1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) { }
95 
96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
97                                  GISelChangeObserver &Observer,
98                                  MachineIRBuilder &B)
99   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
100     TLI(*MF.getSubtarget().getTargetLowering()) { }
101 
102 LegalizerHelper::LegalizeResult
103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
104   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
105 
106   MIRBuilder.setInstrAndDebugLoc(MI);
107 
108   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
109       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
110     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
111   auto Step = LI.getAction(MI, MRI);
112   switch (Step.Action) {
113   case Legal:
114     LLVM_DEBUG(dbgs() << ".. Already legal\n");
115     return AlreadyLegal;
116   case Libcall:
117     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
118     return libcall(MI);
119   case NarrowScalar:
120     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
121     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
122   case WidenScalar:
123     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
124     return widenScalar(MI, Step.TypeIdx, Step.NewType);
125   case Bitcast:
126     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
127     return bitcast(MI, Step.TypeIdx, Step.NewType);
128   case Lower:
129     LLVM_DEBUG(dbgs() << ".. Lower\n");
130     return lower(MI, Step.TypeIdx, Step.NewType);
131   case FewerElements:
132     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
133     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case MoreElements:
135     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
136     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case Custom:
138     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
139     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
140   default:
141     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
142     return UnableToLegalize;
143   }
144 }
145 
146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
147                                    SmallVectorImpl<Register> &VRegs) {
148   for (int i = 0; i < NumParts; ++i)
149     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
150   MIRBuilder.buildUnmerge(VRegs, Reg);
151 }
152 
153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
154                                    LLT MainTy, LLT &LeftoverTy,
155                                    SmallVectorImpl<Register> &VRegs,
156                                    SmallVectorImpl<Register> &LeftoverRegs) {
157   assert(!LeftoverTy.isValid() && "this is an out argument");
158 
159   unsigned RegSize = RegTy.getSizeInBits();
160   unsigned MainSize = MainTy.getSizeInBits();
161   unsigned NumParts = RegSize / MainSize;
162   unsigned LeftoverSize = RegSize - NumParts * MainSize;
163 
164   // Use an unmerge when possible.
165   if (LeftoverSize == 0) {
166     for (unsigned I = 0; I < NumParts; ++I)
167       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
168     MIRBuilder.buildUnmerge(VRegs, Reg);
169     return true;
170   }
171 
172   if (MainTy.isVector()) {
173     unsigned EltSize = MainTy.getScalarSizeInBits();
174     if (LeftoverSize % EltSize != 0)
175       return false;
176     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
177   } else {
178     LeftoverTy = LLT::scalar(LeftoverSize);
179   }
180 
181   // For irregular sizes, extract the individual parts.
182   for (unsigned I = 0; I != NumParts; ++I) {
183     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
184     VRegs.push_back(NewReg);
185     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
186   }
187 
188   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
189        Offset += LeftoverSize) {
190     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
191     LeftoverRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, Offset);
193   }
194 
195   return true;
196 }
197 
198 void LegalizerHelper::insertParts(Register DstReg,
199                                   LLT ResultTy, LLT PartTy,
200                                   ArrayRef<Register> PartRegs,
201                                   LLT LeftoverTy,
202                                   ArrayRef<Register> LeftoverRegs) {
203   if (!LeftoverTy.isValid()) {
204     assert(LeftoverRegs.empty());
205 
206     if (!ResultTy.isVector()) {
207       MIRBuilder.buildMerge(DstReg, PartRegs);
208       return;
209     }
210 
211     if (PartTy.isVector())
212       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
213     else
214       MIRBuilder.buildBuildVector(DstReg, PartRegs);
215     return;
216   }
217 
218   unsigned PartSize = PartTy.getSizeInBits();
219   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
220 
221   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
222   MIRBuilder.buildUndef(CurResultReg);
223 
224   unsigned Offset = 0;
225   for (Register PartReg : PartRegs) {
226     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
227     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
228     CurResultReg = NewResultReg;
229     Offset += PartSize;
230   }
231 
232   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
233     // Use the original output register for the final insert to avoid a copy.
