1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) { }
95 
96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
97                                  GISelChangeObserver &Observer,
98                                  MachineIRBuilder &B)
99   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
100     TLI(*MF.getSubtarget().getTargetLowering()) { }
101 
102 LegalizerHelper::LegalizeResult
103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
104   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
105 
106   MIRBuilder.setInstrAndDebugLoc(MI);
107 
108   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
109       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
110     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
111   auto Step = LI.getAction(MI, MRI);
112   switch (Step.Action) {
113   case Legal:
114     LLVM_DEBUG(dbgs() << ".. Already legal\n");
115     return AlreadyLegal;
116   case Libcall:
117     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
118     return libcall(MI);
119   case NarrowScalar:
120     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
121     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
122   case WidenScalar:
123     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
124     return widenScalar(MI, Step.TypeIdx, Step.NewType);
125   case Bitcast:
126     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
127     return bitcast(MI, Step.TypeIdx, Step.NewType);
128   case Lower:
129     LLVM_DEBUG(dbgs() << ".. Lower\n");
130     return lower(MI, Step.TypeIdx, Step.NewType);
131   case FewerElements:
132     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
133     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case MoreElements:
135     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
136     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case Custom:
138     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
139     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
140   default:
141     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
142     return UnableToLegalize;
143   }
144 }
145 
146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
147                                    SmallVectorImpl<Register> &VRegs) {
148   for (int i = 0; i < NumParts; ++i)
149     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
150   MIRBuilder.buildUnmerge(VRegs, Reg);
151 }
152 
153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
154                                    LLT MainTy, LLT &LeftoverTy,
155                                    SmallVectorImpl<Register> &VRegs,
156                                    SmallVectorImpl<Register> &LeftoverRegs) {
157   assert(!LeftoverTy.isValid() && "this is an out argument");
158 
159   unsigned RegSize = RegTy.getSizeInBits();
160   unsigned MainSize = MainTy.getSizeInBits();
161   unsigned NumParts = RegSize / MainSize;
162   unsigned LeftoverSize = RegSize - NumParts * MainSize;
163 
164   // Use an unmerge when possible.
165   if (LeftoverSize == 0) {
166     for (unsigned I = 0; I < NumParts; ++I)
167       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
168     MIRBuilder.buildUnmerge(VRegs, Reg);
169     return true;
170   }
171 
172   if (MainTy.isVector()) {
173     unsigned EltSize = MainTy.getScalarSizeInBits();
174     if (LeftoverSize % EltSize != 0)
175       return false;
176     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
177   } else {
178     LeftoverTy = LLT::scalar(LeftoverSize);
179   }
180 
181   // For irregular sizes, extract the individual parts.
182   for (unsigned I = 0; I != NumParts; ++I) {
183     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
184     VRegs.push_back(NewReg);
185     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
186   }
187 
188   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
189        Offset += LeftoverSize) {
190     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
191     LeftoverRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, Offset);
193   }
194 
195   return true;
196 }
197 
198 void LegalizerHelper::insertParts(Register DstReg,
199                                   LLT ResultTy, LLT PartTy,
200                                   ArrayRef<Register> PartRegs,
201                                   LLT LeftoverTy,
202                                   ArrayRef<Register> LeftoverRegs) {
203   if (!LeftoverTy.isValid()) {
204     assert(LeftoverRegs.empty());
205 
206     if (!ResultTy.isVector()) {
207       MIRBuilder.buildMerge(DstReg, PartRegs);
208       return;
209     }
210 
211     if (PartTy.isVector())
212       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
213     else
214       MIRBuilder.buildBuildVector(DstReg, PartRegs);
215     return;
216   }
217 
218   unsigned PartSize = PartTy.getSizeInBits();
219   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
220 
221   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
222   MIRBuilder.buildUndef(CurResultReg);
223 
224   unsigned Offset = 0;
225   for (Register PartReg : PartRegs) {
226     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
227     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
228     CurResultReg = NewResultReg;
229     Offset += PartSize;
230   }
231 
232   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
233     // Use the original output register for the final insert to avoid a copy.
234     Register NewResultReg = (I + 1 == E) ?
235       DstReg : MRI.createGenericVirtualRegister(ResultTy);
236 
237     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
238     CurResultReg = NewResultReg;
239     Offset += LeftoverPartSize;
240   }
241 }
242 
243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
245                               const MachineInstr &MI) {
246   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
247 
248   const int StartIdx = Regs.size();
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(Regs.size() + NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[StartIdx + I] = MI.getOperand(I).getReg();
253 }
254 
255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
256                                      LLT GCDTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 }
268 
269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
270                                     LLT NarrowTy, Register SrcReg) {
271   LLT SrcTy = MRI.getType(SrcReg);
272   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
273   extractGCDType(Parts, GCDTy, SrcReg);
274   return GCDTy;
275 }
276 
277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
278                                          SmallVectorImpl<Register> &VRegs,
279                                          unsigned PadStrategy) {
280   LLT LCMTy = getLCMType(DstTy, NarrowTy);
281 
282   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
283   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
284   int NumOrigSrc = VRegs.size();
285 
286   Register PadReg;
287 
288   // Get a value we can use to pad the source value if the sources won't evenly
289   // cover the result type.
290   if (NumOrigSrc < NumParts * NumSubParts) {
291     if (PadStrategy == TargetOpcode::G_ZEXT)
292       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
293     else if (PadStrategy == TargetOpcode::G_ANYEXT)
294       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
295     else {
296       assert(PadStrategy == TargetOpcode::G_SEXT);
297 
298       // Shift the sign bit of the low register through the high register.
299       auto ShiftAmt =
300         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
301       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
302     }
303   }
304 
305   // Registers for the final merge to be produced.
306   SmallVector<Register, 4> Remerge(NumParts);
307 
308   // Registers needed for intermediate merges, which will be merged into a
309   // source for Remerge.
310   SmallVector<Register, 4> SubMerge(NumSubParts);
311 
312   // Once we've fully read off the end of the original source bits, we can reuse
313   // the same high bits for remaining padding elements.
314   Register AllPadReg;
315 
316   // Build merges to the LCM type to cover the original result type.
317   for (int I = 0; I != NumParts; ++I) {
318     bool AllMergePartsArePadding = true;
319 
320     // Build the requested merges to the requested type.
321     for (int J = 0; J != NumSubParts; ++J) {
322       int Idx = I * NumSubParts + J;
323       if (Idx >= NumOrigSrc) {
324         SubMerge[J] = PadReg;
325         continue;
326       }
327 
328       SubMerge[J] = VRegs[Idx];
329 
330       // There are meaningful bits here we can't reuse later.
331       AllMergePartsArePadding = false;
332     }
333 
334     // If we've filled up a complete piece with padding bits, we can directly
335     // emit the natural sized constant if applicable, rather than a merge of
336     // smaller constants.
337     if (AllMergePartsArePadding && !AllPadReg) {
338       if (PadStrategy == TargetOpcode::G_ANYEXT)
339         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
340       else if (PadStrategy == TargetOpcode::G_ZEXT)
341         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
342 
343       // If this is a sign extension, we can't materialize a trivial constant
344       // with the right type and have to produce a merge.
345     }
346 
347     if (AllPadReg) {
348       // Avoid creating additional instructions if we're just adding additional
349       // copies of padding bits.
350       Remerge[I] = AllPadReg;
351       continue;
352     }
353 
354     if (NumSubParts == 1)
355       Remerge[I] = SubMerge[0];
356     else
357       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
358 
359     // In the sign extend padding case, re-use the first all-signbit merge.
360     if (AllMergePartsArePadding && !AllPadReg)
361       AllPadReg = Remerge[I];
362   }
363 
364   VRegs = std::move(Remerge);
365   return LCMTy;
366 }
367 
368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
369                                                ArrayRef<Register> RemergeRegs) {
370   LLT DstTy = MRI.getType(DstReg);
371 
372   // Create the merge to the widened source, and extract the relevant bits into
373   // the result.
374 
375   if (DstTy == LCMTy) {
376     MIRBuilder.buildMerge(DstReg, RemergeRegs);
377     return;
378   }
379 
380   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
381   if (DstTy.isScalar() && LCMTy.isScalar()) {
382     MIRBuilder.buildTrunc(DstReg, Remerge);
383     return;
384   }
385 
386   if (LCMTy.isVector()) {
387     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
388     SmallVector<Register, 8> UnmergeDefs(NumDefs);
389     UnmergeDefs[0] = DstReg;
390     for (unsigned I = 1; I != NumDefs; ++I)
391       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
392 
393     MIRBuilder.buildUnmerge(UnmergeDefs,
394                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
395     return;
396   }
397 
398   llvm_unreachable("unhandled case");
399 }
400 
401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
402 #define RTLIBCASE_INT(LibcallPrefix)                                           \
403   do {                                                                         \
404     switch (Size) {                                                            \
405     case 32:                                                                   \
406       return RTLIB::LibcallPrefix##32;                                         \
407     case 64:                                                                   \
408       return RTLIB::LibcallPrefix##64;                                         \
409     case 128:                                                                  \
410       return RTLIB::LibcallPrefix##128;                                        \
411     default:                                                                   \
412       llvm_unreachable("unexpected size");                                     \
413     }                                                                          \
414   } while (0)
415 
416 #define RTLIBCASE(LibcallPrefix)                                               \
417   do {                                                                         \
418     switch (Size) {                                                            \
419     case 32:                                                                   \
420       return RTLIB::LibcallPrefix##32;                                         \
421     case 64:                                                                   \
422       return RTLIB::LibcallPrefix##64;                                         \
423     case 80:                                                                   \
424       return RTLIB::LibcallPrefix##80;                                         \
425     case 128:                                                                  \
426       return RTLIB::LibcallPrefix##128;                                        \
427     default:                                                                   \
428       llvm_unreachable("unexpected size");                                     \
429     }                                                                          \
430   } while (0)
431 
432   switch (Opcode) {
433   case TargetOpcode::G_SDIV:
434     RTLIBCASE_INT(SDIV_I);
435   case TargetOpcode::G_UDIV:
436     RTLIBCASE_INT(UDIV_I);
437   case TargetOpcode::G_SREM:
438     RTLIBCASE_INT(SREM_I);
439   case TargetOpcode::G_UREM:
440     RTLIBCASE_INT(UREM_I);
441   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
442     RTLIBCASE_INT(CTLZ_I);
443   case TargetOpcode::G_FADD:
444     RTLIBCASE(ADD_F);
445   case TargetOpcode::G_FSUB:
446     RTLIBCASE(SUB_F);
447   case TargetOpcode::G_FMUL:
448     RTLIBCASE(MUL_F);
449   case TargetOpcode::G_FDIV:
450     RTLIBCASE(DIV_F);
451   case TargetOpcode::G_FEXP:
452     RTLIBCASE(EXP_F);
453   case TargetOpcode::G_FEXP2:
454     RTLIBCASE(EXP2_F);
455   case TargetOpcode::G_FREM:
456     RTLIBCASE(REM_F);
457   case TargetOpcode::G_FPOW:
458     RTLIBCASE(POW_F);
459   case TargetOpcode::G_FMA:
460     RTLIBCASE(FMA_F);
461   case TargetOpcode::G_FSIN:
462     RTLIBCASE(SIN_F);
463   case TargetOpcode::G_FCOS:
464     RTLIBCASE(COS_F);
465   case TargetOpcode::G_FLOG10:
466     RTLIBCASE(LOG10_F);
467   case TargetOpcode::G_FLOG:
468     RTLIBCASE(LOG_F);
469   case TargetOpcode::G_FLOG2:
470     RTLIBCASE(LOG2_F);
471   case TargetOpcode::G_FCEIL:
472     RTLIBCASE(CEIL_F);
473   case TargetOpcode::G_FFLOOR:
474     RTLIBCASE(FLOOR_F);
475   case TargetOpcode::G_FMINNUM:
476     RTLIBCASE(FMIN_F);
477   case TargetOpcode::G_FMAXNUM:
478     RTLIBCASE(FMAX_F);
479   case TargetOpcode::G_FSQRT:
480     RTLIBCASE(SQRT_F);
481   case TargetOpcode::G_FRINT:
482     RTLIBCASE(RINT_F);
483   case TargetOpcode::G_FNEARBYINT:
484     RTLIBCASE(NEARBYINT_F);
485   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
486     RTLIBCASE(ROUNDEVEN_F);
487   }
488   llvm_unreachable("Unknown libcall function");
489 }
490 
491 /// True if an instruction is in tail position in its caller. Intended for
492 /// legalizing libcalls as tail calls when possible.
493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
494                                     MachineInstr &MI) {
495   MachineBasicBlock &MBB = *MI.getParent();
496   const Function &F = MBB.getParent()->getFunction();
497 
498   // Conservatively require the attributes of the call to match those of
499   // the return. Ignore NoAlias and NonNull because they don't affect the
500   // call sequence.
501   AttributeList CallerAttrs = F.getAttributes();
502   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
503           .removeAttribute(Attribute::NoAlias)
504           .removeAttribute(Attribute::NonNull)
505           .hasAttributes())
506     return false;
507 
508   // It's not safe to eliminate the sign / zero extension of the return value.
509   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
510       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
511     return false;
512 
513   // Only tail call if the following instruction is a standard return.
514   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
515   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
516     return false;
517 
518   return true;
519 }
520 
521 LegalizerHelper::LegalizeResult
522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
523                     const CallLowering::ArgInfo &Result,
524                     ArrayRef<CallLowering::ArgInfo> Args,
525                     const CallingConv::ID CC) {
526   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
527 
528   CallLowering::CallLoweringInfo Info;
529   Info.CallConv = CC;
530   Info.Callee = MachineOperand::CreateES(Name);
531   Info.OrigRet = Result;
532   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
533   if (!CLI.lowerCall(MIRBuilder, Info))
534     return LegalizerHelper::UnableToLegalize;
535 
536   return LegalizerHelper::Legalized;
537 }
538 
539 LegalizerHelper::LegalizeResult
540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
541                     const CallLowering::ArgInfo &Result,
542                     ArrayRef<CallLowering::ArgInfo> Args) {
543   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
544   const char *Name = TLI.getLibcallName(Libcall);
545   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
546   return createLibcall(MIRBuilder, Name, Result, Args, CC);
547 }
548 
549 // Useful for libcalls where all operands have the same type.
550 static LegalizerHelper::LegalizeResult
551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
552               Type *OpType) {
553   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
554 
555   SmallVector<CallLowering::ArgInfo, 3> Args;
556   for (unsigned i = 1; i < MI.getNumOperands(); i++)
557     Args.push_back({MI.getOperand(i).getReg(), OpType});
558   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
559                        Args);
560 }
561 
562 LegalizerHelper::LegalizeResult
563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
564                        MachineInstr &MI) {
565   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
566 
567   SmallVector<CallLowering::ArgInfo, 3> Args;
568   // Add all the args, except for the last which is an imm denoting 'tail'.
569   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
570     Register Reg = MI.getOperand(i).getReg();
571 
572     // Need derive an IR type for call lowering.
573     LLT OpLLT = MRI.getType(Reg);
574     Type *OpTy = nullptr;
575     if (OpLLT.isPointer())
576       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
577     else
578       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
579     Args.push_back({Reg, OpTy});
580   }
581 
582   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
583   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
584   RTLIB::Libcall RTLibcall;
585   switch (MI.getOpcode()) {
586   case TargetOpcode::G_MEMCPY:
587     RTLibcall = RTLIB::MEMCPY;
588     break;
589   case TargetOpcode::G_MEMMOVE:
590     RTLibcall = RTLIB::MEMMOVE;
591     break;
592   case TargetOpcode::G_MEMSET:
593     RTLibcall = RTLIB::MEMSET;
594     break;
595   default:
596     return LegalizerHelper::UnableToLegalize;
597   }
598   const char *Name = TLI.getLibcallName(RTLibcall);
599 
600   CallLowering::CallLoweringInfo Info;
601   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
602   Info.Callee = MachineOperand::CreateES(Name);
603   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
604   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
605                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
606 
607   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
608   if (!CLI.lowerCall(MIRBuilder, Info))
609     return LegalizerHelper::UnableToLegalize;
610 
611   if (Info.LoweredTailCall) {
612     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
613     // We must have a return following the call (or debug insts) to get past
614     // isLibCallInTailPosition.
615     do {
616       MachineInstr *Next = MI.getNextNode();
617       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
618              "Expected instr following MI to be return or debug inst?");
619       // We lowered a tail call, so the call is now the return from the block.
620       // Delete the old return.
621       Next->eraseFromParent();
622     } while (MI.getNextNode());
623   }
624 
625   return LegalizerHelper::Legalized;
626 }
627 
628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
629                                        Type *FromType) {
630   auto ToMVT = MVT::getVT(ToType);
631   auto FromMVT = MVT::getVT(FromType);
632 
633   switch (Opcode) {
634   case TargetOpcode::G_FPEXT:
635     return RTLIB::getFPEXT(FromMVT, ToMVT);
636   case TargetOpcode::G_FPTRUNC:
637     return RTLIB::getFPROUND(FromMVT, ToMVT);
638   case TargetOpcode::G_FPTOSI:
639     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
640   case TargetOpcode::G_FPTOUI:
641     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
642   case TargetOpcode::G_SITOFP:
643     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
644   case TargetOpcode::G_UITOFP:
645     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
646   }
647   llvm_unreachable("Unsupported libcall function");
648 }
649 
650 static LegalizerHelper::LegalizeResult
651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
652                   Type *FromType) {
653   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
654   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
655                        {{MI.getOperand(1).getReg(), FromType}});
656 }
657 
658 LegalizerHelper::LegalizeResult
659 LegalizerHelper::libcall(MachineInstr &MI) {
660   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
661   unsigned Size = LLTy.getSizeInBits();
662   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
663 
664   switch (MI.getOpcode()) {
665   default:
666     return UnableToLegalize;
667   case TargetOpcode::G_SDIV:
668   case TargetOpcode::G_UDIV:
669   case TargetOpcode::G_SREM:
670   case TargetOpcode::G_UREM:
671   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
672     Type *HLTy = IntegerType::get(Ctx, Size);
673     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
674     if (Status != Legalized)
675       return Status;
676     break;
677   }
678   case TargetOpcode::G_FADD:
679   case TargetOpcode::G_FSUB:
680   case TargetOpcode::G_FMUL:
681   case TargetOpcode::G_FDIV:
682   case TargetOpcode::G_FMA:
683   case TargetOpcode::G_FPOW:
684   case TargetOpcode::G_FREM:
685   case TargetOpcode::G_FCOS:
686   case TargetOpcode::G_FSIN:
687   case TargetOpcode::G_FLOG10:
688   case TargetOpcode::G_FLOG:
689   case TargetOpcode::G_FLOG2:
690   case TargetOpcode::G_FEXP:
691   case TargetOpcode::G_FEXP2:
692   case TargetOpcode::G_FCEIL:
693   case TargetOpcode::G_FFLOOR:
694   case TargetOpcode::G_FMINNUM:
695   case TargetOpcode::G_FMAXNUM:
696   case TargetOpcode::G_FSQRT:
697   case TargetOpcode::G_FRINT:
698   case TargetOpcode::G_FNEARBYINT:
699   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
700     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
701     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
702       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
703       return UnableToLegalize;
704     }
705     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_FPEXT:
711   case TargetOpcode::G_FPTRUNC: {
712     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
713     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
714     if (!FromTy || !ToTy)
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPTOSI:
722   case TargetOpcode::G_FPTOUI: {
723     // FIXME: Support other types
724     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
725     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
726     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(
729         MI, MIRBuilder,
730         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
731         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
732     if (Status != Legalized)
733       return Status;
734     break;
735   }
736   case TargetOpcode::G_SITOFP:
737   case TargetOpcode::G_UITOFP: {
738     // FIXME: Support other types
739     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
740     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
741     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
742       return UnableToLegalize;
743     LegalizeResult Status = conversionLibcall(
744         MI, MIRBuilder,
745         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
746         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
747     if (Status != Legalized)
748       return Status;
749     break;
750   }
751   case TargetOpcode::G_MEMCPY:
752   case TargetOpcode::G_MEMMOVE:
753   case TargetOpcode::G_MEMSET: {
754     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
755     MI.eraseFromParent();
756     return Result;
757   }
758   }
759 
760   MI.eraseFromParent();
761   return Legalized;
762 }
763 
764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
765                                                               unsigned TypeIdx,
766                                                               LLT NarrowTy) {
767   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
768   uint64_t NarrowSize = NarrowTy.getSizeInBits();
769 
770   switch (MI.getOpcode()) {
771   default:
772     return UnableToLegalize;
773   case TargetOpcode::G_IMPLICIT_DEF: {
774     Register DstReg = MI.getOperand(0).getReg();
775     LLT DstTy = MRI.getType(DstReg);
776 
777     // If SizeOp0 is not an exact multiple of NarrowSize, emit
778     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
779     // FIXME: Although this would also be legal for the general case, it causes
780     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
781     //  combines not being hit). This seems to be a problem related to the
782     //  artifact combiner.
783     if (SizeOp0 % NarrowSize != 0) {
784       LLT ImplicitTy = NarrowTy;
785       if (DstTy.isVector())
786         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
787 
788       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
789       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
790 
791       MI.eraseFromParent();
792       return Legalized;
793     }
794 
795     int NumParts = SizeOp0 / NarrowSize;
796 
797     SmallVector<Register, 2> DstRegs;
798     for (int i = 0; i < NumParts; ++i)
799       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
800 
801     if (DstTy.isVector())
802       MIRBuilder.buildBuildVector(DstReg, DstRegs);
803     else
804       MIRBuilder.buildMerge(DstReg, DstRegs);
805     MI.eraseFromParent();
806     return Legalized;
807   }
808   case TargetOpcode::G_CONSTANT: {
809     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
810     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
811     unsigned TotalSize = Ty.getSizeInBits();
812     unsigned NarrowSize = NarrowTy.getSizeInBits();
813     int NumParts = TotalSize / NarrowSize;
814 
815     SmallVector<Register, 4> PartRegs;
816     for (int I = 0; I != NumParts; ++I) {
817       unsigned Offset = I * NarrowSize;
818       auto K = MIRBuilder.buildConstant(NarrowTy,
819                                         Val.lshr(Offset).trunc(NarrowSize));
820       PartRegs.push_back(K.getReg(0));
821     }
822 
823     LLT LeftoverTy;
824     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
825     SmallVector<Register, 1> LeftoverRegs;
826     if (LeftoverBits != 0) {
827       LeftoverTy = LLT::scalar(LeftoverBits);
828       auto K = MIRBuilder.buildConstant(
829         LeftoverTy,
830         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
831       LeftoverRegs.push_back(K.getReg(0));
832     }
833 
834     insertParts(MI.getOperand(0).getReg(),
835                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
836 
837     MI.eraseFromParent();
838     return Legalized;
839   }
840   case TargetOpcode::G_SEXT:
841   case TargetOpcode::G_ZEXT:
842   case TargetOpcode::G_ANYEXT:
843     return narrowScalarExt(MI, TypeIdx, NarrowTy);
844   case TargetOpcode::G_TRUNC: {
845     if (TypeIdx != 1)
846       return UnableToLegalize;
847 
848     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
849     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
850       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
851       return UnableToLegalize;
852     }
853 
854     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
855     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
856     MI.eraseFromParent();
857     return Legalized;
858   }
859 
860   case TargetOpcode::G_FREEZE:
861     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
862 
863   case TargetOpcode::G_ADD: {
864     // FIXME: add support for when SizeOp0 isn't an exact multiple of
865     // NarrowSize.
