1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
64   } else {
65     LeftoverTy = LLT::scalar(LeftoverSize);
66   }
67 
68   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
69   return std::make_pair(NumParts, NumLeftover);
70 }
71 
72 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
73 
74   if (!Ty.isScalar())
75     return nullptr;
76 
77   switch (Ty.getSizeInBits()) {
78   case 16:
79     return Type::getHalfTy(Ctx);
80   case 32:
81     return Type::getFloatTy(Ctx);
82   case 64:
83     return Type::getDoubleTy(Ctx);
84   case 80:
85     return Type::getX86_FP80Ty(Ctx);
86   case 128:
87     return Type::getFP128Ty(Ctx);
88   default:
89     return nullptr;
90   }
91 }
92 
93 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
94                                  GISelChangeObserver &Observer,
95                                  MachineIRBuilder &Builder)
96     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
97       LI(*MF.getSubtarget().getLegalizerInfo()),
98       TLI(*MF.getSubtarget().getTargetLowering()) { }
99 
100 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
101                                  GISelChangeObserver &Observer,
102                                  MachineIRBuilder &B)
103   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
104     TLI(*MF.getSubtarget().getTargetLowering()) { }
105 
106 LegalizerHelper::LegalizeResult
107 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
108                                    LostDebugLocObserver &LocObserver) {
109   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
110 
111   MIRBuilder.setInstrAndDebugLoc(MI);
112 
113   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
114       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
115     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
116   auto Step = LI.getAction(MI, MRI);
117   switch (Step.Action) {
118   case Legal:
119     LLVM_DEBUG(dbgs() << ".. Already legal\n");
120     return AlreadyLegal;
121   case Libcall:
122     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
123     return libcall(MI, LocObserver);
124   case NarrowScalar:
125     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
126     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
127   case WidenScalar:
128     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
129     return widenScalar(MI, Step.TypeIdx, Step.NewType);
130   case Bitcast:
131     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
132     return bitcast(MI, Step.TypeIdx, Step.NewType);
133   case Lower:
134     LLVM_DEBUG(dbgs() << ".. Lower\n");
135     return lower(MI, Step.TypeIdx, Step.NewType);
136   case FewerElements:
137     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
138     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
139   case MoreElements:
140     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
141     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
142   case Custom:
143     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
144     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
145   default:
146     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
147     return UnableToLegalize;
148   }
149 }
150 
151 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
152                                    SmallVectorImpl<Register> &VRegs) {
153   for (int i = 0; i < NumParts; ++i)
154     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
155   MIRBuilder.buildUnmerge(VRegs, Reg);
156 }
157 
158 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
159                                    LLT MainTy, LLT &LeftoverTy,
160                                    SmallVectorImpl<Register> &VRegs,
161                                    SmallVectorImpl<Register> &LeftoverRegs) {
162   assert(!LeftoverTy.isValid() && "this is an out argument");
163 
164   unsigned RegSize = RegTy.getSizeInBits();
165   unsigned MainSize = MainTy.getSizeInBits();
166   unsigned NumParts = RegSize / MainSize;
167   unsigned LeftoverSize = RegSize - NumParts * MainSize;
168 
169   // Use an unmerge when possible.
170   if (LeftoverSize == 0) {
171     for (unsigned I = 0; I < NumParts; ++I)
172       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
173     MIRBuilder.buildUnmerge(VRegs, Reg);
174     return true;
175   }
176 
177   if (MainTy.isVector()) {
178     unsigned EltSize = MainTy.getScalarSizeInBits();
179     if (LeftoverSize % EltSize != 0)
180       return false;
181     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
182   } else {
183     LeftoverTy = LLT::scalar(LeftoverSize);
184   }
185 
186   // For irregular sizes, extract the individual parts.
187   for (unsigned I = 0; I != NumParts; ++I) {
188     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
189     VRegs.push_back(NewReg);
190     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
191   }
192 
193   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
194        Offset += LeftoverSize) {
195     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
196     LeftoverRegs.push_back(NewReg);
197     MIRBuilder.buildExtract(NewReg, Reg, Offset);
198   }
199 
200   return true;
201 }
202 
203 void LegalizerHelper::insertParts(Register DstReg,
204                                   LLT ResultTy, LLT PartTy,
205                                   ArrayRef<Register> PartRegs,
206                                   LLT LeftoverTy,
207                                   ArrayRef<Register> LeftoverRegs) {
208   if (!LeftoverTy.isValid()) {
209     assert(LeftoverRegs.empty());
210 
211     if (!ResultTy.isVector()) {
212       MIRBuilder.buildMerge(DstReg, PartRegs);
213       return;
214     }
215 
216     if (PartTy.isVector())
217       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
218     else
219       MIRBuilder.buildBuildVector(DstReg, PartRegs);
220     return;
221   }
222 
223   SmallVector<Register> GCDRegs;
224   LLT GCDTy;
225   for (Register PartReg : PartRegs)
226     GCDTy = extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg);
227 
228   for (Register PartReg : LeftoverRegs)
229     extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg);
230 
231   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
232   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
233 }
234 
235 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
236 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
237                               const MachineInstr &MI) {
238   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
239 
240   const int StartIdx = Regs.size();
241   const int NumResults = MI.getNumOperands() - 1;
242   Regs.resize(Regs.size() + NumResults);
243   for (int I = 0; I != NumResults; ++I)
244     Regs[StartIdx + I] = MI.getOperand(I).getReg();
245 }
246 
247 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
248                                      LLT GCDTy, Register SrcReg) {
249   LLT SrcTy = MRI.getType(SrcReg);
250   if (SrcTy == GCDTy) {
251     // If the source already evenly divides the result type, we don't need to do
252     // anything.
253     Parts.push_back(SrcReg);
254   } else {
255     // Need to split into common type sized pieces.
256     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
257     getUnmergeResults(Parts, *Unmerge);
258   }
259 }
260 
261 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
262                                     LLT NarrowTy, Register SrcReg) {
263   LLT SrcTy = MRI.getType(SrcReg);
264   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
265   extractGCDType(Parts, GCDTy, SrcReg);
266   return GCDTy;
267 }
268 
269 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
270                                          SmallVectorImpl<Register> &VRegs,
271                                          unsigned PadStrategy) {
272   LLT LCMTy = getLCMType(DstTy, NarrowTy);
273 
274   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
275   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
276   int NumOrigSrc = VRegs.size();
277 
278   Register PadReg;
279 
280   // Get a value we can use to pad the source value if the sources won't evenly
281   // cover the result type.
282   if (NumOrigSrc < NumParts * NumSubParts) {
283     if (PadStrategy == TargetOpcode::G_ZEXT)
284       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
285     else if (PadStrategy == TargetOpcode::G_ANYEXT)
286       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
287     else {
288       assert(PadStrategy == TargetOpcode::G_SEXT);
289 
290       // Shift the sign bit of the low register through the high register.
291       auto ShiftAmt =
292         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
293       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
294     }
295   }
296 
297   // Registers for the final merge to be produced.
298   SmallVector<Register, 4> Remerge(NumParts);
299 
300   // Registers needed for intermediate merges, which will be merged into a
301   // source for Remerge.
302   SmallVector<Register, 4> SubMerge(NumSubParts);
303 
304   // Once we've fully read off the end of the original source bits, we can reuse
305   // the same high bits for remaining padding elements.
306   Register AllPadReg;
307 
308   // Build merges to the LCM type to cover the original result type.
309   for (int I = 0; I != NumParts; ++I) {
310     bool AllMergePartsArePadding = true;
311 
312     // Build the requested merges to the requested type.
313     for (int J = 0; J != NumSubParts; ++J) {
314       int Idx = I * NumSubParts + J;
315       if (Idx >= NumOrigSrc) {
316         SubMerge[J] = PadReg;
317         continue;
318       }
319 
320       SubMerge[J] = VRegs[Idx];
321 
322       // There are meaningful bits here we can't reuse later.
323       AllMergePartsArePadding = false;
324     }
325 
326     // If we've filled up a complete piece with padding bits, we can directly
327     // emit the natural sized constant if applicable, rather than a merge of
328     // smaller constants.
329     if (AllMergePartsArePadding && !AllPadReg) {
330       if (PadStrategy == TargetOpcode::G_ANYEXT)
331         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
332       else if (PadStrategy == TargetOpcode::G_ZEXT)
333         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
334 
335       // If this is a sign extension, we can't materialize a trivial constant
336       // with the right type and have to produce a merge.
337     }
338 
339     if (AllPadReg) {
340       // Avoid creating additional instructions if we're just adding additional
341       // copies of padding bits.
342       Remerge[I] = AllPadReg;
343       continue;
344     }
345 
346     if (NumSubParts == 1)
347       Remerge[I] = SubMerge[0];
348     else
349       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
350 
351     // In the sign extend padding case, re-use the first all-signbit merge.
352     if (AllMergePartsArePadding && !AllPadReg)
353       AllPadReg = Remerge[I];
354   }
355 
356   VRegs = std::move(Remerge);
357   return LCMTy;
358 }
359 
360 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
361                                                ArrayRef<Register> RemergeRegs) {
362   LLT DstTy = MRI.getType(DstReg);
363 
364   // Create the merge to the widened source, and extract the relevant bits into
365   // the result.
366 
367   if (DstTy == LCMTy) {
368     MIRBuilder.buildMerge(DstReg, RemergeRegs);
369     return;
370   }
371 
372   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
373   if (DstTy.isScalar() && LCMTy.isScalar()) {
374     MIRBuilder.buildTrunc(DstReg, Remerge);
375     return;
376   }
377 
378   if (LCMTy.isVector()) {
379     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
380     SmallVector<Register, 8> UnmergeDefs(NumDefs);
381     UnmergeDefs[0] = DstReg;
382     for (unsigned I = 1; I != NumDefs; ++I)
383       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
384 
385     MIRBuilder.buildUnmerge(UnmergeDefs,
386                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
387     return;
388   }
389 
390   llvm_unreachable("unhandled case");
391 }
392 
393 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
394 #define RTLIBCASE_INT(LibcallPrefix)                                           \
395   do {                                                                         \
396     switch (Size) {                                                            \
397     case 32:                                                                   \
398       return RTLIB::LibcallPrefix##32;                                         \
399     case 64:                                                                   \
400       return RTLIB::LibcallPrefix##64;                                         \
401     case 128:                                                                  \
402       return RTLIB::LibcallPrefix##128;                                        \
403     default:                                                                   \
404       llvm_unreachable("unexpected size");                                     \
405     }                                                                          \
406   } while (0)
407 
408 #define RTLIBCASE(LibcallPrefix)                                               \
409   do {                                                                         \
410     switch (Size) {                                                            \
411     case 32:                                                                   \
412       return RTLIB::LibcallPrefix##32;                                         \
413     case 64:                                                                   \
414       return RTLIB::LibcallPrefix##64;                                         \
415     case 80:                                                                   \
416       return RTLIB::LibcallPrefix##80;                                         \
417     case 128:                                                                  \
418       return RTLIB::LibcallPrefix##128;                                        \
419     default:                                                                   \
420       llvm_unreachable("unexpected size");                                     \
421     }                                                                          \
422   } while (0)
423 
424   switch (Opcode) {
425   case TargetOpcode::G_SDIV:
426     RTLIBCASE_INT(SDIV_I);
427   case TargetOpcode::G_UDIV:
428     RTLIBCASE_INT(UDIV_I);
429   case TargetOpcode::G_SREM:
430     RTLIBCASE_INT(SREM_I);
431   case TargetOpcode::G_UREM:
432     RTLIBCASE_INT(UREM_I);
433   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
434     RTLIBCASE_INT(CTLZ_I);
435   case TargetOpcode::G_FADD:
436     RTLIBCASE(ADD_F);
437   case TargetOpcode::G_FSUB:
438     RTLIBCASE(SUB_F);
439   case TargetOpcode::G_FMUL:
440     RTLIBCASE(MUL_F);
441   case TargetOpcode::G_FDIV:
442     RTLIBCASE(DIV_F);
443   case TargetOpcode::G_FEXP:
444     RTLIBCASE(EXP_F);
445   case TargetOpcode::G_FEXP2:
446     RTLIBCASE(EXP2_F);
447   case TargetOpcode::G_FREM:
448     RTLIBCASE(REM_F);
449   case TargetOpcode::G_FPOW:
450     RTLIBCASE(POW_F);
451   case TargetOpcode::G_FMA:
452     RTLIBCASE(FMA_F);
453   case TargetOpcode::G_FSIN:
454     RTLIBCASE(SIN_F);
455   case TargetOpcode::G_FCOS:
456     RTLIBCASE(COS_F);
457   case TargetOpcode::G_FLOG10:
458     RTLIBCASE(LOG10_F);
459   case TargetOpcode::G_FLOG:
460     RTLIBCASE(LOG_F);
461   case TargetOpcode::G_FLOG2:
462     RTLIBCASE(LOG2_F);
463   case TargetOpcode::G_FCEIL:
464     RTLIBCASE(CEIL_F);
465   case TargetOpcode::G_FFLOOR:
466     RTLIBCASE(FLOOR_F);
467   case TargetOpcode::G_FMINNUM:
468     RTLIBCASE(FMIN_F);
469   case TargetOpcode::G_FMAXNUM:
470     RTLIBCASE(FMAX_F);
471   case TargetOpcode::G_FSQRT:
472     RTLIBCASE(SQRT_F);
473   case TargetOpcode::G_FRINT:
474     RTLIBCASE(RINT_F);
475   case TargetOpcode::G_FNEARBYINT:
476     RTLIBCASE(NEARBYINT_F);
477   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
478     RTLIBCASE(ROUNDEVEN_F);
479   }
480   llvm_unreachable("Unknown libcall function");
481 }
482 
483 /// True if an instruction is in tail position in its caller. Intended for
484 /// legalizing libcalls as tail calls when possible.
485 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
486                                     MachineInstr &MI) {
487   MachineBasicBlock &MBB = *MI.getParent();
488   const Function &F = MBB.getParent()->getFunction();
489 
490   // Conservatively require the attributes of the call to match those of
491   // the return. Ignore NoAlias and NonNull because they don't affect the
492   // call sequence.
493   AttributeList CallerAttrs = F.getAttributes();
494   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
495           .removeAttribute(Attribute::NoAlias)
496           .removeAttribute(Attribute::NonNull)
497           .hasAttributes())
498     return false;
499 
500   // It's not safe to eliminate the sign / zero extension of the return value.
501   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
502       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
503     return false;
504 
505   // Only tail call if the following instruction is a standard return.
506   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
507   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
508     return false;
509 
510   return true;
511 }
512 
513 LegalizerHelper::LegalizeResult
514 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
515                     const CallLowering::ArgInfo &Result,
516                     ArrayRef<CallLowering::ArgInfo> Args,
517                     const CallingConv::ID CC) {
518   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
519 
520   CallLowering::CallLoweringInfo Info;
521   Info.CallConv = CC;
522   Info.Callee = MachineOperand::CreateES(Name);
523   Info.OrigRet = Result;
524   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
525   if (!CLI.lowerCall(MIRBuilder, Info))
526     return LegalizerHelper::UnableToLegalize;
527 
528   return LegalizerHelper::Legalized;
529 }
530 
531 LegalizerHelper::LegalizeResult
532 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
533                     const CallLowering::ArgInfo &Result,
534                     ArrayRef<CallLowering::ArgInfo> Args) {
535   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
536   const char *Name = TLI.getLibcallName(Libcall);
537   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
538   return createLibcall(MIRBuilder, Name, Result, Args, CC);
539 }
540 
541 // Useful for libcalls where all operands have the same type.
542 static LegalizerHelper::LegalizeResult
543 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
544               Type *OpType) {
545   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
546 
547   SmallVector<CallLowering::ArgInfo, 3> Args;
548   for (unsigned i = 1; i < MI.getNumOperands(); i++)
549     Args.push_back({MI.getOperand(i).getReg(), OpType});
550   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
551                        Args);
552 }
553 
554 LegalizerHelper::LegalizeResult
555 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
556                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
557   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
558 
559   SmallVector<CallLowering::ArgInfo, 3> Args;
560   // Add all the args, except for the last which is an imm denoting 'tail'.
561   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
562     Register Reg = MI.getOperand(i).getReg();
563 
564     // Need derive an IR type for call lowering.
565     LLT OpLLT = MRI.getType(Reg);
566     Type *OpTy = nullptr;
567     if (OpLLT.isPointer())
568       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
569     else
570       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
571     Args.push_back({Reg, OpTy});
572   }
573 
574   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
575   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
576   RTLIB::Libcall RTLibcall;
577   unsigned Opc = MI.getOpcode();
578   switch (Opc) {
579   case TargetOpcode::G_BZERO:
580     RTLibcall = RTLIB::BZERO;
581     break;
582   case TargetOpcode::G_MEMCPY:
583     RTLibcall = RTLIB::MEMCPY;
584     break;
585   case TargetOpcode::G_MEMMOVE:
586     RTLibcall = RTLIB::MEMMOVE;
587     break;
588   case TargetOpcode::G_MEMSET:
589     RTLibcall = RTLIB::MEMSET;
590     break;
591   default:
592     return LegalizerHelper::UnableToLegalize;
593   }
594   const char *Name = TLI.getLibcallName(RTLibcall);
595 
596   // Unsupported libcall on the target.
597   if (!Name) {
598     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
599                       << MIRBuilder.getTII().getName(Opc) << "\n");
600     return LegalizerHelper::UnableToLegalize;
601   }
602 
603   CallLowering::CallLoweringInfo Info;
604   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
605   Info.Callee = MachineOperand::CreateES(Name);
606   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
607   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
608                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
609 
610   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
611   if (!CLI.lowerCall(MIRBuilder, Info))
612     return LegalizerHelper::UnableToLegalize;
613 
614 
615   if (Info.LoweredTailCall) {
616     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
617 
618     // Check debug locations before removing the return.
619     LocObserver.checkpoint(true);
620 
621     // We must have a return following the call (or debug insts) to get past
622     // isLibCallInTailPosition.
623     do {
624       MachineInstr *Next = MI.getNextNode();
625       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
626              "Expected instr following MI to be return or debug inst?");
627       // We lowered a tail call, so the call is now the return from the block.
628       // Delete the old return.
629       Next->eraseFromParent();
630     } while (MI.getNextNode());
631 
632     // We expect to lose the debug location from the return.
633     LocObserver.checkpoint(false);
634   }
635 
636   return LegalizerHelper::Legalized;
637 }
638 
639 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
640                                        Type *FromType) {
641   auto ToMVT = MVT::getVT(ToType);
642   auto FromMVT = MVT::getVT(FromType);
643 
644   switch (Opcode) {
645   case TargetOpcode::G_FPEXT:
646     return RTLIB::getFPEXT(FromMVT, ToMVT);
647   case TargetOpcode::G_FPTRUNC:
648     return RTLIB::getFPROUND(FromMVT, ToMVT);
649   case TargetOpcode::G_FPTOSI:
650     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
651   case TargetOpcode::G_FPTOUI:
652     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
653   case TargetOpcode::G_SITOFP:
654     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
655   case TargetOpcode::G_UITOFP:
656     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
657   }
658   llvm_unreachable("Unsupported libcall function");
659 }
660 
661 static LegalizerHelper::LegalizeResult
662 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
663                   Type *FromType) {
664   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
665   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
666                        {{MI.getOperand(1).getReg(), FromType}});
667 }
668 
669 LegalizerHelper::LegalizeResult
670 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
671   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
672   unsigned Size = LLTy.getSizeInBits();
673   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
674 
675   switch (MI.getOpcode()) {
676   default:
677     return UnableToLegalize;
678   case TargetOpcode::G_SDIV:
679   case TargetOpcode::G_UDIV:
680   case TargetOpcode::G_SREM:
681   case TargetOpcode::G_UREM:
682   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
683     Type *HLTy = IntegerType::get(Ctx, Size);
684     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
685     if (Status != Legalized)
686       return Status;
687     break;
688   }
689   case TargetOpcode::G_FADD:
690   case TargetOpcode::G_FSUB:
691   case TargetOpcode::G_FMUL:
692   case TargetOpcode::G_FDIV:
693   case TargetOpcode::G_FMA:
694   case TargetOpcode::G_FPOW:
695   case TargetOpcode::G_FREM:
696   case TargetOpcode::G_FCOS:
697   case TargetOpcode::G_FSIN:
698   case TargetOpcode::G_FLOG10:
699   case TargetOpcode::G_FLOG:
700   case TargetOpcode::G_FLOG2:
701   case TargetOpcode::G_FEXP:
702   case TargetOpcode::G_FEXP2:
703   case TargetOpcode::G_FCEIL:
704   case TargetOpcode::G_FFLOOR:
705   case TargetOpcode::G_FMINNUM:
706   case TargetOpcode::G_FMAXNUM:
707   case TargetOpcode::G_FSQRT:
708   case TargetOpcode::G_FRINT:
709   case TargetOpcode::G_FNEARBYINT:
710   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
711     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
712     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
713       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
714       return UnableToLegalize;
715     }
716     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPEXT:
722   case TargetOpcode::G_FPTRUNC: {
723     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
724     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
725     if (!FromTy || !ToTy)
726       return UnableToLegalize;
727     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
728     if (Status != Legalized)
729       return Status;
730     break;
731   }
732   case TargetOpcode::G_FPTOSI:
733   case TargetOpcode::G_FPTOUI: {
734     // FIXME: Support other types
735     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
736     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
737     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
738       return UnableToLegalize;
739     LegalizeResult Status = conversionLibcall(
740         MI, MIRBuilder,
741         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
742         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
743     if (Status != Legalized)
744       return Status;
745     break;
746   }
747   case TargetOpcode::G_SITOFP:
748   case TargetOpcode::G_UITOFP: {
749     // FIXME: Support other types
750     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
751     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
752     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
753       return UnableToLegalize;
754     LegalizeResult Status = conversionLibcall(
755         MI, MIRBuilder,
756         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
757         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
758     if (Status != Legalized)
759       return Status;
760     break;
761   }
762   case TargetOpcode::G_BZERO:
763   case TargetOpcode::G_MEMCPY:
764   case TargetOpcode::G_MEMMOVE:
765   case TargetOpcode::G_MEMSET: {
766     LegalizeResult Result =
767         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
768     if (Result != Legalized)
769       return Result;
770     MI.eraseFromParent();
771     return Result;
772   }
773   }
774 
775   MI.eraseFromParent();
776   return Legalized;
777 }
778 
779 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
780                                                               unsigned TypeIdx,
781                                                               LLT NarrowTy) {
782   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
783   uint64_t NarrowSize = NarrowTy.getSizeInBits();
784 
785   switch (MI.getOpcode()) {
786   default:
787     return UnableToLegalize;
788   case TargetOpcode::G_IMPLICIT_DEF: {
789     Register DstReg = MI.getOperand(0).getReg();
790     LLT DstTy = MRI.getType(DstReg);
791 
792     // If SizeOp0 is not an exact multiple of NarrowSize, emit
793     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
794     // FIXME: Although this would also be legal for the general case, it causes
795     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
796     //  combines not being hit). This seems to be a problem related to the
797     //  artifact combiner.
798     if (SizeOp0 % NarrowSize != 0) {
799       LLT ImplicitTy = NarrowTy;
800       if (DstTy.isVector())
801         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
802 
803       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
804       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
805 
806       MI.eraseFromParent();
807       return Legalized;
808     }
809 
810     int NumParts = SizeOp0 / NarrowSize;
811 
812     SmallVector<Register, 2> DstRegs;
813     for (int i = 0; i < NumParts; ++i)
814       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
815 
816     if (DstTy.isVector())
817       MIRBuilder.buildBuildVector(DstReg, DstRegs);
818     else
819       MIRBuilder.buildMerge(DstReg, DstRegs);
820     MI.eraseFromParent();
821     return Legalized;
822   }
823   case TargetOpcode::G_CONSTANT: {
824     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
825     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
826     unsigned TotalSize = Ty.getSizeInBits();
827     unsigned NarrowSize = NarrowTy.getSizeInBits();
828     int NumParts = TotalSize / NarrowSize;
829 
830     SmallVector<Register, 4> PartRegs;
831     for (int I = 0; I != NumParts; ++I) {
832       unsigned Offset = I * NarrowSize;
833       auto K = MIRBuilder.buildConstant(NarrowTy,
834                                         Val.lshr(Offset).trunc(NarrowSize));
835       PartRegs.push_back(K.getReg(0));
836     }
837 
838     LLT LeftoverTy;
839     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
840     SmallVector<Register, 1> LeftoverRegs;
841     if (LeftoverBits != 0) {
842       LeftoverTy = LLT::scalar(LeftoverBits);
843       auto K = MIRBuilder.buildConstant(
844         LeftoverTy,
845         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
846       LeftoverRegs.push_back(K.getReg(0));
847     }
848 
849     insertParts(MI.getOperand(0).getReg(),
850                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
851 
852     MI.eraseFromParent();
853     return Legalized;
854   }
855   case TargetOpcode::G_SEXT:
856   case TargetOpcode::G_ZEXT:
857   case TargetOpcode::G_ANYEXT:
858     return narrowScalarExt(MI, TypeIdx, NarrowTy);
859   case TargetOpcode::G_TRUNC: {
860     if (TypeIdx != 1)
861       return UnableToLegalize;
862 
863     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
864     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
865       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
866       return UnableToLegalize;
867     }
868 
869     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
870     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
871     MI.eraseFromParent();
872     return Legalized;
873   }
874 
875   case TargetOpcode::G_FREEZE:
876     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
877   case TargetOpcode::G_ADD:
878   case TargetOpcode::G_SUB:
879   case TargetOpcode::G_SADDO:
880   case TargetOpcode::G_SSUBO:
881   case TargetOpcode::G_SADDE:
882   case TargetOpcode::G_SSUBE:
883   case TargetOpcode::G_UADDO:
884   case TargetOpcode::G_USUBO:
885   case TargetOpcode::G_UADDE:
886   case TargetOpcode::G_USUBE:
887     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
888   case TargetOpcode::G_MUL:
889   case TargetOpcode::G_UMULH:
890     return narrowScalarMul(MI, NarrowTy);
891   case TargetOpcode::G_EXTRACT:
892     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
893   case TargetOpcode::G_INSERT:
894     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
895   case TargetOpcode::G_LOAD: {
896     auto &MMO = **MI.memoperands_begin();
897     Register DstReg = MI.getOperand(0).getReg();
898     LLT DstTy = MRI.getType(DstReg);
899     if (DstTy.isVector())
900       return UnableToLegalize;
901 
902     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
903       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
904       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
905       MIRBuilder.buildAnyExt(DstReg, TmpReg);
906       MI.eraseFromParent();
907       return Legalized;
908     }
909 
910     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
911   }
912   case TargetOpcode::G_ZEXTLOAD:
913   case TargetOpcode::G_SEXTLOAD: {
914     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
915     Register DstReg = MI.getOperand(0).getReg();
916     Register PtrReg = MI.getOperand(1).getReg();
917 
918     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
919     auto &MMO = **MI.memoperands_begin();
920     unsigned MemSize = MMO.getSizeInBits();
921 
922     if (MemSize == NarrowSize) {
923       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
924     } else if (MemSize < NarrowSize) {
925       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
926     } else if (MemSize > NarrowSize) {
927       // FIXME: Need to split the load.
