1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static LLT getGCDType(LLT OrigTy, LLT TargetTy) {
67   if (OrigTy.isVector() && TargetTy.isVector()) {
68     assert(OrigTy.getElementType() == TargetTy.getElementType());
69     int GCD = greatestCommonDivisor(OrigTy.getNumElements(),
70                                     TargetTy.getNumElements());
71     return LLT::scalarOrVector(GCD, OrigTy.getElementType());
72   }
73 
74   if (OrigTy.isVector() && !TargetTy.isVector()) {
75     assert(OrigTy.getElementType() == TargetTy);
76     return TargetTy;
77   }
78 
79   assert(!OrigTy.isVector() && !TargetTy.isVector() &&
80          "GCD type of vector and scalar not implemented");
81 
82   int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(),
83                                   TargetTy.getSizeInBits());
84   return LLT::scalar(GCD);
85 }
86 
87 static LLT getLCMType(LLT Ty0, LLT Ty1) {
88   assert(Ty0.isScalar() && Ty1.isScalar() && "not yet handled");
89   unsigned Mul = Ty0.getSizeInBits() * Ty1.getSizeInBits();
90   int GCDSize = greatestCommonDivisor(Ty0.getSizeInBits(),
91                                       Ty1.getSizeInBits());
92   return LLT::scalar(Mul / GCDSize);
93 }
94 
95 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
96                                  GISelChangeObserver &Observer,
97                                  MachineIRBuilder &Builder)
98     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
99       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
100   MIRBuilder.setMF(MF);
101   MIRBuilder.setChangeObserver(Observer);
102 }
103 
104 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
105                                  GISelChangeObserver &Observer,
106                                  MachineIRBuilder &B)
107     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
108   MIRBuilder.setMF(MF);
109   MIRBuilder.setChangeObserver(Observer);
110 }
111 LegalizerHelper::LegalizeResult
112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
113   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
114 
115   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
116       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
117     return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized
118                                                      : UnableToLegalize;
119   auto Step = LI.getAction(MI, MRI);
120   switch (Step.Action) {
121   case Legal:
122     LLVM_DEBUG(dbgs() << ".. Already legal\n");
123     return AlreadyLegal;
124   case Libcall:
125     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
126     return libcall(MI);
127   case NarrowScalar:
128     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
129     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
130   case WidenScalar:
131     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
132     return widenScalar(MI, Step.TypeIdx, Step.NewType);
133   case Lower:
134     LLVM_DEBUG(dbgs() << ".. Lower\n");
135     return lower(MI, Step.TypeIdx, Step.NewType);
136   case FewerElements:
137     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
138     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
139   case MoreElements:
140     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
141     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
142   case Custom:
143     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
144     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
145                                                             : UnableToLegalize;
146   default:
147     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
148     return UnableToLegalize;
149   }
150 }
151 
152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
153                                    SmallVectorImpl<Register> &VRegs) {
154   for (int i = 0; i < NumParts; ++i)
155     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
156   MIRBuilder.buildUnmerge(VRegs, Reg);
157 }
158 
159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
160                                    LLT MainTy, LLT &LeftoverTy,
161                                    SmallVectorImpl<Register> &VRegs,
162                                    SmallVectorImpl<Register> &LeftoverRegs) {
163   assert(!LeftoverTy.isValid() && "this is an out argument");
164 
165   unsigned RegSize = RegTy.getSizeInBits();
166   unsigned MainSize = MainTy.getSizeInBits();
167   unsigned NumParts = RegSize / MainSize;
168   unsigned LeftoverSize = RegSize - NumParts * MainSize;
169 
170   // Use an unmerge when possible.
171   if (LeftoverSize == 0) {
172     for (unsigned I = 0; I < NumParts; ++I)
173       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
174     MIRBuilder.buildUnmerge(VRegs, Reg);
175     return true;
176   }
177 
178   if (MainTy.isVector()) {
179     unsigned EltSize = MainTy.getScalarSizeInBits();
180     if (LeftoverSize % EltSize != 0)
181       return false;
182     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
183   } else {
184     LeftoverTy = LLT::scalar(LeftoverSize);
185   }
186 
187   // For irregular sizes, extract the individual parts.
188   for (unsigned I = 0; I != NumParts; ++I) {
189     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
190     VRegs.push_back(NewReg);
191     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
192   }
193 
194   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
195        Offset += LeftoverSize) {
196     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
197     LeftoverRegs.push_back(NewReg);
198     MIRBuilder.buildExtract(NewReg, Reg, Offset);
199   }
200 
201   return true;
202 }
203 
204 void LegalizerHelper::insertParts(Register DstReg,
205                                   LLT ResultTy, LLT PartTy,
206                                   ArrayRef<Register> PartRegs,
207                                   LLT LeftoverTy,
208                                   ArrayRef<Register> LeftoverRegs) {
209   if (!LeftoverTy.isValid()) {
210     assert(LeftoverRegs.empty());
211 
212     if (!ResultTy.isVector()) {
213       MIRBuilder.buildMerge(DstReg, PartRegs);
214       return;
215     }
216 
217     if (PartTy.isVector())
218       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
219     else
220       MIRBuilder.buildBuildVector(DstReg, PartRegs);
221     return;
222   }
223 
224   unsigned PartSize = PartTy.getSizeInBits();
225   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
226 
227   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
228   MIRBuilder.buildUndef(CurResultReg);
229 
230   unsigned Offset = 0;
231   for (Register PartReg : PartRegs) {
232     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
233     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
234     CurResultReg = NewResultReg;
235     Offset += PartSize;
236   }
237 
238   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
239     // Use the original output register for the final insert to avoid a copy.
240     Register NewResultReg = (I + 1 == E) ?
241       DstReg : MRI.createGenericVirtualRegister(ResultTy);
242 
243     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
244     CurResultReg = NewResultReg;
245     Offset += LeftoverPartSize;
246   }
247 }
248 
249 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
250 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
251                               const MachineInstr &MI) {
252   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
253 
254   const int NumResults = MI.getNumOperands() - 1;
255   Regs.resize(NumResults);
256   for (int I = 0; I != NumResults; ++I)
257     Regs[I] = MI.getOperand(I).getReg();
258 }
259 
260 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
261                                     LLT NarrowTy, Register SrcReg) {
262   LLT SrcTy = MRI.getType(SrcReg);
263 
264   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
265   if (SrcTy == GCDTy) {
266     // If the source already evenly divides the result type, we don't need to do
267     // anything.
268     Parts.push_back(SrcReg);
269   } else {
270     // Need to split into common type sized pieces.
271     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
272     getUnmergeResults(Parts, *Unmerge);
273   }
274 
275   return GCDTy;
276 }
277 
278 void LegalizerHelper::buildLCMMerge(Register DstReg, LLT NarrowTy, LLT GCDTy,
279                                     SmallVectorImpl<Register> &VRegs,
280                                     unsigned PadStrategy) {
281   LLT DstTy = MRI.getType(DstReg);
282   LLT LCMTy = getLCMType(DstTy, NarrowTy);
283 
284   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
285   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
286   int NumOrigSrc = VRegs.size();
287 
288   Register PadReg;
289 
290   // Get a value we can use to pad the source value if the sources won't evenly
291   // cover the result type.
292   if (NumOrigSrc < NumParts * NumSubParts) {
293     if (PadStrategy == TargetOpcode::G_ZEXT)
294       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
295     else if (PadStrategy == TargetOpcode::G_ANYEXT)
296       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
297     else {
298       assert(PadStrategy == TargetOpcode::G_SEXT);
299 
300       // Shift the sign bit of the low register through the high register.
301       auto ShiftAmt =
302         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
303       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
304     }
305   }
306 
307   // Registers for the final merge to be produced.
308   SmallVector<Register, 4> Remerge;
309   Remerge.resize(NumParts);
310 
311   // Registers needed for intermediate merges, which will be merged into a
312   // source for Remerge.
313   SmallVector<Register, 4> SubMerge;
314   SubMerge.resize(NumSubParts);
315 
316   // Once we've fully read off the end of the original source bits, we can reuse
317   // the same high bits for remaining padding elements.
318   Register AllPadReg;
319 
320   // Build merges to the LCM type to cover the original result type.
321   for (int I = 0; I != NumParts; ++I) {
322     bool AllMergePartsArePadding = true;
323 
324     // Build the requested merges to the requested type.
325     for (int J = 0; J != NumSubParts; ++J) {
326       int Idx = I * NumSubParts + J;
327       if (Idx >= NumOrigSrc) {
328         SubMerge[J] = PadReg;
329         continue;
330       }
331 
332       SubMerge[J] = VRegs[Idx];
333 
334       // There are meaningful bits here we can't reuse later.
335       AllMergePartsArePadding = false;
336     }
337 
338     // If we've filled up a complete piece with padding bits, we can directly
339     // emit the natural sized constant if applicable, rather than a merge of
340     // smaller constants.
341     if (AllMergePartsArePadding && !AllPadReg) {
342       if (PadStrategy == TargetOpcode::G_ANYEXT)
343         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
344       else if (PadStrategy == TargetOpcode::G_ZEXT)
345         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
346 
347       // If this is a sign extension, we can't materialize a trivial constant
348       // with the right type and have to produce a merge.
349     }
350 
351     if (AllPadReg) {
352       // Avoid creating additional instructions if we're just adding additional
353       // copies of padding bits.
354       Remerge[I] = AllPadReg;
355       continue;
356     }
357 
358     if (NumSubParts == 1)
359       Remerge[I] = SubMerge[0];
360     else
361       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
362 
363     // In the sign extend padding case, re-use the first all-signbit merge.
364     if (AllMergePartsArePadding && !AllPadReg)
365       AllPadReg = Remerge[I];
366   }
367 
368   // Create the merge to the widened source, and extract the relevant bits into
369   // the result.
370   if (DstTy == LCMTy)
371     MIRBuilder.buildMerge(DstReg, Remerge);
372   else
373     MIRBuilder.buildTrunc(DstReg, MIRBuilder.buildMerge(LCMTy, Remerge));
374 }
375 
376 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
377   switch (Opcode) {
378   case TargetOpcode::G_SDIV:
379     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
380     switch (Size) {
381     case 32:
382       return RTLIB::SDIV_I32;
383     case 64:
384       return RTLIB::SDIV_I64;
385     case 128:
386       return RTLIB::SDIV_I128;
387     default:
388       llvm_unreachable("unexpected size");
389     }
390   case TargetOpcode::G_UDIV:
391     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
392     switch (Size) {
393     case 32:
394       return RTLIB::UDIV_I32;
395     case 64:
396       return RTLIB::UDIV_I64;
397     case 128:
398       return RTLIB::UDIV_I128;
399     default:
400       llvm_unreachable("unexpected size");
401     }
402   case TargetOpcode::G_SREM:
403     assert((Size == 32 || Size == 64) && "Unsupported size");
404     return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32;
405   case TargetOpcode::G_UREM:
406     assert((Size == 32 || Size == 64) && "Unsupported size");
407     return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32;
408   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
409     assert(Size == 32 && "Unsupported size");
410     return RTLIB::CTLZ_I32;
411   case TargetOpcode::G_FADD:
412     assert((Size == 32 || Size == 64) && "Unsupported size");
413     return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32;
414   case TargetOpcode::G_FSUB:
415     assert((Size == 32 || Size == 64) && "Unsupported size");
416     return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32;
417   case TargetOpcode::G_FMUL:
418     assert((Size == 32 || Size == 64) && "Unsupported size");
419     return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32;
420   case TargetOpcode::G_FDIV:
421     assert((Size == 32 || Size == 64) && "Unsupported size");
422     return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32;
423   case TargetOpcode::G_FEXP:
424     assert((Size == 32 || Size == 64) && "Unsupported size");
425     return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32;
426   case TargetOpcode::G_FEXP2:
427     assert((Size == 32 || Size == 64) && "Unsupported size");
428     return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32;
429   case TargetOpcode::G_FREM:
430     return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32;
431   case TargetOpcode::G_FPOW:
432     return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32;
433   case TargetOpcode::G_FMA:
434     assert((Size == 32 || Size == 64) && "Unsupported size");
435     return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32;
436   case TargetOpcode::G_FSIN:
437     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
438     return Size == 128 ? RTLIB::SIN_F128
439                        : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32;
440   case TargetOpcode::G_FCOS:
441     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
442     return Size == 128 ? RTLIB::COS_F128
443                        : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32;
444   case TargetOpcode::G_FLOG10:
445     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
446     return Size == 128 ? RTLIB::LOG10_F128
447                        : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32;
448   case TargetOpcode::G_FLOG:
449     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
450     return Size == 128 ? RTLIB::LOG_F128
451                        : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32;
452   case TargetOpcode::G_FLOG2:
453     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
454     return Size == 128 ? RTLIB::LOG2_F128
455                        : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32;
456   case TargetOpcode::G_FCEIL:
457     assert((Size == 32 || Size == 64) && "Unsupported size");
458     return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32;
459   case TargetOpcode::G_FFLOOR:
460     assert((Size == 32 || Size == 64) && "Unsupported size");
461     return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32;
462   }
463   llvm_unreachable("Unknown libcall function");
464 }
465 
466 /// True if an instruction is in tail position in its caller. Intended for
467 /// legalizing libcalls as tail calls when possible.
468 static bool isLibCallInTailPosition(MachineInstr &MI) {
469   const Function &F = MI.getParent()->getParent()->getFunction();
470 
471   // Conservatively require the attributes of the call to match those of
472   // the return. Ignore NoAlias and NonNull because they don't affect the
473   // call sequence.
474   AttributeList CallerAttrs = F.getAttributes();
475   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
476           .removeAttribute(Attribute::NoAlias)
477           .removeAttribute(Attribute::NonNull)
478           .hasAttributes())
479     return false;
480 
481   // It's not safe to eliminate the sign / zero extension of the return value.
482   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
483       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
484     return false;
485 
486   // Only tail call if the following instruction is a standard return.
487   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
488   MachineInstr *Next = MI.getNextNode();
489   if (!Next || TII.isTailCall(*Next) || !Next->isReturn())
490     return false;
491 
492   return true;
493 }
494 
495 LegalizerHelper::LegalizeResult
496 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
497                     const CallLowering::ArgInfo &Result,
498                     ArrayRef<CallLowering::ArgInfo> Args) {
499   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
500   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
501   const char *Name = TLI.getLibcallName(Libcall);
502 
503   CallLowering::CallLoweringInfo Info;
504   Info.CallConv = TLI.getLibcallCallingConv(Libcall);
505   Info.Callee = MachineOperand::CreateES(Name);
506   Info.OrigRet = Result;
507   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
508   if (!CLI.lowerCall(MIRBuilder, Info))
509     return LegalizerHelper::UnableToLegalize;
510 
511   return LegalizerHelper::Legalized;
512 }
513 
514 // Useful for libcalls where all operands have the same type.
515 static LegalizerHelper::LegalizeResult
516 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
517               Type *OpType) {
518   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
519 
520   SmallVector<CallLowering::ArgInfo, 3> Args;
521   for (unsigned i = 1; i < MI.getNumOperands(); i++)
522     Args.push_back({MI.getOperand(i).getReg(), OpType});
523   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
524                        Args);
525 }
526 
527 LegalizerHelper::LegalizeResult
528 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
529                        MachineInstr &MI) {
530   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
531   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
532 
533   SmallVector<CallLowering::ArgInfo, 3> Args;
534   // Add all the args, except for the last which is an imm denoting 'tail'.
535   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
536     Register Reg = MI.getOperand(i).getReg();
537 
538     // Need derive an IR type for call lowering.
539     LLT OpLLT = MRI.getType(Reg);
540     Type *OpTy = nullptr;
541     if (OpLLT.isPointer())
542       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
543     else
544       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
545     Args.push_back({Reg, OpTy});
546   }
547 
548   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
549   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
550   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
551   RTLIB::Libcall RTLibcall;
552   switch (ID) {
553   case Intrinsic::memcpy:
554     RTLibcall = RTLIB::MEMCPY;
555     break;
556   case Intrinsic::memset:
557     RTLibcall = RTLIB::MEMSET;
558     break;
559   case Intrinsic::memmove:
560     RTLibcall = RTLIB::MEMMOVE;
561     break;
562   default:
563     return LegalizerHelper::UnableToLegalize;
564   }
565   const char *Name = TLI.getLibcallName(RTLibcall);
566 
567   MIRBuilder.setInstr(MI);
568 
569   CallLowering::CallLoweringInfo Info;
570   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
571   Info.Callee = MachineOperand::CreateES(Name);
572   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
573   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
574                     isLibCallInTailPosition(MI);
575 
576   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
577   if (!CLI.lowerCall(MIRBuilder, Info))
578     return LegalizerHelper::UnableToLegalize;
579 
580   if (Info.LoweredTailCall) {
581     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
582     // We must have a return following the call to get past
583     // isLibCallInTailPosition.
584     assert(MI.getNextNode() && MI.getNextNode()->isReturn() &&
585            "Expected instr following MI to be a return?");
586 
587     // We lowered a tail call, so the call is now the return from the block.
588     // Delete the old return.
