1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 90 MIRBuilder.setMF(MF); 91 MIRBuilder.setChangeObserver(Observer); 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &B) 97 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 98 MIRBuilder.setMF(MF); 99 MIRBuilder.setChangeObserver(Observer); 100 } 101 LegalizerHelper::LegalizeResult 102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 103 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 auto Step = LI.getAction(MI, MRI); 110 switch (Step.Action) { 111 case Legal: 112 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 113 return AlreadyLegal; 114 case Libcall: 115 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 116 return libcall(MI); 117 case NarrowScalar: 118 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 119 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 120 case WidenScalar: 121 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 122 return widenScalar(MI, Step.TypeIdx, Step.NewType); 123 case Bitcast: 124 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 125 return bitcast(MI, Step.TypeIdx, Step.NewType); 126 case Lower: 127 LLVM_DEBUG(dbgs() << ".. Lower\n"); 128 return lower(MI, Step.TypeIdx, Step.NewType); 129 case FewerElements: 130 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 131 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 132 case MoreElements: 133 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 134 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case Custom: 136 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 137 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 138 : UnableToLegalize; 139 default: 140 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 141 return UnableToLegalize; 142 } 143 } 144 145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 146 SmallVectorImpl<Register> &VRegs) { 147 for (int i = 0; i < NumParts; ++i) 148 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 149 MIRBuilder.buildUnmerge(VRegs, Reg); 150 } 151 152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 153 LLT MainTy, LLT &LeftoverTy, 154 SmallVectorImpl<Register> &VRegs, 155 SmallVectorImpl<Register> &LeftoverRegs) { 156 assert(!LeftoverTy.isValid() && "this is an out argument"); 157 158 unsigned RegSize = RegTy.getSizeInBits(); 159 unsigned MainSize = MainTy.getSizeInBits(); 160 unsigned NumParts = RegSize / MainSize; 161 unsigned LeftoverSize = RegSize - NumParts * MainSize; 162 163 // Use an unmerge when possible. 164 if (LeftoverSize == 0) { 165 for (unsigned I = 0; I < NumParts; ++I) 166 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 167 MIRBuilder.buildUnmerge(VRegs, Reg); 168 return true; 169 } 170 171 if (MainTy.isVector()) { 172 unsigned EltSize = MainTy.getScalarSizeInBits(); 173 if (LeftoverSize % EltSize != 0) 174 return false; 175 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 176 } else { 177 LeftoverTy = LLT::scalar(LeftoverSize); 178 } 179 180 // For irregular sizes, extract the individual parts. 181 for (unsigned I = 0; I != NumParts; ++I) { 182 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 183 VRegs.push_back(NewReg); 184 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 185 } 186 187 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 188 Offset += LeftoverSize) { 189 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 190 LeftoverRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, Offset); 192 } 193 194 return true; 195 } 196 197 void LegalizerHelper::insertParts(Register DstReg, 198 LLT ResultTy, LLT PartTy, 199 ArrayRef<Register> PartRegs, 200 LLT LeftoverTy, 201 ArrayRef<Register> LeftoverRegs) { 202 if (!LeftoverTy.isValid()) { 203 assert(LeftoverRegs.empty()); 204 205 if (!ResultTy.isVector()) { 206 MIRBuilder.buildMerge(DstReg, PartRegs); 207 return; 208 } 209 210 if (PartTy.isVector()) 211 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 212 else 213 MIRBuilder.buildBuildVector(DstReg, PartRegs); 214 return; 215 } 216 217 unsigned PartSize = PartTy.getSizeInBits(); 218 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 219 220 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 221 MIRBuilder.buildUndef(CurResultReg); 222 223 unsigned Offset = 0; 224 for (Register PartReg : PartRegs) { 225 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 226 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 227 CurResultReg = NewResultReg; 228 Offset += PartSize; 229 } 230 231 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 232 // Use the original output register for the final insert to avoid a copy. 233 Register NewResultReg = (I + 1 == E) ? 234 DstReg : MRI.createGenericVirtualRegister(ResultTy); 235 236 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 237 CurResultReg = NewResultReg; 238 Offset += LeftoverPartSize; 239 } 240 } 241 242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 244 const MachineInstr &MI) { 245 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 246 247 const int NumResults = MI.getNumOperands() - 1; 248 Regs.resize(NumResults); 249 for (int I = 0; I != NumResults; ++I) 250 Regs[I] = MI.getOperand(I).getReg(); 251 } 252 253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 254 LLT NarrowTy, Register SrcReg) { 255 LLT SrcTy = MRI.getType(SrcReg); 256 257 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 MIRBuilder.buildExtract(DstReg, Remerge, 0); 382 return; 383 } 384 385 llvm_unreachable("unhandled case"); 386 } 387 388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 389 #define RTLIBCASE(LibcallPrefix) \ 390 do { \ 391 switch (Size) { \ 392 case 32: \ 393 return RTLIB::LibcallPrefix##32; \ 394 case 64: \ 395 return RTLIB::LibcallPrefix##64; \ 396 case 128: \ 397 return RTLIB::LibcallPrefix##128; \ 398 default: \ 399 llvm_unreachable("unexpected size"); \ 400 } \ 401 } while (0) 402 403 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 404 405 switch (Opcode) { 406 case TargetOpcode::G_SDIV: 407 RTLIBCASE(SDIV_I); 408 case TargetOpcode::G_UDIV: 409 RTLIBCASE(UDIV_I); 410 case TargetOpcode::G_SREM: 411 RTLIBCASE(SREM_I); 412 case TargetOpcode::G_UREM: 413 RTLIBCASE(UREM_I); 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 415 RTLIBCASE(CTLZ_I); 416 case TargetOpcode::G_FADD: 417 RTLIBCASE(ADD_F); 418 case TargetOpcode::G_FSUB: 419 RTLIBCASE(SUB_F); 420 case TargetOpcode::G_FMUL: 421 RTLIBCASE(MUL_F); 422 case TargetOpcode::G_FDIV: 423 RTLIBCASE(DIV_F); 424 case TargetOpcode::G_FEXP: 425 RTLIBCASE(EXP_F); 426 case TargetOpcode::G_FEXP2: 427 RTLIBCASE(EXP2_F); 428 case TargetOpcode::G_FREM: 429 RTLIBCASE(REM_F); 430 case TargetOpcode::G_FPOW: 431 RTLIBCASE(POW_F); 432 case TargetOpcode::G_FMA: 433 RTLIBCASE(FMA_F); 434 case TargetOpcode::G_FSIN: 435 RTLIBCASE(SIN_F); 436 case TargetOpcode::G_FCOS: 437 RTLIBCASE(COS_F); 438 case TargetOpcode::G_FLOG10: 439 RTLIBCASE(LOG10_F); 440 case TargetOpcode::G_FLOG: 441 RTLIBCASE(LOG_F); 442 case TargetOpcode::G_FLOG2: 443 RTLIBCASE(LOG2_F); 444 case TargetOpcode::G_FCEIL: 445 RTLIBCASE(CEIL_F); 446 case TargetOpcode::G_FFLOOR: 447 RTLIBCASE(FLOOR_F); 448 case TargetOpcode::G_FMINNUM: 449 RTLIBCASE(FMIN_F); 450 case TargetOpcode::G_FMAXNUM: 451 RTLIBCASE(FMAX_F); 452 case TargetOpcode::G_FSQRT: 453 RTLIBCASE(SQRT_F); 454 case TargetOpcode::G_FRINT: 455 RTLIBCASE(RINT_F); 456 case TargetOpcode::G_FNEARBYINT: 457 RTLIBCASE(NEARBYINT_F); 458 } 459 llvm_unreachable("Unknown libcall function"); 460 } 461 462 /// True if an instruction is in tail position in its caller. Intended for 463 /// legalizing libcalls as tail calls when possible. 464 static bool isLibCallInTailPosition(MachineInstr &MI) { 465 MachineBasicBlock &MBB = *MI.getParent(); 466 const Function &F = MBB.getParent()->getFunction(); 467 468 // Conservatively require the attributes of the call to match those of 469 // the return. Ignore NoAlias and NonNull because they don't affect the 470 // call sequence. 471 AttributeList CallerAttrs = F.getAttributes(); 472 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 473 .removeAttribute(Attribute::NoAlias) 474 .removeAttribute(Attribute::NonNull) 475 .hasAttributes()) 476 return false; 477 478 // It's not safe to eliminate the sign / zero extension of the return value. 479 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 480 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 481 return false; 482 483 // Only tail call if the following instruction is a standard return. 484 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 485 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 486 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 487 return false; 488 489 return true; 490 } 491 492 LegalizerHelper::LegalizeResult 493 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 494 const CallLowering::ArgInfo &Result, 495 ArrayRef<CallLowering::ArgInfo> Args, 496 const CallingConv::ID CC) { 497 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 498 499 CallLowering::CallLoweringInfo Info; 500 Info.CallConv = CC; 501 Info.Callee = MachineOperand::CreateES(Name); 502 Info.OrigRet = Result; 503 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 504 if (!CLI.lowerCall(MIRBuilder, Info)) 505 return LegalizerHelper::UnableToLegalize; 506 507 return LegalizerHelper::Legalized; 508 } 509 510 LegalizerHelper::LegalizeResult 511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 512 const CallLowering::ArgInfo &Result, 513 ArrayRef<CallLowering::ArgInfo> Args) { 514 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 515 const char *Name = TLI.getLibcallName(Libcall); 516 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 517 return createLibcall(MIRBuilder, Name, Result, Args, CC); 518 } 519 520 // Useful for libcalls where all operands have the same type. 521 static LegalizerHelper::LegalizeResult 522 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 523 Type *OpType) { 524 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 525 526 SmallVector<CallLowering::ArgInfo, 3> Args; 527 for (unsigned i = 1; i < MI.getNumOperands(); i++) 528 Args.push_back({MI.getOperand(i).getReg(), OpType}); 529 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 530 Args); 531 } 532 533 LegalizerHelper::LegalizeResult 534 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 535 MachineInstr &MI) { 536 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 537 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 538 539 SmallVector<CallLowering::ArgInfo, 3> Args; 540 // Add all the args, except for the last which is an imm denoting 'tail'. 541 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 542 Register Reg = MI.getOperand(i).getReg(); 543 544 // Need derive an IR type for call lowering. 545 LLT OpLLT = MRI.getType(Reg); 546 Type *OpTy = nullptr; 547 if (OpLLT.isPointer()) 548 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 549 else 550 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 551 Args.push_back({Reg, OpTy}); 552 } 553 554 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 555 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 556 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 557 RTLIB::Libcall RTLibcall; 558 switch (ID) { 559 case Intrinsic::memcpy: 560 RTLibcall = RTLIB::MEMCPY; 561 break; 562 case Intrinsic::memset: 563 RTLibcall = RTLIB::MEMSET; 564 break; 565 case Intrinsic::memmove: 566 RTLibcall = RTLIB::MEMMOVE; 567 break; 568 default: 569 return LegalizerHelper::UnableToLegalize; 570 } 571 const char *Name = TLI.getLibcallName(RTLibcall); 572 573 MIRBuilder.setInstrAndDebugLoc(MI); 574 575 CallLowering::CallLoweringInfo Info; 576 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 577 Info.Callee = MachineOperand::CreateES(Name); 578 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 579 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 580 isLibCallInTailPosition(MI); 581 582 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 583 if (!CLI.lowerCall(MIRBuilder, Info)) 584 return LegalizerHelper::UnableToLegalize; 585 586 if (Info.LoweredTailCall) { 587 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 588 // We must have a return following the call (or debug insts) to get past 589 // isLibCallInTailPosition. 590 do { 591 MachineInstr *Next = MI.getNextNode(); 592 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 593 "Expected instr following MI to be return or debug inst?"); 594 // We lowered a tail call, so the call is now the return from the block. 595 // Delete the old return. 596 Next->eraseFromParent(); 597 } while (MI.getNextNode()); 598 } 599 600 return LegalizerHelper::Legalized; 601 } 602 603 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 604 Type *FromType) { 605 auto ToMVT = MVT::getVT(ToType); 606 auto FromMVT = MVT::getVT(FromType); 607 608 switch (Opcode) { 609 case TargetOpcode::G_FPEXT: 610 return RTLIB::getFPEXT(FromMVT, ToMVT); 611 case TargetOpcode::G_FPTRUNC: 612 return RTLIB::getFPROUND(FromMVT, ToMVT); 613 case TargetOpcode::G_FPTOSI: 614 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 615 case TargetOpcode::G_FPTOUI: 616 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 617 case TargetOpcode::G_SITOFP: 618 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 619 case TargetOpcode::G_UITOFP: 620 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 621 } 622 llvm_unreachable("Unsupported libcall function"); 623 } 624 625 static LegalizerHelper::LegalizeResult 626 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 627 Type *FromType) { 628 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 629 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 630 {{MI.getOperand(1).getReg(), FromType}}); 631 } 632 633 LegalizerHelper::LegalizeResult 634 LegalizerHelper::libcall(MachineInstr &MI) { 635 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 636 unsigned Size = LLTy.getSizeInBits(); 637 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 638 639 MIRBuilder.setInstrAndDebugLoc(MI); 640 641 switch (MI.getOpcode()) { 642 default: 643 return UnableToLegalize; 644 case TargetOpcode::G_SDIV: 645 case TargetOpcode::G_UDIV: 646 case TargetOpcode::G_SREM: 647 case TargetOpcode::G_UREM: 648 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 649 Type *HLTy = IntegerType::get(Ctx, Size); 650 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 651 if (Status != Legalized) 652 return Status; 653 break; 654 } 655 case TargetOpcode::G_FADD: 656 case TargetOpcode::G_FSUB: 657 case TargetOpcode::G_FMUL: 658 case TargetOpcode::G_FDIV: 659 case TargetOpcode::G_FMA: 660 case TargetOpcode::G_FPOW: 661 case TargetOpcode::G_FREM: 662 case TargetOpcode::G_FCOS: 663 case TargetOpcode::G_FSIN: 664 case TargetOpcode::G_FLOG10: 665 case TargetOpcode::G_FLOG: 666 case TargetOpcode::G_FLOG2: 667 case TargetOpcode::G_FEXP: 668 case TargetOpcode::G_FEXP2: 669 case TargetOpcode::G_FCEIL: 670 case TargetOpcode::G_FFLOOR: 671 case TargetOpcode::G_FMINNUM: 672 case TargetOpcode::G_FMAXNUM: 673 case TargetOpcode::G_FSQRT: 674 case TargetOpcode::G_FRINT: 675 case TargetOpcode::G_FNEARBYINT: { 676 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 677 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 678 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 679 return UnableToLegalize; 680 } 681 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 682 if (Status != Legalized) 683 return Status; 684 break; 685 } 686 case TargetOpcode::G_FPEXT: 687 case TargetOpcode::G_FPTRUNC: { 688 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 689 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 690 if (!FromTy || !ToTy) 691 return UnableToLegalize; 692 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 693 if (Status != Legalized) 694 return Status; 695 break; 696 } 697 case TargetOpcode::G_FPTOSI: 698 case TargetOpcode::G_FPTOUI: { 699 // FIXME: Support other types 700 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 701 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 702 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 703 return UnableToLegalize; 704 LegalizeResult Status = conversionLibcall( 705 MI, MIRBuilder, 706 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 707 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 708 if (Status != Legalized) 709 return Status; 710 break; 711 } 712 case TargetOpcode::G_SITOFP: 713 case TargetOpcode::G_UITOFP: { 714 // FIXME: Support other types 715 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 716 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 717 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 718 return UnableToLegalize; 719 LegalizeResult Status = conversionLibcall( 720 MI, MIRBuilder, 721 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 722 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 723 if (Status != Legalized) 724 return Status; 725 break; 726 } 727 } 728 729 MI.eraseFromParent(); 730 return Legalized; 731 } 732 733 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 734 unsigned TypeIdx, 735 LLT NarrowTy) { 736 MIRBuilder.setInstrAndDebugLoc(MI); 737 738 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 739 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 740 741 switch (MI.getOpcode()) { 742 default: 743 return UnableToLegalize; 744 case TargetOpcode::G_IMPLICIT_DEF: { 745 Register DstReg = MI.getOperand(0).getReg(); 746 LLT DstTy = MRI.getType(DstReg); 747 748 // If SizeOp0 is not an exact multiple of NarrowSize, emit 749 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 750 // FIXME: Although this would also be legal for the general case, it causes 751 // a lot of regressions in the emitted code (superfluous COPYs, artifact 752 // combines not being hit). This seems to be a problem related to the 753 // artifact combiner. 754 if (SizeOp0 % NarrowSize != 0) { 755 LLT ImplicitTy = NarrowTy; 756 if (DstTy.isVector()) 757 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 758 759 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 760 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 761 762 MI.eraseFromParent(); 763 return Legalized; 764 } 765 766 int NumParts = SizeOp0 / NarrowSize; 767 768 SmallVector<Register, 2> DstRegs; 769 for (int i = 0; i < NumParts; ++i) 770 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 771 772 if (DstTy.isVector()) 773 MIRBuilder.buildBuildVector(DstReg, DstRegs); 774 else 775 MIRBuilder.buildMerge(DstReg, DstRegs); 776 MI.eraseFromParent(); 777 return Legalized; 778 } 779 case TargetOpcode::G_CONSTANT: { 780 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 781 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 782 unsigned TotalSize = Ty.getSizeInBits(); 783 unsigned NarrowSize = NarrowTy.getSizeInBits(); 784 int NumParts = TotalSize / NarrowSize; 785 786 SmallVector<Register, 4> PartRegs; 787 for (int I = 0; I != NumParts; ++I) { 788 unsigned Offset = I * NarrowSize; 789 auto K = MIRBuilder.buildConstant(NarrowTy, 790 Val.lshr(Offset).trunc(NarrowSize)); 791 PartRegs.push_back(K.getReg(0)); 792 } 793 794 LLT LeftoverTy; 795 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 796 SmallVector<Register, 1> LeftoverRegs; 797 if (LeftoverBits != 0) { 798 LeftoverTy = LLT::scalar(LeftoverBits); 799 auto K = MIRBuilder.buildConstant( 800 LeftoverTy, 801 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 802 LeftoverRegs.push_back(K.getReg(0)); 803 } 804 805 insertParts(MI.getOperand(0).getReg(), 806 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 807 808 MI.eraseFromParent(); 809 return Legalized; 810 } 811 case TargetOpcode::G_SEXT: 812 case TargetOpcode::G_ZEXT: 813 case TargetOpcode::G_ANYEXT: 814 return narrowScalarExt(MI, TypeIdx, NarrowTy); 815 case TargetOpcode::G_TRUNC: { 816 if (TypeIdx != 1) 817 return UnableToLegalize; 818 819 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 820 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 821 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 822 return UnableToLegalize; 823 } 824 825 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 826 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 827 MI.eraseFromParent(); 828 return Legalized; 829 } 830 831 case TargetOpcode::G_FREEZE: 832 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 833 834 case TargetOpcode::G_ADD: { 835 // FIXME: add support for when SizeOp0 isn't an exact multiple of 836 // NarrowSize. 837 if (SizeOp0 % NarrowSize != 0) 838 return UnableToLegalize; 839 // Expand in terms of carry-setting/consuming G_ADDE instructions. 840 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 841 842 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 843 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 844 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 845 846 Register CarryIn; 847 for (int i = 0; i < NumParts; ++i) { 848 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 849 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 850 851 if (i == 0) 852 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 853 else { 854 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 855 Src2Regs[i], CarryIn); 856 } 857 858 DstRegs.push_back(DstReg); 859 CarryIn = CarryOut; 860 } 861 Register DstReg = MI.getOperand(0).getReg(); 862 if(MRI.getType(DstReg).isVector()) 863 MIRBuilder.buildBuildVector(DstReg, DstRegs); 864 else 865 MIRBuilder.buildMerge(DstReg, DstRegs); 866 MI.eraseFromParent(); 867 return Legalized; 868 } 869 case TargetOpcode::G_SUB: { 870 // FIXME: add support for when SizeOp0 isn't an exact multiple of 871 // NarrowSize. 