928       return UnableToLegalize;
929     }
930 
931     if (ZExt)
932       MIRBuilder.buildZExt(DstReg, TmpReg);
933     else
934       MIRBuilder.buildSExt(DstReg, TmpReg);
935 
936     MI.eraseFromParent();
937     return Legalized;
938   }
939   case TargetOpcode::G_STORE: {
940     const auto &MMO = **MI.memoperands_begin();
941 
942     Register SrcReg = MI.getOperand(0).getReg();
943     LLT SrcTy = MRI.getType(SrcReg);
944     if (SrcTy.isVector())
945       return UnableToLegalize;
946 
947     int NumParts = SizeOp0 / NarrowSize;
948     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
949     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
950     if (SrcTy.isVector() && LeftoverBits != 0)
951       return UnableToLegalize;
952 
953     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
954       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
955       auto &MMO = **MI.memoperands_begin();
956       MIRBuilder.buildTrunc(TmpReg, SrcReg);
957       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
958       MI.eraseFromParent();
959       return Legalized;
960     }
961 
962     return reduceLoadStoreWidth(MI, 0, NarrowTy);
963   }
964   case TargetOpcode::G_SELECT:
965     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
966   case TargetOpcode::G_AND:
967   case TargetOpcode::G_OR:
968   case TargetOpcode::G_XOR: {
969     // Legalize bitwise operation:
970     // A = BinOp<Ty> B, C
971     // into:
972     // B1, ..., BN = G_UNMERGE_VALUES B
973     // C1, ..., CN = G_UNMERGE_VALUES C
974     // A1 = BinOp<Ty/N> B1, C2
975     // ...
976     // AN = BinOp<Ty/N> BN, CN
977     // A = G_MERGE_VALUES A1, ..., AN
978     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
979   }
980   case TargetOpcode::G_SHL:
981   case TargetOpcode::G_LSHR:
982   case TargetOpcode::G_ASHR:
983     return narrowScalarShift(MI, TypeIdx, NarrowTy);
984   case TargetOpcode::G_CTLZ:
985   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
986   case TargetOpcode::G_CTTZ:
987   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
988   case TargetOpcode::G_CTPOP:
989     if (TypeIdx == 1)
990       switch (MI.getOpcode()) {
991       case TargetOpcode::G_CTLZ:
992       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
993         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
994       case TargetOpcode::G_CTTZ:
995       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
996         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
997       case TargetOpcode::G_CTPOP:
998         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
999       default:
1000         return UnableToLegalize;
1001       }
1002 
1003     Observer.changingInstr(MI);
1004     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1005     Observer.changedInstr(MI);
1006     return Legalized;
1007   case TargetOpcode::G_INTTOPTR:
1008     if (TypeIdx != 1)
1009       return UnableToLegalize;
1010 
1011     Observer.changingInstr(MI);
1012     narrowScalarSrc(MI, NarrowTy, 1);
1013     Observer.changedInstr(MI);
1014     return Legalized;
1015   case TargetOpcode::G_PTRTOINT:
1016     if (TypeIdx != 0)
1017       return UnableToLegalize;
1018 
1019     Observer.changingInstr(MI);
1020     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1021     Observer.changedInstr(MI);
1022     return Legalized;
1023   case TargetOpcode::G_PHI: {
1024     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1025     // NarrowSize.
1026     if (SizeOp0 % NarrowSize != 0)
1027       return UnableToLegalize;
1028 
1029     unsigned NumParts = SizeOp0 / NarrowSize;
1030     SmallVector<Register, 2> DstRegs(NumParts);
1031     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1032     Observer.changingInstr(MI);
1033     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1034       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1035       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1036       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1037                    SrcRegs[i / 2]);
1038     }
1039     MachineBasicBlock &MBB = *MI.getParent();
1040     MIRBuilder.setInsertPt(MBB, MI);
1041     for (unsigned i = 0; i < NumParts; ++i) {
1042       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1043       MachineInstrBuilder MIB =
1044           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1045       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1046         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1047     }
1048     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1049     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1050     Observer.changedInstr(MI);
1051     MI.eraseFromParent();
1052     return Legalized;
1053   }
1054   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1055   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1056     if (TypeIdx != 2)
1057       return UnableToLegalize;
1058 
1059     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1060     Observer.changingInstr(MI);
1061     narrowScalarSrc(MI, NarrowTy, OpIdx);
1062     Observer.changedInstr(MI);
1063     return Legalized;
1064   }
1065   case TargetOpcode::G_ICMP: {
1066     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1067     if (NarrowSize * 2 != SrcSize)
1068       return UnableToLegalize;
1069 
1070     Observer.changingInstr(MI);
1071     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1072     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1073     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1074 
1075     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1076     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1077     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1078 
1079     CmpInst::Predicate Pred =
1080         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1081     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1082 
1083     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1084       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1085       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1086       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1087       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1088       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1089     } else {
1090       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1091       MachineInstrBuilder CmpHEQ =
1092           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1093       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1094           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1095       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1096     }
1097     Observer.changedInstr(MI);
1098     MI.eraseFromParent();
1099     return Legalized;
1100   }
1101   case TargetOpcode::G_SEXT_INREG: {
1102     if (TypeIdx != 0)
1103       return UnableToLegalize;
1104 
1105     int64_t SizeInBits = MI.getOperand(2).getImm();
1106 
1107     // So long as the new type has more bits than the bits we're extending we
1108     // don't need to break it apart.
1109     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1110       Observer.changingInstr(MI);
1111       // We don't lose any non-extension bits by truncating the src and
1112       // sign-extending the dst.
1113       MachineOperand &MO1 = MI.getOperand(1);
1114       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1115       MO1.setReg(TruncMIB.getReg(0));
1116 
1117       MachineOperand &MO2 = MI.getOperand(0);
1118       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1119       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1120       MIRBuilder.buildSExt(MO2, DstExt);
1121       MO2.setReg(DstExt);
1122       Observer.changedInstr(MI);
1123       return Legalized;
1124     }
1125 
1126     // Break it apart. Components below the extension point are unmodified. The
1127     // component containing the extension point becomes a narrower SEXT_INREG.
1128     // Components above it are ashr'd from the component containing the
1129     // extension point.
1130     if (SizeOp0 % NarrowSize != 0)
1131       return UnableToLegalize;
1132     int NumParts = SizeOp0 / NarrowSize;
1133 
1134     // List the registers where the destination will be scattered.
1135     SmallVector<Register, 2> DstRegs;
1136     // List the registers where the source will be split.
1137     SmallVector<Register, 2> SrcRegs;
1138 
1139     // Create all the temporary registers.
1140     for (int i = 0; i < NumParts; ++i) {
1141       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1142 
1143       SrcRegs.push_back(SrcReg);
1144     }
1145 
1146     // Explode the big arguments into smaller chunks.
1147     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1148 
1149     Register AshrCstReg =
1150         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1151             .getReg(0);
1152     Register FullExtensionReg = 0;
1153     Register PartialExtensionReg = 0;
1154 
1155     // Do the operation on each small part.
1156     for (int i = 0; i < NumParts; ++i) {
1157       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1158         DstRegs.push_back(SrcRegs[i]);
1159       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1160         assert(PartialExtensionReg &&
1161                "Expected to visit partial extension before full");
1162         if (FullExtensionReg) {
1163           DstRegs.push_back(FullExtensionReg);
1164           continue;
1165         }
1166         DstRegs.push_back(
1167             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1168                 .getReg(0));
1169         FullExtensionReg = DstRegs.back();
1170       } else {
1171         DstRegs.push_back(
1172             MIRBuilder
1173                 .buildInstr(
1174                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1175                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1176                 .getReg(0));
1177         PartialExtensionReg = DstRegs.back();
1178       }
1179     }
1180 
1181     // Gather the destination registers into the final destination.
1182     Register DstReg = MI.getOperand(0).getReg();
1183     MIRBuilder.buildMerge(DstReg, DstRegs);
1184     MI.eraseFromParent();
1185     return Legalized;
1186   }
1187   case TargetOpcode::G_BSWAP:
1188   case TargetOpcode::G_BITREVERSE: {
1189     if (SizeOp0 % NarrowSize != 0)
1190       return UnableToLegalize;
1191 
1192     Observer.changingInstr(MI);
1193     SmallVector<Register, 2> SrcRegs, DstRegs;
1194     unsigned NumParts = SizeOp0 / NarrowSize;
1195     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1196 
1197     for (unsigned i = 0; i < NumParts; ++i) {
1198       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1199                                            {SrcRegs[NumParts - 1 - i]});
1200       DstRegs.push_back(DstPart.getReg(0));
1201     }
1202 
1203     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1204 
1205     Observer.changedInstr(MI);
1206     MI.eraseFromParent();
1207     return Legalized;
1208   }
1209   case TargetOpcode::G_PTR_ADD:
1210   case TargetOpcode::G_PTRMASK: {
1211     if (TypeIdx != 1)
1212       return UnableToLegalize;
1213     Observer.changingInstr(MI);
1214     narrowScalarSrc(MI, NarrowTy, 2);
1215     Observer.changedInstr(MI);
1216     return Legalized;
1217   }
1218   case TargetOpcode::G_FPTOUI:
1219   case TargetOpcode::G_FPTOSI:
1220     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1221   case TargetOpcode::G_FPEXT:
1222     if (TypeIdx != 0)
1223       return UnableToLegalize;
1224     Observer.changingInstr(MI);
1225     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1226     Observer.changedInstr(MI);
1227     return Legalized;
1228   }
1229 }
1230 
1231 Register LegalizerHelper::coerceToScalar(Register Val) {
1232   LLT Ty = MRI.getType(Val);
1233   if (Ty.isScalar())
1234     return Val;
1235 
1236   const DataLayout &DL = MIRBuilder.getDataLayout();
1237   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1238   if (Ty.isPointer()) {
1239     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1240       return Register();
1241     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1242   }
1243 
1244   Register NewVal = Val;
1245 
1246   assert(Ty.isVector());
1247   LLT EltTy = Ty.getElementType();
1248   if (EltTy.isPointer())
1249     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1250   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1251 }
1252 
1253 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1254                                      unsigned OpIdx, unsigned ExtOpcode) {
1255   MachineOperand &MO = MI.getOperand(OpIdx);
1256   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1257   MO.setReg(ExtB.getReg(0));
1258 }
1259 
1260 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1261                                       unsigned OpIdx) {
1262   MachineOperand &MO = MI.getOperand(OpIdx);
1263   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1264   MO.setReg(ExtB.getReg(0));
1265 }
1266 
1267 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1268                                      unsigned OpIdx, unsigned TruncOpcode) {
1269   MachineOperand &MO = MI.getOperand(OpIdx);
1270   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1271   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1272   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1273   MO.setReg(DstExt);
1274 }
1275 
1276 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1277                                       unsigned OpIdx, unsigned ExtOpcode) {
1278   MachineOperand &MO = MI.getOperand(OpIdx);
1279   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1280   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1281   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1282   MO.setReg(DstTrunc);
1283 }
1284 
1285 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1286                                             unsigned OpIdx) {
1287   MachineOperand &MO = MI.getOperand(OpIdx);
1288   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1289   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1290 }
1291 
1292 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1293                                             unsigned OpIdx) {
1294   MachineOperand &MO = MI.getOperand(OpIdx);
1295 
1296   LLT OldTy = MRI.getType(MO.getReg());
1297   unsigned OldElts = OldTy.getNumElements();
1298   unsigned NewElts = MoreTy.getNumElements();
1299 
1300   unsigned NumParts = NewElts / OldElts;
1301 
1302   // Use concat_vectors if the result is a multiple of the number of elements.
1303   if (NumParts * OldElts == NewElts) {
1304     SmallVector<Register, 8> Parts;
1305     Parts.push_back(MO.getReg());
1306 
1307     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1308     for (unsigned I = 1; I != NumParts; ++I)
1309       Parts.push_back(ImpDef);
1310 
1311     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1312     MO.setReg(Concat.getReg(0));
1313     return;
1314   }
1315 
1316   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1317   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1318   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1319   MO.setReg(MoreReg);
1320 }
1321 
1322 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1323   MachineOperand &Op = MI.getOperand(OpIdx);
1324   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1325 }
1326 
1327 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1328   MachineOperand &MO = MI.getOperand(OpIdx);
1329   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1330   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1331   MIRBuilder.buildBitcast(MO, CastDst);
1332   MO.setReg(CastDst);
1333 }
1334 
1335 LegalizerHelper::LegalizeResult
1336 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1337                                         LLT WideTy) {
1338   if (TypeIdx != 1)
1339     return UnableToLegalize;
1340 
1341   Register DstReg = MI.getOperand(0).getReg();
1342   LLT DstTy = MRI.getType(DstReg);
1343   if (DstTy.isVector())
1344     return UnableToLegalize;
1345 
1346   Register Src1 = MI.getOperand(1).getReg();
1347   LLT SrcTy = MRI.getType(Src1);
1348   const int DstSize = DstTy.getSizeInBits();
1349   const int SrcSize = SrcTy.getSizeInBits();
1350   const int WideSize = WideTy.getSizeInBits();
1351   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1352 
1353   unsigned NumOps = MI.getNumOperands();
1354   unsigned NumSrc = MI.getNumOperands() - 1;
1355   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1356 
1357   if (WideSize >= DstSize) {
1358     // Directly pack the bits in the target type.
1359     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1360 
1361     for (unsigned I = 2; I != NumOps; ++I) {
1362       const unsigned Offset = (I - 1) * PartSize;
1363 
1364       Register SrcReg = MI.getOperand(I).getReg();
1365       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1366 
1367       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1368 
1369       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1370         MRI.createGenericVirtualRegister(WideTy);
1371 
1372       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1373       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1374       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1375       ResultReg = NextResult;
1376     }
1377 
1378     if (WideSize > DstSize)
1379       MIRBuilder.buildTrunc(DstReg, ResultReg);
1380     else if (DstTy.isPointer())
1381       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1382 
1383     MI.eraseFromParent();
1384     return Legalized;
1385   }
1386 
1387   // Unmerge the original values to the GCD type, and recombine to the next
1388   // multiple greater than the original type.
1389   //
1390   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1391   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1392   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1393   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1394   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1395   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1396   // %12:_(s12) = G_MERGE_VALUES %10, %11
1397   //
1398   // Padding with undef if necessary:
1399   //
1400   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1401   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1402   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1403   // %7:_(s2) = G_IMPLICIT_DEF
1404   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1405   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1406   // %10:_(s12) = G_MERGE_VALUES %8, %9
1407 
1408   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1409   LLT GCDTy = LLT::scalar(GCD);
1410 
1411   SmallVector<Register, 8> Parts;
1412   SmallVector<Register, 8> NewMergeRegs;
1413   SmallVector<Register, 8> Unmerges;
1414   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1415 
1416   // Decompose the original operands if they don't evenly divide.
1417   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1418     Register SrcReg = MI.getOperand(I).getReg();
1419     if (GCD == SrcSize) {
1420       Unmerges.push_back(SrcReg);
1421     } else {
1422       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1423       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1424         Unmerges.push_back(Unmerge.getReg(J));
1425     }
1426   }
1427 
1428   // Pad with undef to the next size that is a multiple of the requested size.
1429   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1430     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1431     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1432       Unmerges.push_back(UndefReg);
1433   }
1434 
1435   const int PartsPerGCD = WideSize / GCD;
1436 
1437   // Build merges of each piece.
1438   ArrayRef<Register> Slicer(Unmerges);
1439   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1440     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1441     NewMergeRegs.push_back(Merge.getReg(0));
1442   }
1443 
1444   // A truncate may be necessary if the requested type doesn't evenly divide the
1445   // original result type.
1446   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1447     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1448   } else {
1449     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1450     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1451   }
1452 
1453   MI.eraseFromParent();
1454   return Legalized;
1455 }
1456 
1457 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1458   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1459   LLT OrigTy = MRI.getType(OrigReg);
1460   LLT LCMTy = getLCMType(WideTy, OrigTy);
1461 
1462   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1463   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1464 
1465   Register UnmergeSrc = WideReg;
1466 
1467   // Create a merge to the LCM type, padding with undef
1468   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1469   // =>
1470   // %1:_(<4 x s32>) = G_FOO
1471   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1472   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1473   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1474   if (NumMergeParts > 1) {
1475     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1476     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1477     MergeParts[0] = WideReg;
1478     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1479   }
1480 
1481   // Unmerge to the original register and pad with dead defs.
1482   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1483   UnmergeResults[0] = OrigReg;
1484   for (int I = 1; I != NumUnmergeParts; ++I)
1485     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1486 
1487   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1488   return WideReg;
1489 }
1490 
1491 LegalizerHelper::LegalizeResult
1492 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1493                                           LLT WideTy) {
1494   if (TypeIdx != 0)
1495     return UnableToLegalize;
1496 
1497   int NumDst = MI.getNumOperands() - 1;
1498   Register SrcReg = MI.getOperand(NumDst).getReg();
1499   LLT SrcTy = MRI.getType(SrcReg);
1500   if (SrcTy.isVector())
1501     return UnableToLegalize;
1502 
1503   Register Dst0Reg = MI.getOperand(0).getReg();
1504   LLT DstTy = MRI.getType(Dst0Reg);
1505   if (!DstTy.isScalar())
1506     return UnableToLegalize;
1507 
1508   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1509     if (SrcTy.isPointer()) {
1510       const DataLayout &DL = MIRBuilder.getDataLayout();
1511       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1512         LLVM_DEBUG(
1513             dbgs() << "Not casting non-integral address space integer\n");
1514         return UnableToLegalize;
1515       }
1516 
1517       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1518       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1519     }
1520 
1521     // Widen SrcTy to WideTy. This does not affect the result, but since the
1522     // user requested this size, it is probably better handled than SrcTy and
1523     // should reduce the total number of legalization artifacts
1524     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1525       SrcTy = WideTy;
1526       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1527     }
1528 
1529     // Theres no unmerge type to target. Directly extract the bits from the
1530     // source type
1531     unsigned DstSize = DstTy.getSizeInBits();
1532 
1533     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1534     for (int I = 1; I != NumDst; ++I) {
1535       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1536       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1537       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1538     }
1539 
1540     MI.eraseFromParent();
1541     return Legalized;
1542   }
1543 
1544   // Extend the source to a wider type.
1545   LLT LCMTy = getLCMType(SrcTy, WideTy);
1546 
1547   Register WideSrc = SrcReg;
1548   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1549     // TODO: If this is an integral address space, cast to integer and anyext.
1550     if (SrcTy.isPointer()) {
1551       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1552       return UnableToLegalize;
1553     }
1554 
1555     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1556   }
1557 
1558   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1559 
1560   // Create a sequence of unmerges and merges to the original results. Since we
1561   // may have widened the source, we will need to pad the results with dead defs
1562   // to cover the source register.
1563   // e.g. widen s48 to s64:
1564   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1565   //
1566   // =>
1567   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1568   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1569   //  ; unpack to GCD type, with extra dead defs
1570   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1571   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1572   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1573   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1574   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1575   const LLT GCDTy = getGCDType(WideTy, DstTy);
1576   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1577   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1578 
1579   // Directly unmerge to the destination without going through a GCD type
1580   // if possible
1581   if (PartsPerRemerge == 1) {
1582     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1583 
1584     for (int I = 0; I != NumUnmerge; ++I) {
1585       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1586 
1587       for (int J = 0; J != PartsPerUnmerge; ++J) {
1588         int Idx = I * PartsPerUnmerge + J;
1589         if (Idx < NumDst)
1590           MIB.addDef(MI.getOperand(Idx).getReg());
1591         else {
1592           // Create dead def for excess components.
1593           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1594         }
1595       }
1596 
1597       MIB.addUse(Unmerge.getReg(I));
1598     }
1599   } else {
1600     SmallVector<Register, 16> Parts;
1601     for (int J = 0; J != NumUnmerge; ++J)
1602       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1603 
1604     SmallVector<Register, 8> RemergeParts;
1605     for (int I = 0; I != NumDst; ++I) {
1606       for (int J = 0; J < PartsPerRemerge; ++J) {
1607         const int Idx = I * PartsPerRemerge + J;
1608         RemergeParts.emplace_back(Parts[Idx]);
1609       }
1610 
1611       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1612       RemergeParts.clear();
1613     }
1614   }
1615 
1616   MI.eraseFromParent();
1617   return Legalized;
1618 }
1619 
1620 LegalizerHelper::LegalizeResult
1621 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1622                                     LLT WideTy) {
1623   Register DstReg = MI.getOperand(0).getReg();
1624   Register SrcReg = MI.getOperand(1).getReg();
1625   LLT SrcTy = MRI.getType(SrcReg);
1626 
1627   LLT DstTy = MRI.getType(DstReg);
1628   unsigned Offset = MI.getOperand(2).getImm();
1629 
1630   if (TypeIdx == 0) {
1631     if (SrcTy.isVector() || DstTy.isVector())
1632       return UnableToLegalize;
1633 
1634     SrcOp Src(SrcReg);
1635     if (SrcTy.isPointer()) {
1636       // Extracts from pointers can be handled only if they are really just
1637       // simple integers.
1638       const DataLayout &DL = MIRBuilder.getDataLayout();
1639       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1640         return UnableToLegalize;
1641 
1642       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1643       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1644       SrcTy = SrcAsIntTy;
1645     }
1646 
1647     if (DstTy.isPointer())
1648       return UnableToLegalize;
1649 
1650     if (Offset == 0) {
1651       // Avoid a shift in the degenerate case.
1652       MIRBuilder.buildTrunc(DstReg,
1653                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1654       MI.eraseFromParent();
1655       return Legalized;
1656     }
1657 
1658     // Do a shift in the source type.
1659     LLT ShiftTy = SrcTy;
1660     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1661       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1662       ShiftTy = WideTy;
1663     }
1664 
1665     auto LShr = MIRBuilder.buildLShr(
1666       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1667     MIRBuilder.buildTrunc(DstReg, LShr);
1668     MI.eraseFromParent();
1669     return Legalized;
1670   }
1671 
1672   if (SrcTy.isScalar()) {
1673     Observer.changingInstr(MI);
1674     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1675     Observer.changedInstr(MI);
1676     return Legalized;
1677   }
1678 
1679   if (!SrcTy.isVector())
1680     return UnableToLegalize;
1681 
1682   if (DstTy != SrcTy.getElementType())
1683     return UnableToLegalize;
1684 
1685   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1686     return UnableToLegalize;
1687 
1688   Observer.changingInstr(MI);
1689   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1690 
1691   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1692                           Offset);
1693   widenScalarDst(MI, WideTy.getScalarType(), 0);
1694   Observer.changedInstr(MI);
1695   return Legalized;
1696 }
1697 
1698 LegalizerHelper::LegalizeResult
1699 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1700                                    LLT WideTy) {
1701   if (TypeIdx != 0 || WideTy.isVector())
1702     return UnableToLegalize;
1703   Observer.changingInstr(MI);
1704   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1705   widenScalarDst(MI, WideTy);
1706   Observer.changedInstr(MI);
1707   return Legalized;
1708 }
1709 
1710 LegalizerHelper::LegalizeResult
1711 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1712                                            LLT WideTy) {
1713   if (TypeIdx == 1)
1714     return UnableToLegalize; // TODO
1715 
1716   unsigned Opcode;
1717   unsigned ExtOpcode;
1718   Optional<Register> CarryIn = None;
1719   switch (MI.getOpcode()) {
1720   default:
1721     llvm_unreachable("Unexpected opcode!");
1722   case TargetOpcode::G_SADDO:
1723     Opcode = TargetOpcode::G_ADD;
1724     ExtOpcode = TargetOpcode::G_SEXT;
1725     break;
1726   case TargetOpcode::G_SSUBO:
1727     Opcode = TargetOpcode::G_SUB;
1728     ExtOpcode = TargetOpcode::G_SEXT;
1729     break;
1730   case TargetOpcode::G_UADDO:
1731     Opcode = TargetOpcode::G_ADD;
1732     ExtOpcode = TargetOpcode::G_ZEXT;
1733     break;
1734   case TargetOpcode::G_USUBO:
1735     Opcode = TargetOpcode::G_SUB;
1736     ExtOpcode = TargetOpcode::G_ZEXT;
1737     break;
1738   case TargetOpcode::G_SADDE:
1739     Opcode = TargetOpcode::G_UADDE;
1740     ExtOpcode = TargetOpcode::G_SEXT;
1741     CarryIn = MI.getOperand(4).getReg();
1742     break;
1743   case TargetOpcode::G_SSUBE:
1744     Opcode = TargetOpcode::G_USUBE;
1745     ExtOpcode = TargetOpcode::G_SEXT;
1746     CarryIn = MI.getOperand(4).getReg();
1747     break;
1748   case TargetOpcode::G_UADDE:
1749     Opcode = TargetOpcode::G_UADDE;
1750     ExtOpcode = TargetOpcode::G_ZEXT;
1751     CarryIn = MI.getOperand(4).getReg();
1752     break;
1753   case TargetOpcode::G_USUBE:
1754     Opcode = TargetOpcode::G_USUBE;
1755     ExtOpcode = TargetOpcode::G_ZEXT;
1756     CarryIn = MI.getOperand(4).getReg();
1757     break;
1758   }
1759 
1760   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1761   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1762   // Do the arithmetic in the larger type.
1763   Register NewOp;
1764   if (CarryIn) {
1765     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1766     NewOp = MIRBuilder
1767                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1768                             {LHSExt, RHSExt, *CarryIn})
1769                 .getReg(0);
1770   } else {
1771     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1772   }
1773   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1774   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1775   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1776   // There is no overflow if the ExtOp is the same as NewOp.
