1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 67 GISelChangeObserver &Observer, 68 MachineIRBuilder &Builder) 69 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 70 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 71 MIRBuilder.setMF(MF); 72 MIRBuilder.setChangeObserver(Observer); 73 } 74 75 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 76 GISelChangeObserver &Observer, 77 MachineIRBuilder &B) 78 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 79 MIRBuilder.setMF(MF); 80 MIRBuilder.setChangeObserver(Observer); 81 } 82 LegalizerHelper::LegalizeResult 83 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 84 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 85 86 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 87 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 88 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized 89 : UnableToLegalize; 90 auto Step = LI.getAction(MI, MRI); 91 switch (Step.Action) { 92 case Legal: 93 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 94 return AlreadyLegal; 95 case Libcall: 96 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 97 return libcall(MI); 98 case NarrowScalar: 99 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 100 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 101 case WidenScalar: 102 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 103 return widenScalar(MI, Step.TypeIdx, Step.NewType); 104 case Lower: 105 LLVM_DEBUG(dbgs() << ".. Lower\n"); 106 return lower(MI, Step.TypeIdx, Step.NewType); 107 case FewerElements: 108 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 109 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 110 case MoreElements: 111 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 112 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 113 case Custom: 114 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 115 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 116 : UnableToLegalize; 117 default: 118 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 119 return UnableToLegalize; 120 } 121 } 122 123 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 124 SmallVectorImpl<Register> &VRegs) { 125 for (int i = 0; i < NumParts; ++i) 126 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 127 MIRBuilder.buildUnmerge(VRegs, Reg); 128 } 129 130 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 131 LLT MainTy, LLT &LeftoverTy, 132 SmallVectorImpl<Register> &VRegs, 133 SmallVectorImpl<Register> &LeftoverRegs) { 134 assert(!LeftoverTy.isValid() && "this is an out argument"); 135 136 unsigned RegSize = RegTy.getSizeInBits(); 137 unsigned MainSize = MainTy.getSizeInBits(); 138 unsigned NumParts = RegSize / MainSize; 139 unsigned LeftoverSize = RegSize - NumParts * MainSize; 140 141 // Use an unmerge when possible. 142 if (LeftoverSize == 0) { 143 for (unsigned I = 0; I < NumParts; ++I) 144 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 145 MIRBuilder.buildUnmerge(VRegs, Reg); 146 return true; 147 } 148 149 if (MainTy.isVector()) { 150 unsigned EltSize = MainTy.getScalarSizeInBits(); 151 if (LeftoverSize % EltSize != 0) 152 return false; 153 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 154 } else { 155 LeftoverTy = LLT::scalar(LeftoverSize); 156 } 157 158 // For irregular sizes, extract the individual parts. 159 for (unsigned I = 0; I != NumParts; ++I) { 160 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 161 VRegs.push_back(NewReg); 162 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 163 } 164 165 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 166 Offset += LeftoverSize) { 167 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 168 LeftoverRegs.push_back(NewReg); 169 MIRBuilder.buildExtract(NewReg, Reg, Offset); 170 } 171 172 return true; 173 } 174 175 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 176 if (OrigTy.isVector() && TargetTy.isVector()) { 177 assert(OrigTy.getElementType() == TargetTy.getElementType()); 178 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 179 TargetTy.getNumElements()); 180 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 181 } 182 183 if (OrigTy.isVector() && !TargetTy.isVector()) { 184 assert(OrigTy.getElementType() == TargetTy); 185 return TargetTy; 186 } 187 188 assert(!OrigTy.isVector() && !TargetTy.isVector()); 189 190 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 191 TargetTy.getSizeInBits()); 192 return LLT::scalar(GCD); 193 } 194 195 void LegalizerHelper::insertParts(Register DstReg, 196 LLT ResultTy, LLT PartTy, 197 ArrayRef<Register> PartRegs, 198 LLT LeftoverTy, 199 ArrayRef<Register> LeftoverRegs) { 200 if (!LeftoverTy.isValid()) { 201 assert(LeftoverRegs.empty()); 202 203 if (!ResultTy.isVector()) { 204 MIRBuilder.buildMerge(DstReg, PartRegs); 205 return; 206 } 207 208 if (PartTy.isVector()) 209 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 210 else 211 MIRBuilder.buildBuildVector(DstReg, PartRegs); 212 return; 213 } 214 215 unsigned PartSize = PartTy.getSizeInBits(); 216 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 217 218 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 219 MIRBuilder.buildUndef(CurResultReg); 220 221 unsigned Offset = 0; 222 for (Register PartReg : PartRegs) { 223 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 224 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 225 CurResultReg = NewResultReg; 226 Offset += PartSize; 227 } 228 229 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 230 // Use the original output register for the final insert to avoid a copy. 231 Register NewResultReg = (I + 1 == E) ? 232 DstReg : MRI.createGenericVirtualRegister(ResultTy); 233 234 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 235 CurResultReg = NewResultReg; 236 Offset += LeftoverPartSize; 237 } 238 } 239 240 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 241 switch (Opcode) { 242 case TargetOpcode::G_SDIV: 243 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 244 switch (Size) { 245 case 32: 246 return RTLIB::SDIV_I32; 247 case 64: 248 return RTLIB::SDIV_I64; 249 case 128: 250 return RTLIB::SDIV_I128; 251 default: 252 llvm_unreachable("unexpected size"); 253 } 254 case TargetOpcode::G_UDIV: 255 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 256 switch (Size) { 257 case 32: 258 return RTLIB::UDIV_I32; 259 case 64: 260 return RTLIB::UDIV_I64; 261 case 128: 262 return RTLIB::UDIV_I128; 263 default: 264 llvm_unreachable("unexpected size"); 265 } 266 case TargetOpcode::G_SREM: 267 assert((Size == 32 || Size == 64) && "Unsupported size"); 268 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 269 case TargetOpcode::G_UREM: 270 assert((Size == 32 || Size == 64) && "Unsupported size"); 271 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 272 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 273 assert(Size == 32 && "Unsupported size"); 274 return RTLIB::CTLZ_I32; 275 case TargetOpcode::G_FADD: 276 assert((Size == 32 || Size == 64) && "Unsupported size"); 277 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 278 case TargetOpcode::G_FSUB: 279 assert((Size == 32 || Size == 64) && "Unsupported size"); 280 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 281 case TargetOpcode::G_FMUL: 282 assert((Size == 32 || Size == 64) && "Unsupported size"); 283 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 284 case TargetOpcode::G_FDIV: 285 assert((Size == 32 || Size == 64) && "Unsupported size"); 286 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 287 case TargetOpcode::G_FEXP: 288 assert((Size == 32 || Size == 64) && "Unsupported size"); 289 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 290 case TargetOpcode::G_FEXP2: 291 assert((Size == 32 || Size == 64) && "Unsupported size"); 292 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 293 case TargetOpcode::G_FREM: 294 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 295 case TargetOpcode::G_FPOW: 296 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 297 case TargetOpcode::G_FMA: 298 assert((Size == 32 || Size == 64) && "Unsupported size"); 299 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 300 case TargetOpcode::G_FSIN: 301 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 302 return Size == 128 ? RTLIB::SIN_F128 303 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 304 case TargetOpcode::G_FCOS: 305 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 306 return Size == 128 ? RTLIB::COS_F128 307 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 308 case TargetOpcode::G_FLOG10: 309 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 310 return Size == 128 ? RTLIB::LOG10_F128 311 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 312 case TargetOpcode::G_FLOG: 313 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 314 return Size == 128 ? RTLIB::LOG_F128 315 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 316 case TargetOpcode::G_FLOG2: 317 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 318 return Size == 128 ? RTLIB::LOG2_F128 319 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 320 case TargetOpcode::G_FCEIL: 321 assert((Size == 32 || Size == 64) && "Unsupported size"); 322 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 323 case TargetOpcode::G_FFLOOR: 324 assert((Size == 32 || Size == 64) && "Unsupported size"); 325 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 326 } 327 llvm_unreachable("Unknown libcall function"); 328 } 329 330 /// True if an instruction is in tail position in its caller. Intended for 331 /// legalizing libcalls as tail calls when possible. 332 static bool isLibCallInTailPosition(MachineInstr &MI) { 333 const Function &F = MI.getParent()->getParent()->getFunction(); 334 335 // Conservatively require the attributes of the call to match those of 336 // the return. Ignore NoAlias and NonNull because they don't affect the 337 // call sequence. 338 AttributeList CallerAttrs = F.getAttributes(); 339 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 340 .removeAttribute(Attribute::NoAlias) 341 .removeAttribute(Attribute::NonNull) 342 .hasAttributes()) 343 return false; 344 345 // It's not safe to eliminate the sign / zero extension of the return value. 346 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 347 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 348 return false; 349 350 // Only tail call if the following instruction is a standard return. 351 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 352 MachineInstr *Next = MI.getNextNode(); 353 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 354 return false; 355 356 return true; 357 } 358 359 LegalizerHelper::LegalizeResult 360 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 361 const CallLowering::ArgInfo &Result, 362 ArrayRef<CallLowering::ArgInfo> Args) { 363 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 364 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 365 const char *Name = TLI.getLibcallName(Libcall); 366 367 CallLowering::CallLoweringInfo Info; 368 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 369 Info.Callee = MachineOperand::CreateES(Name); 370 Info.OrigRet = Result; 371 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 372 if (!CLI.lowerCall(MIRBuilder, Info)) 373 return LegalizerHelper::UnableToLegalize; 374 375 return LegalizerHelper::Legalized; 376 } 377 378 // Useful for libcalls where all operands have the same type. 379 static LegalizerHelper::LegalizeResult 380 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 381 Type *OpType) { 382 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 383 384 SmallVector<CallLowering::ArgInfo, 3> Args; 385 for (unsigned i = 1; i < MI.getNumOperands(); i++) 386 Args.push_back({MI.getOperand(i).getReg(), OpType}); 387 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 388 Args); 389 } 390 391 LegalizerHelper::LegalizeResult 392 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 393 MachineInstr &MI) { 394 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 395 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 396 397 SmallVector<CallLowering::ArgInfo, 3> Args; 398 // Add all the args, except for the last which is an imm denoting 'tail'. 399 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 400 Register Reg = MI.getOperand(i).getReg(); 401 402 // Need derive an IR type for call lowering. 403 LLT OpLLT = MRI.getType(Reg); 404 Type *OpTy = nullptr; 405 if (OpLLT.isPointer()) 406 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 407 else 408 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 409 Args.push_back({Reg, OpTy}); 410 } 411 412 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 413 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 414 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 415 RTLIB::Libcall RTLibcall; 416 switch (ID) { 417 case Intrinsic::memcpy: 418 RTLibcall = RTLIB::MEMCPY; 419 break; 420 case Intrinsic::memset: 421 RTLibcall = RTLIB::MEMSET; 422 break; 423 case Intrinsic::memmove: 424 RTLibcall = RTLIB::MEMMOVE; 425 break; 426 default: 427 return LegalizerHelper::UnableToLegalize; 428 } 429 const char *Name = TLI.getLibcallName(RTLibcall); 430 431 MIRBuilder.setInstr(MI); 432 433 CallLowering::CallLoweringInfo Info; 434 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 435 Info.Callee = MachineOperand::CreateES(Name); 436 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 437 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 438 isLibCallInTailPosition(MI); 439 440 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 441 if (!CLI.lowerCall(MIRBuilder, Info)) 442 return LegalizerHelper::UnableToLegalize; 443 444 if (Info.LoweredTailCall) { 445 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 446 // We must have a return following the call to get past 447 // isLibCallInTailPosition. 448 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 449 "Expected instr following MI to be a return?"); 450 451 // We lowered a tail call, so the call is now the return from the block. 452 // Delete the old return. 453 MI.getNextNode()->eraseFromParent(); 454 } 455 456 return LegalizerHelper::Legalized; 457 } 458 459 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 460 Type *FromType) { 461 auto ToMVT = MVT::getVT(ToType); 462 auto FromMVT = MVT::getVT(FromType); 463 464 switch (Opcode) { 465 case TargetOpcode::G_FPEXT: 466 return RTLIB::getFPEXT(FromMVT, ToMVT); 467 case TargetOpcode::G_FPTRUNC: 468 return RTLIB::getFPROUND(FromMVT, ToMVT); 469 case TargetOpcode::G_FPTOSI: 470 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 471 case TargetOpcode::G_FPTOUI: 472 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 473 case TargetOpcode::G_SITOFP: 474 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 475 case TargetOpcode::G_UITOFP: 476 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 477 } 478 llvm_unreachable("Unsupported libcall function"); 479 } 480 481 static LegalizerHelper::LegalizeResult 482 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 483 Type *FromType) { 484 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 485 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 486 {{MI.getOperand(1).getReg(), FromType}}); 487 } 488 489 LegalizerHelper::LegalizeResult 490 LegalizerHelper::libcall(MachineInstr &MI) { 491 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 492 unsigned Size = LLTy.getSizeInBits(); 493 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 494 495 MIRBuilder.setInstr(MI); 496 497 switch (MI.getOpcode()) { 498 default: 499 return UnableToLegalize; 500 case TargetOpcode::G_SDIV: 501 case TargetOpcode::G_UDIV: 502 case TargetOpcode::G_SREM: 503 case TargetOpcode::G_UREM: 504 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 505 Type *HLTy = IntegerType::get(Ctx, Size); 506 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 507 if (Status != Legalized) 508 return Status; 509 break; 510 } 511 case TargetOpcode::G_FADD: 512 case TargetOpcode::G_FSUB: 513 case TargetOpcode::G_FMUL: 514 case TargetOpcode::G_FDIV: 515 case TargetOpcode::G_FMA: 516 case TargetOpcode::G_FPOW: 517 case TargetOpcode::G_FREM: 518 case TargetOpcode::G_FCOS: 519 case TargetOpcode::G_FSIN: 520 case TargetOpcode::G_FLOG10: 521 case TargetOpcode::G_FLOG: 522 case TargetOpcode::G_FLOG2: 523 case TargetOpcode::G_FEXP: 524 case TargetOpcode::G_FEXP2: 525 case TargetOpcode::G_FCEIL: 526 case TargetOpcode::G_FFLOOR: { 527 if (Size > 64) { 528 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 529 return UnableToLegalize; 530 } 531 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 532 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 533 if (Status != Legalized) 534 return Status; 535 break; 536 } 537 case TargetOpcode::G_FPEXT: { 538 // FIXME: Support other floating point types (half, fp128 etc) 539 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 540 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 541 if (ToSize != 64 || FromSize != 32) 542 return UnableToLegalize; 543 LegalizeResult Status = conversionLibcall( 544 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 545 if (Status != Legalized) 546 return Status; 547 break; 548 } 549 case TargetOpcode::G_FPTRUNC: { 550 // FIXME: Support other floating point types (half, fp128 etc) 551 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 552 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 553 if (ToSize != 32 || FromSize != 64) 554 return UnableToLegalize; 555 LegalizeResult Status = conversionLibcall( 556 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 557 if (Status != Legalized) 558 return Status; 559 break; 560 } 561 case TargetOpcode::G_FPTOSI: 562 case TargetOpcode::G_FPTOUI: { 563 // FIXME: Support other types 564 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 565 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 566 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 567 return UnableToLegalize; 568 LegalizeResult Status = conversionLibcall( 569 MI, MIRBuilder, 570 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 571 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 572 if (Status != Legalized) 573 return Status; 574 break; 575 } 576 case TargetOpcode::G_SITOFP: 577 case TargetOpcode::G_UITOFP: { 578 // FIXME: Support other types 579 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 580 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 581 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 582 return UnableToLegalize; 583 LegalizeResult Status = conversionLibcall( 584 MI, MIRBuilder, 585 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 586 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 587 if (Status != Legalized) 588 return Status; 589 break; 590 } 591 } 592 593 MI.eraseFromParent(); 594 return Legalized; 595 } 596 597 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 598 unsigned TypeIdx, 599 LLT NarrowTy) { 600 MIRBuilder.setInstr(MI); 601 602 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 603 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 604 605 switch (MI.getOpcode()) { 606 default: 607 return UnableToLegalize; 608 case TargetOpcode::G_IMPLICIT_DEF: { 609 // FIXME: add support for when SizeOp0 isn't an exact multiple of 610 // NarrowSize. 