1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()), 94 TLI(*MF.getSubtarget().getTargetLowering()) { } 95 96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 97 GISelChangeObserver &Observer, 98 MachineIRBuilder &B) 99 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 100 TLI(*MF.getSubtarget().getTargetLowering()) { } 101 102 LegalizerHelper::LegalizeResult 103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 104 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 105 106 MIRBuilder.setInstrAndDebugLoc(MI); 107 108 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 109 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 110 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 111 auto Step = LI.getAction(MI, MRI); 112 switch (Step.Action) { 113 case Legal: 114 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 115 return AlreadyLegal; 116 case Libcall: 117 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 118 return libcall(MI); 119 case NarrowScalar: 120 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 121 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 122 case WidenScalar: 123 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 124 return widenScalar(MI, Step.TypeIdx, Step.NewType); 125 case Bitcast: 126 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 127 return bitcast(MI, Step.TypeIdx, Step.NewType); 128 case Lower: 129 LLVM_DEBUG(dbgs() << ".. Lower\n"); 130 return lower(MI, Step.TypeIdx, Step.NewType); 131 case FewerElements: 132 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 133 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case MoreElements: 135 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 136 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 137 case Custom: 138 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 139 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 140 default: 141 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 142 return UnableToLegalize; 143 } 144 } 145 146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 147 SmallVectorImpl<Register> &VRegs) { 148 for (int i = 0; i < NumParts; ++i) 149 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 150 MIRBuilder.buildUnmerge(VRegs, Reg); 151 } 152 153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 154 LLT MainTy, LLT &LeftoverTy, 155 SmallVectorImpl<Register> &VRegs, 156 SmallVectorImpl<Register> &LeftoverRegs) { 157 assert(!LeftoverTy.isValid() && "this is an out argument"); 158 159 unsigned RegSize = RegTy.getSizeInBits(); 160 unsigned MainSize = MainTy.getSizeInBits(); 161 unsigned NumParts = RegSize / MainSize; 162 unsigned LeftoverSize = RegSize - NumParts * MainSize; 163 164 // Use an unmerge when possible. 165 if (LeftoverSize == 0) { 166 for (unsigned I = 0; I < NumParts; ++I) 167 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 168 MIRBuilder.buildUnmerge(VRegs, Reg); 169 return true; 170 } 171 172 if (MainTy.isVector()) { 173 unsigned EltSize = MainTy.getScalarSizeInBits(); 174 if (LeftoverSize % EltSize != 0) 175 return false; 176 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 177 } else { 178 LeftoverTy = LLT::scalar(LeftoverSize); 179 } 180 181 // For irregular sizes, extract the individual parts. 182 for (unsigned I = 0; I != NumParts; ++I) { 183 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 184 VRegs.push_back(NewReg); 185 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 186 } 187 188 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 189 Offset += LeftoverSize) { 190 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 191 LeftoverRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, Offset); 193 } 194 195 return true; 196 } 197 198 void LegalizerHelper::insertParts(Register DstReg, 199 LLT ResultTy, LLT PartTy, 200 ArrayRef<Register> PartRegs, 201 LLT LeftoverTy, 202 ArrayRef<Register> LeftoverRegs) { 203 if (!LeftoverTy.isValid()) { 204 assert(LeftoverRegs.empty()); 205 206 if (!ResultTy.isVector()) { 207 MIRBuilder.buildMerge(DstReg, PartRegs); 208 return; 209 } 210 211 if (PartTy.isVector()) 212 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 213 else 214 MIRBuilder.buildBuildVector(DstReg, PartRegs); 215 return; 216 } 217 218 unsigned PartSize = PartTy.getSizeInBits(); 219 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 220 221 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 222 MIRBuilder.buildUndef(CurResultReg); 223 224 unsigned Offset = 0; 225 for (Register PartReg : PartRegs) { 226 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 227 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 228 CurResultReg = NewResultReg; 229 Offset += PartSize; 230 } 231 232 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 233 // Use the original output register for the final insert to avoid a copy. 234 Register NewResultReg = (I + 1 == E) ? 235 DstReg : MRI.createGenericVirtualRegister(ResultTy); 236 237 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 238 CurResultReg = NewResultReg; 239 Offset += LeftoverPartSize; 240 } 241 } 242 243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 245 const MachineInstr &MI) { 246 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 247 248 const int StartIdx = Regs.size(); 249 const int NumResults = MI.getNumOperands() - 1; 250 Regs.resize(Regs.size() + NumResults); 251 for (int I = 0; I != NumResults; ++I) 252 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 253 } 254 255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 256 LLT GCDTy, Register SrcReg) { 257 LLT SrcTy = MRI.getType(SrcReg); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 } 268 269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 270 LLT NarrowTy, Register SrcReg) { 271 LLT SrcTy = MRI.getType(SrcReg); 272 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 273 extractGCDType(Parts, GCDTy, SrcReg); 274 return GCDTy; 275 } 276 277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 278 SmallVectorImpl<Register> &VRegs, 279 unsigned PadStrategy) { 280 LLT LCMTy = getLCMType(DstTy, NarrowTy); 281 282 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 283 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 284 int NumOrigSrc = VRegs.size(); 285 286 Register PadReg; 287 288 // Get a value we can use to pad the source value if the sources won't evenly 289 // cover the result type. 290 if (NumOrigSrc < NumParts * NumSubParts) { 291 if (PadStrategy == TargetOpcode::G_ZEXT) 292 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 293 else if (PadStrategy == TargetOpcode::G_ANYEXT) 294 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 295 else { 296 assert(PadStrategy == TargetOpcode::G_SEXT); 297 298 // Shift the sign bit of the low register through the high register. 299 auto ShiftAmt = 300 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 301 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 302 } 303 } 304 305 // Registers for the final merge to be produced. 306 SmallVector<Register, 4> Remerge(NumParts); 307 308 // Registers needed for intermediate merges, which will be merged into a 309 // source for Remerge. 310 SmallVector<Register, 4> SubMerge(NumSubParts); 311 312 // Once we've fully read off the end of the original source bits, we can reuse 313 // the same high bits for remaining padding elements. 314 Register AllPadReg; 315 316 // Build merges to the LCM type to cover the original result type. 317 for (int I = 0; I != NumParts; ++I) { 318 bool AllMergePartsArePadding = true; 319 320 // Build the requested merges to the requested type. 321 for (int J = 0; J != NumSubParts; ++J) { 322 int Idx = I * NumSubParts + J; 323 if (Idx >= NumOrigSrc) { 324 SubMerge[J] = PadReg; 325 continue; 326 } 327 328 SubMerge[J] = VRegs[Idx]; 329 330 // There are meaningful bits here we can't reuse later. 331 AllMergePartsArePadding = false; 332 } 333 334 // If we've filled up a complete piece with padding bits, we can directly 335 // emit the natural sized constant if applicable, rather than a merge of 336 // smaller constants. 337 if (AllMergePartsArePadding && !AllPadReg) { 338 if (PadStrategy == TargetOpcode::G_ANYEXT) 339 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 340 else if (PadStrategy == TargetOpcode::G_ZEXT) 341 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 342 343 // If this is a sign extension, we can't materialize a trivial constant 344 // with the right type and have to produce a merge. 345 } 346 347 if (AllPadReg) { 348 // Avoid creating additional instructions if we're just adding additional 349 // copies of padding bits. 350 Remerge[I] = AllPadReg; 351 continue; 352 } 353 354 if (NumSubParts == 1) 355 Remerge[I] = SubMerge[0]; 356 else 357 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 358 359 // In the sign extend padding case, re-use the first all-signbit merge. 360 if (AllMergePartsArePadding && !AllPadReg) 361 AllPadReg = Remerge[I]; 362 } 363 364 VRegs = std::move(Remerge); 365 return LCMTy; 366 } 367 368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 369 ArrayRef<Register> RemergeRegs) { 370 LLT DstTy = MRI.getType(DstReg); 371 372 // Create the merge to the widened source, and extract the relevant bits into 373 // the result. 374 375 if (DstTy == LCMTy) { 376 MIRBuilder.buildMerge(DstReg, RemergeRegs); 377 return; 378 } 379 380 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 381 if (DstTy.isScalar() && LCMTy.isScalar()) { 382 MIRBuilder.buildTrunc(DstReg, Remerge); 383 return; 384 } 385 386 if (LCMTy.isVector()) { 387 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 388 SmallVector<Register, 8> UnmergeDefs(NumDefs); 389 UnmergeDefs[0] = DstReg; 390 for (unsigned I = 1; I != NumDefs; ++I) 391 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 392 393 MIRBuilder.buildUnmerge(UnmergeDefs, 394 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 395 return; 396 } 397 398 llvm_unreachable("unhandled case"); 399 } 400 401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 402 #define RTLIBCASE_INT(LibcallPrefix) \ 403 do { \ 404 switch (Size) { \ 405 case 32: \ 406 return RTLIB::LibcallPrefix##32; \ 407 case 64: \ 408 return RTLIB::LibcallPrefix##64; \ 409 case 128: \ 410 return RTLIB::LibcallPrefix##128; \ 411 default: \ 412 llvm_unreachable("unexpected size"); \ 413 } \ 414 } while (0) 415 416 #define RTLIBCASE(LibcallPrefix) \ 417 do { \ 418 switch (Size) { \ 419 case 32: \ 420 return RTLIB::LibcallPrefix##32; \ 421 case 64: \ 422 return RTLIB::LibcallPrefix##64; \ 423 case 80: \ 424 return RTLIB::LibcallPrefix##80; \ 425 case 128: \ 426 return RTLIB::LibcallPrefix##128; \ 427 default: \ 428 llvm_unreachable("unexpected size"); \ 429 } \ 430 } while (0) 431 432 switch (Opcode) { 433 case TargetOpcode::G_SDIV: 434 RTLIBCASE_INT(SDIV_I); 435 case TargetOpcode::G_UDIV: 436 RTLIBCASE_INT(UDIV_I); 437 case TargetOpcode::G_SREM: 438 RTLIBCASE_INT(SREM_I); 439 case TargetOpcode::G_UREM: 440 RTLIBCASE_INT(UREM_I); 441 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 442 RTLIBCASE_INT(CTLZ_I); 443 case TargetOpcode::G_FADD: 444 RTLIBCASE(ADD_F); 445 case TargetOpcode::G_FSUB: 446 RTLIBCASE(SUB_F); 447 case TargetOpcode::G_FMUL: 448 RTLIBCASE(MUL_F); 449 case TargetOpcode::G_FDIV: 450 RTLIBCASE(DIV_F); 451 case TargetOpcode::G_FEXP: 452 RTLIBCASE(EXP_F); 453 case TargetOpcode::G_FEXP2: 454 RTLIBCASE(EXP2_F); 455 case TargetOpcode::G_FREM: 456 RTLIBCASE(REM_F); 457 case TargetOpcode::G_FPOW: 458 RTLIBCASE(POW_F); 459 case TargetOpcode::G_FMA: 460 RTLIBCASE(FMA_F); 461 case TargetOpcode::G_FSIN: 462 RTLIBCASE(SIN_F); 463 case TargetOpcode::G_FCOS: 464 RTLIBCASE(COS_F); 465 case TargetOpcode::G_FLOG10: 466 RTLIBCASE(LOG10_F); 467 case TargetOpcode::G_FLOG: 468 RTLIBCASE(LOG_F); 469 case TargetOpcode::G_FLOG2: 470 RTLIBCASE(LOG2_F); 471 case TargetOpcode::G_FCEIL: 472 RTLIBCASE(CEIL_F); 473 case TargetOpcode::G_FFLOOR: 474 RTLIBCASE(FLOOR_F); 475 case TargetOpcode::G_FMINNUM: 476 RTLIBCASE(FMIN_F); 477 case TargetOpcode::G_FMAXNUM: 478 RTLIBCASE(FMAX_F); 479 case TargetOpcode::G_FSQRT: 480 RTLIBCASE(SQRT_F); 481 case TargetOpcode::G_FRINT: 482 RTLIBCASE(RINT_F); 483 case TargetOpcode::G_FNEARBYINT: 484 RTLIBCASE(NEARBYINT_F); 485 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 486 RTLIBCASE(ROUNDEVEN_F); 487 } 488 llvm_unreachable("Unknown libcall function"); 489 } 490 491 /// True if an instruction is in tail position in its caller. Intended for 492 /// legalizing libcalls as tail calls when possible. 493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 494 MachineInstr &MI) { 495 MachineBasicBlock &MBB = *MI.getParent(); 496 const Function &F = MBB.getParent()->getFunction(); 497 498 // Conservatively require the attributes of the call to match those of 499 // the return. Ignore NoAlias and NonNull because they don't affect the 500 // call sequence. 501 AttributeList CallerAttrs = F.getAttributes(); 502 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 503 .removeAttribute(Attribute::NoAlias) 504 .removeAttribute(Attribute::NonNull) 505 .hasAttributes()) 506 return false; 507 508 // It's not safe to eliminate the sign / zero extension of the return value. 509 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 510 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 511 return false; 512 513 // Only tail call if the following instruction is a standard return. 514 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 515 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 516 return false; 517 518 return true; 519 } 520 521 LegalizerHelper::LegalizeResult 522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 523 const CallLowering::ArgInfo &Result, 524 ArrayRef<CallLowering::ArgInfo> Args, 525 const CallingConv::ID CC) { 526 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 527 528 CallLowering::CallLoweringInfo Info; 529 Info.CallConv = CC; 530 Info.Callee = MachineOperand::CreateES(Name); 531 Info.OrigRet = Result; 532 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 533 if (!CLI.lowerCall(MIRBuilder, Info)) 534 return LegalizerHelper::UnableToLegalize; 535 536 return LegalizerHelper::Legalized; 537 } 538 539 LegalizerHelper::LegalizeResult 540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 541 const CallLowering::ArgInfo &Result, 542 ArrayRef<CallLowering::ArgInfo> Args) { 543 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 544 const char *Name = TLI.getLibcallName(Libcall); 545 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 546 return createLibcall(MIRBuilder, Name, Result, Args, CC); 547 } 548 549 // Useful for libcalls where all operands have the same type. 550 static LegalizerHelper::LegalizeResult 551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 552 Type *OpType) { 553 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 554 555 SmallVector<CallLowering::ArgInfo, 3> Args; 556 for (unsigned i = 1; i < MI.getNumOperands(); i++) 557 Args.push_back({MI.getOperand(i).getReg(), OpType}); 558 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 559 Args); 560 } 561 562 LegalizerHelper::LegalizeResult 563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 564 MachineInstr &MI) { 565 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 566 567 SmallVector<CallLowering::ArgInfo, 3> Args; 568 // Add all the args, except for the last which is an imm denoting 'tail'. 569 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 570 Register Reg = MI.getOperand(i).getReg(); 571 572 // Need derive an IR type for call lowering. 573 LLT OpLLT = MRI.getType(Reg); 574 Type *OpTy = nullptr; 575 if (OpLLT.isPointer()) 576 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 577 else 578 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 579 Args.push_back({Reg, OpTy}); 580 } 581 582 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 583 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 584 RTLIB::Libcall RTLibcall; 585 switch (MI.getOpcode()) { 586 case TargetOpcode::G_MEMCPY: 587 RTLibcall = RTLIB::MEMCPY; 588 break; 589 case TargetOpcode::G_MEMMOVE: 590 RTLibcall = RTLIB::MEMMOVE; 591 break; 592 case TargetOpcode::G_MEMSET: 593 RTLibcall = RTLIB::MEMSET; 594 break; 595 default: 596 return LegalizerHelper::UnableToLegalize; 597 } 598 const char *Name = TLI.getLibcallName(RTLibcall); 599 600 CallLowering::CallLoweringInfo Info; 601 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 602 Info.Callee = MachineOperand::CreateES(Name); 603 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 604 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 605 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 606 607 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 608 if (!CLI.lowerCall(MIRBuilder, Info)) 609 return LegalizerHelper::UnableToLegalize; 610 611 if (Info.LoweredTailCall) { 612 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 613 // We must have a return following the call (or debug insts) to get past 614 // isLibCallInTailPosition. 615 do { 616 MachineInstr *Next = MI.getNextNode(); 617 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 618 "Expected instr following MI to be return or debug inst?"); 619 // We lowered a tail call, so the call is now the return from the block. 620 // Delete the old return. 621 Next->eraseFromParent(); 622 } while (MI.getNextNode()); 623 } 624 625 return LegalizerHelper::Legalized; 626 } 627 628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 629 Type *FromType) { 630 auto ToMVT = MVT::getVT(ToType); 631 auto FromMVT = MVT::getVT(FromType); 632 633 switch (Opcode) { 634 case TargetOpcode::G_FPEXT: 635 return RTLIB::getFPEXT(FromMVT, ToMVT); 636 case TargetOpcode::G_FPTRUNC: 637 return RTLIB::getFPROUND(FromMVT, ToMVT); 638 case TargetOpcode::G_FPTOSI: 639 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 640 case TargetOpcode::G_FPTOUI: 641 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 642 case TargetOpcode::G_SITOFP: 643 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 644 case TargetOpcode::G_UITOFP: 645 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 646 } 647 llvm_unreachable("Unsupported libcall function"); 648 } 649 650 static LegalizerHelper::LegalizeResult 651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 652 Type *FromType) { 653 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 654 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 655 {{MI.getOperand(1).getReg(), FromType}}); 656 } 657 658 LegalizerHelper::LegalizeResult 659 LegalizerHelper::libcall(MachineInstr &MI) { 660 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 661 unsigned Size = LLTy.getSizeInBits(); 662 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 663 664 switch (MI.getOpcode()) { 665 default: 666 return UnableToLegalize; 667 case TargetOpcode::G_SDIV: 668 case TargetOpcode::G_UDIV: 669 case TargetOpcode::G_SREM: 670 case TargetOpcode::G_UREM: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 672 Type *HLTy = IntegerType::get(Ctx, Size); 673 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 674 if (Status != Legalized) 675 return Status; 676 break; 677 } 678 case TargetOpcode::G_FADD: 679 case TargetOpcode::G_FSUB: 680 case TargetOpcode::G_FMUL: 681 case TargetOpcode::G_FDIV: 682 case TargetOpcode::G_FMA: 683 case TargetOpcode::G_FPOW: 684 case TargetOpcode::G_FREM: 685 case TargetOpcode::G_FCOS: 686 case TargetOpcode::G_FSIN: 687 case TargetOpcode::G_FLOG10: 688 case TargetOpcode::G_FLOG: 689 case TargetOpcode::G_FLOG2: 690 case TargetOpcode::G_FEXP: 691 case TargetOpcode::G_FEXP2: 692 case TargetOpcode::G_FCEIL: 693 case TargetOpcode::G_FFLOOR: 694 case TargetOpcode::G_FMINNUM: 695 case TargetOpcode::G_FMAXNUM: 696 case TargetOpcode::G_FSQRT: 697 case TargetOpcode::G_FRINT: 698 case TargetOpcode::G_FNEARBYINT: 699 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 700 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 701 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 702 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 703 return UnableToLegalize; 704 } 705 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_FPEXT: 711 case TargetOpcode::G_FPTRUNC: { 712 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 713 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 714 if (!FromTy || !ToTy) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 717 if (Status != Legalized) 718 return Status; 719 break; 720 } 721 case TargetOpcode::G_FPTOSI: 722 case TargetOpcode::G_FPTOUI: { 723 // FIXME: Support other types 724 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 725 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 726 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 727 return UnableToLegalize; 728 LegalizeResult Status = conversionLibcall( 729 MI, MIRBuilder, 730 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 731 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 732 if (Status != Legalized) 733 return Status; 734 break; 735 } 736 case TargetOpcode::G_SITOFP: 737 case TargetOpcode::G_UITOFP: { 738 // FIXME: Support other types 739 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 740 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 741 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 742 return UnableToLegalize; 743 LegalizeResult Status = conversionLibcall( 744 MI, MIRBuilder, 745 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 746 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 747 if (Status != Legalized) 748 return Status; 749 break; 750 } 751 case TargetOpcode::G_MEMCPY: 752 case TargetOpcode::G_MEMMOVE: 753 case TargetOpcode::G_MEMSET: { 754 LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); 755 MI.eraseFromParent(); 756 return Result; 757 } 758 } 759 760 MI.eraseFromParent(); 761 return Legalized; 762 } 763 764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 765 unsigned TypeIdx, 766 LLT NarrowTy) { 767 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 768 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 769 770 switch (MI.getOpcode()) { 771 default: 772 return UnableToLegalize; 773 case TargetOpcode::G_IMPLICIT_DEF: { 774 Register DstReg = MI.getOperand(0).getReg(); 775 LLT DstTy = MRI.getType(DstReg); 776 777 // If SizeOp0 is not an exact multiple of NarrowSize, emit 778 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 779 // FIXME: Although this would also be legal for the general case, it causes 780 // a lot of regressions in the emitted code (superfluous COPYs, artifact 781 // combines not being hit). This seems to be a problem related to the 782 // artifact combiner. 783 if (SizeOp0 % NarrowSize != 0) { 784 LLT ImplicitTy = NarrowTy; 785 if (DstTy.isVector()) 786 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 787 788 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 789 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 790 791 MI.eraseFromParent(); 792 return Legalized; 793 } 794 795 int NumParts = SizeOp0 / NarrowSize; 796 797 SmallVector<Register, 2> DstRegs; 798 for (int i = 0; i < NumParts; ++i) 799 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 800 801 if (DstTy.isVector()) 802 MIRBuilder.buildBuildVector(DstReg, DstRegs); 803 else 804 MIRBuilder.buildMerge(DstReg, DstRegs); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 case TargetOpcode::G_CONSTANT: { 809 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 810 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 811 unsigned TotalSize = Ty.getSizeInBits(); 812 unsigned NarrowSize = NarrowTy.getSizeInBits(); 813 int NumParts = TotalSize / NarrowSize; 814 815 SmallVector<Register, 4> PartRegs; 816 for (int I = 0; I != NumParts; ++I) { 817 unsigned Offset = I * NarrowSize; 818 auto K = MIRBuilder.buildConstant(NarrowTy, 819 Val.lshr(Offset).trunc(NarrowSize)); 820 PartRegs.push_back(K.getReg(0)); 821 } 822 823 LLT LeftoverTy; 824 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 825 SmallVector<Register, 1> LeftoverRegs; 826 if (LeftoverBits != 0) { 827 LeftoverTy = LLT::scalar(LeftoverBits); 828 auto K = MIRBuilder.buildConstant( 829 LeftoverTy, 830 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 831 LeftoverRegs.push_back(K.getReg(0)); 832 } 833 834 insertParts(MI.getOperand(0).getReg(), 835 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 836 837 MI.eraseFromParent(); 838 return Legalized; 839 } 840 case TargetOpcode::G_SEXT: 841 case TargetOpcode::G_ZEXT: 842 case TargetOpcode::G_ANYEXT: 843 return narrowScalarExt(MI, TypeIdx, NarrowTy); 844 case TargetOpcode::G_TRUNC: { 845 if (TypeIdx != 1) 846 return UnableToLegalize; 847 848 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 849 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 850 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 851 return UnableToLegalize; 852 } 853 854 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 855 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 856 MI.eraseFromParent(); 857 return Legalized; 858 } 859 860 case TargetOpcode::G_FREEZE: 861 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 862 863 case TargetOpcode::G_ADD: { 864 // FIXME: add support for when SizeOp0 isn't an exact multiple of 865 // NarrowSize. 866 if (SizeOp0 % NarrowSize != 0) 867 return UnableToLegalize; 868 // Expand in terms of carry-setting/consuming G_ADDE instructions. 869 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 870 871 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 872 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 873 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 874 875 Register CarryIn; 876 for (int i = 0; i < NumParts; ++i) { 877 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 878 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 879 880 if (i == 0) 881 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 882 else { 883 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 884 Src2Regs[i], CarryIn); 885 } 886 887 DstRegs.push_back(DstReg); 888 CarryIn = CarryOut; 889 } 890 Register DstReg = MI.getOperand(0).getReg(); 891 if(MRI.getType(DstReg).isVector()) 892 MIRBuilder.buildBuildVector(DstReg, DstRegs); 893 else 894 MIRBuilder.buildMerge(DstReg, DstRegs); 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 case TargetOpcode::G_SUB: { 899 // FIXME: add support for when SizeOp0 isn't an exact multiple of 900 // NarrowSize. 