1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
67                                  GISelChangeObserver &Observer,
68                                  MachineIRBuilder &Builder)
69     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
70       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
71   MIRBuilder.setMF(MF);
72   MIRBuilder.setChangeObserver(Observer);
73 }
74 
75 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
76                                  GISelChangeObserver &Observer,
77                                  MachineIRBuilder &B)
78     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
79   MIRBuilder.setMF(MF);
80   MIRBuilder.setChangeObserver(Observer);
81 }
82 LegalizerHelper::LegalizeResult
83 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
84   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
85 
86   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
87       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
88     return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized
89                                                      : UnableToLegalize;
90   auto Step = LI.getAction(MI, MRI);
91   switch (Step.Action) {
92   case Legal:
93     LLVM_DEBUG(dbgs() << ".. Already legal\n");
94     return AlreadyLegal;
95   case Libcall:
96     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
97     return libcall(MI);
98   case NarrowScalar:
99     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
100     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
101   case WidenScalar:
102     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
103     return widenScalar(MI, Step.TypeIdx, Step.NewType);
104   case Lower:
105     LLVM_DEBUG(dbgs() << ".. Lower\n");
106     return lower(MI, Step.TypeIdx, Step.NewType);
107   case FewerElements:
108     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
109     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
110   case MoreElements:
111     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
112     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
113   case Custom:
114     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
115     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
116                                                             : UnableToLegalize;
117   default:
118     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
119     return UnableToLegalize;
120   }
121 }
122 
123 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
124                                    SmallVectorImpl<Register> &VRegs) {
125   for (int i = 0; i < NumParts; ++i)
126     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
127   MIRBuilder.buildUnmerge(VRegs, Reg);
128 }
129 
130 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
131                                    LLT MainTy, LLT &LeftoverTy,
132                                    SmallVectorImpl<Register> &VRegs,
133                                    SmallVectorImpl<Register> &LeftoverRegs) {
134   assert(!LeftoverTy.isValid() && "this is an out argument");
135 
136   unsigned RegSize = RegTy.getSizeInBits();
137   unsigned MainSize = MainTy.getSizeInBits();
138   unsigned NumParts = RegSize / MainSize;
139   unsigned LeftoverSize = RegSize - NumParts * MainSize;
140 
141   // Use an unmerge when possible.
142   if (LeftoverSize == 0) {
143     for (unsigned I = 0; I < NumParts; ++I)
144       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
145     MIRBuilder.buildUnmerge(VRegs, Reg);
146     return true;
147   }
148 
149   if (MainTy.isVector()) {
150     unsigned EltSize = MainTy.getScalarSizeInBits();
151     if (LeftoverSize % EltSize != 0)
152       return false;
153     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
154   } else {
155     LeftoverTy = LLT::scalar(LeftoverSize);
156   }
157 
158   // For irregular sizes, extract the individual parts.
159   for (unsigned I = 0; I != NumParts; ++I) {
160     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
161     VRegs.push_back(NewReg);
162     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
163   }
164 
165   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
166        Offset += LeftoverSize) {
167     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
168     LeftoverRegs.push_back(NewReg);
169     MIRBuilder.buildExtract(NewReg, Reg, Offset);
170   }
171 
172   return true;
173 }
174 
175 static LLT getGCDType(LLT OrigTy, LLT TargetTy) {
176   if (OrigTy.isVector() && TargetTy.isVector()) {
177     assert(OrigTy.getElementType() == TargetTy.getElementType());
178     int GCD = greatestCommonDivisor(OrigTy.getNumElements(),
179                                     TargetTy.getNumElements());
180     return LLT::scalarOrVector(GCD, OrigTy.getElementType());
181   }
182 
183   if (OrigTy.isVector() && !TargetTy.isVector()) {
184     assert(OrigTy.getElementType() == TargetTy);
185     return TargetTy;
186   }
187 
188   assert(!OrigTy.isVector() && !TargetTy.isVector());
189 
190   int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(),
191                                   TargetTy.getSizeInBits());
192   return LLT::scalar(GCD);
193 }
194 
195 void LegalizerHelper::insertParts(Register DstReg,
196                                   LLT ResultTy, LLT PartTy,
197                                   ArrayRef<Register> PartRegs,
198                                   LLT LeftoverTy,
199                                   ArrayRef<Register> LeftoverRegs) {
200   if (!LeftoverTy.isValid()) {
201     assert(LeftoverRegs.empty());
202 
203     if (!ResultTy.isVector()) {
204       MIRBuilder.buildMerge(DstReg, PartRegs);
205       return;
206     }
207 
208     if (PartTy.isVector())
209       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
210     else
211       MIRBuilder.buildBuildVector(DstReg, PartRegs);
212     return;
213   }
214 
215   unsigned PartSize = PartTy.getSizeInBits();
216   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
217 
218   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
219   MIRBuilder.buildUndef(CurResultReg);
220 
221   unsigned Offset = 0;
222   for (Register PartReg : PartRegs) {
223     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
224     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
225     CurResultReg = NewResultReg;
226     Offset += PartSize;
227   }
228 
229   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
230     // Use the original output register for the final insert to avoid a copy.
231     Register NewResultReg = (I + 1 == E) ?
232       DstReg : MRI.createGenericVirtualRegister(ResultTy);
233 
234     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
235     CurResultReg = NewResultReg;
236     Offset += LeftoverPartSize;
237   }
238 }
239 
240 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
241   switch (Opcode) {
242   case TargetOpcode::G_SDIV:
243     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
244     switch (Size) {
245     case 32:
246       return RTLIB::SDIV_I32;
247     case 64:
248       return RTLIB::SDIV_I64;
249     case 128:
250       return RTLIB::SDIV_I128;
251     default:
252       llvm_unreachable("unexpected size");
253     }
254   case TargetOpcode::G_UDIV:
255     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
256     switch (Size) {
257     case 32:
258       return RTLIB::UDIV_I32;
259     case 64:
260       return RTLIB::UDIV_I64;
261     case 128:
262       return RTLIB::UDIV_I128;
263     default:
264       llvm_unreachable("unexpected size");
265     }
266   case TargetOpcode::G_SREM:
267     assert((Size == 32 || Size == 64) && "Unsupported size");
268     return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32;
269   case TargetOpcode::G_UREM:
270     assert((Size == 32 || Size == 64) && "Unsupported size");
271     return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32;
272   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
273     assert(Size == 32 && "Unsupported size");
274     return RTLIB::CTLZ_I32;
275   case TargetOpcode::G_FADD:
276     assert((Size == 32 || Size == 64) && "Unsupported size");
277     return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32;
278   case TargetOpcode::G_FSUB:
279     assert((Size == 32 || Size == 64) && "Unsupported size");
280     return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32;
281   case TargetOpcode::G_FMUL:
282     assert((Size == 32 || Size == 64) && "Unsupported size");
283     return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32;
284   case TargetOpcode::G_FDIV:
285     assert((Size == 32 || Size == 64) && "Unsupported size");
286     return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32;
287   case TargetOpcode::G_FEXP:
288     assert((Size == 32 || Size == 64) && "Unsupported size");
289     return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32;
290   case TargetOpcode::G_FEXP2:
291     assert((Size == 32 || Size == 64) && "Unsupported size");
292     return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32;
293   case TargetOpcode::G_FREM:
294     return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32;
295   case TargetOpcode::G_FPOW:
296     return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32;
297   case TargetOpcode::G_FMA:
298     assert((Size == 32 || Size == 64) && "Unsupported size");
299     return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32;
300   case TargetOpcode::G_FSIN:
301     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
302     return Size == 128 ? RTLIB::SIN_F128
303                        : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32;
304   case TargetOpcode::G_FCOS:
305     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
306     return Size == 128 ? RTLIB::COS_F128
307                        : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32;
308   case TargetOpcode::G_FLOG10:
309     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
310     return Size == 128 ? RTLIB::LOG10_F128
311                        : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32;
312   case TargetOpcode::G_FLOG:
313     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
314     return Size == 128 ? RTLIB::LOG_F128
315                        : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32;
316   case TargetOpcode::G_FLOG2:
317     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
318     return Size == 128 ? RTLIB::LOG2_F128
319                        : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32;
320   case TargetOpcode::G_FCEIL:
321     assert((Size == 32 || Size == 64) && "Unsupported size");
322     return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32;
323   case TargetOpcode::G_FFLOOR:
324     assert((Size == 32 || Size == 64) && "Unsupported size");
325     return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32;
326   }
327   llvm_unreachable("Unknown libcall function");
328 }
329 
330 /// True if an instruction is in tail position in its caller. Intended for
331 /// legalizing libcalls as tail calls when possible.
332 static bool isLibCallInTailPosition(MachineInstr &MI) {
333   const Function &F = MI.getParent()->getParent()->getFunction();
334 
335   // Conservatively require the attributes of the call to match those of
336   // the return. Ignore NoAlias and NonNull because they don't affect the
337   // call sequence.
338   AttributeList CallerAttrs = F.getAttributes();
339   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
340           .removeAttribute(Attribute::NoAlias)
341           .removeAttribute(Attribute::NonNull)
342           .hasAttributes())
343     return false;
344 
345   // It's not safe to eliminate the sign / zero extension of the return value.
346   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
347       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
348     return false;
349 
350   // Only tail call if the following instruction is a standard return.
351   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
352   MachineInstr *Next = MI.getNextNode();
353   if (!Next || TII.isTailCall(*Next) || !Next->isReturn())
354     return false;
355 
356   return true;
357 }
358 
359 LegalizerHelper::LegalizeResult
360 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
361                     const CallLowering::ArgInfo &Result,
362                     ArrayRef<CallLowering::ArgInfo> Args) {
363   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
364   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
365   const char *Name = TLI.getLibcallName(Libcall);
366 
367   CallLowering::CallLoweringInfo Info;
368   Info.CallConv = TLI.getLibcallCallingConv(Libcall);
369   Info.Callee = MachineOperand::CreateES(Name);
370   Info.OrigRet = Result;
371   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
372   if (!CLI.lowerCall(MIRBuilder, Info))
373     return LegalizerHelper::UnableToLegalize;
374 
375   return LegalizerHelper::Legalized;
376 }
377 
378 // Useful for libcalls where all operands have the same type.
379 static LegalizerHelper::LegalizeResult
380 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
381               Type *OpType) {
382   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
383 
384   SmallVector<CallLowering::ArgInfo, 3> Args;
385   for (unsigned i = 1; i < MI.getNumOperands(); i++)
386     Args.push_back({MI.getOperand(i).getReg(), OpType});
387   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
388                        Args);
389 }
390 
391 LegalizerHelper::LegalizeResult
392 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
393                        MachineInstr &MI) {
394   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
395   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
396 
397   SmallVector<CallLowering::ArgInfo, 3> Args;
398   // Add all the args, except for the last which is an imm denoting 'tail'.
399   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
400     Register Reg = MI.getOperand(i).getReg();
401 
402     // Need derive an IR type for call lowering.
403     LLT OpLLT = MRI.getType(Reg);
404     Type *OpTy = nullptr;
405     if (OpLLT.isPointer())
406       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
407     else
408       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
409     Args.push_back({Reg, OpTy});
410   }
411 
412   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
413   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
414   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
415   RTLIB::Libcall RTLibcall;
416   switch (ID) {
417   case Intrinsic::memcpy:
418     RTLibcall = RTLIB::MEMCPY;
419     break;
420   case Intrinsic::memset:
421     RTLibcall = RTLIB::MEMSET;
422     break;
423   case Intrinsic::memmove:
424     RTLibcall = RTLIB::MEMMOVE;
425     break;
426   default:
427     return LegalizerHelper::UnableToLegalize;
428   }
429   const char *Name = TLI.getLibcallName(RTLibcall);
430 
431   MIRBuilder.setInstr(MI);
432 
433   CallLowering::CallLoweringInfo Info;
434   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
435   Info.Callee = MachineOperand::CreateES(Name);
436   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
437   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
438                     isLibCallInTailPosition(MI);
439 
440   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
441   if (!CLI.lowerCall(MIRBuilder, Info))
442     return LegalizerHelper::UnableToLegalize;
443 
444   if (Info.LoweredTailCall) {
445     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
446     // We must have a return following the call to get past
447     // isLibCallInTailPosition.
448     assert(MI.getNextNode() && MI.getNextNode()->isReturn() &&
449            "Expected instr following MI to be a return?");
450 
451     // We lowered a tail call, so the call is now the return from the block.
452     // Delete the old return.
453     MI.getNextNode()->eraseFromParent();
454   }
455 
456   return LegalizerHelper::Legalized;
457 }
458 
459 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
460                                        Type *FromType) {
461   auto ToMVT = MVT::getVT(ToType);
462   auto FromMVT = MVT::getVT(FromType);
463 
464   switch (Opcode) {
465   case TargetOpcode::G_FPEXT:
466     return RTLIB::getFPEXT(FromMVT, ToMVT);
467   case TargetOpcode::G_FPTRUNC:
468     return RTLIB::getFPROUND(FromMVT, ToMVT);
469   case TargetOpcode::G_FPTOSI:
470     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
471   case TargetOpcode::G_FPTOUI:
472     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
473   case TargetOpcode::G_SITOFP:
474     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
475   case TargetOpcode::G_UITOFP:
476     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
477   }
478   llvm_unreachable("Unsupported libcall function");
479 }
480 
481 static LegalizerHelper::LegalizeResult
482 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
483                   Type *FromType) {
484   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
485   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
486                        {{MI.getOperand(1).getReg(), FromType}});
487 }
488 
489 LegalizerHelper::LegalizeResult
490 LegalizerHelper::libcall(MachineInstr &MI) {
491   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
492   unsigned Size = LLTy.getSizeInBits();
493   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
494 
495   MIRBuilder.setInstr(MI);
496 
497   switch (MI.getOpcode()) {
498   default:
499     return UnableToLegalize;
500   case TargetOpcode::G_SDIV:
501   case TargetOpcode::G_UDIV:
502   case TargetOpcode::G_SREM:
503   case TargetOpcode::G_UREM:
504   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
505     Type *HLTy = IntegerType::get(Ctx, Size);
506     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
507     if (Status != Legalized)
508       return Status;
509     break;
510   }
511   case TargetOpcode::G_FADD:
512   case TargetOpcode::G_FSUB:
513   case TargetOpcode::G_FMUL:
514   case TargetOpcode::G_FDIV:
515   case TargetOpcode::G_FMA:
516   case TargetOpcode::G_FPOW:
517   case TargetOpcode::G_FREM:
518   case TargetOpcode::G_FCOS:
519   case TargetOpcode::G_FSIN:
520   case TargetOpcode::G_FLOG10:
521   case TargetOpcode::G_FLOG:
522   case TargetOpcode::G_FLOG2:
523   case TargetOpcode::G_FEXP:
524   case TargetOpcode::G_FEXP2:
525   case TargetOpcode::G_FCEIL:
526   case TargetOpcode::G_FFLOOR: {
527     if (Size > 64) {
528       LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n");
529       return UnableToLegalize;
530     }
531     Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx);
532     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
533     if (Status != Legalized)
534       return Status;
535     break;
536   }
537   case TargetOpcode::G_FPEXT: {
538     // FIXME: Support other floating point types (half, fp128 etc)
539     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
540     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
541     if (ToSize != 64 || FromSize != 32)
542       return UnableToLegalize;
543     LegalizeResult Status = conversionLibcall(
544         MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx));
545     if (Status != Legalized)
546       return Status;
547     break;
548   }
549   case TargetOpcode::G_FPTRUNC: {
550     // FIXME: Support other floating point types (half, fp128 etc)
551     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
552     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
553     if (ToSize != 32 || FromSize != 64)
554       return UnableToLegalize;
555     LegalizeResult Status = conversionLibcall(
556         MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx));
557     if (Status != Legalized)
558       return Status;
559     break;
560   }
561   case TargetOpcode::G_FPTOSI:
562   case TargetOpcode::G_FPTOUI: {
563     // FIXME: Support other types
564     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
565     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
566     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
567       return UnableToLegalize;
568     LegalizeResult Status = conversionLibcall(
569         MI, MIRBuilder,
570         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
571         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
572     if (Status != Legalized)
573       return Status;
574     break;
575   }
576   case TargetOpcode::G_SITOFP:
577   case TargetOpcode::G_UITOFP: {
578     // FIXME: Support other types
579     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
580     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
581     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
582       return UnableToLegalize;
583     LegalizeResult Status = conversionLibcall(
584         MI, MIRBuilder,
585         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
586         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
587     if (Status != Legalized)
588       return Status;
589     break;
590   }
591   }
592 
593   MI.eraseFromParent();
594   return Legalized;
595 }
596 
597 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
598                                                               unsigned TypeIdx,
599                                                               LLT NarrowTy) {
600   MIRBuilder.setInstr(MI);
601 
602   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
603   uint64_t NarrowSize = NarrowTy.getSizeInBits();
604 
605   switch (MI.getOpcode()) {
606   default:
607     return UnableToLegalize;
608   case TargetOpcode::G_IMPLICIT_DEF: {
609     // FIXME: add support for when SizeOp0 isn't an exact multiple of
610     // NarrowSize.