872 if (SizeOp0 % NarrowSize != 0) 873 return UnableToLegalize; 874 875 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 876 877 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 878 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 879 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 880 881 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 882 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 883 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 884 {Src1Regs[0], Src2Regs[0]}); 885 DstRegs.push_back(DstReg); 886 Register BorrowIn = BorrowOut; 887 for (int i = 1; i < NumParts; ++i) { 888 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 889 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 890 891 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 892 {Src1Regs[i], Src2Regs[i], BorrowIn}); 893 894 DstRegs.push_back(DstReg); 895 BorrowIn = BorrowOut; 896 } 897 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 898 MI.eraseFromParent(); 899 return Legalized; 900 } 901 case TargetOpcode::G_MUL: 902 case TargetOpcode::G_UMULH: 903 return narrowScalarMul(MI, NarrowTy); 904 case TargetOpcode::G_EXTRACT: 905 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 906 case TargetOpcode::G_INSERT: 907 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 908 case TargetOpcode::G_LOAD: { 909 const auto &MMO = **MI.memoperands_begin(); 910 Register DstReg = MI.getOperand(0).getReg(); 911 LLT DstTy = MRI.getType(DstReg); 912 if (DstTy.isVector()) 913 return UnableToLegalize; 914 915 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 916 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 917 auto &MMO = **MI.memoperands_begin(); 918 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 919 MIRBuilder.buildAnyExt(DstReg, TmpReg); 920 MI.eraseFromParent(); 921 return Legalized; 922 } 923 924 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 925 } 926 case TargetOpcode::G_ZEXTLOAD: 927 case TargetOpcode::G_SEXTLOAD: { 928 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 929 Register DstReg = MI.getOperand(0).getReg(); 930 Register PtrReg = MI.getOperand(1).getReg(); 931 932 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 933 auto &MMO = **MI.memoperands_begin(); 934 if (MMO.getSizeInBits() == NarrowSize) { 935 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 936 } else { 937 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 938 } 939 940 if (ZExt) 941 MIRBuilder.buildZExt(DstReg, TmpReg); 942 else 943 MIRBuilder.buildSExt(DstReg, TmpReg); 944 945 MI.eraseFromParent(); 946 return Legalized; 947 } 948 case TargetOpcode::G_STORE: { 949 const auto &MMO = **MI.memoperands_begin(); 950 951 Register SrcReg = MI.getOperand(0).getReg(); 952 LLT SrcTy = MRI.getType(SrcReg); 953 if (SrcTy.isVector()) 954 return UnableToLegalize; 955 956 int NumParts = SizeOp0 / NarrowSize; 957 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 958 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 959 if (SrcTy.isVector() && LeftoverBits != 0) 960 return UnableToLegalize; 961 962 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 963 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 964 auto &MMO = **MI.memoperands_begin(); 965 MIRBuilder.buildTrunc(TmpReg, SrcReg); 966 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 967 MI.eraseFromParent(); 968 return Legalized; 969 } 970 971 return reduceLoadStoreWidth(MI, 0, NarrowTy); 972 } 973 case TargetOpcode::G_SELECT: 974 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 975 case TargetOpcode::G_AND: 976 case TargetOpcode::G_OR: 977 case TargetOpcode::G_XOR: { 978 // Legalize bitwise operation: 979 // A = BinOp<Ty> B, C 980 // into: 981 // B1, ..., BN = G_UNMERGE_VALUES B 982 // C1, ..., CN = G_UNMERGE_VALUES C 983 // A1 = BinOp<Ty/N> B1, C2 984 // ... 985 // AN = BinOp<Ty/N> BN, CN 986 // A = G_MERGE_VALUES A1, ..., AN 987 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 988 } 989 case TargetOpcode::G_SHL: 990 case TargetOpcode::G_LSHR: 991 case TargetOpcode::G_ASHR: 992 return narrowScalarShift(MI, TypeIdx, NarrowTy); 993 case TargetOpcode::G_CTLZ: 994 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 995 case TargetOpcode::G_CTTZ: 996 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 997 case TargetOpcode::G_CTPOP: 998 if (TypeIdx == 1) 999 switch (MI.getOpcode()) { 1000 case TargetOpcode::G_CTLZ: 1001 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1002 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1003 case TargetOpcode::G_CTTZ: 1004 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1005 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1006 case TargetOpcode::G_CTPOP: 1007 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1008 default: 1009 return UnableToLegalize; 1010 } 1011 1012 Observer.changingInstr(MI); 1013 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1014 Observer.changedInstr(MI); 1015 return Legalized; 1016 case TargetOpcode::G_INTTOPTR: 1017 if (TypeIdx != 1) 1018 return UnableToLegalize; 1019 1020 Observer.changingInstr(MI); 1021 narrowScalarSrc(MI, NarrowTy, 1); 1022 Observer.changedInstr(MI); 1023 return Legalized; 1024 case TargetOpcode::G_PTRTOINT: 1025 if (TypeIdx != 0) 1026 return UnableToLegalize; 1027 1028 Observer.changingInstr(MI); 1029 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1030 Observer.changedInstr(MI); 1031 return Legalized; 1032 case TargetOpcode::G_PHI: { 1033 unsigned NumParts = SizeOp0 / NarrowSize; 1034 SmallVector<Register, 2> DstRegs(NumParts); 1035 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1036 Observer.changingInstr(MI); 1037 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1038 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1039 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1040 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1041 SrcRegs[i / 2]); 1042 } 1043 MachineBasicBlock &MBB = *MI.getParent(); 1044 MIRBuilder.setInsertPt(MBB, MI); 1045 for (unsigned i = 0; i < NumParts; ++i) { 1046 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1047 MachineInstrBuilder MIB = 1048 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1049 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1050 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1051 } 1052 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1053 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1054 Observer.changedInstr(MI); 1055 MI.eraseFromParent(); 1056 return Legalized; 1057 } 1058 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1059 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1060 if (TypeIdx != 2) 1061 return UnableToLegalize; 1062 1063 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1064 Observer.changingInstr(MI); 1065 narrowScalarSrc(MI, NarrowTy, OpIdx); 1066 Observer.changedInstr(MI); 1067 return Legalized; 1068 } 1069 case TargetOpcode::G_ICMP: { 1070 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1071 if (NarrowSize * 2 != SrcSize) 1072 return UnableToLegalize; 1073 1074 Observer.changingInstr(MI); 1075 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1076 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1077 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1078 1079 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1080 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1081 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1082 1083 CmpInst::Predicate Pred = 1084 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1085 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1086 1087 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1088 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1089 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1090 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1091 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1092 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1093 } else { 1094 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1095 MachineInstrBuilder CmpHEQ = 1096 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1097 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1098 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1099 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1100 } 1101 Observer.changedInstr(MI); 1102 MI.eraseFromParent(); 1103 return Legalized; 1104 } 1105 case TargetOpcode::G_SEXT_INREG: { 1106 if (TypeIdx != 0) 1107 return UnableToLegalize; 1108 1109 int64_t SizeInBits = MI.getOperand(2).getImm(); 1110 1111 // So long as the new type has more bits than the bits we're extending we 1112 // don't need to break it apart. 1113 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1114 Observer.changingInstr(MI); 1115 // We don't lose any non-extension bits by truncating the src and 1116 // sign-extending the dst. 1117 MachineOperand &MO1 = MI.getOperand(1); 1118 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1119 MO1.setReg(TruncMIB.getReg(0)); 1120 1121 MachineOperand &MO2 = MI.getOperand(0); 1122 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1123 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1124 MIRBuilder.buildSExt(MO2, DstExt); 1125 MO2.setReg(DstExt); 1126 Observer.changedInstr(MI); 1127 return Legalized; 1128 } 1129 1130 // Break it apart. Components below the extension point are unmodified. The 1131 // component containing the extension point becomes a narrower SEXT_INREG. 1132 // Components above it are ashr'd from the component containing the 1133 // extension point. 1134 if (SizeOp0 % NarrowSize != 0) 1135 return UnableToLegalize; 1136 int NumParts = SizeOp0 / NarrowSize; 1137 1138 // List the registers where the destination will be scattered. 1139 SmallVector<Register, 2> DstRegs; 1140 // List the registers where the source will be split. 1141 SmallVector<Register, 2> SrcRegs; 1142 1143 // Create all the temporary registers. 1144 for (int i = 0; i < NumParts; ++i) { 1145 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1146 1147 SrcRegs.push_back(SrcReg); 1148 } 1149 1150 // Explode the big arguments into smaller chunks. 1151 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1152 1153 Register AshrCstReg = 1154 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1155 .getReg(0); 1156 Register FullExtensionReg = 0; 1157 Register PartialExtensionReg = 0; 1158 1159 // Do the operation on each small part. 1160 for (int i = 0; i < NumParts; ++i) { 1161 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1162 DstRegs.push_back(SrcRegs[i]); 1163 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1164 assert(PartialExtensionReg && 1165 "Expected to visit partial extension before full"); 1166 if (FullExtensionReg) { 1167 DstRegs.push_back(FullExtensionReg); 1168 continue; 1169 } 1170 DstRegs.push_back( 1171 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1172 .getReg(0)); 1173 FullExtensionReg = DstRegs.back(); 1174 } else { 1175 DstRegs.push_back( 1176 MIRBuilder 1177 .buildInstr( 1178 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1179 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1180 .getReg(0)); 1181 PartialExtensionReg = DstRegs.back(); 1182 } 1183 } 1184 1185 // Gather the destination registers into the final destination. 1186 Register DstReg = MI.getOperand(0).getReg(); 1187 MIRBuilder.buildMerge(DstReg, DstRegs); 1188 MI.eraseFromParent(); 1189 return Legalized; 1190 } 1191 case TargetOpcode::G_BSWAP: 1192 case TargetOpcode::G_BITREVERSE: { 1193 if (SizeOp0 % NarrowSize != 0) 1194 return UnableToLegalize; 1195 1196 Observer.changingInstr(MI); 1197 SmallVector<Register, 2> SrcRegs, DstRegs; 1198 unsigned NumParts = SizeOp0 / NarrowSize; 1199 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1200 1201 for (unsigned i = 0; i < NumParts; ++i) { 1202 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1203 {SrcRegs[NumParts - 1 - i]}); 1204 DstRegs.push_back(DstPart.getReg(0)); 1205 } 1206 1207 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1208 1209 Observer.changedInstr(MI); 1210 MI.eraseFromParent(); 1211 return Legalized; 1212 } 1213 } 1214 } 1215 1216 Register LegalizerHelper::coerceToScalar(Register Val) { 1217 LLT Ty = MRI.getType(Val); 1218 if (Ty.isScalar()) 1219 return Val; 1220 1221 const DataLayout &DL = MIRBuilder.getDataLayout(); 1222 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1223 if (Ty.isPointer()) { 1224 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1225 return Register(); 1226 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1227 } 1228 1229 Register NewVal = Val; 1230 1231 assert(Ty.isVector()); 1232 LLT EltTy = Ty.getElementType(); 1233 if (EltTy.isPointer()) 1234 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1235 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1236 } 1237 1238 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1239 unsigned OpIdx, unsigned ExtOpcode) { 1240 MachineOperand &MO = MI.getOperand(OpIdx); 1241 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1242 MO.setReg(ExtB.getReg(0)); 1243 } 1244 1245 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1246 unsigned OpIdx) { 1247 MachineOperand &MO = MI.getOperand(OpIdx); 1248 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1249 MO.setReg(ExtB.getReg(0)); 1250 } 1251 1252 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1253 unsigned OpIdx, unsigned TruncOpcode) { 1254 MachineOperand &MO = MI.getOperand(OpIdx); 1255 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1256 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1257 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1258 MO.setReg(DstExt); 1259 } 1260 1261 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1262 unsigned OpIdx, unsigned ExtOpcode) { 1263 MachineOperand &MO = MI.getOperand(OpIdx); 1264 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1265 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1266 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1267 MO.setReg(DstTrunc); 1268 } 1269 1270 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1271 unsigned OpIdx) { 1272 MachineOperand &MO = MI.getOperand(OpIdx); 1273 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1274 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1275 MIRBuilder.buildExtract(MO, DstExt, 0); 1276 MO.setReg(DstExt); 1277 } 1278 1279 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1280 unsigned OpIdx) { 1281 MachineOperand &MO = MI.getOperand(OpIdx); 1282 1283 LLT OldTy = MRI.getType(MO.getReg()); 1284 unsigned OldElts = OldTy.getNumElements(); 1285 unsigned NewElts = MoreTy.getNumElements(); 1286 1287 unsigned NumParts = NewElts / OldElts; 1288 1289 // Use concat_vectors if the result is a multiple of the number of elements. 1290 if (NumParts * OldElts == NewElts) { 1291 SmallVector<Register, 8> Parts; 1292 Parts.push_back(MO.getReg()); 1293 1294 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1295 for (unsigned I = 1; I != NumParts; ++I) 1296 Parts.push_back(ImpDef); 1297 1298 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1299 MO.setReg(Concat.getReg(0)); 1300 return; 1301 } 1302 1303 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1304 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1305 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1306 MO.setReg(MoreReg); 1307 } 1308 1309 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1310 MachineOperand &Op = MI.getOperand(OpIdx); 1311 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1312 } 1313 1314 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1315 MachineOperand &MO = MI.getOperand(OpIdx); 1316 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1317 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1318 MIRBuilder.buildBitcast(MO, CastDst); 1319 MO.setReg(CastDst); 1320 } 1321 1322 LegalizerHelper::LegalizeResult 1323 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1324 LLT WideTy) { 1325 if (TypeIdx != 1) 1326 return UnableToLegalize; 1327 1328 Register DstReg = MI.getOperand(0).getReg(); 1329 LLT DstTy = MRI.getType(DstReg); 1330 if (DstTy.isVector()) 1331 return UnableToLegalize; 1332 1333 Register Src1 = MI.getOperand(1).getReg(); 1334 LLT SrcTy = MRI.getType(Src1); 1335 const int DstSize = DstTy.getSizeInBits(); 1336 const int SrcSize = SrcTy.getSizeInBits(); 1337 const int WideSize = WideTy.getSizeInBits(); 1338 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1339 1340 unsigned NumOps = MI.getNumOperands(); 1341 unsigned NumSrc = MI.getNumOperands() - 1; 1342 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1343 1344 if (WideSize >= DstSize) { 1345 // Directly pack the bits in the target type. 1346 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1347 1348 for (unsigned I = 2; I != NumOps; ++I) { 1349 const unsigned Offset = (I - 1) * PartSize; 1350 1351 Register SrcReg = MI.getOperand(I).getReg(); 1352 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1353 1354 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1355 1356 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1357 MRI.createGenericVirtualRegister(WideTy); 1358 1359 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1360 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1361 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1362 ResultReg = NextResult; 1363 } 1364 1365 if (WideSize > DstSize) 1366 MIRBuilder.buildTrunc(DstReg, ResultReg); 1367 else if (DstTy.isPointer()) 1368 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1369 1370 MI.eraseFromParent(); 1371 return Legalized; 1372 } 1373 1374 // Unmerge the original values to the GCD type, and recombine to the next 1375 // multiple greater than the original type. 1376 // 1377 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1378 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1379 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1380 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1381 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1382 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1383 // %12:_(s12) = G_MERGE_VALUES %10, %11 1384 // 1385 // Padding with undef if necessary: 1386 // 1387 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1388 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1389 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1390 // %7:_(s2) = G_IMPLICIT_DEF 1391 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1392 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1393 // %10:_(s12) = G_MERGE_VALUES %8, %9 1394 1395 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1396 LLT GCDTy = LLT::scalar(GCD); 1397 1398 SmallVector<Register, 8> Parts; 1399 SmallVector<Register, 8> NewMergeRegs; 1400 SmallVector<Register, 8> Unmerges; 1401 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1402 1403 // Decompose the original operands if they don't evenly divide. 1404 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1405 Register SrcReg = MI.getOperand(I).getReg(); 1406 if (GCD == SrcSize) { 1407 Unmerges.push_back(SrcReg); 1408 } else { 1409 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1410 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1411 Unmerges.push_back(Unmerge.getReg(J)); 1412 } 1413 } 1414 1415 // Pad with undef to the next size that is a multiple of the requested size. 1416 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1417 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1418 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1419 Unmerges.push_back(UndefReg); 1420 } 1421 1422 const int PartsPerGCD = WideSize / GCD; 1423 1424 // Build merges of each piece. 1425 ArrayRef<Register> Slicer(Unmerges); 1426 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1427 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1428 NewMergeRegs.push_back(Merge.getReg(0)); 1429 } 1430 1431 // A truncate may be necessary if the requested type doesn't evenly divide the 1432 // original result type. 1433 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1434 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1435 } else { 1436 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1437 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1438 } 1439 1440 MI.eraseFromParent(); 1441 return Legalized; 1442 } 1443 1444 LegalizerHelper::LegalizeResult 1445 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1446 LLT WideTy) { 1447 if (TypeIdx != 0) 1448 return UnableToLegalize; 1449 1450 int NumDst = MI.getNumOperands() - 1; 1451 Register SrcReg = MI.getOperand(NumDst).getReg(); 1452 LLT SrcTy = MRI.getType(SrcReg); 1453 if (SrcTy.isVector()) 1454 return UnableToLegalize; 1455 1456 Register Dst0Reg = MI.getOperand(0).getReg(); 1457 LLT DstTy = MRI.getType(Dst0Reg); 1458 if (!DstTy.isScalar()) 1459 return UnableToLegalize; 1460 1461 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1462 if (SrcTy.isPointer()) { 1463 const DataLayout &DL = MIRBuilder.getDataLayout(); 1464 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1465 LLVM_DEBUG( 1466 dbgs() << "Not casting non-integral address space integer\n"); 1467 return UnableToLegalize; 1468 } 1469 1470 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1471 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1472 } 1473 1474 // Widen SrcTy to WideTy. This does not affect the result, but since the 1475 // user requested this size, it is probably better handled than SrcTy and 1476 // should reduce the total number of legalization artifacts 1477 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1478 SrcTy = WideTy; 1479 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1480 } 1481 1482 // Theres no unmerge type to target. Directly extract the bits from the 1483 // source type 1484 unsigned DstSize = DstTy.getSizeInBits(); 1485 1486 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1487 for (int I = 1; I != NumDst; ++I) { 1488 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1489 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1490 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1491 } 1492 1493 MI.eraseFromParent(); 1494 return Legalized; 1495 } 1496 1497 // Extend the source to a wider type. 1498 LLT LCMTy = getLCMType(SrcTy, WideTy); 1499 1500 Register WideSrc = SrcReg; 1501 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1502 // TODO: If this is an integral address space, cast to integer and anyext. 