589     MI.getNextNode()->eraseFromParent();
590   }
591 
592   return LegalizerHelper::Legalized;
593 }
594 
595 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
596                                        Type *FromType) {
597   auto ToMVT = MVT::getVT(ToType);
598   auto FromMVT = MVT::getVT(FromType);
599 
600   switch (Opcode) {
601   case TargetOpcode::G_FPEXT:
602     return RTLIB::getFPEXT(FromMVT, ToMVT);
603   case TargetOpcode::G_FPTRUNC:
604     return RTLIB::getFPROUND(FromMVT, ToMVT);
605   case TargetOpcode::G_FPTOSI:
606     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
607   case TargetOpcode::G_FPTOUI:
608     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
609   case TargetOpcode::G_SITOFP:
610     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
611   case TargetOpcode::G_UITOFP:
612     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
613   }
614   llvm_unreachable("Unsupported libcall function");
615 }
616 
617 static LegalizerHelper::LegalizeResult
618 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
619                   Type *FromType) {
620   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
621   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
622                        {{MI.getOperand(1).getReg(), FromType}});
623 }
624 
625 LegalizerHelper::LegalizeResult
626 LegalizerHelper::libcall(MachineInstr &MI) {
627   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
628   unsigned Size = LLTy.getSizeInBits();
629   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
630 
631   MIRBuilder.setInstr(MI);
632 
633   switch (MI.getOpcode()) {
634   default:
635     return UnableToLegalize;
636   case TargetOpcode::G_SDIV:
637   case TargetOpcode::G_UDIV:
638   case TargetOpcode::G_SREM:
639   case TargetOpcode::G_UREM:
640   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
641     Type *HLTy = IntegerType::get(Ctx, Size);
642     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
643     if (Status != Legalized)
644       return Status;
645     break;
646   }
647   case TargetOpcode::G_FADD:
648   case TargetOpcode::G_FSUB:
649   case TargetOpcode::G_FMUL:
650   case TargetOpcode::G_FDIV:
651   case TargetOpcode::G_FMA:
652   case TargetOpcode::G_FPOW:
653   case TargetOpcode::G_FREM:
654   case TargetOpcode::G_FCOS:
655   case TargetOpcode::G_FSIN:
656   case TargetOpcode::G_FLOG10:
657   case TargetOpcode::G_FLOG:
658   case TargetOpcode::G_FLOG2:
659   case TargetOpcode::G_FEXP:
660   case TargetOpcode::G_FEXP2:
661   case TargetOpcode::G_FCEIL:
662   case TargetOpcode::G_FFLOOR: {
663     if (Size > 64) {
664       LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n");
665       return UnableToLegalize;
666     }
667     Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx);
668     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
669     if (Status != Legalized)
670       return Status;
671     break;
672   }
673   case TargetOpcode::G_FPEXT: {
674     // FIXME: Support other floating point types (half, fp128 etc)
675     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
676     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
677     if (ToSize != 64 || FromSize != 32)
678       return UnableToLegalize;
679     LegalizeResult Status = conversionLibcall(
680         MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx));
681     if (Status != Legalized)
682       return Status;
683     break;
684   }
685   case TargetOpcode::G_FPTRUNC: {
686     // FIXME: Support other floating point types (half, fp128 etc)
687     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
688     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
689     if (ToSize != 32 || FromSize != 64)
690       return UnableToLegalize;
691     LegalizeResult Status = conversionLibcall(
692         MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx));
693     if (Status != Legalized)
694       return Status;
695     break;
696   }
697   case TargetOpcode::G_FPTOSI:
698   case TargetOpcode::G_FPTOUI: {
699     // FIXME: Support other types
700     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
701     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
702     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
703       return UnableToLegalize;
704     LegalizeResult Status = conversionLibcall(
705         MI, MIRBuilder,
706         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
707         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
708     if (Status != Legalized)
709       return Status;
710     break;
711   }
712   case TargetOpcode::G_SITOFP:
713   case TargetOpcode::G_UITOFP: {
714     // FIXME: Support other types
715     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
716     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
717     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
718       return UnableToLegalize;
719     LegalizeResult Status = conversionLibcall(
720         MI, MIRBuilder,
721         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
722         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
723     if (Status != Legalized)
724       return Status;
725     break;
726   }
727   }
728 
729   MI.eraseFromParent();
730   return Legalized;
731 }
732 
733 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
734                                                               unsigned TypeIdx,
735                                                               LLT NarrowTy) {
736   MIRBuilder.setInstr(MI);
737 
738   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
739   uint64_t NarrowSize = NarrowTy.getSizeInBits();
740 
741   switch (MI.getOpcode()) {
742   default:
743     return UnableToLegalize;
744   case TargetOpcode::G_IMPLICIT_DEF: {
745     // FIXME: add support for when SizeOp0 isn't an exact multiple of
746     // NarrowSize.
747     if (SizeOp0 % NarrowSize != 0)
748       return UnableToLegalize;
749     int NumParts = SizeOp0 / NarrowSize;
750 
751     SmallVector<Register, 2> DstRegs;
752     for (int i = 0; i < NumParts; ++i)
753       DstRegs.push_back(
754           MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg());
755 
756     Register DstReg = MI.getOperand(0).getReg();
757     if(MRI.getType(DstReg).isVector())
758       MIRBuilder.buildBuildVector(DstReg, DstRegs);
759     else
760       MIRBuilder.buildMerge(DstReg, DstRegs);
761     MI.eraseFromParent();
762     return Legalized;
763   }
764   case TargetOpcode::G_CONSTANT: {
765     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
766     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
767     unsigned TotalSize = Ty.getSizeInBits();
768     unsigned NarrowSize = NarrowTy.getSizeInBits();
769     int NumParts = TotalSize / NarrowSize;
770 
771     SmallVector<Register, 4> PartRegs;
772     for (int I = 0; I != NumParts; ++I) {
773       unsigned Offset = I * NarrowSize;
774       auto K = MIRBuilder.buildConstant(NarrowTy,
775                                         Val.lshr(Offset).trunc(NarrowSize));
776       PartRegs.push_back(K.getReg(0));
777     }
778 
779     LLT LeftoverTy;
780     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
781     SmallVector<Register, 1> LeftoverRegs;
782     if (LeftoverBits != 0) {
783       LeftoverTy = LLT::scalar(LeftoverBits);
784       auto K = MIRBuilder.buildConstant(
785         LeftoverTy,
786         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
787       LeftoverRegs.push_back(K.getReg(0));
788     }
789 
790     insertParts(MI.getOperand(0).getReg(),
791                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
792 
793     MI.eraseFromParent();
794     return Legalized;
795   }
796   case TargetOpcode::G_SEXT:
797   case TargetOpcode::G_ZEXT:
798   case TargetOpcode::G_ANYEXT:
799     return narrowScalarExt(MI, TypeIdx, NarrowTy);
800   case TargetOpcode::G_TRUNC: {
801     if (TypeIdx != 1)
802       return UnableToLegalize;
803 
804     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
805     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
806       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
807       return UnableToLegalize;
808     }
809 
810     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
811     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
812     MI.eraseFromParent();
813     return Legalized;
814   }
815 
816   case TargetOpcode::G_ADD: {
817     // FIXME: add support for when SizeOp0 isn't an exact multiple of
818     // NarrowSize.
819     if (SizeOp0 % NarrowSize != 0)
820       return UnableToLegalize;
821     // Expand in terms of carry-setting/consuming G_ADDE instructions.
822     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
823 
824     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
825     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
826     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
827 
828     Register CarryIn;
829     for (int i = 0; i < NumParts; ++i) {
830       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
831       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
832 
833       if (i == 0)
834         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
835       else {
836         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
837                               Src2Regs[i], CarryIn);
838       }
839 
840       DstRegs.push_back(DstReg);
841       CarryIn = CarryOut;
842     }
843     Register DstReg = MI.getOperand(0).getReg();
844     if(MRI.getType(DstReg).isVector())
845       MIRBuilder.buildBuildVector(DstReg, DstRegs);
846     else
847       MIRBuilder.buildMerge(DstReg, DstRegs);
848     MI.eraseFromParent();
849     return Legalized;
850   }
851   case TargetOpcode::G_SUB: {
852     // FIXME: add support for when SizeOp0 isn't an exact multiple of
853     // NarrowSize.
854     if (SizeOp0 % NarrowSize != 0)
855       return UnableToLegalize;
856 
857     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
858 
859     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
860     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
861     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
862 
863     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
864     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
865     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
866                           {Src1Regs[0], Src2Regs[0]});
867     DstRegs.push_back(DstReg);
868     Register BorrowIn = BorrowOut;
869     for (int i = 1; i < NumParts; ++i) {
870       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
871       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
872 
873       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
874                             {Src1Regs[i], Src2Regs[i], BorrowIn});
875 
876       DstRegs.push_back(DstReg);
877       BorrowIn = BorrowOut;
878     }
879     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
880     MI.eraseFromParent();
881     return Legalized;
882   }
883   case TargetOpcode::G_MUL:
884   case TargetOpcode::G_UMULH:
885     return narrowScalarMul(MI, NarrowTy);
886   case TargetOpcode::G_EXTRACT:
887     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
888   case TargetOpcode::G_INSERT:
889     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
890   case TargetOpcode::G_LOAD: {
891     const auto &MMO = **MI.memoperands_begin();
892     Register DstReg = MI.getOperand(0).getReg();
893     LLT DstTy = MRI.getType(DstReg);
894     if (DstTy.isVector())
895       return UnableToLegalize;
896 
897     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
898       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
899       auto &MMO = **MI.memoperands_begin();
900       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
901       MIRBuilder.buildAnyExt(DstReg, TmpReg);
902       MI.eraseFromParent();
903       return Legalized;
904     }
905 
906     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
907   }
908   case TargetOpcode::G_ZEXTLOAD:
909   case TargetOpcode::G_SEXTLOAD: {
910     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
911     Register DstReg = MI.getOperand(0).getReg();
912     Register PtrReg = MI.getOperand(1).getReg();
913 
914     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
915     auto &MMO = **MI.memoperands_begin();
916     if (MMO.getSizeInBits() == NarrowSize) {
917       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
918     } else {
919       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
920     }
921 
922     if (ZExt)
923       MIRBuilder.buildZExt(DstReg, TmpReg);
924     else
925       MIRBuilder.buildSExt(DstReg, TmpReg);
926 
927     MI.eraseFromParent();
928     return Legalized;
929   }
930   case TargetOpcode::G_STORE: {
931     const auto &MMO = **MI.memoperands_begin();
932 
933     Register SrcReg = MI.getOperand(0).getReg();
934     LLT SrcTy = MRI.getType(SrcReg);
935     if (SrcTy.isVector())
936       return UnableToLegalize;
937 
938     int NumParts = SizeOp0 / NarrowSize;
939     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
940     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
941     if (SrcTy.isVector() && LeftoverBits != 0)
942       return UnableToLegalize;
943 
944     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
945       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
946       auto &MMO = **MI.memoperands_begin();
947       MIRBuilder.buildTrunc(TmpReg, SrcReg);
948       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
949       MI.eraseFromParent();
950       return Legalized;
951     }
952 
953     return reduceLoadStoreWidth(MI, 0, NarrowTy);
954   }
955   case TargetOpcode::G_SELECT:
956     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
957   case TargetOpcode::G_AND:
958   case TargetOpcode::G_OR:
959   case TargetOpcode::G_XOR: {
960     // Legalize bitwise operation:
961     // A = BinOp<Ty> B, C
962     // into:
963     // B1, ..., BN = G_UNMERGE_VALUES B
964     // C1, ..., CN = G_UNMERGE_VALUES C
965     // A1 = BinOp<Ty/N> B1, C2
966     // ...
967     // AN = BinOp<Ty/N> BN, CN
968     // A = G_MERGE_VALUES A1, ..., AN
969     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
970   }
971   case TargetOpcode::G_SHL:
972   case TargetOpcode::G_LSHR:
973   case TargetOpcode::G_ASHR:
974     return narrowScalarShift(MI, TypeIdx, NarrowTy);
975   case TargetOpcode::G_CTLZ:
976   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
977   case TargetOpcode::G_CTTZ:
978   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
979   case TargetOpcode::G_CTPOP:
980     if (TypeIdx != 0)
981       return UnableToLegalize; // TODO
982 
983     Observer.changingInstr(MI);
984     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
985     Observer.changedInstr(MI);
986     return Legalized;
987   case TargetOpcode::G_INTTOPTR:
988     if (TypeIdx != 1)
989       return UnableToLegalize;
990 
991     Observer.changingInstr(MI);
992     narrowScalarSrc(MI, NarrowTy, 1);
993     Observer.changedInstr(MI);
994     return Legalized;
995   case TargetOpcode::G_PTRTOINT:
996     if (TypeIdx != 0)
997       return UnableToLegalize;
998 
999     Observer.changingInstr(MI);
1000     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1001     Observer.changedInstr(MI);
1002     return Legalized;
1003   case TargetOpcode::G_PHI: {
1004     unsigned NumParts = SizeOp0 / NarrowSize;
1005     SmallVector<Register, 2> DstRegs;
1006     SmallVector<SmallVector<Register, 2>, 2> SrcRegs;
1007     DstRegs.resize(NumParts);
1008     SrcRegs.resize(MI.getNumOperands() / 2);
1009     Observer.changingInstr(MI);
1010     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1011       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1012       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1013       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1014                    SrcRegs[i / 2]);
1015     }
1016     MachineBasicBlock &MBB = *MI.getParent();
1017     MIRBuilder.setInsertPt(MBB, MI);
1018     for (unsigned i = 0; i < NumParts; ++i) {
1019       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1020       MachineInstrBuilder MIB =
1021           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1022       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1023         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1024     }
1025     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1026     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1027     Observer.changedInstr(MI);
1028     MI.eraseFromParent();
1029     return Legalized;
1030   }
1031   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1032   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1033     if (TypeIdx != 2)
1034       return UnableToLegalize;
1035 
1036     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1037     Observer.changingInstr(MI);
1038     narrowScalarSrc(MI, NarrowTy, OpIdx);
1039     Observer.changedInstr(MI);
1040     return Legalized;
1041   }
1042   case TargetOpcode::G_ICMP: {
1043     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1044     if (NarrowSize * 2 != SrcSize)
1045       return UnableToLegalize;
1046 
1047     Observer.changingInstr(MI);
1048     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1049     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1050     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1051 
1052     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1053     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1054     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1055 
1056     CmpInst::Predicate Pred =
1057         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1058     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1059 
1060     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1061       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1062       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1063       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1064       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1065       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1066     } else {
1067       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1068       MachineInstrBuilder CmpHEQ =
1069           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1070       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1071           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1072       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1073     }
1074     Observer.changedInstr(MI);
1075     MI.eraseFromParent();
1076     return Legalized;
1077   }
1078   case TargetOpcode::G_SEXT_INREG: {
1079     if (TypeIdx != 0)
1080       return UnableToLegalize;
1081 
1082     if (!MI.getOperand(2).isImm())
1083       return UnableToLegalize;
1084     int64_t SizeInBits = MI.getOperand(2).getImm();
1085 
1086     // So long as the new type has more bits than the bits we're extending we
1087     // don't need to break it apart.
1088     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1089       Observer.changingInstr(MI);
1090       // We don't lose any non-extension bits by truncating the src and
1091       // sign-extending the dst.
1092       MachineOperand &MO1 = MI.getOperand(1);
1093       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1094       MO1.setReg(TruncMIB->getOperand(0).getReg());
1095 
1096       MachineOperand &MO2 = MI.getOperand(0);
1097       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1098       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1099       MIRBuilder.buildSExt(MO2, DstExt);
1100       MO2.setReg(DstExt);
1101       Observer.changedInstr(MI);
1102       return Legalized;
1103     }
1104 
1105     // Break it apart. Components below the extension point are unmodified. The
1106     // component containing the extension point becomes a narrower SEXT_INREG.
1107     // Components above it are ashr'd from the component containing the
1108     // extension point.
1109     if (SizeOp0 % NarrowSize != 0)
1110       return UnableToLegalize;
1111     int NumParts = SizeOp0 / NarrowSize;
1112 
1113     // List the registers where the destination will be scattered.
1114     SmallVector<Register, 2> DstRegs;
1115     // List the registers where the source will be split.
1116     SmallVector<Register, 2> SrcRegs;
1117 
1118     // Create all the temporary registers.
1119     for (int i = 0; i < NumParts; ++i) {
1120       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1121 
1122       SrcRegs.push_back(SrcReg);
1123     }
1124 
1125     // Explode the big arguments into smaller chunks.
1126     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1127 
1128     Register AshrCstReg =
1129         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1130             ->getOperand(0)
1131             .getReg();
1132     Register FullExtensionReg = 0;
1133     Register PartialExtensionReg = 0;
1134 
1135     // Do the operation on each small part.
1136     for (int i = 0; i < NumParts; ++i) {
1137       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1138         DstRegs.push_back(SrcRegs[i]);
1139       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1140         assert(PartialExtensionReg &&
1141                "Expected to visit partial extension before full");
1142         if (FullExtensionReg) {
1143           DstRegs.push_back(FullExtensionReg);
1144           continue;
1145         }
1146         DstRegs.push_back(
1147             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1148                 ->getOperand(0)
1149                 .getReg());
1150         FullExtensionReg = DstRegs.back();
1151       } else {
1152         DstRegs.push_back(
1153             MIRBuilder
1154                 .buildInstr(
1155                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1156                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1157                 ->getOperand(0)
1158                 .getReg());
1159         PartialExtensionReg = DstRegs.back();
1160       }
1161     }
1162 
1163     // Gather the destination registers into the final destination.