611 if (SizeOp0 % NarrowSize != 0) 612 return UnableToLegalize; 613 int NumParts = SizeOp0 / NarrowSize; 614 615 SmallVector<Register, 2> DstRegs; 616 for (int i = 0; i < NumParts; ++i) 617 DstRegs.push_back( 618 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 619 620 Register DstReg = MI.getOperand(0).getReg(); 621 if(MRI.getType(DstReg).isVector()) 622 MIRBuilder.buildBuildVector(DstReg, DstRegs); 623 else 624 MIRBuilder.buildMerge(DstReg, DstRegs); 625 MI.eraseFromParent(); 626 return Legalized; 627 } 628 case TargetOpcode::G_CONSTANT: { 629 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 630 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 631 unsigned TotalSize = Ty.getSizeInBits(); 632 unsigned NarrowSize = NarrowTy.getSizeInBits(); 633 int NumParts = TotalSize / NarrowSize; 634 635 SmallVector<Register, 4> PartRegs; 636 for (int I = 0; I != NumParts; ++I) { 637 unsigned Offset = I * NarrowSize; 638 auto K = MIRBuilder.buildConstant(NarrowTy, 639 Val.lshr(Offset).trunc(NarrowSize)); 640 PartRegs.push_back(K.getReg(0)); 641 } 642 643 LLT LeftoverTy; 644 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 645 SmallVector<Register, 1> LeftoverRegs; 646 if (LeftoverBits != 0) { 647 LeftoverTy = LLT::scalar(LeftoverBits); 648 auto K = MIRBuilder.buildConstant( 649 LeftoverTy, 650 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 651 LeftoverRegs.push_back(K.getReg(0)); 652 } 653 654 insertParts(MI.getOperand(0).getReg(), 655 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 656 657 MI.eraseFromParent(); 658 return Legalized; 659 } 660 case TargetOpcode::G_SEXT: 661 case TargetOpcode::G_ZEXT: 662 case TargetOpcode::G_ANYEXT: { 663 if (TypeIdx != 0) 664 return UnableToLegalize; 665 666 Register SrcReg = MI.getOperand(1).getReg(); 667 LLT SrcTy = MRI.getType(SrcReg); 668 uint64_t SizeOp1 = SrcTy.getSizeInBits(); 669 if (SizeOp0 % SizeOp1 != 0) 670 return UnableToLegalize; 671 672 Register PadReg; 673 if (MI.getOpcode() == TargetOpcode::G_ZEXT) 674 PadReg = MIRBuilder.buildConstant(SrcTy, 0).getReg(0); 675 else if (MI.getOpcode() == TargetOpcode::G_ANYEXT) 676 PadReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 677 else { 678 // Shift the sign bit of the low register through the high register. 679 auto ShiftAmt = 680 MIRBuilder.buildConstant(LLT::scalar(64), SrcTy.getSizeInBits() - 1); 681 PadReg = MIRBuilder.buildAShr(SrcTy, SrcReg, ShiftAmt).getReg(0); 682 } 683 684 // Generate a merge where the bottom bits are taken from the source, and 685 // zero/impdef/sign bit everything else. 686 unsigned NumParts = SizeOp0 / SizeOp1; 687 SmallVector<Register, 4> Srcs = {SrcReg}; 688 for (unsigned Part = 1; Part < NumParts; ++Part) 689 Srcs.push_back(PadReg); 690 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Srcs); 691 MI.eraseFromParent(); 692 return Legalized; 693 } 694 case TargetOpcode::G_TRUNC: { 695 if (TypeIdx != 1) 696 return UnableToLegalize; 697 698 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 699 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 700 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 701 return UnableToLegalize; 702 } 703 704 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 705 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Unmerge.getReg(0)); 706 MI.eraseFromParent(); 707 return Legalized; 708 } 709 710 case TargetOpcode::G_ADD: { 711 // FIXME: add support for when SizeOp0 isn't an exact multiple of 712 // NarrowSize. 713 if (SizeOp0 % NarrowSize != 0) 714 return UnableToLegalize; 715 // Expand in terms of carry-setting/consuming G_ADDE instructions. 716 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 717 718 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 719 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 720 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 721 722 Register CarryIn; 723 for (int i = 0; i < NumParts; ++i) { 724 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 725 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 726 727 if (i == 0) 728 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 729 else { 730 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 731 Src2Regs[i], CarryIn); 732 } 733 734 DstRegs.push_back(DstReg); 735 CarryIn = CarryOut; 736 } 737 Register DstReg = MI.getOperand(0).getReg(); 738 if(MRI.getType(DstReg).isVector()) 739 MIRBuilder.buildBuildVector(DstReg, DstRegs); 740 else 741 MIRBuilder.buildMerge(DstReg, DstRegs); 742 MI.eraseFromParent(); 743 return Legalized; 744 } 745 case TargetOpcode::G_SUB: { 746 // FIXME: add support for when SizeOp0 isn't an exact multiple of 747 // NarrowSize. 748 if (SizeOp0 % NarrowSize != 0) 749 return UnableToLegalize; 750 751 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 752 753 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 754 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 755 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 756 757 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 758 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 759 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 760 {Src1Regs[0], Src2Regs[0]}); 761 DstRegs.push_back(DstReg); 762 Register BorrowIn = BorrowOut; 763 for (int i = 1; i < NumParts; ++i) { 764 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 765 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 766 767 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 768 {Src1Regs[i], Src2Regs[i], BorrowIn}); 769 770 DstRegs.push_back(DstReg); 771 BorrowIn = BorrowOut; 772 } 773 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 774 MI.eraseFromParent(); 775 return Legalized; 776 } 777 case TargetOpcode::G_MUL: 778 case TargetOpcode::G_UMULH: 779 return narrowScalarMul(MI, NarrowTy); 780 case TargetOpcode::G_EXTRACT: 781 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 782 case TargetOpcode::G_INSERT: 783 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 784 case TargetOpcode::G_LOAD: { 785 const auto &MMO = **MI.memoperands_begin(); 786 Register DstReg = MI.getOperand(0).getReg(); 787 LLT DstTy = MRI.getType(DstReg); 788 if (DstTy.isVector()) 789 return UnableToLegalize; 790 791 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 792 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 793 auto &MMO = **MI.memoperands_begin(); 794 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 795 MIRBuilder.buildAnyExt(DstReg, TmpReg); 796 MI.eraseFromParent(); 797 return Legalized; 798 } 799 800 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 801 } 802 case TargetOpcode::G_ZEXTLOAD: 803 case TargetOpcode::G_SEXTLOAD: { 804 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 805 Register DstReg = MI.getOperand(0).getReg(); 806 Register PtrReg = MI.getOperand(1).getReg(); 807 808 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 809 auto &MMO = **MI.memoperands_begin(); 810 if (MMO.getSizeInBits() == NarrowSize) { 811 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 812 } else { 813 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 814 : TargetOpcode::G_SEXTLOAD; 815 MIRBuilder.buildInstr(ExtLoad) 816 .addDef(TmpReg) 817 .addUse(PtrReg) 818 .addMemOperand(&MMO); 819 } 820 821 if (ZExt) 822 MIRBuilder.buildZExt(DstReg, TmpReg); 823 else 824 MIRBuilder.buildSExt(DstReg, TmpReg); 825 826 MI.eraseFromParent(); 827 return Legalized; 828 } 829 case TargetOpcode::G_STORE: { 830 const auto &MMO = **MI.memoperands_begin(); 831 832 Register SrcReg = MI.getOperand(0).getReg(); 833 LLT SrcTy = MRI.getType(SrcReg); 834 if (SrcTy.isVector()) 835 return UnableToLegalize; 836 837 int NumParts = SizeOp0 / NarrowSize; 838 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 839 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 840 if (SrcTy.isVector() && LeftoverBits != 0) 841 return UnableToLegalize; 842 843 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 844 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 845 auto &MMO = **MI.memoperands_begin(); 846 MIRBuilder.buildTrunc(TmpReg, SrcReg); 847 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 848 MI.eraseFromParent(); 849 return Legalized; 850 } 851 852 return reduceLoadStoreWidth(MI, 0, NarrowTy); 853 } 854 case TargetOpcode::G_SELECT: 855 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 856 case TargetOpcode::G_AND: 857 case TargetOpcode::G_OR: 858 case TargetOpcode::G_XOR: { 859 // Legalize bitwise operation: 860 // A = BinOp<Ty> B, C 861 // into: 862 // B1, ..., BN = G_UNMERGE_VALUES B 863 // C1, ..., CN = G_UNMERGE_VALUES C 864 // A1 = BinOp<Ty/N> B1, C2 865 // ... 866 // AN = BinOp<Ty/N> BN, CN 867 // A = G_MERGE_VALUES A1, ..., AN 868 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 869 } 870 case TargetOpcode::G_SHL: 871 case TargetOpcode::G_LSHR: 872 case TargetOpcode::G_ASHR: 873 return narrowScalarShift(MI, TypeIdx, NarrowTy); 874 case TargetOpcode::G_CTLZ: 875 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 876 case TargetOpcode::G_CTTZ: 877 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 878 case TargetOpcode::G_CTPOP: 879 if (TypeIdx != 0) 880 return UnableToLegalize; // TODO 881 882 Observer.changingInstr(MI); 883 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 884 Observer.changedInstr(MI); 885 return Legalized; 886 case TargetOpcode::G_INTTOPTR: 887 if (TypeIdx != 1) 888 return UnableToLegalize; 889 890 Observer.changingInstr(MI); 891 narrowScalarSrc(MI, NarrowTy, 1); 892 Observer.changedInstr(MI); 893 return Legalized; 894 case TargetOpcode::G_PTRTOINT: 895 if (TypeIdx != 0) 896 return UnableToLegalize; 897 898 Observer.changingInstr(MI); 899 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 900 Observer.changedInstr(MI); 901 return Legalized; 902 case TargetOpcode::G_PHI: { 903 unsigned NumParts = SizeOp0 / NarrowSize; 904 SmallVector<Register, 2> DstRegs; 905 SmallVector<SmallVector<Register, 2>, 2> SrcRegs; 906 DstRegs.resize(NumParts); 907 SrcRegs.resize(MI.getNumOperands() / 2); 908 Observer.changingInstr(MI); 909 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 910 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 911 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 912 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 913 SrcRegs[i / 2]); 914 } 915 MachineBasicBlock &MBB = *MI.getParent(); 916 MIRBuilder.setInsertPt(MBB, MI); 917 for (unsigned i = 0; i < NumParts; ++i) { 918 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 919 MachineInstrBuilder MIB = 920 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 921 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 922 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 923 } 924 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 925 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 926 Observer.changedInstr(MI); 927 MI.eraseFromParent(); 928 return Legalized; 929 } 930 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 931 case TargetOpcode::G_INSERT_VECTOR_ELT: { 932 if (TypeIdx != 2) 933 return UnableToLegalize; 934 935 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 936 Observer.changingInstr(MI); 937 narrowScalarSrc(MI, NarrowTy, OpIdx); 938 Observer.changedInstr(MI); 939 return Legalized; 940 } 941 case TargetOpcode::G_ICMP: { 942 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 943 if (NarrowSize * 2 != SrcSize) 944 return UnableToLegalize; 945 946 Observer.changingInstr(MI); 947 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 948 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 949 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg()); 950 951 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 952 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 953 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg()); 954 955 CmpInst::Predicate Pred = 956 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 957 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 958 959 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 960 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 961 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 962 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 963 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 964 MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero); 965 } else { 966 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 967 MachineInstrBuilder CmpHEQ = 968 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 969 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 970 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 971 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH); 972 } 973 Observer.changedInstr(MI); 974 MI.eraseFromParent(); 975 return Legalized; 976 } 977 case TargetOpcode::G_SEXT_INREG: { 978 if (TypeIdx != 0) 979 return UnableToLegalize; 980 981 if (!MI.getOperand(2).isImm()) 982 return UnableToLegalize; 983 int64_t SizeInBits = MI.getOperand(2).getImm(); 984 985 // So long as the new type has more bits than the bits we're extending we 986 // don't need to break it apart. 987 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 988 Observer.changingInstr(MI); 989 // We don't lose any non-extension bits by truncating the src and 990 // sign-extending the dst. 991 MachineOperand &MO1 = MI.getOperand(1); 992 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1.getReg()); 993 MO1.setReg(TruncMIB->getOperand(0).getReg()); 994 995 MachineOperand &MO2 = MI.getOperand(0); 996 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 997 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 998 MIRBuilder.buildInstr(TargetOpcode::G_SEXT, {MO2.getReg()}, {DstExt}); 999 MO2.setReg(DstExt); 1000 Observer.changedInstr(MI); 1001 return Legalized; 1002 } 1003 1004 // Break it apart. Components below the extension point are unmodified. The 1005 // component containing the extension point becomes a narrower SEXT_INREG. 1006 // Components above it are ashr'd from the component containing the 1007 // extension point. 1008 if (SizeOp0 % NarrowSize != 0) 1009 return UnableToLegalize; 1010 int NumParts = SizeOp0 / NarrowSize; 1011 1012 // List the registers where the destination will be scattered. 1013 SmallVector<Register, 2> DstRegs; 1014 // List the registers where the source will be split. 1015 SmallVector<Register, 2> SrcRegs; 1016 1017 // Create all the temporary registers. 1018 for (int i = 0; i < NumParts; ++i) { 1019 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1020 1021 SrcRegs.push_back(SrcReg); 1022 } 1023 1024 // Explode the big arguments into smaller chunks. 1025 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1).getReg()); 1026 1027 Register AshrCstReg = 1028 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1029 ->getOperand(0) 1030 .getReg(); 1031 Register FullExtensionReg = 0; 1032 Register PartialExtensionReg = 0; 1033 1034 // Do the operation on each small part. 1035 for (int i = 0; i < NumParts; ++i) { 1036 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1037 DstRegs.push_back(SrcRegs[i]); 1038 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1039 assert(PartialExtensionReg && 1040 "Expected to visit partial extension before full"); 1041 if (FullExtensionReg) { 1042 DstRegs.push_back(FullExtensionReg); 1043 continue; 1044 } 1045 DstRegs.push_back(MIRBuilder 1046 .buildInstr(TargetOpcode::G_ASHR, {NarrowTy}, 1047 {PartialExtensionReg, AshrCstReg}) 1048 ->getOperand(0) 1049 .getReg()); 1050 FullExtensionReg = DstRegs.back(); 1051 } else { 1052 DstRegs.push_back( 1053 MIRBuilder 1054 .buildInstr( 1055 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1056 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1057 ->getOperand(0) 1058 .getReg()); 1059 PartialExtensionReg = DstRegs.back(); 1060 } 1061 } 1062 1063 // Gather the destination registers into the final destination. 1064 Register DstReg = MI.getOperand(0).getReg(); 1065 MIRBuilder.buildMerge(DstReg, DstRegs); 1066 MI.eraseFromParent(); 1067 return Legalized; 1068 } 1069 case TargetOpcode::G_BSWAP: 1070 case TargetOpcode::G_BITREVERSE: { 1071 if (SizeOp0 % NarrowSize != 0) 1072 return UnableToLegalize; 1073 1074 Observer.changingInstr(MI); 1075 SmallVector<Register, 2> SrcRegs, DstRegs; 1076 unsigned NumParts = SizeOp0 / NarrowSize; 1077 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1078 1079 for (unsigned i = 0; i < NumParts; ++i) { 1080 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1081 {SrcRegs[NumParts - 1 - i]}); 1082 DstRegs.push_back(DstPart.getReg(0)); 1083 } 1084 1085 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 1086 1087 Observer.changedInstr(MI); 1088 MI.eraseFromParent(); 1089 return Legalized; 1090 } 1091 } 1092 } 1093 1094 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1095 unsigned OpIdx, unsigned ExtOpcode) { 1096 MachineOperand &MO = MI.getOperand(OpIdx); 1097 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 1098 MO.setReg(ExtB->getOperand(0).getReg()); 1099 } 1100 1101 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1102 unsigned OpIdx) { 1103 MachineOperand &MO = MI.getOperand(OpIdx); 1104 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 1105 {MO.getReg()}); 1106 MO.setReg(ExtB->getOperand(0).getReg()); 1107 } 1108 1109 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1110 unsigned OpIdx, unsigned TruncOpcode) { 1111 MachineOperand &MO = MI.getOperand(OpIdx); 1112 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1113 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1114 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 1115 MO.setReg(DstExt); 1116 } 1117 1118 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1119 unsigned OpIdx, unsigned ExtOpcode) { 1120 MachineOperand &MO = MI.getOperand(OpIdx); 1121 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1122 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1123 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 1124 MO.setReg(DstTrunc); 1125 } 1126 1127 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1128 unsigned OpIdx) { 1129 MachineOperand &MO = MI.getOperand(OpIdx); 1130 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1131 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1132 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 1133 MO.setReg(DstExt); 1134 } 1135 1136 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1137 unsigned OpIdx) { 1138 MachineOperand &MO = MI.getOperand(OpIdx); 1139 1140 LLT OldTy = MRI.getType(MO.getReg()); 1141 unsigned OldElts = OldTy.getNumElements(); 1142 unsigned NewElts = MoreTy.getNumElements(); 1143 1144 unsigned NumParts = NewElts / OldElts; 1145 1146 // Use concat_vectors if the result is a multiple of the number of elements. 