901 if (SizeOp0 % NarrowSize != 0) 902 return UnableToLegalize; 903 904 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 905 906 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 907 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 908 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 909 910 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 911 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 912 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 913 {Src1Regs[0], Src2Regs[0]}); 914 DstRegs.push_back(DstReg); 915 Register BorrowIn = BorrowOut; 916 for (int i = 1; i < NumParts; ++i) { 917 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 918 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 919 920 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 921 {Src1Regs[i], Src2Regs[i], BorrowIn}); 922 923 DstRegs.push_back(DstReg); 924 BorrowIn = BorrowOut; 925 } 926 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 927 MI.eraseFromParent(); 928 return Legalized; 929 } 930 case TargetOpcode::G_MUL: 931 case TargetOpcode::G_UMULH: 932 return narrowScalarMul(MI, NarrowTy); 933 case TargetOpcode::G_EXTRACT: 934 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 935 case TargetOpcode::G_INSERT: 936 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 937 case TargetOpcode::G_LOAD: { 938 auto &MMO = **MI.memoperands_begin(); 939 Register DstReg = MI.getOperand(0).getReg(); 940 LLT DstTy = MRI.getType(DstReg); 941 if (DstTy.isVector()) 942 return UnableToLegalize; 943 944 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 945 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 946 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 947 MIRBuilder.buildAnyExt(DstReg, TmpReg); 948 MI.eraseFromParent(); 949 return Legalized; 950 } 951 952 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 953 } 954 case TargetOpcode::G_ZEXTLOAD: 955 case TargetOpcode::G_SEXTLOAD: { 956 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 957 Register DstReg = MI.getOperand(0).getReg(); 958 Register PtrReg = MI.getOperand(1).getReg(); 959 960 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 961 auto &MMO = **MI.memoperands_begin(); 962 unsigned MemSize = MMO.getSizeInBits(); 963 964 if (MemSize == NarrowSize) { 965 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 966 } else if (MemSize < NarrowSize) { 967 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 968 } else if (MemSize > NarrowSize) { 969 // FIXME: Need to split the load. 970 return UnableToLegalize; 971 } 972 973 if (ZExt) 974 MIRBuilder.buildZExt(DstReg, TmpReg); 975 else 976 MIRBuilder.buildSExt(DstReg, TmpReg); 977 978 MI.eraseFromParent(); 979 return Legalized; 980 } 981 case TargetOpcode::G_STORE: { 982 const auto &MMO = **MI.memoperands_begin(); 983 984 Register SrcReg = MI.getOperand(0).getReg(); 985 LLT SrcTy = MRI.getType(SrcReg); 986 if (SrcTy.isVector()) 987 return UnableToLegalize; 988 989 int NumParts = SizeOp0 / NarrowSize; 990 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 991 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 992 if (SrcTy.isVector() && LeftoverBits != 0) 993 return UnableToLegalize; 994 995 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 996 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 997 auto &MMO = **MI.memoperands_begin(); 998 MIRBuilder.buildTrunc(TmpReg, SrcReg); 999 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 1000 MI.eraseFromParent(); 1001 return Legalized; 1002 } 1003 1004 return reduceLoadStoreWidth(MI, 0, NarrowTy); 1005 } 1006 case TargetOpcode::G_SELECT: 1007 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1008 case TargetOpcode::G_AND: 1009 case TargetOpcode::G_OR: 1010 case TargetOpcode::G_XOR: { 1011 // Legalize bitwise operation: 1012 // A = BinOp<Ty> B, C 1013 // into: 1014 // B1, ..., BN = G_UNMERGE_VALUES B 1015 // C1, ..., CN = G_UNMERGE_VALUES C 1016 // A1 = BinOp<Ty/N> B1, C2 1017 // ... 1018 // AN = BinOp<Ty/N> BN, CN 1019 // A = G_MERGE_VALUES A1, ..., AN 1020 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1021 } 1022 case TargetOpcode::G_SHL: 1023 case TargetOpcode::G_LSHR: 1024 case TargetOpcode::G_ASHR: 1025 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_CTLZ: 1027 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1028 case TargetOpcode::G_CTTZ: 1029 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1030 case TargetOpcode::G_CTPOP: 1031 if (TypeIdx == 1) 1032 switch (MI.getOpcode()) { 1033 case TargetOpcode::G_CTLZ: 1034 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1035 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1036 case TargetOpcode::G_CTTZ: 1037 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1038 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1039 case TargetOpcode::G_CTPOP: 1040 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1041 default: 1042 return UnableToLegalize; 1043 } 1044 1045 Observer.changingInstr(MI); 1046 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1047 Observer.changedInstr(MI); 1048 return Legalized; 1049 case TargetOpcode::G_INTTOPTR: 1050 if (TypeIdx != 1) 1051 return UnableToLegalize; 1052 1053 Observer.changingInstr(MI); 1054 narrowScalarSrc(MI, NarrowTy, 1); 1055 Observer.changedInstr(MI); 1056 return Legalized; 1057 case TargetOpcode::G_PTRTOINT: 1058 if (TypeIdx != 0) 1059 return UnableToLegalize; 1060 1061 Observer.changingInstr(MI); 1062 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1063 Observer.changedInstr(MI); 1064 return Legalized; 1065 case TargetOpcode::G_PHI: { 1066 unsigned NumParts = SizeOp0 / NarrowSize; 1067 SmallVector<Register, 2> DstRegs(NumParts); 1068 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1069 Observer.changingInstr(MI); 1070 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1071 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1072 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1073 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1074 SrcRegs[i / 2]); 1075 } 1076 MachineBasicBlock &MBB = *MI.getParent(); 1077 MIRBuilder.setInsertPt(MBB, MI); 1078 for (unsigned i = 0; i < NumParts; ++i) { 1079 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1080 MachineInstrBuilder MIB = 1081 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1082 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1083 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1084 } 1085 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1086 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1087 Observer.changedInstr(MI); 1088 MI.eraseFromParent(); 1089 return Legalized; 1090 } 1091 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1092 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1093 if (TypeIdx != 2) 1094 return UnableToLegalize; 1095 1096 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1097 Observer.changingInstr(MI); 1098 narrowScalarSrc(MI, NarrowTy, OpIdx); 1099 Observer.changedInstr(MI); 1100 return Legalized; 1101 } 1102 case TargetOpcode::G_ICMP: { 1103 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1104 if (NarrowSize * 2 != SrcSize) 1105 return UnableToLegalize; 1106 1107 Observer.changingInstr(MI); 1108 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1109 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1110 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1111 1112 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1113 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1114 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1115 1116 CmpInst::Predicate Pred = 1117 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1118 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1119 1120 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1121 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1122 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1123 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1124 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1125 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1126 } else { 1127 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1128 MachineInstrBuilder CmpHEQ = 1129 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1130 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1131 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1132 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1133 } 1134 Observer.changedInstr(MI); 1135 MI.eraseFromParent(); 1136 return Legalized; 1137 } 1138 case TargetOpcode::G_SEXT_INREG: { 1139 if (TypeIdx != 0) 1140 return UnableToLegalize; 1141 1142 int64_t SizeInBits = MI.getOperand(2).getImm(); 1143 1144 // So long as the new type has more bits than the bits we're extending we 1145 // don't need to break it apart. 1146 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1147 Observer.changingInstr(MI); 1148 // We don't lose any non-extension bits by truncating the src and 1149 // sign-extending the dst. 1150 MachineOperand &MO1 = MI.getOperand(1); 1151 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1152 MO1.setReg(TruncMIB.getReg(0)); 1153 1154 MachineOperand &MO2 = MI.getOperand(0); 1155 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1156 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1157 MIRBuilder.buildSExt(MO2, DstExt); 1158 MO2.setReg(DstExt); 1159 Observer.changedInstr(MI); 1160 return Legalized; 1161 } 1162 1163 // Break it apart. Components below the extension point are unmodified. The 1164 // component containing the extension point becomes a narrower SEXT_INREG. 1165 // Components above it are ashr'd from the component containing the 1166 // extension point. 1167 if (SizeOp0 % NarrowSize != 0) 1168 return UnableToLegalize; 1169 int NumParts = SizeOp0 / NarrowSize; 1170 1171 // List the registers where the destination will be scattered. 1172 SmallVector<Register, 2> DstRegs; 1173 // List the registers where the source will be split. 1174 SmallVector<Register, 2> SrcRegs; 1175 1176 // Create all the temporary registers. 1177 for (int i = 0; i < NumParts; ++i) { 1178 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1179 1180 SrcRegs.push_back(SrcReg); 1181 } 1182 1183 // Explode the big arguments into smaller chunks. 1184 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1185 1186 Register AshrCstReg = 1187 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1188 .getReg(0); 1189 Register FullExtensionReg = 0; 1190 Register PartialExtensionReg = 0; 1191 1192 // Do the operation on each small part. 1193 for (int i = 0; i < NumParts; ++i) { 1194 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1195 DstRegs.push_back(SrcRegs[i]); 1196 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1197 assert(PartialExtensionReg && 1198 "Expected to visit partial extension before full"); 1199 if (FullExtensionReg) { 1200 DstRegs.push_back(FullExtensionReg); 1201 continue; 1202 } 1203 DstRegs.push_back( 1204 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1205 .getReg(0)); 1206 FullExtensionReg = DstRegs.back(); 1207 } else { 1208 DstRegs.push_back( 1209 MIRBuilder 1210 .buildInstr( 1211 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1212 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1213 .getReg(0)); 1214 PartialExtensionReg = DstRegs.back(); 1215 } 1216 } 1217 1218 // Gather the destination registers into the final destination. 1219 Register DstReg = MI.getOperand(0).getReg(); 1220 MIRBuilder.buildMerge(DstReg, DstRegs); 1221 MI.eraseFromParent(); 1222 return Legalized; 1223 } 1224 case TargetOpcode::G_BSWAP: 1225 case TargetOpcode::G_BITREVERSE: { 1226 if (SizeOp0 % NarrowSize != 0) 1227 return UnableToLegalize; 1228 1229 Observer.changingInstr(MI); 1230 SmallVector<Register, 2> SrcRegs, DstRegs; 1231 unsigned NumParts = SizeOp0 / NarrowSize; 1232 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1233 1234 for (unsigned i = 0; i < NumParts; ++i) { 1235 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1236 {SrcRegs[NumParts - 1 - i]}); 1237 DstRegs.push_back(DstPart.getReg(0)); 1238 } 1239 1240 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1241 1242 Observer.changedInstr(MI); 1243 MI.eraseFromParent(); 1244 return Legalized; 1245 } 1246 case TargetOpcode::G_PTR_ADD: 1247 case TargetOpcode::G_PTRMASK: { 1248 if (TypeIdx != 1) 1249 return UnableToLegalize; 1250 Observer.changingInstr(MI); 1251 narrowScalarSrc(MI, NarrowTy, 2); 1252 Observer.changedInstr(MI); 1253 return Legalized; 1254 } 1255 case TargetOpcode::G_FPTOUI: { 1256 if (TypeIdx != 0) 1257 return UnableToLegalize; 1258 Observer.changingInstr(MI); 1259 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1260 Observer.changedInstr(MI); 1261 return Legalized; 1262 } 1263 case TargetOpcode::G_FPTOSI: { 1264 if (TypeIdx != 0) 1265 return UnableToLegalize; 1266 Observer.changingInstr(MI); 1267 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1268 Observer.changedInstr(MI); 1269 return Legalized; 1270 } 1271 case TargetOpcode::G_FPEXT: 1272 if (TypeIdx != 0) 1273 return UnableToLegalize; 1274 Observer.changingInstr(MI); 1275 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1276 Observer.changedInstr(MI); 1277 return Legalized; 1278 } 1279 } 1280 1281 Register LegalizerHelper::coerceToScalar(Register Val) { 1282 LLT Ty = MRI.getType(Val); 1283 if (Ty.isScalar()) 1284 return Val; 1285 1286 const DataLayout &DL = MIRBuilder.getDataLayout(); 1287 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1288 if (Ty.isPointer()) { 1289 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1290 return Register(); 1291 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1292 } 1293 1294 Register NewVal = Val; 1295 1296 assert(Ty.isVector()); 1297 LLT EltTy = Ty.getElementType(); 1298 if (EltTy.isPointer()) 1299 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1300 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1301 } 1302 1303 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1304 unsigned OpIdx, unsigned ExtOpcode) { 1305 MachineOperand &MO = MI.getOperand(OpIdx); 1306 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1307 MO.setReg(ExtB.getReg(0)); 1308 } 1309 1310 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1311 unsigned OpIdx) { 1312 MachineOperand &MO = MI.getOperand(OpIdx); 1313 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1314 MO.setReg(ExtB.getReg(0)); 1315 } 1316 1317 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1318 unsigned OpIdx, unsigned TruncOpcode) { 1319 MachineOperand &MO = MI.getOperand(OpIdx); 1320 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1321 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1322 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1323 MO.setReg(DstExt); 1324 } 1325 1326 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1327 unsigned OpIdx, unsigned ExtOpcode) { 1328 MachineOperand &MO = MI.getOperand(OpIdx); 1329 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1330 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1331 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1332 MO.setReg(DstTrunc); 1333 } 1334 1335 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1336 unsigned OpIdx) { 1337 MachineOperand &MO = MI.getOperand(OpIdx); 1338 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1339 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1340 } 1341 1342 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1343 unsigned OpIdx) { 1344 MachineOperand &MO = MI.getOperand(OpIdx); 1345 1346 LLT OldTy = MRI.getType(MO.getReg()); 1347 unsigned OldElts = OldTy.getNumElements(); 1348 unsigned NewElts = MoreTy.getNumElements(); 1349 1350 unsigned NumParts = NewElts / OldElts; 1351 1352 // Use concat_vectors if the result is a multiple of the number of elements. 1353 if (NumParts * OldElts == NewElts) { 1354 SmallVector<Register, 8> Parts; 1355 Parts.push_back(MO.getReg()); 1356 1357 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1358 for (unsigned I = 1; I != NumParts; ++I) 1359 Parts.push_back(ImpDef); 1360 1361 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1362 MO.setReg(Concat.getReg(0)); 1363 return; 1364 } 1365 1366 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1367 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1368 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1369 MO.setReg(MoreReg); 1370 } 1371 1372 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1373 MachineOperand &Op = MI.getOperand(OpIdx); 1374 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1375 } 1376 1377 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1378 MachineOperand &MO = MI.getOperand(OpIdx); 1379 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1380 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1381 MIRBuilder.buildBitcast(MO, CastDst); 1382 MO.setReg(CastDst); 1383 } 1384 1385 LegalizerHelper::LegalizeResult 1386 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1387 LLT WideTy) { 1388 if (TypeIdx != 1) 1389 return UnableToLegalize; 1390 1391 Register DstReg = MI.getOperand(0).getReg(); 1392 LLT DstTy = MRI.getType(DstReg); 1393 if (DstTy.isVector()) 1394 return UnableToLegalize; 1395 1396 Register Src1 = MI.getOperand(1).getReg(); 1397 LLT SrcTy = MRI.getType(Src1); 1398 const int DstSize = DstTy.getSizeInBits(); 1399 const int SrcSize = SrcTy.getSizeInBits(); 1400 const int WideSize = WideTy.getSizeInBits(); 1401 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1402 1403 unsigned NumOps = MI.getNumOperands(); 1404 unsigned NumSrc = MI.getNumOperands() - 1; 1405 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1406 1407 if (WideSize >= DstSize) { 1408 // Directly pack the bits in the target type. 1409 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1410 1411 for (unsigned I = 2; I != NumOps; ++I) { 1412 const unsigned Offset = (I - 1) * PartSize; 1413 1414 Register SrcReg = MI.getOperand(I).getReg(); 1415 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1416 1417 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1418 1419 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1420 MRI.createGenericVirtualRegister(WideTy); 1421 1422 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1423 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1424 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1425 ResultReg = NextResult; 1426 } 1427 1428 if (WideSize > DstSize) 1429 MIRBuilder.buildTrunc(DstReg, ResultReg); 1430 else if (DstTy.isPointer()) 1431 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1432 1433 MI.eraseFromParent(); 1434 return Legalized; 1435 } 1436 1437 // Unmerge the original values to the GCD type, and recombine to the next 1438 // multiple greater than the original type. 1439 // 1440 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1441 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1442 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1443 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1444 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1445 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1446 // %12:_(s12) = G_MERGE_VALUES %10, %11 1447 // 1448 // Padding with undef if necessary: 1449 // 1450 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1451 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1452 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1453 // %7:_(s2) = G_IMPLICIT_DEF 1454 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1455 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1456 // %10:_(s12) = G_MERGE_VALUES %8, %9 1457 1458 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1459 LLT GCDTy = LLT::scalar(GCD); 1460 1461 SmallVector<Register, 8> Parts; 1462 SmallVector<Register, 8> NewMergeRegs; 1463 SmallVector<Register, 8> Unmerges; 1464 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1465 1466 // Decompose the original operands if they don't evenly divide. 1467 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1468 Register SrcReg = MI.getOperand(I).getReg(); 1469 if (GCD == SrcSize) { 1470 Unmerges.push_back(SrcReg); 1471 } else { 1472 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1473 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1474 Unmerges.push_back(Unmerge.getReg(J)); 1475 } 1476 } 1477 1478 // Pad with undef to the next size that is a multiple of the requested size. 1479 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1480 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1481 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1482 Unmerges.push_back(UndefReg); 1483 } 1484 1485 const int PartsPerGCD = WideSize / GCD; 1486 1487 // Build merges of each piece. 1488 ArrayRef<Register> Slicer(Unmerges); 1489 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1490 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1491 NewMergeRegs.push_back(Merge.getReg(0)); 1492 } 1493 1494 // A truncate may be necessary if the requested type doesn't evenly divide the 1495 // original result type. 1496 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1497 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1498 } else { 1499 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1500 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1501 } 1502 1503 MI.eraseFromParent(); 1504 return Legalized; 1505 } 1506 1507 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1508 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1509 LLT OrigTy = MRI.getType(OrigReg); 1510 LLT LCMTy = getLCMType(WideTy, OrigTy); 1511 1512 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1513 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1514 1515 Register UnmergeSrc = WideReg; 1516 1517 // Create a merge to the LCM type, padding with undef 1518 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1519 // => 1520 // %1:_(<4 x s32>) = G_FOO 1521 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1522 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1523 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1524 if (NumMergeParts > 1) { 1525 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1526 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1527 MergeParts[0] = WideReg; 1528 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1529 } 1530 1531 // Unmerge to the original register and pad with dead defs. 1532 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1533 UnmergeResults[0] = OrigReg; 1534 for (int I = 1; I != NumUnmergeParts; ++I) 1535 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1536 1537 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1538 return WideReg; 1539 } 1540 1541 LegalizerHelper::LegalizeResult 1542 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1543 LLT WideTy) { 1544 if (TypeIdx != 0) 1545 return UnableToLegalize; 1546 1547 int NumDst = MI.getNumOperands() - 1; 1548 Register SrcReg = MI.getOperand(NumDst).getReg(); 1549 LLT SrcTy = MRI.getType(SrcReg); 1550 if (SrcTy.isVector()) 1551 return UnableToLegalize; 1552 1553 Register Dst0Reg = MI.getOperand(0).getReg(); 1554 LLT DstTy = MRI.getType(Dst0Reg); 1555 if (!DstTy.isScalar()) 1556 return UnableToLegalize; 1557 1558 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1559 if (SrcTy.isPointer()) { 1560 const DataLayout &DL = MIRBuilder.getDataLayout(); 1561 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1562 LLVM_DEBUG( 1563 dbgs() << "Not casting non-integral address space integer\n"); 1564 return UnableToLegalize; 1565 } 1566 1567 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1568 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1569 } 1570 1571 // Widen SrcTy to WideTy. This does not affect the result, but since the 1572 // user requested this size, it is probably better handled than SrcTy and 1573 // should reduce the total number of legalization artifacts 1574 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1575 SrcTy = WideTy; 1576 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1577 } 1578 1579 // Theres no unmerge type to target. Directly extract the bits from the 1580 // source type 1581 unsigned DstSize = DstTy.getSizeInBits(); 1582 1583 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1584 for (int I = 1; I != NumDst; ++I) { 1585 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1586 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1587 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1588 } 1589 1590 MI.eraseFromParent(); 1591 return Legalized; 1592 } 1593 1594 // Extend the source to a wider type. 1595 LLT LCMTy = getLCMType(SrcTy, WideTy); 1596 1597 Register WideSrc = SrcReg; 1598 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1599 // TODO: If this is an integral address space, cast to integer and anyext. 1600 if (SrcTy.isPointer()) { 1601 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1602 return UnableToLegalize; 1603 } 1604 1605 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1606 } 1607 1608 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1609 1610 // Create a sequence of unmerges and merges to the original results. Since we 1611 // may have widened the source, we will need to pad the results with dead defs 1612 // to cover the source register. 1613 // e.g. widen s48 to s64: 1614 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1615 // 1616 // => 1617 // %4:_(s192) = G_ANYEXT %0:_(s96) 1618 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1619 // ; unpack to GCD type, with extra dead defs 1620 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1621 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1622 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1623 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1624 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1625 const LLT GCDTy = getGCDType(WideTy, DstTy); 1626 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1627 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1628 1629 // Directly unmerge to the destination without going through a GCD type 1630 // if possible 1631 if (PartsPerRemerge == 1) { 1632 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1633 1634 for (int I = 0; I != NumUnmerge; ++I) { 1635 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1636 1637 for (int J = 0; J != PartsPerUnmerge; ++J) { 1638 int Idx = I * PartsPerUnmerge + J; 1639 if (Idx < NumDst) 1640 MIB.addDef(MI.getOperand(Idx).getReg()); 1641 else { 1642 // Create dead def for excess components. 1643 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1644 } 1645 } 1646 1647 MIB.addUse(Unmerge.getReg(I)); 1648 } 1649 } else { 1650 SmallVector<Register, 16> Parts; 1651 for (int J = 0; J != NumUnmerge; ++J) 1652 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1653 1654 SmallVector<Register, 8> RemergeParts; 1655 for (int I = 0; I != NumDst; ++I) { 1656 for (int J = 0; J < PartsPerRemerge; ++J) { 1657 const int Idx = I * PartsPerRemerge + J; 1658 RemergeParts.emplace_back(Parts[Idx]); 1659 } 1660 1661 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1662 RemergeParts.clear(); 1663 } 1664 } 1665 1666 MI.eraseFromParent(); 1667 return Legalized; 1668 } 1669 1670 LegalizerHelper::LegalizeResult 1671 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1672 LLT WideTy) { 1673 Register DstReg = MI.getOperand(0).getReg(); 1674 Register SrcReg = MI.getOperand(1).getReg(); 1675 LLT SrcTy = MRI.getType(SrcReg); 1676 1677 LLT DstTy = MRI.getType(DstReg); 1678 unsigned Offset = MI.getOperand(2).getImm(); 1679 1680 if (TypeIdx == 0) { 1681 if (SrcTy.isVector() || DstTy.isVector()) 1682 return UnableToLegalize; 1683 1684 SrcOp Src(SrcReg); 1685 if (SrcTy.isPointer()) { 1686 // Extracts from pointers can be handled only if they are really just 1687 // simple integers. 