1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 67 if (OrigTy.isVector() && TargetTy.isVector()) { 68 assert(OrigTy.getElementType() == TargetTy.getElementType()); 69 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 70 TargetTy.getNumElements()); 71 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 72 } 73 74 if (OrigTy.isVector() && !TargetTy.isVector()) { 75 assert(OrigTy.getElementType() == TargetTy); 76 return TargetTy; 77 } 78 79 assert(!OrigTy.isVector() && !TargetTy.isVector() && 80 "GCD type of vector and scalar not implemented"); 81 82 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 83 TargetTy.getSizeInBits()); 84 return LLT::scalar(GCD); 85 } 86 87 static LLT getLCMType(LLT Ty0, LLT Ty1) { 88 assert(Ty0.isScalar() && Ty1.isScalar() && "not yet handled"); 89 unsigned Mul = Ty0.getSizeInBits() * Ty1.getSizeInBits(); 90 int GCDSize = greatestCommonDivisor(Ty0.getSizeInBits(), 91 Ty1.getSizeInBits()); 92 return LLT::scalar(Mul / GCDSize); 93 } 94 95 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 96 GISelChangeObserver &Observer, 97 MachineIRBuilder &Builder) 98 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 99 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 100 MIRBuilder.setMF(MF); 101 MIRBuilder.setChangeObserver(Observer); 102 } 103 104 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 105 GISelChangeObserver &Observer, 106 MachineIRBuilder &B) 107 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 108 MIRBuilder.setMF(MF); 109 MIRBuilder.setChangeObserver(Observer); 110 } 111 LegalizerHelper::LegalizeResult 112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 113 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 114 115 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 116 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 117 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized 118 : UnableToLegalize; 119 auto Step = LI.getAction(MI, MRI); 120 switch (Step.Action) { 121 case Legal: 122 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 123 return AlreadyLegal; 124 case Libcall: 125 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 126 return libcall(MI); 127 case NarrowScalar: 128 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 129 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 130 case WidenScalar: 131 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 132 return widenScalar(MI, Step.TypeIdx, Step.NewType); 133 case Lower: 134 LLVM_DEBUG(dbgs() << ".. Lower\n"); 135 return lower(MI, Step.TypeIdx, Step.NewType); 136 case FewerElements: 137 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 138 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 139 case MoreElements: 140 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 141 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 142 case Custom: 143 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 144 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 145 : UnableToLegalize; 146 default: 147 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 148 return UnableToLegalize; 149 } 150 } 151 152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 153 SmallVectorImpl<Register> &VRegs) { 154 for (int i = 0; i < NumParts; ++i) 155 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 156 MIRBuilder.buildUnmerge(VRegs, Reg); 157 } 158 159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 160 LLT MainTy, LLT &LeftoverTy, 161 SmallVectorImpl<Register> &VRegs, 162 SmallVectorImpl<Register> &LeftoverRegs) { 163 assert(!LeftoverTy.isValid() && "this is an out argument"); 164 165 unsigned RegSize = RegTy.getSizeInBits(); 166 unsigned MainSize = MainTy.getSizeInBits(); 167 unsigned NumParts = RegSize / MainSize; 168 unsigned LeftoverSize = RegSize - NumParts * MainSize; 169 170 // Use an unmerge when possible. 171 if (LeftoverSize == 0) { 172 for (unsigned I = 0; I < NumParts; ++I) 173 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 174 MIRBuilder.buildUnmerge(VRegs, Reg); 175 return true; 176 } 177 178 if (MainTy.isVector()) { 179 unsigned EltSize = MainTy.getScalarSizeInBits(); 180 if (LeftoverSize % EltSize != 0) 181 return false; 182 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 183 } else { 184 LeftoverTy = LLT::scalar(LeftoverSize); 185 } 186 187 // For irregular sizes, extract the individual parts. 188 for (unsigned I = 0; I != NumParts; ++I) { 189 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 190 VRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 192 } 193 194 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 195 Offset += LeftoverSize) { 196 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 197 LeftoverRegs.push_back(NewReg); 198 MIRBuilder.buildExtract(NewReg, Reg, Offset); 199 } 200 201 return true; 202 } 203 204 void LegalizerHelper::insertParts(Register DstReg, 205 LLT ResultTy, LLT PartTy, 206 ArrayRef<Register> PartRegs, 207 LLT LeftoverTy, 208 ArrayRef<Register> LeftoverRegs) { 209 if (!LeftoverTy.isValid()) { 210 assert(LeftoverRegs.empty()); 211 212 if (!ResultTy.isVector()) { 213 MIRBuilder.buildMerge(DstReg, PartRegs); 214 return; 215 } 216 217 if (PartTy.isVector()) 218 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 219 else 220 MIRBuilder.buildBuildVector(DstReg, PartRegs); 221 return; 222 } 223 224 unsigned PartSize = PartTy.getSizeInBits(); 225 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 226 227 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 228 MIRBuilder.buildUndef(CurResultReg); 229 230 unsigned Offset = 0; 231 for (Register PartReg : PartRegs) { 232 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 233 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 234 CurResultReg = NewResultReg; 235 Offset += PartSize; 236 } 237 238 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 239 // Use the original output register for the final insert to avoid a copy. 240 Register NewResultReg = (I + 1 == E) ? 241 DstReg : MRI.createGenericVirtualRegister(ResultTy); 242 243 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 244 CurResultReg = NewResultReg; 245 Offset += LeftoverPartSize; 246 } 247 } 248 249 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 250 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 251 const MachineInstr &MI) { 252 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 253 254 const int NumResults = MI.getNumOperands() - 1; 255 Regs.resize(NumResults); 256 for (int I = 0; I != NumResults; ++I) 257 Regs[I] = MI.getOperand(I).getReg(); 258 } 259 260 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 261 LLT NarrowTy, Register SrcReg) { 262 LLT SrcTy = MRI.getType(SrcReg); 263 264 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 265 if (SrcTy == GCDTy) { 266 // If the source already evenly divides the result type, we don't need to do 267 // anything. 268 Parts.push_back(SrcReg); 269 } else { 270 // Need to split into common type sized pieces. 271 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 272 getUnmergeResults(Parts, *Unmerge); 273 } 274 275 return GCDTy; 276 } 277 278 void LegalizerHelper::buildLCMMerge(Register DstReg, LLT NarrowTy, LLT GCDTy, 279 SmallVectorImpl<Register> &VRegs, 280 unsigned PadStrategy) { 281 LLT DstTy = MRI.getType(DstReg); 282 LLT LCMTy = getLCMType(DstTy, NarrowTy); 283 284 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 285 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 286 int NumOrigSrc = VRegs.size(); 287 288 Register PadReg; 289 290 // Get a value we can use to pad the source value if the sources won't evenly 291 // cover the result type. 292 if (NumOrigSrc < NumParts * NumSubParts) { 293 if (PadStrategy == TargetOpcode::G_ZEXT) 294 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 295 else if (PadStrategy == TargetOpcode::G_ANYEXT) 296 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 297 else { 298 assert(PadStrategy == TargetOpcode::G_SEXT); 299 300 // Shift the sign bit of the low register through the high register. 301 auto ShiftAmt = 302 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 303 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 304 } 305 } 306 307 // Registers for the final merge to be produced. 308 SmallVector<Register, 4> Remerge; 309 Remerge.resize(NumParts); 310 311 // Registers needed for intermediate merges, which will be merged into a 312 // source for Remerge. 313 SmallVector<Register, 4> SubMerge; 314 SubMerge.resize(NumSubParts); 315 316 // Once we've fully read off the end of the original source bits, we can reuse 317 // the same high bits for remaining padding elements. 318 Register AllPadReg; 319 320 // Build merges to the LCM type to cover the original result type. 321 for (int I = 0; I != NumParts; ++I) { 322 bool AllMergePartsArePadding = true; 323 324 // Build the requested merges to the requested type. 325 for (int J = 0; J != NumSubParts; ++J) { 326 int Idx = I * NumSubParts + J; 327 if (Idx >= NumOrigSrc) { 328 SubMerge[J] = PadReg; 329 continue; 330 } 331 332 SubMerge[J] = VRegs[Idx]; 333 334 // There are meaningful bits here we can't reuse later. 335 AllMergePartsArePadding = false; 336 } 337 338 // If we've filled up a complete piece with padding bits, we can directly 339 // emit the natural sized constant if applicable, rather than a merge of 340 // smaller constants. 341 if (AllMergePartsArePadding && !AllPadReg) { 342 if (PadStrategy == TargetOpcode::G_ANYEXT) 343 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 344 else if (PadStrategy == TargetOpcode::G_ZEXT) 345 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 346 347 // If this is a sign extension, we can't materialize a trivial constant 348 // with the right type and have to produce a merge. 349 } 350 351 if (AllPadReg) { 352 // Avoid creating additional instructions if we're just adding additional 353 // copies of padding bits. 354 Remerge[I] = AllPadReg; 355 continue; 356 } 357 358 if (NumSubParts == 1) 359 Remerge[I] = SubMerge[0]; 360 else 361 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 362 363 // In the sign extend padding case, re-use the first all-signbit merge. 364 if (AllMergePartsArePadding && !AllPadReg) 365 AllPadReg = Remerge[I]; 366 } 367 368 // Create the merge to the widened source, and extract the relevant bits into 369 // the result. 370 if (DstTy == LCMTy) 371 MIRBuilder.buildMerge(DstReg, Remerge); 372 else 373 MIRBuilder.buildTrunc(DstReg, MIRBuilder.buildMerge(LCMTy, Remerge)); 374 } 375 376 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 377 switch (Opcode) { 378 case TargetOpcode::G_SDIV: 379 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 380 switch (Size) { 381 case 32: 382 return RTLIB::SDIV_I32; 383 case 64: 384 return RTLIB::SDIV_I64; 385 case 128: 386 return RTLIB::SDIV_I128; 387 default: 388 llvm_unreachable("unexpected size"); 389 } 390 case TargetOpcode::G_UDIV: 391 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 392 switch (Size) { 393 case 32: 394 return RTLIB::UDIV_I32; 395 case 64: 396 return RTLIB::UDIV_I64; 397 case 128: 398 return RTLIB::UDIV_I128; 399 default: 400 llvm_unreachable("unexpected size"); 401 } 402 case TargetOpcode::G_SREM: 403 assert((Size == 32 || Size == 64) && "Unsupported size"); 404 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 405 case TargetOpcode::G_UREM: 406 assert((Size == 32 || Size == 64) && "Unsupported size"); 407 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 408 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 409 assert(Size == 32 && "Unsupported size"); 410 return RTLIB::CTLZ_I32; 411 case TargetOpcode::G_FADD: 412 assert((Size == 32 || Size == 64) && "Unsupported size"); 413 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 414 case TargetOpcode::G_FSUB: 415 assert((Size == 32 || Size == 64) && "Unsupported size"); 416 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 417 case TargetOpcode::G_FMUL: 418 assert((Size == 32 || Size == 64) && "Unsupported size"); 419 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 420 case TargetOpcode::G_FDIV: 421 assert((Size == 32 || Size == 64) && "Unsupported size"); 422 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 423 case TargetOpcode::G_FEXP: 424 assert((Size == 32 || Size == 64) && "Unsupported size"); 425 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 426 case TargetOpcode::G_FEXP2: 427 assert((Size == 32 || Size == 64) && "Unsupported size"); 428 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 429 case TargetOpcode::G_FREM: 430 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 431 case TargetOpcode::G_FPOW: 432 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 433 case TargetOpcode::G_FMA: 434 assert((Size == 32 || Size == 64) && "Unsupported size"); 435 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 436 case TargetOpcode::G_FSIN: 437 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 438 return Size == 128 ? RTLIB::SIN_F128 439 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 440 case TargetOpcode::G_FCOS: 441 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 442 return Size == 128 ? RTLIB::COS_F128 443 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 444 case TargetOpcode::G_FLOG10: 445 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 446 return Size == 128 ? RTLIB::LOG10_F128 447 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 448 case TargetOpcode::G_FLOG: 449 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 450 return Size == 128 ? RTLIB::LOG_F128 451 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 452 case TargetOpcode::G_FLOG2: 453 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 454 return Size == 128 ? RTLIB::LOG2_F128 455 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 456 case TargetOpcode::G_FCEIL: 457 assert((Size == 32 || Size == 64) && "Unsupported size"); 458 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 459 case TargetOpcode::G_FFLOOR: 460 assert((Size == 32 || Size == 64) && "Unsupported size"); 461 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 462 } 463 llvm_unreachable("Unknown libcall function"); 464 } 465 466 /// True if an instruction is in tail position in its caller. Intended for 467 /// legalizing libcalls as tail calls when possible. 468 static bool isLibCallInTailPosition(MachineInstr &MI) { 469 const Function &F = MI.getParent()->getParent()->getFunction(); 470 471 // Conservatively require the attributes of the call to match those of 472 // the return. Ignore NoAlias and NonNull because they don't affect the 473 // call sequence. 474 AttributeList CallerAttrs = F.getAttributes(); 475 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 476 .removeAttribute(Attribute::NoAlias) 477 .removeAttribute(Attribute::NonNull) 478 .hasAttributes()) 479 return false; 480 481 // It's not safe to eliminate the sign / zero extension of the return value. 482 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 483 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 484 return false; 485 486 // Only tail call if the following instruction is a standard return. 487 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 488 MachineInstr *Next = MI.getNextNode(); 489 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 490 return false; 491 492 return true; 493 } 494 495 LegalizerHelper::LegalizeResult 496 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 497 const CallLowering::ArgInfo &Result, 498 ArrayRef<CallLowering::ArgInfo> Args) { 499 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 500 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 501 const char *Name = TLI.getLibcallName(Libcall); 502 503 CallLowering::CallLoweringInfo Info; 504 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 505 Info.Callee = MachineOperand::CreateES(Name); 506 Info.OrigRet = Result; 507 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 508 if (!CLI.lowerCall(MIRBuilder, Info)) 509 return LegalizerHelper::UnableToLegalize; 510 511 return LegalizerHelper::Legalized; 512 } 513 514 // Useful for libcalls where all operands have the same type. 515 static LegalizerHelper::LegalizeResult 516 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 517 Type *OpType) { 518 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 519 520 SmallVector<CallLowering::ArgInfo, 3> Args; 521 for (unsigned i = 1; i < MI.getNumOperands(); i++) 522 Args.push_back({MI.getOperand(i).getReg(), OpType}); 523 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 524 Args); 525 } 526 527 LegalizerHelper::LegalizeResult 528 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 529 MachineInstr &MI) { 530 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 531 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 532 533 SmallVector<CallLowering::ArgInfo, 3> Args; 534 // Add all the args, except for the last which is an imm denoting 'tail'. 535 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 536 Register Reg = MI.getOperand(i).getReg(); 537 538 // Need derive an IR type for call lowering. 539 LLT OpLLT = MRI.getType(Reg); 540 Type *OpTy = nullptr; 541 if (OpLLT.isPointer()) 542 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 543 else 544 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 545 Args.push_back({Reg, OpTy}); 546 } 547 548 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 549 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 550 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 551 RTLIB::Libcall RTLibcall; 552 switch (ID) { 553 case Intrinsic::memcpy: 554 RTLibcall = RTLIB::MEMCPY; 555 break; 556 case Intrinsic::memset: 557 RTLibcall = RTLIB::MEMSET; 558 break; 559 case Intrinsic::memmove: 560 RTLibcall = RTLIB::MEMMOVE; 561 break; 562 default: 563 return LegalizerHelper::UnableToLegalize; 564 } 565 const char *Name = TLI.getLibcallName(RTLibcall); 566 567 MIRBuilder.setInstr(MI); 568 569 CallLowering::CallLoweringInfo Info; 570 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 571 Info.Callee = MachineOperand::CreateES(Name); 572 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 573 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 574 isLibCallInTailPosition(MI); 575 576 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 577 if (!CLI.lowerCall(MIRBuilder, Info)) 578 return LegalizerHelper::UnableToLegalize; 579 580 if (Info.LoweredTailCall) { 581 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 582 // We must have a return following the call to get past 583 // isLibCallInTailPosition. 584 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 585 "Expected instr following MI to be a return?"); 586 587 // We lowered a tail call, so the call is now the return from the block. 588 // Delete the old return. 