1503 if (SrcTy.isPointer()) { 1504 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1505 return UnableToLegalize; 1506 } 1507 1508 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1509 } 1510 1511 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1512 1513 // Create a sequence of unmerges to the original results. since we may have 1514 // widened the source, we will need to pad the results with dead defs to cover 1515 // the source register. 1516 // e.g. widen s16 to s32: 1517 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1518 // 1519 // => 1520 // %4:_(s64) = G_ANYEXT %0:_(s48) 1521 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1522 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1523 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1524 1525 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1526 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1527 1528 for (int I = 0; I != NumUnmerge; ++I) { 1529 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1530 1531 for (int J = 0; J != PartsPerUnmerge; ++J) { 1532 int Idx = I * PartsPerUnmerge + J; 1533 if (Idx < NumDst) 1534 MIB.addDef(MI.getOperand(Idx).getReg()); 1535 else { 1536 // Create dead def for excess components. 1537 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1538 } 1539 } 1540 1541 MIB.addUse(Unmerge.getReg(I)); 1542 } 1543 1544 MI.eraseFromParent(); 1545 return Legalized; 1546 } 1547 1548 LegalizerHelper::LegalizeResult 1549 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1550 LLT WideTy) { 1551 Register DstReg = MI.getOperand(0).getReg(); 1552 Register SrcReg = MI.getOperand(1).getReg(); 1553 LLT SrcTy = MRI.getType(SrcReg); 1554 1555 LLT DstTy = MRI.getType(DstReg); 1556 unsigned Offset = MI.getOperand(2).getImm(); 1557 1558 if (TypeIdx == 0) { 1559 if (SrcTy.isVector() || DstTy.isVector()) 1560 return UnableToLegalize; 1561 1562 SrcOp Src(SrcReg); 1563 if (SrcTy.isPointer()) { 1564 // Extracts from pointers can be handled only if they are really just 1565 // simple integers. 1566 const DataLayout &DL = MIRBuilder.getDataLayout(); 1567 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1568 return UnableToLegalize; 1569 1570 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1571 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1572 SrcTy = SrcAsIntTy; 1573 } 1574 1575 if (DstTy.isPointer()) 1576 return UnableToLegalize; 1577 1578 if (Offset == 0) { 1579 // Avoid a shift in the degenerate case. 1580 MIRBuilder.buildTrunc(DstReg, 1581 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1582 MI.eraseFromParent(); 1583 return Legalized; 1584 } 1585 1586 // Do a shift in the source type. 1587 LLT ShiftTy = SrcTy; 1588 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1589 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1590 ShiftTy = WideTy; 1591 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1592 return UnableToLegalize; 1593 1594 auto LShr = MIRBuilder.buildLShr( 1595 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1596 MIRBuilder.buildTrunc(DstReg, LShr); 1597 MI.eraseFromParent(); 1598 return Legalized; 1599 } 1600 1601 if (SrcTy.isScalar()) { 1602 Observer.changingInstr(MI); 1603 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1604 Observer.changedInstr(MI); 1605 return Legalized; 1606 } 1607 1608 if (!SrcTy.isVector()) 1609 return UnableToLegalize; 1610 1611 if (DstTy != SrcTy.getElementType()) 1612 return UnableToLegalize; 1613 1614 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1615 return UnableToLegalize; 1616 1617 Observer.changingInstr(MI); 1618 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1619 1620 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1621 Offset); 1622 widenScalarDst(MI, WideTy.getScalarType(), 0); 1623 Observer.changedInstr(MI); 1624 return Legalized; 1625 } 1626 1627 LegalizerHelper::LegalizeResult 1628 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1629 LLT WideTy) { 1630 if (TypeIdx != 0) 1631 return UnableToLegalize; 1632 Observer.changingInstr(MI); 1633 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1634 widenScalarDst(MI, WideTy); 1635 Observer.changedInstr(MI); 1636 return Legalized; 1637 } 1638 1639 LegalizerHelper::LegalizeResult 1640 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1641 MIRBuilder.setInstrAndDebugLoc(MI); 1642 1643 switch (MI.getOpcode()) { 1644 default: 1645 return UnableToLegalize; 1646 case TargetOpcode::G_EXTRACT: 1647 return widenScalarExtract(MI, TypeIdx, WideTy); 1648 case TargetOpcode::G_INSERT: 1649 return widenScalarInsert(MI, TypeIdx, WideTy); 1650 case TargetOpcode::G_MERGE_VALUES: 1651 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1652 case TargetOpcode::G_UNMERGE_VALUES: 1653 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1654 case TargetOpcode::G_UADDO: 1655 case TargetOpcode::G_USUBO: { 1656 if (TypeIdx == 1) 1657 return UnableToLegalize; // TODO 1658 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1659 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1660 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1661 ? TargetOpcode::G_ADD 1662 : TargetOpcode::G_SUB; 1663 // Do the arithmetic in the larger type. 1664 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1665 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1666 APInt Mask = 1667 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1668 auto AndOp = MIRBuilder.buildAnd( 1669 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1670 // There is no overflow if the AndOp is the same as NewOp. 1671 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1672 // Now trunc the NewOp to the original result. 1673 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1674 MI.eraseFromParent(); 1675 return Legalized; 1676 } 1677 case TargetOpcode::G_CTTZ: 1678 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1679 case TargetOpcode::G_CTLZ: 1680 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1681 case TargetOpcode::G_CTPOP: { 1682 if (TypeIdx == 0) { 1683 Observer.changingInstr(MI); 1684 widenScalarDst(MI, WideTy, 0); 1685 Observer.changedInstr(MI); 1686 return Legalized; 1687 } 1688 1689 Register SrcReg = MI.getOperand(1).getReg(); 1690 1691 // First ZEXT the input. 1692 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1693 LLT CurTy = MRI.getType(SrcReg); 1694 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1695 // The count is the same in the larger type except if the original 1696 // value was zero. This can be handled by setting the bit just off 1697 // the top of the original type. 1698 auto TopBit = 1699 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1700 MIBSrc = MIRBuilder.buildOr( 1701 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1702 } 1703 1704 // Perform the operation at the larger size. 1705 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1706 // This is already the correct result for CTPOP and CTTZs 1707 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1708 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1709 // The correct result is NewOp - (Difference in widety and current ty). 1710 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1711 MIBNewOp = MIRBuilder.buildSub( 1712 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1713 } 1714 1715 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1716 MI.eraseFromParent(); 1717 return Legalized; 1718 } 1719 case TargetOpcode::G_BSWAP: { 1720 Observer.changingInstr(MI); 1721 Register DstReg = MI.getOperand(0).getReg(); 1722 1723 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1724 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1725 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1726 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1727 1728 MI.getOperand(0).setReg(DstExt); 1729 1730 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1731 1732 LLT Ty = MRI.getType(DstReg); 1733 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1734 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1735 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1736 1737 MIRBuilder.buildTrunc(DstReg, ShrReg); 1738 Observer.changedInstr(MI); 1739 return Legalized; 1740 } 1741 case TargetOpcode::G_BITREVERSE: { 1742 Observer.changingInstr(MI); 1743 1744 Register DstReg = MI.getOperand(0).getReg(); 1745 LLT Ty = MRI.getType(DstReg); 1746 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1747 1748 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1749 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1750 MI.getOperand(0).setReg(DstExt); 1751 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1752 1753 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1754 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1755 MIRBuilder.buildTrunc(DstReg, Shift); 1756 Observer.changedInstr(MI); 1757 return Legalized; 1758 } 1759 case TargetOpcode::G_FREEZE: 1760 Observer.changingInstr(MI); 1761 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1762 widenScalarDst(MI, WideTy); 1763 Observer.changedInstr(MI); 1764 return Legalized; 1765 1766 case TargetOpcode::G_ADD: 1767 case TargetOpcode::G_AND: 1768 case TargetOpcode::G_MUL: 1769 case TargetOpcode::G_OR: 1770 case TargetOpcode::G_XOR: 1771 case TargetOpcode::G_SUB: 1772 // Perform operation at larger width (any extension is fines here, high bits 1773 // don't affect the result) and then truncate the result back to the 1774 // original type. 1775 Observer.changingInstr(MI); 1776 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1777 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1778 widenScalarDst(MI, WideTy); 1779 Observer.changedInstr(MI); 1780 return Legalized; 1781 1782 case TargetOpcode::G_SHL: 1783 Observer.changingInstr(MI); 1784 1785 if (TypeIdx == 0) { 1786 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1787 widenScalarDst(MI, WideTy); 1788 } else { 1789 assert(TypeIdx == 1); 1790 // The "number of bits to shift" operand must preserve its value as an 1791 // unsigned integer: 1792 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1793 } 1794 1795 Observer.changedInstr(MI); 1796 return Legalized; 1797 1798 case TargetOpcode::G_SDIV: 1799 case TargetOpcode::G_SREM: 1800 case TargetOpcode::G_SMIN: 1801 case TargetOpcode::G_SMAX: 1802 Observer.changingInstr(MI); 1803 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1804 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1805 widenScalarDst(MI, WideTy); 1806 Observer.changedInstr(MI); 1807 return Legalized; 1808 1809 case TargetOpcode::G_ASHR: 1810 case TargetOpcode::G_LSHR: 1811 Observer.changingInstr(MI); 1812 1813 if (TypeIdx == 0) { 1814 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1815 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1816 1817 widenScalarSrc(MI, WideTy, 1, CvtOp); 1818 widenScalarDst(MI, WideTy); 1819 } else { 1820 assert(TypeIdx == 1); 1821 // The "number of bits to shift" operand must preserve its value as an 1822 // unsigned integer: 1823 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1824 } 1825 1826 Observer.changedInstr(MI); 1827 return Legalized; 1828 case TargetOpcode::G_UDIV: 1829 case TargetOpcode::G_UREM: 1830 case TargetOpcode::G_UMIN: 1831 case TargetOpcode::G_UMAX: 1832 Observer.changingInstr(MI); 1833 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1834 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1835 widenScalarDst(MI, WideTy); 1836 Observer.changedInstr(MI); 1837 return Legalized; 1838 1839 case TargetOpcode::G_SELECT: 1840 Observer.changingInstr(MI); 1841 if (TypeIdx == 0) { 1842 // Perform operation at larger width (any extension is fine here, high 1843 // bits don't affect the result) and then truncate the result back to the 1844 // original type. 1845 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1846 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1847 widenScalarDst(MI, WideTy); 1848 } else { 1849 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1850 // Explicit extension is required here since high bits affect the result. 1851 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1852 } 1853 Observer.changedInstr(MI); 1854 return Legalized; 1855 1856 case TargetOpcode::G_FPTOSI: 1857 case TargetOpcode::G_FPTOUI: 1858 Observer.changingInstr(MI); 1859 1860 if (TypeIdx == 0) 1861 widenScalarDst(MI, WideTy); 1862 else 1863 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1864 1865 Observer.changedInstr(MI); 1866 return Legalized; 1867 case TargetOpcode::G_SITOFP: 1868 if (TypeIdx != 1) 1869 return UnableToLegalize; 1870 Observer.changingInstr(MI); 1871 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1872 Observer.changedInstr(MI); 1873 return Legalized; 1874 1875 case TargetOpcode::G_UITOFP: 1876 if (TypeIdx != 1) 1877 return UnableToLegalize; 1878 Observer.changingInstr(MI); 1879 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1880 Observer.changedInstr(MI); 1881 return Legalized; 1882 1883 case TargetOpcode::G_LOAD: 1884 case TargetOpcode::G_SEXTLOAD: 1885 case TargetOpcode::G_ZEXTLOAD: 1886 Observer.changingInstr(MI); 1887 widenScalarDst(MI, WideTy); 1888 Observer.changedInstr(MI); 1889 return Legalized; 1890 1891 case TargetOpcode::G_STORE: { 1892 if (TypeIdx != 0) 1893 return UnableToLegalize; 1894 1895 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1896 if (!isPowerOf2_32(Ty.getSizeInBits())) 1897 return UnableToLegalize; 1898 1899 Observer.changingInstr(MI); 1900 1901 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1902 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1903 widenScalarSrc(MI, WideTy, 0, ExtType); 1904 1905 Observer.changedInstr(MI); 1906 return Legalized; 1907 } 1908 case TargetOpcode::G_CONSTANT: { 1909 MachineOperand &SrcMO = MI.getOperand(1); 1910 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1911 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1912 MRI.getType(MI.getOperand(0).getReg())); 1913 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1914 ExtOpc == TargetOpcode::G_ANYEXT) && 1915 "Illegal Extend"); 1916 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1917 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1918 ? SrcVal.sext(WideTy.getSizeInBits()) 1919 : SrcVal.zext(WideTy.getSizeInBits()); 1920 Observer.changingInstr(MI); 1921 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1922 1923 widenScalarDst(MI, WideTy); 1924 Observer.changedInstr(MI); 1925 return Legalized; 1926 } 1927 case TargetOpcode::G_FCONSTANT: { 1928 MachineOperand &SrcMO = MI.getOperand(1); 1929 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1930 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1931 bool LosesInfo; 1932 switch (WideTy.getSizeInBits()) { 1933 case 32: 1934 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1935 &LosesInfo); 1936 break; 1937 case 64: 1938 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1939 &LosesInfo); 1940 break; 1941 default: 1942 return UnableToLegalize; 1943 } 1944 1945 assert(!LosesInfo && "extend should always be lossless"); 1946 1947 Observer.changingInstr(MI); 1948 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1949 1950 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1951 Observer.changedInstr(MI); 1952 return Legalized; 1953 } 1954 case TargetOpcode::G_IMPLICIT_DEF: { 1955 Observer.changingInstr(MI); 1956 widenScalarDst(MI, WideTy); 1957 Observer.changedInstr(MI); 1958 return Legalized; 1959 } 1960 case TargetOpcode::G_BRCOND: 1961 Observer.changingInstr(MI); 1962 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1963 Observer.changedInstr(MI); 1964 return Legalized; 1965 1966 case TargetOpcode::G_FCMP: 1967 Observer.changingInstr(MI); 1968 if (TypeIdx == 0) 1969 widenScalarDst(MI, WideTy); 1970 else { 1971 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1972 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1973 } 1974 Observer.changedInstr(MI); 1975 return Legalized; 1976 1977 case TargetOpcode::G_ICMP: 1978 Observer.changingInstr(MI); 1979 if (TypeIdx == 0) 1980 widenScalarDst(MI, WideTy); 1981 else { 1982 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1983 MI.getOperand(1).getPredicate())) 1984 ? TargetOpcode::G_SEXT 1985 : TargetOpcode::G_ZEXT; 1986 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1987 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1988 } 1989 Observer.changedInstr(MI); 1990 return Legalized; 1991 1992 case TargetOpcode::G_PTR_ADD: 1993 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1994 Observer.changingInstr(MI); 1995 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1996 Observer.changedInstr(MI); 1997 return Legalized; 1998 1999 case TargetOpcode::G_PHI: { 2000 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2001 2002 Observer.changingInstr(MI); 2003 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2004 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2005 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2006 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2007 } 2008 2009 MachineBasicBlock &MBB = *MI.getParent(); 2010 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2011 widenScalarDst(MI, WideTy); 2012 Observer.changedInstr(MI); 2013 return Legalized; 2014 } 2015 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2016 if (TypeIdx == 0) { 2017 Register VecReg = MI.getOperand(1).getReg(); 2018 LLT VecTy = MRI.getType(VecReg); 2019 Observer.changingInstr(MI); 2020 2021 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2022 WideTy.getSizeInBits()), 2023 1, TargetOpcode::G_SEXT); 2024 2025 widenScalarDst(MI, WideTy, 0); 2026 Observer.changedInstr(MI); 2027 return Legalized; 2028 } 2029 2030 if (TypeIdx != 2) 2031 return UnableToLegalize; 2032 Observer.changingInstr(MI); 2033 // TODO: Probably should be zext 2034 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2035 Observer.changedInstr(MI); 2036 return Legalized; 2037 } 2038 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2039 if (TypeIdx == 1) { 2040 Observer.changingInstr(MI); 2041 2042 Register VecReg = MI.getOperand(1).getReg(); 2043 LLT VecTy = MRI.getType(VecReg); 2044 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2045 2046 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2047 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2048 widenScalarDst(MI, WideVecTy, 0); 2049 Observer.changedInstr(MI); 2050 return Legalized; 2051 } 2052 2053 if (TypeIdx == 2) { 2054 Observer.changingInstr(MI); 2055 // TODO: Probably should be zext 2056 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2057 Observer.changedInstr(MI); 2058 } 2059 2060 return Legalized; 2061 } 2062 case TargetOpcode::G_FADD: 2063 case TargetOpcode::G_FMUL: 2064 case TargetOpcode::G_FSUB: 2065 case TargetOpcode::G_FMA: 2066 case TargetOpcode::G_FMAD: 2067 case TargetOpcode::G_FNEG: 2068 case TargetOpcode::G_FABS: 2069 case TargetOpcode::G_FCANONICALIZE: 2070 case TargetOpcode::G_FMINNUM: 2071 case TargetOpcode::G_FMAXNUM: 2072 case TargetOpcode::G_FMINNUM_IEEE: 2073 case TargetOpcode::G_FMAXNUM_IEEE: 2074 case TargetOpcode::G_FMINIMUM: 2075 case TargetOpcode::G_FMAXIMUM: 2076 case TargetOpcode::G_FDIV: 2077 case TargetOpcode::G_FREM: 2078 case TargetOpcode::G_FCEIL: 2079 case TargetOpcode::G_FFLOOR: 2080 case TargetOpcode::G_FCOS: 2081 case TargetOpcode::G_FSIN: 2082 case TargetOpcode::G_FLOG10: 2083 case TargetOpcode::G_FLOG: 2084 case TargetOpcode::G_FLOG2: 2085 case TargetOpcode::G_FRINT: 2086 case TargetOpcode::G_FNEARBYINT: 2087 case TargetOpcode::G_FSQRT: 2088 case TargetOpcode::G_FEXP: 2089 case TargetOpcode::G_FEXP2: 2090 case TargetOpcode::G_FPOW: 2091 case TargetOpcode::G_INTRINSIC_TRUNC: 2092 case TargetOpcode::G_INTRINSIC_ROUND: 2093 assert(TypeIdx == 0); 2094 Observer.changingInstr(MI); 2095 2096 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2097 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2098 2099 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2100 Observer.changedInstr(MI); 2101 return Legalized; 2102 case TargetOpcode::G_INTTOPTR: 2103 if (TypeIdx != 1) 2104 return UnableToLegalize; 2105 2106 Observer.changingInstr(MI); 2107 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2108 Observer.changedInstr(MI); 2109 return Legalized; 2110 case TargetOpcode::G_PTRTOINT: 2111 if (TypeIdx != 0) 2112 return UnableToLegalize; 2113 2114 Observer.changingInstr(MI); 2115 widenScalarDst(MI, WideTy, 0); 2116 Observer.changedInstr(MI); 2117 return Legalized; 2118 case TargetOpcode::G_BUILD_VECTOR: { 2119 Observer.changingInstr(MI); 2120 2121 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2122 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2123 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2124 2125 // Avoid changing the result vector type if the source element type was 2126 // requested. 