1688 const DataLayout &DL = MIRBuilder.getDataLayout(); 1689 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1690 return UnableToLegalize; 1691 1692 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1693 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1694 SrcTy = SrcAsIntTy; 1695 } 1696 1697 if (DstTy.isPointer()) 1698 return UnableToLegalize; 1699 1700 if (Offset == 0) { 1701 // Avoid a shift in the degenerate case. 1702 MIRBuilder.buildTrunc(DstReg, 1703 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1704 MI.eraseFromParent(); 1705 return Legalized; 1706 } 1707 1708 // Do a shift in the source type. 1709 LLT ShiftTy = SrcTy; 1710 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1711 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1712 ShiftTy = WideTy; 1713 } 1714 1715 auto LShr = MIRBuilder.buildLShr( 1716 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1717 MIRBuilder.buildTrunc(DstReg, LShr); 1718 MI.eraseFromParent(); 1719 return Legalized; 1720 } 1721 1722 if (SrcTy.isScalar()) { 1723 Observer.changingInstr(MI); 1724 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1725 Observer.changedInstr(MI); 1726 return Legalized; 1727 } 1728 1729 if (!SrcTy.isVector()) 1730 return UnableToLegalize; 1731 1732 if (DstTy != SrcTy.getElementType()) 1733 return UnableToLegalize; 1734 1735 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1736 return UnableToLegalize; 1737 1738 Observer.changingInstr(MI); 1739 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1740 1741 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1742 Offset); 1743 widenScalarDst(MI, WideTy.getScalarType(), 0); 1744 Observer.changedInstr(MI); 1745 return Legalized; 1746 } 1747 1748 LegalizerHelper::LegalizeResult 1749 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1750 LLT WideTy) { 1751 if (TypeIdx != 0 || WideTy.isVector()) 1752 return UnableToLegalize; 1753 Observer.changingInstr(MI); 1754 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1755 widenScalarDst(MI, WideTy); 1756 Observer.changedInstr(MI); 1757 return Legalized; 1758 } 1759 1760 LegalizerHelper::LegalizeResult 1761 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1762 LLT WideTy) { 1763 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1764 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1765 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1766 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1767 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1768 // We can convert this to: 1769 // 1. Any extend iN to iM 1770 // 2. SHL by M-N 1771 // 3. [US][ADD|SUB|SHL]SAT 1772 // 4. L/ASHR by M-N 1773 // 1774 // It may be more efficient to lower this to a min and a max operation in 1775 // the higher precision arithmetic if the promoted operation isn't legal, 1776 // but this decision is up to the target's lowering request. 1777 Register DstReg = MI.getOperand(0).getReg(); 1778 1779 unsigned NewBits = WideTy.getScalarSizeInBits(); 1780 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1781 1782 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1783 // must not left shift the RHS to preserve the shift amount. 1784 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1785 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1786 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1787 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1788 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1789 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1790 1791 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1792 {ShiftL, ShiftR}, MI.getFlags()); 1793 1794 // Use a shift that will preserve the number of sign bits when the trunc is 1795 // folded away. 1796 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1797 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1798 1799 MIRBuilder.buildTrunc(DstReg, Result); 1800 MI.eraseFromParent(); 1801 return Legalized; 1802 } 1803 1804 LegalizerHelper::LegalizeResult 1805 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1806 switch (MI.getOpcode()) { 1807 default: 1808 return UnableToLegalize; 1809 case TargetOpcode::G_EXTRACT: 1810 return widenScalarExtract(MI, TypeIdx, WideTy); 1811 case TargetOpcode::G_INSERT: 1812 return widenScalarInsert(MI, TypeIdx, WideTy); 1813 case TargetOpcode::G_MERGE_VALUES: 1814 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1815 case TargetOpcode::G_UNMERGE_VALUES: 1816 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1817 case TargetOpcode::G_SADDO: 1818 case TargetOpcode::G_SSUBO: { 1819 if (TypeIdx == 1) 1820 return UnableToLegalize; // TODO 1821 auto LHSExt = MIRBuilder.buildSExt(WideTy, MI.getOperand(2)); 1822 auto RHSExt = MIRBuilder.buildSExt(WideTy, MI.getOperand(3)); 1823 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SADDO 1824 ? TargetOpcode::G_ADD 1825 : TargetOpcode::G_SUB; 1826 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}); 1827 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1828 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1829 auto ExtOp = MIRBuilder.buildSExt(WideTy, TruncOp); 1830 // There is no overflow if the re-extended result is the same as NewOp. 1831 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1832 // Now trunc the NewOp to the original result. 1833 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1834 MI.eraseFromParent(); 1835 return Legalized; 1836 } 1837 case TargetOpcode::G_UADDO: 1838 case TargetOpcode::G_USUBO: { 1839 if (TypeIdx == 1) 1840 return UnableToLegalize; // TODO 1841 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1842 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1843 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1844 ? TargetOpcode::G_ADD 1845 : TargetOpcode::G_SUB; 1846 // Do the arithmetic in the larger type. 1847 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1848 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1849 APInt Mask = 1850 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1851 auto AndOp = MIRBuilder.buildAnd( 1852 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1853 // There is no overflow if the AndOp is the same as NewOp. 1854 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1855 // Now trunc the NewOp to the original result. 1856 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1857 MI.eraseFromParent(); 1858 return Legalized; 1859 } 1860 case TargetOpcode::G_SADDSAT: 1861 case TargetOpcode::G_SSUBSAT: 1862 case TargetOpcode::G_SSHLSAT: 1863 case TargetOpcode::G_UADDSAT: 1864 case TargetOpcode::G_USUBSAT: 1865 case TargetOpcode::G_USHLSAT: 1866 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1867 case TargetOpcode::G_CTTZ: 1868 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1869 case TargetOpcode::G_CTLZ: 1870 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1871 case TargetOpcode::G_CTPOP: { 1872 if (TypeIdx == 0) { 1873 Observer.changingInstr(MI); 1874 widenScalarDst(MI, WideTy, 0); 1875 Observer.changedInstr(MI); 1876 return Legalized; 1877 } 1878 1879 Register SrcReg = MI.getOperand(1).getReg(); 1880 1881 // First ZEXT the input. 1882 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1883 LLT CurTy = MRI.getType(SrcReg); 1884 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1885 // The count is the same in the larger type except if the original 1886 // value was zero. This can be handled by setting the bit just off 1887 // the top of the original type. 1888 auto TopBit = 1889 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1890 MIBSrc = MIRBuilder.buildOr( 1891 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1892 } 1893 1894 // Perform the operation at the larger size. 1895 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1896 // This is already the correct result for CTPOP and CTTZs 1897 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1898 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1899 // The correct result is NewOp - (Difference in widety and current ty). 1900 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1901 MIBNewOp = MIRBuilder.buildSub( 1902 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1903 } 1904 1905 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1906 MI.eraseFromParent(); 1907 return Legalized; 1908 } 1909 case TargetOpcode::G_BSWAP: { 1910 Observer.changingInstr(MI); 1911 Register DstReg = MI.getOperand(0).getReg(); 1912 1913 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1914 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1915 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1916 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1917 1918 MI.getOperand(0).setReg(DstExt); 1919 1920 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1921 1922 LLT Ty = MRI.getType(DstReg); 1923 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1924 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1925 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1926 1927 MIRBuilder.buildTrunc(DstReg, ShrReg); 1928 Observer.changedInstr(MI); 1929 return Legalized; 1930 } 1931 case TargetOpcode::G_BITREVERSE: { 1932 Observer.changingInstr(MI); 1933 1934 Register DstReg = MI.getOperand(0).getReg(); 1935 LLT Ty = MRI.getType(DstReg); 1936 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1937 1938 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1939 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1940 MI.getOperand(0).setReg(DstExt); 1941 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1942 1943 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1944 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1945 MIRBuilder.buildTrunc(DstReg, Shift); 1946 Observer.changedInstr(MI); 1947 return Legalized; 1948 } 1949 case TargetOpcode::G_FREEZE: 1950 Observer.changingInstr(MI); 1951 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1952 widenScalarDst(MI, WideTy); 1953 Observer.changedInstr(MI); 1954 return Legalized; 1955 1956 case TargetOpcode::G_ADD: 1957 case TargetOpcode::G_AND: 1958 case TargetOpcode::G_MUL: 1959 case TargetOpcode::G_OR: 1960 case TargetOpcode::G_XOR: 1961 case TargetOpcode::G_SUB: 1962 // Perform operation at larger width (any extension is fines here, high bits 1963 // don't affect the result) and then truncate the result back to the 1964 // original type. 1965 Observer.changingInstr(MI); 1966 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1967 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1968 widenScalarDst(MI, WideTy); 1969 Observer.changedInstr(MI); 1970 return Legalized; 1971 1972 case TargetOpcode::G_SHL: 1973 Observer.changingInstr(MI); 1974 1975 if (TypeIdx == 0) { 1976 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1977 widenScalarDst(MI, WideTy); 1978 } else { 1979 assert(TypeIdx == 1); 1980 // The "number of bits to shift" operand must preserve its value as an 1981 // unsigned integer: 1982 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1983 } 1984 1985 Observer.changedInstr(MI); 1986 return Legalized; 1987 1988 case TargetOpcode::G_SDIV: 1989 case TargetOpcode::G_SREM: 1990 case TargetOpcode::G_SMIN: 1991 case TargetOpcode::G_SMAX: 1992 Observer.changingInstr(MI); 1993 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1994 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1995 widenScalarDst(MI, WideTy); 1996 Observer.changedInstr(MI); 1997 return Legalized; 1998 1999 case TargetOpcode::G_ASHR: 2000 case TargetOpcode::G_LSHR: 2001 Observer.changingInstr(MI); 2002 2003 if (TypeIdx == 0) { 2004 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2005 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2006 2007 widenScalarSrc(MI, WideTy, 1, CvtOp); 2008 widenScalarDst(MI, WideTy); 2009 } else { 2010 assert(TypeIdx == 1); 2011 // The "number of bits to shift" operand must preserve its value as an 2012 // unsigned integer: 2013 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2014 } 2015 2016 Observer.changedInstr(MI); 2017 return Legalized; 2018 case TargetOpcode::G_UDIV: 2019 case TargetOpcode::G_UREM: 2020 case TargetOpcode::G_UMIN: 2021 case TargetOpcode::G_UMAX: 2022 Observer.changingInstr(MI); 2023 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2024 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2025 widenScalarDst(MI, WideTy); 2026 Observer.changedInstr(MI); 2027 return Legalized; 2028 2029 case TargetOpcode::G_SELECT: 2030 Observer.changingInstr(MI); 2031 if (TypeIdx == 0) { 2032 // Perform operation at larger width (any extension is fine here, high 2033 // bits don't affect the result) and then truncate the result back to the 2034 // original type. 2035 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2036 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2037 widenScalarDst(MI, WideTy); 2038 } else { 2039 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2040 // Explicit extension is required here since high bits affect the result. 2041 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2042 } 2043 Observer.changedInstr(MI); 2044 return Legalized; 2045 2046 case TargetOpcode::G_FPTOSI: 2047 case TargetOpcode::G_FPTOUI: 2048 Observer.changingInstr(MI); 2049 2050 if (TypeIdx == 0) 2051 widenScalarDst(MI, WideTy); 2052 else 2053 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2054 2055 Observer.changedInstr(MI); 2056 return Legalized; 2057 case TargetOpcode::G_SITOFP: 2058 Observer.changingInstr(MI); 2059 2060 if (TypeIdx == 0) 2061 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2062 else 2063 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2064 2065 Observer.changedInstr(MI); 2066 return Legalized; 2067 case TargetOpcode::G_UITOFP: 2068 Observer.changingInstr(MI); 2069 2070 if (TypeIdx == 0) 2071 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2072 else 2073 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2074 2075 Observer.changedInstr(MI); 2076 return Legalized; 2077 case TargetOpcode::G_LOAD: 2078 case TargetOpcode::G_SEXTLOAD: 2079 case TargetOpcode::G_ZEXTLOAD: 2080 Observer.changingInstr(MI); 2081 widenScalarDst(MI, WideTy); 2082 Observer.changedInstr(MI); 2083 return Legalized; 2084 2085 case TargetOpcode::G_STORE: { 2086 if (TypeIdx != 0) 2087 return UnableToLegalize; 2088 2089 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2090 if (!Ty.isScalar()) 2091 return UnableToLegalize; 2092 2093 Observer.changingInstr(MI); 2094 2095 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2096 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2097 widenScalarSrc(MI, WideTy, 0, ExtType); 2098 2099 Observer.changedInstr(MI); 2100 return Legalized; 2101 } 2102 case TargetOpcode::G_CONSTANT: { 2103 MachineOperand &SrcMO = MI.getOperand(1); 2104 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2105 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2106 MRI.getType(MI.getOperand(0).getReg())); 2107 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2108 ExtOpc == TargetOpcode::G_ANYEXT) && 2109 "Illegal Extend"); 2110 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2111 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2112 ? SrcVal.sext(WideTy.getSizeInBits()) 2113 : SrcVal.zext(WideTy.getSizeInBits()); 2114 Observer.changingInstr(MI); 2115 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2116 2117 widenScalarDst(MI, WideTy); 2118 Observer.changedInstr(MI); 2119 return Legalized; 2120 } 2121 case TargetOpcode::G_FCONSTANT: { 2122 MachineOperand &SrcMO = MI.getOperand(1); 2123 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2124 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2125 bool LosesInfo; 2126 switch (WideTy.getSizeInBits()) { 2127 case 32: 2128 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2129 &LosesInfo); 2130 break; 2131 case 64: 2132 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2133 &LosesInfo); 2134 break; 2135 default: 2136 return UnableToLegalize; 2137 } 2138 2139 assert(!LosesInfo && "extend should always be lossless"); 2140 2141 Observer.changingInstr(MI); 2142 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2143 2144 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2145 Observer.changedInstr(MI); 2146 return Legalized; 2147 } 2148 case TargetOpcode::G_IMPLICIT_DEF: { 2149 Observer.changingInstr(MI); 2150 widenScalarDst(MI, WideTy); 2151 Observer.changedInstr(MI); 2152 return Legalized; 2153 } 2154 case TargetOpcode::G_BRCOND: 2155 Observer.changingInstr(MI); 2156 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2157 Observer.changedInstr(MI); 2158 return Legalized; 2159 2160 case TargetOpcode::G_FCMP: 2161 Observer.changingInstr(MI); 2162 if (TypeIdx == 0) 2163 widenScalarDst(MI, WideTy); 2164 else { 2165 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2166 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2167 } 2168 Observer.changedInstr(MI); 2169 return Legalized; 2170 2171 case TargetOpcode::G_ICMP: 2172 Observer.changingInstr(MI); 2173 if (TypeIdx == 0) 2174 widenScalarDst(MI, WideTy); 2175 else { 2176 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2177 MI.getOperand(1).getPredicate())) 2178 ? TargetOpcode::G_SEXT 2179 : TargetOpcode::G_ZEXT; 2180 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2181 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2182 } 2183 Observer.changedInstr(MI); 2184 return Legalized; 2185 2186 case TargetOpcode::G_PTR_ADD: 2187 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2188 Observer.changingInstr(MI); 2189 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2190 Observer.changedInstr(MI); 2191 return Legalized; 2192 2193 case TargetOpcode::G_PHI: { 2194 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2195 2196 Observer.changingInstr(MI); 2197 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2198 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2199 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2200 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2201 } 2202 2203 MachineBasicBlock &MBB = *MI.getParent(); 2204 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2205 widenScalarDst(MI, WideTy); 2206 Observer.changedInstr(MI); 2207 return Legalized; 2208 } 2209 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2210 if (TypeIdx == 0) { 2211 Register VecReg = MI.getOperand(1).getReg(); 2212 LLT VecTy = MRI.getType(VecReg); 2213 Observer.changingInstr(MI); 2214 2215 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2216 WideTy.getSizeInBits()), 2217 1, TargetOpcode::G_SEXT); 2218 2219 widenScalarDst(MI, WideTy, 0); 2220 Observer.changedInstr(MI); 2221 return Legalized; 2222 } 2223 2224 if (TypeIdx != 2) 2225 return UnableToLegalize; 2226 Observer.changingInstr(MI); 2227 // TODO: Probably should be zext 2228 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2229 Observer.changedInstr(MI); 2230 return Legalized; 2231 } 2232 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2233 if (TypeIdx == 1) { 2234 Observer.changingInstr(MI); 2235 2236 Register VecReg = MI.getOperand(1).getReg(); 2237 LLT VecTy = MRI.getType(VecReg); 2238 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2239 2240 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2241 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2242 widenScalarDst(MI, WideVecTy, 0); 2243 Observer.changedInstr(MI); 2244 return Legalized; 2245 } 2246 2247 if (TypeIdx == 2) { 2248 Observer.changingInstr(MI); 2249 // TODO: Probably should be zext 2250 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2251 Observer.changedInstr(MI); 2252 return Legalized; 2253 } 2254 2255 return UnableToLegalize; 2256 } 2257 case TargetOpcode::G_FADD: 2258 case TargetOpcode::G_FMUL: 2259 case TargetOpcode::G_FSUB: 2260 case TargetOpcode::G_FMA: 2261 case TargetOpcode::G_FMAD: 2262 case TargetOpcode::G_FNEG: 2263 case TargetOpcode::G_FABS: 2264 case TargetOpcode::G_FCANONICALIZE: 2265 case TargetOpcode::G_FMINNUM: 2266 case TargetOpcode::G_FMAXNUM: 2267 case TargetOpcode::G_FMINNUM_IEEE: 2268 case TargetOpcode::G_FMAXNUM_IEEE: 2269 case TargetOpcode::G_FMINIMUM: 2270 case TargetOpcode::G_FMAXIMUM: 2271 case TargetOpcode::G_FDIV: 2272 case TargetOpcode::G_FREM: 2273 case TargetOpcode::G_FCEIL: 2274 case TargetOpcode::G_FFLOOR: 2275 case TargetOpcode::G_FCOS: 2276 case TargetOpcode::G_FSIN: 2277 case TargetOpcode::G_FLOG10: 2278 case TargetOpcode::G_FLOG: 2279 case TargetOpcode::G_FLOG2: 2280 case TargetOpcode::G_FRINT: 2281 case TargetOpcode::G_FNEARBYINT: 2282 case TargetOpcode::G_FSQRT: 2283 case TargetOpcode::G_FEXP: 2284 case TargetOpcode::G_FEXP2: 2285 case TargetOpcode::G_FPOW: 2286 case TargetOpcode::G_INTRINSIC_TRUNC: 2287 case TargetOpcode::G_INTRINSIC_ROUND: 2288 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2289 assert(TypeIdx == 0); 2290 Observer.changingInstr(MI); 2291 2292 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2293 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2294 2295 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2296 Observer.changedInstr(MI); 2297 return Legalized; 2298 case TargetOpcode::G_FPOWI: { 2299 if (TypeIdx != 0) 2300 return UnableToLegalize; 2301 Observer.changingInstr(MI); 2302 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2303 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2304 Observer.changedInstr(MI); 2305 return Legalized; 2306 } 2307 case TargetOpcode::G_INTTOPTR: 2308 if (TypeIdx != 1) 2309 return UnableToLegalize; 2310 2311 Observer.changingInstr(MI); 2312 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2313 Observer.changedInstr(MI); 2314 return Legalized; 2315 case TargetOpcode::G_PTRTOINT: 2316 if (TypeIdx != 0) 2317 return UnableToLegalize; 2318 2319 Observer.changingInstr(MI); 2320 widenScalarDst(MI, WideTy, 0); 2321 Observer.changedInstr(MI); 2322 return Legalized; 2323 case TargetOpcode::G_BUILD_VECTOR: { 2324 Observer.changingInstr(MI); 2325 2326 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2327 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2328 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2329 2330 // Avoid changing the result vector type if the source element type was 2331 // requested. 2332 if (TypeIdx == 1) { 2333 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2334 } else { 2335 widenScalarDst(MI, WideTy, 0); 2336 } 2337 2338 Observer.changedInstr(MI); 2339 return Legalized; 2340 } 2341 case TargetOpcode::G_SEXT_INREG: 2342 if (TypeIdx != 0) 2343 return UnableToLegalize; 2344 2345 Observer.changingInstr(MI); 2346 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2347 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2348 Observer.changedInstr(MI); 2349 return Legalized; 2350 case TargetOpcode::G_PTRMASK: { 2351 if (TypeIdx != 1) 2352 return UnableToLegalize; 2353 Observer.changingInstr(MI); 2354 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2355 Observer.changedInstr(MI); 2356 return Legalized; 2357 } 2358 } 2359 } 2360 2361 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2362 MachineIRBuilder &B, Register Src, LLT Ty) { 2363 auto Unmerge = B.buildUnmerge(Ty, Src); 2364 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2365 Pieces.push_back(Unmerge.getReg(I)); 2366 } 2367 2368 LegalizerHelper::LegalizeResult 2369 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2370 Register Dst = MI.getOperand(0).getReg(); 2371 Register Src = MI.getOperand(1).getReg(); 2372 LLT DstTy = MRI.getType(Dst); 2373 LLT SrcTy = MRI.getType(Src); 2374 2375 if (SrcTy.isVector()) { 2376 LLT SrcEltTy = SrcTy.getElementType(); 2377 SmallVector<Register, 8> SrcRegs; 2378 2379 if (DstTy.isVector()) { 2380 int NumDstElt = DstTy.getNumElements(); 2381 int NumSrcElt = SrcTy.getNumElements(); 2382 2383 LLT DstEltTy = DstTy.getElementType(); 2384 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2385 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2386 2387 // If there's an element size mismatch, insert intermediate casts to match 2388 // the result element type. 2389 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2390 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2391 // 2392 // => 2393 // 2394 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2395 // %3:_(<2 x s8>) = G_BITCAST %2 2396 // %4:_(<2 x s8>) = G_BITCAST %3 2397 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2398 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2399 SrcPartTy = SrcEltTy; 2400 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2401 // 2402 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2403 // 2404 // => 2405 // 2406 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2407 // %3:_(s16) = G_BITCAST %2 2408 // %4:_(s16) = G_BITCAST %3 2409 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2410 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2411 DstCastTy = DstEltTy; 2412 } 2413 2414 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2415 for (Register &SrcReg : SrcRegs) 2416 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2417 } else 2418 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2419 2420 MIRBuilder.buildMerge(Dst, SrcRegs); 2421 MI.eraseFromParent(); 2422 return Legalized; 2423 } 2424 2425 if (DstTy.isVector()) { 2426 SmallVector<Register, 8> SrcRegs; 2427 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2428 MIRBuilder.buildMerge(Dst, SrcRegs); 2429 MI.eraseFromParent(); 2430 return Legalized; 2431 } 2432 2433 return UnableToLegalize; 2434 } 2435 2436 /// Figure out the bit offset into a register when coercing a vector index for 2437 /// the wide element type. This is only for the case when promoting vector to 2438 /// one with larger elements. 