1777   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1778   // Now trunc the NewOp to the original result.
1779   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1780   MI.eraseFromParent();
1781   return Legalized;
1782 }
1783 
1784 LegalizerHelper::LegalizeResult
1785 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1786                                          LLT WideTy) {
1787   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1788                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1789                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1790   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1791                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1792   // We can convert this to:
1793   //   1. Any extend iN to iM
1794   //   2. SHL by M-N
1795   //   3. [US][ADD|SUB|SHL]SAT
1796   //   4. L/ASHR by M-N
1797   //
1798   // It may be more efficient to lower this to a min and a max operation in
1799   // the higher precision arithmetic if the promoted operation isn't legal,
1800   // but this decision is up to the target's lowering request.
1801   Register DstReg = MI.getOperand(0).getReg();
1802 
1803   unsigned NewBits = WideTy.getScalarSizeInBits();
1804   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1805 
1806   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1807   // must not left shift the RHS to preserve the shift amount.
1808   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1809   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1810                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1811   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1812   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1813   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1814 
1815   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1816                                         {ShiftL, ShiftR}, MI.getFlags());
1817 
1818   // Use a shift that will preserve the number of sign bits when the trunc is
1819   // folded away.
1820   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1821                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1822 
1823   MIRBuilder.buildTrunc(DstReg, Result);
1824   MI.eraseFromParent();
1825   return Legalized;
1826 }
1827 
1828 LegalizerHelper::LegalizeResult
1829 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1830                                  LLT WideTy) {
1831   if (TypeIdx == 1)
1832     return UnableToLegalize;
1833 
1834   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1835   Register Result = MI.getOperand(0).getReg();
1836   Register OriginalOverflow = MI.getOperand(1).getReg();
1837   Register LHS = MI.getOperand(2).getReg();
1838   Register RHS = MI.getOperand(3).getReg();
1839   LLT SrcTy = MRI.getType(LHS);
1840   LLT OverflowTy = MRI.getType(OriginalOverflow);
1841   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1842 
1843   // To determine if the result overflowed in the larger type, we extend the
1844   // input to the larger type, do the multiply (checking if it overflows),
1845   // then also check the high bits of the result to see if overflow happened
1846   // there.
1847   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1848   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1849   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1850 
1851   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1852                                     {LeftOperand, RightOperand});
1853   auto Mul = Mulo->getOperand(0);
1854   MIRBuilder.buildTrunc(Result, Mul);
1855 
1856   MachineInstrBuilder ExtResult;
1857   // Overflow occurred if it occurred in the larger type, or if the high part
1858   // of the result does not zero/sign-extend the low part.  Check this second
1859   // possibility first.
1860   if (IsSigned) {
1861     // For signed, overflow occurred when the high part does not sign-extend
1862     // the low part.
1863     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1864   } else {
1865     // Unsigned overflow occurred when the high part does not zero-extend the
1866     // low part.
1867     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1868   }
1869 
1870   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1871   // so we don't need to check the overflow result of larger type Mulo.
1872   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1873     auto Overflow =
1874         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1875     // Finally check if the multiplication in the larger type itself overflowed.
1876     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1877   } else {
1878     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1879   }
1880   MI.eraseFromParent();
1881   return Legalized;
1882 }
1883 
1884 LegalizerHelper::LegalizeResult
1885 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1886   switch (MI.getOpcode()) {
1887   default:
1888     return UnableToLegalize;
1889   case TargetOpcode::G_EXTRACT:
1890     return widenScalarExtract(MI, TypeIdx, WideTy);
1891   case TargetOpcode::G_INSERT:
1892     return widenScalarInsert(MI, TypeIdx, WideTy);
1893   case TargetOpcode::G_MERGE_VALUES:
1894     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1895   case TargetOpcode::G_UNMERGE_VALUES:
1896     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1897   case TargetOpcode::G_SADDO:
1898   case TargetOpcode::G_SSUBO:
1899   case TargetOpcode::G_UADDO:
1900   case TargetOpcode::G_USUBO:
1901   case TargetOpcode::G_SADDE:
1902   case TargetOpcode::G_SSUBE:
1903   case TargetOpcode::G_UADDE:
1904   case TargetOpcode::G_USUBE:
1905     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1906   case TargetOpcode::G_UMULO:
1907   case TargetOpcode::G_SMULO:
1908     return widenScalarMulo(MI, TypeIdx, WideTy);
1909   case TargetOpcode::G_SADDSAT:
1910   case TargetOpcode::G_SSUBSAT:
1911   case TargetOpcode::G_SSHLSAT:
1912   case TargetOpcode::G_UADDSAT:
1913   case TargetOpcode::G_USUBSAT:
1914   case TargetOpcode::G_USHLSAT:
1915     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1916   case TargetOpcode::G_CTTZ:
1917   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1918   case TargetOpcode::G_CTLZ:
1919   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1920   case TargetOpcode::G_CTPOP: {
1921     if (TypeIdx == 0) {
1922       Observer.changingInstr(MI);
1923       widenScalarDst(MI, WideTy, 0);
1924       Observer.changedInstr(MI);
1925       return Legalized;
1926     }
1927 
1928     Register SrcReg = MI.getOperand(1).getReg();
1929 
1930     // First ZEXT the input.
1931     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1932     LLT CurTy = MRI.getType(SrcReg);
1933     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1934       // The count is the same in the larger type except if the original
1935       // value was zero.  This can be handled by setting the bit just off
1936       // the top of the original type.
1937       auto TopBit =
1938           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1939       MIBSrc = MIRBuilder.buildOr(
1940         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1941     }
1942 
1943     // Perform the operation at the larger size.
1944     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1945     // This is already the correct result for CTPOP and CTTZs
1946     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1947         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1948       // The correct result is NewOp - (Difference in widety and current ty).
1949       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1950       MIBNewOp = MIRBuilder.buildSub(
1951           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1952     }
1953 
1954     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1955     MI.eraseFromParent();
1956     return Legalized;
1957   }
1958   case TargetOpcode::G_BSWAP: {
1959     Observer.changingInstr(MI);
1960     Register DstReg = MI.getOperand(0).getReg();
1961 
1962     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1963     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1964     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1965     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1966 
1967     MI.getOperand(0).setReg(DstExt);
1968 
1969     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1970 
1971     LLT Ty = MRI.getType(DstReg);
1972     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1973     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1974     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1975 
1976     MIRBuilder.buildTrunc(DstReg, ShrReg);
1977     Observer.changedInstr(MI);
1978     return Legalized;
1979   }
1980   case TargetOpcode::G_BITREVERSE: {
1981     Observer.changingInstr(MI);
1982 
1983     Register DstReg = MI.getOperand(0).getReg();
1984     LLT Ty = MRI.getType(DstReg);
1985     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1986 
1987     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1988     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1989     MI.getOperand(0).setReg(DstExt);
1990     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1991 
1992     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1993     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1994     MIRBuilder.buildTrunc(DstReg, Shift);
1995     Observer.changedInstr(MI);
1996     return Legalized;
1997   }
1998   case TargetOpcode::G_FREEZE:
1999     Observer.changingInstr(MI);
2000     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2001     widenScalarDst(MI, WideTy);
2002     Observer.changedInstr(MI);
2003     return Legalized;
2004 
2005   case TargetOpcode::G_ABS:
2006     Observer.changingInstr(MI);
2007     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2008     widenScalarDst(MI, WideTy);
2009     Observer.changedInstr(MI);
2010     return Legalized;
2011 
2012   case TargetOpcode::G_ADD:
2013   case TargetOpcode::G_AND:
2014   case TargetOpcode::G_MUL:
2015   case TargetOpcode::G_OR:
2016   case TargetOpcode::G_XOR:
2017   case TargetOpcode::G_SUB:
2018     // Perform operation at larger width (any extension is fines here, high bits
2019     // don't affect the result) and then truncate the result back to the
2020     // original type.
2021     Observer.changingInstr(MI);
2022     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2023     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2024     widenScalarDst(MI, WideTy);
2025     Observer.changedInstr(MI);
2026     return Legalized;
2027 
2028   case TargetOpcode::G_SHL:
2029     Observer.changingInstr(MI);
2030 
2031     if (TypeIdx == 0) {
2032       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2033       widenScalarDst(MI, WideTy);
2034     } else {
2035       assert(TypeIdx == 1);
2036       // The "number of bits to shift" operand must preserve its value as an
2037       // unsigned integer:
2038       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2039     }
2040 
2041     Observer.changedInstr(MI);
2042     return Legalized;
2043 
2044   case TargetOpcode::G_SDIV:
2045   case TargetOpcode::G_SREM:
2046   case TargetOpcode::G_SMIN:
2047   case TargetOpcode::G_SMAX:
2048     Observer.changingInstr(MI);
2049     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2050     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2051     widenScalarDst(MI, WideTy);
2052     Observer.changedInstr(MI);
2053     return Legalized;
2054 
2055   case TargetOpcode::G_SDIVREM:
2056     Observer.changingInstr(MI);
2057     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2058     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2059     widenScalarDst(MI, WideTy);
2060     widenScalarDst(MI, WideTy, 1);
2061     Observer.changedInstr(MI);
2062     return Legalized;
2063 
2064   case TargetOpcode::G_ASHR:
2065   case TargetOpcode::G_LSHR:
2066     Observer.changingInstr(MI);
2067 
2068     if (TypeIdx == 0) {
2069       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2070         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2071 
2072       widenScalarSrc(MI, WideTy, 1, CvtOp);
2073       widenScalarDst(MI, WideTy);
2074     } else {
2075       assert(TypeIdx == 1);
2076       // The "number of bits to shift" operand must preserve its value as an
2077       // unsigned integer:
2078       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2079     }
2080 
2081     Observer.changedInstr(MI);
2082     return Legalized;
2083   case TargetOpcode::G_UDIV:
2084   case TargetOpcode::G_UREM:
2085   case TargetOpcode::G_UMIN:
2086   case TargetOpcode::G_UMAX:
2087     Observer.changingInstr(MI);
2088     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2089     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2090     widenScalarDst(MI, WideTy);
2091     Observer.changedInstr(MI);
2092     return Legalized;
2093 
2094   case TargetOpcode::G_UDIVREM:
2095     Observer.changingInstr(MI);
2096     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2097     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2098     widenScalarDst(MI, WideTy);
2099     widenScalarDst(MI, WideTy, 1);
2100     Observer.changedInstr(MI);
2101     return Legalized;
2102 
2103   case TargetOpcode::G_SELECT:
2104     Observer.changingInstr(MI);
2105     if (TypeIdx == 0) {
2106       // Perform operation at larger width (any extension is fine here, high
2107       // bits don't affect the result) and then truncate the result back to the
2108       // original type.
2109       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2110       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2111       widenScalarDst(MI, WideTy);
2112     } else {
2113       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2114       // Explicit extension is required here since high bits affect the result.
2115       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2116     }
2117     Observer.changedInstr(MI);
2118     return Legalized;
2119 
2120   case TargetOpcode::G_FPTOSI:
2121   case TargetOpcode::G_FPTOUI:
2122     Observer.changingInstr(MI);
2123 
2124     if (TypeIdx == 0)
2125       widenScalarDst(MI, WideTy);
2126     else
2127       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2128 
2129     Observer.changedInstr(MI);
2130     return Legalized;
2131   case TargetOpcode::G_SITOFP:
2132     Observer.changingInstr(MI);
2133 
2134     if (TypeIdx == 0)
2135       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2136     else
2137       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2138 
2139     Observer.changedInstr(MI);
2140     return Legalized;
2141   case TargetOpcode::G_UITOFP:
2142     Observer.changingInstr(MI);
2143 
2144     if (TypeIdx == 0)
2145       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2146     else
2147       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2148 
2149     Observer.changedInstr(MI);
2150     return Legalized;
2151   case TargetOpcode::G_LOAD:
2152   case TargetOpcode::G_SEXTLOAD:
2153   case TargetOpcode::G_ZEXTLOAD:
2154     Observer.changingInstr(MI);
2155     widenScalarDst(MI, WideTy);
2156     Observer.changedInstr(MI);
2157     return Legalized;
2158 
2159   case TargetOpcode::G_STORE: {
2160     if (TypeIdx != 0)
2161       return UnableToLegalize;
2162 
2163     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2164     if (!Ty.isScalar())
2165       return UnableToLegalize;
2166 
2167     Observer.changingInstr(MI);
2168 
2169     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2170       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2171     widenScalarSrc(MI, WideTy, 0, ExtType);
2172 
2173     Observer.changedInstr(MI);
2174     return Legalized;
2175   }
2176   case TargetOpcode::G_CONSTANT: {
2177     MachineOperand &SrcMO = MI.getOperand(1);
2178     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2179     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2180         MRI.getType(MI.getOperand(0).getReg()));
2181     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2182             ExtOpc == TargetOpcode::G_ANYEXT) &&
2183            "Illegal Extend");
2184     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2185     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2186                            ? SrcVal.sext(WideTy.getSizeInBits())
2187                            : SrcVal.zext(WideTy.getSizeInBits());
2188     Observer.changingInstr(MI);
2189     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2190 
2191     widenScalarDst(MI, WideTy);
2192     Observer.changedInstr(MI);
2193     return Legalized;
2194   }
2195   case TargetOpcode::G_FCONSTANT: {
2196     MachineOperand &SrcMO = MI.getOperand(1);
2197     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2198     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2199     bool LosesInfo;
2200     switch (WideTy.getSizeInBits()) {
2201     case 32:
2202       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2203                   &LosesInfo);
2204       break;
2205     case 64:
2206       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2207                   &LosesInfo);
2208       break;
2209     default:
2210       return UnableToLegalize;
2211     }
2212 
2213     assert(!LosesInfo && "extend should always be lossless");
2214 
2215     Observer.changingInstr(MI);
2216     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2217 
2218     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2219     Observer.changedInstr(MI);
2220     return Legalized;
2221   }
2222   case TargetOpcode::G_IMPLICIT_DEF: {
2223     Observer.changingInstr(MI);
2224     widenScalarDst(MI, WideTy);
2225     Observer.changedInstr(MI);
2226     return Legalized;
2227   }
2228   case TargetOpcode::G_BRCOND:
2229     Observer.changingInstr(MI);
2230     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2231     Observer.changedInstr(MI);
2232     return Legalized;
2233 
2234   case TargetOpcode::G_FCMP:
2235     Observer.changingInstr(MI);
2236     if (TypeIdx == 0)
2237       widenScalarDst(MI, WideTy);
2238     else {
2239       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2240       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2241     }
2242     Observer.changedInstr(MI);
2243     return Legalized;
2244 
2245   case TargetOpcode::G_ICMP:
2246     Observer.changingInstr(MI);
2247     if (TypeIdx == 0)
2248       widenScalarDst(MI, WideTy);
2249     else {
2250       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2251                                MI.getOperand(1).getPredicate()))
2252                                ? TargetOpcode::G_SEXT
2253                                : TargetOpcode::G_ZEXT;
2254       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2255       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2256     }
2257     Observer.changedInstr(MI);
2258     return Legalized;
2259 
2260   case TargetOpcode::G_PTR_ADD:
2261     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2262     Observer.changingInstr(MI);
2263     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2264     Observer.changedInstr(MI);
2265     return Legalized;
2266 
2267   case TargetOpcode::G_PHI: {
2268     assert(TypeIdx == 0 && "Expecting only Idx 0");
2269 
2270     Observer.changingInstr(MI);
2271     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2272       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2273       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2274       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2275     }
2276 
2277     MachineBasicBlock &MBB = *MI.getParent();
2278     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2279     widenScalarDst(MI, WideTy);
2280     Observer.changedInstr(MI);
2281     return Legalized;
2282   }
2283   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2284     if (TypeIdx == 0) {
2285       Register VecReg = MI.getOperand(1).getReg();
2286       LLT VecTy = MRI.getType(VecReg);
2287       Observer.changingInstr(MI);
2288 
2289       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2290                                      WideTy.getSizeInBits()),
2291                      1, TargetOpcode::G_SEXT);
2292 
2293       widenScalarDst(MI, WideTy, 0);
2294       Observer.changedInstr(MI);
2295       return Legalized;
2296     }
2297 
2298     if (TypeIdx != 2)
2299       return UnableToLegalize;
2300     Observer.changingInstr(MI);
2301     // TODO: Probably should be zext
2302     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2303     Observer.changedInstr(MI);
2304     return Legalized;
2305   }
2306   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2307     if (TypeIdx == 1) {
2308       Observer.changingInstr(MI);
2309 
2310       Register VecReg = MI.getOperand(1).getReg();
2311       LLT VecTy = MRI.getType(VecReg);
2312       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2313 
2314       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2315       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2316       widenScalarDst(MI, WideVecTy, 0);
2317       Observer.changedInstr(MI);
2318       return Legalized;
2319     }
2320 
2321     if (TypeIdx == 2) {
2322       Observer.changingInstr(MI);
2323       // TODO: Probably should be zext
2324       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2325       Observer.changedInstr(MI);
2326       return Legalized;
2327     }
2328 
2329     return UnableToLegalize;
2330   }
2331   case TargetOpcode::G_FADD:
2332   case TargetOpcode::G_FMUL:
2333   case TargetOpcode::G_FSUB:
2334   case TargetOpcode::G_FMA:
2335   case TargetOpcode::G_FMAD:
2336   case TargetOpcode::G_FNEG:
2337   case TargetOpcode::G_FABS:
2338   case TargetOpcode::G_FCANONICALIZE:
2339   case TargetOpcode::G_FMINNUM:
2340   case TargetOpcode::G_FMAXNUM:
2341   case TargetOpcode::G_FMINNUM_IEEE:
2342   case TargetOpcode::G_FMAXNUM_IEEE:
2343   case TargetOpcode::G_FMINIMUM:
2344   case TargetOpcode::G_FMAXIMUM:
2345   case TargetOpcode::G_FDIV:
2346   case TargetOpcode::G_FREM:
2347   case TargetOpcode::G_FCEIL:
2348   case TargetOpcode::G_FFLOOR:
2349   case TargetOpcode::G_FCOS:
2350   case TargetOpcode::G_FSIN:
2351   case TargetOpcode::G_FLOG10:
2352   case TargetOpcode::G_FLOG:
2353   case TargetOpcode::G_FLOG2:
2354   case TargetOpcode::G_FRINT:
2355   case TargetOpcode::G_FNEARBYINT:
2356   case TargetOpcode::G_FSQRT:
2357   case TargetOpcode::G_FEXP:
2358   case TargetOpcode::G_FEXP2:
2359   case TargetOpcode::G_FPOW:
2360   case TargetOpcode::G_INTRINSIC_TRUNC:
2361   case TargetOpcode::G_INTRINSIC_ROUND:
2362   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2363     assert(TypeIdx == 0);
2364     Observer.changingInstr(MI);
2365 
2366     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2367       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2368 
2369     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2370     Observer.changedInstr(MI);
2371     return Legalized;
2372   case TargetOpcode::G_FPOWI: {
2373     if (TypeIdx != 0)
2374       return UnableToLegalize;
2375     Observer.changingInstr(MI);
2376     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2377     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2378     Observer.changedInstr(MI);
2379     return Legalized;
2380   }
2381   case TargetOpcode::G_INTTOPTR:
2382     if (TypeIdx != 1)
2383       return UnableToLegalize;
2384 
2385     Observer.changingInstr(MI);
2386     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2387     Observer.changedInstr(MI);
2388     return Legalized;
2389   case TargetOpcode::G_PTRTOINT:
2390     if (TypeIdx != 0)
2391       return UnableToLegalize;
2392 
2393     Observer.changingInstr(MI);
2394     widenScalarDst(MI, WideTy, 0);
2395     Observer.changedInstr(MI);
2396     return Legalized;
2397   case TargetOpcode::G_BUILD_VECTOR: {
2398     Observer.changingInstr(MI);
2399 
2400     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2401     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2402       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2403 
2404     // Avoid changing the result vector type if the source element type was
2405     // requested.
2406     if (TypeIdx == 1) {
2407       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2408     } else {
2409       widenScalarDst(MI, WideTy, 0);
2410     }
2411 
2412     Observer.changedInstr(MI);
2413     return Legalized;
2414   }
2415   case TargetOpcode::G_SEXT_INREG:
2416     if (TypeIdx != 0)
2417       return UnableToLegalize;
2418 
2419     Observer.changingInstr(MI);
2420     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2421     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2422     Observer.changedInstr(MI);
2423     return Legalized;
2424   case TargetOpcode::G_PTRMASK: {
2425     if (TypeIdx != 1)
2426       return UnableToLegalize;
2427     Observer.changingInstr(MI);
2428     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2429     Observer.changedInstr(MI);
2430     return Legalized;
2431   }
2432   }
2433 }
2434 
2435 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2436                              MachineIRBuilder &B, Register Src, LLT Ty) {
2437   auto Unmerge = B.buildUnmerge(Ty, Src);
2438   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2439     Pieces.push_back(Unmerge.getReg(I));
2440 }
2441 
2442 LegalizerHelper::LegalizeResult
2443 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2444   Register Dst = MI.getOperand(0).getReg();
2445   Register Src = MI.getOperand(1).getReg();
2446   LLT DstTy = MRI.getType(Dst);
2447   LLT SrcTy = MRI.getType(Src);
2448 
2449   if (SrcTy.isVector()) {
2450     LLT SrcEltTy = SrcTy.getElementType();
2451     SmallVector<Register, 8> SrcRegs;
2452 
2453     if (DstTy.isVector()) {
2454       int NumDstElt = DstTy.getNumElements();
2455       int NumSrcElt = SrcTy.getNumElements();
2456 
2457       LLT DstEltTy = DstTy.getElementType();
2458       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2459       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2460 
2461       // If there's an element size mismatch, insert intermediate casts to match
2462       // the result element type.
2463       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2464         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2465         //
2466         // =>
2467         //
2468         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2469         // %3:_(<2 x s8>) = G_BITCAST %2
2470         // %4:_(<2 x s8>) = G_BITCAST %3
2471         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2472         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2473         SrcPartTy = SrcEltTy;
2474       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2475         //
2476         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2477         //
2478         // =>
2479         //
2480         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2481         // %3:_(s16) = G_BITCAST %2
2482         // %4:_(s16) = G_BITCAST %3
2483         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2484         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2485         DstCastTy = DstEltTy;
2486       }
2487 
2488       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2489       for (Register &SrcReg : SrcRegs)
2490         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2491     } else
2492       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2493 
2494     MIRBuilder.buildMerge(Dst, SrcRegs);
2495     MI.eraseFromParent();
2496     return Legalized;
2497   }
2498 
2499   if (DstTy.isVector()) {
2500     SmallVector<Register, 8> SrcRegs;
2501     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2502     MIRBuilder.buildMerge(Dst, SrcRegs);
2503     MI.eraseFromParent();
2504     return Legalized;
2505   }
2506 
2507   return UnableToLegalize;
2508 }
2509 
2510 /// Figure out the bit offset into a register when coercing a vector index for
2511 /// the wide element type. This is only for the case when promoting vector to
2512 /// one with larger elements.
2513 //
2514 ///
2515 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2516 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2517 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2518                                                    Register Idx,
2519                                                    unsigned NewEltSize,
2520                                                    unsigned OldEltSize) {
2521   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2522   LLT IdxTy = B.getMRI()->getType(Idx);
2523 
2524   // Now figure out the amount we need to shift to get the target bits.
2525   auto OffsetMask = B.buildConstant(
2526     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2527   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2528   return B.buildShl(IdxTy, OffsetIdx,
2529                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2530 }
2531 
2532 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2533 /// is casting to a vector with a smaller element size, perform multiple element
2534 /// extracts and merge the results. If this is coercing to a vector with larger
2535 /// elements, index the bitcasted vector and extract the target element with bit
2536 /// operations. This is intended to force the indexing in the native register
2537 /// size for architectures that can dynamically index the register file.
2538 LegalizerHelper::LegalizeResult
2539 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2540                                          LLT CastTy) {
2541   if (TypeIdx != 1)
2542     return UnableToLegalize;
2543 
2544   Register Dst = MI.getOperand(0).getReg();
2545   Register SrcVec = MI.getOperand(1).getReg();
2546   Register Idx = MI.getOperand(2).getReg();
2547   LLT SrcVecTy = MRI.getType(SrcVec);
2548   LLT IdxTy = MRI.getType(Idx);
2549 
2550   LLT SrcEltTy = SrcVecTy.getElementType();
2551   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2552   unsigned OldNumElts = SrcVecTy.getNumElements();
2553 
2554   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2555   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2556 
2557   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2558   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2559   if (NewNumElts > OldNumElts) {
2560     // Decreasing the vector element size
2561     //
2562     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2563     //  =>
2564     //  v4i32:castx = bitcast x:v2i64
2565     //
2566     // i64 = bitcast
2567     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2568     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2569     //
2570     if (NewNumElts % OldNumElts != 0)
2571       return UnableToLegalize;
2572 
2573     // Type of the intermediate result vector.
2574     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2575     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2576 
2577     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2578 
2579     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2580     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2581 
2582     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2583       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2584       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2585       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2586       NewOps[I] = Elt.getReg(0);
2587     }
2588 
2589     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2590     MIRBuilder.buildBitcast(Dst, NewVec);
2591     MI.eraseFromParent();
2592     return Legalized;
2593   }
2594 
2595   if (NewNumElts < OldNumElts) {
2596     if (NewEltSize % OldEltSize != 0)
2597       return UnableToLegalize;
2598 
2599     // This only depends on powers of 2 because we use bit tricks to figure out
2600     // the bit offset we need to shift to get the target element. A general
2601     // expansion could emit division/multiply.
2602     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2603       return UnableToLegalize;
2604 
2605     // Increasing the vector element size.
2606     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2607     //
2608     //   =>
2609     //
2610     // %cast = G_BITCAST %vec
2611     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2612     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2613     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2614     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2615     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2616     // %elt = G_TRUNC %elt_bits
2617 
2618     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2619     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2620 
2621     // Divide to get the index in the wider element type.
2622     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2623 
2624     Register WideElt = CastVec;
2625     if (CastTy.isVector()) {
2626       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2627                                                      ScaledIdx).getReg(0);
2628     }
2629 
2630     // Compute the bit offset into the register of the target element.