2127 if (TypeIdx == 1) { 2128 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2129 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2130 } else { 2131 widenScalarDst(MI, WideTy, 0); 2132 } 2133 2134 Observer.changedInstr(MI); 2135 return Legalized; 2136 } 2137 case TargetOpcode::G_SEXT_INREG: 2138 if (TypeIdx != 0) 2139 return UnableToLegalize; 2140 2141 Observer.changingInstr(MI); 2142 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2143 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2144 Observer.changedInstr(MI); 2145 return Legalized; 2146 } 2147 } 2148 2149 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2150 MachineIRBuilder &B, Register Src, LLT Ty) { 2151 auto Unmerge = B.buildUnmerge(Ty, Src); 2152 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2153 Pieces.push_back(Unmerge.getReg(I)); 2154 } 2155 2156 LegalizerHelper::LegalizeResult 2157 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2158 Register Dst = MI.getOperand(0).getReg(); 2159 Register Src = MI.getOperand(1).getReg(); 2160 LLT DstTy = MRI.getType(Dst); 2161 LLT SrcTy = MRI.getType(Src); 2162 2163 if (SrcTy.isVector() && !DstTy.isVector()) { 2164 SmallVector<Register, 8> SrcRegs; 2165 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2166 MIRBuilder.buildMerge(Dst, SrcRegs); 2167 MI.eraseFromParent(); 2168 return Legalized; 2169 } 2170 2171 if (DstTy.isVector() && !SrcTy.isVector()) { 2172 SmallVector<Register, 8> SrcRegs; 2173 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2174 MIRBuilder.buildMerge(Dst, SrcRegs); 2175 MI.eraseFromParent(); 2176 return Legalized; 2177 } 2178 2179 return UnableToLegalize; 2180 } 2181 2182 LegalizerHelper::LegalizeResult 2183 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2184 MIRBuilder.setInstr(MI); 2185 2186 switch (MI.getOpcode()) { 2187 case TargetOpcode::G_LOAD: { 2188 if (TypeIdx != 0) 2189 return UnableToLegalize; 2190 2191 Observer.changingInstr(MI); 2192 bitcastDst(MI, CastTy, 0); 2193 Observer.changedInstr(MI); 2194 return Legalized; 2195 } 2196 case TargetOpcode::G_STORE: { 2197 if (TypeIdx != 0) 2198 return UnableToLegalize; 2199 2200 Observer.changingInstr(MI); 2201 bitcastSrc(MI, CastTy, 0); 2202 Observer.changedInstr(MI); 2203 return Legalized; 2204 } 2205 case TargetOpcode::G_SELECT: { 2206 if (TypeIdx != 0) 2207 return UnableToLegalize; 2208 2209 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2210 LLVM_DEBUG( 2211 dbgs() << "bitcast action not implemented for vector select\n"); 2212 return UnableToLegalize; 2213 } 2214 2215 Observer.changingInstr(MI); 2216 bitcastSrc(MI, CastTy, 2); 2217 bitcastSrc(MI, CastTy, 3); 2218 bitcastDst(MI, CastTy, 0); 2219 Observer.changedInstr(MI); 2220 return Legalized; 2221 } 2222 case TargetOpcode::G_AND: 2223 case TargetOpcode::G_OR: 2224 case TargetOpcode::G_XOR: { 2225 Observer.changingInstr(MI); 2226 bitcastSrc(MI, CastTy, 1); 2227 bitcastSrc(MI, CastTy, 2); 2228 bitcastDst(MI, CastTy, 0); 2229 Observer.changedInstr(MI); 2230 return Legalized; 2231 } 2232 default: 2233 return UnableToLegalize; 2234 } 2235 } 2236 2237 LegalizerHelper::LegalizeResult 2238 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2239 using namespace TargetOpcode; 2240 MIRBuilder.setInstrAndDebugLoc(MI); 2241 2242 switch(MI.getOpcode()) { 2243 default: 2244 return UnableToLegalize; 2245 case TargetOpcode::G_BITCAST: 2246 return lowerBitcast(MI); 2247 case TargetOpcode::G_SREM: 2248 case TargetOpcode::G_UREM: { 2249 auto Quot = 2250 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2251 {MI.getOperand(1), MI.getOperand(2)}); 2252 2253 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2254 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2255 MI.eraseFromParent(); 2256 return Legalized; 2257 } 2258 case TargetOpcode::G_SADDO: 2259 case TargetOpcode::G_SSUBO: 2260 return lowerSADDO_SSUBO(MI); 2261 case TargetOpcode::G_SMULO: 2262 case TargetOpcode::G_UMULO: { 2263 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2264 // result. 2265 Register Res = MI.getOperand(0).getReg(); 2266 Register Overflow = MI.getOperand(1).getReg(); 2267 Register LHS = MI.getOperand(2).getReg(); 2268 Register RHS = MI.getOperand(3).getReg(); 2269 2270 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2271 ? TargetOpcode::G_SMULH 2272 : TargetOpcode::G_UMULH; 2273 2274 Observer.changingInstr(MI); 2275 const auto &TII = MIRBuilder.getTII(); 2276 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2277 MI.RemoveOperand(1); 2278 Observer.changedInstr(MI); 2279 2280 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2281 2282 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2283 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2284 2285 // For *signed* multiply, overflow is detected by checking: 2286 // (hi != (lo >> bitwidth-1)) 2287 if (Opcode == TargetOpcode::G_SMULH) { 2288 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2289 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2290 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2291 } else { 2292 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2293 } 2294 return Legalized; 2295 } 2296 case TargetOpcode::G_FNEG: { 2297 // TODO: Handle vector types once we are able to 2298 // represent them. 2299 if (Ty.isVector()) 2300 return UnableToLegalize; 2301 Register Res = MI.getOperand(0).getReg(); 2302 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2303 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2304 if (!ZeroTy) 2305 return UnableToLegalize; 2306 ConstantFP &ZeroForNegation = 2307 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2308 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2309 Register SubByReg = MI.getOperand(1).getReg(); 2310 Register ZeroReg = Zero.getReg(0); 2311 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2312 MI.eraseFromParent(); 2313 return Legalized; 2314 } 2315 case TargetOpcode::G_FSUB: { 2316 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2317 // First, check if G_FNEG is marked as Lower. If so, we may 2318 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2319 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2320 return UnableToLegalize; 2321 Register Res = MI.getOperand(0).getReg(); 2322 Register LHS = MI.getOperand(1).getReg(); 2323 Register RHS = MI.getOperand(2).getReg(); 2324 Register Neg = MRI.createGenericVirtualRegister(Ty); 2325 MIRBuilder.buildFNeg(Neg, RHS); 2326 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2327 MI.eraseFromParent(); 2328 return Legalized; 2329 } 2330 case TargetOpcode::G_FMAD: 2331 return lowerFMad(MI); 2332 case TargetOpcode::G_FFLOOR: 2333 return lowerFFloor(MI); 2334 case TargetOpcode::G_INTRINSIC_ROUND: 2335 return lowerIntrinsicRound(MI); 2336 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2337 Register OldValRes = MI.getOperand(0).getReg(); 2338 Register SuccessRes = MI.getOperand(1).getReg(); 2339 Register Addr = MI.getOperand(2).getReg(); 2340 Register CmpVal = MI.getOperand(3).getReg(); 2341 Register NewVal = MI.getOperand(4).getReg(); 2342 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2343 **MI.memoperands_begin()); 2344 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2345 MI.eraseFromParent(); 2346 return Legalized; 2347 } 2348 case TargetOpcode::G_LOAD: 2349 case TargetOpcode::G_SEXTLOAD: 2350 case TargetOpcode::G_ZEXTLOAD: { 2351 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2352 Register DstReg = MI.getOperand(0).getReg(); 2353 Register PtrReg = MI.getOperand(1).getReg(); 2354 LLT DstTy = MRI.getType(DstReg); 2355 auto &MMO = **MI.memoperands_begin(); 2356 2357 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2358 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2359 // This load needs splitting into power of 2 sized loads. 2360 if (DstTy.isVector()) 2361 return UnableToLegalize; 2362 if (isPowerOf2_32(DstTy.getSizeInBits())) 2363 return UnableToLegalize; // Don't know what we're being asked to do. 2364 2365 // Our strategy here is to generate anyextending loads for the smaller 2366 // types up to next power-2 result type, and then combine the two larger 2367 // result values together, before truncating back down to the non-pow-2 2368 // type. 2369 // E.g. v1 = i24 load => 2370 // v2 = i32 zextload (2 byte) 2371 // v3 = i32 load (1 byte) 2372 // v4 = i32 shl v3, 16 2373 // v5 = i32 or v4, v2 2374 // v1 = i24 trunc v5 2375 // By doing this we generate the correct truncate which should get 2376 // combined away as an artifact with a matching extend. 2377 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2378 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2379 2380 MachineFunction &MF = MIRBuilder.getMF(); 2381 MachineMemOperand *LargeMMO = 2382 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2383 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2384 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2385 2386 LLT PtrTy = MRI.getType(PtrReg); 2387 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2388 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2389 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2390 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2391 auto LargeLoad = MIRBuilder.buildLoadInstr( 2392 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2393 2394 auto OffsetCst = MIRBuilder.buildConstant( 2395 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2396 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2397 auto SmallPtr = 2398 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2399 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2400 *SmallMMO); 2401 2402 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2403 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2404 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2405 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2406 MI.eraseFromParent(); 2407 return Legalized; 2408 } 2409 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2410 MI.eraseFromParent(); 2411 return Legalized; 2412 } 2413 2414 if (DstTy.isScalar()) { 2415 Register TmpReg = 2416 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2417 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2418 switch (MI.getOpcode()) { 2419 default: 2420 llvm_unreachable("Unexpected opcode"); 2421 case TargetOpcode::G_LOAD: 2422 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2423 break; 2424 case TargetOpcode::G_SEXTLOAD: 2425 MIRBuilder.buildSExt(DstReg, TmpReg); 2426 break; 2427 case TargetOpcode::G_ZEXTLOAD: 2428 MIRBuilder.buildZExt(DstReg, TmpReg); 2429 break; 2430 } 2431 MI.eraseFromParent(); 2432 return Legalized; 2433 } 2434 2435 return UnableToLegalize; 2436 } 2437 case TargetOpcode::G_STORE: { 2438 // Lower a non-power of 2 store into multiple pow-2 stores. 2439 // E.g. split an i24 store into an i16 store + i8 store. 2440 // We do this by first extending the stored value to the next largest power 2441 // of 2 type, and then using truncating stores to store the components. 2442 // By doing this, likewise with G_LOAD, generate an extend that can be 2443 // artifact-combined away instead of leaving behind extracts. 2444 Register SrcReg = MI.getOperand(0).getReg(); 2445 Register PtrReg = MI.getOperand(1).getReg(); 2446 LLT SrcTy = MRI.getType(SrcReg); 2447 MachineMemOperand &MMO = **MI.memoperands_begin(); 2448 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2449 return UnableToLegalize; 2450 if (SrcTy.isVector()) 2451 return UnableToLegalize; 2452 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2453 return UnableToLegalize; // Don't know what we're being asked to do. 2454 2455 // Extend to the next pow-2. 2456 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2457 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2458 2459 // Obtain the smaller value by shifting away the larger value. 2460 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2461 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2462 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2463 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2464 2465 // Generate the PtrAdd and truncating stores. 2466 LLT PtrTy = MRI.getType(PtrReg); 2467 auto OffsetCst = MIRBuilder.buildConstant( 2468 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2469 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2470 auto SmallPtr = 2471 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2472 2473 MachineFunction &MF = MIRBuilder.getMF(); 2474 MachineMemOperand *LargeMMO = 2475 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2476 MachineMemOperand *SmallMMO = 2477 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2478 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2479 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2480 MI.eraseFromParent(); 2481 return Legalized; 2482 } 2483 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2484 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2485 case TargetOpcode::G_CTLZ: 2486 case TargetOpcode::G_CTTZ: 2487 case TargetOpcode::G_CTPOP: 2488 return lowerBitCount(MI, TypeIdx, Ty); 2489 case G_UADDO: { 2490 Register Res = MI.getOperand(0).getReg(); 2491 Register CarryOut = MI.getOperand(1).getReg(); 2492 Register LHS = MI.getOperand(2).getReg(); 2493 Register RHS = MI.getOperand(3).getReg(); 2494 2495 MIRBuilder.buildAdd(Res, LHS, RHS); 2496 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2497 2498 MI.eraseFromParent(); 2499 return Legalized; 2500 } 2501 case G_UADDE: { 2502 Register Res = MI.getOperand(0).getReg(); 2503 Register CarryOut = MI.getOperand(1).getReg(); 2504 Register LHS = MI.getOperand(2).getReg(); 2505 Register RHS = MI.getOperand(3).getReg(); 2506 Register CarryIn = MI.getOperand(4).getReg(); 2507 LLT Ty = MRI.getType(Res); 2508 2509 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2510 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2511 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2512 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2513 2514 MI.eraseFromParent(); 2515 return Legalized; 2516 } 2517 case G_USUBO: { 2518 Register Res = MI.getOperand(0).getReg(); 2519 Register BorrowOut = MI.getOperand(1).getReg(); 2520 Register LHS = MI.getOperand(2).getReg(); 2521 Register RHS = MI.getOperand(3).getReg(); 2522 2523 MIRBuilder.buildSub(Res, LHS, RHS); 2524 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2525 2526 MI.eraseFromParent(); 2527 return Legalized; 2528 } 2529 case G_USUBE: { 2530 Register Res = MI.getOperand(0).getReg(); 2531 Register BorrowOut = MI.getOperand(1).getReg(); 2532 Register LHS = MI.getOperand(2).getReg(); 2533 Register RHS = MI.getOperand(3).getReg(); 2534 Register BorrowIn = MI.getOperand(4).getReg(); 2535 const LLT CondTy = MRI.getType(BorrowOut); 2536 const LLT Ty = MRI.getType(Res); 2537 2538 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2539 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2540 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2541 2542 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2543 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2544 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2545 2546 MI.eraseFromParent(); 2547 return Legalized; 2548 } 2549 case G_UITOFP: 2550 return lowerUITOFP(MI, TypeIdx, Ty); 2551 case G_SITOFP: 2552 return lowerSITOFP(MI, TypeIdx, Ty); 2553 case G_FPTOUI: 2554 return lowerFPTOUI(MI, TypeIdx, Ty); 2555 case G_FPTOSI: 2556 return lowerFPTOSI(MI); 2557 case G_FPTRUNC: 2558 return lowerFPTRUNC(MI, TypeIdx, Ty); 2559 case G_SMIN: 2560 case G_SMAX: 2561 case G_UMIN: 2562 case G_UMAX: 2563 return lowerMinMax(MI, TypeIdx, Ty); 2564 case G_FCOPYSIGN: 2565 return lowerFCopySign(MI, TypeIdx, Ty); 2566 case G_FMINNUM: 2567 case G_FMAXNUM: 2568 return lowerFMinNumMaxNum(MI); 2569 case G_MERGE_VALUES: 2570 return lowerMergeValues(MI); 2571 case G_UNMERGE_VALUES: 2572 return lowerUnmergeValues(MI); 2573 case TargetOpcode::G_SEXT_INREG: { 2574 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2575 int64_t SizeInBits = MI.getOperand(2).getImm(); 2576 2577 Register DstReg = MI.getOperand(0).getReg(); 2578 Register SrcReg = MI.getOperand(1).getReg(); 2579 LLT DstTy = MRI.getType(DstReg); 2580 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2581 2582 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2583 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2584 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2585 MI.eraseFromParent(); 2586 return Legalized; 2587 } 2588 case G_SHUFFLE_VECTOR: 2589 return lowerShuffleVector(MI); 2590 case G_DYN_STACKALLOC: 2591 return lowerDynStackAlloc(MI); 2592 case G_EXTRACT: 2593 return lowerExtract(MI); 2594 case G_INSERT: 2595 return lowerInsert(MI); 2596 case G_BSWAP: 2597 return lowerBswap(MI); 2598 case G_BITREVERSE: 2599 return lowerBitreverse(MI); 2600 case G_READ_REGISTER: 2601 case G_WRITE_REGISTER: 2602 return lowerReadWriteRegister(MI); 2603 } 2604 } 2605 2606 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2607 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2608 SmallVector<Register, 2> DstRegs; 2609 2610 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2611 Register DstReg = MI.getOperand(0).getReg(); 2612 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2613 int NumParts = Size / NarrowSize; 2614 // FIXME: Don't know how to handle the situation where the small vectors 2615 // aren't all the same size yet. 2616 if (Size % NarrowSize != 0) 2617 return UnableToLegalize; 2618 2619 for (int i = 0; i < NumParts; ++i) { 2620 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2621 MIRBuilder.buildUndef(TmpReg); 2622 DstRegs.push_back(TmpReg); 2623 } 2624 2625 if (NarrowTy.isVector()) 2626 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2627 else 2628 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2629 2630 MI.eraseFromParent(); 2631 return Legalized; 2632 } 2633 2634 // Handle splitting vector operations which need to have the same number of 2635 // elements in each type index, but each type index may have a different element 2636 // type. 2637 // 2638 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2639 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2640 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2641 // 2642 // Also handles some irregular breakdown cases, e.g. 2643 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2644 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2645 // s64 = G_SHL s64, s32 2646 LegalizerHelper::LegalizeResult 2647 LegalizerHelper::fewerElementsVectorMultiEltType( 2648 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2649 if (TypeIdx != 0) 2650 return UnableToLegalize; 2651 2652 const LLT NarrowTy0 = NarrowTyArg; 2653 const unsigned NewNumElts = 2654 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2655 2656 const Register DstReg = MI.getOperand(0).getReg(); 2657 LLT DstTy = MRI.getType(DstReg); 2658 LLT LeftoverTy0; 2659 2660 // All of the operands need to have the same number of elements, so if we can 2661 // determine a type breakdown for the result type, we can for all of the 2662 // source types. 2663 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2664 if (NumParts < 0) 2665 return UnableToLegalize; 2666 2667 SmallVector<MachineInstrBuilder, 4> NewInsts; 2668 2669 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2670 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2671 2672 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2673 LLT LeftoverTy; 2674 Register SrcReg = MI.getOperand(I).getReg(); 2675 LLT SrcTyI = MRI.getType(SrcReg); 2676 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2677 LLT LeftoverTyI; 2678 2679 // Split this operand into the requested typed registers, and any leftover 2680 // required to reproduce the original type. 2681 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2682 LeftoverRegs)) 2683 return UnableToLegalize; 2684 2685 if (I == 1) { 2686 // For the first operand, create an instruction for each part and setup 2687 // the result. 2688 for (Register PartReg : PartRegs) { 2689 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2690 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2691 .addDef(PartDstReg) 2692 .addUse(PartReg)); 2693 DstRegs.push_back(PartDstReg); 2694 } 2695 2696 for (Register LeftoverReg : LeftoverRegs) { 2697 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2698 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2699 .addDef(PartDstReg) 2700 .addUse(LeftoverReg)); 2701 LeftoverDstRegs.push_back(PartDstReg); 2702 } 2703 } else { 2704 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2705 2706 // Add the newly created operand splits to the existing instructions. The 2707 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2708 // pieces. 2709 unsigned InstCount = 0; 2710 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2711 NewInsts[InstCount++].addUse(PartRegs[J]); 2712 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2713 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2714 } 2715 2716 PartRegs.clear(); 2717 LeftoverRegs.clear(); 2718 } 2719 2720 // Insert the newly built operations and rebuild the result register. 2721 for (auto &MIB : NewInsts) 2722 MIRBuilder.insertInstr(MIB); 2723 2724 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2725 2726 MI.eraseFromParent(); 2727 return Legalized; 2728 } 2729 2730 LegalizerHelper::LegalizeResult 2731 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2732 LLT NarrowTy) { 2733 if (TypeIdx != 0) 2734 return UnableToLegalize; 2735 2736 Register DstReg = MI.getOperand(0).getReg(); 2737 Register SrcReg = MI.getOperand(1).getReg(); 2738 LLT DstTy = MRI.getType(DstReg); 2739 LLT SrcTy = MRI.getType(SrcReg); 2740 2741 LLT NarrowTy0 = NarrowTy; 2742 LLT NarrowTy1; 2743 unsigned NumParts; 2744 2745 if (NarrowTy.isVector()) { 2746 // Uneven breakdown not handled. 2747 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2748 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2749 return UnableToLegalize; 2750 2751 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2752 } else { 2753 NumParts = DstTy.getNumElements(); 2754 NarrowTy1 = SrcTy.getElementType(); 2755 } 2756 2757 SmallVector<Register, 4> SrcRegs, DstRegs; 2758 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2759 2760 for (unsigned I = 0; I < NumParts; ++I) { 2761 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2762 MachineInstr *NewInst = 2763 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2764 2765 NewInst->setFlags(MI.getFlags()); 2766 DstRegs.push_back(DstReg); 2767 } 2768 2769 if (NarrowTy.isVector()) 2770 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2771 else 2772 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2773 2774 MI.eraseFromParent(); 2775 return Legalized; 2776 } 2777 2778 LegalizerHelper::LegalizeResult 2779 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2780 LLT NarrowTy) { 2781 Register DstReg = MI.getOperand(0).getReg(); 2782 Register Src0Reg = MI.getOperand(2).getReg(); 2783 LLT DstTy = MRI.getType(DstReg); 2784 LLT SrcTy = MRI.getType(Src0Reg); 2785 2786 unsigned NumParts; 2787 LLT NarrowTy0, NarrowTy1; 2788 2789 if (TypeIdx == 0) { 2790 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2791 unsigned OldElts = DstTy.getNumElements(); 2792 2793 NarrowTy0 = NarrowTy; 2794 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2795 NarrowTy1 = NarrowTy.isVector() ? 