1147 if (NumParts * OldElts == NewElts) { 1148 SmallVector<Register, 8> Parts; 1149 Parts.push_back(MO.getReg()); 1150 1151 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1152 for (unsigned I = 1; I != NumParts; ++I) 1153 Parts.push_back(ImpDef); 1154 1155 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1156 MO.setReg(Concat.getReg(0)); 1157 return; 1158 } 1159 1160 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1161 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1162 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1163 MO.setReg(MoreReg); 1164 } 1165 1166 LegalizerHelper::LegalizeResult 1167 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1168 LLT WideTy) { 1169 if (TypeIdx != 1) 1170 return UnableToLegalize; 1171 1172 Register DstReg = MI.getOperand(0).getReg(); 1173 LLT DstTy = MRI.getType(DstReg); 1174 if (DstTy.isVector()) 1175 return UnableToLegalize; 1176 1177 Register Src1 = MI.getOperand(1).getReg(); 1178 LLT SrcTy = MRI.getType(Src1); 1179 const int DstSize = DstTy.getSizeInBits(); 1180 const int SrcSize = SrcTy.getSizeInBits(); 1181 const int WideSize = WideTy.getSizeInBits(); 1182 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1183 1184 unsigned NumOps = MI.getNumOperands(); 1185 unsigned NumSrc = MI.getNumOperands() - 1; 1186 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1187 1188 if (WideSize >= DstSize) { 1189 // Directly pack the bits in the target type. 1190 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1191 1192 for (unsigned I = 2; I != NumOps; ++I) { 1193 const unsigned Offset = (I - 1) * PartSize; 1194 1195 Register SrcReg = MI.getOperand(I).getReg(); 1196 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1197 1198 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1199 1200 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1201 MRI.createGenericVirtualRegister(WideTy); 1202 1203 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1204 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1205 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1206 ResultReg = NextResult; 1207 } 1208 1209 if (WideSize > DstSize) 1210 MIRBuilder.buildTrunc(DstReg, ResultReg); 1211 else if (DstTy.isPointer()) 1212 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1213 1214 MI.eraseFromParent(); 1215 return Legalized; 1216 } 1217 1218 // Unmerge the original values to the GCD type, and recombine to the next 1219 // multiple greater than the original type. 1220 // 1221 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1222 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1223 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1224 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1225 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1226 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1227 // %12:_(s12) = G_MERGE_VALUES %10, %11 1228 // 1229 // Padding with undef if necessary: 1230 // 1231 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1232 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1233 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1234 // %7:_(s2) = G_IMPLICIT_DEF 1235 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1236 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1237 // %10:_(s12) = G_MERGE_VALUES %8, %9 1238 1239 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1240 LLT GCDTy = LLT::scalar(GCD); 1241 1242 SmallVector<Register, 8> Parts; 1243 SmallVector<Register, 8> NewMergeRegs; 1244 SmallVector<Register, 8> Unmerges; 1245 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1246 1247 // Decompose the original operands if they don't evenly divide. 1248 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1249 Register SrcReg = MI.getOperand(I).getReg(); 1250 if (GCD == SrcSize) { 1251 Unmerges.push_back(SrcReg); 1252 } else { 1253 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1254 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1255 Unmerges.push_back(Unmerge.getReg(J)); 1256 } 1257 } 1258 1259 // Pad with undef to the next size that is a multiple of the requested size. 1260 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1261 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1262 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1263 Unmerges.push_back(UndefReg); 1264 } 1265 1266 const int PartsPerGCD = WideSize / GCD; 1267 1268 // Build merges of each piece. 1269 ArrayRef<Register> Slicer(Unmerges); 1270 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1271 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1272 NewMergeRegs.push_back(Merge.getReg(0)); 1273 } 1274 1275 // A truncate may be necessary if the requested type doesn't evenly divide the 1276 // original result type. 1277 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1278 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1279 } else { 1280 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1281 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1282 } 1283 1284 MI.eraseFromParent(); 1285 return Legalized; 1286 } 1287 1288 LegalizerHelper::LegalizeResult 1289 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1290 LLT WideTy) { 1291 if (TypeIdx != 0) 1292 return UnableToLegalize; 1293 1294 unsigned NumDst = MI.getNumOperands() - 1; 1295 Register SrcReg = MI.getOperand(NumDst).getReg(); 1296 LLT SrcTy = MRI.getType(SrcReg); 1297 if (!SrcTy.isScalar()) 1298 return UnableToLegalize; 1299 1300 Register Dst0Reg = MI.getOperand(0).getReg(); 1301 LLT DstTy = MRI.getType(Dst0Reg); 1302 if (!DstTy.isScalar()) 1303 return UnableToLegalize; 1304 1305 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 1306 LLT NewSrcTy = LLT::scalar(NewSrcSize); 1307 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 1308 1309 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 1310 1311 for (unsigned I = 1; I != NumDst; ++I) { 1312 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 1313 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 1314 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 1315 } 1316 1317 Observer.changingInstr(MI); 1318 1319 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 1320 for (unsigned I = 0; I != NumDst; ++I) 1321 widenScalarDst(MI, WideTy, I); 1322 1323 Observer.changedInstr(MI); 1324 1325 return Legalized; 1326 } 1327 1328 LegalizerHelper::LegalizeResult 1329 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1330 LLT WideTy) { 1331 Register DstReg = MI.getOperand(0).getReg(); 1332 Register SrcReg = MI.getOperand(1).getReg(); 1333 LLT SrcTy = MRI.getType(SrcReg); 1334 1335 LLT DstTy = MRI.getType(DstReg); 1336 unsigned Offset = MI.getOperand(2).getImm(); 1337 1338 if (TypeIdx == 0) { 1339 if (SrcTy.isVector() || DstTy.isVector()) 1340 return UnableToLegalize; 1341 1342 SrcOp Src(SrcReg); 1343 if (SrcTy.isPointer()) { 1344 // Extracts from pointers can be handled only if they are really just 1345 // simple integers. 1346 const DataLayout &DL = MIRBuilder.getDataLayout(); 1347 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1348 return UnableToLegalize; 1349 1350 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1351 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1352 SrcTy = SrcAsIntTy; 1353 } 1354 1355 if (DstTy.isPointer()) 1356 return UnableToLegalize; 1357 1358 if (Offset == 0) { 1359 // Avoid a shift in the degenerate case. 1360 MIRBuilder.buildTrunc(DstReg, 1361 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1362 MI.eraseFromParent(); 1363 return Legalized; 1364 } 1365 1366 // Do a shift in the source type. 1367 LLT ShiftTy = SrcTy; 1368 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1369 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1370 ShiftTy = WideTy; 1371 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1372 return UnableToLegalize; 1373 1374 auto LShr = MIRBuilder.buildLShr( 1375 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1376 MIRBuilder.buildTrunc(DstReg, LShr); 1377 MI.eraseFromParent(); 1378 return Legalized; 1379 } 1380 1381 if (SrcTy.isScalar()) { 1382 Observer.changingInstr(MI); 1383 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1384 Observer.changedInstr(MI); 1385 return Legalized; 1386 } 1387 1388 if (!SrcTy.isVector()) 1389 return UnableToLegalize; 1390 1391 if (DstTy != SrcTy.getElementType()) 1392 return UnableToLegalize; 1393 1394 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1395 return UnableToLegalize; 1396 1397 Observer.changingInstr(MI); 1398 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1399 1400 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1401 Offset); 1402 widenScalarDst(MI, WideTy.getScalarType(), 0); 1403 Observer.changedInstr(MI); 1404 return Legalized; 1405 } 1406 1407 LegalizerHelper::LegalizeResult 1408 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1409 LLT WideTy) { 1410 if (TypeIdx != 0) 1411 return UnableToLegalize; 1412 Observer.changingInstr(MI); 1413 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1414 widenScalarDst(MI, WideTy); 1415 Observer.changedInstr(MI); 1416 return Legalized; 1417 } 1418 1419 LegalizerHelper::LegalizeResult 1420 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1421 MIRBuilder.setInstr(MI); 1422 1423 switch (MI.getOpcode()) { 1424 default: 1425 return UnableToLegalize; 1426 case TargetOpcode::G_EXTRACT: 1427 return widenScalarExtract(MI, TypeIdx, WideTy); 1428 case TargetOpcode::G_INSERT: 1429 return widenScalarInsert(MI, TypeIdx, WideTy); 1430 case TargetOpcode::G_MERGE_VALUES: 1431 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1432 case TargetOpcode::G_UNMERGE_VALUES: 1433 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1434 case TargetOpcode::G_UADDO: 1435 case TargetOpcode::G_USUBO: { 1436 if (TypeIdx == 1) 1437 return UnableToLegalize; // TODO 1438 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1439 {MI.getOperand(2).getReg()}); 1440 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1441 {MI.getOperand(3).getReg()}); 1442 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1443 ? TargetOpcode::G_ADD 1444 : TargetOpcode::G_SUB; 1445 // Do the arithmetic in the larger type. 1446 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1447 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1448 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 1449 auto AndOp = MIRBuilder.buildInstr( 1450 TargetOpcode::G_AND, {WideTy}, 1451 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 1452 // There is no overflow if the AndOp is the same as NewOp. 1453 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 1454 AndOp); 1455 // Now trunc the NewOp to the original result. 1456 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 1457 MI.eraseFromParent(); 1458 return Legalized; 1459 } 1460 case TargetOpcode::G_CTTZ: 1461 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1462 case TargetOpcode::G_CTLZ: 1463 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1464 case TargetOpcode::G_CTPOP: { 1465 if (TypeIdx == 0) { 1466 Observer.changingInstr(MI); 1467 widenScalarDst(MI, WideTy, 0); 1468 Observer.changedInstr(MI); 1469 return Legalized; 1470 } 1471 1472 Register SrcReg = MI.getOperand(1).getReg(); 1473 1474 // First ZEXT the input. 1475 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1476 LLT CurTy = MRI.getType(SrcReg); 1477 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1478 // The count is the same in the larger type except if the original 1479 // value was zero. This can be handled by setting the bit just off 1480 // the top of the original type. 1481 auto TopBit = 1482 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1483 MIBSrc = MIRBuilder.buildOr( 1484 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1485 } 1486 1487 // Perform the operation at the larger size. 1488 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1489 // This is already the correct result for CTPOP and CTTZs 1490 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1491 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1492 // The correct result is NewOp - (Difference in widety and current ty). 1493 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1494 MIBNewOp = MIRBuilder.buildInstr( 1495 TargetOpcode::G_SUB, {WideTy}, 1496 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1497 } 1498 1499 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1500 MI.eraseFromParent(); 1501 return Legalized; 1502 } 1503 case TargetOpcode::G_BSWAP: { 1504 Observer.changingInstr(MI); 1505 Register DstReg = MI.getOperand(0).getReg(); 1506 1507 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1508 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1509 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1510 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1511 1512 MI.getOperand(0).setReg(DstExt); 1513 1514 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1515 1516 LLT Ty = MRI.getType(DstReg); 1517 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1518 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1519 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1520 .addDef(ShrReg) 1521 .addUse(DstExt) 1522 .addUse(ShiftAmtReg); 1523 1524 MIRBuilder.buildTrunc(DstReg, ShrReg); 1525 Observer.changedInstr(MI); 1526 return Legalized; 1527 } 1528 case TargetOpcode::G_BITREVERSE: { 1529 Observer.changingInstr(MI); 1530 1531 Register DstReg = MI.getOperand(0).getReg(); 1532 LLT Ty = MRI.getType(DstReg); 1533 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1534 1535 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1536 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1537 MI.getOperand(0).setReg(DstExt); 1538 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1539 1540 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1541 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1542 MIRBuilder.buildTrunc(DstReg, Shift); 1543 Observer.changedInstr(MI); 1544 return Legalized; 1545 } 1546 case TargetOpcode::G_ADD: 1547 case TargetOpcode::G_AND: 1548 case TargetOpcode::G_MUL: 1549 case TargetOpcode::G_OR: 1550 case TargetOpcode::G_XOR: 1551 case TargetOpcode::G_SUB: 1552 // Perform operation at larger width (any extension is fines here, high bits 1553 // don't affect the result) and then truncate the result back to the 1554 // original type. 1555 Observer.changingInstr(MI); 1556 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1557 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1558 widenScalarDst(MI, WideTy); 1559 Observer.changedInstr(MI); 1560 return Legalized; 1561 1562 case TargetOpcode::G_SHL: 1563 Observer.changingInstr(MI); 1564 1565 if (TypeIdx == 0) { 1566 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1567 widenScalarDst(MI, WideTy); 1568 } else { 1569 assert(TypeIdx == 1); 1570 // The "number of bits to shift" operand must preserve its value as an 1571 // unsigned integer: 1572 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1573 } 1574 1575 Observer.changedInstr(MI); 1576 return Legalized; 1577 1578 case TargetOpcode::G_SDIV: 1579 case TargetOpcode::G_SREM: 1580 case TargetOpcode::G_SMIN: 1581 case TargetOpcode::G_SMAX: 1582 Observer.changingInstr(MI); 1583 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1584 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1585 widenScalarDst(MI, WideTy); 1586 Observer.changedInstr(MI); 1587 return Legalized; 1588 1589 case TargetOpcode::G_ASHR: 1590 case TargetOpcode::G_LSHR: 1591 Observer.changingInstr(MI); 1592 1593 if (TypeIdx == 0) { 1594 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1595 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1596 1597 widenScalarSrc(MI, WideTy, 1, CvtOp); 1598 widenScalarDst(MI, WideTy); 1599 } else { 1600 assert(TypeIdx == 1); 1601 // The "number of bits to shift" operand must preserve its value as an 1602 // unsigned integer: 1603 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1604 } 1605 1606 Observer.changedInstr(MI); 1607 return Legalized; 1608 case TargetOpcode::G_UDIV: 1609 case TargetOpcode::G_UREM: 1610 case TargetOpcode::G_UMIN: 1611 case TargetOpcode::G_UMAX: 1612 Observer.changingInstr(MI); 1613 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1614 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1615 widenScalarDst(MI, WideTy); 1616 Observer.changedInstr(MI); 1617 return Legalized; 1618 1619 case TargetOpcode::G_SELECT: 1620 Observer.changingInstr(MI); 1621 if (TypeIdx == 0) { 1622 // Perform operation at larger width (any extension is fine here, high 1623 // bits don't affect the result) and then truncate the result back to the 1624 // original type. 1625 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1626 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1627 widenScalarDst(MI, WideTy); 1628 } else { 1629 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1630 // Explicit extension is required here since high bits affect the result. 1631 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1632 } 1633 Observer.changedInstr(MI); 1634 return Legalized; 1635 1636 case TargetOpcode::G_FPTOSI: 1637 case TargetOpcode::G_FPTOUI: 1638 Observer.changingInstr(MI); 1639 1640 if (TypeIdx == 0) 1641 widenScalarDst(MI, WideTy); 1642 else 1643 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1644 1645 Observer.changedInstr(MI); 1646 return Legalized; 1647 case TargetOpcode::G_SITOFP: 1648 if (TypeIdx != 1) 1649 return UnableToLegalize; 1650 Observer.changingInstr(MI); 1651 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1652 Observer.changedInstr(MI); 1653 return Legalized; 1654 1655 case TargetOpcode::G_UITOFP: 1656 if (TypeIdx != 1) 1657 return UnableToLegalize; 1658 Observer.changingInstr(MI); 1659 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1660 Observer.changedInstr(MI); 1661 return Legalized; 1662 1663 case TargetOpcode::G_LOAD: 1664 case TargetOpcode::G_SEXTLOAD: 1665 case TargetOpcode::G_ZEXTLOAD: 1666 Observer.changingInstr(MI); 1667 widenScalarDst(MI, WideTy); 1668 Observer.changedInstr(MI); 1669 return Legalized; 1670 1671 case TargetOpcode::G_STORE: { 1672 if (TypeIdx != 0) 1673 return UnableToLegalize; 1674 1675 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1676 if (!isPowerOf2_32(Ty.getSizeInBits())) 1677 return UnableToLegalize; 1678 1679 Observer.changingInstr(MI); 1680 1681 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1682 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1683 widenScalarSrc(MI, WideTy, 0, ExtType); 1684 1685 Observer.changedInstr(MI); 1686 return Legalized; 1687 } 1688 case TargetOpcode::G_CONSTANT: { 1689 MachineOperand &SrcMO = MI.getOperand(1); 1690 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1691 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1692 MRI.getType(MI.getOperand(0).getReg())); 1693 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1694 ExtOpc == TargetOpcode::G_ANYEXT) && 1695 "Illegal Extend"); 1696 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1697 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1698 ? SrcVal.sext(WideTy.getSizeInBits()) 1699 : SrcVal.zext(WideTy.getSizeInBits()); 1700 Observer.changingInstr(MI); 1701 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1702 1703 widenScalarDst(MI, WideTy); 1704 Observer.changedInstr(MI); 1705 return Legalized; 1706 } 1707 case TargetOpcode::G_FCONSTANT: { 1708 MachineOperand &SrcMO = MI.getOperand(1); 1709 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1710 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1711 bool LosesInfo; 1712 switch (WideTy.getSizeInBits()) { 1713 case 32: 1714 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1715 &LosesInfo); 1716 break; 1717 case 64: 1718 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1719 &LosesInfo); 1720 break; 1721 default: 1722 return UnableToLegalize; 1723 } 1724 1725 