589 MI.getNextNode()->eraseFromParent(); 590 } 591 592 return LegalizerHelper::Legalized; 593 } 594 595 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 596 Type *FromType) { 597 auto ToMVT = MVT::getVT(ToType); 598 auto FromMVT = MVT::getVT(FromType); 599 600 switch (Opcode) { 601 case TargetOpcode::G_FPEXT: 602 return RTLIB::getFPEXT(FromMVT, ToMVT); 603 case TargetOpcode::G_FPTRUNC: 604 return RTLIB::getFPROUND(FromMVT, ToMVT); 605 case TargetOpcode::G_FPTOSI: 606 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 607 case TargetOpcode::G_FPTOUI: 608 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 609 case TargetOpcode::G_SITOFP: 610 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 611 case TargetOpcode::G_UITOFP: 612 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 613 } 614 llvm_unreachable("Unsupported libcall function"); 615 } 616 617 static LegalizerHelper::LegalizeResult 618 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 619 Type *FromType) { 620 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 621 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 622 {{MI.getOperand(1).getReg(), FromType}}); 623 } 624 625 LegalizerHelper::LegalizeResult 626 LegalizerHelper::libcall(MachineInstr &MI) { 627 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 628 unsigned Size = LLTy.getSizeInBits(); 629 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 630 631 MIRBuilder.setInstr(MI); 632 633 switch (MI.getOpcode()) { 634 default: 635 return UnableToLegalize; 636 case TargetOpcode::G_SDIV: 637 case TargetOpcode::G_UDIV: 638 case TargetOpcode::G_SREM: 639 case TargetOpcode::G_UREM: 640 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 641 Type *HLTy = IntegerType::get(Ctx, Size); 642 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 643 if (Status != Legalized) 644 return Status; 645 break; 646 } 647 case TargetOpcode::G_FADD: 648 case TargetOpcode::G_FSUB: 649 case TargetOpcode::G_FMUL: 650 case TargetOpcode::G_FDIV: 651 case TargetOpcode::G_FMA: 652 case TargetOpcode::G_FPOW: 653 case TargetOpcode::G_FREM: 654 case TargetOpcode::G_FCOS: 655 case TargetOpcode::G_FSIN: 656 case TargetOpcode::G_FLOG10: 657 case TargetOpcode::G_FLOG: 658 case TargetOpcode::G_FLOG2: 659 case TargetOpcode::G_FEXP: 660 case TargetOpcode::G_FEXP2: 661 case TargetOpcode::G_FCEIL: 662 case TargetOpcode::G_FFLOOR: { 663 if (Size > 64) { 664 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 665 return UnableToLegalize; 666 } 667 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 668 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 669 if (Status != Legalized) 670 return Status; 671 break; 672 } 673 case TargetOpcode::G_FPEXT: { 674 // FIXME: Support other floating point types (half, fp128 etc) 675 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 676 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 677 if (ToSize != 64 || FromSize != 32) 678 return UnableToLegalize; 679 LegalizeResult Status = conversionLibcall( 680 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 681 if (Status != Legalized) 682 return Status; 683 break; 684 } 685 case TargetOpcode::G_FPTRUNC: { 686 // FIXME: Support other floating point types (half, fp128 etc) 687 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 688 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 689 if (ToSize != 32 || FromSize != 64) 690 return UnableToLegalize; 691 LegalizeResult Status = conversionLibcall( 692 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 693 if (Status != Legalized) 694 return Status; 695 break; 696 } 697 case TargetOpcode::G_FPTOSI: 698 case TargetOpcode::G_FPTOUI: { 699 // FIXME: Support other types 700 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 701 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 702 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 703 return UnableToLegalize; 704 LegalizeResult Status = conversionLibcall( 705 MI, MIRBuilder, 706 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 707 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 708 if (Status != Legalized) 709 return Status; 710 break; 711 } 712 case TargetOpcode::G_SITOFP: 713 case TargetOpcode::G_UITOFP: { 714 // FIXME: Support other types 715 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 716 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 717 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 718 return UnableToLegalize; 719 LegalizeResult Status = conversionLibcall( 720 MI, MIRBuilder, 721 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 722 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 723 if (Status != Legalized) 724 return Status; 725 break; 726 } 727 } 728 729 MI.eraseFromParent(); 730 return Legalized; 731 } 732 733 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 734 unsigned TypeIdx, 735 LLT NarrowTy) { 736 MIRBuilder.setInstr(MI); 737 738 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 739 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 740 741 switch (MI.getOpcode()) { 742 default: 743 return UnableToLegalize; 744 case TargetOpcode::G_IMPLICIT_DEF: { 745 // FIXME: add support for when SizeOp0 isn't an exact multiple of 746 // NarrowSize. 747 if (SizeOp0 % NarrowSize != 0) 748 return UnableToLegalize; 749 int NumParts = SizeOp0 / NarrowSize; 750 751 SmallVector<Register, 2> DstRegs; 752 for (int i = 0; i < NumParts; ++i) 753 DstRegs.push_back( 754 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 755 756 Register DstReg = MI.getOperand(0).getReg(); 757 if(MRI.getType(DstReg).isVector()) 758 MIRBuilder.buildBuildVector(DstReg, DstRegs); 759 else 760 MIRBuilder.buildMerge(DstReg, DstRegs); 761 MI.eraseFromParent(); 762 return Legalized; 763 } 764 case TargetOpcode::G_CONSTANT: { 765 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 766 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 767 unsigned TotalSize = Ty.getSizeInBits(); 768 unsigned NarrowSize = NarrowTy.getSizeInBits(); 769 int NumParts = TotalSize / NarrowSize; 770 771 SmallVector<Register, 4> PartRegs; 772 for (int I = 0; I != NumParts; ++I) { 773 unsigned Offset = I * NarrowSize; 774 auto K = MIRBuilder.buildConstant(NarrowTy, 775 Val.lshr(Offset).trunc(NarrowSize)); 776 PartRegs.push_back(K.getReg(0)); 777 } 778 779 LLT LeftoverTy; 780 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 781 SmallVector<Register, 1> LeftoverRegs; 782 if (LeftoverBits != 0) { 783 LeftoverTy = LLT::scalar(LeftoverBits); 784 auto K = MIRBuilder.buildConstant( 785 LeftoverTy, 786 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 787 LeftoverRegs.push_back(K.getReg(0)); 788 } 789 790 insertParts(MI.getOperand(0).getReg(), 791 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 792 793 MI.eraseFromParent(); 794 return Legalized; 795 } 796 case TargetOpcode::G_SEXT: 797 case TargetOpcode::G_ZEXT: 798 case TargetOpcode::G_ANYEXT: 799 return narrowScalarExt(MI, TypeIdx, NarrowTy); 800 case TargetOpcode::G_TRUNC: { 801 if (TypeIdx != 1) 802 return UnableToLegalize; 803 804 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 805 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 806 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 807 return UnableToLegalize; 808 } 809 810 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 811 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 812 MI.eraseFromParent(); 813 return Legalized; 814 } 815 816 case TargetOpcode::G_ADD: { 817 // FIXME: add support for when SizeOp0 isn't an exact multiple of 818 // NarrowSize. 819 if (SizeOp0 % NarrowSize != 0) 820 return UnableToLegalize; 821 // Expand in terms of carry-setting/consuming G_ADDE instructions. 822 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 823 824 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 825 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 826 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 827 828 Register CarryIn; 829 for (int i = 0; i < NumParts; ++i) { 830 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 831 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 832 833 if (i == 0) 834 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 835 else { 836 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 837 Src2Regs[i], CarryIn); 838 } 839 840 DstRegs.push_back(DstReg); 841 CarryIn = CarryOut; 842 } 843 Register DstReg = MI.getOperand(0).getReg(); 844 if(MRI.getType(DstReg).isVector()) 845 MIRBuilder.buildBuildVector(DstReg, DstRegs); 846 else 847 MIRBuilder.buildMerge(DstReg, DstRegs); 848 MI.eraseFromParent(); 849 return Legalized; 850 } 851 case TargetOpcode::G_SUB: { 852 // FIXME: add support for when SizeOp0 isn't an exact multiple of 853 // NarrowSize. 854 if (SizeOp0 % NarrowSize != 0) 855 return UnableToLegalize; 856 857 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 858 859 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 860 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 861 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 862 863 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 864 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 865 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 866 {Src1Regs[0], Src2Regs[0]}); 867 DstRegs.push_back(DstReg); 868 Register BorrowIn = BorrowOut; 869 for (int i = 1; i < NumParts; ++i) { 870 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 871 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 872 873 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 874 {Src1Regs[i], Src2Regs[i], BorrowIn}); 875 876 DstRegs.push_back(DstReg); 877 BorrowIn = BorrowOut; 878 } 879 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 880 MI.eraseFromParent(); 881 return Legalized; 882 } 883 case TargetOpcode::G_MUL: 884 case TargetOpcode::G_UMULH: 885 return narrowScalarMul(MI, NarrowTy); 886 case TargetOpcode::G_EXTRACT: 887 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 888 case TargetOpcode::G_INSERT: 889 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 890 case TargetOpcode::G_LOAD: { 891 const auto &MMO = **MI.memoperands_begin(); 892 Register DstReg = MI.getOperand(0).getReg(); 893 LLT DstTy = MRI.getType(DstReg); 894 if (DstTy.isVector()) 895 return UnableToLegalize; 896 897 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 898 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 899 auto &MMO = **MI.memoperands_begin(); 900 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 901 MIRBuilder.buildAnyExt(DstReg, TmpReg); 902 MI.eraseFromParent(); 903 return Legalized; 904 } 905 906 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 907 } 908 case TargetOpcode::G_ZEXTLOAD: 909 case TargetOpcode::G_SEXTLOAD: { 910 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 911 Register DstReg = MI.getOperand(0).getReg(); 912 Register PtrReg = MI.getOperand(1).getReg(); 913 914 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 915 auto &MMO = **MI.memoperands_begin(); 916 if (MMO.getSizeInBits() == NarrowSize) { 917 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 918 } else { 919 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 920 } 921 922 if (ZExt) 923 MIRBuilder.buildZExt(DstReg, TmpReg); 924 else 925 MIRBuilder.buildSExt(DstReg, TmpReg); 926 927 MI.eraseFromParent(); 928 return Legalized; 929 } 930 case TargetOpcode::G_STORE: { 931 const auto &MMO = **MI.memoperands_begin(); 932 933 Register SrcReg = MI.getOperand(0).getReg(); 934 LLT SrcTy = MRI.getType(SrcReg); 935 if (SrcTy.isVector()) 936 return UnableToLegalize; 937 938 int NumParts = SizeOp0 / NarrowSize; 939 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 940 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 941 if (SrcTy.isVector() && LeftoverBits != 0) 942 return UnableToLegalize; 943 944 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 945 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 946 auto &MMO = **MI.memoperands_begin(); 947 MIRBuilder.buildTrunc(TmpReg, SrcReg); 948 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 949 MI.eraseFromParent(); 950 return Legalized; 951 } 952 953 return reduceLoadStoreWidth(MI, 0, NarrowTy); 954 } 955 case TargetOpcode::G_SELECT: 956 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 957 case TargetOpcode::G_AND: 958 case TargetOpcode::G_OR: 959 case TargetOpcode::G_XOR: { 960 // Legalize bitwise operation: 961 // A = BinOp<Ty> B, C 962 // into: 963 // B1, ..., BN = G_UNMERGE_VALUES B 964 // C1, ..., CN = G_UNMERGE_VALUES C 965 // A1 = BinOp<Ty/N> B1, C2 966 // ... 967 // AN = BinOp<Ty/N> BN, CN 968 // A = G_MERGE_VALUES A1, ..., AN 969 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 970 } 971 case TargetOpcode::G_SHL: 972 case TargetOpcode::G_LSHR: 973 case TargetOpcode::G_ASHR: 974 return narrowScalarShift(MI, TypeIdx, NarrowTy); 975 case TargetOpcode::G_CTLZ: 976 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 977 case TargetOpcode::G_CTTZ: 978 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 979 case TargetOpcode::G_CTPOP: 980 if (TypeIdx != 0) 981 return UnableToLegalize; // TODO 982 983 Observer.changingInstr(MI); 984 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 985 Observer.changedInstr(MI); 986 return Legalized; 987 case TargetOpcode::G_INTTOPTR: 988 if (TypeIdx != 1) 989 return UnableToLegalize; 990 991 Observer.changingInstr(MI); 992 narrowScalarSrc(MI, NarrowTy, 1); 993 Observer.changedInstr(MI); 994 return Legalized; 995 case TargetOpcode::G_PTRTOINT: 996 if (TypeIdx != 0) 997 return UnableToLegalize; 998 999 Observer.changingInstr(MI); 1000 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1001 Observer.changedInstr(MI); 1002 return Legalized; 1003 case TargetOpcode::G_PHI: { 1004 unsigned NumParts = SizeOp0 / NarrowSize; 1005 SmallVector<Register, 2> DstRegs; 1006 SmallVector<SmallVector<Register, 2>, 2> SrcRegs; 1007 DstRegs.resize(NumParts); 1008 SrcRegs.resize(MI.getNumOperands() / 2); 1009 Observer.changingInstr(MI); 1010 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1011 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1012 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1013 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1014 SrcRegs[i / 2]); 1015 } 1016 MachineBasicBlock &MBB = *MI.getParent(); 1017 MIRBuilder.setInsertPt(MBB, MI); 1018 for (unsigned i = 0; i < NumParts; ++i) { 1019 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1020 MachineInstrBuilder MIB = 1021 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1022 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1023 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1024 } 1025 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1026 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1027 Observer.changedInstr(MI); 1028 MI.eraseFromParent(); 1029 return Legalized; 1030 } 1031 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1032 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1033 if (TypeIdx != 2) 1034 return UnableToLegalize; 1035 1036 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1037 Observer.changingInstr(MI); 1038 narrowScalarSrc(MI, NarrowTy, OpIdx); 1039 Observer.changedInstr(MI); 1040 return Legalized; 1041 } 1042 case TargetOpcode::G_ICMP: { 1043 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1044 if (NarrowSize * 2 != SrcSize) 1045 return UnableToLegalize; 1046 1047 Observer.changingInstr(MI); 1048 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1049 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1050 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1051 1052 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1053 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1054 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1055 1056 CmpInst::Predicate Pred = 1057 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1058 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1059 1060 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1061 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1062 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1063 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1064 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1065 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1066 } else { 1067 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1068 MachineInstrBuilder CmpHEQ = 1069 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1070 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1071 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1072 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1073 } 1074 Observer.changedInstr(MI); 1075 MI.eraseFromParent(); 1076 return Legalized; 1077 } 1078 case TargetOpcode::G_SEXT_INREG: { 1079 if (TypeIdx != 0) 1080 return UnableToLegalize; 1081 1082 if (!MI.getOperand(2).isImm()) 1083 return UnableToLegalize; 1084 int64_t SizeInBits = MI.getOperand(2).getImm(); 1085 1086 // So long as the new type has more bits than the bits we're extending we 1087 // don't need to break it apart. 1088 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1089 Observer.changingInstr(MI); 1090 // We don't lose any non-extension bits by truncating the src and 1091 // sign-extending the dst. 1092 MachineOperand &MO1 = MI.getOperand(1); 1093 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1094 MO1.setReg(TruncMIB->getOperand(0).getReg()); 1095 1096 MachineOperand &MO2 = MI.getOperand(0); 1097 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1098 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1099 MIRBuilder.buildSExt(MO2, DstExt); 1100 MO2.setReg(DstExt); 1101 Observer.changedInstr(MI); 1102 return Legalized; 1103 } 1104 1105 // Break it apart. Components below the extension point are unmodified. The 1106 // component containing the extension point becomes a narrower SEXT_INREG. 1107 // Components above it are ashr'd from the component containing the 1108 // extension point. 1109 if (SizeOp0 % NarrowSize != 0) 1110 return UnableToLegalize; 1111 int NumParts = SizeOp0 / NarrowSize; 1112 1113 // List the registers where the destination will be scattered. 1114 SmallVector<Register, 2> DstRegs; 1115 // List the registers where the source will be split. 1116 SmallVector<Register, 2> SrcRegs; 1117 1118 // Create all the temporary registers. 1119 for (int i = 0; i < NumParts; ++i) { 1120 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1121 1122 SrcRegs.push_back(SrcReg); 1123 } 1124 1125 // Explode the big arguments into smaller chunks. 1126 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1127 1128 Register AshrCstReg = 1129 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1130 ->getOperand(0) 1131 .getReg(); 1132 Register FullExtensionReg = 0; 1133 Register PartialExtensionReg = 0; 1134 1135 // Do the operation on each small part. 1136 for (int i = 0; i < NumParts; ++i) { 1137 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1138 DstRegs.push_back(SrcRegs[i]); 1139 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1140 assert(PartialExtensionReg && 1141 "Expected to visit partial extension before full"); 1142 if (FullExtensionReg) { 1143 DstRegs.push_back(FullExtensionReg); 1144 continue; 1145 } 1146 DstRegs.push_back( 1147 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1148 ->getOperand(0) 1149 .getReg()); 1150 FullExtensionReg = DstRegs.back(); 1151 } else { 1152 DstRegs.push_back( 1153 MIRBuilder 1154 .buildInstr( 1155 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1156 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1157 ->getOperand(0) 1158 .getReg()); 1159 PartialExtensionReg = DstRegs.back(); 1160 } 1161 } 1162 1163 // Gather the destination registers into the final destination. 