2439 // 2440 /// 2441 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2442 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2443 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2444 Register Idx, 2445 unsigned NewEltSize, 2446 unsigned OldEltSize) { 2447 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2448 LLT IdxTy = B.getMRI()->getType(Idx); 2449 2450 // Now figure out the amount we need to shift to get the target bits. 2451 auto OffsetMask = B.buildConstant( 2452 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2453 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2454 return B.buildShl(IdxTy, OffsetIdx, 2455 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2456 } 2457 2458 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2459 /// is casting to a vector with a smaller element size, perform multiple element 2460 /// extracts and merge the results. If this is coercing to a vector with larger 2461 /// elements, index the bitcasted vector and extract the target element with bit 2462 /// operations. This is intended to force the indexing in the native register 2463 /// size for architectures that can dynamically index the register file. 2464 LegalizerHelper::LegalizeResult 2465 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2466 LLT CastTy) { 2467 if (TypeIdx != 1) 2468 return UnableToLegalize; 2469 2470 Register Dst = MI.getOperand(0).getReg(); 2471 Register SrcVec = MI.getOperand(1).getReg(); 2472 Register Idx = MI.getOperand(2).getReg(); 2473 LLT SrcVecTy = MRI.getType(SrcVec); 2474 LLT IdxTy = MRI.getType(Idx); 2475 2476 LLT SrcEltTy = SrcVecTy.getElementType(); 2477 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2478 unsigned OldNumElts = SrcVecTy.getNumElements(); 2479 2480 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2481 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2482 2483 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2484 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2485 if (NewNumElts > OldNumElts) { 2486 // Decreasing the vector element size 2487 // 2488 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2489 // => 2490 // v4i32:castx = bitcast x:v2i64 2491 // 2492 // i64 = bitcast 2493 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2494 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2495 // 2496 if (NewNumElts % OldNumElts != 0) 2497 return UnableToLegalize; 2498 2499 // Type of the intermediate result vector. 2500 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2501 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2502 2503 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2504 2505 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2506 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2507 2508 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2509 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2510 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2511 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2512 NewOps[I] = Elt.getReg(0); 2513 } 2514 2515 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2516 MIRBuilder.buildBitcast(Dst, NewVec); 2517 MI.eraseFromParent(); 2518 return Legalized; 2519 } 2520 2521 if (NewNumElts < OldNumElts) { 2522 if (NewEltSize % OldEltSize != 0) 2523 return UnableToLegalize; 2524 2525 // This only depends on powers of 2 because we use bit tricks to figure out 2526 // the bit offset we need to shift to get the target element. A general 2527 // expansion could emit division/multiply. 2528 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2529 return UnableToLegalize; 2530 2531 // Increasing the vector element size. 2532 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2533 // 2534 // => 2535 // 2536 // %cast = G_BITCAST %vec 2537 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2538 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2539 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2540 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2541 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2542 // %elt = G_TRUNC %elt_bits 2543 2544 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2545 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2546 2547 // Divide to get the index in the wider element type. 2548 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2549 2550 Register WideElt = CastVec; 2551 if (CastTy.isVector()) { 2552 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2553 ScaledIdx).getReg(0); 2554 } 2555 2556 // Compute the bit offset into the register of the target element. 2557 Register OffsetBits = getBitcastWiderVectorElementOffset( 2558 MIRBuilder, Idx, NewEltSize, OldEltSize); 2559 2560 // Shift the wide element to get the target element. 2561 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2562 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2563 MI.eraseFromParent(); 2564 return Legalized; 2565 } 2566 2567 return UnableToLegalize; 2568 } 2569 2570 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2571 /// TargetReg, while preserving other bits in \p TargetReg. 2572 /// 2573 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2574 static Register buildBitFieldInsert(MachineIRBuilder &B, 2575 Register TargetReg, Register InsertReg, 2576 Register OffsetBits) { 2577 LLT TargetTy = B.getMRI()->getType(TargetReg); 2578 LLT InsertTy = B.getMRI()->getType(InsertReg); 2579 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2580 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2581 2582 // Produce a bitmask of the value to insert 2583 auto EltMask = B.buildConstant( 2584 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2585 InsertTy.getSizeInBits())); 2586 // Shift it into position 2587 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2588 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2589 2590 // Clear out the bits in the wide element 2591 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2592 2593 // The value to insert has all zeros already, so stick it into the masked 2594 // wide element. 2595 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2596 } 2597 2598 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2599 /// is increasing the element size, perform the indexing in the target element 2600 /// type, and use bit operations to insert at the element position. This is 2601 /// intended for architectures that can dynamically index the register file and 2602 /// want to force indexing in the native register size. 2603 LegalizerHelper::LegalizeResult 2604 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2605 LLT CastTy) { 2606 if (TypeIdx != 0) 2607 return UnableToLegalize; 2608 2609 Register Dst = MI.getOperand(0).getReg(); 2610 Register SrcVec = MI.getOperand(1).getReg(); 2611 Register Val = MI.getOperand(2).getReg(); 2612 Register Idx = MI.getOperand(3).getReg(); 2613 2614 LLT VecTy = MRI.getType(Dst); 2615 LLT IdxTy = MRI.getType(Idx); 2616 2617 LLT VecEltTy = VecTy.getElementType(); 2618 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2619 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2620 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2621 2622 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2623 unsigned OldNumElts = VecTy.getNumElements(); 2624 2625 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2626 if (NewNumElts < OldNumElts) { 2627 if (NewEltSize % OldEltSize != 0) 2628 return UnableToLegalize; 2629 2630 // This only depends on powers of 2 because we use bit tricks to figure out 2631 // the bit offset we need to shift to get the target element. A general 2632 // expansion could emit division/multiply. 2633 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2634 return UnableToLegalize; 2635 2636 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2637 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2638 2639 // Divide to get the index in the wider element type. 2640 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2641 2642 Register ExtractedElt = CastVec; 2643 if (CastTy.isVector()) { 2644 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2645 ScaledIdx).getReg(0); 2646 } 2647 2648 // Compute the bit offset into the register of the target element. 2649 Register OffsetBits = getBitcastWiderVectorElementOffset( 2650 MIRBuilder, Idx, NewEltSize, OldEltSize); 2651 2652 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2653 Val, OffsetBits); 2654 if (CastTy.isVector()) { 2655 InsertedElt = MIRBuilder.buildInsertVectorElement( 2656 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2657 } 2658 2659 MIRBuilder.buildBitcast(Dst, InsertedElt); 2660 MI.eraseFromParent(); 2661 return Legalized; 2662 } 2663 2664 return UnableToLegalize; 2665 } 2666 2667 LegalizerHelper::LegalizeResult 2668 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2669 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2670 Register DstReg = MI.getOperand(0).getReg(); 2671 Register PtrReg = MI.getOperand(1).getReg(); 2672 LLT DstTy = MRI.getType(DstReg); 2673 auto &MMO = **MI.memoperands_begin(); 2674 2675 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2676 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2677 // This load needs splitting into power of 2 sized loads. 2678 if (DstTy.isVector()) 2679 return UnableToLegalize; 2680 if (isPowerOf2_32(DstTy.getSizeInBits())) 2681 return UnableToLegalize; // Don't know what we're being asked to do. 2682 2683 // Our strategy here is to generate anyextending loads for the smaller 2684 // types up to next power-2 result type, and then combine the two larger 2685 // result values together, before truncating back down to the non-pow-2 2686 // type. 2687 // E.g. v1 = i24 load => 2688 // v2 = i32 zextload (2 byte) 2689 // v3 = i32 load (1 byte) 2690 // v4 = i32 shl v3, 16 2691 // v5 = i32 or v4, v2 2692 // v1 = i24 trunc v5 2693 // By doing this we generate the correct truncate which should get 2694 // combined away as an artifact with a matching extend. 2695 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2696 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2697 2698 MachineFunction &MF = MIRBuilder.getMF(); 2699 MachineMemOperand *LargeMMO = 2700 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2701 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2702 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2703 2704 LLT PtrTy = MRI.getType(PtrReg); 2705 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2706 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2707 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2708 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2709 auto LargeLoad = MIRBuilder.buildLoadInstr( 2710 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2711 2712 auto OffsetCst = MIRBuilder.buildConstant( 2713 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2714 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2715 auto SmallPtr = 2716 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2717 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2718 *SmallMMO); 2719 2720 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2721 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2722 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2723 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2724 MI.eraseFromParent(); 2725 return Legalized; 2726 } 2727 2728 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2729 MI.eraseFromParent(); 2730 return Legalized; 2731 } 2732 2733 if (DstTy.isScalar()) { 2734 Register TmpReg = 2735 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2736 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2737 switch (MI.getOpcode()) { 2738 default: 2739 llvm_unreachable("Unexpected opcode"); 2740 case TargetOpcode::G_LOAD: 2741 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2742 break; 2743 case TargetOpcode::G_SEXTLOAD: 2744 MIRBuilder.buildSExt(DstReg, TmpReg); 2745 break; 2746 case TargetOpcode::G_ZEXTLOAD: 2747 MIRBuilder.buildZExt(DstReg, TmpReg); 2748 break; 2749 } 2750 2751 MI.eraseFromParent(); 2752 return Legalized; 2753 } 2754 2755 return UnableToLegalize; 2756 } 2757 2758 LegalizerHelper::LegalizeResult 2759 LegalizerHelper::lowerStore(MachineInstr &MI) { 2760 // Lower a non-power of 2 store into multiple pow-2 stores. 2761 // E.g. split an i24 store into an i16 store + i8 store. 2762 // We do this by first extending the stored value to the next largest power 2763 // of 2 type, and then using truncating stores to store the components. 2764 // By doing this, likewise with G_LOAD, generate an extend that can be 2765 // artifact-combined away instead of leaving behind extracts. 2766 Register SrcReg = MI.getOperand(0).getReg(); 2767 Register PtrReg = MI.getOperand(1).getReg(); 2768 LLT SrcTy = MRI.getType(SrcReg); 2769 MachineMemOperand &MMO = **MI.memoperands_begin(); 2770 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2771 return UnableToLegalize; 2772 if (SrcTy.isVector()) 2773 return UnableToLegalize; 2774 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2775 return UnableToLegalize; // Don't know what we're being asked to do. 2776 2777 // Extend to the next pow-2. 2778 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2779 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2780 2781 // Obtain the smaller value by shifting away the larger value. 2782 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2783 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2784 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2785 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2786 2787 // Generate the PtrAdd and truncating stores. 2788 LLT PtrTy = MRI.getType(PtrReg); 2789 auto OffsetCst = MIRBuilder.buildConstant( 2790 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2791 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2792 auto SmallPtr = 2793 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2794 2795 MachineFunction &MF = MIRBuilder.getMF(); 2796 MachineMemOperand *LargeMMO = 2797 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2798 MachineMemOperand *SmallMMO = 2799 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2800 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2801 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2802 MI.eraseFromParent(); 2803 return Legalized; 2804 } 2805 2806 LegalizerHelper::LegalizeResult 2807 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2808 switch (MI.getOpcode()) { 2809 case TargetOpcode::G_LOAD: { 2810 if (TypeIdx != 0) 2811 return UnableToLegalize; 2812 2813 Observer.changingInstr(MI); 2814 bitcastDst(MI, CastTy, 0); 2815 Observer.changedInstr(MI); 2816 return Legalized; 2817 } 2818 case TargetOpcode::G_STORE: { 2819 if (TypeIdx != 0) 2820 return UnableToLegalize; 2821 2822 Observer.changingInstr(MI); 2823 bitcastSrc(MI, CastTy, 0); 2824 Observer.changedInstr(MI); 2825 return Legalized; 2826 } 2827 case TargetOpcode::G_SELECT: { 2828 if (TypeIdx != 0) 2829 return UnableToLegalize; 2830 2831 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2832 LLVM_DEBUG( 2833 dbgs() << "bitcast action not implemented for vector select\n"); 2834 return UnableToLegalize; 2835 } 2836 2837 Observer.changingInstr(MI); 2838 bitcastSrc(MI, CastTy, 2); 2839 bitcastSrc(MI, CastTy, 3); 2840 bitcastDst(MI, CastTy, 0); 2841 Observer.changedInstr(MI); 2842 return Legalized; 2843 } 2844 case TargetOpcode::G_AND: 2845 case TargetOpcode::G_OR: 2846 case TargetOpcode::G_XOR: { 2847 Observer.changingInstr(MI); 2848 bitcastSrc(MI, CastTy, 1); 2849 bitcastSrc(MI, CastTy, 2); 2850 bitcastDst(MI, CastTy, 0); 2851 Observer.changedInstr(MI); 2852 return Legalized; 2853 } 2854 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2855 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2856 case TargetOpcode::G_INSERT_VECTOR_ELT: 2857 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2858 default: 2859 return UnableToLegalize; 2860 } 2861 } 2862 2863 // Legalize an instruction by changing the opcode in place. 2864 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2865 Observer.changingInstr(MI); 2866 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2867 Observer.changedInstr(MI); 2868 } 2869 2870 LegalizerHelper::LegalizeResult 2871 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2872 using namespace TargetOpcode; 2873 2874 switch(MI.getOpcode()) { 2875 default: 2876 return UnableToLegalize; 2877 case TargetOpcode::G_BITCAST: 2878 return lowerBitcast(MI); 2879 case TargetOpcode::G_SREM: 2880 case TargetOpcode::G_UREM: { 2881 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2882 auto Quot = 2883 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2884 {MI.getOperand(1), MI.getOperand(2)}); 2885 2886 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2887 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2888 MI.eraseFromParent(); 2889 return Legalized; 2890 } 2891 case TargetOpcode::G_SADDO: 2892 case TargetOpcode::G_SSUBO: 2893 return lowerSADDO_SSUBO(MI); 2894 case TargetOpcode::G_UMULH: 2895 case TargetOpcode::G_SMULH: 2896 return lowerSMULH_UMULH(MI); 2897 case TargetOpcode::G_SMULO: 2898 case TargetOpcode::G_UMULO: { 2899 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2900 // result. 2901 Register Res = MI.getOperand(0).getReg(); 2902 Register Overflow = MI.getOperand(1).getReg(); 2903 Register LHS = MI.getOperand(2).getReg(); 2904 Register RHS = MI.getOperand(3).getReg(); 2905 LLT Ty = MRI.getType(Res); 2906 2907 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2908 ? TargetOpcode::G_SMULH 2909 : TargetOpcode::G_UMULH; 2910 2911 Observer.changingInstr(MI); 2912 const auto &TII = MIRBuilder.getTII(); 2913 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2914 MI.RemoveOperand(1); 2915 Observer.changedInstr(MI); 2916 2917 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2918 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2919 2920 // Move insert point forward so we can use the Res register if needed. 2921 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2922 2923 // For *signed* multiply, overflow is detected by checking: 2924 // (hi != (lo >> bitwidth-1)) 2925 if (Opcode == TargetOpcode::G_SMULH) { 2926 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2927 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2928 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2929 } else { 2930 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2931 } 2932 return Legalized; 2933 } 2934 case TargetOpcode::G_FNEG: { 2935 Register Res = MI.getOperand(0).getReg(); 2936 LLT Ty = MRI.getType(Res); 2937 2938 // TODO: Handle vector types once we are able to 2939 // represent them. 2940 if (Ty.isVector()) 2941 return UnableToLegalize; 2942 auto SignMask = 2943 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 2944 Register SubByReg = MI.getOperand(1).getReg(); 2945 MIRBuilder.buildXor(Res, SubByReg, SignMask); 2946 MI.eraseFromParent(); 2947 return Legalized; 2948 } 2949 case TargetOpcode::G_FSUB: { 2950 Register Res = MI.getOperand(0).getReg(); 2951 LLT Ty = MRI.getType(Res); 2952 2953 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2954 // First, check if G_FNEG is marked as Lower. If so, we may 2955 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2956 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2957 return UnableToLegalize; 2958 Register LHS = MI.getOperand(1).getReg(); 2959 Register RHS = MI.getOperand(2).getReg(); 2960 Register Neg = MRI.createGenericVirtualRegister(Ty); 2961 MIRBuilder.buildFNeg(Neg, RHS); 2962 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2963 MI.eraseFromParent(); 2964 return Legalized; 2965 } 2966 case TargetOpcode::G_FMAD: 2967 return lowerFMad(MI); 2968 case TargetOpcode::G_FFLOOR: 2969 return lowerFFloor(MI); 2970 case TargetOpcode::G_INTRINSIC_ROUND: 2971 return lowerIntrinsicRound(MI); 2972 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2973 // Since round even is the assumed rounding mode for unconstrained FP 2974 // operations, rint and roundeven are the same operation. 2975 changeOpcode(MI, TargetOpcode::G_FRINT); 2976 return Legalized; 2977 } 2978 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2979 Register OldValRes = MI.getOperand(0).getReg(); 2980 Register SuccessRes = MI.getOperand(1).getReg(); 2981 Register Addr = MI.getOperand(2).getReg(); 2982 Register CmpVal = MI.getOperand(3).getReg(); 2983 Register NewVal = MI.getOperand(4).getReg(); 2984 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2985 **MI.memoperands_begin()); 2986 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2987 MI.eraseFromParent(); 2988 return Legalized; 2989 } 2990 case TargetOpcode::G_LOAD: 2991 case TargetOpcode::G_SEXTLOAD: 2992 case TargetOpcode::G_ZEXTLOAD: 2993 return lowerLoad(MI); 2994 case TargetOpcode::G_STORE: 2995 return lowerStore(MI); 2996 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2997 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2998 case TargetOpcode::G_CTLZ: 2999 case TargetOpcode::G_CTTZ: 3000 case TargetOpcode::G_CTPOP: 3001 return lowerBitCount(MI); 3002 case G_UADDO: { 3003 Register Res = MI.getOperand(0).getReg(); 3004 Register CarryOut = MI.getOperand(1).getReg(); 3005 Register LHS = MI.getOperand(2).getReg(); 3006 Register RHS = MI.getOperand(3).getReg(); 3007 3008 MIRBuilder.buildAdd(Res, LHS, RHS); 3009 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3010 3011 MI.eraseFromParent(); 3012 return Legalized; 3013 } 3014 case G_UADDE: { 3015 Register Res = MI.getOperand(0).getReg(); 3016 Register CarryOut = MI.getOperand(1).getReg(); 3017 Register LHS = MI.getOperand(2).getReg(); 3018 Register RHS = MI.getOperand(3).getReg(); 3019 Register CarryIn = MI.getOperand(4).getReg(); 3020 LLT Ty = MRI.getType(Res); 3021 3022 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3023 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3024 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3025 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3026 3027 MI.eraseFromParent(); 3028 return Legalized; 3029 } 3030 case G_USUBO: { 3031 Register Res = MI.getOperand(0).getReg(); 3032 Register BorrowOut = MI.getOperand(1).getReg(); 3033 Register LHS = MI.getOperand(2).getReg(); 3034 Register RHS = MI.getOperand(3).getReg(); 3035 3036 MIRBuilder.buildSub(Res, LHS, RHS); 3037 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3038 3039 MI.eraseFromParent(); 3040 return Legalized; 3041 } 3042 case G_USUBE: { 3043 Register Res = MI.getOperand(0).getReg(); 3044 Register BorrowOut = MI.getOperand(1).getReg(); 3045 Register LHS = MI.getOperand(2).getReg(); 3046 Register RHS = MI.getOperand(3).getReg(); 3047 Register BorrowIn = MI.getOperand(4).getReg(); 3048 const LLT CondTy = MRI.getType(BorrowOut); 3049 const LLT Ty = MRI.getType(Res); 3050 3051 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3052 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3053 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3054 3055 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3056 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3057 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3058 3059 MI.eraseFromParent(); 3060 return Legalized; 3061 } 3062 case G_UITOFP: 3063 return lowerUITOFP(MI); 3064 case G_SITOFP: 3065 return lowerSITOFP(MI); 3066 case G_FPTOUI: 3067 return lowerFPTOUI(MI); 3068 case G_FPTOSI: 3069 return lowerFPTOSI(MI); 3070 case G_FPTRUNC: 3071 return lowerFPTRUNC(MI); 3072 case G_FPOWI: 3073 return lowerFPOWI(MI); 3074 case G_SMIN: 3075 case G_SMAX: 3076 case G_UMIN: 3077 case G_UMAX: 3078 return lowerMinMax(MI); 3079 case G_FCOPYSIGN: 3080 return lowerFCopySign(MI); 3081 case G_FMINNUM: 3082 case G_FMAXNUM: 3083 return lowerFMinNumMaxNum(MI); 3084 case G_MERGE_VALUES: 3085 return lowerMergeValues(MI); 3086 case G_UNMERGE_VALUES: 3087 return lowerUnmergeValues(MI); 3088 case TargetOpcode::G_SEXT_INREG: { 3089 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3090 int64_t SizeInBits = MI.getOperand(2).getImm(); 3091 3092 Register DstReg = MI.getOperand(0).getReg(); 3093 Register SrcReg = MI.getOperand(1).getReg(); 3094 LLT DstTy = MRI.getType(DstReg); 3095 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3096 3097 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3098 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3099 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3100 MI.eraseFromParent(); 3101 return Legalized; 3102 } 3103 case G_EXTRACT_VECTOR_ELT: 3104 case G_INSERT_VECTOR_ELT: 3105 return lowerExtractInsertVectorElt(MI); 3106 case G_SHUFFLE_VECTOR: 3107 return lowerShuffleVector(MI); 3108 case G_DYN_STACKALLOC: 3109 return lowerDynStackAlloc(MI); 3110 case G_EXTRACT: 3111 return lowerExtract(MI); 3112 case G_INSERT: 3113 return lowerInsert(MI); 3114 case G_BSWAP: 3115 return lowerBswap(MI); 3116 case G_BITREVERSE: 3117 return lowerBitreverse(MI); 3118 case G_READ_REGISTER: 3119 case G_WRITE_REGISTER: 3120 return lowerReadWriteRegister(MI); 3121 case G_UADDSAT: 3122 case G_USUBSAT: { 3123 // Try to make a reasonable guess about which lowering strategy to use. The 3124 // target can override this with custom lowering and calling the 3125 // implementation functions. 3126 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3127 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3128 return lowerAddSubSatToMinMax(MI); 3129 return lowerAddSubSatToAddoSubo(MI); 3130 } 3131 case G_SADDSAT: 3132 case G_SSUBSAT: { 3133 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3134 3135 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3136 // since it's a shorter expansion. However, we would need to figure out the 3137 // preferred boolean type for the carry out for the query. 3138 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3139 return lowerAddSubSatToMinMax(MI); 3140 return lowerAddSubSatToAddoSubo(MI); 3141 } 3142 case G_SSHLSAT: 3143 case G_USHLSAT: 3144 return lowerShlSat(MI); 3145 case G_ABS: { 3146 // Expand %res = G_ABS %a into: 3147 // %v1 = G_ASHR %a, scalar_size-1 3148 // %v2 = G_ADD %a, %v1 3149 // %res = G_XOR %v2, %v1 3150 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3151 Register OpReg = MI.getOperand(1).getReg(); 3152 auto ShiftAmt = 3153 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3154 auto Shift = 3155 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3156 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3157 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3158 MI.eraseFromParent(); 3159 return Legalized; 3160 } 3161 case G_SELECT: 3162 return lowerSelect(MI); 3163 } 3164 } 3165 3166 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3167 Align MinAlign) const { 3168 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3169 // datalayout for the preferred alignment. Also there should be a target hook 3170 // for this to allow targets to reduce the alignment and ignore the 3171 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3172 // the type. 3173 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3174 } 3175 3176 MachineInstrBuilder 3177 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3178 MachinePointerInfo &PtrInfo) { 3179 MachineFunction &MF = MIRBuilder.getMF(); 3180 const DataLayout &DL = MIRBuilder.getDataLayout(); 3181 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3182 3183 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3184 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3185 3186 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3187 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3188 } 3189 3190 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3191 LLT VecTy) { 3192 int64_t IdxVal; 3193 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3194 return IdxReg; 3195 3196 LLT IdxTy = B.getMRI()->getType(IdxReg); 3197 unsigned NElts = VecTy.getNumElements(); 3198 if (isPowerOf2_32(NElts)) { 3199 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3200 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3201 } 3202 3203 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3204 .getReg(0); 3205 } 3206 3207 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3208 Register Index) { 3209 LLT EltTy = VecTy.getElementType(); 3210 3211 // Calculate the element offset and add it to the pointer. 