assert(!LosesInfo && "extend should always be lossless"); 1726 1727 Observer.changingInstr(MI); 1728 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1729 1730 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1731 Observer.changedInstr(MI); 1732 return Legalized; 1733 } 1734 case TargetOpcode::G_IMPLICIT_DEF: { 1735 Observer.changingInstr(MI); 1736 widenScalarDst(MI, WideTy); 1737 Observer.changedInstr(MI); 1738 return Legalized; 1739 } 1740 case TargetOpcode::G_BRCOND: 1741 Observer.changingInstr(MI); 1742 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1743 Observer.changedInstr(MI); 1744 return Legalized; 1745 1746 case TargetOpcode::G_FCMP: 1747 Observer.changingInstr(MI); 1748 if (TypeIdx == 0) 1749 widenScalarDst(MI, WideTy); 1750 else { 1751 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1752 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1753 } 1754 Observer.changedInstr(MI); 1755 return Legalized; 1756 1757 case TargetOpcode::G_ICMP: 1758 Observer.changingInstr(MI); 1759 if (TypeIdx == 0) 1760 widenScalarDst(MI, WideTy); 1761 else { 1762 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1763 MI.getOperand(1).getPredicate())) 1764 ? TargetOpcode::G_SEXT 1765 : TargetOpcode::G_ZEXT; 1766 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1767 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1768 } 1769 Observer.changedInstr(MI); 1770 return Legalized; 1771 1772 case TargetOpcode::G_PTR_ADD: 1773 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1774 Observer.changingInstr(MI); 1775 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1776 Observer.changedInstr(MI); 1777 return Legalized; 1778 1779 case TargetOpcode::G_PHI: { 1780 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1781 1782 Observer.changingInstr(MI); 1783 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1784 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1785 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1786 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1787 } 1788 1789 MachineBasicBlock &MBB = *MI.getParent(); 1790 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1791 widenScalarDst(MI, WideTy); 1792 Observer.changedInstr(MI); 1793 return Legalized; 1794 } 1795 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1796 if (TypeIdx == 0) { 1797 Register VecReg = MI.getOperand(1).getReg(); 1798 LLT VecTy = MRI.getType(VecReg); 1799 Observer.changingInstr(MI); 1800 1801 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1802 WideTy.getSizeInBits()), 1803 1, TargetOpcode::G_SEXT); 1804 1805 widenScalarDst(MI, WideTy, 0); 1806 Observer.changedInstr(MI); 1807 return Legalized; 1808 } 1809 1810 if (TypeIdx != 2) 1811 return UnableToLegalize; 1812 Observer.changingInstr(MI); 1813 // TODO: Probably should be zext 1814 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1815 Observer.changedInstr(MI); 1816 return Legalized; 1817 } 1818 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1819 if (TypeIdx == 1) { 1820 Observer.changingInstr(MI); 1821 1822 Register VecReg = MI.getOperand(1).getReg(); 1823 LLT VecTy = MRI.getType(VecReg); 1824 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 1825 1826 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 1827 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1828 widenScalarDst(MI, WideVecTy, 0); 1829 Observer.changedInstr(MI); 1830 return Legalized; 1831 } 1832 1833 if (TypeIdx == 2) { 1834 Observer.changingInstr(MI); 1835 // TODO: Probably should be zext 1836 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 1837 Observer.changedInstr(MI); 1838 } 1839 1840 return Legalized; 1841 } 1842 case TargetOpcode::G_FADD: 1843 case TargetOpcode::G_FMUL: 1844 case TargetOpcode::G_FSUB: 1845 case TargetOpcode::G_FMA: 1846 case TargetOpcode::G_FMAD: 1847 case TargetOpcode::G_FNEG: 1848 case TargetOpcode::G_FABS: 1849 case TargetOpcode::G_FCANONICALIZE: 1850 case TargetOpcode::G_FMINNUM: 1851 case TargetOpcode::G_FMAXNUM: 1852 case TargetOpcode::G_FMINNUM_IEEE: 1853 case TargetOpcode::G_FMAXNUM_IEEE: 1854 case TargetOpcode::G_FMINIMUM: 1855 case TargetOpcode::G_FMAXIMUM: 1856 case TargetOpcode::G_FDIV: 1857 case TargetOpcode::G_FREM: 1858 case TargetOpcode::G_FCEIL: 1859 case TargetOpcode::G_FFLOOR: 1860 case TargetOpcode::G_FCOS: 1861 case TargetOpcode::G_FSIN: 1862 case TargetOpcode::G_FLOG10: 1863 case TargetOpcode::G_FLOG: 1864 case TargetOpcode::G_FLOG2: 1865 case TargetOpcode::G_FRINT: 1866 case TargetOpcode::G_FNEARBYINT: 1867 case TargetOpcode::G_FSQRT: 1868 case TargetOpcode::G_FEXP: 1869 case TargetOpcode::G_FEXP2: 1870 case TargetOpcode::G_FPOW: 1871 case TargetOpcode::G_INTRINSIC_TRUNC: 1872 case TargetOpcode::G_INTRINSIC_ROUND: 1873 assert(TypeIdx == 0); 1874 Observer.changingInstr(MI); 1875 1876 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1877 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1878 1879 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1880 Observer.changedInstr(MI); 1881 return Legalized; 1882 case TargetOpcode::G_INTTOPTR: 1883 if (TypeIdx != 1) 1884 return UnableToLegalize; 1885 1886 Observer.changingInstr(MI); 1887 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1888 Observer.changedInstr(MI); 1889 return Legalized; 1890 case TargetOpcode::G_PTRTOINT: 1891 if (TypeIdx != 0) 1892 return UnableToLegalize; 1893 1894 Observer.changingInstr(MI); 1895 widenScalarDst(MI, WideTy, 0); 1896 Observer.changedInstr(MI); 1897 return Legalized; 1898 case TargetOpcode::G_BUILD_VECTOR: { 1899 Observer.changingInstr(MI); 1900 1901 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 1902 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 1903 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 1904 1905 // Avoid changing the result vector type if the source element type was 1906 // requested. 1907 if (TypeIdx == 1) { 1908 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 1909 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 1910 } else { 1911 widenScalarDst(MI, WideTy, 0); 1912 } 1913 1914 Observer.changedInstr(MI); 1915 return Legalized; 1916 } 1917 case TargetOpcode::G_SEXT_INREG: 1918 if (TypeIdx != 0) 1919 return UnableToLegalize; 1920 1921 Observer.changingInstr(MI); 1922 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1923 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 1924 Observer.changedInstr(MI); 1925 return Legalized; 1926 } 1927 } 1928 1929 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 1930 MachineIRBuilder &B, Register Src, LLT Ty) { 1931 auto Unmerge = B.buildUnmerge(Ty, Src); 1932 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 1933 Pieces.push_back(Unmerge.getReg(I)); 1934 } 1935 1936 LegalizerHelper::LegalizeResult 1937 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 1938 Register Dst = MI.getOperand(0).getReg(); 1939 Register Src = MI.getOperand(1).getReg(); 1940 LLT DstTy = MRI.getType(Dst); 1941 LLT SrcTy = MRI.getType(Src); 1942 1943 if (SrcTy.isVector() && !DstTy.isVector()) { 1944 SmallVector<Register, 8> SrcRegs; 1945 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 1946 MIRBuilder.buildMerge(Dst, SrcRegs); 1947 MI.eraseFromParent(); 1948 return Legalized; 1949 } 1950 1951 if (DstTy.isVector() && !SrcTy.isVector()) { 1952 SmallVector<Register, 8> SrcRegs; 1953 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 1954 MIRBuilder.buildMerge(Dst, SrcRegs); 1955 MI.eraseFromParent(); 1956 return Legalized; 1957 } 1958 1959 return UnableToLegalize; 1960 } 1961 1962 LegalizerHelper::LegalizeResult 1963 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1964 using namespace TargetOpcode; 1965 MIRBuilder.setInstr(MI); 1966 1967 switch(MI.getOpcode()) { 1968 default: 1969 return UnableToLegalize; 1970 case TargetOpcode::G_BITCAST: 1971 return lowerBitcast(MI); 1972 case TargetOpcode::G_SREM: 1973 case TargetOpcode::G_UREM: { 1974 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 1975 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1976 .addDef(QuotReg) 1977 .addUse(MI.getOperand(1).getReg()) 1978 .addUse(MI.getOperand(2).getReg()); 1979 1980 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 1981 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1982 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1983 ProdReg); 1984 MI.eraseFromParent(); 1985 return Legalized; 1986 } 1987 case TargetOpcode::G_SADDO: 1988 case TargetOpcode::G_SSUBO: 1989 return lowerSADDO_SSUBO(MI); 1990 case TargetOpcode::G_SMULO: 1991 case TargetOpcode::G_UMULO: { 1992 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1993 // result. 1994 Register Res = MI.getOperand(0).getReg(); 1995 Register Overflow = MI.getOperand(1).getReg(); 1996 Register LHS = MI.getOperand(2).getReg(); 1997 Register RHS = MI.getOperand(3).getReg(); 1998 1999 MIRBuilder.buildMul(Res, LHS, RHS); 2000 2001 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2002 ? TargetOpcode::G_SMULH 2003 : TargetOpcode::G_UMULH; 2004 2005 Register HiPart = MRI.createGenericVirtualRegister(Ty); 2006 MIRBuilder.buildInstr(Opcode) 2007 .addDef(HiPart) 2008 .addUse(LHS) 2009 .addUse(RHS); 2010 2011 Register Zero = MRI.createGenericVirtualRegister(Ty); 2012 MIRBuilder.buildConstant(Zero, 0); 2013 2014 // For *signed* multiply, overflow is detected by checking: 2015 // (hi != (lo >> bitwidth-1)) 2016 if (Opcode == TargetOpcode::G_SMULH) { 2017 Register Shifted = MRI.createGenericVirtualRegister(Ty); 2018 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); 2019 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 2020 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 2021 .addDef(Shifted) 2022 .addUse(Res) 2023 .addUse(ShiftAmt); 2024 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2025 } else { 2026 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2027 } 2028 MI.eraseFromParent(); 2029 return Legalized; 2030 } 2031 case TargetOpcode::G_FNEG: { 2032 // TODO: Handle vector types once we are able to 2033 // represent them. 2034 if (Ty.isVector()) 2035 return UnableToLegalize; 2036 Register Res = MI.getOperand(0).getReg(); 2037 Type *ZeroTy; 2038 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2039 switch (Ty.getSizeInBits()) { 2040 case 16: 2041 ZeroTy = Type::getHalfTy(Ctx); 2042 break; 2043 case 32: 2044 ZeroTy = Type::getFloatTy(Ctx); 2045 break; 2046 case 64: 2047 ZeroTy = Type::getDoubleTy(Ctx); 2048 break; 2049 case 128: 2050 ZeroTy = Type::getFP128Ty(Ctx); 2051 break; 2052 default: 2053 llvm_unreachable("unexpected floating-point type"); 2054 } 2055 ConstantFP &ZeroForNegation = 2056 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2057 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2058 Register SubByReg = MI.getOperand(1).getReg(); 2059 Register ZeroReg = Zero->getOperand(0).getReg(); 2060 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 2061 MI.getFlags()); 2062 MI.eraseFromParent(); 2063 return Legalized; 2064 } 2065 case TargetOpcode::G_FSUB: { 2066 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2067 // First, check if G_FNEG is marked as Lower. If so, we may 2068 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2069 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2070 return UnableToLegalize; 2071 Register Res = MI.getOperand(0).getReg(); 2072 Register LHS = MI.getOperand(1).getReg(); 2073 Register RHS = MI.getOperand(2).getReg(); 2074 Register Neg = MRI.createGenericVirtualRegister(Ty); 2075 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 2076 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 2077 MI.eraseFromParent(); 2078 return Legalized; 2079 } 2080 case TargetOpcode::G_FMAD: 2081 return lowerFMad(MI); 2082 case TargetOpcode::G_INTRINSIC_ROUND: 2083 return lowerIntrinsicRound(MI); 2084 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2085 Register OldValRes = MI.getOperand(0).getReg(); 2086 Register SuccessRes = MI.getOperand(1).getReg(); 2087 Register Addr = MI.getOperand(2).getReg(); 2088 Register CmpVal = MI.getOperand(3).getReg(); 2089 Register NewVal = MI.getOperand(4).getReg(); 2090 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2091 **MI.memoperands_begin()); 2092 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2093 MI.eraseFromParent(); 2094 return Legalized; 2095 } 2096 case TargetOpcode::G_LOAD: 2097 case TargetOpcode::G_SEXTLOAD: 2098 case TargetOpcode::G_ZEXTLOAD: { 2099 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2100 Register DstReg = MI.getOperand(0).getReg(); 2101 Register PtrReg = MI.getOperand(1).getReg(); 2102 LLT DstTy = MRI.getType(DstReg); 2103 auto &MMO = **MI.memoperands_begin(); 2104 2105 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2106 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2107 // This load needs splitting into power of 2 sized loads. 2108 if (DstTy.isVector()) 2109 return UnableToLegalize; 2110 if (isPowerOf2_32(DstTy.getSizeInBits())) 2111 return UnableToLegalize; // Don't know what we're being asked to do. 2112 2113 // Our strategy here is to generate anyextending loads for the smaller 2114 // types up to next power-2 result type, and then combine the two larger 2115 // result values together, before truncating back down to the non-pow-2 2116 // type. 2117 // E.g. v1 = i24 load => 2118 // v2 = i32 load (2 byte) 2119 // v3 = i32 load (1 byte) 2120 // v4 = i32 shl v3, 16 2121 // v5 = i32 or v4, v2 2122 // v1 = i24 trunc v5 2123 // By doing this we generate the correct truncate which should get 2124 // combined away as an artifact with a matching extend. 2125 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2126 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2127 2128 MachineFunction &MF = MIRBuilder.getMF(); 2129 MachineMemOperand *LargeMMO = 2130 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2131 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2132 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2133 2134 LLT PtrTy = MRI.getType(PtrReg); 2135 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2136 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2137 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2138 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2139 auto LargeLoad = 2140 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); 2141 2142 auto OffsetCst = 2143 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2144 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2145 auto SmallPtr = 2146 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2147 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2148 *SmallMMO); 2149 2150 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2151 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2152 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2153 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2154 MI.eraseFromParent(); 2155 return Legalized; 2156 } 2157 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2158 MI.eraseFromParent(); 2159 return Legalized; 2160 } 2161 2162 if (DstTy.isScalar()) { 2163 Register TmpReg = 2164 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2165 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2166 switch (MI.getOpcode()) { 2167 default: 2168 llvm_unreachable("Unexpected opcode"); 2169 case TargetOpcode::G_LOAD: 2170 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2171 break; 2172 case TargetOpcode::G_SEXTLOAD: 2173 MIRBuilder.buildSExt(DstReg, TmpReg); 2174 break; 2175 case TargetOpcode::G_ZEXTLOAD: 2176 MIRBuilder.buildZExt(DstReg, TmpReg); 2177 break; 2178 } 2179 MI.eraseFromParent(); 2180 return Legalized; 2181 } 2182 2183 return UnableToLegalize; 2184 } 2185 case TargetOpcode::G_STORE: { 2186 // Lower a non-power of 2 store into multiple pow-2 stores. 2187 // E.g. split an i24 store into an i16 store + i8 store. 2188 // We do this by first extending the stored value to the next largest power 2189 // of 2 type, and then using truncating stores to store the components. 2190 // By doing this, likewise with G_LOAD, generate an extend that can be 2191 // artifact-combined away instead of leaving behind extracts. 2192 Register SrcReg = MI.getOperand(0).getReg(); 2193 Register PtrReg = MI.getOperand(1).getReg(); 2194 LLT SrcTy = MRI.getType(SrcReg); 2195 MachineMemOperand &MMO = **MI.memoperands_begin(); 2196 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2197 return UnableToLegalize; 2198 if (SrcTy.isVector()) 2199 return UnableToLegalize; 2200 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2201 return UnableToLegalize; // Don't know what we're being asked to do. 2202 2203 // Extend to the next pow-2. 2204 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2205 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2206 2207 // Obtain the smaller value by shifting away the larger value. 2208 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2209 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2210 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2211 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2212 2213 // Generate the PtrAdd and truncating stores. 