866     if (SizeOp0 % NarrowSize != 0)
867       return UnableToLegalize;
868     // Expand in terms of carry-setting/consuming G_ADDE instructions.
869     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
870 
871     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
872     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
873     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
874 
875     Register CarryIn;
876     for (int i = 0; i < NumParts; ++i) {
877       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
878       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
879 
880       if (i == 0)
881         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
882       else {
883         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
884                               Src2Regs[i], CarryIn);
885       }
886 
887       DstRegs.push_back(DstReg);
888       CarryIn = CarryOut;
889     }
890     Register DstReg = MI.getOperand(0).getReg();
891     if(MRI.getType(DstReg).isVector())
892       MIRBuilder.buildBuildVector(DstReg, DstRegs);
893     else
894       MIRBuilder.buildMerge(DstReg, DstRegs);
895     MI.eraseFromParent();
896     return Legalized;
897   }
898   case TargetOpcode::G_SUB: {
899     // FIXME: add support for when SizeOp0 isn't an exact multiple of
900     // NarrowSize.
901     if (SizeOp0 % NarrowSize != 0)
902       return UnableToLegalize;
903 
904     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
905 
906     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
907     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
908     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
909 
910     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
911     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
912     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
913                           {Src1Regs[0], Src2Regs[0]});
914     DstRegs.push_back(DstReg);
915     Register BorrowIn = BorrowOut;
916     for (int i = 1; i < NumParts; ++i) {
917       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
918       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
919 
920       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
921                             {Src1Regs[i], Src2Regs[i], BorrowIn});
922 
923       DstRegs.push_back(DstReg);
924       BorrowIn = BorrowOut;
925     }
926     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
927     MI.eraseFromParent();
928     return Legalized;
929   }
930   case TargetOpcode::G_MUL:
931   case TargetOpcode::G_UMULH:
932     return narrowScalarMul(MI, NarrowTy);
933   case TargetOpcode::G_EXTRACT:
934     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
935   case TargetOpcode::G_INSERT:
936     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
937   case TargetOpcode::G_LOAD: {
938     auto &MMO = **MI.memoperands_begin();
939     Register DstReg = MI.getOperand(0).getReg();
940     LLT DstTy = MRI.getType(DstReg);
941     if (DstTy.isVector())
942       return UnableToLegalize;
943 
944     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
945       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
946       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
947       MIRBuilder.buildAnyExt(DstReg, TmpReg);
948       MI.eraseFromParent();
949       return Legalized;
950     }
951 
952     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
953   }
954   case TargetOpcode::G_ZEXTLOAD:
955   case TargetOpcode::G_SEXTLOAD: {
956     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
957     Register DstReg = MI.getOperand(0).getReg();
958     Register PtrReg = MI.getOperand(1).getReg();
959 
960     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
961     auto &MMO = **MI.memoperands_begin();
962     unsigned MemSize = MMO.getSizeInBits();
963 
964     if (MemSize == NarrowSize) {
965       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
966     } else if (MemSize < NarrowSize) {
967       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
968     } else if (MemSize > NarrowSize) {
969       // FIXME: Need to split the load.
970       return UnableToLegalize;
971     }
972 
973     if (ZExt)
974       MIRBuilder.buildZExt(DstReg, TmpReg);
975     else
976       MIRBuilder.buildSExt(DstReg, TmpReg);
977 
978     MI.eraseFromParent();
979     return Legalized;
980   }
981   case TargetOpcode::G_STORE: {
982     const auto &MMO = **MI.memoperands_begin();
983 
984     Register SrcReg = MI.getOperand(0).getReg();
985     LLT SrcTy = MRI.getType(SrcReg);
986     if (SrcTy.isVector())
987       return UnableToLegalize;
988 
989     int NumParts = SizeOp0 / NarrowSize;
990     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
991     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
992     if (SrcTy.isVector() && LeftoverBits != 0)
993       return UnableToLegalize;
994 
995     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
996       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
997       auto &MMO = **MI.memoperands_begin();
998       MIRBuilder.buildTrunc(TmpReg, SrcReg);
999       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
1000       MI.eraseFromParent();
1001       return Legalized;
1002     }
1003 
1004     return reduceLoadStoreWidth(MI, 0, NarrowTy);
1005   }
1006   case TargetOpcode::G_SELECT:
1007     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1008   case TargetOpcode::G_AND:
1009   case TargetOpcode::G_OR:
1010   case TargetOpcode::G_XOR: {
1011     // Legalize bitwise operation:
1012     // A = BinOp<Ty> B, C
1013     // into:
1014     // B1, ..., BN = G_UNMERGE_VALUES B
1015     // C1, ..., CN = G_UNMERGE_VALUES C
1016     // A1 = BinOp<Ty/N> B1, C2
1017     // ...
1018     // AN = BinOp<Ty/N> BN, CN
1019     // A = G_MERGE_VALUES A1, ..., AN
1020     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1021   }
1022   case TargetOpcode::G_SHL:
1023   case TargetOpcode::G_LSHR:
1024   case TargetOpcode::G_ASHR:
1025     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_CTLZ:
1027   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1028   case TargetOpcode::G_CTTZ:
1029   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1030   case TargetOpcode::G_CTPOP:
1031     if (TypeIdx == 1)
1032       switch (MI.getOpcode()) {
1033       case TargetOpcode::G_CTLZ:
1034       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1035         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1036       case TargetOpcode::G_CTTZ:
1037       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1038         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1039       case TargetOpcode::G_CTPOP:
1040         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1041       default:
1042         return UnableToLegalize;
1043       }
1044 
1045     Observer.changingInstr(MI);
1046     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   case TargetOpcode::G_INTTOPTR:
1050     if (TypeIdx != 1)
1051       return UnableToLegalize;
1052 
1053     Observer.changingInstr(MI);
1054     narrowScalarSrc(MI, NarrowTy, 1);
1055     Observer.changedInstr(MI);
1056     return Legalized;
1057   case TargetOpcode::G_PTRTOINT:
1058     if (TypeIdx != 0)
1059       return UnableToLegalize;
1060 
1061     Observer.changingInstr(MI);
1062     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   case TargetOpcode::G_PHI: {
1066     unsigned NumParts = SizeOp0 / NarrowSize;
1067     SmallVector<Register, 2> DstRegs(NumParts);
1068     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1069     Observer.changingInstr(MI);
1070     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1071       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1072       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1073       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1074                    SrcRegs[i / 2]);
1075     }
1076     MachineBasicBlock &MBB = *MI.getParent();
1077     MIRBuilder.setInsertPt(MBB, MI);
1078     for (unsigned i = 0; i < NumParts; ++i) {
1079       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1080       MachineInstrBuilder MIB =
1081           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1082       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1083         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1084     }
1085     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1086     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1087     Observer.changedInstr(MI);
1088     MI.eraseFromParent();
1089     return Legalized;
1090   }
1091   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1092   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1093     if (TypeIdx != 2)
1094       return UnableToLegalize;
1095 
1096     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1097     Observer.changingInstr(MI);
1098     narrowScalarSrc(MI, NarrowTy, OpIdx);
1099     Observer.changedInstr(MI);
1100     return Legalized;
1101   }
1102   case TargetOpcode::G_ICMP: {
1103     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1104     if (NarrowSize * 2 != SrcSize)
1105       return UnableToLegalize;
1106 
1107     Observer.changingInstr(MI);
1108     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1109     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1110     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1111 
1112     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1113     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1114     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1115 
1116     CmpInst::Predicate Pred =
1117         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1118     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1119 
1120     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1121       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1122       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1123       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1124       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1125       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1126     } else {
1127       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1128       MachineInstrBuilder CmpHEQ =
1129           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1130       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1131           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1132       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1133     }
1134     Observer.changedInstr(MI);
1135     MI.eraseFromParent();
1136     return Legalized;
1137   }
1138   case TargetOpcode::G_SEXT_INREG: {
1139     if (TypeIdx != 0)
1140       return UnableToLegalize;
1141 
1142     int64_t SizeInBits = MI.getOperand(2).getImm();
1143 
1144     // So long as the new type has more bits than the bits we're extending we
1145     // don't need to break it apart.
1146     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1147       Observer.changingInstr(MI);
1148       // We don't lose any non-extension bits by truncating the src and
1149       // sign-extending the dst.
1150       MachineOperand &MO1 = MI.getOperand(1);
1151       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1152       MO1.setReg(TruncMIB.getReg(0));
1153 
1154       MachineOperand &MO2 = MI.getOperand(0);
1155       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1156       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1157       MIRBuilder.buildSExt(MO2, DstExt);
1158       MO2.setReg(DstExt);
1159       Observer.changedInstr(MI);
1160       return Legalized;
1161     }
1162 
1163     // Break it apart. Components below the extension point are unmodified. The
1164     // component containing the extension point becomes a narrower SEXT_INREG.
1165     // Components above it are ashr'd from the component containing the
1166     // extension point.
1167     if (SizeOp0 % NarrowSize != 0)
1168       return UnableToLegalize;
1169     int NumParts = SizeOp0 / NarrowSize;
1170 
1171     // List the registers where the destination will be scattered.
1172     SmallVector<Register, 2> DstRegs;
1173     // List the registers where the source will be split.
1174     SmallVector<Register, 2> SrcRegs;
1175 
1176     // Create all the temporary registers.
1177     for (int i = 0; i < NumParts; ++i) {
1178       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1179 
1180       SrcRegs.push_back(SrcReg);
1181     }
1182 
1183     // Explode the big arguments into smaller chunks.
1184     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1185 
1186     Register AshrCstReg =
1187         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1188             .getReg(0);
1189     Register FullExtensionReg = 0;
1190     Register PartialExtensionReg = 0;
1191 
1192     // Do the operation on each small part.
1193     for (int i = 0; i < NumParts; ++i) {
1194       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1195         DstRegs.push_back(SrcRegs[i]);
1196       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1197         assert(PartialExtensionReg &&
1198                "Expected to visit partial extension before full");
1199         if (FullExtensionReg) {
1200           DstRegs.push_back(FullExtensionReg);
1201           continue;
1202         }
1203         DstRegs.push_back(
1204             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1205                 .getReg(0));
1206         FullExtensionReg = DstRegs.back();
1207       } else {
1208         DstRegs.push_back(
1209             MIRBuilder
1210                 .buildInstr(
1211                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1212                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1213                 .getReg(0));
1214         PartialExtensionReg = DstRegs.back();
1215       }
1216     }
1217 
1218     // Gather the destination registers into the final destination.
1219     Register DstReg = MI.getOperand(0).getReg();
1220     MIRBuilder.buildMerge(DstReg, DstRegs);
1221     MI.eraseFromParent();
1222     return Legalized;
1223   }
1224   case TargetOpcode::G_BSWAP:
1225   case TargetOpcode::G_BITREVERSE: {
1226     if (SizeOp0 % NarrowSize != 0)
1227       return UnableToLegalize;
1228 
1229     Observer.changingInstr(MI);
1230     SmallVector<Register, 2> SrcRegs, DstRegs;
1231     unsigned NumParts = SizeOp0 / NarrowSize;
1232     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1233 
1234     for (unsigned i = 0; i < NumParts; ++i) {
1235       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1236                                            {SrcRegs[NumParts - 1 - i]});
1237       DstRegs.push_back(DstPart.getReg(0));
1238     }
1239 
1240     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1241 
1242     Observer.changedInstr(MI);
1243     MI.eraseFromParent();
1244     return Legalized;
1245   }
1246   case TargetOpcode::G_PTR_ADD:
1247   case TargetOpcode::G_PTRMASK: {
1248     if (TypeIdx != 1)
1249       return UnableToLegalize;
1250     Observer.changingInstr(MI);
1251     narrowScalarSrc(MI, NarrowTy, 2);
1252     Observer.changedInstr(MI);
1253     return Legalized;
1254   }
1255   case TargetOpcode::G_FPTOUI: {
1256     if (TypeIdx != 0)
1257       return UnableToLegalize;
1258     Observer.changingInstr(MI);
1259     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1260     Observer.changedInstr(MI);
1261     return Legalized;
1262   }
1263   case TargetOpcode::G_FPTOSI: {
1264     if (TypeIdx != 0)
1265       return UnableToLegalize;
1266     Observer.changingInstr(MI);
1267     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1268     Observer.changedInstr(MI);
1269     return Legalized;
1270   }
1271   case TargetOpcode::G_FPEXT:
1272     if (TypeIdx != 0)
1273       return UnableToLegalize;
1274     Observer.changingInstr(MI);
1275     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1276     Observer.changedInstr(MI);
1277     return Legalized;
1278   }
1279 }
1280 
1281 Register LegalizerHelper::coerceToScalar(Register Val) {
1282   LLT Ty = MRI.getType(Val);
1283   if (Ty.isScalar())
1284     return Val;
1285 
1286   const DataLayout &DL = MIRBuilder.getDataLayout();
1287   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1288   if (Ty.isPointer()) {
1289     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1290       return Register();
1291     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1292   }
1293 
1294   Register NewVal = Val;
1295 
1296   assert(Ty.isVector());
1297   LLT EltTy = Ty.getElementType();
1298   if (EltTy.isPointer())
1299     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1300   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1301 }
1302 
1303 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1304                                      unsigned OpIdx, unsigned ExtOpcode) {
1305   MachineOperand &MO = MI.getOperand(OpIdx);
1306   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1307   MO.setReg(ExtB.getReg(0));
1308 }
1309 
1310 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1311                                       unsigned OpIdx) {
1312   MachineOperand &MO = MI.getOperand(OpIdx);
1313   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1314   MO.setReg(ExtB.getReg(0));
1315 }
1316 
1317 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1318                                      unsigned OpIdx, unsigned TruncOpcode) {
1319   MachineOperand &MO = MI.getOperand(OpIdx);
1320   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1321   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1322   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1323   MO.setReg(DstExt);
1324 }
1325 
1326 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1327                                       unsigned OpIdx, unsigned ExtOpcode) {
1328   MachineOperand &MO = MI.getOperand(OpIdx);
1329   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1330   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1331   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1332   MO.setReg(DstTrunc);
1333 }
1334 
1335 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1336                                             unsigned OpIdx) {
1337   MachineOperand &MO = MI.getOperand(OpIdx);
1338   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1339   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1340 }
1341 
1342 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1343                                             unsigned OpIdx) {
1344   MachineOperand &MO = MI.getOperand(OpIdx);
1345 
1346   LLT OldTy = MRI.getType(MO.getReg());
1347   unsigned OldElts = OldTy.getNumElements();
1348   unsigned NewElts = MoreTy.getNumElements();
1349 
1350   unsigned NumParts = NewElts / OldElts;
1351 
1352   // Use concat_vectors if the result is a multiple of the number of elements.
1353   if (NumParts * OldElts == NewElts) {
1354     SmallVector<Register, 8> Parts;
1355     Parts.push_back(MO.getReg());
1356 
1357     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1358     for (unsigned I = 1; I != NumParts; ++I)
1359       Parts.push_back(ImpDef);
1360 
1361     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1362     MO.setReg(Concat.getReg(0));
1363     return;
1364   }
1365 
1366   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1367   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1368   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1369   MO.setReg(MoreReg);
1370 }
1371 
1372 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1373   MachineOperand &Op = MI.getOperand(OpIdx);
1374   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1375 }
1376 
1377 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1378   MachineOperand &MO = MI.getOperand(OpIdx);
1379   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1380   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1381   MIRBuilder.buildBitcast(MO, CastDst);
1382   MO.setReg(CastDst);
1383 }
1384 
1385 LegalizerHelper::LegalizeResult
1386 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1387                                         LLT WideTy) {
1388   if (TypeIdx != 1)
1389     return UnableToLegalize;
1390 
1391   Register DstReg = MI.getOperand(0).getReg();
1392   LLT DstTy = MRI.getType(DstReg);
1393   if (DstTy.isVector())
1394     return UnableToLegalize;
1395 
1396   Register Src1 = MI.getOperand(1).getReg();
1397   LLT SrcTy = MRI.getType(Src1);
1398   const int DstSize = DstTy.getSizeInBits();
1399   const int SrcSize = SrcTy.getSizeInBits();
1400   const int WideSize = WideTy.getSizeInBits();
1401   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1402 
1403   unsigned NumOps = MI.getNumOperands();
1404   unsigned NumSrc = MI.getNumOperands() - 1;
1405   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1406 
1407   if (WideSize >= DstSize) {
1408     // Directly pack the bits in the target type.
1409     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1410 
1411     for (unsigned I = 2; I != NumOps; ++I) {
1412       const unsigned Offset = (I - 1) * PartSize;
1413 
1414       Register SrcReg = MI.getOperand(I).getReg();
1415       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1416 
1417       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1418 
1419       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1420         MRI.createGenericVirtualRegister(WideTy);
1421 
1422       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1423       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1424       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1425       ResultReg = NextResult;
1426     }
1427 
1428     if (WideSize > DstSize)
1429       MIRBuilder.buildTrunc(DstReg, ResultReg);
1430     else if (DstTy.isPointer())
1431       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1432 
1433     MI.eraseFromParent();
1434     return Legalized;
1435   }
1436 
1437   // Unmerge the original values to the GCD type, and recombine to the next
1438   // multiple greater than the original type.
1439   //
1440   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1441   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1442   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1443   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1444   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1445   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1446   // %12:_(s12) = G_MERGE_VALUES %10, %11
1447   //
1448   // Padding with undef if necessary:
1449   //
1450   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1451   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1452   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1453   // %7:_(s2) = G_IMPLICIT_DEF
1454   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1455   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1456   // %10:_(s12) = G_MERGE_VALUES %8, %9
1457 
1458   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1459   LLT GCDTy = LLT::scalar(GCD);
1460 
1461   SmallVector<Register, 8> Parts;
1462   SmallVector<Register, 8> NewMergeRegs;
1463   SmallVector<Register, 8> Unmerges;
1464   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1465 
1466   // Decompose the original operands if they don't evenly divide.
1467   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1468     Register SrcReg = MI.getOperand(I).getReg();
1469     if (GCD == SrcSize) {
1470       Unmerges.push_back(SrcReg);
1471     } else {
1472       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1473       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1474         Unmerges.push_back(Unmerge.getReg(J));
1475     }
1476   }
1477 
1478   // Pad with undef to the next size that is a multiple of the requested size.
1479   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1480     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1481     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1482       Unmerges.push_back(UndefReg);
1483   }
1484 
1485   const int PartsPerGCD = WideSize / GCD;
1486 
1487   // Build merges of each piece.
1488   ArrayRef<Register> Slicer(Unmerges);
1489   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1490     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1491     NewMergeRegs.push_back(Merge.getReg(0));
1492   }
1493 
1494   // A truncate may be necessary if the requested type doesn't evenly divide the
1495   // original result type.
1496   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1497     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1498   } else {
1499     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1500     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1501   }
1502 
1503   MI.eraseFromParent();
1504   return Legalized;
1505 }
1506 
1507 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1508   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1509   LLT OrigTy = MRI.getType(OrigReg);
1510   LLT LCMTy = getLCMType(WideTy, OrigTy);
1511 
1512   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1513   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1514 
1515   Register UnmergeSrc = WideReg;
1516 
1517   // Create a merge to the LCM type, padding with undef
1518   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1519   // =>
1520   // %1:_(<4 x s32>) = G_FOO
1521   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1522   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1523   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1524   if (NumMergeParts > 1) {
1525     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1526     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1527     MergeParts[0] = WideReg;
1528     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1529   }
1530 
1531   // Unmerge to the original register and pad with dead defs.
1532   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1533   UnmergeResults[0] = OrigReg;
1534   for (int I = 1; I != NumUnmergeParts; ++I)
1535     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1536 
1537   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1538   return WideReg;
1539 }
1540 
1541 LegalizerHelper::LegalizeResult
1542 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1543                                           LLT WideTy) {
1544   if (TypeIdx != 0)
1545     return UnableToLegalize;
1546 
1547   int NumDst = MI.getNumOperands() - 1;
1548   Register SrcReg = MI.getOperand(NumDst).getReg();
1549   LLT SrcTy = MRI.getType(SrcReg);
1550   if (SrcTy.isVector())
1551     return UnableToLegalize;
1552 
1553   Register Dst0Reg = MI.getOperand(0).getReg();
1554   LLT DstTy = MRI.getType(Dst0Reg);
1555   if (!DstTy.isScalar())
1556     return UnableToLegalize;
1557 
1558   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1559     if (SrcTy.isPointer()) {
1560       const DataLayout &DL = MIRBuilder.getDataLayout();
1561       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1562         LLVM_DEBUG(
1563             dbgs() << "Not casting non-integral address space integer\n");
1564         return UnableToLegalize;
1565       }
1566 
1567       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1568       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1569     }
1570 
1571     // Widen SrcTy to WideTy. This does not affect the result, but since the
1572     // user requested this size, it is probably better handled than SrcTy and
1573     // should reduce the total number of legalization artifacts
1574     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1575       SrcTy = WideTy;
1576       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1577     }
1578 
1579     // Theres no unmerge type to target. Directly extract the bits from the
1580     // source type
1581     unsigned DstSize = DstTy.getSizeInBits();
1582 
1583     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1584     for (int I = 1; I != NumDst; ++I) {
1585       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1586       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1587       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1588     }
1589 
1590     MI.eraseFromParent();
1591     return Legalized;
1592   }
1593 
1594   // Extend the source to a wider type.
1595   LLT LCMTy = getLCMType(SrcTy, WideTy);
1596 
1597   Register WideSrc = SrcReg;
1598   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1599     // TODO: If this is an integral address space, cast to integer and anyext.
1600     if (SrcTy.isPointer()) {
1601       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1602       return UnableToLegalize;
1603     }
1604 
1605     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1606   }
1607 
1608   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1609 
1610   // Create a sequence of unmerges and merges to the original results. Since we
1611   // may have widened the source, we will need to pad the results with dead defs
1612   // to cover the source register.
1613   // e.g. widen s48 to s64:
1614   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1615   //
1616   // =>
1617   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1618   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1619   //  ; unpack to GCD type, with extra dead defs
1620   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1621   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1622   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1623   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1624   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1625   const LLT GCDTy = getGCDType(WideTy, DstTy);
1626   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1627   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1628 
1629   // Directly unmerge to the destination without going through a GCD type
1630   // if possible
1631   if (PartsPerRemerge == 1) {
1632     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1633 
1634     for (int I = 0; I != NumUnmerge; ++I) {
1635       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1636 
1637       for (int J = 0; J != PartsPerUnmerge; ++J) {
1638         int Idx = I * PartsPerUnmerge + J;
1639         if (Idx < NumDst)
1640           MIB.addDef(MI.getOperand(Idx).getReg());
1641         else {
1642           // Create dead def for excess components.