3212 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3213 assert(EltSize * 8 == EltTy.getSizeInBits() && 3214 "Converting bits to bytes lost precision"); 3215 3216 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3217 3218 LLT IdxTy = MRI.getType(Index); 3219 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3220 MIRBuilder.buildConstant(IdxTy, EltSize)); 3221 3222 LLT PtrTy = MRI.getType(VecPtr); 3223 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3224 } 3225 3226 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3227 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3228 Register DstReg = MI.getOperand(0).getReg(); 3229 LLT DstTy = MRI.getType(DstReg); 3230 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3231 3232 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3233 3234 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3235 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3236 3237 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3238 MI.eraseFromParent(); 3239 return Legalized; 3240 } 3241 3242 // Handle splitting vector operations which need to have the same number of 3243 // elements in each type index, but each type index may have a different element 3244 // type. 3245 // 3246 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3247 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3248 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3249 // 3250 // Also handles some irregular breakdown cases, e.g. 3251 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3252 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3253 // s64 = G_SHL s64, s32 3254 LegalizerHelper::LegalizeResult 3255 LegalizerHelper::fewerElementsVectorMultiEltType( 3256 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3257 if (TypeIdx != 0) 3258 return UnableToLegalize; 3259 3260 const LLT NarrowTy0 = NarrowTyArg; 3261 const unsigned NewNumElts = 3262 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3263 3264 const Register DstReg = MI.getOperand(0).getReg(); 3265 LLT DstTy = MRI.getType(DstReg); 3266 LLT LeftoverTy0; 3267 3268 // All of the operands need to have the same number of elements, so if we can 3269 // determine a type breakdown for the result type, we can for all of the 3270 // source types. 3271 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3272 if (NumParts < 0) 3273 return UnableToLegalize; 3274 3275 SmallVector<MachineInstrBuilder, 4> NewInsts; 3276 3277 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3278 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3279 3280 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3281 Register SrcReg = MI.getOperand(I).getReg(); 3282 LLT SrcTyI = MRI.getType(SrcReg); 3283 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3284 LLT LeftoverTyI; 3285 3286 // Split this operand into the requested typed registers, and any leftover 3287 // required to reproduce the original type. 3288 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3289 LeftoverRegs)) 3290 return UnableToLegalize; 3291 3292 if (I == 1) { 3293 // For the first operand, create an instruction for each part and setup 3294 // the result. 3295 for (Register PartReg : PartRegs) { 3296 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3297 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3298 .addDef(PartDstReg) 3299 .addUse(PartReg)); 3300 DstRegs.push_back(PartDstReg); 3301 } 3302 3303 for (Register LeftoverReg : LeftoverRegs) { 3304 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3305 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3306 .addDef(PartDstReg) 3307 .addUse(LeftoverReg)); 3308 LeftoverDstRegs.push_back(PartDstReg); 3309 } 3310 } else { 3311 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3312 3313 // Add the newly created operand splits to the existing instructions. The 3314 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3315 // pieces. 3316 unsigned InstCount = 0; 3317 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3318 NewInsts[InstCount++].addUse(PartRegs[J]); 3319 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3320 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3321 } 3322 3323 PartRegs.clear(); 3324 LeftoverRegs.clear(); 3325 } 3326 3327 // Insert the newly built operations and rebuild the result register. 3328 for (auto &MIB : NewInsts) 3329 MIRBuilder.insertInstr(MIB); 3330 3331 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3332 3333 MI.eraseFromParent(); 3334 return Legalized; 3335 } 3336 3337 LegalizerHelper::LegalizeResult 3338 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3339 LLT NarrowTy) { 3340 if (TypeIdx != 0) 3341 return UnableToLegalize; 3342 3343 Register DstReg = MI.getOperand(0).getReg(); 3344 Register SrcReg = MI.getOperand(1).getReg(); 3345 LLT DstTy = MRI.getType(DstReg); 3346 LLT SrcTy = MRI.getType(SrcReg); 3347 3348 LLT NarrowTy0 = NarrowTy; 3349 LLT NarrowTy1; 3350 unsigned NumParts; 3351 3352 if (NarrowTy.isVector()) { 3353 // Uneven breakdown not handled. 3354 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3355 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3356 return UnableToLegalize; 3357 3358 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3359 } else { 3360 NumParts = DstTy.getNumElements(); 3361 NarrowTy1 = SrcTy.getElementType(); 3362 } 3363 3364 SmallVector<Register, 4> SrcRegs, DstRegs; 3365 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3366 3367 for (unsigned I = 0; I < NumParts; ++I) { 3368 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3369 MachineInstr *NewInst = 3370 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3371 3372 NewInst->setFlags(MI.getFlags()); 3373 DstRegs.push_back(DstReg); 3374 } 3375 3376 if (NarrowTy.isVector()) 3377 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3378 else 3379 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3380 3381 MI.eraseFromParent(); 3382 return Legalized; 3383 } 3384 3385 LegalizerHelper::LegalizeResult 3386 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3387 LLT NarrowTy) { 3388 Register DstReg = MI.getOperand(0).getReg(); 3389 Register Src0Reg = MI.getOperand(2).getReg(); 3390 LLT DstTy = MRI.getType(DstReg); 3391 LLT SrcTy = MRI.getType(Src0Reg); 3392 3393 unsigned NumParts; 3394 LLT NarrowTy0, NarrowTy1; 3395 3396 if (TypeIdx == 0) { 3397 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3398 unsigned OldElts = DstTy.getNumElements(); 3399 3400 NarrowTy0 = NarrowTy; 3401 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3402 NarrowTy1 = NarrowTy.isVector() ? 3403 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3404 SrcTy.getElementType(); 3405 3406 } else { 3407 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3408 unsigned OldElts = SrcTy.getNumElements(); 3409 3410 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3411 NarrowTy.getNumElements(); 3412 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3413 DstTy.getScalarSizeInBits()); 3414 NarrowTy1 = NarrowTy; 3415 } 3416 3417 // FIXME: Don't know how to handle the situation where the small vectors 3418 // aren't all the same size yet. 3419 if (NarrowTy1.isVector() && 3420 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3421 return UnableToLegalize; 3422 3423 CmpInst::Predicate Pred 3424 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3425 3426 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3427 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3428 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3429 3430 for (unsigned I = 0; I < NumParts; ++I) { 3431 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3432 DstRegs.push_back(DstReg); 3433 3434 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3435 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3436 else { 3437 MachineInstr *NewCmp 3438 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3439 NewCmp->setFlags(MI.getFlags()); 3440 } 3441 } 3442 3443 if (NarrowTy1.isVector()) 3444 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3445 else 3446 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3447 3448 MI.eraseFromParent(); 3449 return Legalized; 3450 } 3451 3452 LegalizerHelper::LegalizeResult 3453 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3454 LLT NarrowTy) { 3455 Register DstReg = MI.getOperand(0).getReg(); 3456 Register CondReg = MI.getOperand(1).getReg(); 3457 3458 unsigned NumParts = 0; 3459 LLT NarrowTy0, NarrowTy1; 3460 3461 LLT DstTy = MRI.getType(DstReg); 3462 LLT CondTy = MRI.getType(CondReg); 3463 unsigned Size = DstTy.getSizeInBits(); 3464 3465 assert(TypeIdx == 0 || CondTy.isVector()); 3466 3467 if (TypeIdx == 0) { 3468 NarrowTy0 = NarrowTy; 3469 NarrowTy1 = CondTy; 3470 3471 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3472 // FIXME: Don't know how to handle the situation where the small vectors 3473 // aren't all the same size yet. 3474 if (Size % NarrowSize != 0) 3475 return UnableToLegalize; 3476 3477 NumParts = Size / NarrowSize; 3478 3479 // Need to break down the condition type 3480 if (CondTy.isVector()) { 3481 if (CondTy.getNumElements() == NumParts) 3482 NarrowTy1 = CondTy.getElementType(); 3483 else 3484 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3485 CondTy.getScalarSizeInBits()); 3486 } 3487 } else { 3488 NumParts = CondTy.getNumElements(); 3489 if (NarrowTy.isVector()) { 3490 // TODO: Handle uneven breakdown. 3491 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3492 return UnableToLegalize; 3493 3494 return UnableToLegalize; 3495 } else { 3496 NarrowTy0 = DstTy.getElementType(); 3497 NarrowTy1 = NarrowTy; 3498 } 3499 } 3500 3501 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3502 if (CondTy.isVector()) 3503 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3504 3505 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3506 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3507 3508 for (unsigned i = 0; i < NumParts; ++i) { 3509 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3510 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3511 Src1Regs[i], Src2Regs[i]); 3512 DstRegs.push_back(DstReg); 3513 } 3514 3515 if (NarrowTy0.isVector()) 3516 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3517 else 3518 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3519 3520 MI.eraseFromParent(); 3521 return Legalized; 3522 } 3523 3524 LegalizerHelper::LegalizeResult 3525 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3526 LLT NarrowTy) { 3527 const Register DstReg = MI.getOperand(0).getReg(); 3528 LLT PhiTy = MRI.getType(DstReg); 3529 LLT LeftoverTy; 3530 3531 // All of the operands need to have the same number of elements, so if we can 3532 // determine a type breakdown for the result type, we can for all of the 3533 // source types. 3534 int NumParts, NumLeftover; 3535 std::tie(NumParts, NumLeftover) 3536 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3537 if (NumParts < 0) 3538 return UnableToLegalize; 3539 3540 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3541 SmallVector<MachineInstrBuilder, 4> NewInsts; 3542 3543 const int TotalNumParts = NumParts + NumLeftover; 3544 3545 // Insert the new phis in the result block first. 3546 for (int I = 0; I != TotalNumParts; ++I) { 3547 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3548 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3549 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3550 .addDef(PartDstReg)); 3551 if (I < NumParts) 3552 DstRegs.push_back(PartDstReg); 3553 else 3554 LeftoverDstRegs.push_back(PartDstReg); 3555 } 3556 3557 MachineBasicBlock *MBB = MI.getParent(); 3558 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3559 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3560 3561 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3562 3563 // Insert code to extract the incoming values in each predecessor block. 3564 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3565 PartRegs.clear(); 3566 LeftoverRegs.clear(); 3567 3568 Register SrcReg = MI.getOperand(I).getReg(); 3569 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3570 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3571 3572 LLT Unused; 3573 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3574 LeftoverRegs)) 3575 return UnableToLegalize; 3576 3577 // Add the newly created operand splits to the existing instructions. The 3578 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3579 // pieces. 3580 for (int J = 0; J != TotalNumParts; ++J) { 3581 MachineInstrBuilder MIB = NewInsts[J]; 3582 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3583 MIB.addMBB(&OpMBB); 3584 } 3585 } 3586 3587 MI.eraseFromParent(); 3588 return Legalized; 3589 } 3590 3591 LegalizerHelper::LegalizeResult 3592 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3593 unsigned TypeIdx, 3594 LLT NarrowTy) { 3595 if (TypeIdx != 1) 3596 return UnableToLegalize; 3597 3598 const int NumDst = MI.getNumOperands() - 1; 3599 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3600 LLT SrcTy = MRI.getType(SrcReg); 3601 3602 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3603 3604 // TODO: Create sequence of extracts. 3605 if (DstTy == NarrowTy) 3606 return UnableToLegalize; 3607 3608 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3609 if (DstTy == GCDTy) { 3610 // This would just be a copy of the same unmerge. 3611 // TODO: Create extracts, pad with undef and create intermediate merges. 3612 return UnableToLegalize; 3613 } 3614 3615 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3616 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3617 const int PartsPerUnmerge = NumDst / NumUnmerge; 3618 3619 for (int I = 0; I != NumUnmerge; ++I) { 3620 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3621 3622 for (int J = 0; J != PartsPerUnmerge; ++J) 3623 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3624 MIB.addUse(Unmerge.getReg(I)); 3625 } 3626 3627 MI.eraseFromParent(); 3628 return Legalized; 3629 } 3630 3631 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3632 // a vector 3633 // 3634 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3635 // undef as necessary. 3636 // 3637 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3638 // -> <2 x s16> 3639 // 3640 // %4:_(s16) = G_IMPLICIT_DEF 3641 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3642 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3643 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3644 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3645 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3646 LegalizerHelper::LegalizeResult 3647 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3648 LLT NarrowTy) { 3649 Register DstReg = MI.getOperand(0).getReg(); 3650 LLT DstTy = MRI.getType(DstReg); 3651 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3652 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3653 3654 // Break into a common type 3655 SmallVector<Register, 16> Parts; 3656 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3657 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3658 3659 // Build the requested new merge, padding with undef. 3660 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3661 TargetOpcode::G_ANYEXT); 3662 3663 // Pack into the original result register. 3664 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3665 3666 MI.eraseFromParent(); 3667 return Legalized; 3668 } 3669 3670 LegalizerHelper::LegalizeResult 3671 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3672 unsigned TypeIdx, 3673 LLT NarrowVecTy) { 3674 Register DstReg = MI.getOperand(0).getReg(); 3675 Register SrcVec = MI.getOperand(1).getReg(); 3676 Register InsertVal; 3677 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3678 3679 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3680 if (IsInsert) 3681 InsertVal = MI.getOperand(2).getReg(); 3682 3683 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3684 3685 // TODO: Handle total scalarization case. 3686 if (!NarrowVecTy.isVector()) 3687 return UnableToLegalize; 3688 3689 LLT VecTy = MRI.getType(SrcVec); 3690 3691 // If the index is a constant, we can really break this down as you would 3692 // expect, and index into the target size pieces. 3693 int64_t IdxVal; 3694 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3695 // Avoid out of bounds indexing the pieces. 3696 if (IdxVal >= VecTy.getNumElements()) { 3697 MIRBuilder.buildUndef(DstReg); 3698 MI.eraseFromParent(); 3699 return Legalized; 3700 } 3701 3702 SmallVector<Register, 8> VecParts; 3703 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3704 3705 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3706 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3707 TargetOpcode::G_ANYEXT); 3708 3709 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3710 3711 LLT IdxTy = MRI.getType(Idx); 3712 int64_t PartIdx = IdxVal / NewNumElts; 3713 auto NewIdx = 3714 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3715 3716 if (IsInsert) { 3717 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3718 3719 // Use the adjusted index to insert into one of the subvectors. 3720 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3721 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3722 VecParts[PartIdx] = InsertPart.getReg(0); 3723 3724 // Recombine the inserted subvector with the others to reform the result 3725 // vector. 3726 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3727 } else { 3728 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3729 } 3730 3731 MI.eraseFromParent(); 3732 return Legalized; 3733 } 3734 3735 // With a variable index, we can't perform the operation in a smaller type, so 3736 // we're forced to expand this. 3737 // 3738 // TODO: We could emit a chain of compare/select to figure out which piece to 3739 // index. 3740 return lowerExtractInsertVectorElt(MI); 3741 } 3742 3743 LegalizerHelper::LegalizeResult 3744 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3745 LLT NarrowTy) { 3746 // FIXME: Don't know how to handle secondary types yet. 3747 if (TypeIdx != 0) 3748 return UnableToLegalize; 3749 3750 MachineMemOperand *MMO = *MI.memoperands_begin(); 3751 3752 // This implementation doesn't work for atomics. Give up instead of doing 3753 // something invalid. 3754 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3755 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3756 return UnableToLegalize; 3757 3758 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3759 Register ValReg = MI.getOperand(0).getReg(); 3760 Register AddrReg = MI.getOperand(1).getReg(); 3761 LLT ValTy = MRI.getType(ValReg); 3762 3763 // FIXME: Do we need a distinct NarrowMemory legalize action? 3764 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3765 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3766 return UnableToLegalize; 3767 } 3768 3769 int NumParts = -1; 3770 int NumLeftover = -1; 3771 LLT LeftoverTy; 3772 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3773 if (IsLoad) { 3774 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3775 } else { 3776 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3777 NarrowLeftoverRegs)) { 3778 NumParts = NarrowRegs.size(); 3779 NumLeftover = NarrowLeftoverRegs.size(); 3780 } 3781 } 3782 3783 if (NumParts == -1) 3784 return UnableToLegalize; 3785 3786 LLT PtrTy = MRI.getType(AddrReg); 3787 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3788 3789 unsigned TotalSize = ValTy.getSizeInBits(); 3790 3791 // Split the load/store into PartTy sized pieces starting at Offset. If this 3792 // is a load, return the new registers in ValRegs. For a store, each elements 3793 // of ValRegs should be PartTy. Returns the next offset that needs to be 3794 // handled. 3795 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3796 unsigned Offset) -> unsigned { 3797 MachineFunction &MF = MIRBuilder.getMF(); 3798 unsigned PartSize = PartTy.getSizeInBits(); 3799 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3800 Offset += PartSize, ++Idx) { 3801 unsigned ByteSize = PartSize / 8; 3802 unsigned ByteOffset = Offset / 8; 3803 Register NewAddrReg; 3804 3805 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3806 3807 MachineMemOperand *NewMMO = 3808 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3809 3810 if (IsLoad) { 3811 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3812 ValRegs.push_back(Dst); 3813 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3814 } else { 3815 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3816 } 3817 } 3818 3819 return Offset; 3820 }; 3821 3822 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3823 3824 // Handle the rest of the register if this isn't an even type breakdown. 3825 if (LeftoverTy.isValid()) 3826 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3827 3828 if (IsLoad) { 3829 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3830 LeftoverTy, NarrowLeftoverRegs); 3831 } 3832 3833 MI.eraseFromParent(); 3834 return Legalized; 3835 } 3836 3837 LegalizerHelper::LegalizeResult 3838 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3839 LLT NarrowTy) { 3840 assert(TypeIdx == 0 && "only one type index expected"); 3841 3842 const unsigned Opc = MI.getOpcode(); 3843 const int NumOps = MI.getNumOperands() - 1; 3844 const Register DstReg = MI.getOperand(0).getReg(); 3845 const unsigned Flags = MI.getFlags(); 3846 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3847 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3848 3849 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3850 3851 // First of all check whether we are narrowing (changing the element type) 3852 // or reducing the vector elements 3853 const LLT DstTy = MRI.getType(DstReg); 3854 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3855 3856 SmallVector<Register, 8> ExtractedRegs[3]; 3857 SmallVector<Register, 8> Parts; 3858 3859 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3860 3861 // Break down all the sources into NarrowTy pieces we can operate on. This may 3862 // involve creating merges to a wider type, padded with undef. 3863 for (int I = 0; I != NumOps; ++I) { 3864 Register SrcReg = MI.getOperand(I + 1).getReg(); 3865 LLT SrcTy = MRI.getType(SrcReg); 3866 3867 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3868 // For fewerElements, this is a smaller vector with the same element type. 3869 LLT OpNarrowTy; 3870 if (IsNarrow) { 3871 OpNarrowTy = NarrowScalarTy; 3872 3873 // In case of narrowing, we need to cast vectors to scalars for this to 3874 // work properly 3875 // FIXME: Can we do without the bitcast here if we're narrowing? 3876 if (SrcTy.isVector()) { 3877 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3878 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3879 } 3880 } else { 3881 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3882 } 3883 3884 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3885 3886 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3887 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3888 TargetOpcode::G_ANYEXT); 3889 } 3890 3891 SmallVector<Register, 8> ResultRegs; 3892 3893 // Input operands for each sub-instruction. 3894 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3895 3896 int NumParts = ExtractedRegs[0].size(); 3897 const unsigned DstSize = DstTy.getSizeInBits(); 3898 const LLT DstScalarTy = LLT::scalar(DstSize); 3899 3900 // Narrowing needs to use scalar types 3901 LLT DstLCMTy, NarrowDstTy; 3902 if (IsNarrow) { 3903 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3904 NarrowDstTy = NarrowScalarTy; 3905 } else { 3906 DstLCMTy = getLCMType(DstTy, NarrowTy); 3907 NarrowDstTy = NarrowTy; 3908 } 3909 3910 // We widened the source registers to satisfy merge/unmerge size 3911 // constraints. We'll have some extra fully undef parts. 3912 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3913 3914 for (int I = 0; I != NumRealParts; ++I) { 3915 // Emit this instruction on each of the split pieces. 3916 for (int J = 0; J != NumOps; ++J) 3917 InputRegs[J] = ExtractedRegs[J][I]; 3918 3919 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3920 ResultRegs.push_back(Inst.getReg(0)); 3921 } 3922 3923 // Fill out the widened result with undef instead of creating instructions 3924 // with undef inputs. 3925 int NumUndefParts = NumParts - NumRealParts; 3926 if (NumUndefParts != 0) 3927 ResultRegs.append(NumUndefParts, 3928 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3929 3930 // Extract the possibly padded result. Use a scratch register if we need to do 3931 // a final bitcast, otherwise use the original result register. 