2631     Register OffsetBits = getBitcastWiderVectorElementOffset(
2632       MIRBuilder, Idx, NewEltSize, OldEltSize);
2633 
2634     // Shift the wide element to get the target element.
2635     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2636     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2637     MI.eraseFromParent();
2638     return Legalized;
2639   }
2640 
2641   return UnableToLegalize;
2642 }
2643 
2644 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2645 /// TargetReg, while preserving other bits in \p TargetReg.
2646 ///
2647 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2648 static Register buildBitFieldInsert(MachineIRBuilder &B,
2649                                     Register TargetReg, Register InsertReg,
2650                                     Register OffsetBits) {
2651   LLT TargetTy = B.getMRI()->getType(TargetReg);
2652   LLT InsertTy = B.getMRI()->getType(InsertReg);
2653   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2654   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2655 
2656   // Produce a bitmask of the value to insert
2657   auto EltMask = B.buildConstant(
2658     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2659                                    InsertTy.getSizeInBits()));
2660   // Shift it into position
2661   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2662   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2663 
2664   // Clear out the bits in the wide element
2665   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2666 
2667   // The value to insert has all zeros already, so stick it into the masked
2668   // wide element.
2669   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2670 }
2671 
2672 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2673 /// is increasing the element size, perform the indexing in the target element
2674 /// type, and use bit operations to insert at the element position. This is
2675 /// intended for architectures that can dynamically index the register file and
2676 /// want to force indexing in the native register size.
2677 LegalizerHelper::LegalizeResult
2678 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2679                                         LLT CastTy) {
2680   if (TypeIdx != 0)
2681     return UnableToLegalize;
2682 
2683   Register Dst = MI.getOperand(0).getReg();
2684   Register SrcVec = MI.getOperand(1).getReg();
2685   Register Val = MI.getOperand(2).getReg();
2686   Register Idx = MI.getOperand(3).getReg();
2687 
2688   LLT VecTy = MRI.getType(Dst);
2689   LLT IdxTy = MRI.getType(Idx);
2690 
2691   LLT VecEltTy = VecTy.getElementType();
2692   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2693   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2694   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2695 
2696   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2697   unsigned OldNumElts = VecTy.getNumElements();
2698 
2699   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2700   if (NewNumElts < OldNumElts) {
2701     if (NewEltSize % OldEltSize != 0)
2702       return UnableToLegalize;
2703 
2704     // This only depends on powers of 2 because we use bit tricks to figure out
2705     // the bit offset we need to shift to get the target element. A general
2706     // expansion could emit division/multiply.
2707     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2708       return UnableToLegalize;
2709 
2710     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2711     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2712 
2713     // Divide to get the index in the wider element type.
2714     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2715 
2716     Register ExtractedElt = CastVec;
2717     if (CastTy.isVector()) {
2718       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2719                                                           ScaledIdx).getReg(0);
2720     }
2721 
2722     // Compute the bit offset into the register of the target element.
2723     Register OffsetBits = getBitcastWiderVectorElementOffset(
2724       MIRBuilder, Idx, NewEltSize, OldEltSize);
2725 
2726     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2727                                                Val, OffsetBits);
2728     if (CastTy.isVector()) {
2729       InsertedElt = MIRBuilder.buildInsertVectorElement(
2730         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2731     }
2732 
2733     MIRBuilder.buildBitcast(Dst, InsertedElt);
2734     MI.eraseFromParent();
2735     return Legalized;
2736   }
2737 
2738   return UnableToLegalize;
2739 }
2740 
2741 LegalizerHelper::LegalizeResult
2742 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2743   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2744   Register DstReg = MI.getOperand(0).getReg();
2745   Register PtrReg = MI.getOperand(1).getReg();
2746   LLT DstTy = MRI.getType(DstReg);
2747   auto &MMO = **MI.memoperands_begin();
2748 
2749   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2750     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2751       // This load needs splitting into power of 2 sized loads.
2752       if (DstTy.isVector())
2753         return UnableToLegalize;
2754       if (isPowerOf2_32(DstTy.getSizeInBits()))
2755         return UnableToLegalize; // Don't know what we're being asked to do.
2756 
2757       // Our strategy here is to generate anyextending loads for the smaller
2758       // types up to next power-2 result type, and then combine the two larger
2759       // result values together, before truncating back down to the non-pow-2
2760       // type.
2761       // E.g. v1 = i24 load =>
2762       // v2 = i32 zextload (2 byte)
2763       // v3 = i32 load (1 byte)
2764       // v4 = i32 shl v3, 16
2765       // v5 = i32 or v4, v2
2766       // v1 = i24 trunc v5
2767       // By doing this we generate the correct truncate which should get
2768       // combined away as an artifact with a matching extend.
2769       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2770       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2771 
2772       MachineFunction &MF = MIRBuilder.getMF();
2773       MachineMemOperand *LargeMMO =
2774         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2775       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2776         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2777 
2778       LLT PtrTy = MRI.getType(PtrReg);
2779       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2780       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2781       auto LargeLoad = MIRBuilder.buildLoadInstr(
2782         TargetOpcode::G_ZEXTLOAD, AnyExtTy, PtrReg, *LargeMMO);
2783 
2784       auto OffsetCst = MIRBuilder.buildConstant(
2785         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2786       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2787       auto SmallPtr =
2788         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2789       auto SmallLoad = MIRBuilder.buildLoad(AnyExtTy, SmallPtr,
2790                                             *SmallMMO);
2791 
2792       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2793       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2794       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2795       MIRBuilder.buildTrunc(DstReg, {Or});
2796       MI.eraseFromParent();
2797       return Legalized;
2798     }
2799 
2800     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2801     MI.eraseFromParent();
2802     return Legalized;
2803   }
2804 
2805   return UnableToLegalize;
2806 }
2807 
2808 LegalizerHelper::LegalizeResult
2809 LegalizerHelper::lowerStore(MachineInstr &MI) {
2810   // Lower a non-power of 2 store into multiple pow-2 stores.
2811   // E.g. split an i24 store into an i16 store + i8 store.
2812   // We do this by first extending the stored value to the next largest power
2813   // of 2 type, and then using truncating stores to store the components.
2814   // By doing this, likewise with G_LOAD, generate an extend that can be
2815   // artifact-combined away instead of leaving behind extracts.
2816   Register SrcReg = MI.getOperand(0).getReg();
2817   Register PtrReg = MI.getOperand(1).getReg();
2818   LLT SrcTy = MRI.getType(SrcReg);
2819   MachineMemOperand &MMO = **MI.memoperands_begin();
2820   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2821     return UnableToLegalize;
2822   if (SrcTy.isVector())
2823     return UnableToLegalize;
2824   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2825     return UnableToLegalize; // Don't know what we're being asked to do.
2826 
2827   // Extend to the next pow-2.
2828   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2829   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2830 
2831   // Obtain the smaller value by shifting away the larger value.
2832   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2833   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2834   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2835   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2836 
2837   // Generate the PtrAdd and truncating stores.
2838   LLT PtrTy = MRI.getType(PtrReg);
2839   auto OffsetCst = MIRBuilder.buildConstant(
2840     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2841   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2842   auto SmallPtr =
2843     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2844 
2845   MachineFunction &MF = MIRBuilder.getMF();
2846   MachineMemOperand *LargeMMO =
2847     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2848   MachineMemOperand *SmallMMO =
2849     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2850   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
2851   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
2852   MI.eraseFromParent();
2853   return Legalized;
2854 }
2855 
2856 LegalizerHelper::LegalizeResult
2857 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2858   switch (MI.getOpcode()) {
2859   case TargetOpcode::G_LOAD: {
2860     if (TypeIdx != 0)
2861       return UnableToLegalize;
2862 
2863     Observer.changingInstr(MI);
2864     bitcastDst(MI, CastTy, 0);
2865     Observer.changedInstr(MI);
2866     return Legalized;
2867   }
2868   case TargetOpcode::G_STORE: {
2869     if (TypeIdx != 0)
2870       return UnableToLegalize;
2871 
2872     Observer.changingInstr(MI);
2873     bitcastSrc(MI, CastTy, 0);
2874     Observer.changedInstr(MI);
2875     return Legalized;
2876   }
2877   case TargetOpcode::G_SELECT: {
2878     if (TypeIdx != 0)
2879       return UnableToLegalize;
2880 
2881     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2882       LLVM_DEBUG(
2883           dbgs() << "bitcast action not implemented for vector select\n");
2884       return UnableToLegalize;
2885     }
2886 
2887     Observer.changingInstr(MI);
2888     bitcastSrc(MI, CastTy, 2);
2889     bitcastSrc(MI, CastTy, 3);
2890     bitcastDst(MI, CastTy, 0);
2891     Observer.changedInstr(MI);
2892     return Legalized;
2893   }
2894   case TargetOpcode::G_AND:
2895   case TargetOpcode::G_OR:
2896   case TargetOpcode::G_XOR: {
2897     Observer.changingInstr(MI);
2898     bitcastSrc(MI, CastTy, 1);
2899     bitcastSrc(MI, CastTy, 2);
2900     bitcastDst(MI, CastTy, 0);
2901     Observer.changedInstr(MI);
2902     return Legalized;
2903   }
2904   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2905     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2906   case TargetOpcode::G_INSERT_VECTOR_ELT:
2907     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2908   default:
2909     return UnableToLegalize;
2910   }
2911 }
2912 
2913 // Legalize an instruction by changing the opcode in place.
2914 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2915     Observer.changingInstr(MI);
2916     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2917     Observer.changedInstr(MI);
2918 }
2919 
2920 LegalizerHelper::LegalizeResult
2921 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2922   using namespace TargetOpcode;
2923 
2924   switch(MI.getOpcode()) {
2925   default:
2926     return UnableToLegalize;
2927   case TargetOpcode::G_BITCAST:
2928     return lowerBitcast(MI);
2929   case TargetOpcode::G_SREM:
2930   case TargetOpcode::G_UREM: {
2931     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2932     auto Quot =
2933         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2934                               {MI.getOperand(1), MI.getOperand(2)});
2935 
2936     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2937     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2938     MI.eraseFromParent();
2939     return Legalized;
2940   }
2941   case TargetOpcode::G_SADDO:
2942   case TargetOpcode::G_SSUBO:
2943     return lowerSADDO_SSUBO(MI);
2944   case TargetOpcode::G_UMULH:
2945   case TargetOpcode::G_SMULH:
2946     return lowerSMULH_UMULH(MI);
2947   case TargetOpcode::G_SMULO:
2948   case TargetOpcode::G_UMULO: {
2949     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2950     // result.
2951     Register Res = MI.getOperand(0).getReg();
2952     Register Overflow = MI.getOperand(1).getReg();
2953     Register LHS = MI.getOperand(2).getReg();
2954     Register RHS = MI.getOperand(3).getReg();
2955     LLT Ty = MRI.getType(Res);
2956 
2957     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2958                           ? TargetOpcode::G_SMULH
2959                           : TargetOpcode::G_UMULH;
2960 
2961     Observer.changingInstr(MI);
2962     const auto &TII = MIRBuilder.getTII();
2963     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2964     MI.RemoveOperand(1);
2965     Observer.changedInstr(MI);
2966 
2967     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2968     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2969 
2970     // Move insert point forward so we can use the Res register if needed.
2971     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2972 
2973     // For *signed* multiply, overflow is detected by checking:
2974     // (hi != (lo >> bitwidth-1))
2975     if (Opcode == TargetOpcode::G_SMULH) {
2976       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2977       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2978       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2979     } else {
2980       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2981     }
2982     return Legalized;
2983   }
2984   case TargetOpcode::G_FNEG: {
2985     Register Res = MI.getOperand(0).getReg();
2986     LLT Ty = MRI.getType(Res);
2987 
2988     // TODO: Handle vector types once we are able to
2989     // represent them.
2990     if (Ty.isVector())
2991       return UnableToLegalize;
2992     auto SignMask =
2993         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2994     Register SubByReg = MI.getOperand(1).getReg();
2995     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2996     MI.eraseFromParent();
2997     return Legalized;
2998   }
2999   case TargetOpcode::G_FSUB: {
3000     Register Res = MI.getOperand(0).getReg();
3001     LLT Ty = MRI.getType(Res);
3002 
3003     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3004     // First, check if G_FNEG is marked as Lower. If so, we may
3005     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3006     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3007       return UnableToLegalize;
3008     Register LHS = MI.getOperand(1).getReg();
3009     Register RHS = MI.getOperand(2).getReg();
3010     Register Neg = MRI.createGenericVirtualRegister(Ty);
3011     MIRBuilder.buildFNeg(Neg, RHS);
3012     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3013     MI.eraseFromParent();
3014     return Legalized;
3015   }
3016   case TargetOpcode::G_FMAD:
3017     return lowerFMad(MI);
3018   case TargetOpcode::G_FFLOOR:
3019     return lowerFFloor(MI);
3020   case TargetOpcode::G_INTRINSIC_ROUND:
3021     return lowerIntrinsicRound(MI);
3022   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3023     // Since round even is the assumed rounding mode for unconstrained FP
3024     // operations, rint and roundeven are the same operation.
3025     changeOpcode(MI, TargetOpcode::G_FRINT);
3026     return Legalized;
3027   }
3028   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3029     Register OldValRes = MI.getOperand(0).getReg();
3030     Register SuccessRes = MI.getOperand(1).getReg();
3031     Register Addr = MI.getOperand(2).getReg();
3032     Register CmpVal = MI.getOperand(3).getReg();
3033     Register NewVal = MI.getOperand(4).getReg();
3034     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3035                                   **MI.memoperands_begin());
3036     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3037     MI.eraseFromParent();
3038     return Legalized;
3039   }
3040   case TargetOpcode::G_LOAD:
3041   case TargetOpcode::G_SEXTLOAD:
3042   case TargetOpcode::G_ZEXTLOAD:
3043     return lowerLoad(MI);
3044   case TargetOpcode::G_STORE:
3045     return lowerStore(MI);
3046   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3047   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3048   case TargetOpcode::G_CTLZ:
3049   case TargetOpcode::G_CTTZ:
3050   case TargetOpcode::G_CTPOP:
3051     return lowerBitCount(MI);
3052   case G_UADDO: {
3053     Register Res = MI.getOperand(0).getReg();
3054     Register CarryOut = MI.getOperand(1).getReg();
3055     Register LHS = MI.getOperand(2).getReg();
3056     Register RHS = MI.getOperand(3).getReg();
3057 
3058     MIRBuilder.buildAdd(Res, LHS, RHS);
3059     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3060 
3061     MI.eraseFromParent();
3062     return Legalized;
3063   }
3064   case G_UADDE: {
3065     Register Res = MI.getOperand(0).getReg();
3066     Register CarryOut = MI.getOperand(1).getReg();
3067     Register LHS = MI.getOperand(2).getReg();
3068     Register RHS = MI.getOperand(3).getReg();
3069     Register CarryIn = MI.getOperand(4).getReg();
3070     LLT Ty = MRI.getType(Res);
3071 
3072     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3073     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3074     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3075     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3076 
3077     MI.eraseFromParent();
3078     return Legalized;
3079   }
3080   case G_USUBO: {
3081     Register Res = MI.getOperand(0).getReg();
3082     Register BorrowOut = MI.getOperand(1).getReg();
3083     Register LHS = MI.getOperand(2).getReg();
3084     Register RHS = MI.getOperand(3).getReg();
3085 
3086     MIRBuilder.buildSub(Res, LHS, RHS);
3087     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3088 
3089     MI.eraseFromParent();
3090     return Legalized;
3091   }
3092   case G_USUBE: {
3093     Register Res = MI.getOperand(0).getReg();
3094     Register BorrowOut = MI.getOperand(1).getReg();
3095     Register LHS = MI.getOperand(2).getReg();
3096     Register RHS = MI.getOperand(3).getReg();
3097     Register BorrowIn = MI.getOperand(4).getReg();
3098     const LLT CondTy = MRI.getType(BorrowOut);
3099     const LLT Ty = MRI.getType(Res);
3100 
3101     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3102     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3103     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3104 
3105     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3106     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3107     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3108 
3109     MI.eraseFromParent();
3110     return Legalized;
3111   }
3112   case G_UITOFP:
3113     return lowerUITOFP(MI);
3114   case G_SITOFP:
3115     return lowerSITOFP(MI);
3116   case G_FPTOUI:
3117     return lowerFPTOUI(MI);
3118   case G_FPTOSI:
3119     return lowerFPTOSI(MI);
3120   case G_FPTRUNC:
3121     return lowerFPTRUNC(MI);
3122   case G_FPOWI:
3123     return lowerFPOWI(MI);
3124   case G_SMIN:
3125   case G_SMAX:
3126   case G_UMIN:
3127   case G_UMAX:
3128     return lowerMinMax(MI);
3129   case G_FCOPYSIGN:
3130     return lowerFCopySign(MI);
3131   case G_FMINNUM:
3132   case G_FMAXNUM:
3133     return lowerFMinNumMaxNum(MI);
3134   case G_MERGE_VALUES:
3135     return lowerMergeValues(MI);
3136   case G_UNMERGE_VALUES:
3137     return lowerUnmergeValues(MI);
3138   case TargetOpcode::G_SEXT_INREG: {
3139     assert(MI.getOperand(2).isImm() && "Expected immediate");
3140     int64_t SizeInBits = MI.getOperand(2).getImm();
3141 
3142     Register DstReg = MI.getOperand(0).getReg();
3143     Register SrcReg = MI.getOperand(1).getReg();
3144     LLT DstTy = MRI.getType(DstReg);
3145     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3146 
3147     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3148     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3149     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3150     MI.eraseFromParent();
3151     return Legalized;
3152   }
3153   case G_EXTRACT_VECTOR_ELT:
3154   case G_INSERT_VECTOR_ELT:
3155     return lowerExtractInsertVectorElt(MI);
3156   case G_SHUFFLE_VECTOR:
3157     return lowerShuffleVector(MI);
3158   case G_DYN_STACKALLOC:
3159     return lowerDynStackAlloc(MI);
3160   case G_EXTRACT:
3161     return lowerExtract(MI);
3162   case G_INSERT:
3163     return lowerInsert(MI);
3164   case G_BSWAP:
3165     return lowerBswap(MI);
3166   case G_BITREVERSE:
3167     return lowerBitreverse(MI);
3168   case G_READ_REGISTER:
3169   case G_WRITE_REGISTER:
3170     return lowerReadWriteRegister(MI);
3171   case G_UADDSAT:
3172   case G_USUBSAT: {
3173     // Try to make a reasonable guess about which lowering strategy to use. The
3174     // target can override this with custom lowering and calling the
3175     // implementation functions.
3176     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3177     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3178       return lowerAddSubSatToMinMax(MI);
3179     return lowerAddSubSatToAddoSubo(MI);
3180   }
3181   case G_SADDSAT:
3182   case G_SSUBSAT: {
3183     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3184 
3185     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3186     // since it's a shorter expansion. However, we would need to figure out the
3187     // preferred boolean type for the carry out for the query.
3188     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3189       return lowerAddSubSatToMinMax(MI);
3190     return lowerAddSubSatToAddoSubo(MI);
3191   }
3192   case G_SSHLSAT:
3193   case G_USHLSAT:
3194     return lowerShlSat(MI);
3195   case G_ABS:
3196     return lowerAbsToAddXor(MI);
3197   case G_SELECT:
3198     return lowerSelect(MI);
3199   case G_SDIVREM:
3200   case G_UDIVREM:
3201     return lowerDIVREM(MI);
3202   case G_FSHL:
3203   case G_FSHR:
3204     return lowerFunnelShift(MI);
3205   case G_ROTL:
3206   case G_ROTR:
3207     return lowerRotate(MI);
3208   }
3209 }
3210 
3211 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3212                                                   Align MinAlign) const {
3213   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3214   // datalayout for the preferred alignment. Also there should be a target hook
3215   // for this to allow targets to reduce the alignment and ignore the
3216   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3217   // the type.
3218   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3219 }
3220 
3221 MachineInstrBuilder
3222 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3223                                       MachinePointerInfo &PtrInfo) {
3224   MachineFunction &MF = MIRBuilder.getMF();
3225   const DataLayout &DL = MIRBuilder.getDataLayout();
3226   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3227 
3228   unsigned AddrSpace = DL.getAllocaAddrSpace();
3229   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3230 
3231   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3232   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3233 }
3234 
3235 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3236                                         LLT VecTy) {
3237   int64_t IdxVal;
3238   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3239     return IdxReg;
3240 
3241   LLT IdxTy = B.getMRI()->getType(IdxReg);
3242   unsigned NElts = VecTy.getNumElements();
3243   if (isPowerOf2_32(NElts)) {
3244     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3245     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3246   }
3247 
3248   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3249       .getReg(0);
3250 }
3251 
3252 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3253                                                   Register Index) {
3254   LLT EltTy = VecTy.getElementType();
3255 
3256   // Calculate the element offset and add it to the pointer.
3257   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3258   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3259          "Converting bits to bytes lost precision");
3260 
3261   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3262 
3263   LLT IdxTy = MRI.getType(Index);
3264   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3265                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3266 
3267   LLT PtrTy = MRI.getType(VecPtr);
3268   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3269 }
3270 
3271 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3272     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3273   Register DstReg = MI.getOperand(0).getReg();
3274   LLT DstTy = MRI.getType(DstReg);
3275   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3276 
3277   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3278 
3279   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3280   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3281 
3282   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3283   MI.eraseFromParent();
3284   return Legalized;
3285 }
3286 
3287 // Handle splitting vector operations which need to have the same number of
3288 // elements in each type index, but each type index may have a different element
3289 // type.
3290 //
3291 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3292 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3293 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3294 //
3295 // Also handles some irregular breakdown cases, e.g.
3296 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3297 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3298 //             s64 = G_SHL s64, s32
3299 LegalizerHelper::LegalizeResult
3300 LegalizerHelper::fewerElementsVectorMultiEltType(
3301   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3302   if (TypeIdx != 0)
3303     return UnableToLegalize;
3304 
3305   const LLT NarrowTy0 = NarrowTyArg;
3306   const unsigned NewNumElts =
3307       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3308 
3309   const Register DstReg = MI.getOperand(0).getReg();
3310   LLT DstTy = MRI.getType(DstReg);
3311   LLT LeftoverTy0;
3312 
3313   // All of the operands need to have the same number of elements, so if we can
3314   // determine a type breakdown for the result type, we can for all of the
3315   // source types.
3316   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3317   if (NumParts < 0)
3318     return UnableToLegalize;
3319 
3320   SmallVector<MachineInstrBuilder, 4> NewInsts;
3321 
3322   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3323   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3324 
3325   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3326     Register SrcReg = MI.getOperand(I).getReg();
3327     LLT SrcTyI = MRI.getType(SrcReg);
3328     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3329     LLT LeftoverTyI;
3330 
3331     // Split this operand into the requested typed registers, and any leftover
3332     // required to reproduce the original type.
3333     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3334                       LeftoverRegs))
3335       return UnableToLegalize;
3336 
3337     if (I == 1) {
3338       // For the first operand, create an instruction for each part and setup
3339       // the result.
3340       for (Register PartReg : PartRegs) {
3341         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3342         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3343                                .addDef(PartDstReg)
3344                                .addUse(PartReg));
3345         DstRegs.push_back(PartDstReg);
3346       }
3347 
3348       for (Register LeftoverReg : LeftoverRegs) {
3349         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3350         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3351                                .addDef(PartDstReg)
3352                                .addUse(LeftoverReg));
3353         LeftoverDstRegs.push_back(PartDstReg);
3354       }
3355     } else {
3356       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3357 
3358       // Add the newly created operand splits to the existing instructions. The
3359       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3360       // pieces.
3361       unsigned InstCount = 0;
3362       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3363         NewInsts[InstCount++].addUse(PartRegs[J]);
3364       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3365         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3366     }
3367 
3368     PartRegs.clear();
3369     LeftoverRegs.clear();
3370   }
3371 
3372   // Insert the newly built operations and rebuild the result register.
3373   for (auto &MIB : NewInsts)
3374     MIRBuilder.insertInstr(MIB);
3375 
3376   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3377 
3378   MI.eraseFromParent();
3379   return Legalized;
3380 }
3381 
3382 LegalizerHelper::LegalizeResult
3383 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3384                                           LLT NarrowTy) {
3385   if (TypeIdx != 0)
3386     return UnableToLegalize;
3387 
3388   Register DstReg = MI.getOperand(0).getReg();
3389   Register SrcReg = MI.getOperand(1).getReg();
3390   LLT DstTy = MRI.getType(DstReg);
3391   LLT SrcTy = MRI.getType(SrcReg);
3392 
3393   LLT NarrowTy0 = NarrowTy;
3394   LLT NarrowTy1;
3395   unsigned NumParts;
3396 
3397   if (NarrowTy.isVector()) {
3398     // Uneven breakdown not handled.
3399     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3400     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3401       return UnableToLegalize;
3402 
3403     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3404   } else {
3405     NumParts = DstTy.getNumElements();
3406     NarrowTy1 = SrcTy.getElementType();
3407   }
3408 
3409   SmallVector<Register, 4> SrcRegs, DstRegs;
3410   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3411 
3412   for (unsigned I = 0; I < NumParts; ++I) {
3413     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3414     MachineInstr *NewInst =
3415         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3416 
3417     NewInst->setFlags(MI.getFlags());
3418     DstRegs.push_back(DstReg);
3419   }
3420 
3421   if (NarrowTy.isVector())
3422     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3423   else
3424     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3425 
3426   MI.eraseFromParent();
3427   return Legalized;
3428 }
3429 
3430 LegalizerHelper::LegalizeResult
3431 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3432                                         LLT NarrowTy) {
3433   Register DstReg = MI.getOperand(0).getReg();
3434   Register Src0Reg = MI.getOperand(2).getReg();
3435   LLT DstTy = MRI.getType(DstReg);
3436   LLT SrcTy = MRI.getType(Src0Reg);
3437 
3438   unsigned NumParts;
3439   LLT NarrowTy0, NarrowTy1;
3440 
3441   if (TypeIdx == 0) {
3442     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3443     unsigned OldElts = DstTy.getNumElements();
3444 
3445     NarrowTy0 = NarrowTy;
3446     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3447     NarrowTy1 = NarrowTy.isVector() ?