1643           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1644         }
1645       }
1646 
1647       MIB.addUse(Unmerge.getReg(I));
1648     }
1649   } else {
1650     SmallVector<Register, 16> Parts;
1651     for (int J = 0; J != NumUnmerge; ++J)
1652       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1653 
1654     SmallVector<Register, 8> RemergeParts;
1655     for (int I = 0; I != NumDst; ++I) {
1656       for (int J = 0; J < PartsPerRemerge; ++J) {
1657         const int Idx = I * PartsPerRemerge + J;
1658         RemergeParts.emplace_back(Parts[Idx]);
1659       }
1660 
1661       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1662       RemergeParts.clear();
1663     }
1664   }
1665 
1666   MI.eraseFromParent();
1667   return Legalized;
1668 }
1669 
1670 LegalizerHelper::LegalizeResult
1671 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1672                                     LLT WideTy) {
1673   Register DstReg = MI.getOperand(0).getReg();
1674   Register SrcReg = MI.getOperand(1).getReg();
1675   LLT SrcTy = MRI.getType(SrcReg);
1676 
1677   LLT DstTy = MRI.getType(DstReg);
1678   unsigned Offset = MI.getOperand(2).getImm();
1679 
1680   if (TypeIdx == 0) {
1681     if (SrcTy.isVector() || DstTy.isVector())
1682       return UnableToLegalize;
1683 
1684     SrcOp Src(SrcReg);
1685     if (SrcTy.isPointer()) {
1686       // Extracts from pointers can be handled only if they are really just
1687       // simple integers.
1688       const DataLayout &DL = MIRBuilder.getDataLayout();
1689       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1690         return UnableToLegalize;
1691 
1692       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1693       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1694       SrcTy = SrcAsIntTy;
1695     }
1696 
1697     if (DstTy.isPointer())
1698       return UnableToLegalize;
1699 
1700     if (Offset == 0) {
1701       // Avoid a shift in the degenerate case.
1702       MIRBuilder.buildTrunc(DstReg,
1703                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1704       MI.eraseFromParent();
1705       return Legalized;
1706     }
1707 
1708     // Do a shift in the source type.
1709     LLT ShiftTy = SrcTy;
1710     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1711       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1712       ShiftTy = WideTy;
1713     }
1714 
1715     auto LShr = MIRBuilder.buildLShr(
1716       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1717     MIRBuilder.buildTrunc(DstReg, LShr);
1718     MI.eraseFromParent();
1719     return Legalized;
1720   }
1721 
1722   if (SrcTy.isScalar()) {
1723     Observer.changingInstr(MI);
1724     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1725     Observer.changedInstr(MI);
1726     return Legalized;
1727   }
1728 
1729   if (!SrcTy.isVector())
1730     return UnableToLegalize;
1731 
1732   if (DstTy != SrcTy.getElementType())
1733     return UnableToLegalize;
1734 
1735   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1736     return UnableToLegalize;
1737 
1738   Observer.changingInstr(MI);
1739   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1740 
1741   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1742                           Offset);
1743   widenScalarDst(MI, WideTy.getScalarType(), 0);
1744   Observer.changedInstr(MI);
1745   return Legalized;
1746 }
1747 
1748 LegalizerHelper::LegalizeResult
1749 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1750                                    LLT WideTy) {
1751   if (TypeIdx != 0 || WideTy.isVector())
1752     return UnableToLegalize;
1753   Observer.changingInstr(MI);
1754   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1755   widenScalarDst(MI, WideTy);
1756   Observer.changedInstr(MI);
1757   return Legalized;
1758 }
1759 
1760 LegalizerHelper::LegalizeResult
1761 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1762                                          LLT WideTy) {
1763   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1764                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1765                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1766   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1767                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1768   // We can convert this to:
1769   //   1. Any extend iN to iM
1770   //   2. SHL by M-N
1771   //   3. [US][ADD|SUB|SHL]SAT
1772   //   4. L/ASHR by M-N
1773   //
1774   // It may be more efficient to lower this to a min and a max operation in
1775   // the higher precision arithmetic if the promoted operation isn't legal,
1776   // but this decision is up to the target's lowering request.
1777   Register DstReg = MI.getOperand(0).getReg();
1778 
1779   unsigned NewBits = WideTy.getScalarSizeInBits();
1780   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1781 
1782   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1783   // must not left shift the RHS to preserve the shift amount.
1784   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1785   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1786                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1787   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1788   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1789   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1790 
1791   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1792                                         {ShiftL, ShiftR}, MI.getFlags());
1793 
1794   // Use a shift that will preserve the number of sign bits when the trunc is
1795   // folded away.
1796   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1797                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1798 
1799   MIRBuilder.buildTrunc(DstReg, Result);
1800   MI.eraseFromParent();
1801   return Legalized;
1802 }
1803 
1804 LegalizerHelper::LegalizeResult
1805 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1806   switch (MI.getOpcode()) {
1807   default:
1808     return UnableToLegalize;
1809   case TargetOpcode::G_EXTRACT:
1810     return widenScalarExtract(MI, TypeIdx, WideTy);
1811   case TargetOpcode::G_INSERT:
1812     return widenScalarInsert(MI, TypeIdx, WideTy);
1813   case TargetOpcode::G_MERGE_VALUES:
1814     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1815   case TargetOpcode::G_UNMERGE_VALUES:
1816     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1817   case TargetOpcode::G_SADDO:
1818   case TargetOpcode::G_SSUBO: {
1819     if (TypeIdx == 1)
1820       return UnableToLegalize; // TODO
1821     auto LHSExt = MIRBuilder.buildSExt(WideTy, MI.getOperand(2));
1822     auto RHSExt = MIRBuilder.buildSExt(WideTy, MI.getOperand(3));
1823     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SADDO
1824                           ? TargetOpcode::G_ADD
1825                           : TargetOpcode::G_SUB;
1826     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt});
1827     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1828     auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1829     auto ExtOp = MIRBuilder.buildSExt(WideTy, TruncOp);
1830     // There is no overflow if the re-extended result is the same as NewOp.
1831     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1832     // Now trunc the NewOp to the original result.
1833     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1834     MI.eraseFromParent();
1835     return Legalized;
1836   }
1837   case TargetOpcode::G_UADDO:
1838   case TargetOpcode::G_USUBO: {
1839     if (TypeIdx == 1)
1840       return UnableToLegalize; // TODO
1841     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1842     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1843     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1844                           ? TargetOpcode::G_ADD
1845                           : TargetOpcode::G_SUB;
1846     // Do the arithmetic in the larger type.
1847     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1848     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1849     APInt Mask =
1850         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1851     auto AndOp = MIRBuilder.buildAnd(
1852         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1853     // There is no overflow if the AndOp is the same as NewOp.
1854     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1855     // Now trunc the NewOp to the original result.
1856     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1857     MI.eraseFromParent();
1858     return Legalized;
1859   }
1860   case TargetOpcode::G_SADDSAT:
1861   case TargetOpcode::G_SSUBSAT:
1862   case TargetOpcode::G_SSHLSAT:
1863   case TargetOpcode::G_UADDSAT:
1864   case TargetOpcode::G_USUBSAT:
1865   case TargetOpcode::G_USHLSAT:
1866     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1867   case TargetOpcode::G_CTTZ:
1868   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1869   case TargetOpcode::G_CTLZ:
1870   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1871   case TargetOpcode::G_CTPOP: {
1872     if (TypeIdx == 0) {
1873       Observer.changingInstr(MI);
1874       widenScalarDst(MI, WideTy, 0);
1875       Observer.changedInstr(MI);
1876       return Legalized;
1877     }
1878 
1879     Register SrcReg = MI.getOperand(1).getReg();
1880 
1881     // First ZEXT the input.
1882     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1883     LLT CurTy = MRI.getType(SrcReg);
1884     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1885       // The count is the same in the larger type except if the original
1886       // value was zero.  This can be handled by setting the bit just off
1887       // the top of the original type.
1888       auto TopBit =
1889           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1890       MIBSrc = MIRBuilder.buildOr(
1891         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1892     }
1893 
1894     // Perform the operation at the larger size.
1895     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1896     // This is already the correct result for CTPOP and CTTZs
1897     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1898         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1899       // The correct result is NewOp - (Difference in widety and current ty).
1900       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1901       MIBNewOp = MIRBuilder.buildSub(
1902           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1903     }
1904 
1905     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1906     MI.eraseFromParent();
1907     return Legalized;
1908   }
1909   case TargetOpcode::G_BSWAP: {
1910     Observer.changingInstr(MI);
1911     Register DstReg = MI.getOperand(0).getReg();
1912 
1913     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1914     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1915     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1916     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1917 
1918     MI.getOperand(0).setReg(DstExt);
1919 
1920     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1921 
1922     LLT Ty = MRI.getType(DstReg);
1923     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1924     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1925     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1926 
1927     MIRBuilder.buildTrunc(DstReg, ShrReg);
1928     Observer.changedInstr(MI);
1929     return Legalized;
1930   }
1931   case TargetOpcode::G_BITREVERSE: {
1932     Observer.changingInstr(MI);
1933 
1934     Register DstReg = MI.getOperand(0).getReg();
1935     LLT Ty = MRI.getType(DstReg);
1936     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1937 
1938     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1939     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1940     MI.getOperand(0).setReg(DstExt);
1941     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1942 
1943     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1944     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1945     MIRBuilder.buildTrunc(DstReg, Shift);
1946     Observer.changedInstr(MI);
1947     return Legalized;
1948   }
1949   case TargetOpcode::G_FREEZE:
1950     Observer.changingInstr(MI);
1951     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1952     widenScalarDst(MI, WideTy);
1953     Observer.changedInstr(MI);
1954     return Legalized;
1955 
1956   case TargetOpcode::G_ADD:
1957   case TargetOpcode::G_AND:
1958   case TargetOpcode::G_MUL:
1959   case TargetOpcode::G_OR:
1960   case TargetOpcode::G_XOR:
1961   case TargetOpcode::G_SUB:
1962     // Perform operation at larger width (any extension is fines here, high bits
1963     // don't affect the result) and then truncate the result back to the
1964     // original type.
1965     Observer.changingInstr(MI);
1966     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1967     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1968     widenScalarDst(MI, WideTy);
1969     Observer.changedInstr(MI);
1970     return Legalized;
1971 
1972   case TargetOpcode::G_SHL:
1973     Observer.changingInstr(MI);
1974 
1975     if (TypeIdx == 0) {
1976       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1977       widenScalarDst(MI, WideTy);
1978     } else {
1979       assert(TypeIdx == 1);
1980       // The "number of bits to shift" operand must preserve its value as an
1981       // unsigned integer:
1982       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1983     }
1984 
1985     Observer.changedInstr(MI);
1986     return Legalized;
1987 
1988   case TargetOpcode::G_SDIV:
1989   case TargetOpcode::G_SREM:
1990   case TargetOpcode::G_SMIN:
1991   case TargetOpcode::G_SMAX:
1992     Observer.changingInstr(MI);
1993     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1994     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1995     widenScalarDst(MI, WideTy);
1996     Observer.changedInstr(MI);
1997     return Legalized;
1998 
1999   case TargetOpcode::G_ASHR:
2000   case TargetOpcode::G_LSHR:
2001     Observer.changingInstr(MI);
2002 
2003     if (TypeIdx == 0) {
2004       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2005         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2006 
2007       widenScalarSrc(MI, WideTy, 1, CvtOp);
2008       widenScalarDst(MI, WideTy);
2009     } else {
2010       assert(TypeIdx == 1);
2011       // The "number of bits to shift" operand must preserve its value as an
2012       // unsigned integer:
2013       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2014     }
2015 
2016     Observer.changedInstr(MI);
2017     return Legalized;
2018   case TargetOpcode::G_UDIV:
2019   case TargetOpcode::G_UREM:
2020   case TargetOpcode::G_UMIN:
2021   case TargetOpcode::G_UMAX:
2022     Observer.changingInstr(MI);
2023     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2024     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2025     widenScalarDst(MI, WideTy);
2026     Observer.changedInstr(MI);
2027     return Legalized;
2028 
2029   case TargetOpcode::G_SELECT:
2030     Observer.changingInstr(MI);
2031     if (TypeIdx == 0) {
2032       // Perform operation at larger width (any extension is fine here, high
2033       // bits don't affect the result) and then truncate the result back to the
2034       // original type.
2035       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2036       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2037       widenScalarDst(MI, WideTy);
2038     } else {
2039       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2040       // Explicit extension is required here since high bits affect the result.
2041       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2042     }
2043     Observer.changedInstr(MI);
2044     return Legalized;
2045 
2046   case TargetOpcode::G_FPTOSI:
2047   case TargetOpcode::G_FPTOUI:
2048     Observer.changingInstr(MI);
2049 
2050     if (TypeIdx == 0)
2051       widenScalarDst(MI, WideTy);
2052     else
2053       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2054 
2055     Observer.changedInstr(MI);
2056     return Legalized;
2057   case TargetOpcode::G_SITOFP:
2058     Observer.changingInstr(MI);
2059 
2060     if (TypeIdx == 0)
2061       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2062     else
2063       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2064 
2065     Observer.changedInstr(MI);
2066     return Legalized;
2067   case TargetOpcode::G_UITOFP:
2068     Observer.changingInstr(MI);
2069 
2070     if (TypeIdx == 0)
2071       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2072     else
2073       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2074 
2075     Observer.changedInstr(MI);
2076     return Legalized;
2077   case TargetOpcode::G_LOAD:
2078   case TargetOpcode::G_SEXTLOAD:
2079   case TargetOpcode::G_ZEXTLOAD:
2080     Observer.changingInstr(MI);
2081     widenScalarDst(MI, WideTy);
2082     Observer.changedInstr(MI);
2083     return Legalized;
2084 
2085   case TargetOpcode::G_STORE: {
2086     if (TypeIdx != 0)
2087       return UnableToLegalize;
2088 
2089     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2090     if (!Ty.isScalar())
2091       return UnableToLegalize;
2092 
2093     Observer.changingInstr(MI);
2094 
2095     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2096       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2097     widenScalarSrc(MI, WideTy, 0, ExtType);
2098 
2099     Observer.changedInstr(MI);
2100     return Legalized;
2101   }
2102   case TargetOpcode::G_CONSTANT: {
2103     MachineOperand &SrcMO = MI.getOperand(1);
2104     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2105     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2106         MRI.getType(MI.getOperand(0).getReg()));
2107     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2108             ExtOpc == TargetOpcode::G_ANYEXT) &&
2109            "Illegal Extend");
2110     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2111     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2112                            ? SrcVal.sext(WideTy.getSizeInBits())
2113                            : SrcVal.zext(WideTy.getSizeInBits());
2114     Observer.changingInstr(MI);
2115     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2116 
2117     widenScalarDst(MI, WideTy);
2118     Observer.changedInstr(MI);
2119     return Legalized;
2120   }
2121   case TargetOpcode::G_FCONSTANT: {
2122     MachineOperand &SrcMO = MI.getOperand(1);
2123     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2124     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2125     bool LosesInfo;
2126     switch (WideTy.getSizeInBits()) {
2127     case 32:
2128       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2129                   &LosesInfo);
2130       break;
2131     case 64:
2132       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2133                   &LosesInfo);
2134       break;
2135     default:
2136       return UnableToLegalize;
2137     }
2138 
2139     assert(!LosesInfo && "extend should always be lossless");
2140 
2141     Observer.changingInstr(MI);
2142     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2143 
2144     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2145     Observer.changedInstr(MI);
2146     return Legalized;
2147   }
2148   case TargetOpcode::G_IMPLICIT_DEF: {
2149     Observer.changingInstr(MI);
2150     widenScalarDst(MI, WideTy);
2151     Observer.changedInstr(MI);
2152     return Legalized;
2153   }
2154   case TargetOpcode::G_BRCOND:
2155     Observer.changingInstr(MI);
2156     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2157     Observer.changedInstr(MI);
2158     return Legalized;
2159 
2160   case TargetOpcode::G_FCMP:
2161     Observer.changingInstr(MI);
2162     if (TypeIdx == 0)
2163       widenScalarDst(MI, WideTy);
2164     else {
2165       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2166       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2167     }
2168     Observer.changedInstr(MI);
2169     return Legalized;
2170 
2171   case TargetOpcode::G_ICMP:
2172     Observer.changingInstr(MI);
2173     if (TypeIdx == 0)
2174       widenScalarDst(MI, WideTy);
2175     else {
2176       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2177                                MI.getOperand(1).getPredicate()))
2178                                ? TargetOpcode::G_SEXT
2179                                : TargetOpcode::G_ZEXT;
2180       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2181       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2182     }
2183     Observer.changedInstr(MI);
2184     return Legalized;
2185 
2186   case TargetOpcode::G_PTR_ADD:
2187     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2188     Observer.changingInstr(MI);
2189     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2190     Observer.changedInstr(MI);
2191     return Legalized;
2192 
2193   case TargetOpcode::G_PHI: {
2194     assert(TypeIdx == 0 && "Expecting only Idx 0");
2195 
2196     Observer.changingInstr(MI);
2197     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2198       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2199       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2200       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2201     }
2202 
2203     MachineBasicBlock &MBB = *MI.getParent();
2204     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2205     widenScalarDst(MI, WideTy);
2206     Observer.changedInstr(MI);
2207     return Legalized;
2208   }
2209   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2210     if (TypeIdx == 0) {
2211       Register VecReg = MI.getOperand(1).getReg();
2212       LLT VecTy = MRI.getType(VecReg);
2213       Observer.changingInstr(MI);
2214 
2215       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2216                                      WideTy.getSizeInBits()),
2217                      1, TargetOpcode::G_SEXT);
2218 
2219       widenScalarDst(MI, WideTy, 0);
2220       Observer.changedInstr(MI);
2221       return Legalized;
2222     }
2223 
2224     if (TypeIdx != 2)
2225       return UnableToLegalize;
2226     Observer.changingInstr(MI);
2227     // TODO: Probably should be zext
2228     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2229     Observer.changedInstr(MI);
2230     return Legalized;
2231   }
2232   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2233     if (TypeIdx == 1) {
2234       Observer.changingInstr(MI);
2235 
2236       Register VecReg = MI.getOperand(1).getReg();
2237       LLT VecTy = MRI.getType(VecReg);
2238       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2239 
2240       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2241       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2242       widenScalarDst(MI, WideVecTy, 0);
2243       Observer.changedInstr(MI);
2244       return Legalized;
2245     }
2246 
2247     if (TypeIdx == 2) {
2248       Observer.changingInstr(MI);
2249       // TODO: Probably should be zext
2250       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2251       Observer.changedInstr(MI);
2252       return Legalized;
2253     }
2254 
2255     return UnableToLegalize;
2256   }
2257   case TargetOpcode::G_FADD:
2258   case TargetOpcode::G_FMUL:
2259   case TargetOpcode::G_FSUB:
2260   case TargetOpcode::G_FMA:
2261   case TargetOpcode::G_FMAD:
2262   case TargetOpcode::G_FNEG:
2263   case TargetOpcode::G_FABS:
2264   case TargetOpcode::G_FCANONICALIZE:
2265   case TargetOpcode::G_FMINNUM:
2266   case TargetOpcode::G_FMAXNUM:
2267   case TargetOpcode::G_FMINNUM_IEEE:
2268   case TargetOpcode::G_FMAXNUM_IEEE:
2269   case TargetOpcode::G_FMINIMUM:
2270   case TargetOpcode::G_FMAXIMUM:
2271   case TargetOpcode::G_FDIV:
2272   case TargetOpcode::G_FREM:
2273   case TargetOpcode::G_FCEIL:
2274   case TargetOpcode::G_FFLOOR:
2275   case TargetOpcode::G_FCOS:
2276   case TargetOpcode::G_FSIN:
2277   case TargetOpcode::G_FLOG10:
2278   case TargetOpcode::G_FLOG:
2279   case TargetOpcode::G_FLOG2:
2280   case TargetOpcode::G_FRINT:
2281   case TargetOpcode::G_FNEARBYINT:
2282   case TargetOpcode::G_FSQRT:
2283   case TargetOpcode::G_FEXP:
2284   case TargetOpcode::G_FEXP2:
2285   case TargetOpcode::G_FPOW:
2286   case TargetOpcode::G_INTRINSIC_TRUNC:
2287   case TargetOpcode::G_INTRINSIC_ROUND:
2288   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2289     assert(TypeIdx == 0);
2290     Observer.changingInstr(MI);
2291 
2292     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2293       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2294 
2295     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2296     Observer.changedInstr(MI);
2297     return Legalized;
2298   case TargetOpcode::G_FPOWI: {
2299     if (TypeIdx != 0)
2300       return UnableToLegalize;
2301     Observer.changingInstr(MI);
2302     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2303     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2304     Observer.changedInstr(MI);
2305     return Legalized;
2306   }
2307   case TargetOpcode::G_INTTOPTR:
2308     if (TypeIdx != 1)
2309       return UnableToLegalize;
2310 
2311     Observer.changingInstr(MI);
2312     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2313     Observer.changedInstr(MI);
2314     return Legalized;
2315   case TargetOpcode::G_PTRTOINT:
2316     if (TypeIdx != 0)
2317       return UnableToLegalize;
2318 
2319     Observer.changingInstr(MI);
2320     widenScalarDst(MI, WideTy, 0);
2321     Observer.changedInstr(MI);
2322     return Legalized;
2323   case TargetOpcode::G_BUILD_VECTOR: {
2324     Observer.changingInstr(MI);
2325 
2326     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2327     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2328       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2329 
2330     // Avoid changing the result vector type if the source element type was
2331     // requested.
2332     if (TypeIdx == 1) {
2333       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2334     } else {
2335       widenScalarDst(MI, WideTy, 0);
2336     }
2337 
2338     Observer.changedInstr(MI);
2339     return Legalized;
2340   }
2341   case TargetOpcode::G_SEXT_INREG:
2342     if (TypeIdx != 0)
2343       return UnableToLegalize;
2344 
2345     Observer.changingInstr(MI);
2346     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2347     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2348     Observer.changedInstr(MI);
2349     return Legalized;
2350   case TargetOpcode::G_PTRMASK: {
2351     if (TypeIdx != 1)
2352       return UnableToLegalize;
2353     Observer.changingInstr(MI);
2354     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2355     Observer.changedInstr(MI);
2356     return Legalized;
2357   }
2358   }
2359 }
2360 
2361 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2362                              MachineIRBuilder &B, Register Src, LLT Ty) {
2363   auto Unmerge = B.buildUnmerge(Ty, Src);
2364   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2365     Pieces.push_back(Unmerge.getReg(I));
2366 }
2367 
2368 LegalizerHelper::LegalizeResult
2369 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2370   Register Dst = MI.getOperand(0).getReg();
2371   Register Src = MI.getOperand(1).getReg();
2372   LLT DstTy = MRI.getType(Dst);
2373   LLT SrcTy = MRI.getType(Src);
2374 
2375   if (SrcTy.isVector()) {
2376     LLT SrcEltTy = SrcTy.getElementType();
2377     SmallVector<Register, 8> SrcRegs;
2378 
2379     if (DstTy.isVector()) {
2380       int NumDstElt = DstTy.getNumElements();
2381       int NumSrcElt = SrcTy.getNumElements();
2382 
2383       LLT DstEltTy = DstTy.getElementType();
2384       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2385       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2386 
2387       // If there's an element size mismatch, insert intermediate casts to match
2388       // the result element type.