611     if (SizeOp0 % NarrowSize != 0)
612       return UnableToLegalize;
613     int NumParts = SizeOp0 / NarrowSize;
614 
615     SmallVector<Register, 2> DstRegs;
616     for (int i = 0; i < NumParts; ++i)
617       DstRegs.push_back(
618           MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg());
619 
620     Register DstReg = MI.getOperand(0).getReg();
621     if(MRI.getType(DstReg).isVector())
622       MIRBuilder.buildBuildVector(DstReg, DstRegs);
623     else
624       MIRBuilder.buildMerge(DstReg, DstRegs);
625     MI.eraseFromParent();
626     return Legalized;
627   }
628   case TargetOpcode::G_CONSTANT: {
629     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
630     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
631     unsigned TotalSize = Ty.getSizeInBits();
632     unsigned NarrowSize = NarrowTy.getSizeInBits();
633     int NumParts = TotalSize / NarrowSize;
634 
635     SmallVector<Register, 4> PartRegs;
636     for (int I = 0; I != NumParts; ++I) {
637       unsigned Offset = I * NarrowSize;
638       auto K = MIRBuilder.buildConstant(NarrowTy,
639                                         Val.lshr(Offset).trunc(NarrowSize));
640       PartRegs.push_back(K.getReg(0));
641     }
642 
643     LLT LeftoverTy;
644     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
645     SmallVector<Register, 1> LeftoverRegs;
646     if (LeftoverBits != 0) {
647       LeftoverTy = LLT::scalar(LeftoverBits);
648       auto K = MIRBuilder.buildConstant(
649         LeftoverTy,
650         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
651       LeftoverRegs.push_back(K.getReg(0));
652     }
653 
654     insertParts(MI.getOperand(0).getReg(),
655                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
656 
657     MI.eraseFromParent();
658     return Legalized;
659   }
660   case TargetOpcode::G_SEXT: {
661     if (TypeIdx != 0)
662       return UnableToLegalize;
663 
664     Register SrcReg = MI.getOperand(1).getReg();
665     LLT SrcTy = MRI.getType(SrcReg);
666 
667     // FIXME: support the general case where the requested NarrowTy may not be
668     // the same as the source type. E.g. s128 = sext(s32)
669     if ((SrcTy.getSizeInBits() != SizeOp0 / 2) ||
670         SrcTy.getSizeInBits() != NarrowTy.getSizeInBits()) {
671       LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n");
672       return UnableToLegalize;
673     }
674 
675     // Shift the sign bit of the low register through the high register.
676     auto ShiftAmt =
677         MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1);
678     auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt);
679     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)});
680     MI.eraseFromParent();
681     return Legalized;
682   }
683   case TargetOpcode::G_ZEXT: {
684     if (TypeIdx != 0)
685       return UnableToLegalize;
686 
687     LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
688     uint64_t SizeOp1 = SrcTy.getSizeInBits();
689     if (SizeOp0 % SizeOp1 != 0)
690       return UnableToLegalize;
691 
692     // Generate a merge where the bottom bits are taken from the source, and
693     // zero everything else.
694     Register ZeroReg = MIRBuilder.buildConstant(SrcTy, 0).getReg(0);
695     unsigned NumParts = SizeOp0 / SizeOp1;
696     SmallVector<Register, 4> Srcs = {MI.getOperand(1).getReg()};
697     for (unsigned Part = 1; Part < NumParts; ++Part)
698       Srcs.push_back(ZeroReg);
699     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Srcs);
700     MI.eraseFromParent();
701     return Legalized;
702   }
703   case TargetOpcode::G_TRUNC: {
704     if (TypeIdx != 1)
705       return UnableToLegalize;
706 
707     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
708     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
709       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
710       return UnableToLegalize;
711     }
712 
713     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
714     MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Unmerge.getReg(0));
715     MI.eraseFromParent();
716     return Legalized;
717   }
718 
719   case TargetOpcode::G_ADD: {
720     // FIXME: add support for when SizeOp0 isn't an exact multiple of
721     // NarrowSize.
722     if (SizeOp0 % NarrowSize != 0)
723       return UnableToLegalize;
724     // Expand in terms of carry-setting/consuming G_ADDE instructions.
725     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
726 
727     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
728     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
729     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
730 
731     Register CarryIn;
732     for (int i = 0; i < NumParts; ++i) {
733       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
734       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
735 
736       if (i == 0)
737         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
738       else {
739         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
740                               Src2Regs[i], CarryIn);
741       }
742 
743       DstRegs.push_back(DstReg);
744       CarryIn = CarryOut;
745     }
746     Register DstReg = MI.getOperand(0).getReg();
747     if(MRI.getType(DstReg).isVector())
748       MIRBuilder.buildBuildVector(DstReg, DstRegs);
749     else
750       MIRBuilder.buildMerge(DstReg, DstRegs);
751     MI.eraseFromParent();
752     return Legalized;
753   }
754   case TargetOpcode::G_SUB: {
755     // FIXME: add support for when SizeOp0 isn't an exact multiple of
756     // NarrowSize.
757     if (SizeOp0 % NarrowSize != 0)
758       return UnableToLegalize;
759 
760     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
761 
762     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
763     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
764     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
765 
766     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
767     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
768     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
769                           {Src1Regs[0], Src2Regs[0]});
770     DstRegs.push_back(DstReg);
771     Register BorrowIn = BorrowOut;
772     for (int i = 1; i < NumParts; ++i) {
773       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
774       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
775 
776       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
777                             {Src1Regs[i], Src2Regs[i], BorrowIn});
778 
779       DstRegs.push_back(DstReg);
780       BorrowIn = BorrowOut;
781     }
782     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
783     MI.eraseFromParent();
784     return Legalized;
785   }
786   case TargetOpcode::G_MUL:
787   case TargetOpcode::G_UMULH:
788     return narrowScalarMul(MI, NarrowTy);
789   case TargetOpcode::G_EXTRACT:
790     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
791   case TargetOpcode::G_INSERT:
792     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
793   case TargetOpcode::G_LOAD: {
794     const auto &MMO = **MI.memoperands_begin();
795     Register DstReg = MI.getOperand(0).getReg();
796     LLT DstTy = MRI.getType(DstReg);
797     if (DstTy.isVector())
798       return UnableToLegalize;
799 
800     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
801       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
802       auto &MMO = **MI.memoperands_begin();
803       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO);
804       MIRBuilder.buildAnyExt(DstReg, TmpReg);
805       MI.eraseFromParent();
806       return Legalized;
807     }
808 
809     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
810   }
811   case TargetOpcode::G_ZEXTLOAD:
812   case TargetOpcode::G_SEXTLOAD: {
813     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
814     Register DstReg = MI.getOperand(0).getReg();
815     Register PtrReg = MI.getOperand(1).getReg();
816 
817     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
818     auto &MMO = **MI.memoperands_begin();
819     if (MMO.getSizeInBits() == NarrowSize) {
820       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
821     } else {
822       unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD
823         : TargetOpcode::G_SEXTLOAD;
824       MIRBuilder.buildInstr(ExtLoad)
825         .addDef(TmpReg)
826         .addUse(PtrReg)
827         .addMemOperand(&MMO);
828     }
829 
830     if (ZExt)
831       MIRBuilder.buildZExt(DstReg, TmpReg);
832     else
833       MIRBuilder.buildSExt(DstReg, TmpReg);
834 
835     MI.eraseFromParent();
836     return Legalized;
837   }
838   case TargetOpcode::G_STORE: {
839     const auto &MMO = **MI.memoperands_begin();
840 
841     Register SrcReg = MI.getOperand(0).getReg();
842     LLT SrcTy = MRI.getType(SrcReg);
843     if (SrcTy.isVector())
844       return UnableToLegalize;
845 
846     int NumParts = SizeOp0 / NarrowSize;
847     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
848     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
849     if (SrcTy.isVector() && LeftoverBits != 0)
850       return UnableToLegalize;
851 
852     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
853       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
854       auto &MMO = **MI.memoperands_begin();
855       MIRBuilder.buildTrunc(TmpReg, SrcReg);
856       MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO);
857       MI.eraseFromParent();
858       return Legalized;
859     }
860 
861     return reduceLoadStoreWidth(MI, 0, NarrowTy);
862   }
863   case TargetOpcode::G_SELECT:
864     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
865   case TargetOpcode::G_AND:
866   case TargetOpcode::G_OR:
867   case TargetOpcode::G_XOR: {
868     // Legalize bitwise operation:
869     // A = BinOp<Ty> B, C
870     // into:
871     // B1, ..., BN = G_UNMERGE_VALUES B
872     // C1, ..., CN = G_UNMERGE_VALUES C
873     // A1 = BinOp<Ty/N> B1, C2
874     // ...
875     // AN = BinOp<Ty/N> BN, CN
876     // A = G_MERGE_VALUES A1, ..., AN
877     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
878   }
879   case TargetOpcode::G_SHL:
880   case TargetOpcode::G_LSHR:
881   case TargetOpcode::G_ASHR:
882     return narrowScalarShift(MI, TypeIdx, NarrowTy);
883   case TargetOpcode::G_CTLZ:
884   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
885   case TargetOpcode::G_CTTZ:
886   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
887   case TargetOpcode::G_CTPOP:
888     if (TypeIdx != 0)
889       return UnableToLegalize; // TODO
890 
891     Observer.changingInstr(MI);
892     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
893     Observer.changedInstr(MI);
894     return Legalized;
895   case TargetOpcode::G_INTTOPTR:
896     if (TypeIdx != 1)
897       return UnableToLegalize;
898 
899     Observer.changingInstr(MI);
900     narrowScalarSrc(MI, NarrowTy, 1);
901     Observer.changedInstr(MI);
902     return Legalized;
903   case TargetOpcode::G_PTRTOINT:
904     if (TypeIdx != 0)
905       return UnableToLegalize;
906 
907     Observer.changingInstr(MI);
908     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
909     Observer.changedInstr(MI);
910     return Legalized;
911   case TargetOpcode::G_PHI: {
912     unsigned NumParts = SizeOp0 / NarrowSize;
913     SmallVector<Register, 2> DstRegs;
914     SmallVector<SmallVector<Register, 2>, 2> SrcRegs;
915     DstRegs.resize(NumParts);
916     SrcRegs.resize(MI.getNumOperands() / 2);
917     Observer.changingInstr(MI);
918     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
919       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
920       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
921       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
922                    SrcRegs[i / 2]);
923     }
924     MachineBasicBlock &MBB = *MI.getParent();
925     MIRBuilder.setInsertPt(MBB, MI);
926     for (unsigned i = 0; i < NumParts; ++i) {
927       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
928       MachineInstrBuilder MIB =
929           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
930       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
931         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
932     }
933     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
934     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
935     Observer.changedInstr(MI);
936     MI.eraseFromParent();
937     return Legalized;
938   }
939   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
940   case TargetOpcode::G_INSERT_VECTOR_ELT: {
941     if (TypeIdx != 2)
942       return UnableToLegalize;
943 
944     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
945     Observer.changingInstr(MI);
946     narrowScalarSrc(MI, NarrowTy, OpIdx);
947     Observer.changedInstr(MI);
948     return Legalized;
949   }
950   case TargetOpcode::G_ICMP: {
951     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
952     if (NarrowSize * 2 != SrcSize)
953       return UnableToLegalize;
954 
955     Observer.changingInstr(MI);
956     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
957     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
958     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg());
959 
960     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
961     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
962     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg());
963 
964     CmpInst::Predicate Pred =
965         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
966     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
967 
968     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
969       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
970       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
971       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
972       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
973       MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero);
974     } else {
975       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
976       MachineInstrBuilder CmpHEQ =
977           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
978       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
979           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
980       MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH);
981     }
982     Observer.changedInstr(MI);
983     MI.eraseFromParent();
984     return Legalized;
985   }
986   case TargetOpcode::G_SEXT_INREG: {
987     if (TypeIdx != 0)
988       return UnableToLegalize;
989 
990     if (!MI.getOperand(2).isImm())
991       return UnableToLegalize;
992     int64_t SizeInBits = MI.getOperand(2).getImm();
993 
994     // So long as the new type has more bits than the bits we're extending we
995     // don't need to break it apart.
996     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
997       Observer.changingInstr(MI);
998       // We don't lose any non-extension bits by truncating the src and
999       // sign-extending the dst.
1000       MachineOperand &MO1 = MI.getOperand(1);
1001       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1.getReg());
1002       MO1.setReg(TruncMIB->getOperand(0).getReg());
1003 
1004       MachineOperand &MO2 = MI.getOperand(0);
1005       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1006       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1007       MIRBuilder.buildInstr(TargetOpcode::G_SEXT, {MO2.getReg()}, {DstExt});
1008       MO2.setReg(DstExt);
1009       Observer.changedInstr(MI);
1010       return Legalized;
1011     }
1012 
1013     // Break it apart. Components below the extension point are unmodified. The
1014     // component containing the extension point becomes a narrower SEXT_INREG.
1015     // Components above it are ashr'd from the component containing the
1016     // extension point.
1017     if (SizeOp0 % NarrowSize != 0)
1018       return UnableToLegalize;
1019     int NumParts = SizeOp0 / NarrowSize;
1020 
1021     // List the registers where the destination will be scattered.
1022     SmallVector<Register, 2> DstRegs;
1023     // List the registers where the source will be split.
1024     SmallVector<Register, 2> SrcRegs;
1025 
1026     // Create all the temporary registers.
1027     for (int i = 0; i < NumParts; ++i) {
1028       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1029 
1030       SrcRegs.push_back(SrcReg);
1031     }
1032 
1033     // Explode the big arguments into smaller chunks.
1034     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1).getReg());
1035 
1036     Register AshrCstReg =
1037         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1038             ->getOperand(0)
1039             .getReg();
1040     Register FullExtensionReg = 0;
1041     Register PartialExtensionReg = 0;
1042 
1043     // Do the operation on each small part.
1044     for (int i = 0; i < NumParts; ++i) {
1045       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1046         DstRegs.push_back(SrcRegs[i]);
1047       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1048         assert(PartialExtensionReg &&
1049                "Expected to visit partial extension before full");
1050         if (FullExtensionReg) {
1051           DstRegs.push_back(FullExtensionReg);
1052           continue;
1053         }
1054         DstRegs.push_back(MIRBuilder
1055                               .buildInstr(TargetOpcode::G_ASHR, {NarrowTy},
1056                                           {PartialExtensionReg, AshrCstReg})
1057                               ->getOperand(0)
1058                               .getReg());
1059         FullExtensionReg = DstRegs.back();
1060       } else {
1061         DstRegs.push_back(
1062             MIRBuilder
1063                 .buildInstr(
1064                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1065                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1066                 ->getOperand(0)
1067                 .getReg());
1068         PartialExtensionReg = DstRegs.back();
1069       }
1070     }
1071 
1072     // Gather the destination registers into the final destination.
1073     Register DstReg = MI.getOperand(0).getReg();
1074     MIRBuilder.buildMerge(DstReg, DstRegs);
1075     MI.eraseFromParent();
1076     return Legalized;
1077   }
1078   }
1079 }
1080 
1081 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1082                                      unsigned OpIdx, unsigned ExtOpcode) {
1083   MachineOperand &MO = MI.getOperand(OpIdx);
1084   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()});
1085   MO.setReg(ExtB->getOperand(0).getReg());
1086 }
1087 
1088 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1089                                       unsigned OpIdx) {
1090   MachineOperand &MO = MI.getOperand(OpIdx);
1091   auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy},
1092                                     {MO.getReg()});
1093   MO.setReg(ExtB->getOperand(0).getReg());
1094 }
1095 
1096 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1097                                      unsigned OpIdx, unsigned TruncOpcode) {
1098   MachineOperand &MO = MI.getOperand(OpIdx);
1099   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1100   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1101   MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt});
1102   MO.setReg(DstExt);
1103 }
1104 
1105 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1106                                       unsigned OpIdx, unsigned ExtOpcode) {
1107   MachineOperand &MO = MI.getOperand(OpIdx);
1108   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1109   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1110   MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc});
1111   MO.setReg(DstTrunc);
1112 }
1113 
1114 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1115                                             unsigned OpIdx) {
1116   MachineOperand &MO = MI.getOperand(OpIdx);
1117   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1118   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1119   MIRBuilder.buildExtract(MO.getReg(), DstExt, 0);
1120   MO.setReg(DstExt);
1121 }
1122 
1123 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1124                                             unsigned OpIdx) {
1125   MachineOperand &MO = MI.getOperand(OpIdx);
1126 
1127   LLT OldTy = MRI.getType(MO.getReg());
1128   unsigned OldElts = OldTy.getNumElements();
1129   unsigned NewElts = MoreTy.getNumElements();
1130 
1131   unsigned NumParts = NewElts / OldElts;
1132 
1133   // Use concat_vectors if the result is a multiple of the number of elements.