2796 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2797 SrcTy.getElementType(); 2798 2799 } else { 2800 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2801 unsigned OldElts = SrcTy.getNumElements(); 2802 2803 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2804 NarrowTy.getNumElements(); 2805 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2806 DstTy.getScalarSizeInBits()); 2807 NarrowTy1 = NarrowTy; 2808 } 2809 2810 // FIXME: Don't know how to handle the situation where the small vectors 2811 // aren't all the same size yet. 2812 if (NarrowTy1.isVector() && 2813 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2814 return UnableToLegalize; 2815 2816 CmpInst::Predicate Pred 2817 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2818 2819 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2820 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2821 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2822 2823 for (unsigned I = 0; I < NumParts; ++I) { 2824 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2825 DstRegs.push_back(DstReg); 2826 2827 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2828 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2829 else { 2830 MachineInstr *NewCmp 2831 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2832 NewCmp->setFlags(MI.getFlags()); 2833 } 2834 } 2835 2836 if (NarrowTy1.isVector()) 2837 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2838 else 2839 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2840 2841 MI.eraseFromParent(); 2842 return Legalized; 2843 } 2844 2845 LegalizerHelper::LegalizeResult 2846 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2847 LLT NarrowTy) { 2848 Register DstReg = MI.getOperand(0).getReg(); 2849 Register CondReg = MI.getOperand(1).getReg(); 2850 2851 unsigned NumParts = 0; 2852 LLT NarrowTy0, NarrowTy1; 2853 2854 LLT DstTy = MRI.getType(DstReg); 2855 LLT CondTy = MRI.getType(CondReg); 2856 unsigned Size = DstTy.getSizeInBits(); 2857 2858 assert(TypeIdx == 0 || CondTy.isVector()); 2859 2860 if (TypeIdx == 0) { 2861 NarrowTy0 = NarrowTy; 2862 NarrowTy1 = CondTy; 2863 2864 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2865 // FIXME: Don't know how to handle the situation where the small vectors 2866 // aren't all the same size yet. 2867 if (Size % NarrowSize != 0) 2868 return UnableToLegalize; 2869 2870 NumParts = Size / NarrowSize; 2871 2872 // Need to break down the condition type 2873 if (CondTy.isVector()) { 2874 if (CondTy.getNumElements() == NumParts) 2875 NarrowTy1 = CondTy.getElementType(); 2876 else 2877 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2878 CondTy.getScalarSizeInBits()); 2879 } 2880 } else { 2881 NumParts = CondTy.getNumElements(); 2882 if (NarrowTy.isVector()) { 2883 // TODO: Handle uneven breakdown. 2884 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2885 return UnableToLegalize; 2886 2887 return UnableToLegalize; 2888 } else { 2889 NarrowTy0 = DstTy.getElementType(); 2890 NarrowTy1 = NarrowTy; 2891 } 2892 } 2893 2894 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2895 if (CondTy.isVector()) 2896 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2897 2898 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2899 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2900 2901 for (unsigned i = 0; i < NumParts; ++i) { 2902 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2903 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2904 Src1Regs[i], Src2Regs[i]); 2905 DstRegs.push_back(DstReg); 2906 } 2907 2908 if (NarrowTy0.isVector()) 2909 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2910 else 2911 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2912 2913 MI.eraseFromParent(); 2914 return Legalized; 2915 } 2916 2917 LegalizerHelper::LegalizeResult 2918 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2919 LLT NarrowTy) { 2920 const Register DstReg = MI.getOperand(0).getReg(); 2921 LLT PhiTy = MRI.getType(DstReg); 2922 LLT LeftoverTy; 2923 2924 // All of the operands need to have the same number of elements, so if we can 2925 // determine a type breakdown for the result type, we can for all of the 2926 // source types. 2927 int NumParts, NumLeftover; 2928 std::tie(NumParts, NumLeftover) 2929 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2930 if (NumParts < 0) 2931 return UnableToLegalize; 2932 2933 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2934 SmallVector<MachineInstrBuilder, 4> NewInsts; 2935 2936 const int TotalNumParts = NumParts + NumLeftover; 2937 2938 // Insert the new phis in the result block first. 2939 for (int I = 0; I != TotalNumParts; ++I) { 2940 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2941 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2942 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2943 .addDef(PartDstReg)); 2944 if (I < NumParts) 2945 DstRegs.push_back(PartDstReg); 2946 else 2947 LeftoverDstRegs.push_back(PartDstReg); 2948 } 2949 2950 MachineBasicBlock *MBB = MI.getParent(); 2951 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2952 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2953 2954 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2955 2956 // Insert code to extract the incoming values in each predecessor block. 2957 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2958 PartRegs.clear(); 2959 LeftoverRegs.clear(); 2960 2961 Register SrcReg = MI.getOperand(I).getReg(); 2962 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2963 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2964 2965 LLT Unused; 2966 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2967 LeftoverRegs)) 2968 return UnableToLegalize; 2969 2970 // Add the newly created operand splits to the existing instructions. The 2971 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2972 // pieces. 2973 for (int J = 0; J != TotalNumParts; ++J) { 2974 MachineInstrBuilder MIB = NewInsts[J]; 2975 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2976 MIB.addMBB(&OpMBB); 2977 } 2978 } 2979 2980 MI.eraseFromParent(); 2981 return Legalized; 2982 } 2983 2984 LegalizerHelper::LegalizeResult 2985 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2986 unsigned TypeIdx, 2987 LLT NarrowTy) { 2988 if (TypeIdx != 1) 2989 return UnableToLegalize; 2990 2991 const int NumDst = MI.getNumOperands() - 1; 2992 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2993 LLT SrcTy = MRI.getType(SrcReg); 2994 2995 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2996 2997 // TODO: Create sequence of extracts. 2998 if (DstTy == NarrowTy) 2999 return UnableToLegalize; 3000 3001 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3002 if (DstTy == GCDTy) { 3003 // This would just be a copy of the same unmerge. 3004 // TODO: Create extracts, pad with undef and create intermediate merges. 3005 return UnableToLegalize; 3006 } 3007 3008 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3009 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3010 const int PartsPerUnmerge = NumDst / NumUnmerge; 3011 3012 for (int I = 0; I != NumUnmerge; ++I) { 3013 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3014 3015 for (int J = 0; J != PartsPerUnmerge; ++J) 3016 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3017 MIB.addUse(Unmerge.getReg(I)); 3018 } 3019 3020 MI.eraseFromParent(); 3021 return Legalized; 3022 } 3023 3024 LegalizerHelper::LegalizeResult 3025 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3026 unsigned TypeIdx, 3027 LLT NarrowTy) { 3028 assert(TypeIdx == 0 && "not a vector type index"); 3029 Register DstReg = MI.getOperand(0).getReg(); 3030 LLT DstTy = MRI.getType(DstReg); 3031 LLT SrcTy = DstTy.getElementType(); 3032 3033 int DstNumElts = DstTy.getNumElements(); 3034 int NarrowNumElts = NarrowTy.getNumElements(); 3035 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3036 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3037 3038 SmallVector<Register, 8> ConcatOps; 3039 SmallVector<Register, 8> SubBuildVector; 3040 3041 Register UndefReg; 3042 if (WidenedDstTy != DstTy) 3043 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3044 3045 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3046 // necessary. 3047 // 3048 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3049 // -> <2 x s16> 3050 // 3051 // %4:_(s16) = G_IMPLICIT_DEF 3052 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3053 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3054 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3055 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3056 for (int I = 0; I != NumConcat; ++I) { 3057 for (int J = 0; J != NarrowNumElts; ++J) { 3058 int SrcIdx = NarrowNumElts * I + J; 3059 3060 if (SrcIdx < DstNumElts) { 3061 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3062 SubBuildVector.push_back(SrcReg); 3063 } else 3064 SubBuildVector.push_back(UndefReg); 3065 } 3066 3067 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3068 ConcatOps.push_back(BuildVec.getReg(0)); 3069 SubBuildVector.clear(); 3070 } 3071 3072 if (DstTy == WidenedDstTy) 3073 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3074 else { 3075 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3076 MIRBuilder.buildExtract(DstReg, Concat, 0); 3077 } 3078 3079 MI.eraseFromParent(); 3080 return Legalized; 3081 } 3082 3083 LegalizerHelper::LegalizeResult 3084 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3085 LLT NarrowTy) { 3086 // FIXME: Don't know how to handle secondary types yet. 3087 if (TypeIdx != 0) 3088 return UnableToLegalize; 3089 3090 MachineMemOperand *MMO = *MI.memoperands_begin(); 3091 3092 // This implementation doesn't work for atomics. Give up instead of doing 3093 // something invalid. 3094 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3095 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3096 return UnableToLegalize; 3097 3098 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3099 Register ValReg = MI.getOperand(0).getReg(); 3100 Register AddrReg = MI.getOperand(1).getReg(); 3101 LLT ValTy = MRI.getType(ValReg); 3102 3103 // FIXME: Do we need a distinct NarrowMemory legalize action? 3104 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3105 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3106 return UnableToLegalize; 3107 } 3108 3109 int NumParts = -1; 3110 int NumLeftover = -1; 3111 LLT LeftoverTy; 3112 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3113 if (IsLoad) { 3114 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3115 } else { 3116 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3117 NarrowLeftoverRegs)) { 3118 NumParts = NarrowRegs.size(); 3119 NumLeftover = NarrowLeftoverRegs.size(); 3120 } 3121 } 3122 3123 if (NumParts == -1) 3124 return UnableToLegalize; 3125 3126 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3127 3128 unsigned TotalSize = ValTy.getSizeInBits(); 3129 3130 // Split the load/store into PartTy sized pieces starting at Offset. If this 3131 // is a load, return the new registers in ValRegs. For a store, each elements 3132 // of ValRegs should be PartTy. Returns the next offset that needs to be 3133 // handled. 3134 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3135 unsigned Offset) -> unsigned { 3136 MachineFunction &MF = MIRBuilder.getMF(); 3137 unsigned PartSize = PartTy.getSizeInBits(); 3138 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3139 Offset += PartSize, ++Idx) { 3140 unsigned ByteSize = PartSize / 8; 3141 unsigned ByteOffset = Offset / 8; 3142 Register NewAddrReg; 3143 3144 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3145 3146 MachineMemOperand *NewMMO = 3147 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3148 3149 if (IsLoad) { 3150 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3151 ValRegs.push_back(Dst); 3152 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3153 } else { 3154 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3155 } 3156 } 3157 3158 return Offset; 3159 }; 3160 3161 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3162 3163 // Handle the rest of the register if this isn't an even type breakdown. 3164 if (LeftoverTy.isValid()) 3165 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3166 3167 if (IsLoad) { 3168 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3169 LeftoverTy, NarrowLeftoverRegs); 3170 } 3171 3172 MI.eraseFromParent(); 3173 return Legalized; 3174 } 3175 3176 LegalizerHelper::LegalizeResult 3177 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3178 LLT NarrowTy) { 3179 assert(TypeIdx == 0 && "only one type index expected"); 3180 3181 const unsigned Opc = MI.getOpcode(); 3182 const int NumOps = MI.getNumOperands() - 1; 3183 const Register DstReg = MI.getOperand(0).getReg(); 3184 const unsigned Flags = MI.getFlags(); 3185 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3186 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3187 3188 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3189 3190 // First of all check whether we are narrowing (changing the element type) 3191 // or reducing the vector elements 3192 const LLT DstTy = MRI.getType(DstReg); 3193 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3194 3195 SmallVector<Register, 8> ExtractedRegs[3]; 3196 SmallVector<Register, 8> Parts; 3197 3198 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3199 3200 // Break down all the sources into NarrowTy pieces we can operate on. This may 3201 // involve creating merges to a wider type, padded with undef. 3202 for (int I = 0; I != NumOps; ++I) { 3203 Register SrcReg = MI.getOperand(I + 1).getReg(); 3204 LLT SrcTy = MRI.getType(SrcReg); 3205 3206 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3207 // For fewerElements, this is a smaller vector with the same element type. 3208 LLT OpNarrowTy; 3209 if (IsNarrow) { 3210 OpNarrowTy = NarrowScalarTy; 3211 3212 // In case of narrowing, we need to cast vectors to scalars for this to 3213 // work properly 3214 // FIXME: Can we do without the bitcast here if we're narrowing? 3215 if (SrcTy.isVector()) { 3216 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3217 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3218 } 3219 } else { 3220 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3221 } 3222 3223 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3224 3225 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3226 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3227 TargetOpcode::G_ANYEXT); 3228 } 3229 3230 SmallVector<Register, 8> ResultRegs; 3231 3232 // Input operands for each sub-instruction. 3233 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3234 3235 int NumParts = ExtractedRegs[0].size(); 3236 const unsigned DstSize = DstTy.getSizeInBits(); 3237 const LLT DstScalarTy = LLT::scalar(DstSize); 3238 3239 // Narrowing needs to use scalar types 3240 LLT DstLCMTy, NarrowDstTy; 3241 if (IsNarrow) { 3242 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3243 NarrowDstTy = NarrowScalarTy; 3244 } else { 3245 DstLCMTy = getLCMType(DstTy, NarrowTy); 3246 NarrowDstTy = NarrowTy; 3247 } 3248 3249 // We widened the source registers to satisfy merge/unmerge size 3250 // constraints. We'll have some extra fully undef parts. 3251 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3252 3253 for (int I = 0; I != NumRealParts; ++I) { 3254 // Emit this instruction on each of the split pieces. 3255 for (int J = 0; J != NumOps; ++J) 3256 InputRegs[J] = ExtractedRegs[J][I]; 3257 3258 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3259 ResultRegs.push_back(Inst.getReg(0)); 3260 } 3261 3262 // Fill out the widened result with undef instead of creating instructions 3263 // with undef inputs. 3264 int NumUndefParts = NumParts - NumRealParts; 3265 if (NumUndefParts != 0) 3266 ResultRegs.append(NumUndefParts, 3267 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3268 3269 // Extract the possibly padded result. Use a scratch register if we need to do 3270 // a final bitcast, otherwise use the original result register. 3271 Register MergeDstReg; 3272 if (IsNarrow && DstTy.isVector()) 3273 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3274 else 3275 MergeDstReg = DstReg; 3276 3277 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3278 3279 // Recast to vector if we narrowed a vector 3280 if (IsNarrow && DstTy.isVector()) 3281 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3282 3283 MI.eraseFromParent(); 3284 return Legalized; 3285 } 3286 3287 LegalizerHelper::LegalizeResult 3288 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3289 LLT NarrowTy) { 3290 Register DstReg = MI.getOperand(0).getReg(); 3291 Register SrcReg = MI.getOperand(1).getReg(); 3292 int64_t Imm = MI.getOperand(2).getImm(); 3293 3294 LLT DstTy = MRI.getType(DstReg); 3295 3296 SmallVector<Register, 8> Parts; 3297 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3298 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3299 3300 for (Register &R : Parts) 3301 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3302 3303 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3304 3305 MI.eraseFromParent(); 3306 return Legalized; 3307 } 3308 3309 LegalizerHelper::LegalizeResult 3310 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3311 LLT NarrowTy) { 3312 using namespace TargetOpcode; 3313 3314 MIRBuilder.setInstrAndDebugLoc(MI); 3315 switch (MI.getOpcode()) { 3316 case G_IMPLICIT_DEF: 3317 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3318 case G_TRUNC: 3319 case G_AND: 3320 case G_OR: 3321 case G_XOR: 3322 case G_ADD: 3323 case G_SUB: 3324 case G_MUL: 3325 case G_SMULH: 3326 case G_UMULH: 3327 case G_FADD: 3328 case G_FMUL: 3329 case G_FSUB: 3330 case G_FNEG: 3331 case G_FABS: 3332 case G_FCANONICALIZE: 3333 case G_FDIV: 3334 case G_FREM: 3335 case G_FMA: 3336 case G_FMAD: 3337 case G_FPOW: 3338 case G_FEXP: 3339 case G_FEXP2: 3340 case G_FLOG: 3341 case G_FLOG2: 3342 case G_FLOG10: 3343 case G_FNEARBYINT: 3344 case G_FCEIL: 3345 case G_FFLOOR: 3346 case G_FRINT: 3347 case G_INTRINSIC_ROUND: 3348 case G_INTRINSIC_TRUNC: 3349 case G_FCOS: 3350 case G_FSIN: 3351 case G_FSQRT: 3352 case G_BSWAP: 3353 case G_BITREVERSE: 3354 case G_SDIV: 3355 case G_UDIV: 3356 case G_SREM: 3357 case G_UREM: 3358 case G_SMIN: 3359 case G_SMAX: 3360 case G_UMIN: 3361 case G_UMAX: 3362 case G_FMINNUM: 3363 case G_FMAXNUM: 3364 case G_FMINNUM_IEEE: 3365 case G_FMAXNUM_IEEE: 3366 case G_FMINIMUM: 3367 case G_FMAXIMUM: 3368 case G_FSHL: 3369 case G_FSHR: 3370 case G_FREEZE: 3371 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3372 case G_SHL: 3373 case G_LSHR: 3374 case G_ASHR: 3375 case G_CTLZ: 3376 case G_CTLZ_ZERO_UNDEF: 3377 case G_CTTZ: 3378 case G_CTTZ_ZERO_UNDEF: 3379 case G_CTPOP: 3380 case G_FCOPYSIGN: 3381 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3382 case G_ZEXT: 3383 case G_SEXT: 3384 case G_ANYEXT: 3385 case G_FPEXT: 3386 case G_FPTRUNC: 3387 case G_SITOFP: 3388 case G_UITOFP: 3389 case G_FPTOSI: 3390 case G_FPTOUI: 3391 case G_INTTOPTR: 3392 case G_PTRTOINT: 3393 case G_ADDRSPACE_CAST: 3394 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3395 case G_ICMP: 3396 case G_FCMP: 3397 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3398 case G_SELECT: 3399 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3400 case G_PHI: 3401 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3402 case G_UNMERGE_VALUES: 3403 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3404 case G_BUILD_VECTOR: 3405 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3406 case G_LOAD: 3407 case G_STORE: 3408 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3409 case G_SEXT_INREG: 3410 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3411 default: 3412 return UnableToLegalize; 3413 } 3414 } 3415 3416 LegalizerHelper::LegalizeResult 3417 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3418 const LLT HalfTy, const LLT AmtTy) { 3419 3420 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3421 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3422 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3423 3424 if (Amt.isNullValue()) { 3425 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3426 MI.eraseFromParent(); 3427 return Legalized; 3428 } 3429 3430 LLT NVT = HalfTy; 3431 unsigned NVTBits = HalfTy.getSizeInBits(); 3432 unsigned VTBits = 2 * NVTBits; 3433 3434 SrcOp Lo(Register(0)), Hi(Register(0)); 3435 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3436 if (Amt.ugt(VTBits)) { 3437 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3438 } else if (Amt.ugt(NVTBits)) { 3439 Lo = MIRBuilder.buildConstant(NVT, 0); 3440 Hi = MIRBuilder.buildShl(NVT, InL, 3441 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3442 } else if (Amt == NVTBits) { 3443 Lo = MIRBuilder.buildConstant(NVT, 0); 3444 Hi = InL; 3445 } else { 3446 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3447 auto OrLHS = 3448 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3449 auto OrRHS = MIRBuilder.buildLShr( 3450 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3451 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3452 } 3453 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3454 if (Amt.ugt(VTBits)) { 3455 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3456 } else if (Amt.ugt(NVTBits)) { 3457 Lo = MIRBuilder.buildLShr(NVT, InH, 3458 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3459 Hi = MIRBuilder.buildConstant(NVT, 0); 3460 } else if (Amt == NVTBits) { 3461 Lo = InH; 3462 Hi = MIRBuilder.buildConstant(NVT, 0); 3463 } else { 3464 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3465 3466 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3467 auto OrRHS = MIRBuilder.buildShl( 3468 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3469 3470 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3471 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3472 } 3473 } else { 3474 if (Amt.ugt(VTBits)) { 3475 Hi = Lo = MIRBuilder.buildAShr( 3476 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3477 } else if (Amt.ugt(NVTBits)) { 3478 Lo = MIRBuilder.buildAShr(NVT, InH, 3479 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3480 Hi = MIRBuilder.buildAShr(NVT, InH, 3481 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3482 } else if (Amt == NVTBits) { 3483 Lo = InH; 3484 Hi = MIRBuilder.buildAShr(NVT, InH, 3485 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3486 } else { 3487 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3488 3489 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3490 auto OrRHS = MIRBuilder.buildShl( 3491 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3492 3493 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3494 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3495 } 3496 } 3497 3498 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3499 MI.eraseFromParent(); 3500 3501 return Legalized; 3502 } 3503 3504 // TODO: Optimize if constant shift amount. 