2389       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2390         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2391         //
2392         // =>
2393         //
2394         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2395         // %3:_(<2 x s8>) = G_BITCAST %2
2396         // %4:_(<2 x s8>) = G_BITCAST %3
2397         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2398         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2399         SrcPartTy = SrcEltTy;
2400       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2401         //
2402         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2403         //
2404         // =>
2405         //
2406         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2407         // %3:_(s16) = G_BITCAST %2
2408         // %4:_(s16) = G_BITCAST %3
2409         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2410         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2411         DstCastTy = DstEltTy;
2412       }
2413 
2414       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2415       for (Register &SrcReg : SrcRegs)
2416         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2417     } else
2418       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2419 
2420     MIRBuilder.buildMerge(Dst, SrcRegs);
2421     MI.eraseFromParent();
2422     return Legalized;
2423   }
2424 
2425   if (DstTy.isVector()) {
2426     SmallVector<Register, 8> SrcRegs;
2427     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2428     MIRBuilder.buildMerge(Dst, SrcRegs);
2429     MI.eraseFromParent();
2430     return Legalized;
2431   }
2432 
2433   return UnableToLegalize;
2434 }
2435 
2436 /// Figure out the bit offset into a register when coercing a vector index for
2437 /// the wide element type. This is only for the case when promoting vector to
2438 /// one with larger elements.
2439 //
2440 ///
2441 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2442 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2443 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2444                                                    Register Idx,
2445                                                    unsigned NewEltSize,
2446                                                    unsigned OldEltSize) {
2447   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2448   LLT IdxTy = B.getMRI()->getType(Idx);
2449 
2450   // Now figure out the amount we need to shift to get the target bits.
2451   auto OffsetMask = B.buildConstant(
2452     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2453   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2454   return B.buildShl(IdxTy, OffsetIdx,
2455                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2456 }
2457 
2458 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2459 /// is casting to a vector with a smaller element size, perform multiple element
2460 /// extracts and merge the results. If this is coercing to a vector with larger
2461 /// elements, index the bitcasted vector and extract the target element with bit
2462 /// operations. This is intended to force the indexing in the native register
2463 /// size for architectures that can dynamically index the register file.
2464 LegalizerHelper::LegalizeResult
2465 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2466                                          LLT CastTy) {
2467   if (TypeIdx != 1)
2468     return UnableToLegalize;
2469 
2470   Register Dst = MI.getOperand(0).getReg();
2471   Register SrcVec = MI.getOperand(1).getReg();
2472   Register Idx = MI.getOperand(2).getReg();
2473   LLT SrcVecTy = MRI.getType(SrcVec);
2474   LLT IdxTy = MRI.getType(Idx);
2475 
2476   LLT SrcEltTy = SrcVecTy.getElementType();
2477   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2478   unsigned OldNumElts = SrcVecTy.getNumElements();
2479 
2480   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2481   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2482 
2483   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2484   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2485   if (NewNumElts > OldNumElts) {
2486     // Decreasing the vector element size
2487     //
2488     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2489     //  =>
2490     //  v4i32:castx = bitcast x:v2i64
2491     //
2492     // i64 = bitcast
2493     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2494     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2495     //
2496     if (NewNumElts % OldNumElts != 0)
2497       return UnableToLegalize;
2498 
2499     // Type of the intermediate result vector.
2500     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2501     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2502 
2503     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2504 
2505     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2506     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2507 
2508     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2509       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2510       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2511       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2512       NewOps[I] = Elt.getReg(0);
2513     }
2514 
2515     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2516     MIRBuilder.buildBitcast(Dst, NewVec);
2517     MI.eraseFromParent();
2518     return Legalized;
2519   }
2520 
2521   if (NewNumElts < OldNumElts) {
2522     if (NewEltSize % OldEltSize != 0)
2523       return UnableToLegalize;
2524 
2525     // This only depends on powers of 2 because we use bit tricks to figure out
2526     // the bit offset we need to shift to get the target element. A general
2527     // expansion could emit division/multiply.
2528     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2529       return UnableToLegalize;
2530 
2531     // Increasing the vector element size.
2532     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2533     //
2534     //   =>
2535     //
2536     // %cast = G_BITCAST %vec
2537     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2538     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2539     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2540     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2541     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2542     // %elt = G_TRUNC %elt_bits
2543 
2544     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2545     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2546 
2547     // Divide to get the index in the wider element type.
2548     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2549 
2550     Register WideElt = CastVec;
2551     if (CastTy.isVector()) {
2552       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2553                                                      ScaledIdx).getReg(0);
2554     }
2555 
2556     // Compute the bit offset into the register of the target element.
2557     Register OffsetBits = getBitcastWiderVectorElementOffset(
2558       MIRBuilder, Idx, NewEltSize, OldEltSize);
2559 
2560     // Shift the wide element to get the target element.
2561     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2562     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2563     MI.eraseFromParent();
2564     return Legalized;
2565   }
2566 
2567   return UnableToLegalize;
2568 }
2569 
2570 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2571 /// TargetReg, while preserving other bits in \p TargetReg.
2572 ///
2573 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2574 static Register buildBitFieldInsert(MachineIRBuilder &B,
2575                                     Register TargetReg, Register InsertReg,
2576                                     Register OffsetBits) {
2577   LLT TargetTy = B.getMRI()->getType(TargetReg);
2578   LLT InsertTy = B.getMRI()->getType(InsertReg);
2579   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2580   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2581 
2582   // Produce a bitmask of the value to insert
2583   auto EltMask = B.buildConstant(
2584     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2585                                    InsertTy.getSizeInBits()));
2586   // Shift it into position
2587   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2588   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2589 
2590   // Clear out the bits in the wide element
2591   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2592 
2593   // The value to insert has all zeros already, so stick it into the masked
2594   // wide element.
2595   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2596 }
2597 
2598 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2599 /// is increasing the element size, perform the indexing in the target element
2600 /// type, and use bit operations to insert at the element position. This is
2601 /// intended for architectures that can dynamically index the register file and
2602 /// want to force indexing in the native register size.
2603 LegalizerHelper::LegalizeResult
2604 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2605                                         LLT CastTy) {
2606   if (TypeIdx != 0)
2607     return UnableToLegalize;
2608 
2609   Register Dst = MI.getOperand(0).getReg();
2610   Register SrcVec = MI.getOperand(1).getReg();
2611   Register Val = MI.getOperand(2).getReg();
2612   Register Idx = MI.getOperand(3).getReg();
2613 
2614   LLT VecTy = MRI.getType(Dst);
2615   LLT IdxTy = MRI.getType(Idx);
2616 
2617   LLT VecEltTy = VecTy.getElementType();
2618   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2619   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2620   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2621 
2622   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2623   unsigned OldNumElts = VecTy.getNumElements();
2624 
2625   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2626   if (NewNumElts < OldNumElts) {
2627     if (NewEltSize % OldEltSize != 0)
2628       return UnableToLegalize;
2629 
2630     // This only depends on powers of 2 because we use bit tricks to figure out
2631     // the bit offset we need to shift to get the target element. A general
2632     // expansion could emit division/multiply.
2633     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2634       return UnableToLegalize;
2635 
2636     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2637     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2638 
2639     // Divide to get the index in the wider element type.
2640     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2641 
2642     Register ExtractedElt = CastVec;
2643     if (CastTy.isVector()) {
2644       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2645                                                           ScaledIdx).getReg(0);
2646     }
2647 
2648     // Compute the bit offset into the register of the target element.
2649     Register OffsetBits = getBitcastWiderVectorElementOffset(
2650       MIRBuilder, Idx, NewEltSize, OldEltSize);
2651 
2652     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2653                                                Val, OffsetBits);
2654     if (CastTy.isVector()) {
2655       InsertedElt = MIRBuilder.buildInsertVectorElement(
2656         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2657     }
2658 
2659     MIRBuilder.buildBitcast(Dst, InsertedElt);
2660     MI.eraseFromParent();
2661     return Legalized;
2662   }
2663 
2664   return UnableToLegalize;
2665 }
2666 
2667 LegalizerHelper::LegalizeResult
2668 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2669   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2670   Register DstReg = MI.getOperand(0).getReg();
2671   Register PtrReg = MI.getOperand(1).getReg();
2672   LLT DstTy = MRI.getType(DstReg);
2673   auto &MMO = **MI.memoperands_begin();
2674 
2675   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2676     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2677       // This load needs splitting into power of 2 sized loads.
2678       if (DstTy.isVector())
2679         return UnableToLegalize;
2680       if (isPowerOf2_32(DstTy.getSizeInBits()))
2681         return UnableToLegalize; // Don't know what we're being asked to do.
2682 
2683       // Our strategy here is to generate anyextending loads for the smaller
2684       // types up to next power-2 result type, and then combine the two larger
2685       // result values together, before truncating back down to the non-pow-2
2686       // type.
2687       // E.g. v1 = i24 load =>
2688       // v2 = i32 zextload (2 byte)
2689       // v3 = i32 load (1 byte)
2690       // v4 = i32 shl v3, 16
2691       // v5 = i32 or v4, v2
2692       // v1 = i24 trunc v5
2693       // By doing this we generate the correct truncate which should get
2694       // combined away as an artifact with a matching extend.
2695       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2696       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2697 
2698       MachineFunction &MF = MIRBuilder.getMF();
2699       MachineMemOperand *LargeMMO =
2700         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2701       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2702         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2703 
2704       LLT PtrTy = MRI.getType(PtrReg);
2705       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2706       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2707       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2708       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2709       auto LargeLoad = MIRBuilder.buildLoadInstr(
2710         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2711 
2712       auto OffsetCst = MIRBuilder.buildConstant(
2713         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2714       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2715       auto SmallPtr =
2716         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2717       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2718                                             *SmallMMO);
2719 
2720       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2721       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2722       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2723       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2724       MI.eraseFromParent();
2725       return Legalized;
2726     }
2727 
2728     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2729     MI.eraseFromParent();
2730     return Legalized;
2731   }
2732 
2733   if (DstTy.isScalar()) {
2734     Register TmpReg =
2735       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2736     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2737     switch (MI.getOpcode()) {
2738     default:
2739       llvm_unreachable("Unexpected opcode");
2740     case TargetOpcode::G_LOAD:
2741       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2742       break;
2743     case TargetOpcode::G_SEXTLOAD:
2744       MIRBuilder.buildSExt(DstReg, TmpReg);
2745       break;
2746     case TargetOpcode::G_ZEXTLOAD:
2747       MIRBuilder.buildZExt(DstReg, TmpReg);
2748       break;
2749     }
2750 
2751     MI.eraseFromParent();
2752     return Legalized;
2753   }
2754 
2755   return UnableToLegalize;
2756 }
2757 
2758 LegalizerHelper::LegalizeResult
2759 LegalizerHelper::lowerStore(MachineInstr &MI) {
2760   // Lower a non-power of 2 store into multiple pow-2 stores.
2761   // E.g. split an i24 store into an i16 store + i8 store.
2762   // We do this by first extending the stored value to the next largest power
2763   // of 2 type, and then using truncating stores to store the components.
2764   // By doing this, likewise with G_LOAD, generate an extend that can be
2765   // artifact-combined away instead of leaving behind extracts.
2766   Register SrcReg = MI.getOperand(0).getReg();
2767   Register PtrReg = MI.getOperand(1).getReg();
2768   LLT SrcTy = MRI.getType(SrcReg);
2769   MachineMemOperand &MMO = **MI.memoperands_begin();
2770   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2771     return UnableToLegalize;
2772   if (SrcTy.isVector())
2773     return UnableToLegalize;
2774   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2775     return UnableToLegalize; // Don't know what we're being asked to do.
2776 
2777   // Extend to the next pow-2.
2778   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2779   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2780 
2781   // Obtain the smaller value by shifting away the larger value.
2782   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2783   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2784   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2785   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2786 
2787   // Generate the PtrAdd and truncating stores.
2788   LLT PtrTy = MRI.getType(PtrReg);
2789   auto OffsetCst = MIRBuilder.buildConstant(
2790     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2791   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2792   auto SmallPtr =
2793     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2794 
2795   MachineFunction &MF = MIRBuilder.getMF();
2796   MachineMemOperand *LargeMMO =
2797     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2798   MachineMemOperand *SmallMMO =
2799     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2800   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2801   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2802   MI.eraseFromParent();
2803   return Legalized;
2804 }
2805 
2806 LegalizerHelper::LegalizeResult
2807 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2808   switch (MI.getOpcode()) {
2809   case TargetOpcode::G_LOAD: {
2810     if (TypeIdx != 0)
2811       return UnableToLegalize;
2812 
2813     Observer.changingInstr(MI);
2814     bitcastDst(MI, CastTy, 0);
2815     Observer.changedInstr(MI);
2816     return Legalized;
2817   }
2818   case TargetOpcode::G_STORE: {
2819     if (TypeIdx != 0)
2820       return UnableToLegalize;
2821 
2822     Observer.changingInstr(MI);
2823     bitcastSrc(MI, CastTy, 0);
2824     Observer.changedInstr(MI);
2825     return Legalized;
2826   }
2827   case TargetOpcode::G_SELECT: {
2828     if (TypeIdx != 0)
2829       return UnableToLegalize;
2830 
2831     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2832       LLVM_DEBUG(
2833           dbgs() << "bitcast action not implemented for vector select\n");
2834       return UnableToLegalize;
2835     }
2836 
2837     Observer.changingInstr(MI);
2838     bitcastSrc(MI, CastTy, 2);
2839     bitcastSrc(MI, CastTy, 3);
2840     bitcastDst(MI, CastTy, 0);
2841     Observer.changedInstr(MI);
2842     return Legalized;
2843   }
2844   case TargetOpcode::G_AND:
2845   case TargetOpcode::G_OR:
2846   case TargetOpcode::G_XOR: {
2847     Observer.changingInstr(MI);
2848     bitcastSrc(MI, CastTy, 1);
2849     bitcastSrc(MI, CastTy, 2);
2850     bitcastDst(MI, CastTy, 0);
2851     Observer.changedInstr(MI);
2852     return Legalized;
2853   }
2854   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2855     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2856   case TargetOpcode::G_INSERT_VECTOR_ELT:
2857     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2858   default:
2859     return UnableToLegalize;
2860   }
2861 }
2862 
2863 // Legalize an instruction by changing the opcode in place.
2864 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2865     Observer.changingInstr(MI);
2866     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2867     Observer.changedInstr(MI);
2868 }
2869 
2870 LegalizerHelper::LegalizeResult
2871 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2872   using namespace TargetOpcode;
2873 
2874   switch(MI.getOpcode()) {
2875   default:
2876     return UnableToLegalize;
2877   case TargetOpcode::G_BITCAST:
2878     return lowerBitcast(MI);
2879   case TargetOpcode::G_SREM:
2880   case TargetOpcode::G_UREM: {
2881     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2882     auto Quot =
2883         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2884                               {MI.getOperand(1), MI.getOperand(2)});
2885 
2886     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2887     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2888     MI.eraseFromParent();
2889     return Legalized;
2890   }
2891   case TargetOpcode::G_SADDO:
2892   case TargetOpcode::G_SSUBO:
2893     return lowerSADDO_SSUBO(MI);
2894   case TargetOpcode::G_UMULH:
2895   case TargetOpcode::G_SMULH:
2896     return lowerSMULH_UMULH(MI);
2897   case TargetOpcode::G_SMULO:
2898   case TargetOpcode::G_UMULO: {
2899     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2900     // result.
2901     Register Res = MI.getOperand(0).getReg();
2902     Register Overflow = MI.getOperand(1).getReg();
2903     Register LHS = MI.getOperand(2).getReg();
2904     Register RHS = MI.getOperand(3).getReg();
2905     LLT Ty = MRI.getType(Res);
2906 
2907     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2908                           ? TargetOpcode::G_SMULH
2909                           : TargetOpcode::G_UMULH;
2910 
2911     Observer.changingInstr(MI);
2912     const auto &TII = MIRBuilder.getTII();
2913     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2914     MI.RemoveOperand(1);
2915     Observer.changedInstr(MI);
2916 
2917     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2918     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2919 
2920     // Move insert point forward so we can use the Res register if needed.
2921     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2922 
2923     // For *signed* multiply, overflow is detected by checking:
2924     // (hi != (lo >> bitwidth-1))
2925     if (Opcode == TargetOpcode::G_SMULH) {
2926       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2927       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2928       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2929     } else {
2930       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2931     }
2932     return Legalized;
2933   }
2934   case TargetOpcode::G_FNEG: {
2935     Register Res = MI.getOperand(0).getReg();
2936     LLT Ty = MRI.getType(Res);
2937 
2938     // TODO: Handle vector types once we are able to
2939     // represent them.
2940     if (Ty.isVector())
2941       return UnableToLegalize;
2942     auto SignMask =
2943         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2944     Register SubByReg = MI.getOperand(1).getReg();
2945     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2946     MI.eraseFromParent();
2947     return Legalized;
2948   }
2949   case TargetOpcode::G_FSUB: {
2950     Register Res = MI.getOperand(0).getReg();
2951     LLT Ty = MRI.getType(Res);
2952 
2953     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2954     // First, check if G_FNEG is marked as Lower. If so, we may
2955     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2956     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2957       return UnableToLegalize;
2958     Register LHS = MI.getOperand(1).getReg();
2959     Register RHS = MI.getOperand(2).getReg();
2960     Register Neg = MRI.createGenericVirtualRegister(Ty);
2961     MIRBuilder.buildFNeg(Neg, RHS);
2962     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2963     MI.eraseFromParent();
2964     return Legalized;
2965   }
2966   case TargetOpcode::G_FMAD:
2967     return lowerFMad(MI);
2968   case TargetOpcode::G_FFLOOR:
2969     return lowerFFloor(MI);
2970   case TargetOpcode::G_INTRINSIC_ROUND:
2971     return lowerIntrinsicRound(MI);
2972   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2973     // Since round even is the assumed rounding mode for unconstrained FP
2974     // operations, rint and roundeven are the same operation.
2975     changeOpcode(MI, TargetOpcode::G_FRINT);
2976     return Legalized;
2977   }
2978   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2979     Register OldValRes = MI.getOperand(0).getReg();
2980     Register SuccessRes = MI.getOperand(1).getReg();
2981     Register Addr = MI.getOperand(2).getReg();
2982     Register CmpVal = MI.getOperand(3).getReg();
2983     Register NewVal = MI.getOperand(4).getReg();
2984     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2985                                   **MI.memoperands_begin());
2986     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2987     MI.eraseFromParent();
2988     return Legalized;
2989   }
2990   case TargetOpcode::G_LOAD:
2991   case TargetOpcode::G_SEXTLOAD:
2992   case TargetOpcode::G_ZEXTLOAD:
2993     return lowerLoad(MI);
2994   case TargetOpcode::G_STORE:
2995     return lowerStore(MI);
2996   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2997   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2998   case TargetOpcode::G_CTLZ:
2999   case TargetOpcode::G_CTTZ:
3000   case TargetOpcode::G_CTPOP:
3001     return lowerBitCount(MI);
3002   case G_UADDO: {
3003     Register Res = MI.getOperand(0).getReg();
3004     Register CarryOut = MI.getOperand(1).getReg();
3005     Register LHS = MI.getOperand(2).getReg();
3006     Register RHS = MI.getOperand(3).getReg();
3007 
3008     MIRBuilder.buildAdd(Res, LHS, RHS);
3009     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3010 
3011     MI.eraseFromParent();
3012     return Legalized;
3013   }
3014   case G_UADDE: {
3015     Register Res = MI.getOperand(0).getReg();
3016     Register CarryOut = MI.getOperand(1).getReg();
3017     Register LHS = MI.getOperand(2).getReg();
3018     Register RHS = MI.getOperand(3).getReg();
3019     Register CarryIn = MI.getOperand(4).getReg();
3020     LLT Ty = MRI.getType(Res);
3021 
3022     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3023     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3024     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3025     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3026 
3027     MI.eraseFromParent();
3028     return Legalized;
3029   }
3030   case G_USUBO: {
3031     Register Res = MI.getOperand(0).getReg();
3032     Register BorrowOut = MI.getOperand(1).getReg();
3033     Register LHS = MI.getOperand(2).getReg();
3034     Register RHS = MI.getOperand(3).getReg();
3035 
3036     MIRBuilder.buildSub(Res, LHS, RHS);
3037     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3038 
3039     MI.eraseFromParent();
3040     return Legalized;
3041   }
3042   case G_USUBE: {
3043     Register Res = MI.getOperand(0).getReg();
3044     Register BorrowOut = MI.getOperand(1).getReg();
3045     Register LHS = MI.getOperand(2).getReg();
3046     Register RHS = MI.getOperand(3).getReg();
3047     Register BorrowIn = MI.getOperand(4).getReg();
3048     const LLT CondTy = MRI.getType(BorrowOut);
3049     const LLT Ty = MRI.getType(Res);
3050 
3051     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3052     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3053     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3054 
3055     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3056     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3057     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3058 
3059     MI.eraseFromParent();
3060     return Legalized;
3061   }
3062   case G_UITOFP:
3063     return lowerUITOFP(MI);
3064   case G_SITOFP:
3065     return lowerSITOFP(MI);
3066   case G_FPTOUI:
3067     return lowerFPTOUI(MI);
3068   case G_FPTOSI:
3069     return lowerFPTOSI(MI);
3070   case G_FPTRUNC:
3071     return lowerFPTRUNC(MI);
3072   case G_FPOWI:
3073     return lowerFPOWI(MI);
3074   case G_SMIN:
3075   case G_SMAX:
3076   case G_UMIN:
3077   case G_UMAX:
3078     return lowerMinMax(MI);
3079   case G_FCOPYSIGN:
3080     return lowerFCopySign(MI);
3081   case G_FMINNUM:
3082   case G_FMAXNUM:
3083     return lowerFMinNumMaxNum(MI);
3084   case G_MERGE_VALUES:
3085     return lowerMergeValues(MI);
3086   case G_UNMERGE_VALUES:
3087     return lowerUnmergeValues(MI);
3088   case TargetOpcode::G_SEXT_INREG: {
3089     assert(MI.getOperand(2).isImm() && "Expected immediate");
3090     int64_t SizeInBits = MI.getOperand(2).getImm();
3091 
3092     Register DstReg = MI.getOperand(0).getReg();
3093     Register SrcReg = MI.getOperand(1).getReg();
3094     LLT DstTy = MRI.getType(DstReg);
3095     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3096 
3097     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3098     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3099     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3100     MI.eraseFromParent();
3101     return Legalized;
3102   }
3103   case G_EXTRACT_VECTOR_ELT:
3104   case G_INSERT_VECTOR_ELT:
3105     return lowerExtractInsertVectorElt(MI);
3106   case G_SHUFFLE_VECTOR:
3107     return lowerShuffleVector(MI);
3108   case G_DYN_STACKALLOC:
3109     return lowerDynStackAlloc(MI);
3110   case G_EXTRACT:
3111     return lowerExtract(MI);
3112   case G_INSERT:
3113     return lowerInsert(MI);
3114   case G_BSWAP:
3115     return lowerBswap(MI);
3116   case G_BITREVERSE:
3117     return lowerBitreverse(MI);
3118   case G_READ_REGISTER:
3119   case G_WRITE_REGISTER:
3120     return lowerReadWriteRegister(MI);
3121   case G_UADDSAT:
3122   case G_USUBSAT: {
3123     // Try to make a reasonable guess about which lowering strategy to use. The
3124     // target can override this with custom lowering and calling the
3125     // implementation functions.