1164     Register DstReg = MI.getOperand(0).getReg();
1165     MIRBuilder.buildMerge(DstReg, DstRegs);
1166     MI.eraseFromParent();
1167     return Legalized;
1168   }
1169   case TargetOpcode::G_BSWAP:
1170   case TargetOpcode::G_BITREVERSE: {
1171     if (SizeOp0 % NarrowSize != 0)
1172       return UnableToLegalize;
1173 
1174     Observer.changingInstr(MI);
1175     SmallVector<Register, 2> SrcRegs, DstRegs;
1176     unsigned NumParts = SizeOp0 / NarrowSize;
1177     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1178 
1179     for (unsigned i = 0; i < NumParts; ++i) {
1180       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1181                                            {SrcRegs[NumParts - 1 - i]});
1182       DstRegs.push_back(DstPart.getReg(0));
1183     }
1184 
1185     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1186 
1187     Observer.changedInstr(MI);
1188     MI.eraseFromParent();
1189     return Legalized;
1190   }
1191   }
1192 }
1193 
1194 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1195                                      unsigned OpIdx, unsigned ExtOpcode) {
1196   MachineOperand &MO = MI.getOperand(OpIdx);
1197   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1198   MO.setReg(ExtB->getOperand(0).getReg());
1199 }
1200 
1201 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1202                                       unsigned OpIdx) {
1203   MachineOperand &MO = MI.getOperand(OpIdx);
1204   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1205   MO.setReg(ExtB->getOperand(0).getReg());
1206 }
1207 
1208 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1209                                      unsigned OpIdx, unsigned TruncOpcode) {
1210   MachineOperand &MO = MI.getOperand(OpIdx);
1211   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1212   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1213   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1214   MO.setReg(DstExt);
1215 }
1216 
1217 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1218                                       unsigned OpIdx, unsigned ExtOpcode) {
1219   MachineOperand &MO = MI.getOperand(OpIdx);
1220   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1221   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1222   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1223   MO.setReg(DstTrunc);
1224 }
1225 
1226 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1227                                             unsigned OpIdx) {
1228   MachineOperand &MO = MI.getOperand(OpIdx);
1229   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1230   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1231   MIRBuilder.buildExtract(MO, DstExt, 0);
1232   MO.setReg(DstExt);
1233 }
1234 
1235 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1236                                             unsigned OpIdx) {
1237   MachineOperand &MO = MI.getOperand(OpIdx);
1238 
1239   LLT OldTy = MRI.getType(MO.getReg());
1240   unsigned OldElts = OldTy.getNumElements();
1241   unsigned NewElts = MoreTy.getNumElements();
1242 
1243   unsigned NumParts = NewElts / OldElts;
1244 
1245   // Use concat_vectors if the result is a multiple of the number of elements.
1246   if (NumParts * OldElts == NewElts) {
1247     SmallVector<Register, 8> Parts;
1248     Parts.push_back(MO.getReg());
1249 
1250     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1251     for (unsigned I = 1; I != NumParts; ++I)
1252       Parts.push_back(ImpDef);
1253 
1254     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1255     MO.setReg(Concat.getReg(0));
1256     return;
1257   }
1258 
1259   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1260   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1261   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1262   MO.setReg(MoreReg);
1263 }
1264 
1265 LegalizerHelper::LegalizeResult
1266 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1267                                         LLT WideTy) {
1268   if (TypeIdx != 1)
1269     return UnableToLegalize;
1270 
1271   Register DstReg = MI.getOperand(0).getReg();
1272   LLT DstTy = MRI.getType(DstReg);
1273   if (DstTy.isVector())
1274     return UnableToLegalize;
1275 
1276   Register Src1 = MI.getOperand(1).getReg();
1277   LLT SrcTy = MRI.getType(Src1);
1278   const int DstSize = DstTy.getSizeInBits();
1279   const int SrcSize = SrcTy.getSizeInBits();
1280   const int WideSize = WideTy.getSizeInBits();
1281   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1282 
1283   unsigned NumOps = MI.getNumOperands();
1284   unsigned NumSrc = MI.getNumOperands() - 1;
1285   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1286 
1287   if (WideSize >= DstSize) {
1288     // Directly pack the bits in the target type.
1289     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1290 
1291     for (unsigned I = 2; I != NumOps; ++I) {
1292       const unsigned Offset = (I - 1) * PartSize;
1293 
1294       Register SrcReg = MI.getOperand(I).getReg();
1295       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1296 
1297       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1298 
1299       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1300         MRI.createGenericVirtualRegister(WideTy);
1301 
1302       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1303       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1304       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1305       ResultReg = NextResult;
1306     }
1307 
1308     if (WideSize > DstSize)
1309       MIRBuilder.buildTrunc(DstReg, ResultReg);
1310     else if (DstTy.isPointer())
1311       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1312 
1313     MI.eraseFromParent();
1314     return Legalized;
1315   }
1316 
1317   // Unmerge the original values to the GCD type, and recombine to the next
1318   // multiple greater than the original type.
1319   //
1320   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1321   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1322   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1323   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1324   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1325   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1326   // %12:_(s12) = G_MERGE_VALUES %10, %11
1327   //
1328   // Padding with undef if necessary:
1329   //
1330   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1331   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1332   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1333   // %7:_(s2) = G_IMPLICIT_DEF
1334   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1335   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1336   // %10:_(s12) = G_MERGE_VALUES %8, %9
1337 
1338   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1339   LLT GCDTy = LLT::scalar(GCD);
1340 
1341   SmallVector<Register, 8> Parts;
1342   SmallVector<Register, 8> NewMergeRegs;
1343   SmallVector<Register, 8> Unmerges;
1344   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1345 
1346   // Decompose the original operands if they don't evenly divide.
1347   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1348     Register SrcReg = MI.getOperand(I).getReg();
1349     if (GCD == SrcSize) {
1350       Unmerges.push_back(SrcReg);
1351     } else {
1352       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1353       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1354         Unmerges.push_back(Unmerge.getReg(J));
1355     }
1356   }
1357 
1358   // Pad with undef to the next size that is a multiple of the requested size.
1359   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1360     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1361     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1362       Unmerges.push_back(UndefReg);
1363   }
1364 
1365   const int PartsPerGCD = WideSize / GCD;
1366 
1367   // Build merges of each piece.
1368   ArrayRef<Register> Slicer(Unmerges);
1369   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1370     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1371     NewMergeRegs.push_back(Merge.getReg(0));
1372   }
1373 
1374   // A truncate may be necessary if the requested type doesn't evenly divide the
1375   // original result type.
1376   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1377     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1378   } else {
1379     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1380     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1381   }
1382 
1383   MI.eraseFromParent();
1384   return Legalized;
1385 }
1386 
1387 LegalizerHelper::LegalizeResult
1388 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1389                                           LLT WideTy) {
1390   if (TypeIdx != 0)
1391     return UnableToLegalize;
1392 
1393   unsigned NumDst = MI.getNumOperands() - 1;
1394   Register SrcReg = MI.getOperand(NumDst).getReg();
1395   LLT SrcTy = MRI.getType(SrcReg);
1396   if (!SrcTy.isScalar())
1397     return UnableToLegalize;
1398 
1399   Register Dst0Reg = MI.getOperand(0).getReg();
1400   LLT DstTy = MRI.getType(Dst0Reg);
1401   if (!DstTy.isScalar())
1402     return UnableToLegalize;
1403 
1404   unsigned NewSrcSize = NumDst * WideTy.getSizeInBits();
1405   LLT NewSrcTy = LLT::scalar(NewSrcSize);
1406   unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits();
1407 
1408   auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg);
1409 
1410   for (unsigned I = 1; I != NumDst; ++I) {
1411     auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I);
1412     auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt);
1413     WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl);
1414   }
1415 
1416   Observer.changingInstr(MI);
1417 
1418   MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg());
1419   for (unsigned I = 0; I != NumDst; ++I)
1420     widenScalarDst(MI, WideTy, I);
1421 
1422   Observer.changedInstr(MI);
1423 
1424   return Legalized;
1425 }
1426 
1427 LegalizerHelper::LegalizeResult
1428 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1429                                     LLT WideTy) {
1430   Register DstReg = MI.getOperand(0).getReg();
1431   Register SrcReg = MI.getOperand(1).getReg();
1432   LLT SrcTy = MRI.getType(SrcReg);
1433 
1434   LLT DstTy = MRI.getType(DstReg);
1435   unsigned Offset = MI.getOperand(2).getImm();
1436 
1437   if (TypeIdx == 0) {
1438     if (SrcTy.isVector() || DstTy.isVector())
1439       return UnableToLegalize;
1440 
1441     SrcOp Src(SrcReg);
1442     if (SrcTy.isPointer()) {
1443       // Extracts from pointers can be handled only if they are really just
1444       // simple integers.
1445       const DataLayout &DL = MIRBuilder.getDataLayout();
1446       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1447         return UnableToLegalize;
1448 
1449       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1450       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1451       SrcTy = SrcAsIntTy;
1452     }
1453 
1454     if (DstTy.isPointer())
1455       return UnableToLegalize;
1456 
1457     if (Offset == 0) {
1458       // Avoid a shift in the degenerate case.
1459       MIRBuilder.buildTrunc(DstReg,
1460                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1461       MI.eraseFromParent();
1462       return Legalized;
1463     }
1464 
1465     // Do a shift in the source type.
1466     LLT ShiftTy = SrcTy;
1467     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1468       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1469       ShiftTy = WideTy;
1470     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1471       return UnableToLegalize;
1472 
1473     auto LShr = MIRBuilder.buildLShr(
1474       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1475     MIRBuilder.buildTrunc(DstReg, LShr);
1476     MI.eraseFromParent();
1477     return Legalized;
1478   }
1479 
1480   if (SrcTy.isScalar()) {
1481     Observer.changingInstr(MI);
1482     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1483     Observer.changedInstr(MI);
1484     return Legalized;
1485   }
1486 
1487   if (!SrcTy.isVector())
1488     return UnableToLegalize;
1489 
1490   if (DstTy != SrcTy.getElementType())
1491     return UnableToLegalize;
1492 
1493   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1494     return UnableToLegalize;
1495 
1496   Observer.changingInstr(MI);
1497   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1498 
1499   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1500                           Offset);
1501   widenScalarDst(MI, WideTy.getScalarType(), 0);
1502   Observer.changedInstr(MI);
1503   return Legalized;
1504 }
1505 
1506 LegalizerHelper::LegalizeResult
1507 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1508                                    LLT WideTy) {
1509   if (TypeIdx != 0)
1510     return UnableToLegalize;
1511   Observer.changingInstr(MI);
1512   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1513   widenScalarDst(MI, WideTy);
1514   Observer.changedInstr(MI);
1515   return Legalized;
1516 }
1517 
1518 LegalizerHelper::LegalizeResult
1519 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1520   MIRBuilder.setInstr(MI);
1521 
1522   switch (MI.getOpcode()) {
1523   default:
1524     return UnableToLegalize;
1525   case TargetOpcode::G_EXTRACT:
1526     return widenScalarExtract(MI, TypeIdx, WideTy);
1527   case TargetOpcode::G_INSERT:
1528     return widenScalarInsert(MI, TypeIdx, WideTy);
1529   case TargetOpcode::G_MERGE_VALUES:
1530     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1531   case TargetOpcode::G_UNMERGE_VALUES:
1532     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1533   case TargetOpcode::G_UADDO:
1534   case TargetOpcode::G_USUBO: {
1535     if (TypeIdx == 1)
1536       return UnableToLegalize; // TODO
1537     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1538     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1539     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1540                           ? TargetOpcode::G_ADD
1541                           : TargetOpcode::G_SUB;
1542     // Do the arithmetic in the larger type.
1543     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1544     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1545     APInt Mask =
1546         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1547     auto AndOp = MIRBuilder.buildAnd(
1548         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1549     // There is no overflow if the AndOp is the same as NewOp.
1550     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1551     // Now trunc the NewOp to the original result.
1552     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1553     MI.eraseFromParent();
1554     return Legalized;
1555   }
1556   case TargetOpcode::G_CTTZ:
1557   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1558   case TargetOpcode::G_CTLZ:
1559   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1560   case TargetOpcode::G_CTPOP: {
1561     if (TypeIdx == 0) {
1562       Observer.changingInstr(MI);
1563       widenScalarDst(MI, WideTy, 0);
1564       Observer.changedInstr(MI);
1565       return Legalized;
1566     }
1567 
1568     Register SrcReg = MI.getOperand(1).getReg();
1569 
1570     // First ZEXT the input.
1571     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1572     LLT CurTy = MRI.getType(SrcReg);
1573     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1574       // The count is the same in the larger type except if the original
1575       // value was zero.  This can be handled by setting the bit just off
1576       // the top of the original type.
1577       auto TopBit =
1578           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1579       MIBSrc = MIRBuilder.buildOr(
1580         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1581     }
1582 
1583     // Perform the operation at the larger size.
1584     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1585     // This is already the correct result for CTPOP and CTTZs
1586     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1587         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1588       // The correct result is NewOp - (Difference in widety and current ty).
1589       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1590       MIBNewOp = MIRBuilder.buildSub(
1591           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1592     }
1593 
1594     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1595     MI.eraseFromParent();
1596     return Legalized;
1597   }
1598   case TargetOpcode::G_BSWAP: {
1599     Observer.changingInstr(MI);
1600     Register DstReg = MI.getOperand(0).getReg();
1601 
1602     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1603     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1604     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1605     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1606 
1607     MI.getOperand(0).setReg(DstExt);
1608 
1609     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1610 
1611     LLT Ty = MRI.getType(DstReg);
1612     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1613     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1614     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1615 
1616     MIRBuilder.buildTrunc(DstReg, ShrReg);
1617     Observer.changedInstr(MI);
1618     return Legalized;
1619   }
1620   case TargetOpcode::G_BITREVERSE: {
1621     Observer.changingInstr(MI);
1622 
1623     Register DstReg = MI.getOperand(0).getReg();
1624     LLT Ty = MRI.getType(DstReg);
1625     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1626 
1627     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1628     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1629     MI.getOperand(0).setReg(DstExt);
1630     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1631 
1632     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1633     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1634     MIRBuilder.buildTrunc(DstReg, Shift);
1635     Observer.changedInstr(MI);
1636     return Legalized;
1637   }
1638   case TargetOpcode::G_ADD:
1639   case TargetOpcode::G_AND:
1640   case TargetOpcode::G_MUL:
1641   case TargetOpcode::G_OR:
1642   case TargetOpcode::G_XOR:
1643   case TargetOpcode::G_SUB:
1644     // Perform operation at larger width (any extension is fines here, high bits
1645     // don't affect the result) and then truncate the result back to the
1646     // original type.
1647     Observer.changingInstr(MI);
1648     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1649     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1650     widenScalarDst(MI, WideTy);
1651     Observer.changedInstr(MI);
1652     return Legalized;
1653 
1654   case TargetOpcode::G_SHL:
1655     Observer.changingInstr(MI);
1656 
1657     if (TypeIdx == 0) {
1658       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1659       widenScalarDst(MI, WideTy);
1660     } else {
1661       assert(TypeIdx == 1);
1662       // The "number of bits to shift" operand must preserve its value as an
1663       // unsigned integer:
1664       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1665     }
1666 
1667     Observer.changedInstr(MI);
1668     return Legalized;
1669 
1670   case TargetOpcode::G_SDIV:
1671   case TargetOpcode::G_SREM:
1672   case TargetOpcode::G_SMIN:
1673   case TargetOpcode::G_SMAX:
1674     Observer.changingInstr(MI);
1675     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1676     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1677     widenScalarDst(MI, WideTy);
1678     Observer.changedInstr(MI);
1679     return Legalized;
1680 
1681   case TargetOpcode::G_ASHR:
1682   case TargetOpcode::G_LSHR:
1683     Observer.changingInstr(MI);
1684 
1685     if (TypeIdx == 0) {
1686       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1687         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1688 
1689       widenScalarSrc(MI, WideTy, 1, CvtOp);
1690       widenScalarDst(MI, WideTy);
1691     } else {
1692       assert(TypeIdx == 1);
1693       // The "number of bits to shift" operand must preserve its value as an
1694       // unsigned integer:
1695       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1696     }
1697 
1698     Observer.changedInstr(MI);
1699     return Legalized;
1700   case TargetOpcode::G_UDIV:
1701   case TargetOpcode::G_UREM:
1702   case TargetOpcode::G_UMIN:
1703   case TargetOpcode::G_UMAX:
1704     Observer.changingInstr(MI);
1705     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1706     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1707     widenScalarDst(MI, WideTy);
1708     Observer.changedInstr(MI);
1709     return Legalized;
1710 
1711   case TargetOpcode::G_SELECT:
1712     Observer.changingInstr(MI);
1713     if (TypeIdx == 0) {
1714       // Perform operation at larger width (any extension is fine here, high
1715       // bits don't affect the result) and then truncate the result back to the
1716       // original type.
1717       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1718       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1719       widenScalarDst(MI, WideTy);
1720     } else {
1721       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1722       // Explicit extension is required here since high bits affect the result.