1134   if (NumParts * OldElts == NewElts) {
1135     SmallVector<Register, 8> Parts;
1136     Parts.push_back(MO.getReg());
1137 
1138     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1139     for (unsigned I = 1; I != NumParts; ++I)
1140       Parts.push_back(ImpDef);
1141 
1142     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1143     MO.setReg(Concat.getReg(0));
1144     return;
1145   }
1146 
1147   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1148   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1149   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1150   MO.setReg(MoreReg);
1151 }
1152 
1153 LegalizerHelper::LegalizeResult
1154 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1155                                         LLT WideTy) {
1156   if (TypeIdx != 1)
1157     return UnableToLegalize;
1158 
1159   Register DstReg = MI.getOperand(0).getReg();
1160   LLT DstTy = MRI.getType(DstReg);
1161   if (DstTy.isVector())
1162     return UnableToLegalize;
1163 
1164   Register Src1 = MI.getOperand(1).getReg();
1165   LLT SrcTy = MRI.getType(Src1);
1166   const int DstSize = DstTy.getSizeInBits();
1167   const int SrcSize = SrcTy.getSizeInBits();
1168   const int WideSize = WideTy.getSizeInBits();
1169   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1170 
1171   unsigned NumOps = MI.getNumOperands();
1172   unsigned NumSrc = MI.getNumOperands() - 1;
1173   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1174 
1175   if (WideSize >= DstSize) {
1176     // Directly pack the bits in the target type.
1177     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1178 
1179     for (unsigned I = 2; I != NumOps; ++I) {
1180       const unsigned Offset = (I - 1) * PartSize;
1181 
1182       Register SrcReg = MI.getOperand(I).getReg();
1183       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1184 
1185       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1186 
1187       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1188         MRI.createGenericVirtualRegister(WideTy);
1189 
1190       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1191       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1192       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1193       ResultReg = NextResult;
1194     }
1195 
1196     if (WideSize > DstSize)
1197       MIRBuilder.buildTrunc(DstReg, ResultReg);
1198     else if (DstTy.isPointer())
1199       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1200 
1201     MI.eraseFromParent();
1202     return Legalized;
1203   }
1204 
1205   // Unmerge the original values to the GCD type, and recombine to the next
1206   // multiple greater than the original type.
1207   //
1208   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1209   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1210   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1211   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1212   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1213   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1214   // %12:_(s12) = G_MERGE_VALUES %10, %11
1215   //
1216   // Padding with undef if necessary:
1217   //
1218   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1219   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1220   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1221   // %7:_(s2) = G_IMPLICIT_DEF
1222   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1223   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1224   // %10:_(s12) = G_MERGE_VALUES %8, %9
1225 
1226   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1227   LLT GCDTy = LLT::scalar(GCD);
1228 
1229   SmallVector<Register, 8> Parts;
1230   SmallVector<Register, 8> NewMergeRegs;
1231   SmallVector<Register, 8> Unmerges;
1232   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1233 
1234   // Decompose the original operands if they don't evenly divide.
1235   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1236     Register SrcReg = MI.getOperand(I).getReg();
1237     if (GCD == SrcSize) {
1238       Unmerges.push_back(SrcReg);
1239     } else {
1240       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1241       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1242         Unmerges.push_back(Unmerge.getReg(J));
1243     }
1244   }
1245 
1246   // Pad with undef to the next size that is a multiple of the requested size.
1247   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1248     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1249     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1250       Unmerges.push_back(UndefReg);
1251   }
1252 
1253   const int PartsPerGCD = WideSize / GCD;
1254 
1255   // Build merges of each piece.
1256   ArrayRef<Register> Slicer(Unmerges);
1257   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1258     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1259     NewMergeRegs.push_back(Merge.getReg(0));
1260   }
1261 
1262   // A truncate may be necessary if the requested type doesn't evenly divide the
1263   // original result type.
1264   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1265     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1266   } else {
1267     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1268     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1269   }
1270 
1271   MI.eraseFromParent();
1272   return Legalized;
1273 }
1274 
1275 LegalizerHelper::LegalizeResult
1276 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1277                                           LLT WideTy) {
1278   if (TypeIdx != 0)
1279     return UnableToLegalize;
1280 
1281   unsigned NumDst = MI.getNumOperands() - 1;
1282   Register SrcReg = MI.getOperand(NumDst).getReg();
1283   LLT SrcTy = MRI.getType(SrcReg);
1284   if (!SrcTy.isScalar())
1285     return UnableToLegalize;
1286 
1287   Register Dst0Reg = MI.getOperand(0).getReg();
1288   LLT DstTy = MRI.getType(Dst0Reg);
1289   if (!DstTy.isScalar())
1290     return UnableToLegalize;
1291 
1292   unsigned NewSrcSize = NumDst * WideTy.getSizeInBits();
1293   LLT NewSrcTy = LLT::scalar(NewSrcSize);
1294   unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits();
1295 
1296   auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg);
1297 
1298   for (unsigned I = 1; I != NumDst; ++I) {
1299     auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I);
1300     auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt);
1301     WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl);
1302   }
1303 
1304   Observer.changingInstr(MI);
1305 
1306   MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg());
1307   for (unsigned I = 0; I != NumDst; ++I)
1308     widenScalarDst(MI, WideTy, I);
1309 
1310   Observer.changedInstr(MI);
1311 
1312   return Legalized;
1313 }
1314 
1315 LegalizerHelper::LegalizeResult
1316 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1317                                     LLT WideTy) {
1318   Register DstReg = MI.getOperand(0).getReg();
1319   Register SrcReg = MI.getOperand(1).getReg();
1320   LLT SrcTy = MRI.getType(SrcReg);
1321 
1322   LLT DstTy = MRI.getType(DstReg);
1323   unsigned Offset = MI.getOperand(2).getImm();
1324 
1325   if (TypeIdx == 0) {
1326     if (SrcTy.isVector() || DstTy.isVector())
1327       return UnableToLegalize;
1328 
1329     SrcOp Src(SrcReg);
1330     if (SrcTy.isPointer()) {
1331       // Extracts from pointers can be handled only if they are really just
1332       // simple integers.
1333       const DataLayout &DL = MIRBuilder.getDataLayout();
1334       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1335         return UnableToLegalize;
1336 
1337       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1338       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1339       SrcTy = SrcAsIntTy;
1340     }
1341 
1342     if (DstTy.isPointer())
1343       return UnableToLegalize;
1344 
1345     if (Offset == 0) {
1346       // Avoid a shift in the degenerate case.
1347       MIRBuilder.buildTrunc(DstReg,
1348                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1349       MI.eraseFromParent();
1350       return Legalized;
1351     }
1352 
1353     // Do a shift in the source type.
1354     LLT ShiftTy = SrcTy;
1355     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1356       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1357       ShiftTy = WideTy;
1358     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1359       return UnableToLegalize;
1360 
1361     auto LShr = MIRBuilder.buildLShr(
1362       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1363     MIRBuilder.buildTrunc(DstReg, LShr);
1364     MI.eraseFromParent();
1365     return Legalized;
1366   }
1367 
1368   if (SrcTy.isScalar()) {
1369     Observer.changingInstr(MI);
1370     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1371     Observer.changedInstr(MI);
1372     return Legalized;
1373   }
1374 
1375   if (!SrcTy.isVector())
1376     return UnableToLegalize;
1377 
1378   if (DstTy != SrcTy.getElementType())
1379     return UnableToLegalize;
1380 
1381   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1382     return UnableToLegalize;
1383 
1384   Observer.changingInstr(MI);
1385   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1386 
1387   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1388                           Offset);
1389   widenScalarDst(MI, WideTy.getScalarType(), 0);
1390   Observer.changedInstr(MI);
1391   return Legalized;
1392 }
1393 
1394 LegalizerHelper::LegalizeResult
1395 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1396                                    LLT WideTy) {
1397   if (TypeIdx != 0)
1398     return UnableToLegalize;
1399   Observer.changingInstr(MI);
1400   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1401   widenScalarDst(MI, WideTy);
1402   Observer.changedInstr(MI);
1403   return Legalized;
1404 }
1405 
1406 LegalizerHelper::LegalizeResult
1407 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1408   MIRBuilder.setInstr(MI);
1409 
1410   switch (MI.getOpcode()) {
1411   default:
1412     return UnableToLegalize;
1413   case TargetOpcode::G_EXTRACT:
1414     return widenScalarExtract(MI, TypeIdx, WideTy);
1415   case TargetOpcode::G_INSERT:
1416     return widenScalarInsert(MI, TypeIdx, WideTy);
1417   case TargetOpcode::G_MERGE_VALUES:
1418     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1419   case TargetOpcode::G_UNMERGE_VALUES:
1420     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1421   case TargetOpcode::G_UADDO:
1422   case TargetOpcode::G_USUBO: {
1423     if (TypeIdx == 1)
1424       return UnableToLegalize; // TODO
1425     auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
1426                                          {MI.getOperand(2).getReg()});
1427     auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
1428                                          {MI.getOperand(3).getReg()});
1429     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1430                           ? TargetOpcode::G_ADD
1431                           : TargetOpcode::G_SUB;
1432     // Do the arithmetic in the larger type.
1433     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1434     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1435     APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits());
1436     auto AndOp = MIRBuilder.buildInstr(
1437         TargetOpcode::G_AND, {WideTy},
1438         {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())});
1439     // There is no overflow if the AndOp is the same as NewOp.
1440     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp,
1441                          AndOp);
1442     // Now trunc the NewOp to the original result.
1443     MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp);
1444     MI.eraseFromParent();
1445     return Legalized;
1446   }
1447   case TargetOpcode::G_CTTZ:
1448   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1449   case TargetOpcode::G_CTLZ:
1450   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1451   case TargetOpcode::G_CTPOP: {
1452     if (TypeIdx == 0) {
1453       Observer.changingInstr(MI);
1454       widenScalarDst(MI, WideTy, 0);
1455       Observer.changedInstr(MI);
1456       return Legalized;
1457     }
1458 
1459     Register SrcReg = MI.getOperand(1).getReg();
1460 
1461     // First ZEXT the input.
1462     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1463     LLT CurTy = MRI.getType(SrcReg);
1464     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1465       // The count is the same in the larger type except if the original
1466       // value was zero.  This can be handled by setting the bit just off
1467       // the top of the original type.
1468       auto TopBit =
1469           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1470       MIBSrc = MIRBuilder.buildOr(
1471         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1472     }
1473 
1474     // Perform the operation at the larger size.
1475     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1476     // This is already the correct result for CTPOP and CTTZs
1477     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1478         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1479       // The correct result is NewOp - (Difference in widety and current ty).
1480       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1481       MIBNewOp = MIRBuilder.buildInstr(
1482           TargetOpcode::G_SUB, {WideTy},
1483           {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)});
1484     }
1485 
1486     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1487     MI.eraseFromParent();
1488     return Legalized;
1489   }
1490   case TargetOpcode::G_BSWAP: {
1491     Observer.changingInstr(MI);
1492     Register DstReg = MI.getOperand(0).getReg();
1493 
1494     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1495     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1496     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1497     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1498 
1499     MI.getOperand(0).setReg(DstExt);
1500 
1501     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1502 
1503     LLT Ty = MRI.getType(DstReg);
1504     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1505     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1506     MIRBuilder.buildInstr(TargetOpcode::G_LSHR)
1507       .addDef(ShrReg)
1508       .addUse(DstExt)
1509       .addUse(ShiftAmtReg);
1510 
1511     MIRBuilder.buildTrunc(DstReg, ShrReg);
1512     Observer.changedInstr(MI);
1513     return Legalized;
1514   }
1515   case TargetOpcode::G_BITREVERSE: {
1516     Observer.changingInstr(MI);
1517 
1518     Register DstReg = MI.getOperand(0).getReg();
1519     LLT Ty = MRI.getType(DstReg);
1520     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1521 
1522     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1523     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1524     MI.getOperand(0).setReg(DstExt);
1525     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1526 
1527     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1528     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1529     MIRBuilder.buildTrunc(DstReg, Shift);
1530     Observer.changedInstr(MI);
1531     return Legalized;
1532   }
1533   case TargetOpcode::G_ADD:
1534   case TargetOpcode::G_AND:
1535   case TargetOpcode::G_MUL:
1536   case TargetOpcode::G_OR:
1537   case TargetOpcode::G_XOR:
1538   case TargetOpcode::G_SUB:
1539     // Perform operation at larger width (any extension is fines here, high bits
1540     // don't affect the result) and then truncate the result back to the
1541     // original type.
1542     Observer.changingInstr(MI);
1543     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1544     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1545     widenScalarDst(MI, WideTy);
1546     Observer.changedInstr(MI);
1547     return Legalized;
1548 
1549   case TargetOpcode::G_SHL:
1550     Observer.changingInstr(MI);
1551 
1552     if (TypeIdx == 0) {
1553       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1554       widenScalarDst(MI, WideTy);
1555     } else {
1556       assert(TypeIdx == 1);
1557       // The "number of bits to shift" operand must preserve its value as an
1558       // unsigned integer:
1559       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1560     }
1561 
1562     Observer.changedInstr(MI);
1563     return Legalized;
1564 
1565   case TargetOpcode::G_SDIV:
1566   case TargetOpcode::G_SREM:
1567   case TargetOpcode::G_SMIN:
1568   case TargetOpcode::G_SMAX:
1569     Observer.changingInstr(MI);
1570     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1571     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1572     widenScalarDst(MI, WideTy);
1573     Observer.changedInstr(MI);
1574     return Legalized;
1575 
1576   case TargetOpcode::G_ASHR:
1577   case TargetOpcode::G_LSHR:
1578     Observer.changingInstr(MI);
1579 
1580     if (TypeIdx == 0) {
1581       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1582         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1583 
1584       widenScalarSrc(MI, WideTy, 1, CvtOp);
1585       widenScalarDst(MI, WideTy);
1586     } else {
1587       assert(TypeIdx == 1);
1588       // The "number of bits to shift" operand must preserve its value as an
1589       // unsigned integer:
1590       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1591     }
1592 
1593     Observer.changedInstr(MI);
1594     return Legalized;
1595   case TargetOpcode::G_UDIV:
1596   case TargetOpcode::G_UREM:
1597   case TargetOpcode::G_UMIN:
1598   case TargetOpcode::G_UMAX:
1599     Observer.changingInstr(MI);
1600     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1601     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1602     widenScalarDst(MI, WideTy);
1603     Observer.changedInstr(MI);
1604     return Legalized;
1605 
1606   case TargetOpcode::G_SELECT:
1607     Observer.changingInstr(MI);
1608     if (TypeIdx == 0) {
1609       // Perform operation at larger width (any extension is fine here, high
1610       // bits don't affect the result) and then truncate the result back to the
1611       // original type.
1612       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1613       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1614       widenScalarDst(MI, WideTy);
1615     } else {
1616       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1617       // Explicit extension is required here since high bits affect the result.