3126     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3127     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3128       return lowerAddSubSatToMinMax(MI);
3129     return lowerAddSubSatToAddoSubo(MI);
3130   }
3131   case G_SADDSAT:
3132   case G_SSUBSAT: {
3133     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3134 
3135     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3136     // since it's a shorter expansion. However, we would need to figure out the
3137     // preferred boolean type for the carry out for the query.
3138     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3139       return lowerAddSubSatToMinMax(MI);
3140     return lowerAddSubSatToAddoSubo(MI);
3141   }
3142   case G_SSHLSAT:
3143   case G_USHLSAT:
3144     return lowerShlSat(MI);
3145   case G_ABS: {
3146     // Expand %res = G_ABS %a into:
3147     // %v1 = G_ASHR %a, scalar_size-1
3148     // %v2 = G_ADD %a, %v1
3149     // %res = G_XOR %v2, %v1
3150     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3151     Register OpReg = MI.getOperand(1).getReg();
3152     auto ShiftAmt =
3153         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3154     auto Shift =
3155         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3156     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3157     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3158     MI.eraseFromParent();
3159     return Legalized;
3160   }
3161   case G_SELECT:
3162     return lowerSelect(MI);
3163   }
3164 }
3165 
3166 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3167                                                   Align MinAlign) const {
3168   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3169   // datalayout for the preferred alignment. Also there should be a target hook
3170   // for this to allow targets to reduce the alignment and ignore the
3171   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3172   // the type.
3173   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3174 }
3175 
3176 MachineInstrBuilder
3177 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3178                                       MachinePointerInfo &PtrInfo) {
3179   MachineFunction &MF = MIRBuilder.getMF();
3180   const DataLayout &DL = MIRBuilder.getDataLayout();
3181   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3182 
3183   unsigned AddrSpace = DL.getAllocaAddrSpace();
3184   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3185 
3186   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3187   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3188 }
3189 
3190 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3191                                         LLT VecTy) {
3192   int64_t IdxVal;
3193   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3194     return IdxReg;
3195 
3196   LLT IdxTy = B.getMRI()->getType(IdxReg);
3197   unsigned NElts = VecTy.getNumElements();
3198   if (isPowerOf2_32(NElts)) {
3199     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3200     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3201   }
3202 
3203   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3204       .getReg(0);
3205 }
3206 
3207 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3208                                                   Register Index) {
3209   LLT EltTy = VecTy.getElementType();
3210 
3211   // Calculate the element offset and add it to the pointer.
3212   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3213   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3214          "Converting bits to bytes lost precision");
3215 
3216   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3217 
3218   LLT IdxTy = MRI.getType(Index);
3219   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3220                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3221 
3222   LLT PtrTy = MRI.getType(VecPtr);
3223   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3224 }
3225 
3226 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3227     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3228   Register DstReg = MI.getOperand(0).getReg();
3229   LLT DstTy = MRI.getType(DstReg);
3230   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3231 
3232   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3233 
3234   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3235   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3236 
3237   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3238   MI.eraseFromParent();
3239   return Legalized;
3240 }
3241 
3242 // Handle splitting vector operations which need to have the same number of
3243 // elements in each type index, but each type index may have a different element
3244 // type.
3245 //
3246 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3247 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3248 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3249 //
3250 // Also handles some irregular breakdown cases, e.g.
3251 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3252 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3253 //             s64 = G_SHL s64, s32
3254 LegalizerHelper::LegalizeResult
3255 LegalizerHelper::fewerElementsVectorMultiEltType(
3256   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3257   if (TypeIdx != 0)
3258     return UnableToLegalize;
3259 
3260   const LLT NarrowTy0 = NarrowTyArg;
3261   const unsigned NewNumElts =
3262       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3263 
3264   const Register DstReg = MI.getOperand(0).getReg();
3265   LLT DstTy = MRI.getType(DstReg);
3266   LLT LeftoverTy0;
3267 
3268   // All of the operands need to have the same number of elements, so if we can
3269   // determine a type breakdown for the result type, we can for all of the
3270   // source types.
3271   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3272   if (NumParts < 0)
3273     return UnableToLegalize;
3274 
3275   SmallVector<MachineInstrBuilder, 4> NewInsts;
3276 
3277   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3278   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3279 
3280   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3281     Register SrcReg = MI.getOperand(I).getReg();
3282     LLT SrcTyI = MRI.getType(SrcReg);
3283     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3284     LLT LeftoverTyI;
3285 
3286     // Split this operand into the requested typed registers, and any leftover
3287     // required to reproduce the original type.
3288     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3289                       LeftoverRegs))
3290       return UnableToLegalize;
3291 
3292     if (I == 1) {
3293       // For the first operand, create an instruction for each part and setup
3294       // the result.
3295       for (Register PartReg : PartRegs) {
3296         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3297         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3298                                .addDef(PartDstReg)
3299                                .addUse(PartReg));
3300         DstRegs.push_back(PartDstReg);
3301       }
3302 
3303       for (Register LeftoverReg : LeftoverRegs) {
3304         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3305         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3306                                .addDef(PartDstReg)
3307                                .addUse(LeftoverReg));
3308         LeftoverDstRegs.push_back(PartDstReg);
3309       }
3310     } else {
3311       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3312 
3313       // Add the newly created operand splits to the existing instructions. The
3314       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3315       // pieces.
3316       unsigned InstCount = 0;
3317       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3318         NewInsts[InstCount++].addUse(PartRegs[J]);
3319       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3320         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3321     }
3322 
3323     PartRegs.clear();
3324     LeftoverRegs.clear();
3325   }
3326 
3327   // Insert the newly built operations and rebuild the result register.
3328   for (auto &MIB : NewInsts)
3329     MIRBuilder.insertInstr(MIB);
3330 
3331   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3332 
3333   MI.eraseFromParent();
3334   return Legalized;
3335 }
3336 
3337 LegalizerHelper::LegalizeResult
3338 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3339                                           LLT NarrowTy) {
3340   if (TypeIdx != 0)
3341     return UnableToLegalize;
3342 
3343   Register DstReg = MI.getOperand(0).getReg();
3344   Register SrcReg = MI.getOperand(1).getReg();
3345   LLT DstTy = MRI.getType(DstReg);
3346   LLT SrcTy = MRI.getType(SrcReg);
3347 
3348   LLT NarrowTy0 = NarrowTy;
3349   LLT NarrowTy1;
3350   unsigned NumParts;
3351 
3352   if (NarrowTy.isVector()) {
3353     // Uneven breakdown not handled.
3354     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3355     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3356       return UnableToLegalize;
3357 
3358     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3359   } else {
3360     NumParts = DstTy.getNumElements();
3361     NarrowTy1 = SrcTy.getElementType();
3362   }
3363 
3364   SmallVector<Register, 4> SrcRegs, DstRegs;
3365   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3366 
3367   for (unsigned I = 0; I < NumParts; ++I) {
3368     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3369     MachineInstr *NewInst =
3370         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3371 
3372     NewInst->setFlags(MI.getFlags());
3373     DstRegs.push_back(DstReg);
3374   }
3375 
3376   if (NarrowTy.isVector())
3377     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3378   else
3379     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3380 
3381   MI.eraseFromParent();
3382   return Legalized;
3383 }
3384 
3385 LegalizerHelper::LegalizeResult
3386 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3387                                         LLT NarrowTy) {
3388   Register DstReg = MI.getOperand(0).getReg();
3389   Register Src0Reg = MI.getOperand(2).getReg();
3390   LLT DstTy = MRI.getType(DstReg);
3391   LLT SrcTy = MRI.getType(Src0Reg);
3392 
3393   unsigned NumParts;
3394   LLT NarrowTy0, NarrowTy1;
3395 
3396   if (TypeIdx == 0) {
3397     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3398     unsigned OldElts = DstTy.getNumElements();
3399 
3400     NarrowTy0 = NarrowTy;
3401     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3402     NarrowTy1 = NarrowTy.isVector() ?
3403       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3404       SrcTy.getElementType();
3405 
3406   } else {
3407     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3408     unsigned OldElts = SrcTy.getNumElements();
3409 
3410     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3411       NarrowTy.getNumElements();
3412     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3413                             DstTy.getScalarSizeInBits());
3414     NarrowTy1 = NarrowTy;
3415   }
3416 
3417   // FIXME: Don't know how to handle the situation where the small vectors
3418   // aren't all the same size yet.
3419   if (NarrowTy1.isVector() &&
3420       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3421     return UnableToLegalize;
3422 
3423   CmpInst::Predicate Pred
3424     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3425 
3426   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3427   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3428   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3429 
3430   for (unsigned I = 0; I < NumParts; ++I) {
3431     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3432     DstRegs.push_back(DstReg);
3433 
3434     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3435       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3436     else {
3437       MachineInstr *NewCmp
3438         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3439       NewCmp->setFlags(MI.getFlags());
3440     }
3441   }
3442 
3443   if (NarrowTy1.isVector())
3444     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3445   else
3446     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3447 
3448   MI.eraseFromParent();
3449   return Legalized;
3450 }
3451 
3452 LegalizerHelper::LegalizeResult
3453 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3454                                            LLT NarrowTy) {
3455   Register DstReg = MI.getOperand(0).getReg();
3456   Register CondReg = MI.getOperand(1).getReg();
3457 
3458   unsigned NumParts = 0;
3459   LLT NarrowTy0, NarrowTy1;
3460 
3461   LLT DstTy = MRI.getType(DstReg);
3462   LLT CondTy = MRI.getType(CondReg);
3463   unsigned Size = DstTy.getSizeInBits();
3464 
3465   assert(TypeIdx == 0 || CondTy.isVector());
3466 
3467   if (TypeIdx == 0) {
3468     NarrowTy0 = NarrowTy;
3469     NarrowTy1 = CondTy;
3470 
3471     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3472     // FIXME: Don't know how to handle the situation where the small vectors
3473     // aren't all the same size yet.
3474     if (Size % NarrowSize != 0)
3475       return UnableToLegalize;
3476 
3477     NumParts = Size / NarrowSize;
3478 
3479     // Need to break down the condition type
3480     if (CondTy.isVector()) {
3481       if (CondTy.getNumElements() == NumParts)
3482         NarrowTy1 = CondTy.getElementType();
3483       else
3484         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3485                                 CondTy.getScalarSizeInBits());
3486     }
3487   } else {
3488     NumParts = CondTy.getNumElements();
3489     if (NarrowTy.isVector()) {
3490       // TODO: Handle uneven breakdown.
3491       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3492         return UnableToLegalize;
3493 
3494       return UnableToLegalize;
3495     } else {
3496       NarrowTy0 = DstTy.getElementType();
3497       NarrowTy1 = NarrowTy;
3498     }
3499   }
3500 
3501   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3502   if (CondTy.isVector())
3503     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3504 
3505   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3506   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3507 
3508   for (unsigned i = 0; i < NumParts; ++i) {
3509     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3510     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3511                            Src1Regs[i], Src2Regs[i]);
3512     DstRegs.push_back(DstReg);
3513   }
3514 
3515   if (NarrowTy0.isVector())
3516     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3517   else
3518     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3519 
3520   MI.eraseFromParent();
3521   return Legalized;
3522 }
3523 
3524 LegalizerHelper::LegalizeResult
3525 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3526                                         LLT NarrowTy) {
3527   const Register DstReg = MI.getOperand(0).getReg();
3528   LLT PhiTy = MRI.getType(DstReg);
3529   LLT LeftoverTy;
3530 
3531   // All of the operands need to have the same number of elements, so if we can
3532   // determine a type breakdown for the result type, we can for all of the
3533   // source types.
3534   int NumParts, NumLeftover;
3535   std::tie(NumParts, NumLeftover)
3536     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3537   if (NumParts < 0)
3538     return UnableToLegalize;
3539 
3540   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3541   SmallVector<MachineInstrBuilder, 4> NewInsts;
3542 
3543   const int TotalNumParts = NumParts + NumLeftover;
3544 
3545   // Insert the new phis in the result block first.
3546   for (int I = 0; I != TotalNumParts; ++I) {
3547     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3548     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3549     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3550                        .addDef(PartDstReg));
3551     if (I < NumParts)
3552       DstRegs.push_back(PartDstReg);
3553     else
3554       LeftoverDstRegs.push_back(PartDstReg);
3555   }
3556 
3557   MachineBasicBlock *MBB = MI.getParent();
3558   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3559   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3560 
3561   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3562 
3563   // Insert code to extract the incoming values in each predecessor block.
3564   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3565     PartRegs.clear();
3566     LeftoverRegs.clear();
3567 
3568     Register SrcReg = MI.getOperand(I).getReg();
3569     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3570     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3571 
3572     LLT Unused;
3573     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3574                       LeftoverRegs))
3575       return UnableToLegalize;
3576 
3577     // Add the newly created operand splits to the existing instructions. The
3578     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3579     // pieces.
3580     for (int J = 0; J != TotalNumParts; ++J) {
3581       MachineInstrBuilder MIB = NewInsts[J];
3582       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3583       MIB.addMBB(&OpMBB);
3584     }
3585   }
3586 
3587   MI.eraseFromParent();
3588   return Legalized;
3589 }
3590 
3591 LegalizerHelper::LegalizeResult
3592 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3593                                                   unsigned TypeIdx,
3594                                                   LLT NarrowTy) {
3595   if (TypeIdx != 1)
3596     return UnableToLegalize;
3597 
3598   const int NumDst = MI.getNumOperands() - 1;
3599   const Register SrcReg = MI.getOperand(NumDst).getReg();
3600   LLT SrcTy = MRI.getType(SrcReg);
3601 
3602   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3603 
3604   // TODO: Create sequence of extracts.
3605   if (DstTy == NarrowTy)
3606     return UnableToLegalize;
3607 
3608   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3609   if (DstTy == GCDTy) {
3610     // This would just be a copy of the same unmerge.
3611     // TODO: Create extracts, pad with undef and create intermediate merges.
3612     return UnableToLegalize;
3613   }
3614 
3615   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3616   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3617   const int PartsPerUnmerge = NumDst / NumUnmerge;
3618 
3619   for (int I = 0; I != NumUnmerge; ++I) {
3620     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3621 
3622     for (int J = 0; J != PartsPerUnmerge; ++J)
3623       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3624     MIB.addUse(Unmerge.getReg(I));
3625   }
3626 
3627   MI.eraseFromParent();
3628   return Legalized;
3629 }
3630 
3631 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3632 // a vector
3633 //
3634 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3635 // undef as necessary.
3636 //
3637 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3638 //   -> <2 x s16>
3639 //
3640 // %4:_(s16) = G_IMPLICIT_DEF
3641 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3642 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3643 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3644 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3645 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3646 LegalizerHelper::LegalizeResult
3647 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3648                                           LLT NarrowTy) {
3649   Register DstReg = MI.getOperand(0).getReg();
3650   LLT DstTy = MRI.getType(DstReg);
3651   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3652   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3653 
3654   // Break into a common type
3655   SmallVector<Register, 16> Parts;
3656   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3657     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3658 
3659   // Build the requested new merge, padding with undef.
3660   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3661                                   TargetOpcode::G_ANYEXT);
3662 
3663   // Pack into the original result register.
3664   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3665 
3666   MI.eraseFromParent();
3667   return Legalized;
3668 }
3669 
3670 LegalizerHelper::LegalizeResult
3671 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3672                                                            unsigned TypeIdx,
3673                                                            LLT NarrowVecTy) {
3674   Register DstReg = MI.getOperand(0).getReg();
3675   Register SrcVec = MI.getOperand(1).getReg();
3676   Register InsertVal;
3677   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3678 
3679   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3680   if (IsInsert)
3681     InsertVal = MI.getOperand(2).getReg();
3682 
3683   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3684 
3685   // TODO: Handle total scalarization case.
3686   if (!NarrowVecTy.isVector())
3687     return UnableToLegalize;
3688 
3689   LLT VecTy = MRI.getType(SrcVec);
3690 
3691   // If the index is a constant, we can really break this down as you would
3692   // expect, and index into the target size pieces.
3693   int64_t IdxVal;
3694   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3695     // Avoid out of bounds indexing the pieces.
3696     if (IdxVal >= VecTy.getNumElements()) {
3697       MIRBuilder.buildUndef(DstReg);
3698       MI.eraseFromParent();
3699       return Legalized;
3700     }
3701 
3702     SmallVector<Register, 8> VecParts;
3703     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3704 
3705     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3706     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3707                                     TargetOpcode::G_ANYEXT);
3708 
3709     unsigned NewNumElts = NarrowVecTy.getNumElements();
3710 
3711     LLT IdxTy = MRI.getType(Idx);
3712     int64_t PartIdx = IdxVal / NewNumElts;
3713     auto NewIdx =
3714         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3715 
3716     if (IsInsert) {
3717       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3718 
3719       // Use the adjusted index to insert into one of the subvectors.
3720       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3721           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3722       VecParts[PartIdx] = InsertPart.getReg(0);
3723 
3724       // Recombine the inserted subvector with the others to reform the result
3725       // vector.
3726       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3727     } else {
3728       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3729     }
3730 
3731     MI.eraseFromParent();
3732     return Legalized;
3733   }
3734 
3735   // With a variable index, we can't perform the operation in a smaller type, so
3736   // we're forced to expand this.
3737   //
3738   // TODO: We could emit a chain of compare/select to figure out which piece to
3739   // index.
3740   return lowerExtractInsertVectorElt(MI);
3741 }
3742 
3743 LegalizerHelper::LegalizeResult
3744 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3745                                       LLT NarrowTy) {
3746   // FIXME: Don't know how to handle secondary types yet.
3747   if (TypeIdx != 0)
3748     return UnableToLegalize;
3749 
3750   MachineMemOperand *MMO = *MI.memoperands_begin();
3751 
3752   // This implementation doesn't work for atomics. Give up instead of doing
3753   // something invalid.
3754   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3755       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3756     return UnableToLegalize;
3757 
3758   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3759   Register ValReg = MI.getOperand(0).getReg();
3760   Register AddrReg = MI.getOperand(1).getReg();
3761   LLT ValTy = MRI.getType(ValReg);
3762 
3763   // FIXME: Do we need a distinct NarrowMemory legalize action?
3764   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3765     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3766     return UnableToLegalize;
3767   }
3768 
3769   int NumParts = -1;
3770   int NumLeftover = -1;
3771   LLT LeftoverTy;
3772   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3773   if (IsLoad) {
3774     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3775   } else {
3776     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3777                      NarrowLeftoverRegs)) {
3778       NumParts = NarrowRegs.size();
3779       NumLeftover = NarrowLeftoverRegs.size();
3780     }
3781   }
3782 
3783   if (NumParts == -1)
3784     return UnableToLegalize;
3785 
3786   LLT PtrTy = MRI.getType(AddrReg);
3787   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3788 
3789   unsigned TotalSize = ValTy.getSizeInBits();
3790 
3791   // Split the load/store into PartTy sized pieces starting at Offset. If this
3792   // is a load, return the new registers in ValRegs. For a store, each elements
3793   // of ValRegs should be PartTy. Returns the next offset that needs to be
3794   // handled.
3795   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3796                              unsigned Offset) -> unsigned {
3797     MachineFunction &MF = MIRBuilder.getMF();
3798     unsigned PartSize = PartTy.getSizeInBits();
3799     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3800          Offset += PartSize, ++Idx) {
3801       unsigned ByteSize = PartSize / 8;
3802       unsigned ByteOffset = Offset / 8;
3803       Register NewAddrReg;
3804 
3805       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3806 
3807       MachineMemOperand *NewMMO =
3808         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3809 
3810       if (IsLoad) {
3811         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3812         ValRegs.push_back(Dst);
3813         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3814       } else {
3815         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3816       }
3817     }
3818 
3819     return Offset;
3820   };
3821 
3822   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3823 
3824   // Handle the rest of the register if this isn't an even type breakdown.
3825   if (LeftoverTy.isValid())
3826     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3827 
3828   if (IsLoad) {
3829     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3830                 LeftoverTy, NarrowLeftoverRegs);
3831   }
3832 
3833   MI.eraseFromParent();
3834   return Legalized;
3835 }
3836 
3837 LegalizerHelper::LegalizeResult
3838 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3839                                       LLT NarrowTy) {
3840   assert(TypeIdx == 0 && "only one type index expected");
3841 
3842   const unsigned Opc = MI.getOpcode();
3843   const int NumOps = MI.getNumOperands() - 1;
3844   const Register DstReg = MI.getOperand(0).getReg();
3845   const unsigned Flags = MI.getFlags();
3846   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3847   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3848 
3849   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3850 
3851   // First of all check whether we are narrowing (changing the element type)
3852   // or reducing the vector elements
3853   const LLT DstTy = MRI.getType(DstReg);
3854   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3855 
3856   SmallVector<Register, 8> ExtractedRegs[3];
3857   SmallVector<Register, 8> Parts;
3858 
3859   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3860 
3861   // Break down all the sources into NarrowTy pieces we can operate on. This may
3862   // involve creating merges to a wider type, padded with undef.
3863   for (int I = 0; I != NumOps; ++I) {
3864     Register SrcReg = MI.getOperand(I + 1).getReg();
3865     LLT SrcTy = MRI.getType(SrcReg);
3866 
3867     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3868     // For fewerElements, this is a smaller vector with the same element type.
3869     LLT OpNarrowTy;
3870     if (IsNarrow) {
3871       OpNarrowTy = NarrowScalarTy;
3872 
3873       // In case of narrowing, we need to cast vectors to scalars for this to
3874       // work properly
3875       // FIXME: Can we do without the bitcast here if we're narrowing?
3876       if (SrcTy.isVector()) {
3877         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3878         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3879       }
3880     } else {
3881       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3882     }
3883 
3884     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3885 
3886     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3887     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3888                         TargetOpcode::G_ANYEXT);
3889   }
3890 
3891   SmallVector<Register, 8> ResultRegs;
3892 
3893   // Input operands for each sub-instruction.