1723       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1724     }
1725     Observer.changedInstr(MI);
1726     return Legalized;
1727 
1728   case TargetOpcode::G_FPTOSI:
1729   case TargetOpcode::G_FPTOUI:
1730     Observer.changingInstr(MI);
1731 
1732     if (TypeIdx == 0)
1733       widenScalarDst(MI, WideTy);
1734     else
1735       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1736 
1737     Observer.changedInstr(MI);
1738     return Legalized;
1739   case TargetOpcode::G_SITOFP:
1740     if (TypeIdx != 1)
1741       return UnableToLegalize;
1742     Observer.changingInstr(MI);
1743     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1744     Observer.changedInstr(MI);
1745     return Legalized;
1746 
1747   case TargetOpcode::G_UITOFP:
1748     if (TypeIdx != 1)
1749       return UnableToLegalize;
1750     Observer.changingInstr(MI);
1751     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1752     Observer.changedInstr(MI);
1753     return Legalized;
1754 
1755   case TargetOpcode::G_LOAD:
1756   case TargetOpcode::G_SEXTLOAD:
1757   case TargetOpcode::G_ZEXTLOAD:
1758     Observer.changingInstr(MI);
1759     widenScalarDst(MI, WideTy);
1760     Observer.changedInstr(MI);
1761     return Legalized;
1762 
1763   case TargetOpcode::G_STORE: {
1764     if (TypeIdx != 0)
1765       return UnableToLegalize;
1766 
1767     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1768     if (!isPowerOf2_32(Ty.getSizeInBits()))
1769       return UnableToLegalize;
1770 
1771     Observer.changingInstr(MI);
1772 
1773     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1774       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1775     widenScalarSrc(MI, WideTy, 0, ExtType);
1776 
1777     Observer.changedInstr(MI);
1778     return Legalized;
1779   }
1780   case TargetOpcode::G_CONSTANT: {
1781     MachineOperand &SrcMO = MI.getOperand(1);
1782     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1783     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1784         MRI.getType(MI.getOperand(0).getReg()));
1785     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1786             ExtOpc == TargetOpcode::G_ANYEXT) &&
1787            "Illegal Extend");
1788     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1789     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1790                            ? SrcVal.sext(WideTy.getSizeInBits())
1791                            : SrcVal.zext(WideTy.getSizeInBits());
1792     Observer.changingInstr(MI);
1793     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1794 
1795     widenScalarDst(MI, WideTy);
1796     Observer.changedInstr(MI);
1797     return Legalized;
1798   }
1799   case TargetOpcode::G_FCONSTANT: {
1800     MachineOperand &SrcMO = MI.getOperand(1);
1801     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1802     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1803     bool LosesInfo;
1804     switch (WideTy.getSizeInBits()) {
1805     case 32:
1806       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1807                   &LosesInfo);
1808       break;
1809     case 64:
1810       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1811                   &LosesInfo);
1812       break;
1813     default:
1814       return UnableToLegalize;
1815     }
1816 
1817     assert(!LosesInfo && "extend should always be lossless");
1818 
1819     Observer.changingInstr(MI);
1820     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1821 
1822     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1823     Observer.changedInstr(MI);
1824     return Legalized;
1825   }
1826   case TargetOpcode::G_IMPLICIT_DEF: {
1827     Observer.changingInstr(MI);
1828     widenScalarDst(MI, WideTy);
1829     Observer.changedInstr(MI);
1830     return Legalized;
1831   }
1832   case TargetOpcode::G_BRCOND:
1833     Observer.changingInstr(MI);
1834     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1835     Observer.changedInstr(MI);
1836     return Legalized;
1837 
1838   case TargetOpcode::G_FCMP:
1839     Observer.changingInstr(MI);
1840     if (TypeIdx == 0)
1841       widenScalarDst(MI, WideTy);
1842     else {
1843       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1844       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1845     }
1846     Observer.changedInstr(MI);
1847     return Legalized;
1848 
1849   case TargetOpcode::G_ICMP:
1850     Observer.changingInstr(MI);
1851     if (TypeIdx == 0)
1852       widenScalarDst(MI, WideTy);
1853     else {
1854       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1855                                MI.getOperand(1).getPredicate()))
1856                                ? TargetOpcode::G_SEXT
1857                                : TargetOpcode::G_ZEXT;
1858       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1859       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1860     }
1861     Observer.changedInstr(MI);
1862     return Legalized;
1863 
1864   case TargetOpcode::G_PTR_ADD:
1865     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1866     Observer.changingInstr(MI);
1867     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1868     Observer.changedInstr(MI);
1869     return Legalized;
1870 
1871   case TargetOpcode::G_PHI: {
1872     assert(TypeIdx == 0 && "Expecting only Idx 0");
1873 
1874     Observer.changingInstr(MI);
1875     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1876       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1877       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1878       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1879     }
1880 
1881     MachineBasicBlock &MBB = *MI.getParent();
1882     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1883     widenScalarDst(MI, WideTy);
1884     Observer.changedInstr(MI);
1885     return Legalized;
1886   }
1887   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1888     if (TypeIdx == 0) {
1889       Register VecReg = MI.getOperand(1).getReg();
1890       LLT VecTy = MRI.getType(VecReg);
1891       Observer.changingInstr(MI);
1892 
1893       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1894                                      WideTy.getSizeInBits()),
1895                      1, TargetOpcode::G_SEXT);
1896 
1897       widenScalarDst(MI, WideTy, 0);
1898       Observer.changedInstr(MI);
1899       return Legalized;
1900     }
1901 
1902     if (TypeIdx != 2)
1903       return UnableToLegalize;
1904     Observer.changingInstr(MI);
1905     // TODO: Probably should be zext
1906     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1907     Observer.changedInstr(MI);
1908     return Legalized;
1909   }
1910   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1911     if (TypeIdx == 1) {
1912       Observer.changingInstr(MI);
1913 
1914       Register VecReg = MI.getOperand(1).getReg();
1915       LLT VecTy = MRI.getType(VecReg);
1916       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
1917 
1918       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
1919       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1920       widenScalarDst(MI, WideVecTy, 0);
1921       Observer.changedInstr(MI);
1922       return Legalized;
1923     }
1924 
1925     if (TypeIdx == 2) {
1926       Observer.changingInstr(MI);
1927       // TODO: Probably should be zext
1928       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
1929       Observer.changedInstr(MI);
1930     }
1931 
1932     return Legalized;
1933   }
1934   case TargetOpcode::G_FADD:
1935   case TargetOpcode::G_FMUL:
1936   case TargetOpcode::G_FSUB:
1937   case TargetOpcode::G_FMA:
1938   case TargetOpcode::G_FMAD:
1939   case TargetOpcode::G_FNEG:
1940   case TargetOpcode::G_FABS:
1941   case TargetOpcode::G_FCANONICALIZE:
1942   case TargetOpcode::G_FMINNUM:
1943   case TargetOpcode::G_FMAXNUM:
1944   case TargetOpcode::G_FMINNUM_IEEE:
1945   case TargetOpcode::G_FMAXNUM_IEEE:
1946   case TargetOpcode::G_FMINIMUM:
1947   case TargetOpcode::G_FMAXIMUM:
1948   case TargetOpcode::G_FDIV:
1949   case TargetOpcode::G_FREM:
1950   case TargetOpcode::G_FCEIL:
1951   case TargetOpcode::G_FFLOOR:
1952   case TargetOpcode::G_FCOS:
1953   case TargetOpcode::G_FSIN:
1954   case TargetOpcode::G_FLOG10:
1955   case TargetOpcode::G_FLOG:
1956   case TargetOpcode::G_FLOG2:
1957   case TargetOpcode::G_FRINT:
1958   case TargetOpcode::G_FNEARBYINT:
1959   case TargetOpcode::G_FSQRT:
1960   case TargetOpcode::G_FEXP:
1961   case TargetOpcode::G_FEXP2:
1962   case TargetOpcode::G_FPOW:
1963   case TargetOpcode::G_INTRINSIC_TRUNC:
1964   case TargetOpcode::G_INTRINSIC_ROUND:
1965     assert(TypeIdx == 0);
1966     Observer.changingInstr(MI);
1967 
1968     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
1969       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
1970 
1971     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1972     Observer.changedInstr(MI);
1973     return Legalized;
1974   case TargetOpcode::G_INTTOPTR:
1975     if (TypeIdx != 1)
1976       return UnableToLegalize;
1977 
1978     Observer.changingInstr(MI);
1979     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1980     Observer.changedInstr(MI);
1981     return Legalized;
1982   case TargetOpcode::G_PTRTOINT:
1983     if (TypeIdx != 0)
1984       return UnableToLegalize;
1985 
1986     Observer.changingInstr(MI);
1987     widenScalarDst(MI, WideTy, 0);
1988     Observer.changedInstr(MI);
1989     return Legalized;
1990   case TargetOpcode::G_BUILD_VECTOR: {
1991     Observer.changingInstr(MI);
1992 
1993     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
1994     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
1995       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
1996 
1997     // Avoid changing the result vector type if the source element type was
1998     // requested.
1999     if (TypeIdx == 1) {
2000       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2001       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2002     } else {
2003       widenScalarDst(MI, WideTy, 0);
2004     }
2005 
2006     Observer.changedInstr(MI);
2007     return Legalized;
2008   }
2009   case TargetOpcode::G_SEXT_INREG:
2010     if (TypeIdx != 0)
2011       return UnableToLegalize;
2012 
2013     Observer.changingInstr(MI);
2014     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2015     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2016     Observer.changedInstr(MI);
2017     return Legalized;
2018   }
2019 }
2020 
2021 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2022                              MachineIRBuilder &B, Register Src, LLT Ty) {
2023   auto Unmerge = B.buildUnmerge(Ty, Src);
2024   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2025     Pieces.push_back(Unmerge.getReg(I));
2026 }
2027 
2028 LegalizerHelper::LegalizeResult
2029 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2030   Register Dst = MI.getOperand(0).getReg();
2031   Register Src = MI.getOperand(1).getReg();
2032   LLT DstTy = MRI.getType(Dst);
2033   LLT SrcTy = MRI.getType(Src);
2034 
2035   if (SrcTy.isVector() && !DstTy.isVector()) {
2036     SmallVector<Register, 8> SrcRegs;
2037     getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType());
2038     MIRBuilder.buildMerge(Dst, SrcRegs);
2039     MI.eraseFromParent();
2040     return Legalized;
2041   }
2042 
2043   if (DstTy.isVector() && !SrcTy.isVector()) {
2044     SmallVector<Register, 8> SrcRegs;
2045     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2046     MIRBuilder.buildMerge(Dst, SrcRegs);
2047     MI.eraseFromParent();
2048     return Legalized;
2049   }
2050 
2051   return UnableToLegalize;
2052 }
2053 
2054 LegalizerHelper::LegalizeResult
2055 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2056   using namespace TargetOpcode;
2057   MIRBuilder.setInstr(MI);
2058 
2059   switch(MI.getOpcode()) {
2060   default:
2061     return UnableToLegalize;
2062   case TargetOpcode::G_BITCAST:
2063     return lowerBitcast(MI);
2064   case TargetOpcode::G_SREM:
2065   case TargetOpcode::G_UREM: {
2066     Register QuotReg = MRI.createGenericVirtualRegister(Ty);
2067     MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {QuotReg},
2068                           {MI.getOperand(1), MI.getOperand(2)});
2069 
2070     Register ProdReg = MRI.createGenericVirtualRegister(Ty);
2071     MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2));
2072     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), ProdReg);
2073     MI.eraseFromParent();
2074     return Legalized;
2075   }
2076   case TargetOpcode::G_SADDO:
2077   case TargetOpcode::G_SSUBO:
2078     return lowerSADDO_SSUBO(MI);
2079   case TargetOpcode::G_SMULO:
2080   case TargetOpcode::G_UMULO: {
2081     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2082     // result.
2083     Register Res = MI.getOperand(0).getReg();
2084     Register Overflow = MI.getOperand(1).getReg();
2085     Register LHS = MI.getOperand(2).getReg();
2086     Register RHS = MI.getOperand(3).getReg();
2087 
2088     MIRBuilder.buildMul(Res, LHS, RHS);
2089 
2090     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2091                           ? TargetOpcode::G_SMULH
2092                           : TargetOpcode::G_UMULH;
2093 
2094     Register HiPart = MRI.createGenericVirtualRegister(Ty);
2095     MIRBuilder.buildInstr(Opcode)
2096       .addDef(HiPart)
2097       .addUse(LHS)
2098       .addUse(RHS);
2099 
2100     Register Zero = MRI.createGenericVirtualRegister(Ty);
2101     MIRBuilder.buildConstant(Zero, 0);
2102 
2103     // For *signed* multiply, overflow is detected by checking:
2104     // (hi != (lo >> bitwidth-1))
2105     if (Opcode == TargetOpcode::G_SMULH) {
2106       Register Shifted = MRI.createGenericVirtualRegister(Ty);
2107       Register ShiftAmt = MRI.createGenericVirtualRegister(Ty);
2108       MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1);
2109       MIRBuilder.buildInstr(TargetOpcode::G_ASHR)
2110         .addDef(Shifted)
2111         .addUse(Res)
2112         .addUse(ShiftAmt);
2113       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2114     } else {
2115       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2116     }
2117     MI.eraseFromParent();
2118     return Legalized;
2119   }
2120   case TargetOpcode::G_FNEG: {
2121     // TODO: Handle vector types once we are able to
2122     // represent them.
2123     if (Ty.isVector())
2124       return UnableToLegalize;
2125     Register Res = MI.getOperand(0).getReg();
2126     Type *ZeroTy;
2127     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2128     switch (Ty.getSizeInBits()) {
2129     case 16:
2130       ZeroTy = Type::getHalfTy(Ctx);
2131       break;
2132     case 32:
2133       ZeroTy = Type::getFloatTy(Ctx);
2134       break;
2135     case 64:
2136       ZeroTy = Type::getDoubleTy(Ctx);
2137       break;
2138     case 128:
2139       ZeroTy = Type::getFP128Ty(Ctx);
2140       break;
2141     default:
2142       llvm_unreachable("unexpected floating-point type");
2143     }
2144     ConstantFP &ZeroForNegation =
2145         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2146     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2147     Register SubByReg = MI.getOperand(1).getReg();
2148     Register ZeroReg = Zero->getOperand(0).getReg();
2149     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2150     MI.eraseFromParent();
2151     return Legalized;
2152   }
2153   case TargetOpcode::G_FSUB: {
2154     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2155     // First, check if G_FNEG is marked as Lower. If so, we may
2156     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2157     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2158       return UnableToLegalize;
2159     Register Res = MI.getOperand(0).getReg();
2160     Register LHS = MI.getOperand(1).getReg();
2161     Register RHS = MI.getOperand(2).getReg();
2162     Register Neg = MRI.createGenericVirtualRegister(Ty);
2163     MIRBuilder.buildFNeg(Neg, RHS);
2164     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2165     MI.eraseFromParent();
2166     return Legalized;
2167   }
2168   case TargetOpcode::G_FMAD:
2169     return lowerFMad(MI);
2170   case TargetOpcode::G_INTRINSIC_ROUND:
2171     return lowerIntrinsicRound(MI);
2172   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2173     Register OldValRes = MI.getOperand(0).getReg();
2174     Register SuccessRes = MI.getOperand(1).getReg();
2175     Register Addr = MI.getOperand(2).getReg();
2176     Register CmpVal = MI.getOperand(3).getReg();
2177     Register NewVal = MI.getOperand(4).getReg();
2178     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2179                                   **MI.memoperands_begin());
2180     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2181     MI.eraseFromParent();
2182     return Legalized;
2183   }
2184   case TargetOpcode::G_LOAD:
2185   case TargetOpcode::G_SEXTLOAD:
2186   case TargetOpcode::G_ZEXTLOAD: {
2187     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2188     Register DstReg = MI.getOperand(0).getReg();
2189     Register PtrReg = MI.getOperand(1).getReg();
2190     LLT DstTy = MRI.getType(DstReg);
2191     auto &MMO = **MI.memoperands_begin();
2192 
2193     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2194       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2195         // This load needs splitting into power of 2 sized loads.
2196         if (DstTy.isVector())
2197           return UnableToLegalize;
2198         if (isPowerOf2_32(DstTy.getSizeInBits()))
2199           return UnableToLegalize; // Don't know what we're being asked to do.
2200 
2201         // Our strategy here is to generate anyextending loads for the smaller
2202         // types up to next power-2 result type, and then combine the two larger
2203         // result values together, before truncating back down to the non-pow-2
2204         // type.
2205         // E.g. v1 = i24 load =>
2206         // v2 = i32 load (2 byte)
2207         // v3 = i32 load (1 byte)
2208         // v4 = i32 shl v3, 16
2209         // v5 = i32 or v4, v2
2210         // v1 = i24 trunc v5
2211         // By doing this we generate the correct truncate which should get
2212         // combined away as an artifact with a matching extend.
2213         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2214         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2215 
2216         MachineFunction &MF = MIRBuilder.getMF();
2217         MachineMemOperand *LargeMMO =
2218             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2219         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2220             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2221 
2222         LLT PtrTy = MRI.getType(PtrReg);
2223         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2224         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2225         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2226         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2227         auto LargeLoad =
2228             MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO);
2229 
2230         auto OffsetCst =
2231             MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8);
2232         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2233         auto SmallPtr =
2234             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2235         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2236                                               *SmallMMO);
2237 
2238         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2239         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2240         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2241         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2242         MI.eraseFromParent();
2243         return Legalized;
2244       }
2245       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2246       MI.eraseFromParent();
2247       return Legalized;
2248     }
2249 
2250     if (DstTy.isScalar()) {
2251       Register TmpReg =
2252           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2253       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2254       switch (MI.getOpcode()) {
2255       default:
2256         llvm_unreachable("Unexpected opcode");
2257       case TargetOpcode::G_LOAD:
2258         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2259         break;
2260       case TargetOpcode::G_SEXTLOAD:
2261         MIRBuilder.buildSExt(DstReg, TmpReg);
2262         break;
2263       case TargetOpcode::G_ZEXTLOAD:
2264         MIRBuilder.buildZExt(DstReg, TmpReg);
2265         break;
2266       }
2267       MI.eraseFromParent();
2268       return Legalized;
2269     }
2270 
2271     return UnableToLegalize;
2272   }
2273   case TargetOpcode::G_STORE: {
2274     // Lower a non-power of 2 store into multiple pow-2 stores.
2275     // E.g. split an i24 store into an i16 store + i8 store.
2276     // We do this by first extending the stored value to the next largest power
2277     // of 2 type, and then using truncating stores to store the components.
2278     // By doing this, likewise with G_LOAD, generate an extend that can be
2279     // artifact-combined away instead of leaving behind extracts.
2280     Register SrcReg = MI.getOperand(0).getReg();
2281     Register PtrReg = MI.getOperand(1).getReg();
2282     LLT SrcTy = MRI.getType(SrcReg);
2283     MachineMemOperand &MMO = **MI.memoperands_begin();
2284     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2285       return UnableToLegalize;
2286     if (SrcTy.isVector())
2287       return UnableToLegalize;
2288     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2289       return UnableToLegalize; // Don't know what we're being asked to do.
2290 
2291     // Extend to the next pow-2.
2292     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2293     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2294 
2295     // Obtain the smaller value by shifting away the larger value.
2296     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2297     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2298     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2299     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2300 
2301     // Generate the PtrAdd and truncating stores.