1618       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1619     }
1620     Observer.changedInstr(MI);
1621     return Legalized;
1622 
1623   case TargetOpcode::G_FPTOSI:
1624   case TargetOpcode::G_FPTOUI:
1625     Observer.changingInstr(MI);
1626 
1627     if (TypeIdx == 0)
1628       widenScalarDst(MI, WideTy);
1629     else
1630       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1631 
1632     Observer.changedInstr(MI);
1633     return Legalized;
1634   case TargetOpcode::G_SITOFP:
1635     if (TypeIdx != 1)
1636       return UnableToLegalize;
1637     Observer.changingInstr(MI);
1638     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1639     Observer.changedInstr(MI);
1640     return Legalized;
1641 
1642   case TargetOpcode::G_UITOFP:
1643     if (TypeIdx != 1)
1644       return UnableToLegalize;
1645     Observer.changingInstr(MI);
1646     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1647     Observer.changedInstr(MI);
1648     return Legalized;
1649 
1650   case TargetOpcode::G_LOAD:
1651   case TargetOpcode::G_SEXTLOAD:
1652   case TargetOpcode::G_ZEXTLOAD:
1653     Observer.changingInstr(MI);
1654     widenScalarDst(MI, WideTy);
1655     Observer.changedInstr(MI);
1656     return Legalized;
1657 
1658   case TargetOpcode::G_STORE: {
1659     if (TypeIdx != 0)
1660       return UnableToLegalize;
1661 
1662     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1663     if (!isPowerOf2_32(Ty.getSizeInBits()))
1664       return UnableToLegalize;
1665 
1666     Observer.changingInstr(MI);
1667 
1668     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1669       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1670     widenScalarSrc(MI, WideTy, 0, ExtType);
1671 
1672     Observer.changedInstr(MI);
1673     return Legalized;
1674   }
1675   case TargetOpcode::G_CONSTANT: {
1676     MachineOperand &SrcMO = MI.getOperand(1);
1677     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1678     const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits());
1679     Observer.changingInstr(MI);
1680     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1681 
1682     widenScalarDst(MI, WideTy);
1683     Observer.changedInstr(MI);
1684     return Legalized;
1685   }
1686   case TargetOpcode::G_FCONSTANT: {
1687     MachineOperand &SrcMO = MI.getOperand(1);
1688     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1689     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1690     bool LosesInfo;
1691     switch (WideTy.getSizeInBits()) {
1692     case 32:
1693       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1694                   &LosesInfo);
1695       break;
1696     case 64:
1697       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1698                   &LosesInfo);
1699       break;
1700     default:
1701       return UnableToLegalize;
1702     }
1703 
1704     assert(!LosesInfo && "extend should always be lossless");
1705 
1706     Observer.changingInstr(MI);
1707     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1708 
1709     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1710     Observer.changedInstr(MI);
1711     return Legalized;
1712   }
1713   case TargetOpcode::G_IMPLICIT_DEF: {
1714     Observer.changingInstr(MI);
1715     widenScalarDst(MI, WideTy);
1716     Observer.changedInstr(MI);
1717     return Legalized;
1718   }
1719   case TargetOpcode::G_BRCOND:
1720     Observer.changingInstr(MI);
1721     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1722     Observer.changedInstr(MI);
1723     return Legalized;
1724 
1725   case TargetOpcode::G_FCMP:
1726     Observer.changingInstr(MI);
1727     if (TypeIdx == 0)
1728       widenScalarDst(MI, WideTy);
1729     else {
1730       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1731       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1732     }
1733     Observer.changedInstr(MI);
1734     return Legalized;
1735 
1736   case TargetOpcode::G_ICMP:
1737     Observer.changingInstr(MI);
1738     if (TypeIdx == 0)
1739       widenScalarDst(MI, WideTy);
1740     else {
1741       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1742                                MI.getOperand(1).getPredicate()))
1743                                ? TargetOpcode::G_SEXT
1744                                : TargetOpcode::G_ZEXT;
1745       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1746       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1747     }
1748     Observer.changedInstr(MI);
1749     return Legalized;
1750 
1751   case TargetOpcode::G_GEP:
1752     assert(TypeIdx == 1 && "unable to legalize pointer of GEP");
1753     Observer.changingInstr(MI);
1754     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1755     Observer.changedInstr(MI);
1756     return Legalized;
1757 
1758   case TargetOpcode::G_PHI: {
1759     assert(TypeIdx == 0 && "Expecting only Idx 0");
1760 
1761     Observer.changingInstr(MI);
1762     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1763       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1764       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1765       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1766     }
1767 
1768     MachineBasicBlock &MBB = *MI.getParent();
1769     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1770     widenScalarDst(MI, WideTy);
1771     Observer.changedInstr(MI);
1772     return Legalized;
1773   }
1774   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1775     if (TypeIdx == 0) {
1776       Register VecReg = MI.getOperand(1).getReg();
1777       LLT VecTy = MRI.getType(VecReg);
1778       Observer.changingInstr(MI);
1779 
1780       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1781                                      WideTy.getSizeInBits()),
1782                      1, TargetOpcode::G_SEXT);
1783 
1784       widenScalarDst(MI, WideTy, 0);
1785       Observer.changedInstr(MI);
1786       return Legalized;
1787     }
1788 
1789     if (TypeIdx != 2)
1790       return UnableToLegalize;
1791     Observer.changingInstr(MI);
1792     // TODO: Probably should be zext
1793     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1794     Observer.changedInstr(MI);
1795     return Legalized;
1796   }
1797   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1798     if (TypeIdx == 1) {
1799       Observer.changingInstr(MI);
1800 
1801       Register VecReg = MI.getOperand(1).getReg();
1802       LLT VecTy = MRI.getType(VecReg);
1803       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
1804 
1805       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
1806       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1807       widenScalarDst(MI, WideVecTy, 0);
1808       Observer.changedInstr(MI);
1809       return Legalized;
1810     }
1811 
1812     if (TypeIdx == 2) {
1813       Observer.changingInstr(MI);
1814       // TODO: Probably should be zext
1815       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
1816       Observer.changedInstr(MI);
1817     }
1818 
1819     return Legalized;
1820   }
1821   case TargetOpcode::G_FADD:
1822   case TargetOpcode::G_FMUL:
1823   case TargetOpcode::G_FSUB:
1824   case TargetOpcode::G_FMA:
1825   case TargetOpcode::G_FMAD:
1826   case TargetOpcode::G_FNEG:
1827   case TargetOpcode::G_FABS:
1828   case TargetOpcode::G_FCANONICALIZE:
1829   case TargetOpcode::G_FMINNUM:
1830   case TargetOpcode::G_FMAXNUM:
1831   case TargetOpcode::G_FMINNUM_IEEE:
1832   case TargetOpcode::G_FMAXNUM_IEEE:
1833   case TargetOpcode::G_FMINIMUM:
1834   case TargetOpcode::G_FMAXIMUM:
1835   case TargetOpcode::G_FDIV:
1836   case TargetOpcode::G_FREM:
1837   case TargetOpcode::G_FCEIL:
1838   case TargetOpcode::G_FFLOOR:
1839   case TargetOpcode::G_FCOS:
1840   case TargetOpcode::G_FSIN:
1841   case TargetOpcode::G_FLOG10:
1842   case TargetOpcode::G_FLOG:
1843   case TargetOpcode::G_FLOG2:
1844   case TargetOpcode::G_FRINT:
1845   case TargetOpcode::G_FNEARBYINT:
1846   case TargetOpcode::G_FSQRT:
1847   case TargetOpcode::G_FEXP:
1848   case TargetOpcode::G_FEXP2:
1849   case TargetOpcode::G_FPOW:
1850   case TargetOpcode::G_INTRINSIC_TRUNC:
1851   case TargetOpcode::G_INTRINSIC_ROUND:
1852     assert(TypeIdx == 0);
1853     Observer.changingInstr(MI);
1854 
1855     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
1856       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
1857 
1858     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1859     Observer.changedInstr(MI);
1860     return Legalized;
1861   case TargetOpcode::G_INTTOPTR:
1862     if (TypeIdx != 1)
1863       return UnableToLegalize;
1864 
1865     Observer.changingInstr(MI);
1866     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1867     Observer.changedInstr(MI);
1868     return Legalized;
1869   case TargetOpcode::G_PTRTOINT:
1870     if (TypeIdx != 0)
1871       return UnableToLegalize;
1872 
1873     Observer.changingInstr(MI);
1874     widenScalarDst(MI, WideTy, 0);
1875     Observer.changedInstr(MI);
1876     return Legalized;
1877   case TargetOpcode::G_BUILD_VECTOR: {
1878     Observer.changingInstr(MI);
1879 
1880     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
1881     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
1882       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
1883 
1884     // Avoid changing the result vector type if the source element type was
1885     // requested.
1886     if (TypeIdx == 1) {
1887       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
1888       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
1889     } else {
1890       widenScalarDst(MI, WideTy, 0);
1891     }
1892 
1893     Observer.changedInstr(MI);
1894     return Legalized;
1895   }
1896   case TargetOpcode::G_SEXT_INREG:
1897     if (TypeIdx != 0)
1898       return UnableToLegalize;
1899 
1900     Observer.changingInstr(MI);
1901     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1902     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
1903     Observer.changedInstr(MI);
1904     return Legalized;
1905   }
1906 }
1907 
1908 LegalizerHelper::LegalizeResult
1909 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
1910   using namespace TargetOpcode;
1911   MIRBuilder.setInstr(MI);
1912 
1913   switch(MI.getOpcode()) {
1914   default:
1915     return UnableToLegalize;
1916   case TargetOpcode::G_SREM:
1917   case TargetOpcode::G_UREM: {
1918     Register QuotReg = MRI.createGenericVirtualRegister(Ty);
1919     MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV)
1920         .addDef(QuotReg)
1921         .addUse(MI.getOperand(1).getReg())
1922         .addUse(MI.getOperand(2).getReg());
1923 
1924     Register ProdReg = MRI.createGenericVirtualRegister(Ty);
1925     MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg());
1926     MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
1927                         ProdReg);
1928     MI.eraseFromParent();
1929     return Legalized;
1930   }
1931   case TargetOpcode::G_SADDO:
1932   case TargetOpcode::G_SSUBO:
1933     return lowerSADDO_SSUBO(MI);
1934   case TargetOpcode::G_SMULO:
1935   case TargetOpcode::G_UMULO: {
1936     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
1937     // result.
1938     Register Res = MI.getOperand(0).getReg();
1939     Register Overflow = MI.getOperand(1).getReg();
1940     Register LHS = MI.getOperand(2).getReg();
1941     Register RHS = MI.getOperand(3).getReg();
1942 
1943     MIRBuilder.buildMul(Res, LHS, RHS);
1944 
1945     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
1946                           ? TargetOpcode::G_SMULH
1947                           : TargetOpcode::G_UMULH;
1948 
1949     Register HiPart = MRI.createGenericVirtualRegister(Ty);
1950     MIRBuilder.buildInstr(Opcode)
1951       .addDef(HiPart)
1952       .addUse(LHS)
1953       .addUse(RHS);
1954 
1955     Register Zero = MRI.createGenericVirtualRegister(Ty);
1956     MIRBuilder.buildConstant(Zero, 0);
1957 
1958     // For *signed* multiply, overflow is detected by checking:
1959     // (hi != (lo >> bitwidth-1))
1960     if (Opcode == TargetOpcode::G_SMULH) {
1961       Register Shifted = MRI.createGenericVirtualRegister(Ty);
1962       Register ShiftAmt = MRI.createGenericVirtualRegister(Ty);
1963       MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1);
1964       MIRBuilder.buildInstr(TargetOpcode::G_ASHR)
1965         .addDef(Shifted)
1966         .addUse(Res)
1967         .addUse(ShiftAmt);
1968       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
1969     } else {
1970       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
1971     }
1972     MI.eraseFromParent();
1973     return Legalized;
1974   }
1975   case TargetOpcode::G_FNEG: {
1976     // TODO: Handle vector types once we are able to
1977     // represent them.
1978     if (Ty.isVector())
1979       return UnableToLegalize;
1980     Register Res = MI.getOperand(0).getReg();
1981     Type *ZeroTy;
1982     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1983     switch (Ty.getSizeInBits()) {
1984     case 16:
1985       ZeroTy = Type::getHalfTy(Ctx);
1986       break;
1987     case 32:
1988       ZeroTy = Type::getFloatTy(Ctx);
1989       break;
1990     case 64:
1991       ZeroTy = Type::getDoubleTy(Ctx);
1992       break;
1993     case 128:
1994       ZeroTy = Type::getFP128Ty(Ctx);
1995       break;
1996     default:
1997       llvm_unreachable("unexpected floating-point type");
1998     }
1999     ConstantFP &ZeroForNegation =
2000         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2001     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2002     Register SubByReg = MI.getOperand(1).getReg();
2003     Register ZeroReg = Zero->getOperand(0).getReg();
2004     MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg},
2005                           MI.getFlags());
2006     MI.eraseFromParent();
2007     return Legalized;
2008   }
2009   case TargetOpcode::G_FSUB: {
2010     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2011     // First, check if G_FNEG is marked as Lower. If so, we may
2012     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2013     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2014       return UnableToLegalize;
2015     Register Res = MI.getOperand(0).getReg();
2016     Register LHS = MI.getOperand(1).getReg();
2017     Register RHS = MI.getOperand(2).getReg();
2018     Register Neg = MRI.createGenericVirtualRegister(Ty);
2019     MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS);
2020     MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags());
2021     MI.eraseFromParent();
2022     return Legalized;
2023   }
2024   case TargetOpcode::G_FMAD:
2025     return lowerFMad(MI);
2026   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2027     Register OldValRes = MI.getOperand(0).getReg();
2028     Register SuccessRes = MI.getOperand(1).getReg();
2029     Register Addr = MI.getOperand(2).getReg();
2030     Register CmpVal = MI.getOperand(3).getReg();
2031     Register NewVal = MI.getOperand(4).getReg();
2032     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2033                                   **MI.memoperands_begin());
2034     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2035     MI.eraseFromParent();
2036     return Legalized;
2037   }
2038   case TargetOpcode::G_LOAD:
2039   case TargetOpcode::G_SEXTLOAD:
2040   case TargetOpcode::G_ZEXTLOAD: {
2041     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2042     Register DstReg = MI.getOperand(0).getReg();
2043     Register PtrReg = MI.getOperand(1).getReg();
2044     LLT DstTy = MRI.getType(DstReg);
2045     auto &MMO = **MI.memoperands_begin();
2046 
2047     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2048       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2049         // This load needs splitting into power of 2 sized loads.
2050         if (DstTy.isVector())
2051           return UnableToLegalize;
2052         if (isPowerOf2_32(DstTy.getSizeInBits()))
2053           return UnableToLegalize; // Don't know what we're being asked to do.
2054 
2055         // Our strategy here is to generate anyextending loads for the smaller
2056         // types up to next power-2 result type, and then combine the two larger
2057         // result values together, before truncating back down to the non-pow-2
2058         // type.
2059         // E.g. v1 = i24 load =>
2060         // v2 = i32 load (2 byte)
2061         // v3 = i32 load (1 byte)
2062         // v4 = i32 shl v3, 16
2063         // v5 = i32 or v4, v2
2064         // v1 = i24 trunc v5
2065         // By doing this we generate the correct truncate which should get
2066         // combined away as an artifact with a matching extend.
2067         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2068         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2069 
2070         MachineFunction &MF = MIRBuilder.getMF();
2071         MachineMemOperand *LargeMMO =
2072             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2073         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2074             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2075 
2076         LLT PtrTy = MRI.getType(PtrReg);
2077         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2078         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2079         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2080         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2081         auto LargeLoad =
2082             MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO);
2083 
2084         auto OffsetCst =
2085             MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8);
2086         Register GEPReg = MRI.createGenericVirtualRegister(PtrTy);
2087         auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0));
2088         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2089                                               *SmallMMO);
2090 
2091         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2092         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2093         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2094         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2095         MI.eraseFromParent();
2096         return Legalized;
2097       }
2098       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2099       MI.eraseFromParent();
2100       return Legalized;
2101     }
2102 
2103     if (DstTy.isScalar()) {
2104       Register TmpReg =
2105           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2106       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2107       switch (MI.getOpcode()) {
2108       default:
2109         llvm_unreachable("Unexpected opcode");
2110       case TargetOpcode::G_LOAD:
2111         MIRBuilder.buildAnyExt(DstReg, TmpReg);
2112         break;
2113       case TargetOpcode::G_SEXTLOAD:
2114         MIRBuilder.buildSExt(DstReg, TmpReg);
2115         break;
2116       case TargetOpcode::G_ZEXTLOAD:
2117         MIRBuilder.buildZExt(DstReg, TmpReg);
2118         break;
2119       }
2120       MI.eraseFromParent();
2121       return Legalized;
2122     }
2123 
2124     return UnableToLegalize;
2125   }
2126   case TargetOpcode::G_STORE: {
2127     // Lower a non-power of 2 store into multiple pow-2 stores.
2128     // E.g. split an i24 store into an i16 store + i8 store.
2129     // We do this by first extending the stored value to the next largest power
2130     // of 2 type, and then using truncating stores to store the components.
2131     // By doing this, likewise with G_LOAD, generate an extend that can be
2132     // artifact-combined away instead of leaving behind extracts.
2133     Register SrcReg = MI.getOperand(0).getReg();
2134     Register PtrReg = MI.getOperand(1).getReg();
2135     LLT SrcTy = MRI.getType(SrcReg);
2136     MachineMemOperand &MMO = **MI.memoperands_begin();
2137     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2138       return UnableToLegalize;
2139     if (SrcTy.isVector())
2140       return UnableToLegalize;
2141     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2142       return UnableToLegalize; // Don't know what we're being asked to do.
2143 
2144     // Extend to the next pow-2.
2145     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2146     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2147 
2148     // Obtain the smaller value by shifting away the larger value.
2149     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2150     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2151     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2152     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2153 
2154     // Generate the GEP and truncating stores.