3932 Register MergeDstReg; 3933 if (IsNarrow && DstTy.isVector()) 3934 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3935 else 3936 MergeDstReg = DstReg; 3937 3938 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3939 3940 // Recast to vector if we narrowed a vector 3941 if (IsNarrow && DstTy.isVector()) 3942 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3943 3944 MI.eraseFromParent(); 3945 return Legalized; 3946 } 3947 3948 LegalizerHelper::LegalizeResult 3949 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3950 LLT NarrowTy) { 3951 Register DstReg = MI.getOperand(0).getReg(); 3952 Register SrcReg = MI.getOperand(1).getReg(); 3953 int64_t Imm = MI.getOperand(2).getImm(); 3954 3955 LLT DstTy = MRI.getType(DstReg); 3956 3957 SmallVector<Register, 8> Parts; 3958 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3959 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3960 3961 for (Register &R : Parts) 3962 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3963 3964 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3965 3966 MI.eraseFromParent(); 3967 return Legalized; 3968 } 3969 3970 LegalizerHelper::LegalizeResult 3971 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3972 LLT NarrowTy) { 3973 using namespace TargetOpcode; 3974 3975 switch (MI.getOpcode()) { 3976 case G_IMPLICIT_DEF: 3977 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3978 case G_TRUNC: 3979 case G_AND: 3980 case G_OR: 3981 case G_XOR: 3982 case G_ADD: 3983 case G_SUB: 3984 case G_MUL: 3985 case G_PTR_ADD: 3986 case G_SMULH: 3987 case G_UMULH: 3988 case G_FADD: 3989 case G_FMUL: 3990 case G_FSUB: 3991 case G_FNEG: 3992 case G_FABS: 3993 case G_FCANONICALIZE: 3994 case G_FDIV: 3995 case G_FREM: 3996 case G_FMA: 3997 case G_FMAD: 3998 case G_FPOW: 3999 case G_FEXP: 4000 case G_FEXP2: 4001 case G_FLOG: 4002 case G_FLOG2: 4003 case G_FLOG10: 4004 case G_FNEARBYINT: 4005 case G_FCEIL: 4006 case G_FFLOOR: 4007 case G_FRINT: 4008 case G_INTRINSIC_ROUND: 4009 case G_INTRINSIC_ROUNDEVEN: 4010 case G_INTRINSIC_TRUNC: 4011 case G_FCOS: 4012 case G_FSIN: 4013 case G_FSQRT: 4014 case G_BSWAP: 4015 case G_BITREVERSE: 4016 case G_SDIV: 4017 case G_UDIV: 4018 case G_SREM: 4019 case G_UREM: 4020 case G_SMIN: 4021 case G_SMAX: 4022 case G_UMIN: 4023 case G_UMAX: 4024 case G_FMINNUM: 4025 case G_FMAXNUM: 4026 case G_FMINNUM_IEEE: 4027 case G_FMAXNUM_IEEE: 4028 case G_FMINIMUM: 4029 case G_FMAXIMUM: 4030 case G_FSHL: 4031 case G_FSHR: 4032 case G_FREEZE: 4033 case G_SADDSAT: 4034 case G_SSUBSAT: 4035 case G_UADDSAT: 4036 case G_USUBSAT: 4037 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4038 case G_SHL: 4039 case G_LSHR: 4040 case G_ASHR: 4041 case G_SSHLSAT: 4042 case G_USHLSAT: 4043 case G_CTLZ: 4044 case G_CTLZ_ZERO_UNDEF: 4045 case G_CTTZ: 4046 case G_CTTZ_ZERO_UNDEF: 4047 case G_CTPOP: 4048 case G_FCOPYSIGN: 4049 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4050 case G_ZEXT: 4051 case G_SEXT: 4052 case G_ANYEXT: 4053 case G_FPEXT: 4054 case G_FPTRUNC: 4055 case G_SITOFP: 4056 case G_UITOFP: 4057 case G_FPTOSI: 4058 case G_FPTOUI: 4059 case G_INTTOPTR: 4060 case G_PTRTOINT: 4061 case G_ADDRSPACE_CAST: 4062 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4063 case G_ICMP: 4064 case G_FCMP: 4065 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4066 case G_SELECT: 4067 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4068 case G_PHI: 4069 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4070 case G_UNMERGE_VALUES: 4071 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4072 case G_BUILD_VECTOR: 4073 assert(TypeIdx == 0 && "not a vector type index"); 4074 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4075 case G_CONCAT_VECTORS: 4076 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4077 return UnableToLegalize; 4078 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4079 case G_EXTRACT_VECTOR_ELT: 4080 case G_INSERT_VECTOR_ELT: 4081 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4082 case G_LOAD: 4083 case G_STORE: 4084 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4085 case G_SEXT_INREG: 4086 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4087 default: 4088 return UnableToLegalize; 4089 } 4090 } 4091 4092 LegalizerHelper::LegalizeResult 4093 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4094 const LLT HalfTy, const LLT AmtTy) { 4095 4096 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4097 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4098 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4099 4100 if (Amt.isNullValue()) { 4101 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4102 MI.eraseFromParent(); 4103 return Legalized; 4104 } 4105 4106 LLT NVT = HalfTy; 4107 unsigned NVTBits = HalfTy.getSizeInBits(); 4108 unsigned VTBits = 2 * NVTBits; 4109 4110 SrcOp Lo(Register(0)), Hi(Register(0)); 4111 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4112 if (Amt.ugt(VTBits)) { 4113 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4114 } else if (Amt.ugt(NVTBits)) { 4115 Lo = MIRBuilder.buildConstant(NVT, 0); 4116 Hi = MIRBuilder.buildShl(NVT, InL, 4117 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4118 } else if (Amt == NVTBits) { 4119 Lo = MIRBuilder.buildConstant(NVT, 0); 4120 Hi = InL; 4121 } else { 4122 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4123 auto OrLHS = 4124 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4125 auto OrRHS = MIRBuilder.buildLShr( 4126 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4127 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4128 } 4129 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4130 if (Amt.ugt(VTBits)) { 4131 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4132 } else if (Amt.ugt(NVTBits)) { 4133 Lo = MIRBuilder.buildLShr(NVT, InH, 4134 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4135 Hi = MIRBuilder.buildConstant(NVT, 0); 4136 } else if (Amt == NVTBits) { 4137 Lo = InH; 4138 Hi = MIRBuilder.buildConstant(NVT, 0); 4139 } else { 4140 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4141 4142 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4143 auto OrRHS = MIRBuilder.buildShl( 4144 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4145 4146 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4147 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4148 } 4149 } else { 4150 if (Amt.ugt(VTBits)) { 4151 Hi = Lo = MIRBuilder.buildAShr( 4152 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4153 } else if (Amt.ugt(NVTBits)) { 4154 Lo = MIRBuilder.buildAShr(NVT, InH, 4155 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4156 Hi = MIRBuilder.buildAShr(NVT, InH, 4157 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4158 } else if (Amt == NVTBits) { 4159 Lo = InH; 4160 Hi = MIRBuilder.buildAShr(NVT, InH, 4161 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4162 } else { 4163 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4164 4165 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4166 auto OrRHS = MIRBuilder.buildShl( 4167 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4168 4169 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4170 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4171 } 4172 } 4173 4174 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4175 MI.eraseFromParent(); 4176 4177 return Legalized; 4178 } 4179 4180 // TODO: Optimize if constant shift amount. 4181 LegalizerHelper::LegalizeResult 4182 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4183 LLT RequestedTy) { 4184 if (TypeIdx == 1) { 4185 Observer.changingInstr(MI); 4186 narrowScalarSrc(MI, RequestedTy, 2); 4187 Observer.changedInstr(MI); 4188 return Legalized; 4189 } 4190 4191 Register DstReg = MI.getOperand(0).getReg(); 4192 LLT DstTy = MRI.getType(DstReg); 4193 if (DstTy.isVector()) 4194 return UnableToLegalize; 4195 4196 Register Amt = MI.getOperand(2).getReg(); 4197 LLT ShiftAmtTy = MRI.getType(Amt); 4198 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4199 if (DstEltSize % 2 != 0) 4200 return UnableToLegalize; 4201 4202 // Ignore the input type. We can only go to exactly half the size of the 4203 // input. If that isn't small enough, the resulting pieces will be further 4204 // legalized. 4205 const unsigned NewBitSize = DstEltSize / 2; 4206 const LLT HalfTy = LLT::scalar(NewBitSize); 4207 const LLT CondTy = LLT::scalar(1); 4208 4209 if (const MachineInstr *KShiftAmt = 4210 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4211 return narrowScalarShiftByConstant( 4212 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4213 } 4214 4215 // TODO: Expand with known bits. 4216 4217 // Handle the fully general expansion by an unknown amount. 4218 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4219 4220 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4221 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4222 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4223 4224 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4225 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4226 4227 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4228 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4229 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4230 4231 Register ResultRegs[2]; 4232 switch (MI.getOpcode()) { 4233 case TargetOpcode::G_SHL: { 4234 // Short: ShAmt < NewBitSize 4235 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4236 4237 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4238 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4239 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4240 4241 // Long: ShAmt >= NewBitSize 4242 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4243 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4244 4245 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4246 auto Hi = MIRBuilder.buildSelect( 4247 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4248 4249 ResultRegs[0] = Lo.getReg(0); 4250 ResultRegs[1] = Hi.getReg(0); 4251 break; 4252 } 4253 case TargetOpcode::G_LSHR: 4254 case TargetOpcode::G_ASHR: { 4255 // Short: ShAmt < NewBitSize 4256 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4257 4258 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4259 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4260 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4261 4262 // Long: ShAmt >= NewBitSize 4263 MachineInstrBuilder HiL; 4264 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4265 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4266 } else { 4267 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4268 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4269 } 4270 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4271 {InH, AmtExcess}); // Lo from Hi part. 4272 4273 auto Lo = MIRBuilder.buildSelect( 4274 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4275 4276 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4277 4278 ResultRegs[0] = Lo.getReg(0); 4279 ResultRegs[1] = Hi.getReg(0); 4280 break; 4281 } 4282 default: 4283 llvm_unreachable("not a shift"); 4284 } 4285 4286 MIRBuilder.buildMerge(DstReg, ResultRegs); 4287 MI.eraseFromParent(); 4288 return Legalized; 4289 } 4290 4291 LegalizerHelper::LegalizeResult 4292 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4293 LLT MoreTy) { 4294 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4295 4296 Observer.changingInstr(MI); 4297 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4298 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4299 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4300 moreElementsVectorSrc(MI, MoreTy, I); 4301 } 4302 4303 MachineBasicBlock &MBB = *MI.getParent(); 4304 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4305 moreElementsVectorDst(MI, MoreTy, 0); 4306 Observer.changedInstr(MI); 4307 return Legalized; 4308 } 4309 4310 LegalizerHelper::LegalizeResult 4311 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4312 LLT MoreTy) { 4313 unsigned Opc = MI.getOpcode(); 4314 switch (Opc) { 4315 case TargetOpcode::G_IMPLICIT_DEF: 4316 case TargetOpcode::G_LOAD: { 4317 if (TypeIdx != 0) 4318 return UnableToLegalize; 4319 Observer.changingInstr(MI); 4320 moreElementsVectorDst(MI, MoreTy, 0); 4321 Observer.changedInstr(MI); 4322 return Legalized; 4323 } 4324 case TargetOpcode::G_STORE: 4325 if (TypeIdx != 0) 4326 return UnableToLegalize; 4327 Observer.changingInstr(MI); 4328 moreElementsVectorSrc(MI, MoreTy, 0); 4329 Observer.changedInstr(MI); 4330 return Legalized; 4331 case TargetOpcode::G_AND: 4332 case TargetOpcode::G_OR: 4333 case TargetOpcode::G_XOR: 4334 case TargetOpcode::G_SMIN: 4335 case TargetOpcode::G_SMAX: 4336 case TargetOpcode::G_UMIN: 4337 case TargetOpcode::G_UMAX: 4338 case TargetOpcode::G_FMINNUM: 4339 case TargetOpcode::G_FMAXNUM: 4340 case TargetOpcode::G_FMINNUM_IEEE: 4341 case TargetOpcode::G_FMAXNUM_IEEE: 4342 case TargetOpcode::G_FMINIMUM: 4343 case TargetOpcode::G_FMAXIMUM: { 4344 Observer.changingInstr(MI); 4345 moreElementsVectorSrc(MI, MoreTy, 1); 4346 moreElementsVectorSrc(MI, MoreTy, 2); 4347 moreElementsVectorDst(MI, MoreTy, 0); 4348 Observer.changedInstr(MI); 4349 return Legalized; 4350 } 4351 case TargetOpcode::G_EXTRACT: 4352 if (TypeIdx != 1) 4353 return UnableToLegalize; 4354 Observer.changingInstr(MI); 4355 moreElementsVectorSrc(MI, MoreTy, 1); 4356 Observer.changedInstr(MI); 4357 return Legalized; 4358 case TargetOpcode::G_INSERT: 4359 case TargetOpcode::G_FREEZE: 4360 if (TypeIdx != 0) 4361 return UnableToLegalize; 4362 Observer.changingInstr(MI); 4363 moreElementsVectorSrc(MI, MoreTy, 1); 4364 moreElementsVectorDst(MI, MoreTy, 0); 4365 Observer.changedInstr(MI); 4366 return Legalized; 4367 case TargetOpcode::G_SELECT: 4368 if (TypeIdx != 0) 4369 return UnableToLegalize; 4370 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4371 return UnableToLegalize; 4372 4373 Observer.changingInstr(MI); 4374 moreElementsVectorSrc(MI, MoreTy, 2); 4375 moreElementsVectorSrc(MI, MoreTy, 3); 4376 moreElementsVectorDst(MI, MoreTy, 0); 4377 Observer.changedInstr(MI); 4378 return Legalized; 4379 case TargetOpcode::G_UNMERGE_VALUES: { 4380 if (TypeIdx != 1) 4381 return UnableToLegalize; 4382 4383 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4384 int NumDst = MI.getNumOperands() - 1; 4385 moreElementsVectorSrc(MI, MoreTy, NumDst); 4386 4387 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4388 for (int I = 0; I != NumDst; ++I) 4389 MIB.addDef(MI.getOperand(I).getReg()); 4390 4391 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4392 for (int I = NumDst; I != NewNumDst; ++I) 4393 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4394 4395 MIB.addUse(MI.getOperand(NumDst).getReg()); 4396 MI.eraseFromParent(); 4397 return Legalized; 4398 } 4399 case TargetOpcode::G_PHI: 4400 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4401 default: 4402 return UnableToLegalize; 4403 } 4404 } 4405 4406 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4407 ArrayRef<Register> Src1Regs, 4408 ArrayRef<Register> Src2Regs, 4409 LLT NarrowTy) { 4410 MachineIRBuilder &B = MIRBuilder; 4411 unsigned SrcParts = Src1Regs.size(); 4412 unsigned DstParts = DstRegs.size(); 4413 4414 unsigned DstIdx = 0; // Low bits of the result. 4415 Register FactorSum = 4416 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4417 DstRegs[DstIdx] = FactorSum; 4418 4419 unsigned CarrySumPrevDstIdx; 4420 SmallVector<Register, 4> Factors; 4421 4422 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4423 // Collect low parts of muls for DstIdx. 4424 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4425 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4426 MachineInstrBuilder Mul = 4427 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4428 Factors.push_back(Mul.getReg(0)); 4429 } 4430 // Collect high parts of muls from previous DstIdx. 4431 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4432 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4433 MachineInstrBuilder Umulh = 4434 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4435 Factors.push_back(Umulh.getReg(0)); 4436 } 4437 // Add CarrySum from additions calculated for previous DstIdx. 4438 if (DstIdx != 1) { 4439 Factors.push_back(CarrySumPrevDstIdx); 4440 } 4441 4442 Register CarrySum; 4443 // Add all factors and accumulate all carries into CarrySum. 4444 if (DstIdx != DstParts - 1) { 4445 MachineInstrBuilder Uaddo = 4446 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4447 FactorSum = Uaddo.getReg(0); 4448 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4449 for (unsigned i = 2; i < Factors.size(); ++i) { 4450 MachineInstrBuilder Uaddo = 4451 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4452 FactorSum = Uaddo.getReg(0); 4453 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4454 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4455 } 4456 } else { 4457 // Since value for the next index is not calculated, neither is CarrySum. 4458 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4459 for (unsigned i = 2; i < Factors.size(); ++i) 4460 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4461 } 4462 4463 CarrySumPrevDstIdx = CarrySum; 4464 DstRegs[DstIdx] = FactorSum; 4465 Factors.clear(); 4466 } 4467 } 4468 4469 LegalizerHelper::LegalizeResult 4470 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4471 Register DstReg = MI.getOperand(0).getReg(); 4472 Register Src1 = MI.getOperand(1).getReg(); 4473 Register Src2 = MI.getOperand(2).getReg(); 4474 4475 LLT Ty = MRI.getType(DstReg); 4476 if (Ty.isVector()) 4477 return UnableToLegalize; 4478 4479 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4480 unsigned DstSize = Ty.getSizeInBits(); 4481 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4482 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4483 return UnableToLegalize; 4484 4485 unsigned NumDstParts = DstSize / NarrowSize; 4486 unsigned NumSrcParts = SrcSize / NarrowSize; 4487 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4488 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4489 4490 SmallVector<Register, 2> Src1Parts, Src2Parts; 4491 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4492 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4493 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4494 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4495 4496 // Take only high half of registers if this is high mul. 4497 ArrayRef<Register> DstRegs( 4498 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4499 MIRBuilder.buildMerge(DstReg, DstRegs); 4500 MI.eraseFromParent(); 4501 return Legalized; 4502 } 4503 4504 LegalizerHelper::LegalizeResult 4505 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4506 LLT NarrowTy) { 4507 if (TypeIdx != 1) 4508 return UnableToLegalize; 4509 4510 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4511 4512 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4513 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4514 // NarrowSize. 4515 if (SizeOp1 % NarrowSize != 0) 4516 return UnableToLegalize; 4517 int NumParts = SizeOp1 / NarrowSize; 4518 4519 SmallVector<Register, 2> SrcRegs, DstRegs; 4520 SmallVector<uint64_t, 2> Indexes; 4521 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4522 4523 Register OpReg = MI.getOperand(0).getReg(); 4524 uint64_t OpStart = MI.getOperand(2).getImm(); 4525 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4526 for (int i = 0; i < NumParts; ++i) { 4527 unsigned SrcStart = i * NarrowSize; 4528 4529 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4530 // No part of the extract uses this subregister, ignore it. 4531 continue; 4532 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4533 // The entire subregister is extracted, forward the value. 4534 DstRegs.push_back(SrcRegs[i]); 4535 continue; 4536 } 4537 4538 // OpSegStart is where this destination segment would start in OpReg if it 4539 // extended infinitely in both directions. 4540 int64_t ExtractOffset; 4541 uint64_t SegSize; 4542 if (OpStart < SrcStart) { 4543 ExtractOffset = 0; 4544 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4545 } else { 4546 ExtractOffset = OpStart - SrcStart; 4547 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4548 } 4549 4550 Register SegReg = SrcRegs[i]; 4551 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4552 // A genuine extract is needed. 4553 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4554 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4555 } 4556 4557 DstRegs.push_back(SegReg); 4558 } 4559 4560 Register DstReg = MI.getOperand(0).getReg(); 4561 if (MRI.getType(DstReg).isVector()) 4562 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4563 else if (DstRegs.size() > 1) 4564 MIRBuilder.buildMerge(DstReg, DstRegs); 4565 else 4566 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4567 MI.eraseFromParent(); 4568 return Legalized; 4569 } 4570 4571 LegalizerHelper::LegalizeResult 4572 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4573 LLT NarrowTy) { 4574 // FIXME: Don't know how to handle secondary types yet. 4575 if (TypeIdx != 0) 4576 return UnableToLegalize; 4577 4578 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4579 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4580 4581 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4582 // NarrowSize. 4583 if (SizeOp0 % NarrowSize != 0) 4584 return UnableToLegalize; 4585 4586 int NumParts = SizeOp0 / NarrowSize; 4587 4588 SmallVector<Register, 2> SrcRegs, DstRegs; 4589 SmallVector<uint64_t, 2> Indexes; 4590 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4591 4592 Register OpReg = MI.getOperand(2).getReg(); 4593 uint64_t OpStart = MI.getOperand(3).getImm(); 4594 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4595 for (int i = 0; i < NumParts; ++i) { 4596 unsigned DstStart = i * NarrowSize; 4597 4598 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4599 // No part of the insert affects this subregister, forward the original. 4600 DstRegs.push_back(SrcRegs[i]); 4601 continue; 4602 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4603 // The entire subregister is defined by this insert, forward the new 4604 // value. 4605 DstRegs.push_back(OpReg); 4606 continue; 4607 } 4608 4609 // OpSegStart is where this destination segment would start in OpReg if it 4610 // extended infinitely in both directions. 4611 int64_t ExtractOffset, InsertOffset; 4612 uint64_t SegSize; 4613 if (OpStart < DstStart) { 4614 InsertOffset = 0; 4615 ExtractOffset = DstStart - OpStart; 4616 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4617 } else { 4618 InsertOffset = OpStart - DstStart; 4619 ExtractOffset = 0; 4620 SegSize = 4621 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4622 } 4623 4624 Register SegReg = OpReg; 4625 if (ExtractOffset != 0 || SegSize != OpSize) { 4626 // A genuine extract is needed. 4627 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4628 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4629 } 4630 4631 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4632 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4633 DstRegs.push_back(DstReg); 4634 } 4635 4636 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4637 Register DstReg = MI.getOperand(0).getReg(); 4638 if(MRI.getType(DstReg).isVector()) 4639 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4640 else 4641 MIRBuilder.buildMerge(DstReg, DstRegs); 4642 MI.eraseFromParent(); 4643 return Legalized; 4644 } 4645 4646 LegalizerHelper::LegalizeResult 4647 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4648 LLT NarrowTy) { 4649 Register DstReg = MI.getOperand(0).getReg(); 4650 LLT DstTy = MRI.getType(DstReg); 4651 4652 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4653 4654 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4655 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4656 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4657 LLT LeftoverTy; 4658 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4659 Src0Regs, Src0LeftoverRegs)) 4660 return UnableToLegalize; 4661 4662 LLT Unused; 4663 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4664 Src1Regs, Src1LeftoverRegs)) 4665 llvm_unreachable("inconsistent extractParts result"); 4666 4667 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4668 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4669 {Src0Regs[I], Src1Regs[I]}); 4670 DstRegs.push_back(Inst.getReg(0)); 4671 } 4672 4673 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4674 auto Inst = MIRBuilder.buildInstr( 4675 MI.getOpcode(), 4676 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4677 DstLeftoverRegs.push_back(Inst.getReg(0)); 4678 } 4679 4680 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4681 LeftoverTy, DstLeftoverRegs); 4682 4683 MI.eraseFromParent(); 4684 return Legalized; 4685 } 4686 4687 LegalizerHelper::LegalizeResult 4688 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4689 LLT NarrowTy) { 4690 if (TypeIdx != 0) 4691 return UnableToLegalize; 4692 4693 Register DstReg = MI.getOperand(0).getReg(); 4694 Register SrcReg = MI.getOperand(1).getReg(); 4695 4696 LLT DstTy = MRI.getType(DstReg); 4697 if (DstTy.isVector()) 4698 return UnableToLegalize; 4699 4700 SmallVector<Register, 8> Parts; 4701 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4702 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4703 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4704 4705 MI.eraseFromParent(); 4706 return Legalized; 4707 } 4708 4709 LegalizerHelper::LegalizeResult 4710 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4711 LLT NarrowTy) { 4712 if (TypeIdx != 0) 4713 return UnableToLegalize; 4714 4715 Register CondReg = MI.getOperand(1).getReg(); 4716 LLT CondTy = MRI.getType(CondReg); 4717 if (CondTy.isVector()) // TODO: Handle vselect 4718 return UnableToLegalize; 4719 4720 Register DstReg = MI.getOperand(0).getReg(); 4721 LLT DstTy = MRI.getType(DstReg); 4722 4723 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4724 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4725 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4726 LLT LeftoverTy; 4727 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4728 Src1Regs, Src1LeftoverRegs)) 4729 return UnableToLegalize; 4730 4731 LLT Unused; 4732 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4733 Src2Regs, Src2LeftoverRegs)) 4734 llvm_unreachable("inconsistent extractParts result"); 4735 4736 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4737 auto Select = MIRBuilder.buildSelect(NarrowTy, 4738 CondReg, Src1Regs[I], Src2Regs[I]); 4739 DstRegs.push_back(Select.getReg(0)); 4740 } 4741 4742 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4743 auto Select = MIRBuilder.buildSelect( 4744 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4745 DstLeftoverRegs.push_back(Select.getReg(0)); 4746 } 4747 4748 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4749 LeftoverTy, DstLeftoverRegs); 4750 4751 MI.eraseFromParent(); 4752 return Legalized; 4753 } 4754 4755 LegalizerHelper::LegalizeResult 4756 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4757 LLT NarrowTy) { 4758 if (TypeIdx != 1) 4759 return UnableToLegalize; 4760 4761 Register DstReg = MI.getOperand(0).getReg(); 4762 Register SrcReg = MI.getOperand(1).getReg(); 4763 LLT DstTy = MRI.getType(DstReg); 4764 LLT SrcTy = MRI.getType(SrcReg); 4765 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4766 4767 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4768 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4769 4770 MachineIRBuilder &B = MIRBuilder; 4771 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4772 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4773 auto C_0 = B.buildConstant(NarrowTy, 0); 4774 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4775 UnmergeSrc.getReg(1), C_0); 4776 auto LoCTLZ = IsUndef ? 