1164 Register DstReg = MI.getOperand(0).getReg(); 1165 MIRBuilder.buildMerge(DstReg, DstRegs); 1166 MI.eraseFromParent(); 1167 return Legalized; 1168 } 1169 case TargetOpcode::G_BSWAP: 1170 case TargetOpcode::G_BITREVERSE: { 1171 if (SizeOp0 % NarrowSize != 0) 1172 return UnableToLegalize; 1173 1174 Observer.changingInstr(MI); 1175 SmallVector<Register, 2> SrcRegs, DstRegs; 1176 unsigned NumParts = SizeOp0 / NarrowSize; 1177 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1178 1179 for (unsigned i = 0; i < NumParts; ++i) { 1180 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1181 {SrcRegs[NumParts - 1 - i]}); 1182 DstRegs.push_back(DstPart.getReg(0)); 1183 } 1184 1185 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1186 1187 Observer.changedInstr(MI); 1188 MI.eraseFromParent(); 1189 return Legalized; 1190 } 1191 } 1192 } 1193 1194 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1195 unsigned OpIdx, unsigned ExtOpcode) { 1196 MachineOperand &MO = MI.getOperand(OpIdx); 1197 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1198 MO.setReg(ExtB->getOperand(0).getReg()); 1199 } 1200 1201 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1202 unsigned OpIdx) { 1203 MachineOperand &MO = MI.getOperand(OpIdx); 1204 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1205 MO.setReg(ExtB->getOperand(0).getReg()); 1206 } 1207 1208 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1209 unsigned OpIdx, unsigned TruncOpcode) { 1210 MachineOperand &MO = MI.getOperand(OpIdx); 1211 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1212 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1213 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1214 MO.setReg(DstExt); 1215 } 1216 1217 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1218 unsigned OpIdx, unsigned ExtOpcode) { 1219 MachineOperand &MO = MI.getOperand(OpIdx); 1220 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1221 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1222 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1223 MO.setReg(DstTrunc); 1224 } 1225 1226 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1227 unsigned OpIdx) { 1228 MachineOperand &MO = MI.getOperand(OpIdx); 1229 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1230 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1231 MIRBuilder.buildExtract(MO, DstExt, 0); 1232 MO.setReg(DstExt); 1233 } 1234 1235 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1236 unsigned OpIdx) { 1237 MachineOperand &MO = MI.getOperand(OpIdx); 1238 1239 LLT OldTy = MRI.getType(MO.getReg()); 1240 unsigned OldElts = OldTy.getNumElements(); 1241 unsigned NewElts = MoreTy.getNumElements(); 1242 1243 unsigned NumParts = NewElts / OldElts; 1244 1245 // Use concat_vectors if the result is a multiple of the number of elements. 1246 if (NumParts * OldElts == NewElts) { 1247 SmallVector<Register, 8> Parts; 1248 Parts.push_back(MO.getReg()); 1249 1250 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1251 for (unsigned I = 1; I != NumParts; ++I) 1252 Parts.push_back(ImpDef); 1253 1254 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1255 MO.setReg(Concat.getReg(0)); 1256 return; 1257 } 1258 1259 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1260 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1261 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1262 MO.setReg(MoreReg); 1263 } 1264 1265 LegalizerHelper::LegalizeResult 1266 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1267 LLT WideTy) { 1268 if (TypeIdx != 1) 1269 return UnableToLegalize; 1270 1271 Register DstReg = MI.getOperand(0).getReg(); 1272 LLT DstTy = MRI.getType(DstReg); 1273 if (DstTy.isVector()) 1274 return UnableToLegalize; 1275 1276 Register Src1 = MI.getOperand(1).getReg(); 1277 LLT SrcTy = MRI.getType(Src1); 1278 const int DstSize = DstTy.getSizeInBits(); 1279 const int SrcSize = SrcTy.getSizeInBits(); 1280 const int WideSize = WideTy.getSizeInBits(); 1281 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1282 1283 unsigned NumOps = MI.getNumOperands(); 1284 unsigned NumSrc = MI.getNumOperands() - 1; 1285 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1286 1287 if (WideSize >= DstSize) { 1288 // Directly pack the bits in the target type. 1289 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1290 1291 for (unsigned I = 2; I != NumOps; ++I) { 1292 const unsigned Offset = (I - 1) * PartSize; 1293 1294 Register SrcReg = MI.getOperand(I).getReg(); 1295 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1296 1297 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1298 1299 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1300 MRI.createGenericVirtualRegister(WideTy); 1301 1302 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1303 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1304 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1305 ResultReg = NextResult; 1306 } 1307 1308 if (WideSize > DstSize) 1309 MIRBuilder.buildTrunc(DstReg, ResultReg); 1310 else if (DstTy.isPointer()) 1311 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1312 1313 MI.eraseFromParent(); 1314 return Legalized; 1315 } 1316 1317 // Unmerge the original values to the GCD type, and recombine to the next 1318 // multiple greater than the original type. 1319 // 1320 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1321 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1322 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1323 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1324 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1325 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1326 // %12:_(s12) = G_MERGE_VALUES %10, %11 1327 // 1328 // Padding with undef if necessary: 1329 // 1330 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1331 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1332 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1333 // %7:_(s2) = G_IMPLICIT_DEF 1334 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1335 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1336 // %10:_(s12) = G_MERGE_VALUES %8, %9 1337 1338 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1339 LLT GCDTy = LLT::scalar(GCD); 1340 1341 SmallVector<Register, 8> Parts; 1342 SmallVector<Register, 8> NewMergeRegs; 1343 SmallVector<Register, 8> Unmerges; 1344 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1345 1346 // Decompose the original operands if they don't evenly divide. 1347 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1348 Register SrcReg = MI.getOperand(I).getReg(); 1349 if (GCD == SrcSize) { 1350 Unmerges.push_back(SrcReg); 1351 } else { 1352 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1353 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1354 Unmerges.push_back(Unmerge.getReg(J)); 1355 } 1356 } 1357 1358 // Pad with undef to the next size that is a multiple of the requested size. 1359 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1360 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1361 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1362 Unmerges.push_back(UndefReg); 1363 } 1364 1365 const int PartsPerGCD = WideSize / GCD; 1366 1367 // Build merges of each piece. 1368 ArrayRef<Register> Slicer(Unmerges); 1369 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1370 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1371 NewMergeRegs.push_back(Merge.getReg(0)); 1372 } 1373 1374 // A truncate may be necessary if the requested type doesn't evenly divide the 1375 // original result type. 1376 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1377 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1378 } else { 1379 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1380 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1381 } 1382 1383 MI.eraseFromParent(); 1384 return Legalized; 1385 } 1386 1387 LegalizerHelper::LegalizeResult 1388 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1389 LLT WideTy) { 1390 if (TypeIdx != 0) 1391 return UnableToLegalize; 1392 1393 unsigned NumDst = MI.getNumOperands() - 1; 1394 Register SrcReg = MI.getOperand(NumDst).getReg(); 1395 LLT SrcTy = MRI.getType(SrcReg); 1396 if (!SrcTy.isScalar()) 1397 return UnableToLegalize; 1398 1399 Register Dst0Reg = MI.getOperand(0).getReg(); 1400 LLT DstTy = MRI.getType(Dst0Reg); 1401 if (!DstTy.isScalar()) 1402 return UnableToLegalize; 1403 1404 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 1405 LLT NewSrcTy = LLT::scalar(NewSrcSize); 1406 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 1407 1408 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 1409 1410 for (unsigned I = 1; I != NumDst; ++I) { 1411 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 1412 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 1413 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 1414 } 1415 1416 Observer.changingInstr(MI); 1417 1418 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 1419 for (unsigned I = 0; I != NumDst; ++I) 1420 widenScalarDst(MI, WideTy, I); 1421 1422 Observer.changedInstr(MI); 1423 1424 return Legalized; 1425 } 1426 1427 LegalizerHelper::LegalizeResult 1428 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1429 LLT WideTy) { 1430 Register DstReg = MI.getOperand(0).getReg(); 1431 Register SrcReg = MI.getOperand(1).getReg(); 1432 LLT SrcTy = MRI.getType(SrcReg); 1433 1434 LLT DstTy = MRI.getType(DstReg); 1435 unsigned Offset = MI.getOperand(2).getImm(); 1436 1437 if (TypeIdx == 0) { 1438 if (SrcTy.isVector() || DstTy.isVector()) 1439 return UnableToLegalize; 1440 1441 SrcOp Src(SrcReg); 1442 if (SrcTy.isPointer()) { 1443 // Extracts from pointers can be handled only if they are really just 1444 // simple integers. 1445 const DataLayout &DL = MIRBuilder.getDataLayout(); 1446 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1447 return UnableToLegalize; 1448 1449 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1450 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1451 SrcTy = SrcAsIntTy; 1452 } 1453 1454 if (DstTy.isPointer()) 1455 return UnableToLegalize; 1456 1457 if (Offset == 0) { 1458 // Avoid a shift in the degenerate case. 1459 MIRBuilder.buildTrunc(DstReg, 1460 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1461 MI.eraseFromParent(); 1462 return Legalized; 1463 } 1464 1465 // Do a shift in the source type. 1466 LLT ShiftTy = SrcTy; 1467 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1468 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1469 ShiftTy = WideTy; 1470 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1471 return UnableToLegalize; 1472 1473 auto LShr = MIRBuilder.buildLShr( 1474 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1475 MIRBuilder.buildTrunc(DstReg, LShr); 1476 MI.eraseFromParent(); 1477 return Legalized; 1478 } 1479 1480 if (SrcTy.isScalar()) { 1481 Observer.changingInstr(MI); 1482 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1483 Observer.changedInstr(MI); 1484 return Legalized; 1485 } 1486 1487 if (!SrcTy.isVector()) 1488 return UnableToLegalize; 1489 1490 if (DstTy != SrcTy.getElementType()) 1491 return UnableToLegalize; 1492 1493 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1494 return UnableToLegalize; 1495 1496 Observer.changingInstr(MI); 1497 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1498 1499 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1500 Offset); 1501 widenScalarDst(MI, WideTy.getScalarType(), 0); 1502 Observer.changedInstr(MI); 1503 return Legalized; 1504 } 1505 1506 LegalizerHelper::LegalizeResult 1507 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1508 LLT WideTy) { 1509 if (TypeIdx != 0) 1510 return UnableToLegalize; 1511 Observer.changingInstr(MI); 1512 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1513 widenScalarDst(MI, WideTy); 1514 Observer.changedInstr(MI); 1515 return Legalized; 1516 } 1517 1518 LegalizerHelper::LegalizeResult 1519 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1520 MIRBuilder.setInstr(MI); 1521 1522 switch (MI.getOpcode()) { 1523 default: 1524 return UnableToLegalize; 1525 case TargetOpcode::G_EXTRACT: 1526 return widenScalarExtract(MI, TypeIdx, WideTy); 1527 case TargetOpcode::G_INSERT: 1528 return widenScalarInsert(MI, TypeIdx, WideTy); 1529 case TargetOpcode::G_MERGE_VALUES: 1530 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1531 case TargetOpcode::G_UNMERGE_VALUES: 1532 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1533 case TargetOpcode::G_UADDO: 1534 case TargetOpcode::G_USUBO: { 1535 if (TypeIdx == 1) 1536 return UnableToLegalize; // TODO 1537 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1538 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1539 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1540 ? TargetOpcode::G_ADD 1541 : TargetOpcode::G_SUB; 1542 // Do the arithmetic in the larger type. 1543 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1544 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1545 APInt Mask = 1546 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1547 auto AndOp = MIRBuilder.buildAnd( 1548 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1549 // There is no overflow if the AndOp is the same as NewOp. 1550 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1551 // Now trunc the NewOp to the original result. 1552 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1553 MI.eraseFromParent(); 1554 return Legalized; 1555 } 1556 case TargetOpcode::G_CTTZ: 1557 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1558 case TargetOpcode::G_CTLZ: 1559 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1560 case TargetOpcode::G_CTPOP: { 1561 if (TypeIdx == 0) { 1562 Observer.changingInstr(MI); 1563 widenScalarDst(MI, WideTy, 0); 1564 Observer.changedInstr(MI); 1565 return Legalized; 1566 } 1567 1568 Register SrcReg = MI.getOperand(1).getReg(); 1569 1570 // First ZEXT the input. 1571 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1572 LLT CurTy = MRI.getType(SrcReg); 1573 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1574 // The count is the same in the larger type except if the original 1575 // value was zero. This can be handled by setting the bit just off 1576 // the top of the original type. 1577 auto TopBit = 1578 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1579 MIBSrc = MIRBuilder.buildOr( 1580 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1581 } 1582 1583 // Perform the operation at the larger size. 1584 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1585 // This is already the correct result for CTPOP and CTTZs 1586 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1587 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1588 // The correct result is NewOp - (Difference in widety and current ty). 1589 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1590 MIBNewOp = MIRBuilder.buildSub( 1591 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1592 } 1593 1594 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1595 MI.eraseFromParent(); 1596 return Legalized; 1597 } 1598 case TargetOpcode::G_BSWAP: { 1599 Observer.changingInstr(MI); 1600 Register DstReg = MI.getOperand(0).getReg(); 1601 1602 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1603 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1604 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1605 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1606 1607 MI.getOperand(0).setReg(DstExt); 1608 1609 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1610 1611 LLT Ty = MRI.getType(DstReg); 1612 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1613 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1614 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1615 1616 MIRBuilder.buildTrunc(DstReg, ShrReg); 1617 Observer.changedInstr(MI); 1618 return Legalized; 1619 } 1620 case TargetOpcode::G_BITREVERSE: { 1621 Observer.changingInstr(MI); 1622 1623 Register DstReg = MI.getOperand(0).getReg(); 1624 LLT Ty = MRI.getType(DstReg); 1625 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1626 1627 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1628 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1629 MI.getOperand(0).setReg(DstExt); 1630 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1631 1632 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1633 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1634 MIRBuilder.buildTrunc(DstReg, Shift); 1635 Observer.changedInstr(MI); 1636 return Legalized; 1637 } 1638 case TargetOpcode::G_ADD: 1639 case TargetOpcode::G_AND: 1640 case TargetOpcode::G_MUL: 1641 case TargetOpcode::G_OR: 1642 case TargetOpcode::G_XOR: 1643 case TargetOpcode::G_SUB: 1644 // Perform operation at larger width (any extension is fines here, high bits 1645 // don't affect the result) and then truncate the result back to the 1646 // original type. 1647 Observer.changingInstr(MI); 1648 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1649 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1650 widenScalarDst(MI, WideTy); 1651 Observer.changedInstr(MI); 1652 return Legalized; 1653 1654 case TargetOpcode::G_SHL: 1655 Observer.changingInstr(MI); 1656 1657 if (TypeIdx == 0) { 1658 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1659 widenScalarDst(MI, WideTy); 1660 } else { 1661 assert(TypeIdx == 1); 1662 // The "number of bits to shift" operand must preserve its value as an 1663 // unsigned integer: 1664 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1665 } 1666 1667 Observer.changedInstr(MI); 1668 return Legalized; 1669 1670 case TargetOpcode::G_SDIV: 1671 case TargetOpcode::G_SREM: 1672 case TargetOpcode::G_SMIN: 1673 case TargetOpcode::G_SMAX: 1674 Observer.changingInstr(MI); 1675 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1676 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1677 widenScalarDst(MI, WideTy); 1678 Observer.changedInstr(MI); 1679 return Legalized; 1680 1681 case TargetOpcode::G_ASHR: 1682 case TargetOpcode::G_LSHR: 1683 Observer.changingInstr(MI); 1684 1685 if (TypeIdx == 0) { 1686 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1687 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1688 1689 widenScalarSrc(MI, WideTy, 1, CvtOp); 1690 widenScalarDst(MI, WideTy); 1691 } else { 1692 assert(TypeIdx == 1); 1693 // The "number of bits to shift" operand must preserve its value as an 1694 // unsigned integer: 1695 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1696 } 1697 1698 Observer.changedInstr(MI); 1699 return Legalized; 1700 case TargetOpcode::G_UDIV: 1701 case TargetOpcode::G_UREM: 1702 case TargetOpcode::G_UMIN: 1703 case TargetOpcode::G_UMAX: 1704 Observer.changingInstr(MI); 1705 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1706 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1707 widenScalarDst(MI, WideTy); 1708 Observer.changedInstr(MI); 1709 return Legalized; 1710 1711 case TargetOpcode::G_SELECT: 1712 Observer.changingInstr(MI); 1713 if (TypeIdx == 0) { 1714 // Perform operation at larger width (any extension is fine here, high 1715 // bits don't affect the result) and then truncate the result back to the 1716 // original type. 1717 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1718 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1719 widenScalarDst(MI, WideTy); 1720 } else { 1721 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1722 // Explicit extension is required here since high bits affect the result. 