3894   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3895 
3896   int NumParts = ExtractedRegs[0].size();
3897   const unsigned DstSize = DstTy.getSizeInBits();
3898   const LLT DstScalarTy = LLT::scalar(DstSize);
3899 
3900   // Narrowing needs to use scalar types
3901   LLT DstLCMTy, NarrowDstTy;
3902   if (IsNarrow) {
3903     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3904     NarrowDstTy = NarrowScalarTy;
3905   } else {
3906     DstLCMTy = getLCMType(DstTy, NarrowTy);
3907     NarrowDstTy = NarrowTy;
3908   }
3909 
3910   // We widened the source registers to satisfy merge/unmerge size
3911   // constraints. We'll have some extra fully undef parts.
3912   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3913 
3914   for (int I = 0; I != NumRealParts; ++I) {
3915     // Emit this instruction on each of the split pieces.
3916     for (int J = 0; J != NumOps; ++J)
3917       InputRegs[J] = ExtractedRegs[J][I];
3918 
3919     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3920     ResultRegs.push_back(Inst.getReg(0));
3921   }
3922 
3923   // Fill out the widened result with undef instead of creating instructions
3924   // with undef inputs.
3925   int NumUndefParts = NumParts - NumRealParts;
3926   if (NumUndefParts != 0)
3927     ResultRegs.append(NumUndefParts,
3928                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3929 
3930   // Extract the possibly padded result. Use a scratch register if we need to do
3931   // a final bitcast, otherwise use the original result register.
3932   Register MergeDstReg;
3933   if (IsNarrow && DstTy.isVector())
3934     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3935   else
3936     MergeDstReg = DstReg;
3937 
3938   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3939 
3940   // Recast to vector if we narrowed a vector
3941   if (IsNarrow && DstTy.isVector())
3942     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3943 
3944   MI.eraseFromParent();
3945   return Legalized;
3946 }
3947 
3948 LegalizerHelper::LegalizeResult
3949 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3950                                               LLT NarrowTy) {
3951   Register DstReg = MI.getOperand(0).getReg();
3952   Register SrcReg = MI.getOperand(1).getReg();
3953   int64_t Imm = MI.getOperand(2).getImm();
3954 
3955   LLT DstTy = MRI.getType(DstReg);
3956 
3957   SmallVector<Register, 8> Parts;
3958   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3959   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3960 
3961   for (Register &R : Parts)
3962     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3963 
3964   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3965 
3966   MI.eraseFromParent();
3967   return Legalized;
3968 }
3969 
3970 LegalizerHelper::LegalizeResult
3971 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3972                                      LLT NarrowTy) {
3973   using namespace TargetOpcode;
3974 
3975   switch (MI.getOpcode()) {
3976   case G_IMPLICIT_DEF:
3977     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3978   case G_TRUNC:
3979   case G_AND:
3980   case G_OR:
3981   case G_XOR:
3982   case G_ADD:
3983   case G_SUB:
3984   case G_MUL:
3985   case G_PTR_ADD:
3986   case G_SMULH:
3987   case G_UMULH:
3988   case G_FADD:
3989   case G_FMUL:
3990   case G_FSUB:
3991   case G_FNEG:
3992   case G_FABS:
3993   case G_FCANONICALIZE:
3994   case G_FDIV:
3995   case G_FREM:
3996   case G_FMA:
3997   case G_FMAD:
3998   case G_FPOW:
3999   case G_FEXP:
4000   case G_FEXP2:
4001   case G_FLOG:
4002   case G_FLOG2:
4003   case G_FLOG10:
4004   case G_FNEARBYINT:
4005   case G_FCEIL:
4006   case G_FFLOOR:
4007   case G_FRINT:
4008   case G_INTRINSIC_ROUND:
4009   case G_INTRINSIC_ROUNDEVEN:
4010   case G_INTRINSIC_TRUNC:
4011   case G_FCOS:
4012   case G_FSIN:
4013   case G_FSQRT:
4014   case G_BSWAP:
4015   case G_BITREVERSE:
4016   case G_SDIV:
4017   case G_UDIV:
4018   case G_SREM:
4019   case G_UREM:
4020   case G_SMIN:
4021   case G_SMAX:
4022   case G_UMIN:
4023   case G_UMAX:
4024   case G_FMINNUM:
4025   case G_FMAXNUM:
4026   case G_FMINNUM_IEEE:
4027   case G_FMAXNUM_IEEE:
4028   case G_FMINIMUM:
4029   case G_FMAXIMUM:
4030   case G_FSHL:
4031   case G_FSHR:
4032   case G_FREEZE:
4033   case G_SADDSAT:
4034   case G_SSUBSAT:
4035   case G_UADDSAT:
4036   case G_USUBSAT:
4037     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4038   case G_SHL:
4039   case G_LSHR:
4040   case G_ASHR:
4041   case G_SSHLSAT:
4042   case G_USHLSAT:
4043   case G_CTLZ:
4044   case G_CTLZ_ZERO_UNDEF:
4045   case G_CTTZ:
4046   case G_CTTZ_ZERO_UNDEF:
4047   case G_CTPOP:
4048   case G_FCOPYSIGN:
4049     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4050   case G_ZEXT:
4051   case G_SEXT:
4052   case G_ANYEXT:
4053   case G_FPEXT:
4054   case G_FPTRUNC:
4055   case G_SITOFP:
4056   case G_UITOFP:
4057   case G_FPTOSI:
4058   case G_FPTOUI:
4059   case G_INTTOPTR:
4060   case G_PTRTOINT:
4061   case G_ADDRSPACE_CAST:
4062     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4063   case G_ICMP:
4064   case G_FCMP:
4065     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4066   case G_SELECT:
4067     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4068   case G_PHI:
4069     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4070   case G_UNMERGE_VALUES:
4071     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4072   case G_BUILD_VECTOR:
4073     assert(TypeIdx == 0 && "not a vector type index");
4074     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4075   case G_CONCAT_VECTORS:
4076     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4077       return UnableToLegalize;
4078     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4079   case G_EXTRACT_VECTOR_ELT:
4080   case G_INSERT_VECTOR_ELT:
4081     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4082   case G_LOAD:
4083   case G_STORE:
4084     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4085   case G_SEXT_INREG:
4086     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4087   default:
4088     return UnableToLegalize;
4089   }
4090 }
4091 
4092 LegalizerHelper::LegalizeResult
4093 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4094                                              const LLT HalfTy, const LLT AmtTy) {
4095 
4096   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4097   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4098   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4099 
4100   if (Amt.isNullValue()) {
4101     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4102     MI.eraseFromParent();
4103     return Legalized;
4104   }
4105 
4106   LLT NVT = HalfTy;
4107   unsigned NVTBits = HalfTy.getSizeInBits();
4108   unsigned VTBits = 2 * NVTBits;
4109 
4110   SrcOp Lo(Register(0)), Hi(Register(0));
4111   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4112     if (Amt.ugt(VTBits)) {
4113       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4114     } else if (Amt.ugt(NVTBits)) {
4115       Lo = MIRBuilder.buildConstant(NVT, 0);
4116       Hi = MIRBuilder.buildShl(NVT, InL,
4117                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4118     } else if (Amt == NVTBits) {
4119       Lo = MIRBuilder.buildConstant(NVT, 0);
4120       Hi = InL;
4121     } else {
4122       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4123       auto OrLHS =
4124           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4125       auto OrRHS = MIRBuilder.buildLShr(
4126           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4127       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4128     }
4129   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4130     if (Amt.ugt(VTBits)) {
4131       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4132     } else if (Amt.ugt(NVTBits)) {
4133       Lo = MIRBuilder.buildLShr(NVT, InH,
4134                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4135       Hi = MIRBuilder.buildConstant(NVT, 0);
4136     } else if (Amt == NVTBits) {
4137       Lo = InH;
4138       Hi = MIRBuilder.buildConstant(NVT, 0);
4139     } else {
4140       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4141 
4142       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4143       auto OrRHS = MIRBuilder.buildShl(
4144           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4145 
4146       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4147       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4148     }
4149   } else {
4150     if (Amt.ugt(VTBits)) {
4151       Hi = Lo = MIRBuilder.buildAShr(
4152           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4153     } else if (Amt.ugt(NVTBits)) {
4154       Lo = MIRBuilder.buildAShr(NVT, InH,
4155                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4156       Hi = MIRBuilder.buildAShr(NVT, InH,
4157                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4158     } else if (Amt == NVTBits) {
4159       Lo = InH;
4160       Hi = MIRBuilder.buildAShr(NVT, InH,
4161                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4162     } else {
4163       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4164 
4165       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4166       auto OrRHS = MIRBuilder.buildShl(
4167           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4168 
4169       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4170       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4171     }
4172   }
4173 
4174   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4175   MI.eraseFromParent();
4176 
4177   return Legalized;
4178 }
4179 
4180 // TODO: Optimize if constant shift amount.
4181 LegalizerHelper::LegalizeResult
4182 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4183                                    LLT RequestedTy) {
4184   if (TypeIdx == 1) {
4185     Observer.changingInstr(MI);
4186     narrowScalarSrc(MI, RequestedTy, 2);
4187     Observer.changedInstr(MI);
4188     return Legalized;
4189   }
4190 
4191   Register DstReg = MI.getOperand(0).getReg();
4192   LLT DstTy = MRI.getType(DstReg);
4193   if (DstTy.isVector())
4194     return UnableToLegalize;
4195 
4196   Register Amt = MI.getOperand(2).getReg();
4197   LLT ShiftAmtTy = MRI.getType(Amt);
4198   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4199   if (DstEltSize % 2 != 0)
4200     return UnableToLegalize;
4201 
4202   // Ignore the input type. We can only go to exactly half the size of the
4203   // input. If that isn't small enough, the resulting pieces will be further
4204   // legalized.
4205   const unsigned NewBitSize = DstEltSize / 2;
4206   const LLT HalfTy = LLT::scalar(NewBitSize);
4207   const LLT CondTy = LLT::scalar(1);
4208 
4209   if (const MachineInstr *KShiftAmt =
4210           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4211     return narrowScalarShiftByConstant(
4212         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4213   }
4214 
4215   // TODO: Expand with known bits.
4216 
4217   // Handle the fully general expansion by an unknown amount.
4218   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4219 
4220   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4221   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4222   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4223 
4224   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4225   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4226 
4227   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4228   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4229   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4230 
4231   Register ResultRegs[2];
4232   switch (MI.getOpcode()) {
4233   case TargetOpcode::G_SHL: {
4234     // Short: ShAmt < NewBitSize
4235     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4236 
4237     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4238     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4239     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4240 
4241     // Long: ShAmt >= NewBitSize
4242     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4243     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4244 
4245     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4246     auto Hi = MIRBuilder.buildSelect(
4247         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4248 
4249     ResultRegs[0] = Lo.getReg(0);
4250     ResultRegs[1] = Hi.getReg(0);
4251     break;
4252   }
4253   case TargetOpcode::G_LSHR:
4254   case TargetOpcode::G_ASHR: {
4255     // Short: ShAmt < NewBitSize
4256     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4257 
4258     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4259     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4260     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4261 
4262     // Long: ShAmt >= NewBitSize
4263     MachineInstrBuilder HiL;
4264     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4265       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4266     } else {
4267       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4268       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4269     }
4270     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4271                                      {InH, AmtExcess});     // Lo from Hi part.
4272 
4273     auto Lo = MIRBuilder.buildSelect(
4274         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4275 
4276     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4277 
4278     ResultRegs[0] = Lo.getReg(0);
4279     ResultRegs[1] = Hi.getReg(0);
4280     break;
4281   }
4282   default:
4283     llvm_unreachable("not a shift");
4284   }
4285 
4286   MIRBuilder.buildMerge(DstReg, ResultRegs);
4287   MI.eraseFromParent();
4288   return Legalized;
4289 }
4290 
4291 LegalizerHelper::LegalizeResult
4292 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4293                                        LLT MoreTy) {
4294   assert(TypeIdx == 0 && "Expecting only Idx 0");
4295 
4296   Observer.changingInstr(MI);
4297   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4298     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4299     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4300     moreElementsVectorSrc(MI, MoreTy, I);
4301   }
4302 
4303   MachineBasicBlock &MBB = *MI.getParent();
4304   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4305   moreElementsVectorDst(MI, MoreTy, 0);
4306   Observer.changedInstr(MI);
4307   return Legalized;
4308 }
4309 
4310 LegalizerHelper::LegalizeResult
4311 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4312                                     LLT MoreTy) {
4313   unsigned Opc = MI.getOpcode();
4314   switch (Opc) {
4315   case TargetOpcode::G_IMPLICIT_DEF:
4316   case TargetOpcode::G_LOAD: {
4317     if (TypeIdx != 0)
4318       return UnableToLegalize;
4319     Observer.changingInstr(MI);
4320     moreElementsVectorDst(MI, MoreTy, 0);
4321     Observer.changedInstr(MI);
4322     return Legalized;
4323   }
4324   case TargetOpcode::G_STORE:
4325     if (TypeIdx != 0)
4326       return UnableToLegalize;
4327     Observer.changingInstr(MI);
4328     moreElementsVectorSrc(MI, MoreTy, 0);
4329     Observer.changedInstr(MI);
4330     return Legalized;
4331   case TargetOpcode::G_AND:
4332   case TargetOpcode::G_OR:
4333   case TargetOpcode::G_XOR:
4334   case TargetOpcode::G_SMIN:
4335   case TargetOpcode::G_SMAX:
4336   case TargetOpcode::G_UMIN:
4337   case TargetOpcode::G_UMAX:
4338   case TargetOpcode::G_FMINNUM:
4339   case TargetOpcode::G_FMAXNUM:
4340   case TargetOpcode::G_FMINNUM_IEEE:
4341   case TargetOpcode::G_FMAXNUM_IEEE:
4342   case TargetOpcode::G_FMINIMUM:
4343   case TargetOpcode::G_FMAXIMUM: {
4344     Observer.changingInstr(MI);
4345     moreElementsVectorSrc(MI, MoreTy, 1);
4346     moreElementsVectorSrc(MI, MoreTy, 2);
4347     moreElementsVectorDst(MI, MoreTy, 0);
4348     Observer.changedInstr(MI);
4349     return Legalized;
4350   }
4351   case TargetOpcode::G_EXTRACT:
4352     if (TypeIdx != 1)
4353       return UnableToLegalize;
4354     Observer.changingInstr(MI);
4355     moreElementsVectorSrc(MI, MoreTy, 1);
4356     Observer.changedInstr(MI);
4357     return Legalized;
4358   case TargetOpcode::G_INSERT:
4359   case TargetOpcode::G_FREEZE:
4360     if (TypeIdx != 0)
4361       return UnableToLegalize;
4362     Observer.changingInstr(MI);
4363     moreElementsVectorSrc(MI, MoreTy, 1);
4364     moreElementsVectorDst(MI, MoreTy, 0);
4365     Observer.changedInstr(MI);
4366     return Legalized;
4367   case TargetOpcode::G_SELECT:
4368     if (TypeIdx != 0)
4369       return UnableToLegalize;
4370     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4371       return UnableToLegalize;
4372 
4373     Observer.changingInstr(MI);
4374     moreElementsVectorSrc(MI, MoreTy, 2);
4375     moreElementsVectorSrc(MI, MoreTy, 3);
4376     moreElementsVectorDst(MI, MoreTy, 0);
4377     Observer.changedInstr(MI);
4378     return Legalized;
4379   case TargetOpcode::G_UNMERGE_VALUES: {
4380     if (TypeIdx != 1)
4381       return UnableToLegalize;
4382 
4383     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4384     int NumDst = MI.getNumOperands() - 1;
4385     moreElementsVectorSrc(MI, MoreTy, NumDst);
4386 
4387     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4388     for (int I = 0; I != NumDst; ++I)
4389       MIB.addDef(MI.getOperand(I).getReg());
4390 
4391     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4392     for (int I = NumDst; I != NewNumDst; ++I)
4393       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4394 
4395     MIB.addUse(MI.getOperand(NumDst).getReg());
4396     MI.eraseFromParent();
4397     return Legalized;
4398   }
4399   case TargetOpcode::G_PHI:
4400     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4401   default:
4402     return UnableToLegalize;
4403   }
4404 }
4405 
4406 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4407                                         ArrayRef<Register> Src1Regs,
4408                                         ArrayRef<Register> Src2Regs,
4409                                         LLT NarrowTy) {
4410   MachineIRBuilder &B = MIRBuilder;
4411   unsigned SrcParts = Src1Regs.size();
4412   unsigned DstParts = DstRegs.size();
4413 
4414   unsigned DstIdx = 0; // Low bits of the result.
4415   Register FactorSum =
4416       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4417   DstRegs[DstIdx] = FactorSum;
4418 
4419   unsigned CarrySumPrevDstIdx;
4420   SmallVector<Register, 4> Factors;
4421 
4422   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4423     // Collect low parts of muls for DstIdx.
4424     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4425          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4426       MachineInstrBuilder Mul =
4427           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4428       Factors.push_back(Mul.getReg(0));
4429     }
4430     // Collect high parts of muls from previous DstIdx.
4431     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4432          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4433       MachineInstrBuilder Umulh =
4434           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4435       Factors.push_back(Umulh.getReg(0));
4436     }
4437     // Add CarrySum from additions calculated for previous DstIdx.
4438     if (DstIdx != 1) {
4439       Factors.push_back(CarrySumPrevDstIdx);
4440     }
4441 
4442     Register CarrySum;
4443     // Add all factors and accumulate all carries into CarrySum.
4444     if (DstIdx != DstParts - 1) {
4445       MachineInstrBuilder Uaddo =
4446           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4447       FactorSum = Uaddo.getReg(0);
4448       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4449       for (unsigned i = 2; i < Factors.size(); ++i) {
4450         MachineInstrBuilder Uaddo =
4451             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4452         FactorSum = Uaddo.getReg(0);
4453         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4454         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4455       }
4456     } else {
4457       // Since value for the next index is not calculated, neither is CarrySum.
4458       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4459       for (unsigned i = 2; i < Factors.size(); ++i)
4460         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4461     }
4462 
4463     CarrySumPrevDstIdx = CarrySum;
4464     DstRegs[DstIdx] = FactorSum;
4465     Factors.clear();
4466   }
4467 }
4468 
4469 LegalizerHelper::LegalizeResult
4470 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4471   Register DstReg = MI.getOperand(0).getReg();
4472   Register Src1 = MI.getOperand(1).getReg();
4473   Register Src2 = MI.getOperand(2).getReg();
4474 
4475   LLT Ty = MRI.getType(DstReg);
4476   if (Ty.isVector())
4477     return UnableToLegalize;
4478 
4479   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4480   unsigned DstSize = Ty.getSizeInBits();
4481   unsigned NarrowSize = NarrowTy.getSizeInBits();
4482   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4483     return UnableToLegalize;
4484 
4485   unsigned NumDstParts = DstSize / NarrowSize;
4486   unsigned NumSrcParts = SrcSize / NarrowSize;
4487   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4488   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4489 
4490   SmallVector<Register, 2> Src1Parts, Src2Parts;
4491   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4492   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4493   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4494   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4495 
4496   // Take only high half of registers if this is high mul.
4497   ArrayRef<Register> DstRegs(
4498       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4499   MIRBuilder.buildMerge(DstReg, DstRegs);
4500   MI.eraseFromParent();
4501   return Legalized;
4502 }
4503 
4504 LegalizerHelper::LegalizeResult
4505 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4506                                      LLT NarrowTy) {
4507   if (TypeIdx != 1)
4508     return UnableToLegalize;
4509 
4510   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4511 
4512   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4513   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4514   // NarrowSize.
4515   if (SizeOp1 % NarrowSize != 0)
4516     return UnableToLegalize;
4517   int NumParts = SizeOp1 / NarrowSize;
4518 
4519   SmallVector<Register, 2> SrcRegs, DstRegs;
4520   SmallVector<uint64_t, 2> Indexes;
4521   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4522 
4523   Register OpReg = MI.getOperand(0).getReg();
4524   uint64_t OpStart = MI.getOperand(2).getImm();
4525   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4526   for (int i = 0; i < NumParts; ++i) {
4527     unsigned SrcStart = i * NarrowSize;
4528 
4529     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4530       // No part of the extract uses this subregister, ignore it.
4531       continue;
4532     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4533       // The entire subregister is extracted, forward the value.
4534       DstRegs.push_back(SrcRegs[i]);
4535       continue;
4536     }
4537 
4538     // OpSegStart is where this destination segment would start in OpReg if it
4539     // extended infinitely in both directions.
4540     int64_t ExtractOffset;
4541     uint64_t SegSize;
4542     if (OpStart < SrcStart) {
4543       ExtractOffset = 0;
4544       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4545     } else {
4546       ExtractOffset = OpStart - SrcStart;
4547       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4548     }
4549 
4550     Register SegReg = SrcRegs[i];
4551     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4552       // A genuine extract is needed.
4553       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4554       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4555     }
4556 
4557     DstRegs.push_back(SegReg);
4558   }
4559 
4560   Register DstReg = MI.getOperand(0).getReg();
4561   if (MRI.getType(DstReg).isVector())
4562     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4563   else if (DstRegs.size() > 1)
4564     MIRBuilder.buildMerge(DstReg, DstRegs);
4565   else
4566     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4567   MI.eraseFromParent();
4568   return Legalized;
4569 }
4570 
4571 LegalizerHelper::LegalizeResult
4572 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4573                                     LLT NarrowTy) {
4574   // FIXME: Don't know how to handle secondary types yet.
4575   if (TypeIdx != 0)
4576     return UnableToLegalize;
4577 
4578   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4579   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4580 
4581   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4582   // NarrowSize.
4583   if (SizeOp0 % NarrowSize != 0)
4584     return UnableToLegalize;
4585 
4586   int NumParts = SizeOp0 / NarrowSize;
4587 
4588   SmallVector<Register, 2> SrcRegs, DstRegs;
4589   SmallVector<uint64_t, 2> Indexes;
4590   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4591 
4592   Register OpReg = MI.getOperand(2).getReg();
4593   uint64_t OpStart = MI.getOperand(3).getImm();
4594   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4595   for (int i = 0; i < NumParts; ++i) {
4596     unsigned DstStart = i * NarrowSize;
4597 
4598     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4599       // No part of the insert affects this subregister, forward the original.
4600       DstRegs.push_back(SrcRegs[i]);
4601       continue;
4602     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4603       // The entire subregister is defined by this insert, forward the new
4604       // value.
4605       DstRegs.push_back(OpReg);
4606       continue;
4607     }
4608 
4609     // OpSegStart is where this destination segment would start in OpReg if it
4610     // extended infinitely in both directions.
4611     int64_t ExtractOffset, InsertOffset;
4612     uint64_t SegSize;
4613     if (OpStart < DstStart) {
4614       InsertOffset = 0;
4615       ExtractOffset = DstStart - OpStart;
4616       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4617     } else {
4618       InsertOffset = OpStart - DstStart;
4619       ExtractOffset = 0;
4620       SegSize =
4621         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4622     }
4623 
4624     Register SegReg = OpReg;
4625     if (ExtractOffset != 0 || SegSize != OpSize) {
4626       // A genuine extract is needed.