2155     LLT PtrTy = MRI.getType(PtrReg);
2156     auto OffsetCst =
2157         MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8);
2158     Register GEPReg = MRI.createGenericVirtualRegister(PtrTy);
2159     auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0));
2160 
2161     MachineFunction &MF = MIRBuilder.getMF();
2162     MachineMemOperand *LargeMMO =
2163         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2164     MachineMemOperand *SmallMMO =
2165         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2166     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2167     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2168     MI.eraseFromParent();
2169     return Legalized;
2170   }
2171   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2172   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2173   case TargetOpcode::G_CTLZ:
2174   case TargetOpcode::G_CTTZ:
2175   case TargetOpcode::G_CTPOP:
2176     return lowerBitCount(MI, TypeIdx, Ty);
2177   case G_UADDO: {
2178     Register Res = MI.getOperand(0).getReg();
2179     Register CarryOut = MI.getOperand(1).getReg();
2180     Register LHS = MI.getOperand(2).getReg();
2181     Register RHS = MI.getOperand(3).getReg();
2182 
2183     MIRBuilder.buildAdd(Res, LHS, RHS);
2184     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2185 
2186     MI.eraseFromParent();
2187     return Legalized;
2188   }
2189   case G_UADDE: {
2190     Register Res = MI.getOperand(0).getReg();
2191     Register CarryOut = MI.getOperand(1).getReg();
2192     Register LHS = MI.getOperand(2).getReg();
2193     Register RHS = MI.getOperand(3).getReg();
2194     Register CarryIn = MI.getOperand(4).getReg();
2195 
2196     Register TmpRes = MRI.createGenericVirtualRegister(Ty);
2197     Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty);
2198 
2199     MIRBuilder.buildAdd(TmpRes, LHS, RHS);
2200     MIRBuilder.buildZExt(ZExtCarryIn, CarryIn);
2201     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2202     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2203 
2204     MI.eraseFromParent();
2205     return Legalized;
2206   }
2207   case G_USUBO: {
2208     Register Res = MI.getOperand(0).getReg();
2209     Register BorrowOut = MI.getOperand(1).getReg();
2210     Register LHS = MI.getOperand(2).getReg();
2211     Register RHS = MI.getOperand(3).getReg();
2212 
2213     MIRBuilder.buildSub(Res, LHS, RHS);
2214     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2215 
2216     MI.eraseFromParent();
2217     return Legalized;
2218   }
2219   case G_USUBE: {
2220     Register Res = MI.getOperand(0).getReg();
2221     Register BorrowOut = MI.getOperand(1).getReg();
2222     Register LHS = MI.getOperand(2).getReg();
2223     Register RHS = MI.getOperand(3).getReg();
2224     Register BorrowIn = MI.getOperand(4).getReg();
2225 
2226     Register TmpRes = MRI.createGenericVirtualRegister(Ty);
2227     Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty);
2228     Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
2229     Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
2230 
2231     MIRBuilder.buildSub(TmpRes, LHS, RHS);
2232     MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn);
2233     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2234     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS);
2235     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS);
2236     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2237 
2238     MI.eraseFromParent();
2239     return Legalized;
2240   }
2241   case G_UITOFP:
2242     return lowerUITOFP(MI, TypeIdx, Ty);
2243   case G_SITOFP:
2244     return lowerSITOFP(MI, TypeIdx, Ty);
2245   case G_FPTOUI:
2246     return lowerFPTOUI(MI, TypeIdx, Ty);
2247   case G_SMIN:
2248   case G_SMAX:
2249   case G_UMIN:
2250   case G_UMAX:
2251     return lowerMinMax(MI, TypeIdx, Ty);
2252   case G_FCOPYSIGN:
2253     return lowerFCopySign(MI, TypeIdx, Ty);
2254   case G_FMINNUM:
2255   case G_FMAXNUM:
2256     return lowerFMinNumMaxNum(MI);
2257   case G_UNMERGE_VALUES:
2258     return lowerUnmergeValues(MI);
2259   case TargetOpcode::G_SEXT_INREG: {
2260     assert(MI.getOperand(2).isImm() && "Expected immediate");
2261     int64_t SizeInBits = MI.getOperand(2).getImm();
2262 
2263     Register DstReg = MI.getOperand(0).getReg();
2264     Register SrcReg = MI.getOperand(1).getReg();
2265     LLT DstTy = MRI.getType(DstReg);
2266     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2267 
2268     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2269     MIRBuilder.buildInstr(TargetOpcode::G_SHL, {TmpRes}, {SrcReg, MIBSz->getOperand(0).getReg()});
2270     MIRBuilder.buildInstr(TargetOpcode::G_ASHR, {DstReg}, {TmpRes, MIBSz->getOperand(0).getReg()});
2271     MI.eraseFromParent();
2272     return Legalized;
2273   }
2274   case G_SHUFFLE_VECTOR:
2275     return lowerShuffleVector(MI);
2276   case G_DYN_STACKALLOC:
2277     return lowerDynStackAlloc(MI);
2278   case G_EXTRACT:
2279     return lowerExtract(MI);
2280   case G_INSERT:
2281     return lowerInsert(MI);
2282   }
2283 }
2284 
2285 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2286     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2287   SmallVector<Register, 2> DstRegs;
2288 
2289   unsigned NarrowSize = NarrowTy.getSizeInBits();
2290   Register DstReg = MI.getOperand(0).getReg();
2291   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2292   int NumParts = Size / NarrowSize;
2293   // FIXME: Don't know how to handle the situation where the small vectors
2294   // aren't all the same size yet.
2295   if (Size % NarrowSize != 0)
2296     return UnableToLegalize;
2297 
2298   for (int i = 0; i < NumParts; ++i) {
2299     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2300     MIRBuilder.buildUndef(TmpReg);
2301     DstRegs.push_back(TmpReg);
2302   }
2303 
2304   if (NarrowTy.isVector())
2305     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2306   else
2307     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2308 
2309   MI.eraseFromParent();
2310   return Legalized;
2311 }
2312 
2313 LegalizerHelper::LegalizeResult
2314 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
2315                                           LLT NarrowTy) {
2316   const unsigned Opc = MI.getOpcode();
2317   const unsigned NumOps = MI.getNumOperands() - 1;
2318   const unsigned NarrowSize = NarrowTy.getSizeInBits();
2319   const Register DstReg = MI.getOperand(0).getReg();
2320   const unsigned Flags = MI.getFlags();
2321   const LLT DstTy = MRI.getType(DstReg);
2322   const unsigned Size = DstTy.getSizeInBits();
2323   const int NumParts = Size / NarrowSize;
2324   const LLT EltTy = DstTy.getElementType();
2325   const unsigned EltSize = EltTy.getSizeInBits();
2326   const unsigned BitsForNumParts = NarrowSize * NumParts;
2327 
2328   // Check if we have any leftovers. If we do, then only handle the case where
2329   // the leftover is one element.
2330   if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size)
2331     return UnableToLegalize;
2332 
2333   if (BitsForNumParts != Size) {
2334     Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy);
2335     MIRBuilder.buildUndef(AccumDstReg);
2336 
2337     // Handle the pieces which evenly divide into the requested type with
2338     // extract/op/insert sequence.
2339     for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) {
2340       SmallVector<SrcOp, 4> SrcOps;
2341       for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2342         Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy);
2343         MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset);
2344         SrcOps.push_back(PartOpReg);
2345       }
2346 
2347       Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy);
2348       MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
2349 
2350       Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy);
2351       MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset);
2352       AccumDstReg = PartInsertReg;
2353     }
2354 
2355     // Handle the remaining element sized leftover piece.
2356     SmallVector<SrcOp, 4> SrcOps;
2357     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2358       Register PartOpReg = MRI.createGenericVirtualRegister(EltTy);
2359       MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(),
2360                               BitsForNumParts);
2361       SrcOps.push_back(PartOpReg);
2362     }
2363 
2364     Register PartDstReg = MRI.createGenericVirtualRegister(EltTy);
2365     MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
2366     MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts);
2367     MI.eraseFromParent();
2368 
2369     return Legalized;
2370   }
2371 
2372   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2373 
2374   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs);
2375 
2376   if (NumOps >= 2)
2377     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs);
2378 
2379   if (NumOps >= 3)
2380     extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs);
2381 
2382   for (int i = 0; i < NumParts; ++i) {
2383     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
2384 
2385     if (NumOps == 1)
2386       MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags);
2387     else if (NumOps == 2) {
2388       MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags);
2389     } else if (NumOps == 3) {
2390       MIRBuilder.buildInstr(Opc, {DstReg},
2391                             {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags);
2392     }
2393 
2394     DstRegs.push_back(DstReg);
2395   }
2396 
2397   if (NarrowTy.isVector())
2398     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2399   else
2400     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2401 
2402   MI.eraseFromParent();
2403   return Legalized;
2404 }
2405 
2406 // Handle splitting vector operations which need to have the same number of
2407 // elements in each type index, but each type index may have a different element
2408 // type.
2409 //
2410 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2411 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2412 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2413 //
2414 // Also handles some irregular breakdown cases, e.g.
2415 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2416 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2417 //             s64 = G_SHL s64, s32
2418 LegalizerHelper::LegalizeResult
2419 LegalizerHelper::fewerElementsVectorMultiEltType(
2420   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2421   if (TypeIdx != 0)
2422     return UnableToLegalize;
2423 
2424   const LLT NarrowTy0 = NarrowTyArg;
2425   const unsigned NewNumElts =
2426       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2427 
2428   const Register DstReg = MI.getOperand(0).getReg();
2429   LLT DstTy = MRI.getType(DstReg);
2430   LLT LeftoverTy0;
2431 
2432   // All of the operands need to have the same number of elements, so if we can
2433   // determine a type breakdown for the result type, we can for all of the
2434   // source types.
2435   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2436   if (NumParts < 0)
2437     return UnableToLegalize;
2438 
2439   SmallVector<MachineInstrBuilder, 4> NewInsts;
2440 
2441   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2442   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2443 
2444   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2445     LLT LeftoverTy;
2446     Register SrcReg = MI.getOperand(I).getReg();
2447     LLT SrcTyI = MRI.getType(SrcReg);
2448     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2449     LLT LeftoverTyI;
2450 
2451     // Split this operand into the requested typed registers, and any leftover
2452     // required to reproduce the original type.
2453     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2454                       LeftoverRegs))
2455       return UnableToLegalize;
2456 
2457     if (I == 1) {
2458       // For the first operand, create an instruction for each part and setup
2459       // the result.
2460       for (Register PartReg : PartRegs) {
2461         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2462         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2463                                .addDef(PartDstReg)
2464                                .addUse(PartReg));
2465         DstRegs.push_back(PartDstReg);
2466       }
2467 
2468       for (Register LeftoverReg : LeftoverRegs) {
2469         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2470         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2471                                .addDef(PartDstReg)
2472                                .addUse(LeftoverReg));
2473         LeftoverDstRegs.push_back(PartDstReg);
2474       }
2475     } else {
2476       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2477 
2478       // Add the newly created operand splits to the existing instructions. The
2479       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2480       // pieces.
2481       unsigned InstCount = 0;
2482       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2483         NewInsts[InstCount++].addUse(PartRegs[J]);
2484       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2485         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2486     }
2487 
2488     PartRegs.clear();
2489     LeftoverRegs.clear();
2490   }
2491 
2492   // Insert the newly built operations and rebuild the result register.
2493   for (auto &MIB : NewInsts)
2494     MIRBuilder.insertInstr(MIB);
2495 
2496   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2497 
2498   MI.eraseFromParent();
2499   return Legalized;
2500 }
2501 
2502 LegalizerHelper::LegalizeResult
2503 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2504                                           LLT NarrowTy) {
2505   if (TypeIdx != 0)
2506     return UnableToLegalize;
2507 
2508   Register DstReg = MI.getOperand(0).getReg();
2509   Register SrcReg = MI.getOperand(1).getReg();
2510   LLT DstTy = MRI.getType(DstReg);
2511   LLT SrcTy = MRI.getType(SrcReg);
2512 
2513   LLT NarrowTy0 = NarrowTy;
2514   LLT NarrowTy1;
2515   unsigned NumParts;
2516 
2517   if (NarrowTy.isVector()) {
2518     // Uneven breakdown not handled.
2519     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2520     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2521       return UnableToLegalize;
2522 
2523     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2524   } else {
2525     NumParts = DstTy.getNumElements();
2526     NarrowTy1 = SrcTy.getElementType();
2527   }
2528 
2529   SmallVector<Register, 4> SrcRegs, DstRegs;
2530   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2531 
2532   for (unsigned I = 0; I < NumParts; ++I) {
2533     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2534     MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode())
2535       .addDef(DstReg)
2536       .addUse(SrcRegs[I]);
2537 
2538     NewInst->setFlags(MI.getFlags());
2539     DstRegs.push_back(DstReg);
2540   }
2541 
2542   if (NarrowTy.isVector())
2543     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2544   else
2545     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2546 
2547   MI.eraseFromParent();
2548   return Legalized;
2549 }
2550 
2551 LegalizerHelper::LegalizeResult
2552 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2553                                         LLT NarrowTy) {
2554   Register DstReg = MI.getOperand(0).getReg();
2555   Register Src0Reg = MI.getOperand(2).getReg();
2556   LLT DstTy = MRI.getType(DstReg);
2557   LLT SrcTy = MRI.getType(Src0Reg);
2558 
2559   unsigned NumParts;
2560   LLT NarrowTy0, NarrowTy1;
2561 
2562   if (TypeIdx == 0) {
2563     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2564     unsigned OldElts = DstTy.getNumElements();
2565 
2566     NarrowTy0 = NarrowTy;
2567     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2568     NarrowTy1 = NarrowTy.isVector() ?
2569       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2570       SrcTy.getElementType();
2571 
2572   } else {
2573     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2574     unsigned OldElts = SrcTy.getNumElements();
2575 
2576     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2577       NarrowTy.getNumElements();
2578     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2579                             DstTy.getScalarSizeInBits());
2580     NarrowTy1 = NarrowTy;
2581   }
2582 
2583   // FIXME: Don't know how to handle the situation where the small vectors
2584   // aren't all the same size yet.
2585   if (NarrowTy1.isVector() &&
2586       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2587     return UnableToLegalize;
2588 
2589   CmpInst::Predicate Pred
2590     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2591 
2592   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2593   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2594   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2595 
2596   for (unsigned I = 0; I < NumParts; ++I) {
2597     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2598     DstRegs.push_back(DstReg);
2599 
2600     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2601       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2602     else {
2603       MachineInstr *NewCmp
2604         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2605       NewCmp->setFlags(MI.getFlags());
2606     }
2607   }
2608 
2609   if (NarrowTy1.isVector())
2610     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2611   else
2612     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2613 
2614   MI.eraseFromParent();
2615   return Legalized;
2616 }
2617 
2618 LegalizerHelper::LegalizeResult
2619 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2620                                            LLT NarrowTy) {
2621   Register DstReg = MI.getOperand(0).getReg();
2622   Register CondReg = MI.getOperand(1).getReg();
2623 
2624   unsigned NumParts = 0;
2625   LLT NarrowTy0, NarrowTy1;
2626 
2627   LLT DstTy = MRI.getType(DstReg);
2628   LLT CondTy = MRI.getType(CondReg);
2629   unsigned Size = DstTy.getSizeInBits();
2630 
2631   assert(TypeIdx == 0 || CondTy.isVector());
2632 
2633   if (TypeIdx == 0) {
2634     NarrowTy0 = NarrowTy;
2635     NarrowTy1 = CondTy;
2636 
2637     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2638     // FIXME: Don't know how to handle the situation where the small vectors
2639     // aren't all the same size yet.
2640     if (Size % NarrowSize != 0)
2641       return UnableToLegalize;
2642 
2643     NumParts = Size / NarrowSize;
2644 
2645     // Need to break down the condition type
2646     if (CondTy.isVector()) {
2647       if (CondTy.getNumElements() == NumParts)
2648         NarrowTy1 = CondTy.getElementType();
2649       else
2650         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2651                                 CondTy.getScalarSizeInBits());
2652     }
2653   } else {
2654     NumParts = CondTy.getNumElements();
2655     if (NarrowTy.isVector()) {
2656       // TODO: Handle uneven breakdown.
2657       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2658         return UnableToLegalize;
2659 
2660       return UnableToLegalize;
2661     } else {
2662       NarrowTy0 = DstTy.getElementType();
2663       NarrowTy1 = NarrowTy;
2664     }
2665   }
2666 
2667   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2668   if (CondTy.isVector())
2669     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2670 
2671   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2672   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2673 
2674   for (unsigned i = 0; i < NumParts; ++i) {
2675     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2676     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2677                            Src1Regs[i], Src2Regs[i]);
2678     DstRegs.push_back(DstReg);
2679   }
2680 
2681   if (NarrowTy0.isVector())
2682     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2683   else
2684     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2685 
2686   MI.eraseFromParent();
2687   return Legalized;
2688 }
2689 
2690 LegalizerHelper::LegalizeResult
2691 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2692                                         LLT NarrowTy) {
2693   const Register DstReg = MI.getOperand(0).getReg();
2694   LLT PhiTy = MRI.getType(DstReg);
2695   LLT LeftoverTy;
2696 
2697   // All of the operands need to have the same number of elements, so if we can
2698   // determine a type breakdown for the result type, we can for all of the
2699   // source types.