2214 LLT PtrTy = MRI.getType(PtrReg); 2215 auto OffsetCst = 2216 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2217 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2218 auto SmallPtr = 2219 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2220 2221 MachineFunction &MF = MIRBuilder.getMF(); 2222 MachineMemOperand *LargeMMO = 2223 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2224 MachineMemOperand *SmallMMO = 2225 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2226 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2227 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2228 MI.eraseFromParent(); 2229 return Legalized; 2230 } 2231 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2232 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2233 case TargetOpcode::G_CTLZ: 2234 case TargetOpcode::G_CTTZ: 2235 case TargetOpcode::G_CTPOP: 2236 return lowerBitCount(MI, TypeIdx, Ty); 2237 case G_UADDO: { 2238 Register Res = MI.getOperand(0).getReg(); 2239 Register CarryOut = MI.getOperand(1).getReg(); 2240 Register LHS = MI.getOperand(2).getReg(); 2241 Register RHS = MI.getOperand(3).getReg(); 2242 2243 MIRBuilder.buildAdd(Res, LHS, RHS); 2244 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2245 2246 MI.eraseFromParent(); 2247 return Legalized; 2248 } 2249 case G_UADDE: { 2250 Register Res = MI.getOperand(0).getReg(); 2251 Register CarryOut = MI.getOperand(1).getReg(); 2252 Register LHS = MI.getOperand(2).getReg(); 2253 Register RHS = MI.getOperand(3).getReg(); 2254 Register CarryIn = MI.getOperand(4).getReg(); 2255 2256 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2257 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2258 2259 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2260 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2261 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2262 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2263 2264 MI.eraseFromParent(); 2265 return Legalized; 2266 } 2267 case G_USUBO: { 2268 Register Res = MI.getOperand(0).getReg(); 2269 Register BorrowOut = MI.getOperand(1).getReg(); 2270 Register LHS = MI.getOperand(2).getReg(); 2271 Register RHS = MI.getOperand(3).getReg(); 2272 2273 MIRBuilder.buildSub(Res, LHS, RHS); 2274 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2275 2276 MI.eraseFromParent(); 2277 return Legalized; 2278 } 2279 case G_USUBE: { 2280 Register Res = MI.getOperand(0).getReg(); 2281 Register BorrowOut = MI.getOperand(1).getReg(); 2282 Register LHS = MI.getOperand(2).getReg(); 2283 Register RHS = MI.getOperand(3).getReg(); 2284 Register BorrowIn = MI.getOperand(4).getReg(); 2285 2286 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2287 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2288 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2289 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2290 2291 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2292 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2293 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2294 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2295 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2296 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2297 2298 MI.eraseFromParent(); 2299 return Legalized; 2300 } 2301 case G_UITOFP: 2302 return lowerUITOFP(MI, TypeIdx, Ty); 2303 case G_SITOFP: 2304 return lowerSITOFP(MI, TypeIdx, Ty); 2305 case G_FPTOUI: 2306 return lowerFPTOUI(MI, TypeIdx, Ty); 2307 case G_SMIN: 2308 case G_SMAX: 2309 case G_UMIN: 2310 case G_UMAX: 2311 return lowerMinMax(MI, TypeIdx, Ty); 2312 case G_FCOPYSIGN: 2313 return lowerFCopySign(MI, TypeIdx, Ty); 2314 case G_FMINNUM: 2315 case G_FMAXNUM: 2316 return lowerFMinNumMaxNum(MI); 2317 case G_UNMERGE_VALUES: 2318 return lowerUnmergeValues(MI); 2319 case TargetOpcode::G_SEXT_INREG: { 2320 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2321 int64_t SizeInBits = MI.getOperand(2).getImm(); 2322 2323 Register DstReg = MI.getOperand(0).getReg(); 2324 Register SrcReg = MI.getOperand(1).getReg(); 2325 LLT DstTy = MRI.getType(DstReg); 2326 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2327 2328 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2329 MIRBuilder.buildInstr(TargetOpcode::G_SHL, {TmpRes}, {SrcReg, MIBSz->getOperand(0).getReg()}); 2330 MIRBuilder.buildInstr(TargetOpcode::G_ASHR, {DstReg}, {TmpRes, MIBSz->getOperand(0).getReg()}); 2331 MI.eraseFromParent(); 2332 return Legalized; 2333 } 2334 case G_SHUFFLE_VECTOR: 2335 return lowerShuffleVector(MI); 2336 case G_DYN_STACKALLOC: 2337 return lowerDynStackAlloc(MI); 2338 case G_EXTRACT: 2339 return lowerExtract(MI); 2340 case G_INSERT: 2341 return lowerInsert(MI); 2342 case G_BSWAP: 2343 return lowerBswap(MI); 2344 case G_BITREVERSE: 2345 return lowerBitreverse(MI); 2346 case G_READ_REGISTER: 2347 return lowerReadRegister(MI); 2348 } 2349 } 2350 2351 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2352 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2353 SmallVector<Register, 2> DstRegs; 2354 2355 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2356 Register DstReg = MI.getOperand(0).getReg(); 2357 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2358 int NumParts = Size / NarrowSize; 2359 // FIXME: Don't know how to handle the situation where the small vectors 2360 // aren't all the same size yet. 2361 if (Size % NarrowSize != 0) 2362 return UnableToLegalize; 2363 2364 for (int i = 0; i < NumParts; ++i) { 2365 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2366 MIRBuilder.buildUndef(TmpReg); 2367 DstRegs.push_back(TmpReg); 2368 } 2369 2370 if (NarrowTy.isVector()) 2371 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2372 else 2373 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2374 2375 MI.eraseFromParent(); 2376 return Legalized; 2377 } 2378 2379 LegalizerHelper::LegalizeResult 2380 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2381 LLT NarrowTy) { 2382 const unsigned Opc = MI.getOpcode(); 2383 const unsigned NumOps = MI.getNumOperands() - 1; 2384 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2385 const Register DstReg = MI.getOperand(0).getReg(); 2386 const unsigned Flags = MI.getFlags(); 2387 const LLT DstTy = MRI.getType(DstReg); 2388 const unsigned Size = DstTy.getSizeInBits(); 2389 const int NumParts = Size / NarrowSize; 2390 const LLT EltTy = DstTy.getElementType(); 2391 const unsigned EltSize = EltTy.getSizeInBits(); 2392 const unsigned BitsForNumParts = NarrowSize * NumParts; 2393 2394 // Check if we have any leftovers. If we do, then only handle the case where 2395 // the leftover is one element. 2396 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2397 return UnableToLegalize; 2398 2399 if (BitsForNumParts != Size) { 2400 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2401 MIRBuilder.buildUndef(AccumDstReg); 2402 2403 // Handle the pieces which evenly divide into the requested type with 2404 // extract/op/insert sequence. 2405 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2406 SmallVector<SrcOp, 4> SrcOps; 2407 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2408 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2409 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 2410 SrcOps.push_back(PartOpReg); 2411 } 2412 2413 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2414 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2415 2416 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2417 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2418 AccumDstReg = PartInsertReg; 2419 } 2420 2421 // Handle the remaining element sized leftover piece. 2422 SmallVector<SrcOp, 4> SrcOps; 2423 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2424 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2425 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 2426 BitsForNumParts); 2427 SrcOps.push_back(PartOpReg); 2428 } 2429 2430 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2431 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2432 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2433 MI.eraseFromParent(); 2434 2435 return Legalized; 2436 } 2437 2438 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2439 2440 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2441 2442 if (NumOps >= 2) 2443 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2444 2445 if (NumOps >= 3) 2446 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2447 2448 for (int i = 0; i < NumParts; ++i) { 2449 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2450 2451 if (NumOps == 1) 2452 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2453 else if (NumOps == 2) { 2454 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2455 } else if (NumOps == 3) { 2456 MIRBuilder.buildInstr(Opc, {DstReg}, 2457 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2458 } 2459 2460 DstRegs.push_back(DstReg); 2461 } 2462 2463 if (NarrowTy.isVector()) 2464 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2465 else 2466 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2467 2468 MI.eraseFromParent(); 2469 return Legalized; 2470 } 2471 2472 // Handle splitting vector operations which need to have the same number of 2473 // elements in each type index, but each type index may have a different element 2474 // type. 2475 // 2476 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2477 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2478 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2479 // 2480 // Also handles some irregular breakdown cases, e.g. 2481 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2482 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2483 // s64 = G_SHL s64, s32 2484 LegalizerHelper::LegalizeResult 2485 LegalizerHelper::fewerElementsVectorMultiEltType( 2486 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2487 if (TypeIdx != 0) 2488 return UnableToLegalize; 2489 2490 const LLT NarrowTy0 = NarrowTyArg; 2491 const unsigned NewNumElts = 2492 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2493 2494 const Register DstReg = MI.getOperand(0).getReg(); 2495 LLT DstTy = MRI.getType(DstReg); 2496 LLT LeftoverTy0; 2497 2498 // All of the operands need to have the same number of elements, so if we can 2499 // determine a type breakdown for the result type, we can for all of the 2500 // source types. 2501 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2502 if (NumParts < 0) 2503 return UnableToLegalize; 2504 2505 SmallVector<MachineInstrBuilder, 4> NewInsts; 2506 2507 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2508 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2509 2510 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2511 LLT LeftoverTy; 2512 Register SrcReg = MI.getOperand(I).getReg(); 2513 LLT SrcTyI = MRI.getType(SrcReg); 2514 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2515 LLT LeftoverTyI; 2516 2517 // Split this operand into the requested typed registers, and any leftover 2518 // required to reproduce the original type. 2519 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2520 LeftoverRegs)) 2521 return UnableToLegalize; 2522 2523 if (I == 1) { 2524 // For the first operand, create an instruction for each part and setup 2525 // the result. 2526 for (Register PartReg : PartRegs) { 2527 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2528 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2529 .addDef(PartDstReg) 2530 .addUse(PartReg)); 2531 DstRegs.push_back(PartDstReg); 2532 } 2533 2534 for (Register LeftoverReg : LeftoverRegs) { 2535 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2536 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2537 .addDef(PartDstReg) 2538 .addUse(LeftoverReg)); 2539 LeftoverDstRegs.push_back(PartDstReg); 2540 } 2541 } else { 2542 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2543 2544 // Add the newly created operand splits to the existing instructions. The 2545 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2546 // pieces. 2547 unsigned InstCount = 0; 2548 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2549 NewInsts[InstCount++].addUse(PartRegs[J]); 2550 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2551 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2552 } 2553 2554 PartRegs.clear(); 2555 LeftoverRegs.clear(); 2556 } 2557 2558 // Insert the newly built operations and rebuild the result register. 2559 for (auto &MIB : NewInsts) 2560 MIRBuilder.insertInstr(MIB); 2561 2562 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2563 2564 MI.eraseFromParent(); 2565 return Legalized; 2566 } 2567 2568 LegalizerHelper::LegalizeResult 2569 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2570 LLT NarrowTy) { 2571 if (TypeIdx != 0) 2572 return UnableToLegalize; 2573 2574 Register DstReg = MI.getOperand(0).getReg(); 2575 Register SrcReg = MI.getOperand(1).getReg(); 2576 LLT DstTy = MRI.getType(DstReg); 2577 LLT SrcTy = MRI.getType(SrcReg); 2578 2579 LLT NarrowTy0 = NarrowTy; 2580 LLT NarrowTy1; 2581 unsigned NumParts; 2582 2583 if (NarrowTy.isVector()) { 2584 // Uneven breakdown not handled. 2585 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2586 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2587 return UnableToLegalize; 2588 2589 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2590 } else { 2591 NumParts = DstTy.getNumElements(); 2592 NarrowTy1 = SrcTy.getElementType(); 2593 } 2594 2595 SmallVector<Register, 4> SrcRegs, DstRegs; 2596 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2597 2598 for (unsigned I = 0; I < NumParts; ++I) { 2599 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2600 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 2601 .addDef(DstReg) 2602 .addUse(SrcRegs[I]); 2603 2604 NewInst->setFlags(MI.getFlags()); 2605 DstRegs.push_back(DstReg); 2606 } 2607 2608 if (NarrowTy.isVector()) 2609 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2610 else 2611 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2612 2613 MI.eraseFromParent(); 2614 return Legalized; 2615 } 2616 2617 LegalizerHelper::LegalizeResult 2618 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2619 LLT NarrowTy) { 2620 Register DstReg = MI.getOperand(0).getReg(); 2621 Register Src0Reg = MI.getOperand(2).getReg(); 2622 LLT DstTy = MRI.getType(DstReg); 2623 LLT SrcTy = MRI.getType(Src0Reg); 2624 2625 unsigned NumParts; 2626 LLT NarrowTy0, NarrowTy1; 2627 2628 if (TypeIdx == 0) { 2629 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2630 unsigned OldElts = DstTy.getNumElements(); 2631 2632 NarrowTy0 = NarrowTy; 2633 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2634 NarrowTy1 = NarrowTy.isVector() ? 2635 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2636 SrcTy.getElementType(); 2637 2638 } else { 2639 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2640 unsigned OldElts = SrcTy.getNumElements(); 2641 2642 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2643 NarrowTy.getNumElements(); 2644 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2645 DstTy.getScalarSizeInBits()); 2646 NarrowTy1 = NarrowTy; 2647 } 2648 2649 // FIXME: Don't know how to handle the situation where the small vectors 2650 // aren't all the same size yet. 2651 if (NarrowTy1.isVector() && 2652 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2653 return UnableToLegalize; 2654 2655 CmpInst::Predicate Pred 2656 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2657 2658 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2659 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2660 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2661 2662 for (unsigned I = 0; I < NumParts; ++I) { 2663 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2664 DstRegs.push_back(DstReg); 2665 2666 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2667 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2668 else { 2669 MachineInstr *NewCmp 2670 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2671 NewCmp->setFlags(MI.getFlags()); 2672 } 2673 } 2674 2675 if (NarrowTy1.isVector()) 2676 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2677 else 2678 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2679 2680 MI.eraseFromParent(); 2681 return Legalized; 2682 } 2683 2684 LegalizerHelper::LegalizeResult 2685 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2686 LLT NarrowTy) { 2687 Register DstReg = MI.getOperand(0).getReg(); 2688 Register CondReg = MI.getOperand(1).getReg(); 2689 2690 unsigned NumParts = 0; 2691 LLT NarrowTy0, NarrowTy1; 2692 2693 LLT DstTy = MRI.getType(DstReg); 2694 LLT CondTy = MRI.getType(CondReg); 2695 unsigned Size = DstTy.getSizeInBits(); 2696 2697 assert(TypeIdx == 0 || CondTy.isVector()); 2698 2699 if (TypeIdx == 0) { 2700 NarrowTy0 = NarrowTy; 2701 NarrowTy1 = CondTy; 2702 2703 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2704 // FIXME: Don't know how to handle the situation where the small vectors 2705 // aren't all the same size yet. 2706 if (Size % NarrowSize != 0) 2707 return UnableToLegalize; 2708 2709 NumParts = Size / NarrowSize; 2710 2711 // Need to break down the condition type 2712 if (CondTy.isVector()) { 2713 if (CondTy.getNumElements() == NumParts) 2714 NarrowTy1 = CondTy.getElementType(); 2715 else 2716 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2717 CondTy.getScalarSizeInBits()); 2718 } 2719 } else { 2720 NumParts = CondTy.getNumElements(); 2721 if (NarrowTy.isVector()) { 2722 // TODO: Handle uneven breakdown. 2723 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2724 return UnableToLegalize; 2725 2726 return UnableToLegalize; 2727 } else { 2728 NarrowTy0 = DstTy.getElementType(); 2729 NarrowTy1 = NarrowTy; 2730 } 2731 } 2732 2733 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2734 if (CondTy.isVector()) 2735 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2736 2737 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2738 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2739 2740 for (unsigned i = 0; i < NumParts; ++i) { 2741 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2742 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2743 Src1Regs[i], Src2Regs[i]); 2744 DstRegs.push_back(DstReg); 2745 } 2746 2747 if (NarrowTy0.isVector()) 2748 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2749 else 2750 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2751 2752 MI.eraseFromParent(); 2753 return Legalized; 2754 } 2755 2756 LegalizerHelper::LegalizeResult 2757 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2758 LLT NarrowTy) { 2759 const Register DstReg = MI.getOperand(0).getReg(); 2760 LLT PhiTy = MRI.getType(DstReg); 2761 LLT LeftoverTy; 2762 2763 // All of the operands need to have the same number of elements, so if we can 2764 // determine a type breakdown for the result type, we can for all of the 2765 // source types. 2766 int NumParts, NumLeftover; 2767 std::tie(NumParts, NumLeftover) 2768 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2769 if (NumParts < 0) 2770 return UnableToLegalize; 2771 2772 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2773 SmallVector<MachineInstrBuilder, 4> NewInsts; 2774 2775 const int TotalNumParts = NumParts + NumLeftover; 2776 2777 // Insert the new phis in the result block first. 2778 for (int I = 0; I != TotalNumParts; ++I) { 2779 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2780 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2781 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2782 .addDef(PartDstReg)); 2783 if (I < NumParts) 2784 DstRegs.push_back(PartDstReg); 2785 else 2786 LeftoverDstRegs.push_back(PartDstReg); 2787 } 2788 2789 MachineBasicBlock *MBB = MI.getParent(); 2790 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2791 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2792 2793 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2794 2795 // Insert code to extract the incoming values in each predecessor block. 2796 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2797 PartRegs.clear(); 2798 LeftoverRegs.clear(); 2799 2800 Register SrcReg = MI.getOperand(I).getReg(); 2801 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2802 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2803 2804 LLT Unused; 2805 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2806 LeftoverRegs)) 2807 return UnableToLegalize; 2808 2809 // Add the newly created operand splits to the existing instructions. The 2810 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2811 // pieces. 2812 for (int J = 0; J != TotalNumParts; ++J) { 2813 MachineInstrBuilder MIB = NewInsts[J]; 2814 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2815 MIB.addMBB(&OpMBB); 2816 } 2817 } 2818 2819 MI.eraseFromParent(); 2820 return Legalized; 2821 } 2822 2823 LegalizerHelper::LegalizeResult 2824 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2825 unsigned TypeIdx, 2826 LLT NarrowTy) { 2827 if (TypeIdx != 1) 2828 return UnableToLegalize; 2829 2830 const int NumDst = MI.getNumOperands() - 1; 2831 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2832 LLT SrcTy = MRI.getType(SrcReg); 2833 2834 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2835 2836 // TODO: Create sequence of extracts. 2837 if (DstTy == NarrowTy) 2838 return UnableToLegalize; 2839 2840 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 2841 if (DstTy == GCDTy) { 2842 // This would just be a copy of the same unmerge. 