234     Register NewResultReg = (I + 1 == E) ?
235       DstReg : MRI.createGenericVirtualRegister(ResultTy);
236 
237     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
238     CurResultReg = NewResultReg;
239     Offset += LeftoverPartSize;
240   }
241 }
242 
243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
245                               const MachineInstr &MI) {
246   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
247 
248   const int StartIdx = Regs.size();
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(Regs.size() + NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[StartIdx + I] = MI.getOperand(I).getReg();
253 }
254 
255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
256                                      LLT GCDTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 }
268 
269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
270                                     LLT NarrowTy, Register SrcReg) {
271   LLT SrcTy = MRI.getType(SrcReg);
272   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
273   extractGCDType(Parts, GCDTy, SrcReg);
274   return GCDTy;
275 }
276 
277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
278                                          SmallVectorImpl<Register> &VRegs,
279                                          unsigned PadStrategy) {
280   LLT LCMTy = getLCMType(DstTy, NarrowTy);
281 
282   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
283   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
284   int NumOrigSrc = VRegs.size();
285 
286   Register PadReg;
287 
288   // Get a value we can use to pad the source value if the sources won't evenly
289   // cover the result type.
290   if (NumOrigSrc < NumParts * NumSubParts) {
291     if (PadStrategy == TargetOpcode::G_ZEXT)
292       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
293     else if (PadStrategy == TargetOpcode::G_ANYEXT)
294       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
295     else {
296       assert(PadStrategy == TargetOpcode::G_SEXT);
297 
298       // Shift the sign bit of the low register through the high register.
299       auto ShiftAmt =
300         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
301       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
302     }
303   }
304 
305   // Registers for the final merge to be produced.
306   SmallVector<Register, 4> Remerge(NumParts);
307 
308   // Registers needed for intermediate merges, which will be merged into a
309   // source for Remerge.
310   SmallVector<Register, 4> SubMerge(NumSubParts);
311 
312   // Once we've fully read off the end of the original source bits, we can reuse
313   // the same high bits for remaining padding elements.
314   Register AllPadReg;
315 
316   // Build merges to the LCM type to cover the original result type.
317   for (int I = 0; I != NumParts; ++I) {
318     bool AllMergePartsArePadding = true;
319 
320     // Build the requested merges to the requested type.
321     for (int J = 0; J != NumSubParts; ++J) {
322       int Idx = I * NumSubParts + J;
323       if (Idx >= NumOrigSrc) {
324         SubMerge[J] = PadReg;
325         continue;
326       }
327 
328       SubMerge[J] = VRegs[Idx];
329 
330       // There are meaningful bits here we can't reuse later.
331       AllMergePartsArePadding = false;
332     }
333 
334     // If we've filled up a complete piece with padding bits, we can directly
335     // emit the natural sized constant if applicable, rather than a merge of
336     // smaller constants.
337     if (AllMergePartsArePadding && !AllPadReg) {
338       if (PadStrategy == TargetOpcode::G_ANYEXT)
339         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
340       else if (PadStrategy == TargetOpcode::G_ZEXT)
341         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
342 
343       // If this is a sign extension, we can't materialize a trivial constant
344       // with the right type and have to produce a merge.
345     }
346 
347     if (AllPadReg) {
348       // Avoid creating additional instructions if we're just adding additional
349       // copies of padding bits.
350       Remerge[I] = AllPadReg;
351       continue;
352     }
353 
354     if (NumSubParts == 1)
355       Remerge[I] = SubMerge[0];
356     else
357       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
358 
359     // In the sign extend padding case, re-use the first all-signbit merge.
360     if (AllMergePartsArePadding && !AllPadReg)
361       AllPadReg = Remerge[I];
362   }
363 
364   VRegs = std::move(Remerge);
365   return LCMTy;
366 }
367 
368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
369                                                ArrayRef<Register> RemergeRegs) {
370   LLT DstTy = MRI.getType(DstReg);
371 
372   // Create the merge to the widened source, and extract the relevant bits into
373   // the result.