4777 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4778 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4779 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4780 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4781 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4782 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4783 4784 MI.eraseFromParent(); 4785 return Legalized; 4786 } 4787 4788 return UnableToLegalize; 4789 } 4790 4791 LegalizerHelper::LegalizeResult 4792 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4793 LLT NarrowTy) { 4794 if (TypeIdx != 1) 4795 return UnableToLegalize; 4796 4797 Register DstReg = MI.getOperand(0).getReg(); 4798 Register SrcReg = MI.getOperand(1).getReg(); 4799 LLT DstTy = MRI.getType(DstReg); 4800 LLT SrcTy = MRI.getType(SrcReg); 4801 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4802 4803 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4804 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4805 4806 MachineIRBuilder &B = MIRBuilder; 4807 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4808 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4809 auto C_0 = B.buildConstant(NarrowTy, 0); 4810 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4811 UnmergeSrc.getReg(0), C_0); 4812 auto HiCTTZ = IsUndef ? 4813 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4814 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4815 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4816 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4817 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4818 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4819 4820 MI.eraseFromParent(); 4821 return Legalized; 4822 } 4823 4824 return UnableToLegalize; 4825 } 4826 4827 LegalizerHelper::LegalizeResult 4828 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4829 LLT NarrowTy) { 4830 if (TypeIdx != 1) 4831 return UnableToLegalize; 4832 4833 Register DstReg = MI.getOperand(0).getReg(); 4834 LLT DstTy = MRI.getType(DstReg); 4835 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4836 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4837 4838 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4839 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4840 4841 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4842 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4843 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4844 4845 MI.eraseFromParent(); 4846 return Legalized; 4847 } 4848 4849 return UnableToLegalize; 4850 } 4851 4852 LegalizerHelper::LegalizeResult 4853 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 4854 unsigned Opc = MI.getOpcode(); 4855 const auto &TII = MIRBuilder.getTII(); 4856 auto isSupported = [this](const LegalityQuery &Q) { 4857 auto QAction = LI.getAction(Q).Action; 4858 return QAction == Legal || QAction == Libcall || QAction == Custom; 4859 }; 4860 switch (Opc) { 4861 default: 4862 return UnableToLegalize; 4863 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4864 // This trivially expands to CTLZ. 4865 Observer.changingInstr(MI); 4866 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4867 Observer.changedInstr(MI); 4868 return Legalized; 4869 } 4870 case TargetOpcode::G_CTLZ: { 4871 Register DstReg = MI.getOperand(0).getReg(); 4872 Register SrcReg = MI.getOperand(1).getReg(); 4873 LLT DstTy = MRI.getType(DstReg); 4874 LLT SrcTy = MRI.getType(SrcReg); 4875 unsigned Len = SrcTy.getSizeInBits(); 4876 4877 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4878 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4879 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4880 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4881 auto ICmp = MIRBuilder.buildICmp( 4882 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4883 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4884 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4885 MI.eraseFromParent(); 4886 return Legalized; 4887 } 4888 // for now, we do this: 4889 // NewLen = NextPowerOf2(Len); 4890 // x = x | (x >> 1); 4891 // x = x | (x >> 2); 4892 // ... 4893 // x = x | (x >>16); 4894 // x = x | (x >>32); // for 64-bit input 4895 // Upto NewLen/2 4896 // return Len - popcount(x); 4897 // 4898 // Ref: "Hacker's Delight" by Henry Warren 4899 Register Op = SrcReg; 4900 unsigned NewLen = PowerOf2Ceil(Len); 4901 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4902 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4903 auto MIBOp = MIRBuilder.buildOr( 4904 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4905 Op = MIBOp.getReg(0); 4906 } 4907 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4908 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4909 MIBPop); 4910 MI.eraseFromParent(); 4911 return Legalized; 4912 } 4913 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4914 // This trivially expands to CTTZ. 4915 Observer.changingInstr(MI); 4916 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4917 Observer.changedInstr(MI); 4918 return Legalized; 4919 } 4920 case TargetOpcode::G_CTTZ: { 4921 Register DstReg = MI.getOperand(0).getReg(); 4922 Register SrcReg = MI.getOperand(1).getReg(); 4923 LLT DstTy = MRI.getType(DstReg); 4924 LLT SrcTy = MRI.getType(SrcReg); 4925 4926 unsigned Len = SrcTy.getSizeInBits(); 4927 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4928 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4929 // zero. 4930 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4931 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4932 auto ICmp = MIRBuilder.buildICmp( 4933 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4934 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4935 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4936 MI.eraseFromParent(); 4937 return Legalized; 4938 } 4939 // for now, we use: { return popcount(~x & (x - 1)); } 4940 // unless the target has ctlz but not ctpop, in which case we use: 4941 // { return 32 - nlz(~x & (x-1)); } 4942 // Ref: "Hacker's Delight" by Henry Warren 4943 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 4944 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 4945 auto MIBTmp = MIRBuilder.buildAnd( 4946 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 4947 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 4948 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 4949 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 4950 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4951 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 4952 MI.eraseFromParent(); 4953 return Legalized; 4954 } 4955 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4956 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4957 return Legalized; 4958 } 4959 case TargetOpcode::G_CTPOP: { 4960 Register SrcReg = MI.getOperand(1).getReg(); 4961 LLT Ty = MRI.getType(SrcReg); 4962 unsigned Size = Ty.getSizeInBits(); 4963 MachineIRBuilder &B = MIRBuilder; 4964 4965 // Count set bits in blocks of 2 bits. Default approach would be 4966 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4967 // We use following formula instead: 4968 // B2Count = val - { (val >> 1) & 0x55555555 } 4969 // since it gives same result in blocks of 2 with one instruction less. 4970 auto C_1 = B.buildConstant(Ty, 1); 4971 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 4972 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4973 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4974 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4975 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 4976 4977 // In order to get count in blocks of 4 add values from adjacent block of 2. 4978 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4979 auto C_2 = B.buildConstant(Ty, 2); 4980 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4981 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4982 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4983 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4984 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4985 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4986 4987 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4988 // addition since count value sits in range {0,...,8} and 4 bits are enough 4989 // to hold such binary values. After addition high 4 bits still hold count 4990 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4991 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4992 auto C_4 = B.buildConstant(Ty, 4); 4993 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4994 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4995 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4996 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4997 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4998 4999 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5000 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5001 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5002 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5003 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5004 5005 // Shift count result from 8 high bits to low bits. 5006 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5007 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5008 5009 MI.eraseFromParent(); 5010 return Legalized; 5011 } 5012 } 5013 } 5014 5015 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5016 // representation. 5017 LegalizerHelper::LegalizeResult 5018 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5019 Register Dst = MI.getOperand(0).getReg(); 5020 Register Src = MI.getOperand(1).getReg(); 5021 const LLT S64 = LLT::scalar(64); 5022 const LLT S32 = LLT::scalar(32); 5023 const LLT S1 = LLT::scalar(1); 5024 5025 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5026 5027 // unsigned cul2f(ulong u) { 5028 // uint lz = clz(u); 5029 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5030 // u = (u << lz) & 0x7fffffffffffffffUL; 5031 // ulong t = u & 0xffffffffffUL; 5032 // uint v = (e << 23) | (uint)(u >> 40); 5033 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5034 // return as_float(v + r); 5035 // } 5036 5037 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5038 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5039 5040 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5041 5042 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5043 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5044 5045 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5046 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5047 5048 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5049 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5050 5051 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5052 5053 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5054 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5055 5056 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5057 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5058 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5059 5060 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5061 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5062 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5063 auto One = MIRBuilder.buildConstant(S32, 1); 5064 5065 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5066 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5067 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5068 MIRBuilder.buildAdd(Dst, V, R); 5069 5070 MI.eraseFromParent(); 5071 return Legalized; 5072 } 5073 5074 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5075 Register Dst = MI.getOperand(0).getReg(); 5076 Register Src = MI.getOperand(1).getReg(); 5077 LLT DstTy = MRI.getType(Dst); 5078 LLT SrcTy = MRI.getType(Src); 5079 5080 if (SrcTy == LLT::scalar(1)) { 5081 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5082 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5083 MIRBuilder.buildSelect(Dst, Src, True, False); 5084 MI.eraseFromParent(); 5085 return Legalized; 5086 } 5087 5088 if (SrcTy != LLT::scalar(64)) 5089 return UnableToLegalize; 5090 5091 if (DstTy == LLT::scalar(32)) { 5092 // TODO: SelectionDAG has several alternative expansions to port which may 5093 // be more reasonble depending on the available instructions. If a target 5094 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5095 // intermediate type, this is probably worse. 5096 return lowerU64ToF32BitOps(MI); 5097 } 5098 5099 return UnableToLegalize; 5100 } 5101 5102 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5103 Register Dst = MI.getOperand(0).getReg(); 5104 Register Src = MI.getOperand(1).getReg(); 5105 LLT DstTy = MRI.getType(Dst); 5106 LLT SrcTy = MRI.getType(Src); 5107 5108 const LLT S64 = LLT::scalar(64); 5109 const LLT S32 = LLT::scalar(32); 5110 const LLT S1 = LLT::scalar(1); 5111 5112 if (SrcTy == S1) { 5113 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5114 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5115 MIRBuilder.buildSelect(Dst, Src, True, False); 5116 MI.eraseFromParent(); 5117 return Legalized; 5118 } 5119 5120 if (SrcTy != S64) 5121 return UnableToLegalize; 5122 5123 if (DstTy == S32) { 5124 // signed cl2f(long l) { 5125 // long s = l >> 63; 5126 // float r = cul2f((l + s) ^ s); 5127 // return s ? -r : r; 5128 // } 5129 Register L = Src; 5130 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5131 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5132 5133 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5134 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5135 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5136 5137 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5138 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5139 MIRBuilder.buildConstant(S64, 0)); 5140 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5141 MI.eraseFromParent(); 5142 return Legalized; 5143 } 5144 5145 return UnableToLegalize; 5146 } 5147 5148 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5149 Register Dst = MI.getOperand(0).getReg(); 5150 Register Src = MI.getOperand(1).getReg(); 5151 LLT DstTy = MRI.getType(Dst); 5152 LLT SrcTy = MRI.getType(Src); 5153 const LLT S64 = LLT::scalar(64); 5154 const LLT S32 = LLT::scalar(32); 5155 5156 if (SrcTy != S64 && SrcTy != S32) 5157 return UnableToLegalize; 5158 if (DstTy != S32 && DstTy != S64) 5159 return UnableToLegalize; 5160 5161 // FPTOSI gives same result as FPTOUI for positive signed integers. 5162 // FPTOUI needs to deal with fp values that convert to unsigned integers 5163 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5164 5165 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5166 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5167 : APFloat::IEEEdouble(), 5168 APInt::getNullValue(SrcTy.getSizeInBits())); 5169 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5170 5171 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5172 5173 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5174 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5175 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5176 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5177 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5178 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5179 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5180 5181 const LLT S1 = LLT::scalar(1); 5182 5183 MachineInstrBuilder FCMP = 5184 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5185 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5186 5187 MI.eraseFromParent(); 5188 return Legalized; 5189 } 5190 5191 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5192 Register Dst = MI.getOperand(0).getReg(); 5193 Register Src = MI.getOperand(1).getReg(); 5194 LLT DstTy = MRI.getType(Dst); 5195 LLT SrcTy = MRI.getType(Src); 5196 const LLT S64 = LLT::scalar(64); 5197 const LLT S32 = LLT::scalar(32); 5198 5199 // FIXME: Only f32 to i64 conversions are supported. 5200 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5201 return UnableToLegalize; 5202 5203 // Expand f32 -> i64 conversion 5204 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5205 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5206 5207 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5208 5209 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5210 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5211 5212 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5213 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5214 5215 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5216 APInt::getSignMask(SrcEltBits)); 5217 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5218 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5219 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5220 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5221 5222 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5223 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5224 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5225 5226 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5227 R = MIRBuilder.buildZExt(DstTy, R); 5228 5229 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5230 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5231 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5232 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5233 5234 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5235 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5236 5237 const LLT S1 = LLT::scalar(1); 5238 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5239 S1, Exponent, ExponentLoBit); 5240 5241 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5242 5243 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5244 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5245 5246 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5247 5248 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5249 S1, Exponent, ZeroSrcTy); 5250 5251 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5252 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5253 5254 MI.eraseFromParent(); 5255 return Legalized; 5256 } 5257 5258 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5259 LegalizerHelper::LegalizeResult 5260 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5261 Register Dst = MI.getOperand(0).getReg(); 5262 Register Src = MI.getOperand(1).getReg(); 5263 5264 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5265 return UnableToLegalize; 5266 5267 const unsigned ExpMask = 0x7ff; 5268 const unsigned ExpBiasf64 = 1023; 5269 const unsigned ExpBiasf16 = 15; 5270 const LLT S32 = LLT::scalar(32); 5271 const LLT S1 = LLT::scalar(1); 5272 5273 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5274 Register U = Unmerge.getReg(0); 5275 Register UH = Unmerge.getReg(1); 5276 5277 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5278 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5279 5280 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5281 // add the f16 bias (15) to get the biased exponent for the f16 format. 5282 E = MIRBuilder.buildAdd( 5283 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5284 5285 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5286 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5287 5288 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5289 MIRBuilder.buildConstant(S32, 0x1ff)); 5290 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5291 5292 auto Zero = MIRBuilder.buildConstant(S32, 0); 5293 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5294 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5295 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5296 5297 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5298 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5299 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5300 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5301 5302 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5303 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5304 5305 // N = M | (E << 12); 5306 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5307 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5308 5309 // B = clamp(1-E, 0, 13); 5310 auto One = MIRBuilder.buildConstant(S32, 1); 5311 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5312 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5313 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5314 5315 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5316 MIRBuilder.buildConstant(S32, 0x1000)); 5317 5318 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5319 auto D0 = MIRBuilder.buildShl(S32, D, B); 5320 5321 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5322 D0, SigSetHigh); 5323 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5324 D = MIRBuilder.buildOr(S32, D, D1); 5325 5326 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5327 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5328 5329 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5330 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5331 5332 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5333 MIRBuilder.buildConstant(S32, 3)); 5334 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5335 5336 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5337 MIRBuilder.buildConstant(S32, 5)); 5338 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5339 5340 V1 = MIRBuilder.buildOr(S32, V0, V1); 5341 V = MIRBuilder.buildAdd(S32, V, V1); 5342 5343 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5344 E, MIRBuilder.buildConstant(S32, 30)); 5345 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5346 MIRBuilder.buildConstant(S32, 0x7c00), V); 5347 5348 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5349 E, MIRBuilder.buildConstant(S32, 1039)); 5350 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5351 5352 // Extract the sign bit. 5353 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5354 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5355 5356 // Insert the sign bit 5357 V = MIRBuilder.buildOr(S32, Sign, V); 5358 5359 MIRBuilder.buildTrunc(Dst, V); 5360 MI.eraseFromParent(); 5361 return Legalized; 5362 } 5363 5364 LegalizerHelper::LegalizeResult 5365 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5366 Register Dst = MI.getOperand(0).getReg(); 5367 Register Src = MI.getOperand(1).getReg(); 5368 5369 LLT DstTy = MRI.getType(Dst); 5370 LLT SrcTy = MRI.getType(Src); 5371 const LLT S64 = LLT::scalar(64); 5372 const LLT S16 = LLT::scalar(16); 5373 5374 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5375 return lowerFPTRUNC_F64_TO_F16(MI); 5376 5377 return UnableToLegalize; 5378 } 5379 5380 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5381 // multiplication tree. 5382 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5383 Register Dst = MI.getOperand(0).getReg(); 5384 Register Src0 = MI.getOperand(1).getReg(); 5385 Register Src1 = MI.getOperand(2).getReg(); 5386 LLT Ty = MRI.getType(Dst); 5387 5388 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5389 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5390 MI.eraseFromParent(); 5391 return Legalized; 5392 } 5393 5394 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5395 switch (Opc) { 5396 case TargetOpcode::G_SMIN: 5397 return CmpInst::ICMP_SLT; 5398 case TargetOpcode::G_SMAX: 5399 return CmpInst::ICMP_SGT; 5400 case TargetOpcode::G_UMIN: 5401 return CmpInst::ICMP_ULT; 5402 case TargetOpcode::G_UMAX: 5403 return CmpInst::ICMP_UGT; 5404 default: 5405 llvm_unreachable("not in integer min/max"); 5406 } 5407 } 5408 5409 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5410 Register Dst = MI.getOperand(0).getReg(); 5411 Register Src0 = MI.getOperand(1).getReg(); 5412 Register Src1 = MI.getOperand(2).getReg(); 5413 5414 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5415 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5416 5417 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5418 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5419 5420 MI.eraseFromParent(); 5421 return Legalized; 5422 } 5423 5424 LegalizerHelper::LegalizeResult 5425 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 5426 Register Dst = MI.getOperand(0).getReg(); 5427 Register Src0 = MI.getOperand(1).getReg(); 5428 Register Src1 = MI.getOperand(2).getReg(); 5429 5430 const LLT Src0Ty = MRI.getType(Src0); 5431 const LLT Src1Ty = MRI.getType(Src1); 5432 5433 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5434 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5435 5436 auto SignBitMask = MIRBuilder.buildConstant( 5437 Src0Ty, APInt::getSignMask(Src0Size)); 5438 5439 auto NotSignBitMask = MIRBuilder.buildConstant( 5440 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5441 5442 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 5443 MachineInstr *Or; 5444 5445 if (Src0Ty == Src1Ty) { 5446 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 5447 Or = MIRBuilder.buildOr(Dst, And0, And1); 5448 } else if (Src0Size > Src1Size) { 5449 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5450 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5451 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5452 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 5453 Or = MIRBuilder.buildOr(Dst, And0, And1); 5454 } else { 5455 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5456 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5457 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5458 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 5459 Or = MIRBuilder.buildOr(Dst, And0, And1); 5460 } 5461 5462 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5463 // constants are a nan and -0.0, but the final result should preserve 5464 // everything. 5465 if (unsigned Flags = MI.getFlags()) 5466 Or->setFlags(Flags); 5467 5468 MI.eraseFromParent(); 5469 return Legalized; 5470 } 5471 5472 LegalizerHelper::LegalizeResult 5473 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5474 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5475 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5476 5477 Register Dst = MI.getOperand(0).getReg(); 5478 Register Src0 = MI.getOperand(1).getReg(); 5479 Register Src1 = MI.getOperand(2).getReg(); 5480 LLT Ty = MRI.getType(Dst); 5481 5482 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5483 // Insert canonicalizes if it's possible we need to quiet to get correct 5484 // sNaN behavior. 5485 5486 // Note this must be done here, and not as an optimization combine in the 5487 // absence of a dedicate quiet-snan instruction as we're using an 5488 // omni-purpose G_FCANONICALIZE. 5489 if (!isKnownNeverSNaN(Src0, MRI)) 5490 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5491 5492 if (!isKnownNeverSNaN(Src1, MRI)) 5493 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5494 } 5495 5496 // If there are no nans, it's safe to simply replace this with the non-IEEE 5497 // version. 