2843 // TODO: Create extracts, pad with undef and create intermediate merges. 2844 return UnableToLegalize; 2845 } 2846 2847 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2848 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2849 const int PartsPerUnmerge = NumDst / NumUnmerge; 2850 2851 for (int I = 0; I != NumUnmerge; ++I) { 2852 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2853 2854 for (int J = 0; J != PartsPerUnmerge; ++J) 2855 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 2856 MIB.addUse(Unmerge.getReg(I)); 2857 } 2858 2859 MI.eraseFromParent(); 2860 return Legalized; 2861 } 2862 2863 LegalizerHelper::LegalizeResult 2864 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 2865 unsigned TypeIdx, 2866 LLT NarrowTy) { 2867 assert(TypeIdx == 0 && "not a vector type index"); 2868 Register DstReg = MI.getOperand(0).getReg(); 2869 LLT DstTy = MRI.getType(DstReg); 2870 LLT SrcTy = DstTy.getElementType(); 2871 2872 int DstNumElts = DstTy.getNumElements(); 2873 int NarrowNumElts = NarrowTy.getNumElements(); 2874 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 2875 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 2876 2877 SmallVector<Register, 8> ConcatOps; 2878 SmallVector<Register, 8> SubBuildVector; 2879 2880 Register UndefReg; 2881 if (WidenedDstTy != DstTy) 2882 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 2883 2884 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 2885 // necessary. 2886 // 2887 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 2888 // -> <2 x s16> 2889 // 2890 // %4:_(s16) = G_IMPLICIT_DEF 2891 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 2892 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 2893 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 2894 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 2895 for (int I = 0; I != NumConcat; ++I) { 2896 for (int J = 0; J != NarrowNumElts; ++J) { 2897 int SrcIdx = NarrowNumElts * I + J; 2898 2899 if (SrcIdx < DstNumElts) { 2900 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 2901 SubBuildVector.push_back(SrcReg); 2902 } else 2903 SubBuildVector.push_back(UndefReg); 2904 } 2905 2906 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 2907 ConcatOps.push_back(BuildVec.getReg(0)); 2908 SubBuildVector.clear(); 2909 } 2910 2911 if (DstTy == WidenedDstTy) 2912 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 2913 else { 2914 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 2915 MIRBuilder.buildExtract(DstReg, Concat, 0); 2916 } 2917 2918 MI.eraseFromParent(); 2919 return Legalized; 2920 } 2921 2922 LegalizerHelper::LegalizeResult 2923 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2924 LLT NarrowTy) { 2925 // FIXME: Don't know how to handle secondary types yet. 2926 if (TypeIdx != 0) 2927 return UnableToLegalize; 2928 2929 MachineMemOperand *MMO = *MI.memoperands_begin(); 2930 2931 // This implementation doesn't work for atomics. Give up instead of doing 2932 // something invalid. 2933 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2934 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2935 return UnableToLegalize; 2936 2937 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2938 Register ValReg = MI.getOperand(0).getReg(); 2939 Register AddrReg = MI.getOperand(1).getReg(); 2940 LLT ValTy = MRI.getType(ValReg); 2941 2942 int NumParts = -1; 2943 int NumLeftover = -1; 2944 LLT LeftoverTy; 2945 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 2946 if (IsLoad) { 2947 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2948 } else { 2949 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2950 NarrowLeftoverRegs)) { 2951 NumParts = NarrowRegs.size(); 2952 NumLeftover = NarrowLeftoverRegs.size(); 2953 } 2954 } 2955 2956 if (NumParts == -1) 2957 return UnableToLegalize; 2958 2959 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2960 2961 unsigned TotalSize = ValTy.getSizeInBits(); 2962 2963 // Split the load/store into PartTy sized pieces starting at Offset. If this 2964 // is a load, return the new registers in ValRegs. For a store, each elements 2965 // of ValRegs should be PartTy. Returns the next offset that needs to be 2966 // handled. 2967 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 2968 unsigned Offset) -> unsigned { 2969 MachineFunction &MF = MIRBuilder.getMF(); 2970 unsigned PartSize = PartTy.getSizeInBits(); 2971 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2972 Offset += PartSize, ++Idx) { 2973 unsigned ByteSize = PartSize / 8; 2974 unsigned ByteOffset = Offset / 8; 2975 Register NewAddrReg; 2976 2977 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2978 2979 MachineMemOperand *NewMMO = 2980 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2981 2982 if (IsLoad) { 2983 Register Dst = MRI.createGenericVirtualRegister(PartTy); 2984 ValRegs.push_back(Dst); 2985 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2986 } else { 2987 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2988 } 2989 } 2990 2991 return Offset; 2992 }; 2993 2994 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2995 2996 // Handle the rest of the register if this isn't an even type breakdown. 2997 if (LeftoverTy.isValid()) 2998 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2999 3000 if (IsLoad) { 3001 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3002 LeftoverTy, NarrowLeftoverRegs); 3003 } 3004 3005 MI.eraseFromParent(); 3006 return Legalized; 3007 } 3008 3009 LegalizerHelper::LegalizeResult 3010 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3011 LLT NarrowTy) { 3012 using namespace TargetOpcode; 3013 3014 MIRBuilder.setInstr(MI); 3015 switch (MI.getOpcode()) { 3016 case G_IMPLICIT_DEF: 3017 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3018 case G_AND: 3019 case G_OR: 3020 case G_XOR: 3021 case G_ADD: 3022 case G_SUB: 3023 case G_MUL: 3024 case G_SMULH: 3025 case G_UMULH: 3026 case G_FADD: 3027 case G_FMUL: 3028 case G_FSUB: 3029 case G_FNEG: 3030 case G_FABS: 3031 case G_FCANONICALIZE: 3032 case G_FDIV: 3033 case G_FREM: 3034 case G_FMA: 3035 case G_FMAD: 3036 case G_FPOW: 3037 case G_FEXP: 3038 case G_FEXP2: 3039 case G_FLOG: 3040 case G_FLOG2: 3041 case G_FLOG10: 3042 case G_FNEARBYINT: 3043 case G_FCEIL: 3044 case G_FFLOOR: 3045 case G_FRINT: 3046 case G_INTRINSIC_ROUND: 3047 case G_INTRINSIC_TRUNC: 3048 case G_FCOS: 3049 case G_FSIN: 3050 case G_FSQRT: 3051 case G_BSWAP: 3052 case G_BITREVERSE: 3053 case G_SDIV: 3054 case G_UDIV: 3055 case G_SREM: 3056 case G_UREM: 3057 case G_SMIN: 3058 case G_SMAX: 3059 case G_UMIN: 3060 case G_UMAX: 3061 case G_FMINNUM: 3062 case G_FMAXNUM: 3063 case G_FMINNUM_IEEE: 3064 case G_FMAXNUM_IEEE: 3065 case G_FMINIMUM: 3066 case G_FMAXIMUM: 3067 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3068 case G_SHL: 3069 case G_LSHR: 3070 case G_ASHR: 3071 case G_CTLZ: 3072 case G_CTLZ_ZERO_UNDEF: 3073 case G_CTTZ: 3074 case G_CTTZ_ZERO_UNDEF: 3075 case G_CTPOP: 3076 case G_FCOPYSIGN: 3077 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3078 case G_ZEXT: 3079 case G_SEXT: 3080 case G_ANYEXT: 3081 case G_FPEXT: 3082 case G_FPTRUNC: 3083 case G_SITOFP: 3084 case G_UITOFP: 3085 case G_FPTOSI: 3086 case G_FPTOUI: 3087 case G_INTTOPTR: 3088 case G_PTRTOINT: 3089 case G_ADDRSPACE_CAST: 3090 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3091 case G_ICMP: 3092 case G_FCMP: 3093 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3094 case G_SELECT: 3095 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3096 case G_PHI: 3097 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3098 case G_UNMERGE_VALUES: 3099 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3100 case G_BUILD_VECTOR: 3101 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3102 case G_LOAD: 3103 case G_STORE: 3104 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3105 default: 3106 return UnableToLegalize; 3107 } 3108 } 3109 3110 LegalizerHelper::LegalizeResult 3111 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3112 const LLT HalfTy, const LLT AmtTy) { 3113 3114 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3115 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3116 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 3117 3118 if (Amt.isNullValue()) { 3119 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 3120 MI.eraseFromParent(); 3121 return Legalized; 3122 } 3123 3124 LLT NVT = HalfTy; 3125 unsigned NVTBits = HalfTy.getSizeInBits(); 3126 unsigned VTBits = 2 * NVTBits; 3127 3128 SrcOp Lo(Register(0)), Hi(Register(0)); 3129 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3130 if (Amt.ugt(VTBits)) { 3131 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3132 } else if (Amt.ugt(NVTBits)) { 3133 Lo = MIRBuilder.buildConstant(NVT, 0); 3134 Hi = MIRBuilder.buildShl(NVT, InL, 3135 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3136 } else if (Amt == NVTBits) { 3137 Lo = MIRBuilder.buildConstant(NVT, 0); 3138 Hi = InL; 3139 } else { 3140 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3141 auto OrLHS = 3142 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3143 auto OrRHS = MIRBuilder.buildLShr( 3144 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3145 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3146 } 3147 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3148 if (Amt.ugt(VTBits)) { 3149 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3150 } else if (Amt.ugt(NVTBits)) { 3151 Lo = MIRBuilder.buildLShr(NVT, InH, 3152 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3153 Hi = MIRBuilder.buildConstant(NVT, 0); 3154 } else if (Amt == NVTBits) { 3155 Lo = InH; 3156 Hi = MIRBuilder.buildConstant(NVT, 0); 3157 } else { 3158 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3159 3160 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3161 auto OrRHS = MIRBuilder.buildShl( 3162 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3163 3164 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3165 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3166 } 3167 } else { 3168 if (Amt.ugt(VTBits)) { 3169 Hi = Lo = MIRBuilder.buildAShr( 3170 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3171 } else if (Amt.ugt(NVTBits)) { 3172 Lo = MIRBuilder.buildAShr(NVT, InH, 3173 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3174 Hi = MIRBuilder.buildAShr(NVT, InH, 3175 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3176 } else if (Amt == NVTBits) { 3177 Lo = InH; 3178 Hi = MIRBuilder.buildAShr(NVT, InH, 3179 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3180 } else { 3181 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3182 3183 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3184 auto OrRHS = MIRBuilder.buildShl( 3185 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3186 3187 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3188 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3189 } 3190 } 3191 3192 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 3193 MI.eraseFromParent(); 3194 3195 return Legalized; 3196 } 3197 3198 // TODO: Optimize if constant shift amount. 3199 LegalizerHelper::LegalizeResult 3200 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3201 LLT RequestedTy) { 3202 if (TypeIdx == 1) { 3203 Observer.changingInstr(MI); 3204 narrowScalarSrc(MI, RequestedTy, 2); 3205 Observer.changedInstr(MI); 3206 return Legalized; 3207 } 3208 3209 Register DstReg = MI.getOperand(0).getReg(); 3210 LLT DstTy = MRI.getType(DstReg); 3211 if (DstTy.isVector()) 3212 return UnableToLegalize; 3213 3214 Register Amt = MI.getOperand(2).getReg(); 3215 LLT ShiftAmtTy = MRI.getType(Amt); 3216 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3217 if (DstEltSize % 2 != 0) 3218 return UnableToLegalize; 3219 3220 // Ignore the input type. We can only go to exactly half the size of the 3221 // input. If that isn't small enough, the resulting pieces will be further 3222 // legalized. 3223 const unsigned NewBitSize = DstEltSize / 2; 3224 const LLT HalfTy = LLT::scalar(NewBitSize); 3225 const LLT CondTy = LLT::scalar(1); 3226 3227 if (const MachineInstr *KShiftAmt = 3228 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3229 return narrowScalarShiftByConstant( 3230 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3231 } 3232 3233 // TODO: Expand with known bits. 3234 3235 // Handle the fully general expansion by an unknown amount. 3236 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3237 3238 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3239 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3240 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 3241 3242 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3243 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3244 3245 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3246 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3247 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3248 3249 Register ResultRegs[2]; 3250 switch (MI.getOpcode()) { 3251 case TargetOpcode::G_SHL: { 3252 // Short: ShAmt < NewBitSize 3253 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3254 3255 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3256 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3257 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3258 3259 // Long: ShAmt >= NewBitSize 3260 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3261 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3262 3263 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3264 auto Hi = MIRBuilder.buildSelect( 3265 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3266 3267 ResultRegs[0] = Lo.getReg(0); 3268 ResultRegs[1] = Hi.getReg(0); 3269 break; 3270 } 3271 case TargetOpcode::G_LSHR: 3272 case TargetOpcode::G_ASHR: { 3273 // Short: ShAmt < NewBitSize 3274 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3275 3276 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3277 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3278 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3279 3280 // Long: ShAmt >= NewBitSize 3281 MachineInstrBuilder HiL; 3282 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3283 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3284 } else { 3285 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3286 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3287 } 3288 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3289 {InH, AmtExcess}); // Lo from Hi part. 3290 3291 auto Lo = MIRBuilder.buildSelect( 3292 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3293 3294 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3295 3296 ResultRegs[0] = Lo.getReg(0); 3297 ResultRegs[1] = Hi.getReg(0); 3298 break; 3299 } 3300 default: 3301 llvm_unreachable("not a shift"); 3302 } 3303 3304 MIRBuilder.buildMerge(DstReg, ResultRegs); 3305 MI.eraseFromParent(); 3306 return Legalized; 3307 } 3308 3309 LegalizerHelper::LegalizeResult 3310 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3311 LLT MoreTy) { 3312 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3313 3314 Observer.changingInstr(MI); 3315 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3316 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3317 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3318 moreElementsVectorSrc(MI, MoreTy, I); 3319 } 3320 3321 MachineBasicBlock &MBB = *MI.getParent(); 3322 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3323 moreElementsVectorDst(MI, MoreTy, 0); 3324 Observer.changedInstr(MI); 3325 return Legalized; 3326 } 3327 3328 LegalizerHelper::LegalizeResult 3329 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3330 LLT MoreTy) { 3331 MIRBuilder.setInstr(MI); 3332 unsigned Opc = MI.getOpcode(); 3333 switch (Opc) { 3334 case TargetOpcode::G_IMPLICIT_DEF: 3335 case TargetOpcode::G_LOAD: { 3336 if (TypeIdx != 0) 3337 return UnableToLegalize; 3338 Observer.changingInstr(MI); 3339 moreElementsVectorDst(MI, MoreTy, 0); 3340 Observer.changedInstr(MI); 3341 return Legalized; 3342 } 3343 case TargetOpcode::G_STORE: 3344 if (TypeIdx != 0) 3345 return UnableToLegalize; 3346 Observer.changingInstr(MI); 3347 moreElementsVectorSrc(MI, MoreTy, 0); 3348 Observer.changedInstr(MI); 3349 return Legalized; 3350 case TargetOpcode::G_AND: 3351 case TargetOpcode::G_OR: 3352 case TargetOpcode::G_XOR: 3353 case TargetOpcode::G_SMIN: 3354 case TargetOpcode::G_SMAX: 3355 case TargetOpcode::G_UMIN: 3356 case TargetOpcode::G_UMAX: 3357 case TargetOpcode::G_FMINNUM: 3358 case TargetOpcode::G_FMAXNUM: 3359 case TargetOpcode::G_FMINNUM_IEEE: 3360 case TargetOpcode::G_FMAXNUM_IEEE: 3361 case TargetOpcode::G_FMINIMUM: 3362 case TargetOpcode::G_FMAXIMUM: { 3363 Observer.changingInstr(MI); 3364 moreElementsVectorSrc(MI, MoreTy, 1); 3365 moreElementsVectorSrc(MI, MoreTy, 2); 3366 moreElementsVectorDst(MI, MoreTy, 0); 3367 Observer.changedInstr(MI); 3368 return Legalized; 3369 } 3370 case TargetOpcode::G_EXTRACT: 3371 if (TypeIdx != 1) 3372 return UnableToLegalize; 3373 Observer.changingInstr(MI); 3374 moreElementsVectorSrc(MI, MoreTy, 1); 3375 Observer.changedInstr(MI); 3376 return Legalized; 3377 case TargetOpcode::G_INSERT: 3378 if (TypeIdx != 0) 3379 return UnableToLegalize; 3380 Observer.changingInstr(MI); 3381 moreElementsVectorSrc(MI, MoreTy, 1); 3382 moreElementsVectorDst(MI, MoreTy, 0); 3383 Observer.changedInstr(MI); 3384 return Legalized; 3385 case TargetOpcode::G_SELECT: 3386 if (TypeIdx != 0) 3387 return UnableToLegalize; 3388 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3389 return UnableToLegalize; 3390 3391 Observer.changingInstr(MI); 3392 moreElementsVectorSrc(MI, MoreTy, 2); 3393 moreElementsVectorSrc(MI, MoreTy, 3); 3394 moreElementsVectorDst(MI, MoreTy, 0); 3395 Observer.changedInstr(MI); 3396 return Legalized; 3397 case TargetOpcode::G_UNMERGE_VALUES: { 3398 if (TypeIdx != 1) 3399 return UnableToLegalize; 3400 3401 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3402 int NumDst = MI.getNumOperands() - 1; 3403 moreElementsVectorSrc(MI, MoreTy, NumDst); 3404 3405 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3406 for (int I = 0; I != NumDst; ++I) 3407 MIB.addDef(MI.getOperand(I).getReg()); 3408 3409 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3410 for (int I = NumDst; I != NewNumDst; ++I) 3411 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3412 3413 MIB.addUse(MI.getOperand(NumDst).getReg()); 3414 MI.eraseFromParent(); 3415 return Legalized; 3416 } 3417 case TargetOpcode::G_PHI: 3418 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3419 default: 3420 return UnableToLegalize; 3421 } 3422 } 3423 3424 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3425 ArrayRef<Register> Src1Regs, 3426 ArrayRef<Register> Src2Regs, 3427 LLT NarrowTy) { 3428 MachineIRBuilder &B = MIRBuilder; 3429 unsigned SrcParts = Src1Regs.size(); 3430 unsigned DstParts = DstRegs.size(); 3431 3432 unsigned DstIdx = 0; // Low bits of the result. 3433 Register FactorSum = 3434 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3435 DstRegs[DstIdx] = FactorSum; 3436 3437 unsigned CarrySumPrevDstIdx; 3438 SmallVector<Register, 4> Factors; 3439 3440 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3441 // Collect low parts of muls for DstIdx. 