1723 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1724 } 1725 Observer.changedInstr(MI); 1726 return Legalized; 1727 1728 case TargetOpcode::G_FPTOSI: 1729 case TargetOpcode::G_FPTOUI: 1730 Observer.changingInstr(MI); 1731 1732 if (TypeIdx == 0) 1733 widenScalarDst(MI, WideTy); 1734 else 1735 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1736 1737 Observer.changedInstr(MI); 1738 return Legalized; 1739 case TargetOpcode::G_SITOFP: 1740 if (TypeIdx != 1) 1741 return UnableToLegalize; 1742 Observer.changingInstr(MI); 1743 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1744 Observer.changedInstr(MI); 1745 return Legalized; 1746 1747 case TargetOpcode::G_UITOFP: 1748 if (TypeIdx != 1) 1749 return UnableToLegalize; 1750 Observer.changingInstr(MI); 1751 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1752 Observer.changedInstr(MI); 1753 return Legalized; 1754 1755 case TargetOpcode::G_LOAD: 1756 case TargetOpcode::G_SEXTLOAD: 1757 case TargetOpcode::G_ZEXTLOAD: 1758 Observer.changingInstr(MI); 1759 widenScalarDst(MI, WideTy); 1760 Observer.changedInstr(MI); 1761 return Legalized; 1762 1763 case TargetOpcode::G_STORE: { 1764 if (TypeIdx != 0) 1765 return UnableToLegalize; 1766 1767 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1768 if (!isPowerOf2_32(Ty.getSizeInBits())) 1769 return UnableToLegalize; 1770 1771 Observer.changingInstr(MI); 1772 1773 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1774 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1775 widenScalarSrc(MI, WideTy, 0, ExtType); 1776 1777 Observer.changedInstr(MI); 1778 return Legalized; 1779 } 1780 case TargetOpcode::G_CONSTANT: { 1781 MachineOperand &SrcMO = MI.getOperand(1); 1782 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1783 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1784 MRI.getType(MI.getOperand(0).getReg())); 1785 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1786 ExtOpc == TargetOpcode::G_ANYEXT) && 1787 "Illegal Extend"); 1788 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1789 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1790 ? SrcVal.sext(WideTy.getSizeInBits()) 1791 : SrcVal.zext(WideTy.getSizeInBits()); 1792 Observer.changingInstr(MI); 1793 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1794 1795 widenScalarDst(MI, WideTy); 1796 Observer.changedInstr(MI); 1797 return Legalized; 1798 } 1799 case TargetOpcode::G_FCONSTANT: { 1800 MachineOperand &SrcMO = MI.getOperand(1); 1801 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1802 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1803 bool LosesInfo; 1804 switch (WideTy.getSizeInBits()) { 1805 case 32: 1806 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1807 &LosesInfo); 1808 break; 1809 case 64: 1810 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1811 &LosesInfo); 1812 break; 1813 default: 1814 return UnableToLegalize; 1815 } 1816 1817 assert(!LosesInfo && "extend should always be lossless"); 1818 1819 Observer.changingInstr(MI); 1820 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1821 1822 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1823 Observer.changedInstr(MI); 1824 return Legalized; 1825 } 1826 case TargetOpcode::G_IMPLICIT_DEF: { 1827 Observer.changingInstr(MI); 1828 widenScalarDst(MI, WideTy); 1829 Observer.changedInstr(MI); 1830 return Legalized; 1831 } 1832 case TargetOpcode::G_BRCOND: 1833 Observer.changingInstr(MI); 1834 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1835 Observer.changedInstr(MI); 1836 return Legalized; 1837 1838 case TargetOpcode::G_FCMP: 1839 Observer.changingInstr(MI); 1840 if (TypeIdx == 0) 1841 widenScalarDst(MI, WideTy); 1842 else { 1843 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1844 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1845 } 1846 Observer.changedInstr(MI); 1847 return Legalized; 1848 1849 case TargetOpcode::G_ICMP: 1850 Observer.changingInstr(MI); 1851 if (TypeIdx == 0) 1852 widenScalarDst(MI, WideTy); 1853 else { 1854 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1855 MI.getOperand(1).getPredicate())) 1856 ? TargetOpcode::G_SEXT 1857 : TargetOpcode::G_ZEXT; 1858 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1859 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1860 } 1861 Observer.changedInstr(MI); 1862 return Legalized; 1863 1864 case TargetOpcode::G_PTR_ADD: 1865 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1866 Observer.changingInstr(MI); 1867 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1868 Observer.changedInstr(MI); 1869 return Legalized; 1870 1871 case TargetOpcode::G_PHI: { 1872 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1873 1874 Observer.changingInstr(MI); 1875 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1876 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1877 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1878 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1879 } 1880 1881 MachineBasicBlock &MBB = *MI.getParent(); 1882 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1883 widenScalarDst(MI, WideTy); 1884 Observer.changedInstr(MI); 1885 return Legalized; 1886 } 1887 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1888 if (TypeIdx == 0) { 1889 Register VecReg = MI.getOperand(1).getReg(); 1890 LLT VecTy = MRI.getType(VecReg); 1891 Observer.changingInstr(MI); 1892 1893 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1894 WideTy.getSizeInBits()), 1895 1, TargetOpcode::G_SEXT); 1896 1897 widenScalarDst(MI, WideTy, 0); 1898 Observer.changedInstr(MI); 1899 return Legalized; 1900 } 1901 1902 if (TypeIdx != 2) 1903 return UnableToLegalize; 1904 Observer.changingInstr(MI); 1905 // TODO: Probably should be zext 1906 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1907 Observer.changedInstr(MI); 1908 return Legalized; 1909 } 1910 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1911 if (TypeIdx == 1) { 1912 Observer.changingInstr(MI); 1913 1914 Register VecReg = MI.getOperand(1).getReg(); 1915 LLT VecTy = MRI.getType(VecReg); 1916 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 1917 1918 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 1919 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1920 widenScalarDst(MI, WideVecTy, 0); 1921 Observer.changedInstr(MI); 1922 return Legalized; 1923 } 1924 1925 if (TypeIdx == 2) { 1926 Observer.changingInstr(MI); 1927 // TODO: Probably should be zext 1928 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 1929 Observer.changedInstr(MI); 1930 } 1931 1932 return Legalized; 1933 } 1934 case TargetOpcode::G_FADD: 1935 case TargetOpcode::G_FMUL: 1936 case TargetOpcode::G_FSUB: 1937 case TargetOpcode::G_FMA: 1938 case TargetOpcode::G_FMAD: 1939 case TargetOpcode::G_FNEG: 1940 case TargetOpcode::G_FABS: 1941 case TargetOpcode::G_FCANONICALIZE: 1942 case TargetOpcode::G_FMINNUM: 1943 case TargetOpcode::G_FMAXNUM: 1944 case TargetOpcode::G_FMINNUM_IEEE: 1945 case TargetOpcode::G_FMAXNUM_IEEE: 1946 case TargetOpcode::G_FMINIMUM: 1947 case TargetOpcode::G_FMAXIMUM: 1948 case TargetOpcode::G_FDIV: 1949 case TargetOpcode::G_FREM: 1950 case TargetOpcode::G_FCEIL: 1951 case TargetOpcode::G_FFLOOR: 1952 case TargetOpcode::G_FCOS: 1953 case TargetOpcode::G_FSIN: 1954 case TargetOpcode::G_FLOG10: 1955 case TargetOpcode::G_FLOG: 1956 case TargetOpcode::G_FLOG2: 1957 case TargetOpcode::G_FRINT: 1958 case TargetOpcode::G_FNEARBYINT: 1959 case TargetOpcode::G_FSQRT: 1960 case TargetOpcode::G_FEXP: 1961 case TargetOpcode::G_FEXP2: 1962 case TargetOpcode::G_FPOW: 1963 case TargetOpcode::G_INTRINSIC_TRUNC: 1964 case TargetOpcode::G_INTRINSIC_ROUND: 1965 assert(TypeIdx == 0); 1966 Observer.changingInstr(MI); 1967 1968 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1969 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1970 1971 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1972 Observer.changedInstr(MI); 1973 return Legalized; 1974 case TargetOpcode::G_INTTOPTR: 1975 if (TypeIdx != 1) 1976 return UnableToLegalize; 1977 1978 Observer.changingInstr(MI); 1979 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1980 Observer.changedInstr(MI); 1981 return Legalized; 1982 case TargetOpcode::G_PTRTOINT: 1983 if (TypeIdx != 0) 1984 return UnableToLegalize; 1985 1986 Observer.changingInstr(MI); 1987 widenScalarDst(MI, WideTy, 0); 1988 Observer.changedInstr(MI); 1989 return Legalized; 1990 case TargetOpcode::G_BUILD_VECTOR: { 1991 Observer.changingInstr(MI); 1992 1993 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 1994 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 1995 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 1996 1997 // Avoid changing the result vector type if the source element type was 1998 // requested. 1999 if (TypeIdx == 1) { 2000 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2001 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2002 } else { 2003 widenScalarDst(MI, WideTy, 0); 2004 } 2005 2006 Observer.changedInstr(MI); 2007 return Legalized; 2008 } 2009 case TargetOpcode::G_SEXT_INREG: 2010 if (TypeIdx != 0) 2011 return UnableToLegalize; 2012 2013 Observer.changingInstr(MI); 2014 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2015 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2016 Observer.changedInstr(MI); 2017 return Legalized; 2018 } 2019 } 2020 2021 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2022 MachineIRBuilder &B, Register Src, LLT Ty) { 2023 auto Unmerge = B.buildUnmerge(Ty, Src); 2024 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2025 Pieces.push_back(Unmerge.getReg(I)); 2026 } 2027 2028 LegalizerHelper::LegalizeResult 2029 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2030 Register Dst = MI.getOperand(0).getReg(); 2031 Register Src = MI.getOperand(1).getReg(); 2032 LLT DstTy = MRI.getType(Dst); 2033 LLT SrcTy = MRI.getType(Src); 2034 2035 if (SrcTy.isVector() && !DstTy.isVector()) { 2036 SmallVector<Register, 8> SrcRegs; 2037 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2038 MIRBuilder.buildMerge(Dst, SrcRegs); 2039 MI.eraseFromParent(); 2040 return Legalized; 2041 } 2042 2043 if (DstTy.isVector() && !SrcTy.isVector()) { 2044 SmallVector<Register, 8> SrcRegs; 2045 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2046 MIRBuilder.buildMerge(Dst, SrcRegs); 2047 MI.eraseFromParent(); 2048 return Legalized; 2049 } 2050 2051 return UnableToLegalize; 2052 } 2053 2054 LegalizerHelper::LegalizeResult 2055 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2056 using namespace TargetOpcode; 2057 MIRBuilder.setInstr(MI); 2058 2059 switch(MI.getOpcode()) { 2060 default: 2061 return UnableToLegalize; 2062 case TargetOpcode::G_BITCAST: 2063 return lowerBitcast(MI); 2064 case TargetOpcode::G_SREM: 2065 case TargetOpcode::G_UREM: { 2066 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 2067 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {QuotReg}, 2068 {MI.getOperand(1), MI.getOperand(2)}); 2069 2070 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 2071 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2)); 2072 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), ProdReg); 2073 MI.eraseFromParent(); 2074 return Legalized; 2075 } 2076 case TargetOpcode::G_SADDO: 2077 case TargetOpcode::G_SSUBO: 2078 return lowerSADDO_SSUBO(MI); 2079 case TargetOpcode::G_SMULO: 2080 case TargetOpcode::G_UMULO: { 2081 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2082 // result. 2083 Register Res = MI.getOperand(0).getReg(); 2084 Register Overflow = MI.getOperand(1).getReg(); 2085 Register LHS = MI.getOperand(2).getReg(); 2086 Register RHS = MI.getOperand(3).getReg(); 2087 2088 MIRBuilder.buildMul(Res, LHS, RHS); 2089 2090 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2091 ? TargetOpcode::G_SMULH 2092 : TargetOpcode::G_UMULH; 2093 2094 Register HiPart = MRI.createGenericVirtualRegister(Ty); 2095 MIRBuilder.buildInstr(Opcode) 2096 .addDef(HiPart) 2097 .addUse(LHS) 2098 .addUse(RHS); 2099 2100 Register Zero = MRI.createGenericVirtualRegister(Ty); 2101 MIRBuilder.buildConstant(Zero, 0); 2102 2103 // For *signed* multiply, overflow is detected by checking: 2104 // (hi != (lo >> bitwidth-1)) 2105 if (Opcode == TargetOpcode::G_SMULH) { 2106 Register Shifted = MRI.createGenericVirtualRegister(Ty); 2107 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); 2108 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 2109 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 2110 .addDef(Shifted) 2111 .addUse(Res) 2112 .addUse(ShiftAmt); 2113 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2114 } else { 2115 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2116 } 2117 MI.eraseFromParent(); 2118 return Legalized; 2119 } 2120 case TargetOpcode::G_FNEG: { 2121 // TODO: Handle vector types once we are able to 2122 // represent them. 2123 if (Ty.isVector()) 2124 return UnableToLegalize; 2125 Register Res = MI.getOperand(0).getReg(); 2126 Type *ZeroTy; 2127 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2128 switch (Ty.getSizeInBits()) { 2129 case 16: 2130 ZeroTy = Type::getHalfTy(Ctx); 2131 break; 2132 case 32: 2133 ZeroTy = Type::getFloatTy(Ctx); 2134 break; 2135 case 64: 2136 ZeroTy = Type::getDoubleTy(Ctx); 2137 break; 2138 case 128: 2139 ZeroTy = Type::getFP128Ty(Ctx); 2140 break; 2141 default: 2142 llvm_unreachable("unexpected floating-point type"); 2143 } 2144 ConstantFP &ZeroForNegation = 2145 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2146 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2147 Register SubByReg = MI.getOperand(1).getReg(); 2148 Register ZeroReg = Zero->getOperand(0).getReg(); 2149 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2150 MI.eraseFromParent(); 2151 return Legalized; 2152 } 2153 case TargetOpcode::G_FSUB: { 2154 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2155 // First, check if G_FNEG is marked as Lower. If so, we may 2156 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2157 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2158 return UnableToLegalize; 2159 Register Res = MI.getOperand(0).getReg(); 2160 Register LHS = MI.getOperand(1).getReg(); 2161 Register RHS = MI.getOperand(2).getReg(); 2162 Register Neg = MRI.createGenericVirtualRegister(Ty); 2163 MIRBuilder.buildFNeg(Neg, RHS); 2164 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2165 MI.eraseFromParent(); 2166 return Legalized; 2167 } 2168 case TargetOpcode::G_FMAD: 2169 return lowerFMad(MI); 2170 case TargetOpcode::G_INTRINSIC_ROUND: 2171 return lowerIntrinsicRound(MI); 2172 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2173 Register OldValRes = MI.getOperand(0).getReg(); 2174 Register SuccessRes = MI.getOperand(1).getReg(); 2175 Register Addr = MI.getOperand(2).getReg(); 2176 Register CmpVal = MI.getOperand(3).getReg(); 2177 Register NewVal = MI.getOperand(4).getReg(); 2178 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2179 **MI.memoperands_begin()); 2180 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2181 MI.eraseFromParent(); 2182 return Legalized; 2183 } 2184 case TargetOpcode::G_LOAD: 2185 case TargetOpcode::G_SEXTLOAD: 2186 case TargetOpcode::G_ZEXTLOAD: { 2187 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2188 Register DstReg = MI.getOperand(0).getReg(); 2189 Register PtrReg = MI.getOperand(1).getReg(); 2190 LLT DstTy = MRI.getType(DstReg); 2191 auto &MMO = **MI.memoperands_begin(); 2192 2193 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2194 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2195 // This load needs splitting into power of 2 sized loads. 2196 if (DstTy.isVector()) 2197 return UnableToLegalize; 2198 if (isPowerOf2_32(DstTy.getSizeInBits())) 2199 return UnableToLegalize; // Don't know what we're being asked to do. 2200 2201 // Our strategy here is to generate anyextending loads for the smaller 2202 // types up to next power-2 result type, and then combine the two larger 2203 // result values together, before truncating back down to the non-pow-2 2204 // type. 2205 // E.g. v1 = i24 load => 2206 // v2 = i32 load (2 byte) 2207 // v3 = i32 load (1 byte) 2208 // v4 = i32 shl v3, 16 2209 // v5 = i32 or v4, v2 2210 // v1 = i24 trunc v5 2211 // By doing this we generate the correct truncate which should get 2212 // combined away as an artifact with a matching extend. 2213 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2214 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2215 2216 MachineFunction &MF = MIRBuilder.getMF(); 2217 MachineMemOperand *LargeMMO = 2218 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2219 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2220 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2221 2222 LLT PtrTy = MRI.getType(PtrReg); 2223 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2224 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2225 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2226 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2227 auto LargeLoad = 2228 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); 2229 2230 auto OffsetCst = 2231 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2232 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2233 auto SmallPtr = 2234 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2235 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2236 *SmallMMO); 2237 2238 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2239 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2240 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2241 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2242 MI.eraseFromParent(); 2243 return Legalized; 2244 } 2245 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2246 MI.eraseFromParent(); 2247 return Legalized; 2248 } 2249 2250 if (DstTy.isScalar()) { 2251 Register TmpReg = 2252 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2253 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2254 switch (MI.getOpcode()) { 2255 default: 2256 llvm_unreachable("Unexpected opcode"); 2257 case TargetOpcode::G_LOAD: 2258 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2259 break; 2260 case TargetOpcode::G_SEXTLOAD: 2261 MIRBuilder.buildSExt(DstReg, TmpReg); 2262 break; 2263 case TargetOpcode::G_ZEXTLOAD: 2264 MIRBuilder.buildZExt(DstReg, TmpReg); 2265 break; 2266 } 2267 MI.eraseFromParent(); 2268 return Legalized; 2269 } 2270 2271 return UnableToLegalize; 2272 } 2273 case TargetOpcode::G_STORE: { 2274 // Lower a non-power of 2 store into multiple pow-2 stores. 2275 // E.g. split an i24 store into an i16 store + i8 store. 2276 // We do this by first extending the stored value to the next largest power 2277 // of 2 type, and then using truncating stores to store the components. 2278 // By doing this, likewise with G_LOAD, generate an extend that can be 2279 // artifact-combined away instead of leaving behind extracts. 2280 Register SrcReg = MI.getOperand(0).getReg(); 2281 Register PtrReg = MI.getOperand(1).getReg(); 2282 LLT SrcTy = MRI.getType(SrcReg); 2283 MachineMemOperand &MMO = **MI.memoperands_begin(); 2284 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2285 return UnableToLegalize; 2286 if (SrcTy.isVector()) 2287 return UnableToLegalize; 2288 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2289 return UnableToLegalize; // Don't know what we're being asked to do. 2290 2291 // Extend to the next pow-2. 2292 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2293 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2294 2295 // Obtain the smaller value by shifting away the larger value. 2296 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2297 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2298 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2299 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2300 2301 // Generate the PtrAdd and truncating stores. 