374 
375   if (DstTy == LCMTy) {
376     MIRBuilder.buildMerge(DstReg, RemergeRegs);
377     return;
378   }
379 
380   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
381   if (DstTy.isScalar() && LCMTy.isScalar()) {
382     MIRBuilder.buildTrunc(DstReg, Remerge);
383     return;
384   }
385 
386   if (LCMTy.isVector()) {
387     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
388     SmallVector<Register, 8> UnmergeDefs(NumDefs);
389     UnmergeDefs[0] = DstReg;
390     for (unsigned I = 1; I != NumDefs; ++I)
391       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
392 
393     MIRBuilder.buildUnmerge(UnmergeDefs,
394                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
395     return;
396   }
397 
398   llvm_unreachable("unhandled case");
399 }
400 
401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
402 #define RTLIBCASE_INT(LibcallPrefix)                                           \
403   do {                                                                         \
404     switch (Size) {                                                            \
405     case 32:                                                                   \
406       return RTLIB::LibcallPrefix##32;                                         \
407     case 64:                                                                   \
408       return RTLIB::LibcallPrefix##64;                                         \
409     case 128:                                                                  \
410       return RTLIB::LibcallPrefix##128;                                        \
411     default:                                                                   \
412       llvm_unreachable("unexpected size");                                     \
413     }                                                                          \
414   } while (0)
415 
416 #define RTLIBCASE(LibcallPrefix)                                               \
417   do {                                                                         \
418     switch (Size) {                                                            \
419     case 32:                                                                   \
420       return RTLIB::LibcallPrefix##32;                                         \
421     case 64:                                                                   \
422       return RTLIB::LibcallPrefix##64;                                         \
423     case 80:                                                                   \
424       return RTLIB::LibcallPrefix##80;                                         \
425     case 128:                                                                  \
426       return RTLIB::LibcallPrefix##128;                                        \
427     default:                                                                   \
428       llvm_unreachable("unexpected size");                                     \
429     }                                                                          \
430   } while (0)
431 
432   switch (Opcode) {
433   case TargetOpcode::G_SDIV:
434     RTLIBCASE_INT(SDIV_I);
435   case TargetOpcode::G_UDIV:
436     RTLIBCASE_INT(UDIV_I);
437   case TargetOpcode::G_SREM:
438     RTLIBCASE_INT(SREM_I);
439   case TargetOpcode::G_UREM:
440     RTLIBCASE_INT(UREM_I);
441   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
442     RTLIBCASE_INT(CTLZ_I);
443   case TargetOpcode::G_FADD:
444     RTLIBCASE(ADD_F);
445   case TargetOpcode::G_FSUB:
446     RTLIBCASE(SUB_F);
447   case TargetOpcode::G_FMUL:
448     RTLIBCASE(MUL_F);
449   case TargetOpcode::G_FDIV:
450     RTLIBCASE(DIV_F);
451   case TargetOpcode::G_FEXP:
452     RTLIBCASE(EXP_F);
453   case TargetOpcode::G_FEXP2:
454     RTLIBCASE(EXP2_F);
455   case TargetOpcode::G_FREM:
456     RTLIBCASE(REM_F);
457   case TargetOpcode::G_FPOW:
458     RTLIBCASE(POW_F);
459   case TargetOpcode::G_FMA:
460     RTLIBCASE(FMA_F);
461   case TargetOpcode::G_FSIN:
462     RTLIBCASE(SIN_F);
463   case TargetOpcode::G_FCOS:
464     RTLIBCASE(COS_F);
465   case TargetOpcode::G_FLOG10:
466     RTLIBCASE(LOG10_F);
467   case TargetOpcode::G_FLOG:
468     RTLIBCASE(LOG_F);
469   case TargetOpcode::G_FLOG2:
470     RTLIBCASE(LOG2_F);
471   case TargetOpcode::G_FCEIL:
472     RTLIBCASE(CEIL_F);
473   case TargetOpcode::G_FFLOOR:
474     RTLIBCASE(FLOOR_F);
475   case TargetOpcode::G_FMINNUM:
476     RTLIBCASE(FMIN_F);
477   case TargetOpcode::G_FMAXNUM:
478     RTLIBCASE(FMAX_F);
479   case TargetOpcode::G_FSQRT:
480     RTLIBCASE(SQRT_F);
481   case TargetOpcode::G_FRINT:
482     RTLIBCASE(RINT_F);
483   case TargetOpcode::G_FNEARBYINT:
484     RTLIBCASE(NEARBYINT_F);
485   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
486     RTLIBCASE(ROUNDEVEN_F);
487   }
488   llvm_unreachable("Unknown libcall function");
489 }
490 
491 /// True if an instruction is in tail position in its caller. Intended for
492 /// legalizing libcalls as tail calls when possible.
