815 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6816 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6817 MIRBuilder.buildConstant(Ty, 0)); 6818 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6819 } else { 6820 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6821 } 6822 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6823 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6824 6825 MI.eraseFromParent(); 6826 return Legalized; 6827 } 6828 6829 LegalizerHelper::LegalizeResult 6830 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6831 Register Dst = MI.getOperand(0).getReg(); 6832 Register Src = MI.getOperand(1).getReg(); 6833 const LLT Ty = MRI.getType(Src); 6834 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6835 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6836 6837 // Swap most and least significant byte, set remaining bytes in Res to zero. 6838 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6839 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6840 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6841 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6842 6843 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6844 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6845 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6846 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6847 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6848 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6849 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6850 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6851 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6852 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6853 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6854 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6855 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6856 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6857 } 6858 Res.getInstr()->getOperand(0).setReg(Dst); 6859 6860 MI.eraseFromParent(); 6861 return Legalized; 6862 } 6863 6864 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6865 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6866 MachineInstrBuilder Src, APInt Mask) { 6867 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6868 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6869 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6870 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6871 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6872 return B.buildOr(Dst, LHS, RHS); 6873 } 6874 6875 LegalizerHelper::LegalizeResult 6876 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6877 Register Dst = MI.getOperand(0).getReg(); 6878 Register Src = MI.getOperand(1).getReg(); 6879 const LLT Ty = MRI.getType(Src); 6880 unsigned Size = Ty.getSizeInBits(); 6881 6882 MachineInstrBuilder BSWAP = 6883 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6884 6885 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6886 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6887 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6888 MachineInstrBuilder Swap4 = 6889 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6890 6891 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6892 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6893 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6894 MachineInstrBuilder Swap2 = 6895 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6896 6897 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6898 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6899 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6900 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6901 6902 MI.eraseFromParent(); 6903 return Legalized; 6904 } 6905 6906 LegalizerHelper::LegalizeResult 6907 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6908 MachineFunction &MF = MIRBuilder.getMF(); 6909 6910 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6911 int NameOpIdx = IsRead ? 1 : 0; 6912 int ValRegIndex = IsRead ? 0 : 1; 6913 6914 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6915 const LLT Ty = MRI.getType(ValReg); 6916 const MDString *RegStr = cast<MDString>( 6917 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6918 6919 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6920 if (!PhysReg.isValid()) 6921 return UnableToLegalize; 6922 6923 if (IsRead) 6924 MIRBuilder.buildCopy(ValReg, PhysReg); 6925 else 6926 MIRBuilder.buildCopy(PhysReg, ValReg); 6927 6928 MI.eraseFromParent(); 6929 return Legalized; 6930 } 6931 6932 LegalizerHelper::LegalizeResult 6933 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6934 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6935 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6936 Register Result = MI.getOperand(0).getReg(); 6937 LLT OrigTy = MRI.getType(Result); 6938 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6939 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6940 6941 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6942 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6943 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6944 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6945 6946 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6947 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6948 MIRBuilder.buildTrunc(Result, Shifted); 6949 6950 MI.eraseFromParent(); 6951 return Legalized; 6952 } 6953 6954 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6955 // Implement vector G_SELECT in terms of XOR, AND, OR. 6956 Register DstReg = MI.getOperand(0).getReg(); 6957 Register MaskReg = MI.getOperand(1).getReg(); 6958 Register Op1Reg = MI.getOperand(2).getReg(); 6959 Register Op2Reg = MI.getOperand(3).getReg(); 6960 LLT DstTy = MRI.getType(DstReg); 6961 LLT MaskTy = MRI.getType(MaskReg); 6962 LLT Op1Ty = MRI.getType(Op1Reg); 6963 if (!DstTy.isVector()) 6964 return UnableToLegalize; 6965 6966 // Vector selects can have a scalar predicate. If so, splat into a vector and 6967 // finish for later legalization attempts to try again. 6968 if (MaskTy.isScalar()) { 6969 Register MaskElt = MaskReg; 6970 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6971 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6972 // Generate a vector splat idiom to be pattern matched later. 6973 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6974 Observer.changingInstr(MI); 6975 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6976 Observer.changedInstr(MI); 6977 return Legalized; 6978 } 6979 6980 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6981 return UnableToLegalize; 6982 } 6983 6984 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6985 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6986 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6987 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6988 MI.eraseFromParent(); 6989 return Legalized; 6990 } 6991 6992 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 6993 // Split DIVREM into individual instructions. 6994 unsigned Opcode = MI.getOpcode(); 6995 6996 MIRBuilder.buildInstr( 6997 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 6998 : TargetOpcode::G_UDIV, 6999 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7000 MIRBuilder.buildInstr( 7001 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7002 : TargetOpcode::G_UREM, 7003 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7004 MI.eraseFromParent(); 7005 return Legalized; 7006 } 7007 7008 LegalizerHelper::LegalizeResult 7009 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7010 // Expand %res = G_ABS %a into: 7011 // %v1 = G_ASHR %a, scalar_size-1 7012 // %v2 = G_ADD %a, %v1 7013 // %res = G_XOR %v2, %v1 7014 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7015 Register OpReg = MI.getOperand(1).getReg(); 7016 auto ShiftAmt = 7017 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7018 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7019 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7020 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7021 MI.eraseFromParent(); 7022 return Legalized; 7023 } 7024 7025 LegalizerHelper::LegalizeResult 7026 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7027 // Expand %res = G_ABS %a into: 7028 // %v1 = G_CONSTANT 0 7029 // %v2 = G_SUB %v1, %a 7030 // %res = G_SMAX %a, %v2 7031 Register SrcReg = MI.getOperand(1).getReg(); 7032 LLT Ty = MRI.getType(SrcReg); 7033 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7034 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7035 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7036 MI.eraseFromParent(); 7037 return Legalized; 7038 } 7039