2700   int NumParts, NumLeftover;
2701   std::tie(NumParts, NumLeftover)
2702     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2703   if (NumParts < 0)
2704     return UnableToLegalize;
2705 
2706   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2707   SmallVector<MachineInstrBuilder, 4> NewInsts;
2708 
2709   const int TotalNumParts = NumParts + NumLeftover;
2710 
2711   // Insert the new phis in the result block first.
2712   for (int I = 0; I != TotalNumParts; ++I) {
2713     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2714     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2715     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2716                        .addDef(PartDstReg));
2717     if (I < NumParts)
2718       DstRegs.push_back(PartDstReg);
2719     else
2720       LeftoverDstRegs.push_back(PartDstReg);
2721   }
2722 
2723   MachineBasicBlock *MBB = MI.getParent();
2724   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2725   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2726 
2727   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2728 
2729   // Insert code to extract the incoming values in each predecessor block.
2730   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2731     PartRegs.clear();
2732     LeftoverRegs.clear();
2733 
2734     Register SrcReg = MI.getOperand(I).getReg();
2735     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2736     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2737 
2738     LLT Unused;
2739     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2740                       LeftoverRegs))
2741       return UnableToLegalize;
2742 
2743     // Add the newly created operand splits to the existing instructions. The
2744     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2745     // pieces.
2746     for (int J = 0; J != TotalNumParts; ++J) {
2747       MachineInstrBuilder MIB = NewInsts[J];
2748       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2749       MIB.addMBB(&OpMBB);
2750     }
2751   }
2752 
2753   MI.eraseFromParent();
2754   return Legalized;
2755 }
2756 
2757 LegalizerHelper::LegalizeResult
2758 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
2759                                                   unsigned TypeIdx,
2760                                                   LLT NarrowTy) {
2761   if (TypeIdx != 1)
2762     return UnableToLegalize;
2763 
2764   const int NumDst = MI.getNumOperands() - 1;
2765   const Register SrcReg = MI.getOperand(NumDst).getReg();
2766   LLT SrcTy = MRI.getType(SrcReg);
2767 
2768   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2769 
2770   // TODO: Create sequence of extracts.
2771   if (DstTy == NarrowTy)
2772     return UnableToLegalize;
2773 
2774   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
2775   if (DstTy == GCDTy) {
2776     // This would just be a copy of the same unmerge.
2777     // TODO: Create extracts, pad with undef and create intermediate merges.
2778     return UnableToLegalize;
2779   }
2780 
2781   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
2782   const int NumUnmerge = Unmerge->getNumOperands() - 1;
2783   const int PartsPerUnmerge = NumDst / NumUnmerge;
2784 
2785   for (int I = 0; I != NumUnmerge; ++I) {
2786     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
2787 
2788     for (int J = 0; J != PartsPerUnmerge; ++J)
2789       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
2790     MIB.addUse(Unmerge.getReg(I));
2791   }
2792 
2793   MI.eraseFromParent();
2794   return Legalized;
2795 }
2796 
2797 LegalizerHelper::LegalizeResult
2798 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
2799                                                 unsigned TypeIdx,
2800                                                 LLT NarrowTy) {
2801   assert(TypeIdx == 0 && "not a vector type index");
2802   Register DstReg = MI.getOperand(0).getReg();
2803   LLT DstTy = MRI.getType(DstReg);
2804   LLT SrcTy = DstTy.getElementType();
2805 
2806   int DstNumElts = DstTy.getNumElements();
2807   int NarrowNumElts = NarrowTy.getNumElements();
2808   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
2809   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
2810 
2811   SmallVector<Register, 8> ConcatOps;
2812   SmallVector<Register, 8> SubBuildVector;
2813 
2814   Register UndefReg;
2815   if (WidenedDstTy != DstTy)
2816     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
2817 
2818   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
2819   // necessary.
2820   //
2821   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
2822   //   -> <2 x s16>
2823   //
2824   // %4:_(s16) = G_IMPLICIT_DEF
2825   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
2826   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
2827   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
2828   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
2829   for (int I = 0; I != NumConcat; ++I) {
2830     for (int J = 0; J != NarrowNumElts; ++J) {
2831       int SrcIdx = NarrowNumElts * I + J;
2832 
2833       if (SrcIdx < DstNumElts) {
2834         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
2835         SubBuildVector.push_back(SrcReg);
2836       } else
2837         SubBuildVector.push_back(UndefReg);
2838     }
2839 
2840     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
2841     ConcatOps.push_back(BuildVec.getReg(0));
2842     SubBuildVector.clear();
2843   }
2844 
2845   if (DstTy == WidenedDstTy)
2846     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
2847   else {
2848     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
2849     MIRBuilder.buildExtract(DstReg, Concat, 0);
2850   }
2851 
2852   MI.eraseFromParent();
2853   return Legalized;
2854 }
2855 
2856 LegalizerHelper::LegalizeResult
2857 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
2858                                       LLT NarrowTy) {
2859   // FIXME: Don't know how to handle secondary types yet.
2860   if (TypeIdx != 0)
2861     return UnableToLegalize;
2862 
2863   MachineMemOperand *MMO = *MI.memoperands_begin();
2864 
2865   // This implementation doesn't work for atomics. Give up instead of doing
2866   // something invalid.
2867   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
2868       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
2869     return UnableToLegalize;
2870 
2871   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
2872   Register ValReg = MI.getOperand(0).getReg();
2873   Register AddrReg = MI.getOperand(1).getReg();
2874   LLT ValTy = MRI.getType(ValReg);
2875 
2876   int NumParts = -1;
2877   int NumLeftover = -1;
2878   LLT LeftoverTy;
2879   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
2880   if (IsLoad) {
2881     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
2882   } else {
2883     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
2884                      NarrowLeftoverRegs)) {
2885       NumParts = NarrowRegs.size();
2886       NumLeftover = NarrowLeftoverRegs.size();
2887     }
2888   }
2889 
2890   if (NumParts == -1)
2891     return UnableToLegalize;
2892 
2893   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
2894 
2895   unsigned TotalSize = ValTy.getSizeInBits();
2896 
2897   // Split the load/store into PartTy sized pieces starting at Offset. If this
2898   // is a load, return the new registers in ValRegs. For a store, each elements
2899   // of ValRegs should be PartTy. Returns the next offset that needs to be
2900   // handled.
2901   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
2902                              unsigned Offset) -> unsigned {
2903     MachineFunction &MF = MIRBuilder.getMF();
2904     unsigned PartSize = PartTy.getSizeInBits();
2905     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
2906          Offset += PartSize, ++Idx) {
2907       unsigned ByteSize = PartSize / 8;
2908       unsigned ByteOffset = Offset / 8;
2909       Register NewAddrReg;
2910 
2911       MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
2912 
2913       MachineMemOperand *NewMMO =
2914         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
2915 
2916       if (IsLoad) {
2917         Register Dst = MRI.createGenericVirtualRegister(PartTy);
2918         ValRegs.push_back(Dst);
2919         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
2920       } else {
2921         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
2922       }
2923     }
2924 
2925     return Offset;
2926   };
2927 
2928   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
2929 
2930   // Handle the rest of the register if this isn't an even type breakdown.
2931   if (LeftoverTy.isValid())
2932     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
2933 
2934   if (IsLoad) {
2935     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
2936                 LeftoverTy, NarrowLeftoverRegs);
2937   }
2938 
2939   MI.eraseFromParent();
2940   return Legalized;
2941 }
2942 
2943 LegalizerHelper::LegalizeResult
2944 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
2945                                      LLT NarrowTy) {
2946   using namespace TargetOpcode;
2947 
2948   MIRBuilder.setInstr(MI);
2949   switch (MI.getOpcode()) {
2950   case G_IMPLICIT_DEF:
2951     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
2952   case G_AND:
2953   case G_OR:
2954   case G_XOR:
2955   case G_ADD:
2956   case G_SUB:
2957   case G_MUL:
2958   case G_SMULH:
2959   case G_UMULH:
2960   case G_FADD:
2961   case G_FMUL:
2962   case G_FSUB:
2963   case G_FNEG:
2964   case G_FABS:
2965   case G_FCANONICALIZE:
2966   case G_FDIV:
2967   case G_FREM:
2968   case G_FMA:
2969   case G_FMAD:
2970   case G_FPOW:
2971   case G_FEXP:
2972   case G_FEXP2:
2973   case G_FLOG:
2974   case G_FLOG2:
2975   case G_FLOG10:
2976   case G_FNEARBYINT:
2977   case G_FCEIL:
2978   case G_FFLOOR:
2979   case G_FRINT:
2980   case G_INTRINSIC_ROUND:
2981   case G_INTRINSIC_TRUNC:
2982   case G_FCOS:
2983   case G_FSIN:
2984   case G_FSQRT:
2985   case G_BSWAP:
2986   case G_BITREVERSE:
2987   case G_SDIV:
2988   case G_SMIN:
2989   case G_SMAX:
2990   case G_UMIN:
2991   case G_UMAX:
2992   case G_FMINNUM:
2993   case G_FMAXNUM:
2994   case G_FMINNUM_IEEE:
2995   case G_FMAXNUM_IEEE:
2996   case G_FMINIMUM:
2997   case G_FMAXIMUM:
2998     return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
2999   case G_SHL:
3000   case G_LSHR:
3001   case G_ASHR:
3002   case G_CTLZ:
3003   case G_CTLZ_ZERO_UNDEF:
3004   case G_CTTZ:
3005   case G_CTTZ_ZERO_UNDEF:
3006   case G_CTPOP:
3007   case G_FCOPYSIGN:
3008     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3009   case G_ZEXT:
3010   case G_SEXT:
3011   case G_ANYEXT:
3012   case G_FPEXT:
3013   case G_FPTRUNC:
3014   case G_SITOFP:
3015   case G_UITOFP:
3016   case G_FPTOSI:
3017   case G_FPTOUI:
3018   case G_INTTOPTR:
3019   case G_PTRTOINT:
3020   case G_ADDRSPACE_CAST:
3021     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3022   case G_ICMP:
3023   case G_FCMP:
3024     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3025   case G_SELECT:
3026     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3027   case G_PHI:
3028     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3029   case G_UNMERGE_VALUES:
3030     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3031   case G_BUILD_VECTOR:
3032     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3033   case G_LOAD:
3034   case G_STORE:
3035     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3036   default:
3037     return UnableToLegalize;
3038   }
3039 }
3040 
3041 LegalizerHelper::LegalizeResult
3042 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3043                                              const LLT HalfTy, const LLT AmtTy) {
3044 
3045   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3046   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3047   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
3048 
3049   if (Amt.isNullValue()) {
3050     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH});
3051     MI.eraseFromParent();
3052     return Legalized;
3053   }
3054 
3055   LLT NVT = HalfTy;
3056   unsigned NVTBits = HalfTy.getSizeInBits();
3057   unsigned VTBits = 2 * NVTBits;
3058 
3059   SrcOp Lo(Register(0)), Hi(Register(0));
3060   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3061     if (Amt.ugt(VTBits)) {
3062       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3063     } else if (Amt.ugt(NVTBits)) {
3064       Lo = MIRBuilder.buildConstant(NVT, 0);
3065       Hi = MIRBuilder.buildShl(NVT, InL,
3066                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3067     } else if (Amt == NVTBits) {
3068       Lo = MIRBuilder.buildConstant(NVT, 0);
3069       Hi = InL;
3070     } else {
3071       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3072       auto OrLHS =
3073           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3074       auto OrRHS = MIRBuilder.buildLShr(
3075           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3076       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3077     }
3078   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3079     if (Amt.ugt(VTBits)) {
3080       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3081     } else if (Amt.ugt(NVTBits)) {
3082       Lo = MIRBuilder.buildLShr(NVT, InH,
3083                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3084       Hi = MIRBuilder.buildConstant(NVT, 0);
3085     } else if (Amt == NVTBits) {
3086       Lo = InH;
3087       Hi = MIRBuilder.buildConstant(NVT, 0);
3088     } else {
3089       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3090 
3091       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3092       auto OrRHS = MIRBuilder.buildShl(
3093           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3094 
3095       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3096       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3097     }
3098   } else {
3099     if (Amt.ugt(VTBits)) {
3100       Hi = Lo = MIRBuilder.buildAShr(
3101           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3102     } else if (Amt.ugt(NVTBits)) {
3103       Lo = MIRBuilder.buildAShr(NVT, InH,
3104                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3105       Hi = MIRBuilder.buildAShr(NVT, InH,
3106                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3107     } else if (Amt == NVTBits) {
3108       Lo = InH;
3109       Hi = MIRBuilder.buildAShr(NVT, InH,
3110                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3111     } else {
3112       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3113 
3114       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3115       auto OrRHS = MIRBuilder.buildShl(
3116           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3117 
3118       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3119       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3120     }
3121   }
3122 
3123   MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()});
3124   MI.eraseFromParent();
3125 
3126   return Legalized;
3127 }
3128 
3129 // TODO: Optimize if constant shift amount.
3130 LegalizerHelper::LegalizeResult
3131 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3132                                    LLT RequestedTy) {
3133   if (TypeIdx == 1) {
3134     Observer.changingInstr(MI);
3135     narrowScalarSrc(MI, RequestedTy, 2);
3136     Observer.changedInstr(MI);
3137     return Legalized;
3138   }
3139 
3140   Register DstReg = MI.getOperand(0).getReg();
3141   LLT DstTy = MRI.getType(DstReg);
3142   if (DstTy.isVector())
3143     return UnableToLegalize;
3144 
3145   Register Amt = MI.getOperand(2).getReg();
3146   LLT ShiftAmtTy = MRI.getType(Amt);
3147   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3148   if (DstEltSize % 2 != 0)
3149     return UnableToLegalize;
3150 
3151   // Ignore the input type. We can only go to exactly half the size of the
3152   // input. If that isn't small enough, the resulting pieces will be further
3153   // legalized.
3154   const unsigned NewBitSize = DstEltSize / 2;
3155   const LLT HalfTy = LLT::scalar(NewBitSize);
3156   const LLT CondTy = LLT::scalar(1);
3157 
3158   if (const MachineInstr *KShiftAmt =
3159           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3160     return narrowScalarShiftByConstant(
3161         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3162   }
3163 
3164   // TODO: Expand with known bits.
3165 
3166   // Handle the fully general expansion by an unknown amount.
3167   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3168 
3169   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3170   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3171   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
3172 
3173   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3174   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3175 
3176   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3177   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3178   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3179 
3180   Register ResultRegs[2];
3181   switch (MI.getOpcode()) {
3182   case TargetOpcode::G_SHL: {
3183     // Short: ShAmt < NewBitSize
3184     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3185 
3186     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3187     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3188     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3189 
3190     // Long: ShAmt >= NewBitSize
3191     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3192     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3193 
3194     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3195     auto Hi = MIRBuilder.buildSelect(
3196         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3197 
3198     ResultRegs[0] = Lo.getReg(0);
3199     ResultRegs[1] = Hi.getReg(0);
3200     break;
3201   }
3202   case TargetOpcode::G_LSHR:
3203   case TargetOpcode::G_ASHR: {
3204     // Short: ShAmt < NewBitSize
3205     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3206 
3207     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3208     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3209     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3210 
3211     // Long: ShAmt >= NewBitSize
3212     MachineInstrBuilder HiL;
3213     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3214       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3215     } else {
3216       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3217       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3218     }
3219     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3220                                      {InH, AmtExcess});     // Lo from Hi part.