493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
494                                     MachineInstr &MI) {
495   MachineBasicBlock &MBB = *MI.getParent();
496   const Function &F = MBB.getParent()->getFunction();
497 
498   // Conservatively require the attributes of the call to match those of
499   // the return. Ignore NoAlias and NonNull because they don't affect the
500   // call sequence.
501   AttributeList CallerAttrs = F.getAttributes();
502   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
503           .removeAttribute(Attribute::NoAlias)
504           .removeAttribute(Attribute::NonNull)
505           .hasAttributes())
506     return false;
507 
508   // It's not safe to eliminate the sign / zero extension of the return value.
509   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
510       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
511     return false;
512 
513   // Only tail call if the following instruction is a standard return.
514   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
515   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
516     return false;
517 
518   return true;
519 }
520 
521 LegalizerHelper::LegalizeResult
522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
523                     const CallLowering::ArgInfo &Result,
524                     ArrayRef<CallLowering::ArgInfo> Args,
525                     const CallingConv::ID CC) {
526   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
527 
528   CallLowering::CallLoweringInfo Info;
529   Info.CallConv = CC;
530   Info.Callee = MachineOperand::CreateES(Name);
531   Info.OrigRet = Result;
532   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
533   if (!CLI.lowerCall(MIRBuilder, Info))
534     return LegalizerHelper::UnableToLegalize;
535 
536   return LegalizerHelper::Legalized;
537 }
538 
539 LegalizerHelper::LegalizeResult
540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
541                     const CallLowering::ArgInfo &Result,
542                     ArrayRef<CallLowering::ArgInfo> Args) {
543   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
544   const char *Name = TLI.getLibcallName(Libcall);
545   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
546   return createLibcall(MIRBuilder, Name, Result, Args, CC);
547 }
548 
549 // Useful for libcalls where all operands have the same type.
550 static LegalizerHelper::LegalizeResult
551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
552               Type *OpType) {
553   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
554 
555   SmallVector<CallLowering::ArgInfo, 3> Args;
556   for (unsigned i = 1; i < MI.getNumOperands(); i++)
557     Args.push_back({MI.getOperand(i).getReg(), OpType});
558   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
559                        Args);
560 }
561 
562 LegalizerHelper::LegalizeResult
563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
564                        MachineInstr &MI) {
565   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
566 
567   SmallVector<CallLowering::ArgInfo, 3> Args;
568   // Add all the args, except for the last which is an imm denoting 'tail'.
569   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
570     Register Reg = MI.getOperand(i).getReg();
571 
572     // Need derive an IR type for call lowering.
573     LLT OpLLT = MRI.getType(Reg);
574     Type *OpTy = nullptr;
575     if (OpLLT.isPointer())
576       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
577     else
578       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
579     Args.push_back({Reg, OpTy});
580   }
581 
582   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
583   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
584   RTLIB::Libcall RTLibcall;
585   switch (MI.getOpcode()) {
586   case TargetOpcode::G_MEMCPY:
587     RTLibcall = RTLIB::MEMCPY;
588     break;
589   case TargetOpcode::G_MEMMOVE:
590     RTLibcall = RTLIB::MEMMOVE;
591     break;
592   case TargetOpcode::G_MEMSET:
593     RTLibcall = RTLIB::MEMSET;
594     break;
595   default:
596     return LegalizerHelper::UnableToLegalize;
597   }
598   const char *Name = TLI.getLibcallName(RTLibcall);
599 
600   CallLowering::CallLoweringInfo Info;
601   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
602   Info.Callee = MachineOperand::CreateES(Name);
603   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
604   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
605                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
606 
607   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
608   if (!CLI.lowerCall(MIRBuilder, Info))
609     return LegalizerHelper::UnableToLegalize;
610 
611   if (Info.LoweredTailCall) {
612     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
613     // We must have a return following the call (or debug insts) to get past
614     // isLibCallInTailPosition.