3442 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3443 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3444 MachineInstrBuilder Mul = 3445 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3446 Factors.push_back(Mul.getReg(0)); 3447 } 3448 // Collect high parts of muls from previous DstIdx. 3449 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3450 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3451 MachineInstrBuilder Umulh = 3452 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3453 Factors.push_back(Umulh.getReg(0)); 3454 } 3455 // Add CarrySum from additions calculated for previous DstIdx. 3456 if (DstIdx != 1) { 3457 Factors.push_back(CarrySumPrevDstIdx); 3458 } 3459 3460 Register CarrySum; 3461 // Add all factors and accumulate all carries into CarrySum. 3462 if (DstIdx != DstParts - 1) { 3463 MachineInstrBuilder Uaddo = 3464 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3465 FactorSum = Uaddo.getReg(0); 3466 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3467 for (unsigned i = 2; i < Factors.size(); ++i) { 3468 MachineInstrBuilder Uaddo = 3469 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3470 FactorSum = Uaddo.getReg(0); 3471 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3472 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3473 } 3474 } else { 3475 // Since value for the next index is not calculated, neither is CarrySum. 3476 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3477 for (unsigned i = 2; i < Factors.size(); ++i) 3478 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3479 } 3480 3481 CarrySumPrevDstIdx = CarrySum; 3482 DstRegs[DstIdx] = FactorSum; 3483 Factors.clear(); 3484 } 3485 } 3486 3487 LegalizerHelper::LegalizeResult 3488 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3489 Register DstReg = MI.getOperand(0).getReg(); 3490 Register Src1 = MI.getOperand(1).getReg(); 3491 Register Src2 = MI.getOperand(2).getReg(); 3492 3493 LLT Ty = MRI.getType(DstReg); 3494 if (Ty.isVector()) 3495 return UnableToLegalize; 3496 3497 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3498 unsigned DstSize = Ty.getSizeInBits(); 3499 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3500 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3501 return UnableToLegalize; 3502 3503 unsigned NumDstParts = DstSize / NarrowSize; 3504 unsigned NumSrcParts = SrcSize / NarrowSize; 3505 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3506 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3507 3508 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; 3509 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3510 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3511 DstTmpRegs.resize(DstTmpParts); 3512 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3513 3514 // Take only high half of registers if this is high mul. 3515 ArrayRef<Register> DstRegs( 3516 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3517 MIRBuilder.buildMerge(DstReg, DstRegs); 3518 MI.eraseFromParent(); 3519 return Legalized; 3520 } 3521 3522 LegalizerHelper::LegalizeResult 3523 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3524 LLT NarrowTy) { 3525 if (TypeIdx != 1) 3526 return UnableToLegalize; 3527 3528 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3529 3530 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3531 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3532 // NarrowSize. 3533 if (SizeOp1 % NarrowSize != 0) 3534 return UnableToLegalize; 3535 int NumParts = SizeOp1 / NarrowSize; 3536 3537 SmallVector<Register, 2> SrcRegs, DstRegs; 3538 SmallVector<uint64_t, 2> Indexes; 3539 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3540 3541 Register OpReg = MI.getOperand(0).getReg(); 3542 uint64_t OpStart = MI.getOperand(2).getImm(); 3543 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3544 for (int i = 0; i < NumParts; ++i) { 3545 unsigned SrcStart = i * NarrowSize; 3546 3547 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3548 // No part of the extract uses this subregister, ignore it. 3549 continue; 3550 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3551 // The entire subregister is extracted, forward the value. 3552 DstRegs.push_back(SrcRegs[i]); 3553 continue; 3554 } 3555 3556 // OpSegStart is where this destination segment would start in OpReg if it 3557 // extended infinitely in both directions. 3558 int64_t ExtractOffset; 3559 uint64_t SegSize; 3560 if (OpStart < SrcStart) { 3561 ExtractOffset = 0; 3562 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3563 } else { 3564 ExtractOffset = OpStart - SrcStart; 3565 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3566 } 3567 3568 Register SegReg = SrcRegs[i]; 3569 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3570 // A genuine extract is needed. 3571 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3572 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3573 } 3574 3575 DstRegs.push_back(SegReg); 3576 } 3577 3578 Register DstReg = MI.getOperand(0).getReg(); 3579 if(MRI.getType(DstReg).isVector()) 3580 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3581 else 3582 MIRBuilder.buildMerge(DstReg, DstRegs); 3583 MI.eraseFromParent(); 3584 return Legalized; 3585 } 3586 3587 LegalizerHelper::LegalizeResult 3588 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3589 LLT NarrowTy) { 3590 // FIXME: Don't know how to handle secondary types yet. 3591 if (TypeIdx != 0) 3592 return UnableToLegalize; 3593 3594 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3595 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3596 3597 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3598 // NarrowSize. 3599 if (SizeOp0 % NarrowSize != 0) 3600 return UnableToLegalize; 3601 3602 int NumParts = SizeOp0 / NarrowSize; 3603 3604 SmallVector<Register, 2> SrcRegs, DstRegs; 3605 SmallVector<uint64_t, 2> Indexes; 3606 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3607 3608 Register OpReg = MI.getOperand(2).getReg(); 3609 uint64_t OpStart = MI.getOperand(3).getImm(); 3610 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3611 for (int i = 0; i < NumParts; ++i) { 3612 unsigned DstStart = i * NarrowSize; 3613 3614 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3615 // No part of the insert affects this subregister, forward the original. 3616 DstRegs.push_back(SrcRegs[i]); 3617 continue; 3618 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3619 // The entire subregister is defined by this insert, forward the new 3620 // value. 3621 DstRegs.push_back(OpReg); 3622 continue; 3623 } 3624 3625 // OpSegStart is where this destination segment would start in OpReg if it 3626 // extended infinitely in both directions. 3627 int64_t ExtractOffset, InsertOffset; 3628 uint64_t SegSize; 3629 if (OpStart < DstStart) { 3630 InsertOffset = 0; 3631 ExtractOffset = DstStart - OpStart; 3632 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3633 } else { 3634 InsertOffset = OpStart - DstStart; 3635 ExtractOffset = 0; 3636 SegSize = 3637 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3638 } 3639 3640 Register SegReg = OpReg; 3641 if (ExtractOffset != 0 || SegSize != OpSize) { 3642 // A genuine extract is needed. 3643 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3644 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3645 } 3646 3647 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3648 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3649 DstRegs.push_back(DstReg); 3650 } 3651 3652 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3653 Register DstReg = MI.getOperand(0).getReg(); 3654 if(MRI.getType(DstReg).isVector()) 3655 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3656 else 3657 MIRBuilder.buildMerge(DstReg, DstRegs); 3658 MI.eraseFromParent(); 3659 return Legalized; 3660 } 3661 3662 LegalizerHelper::LegalizeResult 3663 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3664 LLT NarrowTy) { 3665 Register DstReg = MI.getOperand(0).getReg(); 3666 LLT DstTy = MRI.getType(DstReg); 3667 3668 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3669 3670 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3671 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3672 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3673 LLT LeftoverTy; 3674 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3675 Src0Regs, Src0LeftoverRegs)) 3676 return UnableToLegalize; 3677 3678 LLT Unused; 3679 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3680 Src1Regs, Src1LeftoverRegs)) 3681 llvm_unreachable("inconsistent extractParts result"); 3682 3683 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3684 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3685 {Src0Regs[I], Src1Regs[I]}); 3686 DstRegs.push_back(Inst->getOperand(0).getReg()); 3687 } 3688 3689 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3690 auto Inst = MIRBuilder.buildInstr( 3691 MI.getOpcode(), 3692 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3693 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 3694 } 3695 3696 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3697 LeftoverTy, DstLeftoverRegs); 3698 3699 MI.eraseFromParent(); 3700 return Legalized; 3701 } 3702 3703 LegalizerHelper::LegalizeResult 3704 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3705 LLT NarrowTy) { 3706 if (TypeIdx != 0) 3707 return UnableToLegalize; 3708 3709 Register CondReg = MI.getOperand(1).getReg(); 3710 LLT CondTy = MRI.getType(CondReg); 3711 if (CondTy.isVector()) // TODO: Handle vselect 3712 return UnableToLegalize; 3713 3714 Register DstReg = MI.getOperand(0).getReg(); 3715 LLT DstTy = MRI.getType(DstReg); 3716 3717 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3718 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3719 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3720 LLT LeftoverTy; 3721 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3722 Src1Regs, Src1LeftoverRegs)) 3723 return UnableToLegalize; 3724 3725 LLT Unused; 3726 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3727 Src2Regs, Src2LeftoverRegs)) 3728 llvm_unreachable("inconsistent extractParts result"); 3729 3730 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3731 auto Select = MIRBuilder.buildSelect(NarrowTy, 3732 CondReg, Src1Regs[I], Src2Regs[I]); 3733 DstRegs.push_back(Select->getOperand(0).getReg()); 3734 } 3735 3736 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3737 auto Select = MIRBuilder.buildSelect( 3738 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3739 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 3740 } 3741 3742 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3743 LeftoverTy, DstLeftoverRegs); 3744 3745 MI.eraseFromParent(); 3746 return Legalized; 3747 } 3748 3749 LegalizerHelper::LegalizeResult 3750 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3751 unsigned Opc = MI.getOpcode(); 3752 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 3753 auto isSupported = [this](const LegalityQuery &Q) { 3754 auto QAction = LI.getAction(Q).Action; 3755 return QAction == Legal || QAction == Libcall || QAction == Custom; 3756 }; 3757 switch (Opc) { 3758 default: 3759 return UnableToLegalize; 3760 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 3761 // This trivially expands to CTLZ. 3762 Observer.changingInstr(MI); 3763 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 3764 Observer.changedInstr(MI); 3765 return Legalized; 3766 } 3767 case TargetOpcode::G_CTLZ: { 3768 Register SrcReg = MI.getOperand(1).getReg(); 3769 unsigned Len = Ty.getSizeInBits(); 3770 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 3771 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 3772 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 3773 {Ty}, {SrcReg}); 3774 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3775 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3776 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3777 SrcReg, MIBZero); 3778 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3779 MIBCtlzZU); 3780 MI.eraseFromParent(); 3781 return Legalized; 3782 } 3783 // for now, we do this: 3784 // NewLen = NextPowerOf2(Len); 3785 // x = x | (x >> 1); 3786 // x = x | (x >> 2); 3787 // ... 3788 // x = x | (x >>16); 3789 // x = x | (x >>32); // for 64-bit input 3790 // Upto NewLen/2 3791 // return Len - popcount(x); 3792 // 3793 // Ref: "Hacker's Delight" by Henry Warren 3794 Register Op = SrcReg; 3795 unsigned NewLen = PowerOf2Ceil(Len); 3796 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 3797 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 3798 auto MIBOp = MIRBuilder.buildInstr( 3799 TargetOpcode::G_OR, {Ty}, 3800 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 3801 {Op, MIBShiftAmt})}); 3802 Op = MIBOp->getOperand(0).getReg(); 3803 } 3804 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 3805 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3806 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 3807 MI.eraseFromParent(); 3808 return Legalized; 3809 } 3810 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 3811 // This trivially expands to CTTZ. 3812 Observer.changingInstr(MI); 3813 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 3814 Observer.changedInstr(MI); 3815 return Legalized; 3816 } 3817 case TargetOpcode::G_CTTZ: { 3818 Register SrcReg = MI.getOperand(1).getReg(); 3819 unsigned Len = Ty.getSizeInBits(); 3820 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 3821 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 3822 // zero. 3823 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 3824 {Ty}, {SrcReg}); 3825 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3826 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3827 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3828 SrcReg, MIBZero); 3829 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3830 MIBCttzZU); 3831 MI.eraseFromParent(); 3832 return Legalized; 3833 } 3834 // for now, we use: { return popcount(~x & (x - 1)); } 3835 // unless the target has ctlz but not ctpop, in which case we use: 3836 // { return 32 - nlz(~x & (x-1)); } 3837 // Ref: "Hacker's Delight" by Henry Warren 3838 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 3839 auto MIBNot = 3840 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 3841 auto MIBTmp = MIRBuilder.buildInstr( 3842 TargetOpcode::G_AND, {Ty}, 3843 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 3844 {SrcReg, MIBCstNeg1})}); 3845 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 3846 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 3847 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 3848 MIRBuilder.buildInstr( 3849 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3850 {MIBCstLen, 3851 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 3852 MI.eraseFromParent(); 3853 return Legalized; 3854 } 3855 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 3856 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 3857 return Legalized; 3858 } 3859 } 3860 } 3861 3862 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 3863 // representation. 3864 LegalizerHelper::LegalizeResult 3865 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3866 Register Dst = MI.getOperand(0).getReg(); 3867 Register Src = MI.getOperand(1).getReg(); 3868 const LLT S64 = LLT::scalar(64); 3869 const LLT S32 = LLT::scalar(32); 3870 const LLT S1 = LLT::scalar(1); 3871 3872 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3873 3874 // unsigned cul2f(ulong u) { 3875 // uint lz = clz(u); 3876 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3877 // u = (u << lz) & 0x7fffffffffffffffUL; 3878 // ulong t = u & 0xffffffffffUL; 3879 // uint v = (e << 23) | (uint)(u >> 40); 3880 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3881 // return as_float(v + r); 3882 // } 3883 3884 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3885 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3886 3887 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3888 3889 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3890 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3891 3892 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3893 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3894 3895 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3896 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3897 3898 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3899 3900 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3901 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3902 3903 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3904 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3905 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3906 3907 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 3908 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 3909 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 3910 auto One = MIRBuilder.buildConstant(S32, 1); 3911 3912 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 3913 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 3914 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 3915 MIRBuilder.buildAdd(Dst, V, R); 3916 3917 return Legalized; 3918 } 3919 3920 LegalizerHelper::LegalizeResult 3921 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3922 Register Dst = MI.getOperand(0).getReg(); 3923 Register Src = MI.getOperand(1).getReg(); 3924 LLT DstTy = MRI.getType(Dst); 3925 LLT SrcTy = MRI.getType(Src); 3926 3927 if (SrcTy == LLT::scalar(1)) { 3928 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 3929 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 3930 MIRBuilder.buildSelect(Dst, Src, True, False); 3931 MI.eraseFromParent(); 3932 return Legalized; 3933 } 3934 3935 if (SrcTy != LLT::scalar(64)) 3936 return UnableToLegalize; 3937 3938 if (DstTy == LLT::scalar(32)) { 3939 // TODO: SelectionDAG has several alternative expansions to port which may 3940 // be more reasonble depending on the available instructions. If a target 3941 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 3942 // intermediate type, this is probably worse. 3943 return lowerU64ToF32BitOps(MI); 3944 } 3945 3946 return UnableToLegalize; 3947 } 3948 3949 LegalizerHelper::LegalizeResult 3950 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3951 Register Dst = MI.getOperand(0).getReg(); 3952 Register Src = MI.getOperand(1).getReg(); 3953 LLT DstTy = MRI.getType(Dst); 3954 LLT SrcTy = MRI.getType(Src); 3955 3956 const LLT S64 = LLT::scalar(64); 3957 const LLT S32 = LLT::scalar(32); 3958 const LLT S1 = LLT::scalar(1); 3959 3960 if (SrcTy == S1) { 3961 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 3962 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 3963 MIRBuilder.buildSelect(Dst, Src, True, False); 3964 MI.eraseFromParent(); 3965 return Legalized; 3966 } 3967 3968 if (SrcTy != S64) 3969 return UnableToLegalize; 3970 3971 if (DstTy == S32) { 3972 // signed cl2f(long l) { 3973 // long s = l >> 63; 3974 // float r = cul2f((l + s) ^ s); 3975 // return s ? -r : r; 3976 // } 3977 Register L = Src; 3978 auto SignBit = MIRBuilder.buildConstant(S64, 63); 3979 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 3980 3981 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 3982 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 3983 auto R = MIRBuilder.buildUITOFP(S32, Xor); 3984 3985 auto RNeg = MIRBuilder.buildFNeg(S32, R); 3986 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 3987 MIRBuilder.buildConstant(S64, 0)); 3988 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 3989 return Legalized; 3990 } 3991 3992 return UnableToLegalize; 3993 } 3994 3995 LegalizerHelper::LegalizeResult 3996 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3997 Register Dst = MI.getOperand(0).getReg(); 3998 Register Src = MI.getOperand(1).getReg(); 3999 LLT DstTy = MRI.getType(Dst); 4000 LLT SrcTy = MRI.getType(Src); 4001 const LLT S64 = LLT::scalar(64); 4002 const LLT S32 = LLT::scalar(32); 4003 4004 if (SrcTy != S64 && SrcTy != S32) 4005 return UnableToLegalize; 4006 if (DstTy != S32 && DstTy != S64) 4007 return UnableToLegalize; 4008 4009 // FPTOSI gives same result as FPTOUI for positive signed integers. 