3221 
3222     auto Lo = MIRBuilder.buildSelect(
3223         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3224 
3225     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3226 
3227     ResultRegs[0] = Lo.getReg(0);
3228     ResultRegs[1] = Hi.getReg(0);
3229     break;
3230   }
3231   default:
3232     llvm_unreachable("not a shift");
3233   }
3234 
3235   MIRBuilder.buildMerge(DstReg, ResultRegs);
3236   MI.eraseFromParent();
3237   return Legalized;
3238 }
3239 
3240 LegalizerHelper::LegalizeResult
3241 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3242                                        LLT MoreTy) {
3243   assert(TypeIdx == 0 && "Expecting only Idx 0");
3244 
3245   Observer.changingInstr(MI);
3246   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3247     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3248     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3249     moreElementsVectorSrc(MI, MoreTy, I);
3250   }
3251 
3252   MachineBasicBlock &MBB = *MI.getParent();
3253   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3254   moreElementsVectorDst(MI, MoreTy, 0);
3255   Observer.changedInstr(MI);
3256   return Legalized;
3257 }
3258 
3259 LegalizerHelper::LegalizeResult
3260 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3261                                     LLT MoreTy) {
3262   MIRBuilder.setInstr(MI);
3263   unsigned Opc = MI.getOpcode();
3264   switch (Opc) {
3265   case TargetOpcode::G_IMPLICIT_DEF:
3266   case TargetOpcode::G_LOAD: {
3267     if (TypeIdx != 0)
3268       return UnableToLegalize;
3269     Observer.changingInstr(MI);
3270     moreElementsVectorDst(MI, MoreTy, 0);
3271     Observer.changedInstr(MI);
3272     return Legalized;
3273   }
3274   case TargetOpcode::G_STORE:
3275     if (TypeIdx != 0)
3276       return UnableToLegalize;
3277     Observer.changingInstr(MI);
3278     moreElementsVectorSrc(MI, MoreTy, 0);
3279     Observer.changedInstr(MI);
3280     return Legalized;
3281   case TargetOpcode::G_AND:
3282   case TargetOpcode::G_OR:
3283   case TargetOpcode::G_XOR:
3284   case TargetOpcode::G_SMIN:
3285   case TargetOpcode::G_SMAX:
3286   case TargetOpcode::G_UMIN:
3287   case TargetOpcode::G_UMAX: {
3288     Observer.changingInstr(MI);
3289     moreElementsVectorSrc(MI, MoreTy, 1);
3290     moreElementsVectorSrc(MI, MoreTy, 2);
3291     moreElementsVectorDst(MI, MoreTy, 0);
3292     Observer.changedInstr(MI);
3293     return Legalized;
3294   }
3295   case TargetOpcode::G_EXTRACT:
3296     if (TypeIdx != 1)
3297       return UnableToLegalize;
3298     Observer.changingInstr(MI);
3299     moreElementsVectorSrc(MI, MoreTy, 1);
3300     Observer.changedInstr(MI);
3301     return Legalized;
3302   case TargetOpcode::G_INSERT:
3303     if (TypeIdx != 0)
3304       return UnableToLegalize;
3305     Observer.changingInstr(MI);
3306     moreElementsVectorSrc(MI, MoreTy, 1);
3307     moreElementsVectorDst(MI, MoreTy, 0);
3308     Observer.changedInstr(MI);
3309     return Legalized;
3310   case TargetOpcode::G_SELECT:
3311     if (TypeIdx != 0)
3312       return UnableToLegalize;
3313     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3314       return UnableToLegalize;
3315 
3316     Observer.changingInstr(MI);
3317     moreElementsVectorSrc(MI, MoreTy, 2);
3318     moreElementsVectorSrc(MI, MoreTy, 3);
3319     moreElementsVectorDst(MI, MoreTy, 0);
3320     Observer.changedInstr(MI);
3321     return Legalized;
3322   case TargetOpcode::G_UNMERGE_VALUES: {
3323     if (TypeIdx != 1)
3324       return UnableToLegalize;
3325 
3326     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3327     int NumDst = MI.getNumOperands() - 1;
3328     moreElementsVectorSrc(MI, MoreTy, NumDst);
3329 
3330     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3331     for (int I = 0; I != NumDst; ++I)
3332       MIB.addDef(MI.getOperand(I).getReg());
3333 
3334     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3335     for (int I = NumDst; I != NewNumDst; ++I)
3336       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3337 
3338     MIB.addUse(MI.getOperand(NumDst).getReg());
3339     MI.eraseFromParent();
3340     return Legalized;
3341   }
3342   case TargetOpcode::G_PHI:
3343     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3344   default:
3345     return UnableToLegalize;
3346   }
3347 }
3348 
3349 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3350                                         ArrayRef<Register> Src1Regs,
3351                                         ArrayRef<Register> Src2Regs,
3352                                         LLT NarrowTy) {
3353   MachineIRBuilder &B = MIRBuilder;
3354   unsigned SrcParts = Src1Regs.size();
3355   unsigned DstParts = DstRegs.size();
3356 
3357   unsigned DstIdx = 0; // Low bits of the result.
3358   Register FactorSum =
3359       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3360   DstRegs[DstIdx] = FactorSum;
3361 
3362   unsigned CarrySumPrevDstIdx;
3363   SmallVector<Register, 4> Factors;
3364 
3365   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3366     // Collect low parts of muls for DstIdx.
3367     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3368          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3369       MachineInstrBuilder Mul =
3370           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3371       Factors.push_back(Mul.getReg(0));
3372     }
3373     // Collect high parts of muls from previous DstIdx.
3374     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3375          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3376       MachineInstrBuilder Umulh =
3377           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3378       Factors.push_back(Umulh.getReg(0));
3379     }
3380     // Add CarrySum from additions calculated for previous DstIdx.
3381     if (DstIdx != 1) {
3382       Factors.push_back(CarrySumPrevDstIdx);
3383     }
3384 
3385     Register CarrySum;
3386     // Add all factors and accumulate all carries into CarrySum.
3387     if (DstIdx != DstParts - 1) {
3388       MachineInstrBuilder Uaddo =
3389           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3390       FactorSum = Uaddo.getReg(0);
3391       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3392       for (unsigned i = 2; i < Factors.size(); ++i) {
3393         MachineInstrBuilder Uaddo =
3394             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3395         FactorSum = Uaddo.getReg(0);
3396         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3397         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3398       }
3399     } else {
3400       // Since value for the next index is not calculated, neither is CarrySum.
3401       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3402       for (unsigned i = 2; i < Factors.size(); ++i)
3403         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3404     }
3405 
3406     CarrySumPrevDstIdx = CarrySum;
3407     DstRegs[DstIdx] = FactorSum;
3408     Factors.clear();
3409   }
3410 }
3411 
3412 LegalizerHelper::LegalizeResult
3413 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3414   Register DstReg = MI.getOperand(0).getReg();
3415   Register Src1 = MI.getOperand(1).getReg();
3416   Register Src2 = MI.getOperand(2).getReg();
3417 
3418   LLT Ty = MRI.getType(DstReg);
3419   if (Ty.isVector())
3420     return UnableToLegalize;
3421 
3422   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3423   unsigned DstSize = Ty.getSizeInBits();
3424   unsigned NarrowSize = NarrowTy.getSizeInBits();
3425   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3426     return UnableToLegalize;
3427 
3428   unsigned NumDstParts = DstSize / NarrowSize;
3429   unsigned NumSrcParts = SrcSize / NarrowSize;
3430   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3431   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3432 
3433   SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs;
3434   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3435   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3436   DstTmpRegs.resize(DstTmpParts);
3437   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3438 
3439   // Take only high half of registers if this is high mul.
3440   ArrayRef<Register> DstRegs(
3441       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3442   MIRBuilder.buildMerge(DstReg, DstRegs);
3443   MI.eraseFromParent();
3444   return Legalized;
3445 }
3446 
3447 LegalizerHelper::LegalizeResult
3448 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3449                                      LLT NarrowTy) {
3450   if (TypeIdx != 1)
3451     return UnableToLegalize;
3452 
3453   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3454 
3455   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3456   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3457   // NarrowSize.
3458   if (SizeOp1 % NarrowSize != 0)
3459     return UnableToLegalize;
3460   int NumParts = SizeOp1 / NarrowSize;
3461 
3462   SmallVector<Register, 2> SrcRegs, DstRegs;
3463   SmallVector<uint64_t, 2> Indexes;
3464   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3465 
3466   Register OpReg = MI.getOperand(0).getReg();
3467   uint64_t OpStart = MI.getOperand(2).getImm();
3468   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3469   for (int i = 0; i < NumParts; ++i) {
3470     unsigned SrcStart = i * NarrowSize;
3471 
3472     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3473       // No part of the extract uses this subregister, ignore it.
3474       continue;
3475     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3476       // The entire subregister is extracted, forward the value.
3477       DstRegs.push_back(SrcRegs[i]);
3478       continue;
3479     }
3480 
3481     // OpSegStart is where this destination segment would start in OpReg if it
3482     // extended infinitely in both directions.
3483     int64_t ExtractOffset;
3484     uint64_t SegSize;
3485     if (OpStart < SrcStart) {
3486       ExtractOffset = 0;
3487       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3488     } else {
3489       ExtractOffset = OpStart - SrcStart;
3490       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3491     }
3492 
3493     Register SegReg = SrcRegs[i];
3494     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3495       // A genuine extract is needed.
3496       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3497       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3498     }
3499 
3500     DstRegs.push_back(SegReg);
3501   }
3502 
3503   Register DstReg = MI.getOperand(0).getReg();
3504   if(MRI.getType(DstReg).isVector())
3505     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3506   else
3507     MIRBuilder.buildMerge(DstReg, DstRegs);
3508   MI.eraseFromParent();
3509   return Legalized;
3510 }
3511 
3512 LegalizerHelper::LegalizeResult
3513 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3514                                     LLT NarrowTy) {
3515   // FIXME: Don't know how to handle secondary types yet.
3516   if (TypeIdx != 0)
3517     return UnableToLegalize;
3518 
3519   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3520   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3521 
3522   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3523   // NarrowSize.
3524   if (SizeOp0 % NarrowSize != 0)
3525     return UnableToLegalize;
3526 
3527   int NumParts = SizeOp0 / NarrowSize;
3528 
3529   SmallVector<Register, 2> SrcRegs, DstRegs;
3530   SmallVector<uint64_t, 2> Indexes;
3531   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3532 
3533   Register OpReg = MI.getOperand(2).getReg();
3534   uint64_t OpStart = MI.getOperand(3).getImm();
3535   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3536   for (int i = 0; i < NumParts; ++i) {
3537     unsigned DstStart = i * NarrowSize;
3538 
3539     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3540       // No part of the insert affects this subregister, forward the original.
3541       DstRegs.push_back(SrcRegs[i]);
3542       continue;
3543     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3544       // The entire subregister is defined by this insert, forward the new
3545       // value.
3546       DstRegs.push_back(OpReg);
3547       continue;
3548     }
3549 
3550     // OpSegStart is where this destination segment would start in OpReg if it
3551     // extended infinitely in both directions.
3552     int64_t ExtractOffset, InsertOffset;
3553     uint64_t SegSize;
3554     if (OpStart < DstStart) {
3555       InsertOffset = 0;
3556       ExtractOffset = DstStart - OpStart;
3557       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3558     } else {
3559       InsertOffset = OpStart - DstStart;
3560       ExtractOffset = 0;
3561       SegSize =
3562         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3563     }
3564 
3565     Register SegReg = OpReg;
3566     if (ExtractOffset != 0 || SegSize != OpSize) {
3567       // A genuine extract is needed.
3568       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3569       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3570     }
3571 
3572     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3573     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3574     DstRegs.push_back(DstReg);
3575   }
3576 
3577   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3578   Register DstReg = MI.getOperand(0).getReg();
3579   if(MRI.getType(DstReg).isVector())
3580     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3581   else
3582     MIRBuilder.buildMerge(DstReg, DstRegs);
3583   MI.eraseFromParent();
3584   return Legalized;
3585 }
3586 
3587 LegalizerHelper::LegalizeResult
3588 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3589                                    LLT NarrowTy) {
3590   Register DstReg = MI.getOperand(0).getReg();
3591   LLT DstTy = MRI.getType(DstReg);
3592 
3593   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3594 
3595   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3596   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3597   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3598   LLT LeftoverTy;
3599   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3600                     Src0Regs, Src0LeftoverRegs))
3601     return UnableToLegalize;
3602 
3603   LLT Unused;
3604   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3605                     Src1Regs, Src1LeftoverRegs))
3606     llvm_unreachable("inconsistent extractParts result");
3607 
3608   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3609     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3610                                         {Src0Regs[I], Src1Regs[I]});
3611     DstRegs.push_back(Inst->getOperand(0).getReg());
3612   }
3613 
3614   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3615     auto Inst = MIRBuilder.buildInstr(
3616       MI.getOpcode(),
3617       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3618     DstLeftoverRegs.push_back(Inst->getOperand(0).getReg());
3619   }
3620 
3621   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3622               LeftoverTy, DstLeftoverRegs);
3623 
3624   MI.eraseFromParent();
3625   return Legalized;
3626 }
3627 
3628 LegalizerHelper::LegalizeResult
3629 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
3630                                     LLT NarrowTy) {
3631   if (TypeIdx != 0)
3632     return UnableToLegalize;
3633 
3634   Register CondReg = MI.getOperand(1).getReg();
3635   LLT CondTy = MRI.getType(CondReg);
3636   if (CondTy.isVector()) // TODO: Handle vselect
3637     return UnableToLegalize;
3638 
3639   Register DstReg = MI.getOperand(0).getReg();
3640   LLT DstTy = MRI.getType(DstReg);
3641 
3642   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3643   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3644   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
3645   LLT LeftoverTy;
3646   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
3647                     Src1Regs, Src1LeftoverRegs))
3648     return UnableToLegalize;
3649 
3650   LLT Unused;
3651   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
3652                     Src2Regs, Src2LeftoverRegs))
3653     llvm_unreachable("inconsistent extractParts result");
3654 
3655   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3656     auto Select = MIRBuilder.buildSelect(NarrowTy,
3657                                          CondReg, Src1Regs[I], Src2Regs[I]);
3658     DstRegs.push_back(Select->getOperand(0).getReg());
3659   }
3660 
3661   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3662     auto Select = MIRBuilder.buildSelect(
3663       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
3664     DstLeftoverRegs.push_back(Select->getOperand(0).getReg());
3665   }
3666 
3667   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3668               LeftoverTy, DstLeftoverRegs);
3669 
3670   MI.eraseFromParent();
3671   return Legalized;
3672 }
3673 
3674 LegalizerHelper::LegalizeResult
3675 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3676   unsigned Opc = MI.getOpcode();
3677   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
3678   auto isSupported = [this](const LegalityQuery &Q) {
3679     auto QAction = LI.getAction(Q).Action;
3680     return QAction == Legal || QAction == Libcall || QAction == Custom;
3681   };
3682   switch (Opc) {
3683   default:
3684     return UnableToLegalize;
3685   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
3686     // This trivially expands to CTLZ.
3687     Observer.changingInstr(MI);
3688     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
3689     Observer.changedInstr(MI);
3690     return Legalized;
3691   }
3692   case TargetOpcode::G_CTLZ: {
3693     Register SrcReg = MI.getOperand(1).getReg();
3694     unsigned Len = Ty.getSizeInBits();
3695     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) {
3696       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
3697       auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF,
3698                                              {Ty}, {SrcReg});
3699       auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
3700       auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
3701       auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3702                                           SrcReg, MIBZero);
3703       MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
3704                              MIBCtlzZU);
3705       MI.eraseFromParent();
3706       return Legalized;
3707     }
3708     // for now, we do this:
3709     // NewLen = NextPowerOf2(Len);
3710     // x = x | (x >> 1);
3711     // x = x | (x >> 2);
3712     // ...
3713     // x = x | (x >>16);
3714     // x = x | (x >>32); // for 64-bit input
3715     // Upto NewLen/2
3716     // return Len - popcount(x);
3717     //
3718     // Ref: "Hacker's Delight" by Henry Warren
3719     Register Op = SrcReg;
3720     unsigned NewLen = PowerOf2Ceil(Len);
3721     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
3722       auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i);
3723       auto MIBOp = MIRBuilder.buildInstr(
3724           TargetOpcode::G_OR, {Ty},
3725           {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty},
3726                                      {Op, MIBShiftAmt})});
3727       Op = MIBOp->getOperand(0).getReg();
3728     }
3729     auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op});
3730     MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
3731                           {MIRBuilder.buildConstant(Ty, Len), MIBPop});
3732     MI.eraseFromParent();
3733     return Legalized;
3734   }
3735   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
3736     // This trivially expands to CTTZ.
3737     Observer.changingInstr(MI);
3738     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
3739     Observer.changedInstr(MI);
3740     return Legalized;
3741   }
3742   case TargetOpcode::G_CTTZ: {
3743     Register SrcReg = MI.getOperand(1).getReg();
3744     unsigned Len = Ty.getSizeInBits();
3745     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) {
3746       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
3747       // zero.