3505 LegalizerHelper::LegalizeResult 3506 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3507 LLT RequestedTy) { 3508 if (TypeIdx == 1) { 3509 Observer.changingInstr(MI); 3510 narrowScalarSrc(MI, RequestedTy, 2); 3511 Observer.changedInstr(MI); 3512 return Legalized; 3513 } 3514 3515 Register DstReg = MI.getOperand(0).getReg(); 3516 LLT DstTy = MRI.getType(DstReg); 3517 if (DstTy.isVector()) 3518 return UnableToLegalize; 3519 3520 Register Amt = MI.getOperand(2).getReg(); 3521 LLT ShiftAmtTy = MRI.getType(Amt); 3522 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3523 if (DstEltSize % 2 != 0) 3524 return UnableToLegalize; 3525 3526 // Ignore the input type. We can only go to exactly half the size of the 3527 // input. If that isn't small enough, the resulting pieces will be further 3528 // legalized. 3529 const unsigned NewBitSize = DstEltSize / 2; 3530 const LLT HalfTy = LLT::scalar(NewBitSize); 3531 const LLT CondTy = LLT::scalar(1); 3532 3533 if (const MachineInstr *KShiftAmt = 3534 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3535 return narrowScalarShiftByConstant( 3536 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3537 } 3538 3539 // TODO: Expand with known bits. 3540 3541 // Handle the fully general expansion by an unknown amount. 3542 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3543 3544 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3545 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3546 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3547 3548 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3549 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3550 3551 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3552 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3553 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3554 3555 Register ResultRegs[2]; 3556 switch (MI.getOpcode()) { 3557 case TargetOpcode::G_SHL: { 3558 // Short: ShAmt < NewBitSize 3559 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3560 3561 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3562 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3563 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3564 3565 // Long: ShAmt >= NewBitSize 3566 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3567 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3568 3569 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3570 auto Hi = MIRBuilder.buildSelect( 3571 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3572 3573 ResultRegs[0] = Lo.getReg(0); 3574 ResultRegs[1] = Hi.getReg(0); 3575 break; 3576 } 3577 case TargetOpcode::G_LSHR: 3578 case TargetOpcode::G_ASHR: { 3579 // Short: ShAmt < NewBitSize 3580 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3581 3582 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3583 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3584 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3585 3586 // Long: ShAmt >= NewBitSize 3587 MachineInstrBuilder HiL; 3588 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3589 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3590 } else { 3591 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3592 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3593 } 3594 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3595 {InH, AmtExcess}); // Lo from Hi part. 3596 3597 auto Lo = MIRBuilder.buildSelect( 3598 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3599 3600 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3601 3602 ResultRegs[0] = Lo.getReg(0); 3603 ResultRegs[1] = Hi.getReg(0); 3604 break; 3605 } 3606 default: 3607 llvm_unreachable("not a shift"); 3608 } 3609 3610 MIRBuilder.buildMerge(DstReg, ResultRegs); 3611 MI.eraseFromParent(); 3612 return Legalized; 3613 } 3614 3615 LegalizerHelper::LegalizeResult 3616 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3617 LLT MoreTy) { 3618 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3619 3620 Observer.changingInstr(MI); 3621 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3622 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3623 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3624 moreElementsVectorSrc(MI, MoreTy, I); 3625 } 3626 3627 MachineBasicBlock &MBB = *MI.getParent(); 3628 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3629 moreElementsVectorDst(MI, MoreTy, 0); 3630 Observer.changedInstr(MI); 3631 return Legalized; 3632 } 3633 3634 LegalizerHelper::LegalizeResult 3635 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3636 LLT MoreTy) { 3637 MIRBuilder.setInstrAndDebugLoc(MI); 3638 unsigned Opc = MI.getOpcode(); 3639 switch (Opc) { 3640 case TargetOpcode::G_IMPLICIT_DEF: 3641 case TargetOpcode::G_LOAD: { 3642 if (TypeIdx != 0) 3643 return UnableToLegalize; 3644 Observer.changingInstr(MI); 3645 moreElementsVectorDst(MI, MoreTy, 0); 3646 Observer.changedInstr(MI); 3647 return Legalized; 3648 } 3649 case TargetOpcode::G_STORE: 3650 if (TypeIdx != 0) 3651 return UnableToLegalize; 3652 Observer.changingInstr(MI); 3653 moreElementsVectorSrc(MI, MoreTy, 0); 3654 Observer.changedInstr(MI); 3655 return Legalized; 3656 case TargetOpcode::G_AND: 3657 case TargetOpcode::G_OR: 3658 case TargetOpcode::G_XOR: 3659 case TargetOpcode::G_SMIN: 3660 case TargetOpcode::G_SMAX: 3661 case TargetOpcode::G_UMIN: 3662 case TargetOpcode::G_UMAX: 3663 case TargetOpcode::G_FMINNUM: 3664 case TargetOpcode::G_FMAXNUM: 3665 case TargetOpcode::G_FMINNUM_IEEE: 3666 case TargetOpcode::G_FMAXNUM_IEEE: 3667 case TargetOpcode::G_FMINIMUM: 3668 case TargetOpcode::G_FMAXIMUM: { 3669 Observer.changingInstr(MI); 3670 moreElementsVectorSrc(MI, MoreTy, 1); 3671 moreElementsVectorSrc(MI, MoreTy, 2); 3672 moreElementsVectorDst(MI, MoreTy, 0); 3673 Observer.changedInstr(MI); 3674 return Legalized; 3675 } 3676 case TargetOpcode::G_EXTRACT: 3677 if (TypeIdx != 1) 3678 return UnableToLegalize; 3679 Observer.changingInstr(MI); 3680 moreElementsVectorSrc(MI, MoreTy, 1); 3681 Observer.changedInstr(MI); 3682 return Legalized; 3683 case TargetOpcode::G_INSERT: 3684 case TargetOpcode::G_FREEZE: 3685 if (TypeIdx != 0) 3686 return UnableToLegalize; 3687 Observer.changingInstr(MI); 3688 moreElementsVectorSrc(MI, MoreTy, 1); 3689 moreElementsVectorDst(MI, MoreTy, 0); 3690 Observer.changedInstr(MI); 3691 return Legalized; 3692 case TargetOpcode::G_SELECT: 3693 if (TypeIdx != 0) 3694 return UnableToLegalize; 3695 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3696 return UnableToLegalize; 3697 3698 Observer.changingInstr(MI); 3699 moreElementsVectorSrc(MI, MoreTy, 2); 3700 moreElementsVectorSrc(MI, MoreTy, 3); 3701 moreElementsVectorDst(MI, MoreTy, 0); 3702 Observer.changedInstr(MI); 3703 return Legalized; 3704 case TargetOpcode::G_UNMERGE_VALUES: { 3705 if (TypeIdx != 1) 3706 return UnableToLegalize; 3707 3708 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3709 int NumDst = MI.getNumOperands() - 1; 3710 moreElementsVectorSrc(MI, MoreTy, NumDst); 3711 3712 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3713 for (int I = 0; I != NumDst; ++I) 3714 MIB.addDef(MI.getOperand(I).getReg()); 3715 3716 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3717 for (int I = NumDst; I != NewNumDst; ++I) 3718 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3719 3720 MIB.addUse(MI.getOperand(NumDst).getReg()); 3721 MI.eraseFromParent(); 3722 return Legalized; 3723 } 3724 case TargetOpcode::G_PHI: 3725 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3726 default: 3727 return UnableToLegalize; 3728 } 3729 } 3730 3731 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3732 ArrayRef<Register> Src1Regs, 3733 ArrayRef<Register> Src2Regs, 3734 LLT NarrowTy) { 3735 MachineIRBuilder &B = MIRBuilder; 3736 unsigned SrcParts = Src1Regs.size(); 3737 unsigned DstParts = DstRegs.size(); 3738 3739 unsigned DstIdx = 0; // Low bits of the result. 3740 Register FactorSum = 3741 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3742 DstRegs[DstIdx] = FactorSum; 3743 3744 unsigned CarrySumPrevDstIdx; 3745 SmallVector<Register, 4> Factors; 3746 3747 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3748 // Collect low parts of muls for DstIdx. 3749 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3750 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3751 MachineInstrBuilder Mul = 3752 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3753 Factors.push_back(Mul.getReg(0)); 3754 } 3755 // Collect high parts of muls from previous DstIdx. 3756 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3757 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3758 MachineInstrBuilder Umulh = 3759 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3760 Factors.push_back(Umulh.getReg(0)); 3761 } 3762 // Add CarrySum from additions calculated for previous DstIdx. 3763 if (DstIdx != 1) { 3764 Factors.push_back(CarrySumPrevDstIdx); 3765 } 3766 3767 Register CarrySum; 3768 // Add all factors and accumulate all carries into CarrySum. 3769 if (DstIdx != DstParts - 1) { 3770 MachineInstrBuilder Uaddo = 3771 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3772 FactorSum = Uaddo.getReg(0); 3773 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3774 for (unsigned i = 2; i < Factors.size(); ++i) { 3775 MachineInstrBuilder Uaddo = 3776 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3777 FactorSum = Uaddo.getReg(0); 3778 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3779 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3780 } 3781 } else { 3782 // Since value for the next index is not calculated, neither is CarrySum. 3783 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3784 for (unsigned i = 2; i < Factors.size(); ++i) 3785 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3786 } 3787 3788 CarrySumPrevDstIdx = CarrySum; 3789 DstRegs[DstIdx] = FactorSum; 3790 Factors.clear(); 3791 } 3792 } 3793 3794 LegalizerHelper::LegalizeResult 3795 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3796 Register DstReg = MI.getOperand(0).getReg(); 3797 Register Src1 = MI.getOperand(1).getReg(); 3798 Register Src2 = MI.getOperand(2).getReg(); 3799 3800 LLT Ty = MRI.getType(DstReg); 3801 if (Ty.isVector()) 3802 return UnableToLegalize; 3803 3804 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3805 unsigned DstSize = Ty.getSizeInBits(); 3806 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3807 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3808 return UnableToLegalize; 3809 3810 unsigned NumDstParts = DstSize / NarrowSize; 3811 unsigned NumSrcParts = SrcSize / NarrowSize; 3812 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3813 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3814 3815 SmallVector<Register, 2> Src1Parts, Src2Parts; 3816 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3817 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3818 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3819 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3820 3821 // Take only high half of registers if this is high mul. 3822 ArrayRef<Register> DstRegs( 3823 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3824 MIRBuilder.buildMerge(DstReg, DstRegs); 3825 MI.eraseFromParent(); 3826 return Legalized; 3827 } 3828 3829 LegalizerHelper::LegalizeResult 3830 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3831 LLT NarrowTy) { 3832 if (TypeIdx != 1) 3833 return UnableToLegalize; 3834 3835 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3836 3837 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3838 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3839 // NarrowSize. 3840 if (SizeOp1 % NarrowSize != 0) 3841 return UnableToLegalize; 3842 int NumParts = SizeOp1 / NarrowSize; 3843 3844 SmallVector<Register, 2> SrcRegs, DstRegs; 3845 SmallVector<uint64_t, 2> Indexes; 3846 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3847 3848 Register OpReg = MI.getOperand(0).getReg(); 3849 uint64_t OpStart = MI.getOperand(2).getImm(); 3850 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3851 for (int i = 0; i < NumParts; ++i) { 3852 unsigned SrcStart = i * NarrowSize; 3853 3854 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3855 // No part of the extract uses this subregister, ignore it. 3856 continue; 3857 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3858 // The entire subregister is extracted, forward the value. 3859 DstRegs.push_back(SrcRegs[i]); 3860 continue; 3861 } 3862 3863 // OpSegStart is where this destination segment would start in OpReg if it 3864 // extended infinitely in both directions. 3865 int64_t ExtractOffset; 3866 uint64_t SegSize; 3867 if (OpStart < SrcStart) { 3868 ExtractOffset = 0; 3869 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3870 } else { 3871 ExtractOffset = OpStart - SrcStart; 3872 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3873 } 3874 3875 Register SegReg = SrcRegs[i]; 3876 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3877 // A genuine extract is needed. 3878 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3879 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3880 } 3881 3882 DstRegs.push_back(SegReg); 3883 } 3884 3885 Register DstReg = MI.getOperand(0).getReg(); 3886 if (MRI.getType(DstReg).isVector()) 3887 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3888 else if (DstRegs.size() > 1) 3889 MIRBuilder.buildMerge(DstReg, DstRegs); 3890 else 3891 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3892 MI.eraseFromParent(); 3893 return Legalized; 3894 } 3895 3896 LegalizerHelper::LegalizeResult 3897 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3898 LLT NarrowTy) { 3899 // FIXME: Don't know how to handle secondary types yet. 3900 if (TypeIdx != 0) 3901 return UnableToLegalize; 3902 3903 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3904 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3905 3906 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3907 // NarrowSize. 3908 if (SizeOp0 % NarrowSize != 0) 3909 return UnableToLegalize; 3910 3911 int NumParts = SizeOp0 / NarrowSize; 3912 3913 SmallVector<Register, 2> SrcRegs, DstRegs; 3914 SmallVector<uint64_t, 2> Indexes; 3915 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3916 3917 Register OpReg = MI.getOperand(2).getReg(); 3918 uint64_t OpStart = MI.getOperand(3).getImm(); 3919 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3920 for (int i = 0; i < NumParts; ++i) { 3921 unsigned DstStart = i * NarrowSize; 3922 3923 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3924 // No part of the insert affects this subregister, forward the original. 3925 DstRegs.push_back(SrcRegs[i]); 3926 continue; 3927 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3928 // The entire subregister is defined by this insert, forward the new 3929 // value. 3930 DstRegs.push_back(OpReg); 3931 continue; 3932 } 3933 3934 // OpSegStart is where this destination segment would start in OpReg if it 3935 // extended infinitely in both directions. 3936 int64_t ExtractOffset, InsertOffset; 3937 uint64_t SegSize; 3938 if (OpStart < DstStart) { 3939 InsertOffset = 0; 3940 ExtractOffset = DstStart - OpStart; 3941 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3942 } else { 3943 InsertOffset = OpStart - DstStart; 3944 ExtractOffset = 0; 3945 SegSize = 3946 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3947 } 3948 3949 Register SegReg = OpReg; 3950 if (ExtractOffset != 0 || SegSize != OpSize) { 3951 // A genuine extract is needed. 3952 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3953 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3954 } 3955 3956 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3957 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3958 DstRegs.push_back(DstReg); 3959 } 3960 3961 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3962 Register DstReg = MI.getOperand(0).getReg(); 3963 if(MRI.getType(DstReg).isVector()) 3964 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3965 else 3966 MIRBuilder.buildMerge(DstReg, DstRegs); 3967 MI.eraseFromParent(); 3968 return Legalized; 3969 } 3970 3971 LegalizerHelper::LegalizeResult 3972 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3973 LLT NarrowTy) { 3974 Register DstReg = MI.getOperand(0).getReg(); 3975 LLT DstTy = MRI.getType(DstReg); 3976 3977 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3978 3979 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3980 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3981 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3982 LLT LeftoverTy; 3983 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3984 Src0Regs, Src0LeftoverRegs)) 3985 return UnableToLegalize; 3986 3987 LLT Unused; 3988 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3989 Src1Regs, Src1LeftoverRegs)) 3990 llvm_unreachable("inconsistent extractParts result"); 3991 3992 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3993 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3994 {Src0Regs[I], Src1Regs[I]}); 3995 DstRegs.push_back(Inst.getReg(0)); 3996 } 3997 3998 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3999 auto Inst = MIRBuilder.buildInstr( 4000 MI.getOpcode(), 4001 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4002 DstLeftoverRegs.push_back(Inst.getReg(0)); 4003 } 4004 4005 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4006 LeftoverTy, DstLeftoverRegs); 4007 4008 MI.eraseFromParent(); 4009 return Legalized; 4010 } 4011 4012 LegalizerHelper::LegalizeResult 4013 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4014 LLT NarrowTy) { 4015 if (TypeIdx != 0) 4016 return UnableToLegalize; 4017 4018 Register DstReg = MI.getOperand(0).getReg(); 4019 Register SrcReg = MI.getOperand(1).getReg(); 4020 4021 LLT DstTy = MRI.getType(DstReg); 4022 if (DstTy.isVector()) 4023 return UnableToLegalize; 4024 4025 SmallVector<Register, 8> Parts; 4026 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4027 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4028 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4029 4030 MI.eraseFromParent(); 4031 return Legalized; 4032 } 4033 4034 LegalizerHelper::LegalizeResult 4035 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4036 LLT NarrowTy) { 4037 if (TypeIdx != 0) 4038 return UnableToLegalize; 4039 4040 Register CondReg = MI.getOperand(1).getReg(); 4041 LLT CondTy = MRI.getType(CondReg); 4042 if (CondTy.isVector()) // TODO: Handle vselect 4043 return UnableToLegalize; 4044 4045 Register DstReg = MI.getOperand(0).getReg(); 4046 LLT DstTy = MRI.getType(DstReg); 4047 4048 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4049 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4050 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4051 LLT LeftoverTy; 4052 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4053 Src1Regs, Src1LeftoverRegs)) 4054 return UnableToLegalize; 4055 4056 LLT Unused; 4057 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4058 Src2Regs, Src2LeftoverRegs)) 4059 llvm_unreachable("inconsistent extractParts result"); 4060 4061 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4062 auto Select = MIRBuilder.buildSelect(NarrowTy, 4063 CondReg, Src1Regs[I], Src2Regs[I]); 4064 DstRegs.push_back(Select.getReg(0)); 4065 } 4066 4067 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4068 auto Select = MIRBuilder.buildSelect( 4069 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4070 DstLeftoverRegs.push_back(Select.getReg(0)); 4071 } 4072 4073 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4074 LeftoverTy, DstLeftoverRegs); 4075 4076 MI.eraseFromParent(); 4077 return Legalized; 4078 } 4079 4080 LegalizerHelper::LegalizeResult 4081 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4082 LLT NarrowTy) { 4083 if (TypeIdx != 1) 4084 return UnableToLegalize; 4085 4086 Register DstReg = MI.getOperand(0).getReg(); 4087 Register SrcReg = MI.getOperand(1).getReg(); 4088 LLT DstTy = MRI.getType(DstReg); 4089 LLT SrcTy = MRI.getType(SrcReg); 4090 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4091 4092 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4093 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4094 4095 MachineIRBuilder &B = MIRBuilder; 4096 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4097 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4098 auto C_0 = B.buildConstant(NarrowTy, 0); 4099 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4100 UnmergeSrc.getReg(1), C_0); 4101 auto LoCTLZ = IsUndef ? 