2302     LLT PtrTy = MRI.getType(PtrReg);
2303     auto OffsetCst =
2304         MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8);
2305     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2306     auto SmallPtr =
2307         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2308 
2309     MachineFunction &MF = MIRBuilder.getMF();
2310     MachineMemOperand *LargeMMO =
2311         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2312     MachineMemOperand *SmallMMO =
2313         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2314     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2315     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2316     MI.eraseFromParent();
2317     return Legalized;
2318   }
2319   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2320   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2321   case TargetOpcode::G_CTLZ:
2322   case TargetOpcode::G_CTTZ:
2323   case TargetOpcode::G_CTPOP:
2324     return lowerBitCount(MI, TypeIdx, Ty);
2325   case G_UADDO: {
2326     Register Res = MI.getOperand(0).getReg();
2327     Register CarryOut = MI.getOperand(1).getReg();
2328     Register LHS = MI.getOperand(2).getReg();
2329     Register RHS = MI.getOperand(3).getReg();
2330 
2331     MIRBuilder.buildAdd(Res, LHS, RHS);
2332     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2333 
2334     MI.eraseFromParent();
2335     return Legalized;
2336   }
2337   case G_UADDE: {
2338     Register Res = MI.getOperand(0).getReg();
2339     Register CarryOut = MI.getOperand(1).getReg();
2340     Register LHS = MI.getOperand(2).getReg();
2341     Register RHS = MI.getOperand(3).getReg();
2342     Register CarryIn = MI.getOperand(4).getReg();
2343 
2344     Register TmpRes = MRI.createGenericVirtualRegister(Ty);
2345     Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty);
2346 
2347     MIRBuilder.buildAdd(TmpRes, LHS, RHS);
2348     MIRBuilder.buildZExt(ZExtCarryIn, CarryIn);
2349     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2350     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2351 
2352     MI.eraseFromParent();
2353     return Legalized;
2354   }
2355   case G_USUBO: {
2356     Register Res = MI.getOperand(0).getReg();
2357     Register BorrowOut = MI.getOperand(1).getReg();
2358     Register LHS = MI.getOperand(2).getReg();
2359     Register RHS = MI.getOperand(3).getReg();
2360 
2361     MIRBuilder.buildSub(Res, LHS, RHS);
2362     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2363 
2364     MI.eraseFromParent();
2365     return Legalized;
2366   }
2367   case G_USUBE: {
2368     Register Res = MI.getOperand(0).getReg();
2369     Register BorrowOut = MI.getOperand(1).getReg();
2370     Register LHS = MI.getOperand(2).getReg();
2371     Register RHS = MI.getOperand(3).getReg();
2372     Register BorrowIn = MI.getOperand(4).getReg();
2373 
2374     Register TmpRes = MRI.createGenericVirtualRegister(Ty);
2375     Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty);
2376     Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
2377     Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
2378 
2379     MIRBuilder.buildSub(TmpRes, LHS, RHS);
2380     MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn);
2381     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2382     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS);
2383     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS);
2384     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2385 
2386     MI.eraseFromParent();
2387     return Legalized;
2388   }
2389   case G_UITOFP:
2390     return lowerUITOFP(MI, TypeIdx, Ty);
2391   case G_SITOFP:
2392     return lowerSITOFP(MI, TypeIdx, Ty);
2393   case G_FPTOUI:
2394     return lowerFPTOUI(MI, TypeIdx, Ty);
2395   case G_SMIN:
2396   case G_SMAX:
2397   case G_UMIN:
2398   case G_UMAX:
2399     return lowerMinMax(MI, TypeIdx, Ty);
2400   case G_FCOPYSIGN:
2401     return lowerFCopySign(MI, TypeIdx, Ty);
2402   case G_FMINNUM:
2403   case G_FMAXNUM:
2404     return lowerFMinNumMaxNum(MI);
2405   case G_UNMERGE_VALUES:
2406     return lowerUnmergeValues(MI);
2407   case TargetOpcode::G_SEXT_INREG: {
2408     assert(MI.getOperand(2).isImm() && "Expected immediate");
2409     int64_t SizeInBits = MI.getOperand(2).getImm();
2410 
2411     Register DstReg = MI.getOperand(0).getReg();
2412     Register SrcReg = MI.getOperand(1).getReg();
2413     LLT DstTy = MRI.getType(DstReg);
2414     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2415 
2416     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2417     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2418     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2419     MI.eraseFromParent();
2420     return Legalized;
2421   }
2422   case G_SHUFFLE_VECTOR:
2423     return lowerShuffleVector(MI);
2424   case G_DYN_STACKALLOC:
2425     return lowerDynStackAlloc(MI);
2426   case G_EXTRACT:
2427     return lowerExtract(MI);
2428   case G_INSERT:
2429     return lowerInsert(MI);
2430   case G_BSWAP:
2431     return lowerBswap(MI);
2432   case G_BITREVERSE:
2433     return lowerBitreverse(MI);
2434   case G_READ_REGISTER:
2435     return lowerReadRegister(MI);
2436   }
2437 }
2438 
2439 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2440     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2441   SmallVector<Register, 2> DstRegs;
2442 
2443   unsigned NarrowSize = NarrowTy.getSizeInBits();
2444   Register DstReg = MI.getOperand(0).getReg();
2445   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2446   int NumParts = Size / NarrowSize;
2447   // FIXME: Don't know how to handle the situation where the small vectors
2448   // aren't all the same size yet.
2449   if (Size % NarrowSize != 0)
2450     return UnableToLegalize;
2451 
2452   for (int i = 0; i < NumParts; ++i) {
2453     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2454     MIRBuilder.buildUndef(TmpReg);
2455     DstRegs.push_back(TmpReg);
2456   }
2457 
2458   if (NarrowTy.isVector())
2459     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2460   else
2461     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2462 
2463   MI.eraseFromParent();
2464   return Legalized;
2465 }
2466 
2467 LegalizerHelper::LegalizeResult
2468 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
2469                                           LLT NarrowTy) {
2470   const unsigned Opc = MI.getOpcode();
2471   const unsigned NumOps = MI.getNumOperands() - 1;
2472   const unsigned NarrowSize = NarrowTy.getSizeInBits();
2473   const Register DstReg = MI.getOperand(0).getReg();
2474   const unsigned Flags = MI.getFlags();
2475   const LLT DstTy = MRI.getType(DstReg);
2476   const unsigned Size = DstTy.getSizeInBits();
2477   const int NumParts = Size / NarrowSize;
2478   const LLT EltTy = DstTy.getElementType();
2479   const unsigned EltSize = EltTy.getSizeInBits();
2480   const unsigned BitsForNumParts = NarrowSize * NumParts;
2481 
2482   // Check if we have any leftovers. If we do, then only handle the case where
2483   // the leftover is one element.
2484   if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size)
2485     return UnableToLegalize;
2486 
2487   if (BitsForNumParts != Size) {
2488     Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy);
2489     MIRBuilder.buildUndef(AccumDstReg);
2490 
2491     // Handle the pieces which evenly divide into the requested type with
2492     // extract/op/insert sequence.
2493     for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) {
2494       SmallVector<SrcOp, 4> SrcOps;
2495       for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2496         Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy);
2497         MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), Offset);
2498         SrcOps.push_back(PartOpReg);
2499       }
2500 
2501       Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy);
2502       MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
2503 
2504       Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy);
2505       MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset);
2506       AccumDstReg = PartInsertReg;
2507     }
2508 
2509     // Handle the remaining element sized leftover piece.
2510     SmallVector<SrcOp, 4> SrcOps;
2511     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2512       Register PartOpReg = MRI.createGenericVirtualRegister(EltTy);
2513       MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), BitsForNumParts);
2514       SrcOps.push_back(PartOpReg);
2515     }
2516 
2517     Register PartDstReg = MRI.createGenericVirtualRegister(EltTy);
2518     MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
2519     MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts);
2520     MI.eraseFromParent();
2521 
2522     return Legalized;
2523   }
2524 
2525   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2526 
2527   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs);
2528 
2529   if (NumOps >= 2)
2530     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs);
2531 
2532   if (NumOps >= 3)
2533     extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs);
2534 
2535   for (int i = 0; i < NumParts; ++i) {
2536     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
2537 
2538     if (NumOps == 1)
2539       MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags);
2540     else if (NumOps == 2) {
2541       MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags);
2542     } else if (NumOps == 3) {
2543       MIRBuilder.buildInstr(Opc, {DstReg},
2544                             {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags);
2545     }
2546 
2547     DstRegs.push_back(DstReg);
2548   }
2549 
2550   if (NarrowTy.isVector())
2551     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2552   else
2553     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2554 
2555   MI.eraseFromParent();
2556   return Legalized;
2557 }
2558 
2559 // Handle splitting vector operations which need to have the same number of
2560 // elements in each type index, but each type index may have a different element
2561 // type.
2562 //
2563 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2564 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2565 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2566 //
2567 // Also handles some irregular breakdown cases, e.g.
2568 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2569 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2570 //             s64 = G_SHL s64, s32
2571 LegalizerHelper::LegalizeResult
2572 LegalizerHelper::fewerElementsVectorMultiEltType(
2573   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2574   if (TypeIdx != 0)
2575     return UnableToLegalize;
2576 
2577   const LLT NarrowTy0 = NarrowTyArg;
2578   const unsigned NewNumElts =
2579       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2580 
2581   const Register DstReg = MI.getOperand(0).getReg();
2582   LLT DstTy = MRI.getType(DstReg);
2583   LLT LeftoverTy0;
2584 
2585   // All of the operands need to have the same number of elements, so if we can
2586   // determine a type breakdown for the result type, we can for all of the
2587   // source types.
2588   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2589   if (NumParts < 0)
2590     return UnableToLegalize;
2591 
2592   SmallVector<MachineInstrBuilder, 4> NewInsts;
2593 
2594   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2595   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2596 
2597   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2598     LLT LeftoverTy;
2599     Register SrcReg = MI.getOperand(I).getReg();
2600     LLT SrcTyI = MRI.getType(SrcReg);
2601     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2602     LLT LeftoverTyI;
2603 
2604     // Split this operand into the requested typed registers, and any leftover
2605     // required to reproduce the original type.
2606     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2607                       LeftoverRegs))
2608       return UnableToLegalize;
2609 
2610     if (I == 1) {
2611       // For the first operand, create an instruction for each part and setup
2612       // the result.
2613       for (Register PartReg : PartRegs) {
2614         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2615         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2616                                .addDef(PartDstReg)
2617                                .addUse(PartReg));
2618         DstRegs.push_back(PartDstReg);
2619       }
2620 
2621       for (Register LeftoverReg : LeftoverRegs) {
2622         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2623         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2624                                .addDef(PartDstReg)
2625                                .addUse(LeftoverReg));
2626         LeftoverDstRegs.push_back(PartDstReg);
2627       }
2628     } else {
2629       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2630 
2631       // Add the newly created operand splits to the existing instructions. The
2632       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2633       // pieces.
2634       unsigned InstCount = 0;
2635       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2636         NewInsts[InstCount++].addUse(PartRegs[J]);
2637       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2638         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2639     }
2640 
2641     PartRegs.clear();
2642     LeftoverRegs.clear();
2643   }
2644 
2645   // Insert the newly built operations and rebuild the result register.
2646   for (auto &MIB : NewInsts)
2647     MIRBuilder.insertInstr(MIB);
2648 
2649   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2650 
2651   MI.eraseFromParent();
2652   return Legalized;
2653 }
2654 
2655 LegalizerHelper::LegalizeResult
2656 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2657                                           LLT NarrowTy) {
2658   if (TypeIdx != 0)
2659     return UnableToLegalize;
2660 
2661   Register DstReg = MI.getOperand(0).getReg();
2662   Register SrcReg = MI.getOperand(1).getReg();
2663   LLT DstTy = MRI.getType(DstReg);
2664   LLT SrcTy = MRI.getType(SrcReg);
2665 
2666   LLT NarrowTy0 = NarrowTy;
2667   LLT NarrowTy1;
2668   unsigned NumParts;
2669 
2670   if (NarrowTy.isVector()) {
2671     // Uneven breakdown not handled.
2672     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2673     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2674       return UnableToLegalize;
2675 
2676     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2677   } else {
2678     NumParts = DstTy.getNumElements();
2679     NarrowTy1 = SrcTy.getElementType();
2680   }
2681 
2682   SmallVector<Register, 4> SrcRegs, DstRegs;
2683   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2684 
2685   for (unsigned I = 0; I < NumParts; ++I) {
2686     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2687     MachineInstr *NewInst =
2688         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2689 
2690     NewInst->setFlags(MI.getFlags());
2691     DstRegs.push_back(DstReg);
2692   }
2693 
2694   if (NarrowTy.isVector())
2695     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2696   else
2697     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2698 
2699   MI.eraseFromParent();
2700   return Legalized;
2701 }
2702 
2703 LegalizerHelper::LegalizeResult
2704 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2705                                         LLT NarrowTy) {
2706   Register DstReg = MI.getOperand(0).getReg();
2707   Register Src0Reg = MI.getOperand(2).getReg();
2708   LLT DstTy = MRI.getType(DstReg);
2709   LLT SrcTy = MRI.getType(Src0Reg);
2710 
2711   unsigned NumParts;
2712   LLT NarrowTy0, NarrowTy1;
2713 
2714   if (TypeIdx == 0) {
2715     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2716     unsigned OldElts = DstTy.getNumElements();
2717 
2718     NarrowTy0 = NarrowTy;
2719     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2720     NarrowTy1 = NarrowTy.isVector() ?
2721       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2722       SrcTy.getElementType();
2723 
2724   } else {
2725     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2726     unsigned OldElts = SrcTy.getNumElements();
2727 
2728     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2729       NarrowTy.getNumElements();
2730     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2731                             DstTy.getScalarSizeInBits());
2732     NarrowTy1 = NarrowTy;
2733   }
2734 
2735   // FIXME: Don't know how to handle the situation where the small vectors
2736   // aren't all the same size yet.
2737   if (NarrowTy1.isVector() &&
2738       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2739     return UnableToLegalize;
2740 
2741   CmpInst::Predicate Pred
2742     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2743 
2744   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2745   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2746   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2747 
2748   for (unsigned I = 0; I < NumParts; ++I) {
2749     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2750     DstRegs.push_back(DstReg);
2751 
2752     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2753       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2754     else {
2755       MachineInstr *NewCmp
2756         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2757       NewCmp->setFlags(MI.getFlags());
2758     }
2759   }
2760 
2761   if (NarrowTy1.isVector())
2762     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2763   else
2764     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2765 
2766   MI.eraseFromParent();
2767   return Legalized;
2768 }
2769 
2770 LegalizerHelper::LegalizeResult
2771 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2772                                            LLT NarrowTy) {
2773   Register DstReg = MI.getOperand(0).getReg();
2774   Register CondReg = MI.getOperand(1).getReg();
2775 
2776   unsigned NumParts = 0;
2777   LLT NarrowTy0, NarrowTy1;
2778 
2779   LLT DstTy = MRI.getType(DstReg);
2780   LLT CondTy = MRI.getType(CondReg);
2781   unsigned Size = DstTy.getSizeInBits();
2782 
2783   assert(TypeIdx == 0 || CondTy.isVector());
2784 
2785   if (TypeIdx == 0) {
2786     NarrowTy0 = NarrowTy;
2787     NarrowTy1 = CondTy;
2788 
2789     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2790     // FIXME: Don't know how to handle the situation where the small vectors
2791     // aren't all the same size yet.
2792     if (Size % NarrowSize != 0)
2793       return UnableToLegalize;
2794 
2795     NumParts = Size / NarrowSize;
2796 
2797     // Need to break down the condition type
2798     if (CondTy.isVector()) {
2799       if (CondTy.getNumElements() == NumParts)
2800         NarrowTy1 = CondTy.getElementType();
2801       else
2802         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2803                                 CondTy.getScalarSizeInBits());
2804     }
2805   } else {
2806     NumParts = CondTy.getNumElements();
2807     if (NarrowTy.isVector()) {
2808       // TODO: Handle uneven breakdown.
2809       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2810         return UnableToLegalize;
2811 
2812       return UnableToLegalize;
2813     } else {
2814       NarrowTy0 = DstTy.getElementType();
2815       NarrowTy1 = NarrowTy;
2816     }
2817   }
2818 
2819   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2820   if (CondTy.isVector())
2821     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2822 
2823   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2824   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2825 
2826   for (unsigned i = 0; i < NumParts; ++i) {
2827     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2828     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2829                            Src1Regs[i], Src2Regs[i]);
2830     DstRegs.push_back(DstReg);
2831   }
2832 
2833   if (NarrowTy0.isVector())
2834     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2835   else
2836     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2837 
2838   MI.eraseFromParent();
2839   return Legalized;
2840 }
2841 
2842 LegalizerHelper::LegalizeResult
2843 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2844                                         LLT NarrowTy) {
2845   const Register DstReg = MI.getOperand(0).getReg();
2846   LLT PhiTy = MRI.getType(DstReg);
2847   LLT LeftoverTy;
2848 
2849   // All of the operands need to have the same number of elements, so if we can
2850   // determine a type breakdown for the result type, we can for all of the
2851   // source types.
2852   int NumParts, NumLeftover;
2853   std::tie(NumParts, NumLeftover)
2854     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2855   if (NumParts < 0)
2856     return UnableToLegalize;
2857 
2858   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2859   SmallVector<MachineInstrBuilder, 4> NewInsts;
2860 
2861   const int TotalNumParts = NumParts + NumLeftover;
2862 
2863   // Insert the new phis in the result block first.
2864   for (int I = 0; I != TotalNumParts; ++I) {
2865     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2866     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2867     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2868                        .addDef(PartDstReg));
2869     if (I < NumParts)
2870       DstRegs.push_back(PartDstReg);
2871     else
2872       LeftoverDstRegs.push_back(PartDstReg);
2873   }
2874 
2875   MachineBasicBlock *MBB = MI.getParent();
2876   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2877   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2878 
2879   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2880 
2881   // Insert code to extract the incoming values in each predecessor block.