3748       auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF,
3749                                              {Ty}, {SrcReg});
3750       auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
3751       auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
3752       auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3753                                           SrcReg, MIBZero);
3754       MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
3755                              MIBCttzZU);
3756       MI.eraseFromParent();
3757       return Legalized;
3758     }
3759     // for now, we use: { return popcount(~x & (x - 1)); }
3760     // unless the target has ctlz but not ctpop, in which case we use:
3761     // { return 32 - nlz(~x & (x-1)); }
3762     // Ref: "Hacker's Delight" by Henry Warren
3763     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
3764     auto MIBNot =
3765         MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1});
3766     auto MIBTmp = MIRBuilder.buildInstr(
3767         TargetOpcode::G_AND, {Ty},
3768         {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty},
3769                                        {SrcReg, MIBCstNeg1})});
3770     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
3771         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
3772       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
3773       MIRBuilder.buildInstr(
3774           TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
3775           {MIBCstLen,
3776            MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})});
3777       MI.eraseFromParent();
3778       return Legalized;
3779     }
3780     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
3781     MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg());
3782     return Legalized;
3783   }
3784   }
3785 }
3786 
3787 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
3788 // representation.
3789 LegalizerHelper::LegalizeResult
3790 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
3791   Register Dst = MI.getOperand(0).getReg();
3792   Register Src = MI.getOperand(1).getReg();
3793   const LLT S64 = LLT::scalar(64);
3794   const LLT S32 = LLT::scalar(32);
3795   const LLT S1 = LLT::scalar(1);
3796 
3797   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
3798 
3799   // unsigned cul2f(ulong u) {
3800   //   uint lz = clz(u);
3801   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
3802   //   u = (u << lz) & 0x7fffffffffffffffUL;
3803   //   ulong t = u & 0xffffffffffUL;
3804   //   uint v = (e << 23) | (uint)(u >> 40);
3805   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
3806   //   return as_float(v + r);
3807   // }
3808 
3809   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
3810   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
3811 
3812   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
3813 
3814   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
3815   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
3816 
3817   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
3818   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
3819 
3820   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
3821   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
3822 
3823   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
3824 
3825   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
3826   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
3827 
3828   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
3829   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
3830   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
3831 
3832   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
3833   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
3834   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
3835   auto One = MIRBuilder.buildConstant(S32, 1);
3836 
3837   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
3838   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
3839   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
3840   MIRBuilder.buildAdd(Dst, V, R);
3841 
3842   return Legalized;
3843 }
3844 
3845 LegalizerHelper::LegalizeResult
3846 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3847   Register Dst = MI.getOperand(0).getReg();
3848   Register Src = MI.getOperand(1).getReg();
3849   LLT DstTy = MRI.getType(Dst);
3850   LLT SrcTy = MRI.getType(Src);
3851 
3852   if (SrcTy != LLT::scalar(64))
3853     return UnableToLegalize;
3854 
3855   if (DstTy == LLT::scalar(32)) {
3856     // TODO: SelectionDAG has several alternative expansions to port which may
3857     // be more reasonble depending on the available instructions. If a target
3858     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
3859     // intermediate type, this is probably worse.
3860     return lowerU64ToF32BitOps(MI);
3861   }
3862 
3863   return UnableToLegalize;
3864 }
3865 
3866 LegalizerHelper::LegalizeResult
3867 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3868   Register Dst = MI.getOperand(0).getReg();
3869   Register Src = MI.getOperand(1).getReg();
3870   LLT DstTy = MRI.getType(Dst);
3871   LLT SrcTy = MRI.getType(Src);
3872 
3873   const LLT S64 = LLT::scalar(64);
3874   const LLT S32 = LLT::scalar(32);
3875   const LLT S1 = LLT::scalar(1);
3876 
3877   if (SrcTy != S64)
3878     return UnableToLegalize;
3879 
3880   if (DstTy == S32) {
3881     // signed cl2f(long l) {
3882     //   long s = l >> 63;
3883     //   float r = cul2f((l + s) ^ s);
3884     //   return s ? -r : r;
3885     // }
3886     Register L = Src;
3887     auto SignBit = MIRBuilder.buildConstant(S64, 63);
3888     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
3889 
3890     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
3891     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
3892     auto R = MIRBuilder.buildUITOFP(S32, Xor);
3893 
3894     auto RNeg = MIRBuilder.buildFNeg(S32, R);
3895     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
3896                                             MIRBuilder.buildConstant(S64, 0));
3897     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
3898     return Legalized;
3899   }
3900 
3901   return UnableToLegalize;
3902 }
3903 
3904 LegalizerHelper::LegalizeResult
3905 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3906   Register Dst = MI.getOperand(0).getReg();
3907   Register Src = MI.getOperand(1).getReg();
3908   LLT DstTy = MRI.getType(Dst);
3909   LLT SrcTy = MRI.getType(Src);
3910   const LLT S64 = LLT::scalar(64);
3911   const LLT S32 = LLT::scalar(32);
3912 
3913   if (SrcTy != S64 && SrcTy != S32)
3914     return UnableToLegalize;
3915   if (DstTy != S32 && DstTy != S64)
3916     return UnableToLegalize;
3917 
3918   // FPTOSI gives same result as FPTOUI for positive signed integers.
3919   // FPTOUI needs to deal with fp values that convert to unsigned integers
3920   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
3921 
3922   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
3923   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
3924                                                 : APFloat::IEEEdouble(),
3925                     APInt::getNullValue(SrcTy.getSizeInBits()));
3926   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
3927 
3928   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
3929 
3930   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
3931   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
3932   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
3933   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
3934   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
3935   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
3936   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
3937 
3938   MachineInstrBuilder FCMP =
3939       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, DstTy, Src, Threshold);
3940   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
3941 
3942   MI.eraseFromParent();
3943   return Legalized;
3944 }
3945 
3946 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
3947   switch (Opc) {
3948   case TargetOpcode::G_SMIN:
3949     return CmpInst::ICMP_SLT;
3950   case TargetOpcode::G_SMAX:
3951     return CmpInst::ICMP_SGT;
3952   case TargetOpcode::G_UMIN:
3953     return CmpInst::ICMP_ULT;
3954   case TargetOpcode::G_UMAX:
3955     return CmpInst::ICMP_UGT;
3956   default:
3957     llvm_unreachable("not in integer min/max");
3958   }
3959 }
3960 
3961 LegalizerHelper::LegalizeResult
3962 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3963   Register Dst = MI.getOperand(0).getReg();
3964   Register Src0 = MI.getOperand(1).getReg();
3965   Register Src1 = MI.getOperand(2).getReg();
3966 
3967   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
3968   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
3969 
3970   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
3971   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
3972 
3973   MI.eraseFromParent();
3974   return Legalized;
3975 }
3976 
3977 LegalizerHelper::LegalizeResult
3978 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3979   Register Dst = MI.getOperand(0).getReg();
3980   Register Src0 = MI.getOperand(1).getReg();
3981   Register Src1 = MI.getOperand(2).getReg();
3982 
3983   const LLT Src0Ty = MRI.getType(Src0);
3984   const LLT Src1Ty = MRI.getType(Src1);
3985 
3986   const int Src0Size = Src0Ty.getScalarSizeInBits();
3987   const int Src1Size = Src1Ty.getScalarSizeInBits();
3988 
3989   auto SignBitMask = MIRBuilder.buildConstant(
3990     Src0Ty, APInt::getSignMask(Src0Size));
3991 
3992   auto NotSignBitMask = MIRBuilder.buildConstant(
3993     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
3994 
3995   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
3996   MachineInstr *Or;
3997 
3998   if (Src0Ty == Src1Ty) {
3999     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask);
4000     Or = MIRBuilder.buildOr(Dst, And0, And1);
4001   } else if (Src0Size > Src1Size) {
4002     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4003     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4004     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4005     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4006     Or = MIRBuilder.buildOr(Dst, And0, And1);
4007   } else {
4008     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4009     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4010     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4011     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4012     Or = MIRBuilder.buildOr(Dst, And0, And1);
4013   }
4014 
4015   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4016   // constants are a nan and -0.0, but the final result should preserve
4017   // everything.
4018   if (unsigned Flags = MI.getFlags())
4019     Or->setFlags(Flags);
4020 
4021   MI.eraseFromParent();
4022   return Legalized;
4023 }
4024 
4025 LegalizerHelper::LegalizeResult
4026 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4027   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4028     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4029 
4030   Register Dst = MI.getOperand(0).getReg();
4031   Register Src0 = MI.getOperand(1).getReg();
4032   Register Src1 = MI.getOperand(2).getReg();
4033   LLT Ty = MRI.getType(Dst);
4034 
4035   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4036     // Insert canonicalizes if it's possible we need to quiet to get correct
4037     // sNaN behavior.
4038 
4039     // Note this must be done here, and not as an optimization combine in the
4040     // absence of a dedicate quiet-snan instruction as we're using an
4041     // omni-purpose G_FCANONICALIZE.
4042     if (!isKnownNeverSNaN(Src0, MRI))
4043       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4044 
4045     if (!isKnownNeverSNaN(Src1, MRI))
4046       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4047   }
4048 
4049   // If there are no nans, it's safe to simply replace this with the non-IEEE
4050   // version.
4051   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4052   MI.eraseFromParent();
4053   return Legalized;
4054 }
4055 
4056 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4057   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4058   Register DstReg = MI.getOperand(0).getReg();
4059   LLT Ty = MRI.getType(DstReg);
4060   unsigned Flags = MI.getFlags();
4061 
4062   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4063                                   Flags);
4064   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4065   MI.eraseFromParent();
4066   return Legalized;
4067 }
4068 
4069 LegalizerHelper::LegalizeResult
4070 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4071   const unsigned NumDst = MI.getNumOperands() - 1;
4072   const Register SrcReg = MI.getOperand(NumDst).getReg();
4073   LLT SrcTy = MRI.getType(SrcReg);
4074 
4075   Register Dst0Reg = MI.getOperand(0).getReg();
4076   LLT DstTy = MRI.getType(Dst0Reg);
4077 
4078 
4079   // Expand scalarizing unmerge as bitcast to integer and shift.
4080   if (!DstTy.isVector() && SrcTy.isVector() &&
4081       SrcTy.getElementType() == DstTy) {
4082     LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
4083     Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
4084 
4085     MIRBuilder.buildTrunc(Dst0Reg, Cast);
4086 
4087     const unsigned DstSize = DstTy.getSizeInBits();
4088     unsigned Offset = DstSize;
4089     for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4090       auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4091       auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
4092       MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4093     }
4094 
4095     MI.eraseFromParent();
4096     return Legalized;
4097   }
4098 
4099   return UnableToLegalize;
4100 }
4101 
4102 LegalizerHelper::LegalizeResult
4103 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4104   Register DstReg = MI.getOperand(0).getReg();
4105   Register Src0Reg = MI.getOperand(1).getReg();
4106   Register Src1Reg = MI.getOperand(2).getReg();
4107   LLT Src0Ty = MRI.getType(Src0Reg);
4108   LLT DstTy = MRI.getType(DstReg);
4109   LLT IdxTy = LLT::scalar(32);
4110 
4111   const Constant *ShufMask = MI.getOperand(3).getShuffleMask();
4112 
4113   SmallVector<int, 32> Mask;
4114   ShuffleVectorInst::getShuffleMask(ShufMask, Mask);
4115 
4116   if (DstTy.isScalar()) {
4117     if (Src0Ty.isVector())
4118       return UnableToLegalize;
4119 
4120     // This is just a SELECT.
4121     assert(Mask.size() == 1 && "Expected a single mask element");
4122     Register Val;
4123     if (Mask[0] < 0 || Mask[0] > 1)
4124       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4125     else
4126       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4127     MIRBuilder.buildCopy(DstReg, Val);
4128     MI.eraseFromParent();
4129     return Legalized;
4130   }
4131 
4132   Register Undef;
4133   SmallVector<Register, 32> BuildVec;
4134   LLT EltTy = DstTy.getElementType();
4135 
4136   for (int Idx : Mask) {
4137     if (Idx < 0) {
4138       if (!Undef.isValid())
4139         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
4140       BuildVec.push_back(Undef);
4141       continue;
4142     }
4143 
4144     if (Src0Ty.isScalar()) {
4145       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
4146     } else {
4147       int NumElts = Src0Ty.getNumElements();
4148       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
4149       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
4150       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
4151       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
4152       BuildVec.push_back(Extract.getReg(0));
4153     }
4154   }
4155 
4156   MIRBuilder.buildBuildVector(DstReg, BuildVec);
4157   MI.eraseFromParent();
4158   return Legalized;
4159 }
4160 
4161 LegalizerHelper::LegalizeResult
4162 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
4163   Register Dst = MI.getOperand(0).getReg();
4164   Register AllocSize = MI.getOperand(1).getReg();
4165   unsigned Align = MI.getOperand(2).getImm();
4166 
4167   const auto &MF = *MI.getMF();
4168   const auto &TLI = *MF.getSubtarget().getTargetLowering();
4169 
4170   LLT PtrTy = MRI.getType(Dst);
4171   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
4172 
4173   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
4174   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
4175   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
4176 
4177   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
4178   // have to generate an extra instruction to negate the alloc and then use
4179   // G_GEP to add the negative offset.
4180   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
4181   if (Align) {
4182     APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true);
4183     AlignMask.negate();
4184     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
4185     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
4186   }
4187 
4188   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
4189   MIRBuilder.buildCopy(SPReg, SPTmp);
4190   MIRBuilder.buildCopy(Dst, SPTmp);
4191 
4192   MI.eraseFromParent();
4193   return Legalized;
4194 }
4195 
4196 LegalizerHelper::LegalizeResult
4197 LegalizerHelper::lowerExtract(MachineInstr &MI) {
4198   Register Dst = MI.getOperand(0).getReg();
4199   Register Src = MI.getOperand(1).getReg();
4200   unsigned Offset = MI.getOperand(2).getImm();
4201 
4202   LLT DstTy = MRI.getType(Dst);
4203   LLT SrcTy = MRI.getType(Src);
4204 
4205   if (DstTy.isScalar() &&
4206       (SrcTy.isScalar() ||
4207        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
4208     LLT SrcIntTy = SrcTy;
4209     if (!SrcTy.isScalar()) {
4210       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
4211       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
4212     }
4213 
4214     if (Offset == 0)
4215       MIRBuilder.buildTrunc(Dst, Src);
4216     else {
4217       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
4218       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
4219       MIRBuilder.buildTrunc(Dst, Shr);
4220     }
4221 
4222     MI.eraseFromParent();
4223     return Legalized;
4224   }
4225 
4226   return UnableToLegalize;
4227 }
4228 
4229 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
4230   Register Dst = MI.getOperand(0).getReg();
4231   Register Src = MI.getOperand(1).getReg();
4232   Register InsertSrc = MI.getOperand(2).getReg();
4233   uint64_t Offset = MI.getOperand(3).getImm();
4234 
4235   LLT DstTy = MRI.getType(Src);
4236   LLT InsertTy = MRI.getType(InsertSrc);
4237 
4238   if (InsertTy.isScalar() &&
4239       (DstTy.isScalar() ||
4240        (DstTy.isVector() && DstTy.getElementType() == InsertTy))) {
4241     LLT IntDstTy = DstTy;
4242     if (!DstTy.isScalar()) {
4243       IntDstTy = LLT::scalar(DstTy.getSizeInBits());
4244       Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0);
4245     }
4246 
4247     Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
4248     if (Offset != 0) {
4249       auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
4250       ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
4251     }
4252 
4253     APInt MaskVal = ~APInt::getBitsSet(DstTy.getSizeInBits(), Offset,
4254                                        InsertTy.getSizeInBits());
4255 
4256     auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
4257     auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
4258     auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
4259 
4260     MIRBuilder.buildBitcast(Dst, Or);
4261     MI.eraseFromParent();
4262     return Legalized;
4263   }
4264 
4265   return UnableToLegalize;
4266 }
4267 
4268 LegalizerHelper::LegalizeResult
4269 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
4270   Register Dst0 = MI.getOperand(0).getReg();
4271   Register Dst1 = MI.getOperand(1).getReg();
4272   Register LHS = MI.getOperand(2).getReg();
4273   Register RHS = MI.getOperand(3).getReg();
4274   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
4275 
4276   LLT Ty = MRI.getType(Dst0);
4277   LLT BoolTy = MRI.getType(Dst1);
4278 
4279   if (IsAdd)
4280     MIRBuilder.buildAdd(Dst0, LHS, RHS);
4281   else
4282     MIRBuilder.buildSub(Dst0, LHS, RHS);
4283 
4284   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
4285 
4286   auto Zero = MIRBuilder.buildConstant(Ty, 0);
4287 
4288   // For an addition, the result should be less than one of the operands (LHS)
4289   // if and only if the other operand (RHS) is negative, otherwise there will
4290   // be overflow.
4291   // For a subtraction, the result should be less than one of the operands
4292   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
4293   // otherwise there will be overflow.
4294   auto ResultLowerThanLHS =
4295       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
4296   auto ConditionRHS = MIRBuilder.buildICmp(
4297       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
4298 
4299   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
4300   MI.eraseFromParent();
4301   return Legalized;
4302 }
4303