4102 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4103 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4104 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4105 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4106 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4107 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4108 4109 MI.eraseFromParent(); 4110 return Legalized; 4111 } 4112 4113 return UnableToLegalize; 4114 } 4115 4116 LegalizerHelper::LegalizeResult 4117 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4118 LLT NarrowTy) { 4119 if (TypeIdx != 1) 4120 return UnableToLegalize; 4121 4122 Register DstReg = MI.getOperand(0).getReg(); 4123 Register SrcReg = MI.getOperand(1).getReg(); 4124 LLT DstTy = MRI.getType(DstReg); 4125 LLT SrcTy = MRI.getType(SrcReg); 4126 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4127 4128 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4129 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4130 4131 MachineIRBuilder &B = MIRBuilder; 4132 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4133 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4134 auto C_0 = B.buildConstant(NarrowTy, 0); 4135 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4136 UnmergeSrc.getReg(0), C_0); 4137 auto HiCTTZ = IsUndef ? 4138 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4139 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4140 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4141 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4142 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4143 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4144 4145 MI.eraseFromParent(); 4146 return Legalized; 4147 } 4148 4149 return UnableToLegalize; 4150 } 4151 4152 LegalizerHelper::LegalizeResult 4153 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4154 LLT NarrowTy) { 4155 if (TypeIdx != 1) 4156 return UnableToLegalize; 4157 4158 Register DstReg = MI.getOperand(0).getReg(); 4159 LLT DstTy = MRI.getType(DstReg); 4160 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4161 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4162 4163 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4164 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4165 4166 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4167 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4168 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4169 4170 MI.eraseFromParent(); 4171 return Legalized; 4172 } 4173 4174 return UnableToLegalize; 4175 } 4176 4177 LegalizerHelper::LegalizeResult 4178 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4179 unsigned Opc = MI.getOpcode(); 4180 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4181 auto isSupported = [this](const LegalityQuery &Q) { 4182 auto QAction = LI.getAction(Q).Action; 4183 return QAction == Legal || QAction == Libcall || QAction == Custom; 4184 }; 4185 switch (Opc) { 4186 default: 4187 return UnableToLegalize; 4188 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4189 // This trivially expands to CTLZ. 4190 Observer.changingInstr(MI); 4191 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4192 Observer.changedInstr(MI); 4193 return Legalized; 4194 } 4195 case TargetOpcode::G_CTLZ: { 4196 Register DstReg = MI.getOperand(0).getReg(); 4197 Register SrcReg = MI.getOperand(1).getReg(); 4198 LLT DstTy = MRI.getType(DstReg); 4199 LLT SrcTy = MRI.getType(SrcReg); 4200 unsigned Len = SrcTy.getSizeInBits(); 4201 4202 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4203 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4204 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4205 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4206 auto ICmp = MIRBuilder.buildICmp( 4207 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4208 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4209 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4210 MI.eraseFromParent(); 4211 return Legalized; 4212 } 4213 // for now, we do this: 4214 // NewLen = NextPowerOf2(Len); 4215 // x = x | (x >> 1); 4216 // x = x | (x >> 2); 4217 // ... 4218 // x = x | (x >>16); 4219 // x = x | (x >>32); // for 64-bit input 4220 // Upto NewLen/2 4221 // return Len - popcount(x); 4222 // 4223 // Ref: "Hacker's Delight" by Henry Warren 4224 Register Op = SrcReg; 4225 unsigned NewLen = PowerOf2Ceil(Len); 4226 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4227 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4228 auto MIBOp = MIRBuilder.buildOr( 4229 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4230 Op = MIBOp.getReg(0); 4231 } 4232 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4233 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4234 MIBPop); 4235 MI.eraseFromParent(); 4236 return Legalized; 4237 } 4238 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4239 // This trivially expands to CTTZ. 4240 Observer.changingInstr(MI); 4241 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4242 Observer.changedInstr(MI); 4243 return Legalized; 4244 } 4245 case TargetOpcode::G_CTTZ: { 4246 Register DstReg = MI.getOperand(0).getReg(); 4247 Register SrcReg = MI.getOperand(1).getReg(); 4248 LLT DstTy = MRI.getType(DstReg); 4249 LLT SrcTy = MRI.getType(SrcReg); 4250 4251 unsigned Len = SrcTy.getSizeInBits(); 4252 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4253 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4254 // zero. 4255 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4256 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4257 auto ICmp = MIRBuilder.buildICmp( 4258 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4259 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4260 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4261 MI.eraseFromParent(); 4262 return Legalized; 4263 } 4264 // for now, we use: { return popcount(~x & (x - 1)); } 4265 // unless the target has ctlz but not ctpop, in which case we use: 4266 // { return 32 - nlz(~x & (x-1)); } 4267 // Ref: "Hacker's Delight" by Henry Warren 4268 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4269 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4270 auto MIBTmp = MIRBuilder.buildAnd( 4271 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4272 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4273 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4274 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4275 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4276 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4277 MI.eraseFromParent(); 4278 return Legalized; 4279 } 4280 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4281 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4282 return Legalized; 4283 } 4284 case TargetOpcode::G_CTPOP: { 4285 unsigned Size = Ty.getSizeInBits(); 4286 MachineIRBuilder &B = MIRBuilder; 4287 4288 // Count set bits in blocks of 2 bits. Default approach would be 4289 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4290 // We use following formula instead: 4291 // B2Count = val - { (val >> 1) & 0x55555555 } 4292 // since it gives same result in blocks of 2 with one instruction less. 4293 auto C_1 = B.buildConstant(Ty, 1); 4294 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4295 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4296 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4297 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4298 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4299 4300 // In order to get count in blocks of 4 add values from adjacent block of 2. 4301 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4302 auto C_2 = B.buildConstant(Ty, 2); 4303 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4304 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4305 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4306 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4307 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4308 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4309 4310 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4311 // addition since count value sits in range {0,...,8} and 4 bits are enough 4312 // to hold such binary values. After addition high 4 bits still hold count 4313 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4314 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4315 auto C_4 = B.buildConstant(Ty, 4); 4316 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4317 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4318 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4319 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4320 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4321 4322 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4323 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4324 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4325 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4326 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4327 4328 // Shift count result from 8 high bits to low bits. 4329 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4330 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4331 4332 MI.eraseFromParent(); 4333 return Legalized; 4334 } 4335 } 4336 } 4337 4338 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4339 // representation. 4340 LegalizerHelper::LegalizeResult 4341 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4342 Register Dst = MI.getOperand(0).getReg(); 4343 Register Src = MI.getOperand(1).getReg(); 4344 const LLT S64 = LLT::scalar(64); 4345 const LLT S32 = LLT::scalar(32); 4346 const LLT S1 = LLT::scalar(1); 4347 4348 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4349 4350 // unsigned cul2f(ulong u) { 4351 // uint lz = clz(u); 4352 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4353 // u = (u << lz) & 0x7fffffffffffffffUL; 4354 // ulong t = u & 0xffffffffffUL; 4355 // uint v = (e << 23) | (uint)(u >> 40); 4356 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4357 // return as_float(v + r); 4358 // } 4359 4360 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4361 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4362 4363 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4364 4365 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4366 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4367 4368 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4369 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4370 4371 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4372 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4373 4374 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4375 4376 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4377 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4378 4379 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4380 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4381 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4382 4383 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4384 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4385 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4386 auto One = MIRBuilder.buildConstant(S32, 1); 4387 4388 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4389 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4390 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4391 MIRBuilder.buildAdd(Dst, V, R); 4392 4393 return Legalized; 4394 } 4395 4396 LegalizerHelper::LegalizeResult 4397 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4398 Register Dst = MI.getOperand(0).getReg(); 4399 Register Src = MI.getOperand(1).getReg(); 4400 LLT DstTy = MRI.getType(Dst); 4401 LLT SrcTy = MRI.getType(Src); 4402 4403 if (SrcTy == LLT::scalar(1)) { 4404 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4405 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4406 MIRBuilder.buildSelect(Dst, Src, True, False); 4407 MI.eraseFromParent(); 4408 return Legalized; 4409 } 4410 4411 if (SrcTy != LLT::scalar(64)) 4412 return UnableToLegalize; 4413 4414 if (DstTy == LLT::scalar(32)) { 4415 // TODO: SelectionDAG has several alternative expansions to port which may 4416 // be more reasonble depending on the available instructions. If a target 4417 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4418 // intermediate type, this is probably worse. 4419 return lowerU64ToF32BitOps(MI); 4420 } 4421 4422 return UnableToLegalize; 4423 } 4424 4425 LegalizerHelper::LegalizeResult 4426 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4427 Register Dst = MI.getOperand(0).getReg(); 4428 Register Src = MI.getOperand(1).getReg(); 4429 LLT DstTy = MRI.getType(Dst); 4430 LLT SrcTy = MRI.getType(Src); 4431 4432 const LLT S64 = LLT::scalar(64); 4433 const LLT S32 = LLT::scalar(32); 4434 const LLT S1 = LLT::scalar(1); 4435 4436 if (SrcTy == S1) { 4437 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4438 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4439 MIRBuilder.buildSelect(Dst, Src, True, False); 4440 MI.eraseFromParent(); 4441 return Legalized; 4442 } 4443 4444 if (SrcTy != S64) 4445 return UnableToLegalize; 4446 4447 if (DstTy == S32) { 4448 // signed cl2f(long l) { 4449 // long s = l >> 63; 4450 // float r = cul2f((l + s) ^ s); 4451 // return s ? -r : r; 4452 // } 4453 Register L = Src; 4454 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4455 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4456 4457 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4458 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4459 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4460 4461 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4462 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4463 MIRBuilder.buildConstant(S64, 0)); 4464 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4465 return Legalized; 4466 } 4467 4468 return UnableToLegalize; 4469 } 4470 4471 LegalizerHelper::LegalizeResult 4472 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4473 Register Dst = MI.getOperand(0).getReg(); 4474 Register Src = MI.getOperand(1).getReg(); 4475 LLT DstTy = MRI.getType(Dst); 4476 LLT SrcTy = MRI.getType(Src); 4477 const LLT S64 = LLT::scalar(64); 4478 const LLT S32 = LLT::scalar(32); 4479 4480 if (SrcTy != S64 && SrcTy != S32) 4481 return UnableToLegalize; 4482 if (DstTy != S32 && DstTy != S64) 4483 return UnableToLegalize; 4484 4485 // FPTOSI gives same result as FPTOUI for positive signed integers. 4486 // FPTOUI needs to deal with fp values that convert to unsigned integers 4487 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4488 4489 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4490 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4491 : APFloat::IEEEdouble(), 4492 APInt::getNullValue(SrcTy.getSizeInBits())); 4493 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4494 4495 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4496 4497 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4498 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4499 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4500 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4501 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4502 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4503 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4504 4505 const LLT S1 = LLT::scalar(1); 4506 4507 MachineInstrBuilder FCMP = 4508 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4509 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4510 4511 MI.eraseFromParent(); 4512 return Legalized; 4513 } 4514 4515 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4516 Register Dst = MI.getOperand(0).getReg(); 4517 Register Src = MI.getOperand(1).getReg(); 4518 LLT DstTy = MRI.getType(Dst); 4519 LLT SrcTy = MRI.getType(Src); 4520 const LLT S64 = LLT::scalar(64); 4521 const LLT S32 = LLT::scalar(32); 4522 4523 // FIXME: Only f32 to i64 conversions are supported. 4524 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4525 return UnableToLegalize; 4526 4527 // Expand f32 -> i64 conversion 4528 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4529 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4530 4531 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4532 4533 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4534 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4535 4536 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4537 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4538 4539 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4540 APInt::getSignMask(SrcEltBits)); 4541 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4542 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4543 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4544 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4545 4546 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4547 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4548 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4549 4550 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4551 R = MIRBuilder.buildZExt(DstTy, R); 4552 4553 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4554 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4555 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4556 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4557 4558 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4559 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4560 4561 const LLT S1 = LLT::scalar(1); 4562 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4563 S1, Exponent, ExponentLoBit); 4564 4565 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4566 4567 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4568 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4569 4570 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4571 4572 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4573 S1, Exponent, ZeroSrcTy); 4574 4575 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4576 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4577 4578 MI.eraseFromParent(); 4579 return Legalized; 4580 } 4581 4582 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4583 LegalizerHelper::LegalizeResult 4584 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4585 Register Dst = MI.getOperand(0).getReg(); 4586 Register Src = MI.getOperand(1).getReg(); 4587 4588 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4589 return UnableToLegalize; 4590 4591 const unsigned ExpMask = 0x7ff; 4592 const unsigned ExpBiasf64 = 1023; 4593 const unsigned ExpBiasf16 = 15; 4594 const LLT S32 = LLT::scalar(32); 4595 const LLT S1 = LLT::scalar(1); 4596 4597 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4598 Register U = Unmerge.getReg(0); 4599 Register UH = Unmerge.getReg(1); 4600 4601 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4602 4603 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4604 // add the f16 bias (15) to get the biased exponent for the f16 format. 