3448       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3449       SrcTy.getElementType();
3450 
3451   } else {
3452     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3453     unsigned OldElts = SrcTy.getNumElements();
3454 
3455     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3456       NarrowTy.getNumElements();
3457     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3458                             DstTy.getScalarSizeInBits());
3459     NarrowTy1 = NarrowTy;
3460   }
3461 
3462   // FIXME: Don't know how to handle the situation where the small vectors
3463   // aren't all the same size yet.
3464   if (NarrowTy1.isVector() &&
3465       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3466     return UnableToLegalize;
3467 
3468   CmpInst::Predicate Pred
3469     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3470 
3471   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3472   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3473   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3474 
3475   for (unsigned I = 0; I < NumParts; ++I) {
3476     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3477     DstRegs.push_back(DstReg);
3478 
3479     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3480       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3481     else {
3482       MachineInstr *NewCmp
3483         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3484       NewCmp->setFlags(MI.getFlags());
3485     }
3486   }
3487 
3488   if (NarrowTy1.isVector())
3489     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3490   else
3491     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3492 
3493   MI.eraseFromParent();
3494   return Legalized;
3495 }
3496 
3497 LegalizerHelper::LegalizeResult
3498 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3499                                            LLT NarrowTy) {
3500   Register DstReg = MI.getOperand(0).getReg();
3501   Register CondReg = MI.getOperand(1).getReg();
3502 
3503   unsigned NumParts = 0;
3504   LLT NarrowTy0, NarrowTy1;
3505 
3506   LLT DstTy = MRI.getType(DstReg);
3507   LLT CondTy = MRI.getType(CondReg);
3508   unsigned Size = DstTy.getSizeInBits();
3509 
3510   assert(TypeIdx == 0 || CondTy.isVector());
3511 
3512   if (TypeIdx == 0) {
3513     NarrowTy0 = NarrowTy;
3514     NarrowTy1 = CondTy;
3515 
3516     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3517     // FIXME: Don't know how to handle the situation where the small vectors
3518     // aren't all the same size yet.
3519     if (Size % NarrowSize != 0)
3520       return UnableToLegalize;
3521 
3522     NumParts = Size / NarrowSize;
3523 
3524     // Need to break down the condition type
3525     if (CondTy.isVector()) {
3526       if (CondTy.getNumElements() == NumParts)
3527         NarrowTy1 = CondTy.getElementType();
3528       else
3529         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3530                                 CondTy.getScalarSizeInBits());
3531     }
3532   } else {
3533     NumParts = CondTy.getNumElements();
3534     if (NarrowTy.isVector()) {
3535       // TODO: Handle uneven breakdown.
3536       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3537         return UnableToLegalize;
3538 
3539       return UnableToLegalize;
3540     } else {
3541       NarrowTy0 = DstTy.getElementType();
3542       NarrowTy1 = NarrowTy;
3543     }
3544   }
3545 
3546   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3547   if (CondTy.isVector())
3548     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3549 
3550   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3551   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3552 
3553   for (unsigned i = 0; i < NumParts; ++i) {
3554     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3555     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3556                            Src1Regs[i], Src2Regs[i]);
3557     DstRegs.push_back(DstReg);
3558   }
3559 
3560   if (NarrowTy0.isVector())
3561     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3562   else
3563     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3564 
3565   MI.eraseFromParent();
3566   return Legalized;
3567 }
3568 
3569 LegalizerHelper::LegalizeResult
3570 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3571                                         LLT NarrowTy) {
3572   const Register DstReg = MI.getOperand(0).getReg();
3573   LLT PhiTy = MRI.getType(DstReg);
3574   LLT LeftoverTy;
3575 
3576   // All of the operands need to have the same number of elements, so if we can
3577   // determine a type breakdown for the result type, we can for all of the
3578   // source types.
3579   int NumParts, NumLeftover;
3580   std::tie(NumParts, NumLeftover)
3581     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3582   if (NumParts < 0)
3583     return UnableToLegalize;
3584 
3585   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3586   SmallVector<MachineInstrBuilder, 4> NewInsts;
3587 
3588   const int TotalNumParts = NumParts + NumLeftover;
3589 
3590   // Insert the new phis in the result block first.
3591   for (int I = 0; I != TotalNumParts; ++I) {
3592     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3593     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3594     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3595                        .addDef(PartDstReg));
3596     if (I < NumParts)
3597       DstRegs.push_back(PartDstReg);
3598     else
3599       LeftoverDstRegs.push_back(PartDstReg);
3600   }
3601 
3602   MachineBasicBlock *MBB = MI.getParent();
3603   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3604   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3605 
3606   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3607 
3608   // Insert code to extract the incoming values in each predecessor block.
3609   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3610     PartRegs.clear();
3611     LeftoverRegs.clear();
3612 
3613     Register SrcReg = MI.getOperand(I).getReg();
3614     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3615     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3616 
3617     LLT Unused;
3618     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3619                       LeftoverRegs))
3620       return UnableToLegalize;
3621 
3622     // Add the newly created operand splits to the existing instructions. The
3623     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3624     // pieces.
3625     for (int J = 0; J != TotalNumParts; ++J) {
3626       MachineInstrBuilder MIB = NewInsts[J];
3627       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3628       MIB.addMBB(&OpMBB);
3629     }
3630   }
3631 
3632   MI.eraseFromParent();
3633   return Legalized;
3634 }
3635 
3636 LegalizerHelper::LegalizeResult
3637 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3638                                                   unsigned TypeIdx,
3639                                                   LLT NarrowTy) {
3640   if (TypeIdx != 1)
3641     return UnableToLegalize;
3642 
3643   const int NumDst = MI.getNumOperands() - 1;
3644   const Register SrcReg = MI.getOperand(NumDst).getReg();
3645   LLT SrcTy = MRI.getType(SrcReg);
3646 
3647   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3648 
3649   // TODO: Create sequence of extracts.
3650   if (DstTy == NarrowTy)
3651     return UnableToLegalize;
3652 
3653   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3654   if (DstTy == GCDTy) {
3655     // This would just be a copy of the same unmerge.
3656     // TODO: Create extracts, pad with undef and create intermediate merges.
3657     return UnableToLegalize;
3658   }
3659 
3660   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3661   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3662   const int PartsPerUnmerge = NumDst / NumUnmerge;
3663 
3664   for (int I = 0; I != NumUnmerge; ++I) {
3665     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3666 
3667     for (int J = 0; J != PartsPerUnmerge; ++J)
3668       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3669     MIB.addUse(Unmerge.getReg(I));
3670   }
3671 
3672   MI.eraseFromParent();
3673   return Legalized;
3674 }
3675 
3676 LegalizerHelper::LegalizeResult
3677 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3678                                          LLT NarrowTy) {
3679   Register Result = MI.getOperand(0).getReg();
3680   Register Overflow = MI.getOperand(1).getReg();
3681   Register LHS = MI.getOperand(2).getReg();
3682   Register RHS = MI.getOperand(3).getReg();
3683 
3684   LLT SrcTy = MRI.getType(LHS);
3685   if (!SrcTy.isVector())
3686     return UnableToLegalize;
3687 
3688   LLT ElementType = SrcTy.getElementType();
3689   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3690   const int NumResult = SrcTy.getNumElements();
3691   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3692 
3693   // Unmerge the operands to smaller parts of GCD type.
3694   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3695   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3696 
3697   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3698   const int PartsPerUnmerge = NumResult / NumOps;
3699   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3700   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3701 
3702   // Perform the operation over unmerged parts.
3703   SmallVector<Register, 8> ResultParts;
3704   SmallVector<Register, 8> OverflowParts;
3705   for (int I = 0; I != NumOps; ++I) {
3706     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3707     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3708     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3709                                          {Operand1, Operand2});
3710     ResultParts.push_back(PartMul->getOperand(0).getReg());
3711     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3712   }
3713 
3714   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3715   LLT OverflowLCMTy =
3716       LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy);
3717 
3718   // Recombine the pieces to the original result and overflow registers.
3719   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3720   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3721   MI.eraseFromParent();
3722   return Legalized;
3723 }
3724 
3725 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3726 // a vector
3727 //
3728 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3729 // undef as necessary.
3730 //
3731 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3732 //   -> <2 x s16>
3733 //
3734 // %4:_(s16) = G_IMPLICIT_DEF
3735 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3736 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3737 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3738 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3739 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3740 LegalizerHelper::LegalizeResult
3741 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3742                                           LLT NarrowTy) {
3743   Register DstReg = MI.getOperand(0).getReg();
3744   LLT DstTy = MRI.getType(DstReg);
3745   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3746   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3747 
3748   // Break into a common type
3749   SmallVector<Register, 16> Parts;
3750   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3751     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3752 
3753   // Build the requested new merge, padding with undef.
3754   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3755                                   TargetOpcode::G_ANYEXT);
3756 
3757   // Pack into the original result register.
3758   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3759 
3760   MI.eraseFromParent();
3761   return Legalized;
3762 }
3763 
3764 LegalizerHelper::LegalizeResult
3765 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3766                                                            unsigned TypeIdx,
3767                                                            LLT NarrowVecTy) {
3768   Register DstReg = MI.getOperand(0).getReg();
3769   Register SrcVec = MI.getOperand(1).getReg();
3770   Register InsertVal;
3771   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3772 
3773   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3774   if (IsInsert)
3775     InsertVal = MI.getOperand(2).getReg();
3776 
3777   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3778 
3779   // TODO: Handle total scalarization case.
3780   if (!NarrowVecTy.isVector())
3781     return UnableToLegalize;
3782 
3783   LLT VecTy = MRI.getType(SrcVec);
3784 
3785   // If the index is a constant, we can really break this down as you would
3786   // expect, and index into the target size pieces.
3787   int64_t IdxVal;
3788   auto MaybeCst =
3789       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
3790                                         /*HandleFConstants*/ false);
3791   if (MaybeCst) {
3792     IdxVal = MaybeCst->Value.getSExtValue();
3793     // Avoid out of bounds indexing the pieces.
3794     if (IdxVal >= VecTy.getNumElements()) {
3795       MIRBuilder.buildUndef(DstReg);
3796       MI.eraseFromParent();
3797       return Legalized;
3798     }
3799 
3800     SmallVector<Register, 8> VecParts;
3801     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3802 
3803     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3804     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3805                                     TargetOpcode::G_ANYEXT);
3806 
3807     unsigned NewNumElts = NarrowVecTy.getNumElements();
3808 
3809     LLT IdxTy = MRI.getType(Idx);
3810     int64_t PartIdx = IdxVal / NewNumElts;
3811     auto NewIdx =
3812         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3813 
3814     if (IsInsert) {
3815       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3816 
3817       // Use the adjusted index to insert into one of the subvectors.
3818       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3819           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3820       VecParts[PartIdx] = InsertPart.getReg(0);
3821 
3822       // Recombine the inserted subvector with the others to reform the result
3823       // vector.
3824       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3825     } else {
3826       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3827     }
3828 
3829     MI.eraseFromParent();
3830     return Legalized;
3831   }
3832 
3833   // With a variable index, we can't perform the operation in a smaller type, so
3834   // we're forced to expand this.
3835   //
3836   // TODO: We could emit a chain of compare/select to figure out which piece to
3837   // index.
3838   return lowerExtractInsertVectorElt(MI);
3839 }
3840 
3841 LegalizerHelper::LegalizeResult
3842 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3843                                       LLT NarrowTy) {
3844   // FIXME: Don't know how to handle secondary types yet.
3845   if (TypeIdx != 0)
3846     return UnableToLegalize;
3847 
3848   MachineMemOperand *MMO = *MI.memoperands_begin();
3849 
3850   // This implementation doesn't work for atomics. Give up instead of doing
3851   // something invalid.
3852   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3853       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3854     return UnableToLegalize;
3855 
3856   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3857   Register ValReg = MI.getOperand(0).getReg();
3858   Register AddrReg = MI.getOperand(1).getReg();
3859   LLT ValTy = MRI.getType(ValReg);
3860 
3861   // FIXME: Do we need a distinct NarrowMemory legalize action?
3862   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3863     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3864     return UnableToLegalize;
3865   }
3866 
3867   int NumParts = -1;
3868   int NumLeftover = -1;
3869   LLT LeftoverTy;
3870   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3871   if (IsLoad) {
3872     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3873   } else {
3874     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3875                      NarrowLeftoverRegs)) {
3876       NumParts = NarrowRegs.size();
3877       NumLeftover = NarrowLeftoverRegs.size();
3878     }
3879   }
3880 
3881   if (NumParts == -1)
3882     return UnableToLegalize;
3883 
3884   LLT PtrTy = MRI.getType(AddrReg);
3885   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3886 
3887   unsigned TotalSize = ValTy.getSizeInBits();
3888 
3889   // Split the load/store into PartTy sized pieces starting at Offset. If this
3890   // is a load, return the new registers in ValRegs. For a store, each elements
3891   // of ValRegs should be PartTy. Returns the next offset that needs to be
3892   // handled.
3893   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3894                              unsigned Offset) -> unsigned {
3895     MachineFunction &MF = MIRBuilder.getMF();
3896     unsigned PartSize = PartTy.getSizeInBits();
3897     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3898          Offset += PartSize, ++Idx) {
3899       unsigned ByteSize = PartSize / 8;
3900       unsigned ByteOffset = Offset / 8;
3901       Register NewAddrReg;
3902 
3903       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3904 
3905       MachineMemOperand *NewMMO =
3906         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3907 
3908       if (IsLoad) {
3909         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3910         ValRegs.push_back(Dst);
3911         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3912       } else {
3913         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3914       }
3915     }
3916 
3917     return Offset;
3918   };
3919 
3920   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3921 
3922   // Handle the rest of the register if this isn't an even type breakdown.
3923   if (LeftoverTy.isValid())
3924     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3925 
3926   if (IsLoad) {
3927     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3928                 LeftoverTy, NarrowLeftoverRegs);
3929   }
3930 
3931   MI.eraseFromParent();
3932   return Legalized;
3933 }
3934 
3935 LegalizerHelper::LegalizeResult
3936 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3937                                       LLT NarrowTy) {
3938   assert(TypeIdx == 0 && "only one type index expected");
3939 
3940   const unsigned Opc = MI.getOpcode();
3941   const int NumDefOps = MI.getNumExplicitDefs();
3942   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
3943   const unsigned Flags = MI.getFlags();
3944   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3945   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3946 
3947   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
3948                                      "result and 1-3 sources or 2 results and "
3949                                      "1-2 sources");
3950 
3951   SmallVector<Register, 2> DstRegs;
3952   for (int I = 0; I < NumDefOps; ++I)
3953     DstRegs.push_back(MI.getOperand(I).getReg());
3954 
3955   // First of all check whether we are narrowing (changing the element type)
3956   // or reducing the vector elements
3957   const LLT DstTy = MRI.getType(DstRegs[0]);
3958   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3959 
3960   SmallVector<Register, 8> ExtractedRegs[3];
3961   SmallVector<Register, 8> Parts;
3962 
3963   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3964 
3965   // Break down all the sources into NarrowTy pieces we can operate on. This may
3966   // involve creating merges to a wider type, padded with undef.
3967   for (int I = 0; I != NumSrcOps; ++I) {
3968     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
3969     LLT SrcTy = MRI.getType(SrcReg);
3970 
3971     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3972     // For fewerElements, this is a smaller vector with the same element type.
3973     LLT OpNarrowTy;
3974     if (IsNarrow) {
3975       OpNarrowTy = NarrowScalarTy;
3976 
3977       // In case of narrowing, we need to cast vectors to scalars for this to
3978       // work properly
3979       // FIXME: Can we do without the bitcast here if we're narrowing?
3980       if (SrcTy.isVector()) {
3981         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3982         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3983       }
3984     } else {
3985       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3986     }
3987 
3988     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3989 
3990     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3991     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3992                         TargetOpcode::G_ANYEXT);
3993   }
3994 
3995   SmallVector<Register, 8> ResultRegs[2];
3996 
3997   // Input operands for each sub-instruction.
3998   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
3999 
4000   int NumParts = ExtractedRegs[0].size();
4001   const unsigned DstSize = DstTy.getSizeInBits();
4002   const LLT DstScalarTy = LLT::scalar(DstSize);
4003 
4004   // Narrowing needs to use scalar types
4005   LLT DstLCMTy, NarrowDstTy;
4006   if (IsNarrow) {
4007     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4008     NarrowDstTy = NarrowScalarTy;
4009   } else {
4010     DstLCMTy = getLCMType(DstTy, NarrowTy);
4011     NarrowDstTy = NarrowTy;
4012   }
4013 
4014   // We widened the source registers to satisfy merge/unmerge size
4015   // constraints. We'll have some extra fully undef parts.
4016   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4017 
4018   for (int I = 0; I != NumRealParts; ++I) {
4019     // Emit this instruction on each of the split pieces.
4020     for (int J = 0; J != NumSrcOps; ++J)
4021       InputRegs[J] = ExtractedRegs[J][I];
4022 
4023     MachineInstrBuilder Inst;
4024     if (NumDefOps == 1)
4025       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4026     else
4027       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4028                                    Flags);
4029 
4030     for (int J = 0; J != NumDefOps; ++J)
4031       ResultRegs[J].push_back(Inst.getReg(J));
4032   }
4033 
4034   // Fill out the widened result with undef instead of creating instructions
4035   // with undef inputs.
4036   int NumUndefParts = NumParts - NumRealParts;
4037   if (NumUndefParts != 0) {
4038     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4039     for (int I = 0; I != NumDefOps; ++I)
4040       ResultRegs[I].append(NumUndefParts, Undef);
4041   }
4042 
4043   // Extract the possibly padded result. Use a scratch register if we need to do
4044   // a final bitcast, otherwise use the original result register.
4045   Register MergeDstReg;
4046   for (int I = 0; I != NumDefOps; ++I) {
4047     if (IsNarrow && DstTy.isVector())
4048       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4049     else
4050       MergeDstReg = DstRegs[I];
4051 
4052     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4053 
4054     // Recast to vector if we narrowed a vector
4055     if (IsNarrow && DstTy.isVector())
4056       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4057   }
4058 
4059   MI.eraseFromParent();
4060   return Legalized;
4061 }
4062 
4063 LegalizerHelper::LegalizeResult
4064 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4065                                               LLT NarrowTy) {
4066   Register DstReg = MI.getOperand(0).getReg();
4067   Register SrcReg = MI.getOperand(1).getReg();
4068   int64_t Imm = MI.getOperand(2).getImm();
4069 
4070   LLT DstTy = MRI.getType(DstReg);
4071 
4072   SmallVector<Register, 8> Parts;
4073   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4074   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4075 
4076   for (Register &R : Parts)
4077     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4078 
4079   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4080 
4081   MI.eraseFromParent();
4082   return Legalized;
4083 }
4084 
4085 LegalizerHelper::LegalizeResult
4086 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4087                                      LLT NarrowTy) {
4088   using namespace TargetOpcode;
4089 
4090   switch (MI.getOpcode()) {
4091   case G_IMPLICIT_DEF:
4092     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4093   case G_TRUNC:
4094   case G_AND:
4095   case G_OR:
4096   case G_XOR:
4097   case G_ADD:
4098   case G_SUB:
4099   case G_MUL:
4100   case G_PTR_ADD:
4101   case G_SMULH:
4102   case G_UMULH:
4103   case G_FADD:
4104   case G_FMUL:
4105   case G_FSUB:
4106   case G_FNEG:
4107   case G_FABS:
4108   case G_FCANONICALIZE:
4109   case G_FDIV:
4110   case G_FREM:
4111   case G_FMA:
4112   case G_FMAD:
4113   case G_FPOW:
4114   case G_FEXP:
4115   case G_FEXP2:
4116   case G_FLOG:
4117   case G_FLOG2:
4118   case G_FLOG10:
4119   case G_FNEARBYINT:
4120   case G_FCEIL:
4121   case G_FFLOOR:
4122   case G_FRINT:
4123   case G_INTRINSIC_ROUND:
4124   case G_INTRINSIC_ROUNDEVEN:
4125   case G_INTRINSIC_TRUNC:
4126   case G_FCOS:
4127   case G_FSIN:
4128   case G_FSQRT:
4129   case G_BSWAP:
4130   case G_BITREVERSE:
4131   case G_SDIV:
4132   case G_UDIV:
4133   case G_SREM:
4134   case G_UREM:
4135   case G_SDIVREM:
4136   case G_UDIVREM:
4137   case G_SMIN:
4138   case G_SMAX:
4139   case G_UMIN:
4140   case G_UMAX:
4141   case G_ABS:
4142   case G_FMINNUM:
4143   case G_FMAXNUM:
4144   case G_FMINNUM_IEEE:
4145   case G_FMAXNUM_IEEE:
4146   case G_FMINIMUM:
4147   case G_FMAXIMUM:
4148   case G_FSHL:
4149   case G_FSHR:
4150   case G_FREEZE:
4151   case G_SADDSAT:
4152   case G_SSUBSAT:
4153   case G_UADDSAT:
4154   case G_USUBSAT:
4155     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4156   case G_UMULO:
4157   case G_SMULO:
4158     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4159   case G_SHL:
4160   case G_LSHR:
4161   case G_ASHR:
4162   case G_SSHLSAT:
4163   case G_USHLSAT:
4164   case G_CTLZ:
4165   case G_CTLZ_ZERO_UNDEF:
4166   case G_CTTZ:
4167   case G_CTTZ_ZERO_UNDEF:
4168   case G_CTPOP:
4169   case G_FCOPYSIGN:
4170     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4171   case G_ZEXT:
4172   case G_SEXT:
4173   case G_ANYEXT:
4174   case G_FPEXT:
4175   case G_FPTRUNC:
4176   case G_SITOFP:
4177   case G_UITOFP:
4178   case G_FPTOSI:
4179   case G_FPTOUI:
4180   case G_INTTOPTR:
4181   case G_PTRTOINT:
4182   case G_ADDRSPACE_CAST:
4183     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4184   case G_ICMP:
4185   case G_FCMP:
4186     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4187   case G_SELECT:
4188     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4189   case G_PHI:
4190     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4191   case G_UNMERGE_VALUES:
4192     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4193   case G_BUILD_VECTOR:
4194     assert(TypeIdx == 0 && "not a vector type index");
4195     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4196   case G_CONCAT_VECTORS:
4197     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4198       return UnableToLegalize;
4199     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4200   case G_EXTRACT_VECTOR_ELT:
4201   case G_INSERT_VECTOR_ELT:
4202     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4203   case G_LOAD:
4204   case G_STORE:
4205     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4206   case G_SEXT_INREG:
4207     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4208   GISEL_VECREDUCE_CASES_NONSEQ
4209     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4210   case G_SHUFFLE_VECTOR:
4211     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4212   default:
4213     return UnableToLegalize;
4214   }
4215 }
4216 
4217 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4218     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4219   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4220   if (TypeIdx != 0)
4221     return UnableToLegalize;
4222 
4223   Register DstReg = MI.getOperand(0).getReg();
4224   Register Src1Reg = MI.getOperand(1).getReg();
4225   Register Src2Reg = MI.getOperand(2).getReg();
4226   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4227   LLT DstTy = MRI.getType(DstReg);
4228   LLT Src1Ty = MRI.getType(Src1Reg);
4229   LLT Src2Ty = MRI.getType(Src2Reg);
4230   // The shuffle should be canonicalized by now.
4231   if (DstTy != Src1Ty)
4232     return UnableToLegalize;
4233   if (DstTy != Src2Ty)
4234     return UnableToLegalize;
4235 
4236   if (!isPowerOf2_32(DstTy.getNumElements()))
4237     return UnableToLegalize;
4238 
4239   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4240   // Further legalization attempts will be needed to do split further.
4241   NarrowTy = DstTy.changeNumElements(DstTy.getNumElements() / 2);
4242   unsigned NewElts = NarrowTy.getNumElements();
4243 
4244   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4245   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4246   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4247   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4248                         SplitSrc2Regs[1]};
4249 
4250   Register Hi, Lo;
4251 
4252   // If Lo or Hi uses elements from at most two of the four input vectors, then
4253   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4254   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4255   SmallVector<int, 16> Ops;
4256   for (unsigned High = 0; High < 2; ++High) {
4257     Register &Output = High ? Hi : Lo;
4258 
4259     // Build a shuffle mask for the output, discovering on the fly which
4260     // input vectors to use as shuffle operands (recorded in InputUsed).
4261     // If building a suitable shuffle vector proves too hard, then bail
4262     // out with useBuildVector set.
4263     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4264     unsigned FirstMaskIdx = High * NewElts;
4265     bool UseBuildVector = false;
4266     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4267       // The mask element.  This indexes into the input.
4268       int Idx = Mask[FirstMaskIdx + MaskOffset];
4269 
4270       // The input vector this mask element indexes into.
4271       unsigned Input = (unsigned)Idx / NewElts;
4272 
4273       if (Input >= array_lengthof(Inputs)) {
4274         // The mask element does not index into any input vector.
4275         Ops.push_back(-1);
4276         continue;
4277       }
4278 
4279       // Turn the index into an offset from the start of the input vector.
4280       Idx -= Input * NewElts;
4281 
4282       // Find or create a shuffle vector operand to hold this input.
4283       unsigned OpNo;
4284       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4285         if (InputUsed[OpNo] == Input) {
4286           // This input vector is already an operand.
4287           break;
4288         } else if (InputUsed[OpNo] == -1U) {
4289           // Create a new operand for this input vector.
4290           InputUsed[OpNo] = Input;
4291           break;
4292         }
4293       }
4294 
4295       if (OpNo >= array_lengthof(InputUsed)) {
4296         // More than two input vectors used!  Give up on trying to create a
4297         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4298         UseBuildVector = true;
4299         break;
4300       }
4301 
4302       // Add the mask index for the new shuffle vector.
4303       Ops.push_back(Idx + OpNo * NewElts);
4304     }
4305 
4306     if (UseBuildVector) {
4307       LLT EltTy = NarrowTy.getElementType();
4308       SmallVector<Register, 16> SVOps;
4309 
4310       // Extract the input elements by hand.
4311       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4312         // The mask element.  This indexes into the input.
4313         int Idx = Mask[FirstMaskIdx + MaskOffset];
4314 
4315         // The input vector this mask element indexes into.
4316         unsigned Input = (unsigned)Idx / NewElts;
4317 
4318         if (Input >= array_lengthof(Inputs)) {
4319           // The mask element is "undef" or indexes off the end of the input.
4320           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4321           continue;
4322         }
4323 
4324         // Turn the index into an offset from the start of the input vector.