615     do {
616       MachineInstr *Next = MI.getNextNode();
617       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
618              "Expected instr following MI to be return or debug inst?");
619       // We lowered a tail call, so the call is now the return from the block.
620       // Delete the old return.
621       Next->eraseFromParent();
622     } while (MI.getNextNode());
623   }
624 
625   return LegalizerHelper::Legalized;
626 }
627 
628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
629                                        Type *FromType) {
630   auto ToMVT = MVT::getVT(ToType);
631   auto FromMVT = MVT::getVT(FromType);
632 
633   switch (Opcode) {
634   case TargetOpcode::G_FPEXT:
635     return RTLIB::getFPEXT(FromMVT, ToMVT);
636   case TargetOpcode::G_FPTRUNC:
637     return RTLIB::getFPROUND(FromMVT, ToMVT);
638   case TargetOpcode::G_FPTOSI:
639     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
640   case TargetOpcode::G_FPTOUI:
641     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
642   case TargetOpcode::G_SITOFP:
643     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
644   case TargetOpcode::G_UITOFP:
645     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
646   }
647   llvm_unreachable("Unsupported libcall function");
648 }
649 
650 static LegalizerHelper::LegalizeResult
651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
652                   Type *FromType) {
653   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
654   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
655                        {{MI.getOperand(1).getReg(), FromType}});
656 }
657 
658 LegalizerHelper::LegalizeResult
659 LegalizerHelper::libcall(MachineInstr &MI) {
660   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
661   unsigned Size = LLTy.getSizeInBits();
662   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
663 
664   switch (MI.getOpcode()) {
665   default:
666     return UnableToLegalize;
667   case TargetOpcode::G_SDIV:
668   case TargetOpcode::G_UDIV:
669   case TargetOpcode::G_SREM:
670   case TargetOpcode::G_UREM:
671   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
672     Type *HLTy = IntegerType::get(Ctx, Size);
673     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
674     if (Status != Legalized)
675       return Status;
676     break;
677   }
678   case TargetOpcode::G_FADD:
679   case TargetOpcode::G_FSUB:
680   case TargetOpcode::G_FMUL:
681   case TargetOpcode::G_FDIV:
682   case TargetOpcode::G_FMA:
683   case TargetOpcode::G_FPOW:
684   case TargetOpcode::G_FREM:
685   case TargetOpcode::G_FCOS:
686   case TargetOpcode::G_FSIN:
687   case TargetOpcode::G_FLOG10:
688   case TargetOpcode::G_FLOG:
689   case TargetOpcode::G_FLOG2:
690   case TargetOpcode::G_FEXP:
691   case TargetOpcode::G_FEXP2:
692   case TargetOpcode::G_FCEIL:
693   case TargetOpcode::G_FFLOOR:
694   case TargetOpcode::G_FMINNUM:
695   case TargetOpcode::G_FMAXNUM:
696   case TargetOpcode::G_FSQRT:
697   case TargetOpcode::G_FRINT:
698   case TargetOpcode::G_FNEARBYINT:
699   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
700     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
701     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
702       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
703       return UnableToLegalize;
704     }
705     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_FPEXT:
711   case TargetOpcode::G_FPTRUNC: {
712     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
713     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
714     if (!FromTy || !ToTy)
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPTOSI:
722   case TargetOpcode::G_FPTOUI: {
723     // FIXME: Support other types
724     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
725     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
726     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(
729         MI, MIRBuilder,
730         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
731         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
732     if (Status != Legalized)
733       return Status;
734     break;
735   }
736   case TargetOpcode::G_SITOFP:
737   case TargetOpcode::G_UITOFP: {
738     // FIXME: Support other types
739     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
740     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
741     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
742       return UnableToLegalize;
743     LegalizeResult Status = conversionLibcall(
744         MI, MIRBuilder,
745         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
746         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
747     if (Status != Legalized)
748       return Status;
749     break;
750   }
751   case TargetOpcode::G_MEMCPY:
752   case TargetOpcode::G_MEMMOVE:
753   case TargetOpcode::G_MEMSET: {
754     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
755     MI.eraseFromParent();
756     return Result;
757   }
758   }
759 
760   MI.eraseFromParent();
761   return Legalized;
762 }
763 
764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
765                                                               unsigned TypeIdx,
766                                                               LLT NarrowTy) {
767   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
768   uint64_t NarrowSize = NarrowTy.getSizeInBits();
769 
770   switch (MI.getOpcode()) {
771   default:
772     return UnableToLegalize;
773   case TargetOpcode::G_IMPLICIT_DEF: {
774     Register DstReg = MI.getOperand(0).getReg();
775     LLT DstTy = MRI.getType(DstReg);
776 
777     // If SizeOp0 is not an exact multiple of NarrowSize, emit
778     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
779     // FIXME: Although this would also be legal for the general case, it causes
780     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
781     //  combines not being hit). This seems to be a problem related to the
782     //  artifact combiner.