2302 LLT PtrTy = MRI.getType(PtrReg); 2303 auto OffsetCst = 2304 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2305 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2306 auto SmallPtr = 2307 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2308 2309 MachineFunction &MF = MIRBuilder.getMF(); 2310 MachineMemOperand *LargeMMO = 2311 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2312 MachineMemOperand *SmallMMO = 2313 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2314 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2315 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2316 MI.eraseFromParent(); 2317 return Legalized; 2318 } 2319 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2320 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2321 case TargetOpcode::G_CTLZ: 2322 case TargetOpcode::G_CTTZ: 2323 case TargetOpcode::G_CTPOP: 2324 return lowerBitCount(MI, TypeIdx, Ty); 2325 case G_UADDO: { 2326 Register Res = MI.getOperand(0).getReg(); 2327 Register CarryOut = MI.getOperand(1).getReg(); 2328 Register LHS = MI.getOperand(2).getReg(); 2329 Register RHS = MI.getOperand(3).getReg(); 2330 2331 MIRBuilder.buildAdd(Res, LHS, RHS); 2332 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2333 2334 MI.eraseFromParent(); 2335 return Legalized; 2336 } 2337 case G_UADDE: { 2338 Register Res = MI.getOperand(0).getReg(); 2339 Register CarryOut = MI.getOperand(1).getReg(); 2340 Register LHS = MI.getOperand(2).getReg(); 2341 Register RHS = MI.getOperand(3).getReg(); 2342 Register CarryIn = MI.getOperand(4).getReg(); 2343 2344 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2345 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2346 2347 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2348 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2349 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2350 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2351 2352 MI.eraseFromParent(); 2353 return Legalized; 2354 } 2355 case G_USUBO: { 2356 Register Res = MI.getOperand(0).getReg(); 2357 Register BorrowOut = MI.getOperand(1).getReg(); 2358 Register LHS = MI.getOperand(2).getReg(); 2359 Register RHS = MI.getOperand(3).getReg(); 2360 2361 MIRBuilder.buildSub(Res, LHS, RHS); 2362 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2363 2364 MI.eraseFromParent(); 2365 return Legalized; 2366 } 2367 case G_USUBE: { 2368 Register Res = MI.getOperand(0).getReg(); 2369 Register BorrowOut = MI.getOperand(1).getReg(); 2370 Register LHS = MI.getOperand(2).getReg(); 2371 Register RHS = MI.getOperand(3).getReg(); 2372 Register BorrowIn = MI.getOperand(4).getReg(); 2373 2374 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2375 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2376 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2377 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2378 2379 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2380 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2381 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2382 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2383 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2384 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2385 2386 MI.eraseFromParent(); 2387 return Legalized; 2388 } 2389 case G_UITOFP: 2390 return lowerUITOFP(MI, TypeIdx, Ty); 2391 case G_SITOFP: 2392 return lowerSITOFP(MI, TypeIdx, Ty); 2393 case G_FPTOUI: 2394 return lowerFPTOUI(MI, TypeIdx, Ty); 2395 case G_SMIN: 2396 case G_SMAX: 2397 case G_UMIN: 2398 case G_UMAX: 2399 return lowerMinMax(MI, TypeIdx, Ty); 2400 case G_FCOPYSIGN: 2401 return lowerFCopySign(MI, TypeIdx, Ty); 2402 case G_FMINNUM: 2403 case G_FMAXNUM: 2404 return lowerFMinNumMaxNum(MI); 2405 case G_UNMERGE_VALUES: 2406 return lowerUnmergeValues(MI); 2407 case TargetOpcode::G_SEXT_INREG: { 2408 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2409 int64_t SizeInBits = MI.getOperand(2).getImm(); 2410 2411 Register DstReg = MI.getOperand(0).getReg(); 2412 Register SrcReg = MI.getOperand(1).getReg(); 2413 LLT DstTy = MRI.getType(DstReg); 2414 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2415 2416 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2417 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2418 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2419 MI.eraseFromParent(); 2420 return Legalized; 2421 } 2422 case G_SHUFFLE_VECTOR: 2423 return lowerShuffleVector(MI); 2424 case G_DYN_STACKALLOC: 2425 return lowerDynStackAlloc(MI); 2426 case G_EXTRACT: 2427 return lowerExtract(MI); 2428 case G_INSERT: 2429 return lowerInsert(MI); 2430 case G_BSWAP: 2431 return lowerBswap(MI); 2432 case G_BITREVERSE: 2433 return lowerBitreverse(MI); 2434 case G_READ_REGISTER: 2435 return lowerReadRegister(MI); 2436 } 2437 } 2438 2439 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2440 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2441 SmallVector<Register, 2> DstRegs; 2442 2443 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2444 Register DstReg = MI.getOperand(0).getReg(); 2445 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2446 int NumParts = Size / NarrowSize; 2447 // FIXME: Don't know how to handle the situation where the small vectors 2448 // aren't all the same size yet. 2449 if (Size % NarrowSize != 0) 2450 return UnableToLegalize; 2451 2452 for (int i = 0; i < NumParts; ++i) { 2453 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2454 MIRBuilder.buildUndef(TmpReg); 2455 DstRegs.push_back(TmpReg); 2456 } 2457 2458 if (NarrowTy.isVector()) 2459 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2460 else 2461 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2462 2463 MI.eraseFromParent(); 2464 return Legalized; 2465 } 2466 2467 LegalizerHelper::LegalizeResult 2468 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2469 LLT NarrowTy) { 2470 const unsigned Opc = MI.getOpcode(); 2471 const unsigned NumOps = MI.getNumOperands() - 1; 2472 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2473 const Register DstReg = MI.getOperand(0).getReg(); 2474 const unsigned Flags = MI.getFlags(); 2475 const LLT DstTy = MRI.getType(DstReg); 2476 const unsigned Size = DstTy.getSizeInBits(); 2477 const int NumParts = Size / NarrowSize; 2478 const LLT EltTy = DstTy.getElementType(); 2479 const unsigned EltSize = EltTy.getSizeInBits(); 2480 const unsigned BitsForNumParts = NarrowSize * NumParts; 2481 2482 // Check if we have any leftovers. If we do, then only handle the case where 2483 // the leftover is one element. 2484 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2485 return UnableToLegalize; 2486 2487 if (BitsForNumParts != Size) { 2488 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2489 MIRBuilder.buildUndef(AccumDstReg); 2490 2491 // Handle the pieces which evenly divide into the requested type with 2492 // extract/op/insert sequence. 2493 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2494 SmallVector<SrcOp, 4> SrcOps; 2495 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2496 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2497 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), Offset); 2498 SrcOps.push_back(PartOpReg); 2499 } 2500 2501 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2502 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2503 2504 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2505 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2506 AccumDstReg = PartInsertReg; 2507 } 2508 2509 // Handle the remaining element sized leftover piece. 2510 SmallVector<SrcOp, 4> SrcOps; 2511 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2512 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2513 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), BitsForNumParts); 2514 SrcOps.push_back(PartOpReg); 2515 } 2516 2517 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2518 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2519 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2520 MI.eraseFromParent(); 2521 2522 return Legalized; 2523 } 2524 2525 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2526 2527 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2528 2529 if (NumOps >= 2) 2530 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2531 2532 if (NumOps >= 3) 2533 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2534 2535 for (int i = 0; i < NumParts; ++i) { 2536 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2537 2538 if (NumOps == 1) 2539 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2540 else if (NumOps == 2) { 2541 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2542 } else if (NumOps == 3) { 2543 MIRBuilder.buildInstr(Opc, {DstReg}, 2544 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2545 } 2546 2547 DstRegs.push_back(DstReg); 2548 } 2549 2550 if (NarrowTy.isVector()) 2551 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2552 else 2553 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2554 2555 MI.eraseFromParent(); 2556 return Legalized; 2557 } 2558 2559 // Handle splitting vector operations which need to have the same number of 2560 // elements in each type index, but each type index may have a different element 2561 // type. 2562 // 2563 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2564 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2565 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2566 // 2567 // Also handles some irregular breakdown cases, e.g. 2568 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2569 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2570 // s64 = G_SHL s64, s32 2571 LegalizerHelper::LegalizeResult 2572 LegalizerHelper::fewerElementsVectorMultiEltType( 2573 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2574 if (TypeIdx != 0) 2575 return UnableToLegalize; 2576 2577 const LLT NarrowTy0 = NarrowTyArg; 2578 const unsigned NewNumElts = 2579 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2580 2581 const Register DstReg = MI.getOperand(0).getReg(); 2582 LLT DstTy = MRI.getType(DstReg); 2583 LLT LeftoverTy0; 2584 2585 // All of the operands need to have the same number of elements, so if we can 2586 // determine a type breakdown for the result type, we can for all of the 2587 // source types. 2588 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2589 if (NumParts < 0) 2590 return UnableToLegalize; 2591 2592 SmallVector<MachineInstrBuilder, 4> NewInsts; 2593 2594 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2595 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2596 2597 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2598 LLT LeftoverTy; 2599 Register SrcReg = MI.getOperand(I).getReg(); 2600 LLT SrcTyI = MRI.getType(SrcReg); 2601 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2602 LLT LeftoverTyI; 2603 2604 // Split this operand into the requested typed registers, and any leftover 2605 // required to reproduce the original type. 2606 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2607 LeftoverRegs)) 2608 return UnableToLegalize; 2609 2610 if (I == 1) { 2611 // For the first operand, create an instruction for each part and setup 2612 // the result. 2613 for (Register PartReg : PartRegs) { 2614 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2615 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2616 .addDef(PartDstReg) 2617 .addUse(PartReg)); 2618 DstRegs.push_back(PartDstReg); 2619 } 2620 2621 for (Register LeftoverReg : LeftoverRegs) { 2622 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2623 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2624 .addDef(PartDstReg) 2625 .addUse(LeftoverReg)); 2626 LeftoverDstRegs.push_back(PartDstReg); 2627 } 2628 } else { 2629 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2630 2631 // Add the newly created operand splits to the existing instructions. The 2632 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2633 // pieces. 2634 unsigned InstCount = 0; 2635 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2636 NewInsts[InstCount++].addUse(PartRegs[J]); 2637 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2638 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2639 } 2640 2641 PartRegs.clear(); 2642 LeftoverRegs.clear(); 2643 } 2644 2645 // Insert the newly built operations and rebuild the result register. 2646 for (auto &MIB : NewInsts) 2647 MIRBuilder.insertInstr(MIB); 2648 2649 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2650 2651 MI.eraseFromParent(); 2652 return Legalized; 2653 } 2654 2655 LegalizerHelper::LegalizeResult 2656 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2657 LLT NarrowTy) { 2658 if (TypeIdx != 0) 2659 return UnableToLegalize; 2660 2661 Register DstReg = MI.getOperand(0).getReg(); 2662 Register SrcReg = MI.getOperand(1).getReg(); 2663 LLT DstTy = MRI.getType(DstReg); 2664 LLT SrcTy = MRI.getType(SrcReg); 2665 2666 LLT NarrowTy0 = NarrowTy; 2667 LLT NarrowTy1; 2668 unsigned NumParts; 2669 2670 if (NarrowTy.isVector()) { 2671 // Uneven breakdown not handled. 2672 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2673 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2674 return UnableToLegalize; 2675 2676 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2677 } else { 2678 NumParts = DstTy.getNumElements(); 2679 NarrowTy1 = SrcTy.getElementType(); 2680 } 2681 2682 SmallVector<Register, 4> SrcRegs, DstRegs; 2683 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2684 2685 for (unsigned I = 0; I < NumParts; ++I) { 2686 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2687 MachineInstr *NewInst = 2688 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2689 2690 NewInst->setFlags(MI.getFlags()); 2691 DstRegs.push_back(DstReg); 2692 } 2693 2694 if (NarrowTy.isVector()) 2695 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2696 else 2697 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2698 2699 MI.eraseFromParent(); 2700 return Legalized; 2701 } 2702 2703 LegalizerHelper::LegalizeResult 2704 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2705 LLT NarrowTy) { 2706 Register DstReg = MI.getOperand(0).getReg(); 2707 Register Src0Reg = MI.getOperand(2).getReg(); 2708 LLT DstTy = MRI.getType(DstReg); 2709 LLT SrcTy = MRI.getType(Src0Reg); 2710 2711 unsigned NumParts; 2712 LLT NarrowTy0, NarrowTy1; 2713 2714 if (TypeIdx == 0) { 2715 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2716 unsigned OldElts = DstTy.getNumElements(); 2717 2718 NarrowTy0 = NarrowTy; 2719 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2720 NarrowTy1 = NarrowTy.isVector() ? 2721 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2722 SrcTy.getElementType(); 2723 2724 } else { 2725 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2726 unsigned OldElts = SrcTy.getNumElements(); 2727 2728 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2729 NarrowTy.getNumElements(); 2730 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2731 DstTy.getScalarSizeInBits()); 2732 NarrowTy1 = NarrowTy; 2733 } 2734 2735 // FIXME: Don't know how to handle the situation where the small vectors 2736 // aren't all the same size yet. 2737 if (NarrowTy1.isVector() && 2738 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2739 return UnableToLegalize; 2740 2741 CmpInst::Predicate Pred 2742 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2743 2744 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2745 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2746 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2747 2748 for (unsigned I = 0; I < NumParts; ++I) { 2749 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2750 DstRegs.push_back(DstReg); 2751 2752 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2753 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2754 else { 2755 MachineInstr *NewCmp 2756 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2757 NewCmp->setFlags(MI.getFlags()); 2758 } 2759 } 2760 2761 if (NarrowTy1.isVector()) 2762 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2763 else 2764 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2765 2766 MI.eraseFromParent(); 2767 return Legalized; 2768 } 2769 2770 LegalizerHelper::LegalizeResult 2771 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2772 LLT NarrowTy) { 2773 Register DstReg = MI.getOperand(0).getReg(); 2774 Register CondReg = MI.getOperand(1).getReg(); 2775 2776 unsigned NumParts = 0; 2777 LLT NarrowTy0, NarrowTy1; 2778 2779 LLT DstTy = MRI.getType(DstReg); 2780 LLT CondTy = MRI.getType(CondReg); 2781 unsigned Size = DstTy.getSizeInBits(); 2782 2783 assert(TypeIdx == 0 || CondTy.isVector()); 2784 2785 if (TypeIdx == 0) { 2786 NarrowTy0 = NarrowTy; 2787 NarrowTy1 = CondTy; 2788 2789 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2790 // FIXME: Don't know how to handle the situation where the small vectors 2791 // aren't all the same size yet. 2792 if (Size % NarrowSize != 0) 2793 return UnableToLegalize; 2794 2795 NumParts = Size / NarrowSize; 2796 2797 // Need to break down the condition type 2798 if (CondTy.isVector()) { 2799 if (CondTy.getNumElements() == NumParts) 2800 NarrowTy1 = CondTy.getElementType(); 2801 else 2802 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2803 CondTy.getScalarSizeInBits()); 2804 } 2805 } else { 2806 NumParts = CondTy.getNumElements(); 2807 if (NarrowTy.isVector()) { 2808 // TODO: Handle uneven breakdown. 2809 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2810 return UnableToLegalize; 2811 2812 return UnableToLegalize; 2813 } else { 2814 NarrowTy0 = DstTy.getElementType(); 2815 NarrowTy1 = NarrowTy; 2816 } 2817 } 2818 2819 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2820 if (CondTy.isVector()) 2821 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2822 2823 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2824 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2825 2826 for (unsigned i = 0; i < NumParts; ++i) { 2827 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2828 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2829 Src1Regs[i], Src2Regs[i]); 2830 DstRegs.push_back(DstReg); 2831 } 2832 2833 if (NarrowTy0.isVector()) 2834 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2835 else 2836 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2837 2838 MI.eraseFromParent(); 2839 return Legalized; 2840 } 2841 2842 LegalizerHelper::LegalizeResult 2843 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2844 LLT NarrowTy) { 2845 const Register DstReg = MI.getOperand(0).getReg(); 2846 LLT PhiTy = MRI.getType(DstReg); 2847 LLT LeftoverTy; 2848 2849 // All of the operands need to have the same number of elements, so if we can 2850 // determine a type breakdown for the result type, we can for all of the 2851 // source types. 2852 int NumParts, NumLeftover; 2853 std::tie(NumParts, NumLeftover) 2854 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2855 if (NumParts < 0) 2856 return UnableToLegalize; 2857 2858 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2859 SmallVector<MachineInstrBuilder, 4> NewInsts; 2860 2861 const int TotalNumParts = NumParts + NumLeftover; 2862 2863 // Insert the new phis in the result block first. 2864 for (int I = 0; I != TotalNumParts; ++I) { 2865 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2866 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2867 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2868 .addDef(PartDstReg)); 2869 if (I < NumParts) 2870 DstRegs.push_back(PartDstReg); 2871 else 2872 LeftoverDstRegs.push_back(PartDstReg); 2873 } 2874 2875 MachineBasicBlock *MBB = MI.getParent(); 2876 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2877 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2878 2879 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2880 2881 // Insert code to extract the incoming values in each predecessor block. 2882 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2883 PartRegs.clear(); 2884 LeftoverRegs.clear(); 2885 2886 Register SrcReg = MI.getOperand(I).getReg(); 2887 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2888 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2889 2890 LLT Unused; 2891 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2892 LeftoverRegs)) 2893 return UnableToLegalize; 2894 2895 // Add the newly created operand splits to the existing instructions. The 2896 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2897 // pieces. 