4325         Idx -= Input * NewElts;
4326 
4327         // Extract the vector element by hand.
4328         SVOps.push_back(MIRBuilder
4329                             .buildExtractVectorElement(
4330                                 EltTy, Inputs[Input],
4331                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4332                             .getReg(0));
4333       }
4334 
4335       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4336       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4337     } else if (InputUsed[0] == -1U) {
4338       // No input vectors were used! The result is undefined.
4339       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4340     } else {
4341       Register Op0 = Inputs[InputUsed[0]];
4342       // If only one input was used, use an undefined vector for the other.
4343       Register Op1 = InputUsed[1] == -1U
4344                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4345                          : Inputs[InputUsed[1]];
4346       // At least one input vector was used. Create a new shuffle vector.
4347       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4348     }
4349 
4350     Ops.clear();
4351   }
4352 
4353   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4354   MI.eraseFromParent();
4355   return Legalized;
4356 }
4357 
4358 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4359     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4360   unsigned Opc = MI.getOpcode();
4361   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4362          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4363          "Sequential reductions not expected");
4364 
4365   if (TypeIdx != 1)
4366     return UnableToLegalize;
4367 
4368   // The semantics of the normal non-sequential reductions allow us to freely
4369   // re-associate the operation.
4370   Register SrcReg = MI.getOperand(1).getReg();
4371   LLT SrcTy = MRI.getType(SrcReg);
4372   Register DstReg = MI.getOperand(0).getReg();
4373   LLT DstTy = MRI.getType(DstReg);
4374 
4375   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4376     return UnableToLegalize;
4377 
4378   SmallVector<Register> SplitSrcs;
4379   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4380   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4381   SmallVector<Register> PartialReductions;
4382   for (unsigned Part = 0; Part < NumParts; ++Part) {
4383     PartialReductions.push_back(
4384         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4385   }
4386 
4387   unsigned ScalarOpc;
4388   switch (Opc) {
4389   case TargetOpcode::G_VECREDUCE_FADD:
4390     ScalarOpc = TargetOpcode::G_FADD;
4391     break;
4392   case TargetOpcode::G_VECREDUCE_FMUL:
4393     ScalarOpc = TargetOpcode::G_FMUL;
4394     break;
4395   case TargetOpcode::G_VECREDUCE_FMAX:
4396     ScalarOpc = TargetOpcode::G_FMAXNUM;
4397     break;
4398   case TargetOpcode::G_VECREDUCE_FMIN:
4399     ScalarOpc = TargetOpcode::G_FMINNUM;
4400     break;
4401   case TargetOpcode::G_VECREDUCE_ADD:
4402     ScalarOpc = TargetOpcode::G_ADD;
4403     break;
4404   case TargetOpcode::G_VECREDUCE_MUL:
4405     ScalarOpc = TargetOpcode::G_MUL;
4406     break;
4407   case TargetOpcode::G_VECREDUCE_AND:
4408     ScalarOpc = TargetOpcode::G_AND;
4409     break;
4410   case TargetOpcode::G_VECREDUCE_OR:
4411     ScalarOpc = TargetOpcode::G_OR;
4412     break;
4413   case TargetOpcode::G_VECREDUCE_XOR:
4414     ScalarOpc = TargetOpcode::G_XOR;
4415     break;
4416   case TargetOpcode::G_VECREDUCE_SMAX:
4417     ScalarOpc = TargetOpcode::G_SMAX;
4418     break;
4419   case TargetOpcode::G_VECREDUCE_SMIN:
4420     ScalarOpc = TargetOpcode::G_SMIN;
4421     break;
4422   case TargetOpcode::G_VECREDUCE_UMAX:
4423     ScalarOpc = TargetOpcode::G_UMAX;
4424     break;
4425   case TargetOpcode::G_VECREDUCE_UMIN:
4426     ScalarOpc = TargetOpcode::G_UMIN;
4427     break;
4428   default:
4429     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4430     return UnableToLegalize;
4431   }
4432 
4433   // If the types involved are powers of 2, we can generate intermediate vector
4434   // ops, before generating a final reduction operation.
4435   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4436       isPowerOf2_32(NarrowTy.getNumElements())) {
4437     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4438   }
4439 
4440   Register Acc = PartialReductions[0];
4441   for (unsigned Part = 1; Part < NumParts; ++Part) {
4442     if (Part == NumParts - 1) {
4443       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4444                             {Acc, PartialReductions[Part]});
4445     } else {
4446       Acc = MIRBuilder
4447                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4448                 .getReg(0);
4449     }
4450   }
4451   MI.eraseFromParent();
4452   return Legalized;
4453 }
4454 
4455 LegalizerHelper::LegalizeResult
4456 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4457                                         LLT SrcTy, LLT NarrowTy,
4458                                         unsigned ScalarOpc) {
4459   SmallVector<Register> SplitSrcs;
4460   // Split the sources into NarrowTy size pieces.
4461   extractParts(SrcReg, NarrowTy,
4462                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4463   // We're going to do a tree reduction using vector operations until we have
4464   // one NarrowTy size value left.
4465   while (SplitSrcs.size() > 1) {
4466     SmallVector<Register> PartialRdxs;
4467     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4468       Register LHS = SplitSrcs[Idx];
4469       Register RHS = SplitSrcs[Idx + 1];
4470       // Create the intermediate vector op.
4471       Register Res =
4472           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4473       PartialRdxs.push_back(Res);
4474     }
4475     SplitSrcs = std::move(PartialRdxs);
4476   }
4477   // Finally generate the requested NarrowTy based reduction.
4478   Observer.changingInstr(MI);
4479   MI.getOperand(1).setReg(SplitSrcs[0]);
4480   Observer.changedInstr(MI);
4481   return Legalized;
4482 }
4483 
4484 LegalizerHelper::LegalizeResult
4485 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4486                                              const LLT HalfTy, const LLT AmtTy) {
4487 
4488   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4489   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4490   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4491 
4492   if (Amt.isNullValue()) {
4493     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4494     MI.eraseFromParent();
4495     return Legalized;
4496   }
4497 
4498   LLT NVT = HalfTy;
4499   unsigned NVTBits = HalfTy.getSizeInBits();
4500   unsigned VTBits = 2 * NVTBits;
4501 
4502   SrcOp Lo(Register(0)), Hi(Register(0));
4503   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4504     if (Amt.ugt(VTBits)) {
4505       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4506     } else if (Amt.ugt(NVTBits)) {
4507       Lo = MIRBuilder.buildConstant(NVT, 0);
4508       Hi = MIRBuilder.buildShl(NVT, InL,
4509                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4510     } else if (Amt == NVTBits) {
4511       Lo = MIRBuilder.buildConstant(NVT, 0);
4512       Hi = InL;
4513     } else {
4514       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4515       auto OrLHS =
4516           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4517       auto OrRHS = MIRBuilder.buildLShr(
4518           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4519       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4520     }
4521   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4522     if (Amt.ugt(VTBits)) {
4523       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4524     } else if (Amt.ugt(NVTBits)) {
4525       Lo = MIRBuilder.buildLShr(NVT, InH,
4526                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4527       Hi = MIRBuilder.buildConstant(NVT, 0);
4528     } else if (Amt == NVTBits) {
4529       Lo = InH;
4530       Hi = MIRBuilder.buildConstant(NVT, 0);
4531     } else {
4532       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4533 
4534       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4535       auto OrRHS = MIRBuilder.buildShl(
4536           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4537 
4538       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4539       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4540     }
4541   } else {
4542     if (Amt.ugt(VTBits)) {
4543       Hi = Lo = MIRBuilder.buildAShr(
4544           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4545     } else if (Amt.ugt(NVTBits)) {
4546       Lo = MIRBuilder.buildAShr(NVT, InH,
4547                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4548       Hi = MIRBuilder.buildAShr(NVT, InH,
4549                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4550     } else if (Amt == NVTBits) {
4551       Lo = InH;
4552       Hi = MIRBuilder.buildAShr(NVT, InH,
4553                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4554     } else {
4555       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4556 
4557       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4558       auto OrRHS = MIRBuilder.buildShl(
4559           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4560 
4561       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4562       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4563     }
4564   }
4565 
4566   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4567   MI.eraseFromParent();
4568 
4569   return Legalized;
4570 }
4571 
4572 // TODO: Optimize if constant shift amount.
4573 LegalizerHelper::LegalizeResult
4574 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4575                                    LLT RequestedTy) {
4576   if (TypeIdx == 1) {
4577     Observer.changingInstr(MI);
4578     narrowScalarSrc(MI, RequestedTy, 2);
4579     Observer.changedInstr(MI);
4580     return Legalized;
4581   }
4582 
4583   Register DstReg = MI.getOperand(0).getReg();
4584   LLT DstTy = MRI.getType(DstReg);
4585   if (DstTy.isVector())
4586     return UnableToLegalize;
4587 
4588   Register Amt = MI.getOperand(2).getReg();
4589   LLT ShiftAmtTy = MRI.getType(Amt);
4590   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4591   if (DstEltSize % 2 != 0)
4592     return UnableToLegalize;
4593 
4594   // Ignore the input type. We can only go to exactly half the size of the
4595   // input. If that isn't small enough, the resulting pieces will be further
4596   // legalized.
4597   const unsigned NewBitSize = DstEltSize / 2;
4598   const LLT HalfTy = LLT::scalar(NewBitSize);
4599   const LLT CondTy = LLT::scalar(1);
4600 
4601   if (const MachineInstr *KShiftAmt =
4602           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4603     return narrowScalarShiftByConstant(
4604         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4605   }
4606 
4607   // TODO: Expand with known bits.
4608 
4609   // Handle the fully general expansion by an unknown amount.
4610   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4611 
4612   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4613   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4614   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4615 
4616   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4617   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4618 
4619   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4620   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4621   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4622 
4623   Register ResultRegs[2];
4624   switch (MI.getOpcode()) {
4625   case TargetOpcode::G_SHL: {
4626     // Short: ShAmt < NewBitSize
4627     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4628 
4629     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4630     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4631     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4632 
4633     // Long: ShAmt >= NewBitSize
4634     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4635     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4636 
4637     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4638     auto Hi = MIRBuilder.buildSelect(
4639         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4640 
4641     ResultRegs[0] = Lo.getReg(0);
4642     ResultRegs[1] = Hi.getReg(0);
4643     break;
4644   }
4645   case TargetOpcode::G_LSHR:
4646   case TargetOpcode::G_ASHR: {
4647     // Short: ShAmt < NewBitSize
4648     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4649 
4650     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4651     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4652     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4653 
4654     // Long: ShAmt >= NewBitSize
4655     MachineInstrBuilder HiL;
4656     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4657       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4658     } else {
4659       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4660       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4661     }
4662     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4663                                      {InH, AmtExcess});     // Lo from Hi part.
4664 
4665     auto Lo = MIRBuilder.buildSelect(
4666         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4667 
4668     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4669 
4670     ResultRegs[0] = Lo.getReg(0);
4671     ResultRegs[1] = Hi.getReg(0);
4672     break;
4673   }
4674   default:
4675     llvm_unreachable("not a shift");
4676   }
4677 
4678   MIRBuilder.buildMerge(DstReg, ResultRegs);
4679   MI.eraseFromParent();
4680   return Legalized;
4681 }
4682 
4683 LegalizerHelper::LegalizeResult
4684 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4685                                        LLT MoreTy) {
4686   assert(TypeIdx == 0 && "Expecting only Idx 0");
4687 
4688   Observer.changingInstr(MI);
4689   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4690     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4691     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4692     moreElementsVectorSrc(MI, MoreTy, I);
4693   }
4694 
4695   MachineBasicBlock &MBB = *MI.getParent();
4696   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4697   moreElementsVectorDst(MI, MoreTy, 0);
4698   Observer.changedInstr(MI);
4699   return Legalized;
4700 }
4701 
4702 LegalizerHelper::LegalizeResult
4703 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4704                                     LLT MoreTy) {
4705   unsigned Opc = MI.getOpcode();
4706   switch (Opc) {
4707   case TargetOpcode::G_IMPLICIT_DEF:
4708   case TargetOpcode::G_LOAD: {
4709     if (TypeIdx != 0)
4710       return UnableToLegalize;
4711     Observer.changingInstr(MI);
4712     moreElementsVectorDst(MI, MoreTy, 0);
4713     Observer.changedInstr(MI);
4714     return Legalized;
4715   }
4716   case TargetOpcode::G_STORE:
4717     if (TypeIdx != 0)
4718       return UnableToLegalize;
4719     Observer.changingInstr(MI);
4720     moreElementsVectorSrc(MI, MoreTy, 0);
4721     Observer.changedInstr(MI);
4722     return Legalized;
4723   case TargetOpcode::G_AND:
4724   case TargetOpcode::G_OR:
4725   case TargetOpcode::G_XOR:
4726   case TargetOpcode::G_SMIN:
4727   case TargetOpcode::G_SMAX:
4728   case TargetOpcode::G_UMIN:
4729   case TargetOpcode::G_UMAX:
4730   case TargetOpcode::G_FMINNUM:
4731   case TargetOpcode::G_FMAXNUM:
4732   case TargetOpcode::G_FMINNUM_IEEE:
4733   case TargetOpcode::G_FMAXNUM_IEEE:
4734   case TargetOpcode::G_FMINIMUM:
4735   case TargetOpcode::G_FMAXIMUM: {
4736     Observer.changingInstr(MI);
4737     moreElementsVectorSrc(MI, MoreTy, 1);
4738     moreElementsVectorSrc(MI, MoreTy, 2);
4739     moreElementsVectorDst(MI, MoreTy, 0);
4740     Observer.changedInstr(MI);
4741     return Legalized;
4742   }
4743   case TargetOpcode::G_EXTRACT:
4744     if (TypeIdx != 1)
4745       return UnableToLegalize;
4746     Observer.changingInstr(MI);
4747     moreElementsVectorSrc(MI, MoreTy, 1);
4748     Observer.changedInstr(MI);
4749     return Legalized;
4750   case TargetOpcode::G_INSERT:
4751   case TargetOpcode::G_FREEZE:
4752     if (TypeIdx != 0)
4753       return UnableToLegalize;
4754     Observer.changingInstr(MI);
4755     moreElementsVectorSrc(MI, MoreTy, 1);
4756     moreElementsVectorDst(MI, MoreTy, 0);
4757     Observer.changedInstr(MI);
4758     return Legalized;
4759   case TargetOpcode::G_SELECT:
4760     if (TypeIdx != 0)
4761       return UnableToLegalize;
4762     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4763       return UnableToLegalize;
4764 
4765     Observer.changingInstr(MI);
4766     moreElementsVectorSrc(MI, MoreTy, 2);
4767     moreElementsVectorSrc(MI, MoreTy, 3);
4768     moreElementsVectorDst(MI, MoreTy, 0);
4769     Observer.changedInstr(MI);
4770     return Legalized;
4771   case TargetOpcode::G_UNMERGE_VALUES: {
4772     if (TypeIdx != 1)
4773       return UnableToLegalize;
4774 
4775     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4776     int NumDst = MI.getNumOperands() - 1;
4777     moreElementsVectorSrc(MI, MoreTy, NumDst);
4778 
4779     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4780     for (int I = 0; I != NumDst; ++I)
4781       MIB.addDef(MI.getOperand(I).getReg());
4782 
4783     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4784     for (int I = NumDst; I != NewNumDst; ++I)
4785       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4786 
4787     MIB.addUse(MI.getOperand(NumDst).getReg());
4788     MI.eraseFromParent();
4789     return Legalized;
4790   }
4791   case TargetOpcode::G_PHI:
4792     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4793   default:
4794     return UnableToLegalize;
4795   }
4796 }
4797 
4798 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4799                                         ArrayRef<Register> Src1Regs,
4800                                         ArrayRef<Register> Src2Regs,
4801                                         LLT NarrowTy) {
4802   MachineIRBuilder &B = MIRBuilder;
4803   unsigned SrcParts = Src1Regs.size();
4804   unsigned DstParts = DstRegs.size();
4805 
4806   unsigned DstIdx = 0; // Low bits of the result.
4807   Register FactorSum =
4808       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4809   DstRegs[DstIdx] = FactorSum;
4810 
4811   unsigned CarrySumPrevDstIdx;
4812   SmallVector<Register, 4> Factors;
4813 
4814   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4815     // Collect low parts of muls for DstIdx.
4816     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4817          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4818       MachineInstrBuilder Mul =
4819           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4820       Factors.push_back(Mul.getReg(0));
4821     }
4822     // Collect high parts of muls from previous DstIdx.
4823     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4824          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4825       MachineInstrBuilder Umulh =
4826           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4827       Factors.push_back(Umulh.getReg(0));
4828     }
4829     // Add CarrySum from additions calculated for previous DstIdx.
4830     if (DstIdx != 1) {
4831       Factors.push_back(CarrySumPrevDstIdx);
4832     }
4833 
4834     Register CarrySum;
4835     // Add all factors and accumulate all carries into CarrySum.
4836     if (DstIdx != DstParts - 1) {
4837       MachineInstrBuilder Uaddo =
4838           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4839       FactorSum = Uaddo.getReg(0);
4840       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4841       for (unsigned i = 2; i < Factors.size(); ++i) {
4842         MachineInstrBuilder Uaddo =
4843             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4844         FactorSum = Uaddo.getReg(0);
4845         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4846         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4847       }
4848     } else {
4849       // Since value for the next index is not calculated, neither is CarrySum.
4850       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4851       for (unsigned i = 2; i < Factors.size(); ++i)
4852         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4853     }
4854 
4855     CarrySumPrevDstIdx = CarrySum;
4856     DstRegs[DstIdx] = FactorSum;
4857     Factors.clear();
4858   }
4859 }
4860 
4861 LegalizerHelper::LegalizeResult
4862 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4863                                     LLT NarrowTy) {
4864   if (TypeIdx != 0)
4865     return UnableToLegalize;
4866 
4867   Register DstReg = MI.getOperand(0).getReg();
4868   LLT DstType = MRI.getType(DstReg);
4869   // FIXME: add support for vector types
4870   if (DstType.isVector())
4871     return UnableToLegalize;
4872 
4873   unsigned Opcode = MI.getOpcode();
4874   unsigned OpO, OpE, OpF;
4875   switch (Opcode) {
4876   case TargetOpcode::G_SADDO:
4877   case TargetOpcode::G_SADDE:
4878   case TargetOpcode::G_UADDO:
4879   case TargetOpcode::G_UADDE:
4880   case TargetOpcode::G_ADD:
4881     OpO = TargetOpcode::G_UADDO;
4882     OpE = TargetOpcode::G_UADDE;
4883     OpF = TargetOpcode::G_UADDE;
4884     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4885       OpF = TargetOpcode::G_SADDE;
4886     break;
4887   case TargetOpcode::G_SSUBO:
4888   case TargetOpcode::G_SSUBE:
4889   case TargetOpcode::G_USUBO:
4890   case TargetOpcode::G_USUBE:
4891   case TargetOpcode::G_SUB:
4892     OpO = TargetOpcode::G_USUBO;
4893     OpE = TargetOpcode::G_USUBE;
4894     OpF = TargetOpcode::G_USUBE;
4895     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4896       OpF = TargetOpcode::G_SSUBE;
4897     break;
4898   default:
4899     llvm_unreachable("Unexpected add/sub opcode!");
4900   }
4901 
4902   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4903   unsigned NumDefs = MI.getNumExplicitDefs();
4904   Register Src1 = MI.getOperand(NumDefs).getReg();
4905   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4906   Register CarryDst, CarryIn;
4907   if (NumDefs == 2)
4908     CarryDst = MI.getOperand(1).getReg();
4909   if (MI.getNumOperands() == NumDefs + 3)
4910     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4911 
4912   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
4913   LLT LeftoverTy, DummyTy;
4914   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
4915   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
4916   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
4917 
4918   int NarrowParts = Src1Regs.size();
4919   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
4920     Src1Regs.push_back(Src1Left[I]);
4921     Src2Regs.push_back(Src2Left[I]);
4922   }
4923   DstRegs.reserve(Src1Regs.size());
4924 
4925   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
4926     Register DstReg =
4927         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
4928     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4929     // Forward the final carry-out to the destination register
4930     if (i == e - 1 && CarryDst)
4931       CarryOut = CarryDst;
4932 
4933     if (!CarryIn) {
4934       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4935                             {Src1Regs[i], Src2Regs[i]});
4936     } else if (i == e - 1) {
4937       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4938                             {Src1Regs[i], Src2Regs[i], CarryIn});
4939     } else {
4940       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4941                             {Src1Regs[i], Src2Regs[i], CarryIn});
4942     }
4943 
4944     DstRegs.push_back(DstReg);
4945     CarryIn = CarryOut;
4946   }
4947   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
4948               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
4949               makeArrayRef(DstRegs).drop_front(NarrowParts));
4950 
4951   MI.eraseFromParent();
4952   return Legalized;
4953 }
4954 
4955 LegalizerHelper::LegalizeResult
4956 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4957   Register DstReg = MI.getOperand(0).getReg();
4958   Register Src1 = MI.getOperand(1).getReg();
4959   Register Src2 = MI.getOperand(2).getReg();
4960 
4961   LLT Ty = MRI.getType(DstReg);
4962   if (Ty.isVector())
4963     return UnableToLegalize;
4964 
4965   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4966   unsigned DstSize = Ty.getSizeInBits();
4967   unsigned NarrowSize = NarrowTy.getSizeInBits();
4968   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4969     return UnableToLegalize;
4970 
4971   unsigned NumDstParts = DstSize / NarrowSize;
4972   unsigned NumSrcParts = SrcSize / NarrowSize;
4973   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4974   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4975 
4976   SmallVector<Register, 2> Src1Parts, Src2Parts;
4977   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4978   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4979   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4980   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4981 
4982   // Take only high half of registers if this is high mul.
4983   ArrayRef<Register> DstRegs(
4984       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4985   MIRBuilder.buildMerge(DstReg, DstRegs);
4986   MI.eraseFromParent();
4987   return Legalized;
4988 }
4989 
4990 LegalizerHelper::LegalizeResult
4991 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
4992                                    LLT NarrowTy) {
4993   if (TypeIdx != 0)
4994     return UnableToLegalize;
4995 
4996   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
4997 
4998   Register Src = MI.getOperand(1).getReg();
4999   LLT SrcTy = MRI.getType(Src);
5000 
5001   // If all finite floats fit into the narrowed integer type, we can just swap
5002   // out the result type. This is practically only useful for conversions from
5003   // half to at least 16-bits, so just handle the one case.
5004   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5005       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5006     return UnableToLegalize;
5007 
5008   Observer.changingInstr(MI);
5009   narrowScalarDst(MI, NarrowTy, 0,
5010                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5011   Observer.changedInstr(MI);
5012   return Legalized;
5013 }
5014 
5015 LegalizerHelper::LegalizeResult
5016 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5017                                      LLT NarrowTy) {
5018   if (TypeIdx != 1)
5019     return UnableToLegalize;
5020 
5021   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5022 
5023   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5024   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5025   // NarrowSize.
5026   if (SizeOp1 % NarrowSize != 0)
5027     return UnableToLegalize;
5028   int NumParts = SizeOp1 / NarrowSize;
5029 
5030   SmallVector<Register, 2> SrcRegs, DstRegs;
5031   SmallVector<uint64_t, 2> Indexes;
5032   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5033 
5034   Register OpReg = MI.getOperand(0).getReg();
5035   uint64_t OpStart = MI.getOperand(2).getImm();
5036   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5037   for (int i = 0; i < NumParts; ++i) {
5038     unsigned SrcStart = i * NarrowSize;
5039 
5040     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5041       // No part of the extract uses this subregister, ignore it.
5042       continue;
5043     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5044       // The entire subregister is extracted, forward the value.
5045       DstRegs.push_back(SrcRegs[i]);
5046       continue;
5047     }
5048 
5049     // OpSegStart is where this destination segment would start in OpReg if it
5050     // extended infinitely in both directions.
5051     int64_t ExtractOffset;
5052     uint64_t SegSize;
5053     if (OpStart < SrcStart) {
5054       ExtractOffset = 0;
5055       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5056     } else {
5057       ExtractOffset = OpStart - SrcStart;
5058       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5059     }
5060 
5061     Register SegReg = SrcRegs[i];
5062     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5063       // A genuine extract is needed.
5064       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5065       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5066     }
5067 
5068     DstRegs.push_back(SegReg);
5069   }
5070 
5071   Register DstReg = MI.getOperand(0).getReg();
5072   if (MRI.getType(DstReg).isVector())
5073     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5074   else if (DstRegs.size() > 1)
5075     MIRBuilder.buildMerge(DstReg, DstRegs);
5076   else
5077     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5078   MI.eraseFromParent();
5079   return Legalized;
5080 }
5081 
5082 LegalizerHelper::LegalizeResult
5083 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5084                                     LLT NarrowTy) {
5085   // FIXME: Don't know how to handle secondary types yet.
5086   if (TypeIdx != 0)
5087     return UnableToLegalize;
5088 
5089   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5090   SmallVector<uint64_t, 2> Indexes;
5091   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5092   LLT LeftoverTy;
5093   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5094                LeftoverRegs);
5095 
5096   for (Register Reg : LeftoverRegs)
5097     SrcRegs.push_back(Reg);
5098 
5099   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5100   Register OpReg = MI.getOperand(2).getReg();
5101   uint64_t OpStart = MI.getOperand(3).getImm();
5102   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5103   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5104     unsigned DstStart = I * NarrowSize;
5105 
5106     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5107       // The entire subregister is defined by this insert, forward the new
5108       // value.
5109       DstRegs.push_back(OpReg);
5110       continue;
5111     }
5112 
5113     Register SrcReg = SrcRegs[I];
5114     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5115       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5116       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5117       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5118     }
5119 
5120     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5121       // No part of the insert affects this subregister, forward the original.
5122       DstRegs.push_back(SrcReg);
5123       continue;
5124     }
5125 
5126     // OpSegStart is where this destination segment would start in OpReg if it
5127     // extended infinitely in both directions.
5128     int64_t ExtractOffset, InsertOffset;
5129     uint64_t SegSize;
5130     if (OpStart < DstStart) {
5131       InsertOffset = 0;
5132       ExtractOffset = DstStart - OpStart;
5133       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5134     } else {
5135       InsertOffset = OpStart - DstStart;
5136       ExtractOffset = 0;
5137       SegSize =
5138         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5139     }
5140 
5141     Register SegReg = OpReg;
5142     if (ExtractOffset != 0 || SegSize != OpSize) {
5143       // A genuine extract is needed.