5498 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5499 MI.eraseFromParent(); 5500 return Legalized; 5501 } 5502 5503 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5504 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5505 Register DstReg = MI.getOperand(0).getReg(); 5506 LLT Ty = MRI.getType(DstReg); 5507 unsigned Flags = MI.getFlags(); 5508 5509 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5510 Flags); 5511 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5512 MI.eraseFromParent(); 5513 return Legalized; 5514 } 5515 5516 LegalizerHelper::LegalizeResult 5517 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5518 Register DstReg = MI.getOperand(0).getReg(); 5519 Register X = MI.getOperand(1).getReg(); 5520 const unsigned Flags = MI.getFlags(); 5521 const LLT Ty = MRI.getType(DstReg); 5522 const LLT CondTy = Ty.changeElementSize(1); 5523 5524 // round(x) => 5525 // t = trunc(x); 5526 // d = fabs(x - t); 5527 // o = copysign(1.0f, x); 5528 // return t + (d >= 0.5 ? o : 0.0); 5529 5530 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5531 5532 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5533 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5534 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5535 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5536 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5537 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5538 5539 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5540 Flags); 5541 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5542 5543 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5544 5545 MI.eraseFromParent(); 5546 return Legalized; 5547 } 5548 5549 LegalizerHelper::LegalizeResult 5550 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5551 Register DstReg = MI.getOperand(0).getReg(); 5552 Register SrcReg = MI.getOperand(1).getReg(); 5553 unsigned Flags = MI.getFlags(); 5554 LLT Ty = MRI.getType(DstReg); 5555 const LLT CondTy = Ty.changeElementSize(1); 5556 5557 // result = trunc(src); 5558 // if (src < 0.0 && src != result) 5559 // result += -1.0. 5560 5561 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5562 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5563 5564 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5565 SrcReg, Zero, Flags); 5566 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5567 SrcReg, Trunc, Flags); 5568 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5569 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5570 5571 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5572 MI.eraseFromParent(); 5573 return Legalized; 5574 } 5575 5576 LegalizerHelper::LegalizeResult 5577 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5578 const unsigned NumOps = MI.getNumOperands(); 5579 Register DstReg = MI.getOperand(0).getReg(); 5580 Register Src0Reg = MI.getOperand(1).getReg(); 5581 LLT DstTy = MRI.getType(DstReg); 5582 LLT SrcTy = MRI.getType(Src0Reg); 5583 unsigned PartSize = SrcTy.getSizeInBits(); 5584 5585 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5586 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5587 5588 for (unsigned I = 2; I != NumOps; ++I) { 5589 const unsigned Offset = (I - 1) * PartSize; 5590 5591 Register SrcReg = MI.getOperand(I).getReg(); 5592 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5593 5594 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5595 MRI.createGenericVirtualRegister(WideTy); 5596 5597 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5598 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5599 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5600 ResultReg = NextResult; 5601 } 5602 5603 if (DstTy.isPointer()) { 5604 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5605 DstTy.getAddressSpace())) { 5606 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5607 return UnableToLegalize; 5608 } 5609 5610 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5611 } 5612 5613 MI.eraseFromParent(); 5614 return Legalized; 5615 } 5616 5617 LegalizerHelper::LegalizeResult 5618 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5619 const unsigned NumDst = MI.getNumOperands() - 1; 5620 Register SrcReg = MI.getOperand(NumDst).getReg(); 5621 Register Dst0Reg = MI.getOperand(0).getReg(); 5622 LLT DstTy = MRI.getType(Dst0Reg); 5623 if (DstTy.isPointer()) 5624 return UnableToLegalize; // TODO 5625 5626 SrcReg = coerceToScalar(SrcReg); 5627 if (!SrcReg) 5628 return UnableToLegalize; 5629 5630 // Expand scalarizing unmerge as bitcast to integer and shift. 5631 LLT IntTy = MRI.getType(SrcReg); 5632 5633 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5634 5635 const unsigned DstSize = DstTy.getSizeInBits(); 5636 unsigned Offset = DstSize; 5637 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5638 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5639 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5640 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5641 } 5642 5643 MI.eraseFromParent(); 5644 return Legalized; 5645 } 5646 5647 /// Lower a vector extract or insert by writing the vector to a stack temporary 5648 /// and reloading the element or vector. 5649 /// 5650 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5651 /// => 5652 /// %stack_temp = G_FRAME_INDEX 5653 /// G_STORE %vec, %stack_temp 5654 /// %idx = clamp(%idx, %vec.getNumElements()) 5655 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5656 /// %dst = G_LOAD %element_ptr 5657 LegalizerHelper::LegalizeResult 5658 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5659 Register DstReg = MI.getOperand(0).getReg(); 5660 Register SrcVec = MI.getOperand(1).getReg(); 5661 Register InsertVal; 5662 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5663 InsertVal = MI.getOperand(2).getReg(); 5664 5665 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5666 5667 LLT VecTy = MRI.getType(SrcVec); 5668 LLT EltTy = VecTy.getElementType(); 5669 if (!EltTy.isByteSized()) { // Not implemented. 5670 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5671 return UnableToLegalize; 5672 } 5673 5674 unsigned EltBytes = EltTy.getSizeInBytes(); 5675 Align VecAlign = getStackTemporaryAlignment(VecTy); 5676 Align EltAlign; 5677 5678 MachinePointerInfo PtrInfo; 5679 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5680 VecAlign, PtrInfo); 5681 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5682 5683 // Get the pointer to the element, and be sure not to hit undefined behavior 5684 // if the index is out of bounds. 5685 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5686 5687 int64_t IdxVal; 5688 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5689 int64_t Offset = IdxVal * EltBytes; 5690 PtrInfo = PtrInfo.getWithOffset(Offset); 5691 EltAlign = commonAlignment(VecAlign, Offset); 5692 } else { 5693 // We lose information with a variable offset. 5694 EltAlign = getStackTemporaryAlignment(EltTy); 5695 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5696 } 5697 5698 if (InsertVal) { 5699 // Write the inserted element 5700 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5701 5702 // Reload the whole vector. 5703 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5704 } else { 5705 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5706 } 5707 5708 MI.eraseFromParent(); 5709 return Legalized; 5710 } 5711 5712 LegalizerHelper::LegalizeResult 5713 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5714 Register DstReg = MI.getOperand(0).getReg(); 5715 Register Src0Reg = MI.getOperand(1).getReg(); 5716 Register Src1Reg = MI.getOperand(2).getReg(); 5717 LLT Src0Ty = MRI.getType(Src0Reg); 5718 LLT DstTy = MRI.getType(DstReg); 5719 LLT IdxTy = LLT::scalar(32); 5720 5721 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5722 5723 if (DstTy.isScalar()) { 5724 if (Src0Ty.isVector()) 5725 return UnableToLegalize; 5726 5727 // This is just a SELECT. 5728 assert(Mask.size() == 1 && "Expected a single mask element"); 5729 Register Val; 5730 if (Mask[0] < 0 || Mask[0] > 1) 5731 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5732 else 5733 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5734 MIRBuilder.buildCopy(DstReg, Val); 5735 MI.eraseFromParent(); 5736 return Legalized; 5737 } 5738 5739 Register Undef; 5740 SmallVector<Register, 32> BuildVec; 5741 LLT EltTy = DstTy.getElementType(); 5742 5743 for (int Idx : Mask) { 5744 if (Idx < 0) { 5745 if (!Undef.isValid()) 5746 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5747 BuildVec.push_back(Undef); 5748 continue; 5749 } 5750 5751 if (Src0Ty.isScalar()) { 5752 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5753 } else { 5754 int NumElts = Src0Ty.getNumElements(); 5755 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5756 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5757 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5758 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5759 BuildVec.push_back(Extract.getReg(0)); 5760 } 5761 } 5762 5763 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5764 MI.eraseFromParent(); 5765 return Legalized; 5766 } 5767 5768 LegalizerHelper::LegalizeResult 5769 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5770 const auto &MF = *MI.getMF(); 5771 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5772 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5773 return UnableToLegalize; 5774 5775 Register Dst = MI.getOperand(0).getReg(); 5776 Register AllocSize = MI.getOperand(1).getReg(); 5777 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5778 5779 LLT PtrTy = MRI.getType(Dst); 5780 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5781 5782 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5783 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5784 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5785 5786 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5787 // have to generate an extra instruction to negate the alloc and then use 5788 // G_PTR_ADD to add the negative offset. 5789 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5790 if (Alignment > Align(1)) { 5791 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5792 AlignMask.negate(); 5793 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5794 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5795 } 5796 5797 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5798 MIRBuilder.buildCopy(SPReg, SPTmp); 5799 MIRBuilder.buildCopy(Dst, SPTmp); 5800 5801 MI.eraseFromParent(); 5802 return Legalized; 5803 } 5804 5805 LegalizerHelper::LegalizeResult 5806 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5807 Register Dst = MI.getOperand(0).getReg(); 5808 Register Src = MI.getOperand(1).getReg(); 5809 unsigned Offset = MI.getOperand(2).getImm(); 5810 5811 LLT DstTy = MRI.getType(Dst); 5812 LLT SrcTy = MRI.getType(Src); 5813 5814 if (DstTy.isScalar() && 5815 (SrcTy.isScalar() || 5816 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5817 LLT SrcIntTy = SrcTy; 5818 if (!SrcTy.isScalar()) { 5819 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5820 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5821 } 5822 5823 if (Offset == 0) 5824 MIRBuilder.buildTrunc(Dst, Src); 5825 else { 5826 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5827 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5828 MIRBuilder.buildTrunc(Dst, Shr); 5829 } 5830 5831 MI.eraseFromParent(); 5832 return Legalized; 5833 } 5834 5835 return UnableToLegalize; 5836 } 5837 5838 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5839 Register Dst = MI.getOperand(0).getReg(); 5840 Register Src = MI.getOperand(1).getReg(); 5841 Register InsertSrc = MI.getOperand(2).getReg(); 5842 uint64_t Offset = MI.getOperand(3).getImm(); 5843 5844 LLT DstTy = MRI.getType(Src); 5845 LLT InsertTy = MRI.getType(InsertSrc); 5846 5847 if (InsertTy.isVector() || 5848 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5849 return UnableToLegalize; 5850 5851 const DataLayout &DL = MIRBuilder.getDataLayout(); 5852 if ((DstTy.isPointer() && 5853 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5854 (InsertTy.isPointer() && 5855 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5856 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5857 return UnableToLegalize; 5858 } 5859 5860 LLT IntDstTy = DstTy; 5861 5862 if (!DstTy.isScalar()) { 5863 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5864 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5865 } 5866 5867 if (!InsertTy.isScalar()) { 5868 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5869 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5870 } 5871 5872 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5873 if (Offset != 0) { 5874 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5875 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5876 } 5877 5878 APInt MaskVal = APInt::getBitsSetWithWrap( 5879 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5880 5881 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5882 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5883 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5884 5885 MIRBuilder.buildCast(Dst, Or); 5886 MI.eraseFromParent(); 5887 return Legalized; 5888 } 5889 5890 LegalizerHelper::LegalizeResult 5891 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5892 Register Dst0 = MI.getOperand(0).getReg(); 5893 Register Dst1 = MI.getOperand(1).getReg(); 5894 Register LHS = MI.getOperand(2).getReg(); 5895 Register RHS = MI.getOperand(3).getReg(); 5896 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5897 5898 LLT Ty = MRI.getType(Dst0); 5899 LLT BoolTy = MRI.getType(Dst1); 5900 5901 if (IsAdd) 5902 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5903 else 5904 MIRBuilder.buildSub(Dst0, LHS, RHS); 5905 5906 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5907 5908 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5909 5910 // For an addition, the result should be less than one of the operands (LHS) 5911 // if and only if the other operand (RHS) is negative, otherwise there will 5912 // be overflow. 5913 // For a subtraction, the result should be less than one of the operands 5914 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5915 // otherwise there will be overflow. 5916 auto ResultLowerThanLHS = 5917 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5918 auto ConditionRHS = MIRBuilder.buildICmp( 5919 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5920 5921 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5922 MI.eraseFromParent(); 5923 return Legalized; 5924 } 5925 5926 LegalizerHelper::LegalizeResult 5927 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5928 Register Res = MI.getOperand(0).getReg(); 5929 Register LHS = MI.getOperand(1).getReg(); 5930 Register RHS = MI.getOperand(2).getReg(); 5931 LLT Ty = MRI.getType(Res); 5932 bool IsSigned; 5933 bool IsAdd; 5934 unsigned BaseOp; 5935 switch (MI.getOpcode()) { 5936 default: 5937 llvm_unreachable("unexpected addsat/subsat opcode"); 5938 case TargetOpcode::G_UADDSAT: 5939 IsSigned = false; 5940 IsAdd = true; 5941 BaseOp = TargetOpcode::G_ADD; 5942 break; 5943 case TargetOpcode::G_SADDSAT: 5944 IsSigned = true; 5945 IsAdd = true; 5946 BaseOp = TargetOpcode::G_ADD; 5947 break; 5948 case TargetOpcode::G_USUBSAT: 5949 IsSigned = false; 5950 IsAdd = false; 5951 BaseOp = TargetOpcode::G_SUB; 5952 break; 5953 case TargetOpcode::G_SSUBSAT: 5954 IsSigned = true; 5955 IsAdd = false; 5956 BaseOp = TargetOpcode::G_SUB; 5957 break; 5958 } 5959 5960 if (IsSigned) { 5961 // sadd.sat(a, b) -> 5962 // hi = 0x7fffffff - smax(a, 0) 5963 // lo = 0x80000000 - smin(a, 0) 5964 // a + smin(smax(lo, b), hi) 5965 // ssub.sat(a, b) -> 5966 // lo = smax(a, -1) - 0x7fffffff 5967 // hi = smin(a, -1) - 0x80000000 5968 // a - smin(smax(lo, b), hi) 5969 // TODO: AMDGPU can use a "median of 3" instruction here: 5970 // a +/- med3(lo, b, hi) 5971 uint64_t NumBits = Ty.getScalarSizeInBits(); 5972 auto MaxVal = 5973 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5974 auto MinVal = 5975 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5976 MachineInstrBuilder Hi, Lo; 5977 if (IsAdd) { 5978 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5979 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5980 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5981 } else { 5982 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5983 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5984 MaxVal); 5985 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5986 MinVal); 5987 } 5988 auto RHSClamped = 5989 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5990 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5991 } else { 5992 // uadd.sat(a, b) -> a + umin(~a, b) 5993 // usub.sat(a, b) -> a - umin(a, b) 5994 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 5995 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 5996 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 5997 } 5998 5999 MI.eraseFromParent(); 6000 return Legalized; 6001 } 6002 6003 LegalizerHelper::LegalizeResult 6004 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6005 Register Res = MI.getOperand(0).getReg(); 6006 Register LHS = MI.getOperand(1).getReg(); 6007 Register RHS = MI.getOperand(2).getReg(); 6008 LLT Ty = MRI.getType(Res); 6009 LLT BoolTy = Ty.changeElementSize(1); 6010 bool IsSigned; 6011 bool IsAdd; 6012 unsigned OverflowOp; 6013 switch (MI.getOpcode()) { 6014 default: 6015 llvm_unreachable("unexpected addsat/subsat opcode"); 6016 case TargetOpcode::G_UADDSAT: 6017 IsSigned = false; 6018 IsAdd = true; 6019 OverflowOp = TargetOpcode::G_UADDO; 6020 break; 6021 case TargetOpcode::G_SADDSAT: 6022 IsSigned = true; 6023 IsAdd = true; 6024 OverflowOp = TargetOpcode::G_SADDO; 6025 break; 6026 case TargetOpcode::G_USUBSAT: 6027 IsSigned = false; 6028 IsAdd = false; 6029 OverflowOp = TargetOpcode::G_USUBO; 6030 break; 6031 case TargetOpcode::G_SSUBSAT: 6032 IsSigned = true; 6033 IsAdd = false; 6034 OverflowOp = TargetOpcode::G_SSUBO; 6035 break; 6036 } 6037 6038 auto OverflowRes = 6039 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6040 Register Tmp = OverflowRes.getReg(0); 6041 Register Ov = OverflowRes.getReg(1); 6042 MachineInstrBuilder Clamp; 6043 if (IsSigned) { 6044 // sadd.sat(a, b) -> 6045 // {tmp, ov} = saddo(a, b) 6046 // ov ? (tmp >>s 31) + 0x80000000 : r 6047 // ssub.sat(a, b) -> 6048 // {tmp, ov} = ssubo(a, b) 6049 // ov ? (tmp >>s 31) + 0x80000000 : r 6050 uint64_t NumBits = Ty.getScalarSizeInBits(); 6051 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6052 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6053 auto MinVal = 6054 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6055 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6056 } else { 6057 // uadd.sat(a, b) -> 6058 // {tmp, ov} = uaddo(a, b) 6059 // ov ? 0xffffffff : tmp 6060 // usub.sat(a, b) -> 6061 // {tmp, ov} = usubo(a, b) 6062 // ov ? 0 : tmp 6063 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6064 } 6065 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6066 6067 MI.eraseFromParent(); 6068 return Legalized; 6069 } 6070 6071 LegalizerHelper::LegalizeResult 6072 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6073 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6074 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6075 "Expected shlsat opcode!"); 6076 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6077 Register Res = MI.getOperand(0).getReg(); 6078 Register LHS = MI.getOperand(1).getReg(); 6079 Register RHS = MI.getOperand(2).getReg(); 6080 LLT Ty = MRI.getType(Res); 6081 LLT BoolTy = Ty.changeElementSize(1); 6082 6083 unsigned BW = Ty.getScalarSizeInBits(); 6084 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6085 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6086 : MIRBuilder.buildLShr(Ty, Result, RHS); 6087 6088 MachineInstrBuilder SatVal; 6089 if (IsSigned) { 6090 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6091 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6092 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6093 MIRBuilder.buildConstant(Ty, 0)); 6094 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6095 } else { 6096 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6097 } 6098 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6099 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6100 6101 MI.eraseFromParent(); 6102 return Legalized; 6103 } 6104 6105 LegalizerHelper::LegalizeResult 6106 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6107 Register Dst = MI.getOperand(0).getReg(); 6108 Register Src = MI.getOperand(1).getReg(); 6109 const LLT Ty = MRI.getType(Src); 6110 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6111 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6112 6113 // Swap most and least significant byte, set remaining bytes in Res to zero. 6114 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6115 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6116 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6117 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6118 6119 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6120 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6121 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6122 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6123 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6124 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6125 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6126 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6127 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6128 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6129 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6130 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6131 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6132 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6133 } 6134 Res.getInstr()->getOperand(0).setReg(Dst); 6135 6136 MI.eraseFromParent(); 6137 return Legalized; 6138 } 6139 6140 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6141 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6142 MachineInstrBuilder Src, APInt Mask) { 6143 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6144 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6145 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6146 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6147 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6148 return B.buildOr(Dst, LHS, RHS); 6149 } 6150 6151 LegalizerHelper::LegalizeResult 6152 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6153 Register Dst = MI.getOperand(0).getReg(); 6154 Register Src = MI.getOperand(1).getReg(); 6155 const LLT Ty = MRI.getType(Src); 6156 unsigned Size = Ty.getSizeInBits(); 6157 6158 MachineInstrBuilder BSWAP = 6159 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6160 6161 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6162 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6163 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6164 MachineInstrBuilder Swap4 = 6165 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6166 6167 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6168 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6169 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6170 MachineInstrBuilder Swap2 = 6171 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6172 6173 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6174 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6175 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6176 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6177 6178 MI.eraseFromParent(); 6179 return Legalized; 6180 } 6181 6182 LegalizerHelper::LegalizeResult 6183 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6184 MachineFunction &MF = MIRBuilder.getMF(); 6185 6186 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6187 int NameOpIdx = IsRead ? 1 : 0; 6188 int ValRegIndex = IsRead ? 0 : 1; 6189 6190 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6191 const LLT Ty = MRI.getType(ValReg); 6192 const MDString *RegStr = cast<MDString>( 6193 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6194 6195 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6196 if (!PhysReg.isValid()) 6197 return UnableToLegalize; 6198 6199 if (IsRead) 6200 MIRBuilder.buildCopy(ValReg, PhysReg); 6201 else 6202 MIRBuilder.buildCopy(PhysReg, ValReg); 6203 6204 MI.eraseFromParent(); 6205 return Legalized; 6206 } 6207 6208 LegalizerHelper::LegalizeResult 6209 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6210 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6211 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6212 Register Result = MI.getOperand(0).getReg(); 6213 LLT OrigTy = MRI.getType(Result); 6214 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6215 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6216 6217 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6218 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6219 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6220 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6221 6222 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6223 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6224 MIRBuilder.buildTrunc(Result, Shifted); 6225 6226 MI.eraseFromParent(); 6227 return Legalized; 6228 } 6229 6230 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6231 // Implement vector G_SELECT in terms of XOR, AND, OR. 6232 Register DstReg = MI.getOperand(0).getReg(); 6233 Register MaskReg = MI.getOperand(1).getReg(); 6234 Register Op1Reg = MI.getOperand(2).getReg(); 6235 Register Op2Reg = MI.getOperand(3).getReg(); 6236 LLT DstTy = MRI.getType(DstReg); 6237 LLT MaskTy = MRI.getType(MaskReg); 6238 LLT Op1Ty = MRI.getType(Op1Reg); 6239 if (!DstTy.isVector()) 6240 return UnableToLegalize; 6241 6242 // Vector selects can have a scalar predicate. If so, splat into a vector and 6243 // finish for later legalization attempts to try again. 6244 if (MaskTy.isScalar()) { 6245 Register MaskElt = MaskReg; 6246 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6247 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6248 // Generate a vector splat idiom to be pattern matched later. 6249 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6250 Observer.changingInstr(MI); 6251 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6252 Observer.changedInstr(MI); 6253 return Legalized; 6254 } 6255 6256 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6257 return UnableToLegalize; 6258 } 6259 6260 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6261 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6262 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6263 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6264 MI.eraseFromParent(); 6265 return Legalized; 6266 } 6267