2898 for (int J = 0; J != TotalNumParts; ++J) { 2899 MachineInstrBuilder MIB = NewInsts[J]; 2900 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2901 MIB.addMBB(&OpMBB); 2902 } 2903 } 2904 2905 MI.eraseFromParent(); 2906 return Legalized; 2907 } 2908 2909 LegalizerHelper::LegalizeResult 2910 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2911 unsigned TypeIdx, 2912 LLT NarrowTy) { 2913 if (TypeIdx != 1) 2914 return UnableToLegalize; 2915 2916 const int NumDst = MI.getNumOperands() - 1; 2917 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2918 LLT SrcTy = MRI.getType(SrcReg); 2919 2920 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2921 2922 // TODO: Create sequence of extracts. 2923 if (DstTy == NarrowTy) 2924 return UnableToLegalize; 2925 2926 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 2927 if (DstTy == GCDTy) { 2928 // This would just be a copy of the same unmerge. 2929 // TODO: Create extracts, pad with undef and create intermediate merges. 2930 return UnableToLegalize; 2931 } 2932 2933 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2934 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2935 const int PartsPerUnmerge = NumDst / NumUnmerge; 2936 2937 for (int I = 0; I != NumUnmerge; ++I) { 2938 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2939 2940 for (int J = 0; J != PartsPerUnmerge; ++J) 2941 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 2942 MIB.addUse(Unmerge.getReg(I)); 2943 } 2944 2945 MI.eraseFromParent(); 2946 return Legalized; 2947 } 2948 2949 LegalizerHelper::LegalizeResult 2950 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 2951 unsigned TypeIdx, 2952 LLT NarrowTy) { 2953 assert(TypeIdx == 0 && "not a vector type index"); 2954 Register DstReg = MI.getOperand(0).getReg(); 2955 LLT DstTy = MRI.getType(DstReg); 2956 LLT SrcTy = DstTy.getElementType(); 2957 2958 int DstNumElts = DstTy.getNumElements(); 2959 int NarrowNumElts = NarrowTy.getNumElements(); 2960 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 2961 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 2962 2963 SmallVector<Register, 8> ConcatOps; 2964 SmallVector<Register, 8> SubBuildVector; 2965 2966 Register UndefReg; 2967 if (WidenedDstTy != DstTy) 2968 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 2969 2970 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 2971 // necessary. 2972 // 2973 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 2974 // -> <2 x s16> 2975 // 2976 // %4:_(s16) = G_IMPLICIT_DEF 2977 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 2978 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 2979 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 2980 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 2981 for (int I = 0; I != NumConcat; ++I) { 2982 for (int J = 0; J != NarrowNumElts; ++J) { 2983 int SrcIdx = NarrowNumElts * I + J; 2984 2985 if (SrcIdx < DstNumElts) { 2986 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 2987 SubBuildVector.push_back(SrcReg); 2988 } else 2989 SubBuildVector.push_back(UndefReg); 2990 } 2991 2992 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 2993 ConcatOps.push_back(BuildVec.getReg(0)); 2994 SubBuildVector.clear(); 2995 } 2996 2997 if (DstTy == WidenedDstTy) 2998 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 2999 else { 3000 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3001 MIRBuilder.buildExtract(DstReg, Concat, 0); 3002 } 3003 3004 MI.eraseFromParent(); 3005 return Legalized; 3006 } 3007 3008 LegalizerHelper::LegalizeResult 3009 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3010 LLT NarrowTy) { 3011 // FIXME: Don't know how to handle secondary types yet. 3012 if (TypeIdx != 0) 3013 return UnableToLegalize; 3014 3015 MachineMemOperand *MMO = *MI.memoperands_begin(); 3016 3017 // This implementation doesn't work for atomics. Give up instead of doing 3018 // something invalid. 3019 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3020 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3021 return UnableToLegalize; 3022 3023 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3024 Register ValReg = MI.getOperand(0).getReg(); 3025 Register AddrReg = MI.getOperand(1).getReg(); 3026 LLT ValTy = MRI.getType(ValReg); 3027 3028 int NumParts = -1; 3029 int NumLeftover = -1; 3030 LLT LeftoverTy; 3031 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3032 if (IsLoad) { 3033 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3034 } else { 3035 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3036 NarrowLeftoverRegs)) { 3037 NumParts = NarrowRegs.size(); 3038 NumLeftover = NarrowLeftoverRegs.size(); 3039 } 3040 } 3041 3042 if (NumParts == -1) 3043 return UnableToLegalize; 3044 3045 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3046 3047 unsigned TotalSize = ValTy.getSizeInBits(); 3048 3049 // Split the load/store into PartTy sized pieces starting at Offset. If this 3050 // is a load, return the new registers in ValRegs. For a store, each elements 3051 // of ValRegs should be PartTy. Returns the next offset that needs to be 3052 // handled. 3053 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3054 unsigned Offset) -> unsigned { 3055 MachineFunction &MF = MIRBuilder.getMF(); 3056 unsigned PartSize = PartTy.getSizeInBits(); 3057 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3058 Offset += PartSize, ++Idx) { 3059 unsigned ByteSize = PartSize / 8; 3060 unsigned ByteOffset = Offset / 8; 3061 Register NewAddrReg; 3062 3063 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3064 3065 MachineMemOperand *NewMMO = 3066 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3067 3068 if (IsLoad) { 3069 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3070 ValRegs.push_back(Dst); 3071 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3072 } else { 3073 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3074 } 3075 } 3076 3077 return Offset; 3078 }; 3079 3080 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3081 3082 // Handle the rest of the register if this isn't an even type breakdown. 3083 if (LeftoverTy.isValid()) 3084 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3085 3086 if (IsLoad) { 3087 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3088 LeftoverTy, NarrowLeftoverRegs); 3089 } 3090 3091 MI.eraseFromParent(); 3092 return Legalized; 3093 } 3094 3095 LegalizerHelper::LegalizeResult 3096 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3097 LLT NarrowTy) { 3098 using namespace TargetOpcode; 3099 3100 MIRBuilder.setInstr(MI); 3101 switch (MI.getOpcode()) { 3102 case G_IMPLICIT_DEF: 3103 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3104 case G_AND: 3105 case G_OR: 3106 case G_XOR: 3107 case G_ADD: 3108 case G_SUB: 3109 case G_MUL: 3110 case G_SMULH: 3111 case G_UMULH: 3112 case G_FADD: 3113 case G_FMUL: 3114 case G_FSUB: 3115 case G_FNEG: 3116 case G_FABS: 3117 case G_FCANONICALIZE: 3118 case G_FDIV: 3119 case G_FREM: 3120 case G_FMA: 3121 case G_FMAD: 3122 case G_FPOW: 3123 case G_FEXP: 3124 case G_FEXP2: 3125 case G_FLOG: 3126 case G_FLOG2: 3127 case G_FLOG10: 3128 case G_FNEARBYINT: 3129 case G_FCEIL: 3130 case G_FFLOOR: 3131 case G_FRINT: 3132 case G_INTRINSIC_ROUND: 3133 case G_INTRINSIC_TRUNC: 3134 case G_FCOS: 3135 case G_FSIN: 3136 case G_FSQRT: 3137 case G_BSWAP: 3138 case G_BITREVERSE: 3139 case G_SDIV: 3140 case G_UDIV: 3141 case G_SREM: 3142 case G_UREM: 3143 case G_SMIN: 3144 case G_SMAX: 3145 case G_UMIN: 3146 case G_UMAX: 3147 case G_FMINNUM: 3148 case G_FMAXNUM: 3149 case G_FMINNUM_IEEE: 3150 case G_FMAXNUM_IEEE: 3151 case G_FMINIMUM: 3152 case G_FMAXIMUM: 3153 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3154 case G_SHL: 3155 case G_LSHR: 3156 case G_ASHR: 3157 case G_CTLZ: 3158 case G_CTLZ_ZERO_UNDEF: 3159 case G_CTTZ: 3160 case G_CTTZ_ZERO_UNDEF: 3161 case G_CTPOP: 3162 case G_FCOPYSIGN: 3163 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3164 case G_ZEXT: 3165 case G_SEXT: 3166 case G_ANYEXT: 3167 case G_FPEXT: 3168 case G_FPTRUNC: 3169 case G_SITOFP: 3170 case G_UITOFP: 3171 case G_FPTOSI: 3172 case G_FPTOUI: 3173 case G_INTTOPTR: 3174 case G_PTRTOINT: 3175 case G_ADDRSPACE_CAST: 3176 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3177 case G_ICMP: 3178 case G_FCMP: 3179 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3180 case G_SELECT: 3181 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3182 case G_PHI: 3183 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3184 case G_UNMERGE_VALUES: 3185 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3186 case G_BUILD_VECTOR: 3187 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3188 case G_LOAD: 3189 case G_STORE: 3190 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3191 default: 3192 return UnableToLegalize; 3193 } 3194 } 3195 3196 LegalizerHelper::LegalizeResult 3197 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3198 const LLT HalfTy, const LLT AmtTy) { 3199 3200 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3201 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3202 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3203 3204 if (Amt.isNullValue()) { 3205 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3206 MI.eraseFromParent(); 3207 return Legalized; 3208 } 3209 3210 LLT NVT = HalfTy; 3211 unsigned NVTBits = HalfTy.getSizeInBits(); 3212 unsigned VTBits = 2 * NVTBits; 3213 3214 SrcOp Lo(Register(0)), Hi(Register(0)); 3215 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3216 if (Amt.ugt(VTBits)) { 3217 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3218 } else if (Amt.ugt(NVTBits)) { 3219 Lo = MIRBuilder.buildConstant(NVT, 0); 3220 Hi = MIRBuilder.buildShl(NVT, InL, 3221 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3222 } else if (Amt == NVTBits) { 3223 Lo = MIRBuilder.buildConstant(NVT, 0); 3224 Hi = InL; 3225 } else { 3226 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3227 auto OrLHS = 3228 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3229 auto OrRHS = MIRBuilder.buildLShr( 3230 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3231 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3232 } 3233 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3234 if (Amt.ugt(VTBits)) { 3235 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3236 } else if (Amt.ugt(NVTBits)) { 3237 Lo = MIRBuilder.buildLShr(NVT, InH, 3238 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3239 Hi = MIRBuilder.buildConstant(NVT, 0); 3240 } else if (Amt == NVTBits) { 3241 Lo = InH; 3242 Hi = MIRBuilder.buildConstant(NVT, 0); 3243 } else { 3244 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3245 3246 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3247 auto OrRHS = MIRBuilder.buildShl( 3248 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3249 3250 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3251 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3252 } 3253 } else { 3254 if (Amt.ugt(VTBits)) { 3255 Hi = Lo = MIRBuilder.buildAShr( 3256 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3257 } else if (Amt.ugt(NVTBits)) { 3258 Lo = MIRBuilder.buildAShr(NVT, InH, 3259 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3260 Hi = MIRBuilder.buildAShr(NVT, InH, 3261 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3262 } else if (Amt == NVTBits) { 3263 Lo = InH; 3264 Hi = MIRBuilder.buildAShr(NVT, InH, 3265 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3266 } else { 3267 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3268 3269 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3270 auto OrRHS = MIRBuilder.buildShl( 3271 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3272 3273 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3274 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3275 } 3276 } 3277 3278 MIRBuilder.buildMerge(MI.getOperand(0), {Lo.getReg(), Hi.getReg()}); 3279 MI.eraseFromParent(); 3280 3281 return Legalized; 3282 } 3283 3284 // TODO: Optimize if constant shift amount. 3285 LegalizerHelper::LegalizeResult 3286 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3287 LLT RequestedTy) { 3288 if (TypeIdx == 1) { 3289 Observer.changingInstr(MI); 3290 narrowScalarSrc(MI, RequestedTy, 2); 3291 Observer.changedInstr(MI); 3292 return Legalized; 3293 } 3294 3295 Register DstReg = MI.getOperand(0).getReg(); 3296 LLT DstTy = MRI.getType(DstReg); 3297 if (DstTy.isVector()) 3298 return UnableToLegalize; 3299 3300 Register Amt = MI.getOperand(2).getReg(); 3301 LLT ShiftAmtTy = MRI.getType(Amt); 3302 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3303 if (DstEltSize % 2 != 0) 3304 return UnableToLegalize; 3305 3306 // Ignore the input type. We can only go to exactly half the size of the 3307 // input. If that isn't small enough, the resulting pieces will be further 3308 // legalized. 3309 const unsigned NewBitSize = DstEltSize / 2; 3310 const LLT HalfTy = LLT::scalar(NewBitSize); 3311 const LLT CondTy = LLT::scalar(1); 3312 3313 if (const MachineInstr *KShiftAmt = 3314 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3315 return narrowScalarShiftByConstant( 3316 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3317 } 3318 3319 // TODO: Expand with known bits. 3320 3321 // Handle the fully general expansion by an unknown amount. 3322 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3323 3324 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3325 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3326 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3327 3328 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3329 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3330 3331 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3332 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3333 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3334 3335 Register ResultRegs[2]; 3336 switch (MI.getOpcode()) { 3337 case TargetOpcode::G_SHL: { 3338 // Short: ShAmt < NewBitSize 3339 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3340 3341 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3342 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3343 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3344 3345 // Long: ShAmt >= NewBitSize 3346 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3347 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3348 3349 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3350 auto Hi = MIRBuilder.buildSelect( 3351 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3352 3353 ResultRegs[0] = Lo.getReg(0); 3354 ResultRegs[1] = Hi.getReg(0); 3355 break; 3356 } 3357 case TargetOpcode::G_LSHR: 3358 case TargetOpcode::G_ASHR: { 3359 // Short: ShAmt < NewBitSize 3360 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3361 3362 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3363 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3364 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3365 3366 // Long: ShAmt >= NewBitSize 3367 MachineInstrBuilder HiL; 3368 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3369 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3370 } else { 3371 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3372 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3373 } 3374 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3375 {InH, AmtExcess}); // Lo from Hi part. 3376 3377 auto Lo = MIRBuilder.buildSelect( 3378 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3379 3380 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3381 3382 ResultRegs[0] = Lo.getReg(0); 3383 ResultRegs[1] = Hi.getReg(0); 3384 break; 3385 } 3386 default: 3387 llvm_unreachable("not a shift"); 3388 } 3389 3390 MIRBuilder.buildMerge(DstReg, ResultRegs); 3391 MI.eraseFromParent(); 3392 return Legalized; 3393 } 3394 3395 LegalizerHelper::LegalizeResult 3396 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3397 LLT MoreTy) { 3398 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3399 3400 Observer.changingInstr(MI); 3401 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3402 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3403 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3404 moreElementsVectorSrc(MI, MoreTy, I); 3405 } 3406 3407 MachineBasicBlock &MBB = *MI.getParent(); 3408 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3409 moreElementsVectorDst(MI, MoreTy, 0); 3410 Observer.changedInstr(MI); 3411 return Legalized; 3412 } 3413 3414 LegalizerHelper::LegalizeResult 3415 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3416 LLT MoreTy) { 3417 MIRBuilder.setInstr(MI); 3418 unsigned Opc = MI.getOpcode(); 3419 switch (Opc) { 3420 case TargetOpcode::G_IMPLICIT_DEF: 3421 case TargetOpcode::G_LOAD: { 3422 if (TypeIdx != 0) 3423 return UnableToLegalize; 3424 Observer.changingInstr(MI); 3425 moreElementsVectorDst(MI, MoreTy, 0); 3426 Observer.changedInstr(MI); 3427 return Legalized; 3428 } 3429 case TargetOpcode::G_STORE: 3430 if (TypeIdx != 0) 3431 return UnableToLegalize; 3432 Observer.changingInstr(MI); 3433 moreElementsVectorSrc(MI, MoreTy, 0); 3434 Observer.changedInstr(MI); 3435 return Legalized; 3436 case TargetOpcode::G_AND: 3437 case TargetOpcode::G_OR: 3438 case TargetOpcode::G_XOR: 3439 case TargetOpcode::G_SMIN: 3440 case TargetOpcode::G_SMAX: 3441 case TargetOpcode::G_UMIN: 3442 case TargetOpcode::G_UMAX: 3443 case TargetOpcode::G_FMINNUM: 3444 case TargetOpcode::G_FMAXNUM: 3445 case TargetOpcode::G_FMINNUM_IEEE: 3446 case TargetOpcode::G_FMAXNUM_IEEE: 3447 case TargetOpcode::G_FMINIMUM: 3448 case TargetOpcode::G_FMAXIMUM: { 3449 Observer.changingInstr(MI); 3450 moreElementsVectorSrc(MI, MoreTy, 1); 3451 moreElementsVectorSrc(MI, MoreTy, 2); 3452 moreElementsVectorDst(MI, MoreTy, 0); 3453 Observer.changedInstr(MI); 3454 return Legalized; 3455 } 3456 case TargetOpcode::G_EXTRACT: 3457 if (TypeIdx != 1) 3458 return UnableToLegalize; 3459 Observer.changingInstr(MI); 3460 moreElementsVectorSrc(MI, MoreTy, 1); 3461 Observer.changedInstr(MI); 3462 return Legalized; 3463 case TargetOpcode::G_INSERT: 3464 if (TypeIdx != 0) 3465 return UnableToLegalize; 3466 Observer.changingInstr(MI); 3467 moreElementsVectorSrc(MI, MoreTy, 1); 3468 moreElementsVectorDst(MI, MoreTy, 0); 3469 Observer.changedInstr(MI); 3470 return Legalized; 3471 case TargetOpcode::G_SELECT: 3472 if (TypeIdx != 0) 3473 return UnableToLegalize; 3474 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3475 return UnableToLegalize; 3476 3477 Observer.changingInstr(MI); 3478 moreElementsVectorSrc(MI, MoreTy, 2); 3479 moreElementsVectorSrc(MI, MoreTy, 3); 3480 moreElementsVectorDst(MI, MoreTy, 0); 3481 Observer.changedInstr(MI); 3482 return Legalized; 3483 case TargetOpcode::G_UNMERGE_VALUES: { 3484 if (TypeIdx != 1) 3485 return UnableToLegalize; 3486 3487 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3488 int NumDst = MI.getNumOperands() - 1; 3489 moreElementsVectorSrc(MI, MoreTy, NumDst); 3490 3491 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3492 for (int I = 0; I != NumDst; ++I) 3493 MIB.addDef(MI.getOperand(I).getReg()); 3494 3495 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3496 for (int I = NumDst; I != NewNumDst; ++I) 3497 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3498 3499 MIB.addUse(MI.getOperand(NumDst).getReg()); 3500 MI.eraseFromParent(); 3501 return Legalized; 3502 } 3503 case TargetOpcode::G_PHI: 3504 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3505 default: 3506 return UnableToLegalize; 3507 } 3508 } 3509 3510 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3511 ArrayRef<Register> Src1Regs, 3512 ArrayRef<Register> Src2Regs, 3513 LLT NarrowTy) { 3514 MachineIRBuilder &B = MIRBuilder; 3515 unsigned SrcParts = Src1Regs.size(); 3516 unsigned DstParts = DstRegs.size(); 3517 3518 unsigned DstIdx = 0; // Low bits of the result. 