4605 E = MIRBuilder.buildAdd( 4606 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4607 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4608 4609 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4610 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4611 4612 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4613 MIRBuilder.buildConstant(S32, 0x1ff)); 4614 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4615 4616 auto Zero = MIRBuilder.buildConstant(S32, 0); 4617 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4618 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4619 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4620 4621 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4622 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4623 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4624 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4625 4626 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4627 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4628 4629 // N = M | (E << 12); 4630 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4631 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4632 4633 // B = clamp(1-E, 0, 13); 4634 auto One = MIRBuilder.buildConstant(S32, 1); 4635 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4636 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4637 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4638 4639 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4640 MIRBuilder.buildConstant(S32, 0x1000)); 4641 4642 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4643 auto D0 = MIRBuilder.buildShl(S32, D, B); 4644 4645 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4646 D0, SigSetHigh); 4647 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4648 D = MIRBuilder.buildOr(S32, D, D1); 4649 4650 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4651 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4652 4653 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4654 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4655 4656 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4657 MIRBuilder.buildConstant(S32, 3)); 4658 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4659 4660 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4661 MIRBuilder.buildConstant(S32, 5)); 4662 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4663 4664 V1 = MIRBuilder.buildOr(S32, V0, V1); 4665 V = MIRBuilder.buildAdd(S32, V, V1); 4666 4667 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4668 E, MIRBuilder.buildConstant(S32, 30)); 4669 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4670 MIRBuilder.buildConstant(S32, 0x7c00), V); 4671 4672 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4673 E, MIRBuilder.buildConstant(S32, 1039)); 4674 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4675 4676 // Extract the sign bit. 4677 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4678 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4679 4680 // Insert the sign bit 4681 V = MIRBuilder.buildOr(S32, Sign, V); 4682 4683 MIRBuilder.buildTrunc(Dst, V); 4684 MI.eraseFromParent(); 4685 return Legalized; 4686 } 4687 4688 LegalizerHelper::LegalizeResult 4689 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4690 Register Dst = MI.getOperand(0).getReg(); 4691 Register Src = MI.getOperand(1).getReg(); 4692 4693 LLT DstTy = MRI.getType(Dst); 4694 LLT SrcTy = MRI.getType(Src); 4695 const LLT S64 = LLT::scalar(64); 4696 const LLT S16 = LLT::scalar(16); 4697 4698 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4699 return lowerFPTRUNC_F64_TO_F16(MI); 4700 4701 return UnableToLegalize; 4702 } 4703 4704 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4705 switch (Opc) { 4706 case TargetOpcode::G_SMIN: 4707 return CmpInst::ICMP_SLT; 4708 case TargetOpcode::G_SMAX: 4709 return CmpInst::ICMP_SGT; 4710 case TargetOpcode::G_UMIN: 4711 return CmpInst::ICMP_ULT; 4712 case TargetOpcode::G_UMAX: 4713 return CmpInst::ICMP_UGT; 4714 default: 4715 llvm_unreachable("not in integer min/max"); 4716 } 4717 } 4718 4719 LegalizerHelper::LegalizeResult 4720 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4721 Register Dst = MI.getOperand(0).getReg(); 4722 Register Src0 = MI.getOperand(1).getReg(); 4723 Register Src1 = MI.getOperand(2).getReg(); 4724 4725 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4726 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4727 4728 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4729 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4730 4731 MI.eraseFromParent(); 4732 return Legalized; 4733 } 4734 4735 LegalizerHelper::LegalizeResult 4736 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4737 Register Dst = MI.getOperand(0).getReg(); 4738 Register Src0 = MI.getOperand(1).getReg(); 4739 Register Src1 = MI.getOperand(2).getReg(); 4740 4741 const LLT Src0Ty = MRI.getType(Src0); 4742 const LLT Src1Ty = MRI.getType(Src1); 4743 4744 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4745 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4746 4747 auto SignBitMask = MIRBuilder.buildConstant( 4748 Src0Ty, APInt::getSignMask(Src0Size)); 4749 4750 auto NotSignBitMask = MIRBuilder.buildConstant( 4751 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4752 4753 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4754 MachineInstr *Or; 4755 4756 if (Src0Ty == Src1Ty) { 4757 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4758 Or = MIRBuilder.buildOr(Dst, And0, And1); 4759 } else if (Src0Size > Src1Size) { 4760 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4761 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4762 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4763 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4764 Or = MIRBuilder.buildOr(Dst, And0, And1); 4765 } else { 4766 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4767 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4768 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4769 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4770 Or = MIRBuilder.buildOr(Dst, And0, And1); 4771 } 4772 4773 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4774 // constants are a nan and -0.0, but the final result should preserve 4775 // everything. 4776 if (unsigned Flags = MI.getFlags()) 4777 Or->setFlags(Flags); 4778 4779 MI.eraseFromParent(); 4780 return Legalized; 4781 } 4782 4783 LegalizerHelper::LegalizeResult 4784 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4785 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4786 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4787 4788 Register Dst = MI.getOperand(0).getReg(); 4789 Register Src0 = MI.getOperand(1).getReg(); 4790 Register Src1 = MI.getOperand(2).getReg(); 4791 LLT Ty = MRI.getType(Dst); 4792 4793 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4794 // Insert canonicalizes if it's possible we need to quiet to get correct 4795 // sNaN behavior. 4796 4797 // Note this must be done here, and not as an optimization combine in the 4798 // absence of a dedicate quiet-snan instruction as we're using an 4799 // omni-purpose G_FCANONICALIZE. 4800 if (!isKnownNeverSNaN(Src0, MRI)) 4801 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4802 4803 if (!isKnownNeverSNaN(Src1, MRI)) 4804 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4805 } 4806 4807 // If there are no nans, it's safe to simply replace this with the non-IEEE 4808 // version. 4809 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4810 MI.eraseFromParent(); 4811 return Legalized; 4812 } 4813 4814 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4815 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4816 Register DstReg = MI.getOperand(0).getReg(); 4817 LLT Ty = MRI.getType(DstReg); 4818 unsigned Flags = MI.getFlags(); 4819 4820 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4821 Flags); 4822 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4823 MI.eraseFromParent(); 4824 return Legalized; 4825 } 4826 4827 LegalizerHelper::LegalizeResult 4828 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4829 Register DstReg = MI.getOperand(0).getReg(); 4830 Register X = MI.getOperand(1).getReg(); 4831 const unsigned Flags = MI.getFlags(); 4832 const LLT Ty = MRI.getType(DstReg); 4833 const LLT CondTy = Ty.changeElementSize(1); 4834 4835 // round(x) => 4836 // t = trunc(x); 4837 // d = fabs(x - t); 4838 // o = copysign(1.0f, x); 4839 // return t + (d >= 0.5 ? o : 0.0); 4840 4841 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4842 4843 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4844 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4845 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4846 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4847 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4848 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4849 4850 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4851 Flags); 4852 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4853 4854 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4855 4856 MI.eraseFromParent(); 4857 return Legalized; 4858 } 4859 4860 LegalizerHelper::LegalizeResult 4861 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4862 Register DstReg = MI.getOperand(0).getReg(); 4863 Register SrcReg = MI.getOperand(1).getReg(); 4864 unsigned Flags = MI.getFlags(); 4865 LLT Ty = MRI.getType(DstReg); 4866 const LLT CondTy = Ty.changeElementSize(1); 4867 4868 // result = trunc(src); 4869 // if (src < 0.0 && src != result) 4870 // result += -1.0. 4871 4872 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4873 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4874 4875 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4876 SrcReg, Zero, Flags); 4877 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4878 SrcReg, Trunc, Flags); 4879 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4880 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4881 4882 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4883 MI.eraseFromParent(); 4884 return Legalized; 4885 } 4886 4887 LegalizerHelper::LegalizeResult 4888 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 4889 const unsigned NumOps = MI.getNumOperands(); 4890 Register DstReg = MI.getOperand(0).getReg(); 4891 Register Src0Reg = MI.getOperand(1).getReg(); 4892 LLT DstTy = MRI.getType(DstReg); 4893 LLT SrcTy = MRI.getType(Src0Reg); 4894 unsigned PartSize = SrcTy.getSizeInBits(); 4895 4896 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 4897 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 4898 4899 for (unsigned I = 2; I != NumOps; ++I) { 4900 const unsigned Offset = (I - 1) * PartSize; 4901 4902 Register SrcReg = MI.getOperand(I).getReg(); 4903 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 4904 4905 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 4906 MRI.createGenericVirtualRegister(WideTy); 4907 4908 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 4909 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 4910 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 4911 ResultReg = NextResult; 4912 } 4913 4914 if (DstTy.isPointer()) { 4915 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 4916 DstTy.getAddressSpace())) { 4917 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 4918 return UnableToLegalize; 4919 } 4920 4921 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 4922 } 4923 4924 MI.eraseFromParent(); 4925 return Legalized; 4926 } 4927 4928 LegalizerHelper::LegalizeResult 4929 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4930 const unsigned NumDst = MI.getNumOperands() - 1; 4931 Register SrcReg = MI.getOperand(NumDst).getReg(); 4932 Register Dst0Reg = MI.getOperand(0).getReg(); 4933 LLT DstTy = MRI.getType(Dst0Reg); 4934 if (DstTy.isPointer()) 4935 return UnableToLegalize; // TODO 4936 4937 SrcReg = coerceToScalar(SrcReg); 4938 if (!SrcReg) 4939 return UnableToLegalize; 4940 4941 // Expand scalarizing unmerge as bitcast to integer and shift. 4942 LLT IntTy = MRI.getType(SrcReg); 4943 4944 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 4945 4946 const unsigned DstSize = DstTy.getSizeInBits(); 4947 unsigned Offset = DstSize; 4948 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4949 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4950 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 4951 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4952 } 4953 4954 MI.eraseFromParent(); 4955 return Legalized; 4956 } 4957 4958 LegalizerHelper::LegalizeResult 4959 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4960 Register DstReg = MI.getOperand(0).getReg(); 4961 Register Src0Reg = MI.getOperand(1).getReg(); 4962 Register Src1Reg = MI.getOperand(2).getReg(); 4963 LLT Src0Ty = MRI.getType(Src0Reg); 4964 LLT DstTy = MRI.getType(DstReg); 4965 LLT IdxTy = LLT::scalar(32); 4966 4967 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4968 4969 if (DstTy.isScalar()) { 4970 if (Src0Ty.isVector()) 4971 return UnableToLegalize; 4972 4973 // This is just a SELECT. 4974 assert(Mask.size() == 1 && "Expected a single mask element"); 4975 Register Val; 4976 if (Mask[0] < 0 || Mask[0] > 1) 4977 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4978 else 4979 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4980 MIRBuilder.buildCopy(DstReg, Val); 4981 MI.eraseFromParent(); 4982 return Legalized; 4983 } 4984 4985 Register Undef; 4986 SmallVector<Register, 32> BuildVec; 4987 LLT EltTy = DstTy.getElementType(); 4988 4989 for (int Idx : Mask) { 4990 if (Idx < 0) { 4991 if (!Undef.isValid()) 4992 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4993 BuildVec.push_back(Undef); 4994 continue; 4995 } 4996 4997 if (Src0Ty.isScalar()) { 4998 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4999 } else { 5000 int NumElts = Src0Ty.getNumElements(); 5001 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5002 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5003 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5004 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5005 BuildVec.push_back(Extract.getReg(0)); 5006 } 5007 } 5008 5009 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5010 MI.eraseFromParent(); 5011 return Legalized; 5012 } 5013 5014 LegalizerHelper::LegalizeResult 5015 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5016 Register Dst = MI.getOperand(0).getReg(); 5017 Register AllocSize = MI.getOperand(1).getReg(); 5018 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5019 5020 const auto &MF = *MI.getMF(); 5021 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5022 5023 LLT PtrTy = MRI.getType(Dst); 5024 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5025 5026 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5027 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5028 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5029 5030 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5031 // have to generate an extra instruction to negate the alloc and then use 5032 // G_PTR_ADD to add the negative offset. 5033 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5034 if (Alignment > Align(1)) { 5035 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5036 AlignMask.negate(); 5037 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5038 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5039 } 5040 5041 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5042 MIRBuilder.buildCopy(SPReg, SPTmp); 5043 MIRBuilder.buildCopy(Dst, SPTmp); 5044 5045 MI.eraseFromParent(); 5046 return Legalized; 5047 } 5048 5049 LegalizerHelper::LegalizeResult 5050 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5051 Register Dst = MI.getOperand(0).getReg(); 5052 Register Src = MI.getOperand(1).getReg(); 5053 unsigned Offset = MI.getOperand(2).getImm(); 5054 5055 LLT DstTy = MRI.getType(Dst); 5056 LLT SrcTy = MRI.getType(Src); 5057 5058 if (DstTy.isScalar() && 5059 (SrcTy.isScalar() || 5060 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5061 LLT SrcIntTy = SrcTy; 5062 if (!SrcTy.isScalar()) { 5063 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5064 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5065 } 5066 5067 if (Offset == 0) 5068 MIRBuilder.buildTrunc(Dst, Src); 5069 else { 5070 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5071 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5072 MIRBuilder.buildTrunc(Dst, Shr); 5073 } 5074 5075 MI.eraseFromParent(); 5076 return Legalized; 5077 } 5078 5079 return UnableToLegalize; 5080 } 5081 5082 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5083 Register Dst = MI.getOperand(0).getReg(); 5084 Register Src = MI.getOperand(1).getReg(); 5085 Register InsertSrc = MI.getOperand(2).getReg(); 5086 uint64_t Offset = MI.getOperand(3).getImm(); 5087 5088 LLT DstTy = MRI.getType(Src); 5089 LLT InsertTy = MRI.getType(InsertSrc); 5090 5091 if (InsertTy.isVector() || 5092 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5093 return UnableToLegalize; 5094 5095 const DataLayout &DL = MIRBuilder.getDataLayout(); 5096 if ((DstTy.isPointer() && 5097 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5098 (InsertTy.isPointer() && 5099 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5100 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5101 return UnableToLegalize; 5102 } 5103 5104 LLT IntDstTy = DstTy; 5105 5106 if (!DstTy.isScalar()) { 5107 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5108 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5109 } 5110 5111 if (!InsertTy.isScalar()) { 5112 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5113 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5114 } 5115 5116 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5117 if (Offset != 0) { 5118 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5119 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5120 } 5121 5122 APInt MaskVal = APInt::getBitsSetWithWrap( 5123 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5124 5125 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5126 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5127 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5128 5129 MIRBuilder.buildCast(Dst, Or); 5130 MI.eraseFromParent(); 5131 return Legalized; 5132 } 5133 5134 LegalizerHelper::LegalizeResult 5135 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5136 Register Dst0 = MI.getOperand(0).getReg(); 5137 Register Dst1 = MI.getOperand(1).getReg(); 5138 Register LHS = MI.getOperand(2).getReg(); 5139 Register RHS = MI.getOperand(3).getReg(); 5140 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5141 5142 LLT Ty = MRI.getType(Dst0); 5143 LLT BoolTy = MRI.getType(Dst1); 5144 5145 if (IsAdd) 5146 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5147 else 5148 MIRBuilder.buildSub(Dst0, LHS, RHS); 5149 5150 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5151 5152 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5153 5154 // For an addition, the result should be less than one of the operands (LHS) 5155 // if and only if the other operand (RHS) is negative, otherwise there will 5156 // be overflow. 5157 // For a subtraction, the result should be less than one of the operands 5158 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5159 // otherwise there will be overflow. 5160 auto ResultLowerThanLHS = 5161 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5162 auto ConditionRHS = MIRBuilder.buildICmp( 5163 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5164 5165 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5166 MI.eraseFromParent(); 5167 return Legalized; 5168 } 5169 5170 LegalizerHelper::LegalizeResult 5171 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5172 Register Dst = MI.getOperand(0).getReg(); 5173 Register Src = MI.getOperand(1).getReg(); 5174 const LLT Ty = MRI.getType(Src); 5175 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5176 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5177 5178 // Swap most and least significant byte, set remaining bytes in Res to zero. 5179 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5180 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5181 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5182 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5183 5184 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5185 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5186 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5187 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5188 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5189 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5190 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5191 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5192 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5193 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5194 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5195 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5196 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5197 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5198 } 5199 Res.getInstr()->getOperand(0).setReg(Dst); 5200 5201 MI.eraseFromParent(); 5202 return Legalized; 5203 } 5204 5205 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5206 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5207 MachineInstrBuilder Src, APInt Mask) { 5208 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5209 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5210 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5211 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5212 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5213 return B.buildOr(Dst, LHS, RHS); 5214 } 5215 5216 LegalizerHelper::LegalizeResult 5217 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5218 Register Dst = MI.getOperand(0).getReg(); 5219 Register Src = MI.getOperand(1).getReg(); 5220 const LLT Ty = MRI.getType(Src); 5221 unsigned Size = Ty.getSizeInBits(); 5222 5223 MachineInstrBuilder BSWAP = 5224 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5225 5226 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5227 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5228 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5229 MachineInstrBuilder Swap4 = 5230 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5231 5232 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5233 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5234 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5235 MachineInstrBuilder Swap2 = 5236 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5237 5238 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5239 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5240 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5241 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5242 5243 MI.eraseFromParent(); 5244 return Legalized; 5245 } 5246 5247 LegalizerHelper::LegalizeResult 5248 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5249 MachineFunction &MF = MIRBuilder.getMF(); 5250 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5251 const TargetLowering *TLI = STI.getTargetLowering(); 5252 5253 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5254 int NameOpIdx = IsRead ? 1 : 0; 5255 int ValRegIndex = IsRead ? 0 : 1; 5256 5257 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5258 const LLT Ty = MRI.getType(ValReg); 5259 const MDString *RegStr = cast<MDString>( 5260 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5261 5262 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5263 if (!PhysReg.isValid()) 5264 return UnableToLegalize; 5265 5266 if (IsRead) 5267 MIRBuilder.buildCopy(ValReg, PhysReg); 5268 else 5269 MIRBuilder.buildCopy(PhysReg, ValReg); 5270 5271 MI.eraseFromParent(); 5272 return Legalized; 5273 } 5274