4627       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4628       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4629     }
4630 
4631     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4632     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4633     DstRegs.push_back(DstReg);
4634   }
4635 
4636   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4637   Register DstReg = MI.getOperand(0).getReg();
4638   if(MRI.getType(DstReg).isVector())
4639     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4640   else
4641     MIRBuilder.buildMerge(DstReg, DstRegs);
4642   MI.eraseFromParent();
4643   return Legalized;
4644 }
4645 
4646 LegalizerHelper::LegalizeResult
4647 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4648                                    LLT NarrowTy) {
4649   Register DstReg = MI.getOperand(0).getReg();
4650   LLT DstTy = MRI.getType(DstReg);
4651 
4652   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4653 
4654   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4655   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4656   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4657   LLT LeftoverTy;
4658   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4659                     Src0Regs, Src0LeftoverRegs))
4660     return UnableToLegalize;
4661 
4662   LLT Unused;
4663   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4664                     Src1Regs, Src1LeftoverRegs))
4665     llvm_unreachable("inconsistent extractParts result");
4666 
4667   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4668     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4669                                         {Src0Regs[I], Src1Regs[I]});
4670     DstRegs.push_back(Inst.getReg(0));
4671   }
4672 
4673   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4674     auto Inst = MIRBuilder.buildInstr(
4675       MI.getOpcode(),
4676       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4677     DstLeftoverRegs.push_back(Inst.getReg(0));
4678   }
4679 
4680   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4681               LeftoverTy, DstLeftoverRegs);
4682 
4683   MI.eraseFromParent();
4684   return Legalized;
4685 }
4686 
4687 LegalizerHelper::LegalizeResult
4688 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4689                                  LLT NarrowTy) {
4690   if (TypeIdx != 0)
4691     return UnableToLegalize;
4692 
4693   Register DstReg = MI.getOperand(0).getReg();
4694   Register SrcReg = MI.getOperand(1).getReg();
4695 
4696   LLT DstTy = MRI.getType(DstReg);
4697   if (DstTy.isVector())
4698     return UnableToLegalize;
4699 
4700   SmallVector<Register, 8> Parts;
4701   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4702   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4703   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4704 
4705   MI.eraseFromParent();
4706   return Legalized;
4707 }
4708 
4709 LegalizerHelper::LegalizeResult
4710 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4711                                     LLT NarrowTy) {
4712   if (TypeIdx != 0)
4713     return UnableToLegalize;
4714 
4715   Register CondReg = MI.getOperand(1).getReg();
4716   LLT CondTy = MRI.getType(CondReg);
4717   if (CondTy.isVector()) // TODO: Handle vselect
4718     return UnableToLegalize;
4719 
4720   Register DstReg = MI.getOperand(0).getReg();
4721   LLT DstTy = MRI.getType(DstReg);
4722 
4723   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4724   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4725   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4726   LLT LeftoverTy;
4727   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4728                     Src1Regs, Src1LeftoverRegs))
4729     return UnableToLegalize;
4730 
4731   LLT Unused;
4732   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4733                     Src2Regs, Src2LeftoverRegs))
4734     llvm_unreachable("inconsistent extractParts result");
4735 
4736   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4737     auto Select = MIRBuilder.buildSelect(NarrowTy,
4738                                          CondReg, Src1Regs[I], Src2Regs[I]);
4739     DstRegs.push_back(Select.getReg(0));
4740   }
4741 
4742   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4743     auto Select = MIRBuilder.buildSelect(
4744       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4745     DstLeftoverRegs.push_back(Select.getReg(0));
4746   }
4747 
4748   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4749               LeftoverTy, DstLeftoverRegs);
4750 
4751   MI.eraseFromParent();
4752   return Legalized;
4753 }
4754 
4755 LegalizerHelper::LegalizeResult
4756 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4757                                   LLT NarrowTy) {
4758   if (TypeIdx != 1)
4759     return UnableToLegalize;
4760 
4761   Register DstReg = MI.getOperand(0).getReg();
4762   Register SrcReg = MI.getOperand(1).getReg();
4763   LLT DstTy = MRI.getType(DstReg);
4764   LLT SrcTy = MRI.getType(SrcReg);
4765   unsigned NarrowSize = NarrowTy.getSizeInBits();
4766 
4767   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4768     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4769 
4770     MachineIRBuilder &B = MIRBuilder;
4771     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4772     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4773     auto C_0 = B.buildConstant(NarrowTy, 0);
4774     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4775                                 UnmergeSrc.getReg(1), C_0);
4776     auto LoCTLZ = IsUndef ?
4777       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4778       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4779     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4780     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4781     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4782     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4783 
4784     MI.eraseFromParent();
4785     return Legalized;
4786   }
4787 
4788   return UnableToLegalize;
4789 }
4790 
4791 LegalizerHelper::LegalizeResult
4792 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4793                                   LLT NarrowTy) {
4794   if (TypeIdx != 1)
4795     return UnableToLegalize;
4796 
4797   Register DstReg = MI.getOperand(0).getReg();
4798   Register SrcReg = MI.getOperand(1).getReg();
4799   LLT DstTy = MRI.getType(DstReg);
4800   LLT SrcTy = MRI.getType(SrcReg);
4801   unsigned NarrowSize = NarrowTy.getSizeInBits();
4802 
4803   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4804     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4805 
4806     MachineIRBuilder &B = MIRBuilder;
4807     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4808     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4809     auto C_0 = B.buildConstant(NarrowTy, 0);
4810     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4811                                 UnmergeSrc.getReg(0), C_0);
4812     auto HiCTTZ = IsUndef ?
4813       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4814       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4815     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4816     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4817     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4818     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4819 
4820     MI.eraseFromParent();
4821     return Legalized;
4822   }
4823 
4824   return UnableToLegalize;
4825 }
4826 
4827 LegalizerHelper::LegalizeResult
4828 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4829                                    LLT NarrowTy) {
4830   if (TypeIdx != 1)
4831     return UnableToLegalize;
4832 
4833   Register DstReg = MI.getOperand(0).getReg();
4834   LLT DstTy = MRI.getType(DstReg);
4835   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4836   unsigned NarrowSize = NarrowTy.getSizeInBits();
4837 
4838   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4839     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4840 
4841     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4842     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4843     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4844 
4845     MI.eraseFromParent();
4846     return Legalized;
4847   }
4848 
4849   return UnableToLegalize;
4850 }
4851 
4852 LegalizerHelper::LegalizeResult
4853 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4854   unsigned Opc = MI.getOpcode();
4855   const auto &TII = MIRBuilder.getTII();
4856   auto isSupported = [this](const LegalityQuery &Q) {
4857     auto QAction = LI.getAction(Q).Action;
4858     return QAction == Legal || QAction == Libcall || QAction == Custom;
4859   };
4860   switch (Opc) {
4861   default:
4862     return UnableToLegalize;
4863   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4864     // This trivially expands to CTLZ.
4865     Observer.changingInstr(MI);
4866     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4867     Observer.changedInstr(MI);
4868     return Legalized;
4869   }
4870   case TargetOpcode::G_CTLZ: {
4871     Register DstReg = MI.getOperand(0).getReg();
4872     Register SrcReg = MI.getOperand(1).getReg();
4873     LLT DstTy = MRI.getType(DstReg);
4874     LLT SrcTy = MRI.getType(SrcReg);
4875     unsigned Len = SrcTy.getSizeInBits();
4876 
4877     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4878       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4879       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4880       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4881       auto ICmp = MIRBuilder.buildICmp(
4882           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4883       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4884       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4885       MI.eraseFromParent();
4886       return Legalized;
4887     }
4888     // for now, we do this:
4889     // NewLen = NextPowerOf2(Len);
4890     // x = x | (x >> 1);
4891     // x = x | (x >> 2);
4892     // ...
4893     // x = x | (x >>16);
4894     // x = x | (x >>32); // for 64-bit input
4895     // Upto NewLen/2
4896     // return Len - popcount(x);
4897     //
4898     // Ref: "Hacker's Delight" by Henry Warren
4899     Register Op = SrcReg;
4900     unsigned NewLen = PowerOf2Ceil(Len);
4901     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4902       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4903       auto MIBOp = MIRBuilder.buildOr(
4904           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4905       Op = MIBOp.getReg(0);
4906     }
4907     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4908     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4909                         MIBPop);
4910     MI.eraseFromParent();
4911     return Legalized;
4912   }
4913   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4914     // This trivially expands to CTTZ.
4915     Observer.changingInstr(MI);
4916     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4917     Observer.changedInstr(MI);
4918     return Legalized;
4919   }
4920   case TargetOpcode::G_CTTZ: {
4921     Register DstReg = MI.getOperand(0).getReg();
4922     Register SrcReg = MI.getOperand(1).getReg();
4923     LLT DstTy = MRI.getType(DstReg);
4924     LLT SrcTy = MRI.getType(SrcReg);
4925 
4926     unsigned Len = SrcTy.getSizeInBits();
4927     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4928       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4929       // zero.
4930       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4931       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4932       auto ICmp = MIRBuilder.buildICmp(
4933           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4934       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4935       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4936       MI.eraseFromParent();
4937       return Legalized;
4938     }
4939     // for now, we use: { return popcount(~x & (x - 1)); }
4940     // unless the target has ctlz but not ctpop, in which case we use:
4941     // { return 32 - nlz(~x & (x-1)); }
4942     // Ref: "Hacker's Delight" by Henry Warren
4943     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4944     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4945     auto MIBTmp = MIRBuilder.buildAnd(
4946         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4947     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4948         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4949       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4950       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4951                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4952       MI.eraseFromParent();
4953       return Legalized;
4954     }
4955     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4956     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4957     return Legalized;
4958   }
4959   case TargetOpcode::G_CTPOP: {
4960     Register SrcReg = MI.getOperand(1).getReg();
4961     LLT Ty = MRI.getType(SrcReg);
4962     unsigned Size = Ty.getSizeInBits();
4963     MachineIRBuilder &B = MIRBuilder;
4964 
4965     // Count set bits in blocks of 2 bits. Default approach would be
4966     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4967     // We use following formula instead:
4968     // B2Count = val - { (val >> 1) & 0x55555555 }
4969     // since it gives same result in blocks of 2 with one instruction less.
4970     auto C_1 = B.buildConstant(Ty, 1);
4971     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
4972     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4973     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4974     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4975     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
4976 
4977     // In order to get count in blocks of 4 add values from adjacent block of 2.
4978     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4979     auto C_2 = B.buildConstant(Ty, 2);
4980     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4981     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4982     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4983     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4984     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4985     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4986 
4987     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4988     // addition since count value sits in range {0,...,8} and 4 bits are enough
4989     // to hold such binary values. After addition high 4 bits still hold count
4990     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4991     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4992     auto C_4 = B.buildConstant(Ty, 4);
4993     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4994     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4995     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4996     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4997     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4998 
4999     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5000     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5001     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5002     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5003     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5004 
5005     // Shift count result from 8 high bits to low bits.
5006     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5007     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5008 
5009     MI.eraseFromParent();
5010     return Legalized;
5011   }
5012   }
5013 }
5014 
5015 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5016 // representation.
5017 LegalizerHelper::LegalizeResult
5018 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5019   Register Dst = MI.getOperand(0).getReg();
5020   Register Src = MI.getOperand(1).getReg();
5021   const LLT S64 = LLT::scalar(64);
5022   const LLT S32 = LLT::scalar(32);
5023   const LLT S1 = LLT::scalar(1);
5024 
5025   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5026 
5027   // unsigned cul2f(ulong u) {
5028   //   uint lz = clz(u);
5029   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5030   //   u = (u << lz) & 0x7fffffffffffffffUL;
5031   //   ulong t = u & 0xffffffffffUL;
5032   //   uint v = (e << 23) | (uint)(u >> 40);
5033   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5034   //   return as_float(v + r);
5035   // }
5036 
5037   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5038   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5039 
5040   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5041 
5042   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5043   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5044 
5045   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5046   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5047 
5048   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5049   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5050 
5051   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5052 
5053   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5054   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5055 
5056   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5057   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5058   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5059 
5060   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5061   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5062   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5063   auto One = MIRBuilder.buildConstant(S32, 1);
5064 
5065   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5066   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5067   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5068   MIRBuilder.buildAdd(Dst, V, R);
5069 
5070   MI.eraseFromParent();
5071   return Legalized;
5072 }
5073 
5074 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5075   Register Dst = MI.getOperand(0).getReg();
5076   Register Src = MI.getOperand(1).getReg();
5077   LLT DstTy = MRI.getType(Dst);
5078   LLT SrcTy = MRI.getType(Src);
5079 
5080   if (SrcTy == LLT::scalar(1)) {
5081     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5082     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5083     MIRBuilder.buildSelect(Dst, Src, True, False);
5084     MI.eraseFromParent();
5085     return Legalized;
5086   }
5087 
5088   if (SrcTy != LLT::scalar(64))
5089     return UnableToLegalize;
5090 
5091   if (DstTy == LLT::scalar(32)) {
5092     // TODO: SelectionDAG has several alternative expansions to port which may
5093     // be more reasonble depending on the available instructions. If a target
5094     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5095     // intermediate type, this is probably worse.
5096     return lowerU64ToF32BitOps(MI);
5097   }
5098 
5099   return UnableToLegalize;
5100 }
5101 
5102 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5103   Register Dst = MI.getOperand(0).getReg();
5104   Register Src = MI.getOperand(1).getReg();
5105   LLT DstTy = MRI.getType(Dst);
5106   LLT SrcTy = MRI.getType(Src);
5107 
5108   const LLT S64 = LLT::scalar(64);
5109   const LLT S32 = LLT::scalar(32);
5110   const LLT S1 = LLT::scalar(1);
5111 
5112   if (SrcTy == S1) {
5113     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5114     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5115     MIRBuilder.buildSelect(Dst, Src, True, False);
5116     MI.eraseFromParent();
5117     return Legalized;
5118   }
5119 
5120   if (SrcTy != S64)
5121     return UnableToLegalize;
5122 
5123   if (DstTy == S32) {
5124     // signed cl2f(long l) {
5125     //   long s = l >> 63;
5126     //   float r = cul2f((l + s) ^ s);
5127     //   return s ? -r : r;
5128     // }
5129     Register L = Src;
5130     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5131     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5132 
5133     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5134     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5135     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5136 
5137     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5138     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5139                                             MIRBuilder.buildConstant(S64, 0));
5140     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5141     MI.eraseFromParent();
5142     return Legalized;
5143   }
5144 
5145   return UnableToLegalize;
5146 }
5147 
5148 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5149   Register Dst = MI.getOperand(0).getReg();
5150   Register Src = MI.getOperand(1).getReg();
5151   LLT DstTy = MRI.getType(Dst);
5152   LLT SrcTy = MRI.getType(Src);
5153   const LLT S64 = LLT::scalar(64);
5154   const LLT S32 = LLT::scalar(32);
5155 
5156   if (SrcTy != S64 && SrcTy != S32)
5157     return UnableToLegalize;
5158   if (DstTy != S32 && DstTy != S64)
5159     return UnableToLegalize;
5160 
5161   // FPTOSI gives same result as FPTOUI for positive signed integers.
5162   // FPTOUI needs to deal with fp values that convert to unsigned integers
5163   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5164 
5165   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5166   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5167                                                 : APFloat::IEEEdouble(),
5168                     APInt::getNullValue(SrcTy.getSizeInBits()));
5169   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5170 
5171   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5172 
5173   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5174   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5175   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5176   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5177   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5178   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5179   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5180 
5181   const LLT S1 = LLT::scalar(1);
5182 
5183   MachineInstrBuilder FCMP =
5184       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5185   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5186 
5187   MI.eraseFromParent();
5188   return Legalized;
5189 }
5190 
5191 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5192   Register Dst = MI.getOperand(0).getReg();
5193   Register Src = MI.getOperand(1).getReg();
5194   LLT DstTy = MRI.getType(Dst);
5195   LLT SrcTy = MRI.getType(Src);
5196   const LLT S64 = LLT::scalar(64);
5197   const LLT S32 = LLT::scalar(32);
5198 
5199   // FIXME: Only f32 to i64 conversions are supported.
5200   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5201     return UnableToLegalize;
5202 
5203   // Expand f32 -> i64 conversion
5204   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5205   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5206 
5207   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5208 
5209   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5210   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5211 
5212   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5213   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5214 
5215   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5216                                            APInt::getSignMask(SrcEltBits));
5217   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5218   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5219   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5220   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5221 
5222   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5223   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5224   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5225 
5226   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5227   R = MIRBuilder.buildZExt(DstTy, R);
5228 
5229   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5230   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5231   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5232   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5233 
5234   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5235   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5236 
5237   const LLT S1 = LLT::scalar(1);
5238   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5239                                     S1, Exponent, ExponentLoBit);
5240 
5241   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5242 
5243   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5244   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5245 
5246   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5247 
5248   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5249                                           S1, Exponent, ZeroSrcTy);
5250 
5251   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5252   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5253 
5254   MI.eraseFromParent();
5255   return Legalized;
5256 }
5257 
5258 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5259 LegalizerHelper::LegalizeResult
5260 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5261   Register Dst = MI.getOperand(0).getReg();
5262   Register Src = MI.getOperand(1).getReg();
5263 
5264   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5265     return UnableToLegalize;
5266 
5267   const unsigned ExpMask = 0x7ff;
5268   const unsigned ExpBiasf64 = 1023;
5269   const unsigned ExpBiasf16 = 15;
5270   const LLT S32 = LLT::scalar(32);
5271   const LLT S1 = LLT::scalar(1);
5272 
5273   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5274   Register U = Unmerge.getReg(0);
5275   Register UH = Unmerge.getReg(1);
5276 
5277   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5278   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5279 
5280   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5281   // add the f16 bias (15) to get the biased exponent for the f16 format.
5282   E = MIRBuilder.buildAdd(
5283     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5284 
5285   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5286   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5287 
5288   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5289                                        MIRBuilder.buildConstant(S32, 0x1ff));
5290   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5291 
5292   auto Zero = MIRBuilder.buildConstant(S32, 0);
5293   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5294   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5295   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5296 
5297   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5298   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5299   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5300   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5301 
5302   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5303   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5304 
5305   // N = M | (E << 12);
5306   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5307   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5308 
5309   // B = clamp(1-E, 0, 13);
5310   auto One = MIRBuilder.buildConstant(S32, 1);
5311   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5312   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5313   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5314 
5315   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5316                                        MIRBuilder.buildConstant(S32, 0x1000));
5317 
5318   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5319   auto D0 = MIRBuilder.buildShl(S32, D, B);
5320 
5321   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5322                                              D0, SigSetHigh);
5323   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5324   D = MIRBuilder.buildOr(S32, D, D1);
5325 
5326   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5327   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5328 
5329   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5330   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5331 
5332   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5333                                        MIRBuilder.buildConstant(S32, 3));
5334   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5335 
5336   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5337                                        MIRBuilder.buildConstant(S32, 5));
5338   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5339 
5340   V1 = MIRBuilder.buildOr(S32, V0, V1);
5341   V = MIRBuilder.buildAdd(S32, V, V1);
5342 
5343   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5344                                        E, MIRBuilder.buildConstant(S32, 30));
5345   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5346                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5347 
5348   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5349                                          E, MIRBuilder.buildConstant(S32, 1039));
5350   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5351 
5352   // Extract the sign bit.
5353   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5354   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5355 
5356   // Insert the sign bit
5357   V = MIRBuilder.buildOr(S32, Sign, V);
5358 
5359   MIRBuilder.buildTrunc(Dst, V);
5360   MI.eraseFromParent();
5361   return Legalized;
5362 }
5363 
5364 LegalizerHelper::LegalizeResult
5365 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5366   Register Dst = MI.getOperand(0).getReg();
5367   Register Src = MI.getOperand(1).getReg();
5368 
5369   LLT DstTy = MRI.getType(Dst);
5370   LLT SrcTy = MRI.getType(Src);
5371   const LLT S64 = LLT::scalar(64);
5372   const LLT S16 = LLT::scalar(16);
5373 
5374   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5375     return lowerFPTRUNC_F64_TO_F16(MI);
5376 
5377   return UnableToLegalize;
5378 }
5379 
5380 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5381 // multiplication tree.
5382 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5383   Register Dst = MI.getOperand(0).getReg();
5384   Register Src0 = MI.getOperand(1).getReg();
5385   Register Src1 = MI.getOperand(2).getReg();
5386   LLT Ty = MRI.getType(Dst);
5387 
5388   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5389   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5390   MI.eraseFromParent();
5391   return Legalized;
5392 }
5393 
5394 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5395   switch (Opc) {
5396   case TargetOpcode::G_SMIN:
5397     return CmpInst::ICMP_SLT;
5398   case TargetOpcode::G_SMAX:
5399     return CmpInst::ICMP_SGT;
5400   case TargetOpcode::G_UMIN:
5401     return CmpInst::ICMP_ULT;
5402   case TargetOpcode::G_UMAX:
5403     return CmpInst::ICMP_UGT;
5404   default:
5405     llvm_unreachable("not in integer min/max");
5406   }
5407 }
5408 
5409 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5410   Register Dst = MI.getOperand(0).getReg();
5411   Register Src0 = MI.getOperand(1).getReg();
5412   Register Src1 = MI.getOperand(2).getReg();
5413 
5414   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5415   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5416 
5417   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5418   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5419 
5420   MI.eraseFromParent();
5421   return Legalized;
5422 }
5423 
5424 LegalizerHelper::LegalizeResult
5425 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5426   Register Dst = MI.getOperand(0).getReg();
5427   Register Src0 = MI.getOperand(1).getReg();
5428   Register Src1 = MI.getOperand(2).getReg();
5429 
5430   const LLT Src0Ty = MRI.getType(Src0);
5431   const LLT Src1Ty = MRI.getType(Src1);
5432 
5433   const int Src0Size = Src0Ty.getScalarSizeInBits();
5434   const int Src1Size = Src1Ty.getScalarSizeInBits();
5435 
5436   auto SignBitMask = MIRBuilder.buildConstant(
5437     Src0Ty, APInt::getSignMask(Src0Size));
5438 
5439   auto NotSignBitMask = MIRBuilder.buildConstant(
5440     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5441 
5442   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5443   MachineInstr *Or;
5444 
5445   if (Src0Ty == Src1Ty) {
5446     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5447     Or = MIRBuilder.buildOr(Dst, And0, And1);
5448   } else if (Src0Size > Src1Size) {
5449     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5450     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5451     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5452     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5453     Or = MIRBuilder.buildOr(Dst, And0, And1);
5454   } else {
5455     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5456     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5457     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5458     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5459     Or = MIRBuilder.buildOr(Dst, And0, And1);
5460   }
5461 
5462   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5463   // constants are a nan and -0.0, but the final result should preserve
5464   // everything.