3519 Register FactorSum = 3520 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3521 DstRegs[DstIdx] = FactorSum; 3522 3523 unsigned CarrySumPrevDstIdx; 3524 SmallVector<Register, 4> Factors; 3525 3526 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3527 // Collect low parts of muls for DstIdx. 3528 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3529 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3530 MachineInstrBuilder Mul = 3531 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3532 Factors.push_back(Mul.getReg(0)); 3533 } 3534 // Collect high parts of muls from previous DstIdx. 3535 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3536 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3537 MachineInstrBuilder Umulh = 3538 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3539 Factors.push_back(Umulh.getReg(0)); 3540 } 3541 // Add CarrySum from additions calculated for previous DstIdx. 3542 if (DstIdx != 1) { 3543 Factors.push_back(CarrySumPrevDstIdx); 3544 } 3545 3546 Register CarrySum; 3547 // Add all factors and accumulate all carries into CarrySum. 3548 if (DstIdx != DstParts - 1) { 3549 MachineInstrBuilder Uaddo = 3550 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3551 FactorSum = Uaddo.getReg(0); 3552 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3553 for (unsigned i = 2; i < Factors.size(); ++i) { 3554 MachineInstrBuilder Uaddo = 3555 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3556 FactorSum = Uaddo.getReg(0); 3557 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3558 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3559 } 3560 } else { 3561 // Since value for the next index is not calculated, neither is CarrySum. 3562 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3563 for (unsigned i = 2; i < Factors.size(); ++i) 3564 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3565 } 3566 3567 CarrySumPrevDstIdx = CarrySum; 3568 DstRegs[DstIdx] = FactorSum; 3569 Factors.clear(); 3570 } 3571 } 3572 3573 LegalizerHelper::LegalizeResult 3574 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3575 Register DstReg = MI.getOperand(0).getReg(); 3576 Register Src1 = MI.getOperand(1).getReg(); 3577 Register Src2 = MI.getOperand(2).getReg(); 3578 3579 LLT Ty = MRI.getType(DstReg); 3580 if (Ty.isVector()) 3581 return UnableToLegalize; 3582 3583 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3584 unsigned DstSize = Ty.getSizeInBits(); 3585 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3586 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3587 return UnableToLegalize; 3588 3589 unsigned NumDstParts = DstSize / NarrowSize; 3590 unsigned NumSrcParts = SrcSize / NarrowSize; 3591 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3592 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3593 3594 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; 3595 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3596 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3597 DstTmpRegs.resize(DstTmpParts); 3598 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3599 3600 // Take only high half of registers if this is high mul. 3601 ArrayRef<Register> DstRegs( 3602 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3603 MIRBuilder.buildMerge(DstReg, DstRegs); 3604 MI.eraseFromParent(); 3605 return Legalized; 3606 } 3607 3608 LegalizerHelper::LegalizeResult 3609 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3610 LLT NarrowTy) { 3611 if (TypeIdx != 1) 3612 return UnableToLegalize; 3613 3614 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3615 3616 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3617 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3618 // NarrowSize. 3619 if (SizeOp1 % NarrowSize != 0) 3620 return UnableToLegalize; 3621 int NumParts = SizeOp1 / NarrowSize; 3622 3623 SmallVector<Register, 2> SrcRegs, DstRegs; 3624 SmallVector<uint64_t, 2> Indexes; 3625 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3626 3627 Register OpReg = MI.getOperand(0).getReg(); 3628 uint64_t OpStart = MI.getOperand(2).getImm(); 3629 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3630 for (int i = 0; i < NumParts; ++i) { 3631 unsigned SrcStart = i * NarrowSize; 3632 3633 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3634 // No part of the extract uses this subregister, ignore it. 3635 continue; 3636 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3637 // The entire subregister is extracted, forward the value. 3638 DstRegs.push_back(SrcRegs[i]); 3639 continue; 3640 } 3641 3642 // OpSegStart is where this destination segment would start in OpReg if it 3643 // extended infinitely in both directions. 3644 int64_t ExtractOffset; 3645 uint64_t SegSize; 3646 if (OpStart < SrcStart) { 3647 ExtractOffset = 0; 3648 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3649 } else { 3650 ExtractOffset = OpStart - SrcStart; 3651 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3652 } 3653 3654 Register SegReg = SrcRegs[i]; 3655 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3656 // A genuine extract is needed. 3657 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3658 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3659 } 3660 3661 DstRegs.push_back(SegReg); 3662 } 3663 3664 Register DstReg = MI.getOperand(0).getReg(); 3665 if(MRI.getType(DstReg).isVector()) 3666 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3667 else 3668 MIRBuilder.buildMerge(DstReg, DstRegs); 3669 MI.eraseFromParent(); 3670 return Legalized; 3671 } 3672 3673 LegalizerHelper::LegalizeResult 3674 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3675 LLT NarrowTy) { 3676 // FIXME: Don't know how to handle secondary types yet. 3677 if (TypeIdx != 0) 3678 return UnableToLegalize; 3679 3680 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3681 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3682 3683 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3684 // NarrowSize. 3685 if (SizeOp0 % NarrowSize != 0) 3686 return UnableToLegalize; 3687 3688 int NumParts = SizeOp0 / NarrowSize; 3689 3690 SmallVector<Register, 2> SrcRegs, DstRegs; 3691 SmallVector<uint64_t, 2> Indexes; 3692 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3693 3694 Register OpReg = MI.getOperand(2).getReg(); 3695 uint64_t OpStart = MI.getOperand(3).getImm(); 3696 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3697 for (int i = 0; i < NumParts; ++i) { 3698 unsigned DstStart = i * NarrowSize; 3699 3700 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3701 // No part of the insert affects this subregister, forward the original. 3702 DstRegs.push_back(SrcRegs[i]); 3703 continue; 3704 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3705 // The entire subregister is defined by this insert, forward the new 3706 // value. 3707 DstRegs.push_back(OpReg); 3708 continue; 3709 } 3710 3711 // OpSegStart is where this destination segment would start in OpReg if it 3712 // extended infinitely in both directions. 3713 int64_t ExtractOffset, InsertOffset; 3714 uint64_t SegSize; 3715 if (OpStart < DstStart) { 3716 InsertOffset = 0; 3717 ExtractOffset = DstStart - OpStart; 3718 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3719 } else { 3720 InsertOffset = OpStart - DstStart; 3721 ExtractOffset = 0; 3722 SegSize = 3723 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3724 } 3725 3726 Register SegReg = OpReg; 3727 if (ExtractOffset != 0 || SegSize != OpSize) { 3728 // A genuine extract is needed. 3729 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3730 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3731 } 3732 3733 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3734 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3735 DstRegs.push_back(DstReg); 3736 } 3737 3738 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3739 Register DstReg = MI.getOperand(0).getReg(); 3740 if(MRI.getType(DstReg).isVector()) 3741 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3742 else 3743 MIRBuilder.buildMerge(DstReg, DstRegs); 3744 MI.eraseFromParent(); 3745 return Legalized; 3746 } 3747 3748 LegalizerHelper::LegalizeResult 3749 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3750 LLT NarrowTy) { 3751 Register DstReg = MI.getOperand(0).getReg(); 3752 LLT DstTy = MRI.getType(DstReg); 3753 3754 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3755 3756 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3757 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3758 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3759 LLT LeftoverTy; 3760 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3761 Src0Regs, Src0LeftoverRegs)) 3762 return UnableToLegalize; 3763 3764 LLT Unused; 3765 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3766 Src1Regs, Src1LeftoverRegs)) 3767 llvm_unreachable("inconsistent extractParts result"); 3768 3769 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3770 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3771 {Src0Regs[I], Src1Regs[I]}); 3772 DstRegs.push_back(Inst->getOperand(0).getReg()); 3773 } 3774 3775 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3776 auto Inst = MIRBuilder.buildInstr( 3777 MI.getOpcode(), 3778 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3779 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 3780 } 3781 3782 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3783 LeftoverTy, DstLeftoverRegs); 3784 3785 MI.eraseFromParent(); 3786 return Legalized; 3787 } 3788 3789 LegalizerHelper::LegalizeResult 3790 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3791 LLT NarrowTy) { 3792 if (TypeIdx != 0) 3793 return UnableToLegalize; 3794 3795 Register DstReg = MI.getOperand(0).getReg(); 3796 Register SrcReg = MI.getOperand(1).getReg(); 3797 3798 LLT DstTy = MRI.getType(DstReg); 3799 if (DstTy.isVector()) 3800 return UnableToLegalize; 3801 3802 SmallVector<Register, 8> Parts; 3803 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3804 buildLCMMerge(DstReg, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3805 MI.eraseFromParent(); 3806 return Legalized; 3807 } 3808 3809 LegalizerHelper::LegalizeResult 3810 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3811 LLT NarrowTy) { 3812 if (TypeIdx != 0) 3813 return UnableToLegalize; 3814 3815 Register CondReg = MI.getOperand(1).getReg(); 3816 LLT CondTy = MRI.getType(CondReg); 3817 if (CondTy.isVector()) // TODO: Handle vselect 3818 return UnableToLegalize; 3819 3820 Register DstReg = MI.getOperand(0).getReg(); 3821 LLT DstTy = MRI.getType(DstReg); 3822 3823 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3824 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3825 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3826 LLT LeftoverTy; 3827 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3828 Src1Regs, Src1LeftoverRegs)) 3829 return UnableToLegalize; 3830 3831 LLT Unused; 3832 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3833 Src2Regs, Src2LeftoverRegs)) 3834 llvm_unreachable("inconsistent extractParts result"); 3835 3836 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3837 auto Select = MIRBuilder.buildSelect(NarrowTy, 3838 CondReg, Src1Regs[I], Src2Regs[I]); 3839 DstRegs.push_back(Select->getOperand(0).getReg()); 3840 } 3841 3842 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3843 auto Select = MIRBuilder.buildSelect( 3844 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3845 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 3846 } 3847 3848 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3849 LeftoverTy, DstLeftoverRegs); 3850 3851 MI.eraseFromParent(); 3852 return Legalized; 3853 } 3854 3855 LegalizerHelper::LegalizeResult 3856 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3857 unsigned Opc = MI.getOpcode(); 3858 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 3859 auto isSupported = [this](const LegalityQuery &Q) { 3860 auto QAction = LI.getAction(Q).Action; 3861 return QAction == Legal || QAction == Libcall || QAction == Custom; 3862 }; 3863 switch (Opc) { 3864 default: 3865 return UnableToLegalize; 3866 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 3867 // This trivially expands to CTLZ. 3868 Observer.changingInstr(MI); 3869 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 3870 Observer.changedInstr(MI); 3871 return Legalized; 3872 } 3873 case TargetOpcode::G_CTLZ: { 3874 Register SrcReg = MI.getOperand(1).getReg(); 3875 unsigned Len = Ty.getSizeInBits(); 3876 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 3877 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 3878 auto MIBCtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(Ty, SrcReg); 3879 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3880 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3881 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3882 SrcReg, MIBZero); 3883 MIRBuilder.buildSelect(MI.getOperand(0), MIBICmp, MIBLen, MIBCtlzZU); 3884 MI.eraseFromParent(); 3885 return Legalized; 3886 } 3887 // for now, we do this: 3888 // NewLen = NextPowerOf2(Len); 3889 // x = x | (x >> 1); 3890 // x = x | (x >> 2); 3891 // ... 3892 // x = x | (x >>16); 3893 // x = x | (x >>32); // for 64-bit input 3894 // Upto NewLen/2 3895 // return Len - popcount(x); 3896 // 3897 // Ref: "Hacker's Delight" by Henry Warren 3898 Register Op = SrcReg; 3899 unsigned NewLen = PowerOf2Ceil(Len); 3900 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 3901 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 3902 auto MIBOp = 3903 MIRBuilder.buildOr(Ty, Op, MIRBuilder.buildLShr(Ty, Op, MIBShiftAmt)); 3904 Op = MIBOp->getOperand(0).getReg(); 3905 } 3906 auto MIBPop = MIRBuilder.buildCTPOP(Ty, Op); 3907 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(Ty, Len), 3908 MIBPop); 3909 MI.eraseFromParent(); 3910 return Legalized; 3911 } 3912 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 3913 // This trivially expands to CTTZ. 3914 Observer.changingInstr(MI); 3915 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 3916 Observer.changedInstr(MI); 3917 return Legalized; 3918 } 3919 case TargetOpcode::G_CTTZ: { 3920 Register SrcReg = MI.getOperand(1).getReg(); 3921 unsigned Len = Ty.getSizeInBits(); 3922 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 3923 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 3924 // zero. 3925 auto MIBCttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(Ty, SrcReg); 3926 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3927 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3928 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3929 SrcReg, MIBZero); 3930 MIRBuilder.buildSelect(MI.getOperand(0), MIBICmp, MIBLen, MIBCttzZU); 3931 MI.eraseFromParent(); 3932 return Legalized; 3933 } 3934 // for now, we use: { return popcount(~x & (x - 1)); } 3935 // unless the target has ctlz but not ctpop, in which case we use: 3936 // { return 32 - nlz(~x & (x-1)); } 3937 // Ref: "Hacker's Delight" by Henry Warren 3938 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 3939 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 3940 auto MIBTmp = MIRBuilder.buildAnd( 3941 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 3942 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 3943 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 3944 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 3945 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 3946 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 3947 MI.eraseFromParent(); 3948 return Legalized; 3949 } 3950 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 3951 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 3952 return Legalized; 3953 } 3954 } 3955 } 3956 3957 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 3958 // representation. 3959 LegalizerHelper::LegalizeResult 3960 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3961 Register Dst = MI.getOperand(0).getReg(); 3962 Register Src = MI.getOperand(1).getReg(); 3963 const LLT S64 = LLT::scalar(64); 3964 const LLT S32 = LLT::scalar(32); 3965 const LLT S1 = LLT::scalar(1); 3966 3967 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3968 3969 // unsigned cul2f(ulong u) { 3970 // uint lz = clz(u); 3971 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3972 // u = (u << lz) & 0x7fffffffffffffffUL; 3973 // ulong t = u & 0xffffffffffUL; 3974 // uint v = (e << 23) | (uint)(u >> 40); 3975 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3976 // return as_float(v + r); 3977 // } 3978 3979 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3980 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3981 3982 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3983 3984 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3985 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3986 3987 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3988 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3989 3990 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3991 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3992 3993 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3994 3995 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3996 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3997 3998 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3999 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4000 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4001 4002 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4003 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4004 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4005 auto One = MIRBuilder.buildConstant(S32, 1); 4006 4007 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4008 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4009 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4010 MIRBuilder.buildAdd(Dst, V, R); 4011 4012 return Legalized; 4013 } 4014 4015 LegalizerHelper::LegalizeResult 4016 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4017 Register Dst = MI.getOperand(0).getReg(); 4018 Register Src = MI.getOperand(1).getReg(); 4019 LLT DstTy = MRI.getType(Dst); 4020 LLT SrcTy = MRI.getType(Src); 4021 4022 if (SrcTy == LLT::scalar(1)) { 4023 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4024 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4025 MIRBuilder.buildSelect(Dst, Src, True, False); 4026 MI.eraseFromParent(); 4027 return Legalized; 4028 } 4029 4030 if (SrcTy != LLT::scalar(64)) 4031 return UnableToLegalize; 4032 4033 if (DstTy == LLT::scalar(32)) { 4034 // TODO: SelectionDAG has several alternative expansions to port which may 4035 // be more reasonble depending on the available instructions. If a target 4036 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4037 // intermediate type, this is probably worse. 