4010 // FPTOUI needs to deal with fp values that convert to unsigned integers 4011 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4012 4013 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4014 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4015 : APFloat::IEEEdouble(), 4016 APInt::getNullValue(SrcTy.getSizeInBits())); 4017 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4018 4019 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4020 4021 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4022 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4023 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4024 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4025 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4026 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4027 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4028 4029 const LLT S1 = LLT::scalar(1); 4030 4031 MachineInstrBuilder FCMP = 4032 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4033 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4034 4035 MI.eraseFromParent(); 4036 return Legalized; 4037 } 4038 4039 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4040 switch (Opc) { 4041 case TargetOpcode::G_SMIN: 4042 return CmpInst::ICMP_SLT; 4043 case TargetOpcode::G_SMAX: 4044 return CmpInst::ICMP_SGT; 4045 case TargetOpcode::G_UMIN: 4046 return CmpInst::ICMP_ULT; 4047 case TargetOpcode::G_UMAX: 4048 return CmpInst::ICMP_UGT; 4049 default: 4050 llvm_unreachable("not in integer min/max"); 4051 } 4052 } 4053 4054 LegalizerHelper::LegalizeResult 4055 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4056 Register Dst = MI.getOperand(0).getReg(); 4057 Register Src0 = MI.getOperand(1).getReg(); 4058 Register Src1 = MI.getOperand(2).getReg(); 4059 4060 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4061 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4062 4063 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4064 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4065 4066 MI.eraseFromParent(); 4067 return Legalized; 4068 } 4069 4070 LegalizerHelper::LegalizeResult 4071 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4072 Register Dst = MI.getOperand(0).getReg(); 4073 Register Src0 = MI.getOperand(1).getReg(); 4074 Register Src1 = MI.getOperand(2).getReg(); 4075 4076 const LLT Src0Ty = MRI.getType(Src0); 4077 const LLT Src1Ty = MRI.getType(Src1); 4078 4079 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4080 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4081 4082 auto SignBitMask = MIRBuilder.buildConstant( 4083 Src0Ty, APInt::getSignMask(Src0Size)); 4084 4085 auto NotSignBitMask = MIRBuilder.buildConstant( 4086 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4087 4088 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4089 MachineInstr *Or; 4090 4091 if (Src0Ty == Src1Ty) { 4092 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4093 Or = MIRBuilder.buildOr(Dst, And0, And1); 4094 } else if (Src0Size > Src1Size) { 4095 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4096 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4097 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4098 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4099 Or = MIRBuilder.buildOr(Dst, And0, And1); 4100 } else { 4101 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4102 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4103 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4104 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4105 Or = MIRBuilder.buildOr(Dst, And0, And1); 4106 } 4107 4108 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4109 // constants are a nan and -0.0, but the final result should preserve 4110 // everything. 4111 if (unsigned Flags = MI.getFlags()) 4112 Or->setFlags(Flags); 4113 4114 MI.eraseFromParent(); 4115 return Legalized; 4116 } 4117 4118 LegalizerHelper::LegalizeResult 4119 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4120 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4121 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4122 4123 Register Dst = MI.getOperand(0).getReg(); 4124 Register Src0 = MI.getOperand(1).getReg(); 4125 Register Src1 = MI.getOperand(2).getReg(); 4126 LLT Ty = MRI.getType(Dst); 4127 4128 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4129 // Insert canonicalizes if it's possible we need to quiet to get correct 4130 // sNaN behavior. 4131 4132 // Note this must be done here, and not as an optimization combine in the 4133 // absence of a dedicate quiet-snan instruction as we're using an 4134 // omni-purpose G_FCANONICALIZE. 4135 if (!isKnownNeverSNaN(Src0, MRI)) 4136 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4137 4138 if (!isKnownNeverSNaN(Src1, MRI)) 4139 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4140 } 4141 4142 // If there are no nans, it's safe to simply replace this with the non-IEEE 4143 // version. 4144 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4145 MI.eraseFromParent(); 4146 return Legalized; 4147 } 4148 4149 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4150 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4151 Register DstReg = MI.getOperand(0).getReg(); 4152 LLT Ty = MRI.getType(DstReg); 4153 unsigned Flags = MI.getFlags(); 4154 4155 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4156 Flags); 4157 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4158 MI.eraseFromParent(); 4159 return Legalized; 4160 } 4161 4162 LegalizerHelper::LegalizeResult 4163 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4164 Register DstReg = MI.getOperand(0).getReg(); 4165 Register SrcReg = MI.getOperand(1).getReg(); 4166 unsigned Flags = MI.getFlags(); 4167 LLT Ty = MRI.getType(DstReg); 4168 const LLT CondTy = Ty.changeElementSize(1); 4169 4170 // result = trunc(src); 4171 // if (src < 0.0 && src != result) 4172 // result += -1.0. 4173 4174 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4175 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4176 4177 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4178 SrcReg, Zero, Flags); 4179 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4180 SrcReg, Trunc, Flags); 4181 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4182 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4183 4184 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal); 4185 MI.eraseFromParent(); 4186 return Legalized; 4187 } 4188 4189 LegalizerHelper::LegalizeResult 4190 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4191 const unsigned NumDst = MI.getNumOperands() - 1; 4192 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4193 LLT SrcTy = MRI.getType(SrcReg); 4194 4195 Register Dst0Reg = MI.getOperand(0).getReg(); 4196 LLT DstTy = MRI.getType(Dst0Reg); 4197 4198 4199 // Expand scalarizing unmerge as bitcast to integer and shift. 4200 if (!DstTy.isVector() && SrcTy.isVector() && 4201 SrcTy.getElementType() == DstTy) { 4202 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4203 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4204 4205 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4206 4207 const unsigned DstSize = DstTy.getSizeInBits(); 4208 unsigned Offset = DstSize; 4209 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4210 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4211 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4212 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4213 } 4214 4215 MI.eraseFromParent(); 4216 return Legalized; 4217 } 4218 4219 return UnableToLegalize; 4220 } 4221 4222 LegalizerHelper::LegalizeResult 4223 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4224 Register DstReg = MI.getOperand(0).getReg(); 4225 Register Src0Reg = MI.getOperand(1).getReg(); 4226 Register Src1Reg = MI.getOperand(2).getReg(); 4227 LLT Src0Ty = MRI.getType(Src0Reg); 4228 LLT DstTy = MRI.getType(DstReg); 4229 LLT IdxTy = LLT::scalar(32); 4230 4231 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4232 4233 if (DstTy.isScalar()) { 4234 if (Src0Ty.isVector()) 4235 return UnableToLegalize; 4236 4237 // This is just a SELECT. 4238 assert(Mask.size() == 1 && "Expected a single mask element"); 4239 Register Val; 4240 if (Mask[0] < 0 || Mask[0] > 1) 4241 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4242 else 4243 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4244 MIRBuilder.buildCopy(DstReg, Val); 4245 MI.eraseFromParent(); 4246 return Legalized; 4247 } 4248 4249 Register Undef; 4250 SmallVector<Register, 32> BuildVec; 4251 LLT EltTy = DstTy.getElementType(); 4252 4253 for (int Idx : Mask) { 4254 if (Idx < 0) { 4255 if (!Undef.isValid()) 4256 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4257 BuildVec.push_back(Undef); 4258 continue; 4259 } 4260 4261 if (Src0Ty.isScalar()) { 4262 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4263 } else { 4264 int NumElts = Src0Ty.getNumElements(); 4265 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4266 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4267 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4268 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4269 BuildVec.push_back(Extract.getReg(0)); 4270 } 4271 } 4272 4273 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4274 MI.eraseFromParent(); 4275 return Legalized; 4276 } 4277 4278 LegalizerHelper::LegalizeResult 4279 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4280 Register Dst = MI.getOperand(0).getReg(); 4281 Register AllocSize = MI.getOperand(1).getReg(); 4282 unsigned Align = MI.getOperand(2).getImm(); 4283 4284 const auto &MF = *MI.getMF(); 4285 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4286 4287 LLT PtrTy = MRI.getType(Dst); 4288 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4289 4290 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4291 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4292 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4293 4294 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4295 // have to generate an extra instruction to negate the alloc and then use 4296 // G_PTR_ADD to add the negative offset. 4297 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4298 if (Align) { 4299 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4300 AlignMask.negate(); 4301 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4302 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4303 } 4304 4305 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4306 MIRBuilder.buildCopy(SPReg, SPTmp); 4307 MIRBuilder.buildCopy(Dst, SPTmp); 4308 4309 MI.eraseFromParent(); 4310 return Legalized; 4311 } 4312 4313 LegalizerHelper::LegalizeResult 4314 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4315 Register Dst = MI.getOperand(0).getReg(); 4316 Register Src = MI.getOperand(1).getReg(); 4317 unsigned Offset = MI.getOperand(2).getImm(); 4318 4319 LLT DstTy = MRI.getType(Dst); 4320 LLT SrcTy = MRI.getType(Src); 4321 4322 if (DstTy.isScalar() && 4323 (SrcTy.isScalar() || 4324 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4325 LLT SrcIntTy = SrcTy; 4326 if (!SrcTy.isScalar()) { 4327 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4328 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4329 } 4330 4331 if (Offset == 0) 4332 MIRBuilder.buildTrunc(Dst, Src); 4333 else { 4334 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4335 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4336 MIRBuilder.buildTrunc(Dst, Shr); 4337 } 4338 4339 MI.eraseFromParent(); 4340 return Legalized; 4341 } 4342 4343 return UnableToLegalize; 4344 } 4345 4346 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4347 Register Dst = MI.getOperand(0).getReg(); 4348 Register Src = MI.getOperand(1).getReg(); 4349 Register InsertSrc = MI.getOperand(2).getReg(); 4350 uint64_t Offset = MI.getOperand(3).getImm(); 4351 4352 LLT DstTy = MRI.getType(Src); 4353 LLT InsertTy = MRI.getType(InsertSrc); 4354 4355 if (InsertTy.isScalar() && 4356 (DstTy.isScalar() || 4357 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4358 LLT IntDstTy = DstTy; 4359 if (!DstTy.isScalar()) { 4360 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4361 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4362 } 4363 4364 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4365 if (Offset != 0) { 4366 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4367 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4368 } 4369 4370 APInt MaskVal = ~APInt::getBitsSet(DstTy.getSizeInBits(), Offset, 4371 InsertTy.getSizeInBits()); 4372 4373 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4374 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4375 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4376 4377 MIRBuilder.buildBitcast(Dst, Or); 4378 MI.eraseFromParent(); 4379 return Legalized; 4380 } 4381 4382 return UnableToLegalize; 4383 } 4384 4385 LegalizerHelper::LegalizeResult 4386 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4387 Register Dst0 = MI.getOperand(0).getReg(); 4388 Register Dst1 = MI.getOperand(1).getReg(); 4389 Register LHS = MI.getOperand(2).getReg(); 4390 Register RHS = MI.getOperand(3).getReg(); 4391 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4392 4393 LLT Ty = MRI.getType(Dst0); 4394 LLT BoolTy = MRI.getType(Dst1); 4395 4396 if (IsAdd) 4397 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4398 else 4399 MIRBuilder.buildSub(Dst0, LHS, RHS); 4400 4401 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4402 4403 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4404 4405 // For an addition, the result should be less than one of the operands (LHS) 4406 // if and only if the other operand (RHS) is negative, otherwise there will 4407 // be overflow. 4408 // For a subtraction, the result should be less than one of the operands 4409 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4410 // otherwise there will be overflow. 4411 auto ResultLowerThanLHS = 4412 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4413 auto ConditionRHS = MIRBuilder.buildICmp( 4414 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4415 4416 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4417 MI.eraseFromParent(); 4418 return Legalized; 4419 } 4420 4421 LegalizerHelper::LegalizeResult 4422 LegalizerHelper::lowerBswap(MachineInstr &MI) { 4423 Register Dst = MI.getOperand(0).getReg(); 4424 Register Src = MI.getOperand(1).getReg(); 4425 const LLT Ty = MRI.getType(Src); 4426 unsigned SizeInBytes = Ty.getSizeInBytes(); 4427 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 4428 4429 // Swap most and least significant byte, set remaining bytes in Res to zero. 4430 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 4431 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 4432 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4433 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 4434 4435 // Set i-th high/low byte in Res to i-th low/high byte from Src. 4436 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 4437 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 4438 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 4439 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 4440 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 4441 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 4442 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 4443 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 4444 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 4445 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 4446 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4447 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 4448 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 4449 } 4450 Res.getInstr()->getOperand(0).setReg(Dst); 4451 4452 MI.eraseFromParent(); 4453 return Legalized; 4454 } 4455 4456 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 4457 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 4458 MachineInstrBuilder Src, APInt Mask) { 4459 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 4460 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 4461 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 4462 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 4463 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 4464 return B.buildOr(Dst, LHS, RHS); 4465 } 4466 4467 LegalizerHelper::LegalizeResult 4468 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 4469 Register Dst = MI.getOperand(0).getReg(); 4470 Register Src = MI.getOperand(1).getReg(); 4471 const LLT Ty = MRI.getType(Src); 4472 unsigned Size = Ty.getSizeInBits(); 4473 4474 MachineInstrBuilder BSWAP = 4475 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 4476 4477 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 4478 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 4479 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 4480 MachineInstrBuilder Swap4 = 4481 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 4482 4483 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 4484 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 4485 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 4486 MachineInstrBuilder Swap2 = 4487 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 4488 4489 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 4490 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 4491 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 4492 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 4493 4494 MI.eraseFromParent(); 4495 return Legalized; 4496 } 4497 4498 LegalizerHelper::LegalizeResult 4499 LegalizerHelper::lowerReadRegister(MachineInstr &MI) { 4500 Register Dst = MI.getOperand(0).getReg(); 4501 const LLT Ty = MRI.getType(Dst); 4502 const MDString *RegStr = cast<MDString>( 4503 cast<MDNode>(MI.getOperand(1).getMetadata())->getOperand(0)); 4504 4505 MachineFunction &MF = MIRBuilder.getMF(); 4506 const TargetSubtargetInfo &STI = MF.getSubtarget(); 4507 const TargetLowering *TLI = STI.getTargetLowering(); 4508 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 4509 if (!Reg.isValid()) 4510 return UnableToLegalize; 4511 4512 MIRBuilder.buildCopy(Dst, Reg); 4513 MI.eraseFromParent(); 4514 return Legalized; 4515 } 4516