5144       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5145       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5146     }
5147 
5148     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5149     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5150     DstRegs.push_back(DstReg);
5151   }
5152 
5153   uint64_t WideSize = DstRegs.size() * NarrowSize;
5154   Register DstReg = MI.getOperand(0).getReg();
5155   if (WideSize > RegTy.getSizeInBits()) {
5156     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5157     MIRBuilder.buildMerge(MergeReg, DstRegs);
5158     MIRBuilder.buildTrunc(DstReg, MergeReg);
5159   } else
5160     MIRBuilder.buildMerge(DstReg, DstRegs);
5161 
5162   MI.eraseFromParent();
5163   return Legalized;
5164 }
5165 
5166 LegalizerHelper::LegalizeResult
5167 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5168                                    LLT NarrowTy) {
5169   Register DstReg = MI.getOperand(0).getReg();
5170   LLT DstTy = MRI.getType(DstReg);
5171 
5172   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5173 
5174   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5175   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5176   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5177   LLT LeftoverTy;
5178   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5179                     Src0Regs, Src0LeftoverRegs))
5180     return UnableToLegalize;
5181 
5182   LLT Unused;
5183   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5184                     Src1Regs, Src1LeftoverRegs))
5185     llvm_unreachable("inconsistent extractParts result");
5186 
5187   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5188     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5189                                         {Src0Regs[I], Src1Regs[I]});
5190     DstRegs.push_back(Inst.getReg(0));
5191   }
5192 
5193   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5194     auto Inst = MIRBuilder.buildInstr(
5195       MI.getOpcode(),
5196       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5197     DstLeftoverRegs.push_back(Inst.getReg(0));
5198   }
5199 
5200   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5201               LeftoverTy, DstLeftoverRegs);
5202 
5203   MI.eraseFromParent();
5204   return Legalized;
5205 }
5206 
5207 LegalizerHelper::LegalizeResult
5208 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5209                                  LLT NarrowTy) {
5210   if (TypeIdx != 0)
5211     return UnableToLegalize;
5212 
5213   Register DstReg = MI.getOperand(0).getReg();
5214   Register SrcReg = MI.getOperand(1).getReg();
5215 
5216   LLT DstTy = MRI.getType(DstReg);
5217   if (DstTy.isVector())
5218     return UnableToLegalize;
5219 
5220   SmallVector<Register, 8> Parts;
5221   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5222   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5223   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5224 
5225   MI.eraseFromParent();
5226   return Legalized;
5227 }
5228 
5229 LegalizerHelper::LegalizeResult
5230 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5231                                     LLT NarrowTy) {
5232   if (TypeIdx != 0)
5233     return UnableToLegalize;
5234 
5235   Register CondReg = MI.getOperand(1).getReg();
5236   LLT CondTy = MRI.getType(CondReg);
5237   if (CondTy.isVector()) // TODO: Handle vselect
5238     return UnableToLegalize;
5239 
5240   Register DstReg = MI.getOperand(0).getReg();
5241   LLT DstTy = MRI.getType(DstReg);
5242 
5243   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5244   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5245   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5246   LLT LeftoverTy;
5247   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5248                     Src1Regs, Src1LeftoverRegs))
5249     return UnableToLegalize;
5250 
5251   LLT Unused;
5252   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5253                     Src2Regs, Src2LeftoverRegs))
5254     llvm_unreachable("inconsistent extractParts result");
5255 
5256   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5257     auto Select = MIRBuilder.buildSelect(NarrowTy,
5258                                          CondReg, Src1Regs[I], Src2Regs[I]);
5259     DstRegs.push_back(Select.getReg(0));
5260   }
5261 
5262   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5263     auto Select = MIRBuilder.buildSelect(
5264       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5265     DstLeftoverRegs.push_back(Select.getReg(0));
5266   }
5267 
5268   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5269               LeftoverTy, DstLeftoverRegs);
5270 
5271   MI.eraseFromParent();
5272   return Legalized;
5273 }
5274 
5275 LegalizerHelper::LegalizeResult
5276 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5277                                   LLT NarrowTy) {
5278   if (TypeIdx != 1)
5279     return UnableToLegalize;
5280 
5281   Register DstReg = MI.getOperand(0).getReg();
5282   Register SrcReg = MI.getOperand(1).getReg();
5283   LLT DstTy = MRI.getType(DstReg);
5284   LLT SrcTy = MRI.getType(SrcReg);
5285   unsigned NarrowSize = NarrowTy.getSizeInBits();
5286 
5287   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5288     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5289 
5290     MachineIRBuilder &B = MIRBuilder;
5291     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5292     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5293     auto C_0 = B.buildConstant(NarrowTy, 0);
5294     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5295                                 UnmergeSrc.getReg(1), C_0);
5296     auto LoCTLZ = IsUndef ?
5297       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5298       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5299     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5300     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5301     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5302     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5303 
5304     MI.eraseFromParent();
5305     return Legalized;
5306   }
5307 
5308   return UnableToLegalize;
5309 }
5310 
5311 LegalizerHelper::LegalizeResult
5312 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5313                                   LLT NarrowTy) {
5314   if (TypeIdx != 1)
5315     return UnableToLegalize;
5316 
5317   Register DstReg = MI.getOperand(0).getReg();
5318   Register SrcReg = MI.getOperand(1).getReg();
5319   LLT DstTy = MRI.getType(DstReg);
5320   LLT SrcTy = MRI.getType(SrcReg);
5321   unsigned NarrowSize = NarrowTy.getSizeInBits();
5322 
5323   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5324     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5325 
5326     MachineIRBuilder &B = MIRBuilder;
5327     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5328     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5329     auto C_0 = B.buildConstant(NarrowTy, 0);
5330     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5331                                 UnmergeSrc.getReg(0), C_0);
5332     auto HiCTTZ = IsUndef ?
5333       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5334       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5335     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5336     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5337     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5338     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5339 
5340     MI.eraseFromParent();
5341     return Legalized;
5342   }
5343 
5344   return UnableToLegalize;
5345 }
5346 
5347 LegalizerHelper::LegalizeResult
5348 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5349                                    LLT NarrowTy) {
5350   if (TypeIdx != 1)
5351     return UnableToLegalize;
5352 
5353   Register DstReg = MI.getOperand(0).getReg();
5354   LLT DstTy = MRI.getType(DstReg);
5355   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5356   unsigned NarrowSize = NarrowTy.getSizeInBits();
5357 
5358   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5359     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5360 
5361     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5362     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5363     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5364 
5365     MI.eraseFromParent();
5366     return Legalized;
5367   }
5368 
5369   return UnableToLegalize;
5370 }
5371 
5372 LegalizerHelper::LegalizeResult
5373 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5374   unsigned Opc = MI.getOpcode();
5375   const auto &TII = MIRBuilder.getTII();
5376   auto isSupported = [this](const LegalityQuery &Q) {
5377     auto QAction = LI.getAction(Q).Action;
5378     return QAction == Legal || QAction == Libcall || QAction == Custom;
5379   };
5380   switch (Opc) {
5381   default:
5382     return UnableToLegalize;
5383   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5384     // This trivially expands to CTLZ.
5385     Observer.changingInstr(MI);
5386     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5387     Observer.changedInstr(MI);
5388     return Legalized;
5389   }
5390   case TargetOpcode::G_CTLZ: {
5391     Register DstReg = MI.getOperand(0).getReg();
5392     Register SrcReg = MI.getOperand(1).getReg();
5393     LLT DstTy = MRI.getType(DstReg);
5394     LLT SrcTy = MRI.getType(SrcReg);
5395     unsigned Len = SrcTy.getSizeInBits();
5396 
5397     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5398       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5399       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5400       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5401       auto ICmp = MIRBuilder.buildICmp(
5402           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5403       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5404       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5405       MI.eraseFromParent();
5406       return Legalized;
5407     }
5408     // for now, we do this:
5409     // NewLen = NextPowerOf2(Len);
5410     // x = x | (x >> 1);
5411     // x = x | (x >> 2);
5412     // ...
5413     // x = x | (x >>16);
5414     // x = x | (x >>32); // for 64-bit input
5415     // Upto NewLen/2
5416     // return Len - popcount(x);
5417     //
5418     // Ref: "Hacker's Delight" by Henry Warren
5419     Register Op = SrcReg;
5420     unsigned NewLen = PowerOf2Ceil(Len);
5421     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5422       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5423       auto MIBOp = MIRBuilder.buildOr(
5424           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5425       Op = MIBOp.getReg(0);
5426     }
5427     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5428     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5429                         MIBPop);
5430     MI.eraseFromParent();
5431     return Legalized;
5432   }
5433   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5434     // This trivially expands to CTTZ.
5435     Observer.changingInstr(MI);
5436     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5437     Observer.changedInstr(MI);
5438     return Legalized;
5439   }
5440   case TargetOpcode::G_CTTZ: {
5441     Register DstReg = MI.getOperand(0).getReg();
5442     Register SrcReg = MI.getOperand(1).getReg();
5443     LLT DstTy = MRI.getType(DstReg);
5444     LLT SrcTy = MRI.getType(SrcReg);
5445 
5446     unsigned Len = SrcTy.getSizeInBits();
5447     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5448       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5449       // zero.
5450       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5451       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5452       auto ICmp = MIRBuilder.buildICmp(
5453           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5454       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5455       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5456       MI.eraseFromParent();
5457       return Legalized;
5458     }
5459     // for now, we use: { return popcount(~x & (x - 1)); }
5460     // unless the target has ctlz but not ctpop, in which case we use:
5461     // { return 32 - nlz(~x & (x-1)); }
5462     // Ref: "Hacker's Delight" by Henry Warren
5463     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5464     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5465     auto MIBTmp = MIRBuilder.buildAnd(
5466         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5467     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5468         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5469       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5470       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5471                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5472       MI.eraseFromParent();
5473       return Legalized;
5474     }
5475     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5476     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5477     return Legalized;
5478   }
5479   case TargetOpcode::G_CTPOP: {
5480     Register SrcReg = MI.getOperand(1).getReg();
5481     LLT Ty = MRI.getType(SrcReg);
5482     unsigned Size = Ty.getSizeInBits();
5483     MachineIRBuilder &B = MIRBuilder;
5484 
5485     // Count set bits in blocks of 2 bits. Default approach would be
5486     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5487     // We use following formula instead:
5488     // B2Count = val - { (val >> 1) & 0x55555555 }
5489     // since it gives same result in blocks of 2 with one instruction less.
5490     auto C_1 = B.buildConstant(Ty, 1);
5491     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5492     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5493     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5494     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5495     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5496 
5497     // In order to get count in blocks of 4 add values from adjacent block of 2.
5498     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5499     auto C_2 = B.buildConstant(Ty, 2);
5500     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5501     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5502     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5503     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5504     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5505     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5506 
5507     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5508     // addition since count value sits in range {0,...,8} and 4 bits are enough
5509     // to hold such binary values. After addition high 4 bits still hold count
5510     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5511     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5512     auto C_4 = B.buildConstant(Ty, 4);
5513     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5514     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5515     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5516     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5517     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5518 
5519     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5520     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5521     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5522     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5523     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5524 
5525     // Shift count result from 8 high bits to low bits.
5526     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5527     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5528 
5529     MI.eraseFromParent();
5530     return Legalized;
5531   }
5532   }
5533 }
5534 
5535 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5536 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5537                                         Register Reg, unsigned BW) {
5538   return matchUnaryPredicate(
5539       MRI, Reg,
5540       [=](const Constant *C) {
5541         // Null constant here means an undef.
5542         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5543         return !CI || CI->getValue().urem(BW) != 0;
5544       },
5545       /*AllowUndefs*/ true);
5546 }
5547 
5548 LegalizerHelper::LegalizeResult
5549 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5550   Register Dst = MI.getOperand(0).getReg();
5551   Register X = MI.getOperand(1).getReg();
5552   Register Y = MI.getOperand(2).getReg();
5553   Register Z = MI.getOperand(3).getReg();
5554   LLT Ty = MRI.getType(Dst);
5555   LLT ShTy = MRI.getType(Z);
5556 
5557   unsigned BW = Ty.getScalarSizeInBits();
5558 
5559   if (!isPowerOf2_32(BW))
5560     return UnableToLegalize;
5561 
5562   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5563   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5564 
5565   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5566     // fshl X, Y, Z -> fshr X, Y, -Z
5567     // fshr X, Y, Z -> fshl X, Y, -Z
5568     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5569     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5570   } else {
5571     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5572     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5573     auto One = MIRBuilder.buildConstant(ShTy, 1);
5574     if (IsFSHL) {
5575       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5576       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5577     } else {
5578       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5579       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5580     }
5581 
5582     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5583   }
5584 
5585   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5586   MI.eraseFromParent();
5587   return Legalized;
5588 }
5589 
5590 LegalizerHelper::LegalizeResult
5591 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5592   Register Dst = MI.getOperand(0).getReg();
5593   Register X = MI.getOperand(1).getReg();
5594   Register Y = MI.getOperand(2).getReg();
5595   Register Z = MI.getOperand(3).getReg();
5596   LLT Ty = MRI.getType(Dst);
5597   LLT ShTy = MRI.getType(Z);
5598 
5599   const unsigned BW = Ty.getScalarSizeInBits();
5600   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5601 
5602   Register ShX, ShY;
5603   Register ShAmt, InvShAmt;
5604 
5605   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5606   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5607     // fshl: X << C | Y >> (BW - C)
5608     // fshr: X << (BW - C) | Y >> C
5609     // where C = Z % BW is not zero
5610     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5611     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5612     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5613     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5614     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5615   } else {
5616     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5617     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5618     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5619     if (isPowerOf2_32(BW)) {
5620       // Z % BW -> Z & (BW - 1)
5621       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5622       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5623       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5624       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5625     } else {
5626       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5627       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5628       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5629     }
5630 
5631     auto One = MIRBuilder.buildConstant(ShTy, 1);
5632     if (IsFSHL) {
5633       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5634       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5635       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5636     } else {
5637       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5638       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5639       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5640     }
5641   }
5642 
5643   MIRBuilder.buildOr(Dst, ShX, ShY);
5644   MI.eraseFromParent();
5645   return Legalized;
5646 }
5647 
5648 LegalizerHelper::LegalizeResult
5649 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5650   // These operations approximately do the following (while avoiding undefined
5651   // shifts by BW):
5652   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5653   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5654   Register Dst = MI.getOperand(0).getReg();
5655   LLT Ty = MRI.getType(Dst);
5656   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5657 
5658   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5659   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5660 
5661   // TODO: Use smarter heuristic that accounts for vector legalization.
5662   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5663     return lowerFunnelShiftAsShifts(MI);
5664 
5665   // This only works for powers of 2, fallback to shifts if it fails.
5666   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5667   if (Result == UnableToLegalize)
5668     return lowerFunnelShiftAsShifts(MI);
5669   return Result;
5670 }
5671 
5672 LegalizerHelper::LegalizeResult
5673 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5674   Register Dst = MI.getOperand(0).getReg();
5675   Register Src = MI.getOperand(1).getReg();
5676   Register Amt = MI.getOperand(2).getReg();
5677   LLT AmtTy = MRI.getType(Amt);
5678   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5679   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5680   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5681   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5682   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5683   MI.eraseFromParent();
5684   return Legalized;
5685 }
5686 
5687 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5688   Register Dst = MI.getOperand(0).getReg();
5689   Register Src = MI.getOperand(1).getReg();
5690   Register Amt = MI.getOperand(2).getReg();
5691   LLT DstTy = MRI.getType(Dst);
5692   LLT SrcTy = MRI.getType(Dst);
5693   LLT AmtTy = MRI.getType(Amt);
5694 
5695   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5696   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5697 
5698   MIRBuilder.setInstrAndDebugLoc(MI);
5699 
5700   // If a rotate in the other direction is supported, use it.
5701   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5702   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5703       isPowerOf2_32(EltSizeInBits))
5704     return lowerRotateWithReverseRotate(MI);
5705 
5706   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5707   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5708   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5709   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5710   Register ShVal;
5711   Register RevShiftVal;
5712   if (isPowerOf2_32(EltSizeInBits)) {
5713     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5714     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5715     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5716     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5717     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5718     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5719     RevShiftVal =
5720         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5721   } else {
5722     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5723     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5724     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5725     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5726     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5727     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5728     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5729     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5730     RevShiftVal =
5731         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5732   }
5733   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5734   MI.eraseFromParent();
5735   return Legalized;
5736 }
5737 
5738 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5739 // representation.
5740 LegalizerHelper::LegalizeResult
5741 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5742   Register Dst = MI.getOperand(0).getReg();
5743   Register Src = MI.getOperand(1).getReg();
5744   const LLT S64 = LLT::scalar(64);
5745   const LLT S32 = LLT::scalar(32);
5746   const LLT S1 = LLT::scalar(1);
5747 
5748   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5749 
5750   // unsigned cul2f(ulong u) {
5751   //   uint lz = clz(u);
5752   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5753   //   u = (u << lz) & 0x7fffffffffffffffUL;
5754   //   ulong t = u & 0xffffffffffUL;
5755   //   uint v = (e << 23) | (uint)(u >> 40);
5756   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5757   //   return as_float(v + r);
5758   // }
5759 
5760   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5761   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5762 
5763   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5764 
5765   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5766   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5767 
5768   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5769   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5770 
5771   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5772   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5773 
5774   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5775 
5776   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5777   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5778 
5779   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5780   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5781   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5782 
5783   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5784   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5785   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5786   auto One = MIRBuilder.buildConstant(S32, 1);
5787 
5788   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5789   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5790   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5791   MIRBuilder.buildAdd(Dst, V, R);
5792 
5793   MI.eraseFromParent();
5794   return Legalized;
5795 }
5796 
5797 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5798   Register Dst = MI.getOperand(0).getReg();
5799   Register Src = MI.getOperand(1).getReg();
5800   LLT DstTy = MRI.getType(Dst);
5801   LLT SrcTy = MRI.getType(Src);
5802 
5803   if (SrcTy == LLT::scalar(1)) {
5804     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5805     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5806     MIRBuilder.buildSelect(Dst, Src, True, False);
5807     MI.eraseFromParent();
5808     return Legalized;
5809   }
5810 
5811   if (SrcTy != LLT::scalar(64))
5812     return UnableToLegalize;
5813 
5814   if (DstTy == LLT::scalar(32)) {
5815     // TODO: SelectionDAG has several alternative expansions to port which may
5816     // be more reasonble depending on the available instructions. If a target
5817     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5818     // intermediate type, this is probably worse.
5819     return lowerU64ToF32BitOps(MI);
5820   }
5821 
5822   return UnableToLegalize;
5823 }
5824 
5825 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5826   Register Dst = MI.getOperand(0).getReg();
5827   Register Src = MI.getOperand(1).getReg();
5828   LLT DstTy = MRI.getType(Dst);
5829   LLT SrcTy = MRI.getType(Src);
5830 
5831   const LLT S64 = LLT::scalar(64);
5832   const LLT S32 = LLT::scalar(32);
5833   const LLT S1 = LLT::scalar(1);
5834 
5835   if (SrcTy == S1) {
5836     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5837     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5838     MIRBuilder.buildSelect(Dst, Src, True, False);
5839     MI.eraseFromParent();
5840     return Legalized;
5841   }
5842 
5843   if (SrcTy != S64)
5844     return UnableToLegalize;
5845 
5846   if (DstTy == S32) {
5847     // signed cl2f(long l) {
5848     //   long s = l >> 63;
5849     //   float r = cul2f((l + s) ^ s);
5850     //   return s ? -r : r;
5851     // }
5852     Register L = Src;
5853     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5854     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5855 
5856     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5857     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5858     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5859 
5860     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5861     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5862                                             MIRBuilder.buildConstant(S64, 0));
5863     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5864     MI.eraseFromParent();
5865     return Legalized;
5866   }
5867 
5868   return UnableToLegalize;
5869 }
5870 
5871 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5872   Register Dst = MI.getOperand(0).getReg();
5873   Register Src = MI.getOperand(1).getReg();
5874   LLT DstTy = MRI.getType(Dst);
5875   LLT SrcTy = MRI.getType(Src);
5876   const LLT S64 = LLT::scalar(64);
5877   const LLT S32 = LLT::scalar(32);
5878 
5879   if (SrcTy != S64 && SrcTy != S32)
5880     return UnableToLegalize;
5881   if (DstTy != S32 && DstTy != S64)
5882     return UnableToLegalize;
5883 
5884   // FPTOSI gives same result as FPTOUI for positive signed integers.
5885   // FPTOUI needs to deal with fp values that convert to unsigned integers
5886   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5887 
5888   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5889   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5890                                                 : APFloat::IEEEdouble(),
5891                     APInt::getNullValue(SrcTy.getSizeInBits()));
5892   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5893 
5894   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5895 
5896   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5897   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5898   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5899   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5900   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5901   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5902   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5903 
5904   const LLT S1 = LLT::scalar(1);
5905 
5906   MachineInstrBuilder FCMP =
5907       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5908   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5909 
5910   MI.eraseFromParent();
5911   return Legalized;
5912 }
5913 
5914 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5915   Register Dst = MI.getOperand(0).getReg();
5916   Register Src = MI.getOperand(1).getReg();
5917   LLT DstTy = MRI.getType(Dst);
5918   LLT SrcTy = MRI.getType(Src);
5919   const LLT S64 = LLT::scalar(64);
5920   const LLT S32 = LLT::scalar(32);
5921 
5922   // FIXME: Only f32 to i64 conversions are supported.
5923   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5924     return UnableToLegalize;
5925 
5926   // Expand f32 -> i64 conversion
5927   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5928   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5929 
5930   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5931 
5932   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5933   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5934 
5935   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5936   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5937 
5938   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5939                                            APInt::getSignMask(SrcEltBits));
5940   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5941   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5942   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5943   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5944 
5945   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5946   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5947   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5948 
5949   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5950   R = MIRBuilder.buildZExt(DstTy, R);
5951 
5952   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5953   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5954   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5955   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5956 
5957   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5958   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5959 
5960   const LLT S1 = LLT::scalar(1);
5961   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5962                                     S1, Exponent, ExponentLoBit);
5963 
5964   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5965 
5966   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5967   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5968 
5969   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5970 
5971   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5972                                           S1, Exponent, ZeroSrcTy);
5973 
5974   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5975   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5976 
5977   MI.eraseFromParent();
5978   return Legalized;
5979 }
5980 
5981 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5982 LegalizerHelper::LegalizeResult
5983 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5984   Register Dst = MI.getOperand(0).getReg();
5985   Register Src = MI.getOperand(1).getReg();
5986 
5987   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5988     return UnableToLegalize;
5989 
5990   const unsigned ExpMask = 0x7ff;
5991   const unsigned ExpBiasf64 = 1023;
5992   const unsigned ExpBiasf16 = 15;
5993   const LLT S32 = LLT::scalar(32);
5994   const LLT S1 = LLT::scalar(1);
5995 
5996   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5997   Register U = Unmerge.getReg(0);
5998   Register UH = Unmerge.getReg(1);
5999 
6000   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6001   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6002 
6003   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6004   // add the f16 bias (15) to get the biased exponent for the f16 format.
6005   E = MIRBuilder.buildAdd(
6006     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6007 
6008   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6009   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6010 
6011   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6012                                        MIRBuilder.buildConstant(S32, 0x1ff));
6013   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6014 
6015   auto Zero = MIRBuilder.buildConstant(S32, 0);
6016   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6017   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6018   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6019 
6020   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6021   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6022   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6023   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6024 
6025   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6026   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6027 
6028   // N = M | (E << 12);
6029   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6030   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6031 
6032   // B = clamp(1-E, 0, 13);
6033   auto One = MIRBuilder.buildConstant(S32, 1);
6034   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6035   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6036   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6037 
6038   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6039                                        MIRBuilder.buildConstant(S32, 0x1000));
6040 
6041   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6042   auto D0 = MIRBuilder.buildShl(S32, D, B);
6043 
6044   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6045                                              D0, SigSetHigh);
6046   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6047   D = MIRBuilder.buildOr(S32, D, D1);
6048 
6049   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6050   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6051 
6052   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6053   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6054 
6055   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6056                                        MIRBuilder.buildConstant(S32, 3));
6057   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6058 
6059   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6060                                        MIRBuilder.buildConstant(S32, 5));
6061   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6062 
6063   V1 = MIRBuilder.buildOr(S32, V0, V1);
6064   V = MIRBuilder.buildAdd(S32, V, V1);
6065 
6066   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6067                                        E, MIRBuilder.buildConstant(S32, 30));
6068   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6069                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6070 
6071   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6072                                          E, MIRBuilder.buildConstant(S32, 1039));
6073   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6074 
6075   // Extract the sign bit.
6076   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6077   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6078 
6079   // Insert the sign bit
6080   V = MIRBuilder.buildOr(S32, Sign, V);
6081 
6082   MIRBuilder.buildTrunc(Dst, V);
6083   MI.eraseFromParent();
6084   return Legalized;
6085 }
6086 
6087 LegalizerHelper::LegalizeResult
6088 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6089   Register Dst = MI.getOperand(0).getReg();
6090   Register Src = MI.getOperand(1).getReg();
6091 
6092   LLT DstTy = MRI.getType(Dst);
6093   LLT SrcTy = MRI.getType(Src);
6094   const LLT S64 = LLT::scalar(64);
6095   const LLT S16 = LLT::scalar(16);
6096 
6097   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6098     return lowerFPTRUNC_F64_TO_F16(MI);
6099 
6100   return UnableToLegalize;
6101 }
6102 
6103 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6104 // multiplication tree.