4038 return lowerU64ToF32BitOps(MI); 4039 } 4040 4041 return UnableToLegalize; 4042 } 4043 4044 LegalizerHelper::LegalizeResult 4045 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4046 Register Dst = MI.getOperand(0).getReg(); 4047 Register Src = MI.getOperand(1).getReg(); 4048 LLT DstTy = MRI.getType(Dst); 4049 LLT SrcTy = MRI.getType(Src); 4050 4051 const LLT S64 = LLT::scalar(64); 4052 const LLT S32 = LLT::scalar(32); 4053 const LLT S1 = LLT::scalar(1); 4054 4055 if (SrcTy == S1) { 4056 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4057 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4058 MIRBuilder.buildSelect(Dst, Src, True, False); 4059 MI.eraseFromParent(); 4060 return Legalized; 4061 } 4062 4063 if (SrcTy != S64) 4064 return UnableToLegalize; 4065 4066 if (DstTy == S32) { 4067 // signed cl2f(long l) { 4068 // long s = l >> 63; 4069 // float r = cul2f((l + s) ^ s); 4070 // return s ? -r : r; 4071 // } 4072 Register L = Src; 4073 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4074 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4075 4076 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4077 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4078 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4079 4080 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4081 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4082 MIRBuilder.buildConstant(S64, 0)); 4083 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4084 return Legalized; 4085 } 4086 4087 return UnableToLegalize; 4088 } 4089 4090 LegalizerHelper::LegalizeResult 4091 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4092 Register Dst = MI.getOperand(0).getReg(); 4093 Register Src = MI.getOperand(1).getReg(); 4094 LLT DstTy = MRI.getType(Dst); 4095 LLT SrcTy = MRI.getType(Src); 4096 const LLT S64 = LLT::scalar(64); 4097 const LLT S32 = LLT::scalar(32); 4098 4099 if (SrcTy != S64 && SrcTy != S32) 4100 return UnableToLegalize; 4101 if (DstTy != S32 && DstTy != S64) 4102 return UnableToLegalize; 4103 4104 // FPTOSI gives same result as FPTOUI for positive signed integers. 4105 // FPTOUI needs to deal with fp values that convert to unsigned integers 4106 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4107 4108 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4109 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4110 : APFloat::IEEEdouble(), 4111 APInt::getNullValue(SrcTy.getSizeInBits())); 4112 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4113 4114 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4115 4116 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4117 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4118 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4119 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4120 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4121 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4122 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4123 4124 const LLT S1 = LLT::scalar(1); 4125 4126 MachineInstrBuilder FCMP = 4127 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4128 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4129 4130 MI.eraseFromParent(); 4131 return Legalized; 4132 } 4133 4134 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4135 switch (Opc) { 4136 case TargetOpcode::G_SMIN: 4137 return CmpInst::ICMP_SLT; 4138 case TargetOpcode::G_SMAX: 4139 return CmpInst::ICMP_SGT; 4140 case TargetOpcode::G_UMIN: 4141 return CmpInst::ICMP_ULT; 4142 case TargetOpcode::G_UMAX: 4143 return CmpInst::ICMP_UGT; 4144 default: 4145 llvm_unreachable("not in integer min/max"); 4146 } 4147 } 4148 4149 LegalizerHelper::LegalizeResult 4150 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4151 Register Dst = MI.getOperand(0).getReg(); 4152 Register Src0 = MI.getOperand(1).getReg(); 4153 Register Src1 = MI.getOperand(2).getReg(); 4154 4155 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4156 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4157 4158 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4159 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4160 4161 MI.eraseFromParent(); 4162 return Legalized; 4163 } 4164 4165 LegalizerHelper::LegalizeResult 4166 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4167 Register Dst = MI.getOperand(0).getReg(); 4168 Register Src0 = MI.getOperand(1).getReg(); 4169 Register Src1 = MI.getOperand(2).getReg(); 4170 4171 const LLT Src0Ty = MRI.getType(Src0); 4172 const LLT Src1Ty = MRI.getType(Src1); 4173 4174 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4175 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4176 4177 auto SignBitMask = MIRBuilder.buildConstant( 4178 Src0Ty, APInt::getSignMask(Src0Size)); 4179 4180 auto NotSignBitMask = MIRBuilder.buildConstant( 4181 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4182 4183 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4184 MachineInstr *Or; 4185 4186 if (Src0Ty == Src1Ty) { 4187 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4188 Or = MIRBuilder.buildOr(Dst, And0, And1); 4189 } else if (Src0Size > Src1Size) { 4190 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4191 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4192 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4193 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4194 Or = MIRBuilder.buildOr(Dst, And0, And1); 4195 } else { 4196 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4197 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4198 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4199 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4200 Or = MIRBuilder.buildOr(Dst, And0, And1); 4201 } 4202 4203 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4204 // constants are a nan and -0.0, but the final result should preserve 4205 // everything. 4206 if (unsigned Flags = MI.getFlags()) 4207 Or->setFlags(Flags); 4208 4209 MI.eraseFromParent(); 4210 return Legalized; 4211 } 4212 4213 LegalizerHelper::LegalizeResult 4214 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4215 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4216 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4217 4218 Register Dst = MI.getOperand(0).getReg(); 4219 Register Src0 = MI.getOperand(1).getReg(); 4220 Register Src1 = MI.getOperand(2).getReg(); 4221 LLT Ty = MRI.getType(Dst); 4222 4223 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4224 // Insert canonicalizes if it's possible we need to quiet to get correct 4225 // sNaN behavior. 4226 4227 // Note this must be done here, and not as an optimization combine in the 4228 // absence of a dedicate quiet-snan instruction as we're using an 4229 // omni-purpose G_FCANONICALIZE. 4230 if (!isKnownNeverSNaN(Src0, MRI)) 4231 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4232 4233 if (!isKnownNeverSNaN(Src1, MRI)) 4234 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4235 } 4236 4237 // If there are no nans, it's safe to simply replace this with the non-IEEE 4238 // version. 4239 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4240 MI.eraseFromParent(); 4241 return Legalized; 4242 } 4243 4244 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4245 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4246 Register DstReg = MI.getOperand(0).getReg(); 4247 LLT Ty = MRI.getType(DstReg); 4248 unsigned Flags = MI.getFlags(); 4249 4250 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4251 Flags); 4252 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4253 MI.eraseFromParent(); 4254 return Legalized; 4255 } 4256 4257 LegalizerHelper::LegalizeResult 4258 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4259 Register DstReg = MI.getOperand(0).getReg(); 4260 Register SrcReg = MI.getOperand(1).getReg(); 4261 unsigned Flags = MI.getFlags(); 4262 LLT Ty = MRI.getType(DstReg); 4263 const LLT CondTy = Ty.changeElementSize(1); 4264 4265 // result = trunc(src); 4266 // if (src < 0.0 && src != result) 4267 // result += -1.0. 4268 4269 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4270 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4271 4272 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4273 SrcReg, Zero, Flags); 4274 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4275 SrcReg, Trunc, Flags); 4276 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4277 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4278 4279 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal); 4280 MI.eraseFromParent(); 4281 return Legalized; 4282 } 4283 4284 LegalizerHelper::LegalizeResult 4285 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4286 const unsigned NumDst = MI.getNumOperands() - 1; 4287 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4288 LLT SrcTy = MRI.getType(SrcReg); 4289 4290 Register Dst0Reg = MI.getOperand(0).getReg(); 4291 LLT DstTy = MRI.getType(Dst0Reg); 4292 4293 4294 // Expand scalarizing unmerge as bitcast to integer and shift. 4295 if (!DstTy.isVector() && SrcTy.isVector() && 4296 SrcTy.getElementType() == DstTy) { 4297 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4298 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4299 4300 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4301 4302 const unsigned DstSize = DstTy.getSizeInBits(); 4303 unsigned Offset = DstSize; 4304 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4305 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4306 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4307 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4308 } 4309 4310 MI.eraseFromParent(); 4311 return Legalized; 4312 } 4313 4314 return UnableToLegalize; 4315 } 4316 4317 LegalizerHelper::LegalizeResult 4318 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4319 Register DstReg = MI.getOperand(0).getReg(); 4320 Register Src0Reg = MI.getOperand(1).getReg(); 4321 Register Src1Reg = MI.getOperand(2).getReg(); 4322 LLT Src0Ty = MRI.getType(Src0Reg); 4323 LLT DstTy = MRI.getType(DstReg); 4324 LLT IdxTy = LLT::scalar(32); 4325 4326 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4327 4328 if (DstTy.isScalar()) { 4329 if (Src0Ty.isVector()) 4330 return UnableToLegalize; 4331 4332 // This is just a SELECT. 4333 assert(Mask.size() == 1 && "Expected a single mask element"); 4334 Register Val; 4335 if (Mask[0] < 0 || Mask[0] > 1) 4336 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4337 else 4338 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4339 MIRBuilder.buildCopy(DstReg, Val); 4340 MI.eraseFromParent(); 4341 return Legalized; 4342 } 4343 4344 Register Undef; 4345 SmallVector<Register, 32> BuildVec; 4346 LLT EltTy = DstTy.getElementType(); 4347 4348 for (int Idx : Mask) { 4349 if (Idx < 0) { 4350 if (!Undef.isValid()) 4351 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4352 BuildVec.push_back(Undef); 4353 continue; 4354 } 4355 4356 if (Src0Ty.isScalar()) { 4357 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4358 } else { 4359 int NumElts = Src0Ty.getNumElements(); 4360 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4361 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4362 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4363 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4364 BuildVec.push_back(Extract.getReg(0)); 4365 } 4366 } 4367 4368 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4369 MI.eraseFromParent(); 4370 return Legalized; 4371 } 4372 4373 LegalizerHelper::LegalizeResult 4374 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4375 Register Dst = MI.getOperand(0).getReg(); 4376 Register AllocSize = MI.getOperand(1).getReg(); 4377 unsigned Align = MI.getOperand(2).getImm(); 4378 4379 const auto &MF = *MI.getMF(); 4380 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4381 4382 LLT PtrTy = MRI.getType(Dst); 4383 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4384 4385 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4386 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4387 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4388 4389 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4390 // have to generate an extra instruction to negate the alloc and then use 4391 // G_PTR_ADD to add the negative offset. 4392 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4393 if (Align) { 4394 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4395 AlignMask.negate(); 4396 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4397 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4398 } 4399 4400 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4401 MIRBuilder.buildCopy(SPReg, SPTmp); 4402 MIRBuilder.buildCopy(Dst, SPTmp); 4403 4404 MI.eraseFromParent(); 4405 return Legalized; 4406 } 4407 4408 LegalizerHelper::LegalizeResult 4409 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4410 Register Dst = MI.getOperand(0).getReg(); 4411 Register Src = MI.getOperand(1).getReg(); 4412 unsigned Offset = MI.getOperand(2).getImm(); 4413 4414 LLT DstTy = MRI.getType(Dst); 4415 LLT SrcTy = MRI.getType(Src); 4416 4417 if (DstTy.isScalar() && 4418 (SrcTy.isScalar() || 4419 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4420 LLT SrcIntTy = SrcTy; 4421 if (!SrcTy.isScalar()) { 4422 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4423 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4424 } 4425 4426 if (Offset == 0) 4427 MIRBuilder.buildTrunc(Dst, Src); 4428 else { 4429 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4430 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4431 MIRBuilder.buildTrunc(Dst, Shr); 4432 } 4433 4434 MI.eraseFromParent(); 4435 return Legalized; 4436 } 4437 4438 return UnableToLegalize; 4439 } 4440 4441 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4442 Register Dst = MI.getOperand(0).getReg(); 4443 Register Src = MI.getOperand(1).getReg(); 4444 Register InsertSrc = MI.getOperand(2).getReg(); 4445 uint64_t Offset = MI.getOperand(3).getImm(); 4446 4447 LLT DstTy = MRI.getType(Src); 4448 LLT InsertTy = MRI.getType(InsertSrc); 4449 4450 if (InsertTy.isScalar() && 4451 (DstTy.isScalar() || 4452 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4453 LLT IntDstTy = DstTy; 4454 if (!DstTy.isScalar()) { 4455 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4456 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4457 } 4458 4459 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4460 if (Offset != 0) { 4461 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4462 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4463 } 4464 4465 APInt MaskVal = ~APInt::getBitsSet(DstTy.getSizeInBits(), Offset, 4466 InsertTy.getSizeInBits()); 4467 4468 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4469 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4470 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4471 4472 MIRBuilder.buildBitcast(Dst, Or); 4473 MI.eraseFromParent(); 4474 return Legalized; 4475 } 4476 4477 return UnableToLegalize; 4478 } 4479 4480 LegalizerHelper::LegalizeResult 4481 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4482 Register Dst0 = MI.getOperand(0).getReg(); 4483 Register Dst1 = MI.getOperand(1).getReg(); 4484 Register LHS = MI.getOperand(2).getReg(); 4485 Register RHS = MI.getOperand(3).getReg(); 4486 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4487 4488 LLT Ty = MRI.getType(Dst0); 4489 LLT BoolTy = MRI.getType(Dst1); 4490 4491 if (IsAdd) 4492 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4493 else 4494 MIRBuilder.buildSub(Dst0, LHS, RHS); 4495 4496 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4497 4498 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4499 4500 // For an addition, the result should be less than one of the operands (LHS) 4501 // if and only if the other operand (RHS) is negative, otherwise there will 4502 // be overflow. 4503 // For a subtraction, the result should be less than one of the operands 4504 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4505 // otherwise there will be overflow. 4506 auto ResultLowerThanLHS = 4507 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4508 auto ConditionRHS = MIRBuilder.buildICmp( 4509 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4510 4511 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4512 MI.eraseFromParent(); 4513 return Legalized; 4514 } 4515 4516 LegalizerHelper::LegalizeResult 4517 LegalizerHelper::lowerBswap(MachineInstr &MI) { 4518 Register Dst = MI.getOperand(0).getReg(); 4519 Register Src = MI.getOperand(1).getReg(); 4520 const LLT Ty = MRI.getType(Src); 4521 unsigned SizeInBytes = Ty.getSizeInBytes(); 4522 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 4523 4524 // Swap most and least significant byte, set remaining bytes in Res to zero. 4525 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 4526 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 4527 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4528 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 4529 4530 // Set i-th high/low byte in Res to i-th low/high byte from Src. 4531 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 4532 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 4533 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 4534 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 4535 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 4536 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 4537 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 4538 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 4539 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 4540 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 4541 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4542 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 4543 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 4544 } 4545 Res.getInstr()->getOperand(0).setReg(Dst); 4546 4547 MI.eraseFromParent(); 4548 return Legalized; 4549 } 4550 4551 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 4552 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 4553 MachineInstrBuilder Src, APInt Mask) { 4554 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 4555 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 4556 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 4557 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 4558 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 4559 return B.buildOr(Dst, LHS, RHS); 4560 } 4561 4562 LegalizerHelper::LegalizeResult 4563 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 4564 Register Dst = MI.getOperand(0).getReg(); 4565 Register Src = MI.getOperand(1).getReg(); 4566 const LLT Ty = MRI.getType(Src); 4567 unsigned Size = Ty.getSizeInBits(); 4568 4569 MachineInstrBuilder BSWAP = 4570 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 4571 4572 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 4573 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 4574 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 4575 MachineInstrBuilder Swap4 = 4576 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 4577 4578 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 4579 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 4580 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 4581 MachineInstrBuilder Swap2 = 4582 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 4583 4584 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 4585 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 4586 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 4587 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 4588 4589 MI.eraseFromParent(); 4590 return Legalized; 4591 } 4592 4593 LegalizerHelper::LegalizeResult 4594 LegalizerHelper::lowerReadRegister(MachineInstr &MI) { 4595 Register Dst = MI.getOperand(0).getReg(); 4596 const LLT Ty = MRI.getType(Dst); 4597 const MDString *RegStr = cast<MDString>( 4598 cast<MDNode>(MI.getOperand(1).getMetadata())->getOperand(0)); 4599 4600 MachineFunction &MF = MIRBuilder.getMF(); 4601 const TargetSubtargetInfo &STI = MF.getSubtarget(); 4602 const TargetLowering *TLI = STI.getTargetLowering(); 4603 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 4604 if (!Reg.isValid()) 4605 return UnableToLegalize; 4606 4607 MIRBuilder.buildCopy(Dst, Reg); 4608 MI.eraseFromParent(); 4609 return Legalized; 4610 } 4611