2882   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2883     PartRegs.clear();
2884     LeftoverRegs.clear();
2885 
2886     Register SrcReg = MI.getOperand(I).getReg();
2887     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2888     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2889 
2890     LLT Unused;
2891     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2892                       LeftoverRegs))
2893       return UnableToLegalize;
2894 
2895     // Add the newly created operand splits to the existing instructions. The
2896     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2897     // pieces.
2898     for (int J = 0; J != TotalNumParts; ++J) {
2899       MachineInstrBuilder MIB = NewInsts[J];
2900       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2901       MIB.addMBB(&OpMBB);
2902     }
2903   }
2904 
2905   MI.eraseFromParent();
2906   return Legalized;
2907 }
2908 
2909 LegalizerHelper::LegalizeResult
2910 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
2911                                                   unsigned TypeIdx,
2912                                                   LLT NarrowTy) {
2913   if (TypeIdx != 1)
2914     return UnableToLegalize;
2915 
2916   const int NumDst = MI.getNumOperands() - 1;
2917   const Register SrcReg = MI.getOperand(NumDst).getReg();
2918   LLT SrcTy = MRI.getType(SrcReg);
2919 
2920   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2921 
2922   // TODO: Create sequence of extracts.
2923   if (DstTy == NarrowTy)
2924     return UnableToLegalize;
2925 
2926   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
2927   if (DstTy == GCDTy) {
2928     // This would just be a copy of the same unmerge.
2929     // TODO: Create extracts, pad with undef and create intermediate merges.
2930     return UnableToLegalize;
2931   }
2932 
2933   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
2934   const int NumUnmerge = Unmerge->getNumOperands() - 1;
2935   const int PartsPerUnmerge = NumDst / NumUnmerge;
2936 
2937   for (int I = 0; I != NumUnmerge; ++I) {
2938     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
2939 
2940     for (int J = 0; J != PartsPerUnmerge; ++J)
2941       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
2942     MIB.addUse(Unmerge.getReg(I));
2943   }
2944 
2945   MI.eraseFromParent();
2946   return Legalized;
2947 }
2948 
2949 LegalizerHelper::LegalizeResult
2950 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
2951                                                 unsigned TypeIdx,
2952                                                 LLT NarrowTy) {
2953   assert(TypeIdx == 0 && "not a vector type index");
2954   Register DstReg = MI.getOperand(0).getReg();
2955   LLT DstTy = MRI.getType(DstReg);
2956   LLT SrcTy = DstTy.getElementType();
2957 
2958   int DstNumElts = DstTy.getNumElements();
2959   int NarrowNumElts = NarrowTy.getNumElements();
2960   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
2961   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
2962 
2963   SmallVector<Register, 8> ConcatOps;
2964   SmallVector<Register, 8> SubBuildVector;
2965 
2966   Register UndefReg;
2967   if (WidenedDstTy != DstTy)
2968     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
2969 
2970   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
2971   // necessary.
2972   //
2973   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
2974   //   -> <2 x s16>
2975   //
2976   // %4:_(s16) = G_IMPLICIT_DEF
2977   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
2978   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
2979   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
2980   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
2981   for (int I = 0; I != NumConcat; ++I) {
2982     for (int J = 0; J != NarrowNumElts; ++J) {
2983       int SrcIdx = NarrowNumElts * I + J;
2984 
2985       if (SrcIdx < DstNumElts) {
2986         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
2987         SubBuildVector.push_back(SrcReg);
2988       } else
2989         SubBuildVector.push_back(UndefReg);
2990     }
2991 
2992     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
2993     ConcatOps.push_back(BuildVec.getReg(0));
2994     SubBuildVector.clear();
2995   }
2996 
2997   if (DstTy == WidenedDstTy)
2998     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
2999   else {
3000     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3001     MIRBuilder.buildExtract(DstReg, Concat, 0);
3002   }
3003 
3004   MI.eraseFromParent();
3005   return Legalized;
3006 }
3007 
3008 LegalizerHelper::LegalizeResult
3009 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3010                                       LLT NarrowTy) {
3011   // FIXME: Don't know how to handle secondary types yet.
3012   if (TypeIdx != 0)
3013     return UnableToLegalize;
3014 
3015   MachineMemOperand *MMO = *MI.memoperands_begin();
3016 
3017   // This implementation doesn't work for atomics. Give up instead of doing
3018   // something invalid.
3019   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3020       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3021     return UnableToLegalize;
3022 
3023   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3024   Register ValReg = MI.getOperand(0).getReg();
3025   Register AddrReg = MI.getOperand(1).getReg();
3026   LLT ValTy = MRI.getType(ValReg);
3027 
3028   int NumParts = -1;
3029   int NumLeftover = -1;
3030   LLT LeftoverTy;
3031   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3032   if (IsLoad) {
3033     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3034   } else {
3035     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3036                      NarrowLeftoverRegs)) {
3037       NumParts = NarrowRegs.size();
3038       NumLeftover = NarrowLeftoverRegs.size();
3039     }
3040   }
3041 
3042   if (NumParts == -1)
3043     return UnableToLegalize;
3044 
3045   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3046 
3047   unsigned TotalSize = ValTy.getSizeInBits();
3048 
3049   // Split the load/store into PartTy sized pieces starting at Offset. If this
3050   // is a load, return the new registers in ValRegs. For a store, each elements
3051   // of ValRegs should be PartTy. Returns the next offset that needs to be
3052   // handled.
3053   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3054                              unsigned Offset) -> unsigned {
3055     MachineFunction &MF = MIRBuilder.getMF();
3056     unsigned PartSize = PartTy.getSizeInBits();
3057     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3058          Offset += PartSize, ++Idx) {
3059       unsigned ByteSize = PartSize / 8;
3060       unsigned ByteOffset = Offset / 8;
3061       Register NewAddrReg;
3062 
3063       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3064 
3065       MachineMemOperand *NewMMO =
3066         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3067 
3068       if (IsLoad) {
3069         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3070         ValRegs.push_back(Dst);
3071         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3072       } else {
3073         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3074       }
3075     }
3076 
3077     return Offset;
3078   };
3079 
3080   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3081 
3082   // Handle the rest of the register if this isn't an even type breakdown.
3083   if (LeftoverTy.isValid())
3084     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3085 
3086   if (IsLoad) {
3087     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3088                 LeftoverTy, NarrowLeftoverRegs);
3089   }
3090 
3091   MI.eraseFromParent();
3092   return Legalized;
3093 }
3094 
3095 LegalizerHelper::LegalizeResult
3096 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3097                                      LLT NarrowTy) {
3098   using namespace TargetOpcode;
3099 
3100   MIRBuilder.setInstr(MI);
3101   switch (MI.getOpcode()) {
3102   case G_IMPLICIT_DEF:
3103     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3104   case G_AND:
3105   case G_OR:
3106   case G_XOR:
3107   case G_ADD:
3108   case G_SUB:
3109   case G_MUL:
3110   case G_SMULH:
3111   case G_UMULH:
3112   case G_FADD:
3113   case G_FMUL:
3114   case G_FSUB:
3115   case G_FNEG:
3116   case G_FABS:
3117   case G_FCANONICALIZE:
3118   case G_FDIV:
3119   case G_FREM:
3120   case G_FMA:
3121   case G_FMAD:
3122   case G_FPOW:
3123   case G_FEXP:
3124   case G_FEXP2:
3125   case G_FLOG:
3126   case G_FLOG2:
3127   case G_FLOG10:
3128   case G_FNEARBYINT:
3129   case G_FCEIL:
3130   case G_FFLOOR:
3131   case G_FRINT:
3132   case G_INTRINSIC_ROUND:
3133   case G_INTRINSIC_TRUNC:
3134   case G_FCOS:
3135   case G_FSIN:
3136   case G_FSQRT:
3137   case G_BSWAP:
3138   case G_BITREVERSE:
3139   case G_SDIV:
3140   case G_UDIV:
3141   case G_SREM:
3142   case G_UREM:
3143   case G_SMIN:
3144   case G_SMAX:
3145   case G_UMIN:
3146   case G_UMAX:
3147   case G_FMINNUM:
3148   case G_FMAXNUM:
3149   case G_FMINNUM_IEEE:
3150   case G_FMAXNUM_IEEE:
3151   case G_FMINIMUM:
3152   case G_FMAXIMUM:
3153     return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
3154   case G_SHL:
3155   case G_LSHR:
3156   case G_ASHR:
3157   case G_CTLZ:
3158   case G_CTLZ_ZERO_UNDEF:
3159   case G_CTTZ:
3160   case G_CTTZ_ZERO_UNDEF:
3161   case G_CTPOP:
3162   case G_FCOPYSIGN:
3163     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3164   case G_ZEXT:
3165   case G_SEXT:
3166   case G_ANYEXT:
3167   case G_FPEXT:
3168   case G_FPTRUNC:
3169   case G_SITOFP:
3170   case G_UITOFP:
3171   case G_FPTOSI:
3172   case G_FPTOUI:
3173   case G_INTTOPTR:
3174   case G_PTRTOINT:
3175   case G_ADDRSPACE_CAST:
3176     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3177   case G_ICMP:
3178   case G_FCMP:
3179     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3180   case G_SELECT:
3181     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3182   case G_PHI:
3183     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3184   case G_UNMERGE_VALUES:
3185     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3186   case G_BUILD_VECTOR:
3187     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3188   case G_LOAD:
3189   case G_STORE:
3190     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3191   default:
3192     return UnableToLegalize;
3193   }
3194 }
3195 
3196 LegalizerHelper::LegalizeResult
3197 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3198                                              const LLT HalfTy, const LLT AmtTy) {
3199 
3200   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3201   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3202   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3203 
3204   if (Amt.isNullValue()) {
3205     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3206     MI.eraseFromParent();
3207     return Legalized;
3208   }
3209 
3210   LLT NVT = HalfTy;
3211   unsigned NVTBits = HalfTy.getSizeInBits();
3212   unsigned VTBits = 2 * NVTBits;
3213 
3214   SrcOp Lo(Register(0)), Hi(Register(0));
3215   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3216     if (Amt.ugt(VTBits)) {
3217       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3218     } else if (Amt.ugt(NVTBits)) {
3219       Lo = MIRBuilder.buildConstant(NVT, 0);
3220       Hi = MIRBuilder.buildShl(NVT, InL,
3221                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3222     } else if (Amt == NVTBits) {
3223       Lo = MIRBuilder.buildConstant(NVT, 0);
3224       Hi = InL;
3225     } else {
3226       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3227       auto OrLHS =
3228           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3229       auto OrRHS = MIRBuilder.buildLShr(
3230           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3231       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3232     }
3233   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3234     if (Amt.ugt(VTBits)) {
3235       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3236     } else if (Amt.ugt(NVTBits)) {
3237       Lo = MIRBuilder.buildLShr(NVT, InH,
3238                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3239       Hi = MIRBuilder.buildConstant(NVT, 0);
3240     } else if (Amt == NVTBits) {
3241       Lo = InH;
3242       Hi = MIRBuilder.buildConstant(NVT, 0);
3243     } else {
3244       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3245 
3246       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3247       auto OrRHS = MIRBuilder.buildShl(
3248           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3249 
3250       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3251       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3252     }
3253   } else {
3254     if (Amt.ugt(VTBits)) {
3255       Hi = Lo = MIRBuilder.buildAShr(
3256           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3257     } else if (Amt.ugt(NVTBits)) {
3258       Lo = MIRBuilder.buildAShr(NVT, InH,
3259                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3260       Hi = MIRBuilder.buildAShr(NVT, InH,
3261                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3262     } else if (Amt == NVTBits) {
3263       Lo = InH;
3264       Hi = MIRBuilder.buildAShr(NVT, InH,
3265                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3266     } else {
3267       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3268 
3269       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3270       auto OrRHS = MIRBuilder.buildShl(
3271           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3272 
3273       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3274       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3275     }
3276   }
3277 
3278   MIRBuilder.buildMerge(MI.getOperand(0), {Lo.getReg(), Hi.getReg()});
3279   MI.eraseFromParent();
3280 
3281   return Legalized;
3282 }
3283 
3284 // TODO: Optimize if constant shift amount.
3285 LegalizerHelper::LegalizeResult
3286 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3287                                    LLT RequestedTy) {
3288   if (TypeIdx == 1) {
3289     Observer.changingInstr(MI);
3290     narrowScalarSrc(MI, RequestedTy, 2);
3291     Observer.changedInstr(MI);
3292     return Legalized;
3293   }
3294 
3295   Register DstReg = MI.getOperand(0).getReg();
3296   LLT DstTy = MRI.getType(DstReg);
3297   if (DstTy.isVector())
3298     return UnableToLegalize;
3299 
3300   Register Amt = MI.getOperand(2).getReg();
3301   LLT ShiftAmtTy = MRI.getType(Amt);
3302   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3303   if (DstEltSize % 2 != 0)
3304     return UnableToLegalize;
3305 
3306   // Ignore the input type. We can only go to exactly half the size of the
3307   // input. If that isn't small enough, the resulting pieces will be further
3308   // legalized.
3309   const unsigned NewBitSize = DstEltSize / 2;
3310   const LLT HalfTy = LLT::scalar(NewBitSize);
3311   const LLT CondTy = LLT::scalar(1);
3312 
3313   if (const MachineInstr *KShiftAmt =
3314           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3315     return narrowScalarShiftByConstant(
3316         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3317   }
3318 
3319   // TODO: Expand with known bits.
3320 
3321   // Handle the fully general expansion by an unknown amount.
3322   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3323 
3324   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3325   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3326   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3327 
3328   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3329   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3330 
3331   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3332   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3333   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3334 
3335   Register ResultRegs[2];
3336   switch (MI.getOpcode()) {
3337   case TargetOpcode::G_SHL: {
3338     // Short: ShAmt < NewBitSize
3339     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3340 
3341     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3342     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3343     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3344 
3345     // Long: ShAmt >= NewBitSize
3346     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3347     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3348 
3349     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3350     auto Hi = MIRBuilder.buildSelect(
3351         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3352 
3353     ResultRegs[0] = Lo.getReg(0);
3354     ResultRegs[1] = Hi.getReg(0);
3355     break;
3356   }
3357   case TargetOpcode::G_LSHR:
3358   case TargetOpcode::G_ASHR: {
3359     // Short: ShAmt < NewBitSize
3360     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3361 
3362     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3363     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3364     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3365 
3366     // Long: ShAmt >= NewBitSize
3367     MachineInstrBuilder HiL;
3368     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3369       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3370     } else {
3371       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3372       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3373     }
3374     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3375                                      {InH, AmtExcess});     // Lo from Hi part.
3376 
3377     auto Lo = MIRBuilder.buildSelect(
3378         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3379 
3380     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3381 
3382     ResultRegs[0] = Lo.getReg(0);
3383     ResultRegs[1] = Hi.getReg(0);
3384     break;
3385   }
3386   default:
3387     llvm_unreachable("not a shift");
3388   }
3389 
3390   MIRBuilder.buildMerge(DstReg, ResultRegs);
3391   MI.eraseFromParent();
3392   return Legalized;
3393 }
3394 
3395 LegalizerHelper::LegalizeResult
3396 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3397                                        LLT MoreTy) {
3398   assert(TypeIdx == 0 && "Expecting only Idx 0");
3399 
3400   Observer.changingInstr(MI);
3401   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3402     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3403     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3404     moreElementsVectorSrc(MI, MoreTy, I);
3405   }
3406 
3407   MachineBasicBlock &MBB = *MI.getParent();
3408   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3409   moreElementsVectorDst(MI, MoreTy, 0);
3410   Observer.changedInstr(MI);
3411   return Legalized;
3412 }
3413 
3414 LegalizerHelper::LegalizeResult
3415 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3416                                     LLT MoreTy) {
3417   MIRBuilder.setInstr(MI);
3418   unsigned Opc = MI.getOpcode();
3419   switch (Opc) {
3420   case TargetOpcode::G_IMPLICIT_DEF:
3421   case TargetOpcode::G_LOAD: {
3422     if (TypeIdx != 0)
3423       return UnableToLegalize;
3424     Observer.changingInstr(MI);
3425     moreElementsVectorDst(MI, MoreTy, 0);
3426     Observer.changedInstr(MI);
3427     return Legalized;
3428   }
3429   case TargetOpcode::G_STORE:
3430     if (TypeIdx != 0)
3431       return UnableToLegalize;
3432     Observer.changingInstr(MI);
3433     moreElementsVectorSrc(MI, MoreTy, 0);
3434     Observer.changedInstr(MI);
3435     return Legalized;
3436   case TargetOpcode::G_AND:
3437   case TargetOpcode::G_OR:
3438   case TargetOpcode::G_XOR:
3439   case TargetOpcode::G_SMIN:
3440   case TargetOpcode::G_SMAX:
3441   case TargetOpcode::G_UMIN:
3442   case TargetOpcode::G_UMAX:
3443   case TargetOpcode::G_FMINNUM:
3444   case TargetOpcode::G_FMAXNUM:
3445   case TargetOpcode::G_FMINNUM_IEEE:
3446   case TargetOpcode::G_FMAXNUM_IEEE:
3447   case TargetOpcode::G_FMINIMUM:
3448   case TargetOpcode::G_FMAXIMUM: {
3449     Observer.changingInstr(MI);
3450     moreElementsVectorSrc(MI, MoreTy, 1);
3451     moreElementsVectorSrc(MI, MoreTy, 2);
3452     moreElementsVectorDst(MI, MoreTy, 0);
3453     Observer.changedInstr(MI);
3454     return Legalized;
3455   }
3456   case TargetOpcode::G_EXTRACT:
3457     if (TypeIdx != 1)
3458       return UnableToLegalize;
3459     Observer.changingInstr(MI);
3460     moreElementsVectorSrc(MI, MoreTy, 1);
3461     Observer.changedInstr(MI);
3462     return Legalized;
3463   case TargetOpcode::G_INSERT:
3464     if (TypeIdx != 0)
3465       return UnableToLegalize;
3466     Observer.changingInstr(MI);
3467     moreElementsVectorSrc(MI, MoreTy, 1);
3468     moreElementsVectorDst(MI, MoreTy, 0);
3469     Observer.changedInstr(MI);
3470     return Legalized;
3471   case TargetOpcode::G_SELECT:
3472     if (TypeIdx != 0)
3473       return UnableToLegalize;
3474     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3475       return UnableToLegalize;
3476 
3477     Observer.changingInstr(MI);
3478     moreElementsVectorSrc(MI, MoreTy, 2);
3479     moreElementsVectorSrc(MI, MoreTy, 3);
3480     moreElementsVectorDst(MI, MoreTy, 0);
3481     Observer.changedInstr(MI);
3482     return Legalized;
3483   case TargetOpcode::G_UNMERGE_VALUES: {
3484     if (TypeIdx != 1)
3485       return UnableToLegalize;
3486 
3487     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3488     int NumDst = MI.getNumOperands() - 1;
3489     moreElementsVectorSrc(MI, MoreTy, NumDst);
3490 
3491     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3492     for (int I = 0; I != NumDst; ++I)
3493       MIB.addDef(MI.getOperand(I).getReg());
3494 
3495     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3496     for (int I = NumDst; I != NewNumDst; ++I)
3497       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3498 
3499     MIB.addUse(MI.getOperand(NumDst).getReg());
3500     MI.eraseFromParent();
3501     return Legalized;
3502   }
3503   case TargetOpcode::G_PHI:
3504     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3505   default:
3506     return UnableToLegalize;
3507   }
3508 }
3509 
3510 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3511                                         ArrayRef<Register> Src1Regs,
3512                                         ArrayRef<Register> Src2Regs,
3513                                         LLT NarrowTy) {
3514   MachineIRBuilder &B = MIRBuilder;
3515   unsigned SrcParts = Src1Regs.size();
3516   unsigned DstParts = DstRegs.size();
3517 
3518   unsigned DstIdx = 0; // Low bits of the result.