5465   if (unsigned Flags = MI.getFlags())
5466     Or->setFlags(Flags);
5467 
5468   MI.eraseFromParent();
5469   return Legalized;
5470 }
5471 
5472 LegalizerHelper::LegalizeResult
5473 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5474   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5475     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5476 
5477   Register Dst = MI.getOperand(0).getReg();
5478   Register Src0 = MI.getOperand(1).getReg();
5479   Register Src1 = MI.getOperand(2).getReg();
5480   LLT Ty = MRI.getType(Dst);
5481 
5482   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5483     // Insert canonicalizes if it's possible we need to quiet to get correct
5484     // sNaN behavior.
5485 
5486     // Note this must be done here, and not as an optimization combine in the
5487     // absence of a dedicate quiet-snan instruction as we're using an
5488     // omni-purpose G_FCANONICALIZE.
5489     if (!isKnownNeverSNaN(Src0, MRI))
5490       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5491 
5492     if (!isKnownNeverSNaN(Src1, MRI))
5493       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5494   }
5495 
5496   // If there are no nans, it's safe to simply replace this with the non-IEEE
5497   // version.
5498   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5499   MI.eraseFromParent();
5500   return Legalized;
5501 }
5502 
5503 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5504   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5505   Register DstReg = MI.getOperand(0).getReg();
5506   LLT Ty = MRI.getType(DstReg);
5507   unsigned Flags = MI.getFlags();
5508 
5509   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5510                                   Flags);
5511   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5512   MI.eraseFromParent();
5513   return Legalized;
5514 }
5515 
5516 LegalizerHelper::LegalizeResult
5517 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5518   Register DstReg = MI.getOperand(0).getReg();
5519   Register X = MI.getOperand(1).getReg();
5520   const unsigned Flags = MI.getFlags();
5521   const LLT Ty = MRI.getType(DstReg);
5522   const LLT CondTy = Ty.changeElementSize(1);
5523 
5524   // round(x) =>
5525   //  t = trunc(x);
5526   //  d = fabs(x - t);
5527   //  o = copysign(1.0f, x);
5528   //  return t + (d >= 0.5 ? o : 0.0);
5529 
5530   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5531 
5532   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5533   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5534   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5535   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5536   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5537   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5538 
5539   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5540                                   Flags);
5541   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5542 
5543   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5544 
5545   MI.eraseFromParent();
5546   return Legalized;
5547 }
5548 
5549 LegalizerHelper::LegalizeResult
5550 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5551   Register DstReg = MI.getOperand(0).getReg();
5552   Register SrcReg = MI.getOperand(1).getReg();
5553   unsigned Flags = MI.getFlags();
5554   LLT Ty = MRI.getType(DstReg);
5555   const LLT CondTy = Ty.changeElementSize(1);
5556 
5557   // result = trunc(src);
5558   // if (src < 0.0 && src != result)
5559   //   result += -1.0.
5560 
5561   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5562   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5563 
5564   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5565                                   SrcReg, Zero, Flags);
5566   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5567                                       SrcReg, Trunc, Flags);
5568   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5569   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5570 
5571   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5572   MI.eraseFromParent();
5573   return Legalized;
5574 }
5575 
5576 LegalizerHelper::LegalizeResult
5577 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5578   const unsigned NumOps = MI.getNumOperands();
5579   Register DstReg = MI.getOperand(0).getReg();
5580   Register Src0Reg = MI.getOperand(1).getReg();
5581   LLT DstTy = MRI.getType(DstReg);
5582   LLT SrcTy = MRI.getType(Src0Reg);
5583   unsigned PartSize = SrcTy.getSizeInBits();
5584 
5585   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5586   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5587 
5588   for (unsigned I = 2; I != NumOps; ++I) {
5589     const unsigned Offset = (I - 1) * PartSize;
5590 
5591     Register SrcReg = MI.getOperand(I).getReg();
5592     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5593 
5594     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5595       MRI.createGenericVirtualRegister(WideTy);
5596 
5597     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5598     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5599     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5600     ResultReg = NextResult;
5601   }
5602 
5603   if (DstTy.isPointer()) {
5604     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5605           DstTy.getAddressSpace())) {
5606       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5607       return UnableToLegalize;
5608     }
5609 
5610     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5611   }
5612 
5613   MI.eraseFromParent();
5614   return Legalized;
5615 }
5616 
5617 LegalizerHelper::LegalizeResult
5618 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5619   const unsigned NumDst = MI.getNumOperands() - 1;
5620   Register SrcReg = MI.getOperand(NumDst).getReg();
5621   Register Dst0Reg = MI.getOperand(0).getReg();
5622   LLT DstTy = MRI.getType(Dst0Reg);
5623   if (DstTy.isPointer())
5624     return UnableToLegalize; // TODO
5625 
5626   SrcReg = coerceToScalar(SrcReg);
5627   if (!SrcReg)
5628     return UnableToLegalize;
5629 
5630   // Expand scalarizing unmerge as bitcast to integer and shift.
5631   LLT IntTy = MRI.getType(SrcReg);
5632 
5633   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5634 
5635   const unsigned DstSize = DstTy.getSizeInBits();
5636   unsigned Offset = DstSize;
5637   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5638     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5639     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5640     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5641   }
5642 
5643   MI.eraseFromParent();
5644   return Legalized;
5645 }
5646 
5647 /// Lower a vector extract or insert by writing the vector to a stack temporary
5648 /// and reloading the element or vector.
5649 ///
5650 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5651 ///  =>
5652 ///  %stack_temp = G_FRAME_INDEX
5653 ///  G_STORE %vec, %stack_temp
5654 ///  %idx = clamp(%idx, %vec.getNumElements())
5655 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5656 ///  %dst = G_LOAD %element_ptr
5657 LegalizerHelper::LegalizeResult
5658 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5659   Register DstReg = MI.getOperand(0).getReg();
5660   Register SrcVec = MI.getOperand(1).getReg();
5661   Register InsertVal;
5662   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5663     InsertVal = MI.getOperand(2).getReg();
5664 
5665   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5666 
5667   LLT VecTy = MRI.getType(SrcVec);
5668   LLT EltTy = VecTy.getElementType();
5669   if (!EltTy.isByteSized()) { // Not implemented.
5670     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5671     return UnableToLegalize;
5672   }
5673 
5674   unsigned EltBytes = EltTy.getSizeInBytes();
5675   Align VecAlign = getStackTemporaryAlignment(VecTy);
5676   Align EltAlign;
5677 
5678   MachinePointerInfo PtrInfo;
5679   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5680                                         VecAlign, PtrInfo);
5681   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5682 
5683   // Get the pointer to the element, and be sure not to hit undefined behavior
5684   // if the index is out of bounds.
5685   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5686 
5687   int64_t IdxVal;
5688   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5689     int64_t Offset = IdxVal * EltBytes;
5690     PtrInfo = PtrInfo.getWithOffset(Offset);
5691     EltAlign = commonAlignment(VecAlign, Offset);
5692   } else {
5693     // We lose information with a variable offset.
5694     EltAlign = getStackTemporaryAlignment(EltTy);
5695     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5696   }
5697 
5698   if (InsertVal) {
5699     // Write the inserted element
5700     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5701 
5702     // Reload the whole vector.
5703     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5704   } else {
5705     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5706   }
5707 
5708   MI.eraseFromParent();
5709   return Legalized;
5710 }
5711 
5712 LegalizerHelper::LegalizeResult
5713 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5714   Register DstReg = MI.getOperand(0).getReg();
5715   Register Src0Reg = MI.getOperand(1).getReg();
5716   Register Src1Reg = MI.getOperand(2).getReg();
5717   LLT Src0Ty = MRI.getType(Src0Reg);
5718   LLT DstTy = MRI.getType(DstReg);
5719   LLT IdxTy = LLT::scalar(32);
5720 
5721   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5722 
5723   if (DstTy.isScalar()) {
5724     if (Src0Ty.isVector())
5725       return UnableToLegalize;
5726 
5727     // This is just a SELECT.
5728     assert(Mask.size() == 1 && "Expected a single mask element");
5729     Register Val;
5730     if (Mask[0] < 0 || Mask[0] > 1)
5731       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5732     else
5733       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5734     MIRBuilder.buildCopy(DstReg, Val);
5735     MI.eraseFromParent();
5736     return Legalized;
5737   }
5738 
5739   Register Undef;
5740   SmallVector<Register, 32> BuildVec;
5741   LLT EltTy = DstTy.getElementType();
5742 
5743   for (int Idx : Mask) {
5744     if (Idx < 0) {
5745       if (!Undef.isValid())
5746         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5747       BuildVec.push_back(Undef);
5748       continue;
5749     }
5750 
5751     if (Src0Ty.isScalar()) {
5752       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5753     } else {
5754       int NumElts = Src0Ty.getNumElements();
5755       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5756       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5757       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5758       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5759       BuildVec.push_back(Extract.getReg(0));
5760     }
5761   }
5762 
5763   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5764   MI.eraseFromParent();
5765   return Legalized;
5766 }
5767 
5768 LegalizerHelper::LegalizeResult
5769 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5770   const auto &MF = *MI.getMF();
5771   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5772   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5773     return UnableToLegalize;
5774 
5775   Register Dst = MI.getOperand(0).getReg();
5776   Register AllocSize = MI.getOperand(1).getReg();
5777   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5778 
5779   LLT PtrTy = MRI.getType(Dst);
5780   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5781 
5782   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5783   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5784   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5785 
5786   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5787   // have to generate an extra instruction to negate the alloc and then use
5788   // G_PTR_ADD to add the negative offset.
5789   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5790   if (Alignment > Align(1)) {
5791     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5792     AlignMask.negate();
5793     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5794     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5795   }
5796 
5797   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5798   MIRBuilder.buildCopy(SPReg, SPTmp);
5799   MIRBuilder.buildCopy(Dst, SPTmp);
5800 
5801   MI.eraseFromParent();
5802   return Legalized;
5803 }
5804 
5805 LegalizerHelper::LegalizeResult
5806 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5807   Register Dst = MI.getOperand(0).getReg();
5808   Register Src = MI.getOperand(1).getReg();
5809   unsigned Offset = MI.getOperand(2).getImm();
5810 
5811   LLT DstTy = MRI.getType(Dst);
5812   LLT SrcTy = MRI.getType(Src);
5813 
5814   if (DstTy.isScalar() &&
5815       (SrcTy.isScalar() ||
5816        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5817     LLT SrcIntTy = SrcTy;
5818     if (!SrcTy.isScalar()) {
5819       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5820       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5821     }
5822 
5823     if (Offset == 0)
5824       MIRBuilder.buildTrunc(Dst, Src);
5825     else {
5826       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5827       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5828       MIRBuilder.buildTrunc(Dst, Shr);
5829     }
5830 
5831     MI.eraseFromParent();
5832     return Legalized;
5833   }
5834 
5835   return UnableToLegalize;
5836 }
5837 
5838 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5839   Register Dst = MI.getOperand(0).getReg();
5840   Register Src = MI.getOperand(1).getReg();
5841   Register InsertSrc = MI.getOperand(2).getReg();
5842   uint64_t Offset = MI.getOperand(3).getImm();
5843 
5844   LLT DstTy = MRI.getType(Src);
5845   LLT InsertTy = MRI.getType(InsertSrc);
5846 
5847   if (InsertTy.isVector() ||
5848       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5849     return UnableToLegalize;
5850 
5851   const DataLayout &DL = MIRBuilder.getDataLayout();
5852   if ((DstTy.isPointer() &&
5853        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5854       (InsertTy.isPointer() &&
5855        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5856     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5857     return UnableToLegalize;
5858   }
5859 
5860   LLT IntDstTy = DstTy;
5861 
5862   if (!DstTy.isScalar()) {
5863     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5864     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5865   }
5866 
5867   if (!InsertTy.isScalar()) {
5868     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5869     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5870   }
5871 
5872   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5873   if (Offset != 0) {
5874     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5875     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5876   }
5877 
5878   APInt MaskVal = APInt::getBitsSetWithWrap(
5879       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5880 
5881   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5882   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5883   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5884 
5885   MIRBuilder.buildCast(Dst, Or);
5886   MI.eraseFromParent();
5887   return Legalized;
5888 }
5889 
5890 LegalizerHelper::LegalizeResult
5891 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5892   Register Dst0 = MI.getOperand(0).getReg();
5893   Register Dst1 = MI.getOperand(1).getReg();
5894   Register LHS = MI.getOperand(2).getReg();
5895   Register RHS = MI.getOperand(3).getReg();
5896   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5897 
5898   LLT Ty = MRI.getType(Dst0);
5899   LLT BoolTy = MRI.getType(Dst1);
5900 
5901   if (IsAdd)
5902     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5903   else
5904     MIRBuilder.buildSub(Dst0, LHS, RHS);
5905 
5906   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5907 
5908   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5909 
5910   // For an addition, the result should be less than one of the operands (LHS)
5911   // if and only if the other operand (RHS) is negative, otherwise there will
5912   // be overflow.
5913   // For a subtraction, the result should be less than one of the operands
5914   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5915   // otherwise there will be overflow.
5916   auto ResultLowerThanLHS =
5917       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5918   auto ConditionRHS = MIRBuilder.buildICmp(
5919       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5920 
5921   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5922   MI.eraseFromParent();
5923   return Legalized;
5924 }
5925 
5926 LegalizerHelper::LegalizeResult
5927 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5928   Register Res = MI.getOperand(0).getReg();
5929   Register LHS = MI.getOperand(1).getReg();
5930   Register RHS = MI.getOperand(2).getReg();
5931   LLT Ty = MRI.getType(Res);
5932   bool IsSigned;
5933   bool IsAdd;
5934   unsigned BaseOp;
5935   switch (MI.getOpcode()) {
5936   default:
5937     llvm_unreachable("unexpected addsat/subsat opcode");
5938   case TargetOpcode::G_UADDSAT:
5939     IsSigned = false;
5940     IsAdd = true;
5941     BaseOp = TargetOpcode::G_ADD;
5942     break;
5943   case TargetOpcode::G_SADDSAT:
5944     IsSigned = true;
5945     IsAdd = true;
5946     BaseOp = TargetOpcode::G_ADD;
5947     break;
5948   case TargetOpcode::G_USUBSAT:
5949     IsSigned = false;
5950     IsAdd = false;
5951     BaseOp = TargetOpcode::G_SUB;
5952     break;
5953   case TargetOpcode::G_SSUBSAT:
5954     IsSigned = true;
5955     IsAdd = false;
5956     BaseOp = TargetOpcode::G_SUB;
5957     break;
5958   }
5959 
5960   if (IsSigned) {
5961     // sadd.sat(a, b) ->
5962     //   hi = 0x7fffffff - smax(a, 0)
5963     //   lo = 0x80000000 - smin(a, 0)
5964     //   a + smin(smax(lo, b), hi)
5965     // ssub.sat(a, b) ->
5966     //   lo = smax(a, -1) - 0x7fffffff
5967     //   hi = smin(a, -1) - 0x80000000
5968     //   a - smin(smax(lo, b), hi)
5969     // TODO: AMDGPU can use a "median of 3" instruction here:
5970     //   a +/- med3(lo, b, hi)
5971     uint64_t NumBits = Ty.getScalarSizeInBits();
5972     auto MaxVal =
5973         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5974     auto MinVal =
5975         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5976     MachineInstrBuilder Hi, Lo;
5977     if (IsAdd) {
5978       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5979       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5980       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5981     } else {
5982       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5983       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5984                                MaxVal);
5985       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5986                                MinVal);
5987     }
5988     auto RHSClamped =
5989         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5990     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5991   } else {
5992     // uadd.sat(a, b) -> a + umin(~a, b)
5993     // usub.sat(a, b) -> a - umin(a, b)
5994     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5995     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5996     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5997   }
5998 
5999   MI.eraseFromParent();
6000   return Legalized;
6001 }
6002 
6003 LegalizerHelper::LegalizeResult
6004 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6005   Register Res = MI.getOperand(0).getReg();
6006   Register LHS = MI.getOperand(1).getReg();
6007   Register RHS = MI.getOperand(2).getReg();
6008   LLT Ty = MRI.getType(Res);
6009   LLT BoolTy = Ty.changeElementSize(1);
6010   bool IsSigned;
6011   bool IsAdd;
6012   unsigned OverflowOp;
6013   switch (MI.getOpcode()) {
6014   default:
6015     llvm_unreachable("unexpected addsat/subsat opcode");
6016   case TargetOpcode::G_UADDSAT:
6017     IsSigned = false;
6018     IsAdd = true;
6019     OverflowOp = TargetOpcode::G_UADDO;
6020     break;
6021   case TargetOpcode::G_SADDSAT:
6022     IsSigned = true;
6023     IsAdd = true;
6024     OverflowOp = TargetOpcode::G_SADDO;
6025     break;
6026   case TargetOpcode::G_USUBSAT:
6027     IsSigned = false;
6028     IsAdd = false;
6029     OverflowOp = TargetOpcode::G_USUBO;
6030     break;
6031   case TargetOpcode::G_SSUBSAT:
6032     IsSigned = true;
6033     IsAdd = false;
6034     OverflowOp = TargetOpcode::G_SSUBO;
6035     break;
6036   }
6037 
6038   auto OverflowRes =
6039       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6040   Register Tmp = OverflowRes.getReg(0);
6041   Register Ov = OverflowRes.getReg(1);
6042   MachineInstrBuilder Clamp;
6043   if (IsSigned) {
6044     // sadd.sat(a, b) ->
6045     //   {tmp, ov} = saddo(a, b)
6046     //   ov ? (tmp >>s 31) + 0x80000000 : r
6047     // ssub.sat(a, b) ->
6048     //   {tmp, ov} = ssubo(a, b)
6049     //   ov ? (tmp >>s 31) + 0x80000000 : r
6050     uint64_t NumBits = Ty.getScalarSizeInBits();
6051     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6052     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6053     auto MinVal =
6054         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6055     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6056   } else {
6057     // uadd.sat(a, b) ->
6058     //   {tmp, ov} = uaddo(a, b)
6059     //   ov ? 0xffffffff : tmp
6060     // usub.sat(a, b) ->
6061     //   {tmp, ov} = usubo(a, b)
6062     //   ov ? 0 : tmp
6063     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6064   }
6065   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6066 
6067   MI.eraseFromParent();
6068   return Legalized;
6069 }
6070 
6071 LegalizerHelper::LegalizeResult
6072 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6073   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6074           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6075          "Expected shlsat opcode!");
6076   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6077   Register Res = MI.getOperand(0).getReg();
6078   Register LHS = MI.getOperand(1).getReg();
6079   Register RHS = MI.getOperand(2).getReg();
6080   LLT Ty = MRI.getType(Res);
6081   LLT BoolTy = Ty.changeElementSize(1);
6082 
6083   unsigned BW = Ty.getScalarSizeInBits();
6084   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6085   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6086                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6087 
6088   MachineInstrBuilder SatVal;
6089   if (IsSigned) {
6090     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6091     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6092     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6093                                     MIRBuilder.buildConstant(Ty, 0));
6094     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6095   } else {
6096     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6097   }
6098   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6099   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6100 
6101   MI.eraseFromParent();
6102   return Legalized;
6103 }
6104 
6105 LegalizerHelper::LegalizeResult
6106 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6107   Register Dst = MI.getOperand(0).getReg();
6108   Register Src = MI.getOperand(1).getReg();
6109   const LLT Ty = MRI.getType(Src);
6110   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6111   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6112 
6113   // Swap most and least significant byte, set remaining bytes in Res to zero.
6114   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6115   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6116   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6117   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6118 
6119   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6120   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6121     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6122     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6123     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6124     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6125     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6126     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6127     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6128     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6129     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6130     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6131     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6132     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6133   }
6134   Res.getInstr()->getOperand(0).setReg(Dst);
6135 
6136   MI.eraseFromParent();
6137   return Legalized;
6138 }
6139 
6140 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6141 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6142                                  MachineInstrBuilder Src, APInt Mask) {
6143   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6144   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6145   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6146   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6147   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6148   return B.buildOr(Dst, LHS, RHS);
6149 }
6150 
6151 LegalizerHelper::LegalizeResult
6152 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6153   Register Dst = MI.getOperand(0).getReg();
6154   Register Src = MI.getOperand(1).getReg();
6155   const LLT Ty = MRI.getType(Src);
6156   unsigned Size = Ty.getSizeInBits();
6157 
6158   MachineInstrBuilder BSWAP =
6159       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6160 
6161   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6162   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6163   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6164   MachineInstrBuilder Swap4 =
6165       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6166 
6167   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6168   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6169   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6170   MachineInstrBuilder Swap2 =
6171       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6172 
6173   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6174   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6175   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6176   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6177 
6178   MI.eraseFromParent();
6179   return Legalized;
6180 }
6181 
6182 LegalizerHelper::LegalizeResult
6183 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6184   MachineFunction &MF = MIRBuilder.getMF();
6185 
6186   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6187   int NameOpIdx = IsRead ? 1 : 0;
6188   int ValRegIndex = IsRead ? 0 : 1;
6189 
6190   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6191   const LLT Ty = MRI.getType(ValReg);
6192   const MDString *RegStr = cast<MDString>(
6193     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6194 
6195   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6196   if (!PhysReg.isValid())
6197     return UnableToLegalize;
6198 
6199   if (IsRead)
6200     MIRBuilder.buildCopy(ValReg, PhysReg);
6201   else
6202     MIRBuilder.buildCopy(PhysReg, ValReg);
6203 
6204   MI.eraseFromParent();
6205   return Legalized;
6206 }
6207 
6208 LegalizerHelper::LegalizeResult
6209 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6210   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6211   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6212   Register Result = MI.getOperand(0).getReg();
6213   LLT OrigTy = MRI.getType(Result);
6214   auto SizeInBits = OrigTy.getScalarSizeInBits();
6215   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6216 
6217   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6218   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6219   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6220   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6221 
6222   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6223   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6224   MIRBuilder.buildTrunc(Result, Shifted);
6225 
6226   MI.eraseFromParent();
6227   return Legalized;
6228 }
6229 
6230 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6231   // Implement vector G_SELECT in terms of XOR, AND, OR.
6232   Register DstReg = MI.getOperand(0).getReg();
6233   Register MaskReg = MI.getOperand(1).getReg();
6234   Register Op1Reg = MI.getOperand(2).getReg();
6235   Register Op2Reg = MI.getOperand(3).getReg();
6236   LLT DstTy = MRI.getType(DstReg);
6237   LLT MaskTy = MRI.getType(MaskReg);
6238   LLT Op1Ty = MRI.getType(Op1Reg);
6239   if (!DstTy.isVector())
6240     return UnableToLegalize;
6241 
6242   // Vector selects can have a scalar predicate. If so, splat into a vector and
6243   // finish for later legalization attempts to try again.
6244   if (MaskTy.isScalar()) {
6245     Register MaskElt = MaskReg;
6246     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6247       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6248     // Generate a vector splat idiom to be pattern matched later.
6249     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6250     Observer.changingInstr(MI);
6251     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6252     Observer.changedInstr(MI);
6253     return Legalized;
6254   }
6255 
6256   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6257     return UnableToLegalize;
6258   }
6259 
6260   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6261   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6262   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6263   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6264   MI.eraseFromParent();
6265   return Legalized;
6266 }
6267