6105 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6106   Register Dst = MI.getOperand(0).getReg();
6107   Register Src0 = MI.getOperand(1).getReg();
6108   Register Src1 = MI.getOperand(2).getReg();
6109   LLT Ty = MRI.getType(Dst);
6110 
6111   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6112   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6113   MI.eraseFromParent();
6114   return Legalized;
6115 }
6116 
6117 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6118   switch (Opc) {
6119   case TargetOpcode::G_SMIN:
6120     return CmpInst::ICMP_SLT;
6121   case TargetOpcode::G_SMAX:
6122     return CmpInst::ICMP_SGT;
6123   case TargetOpcode::G_UMIN:
6124     return CmpInst::ICMP_ULT;
6125   case TargetOpcode::G_UMAX:
6126     return CmpInst::ICMP_UGT;
6127   default:
6128     llvm_unreachable("not in integer min/max");
6129   }
6130 }
6131 
6132 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6133   Register Dst = MI.getOperand(0).getReg();
6134   Register Src0 = MI.getOperand(1).getReg();
6135   Register Src1 = MI.getOperand(2).getReg();
6136 
6137   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6138   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6139 
6140   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6141   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6142 
6143   MI.eraseFromParent();
6144   return Legalized;
6145 }
6146 
6147 LegalizerHelper::LegalizeResult
6148 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6149   Register Dst = MI.getOperand(0).getReg();
6150   Register Src0 = MI.getOperand(1).getReg();
6151   Register Src1 = MI.getOperand(2).getReg();
6152 
6153   const LLT Src0Ty = MRI.getType(Src0);
6154   const LLT Src1Ty = MRI.getType(Src1);
6155 
6156   const int Src0Size = Src0Ty.getScalarSizeInBits();
6157   const int Src1Size = Src1Ty.getScalarSizeInBits();
6158 
6159   auto SignBitMask = MIRBuilder.buildConstant(
6160     Src0Ty, APInt::getSignMask(Src0Size));
6161 
6162   auto NotSignBitMask = MIRBuilder.buildConstant(
6163     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6164 
6165   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6166   Register And1;
6167   if (Src0Ty == Src1Ty) {
6168     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6169   } else if (Src0Size > Src1Size) {
6170     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6171     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6172     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6173     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6174   } else {
6175     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6176     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6177     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6178     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6179   }
6180 
6181   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6182   // constants are a nan and -0.0, but the final result should preserve
6183   // everything.
6184   unsigned Flags = MI.getFlags();
6185   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6186 
6187   MI.eraseFromParent();
6188   return Legalized;
6189 }
6190 
6191 LegalizerHelper::LegalizeResult
6192 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6193   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6194     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6195 
6196   Register Dst = MI.getOperand(0).getReg();
6197   Register Src0 = MI.getOperand(1).getReg();
6198   Register Src1 = MI.getOperand(2).getReg();
6199   LLT Ty = MRI.getType(Dst);
6200 
6201   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6202     // Insert canonicalizes if it's possible we need to quiet to get correct
6203     // sNaN behavior.
6204 
6205     // Note this must be done here, and not as an optimization combine in the
6206     // absence of a dedicate quiet-snan instruction as we're using an
6207     // omni-purpose G_FCANONICALIZE.
6208     if (!isKnownNeverSNaN(Src0, MRI))
6209       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6210 
6211     if (!isKnownNeverSNaN(Src1, MRI))
6212       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6213   }
6214 
6215   // If there are no nans, it's safe to simply replace this with the non-IEEE
6216   // version.
6217   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6218   MI.eraseFromParent();
6219   return Legalized;
6220 }
6221 
6222 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6223   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6224   Register DstReg = MI.getOperand(0).getReg();
6225   LLT Ty = MRI.getType(DstReg);
6226   unsigned Flags = MI.getFlags();
6227 
6228   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6229                                   Flags);
6230   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6231   MI.eraseFromParent();
6232   return Legalized;
6233 }
6234 
6235 LegalizerHelper::LegalizeResult
6236 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6237   Register DstReg = MI.getOperand(0).getReg();
6238   Register X = MI.getOperand(1).getReg();
6239   const unsigned Flags = MI.getFlags();
6240   const LLT Ty = MRI.getType(DstReg);
6241   const LLT CondTy = Ty.changeElementSize(1);
6242 
6243   // round(x) =>
6244   //  t = trunc(x);
6245   //  d = fabs(x - t);
6246   //  o = copysign(1.0f, x);
6247   //  return t + (d >= 0.5 ? o : 0.0);
6248 
6249   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6250 
6251   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6252   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6253   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6254   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6255   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6256   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6257 
6258   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6259                                   Flags);
6260   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6261 
6262   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6263 
6264   MI.eraseFromParent();
6265   return Legalized;
6266 }
6267 
6268 LegalizerHelper::LegalizeResult
6269 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6270   Register DstReg = MI.getOperand(0).getReg();
6271   Register SrcReg = MI.getOperand(1).getReg();
6272   unsigned Flags = MI.getFlags();
6273   LLT Ty = MRI.getType(DstReg);
6274   const LLT CondTy = Ty.changeElementSize(1);
6275 
6276   // result = trunc(src);
6277   // if (src < 0.0 && src != result)
6278   //   result += -1.0.
6279 
6280   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6281   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6282 
6283   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6284                                   SrcReg, Zero, Flags);
6285   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6286                                       SrcReg, Trunc, Flags);
6287   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6288   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6289 
6290   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6291   MI.eraseFromParent();
6292   return Legalized;
6293 }
6294 
6295 LegalizerHelper::LegalizeResult
6296 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6297   const unsigned NumOps = MI.getNumOperands();
6298   Register DstReg = MI.getOperand(0).getReg();
6299   Register Src0Reg = MI.getOperand(1).getReg();
6300   LLT DstTy = MRI.getType(DstReg);
6301   LLT SrcTy = MRI.getType(Src0Reg);
6302   unsigned PartSize = SrcTy.getSizeInBits();
6303 
6304   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6305   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6306 
6307   for (unsigned I = 2; I != NumOps; ++I) {
6308     const unsigned Offset = (I - 1) * PartSize;
6309 
6310     Register SrcReg = MI.getOperand(I).getReg();
6311     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6312 
6313     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6314       MRI.createGenericVirtualRegister(WideTy);
6315 
6316     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6317     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6318     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6319     ResultReg = NextResult;
6320   }
6321 
6322   if (DstTy.isPointer()) {
6323     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6324           DstTy.getAddressSpace())) {
6325       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6326       return UnableToLegalize;
6327     }
6328 
6329     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6330   }
6331 
6332   MI.eraseFromParent();
6333   return Legalized;
6334 }
6335 
6336 LegalizerHelper::LegalizeResult
6337 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6338   const unsigned NumDst = MI.getNumOperands() - 1;
6339   Register SrcReg = MI.getOperand(NumDst).getReg();
6340   Register Dst0Reg = MI.getOperand(0).getReg();
6341   LLT DstTy = MRI.getType(Dst0Reg);
6342   if (DstTy.isPointer())
6343     return UnableToLegalize; // TODO
6344 
6345   SrcReg = coerceToScalar(SrcReg);
6346   if (!SrcReg)
6347     return UnableToLegalize;
6348 
6349   // Expand scalarizing unmerge as bitcast to integer and shift.
6350   LLT IntTy = MRI.getType(SrcReg);
6351 
6352   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6353 
6354   const unsigned DstSize = DstTy.getSizeInBits();
6355   unsigned Offset = DstSize;
6356   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6357     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6358     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6359     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6360   }
6361 
6362   MI.eraseFromParent();
6363   return Legalized;
6364 }
6365 
6366 /// Lower a vector extract or insert by writing the vector to a stack temporary
6367 /// and reloading the element or vector.
6368 ///
6369 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6370 ///  =>
6371 ///  %stack_temp = G_FRAME_INDEX
6372 ///  G_STORE %vec, %stack_temp
6373 ///  %idx = clamp(%idx, %vec.getNumElements())
6374 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6375 ///  %dst = G_LOAD %element_ptr
6376 LegalizerHelper::LegalizeResult
6377 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6378   Register DstReg = MI.getOperand(0).getReg();
6379   Register SrcVec = MI.getOperand(1).getReg();
6380   Register InsertVal;
6381   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6382     InsertVal = MI.getOperand(2).getReg();
6383 
6384   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6385 
6386   LLT VecTy = MRI.getType(SrcVec);
6387   LLT EltTy = VecTy.getElementType();
6388   if (!EltTy.isByteSized()) { // Not implemented.
6389     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6390     return UnableToLegalize;
6391   }
6392 
6393   unsigned EltBytes = EltTy.getSizeInBytes();
6394   Align VecAlign = getStackTemporaryAlignment(VecTy);
6395   Align EltAlign;
6396 
6397   MachinePointerInfo PtrInfo;
6398   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6399                                         VecAlign, PtrInfo);
6400   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6401 
6402   // Get the pointer to the element, and be sure not to hit undefined behavior
6403   // if the index is out of bounds.
6404   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6405 
6406   int64_t IdxVal;
6407   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6408     int64_t Offset = IdxVal * EltBytes;
6409     PtrInfo = PtrInfo.getWithOffset(Offset);
6410     EltAlign = commonAlignment(VecAlign, Offset);
6411   } else {
6412     // We lose information with a variable offset.
6413     EltAlign = getStackTemporaryAlignment(EltTy);
6414     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6415   }
6416 
6417   if (InsertVal) {
6418     // Write the inserted element
6419     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6420 
6421     // Reload the whole vector.
6422     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6423   } else {
6424     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6425   }
6426 
6427   MI.eraseFromParent();
6428   return Legalized;
6429 }
6430 
6431 LegalizerHelper::LegalizeResult
6432 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6433   Register DstReg = MI.getOperand(0).getReg();
6434   Register Src0Reg = MI.getOperand(1).getReg();
6435   Register Src1Reg = MI.getOperand(2).getReg();
6436   LLT Src0Ty = MRI.getType(Src0Reg);
6437   LLT DstTy = MRI.getType(DstReg);
6438   LLT IdxTy = LLT::scalar(32);
6439 
6440   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6441 
6442   if (DstTy.isScalar()) {
6443     if (Src0Ty.isVector())
6444       return UnableToLegalize;
6445 
6446     // This is just a SELECT.
6447     assert(Mask.size() == 1 && "Expected a single mask element");
6448     Register Val;
6449     if (Mask[0] < 0 || Mask[0] > 1)
6450       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6451     else
6452       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6453     MIRBuilder.buildCopy(DstReg, Val);
6454     MI.eraseFromParent();
6455     return Legalized;
6456   }
6457 
6458   Register Undef;
6459   SmallVector<Register, 32> BuildVec;
6460   LLT EltTy = DstTy.getElementType();
6461 
6462   for (int Idx : Mask) {
6463     if (Idx < 0) {
6464       if (!Undef.isValid())
6465         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6466       BuildVec.push_back(Undef);
6467       continue;
6468     }
6469 
6470     if (Src0Ty.isScalar()) {
6471       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6472     } else {
6473       int NumElts = Src0Ty.getNumElements();
6474       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6475       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6476       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6477       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6478       BuildVec.push_back(Extract.getReg(0));
6479     }
6480   }
6481 
6482   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6483   MI.eraseFromParent();
6484   return Legalized;
6485 }
6486 
6487 LegalizerHelper::LegalizeResult
6488 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6489   const auto &MF = *MI.getMF();
6490   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6491   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6492     return UnableToLegalize;
6493 
6494   Register Dst = MI.getOperand(0).getReg();
6495   Register AllocSize = MI.getOperand(1).getReg();
6496   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6497 
6498   LLT PtrTy = MRI.getType(Dst);
6499   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6500 
6501   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6502   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6503   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6504 
6505   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6506   // have to generate an extra instruction to negate the alloc and then use
6507   // G_PTR_ADD to add the negative offset.
6508   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6509   if (Alignment > Align(1)) {
6510     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6511     AlignMask.negate();
6512     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6513     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6514   }
6515 
6516   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6517   MIRBuilder.buildCopy(SPReg, SPTmp);
6518   MIRBuilder.buildCopy(Dst, SPTmp);
6519 
6520   MI.eraseFromParent();
6521   return Legalized;
6522 }
6523 
6524 LegalizerHelper::LegalizeResult
6525 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6526   Register Dst = MI.getOperand(0).getReg();
6527   Register Src = MI.getOperand(1).getReg();
6528   unsigned Offset = MI.getOperand(2).getImm();
6529 
6530   LLT DstTy = MRI.getType(Dst);
6531   LLT SrcTy = MRI.getType(Src);
6532 
6533   if (DstTy.isScalar() &&
6534       (SrcTy.isScalar() ||
6535        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6536     LLT SrcIntTy = SrcTy;
6537     if (!SrcTy.isScalar()) {
6538       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6539       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6540     }
6541 
6542     if (Offset == 0)
6543       MIRBuilder.buildTrunc(Dst, Src);
6544     else {
6545       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6546       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6547       MIRBuilder.buildTrunc(Dst, Shr);
6548     }
6549 
6550     MI.eraseFromParent();
6551     return Legalized;
6552   }
6553 
6554   return UnableToLegalize;
6555 }
6556 
6557 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6558   Register Dst = MI.getOperand(0).getReg();
6559   Register Src = MI.getOperand(1).getReg();
6560   Register InsertSrc = MI.getOperand(2).getReg();
6561   uint64_t Offset = MI.getOperand(3).getImm();
6562 
6563   LLT DstTy = MRI.getType(Src);
6564   LLT InsertTy = MRI.getType(InsertSrc);
6565 
6566   if (InsertTy.isVector() ||
6567       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6568     return UnableToLegalize;
6569 
6570   const DataLayout &DL = MIRBuilder.getDataLayout();
6571   if ((DstTy.isPointer() &&
6572        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6573       (InsertTy.isPointer() &&
6574        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6575     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6576     return UnableToLegalize;
6577   }
6578 
6579   LLT IntDstTy = DstTy;
6580 
6581   if (!DstTy.isScalar()) {
6582     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6583     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6584   }
6585 
6586   if (!InsertTy.isScalar()) {
6587     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6588     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6589   }
6590 
6591   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6592   if (Offset != 0) {
6593     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6594     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6595   }
6596 
6597   APInt MaskVal = APInt::getBitsSetWithWrap(
6598       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6599 
6600   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6601   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6602   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6603 
6604   MIRBuilder.buildCast(Dst, Or);
6605   MI.eraseFromParent();
6606   return Legalized;
6607 }
6608 
6609 LegalizerHelper::LegalizeResult
6610 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6611   Register Dst0 = MI.getOperand(0).getReg();
6612   Register Dst1 = MI.getOperand(1).getReg();
6613   Register LHS = MI.getOperand(2).getReg();
6614   Register RHS = MI.getOperand(3).getReg();
6615   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6616 
6617   LLT Ty = MRI.getType(Dst0);
6618   LLT BoolTy = MRI.getType(Dst1);
6619 
6620   if (IsAdd)
6621     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6622   else
6623     MIRBuilder.buildSub(Dst0, LHS, RHS);
6624 
6625   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6626 
6627   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6628 
6629   // For an addition, the result should be less than one of the operands (LHS)
6630   // if and only if the other operand (RHS) is negative, otherwise there will
6631   // be overflow.
6632   // For a subtraction, the result should be less than one of the operands
6633   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6634   // otherwise there will be overflow.
6635   auto ResultLowerThanLHS =
6636       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6637   auto ConditionRHS = MIRBuilder.buildICmp(
6638       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6639 
6640   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6641   MI.eraseFromParent();
6642   return Legalized;
6643 }
6644 
6645 LegalizerHelper::LegalizeResult
6646 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6647   Register Res = MI.getOperand(0).getReg();
6648   Register LHS = MI.getOperand(1).getReg();
6649   Register RHS = MI.getOperand(2).getReg();
6650   LLT Ty = MRI.getType(Res);
6651   bool IsSigned;
6652   bool IsAdd;
6653   unsigned BaseOp;
6654   switch (MI.getOpcode()) {
6655   default:
6656     llvm_unreachable("unexpected addsat/subsat opcode");
6657   case TargetOpcode::G_UADDSAT:
6658     IsSigned = false;
6659     IsAdd = true;
6660     BaseOp = TargetOpcode::G_ADD;
6661     break;
6662   case TargetOpcode::G_SADDSAT:
6663     IsSigned = true;
6664     IsAdd = true;
6665     BaseOp = TargetOpcode::G_ADD;
6666     break;
6667   case TargetOpcode::G_USUBSAT:
6668     IsSigned = false;
6669     IsAdd = false;
6670     BaseOp = TargetOpcode::G_SUB;
6671     break;
6672   case TargetOpcode::G_SSUBSAT:
6673     IsSigned = true;
6674     IsAdd = false;
6675     BaseOp = TargetOpcode::G_SUB;
6676     break;
6677   }
6678 
6679   if (IsSigned) {
6680     // sadd.sat(a, b) ->
6681     //   hi = 0x7fffffff - smax(a, 0)
6682     //   lo = 0x80000000 - smin(a, 0)
6683     //   a + smin(smax(lo, b), hi)
6684     // ssub.sat(a, b) ->
6685     //   lo = smax(a, -1) - 0x7fffffff
6686     //   hi = smin(a, -1) - 0x80000000
6687     //   a - smin(smax(lo, b), hi)
6688     // TODO: AMDGPU can use a "median of 3" instruction here:
6689     //   a +/- med3(lo, b, hi)
6690     uint64_t NumBits = Ty.getScalarSizeInBits();
6691     auto MaxVal =
6692         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6693     auto MinVal =
6694         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6695     MachineInstrBuilder Hi, Lo;
6696     if (IsAdd) {
6697       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6698       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6699       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6700     } else {
6701       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6702       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6703                                MaxVal);
6704       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6705                                MinVal);
6706     }
6707     auto RHSClamped =
6708         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6709     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6710   } else {
6711     // uadd.sat(a, b) -> a + umin(~a, b)
6712     // usub.sat(a, b) -> a - umin(a, b)
6713     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6714     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6715     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6716   }
6717 
6718   MI.eraseFromParent();
6719   return Legalized;
6720 }
6721 
6722 LegalizerHelper::LegalizeResult
6723 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6724   Register Res = MI.getOperand(0).getReg();
6725   Register LHS = MI.getOperand(1).getReg();
6726   Register RHS = MI.getOperand(2).getReg();
6727   LLT Ty = MRI.getType(Res);
6728   LLT BoolTy = Ty.changeElementSize(1);
6729   bool IsSigned;
6730   bool IsAdd;
6731   unsigned OverflowOp;
6732   switch (MI.getOpcode()) {
6733   default:
6734     llvm_unreachable("unexpected addsat/subsat opcode");
6735   case TargetOpcode::G_UADDSAT:
6736     IsSigned = false;
6737     IsAdd = true;
6738     OverflowOp = TargetOpcode::G_UADDO;
6739     break;
6740   case TargetOpcode::G_SADDSAT:
6741     IsSigned = true;
6742     IsAdd = true;
6743     OverflowOp = TargetOpcode::G_SADDO;
6744     break;
6745   case TargetOpcode::G_USUBSAT:
6746     IsSigned = false;
6747     IsAdd = false;
6748     OverflowOp = TargetOpcode::G_USUBO;
6749     break;
6750   case TargetOpcode::G_SSUBSAT:
6751     IsSigned = true;
6752     IsAdd = false;
6753     OverflowOp = TargetOpcode::G_SSUBO;
6754     break;
6755   }
6756 
6757   auto OverflowRes =
6758       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6759   Register Tmp = OverflowRes.getReg(0);
6760   Register Ov = OverflowRes.getReg(1);
6761   MachineInstrBuilder Clamp;
6762   if (IsSigned) {
6763     // sadd.sat(a, b) ->
6764     //   {tmp, ov} = saddo(a, b)
6765     //   ov ? (tmp >>s 31) + 0x80000000 : r
6766     // ssub.sat(a, b) ->
6767     //   {tmp, ov} = ssubo(a, b)
6768     //   ov ? (tmp >>s 31) + 0x80000000 : r
6769     uint64_t NumBits = Ty.getScalarSizeInBits();
6770     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6771     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6772     auto MinVal =
6773         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6774     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6775   } else {
6776     // uadd.sat(a, b) ->
6777     //   {tmp, ov} = uaddo(a, b)
6778     //   ov ? 0xffffffff : tmp
6779     // usub.sat(a, b) ->
6780     //   {tmp, ov} = usubo(a, b)
6781     //   ov ? 0 : tmp
6782     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6783   }
6784   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6785 
6786   MI.eraseFromParent();
6787   return Legalized;
6788 }
6789 
6790 LegalizerHelper::LegalizeResult
6791 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6792   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6793           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6794          "Expected shlsat opcode!");
6795   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6796   Register Res = MI.getOperand(0).getReg();
6797   Register LHS = MI.getOperand(1).getReg();
6798   Register RHS = MI.getOperand(2).getReg();
6799   LLT Ty = MRI.getType(Res);
6800   LLT BoolTy = Ty.changeElementSize(1);
6801 
6802   unsigned BW = Ty.getScalarSizeInBits();
6803   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6804   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6805                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6806 
6807   MachineInstrBuilder SatVal;
6808   if (IsSigned) {
6809     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6810     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6811     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6812                                     MIRBuilder.buildConstant(Ty, 0));
6813     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6814   } else {
6815     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6816   }
6817   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6818   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6819 
6820   MI.eraseFromParent();
6821   return Legalized;
6822 }
6823 
6824 LegalizerHelper::LegalizeResult
6825 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6826   Register Dst = MI.getOperand(0).getReg();
6827   Register Src = MI.getOperand(1).getReg();
6828   const LLT Ty = MRI.getType(Src);
6829   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6830   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6831 
6832   // Swap most and least significant byte, set remaining bytes in Res to zero.
6833   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6834   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6835   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6836   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6837 
6838   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6839   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6840     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6841     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6842     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6843     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6844     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6845     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6846     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6847     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6848     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6849     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6850     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6851     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6852   }
6853   Res.getInstr()->getOperand(0).setReg(Dst);
6854 
6855   MI.eraseFromParent();
6856   return Legalized;
6857 }
6858 
6859 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6860 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6861                                  MachineInstrBuilder Src, APInt Mask) {
6862   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6863   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6864   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6865   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6866   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6867   return B.buildOr(Dst, LHS, RHS);
6868 }
6869 
6870 LegalizerHelper::LegalizeResult
6871 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6872   Register Dst = MI.getOperand(0).getReg();
6873   Register Src = MI.getOperand(1).getReg();
6874   const LLT Ty = MRI.getType(Src);
6875   unsigned Size = Ty.getSizeInBits();
6876 
6877   MachineInstrBuilder BSWAP =
6878       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6879 
6880   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6881   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6882   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6883   MachineInstrBuilder Swap4 =
6884       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6885 
6886   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6887   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6888   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6889   MachineInstrBuilder Swap2 =
6890       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6891 
6892   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6893   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6894   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6895   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6896 
6897   MI.eraseFromParent();
6898   return Legalized;
6899 }
6900 
6901 LegalizerHelper::LegalizeResult
6902 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6903   MachineFunction &MF = MIRBuilder.getMF();
6904 
6905   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6906   int NameOpIdx = IsRead ? 1 : 0;
6907   int ValRegIndex = IsRead ? 0 : 1;
6908 
6909   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6910   const LLT Ty = MRI.getType(ValReg);
6911   const MDString *RegStr = cast<MDString>(
6912     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6913 
6914   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6915   if (!PhysReg.isValid())
6916     return UnableToLegalize;
6917 
6918   if (IsRead)
6919     MIRBuilder.buildCopy(ValReg, PhysReg);
6920   else
6921     MIRBuilder.buildCopy(PhysReg, ValReg);
6922 
6923   MI.eraseFromParent();
6924   return Legalized;
6925 }
6926 
6927 LegalizerHelper::LegalizeResult
6928 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6929   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6930   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6931   Register Result = MI.getOperand(0).getReg();
6932   LLT OrigTy = MRI.getType(Result);
6933   auto SizeInBits = OrigTy.getScalarSizeInBits();
6934   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6935 
6936   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6937   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6938   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6939   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6940 
6941   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6942   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6943   MIRBuilder.buildTrunc(Result, Shifted);
6944 
6945   MI.eraseFromParent();
6946   return Legalized;
6947 }
6948 
6949 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6950   // Implement vector G_SELECT in terms of XOR, AND, OR.
6951   Register DstReg = MI.getOperand(0).getReg();
6952   Register MaskReg = MI.getOperand(1).getReg();
6953   Register Op1Reg = MI.getOperand(2).getReg();
6954   Register Op2Reg = MI.getOperand(3).getReg();
6955   LLT DstTy = MRI.getType(DstReg);
6956   LLT MaskTy = MRI.getType(MaskReg);
6957   LLT Op1Ty = MRI.getType(Op1Reg);
6958   if (!DstTy.isVector())
6959     return UnableToLegalize;
6960 
6961   // Vector selects can have a scalar predicate. If so, splat into a vector and
6962   // finish for later legalization attempts to try again.
6963   if (MaskTy.isScalar()) {
6964     Register MaskElt = MaskReg;
6965     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6966       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6967     // Generate a vector splat idiom to be pattern matched later.
6968     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6969     Observer.changingInstr(MI);
6970     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6971     Observer.changedInstr(MI);
6972     return Legalized;
6973   }
6974 
6975   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6976     return UnableToLegalize;
6977   }
6978 
6979   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6980   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6981   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6982   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6983   MI.eraseFromParent();
6984   return Legalized;
6985 }
6986 
6987 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
6988   // Split DIVREM into individual instructions.
6989   unsigned Opcode = MI.getOpcode();
6990 
6991   MIRBuilder.buildInstr(
6992       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
6993                                         : TargetOpcode::G_UDIV,
6994       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6995   MIRBuilder.buildInstr(
6996       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
6997                                         : TargetOpcode::G_UREM,
6998       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6999   MI.eraseFromParent();
7000   return Legalized;
7001 }
7002 
7003 LegalizerHelper::LegalizeResult
7004 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7005   // Expand %res = G_ABS %a into:
7006   // %v1 = G_ASHR %a, scalar_size-1
7007   // %v2 = G_ADD %a, %v1
7008   // %res = G_XOR %v2, %v1
7009   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7010   Register OpReg = MI.getOperand(1).getReg();
7011   auto ShiftAmt =
7012       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7013   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7014   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7015   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7016   MI.eraseFromParent();
7017   return Legalized;
7018 }
7019 
7020 LegalizerHelper::LegalizeResult
7021 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7022   // Expand %res = G_ABS %a into:
7023   // %v1 = G_CONSTANT 0
7024   // %v2 = G_SUB %v1, %a
7025   // %res = G_SMAX %a, %v2
7026   Register SrcReg = MI.getOperand(1).getReg();
7027   LLT Ty = MRI.getType(SrcReg);
7028   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7029   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7030   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7031   MI.eraseFromParent();
7032   return Legalized;
7033 }
7034