3519   Register FactorSum =
3520       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3521   DstRegs[DstIdx] = FactorSum;
3522 
3523   unsigned CarrySumPrevDstIdx;
3524   SmallVector<Register, 4> Factors;
3525 
3526   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3527     // Collect low parts of muls for DstIdx.
3528     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3529          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3530       MachineInstrBuilder Mul =
3531           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3532       Factors.push_back(Mul.getReg(0));
3533     }
3534     // Collect high parts of muls from previous DstIdx.
3535     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3536          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3537       MachineInstrBuilder Umulh =
3538           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3539       Factors.push_back(Umulh.getReg(0));
3540     }
3541     // Add CarrySum from additions calculated for previous DstIdx.
3542     if (DstIdx != 1) {
3543       Factors.push_back(CarrySumPrevDstIdx);
3544     }
3545 
3546     Register CarrySum;
3547     // Add all factors and accumulate all carries into CarrySum.
3548     if (DstIdx != DstParts - 1) {
3549       MachineInstrBuilder Uaddo =
3550           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3551       FactorSum = Uaddo.getReg(0);
3552       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3553       for (unsigned i = 2; i < Factors.size(); ++i) {
3554         MachineInstrBuilder Uaddo =
3555             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3556         FactorSum = Uaddo.getReg(0);
3557         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3558         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3559       }
3560     } else {
3561       // Since value for the next index is not calculated, neither is CarrySum.
3562       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3563       for (unsigned i = 2; i < Factors.size(); ++i)
3564         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3565     }
3566 
3567     CarrySumPrevDstIdx = CarrySum;
3568     DstRegs[DstIdx] = FactorSum;
3569     Factors.clear();
3570   }
3571 }
3572 
3573 LegalizerHelper::LegalizeResult
3574 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3575   Register DstReg = MI.getOperand(0).getReg();
3576   Register Src1 = MI.getOperand(1).getReg();
3577   Register Src2 = MI.getOperand(2).getReg();
3578 
3579   LLT Ty = MRI.getType(DstReg);
3580   if (Ty.isVector())
3581     return UnableToLegalize;
3582 
3583   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3584   unsigned DstSize = Ty.getSizeInBits();
3585   unsigned NarrowSize = NarrowTy.getSizeInBits();
3586   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3587     return UnableToLegalize;
3588 
3589   unsigned NumDstParts = DstSize / NarrowSize;
3590   unsigned NumSrcParts = SrcSize / NarrowSize;
3591   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3592   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3593 
3594   SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs;
3595   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3596   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3597   DstTmpRegs.resize(DstTmpParts);
3598   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3599 
3600   // Take only high half of registers if this is high mul.
3601   ArrayRef<Register> DstRegs(
3602       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3603   MIRBuilder.buildMerge(DstReg, DstRegs);
3604   MI.eraseFromParent();
3605   return Legalized;
3606 }
3607 
3608 LegalizerHelper::LegalizeResult
3609 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3610                                      LLT NarrowTy) {
3611   if (TypeIdx != 1)
3612     return UnableToLegalize;
3613 
3614   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3615 
3616   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3617   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3618   // NarrowSize.
3619   if (SizeOp1 % NarrowSize != 0)
3620     return UnableToLegalize;
3621   int NumParts = SizeOp1 / NarrowSize;
3622 
3623   SmallVector<Register, 2> SrcRegs, DstRegs;
3624   SmallVector<uint64_t, 2> Indexes;
3625   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3626 
3627   Register OpReg = MI.getOperand(0).getReg();
3628   uint64_t OpStart = MI.getOperand(2).getImm();
3629   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3630   for (int i = 0; i < NumParts; ++i) {
3631     unsigned SrcStart = i * NarrowSize;
3632 
3633     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3634       // No part of the extract uses this subregister, ignore it.
3635       continue;
3636     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3637       // The entire subregister is extracted, forward the value.
3638       DstRegs.push_back(SrcRegs[i]);
3639       continue;
3640     }
3641 
3642     // OpSegStart is where this destination segment would start in OpReg if it
3643     // extended infinitely in both directions.
3644     int64_t ExtractOffset;
3645     uint64_t SegSize;
3646     if (OpStart < SrcStart) {
3647       ExtractOffset = 0;
3648       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3649     } else {
3650       ExtractOffset = OpStart - SrcStart;
3651       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3652     }
3653 
3654     Register SegReg = SrcRegs[i];
3655     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3656       // A genuine extract is needed.
3657       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3658       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3659     }
3660 
3661     DstRegs.push_back(SegReg);
3662   }
3663 
3664   Register DstReg = MI.getOperand(0).getReg();
3665   if(MRI.getType(DstReg).isVector())
3666     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3667   else
3668     MIRBuilder.buildMerge(DstReg, DstRegs);
3669   MI.eraseFromParent();
3670   return Legalized;
3671 }
3672 
3673 LegalizerHelper::LegalizeResult
3674 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3675                                     LLT NarrowTy) {
3676   // FIXME: Don't know how to handle secondary types yet.
3677   if (TypeIdx != 0)
3678     return UnableToLegalize;
3679 
3680   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3681   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3682 
3683   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3684   // NarrowSize.
3685   if (SizeOp0 % NarrowSize != 0)
3686     return UnableToLegalize;
3687 
3688   int NumParts = SizeOp0 / NarrowSize;
3689 
3690   SmallVector<Register, 2> SrcRegs, DstRegs;
3691   SmallVector<uint64_t, 2> Indexes;
3692   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3693 
3694   Register OpReg = MI.getOperand(2).getReg();
3695   uint64_t OpStart = MI.getOperand(3).getImm();
3696   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3697   for (int i = 0; i < NumParts; ++i) {
3698     unsigned DstStart = i * NarrowSize;
3699 
3700     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3701       // No part of the insert affects this subregister, forward the original.
3702       DstRegs.push_back(SrcRegs[i]);
3703       continue;
3704     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3705       // The entire subregister is defined by this insert, forward the new
3706       // value.
3707       DstRegs.push_back(OpReg);
3708       continue;
3709     }
3710 
3711     // OpSegStart is where this destination segment would start in OpReg if it
3712     // extended infinitely in both directions.
3713     int64_t ExtractOffset, InsertOffset;
3714     uint64_t SegSize;
3715     if (OpStart < DstStart) {
3716       InsertOffset = 0;
3717       ExtractOffset = DstStart - OpStart;
3718       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3719     } else {
3720       InsertOffset = OpStart - DstStart;
3721       ExtractOffset = 0;
3722       SegSize =
3723         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3724     }
3725 
3726     Register SegReg = OpReg;
3727     if (ExtractOffset != 0 || SegSize != OpSize) {
3728       // A genuine extract is needed.
3729       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3730       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3731     }
3732 
3733     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3734     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3735     DstRegs.push_back(DstReg);
3736   }
3737 
3738   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3739   Register DstReg = MI.getOperand(0).getReg();
3740   if(MRI.getType(DstReg).isVector())
3741     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3742   else
3743     MIRBuilder.buildMerge(DstReg, DstRegs);
3744   MI.eraseFromParent();
3745   return Legalized;
3746 }
3747 
3748 LegalizerHelper::LegalizeResult
3749 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3750                                    LLT NarrowTy) {
3751   Register DstReg = MI.getOperand(0).getReg();
3752   LLT DstTy = MRI.getType(DstReg);
3753 
3754   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3755 
3756   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3757   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3758   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3759   LLT LeftoverTy;
3760   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3761                     Src0Regs, Src0LeftoverRegs))
3762     return UnableToLegalize;
3763 
3764   LLT Unused;
3765   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3766                     Src1Regs, Src1LeftoverRegs))
3767     llvm_unreachable("inconsistent extractParts result");
3768 
3769   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3770     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3771                                         {Src0Regs[I], Src1Regs[I]});
3772     DstRegs.push_back(Inst->getOperand(0).getReg());
3773   }
3774 
3775   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3776     auto Inst = MIRBuilder.buildInstr(
3777       MI.getOpcode(),
3778       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3779     DstLeftoverRegs.push_back(Inst->getOperand(0).getReg());
3780   }
3781 
3782   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3783               LeftoverTy, DstLeftoverRegs);
3784 
3785   MI.eraseFromParent();
3786   return Legalized;
3787 }
3788 
3789 LegalizerHelper::LegalizeResult
3790 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
3791                                  LLT NarrowTy) {
3792   if (TypeIdx != 0)
3793     return UnableToLegalize;
3794 
3795   Register DstReg = MI.getOperand(0).getReg();
3796   Register SrcReg = MI.getOperand(1).getReg();
3797 
3798   LLT DstTy = MRI.getType(DstReg);
3799   if (DstTy.isVector())
3800     return UnableToLegalize;
3801 
3802   SmallVector<Register, 8> Parts;
3803   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3804   buildLCMMerge(DstReg, NarrowTy, GCDTy, Parts, MI.getOpcode());
3805   MI.eraseFromParent();
3806   return Legalized;
3807 }
3808 
3809 LegalizerHelper::LegalizeResult
3810 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
3811                                     LLT NarrowTy) {
3812   if (TypeIdx != 0)
3813     return UnableToLegalize;
3814 
3815   Register CondReg = MI.getOperand(1).getReg();
3816   LLT CondTy = MRI.getType(CondReg);
3817   if (CondTy.isVector()) // TODO: Handle vselect
3818     return UnableToLegalize;
3819 
3820   Register DstReg = MI.getOperand(0).getReg();
3821   LLT DstTy = MRI.getType(DstReg);
3822 
3823   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3824   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3825   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
3826   LLT LeftoverTy;
3827   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
3828                     Src1Regs, Src1LeftoverRegs))
3829     return UnableToLegalize;
3830 
3831   LLT Unused;
3832   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
3833                     Src2Regs, Src2LeftoverRegs))
3834     llvm_unreachable("inconsistent extractParts result");
3835 
3836   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3837     auto Select = MIRBuilder.buildSelect(NarrowTy,
3838                                          CondReg, Src1Regs[I], Src2Regs[I]);
3839     DstRegs.push_back(Select->getOperand(0).getReg());
3840   }
3841 
3842   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3843     auto Select = MIRBuilder.buildSelect(
3844       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
3845     DstLeftoverRegs.push_back(Select->getOperand(0).getReg());
3846   }
3847 
3848   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3849               LeftoverTy, DstLeftoverRegs);
3850 
3851   MI.eraseFromParent();
3852   return Legalized;
3853 }
3854 
3855 LegalizerHelper::LegalizeResult
3856 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3857   unsigned Opc = MI.getOpcode();
3858   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
3859   auto isSupported = [this](const LegalityQuery &Q) {
3860     auto QAction = LI.getAction(Q).Action;
3861     return QAction == Legal || QAction == Libcall || QAction == Custom;
3862   };
3863   switch (Opc) {
3864   default:
3865     return UnableToLegalize;
3866   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
3867     // This trivially expands to CTLZ.
3868     Observer.changingInstr(MI);
3869     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
3870     Observer.changedInstr(MI);
3871     return Legalized;
3872   }
3873   case TargetOpcode::G_CTLZ: {
3874     Register SrcReg = MI.getOperand(1).getReg();
3875     unsigned Len = Ty.getSizeInBits();
3876     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) {
3877       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
3878       auto MIBCtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(Ty, SrcReg);
3879       auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
3880       auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
3881       auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3882                                           SrcReg, MIBZero);
3883       MIRBuilder.buildSelect(MI.getOperand(0), MIBICmp, MIBLen, MIBCtlzZU);
3884       MI.eraseFromParent();
3885       return Legalized;
3886     }
3887     // for now, we do this:
3888     // NewLen = NextPowerOf2(Len);
3889     // x = x | (x >> 1);
3890     // x = x | (x >> 2);
3891     // ...
3892     // x = x | (x >>16);
3893     // x = x | (x >>32); // for 64-bit input
3894     // Upto NewLen/2
3895     // return Len - popcount(x);
3896     //
3897     // Ref: "Hacker's Delight" by Henry Warren
3898     Register Op = SrcReg;
3899     unsigned NewLen = PowerOf2Ceil(Len);
3900     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
3901       auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i);
3902       auto MIBOp =
3903           MIRBuilder.buildOr(Ty, Op, MIRBuilder.buildLShr(Ty, Op, MIBShiftAmt));
3904       Op = MIBOp->getOperand(0).getReg();
3905     }
3906     auto MIBPop = MIRBuilder.buildCTPOP(Ty, Op);
3907     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(Ty, Len),
3908                         MIBPop);
3909     MI.eraseFromParent();
3910     return Legalized;
3911   }
3912   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
3913     // This trivially expands to CTTZ.
3914     Observer.changingInstr(MI);
3915     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
3916     Observer.changedInstr(MI);
3917     return Legalized;
3918   }
3919   case TargetOpcode::G_CTTZ: {
3920     Register SrcReg = MI.getOperand(1).getReg();
3921     unsigned Len = Ty.getSizeInBits();
3922     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) {
3923       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
3924       // zero.
3925       auto MIBCttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(Ty, SrcReg);
3926       auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
3927       auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
3928       auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3929                                           SrcReg, MIBZero);
3930       MIRBuilder.buildSelect(MI.getOperand(0), MIBICmp, MIBLen, MIBCttzZU);
3931       MI.eraseFromParent();
3932       return Legalized;
3933     }
3934     // for now, we use: { return popcount(~x & (x - 1)); }
3935     // unless the target has ctlz but not ctpop, in which case we use:
3936     // { return 32 - nlz(~x & (x-1)); }
3937     // Ref: "Hacker's Delight" by Henry Warren
3938     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
3939     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
3940     auto MIBTmp = MIRBuilder.buildAnd(
3941         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
3942     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
3943         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
3944       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
3945       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
3946                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
3947       MI.eraseFromParent();
3948       return Legalized;
3949     }
3950     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
3951     MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg());
3952     return Legalized;
3953   }
3954   }
3955 }
3956 
3957 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
3958 // representation.
3959 LegalizerHelper::LegalizeResult
3960 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
3961   Register Dst = MI.getOperand(0).getReg();
3962   Register Src = MI.getOperand(1).getReg();
3963   const LLT S64 = LLT::scalar(64);
3964   const LLT S32 = LLT::scalar(32);
3965   const LLT S1 = LLT::scalar(1);
3966 
3967   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
3968 
3969   // unsigned cul2f(ulong u) {
3970   //   uint lz = clz(u);
3971   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
3972   //   u = (u << lz) & 0x7fffffffffffffffUL;
3973   //   ulong t = u & 0xffffffffffUL;
3974   //   uint v = (e << 23) | (uint)(u >> 40);
3975   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
3976   //   return as_float(v + r);
3977   // }
3978 
3979   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
3980   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
3981 
3982   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
3983 
3984   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
3985   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
3986 
3987   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
3988   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
3989 
3990   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
3991   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
3992 
3993   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
3994 
3995   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
3996   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
3997 
3998   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
3999   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4000   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4001 
4002   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4003   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4004   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4005   auto One = MIRBuilder.buildConstant(S32, 1);
4006 
4007   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4008   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4009   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4010   MIRBuilder.buildAdd(Dst, V, R);
4011 
4012   return Legalized;
4013 }
4014 
4015 LegalizerHelper::LegalizeResult
4016 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4017   Register Dst = MI.getOperand(0).getReg();
4018   Register Src = MI.getOperand(1).getReg();
4019   LLT DstTy = MRI.getType(Dst);
4020   LLT SrcTy = MRI.getType(Src);
4021 
4022   if (SrcTy == LLT::scalar(1)) {
4023     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4024     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4025     MIRBuilder.buildSelect(Dst, Src, True, False);
4026     MI.eraseFromParent();
4027     return Legalized;
4028   }
4029 
4030   if (SrcTy != LLT::scalar(64))
4031     return UnableToLegalize;
4032 
4033   if (DstTy == LLT::scalar(32)) {
4034     // TODO: SelectionDAG has several alternative expansions to port which may
4035     // be more reasonble depending on the available instructions. If a target
4036     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4037     // intermediate type, this is probably worse.
4038     return lowerU64ToF32BitOps(MI);
4039   }
4040 
4041   return UnableToLegalize;
4042 }
4043 
4044 LegalizerHelper::LegalizeResult
4045 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4046   Register Dst = MI.getOperand(0).getReg();
4047   Register Src = MI.getOperand(1).getReg();
4048   LLT DstTy = MRI.getType(Dst);
4049   LLT SrcTy = MRI.getType(Src);
4050 
4051   const LLT S64 = LLT::scalar(64);
4052   const LLT S32 = LLT::scalar(32);
4053   const LLT S1 = LLT::scalar(1);
4054 
4055   if (SrcTy == S1) {
4056     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4057     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4058     MIRBuilder.buildSelect(Dst, Src, True, False);
4059     MI.eraseFromParent();
4060     return Legalized;
4061   }
4062 
4063   if (SrcTy != S64)
4064     return UnableToLegalize;
4065 
4066   if (DstTy == S32) {
4067     // signed cl2f(long l) {
4068     //   long s = l >> 63;
4069     //   float r = cul2f((l + s) ^ s);
4070     //   return s ? -r : r;
4071     // }
4072     Register L = Src;
4073     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4074     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4075 
4076     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4077     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4078     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4079 
4080     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4081     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4082                                             MIRBuilder.buildConstant(S64, 0));
4083     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4084     return Legalized;
4085   }
4086 
4087   return UnableToLegalize;
4088 }
4089 
4090 LegalizerHelper::LegalizeResult
4091 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4092   Register Dst = MI.getOperand(0).getReg();
4093   Register Src = MI.getOperand(1).getReg();
4094   LLT DstTy = MRI.getType(Dst);
4095   LLT SrcTy = MRI.getType(Src);
4096   const LLT S64 = LLT::scalar(64);
4097   const LLT S32 = LLT::scalar(32);
4098 
4099   if (SrcTy != S64 && SrcTy != S32)
4100     return UnableToLegalize;
4101   if (DstTy != S32 && DstTy != S64)
4102     return UnableToLegalize;
4103 
4104   // FPTOSI gives same result as FPTOUI for positive signed integers.
4105   // FPTOUI needs to deal with fp values that convert to unsigned integers
4106   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4107 
4108   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4109   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4110                                                 : APFloat::IEEEdouble(),
4111                     APInt::getNullValue(SrcTy.getSizeInBits()));
4112   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4113 
4114   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4115 
4116   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4117   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4118   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4119   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4120   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4121   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4122   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4123 
4124   const LLT S1 = LLT::scalar(1);
4125 
4126   MachineInstrBuilder FCMP =
4127       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4128   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4129 
4130   MI.eraseFromParent();
4131   return Legalized;
4132 }
4133 
4134 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4135   switch (Opc) {
4136   case TargetOpcode::G_SMIN:
4137     return CmpInst::ICMP_SLT;
4138   case TargetOpcode::G_SMAX:
4139     return CmpInst::ICMP_SGT;
4140   case TargetOpcode::G_UMIN:
4141     return CmpInst::ICMP_ULT;
4142   case TargetOpcode::G_UMAX:
4143     return CmpInst::ICMP_UGT;
4144   default:
4145     llvm_unreachable("not in integer min/max");
4146   }
4147 }
4148 
4149 LegalizerHelper::LegalizeResult
4150 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4151   Register Dst = MI.getOperand(0).getReg();
4152   Register Src0 = MI.getOperand(1).getReg();
4153   Register Src1 = MI.getOperand(2).getReg();
4154 
4155   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4156   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4157 
4158   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4159   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4160 
4161   MI.eraseFromParent();
4162   return Legalized;
4163 }
4164 
4165 LegalizerHelper::LegalizeResult
4166 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4167   Register Dst = MI.getOperand(0).getReg();
4168   Register Src0 = MI.getOperand(1).getReg();
4169   Register Src1 = MI.getOperand(2).getReg();
4170 
4171   const LLT Src0Ty = MRI.getType(Src0);
4172   const LLT Src1Ty = MRI.getType(Src1);
4173 
4174   const int Src0Size = Src0Ty.getScalarSizeInBits();
4175   const int Src1Size = Src1Ty.getScalarSizeInBits();
4176 
4177   auto SignBitMask = MIRBuilder.buildConstant(
4178     Src0Ty, APInt::getSignMask(Src0Size));
4179 
4180   auto NotSignBitMask = MIRBuilder.buildConstant(
4181     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4182 
4183   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4184   MachineInstr *Or;
4185 
4186   if (Src0Ty == Src1Ty) {
4187     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask);
4188     Or = MIRBuilder.buildOr(Dst, And0, And1);
4189   } else if (Src0Size > Src1Size) {
4190     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4191     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4192     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4193     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4194     Or = MIRBuilder.buildOr(Dst, And0, And1);
4195   } else {
4196     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4197     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4198     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4199     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4200     Or = MIRBuilder.buildOr(Dst, And0, And1);
4201   }
4202 
4203   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4204   // constants are a nan and -0.0, but the final result should preserve
4205   // everything.
4206   if (unsigned Flags = MI.getFlags())
4207     Or->setFlags(Flags);
4208 
4209   MI.eraseFromParent();
4210   return Legalized;
4211 }
4212 
4213 LegalizerHelper::LegalizeResult
4214 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4215   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4216     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4217 
4218   Register Dst = MI.getOperand(0).getReg();
4219   Register Src0 = MI.getOperand(1).getReg();
4220   Register Src1 = MI.getOperand(2).getReg();
4221   LLT Ty = MRI.getType(Dst);
4222 
4223   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4224     // Insert canonicalizes if it's possible we need to quiet to get correct
4225     // sNaN behavior.
4226 
4227     // Note this must be done here, and not as an optimization combine in the
4228     // absence of a dedicate quiet-snan instruction as we're using an
4229     // omni-purpose G_FCANONICALIZE.
4230     if (!isKnownNeverSNaN(Src0, MRI))
4231       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4232 
4233     if (!isKnownNeverSNaN(Src1, MRI))
4234       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4235   }
4236 
4237   // If there are no nans, it's safe to simply replace this with the non-IEEE
4238   // version.
4239   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4240   MI.eraseFromParent();
4241   return Legalized;
4242 }
4243 
4244 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4245   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4246   Register DstReg = MI.getOperand(0).getReg();
4247   LLT Ty = MRI.getType(DstReg);
4248   unsigned Flags = MI.getFlags();
4249 
4250   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4251                                   Flags);
4252   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4253   MI.eraseFromParent();
4254   return Legalized;
4255 }
4256 
4257 LegalizerHelper::LegalizeResult
4258 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4259   Register DstReg = MI.getOperand(0).getReg();
4260   Register SrcReg = MI.getOperand(1).getReg();
4261   unsigned Flags = MI.getFlags();
4262   LLT Ty = MRI.getType(DstReg);
4263   const LLT CondTy = Ty.changeElementSize(1);
4264 
4265   // result = trunc(src);
4266   // if (src < 0.0 && src != result)
4267   //   result += -1.0.
4268 
4269   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4270   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4271 
4272   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4273                                   SrcReg, Zero, Flags);
4274   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4275                                       SrcReg, Trunc, Flags);
4276   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4277   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4278 
4279   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal);
4280   MI.eraseFromParent();
4281   return Legalized;
4282 }
4283 
4284 LegalizerHelper::LegalizeResult
4285 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4286   const unsigned NumDst = MI.getNumOperands() - 1;
4287   const Register SrcReg = MI.getOperand(NumDst).getReg();
4288   LLT SrcTy = MRI.getType(SrcReg);
4289 
4290   Register Dst0Reg = MI.getOperand(0).getReg();
4291   LLT DstTy = MRI.getType(Dst0Reg);
4292 
4293 
4294   // Expand scalarizing unmerge as bitcast to integer and shift.
4295   if (!DstTy.isVector() && SrcTy.isVector() &&
4296       SrcTy.getElementType() == DstTy) {
4297     LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
4298     Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
4299 
4300     MIRBuilder.buildTrunc(Dst0Reg, Cast);
4301 
4302     const unsigned DstSize = DstTy.getSizeInBits();
4303     unsigned Offset = DstSize;
4304     for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4305       auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4306       auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
4307       MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4308     }
4309 
4310     MI.eraseFromParent();
4311     return Legalized;
4312   }
4313 
4314   return UnableToLegalize;
4315 }
4316 
4317 LegalizerHelper::LegalizeResult
4318 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4319   Register DstReg = MI.getOperand(0).getReg();
4320   Register Src0Reg = MI.getOperand(1).getReg();
4321   Register Src1Reg = MI.getOperand(2).getReg();
4322   LLT Src0Ty = MRI.getType(Src0Reg);
4323   LLT DstTy = MRI.getType(DstReg);
4324   LLT IdxTy = LLT::scalar(32);
4325 
4326   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4327 
4328   if (DstTy.isScalar()) {
4329     if (Src0Ty.isVector())
4330       return UnableToLegalize;
4331 
4332     // This is just a SELECT.
4333     assert(Mask.size() == 1 && "Expected a single mask element");
4334     Register Val;
4335     if (Mask[0] < 0 || Mask[0] > 1)
4336       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4337     else
4338       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4339     MIRBuilder.buildCopy(DstReg, Val);
4340     MI.eraseFromParent();
4341     return Legalized;
4342   }
4343 
4344   Register Undef;
4345   SmallVector<Register, 32> BuildVec;
4346   LLT EltTy = DstTy.getElementType();
4347 
4348   for (int Idx : Mask) {
4349     if (Idx < 0) {
4350       if (!Undef.isValid())
4351         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
4352       BuildVec.push_back(Undef);
4353       continue;
4354     }
4355 
4356     if (Src0Ty.isScalar()) {
4357       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
4358     } else {
4359       int NumElts = Src0Ty.getNumElements();
4360       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
4361       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
4362       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
4363       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
4364       BuildVec.push_back(Extract.getReg(0));
4365     }
4366   }
4367 
4368   MIRBuilder.buildBuildVector(DstReg, BuildVec);
4369   MI.eraseFromParent();
4370   return Legalized;
4371 }
4372 
4373 LegalizerHelper::LegalizeResult
4374 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
4375   Register Dst = MI.getOperand(0).getReg();
4376   Register AllocSize = MI.getOperand(1).getReg();
4377   unsigned Align = MI.getOperand(2).getImm();
4378 
4379   const auto &MF = *MI.getMF();
4380   const auto &TLI = *MF.getSubtarget().getTargetLowering();
4381 
4382   LLT PtrTy = MRI.getType(Dst);
4383   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
4384 
4385   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
4386   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
4387   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
4388 
4389   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
4390   // have to generate an extra instruction to negate the alloc and then use
4391   // G_PTR_ADD to add the negative offset.
4392   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
4393   if (Align) {
4394     APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true);
4395     AlignMask.negate();
4396     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
4397     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
4398   }
4399 
4400   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
4401   MIRBuilder.buildCopy(SPReg, SPTmp);
4402   MIRBuilder.buildCopy(Dst, SPTmp);
4403 
4404   MI.eraseFromParent();
4405   return Legalized;
4406 }
4407 
4408 LegalizerHelper::LegalizeResult
4409 LegalizerHelper::lowerExtract(MachineInstr &MI) {
4410   Register Dst = MI.getOperand(0).getReg();
4411   Register Src = MI.getOperand(1).getReg();
4412   unsigned Offset = MI.getOperand(2).getImm();
4413 
4414   LLT DstTy = MRI.getType(Dst);
4415   LLT SrcTy = MRI.getType(Src);
4416 
4417   if (DstTy.isScalar() &&
4418       (SrcTy.isScalar() ||
4419        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
4420     LLT SrcIntTy = SrcTy;
4421     if (!SrcTy.isScalar()) {
4422       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
4423       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
4424     }
4425 
4426     if (Offset == 0)
4427       MIRBuilder.buildTrunc(Dst, Src);
4428     else {
4429       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
4430       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
4431       MIRBuilder.buildTrunc(Dst, Shr);
4432     }
4433 
4434     MI.eraseFromParent();
4435     return Legalized;
4436   }
4437 
4438   return UnableToLegalize;
4439 }
4440 
4441 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
4442   Register Dst = MI.getOperand(0).getReg();
4443   Register Src = MI.getOperand(1).getReg();
4444   Register InsertSrc = MI.getOperand(2).getReg();
4445   uint64_t Offset = MI.getOperand(3).getImm();
4446 
4447   LLT DstTy = MRI.getType(Src);
4448   LLT InsertTy = MRI.getType(InsertSrc);
4449 
4450   if (InsertTy.isScalar() &&
4451       (DstTy.isScalar() ||
4452        (DstTy.isVector() && DstTy.getElementType() == InsertTy))) {
4453     LLT IntDstTy = DstTy;
4454     if (!DstTy.isScalar()) {
4455       IntDstTy = LLT::scalar(DstTy.getSizeInBits());
4456       Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0);
4457     }
4458 
4459     Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
4460     if (Offset != 0) {
4461       auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
4462       ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
4463     }
4464 
4465     APInt MaskVal = ~APInt::getBitsSet(DstTy.getSizeInBits(), Offset,
4466                                        InsertTy.getSizeInBits());
4467 
4468     auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
4469     auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
4470     auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
4471 
4472     MIRBuilder.buildBitcast(Dst, Or);
4473     MI.eraseFromParent();
4474     return Legalized;
4475   }
4476 
4477   return UnableToLegalize;
4478 }
4479 
4480 LegalizerHelper::LegalizeResult
4481 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
4482   Register Dst0 = MI.getOperand(0).getReg();
4483   Register Dst1 = MI.getOperand(1).getReg();
4484   Register LHS = MI.getOperand(2).getReg();
4485   Register RHS = MI.getOperand(3).getReg();
4486   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
4487 
4488   LLT Ty = MRI.getType(Dst0);
4489   LLT BoolTy = MRI.getType(Dst1);
4490 
4491   if (IsAdd)
4492     MIRBuilder.buildAdd(Dst0, LHS, RHS);
4493   else
4494     MIRBuilder.buildSub(Dst0, LHS, RHS);
4495 
4496   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
4497 
4498   auto Zero = MIRBuilder.buildConstant(Ty, 0);
4499 
4500   // For an addition, the result should be less than one of the operands (LHS)
4501   // if and only if the other operand (RHS) is negative, otherwise there will
4502   // be overflow.
4503   // For a subtraction, the result should be less than one of the operands
4504   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
4505   // otherwise there will be overflow.
4506   auto ResultLowerThanLHS =
4507       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
4508   auto ConditionRHS = MIRBuilder.buildICmp(
4509       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
4510 
4511   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
4512   MI.eraseFromParent();
4513   return Legalized;
4514 }
4515 
4516 LegalizerHelper::LegalizeResult
4517 LegalizerHelper::lowerBswap(MachineInstr &MI) {
4518   Register Dst = MI.getOperand(0).getReg();
4519   Register Src = MI.getOperand(1).getReg();
4520   const LLT Ty = MRI.getType(Src);
4521   unsigned SizeInBytes = Ty.getSizeInBytes();
4522   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
4523 
4524   // Swap most and least significant byte, set remaining bytes in Res to zero.
4525   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
4526   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
4527   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
4528   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
4529 
4530   // Set i-th high/low byte in Res to i-th low/high byte from Src.
4531   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
4532     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
4533     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
4534     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
4535     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
4536     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
4537     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
4538     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
4539     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
4540     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
4541     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
4542     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
4543     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
4544   }
4545   Res.getInstr()->getOperand(0).setReg(Dst);
4546 
4547   MI.eraseFromParent();
4548   return Legalized;
4549 }
4550 
4551 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
4552 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
4553                                  MachineInstrBuilder Src, APInt Mask) {
4554   const LLT Ty = Dst.getLLTTy(*B.getMRI());
4555   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
4556   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
4557   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
4558   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
4559   return B.buildOr(Dst, LHS, RHS);
4560 }
4561 
4562 LegalizerHelper::LegalizeResult
4563 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
4564   Register Dst = MI.getOperand(0).getReg();
4565   Register Src = MI.getOperand(1).getReg();
4566   const LLT Ty = MRI.getType(Src);
4567   unsigned Size = Ty.getSizeInBits();
4568 
4569   MachineInstrBuilder BSWAP =
4570       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
4571 
4572   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
4573   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
4574   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
4575   MachineInstrBuilder Swap4 =
4576       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
4577 
4578   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
4579   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
4580   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
4581   MachineInstrBuilder Swap2 =
4582       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
4583 
4584   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
4585   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
4586   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
4587   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
4588 
4589   MI.eraseFromParent();
4590   return Legalized;
4591 }
4592 
4593 LegalizerHelper::LegalizeResult
4594 LegalizerHelper::lowerReadRegister(MachineInstr &MI) {
4595   Register Dst = MI.getOperand(0).getReg();
4596   const LLT Ty = MRI.getType(Dst);
4597   const MDString *RegStr = cast<MDString>(
4598     cast<MDNode>(MI.getOperand(1).getMetadata())->getOperand(0));
4599 
4600   MachineFunction &MF = MIRBuilder.getMF();
4601   const TargetSubtargetInfo &STI = MF.getSubtarget();
4602   const TargetLowering *TLI = STI.getTargetLowering();
4603   Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
4604   if (!Reg.isValid())
4605     return UnableToLegalize;
4606 
4607   MIRBuilder.buildCopy(Dst, Reg);
4608   MI.eraseFromParent();
4609   return Legalized;
4610 }
4611