783     if (SizeOp0 % NarrowSize != 0) {
784       LLT ImplicitTy = NarrowTy;
785       if (DstTy.isVector())
786         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
787 
788       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
789       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
790 
791       MI.eraseFromParent();
792       return Legalized;
793     }
794 
795     int NumParts = SizeOp0 / NarrowSize;
796 
797     SmallVector<Register, 2> DstRegs;
798     for (int i = 0; i < NumParts; ++i)
799       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
800 
801     if (DstTy.isVector())
802       MIRBuilder.buildBuildVector(DstReg, DstRegs);
803     else
804       MIRBuilder.buildMerge(DstReg, DstRegs);
805     MI.eraseFromParent();
806     return Legalized;
807   }
808   case TargetOpcode::G_CONSTANT: {
809     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
810     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
811     unsigned TotalSize = Ty.getSizeInBits();
812     unsigned NarrowSize = NarrowTy.getSizeInBits();
813     int NumParts = TotalSize / NarrowSize;
814 
815     SmallVector<Register, 4> PartRegs;
816     for (int I = 0; I != NumParts; ++I) {
817       unsigned Offset = I * NarrowSize;
818       auto K = MIRBuilder.buildConstant(NarrowTy,
819                                         Val.lshr(Offset).trunc(NarrowSize));
820       PartRegs.push_back(K.getReg(0));
821     }
822 
823     LLT LeftoverTy;
824     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
825     SmallVector<Register, 1> LeftoverRegs;
826     if (LeftoverBits != 0) {
827       LeftoverTy = LLT::scalar(LeftoverBits);
828       auto K = MIRBuilder.buildConstant(
829         LeftoverTy,
830         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
831       LeftoverRegs.push_back(K.getReg(0));
832     }
833 
834     insertParts(MI.getOperand(0).getReg(),
835                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
836 
837     MI.eraseFromParent();
838     return Legalized;
839   }
840   case TargetOpcode::G_SEXT:
841   case TargetOpcode::G_ZEXT:
842   case TargetOpcode::G_ANYEXT:
843     return narrowScalarExt(MI, TypeIdx, NarrowTy);
844   case TargetOpcode::G_TRUNC: {
845     if (TypeIdx != 1)
846       return UnableToLegalize;
847 
848     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
849     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
850       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
851       return UnableToLegalize;
852     }
853 
854     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
855     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
856     MI.eraseFromParent();
857     return Legalized;
858   }
859 
860   case TargetOpcode::G_FREEZE:
861     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
862 
863   case TargetOpcode::G_ADD: {
864     // FIXME: add support for when SizeOp0 isn't an exact multiple of
865     // NarrowSize.
866     if (SizeOp0 % NarrowSize != 0)
867       return UnableToLegalize;
868     // Expand in terms of carry-setting/consuming G_ADDE instructions.
869     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
870 
871     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
872     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
873     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
874 
875     Register CarryIn;
876     for (int i = 0; i < NumParts; ++i) {
877       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
878       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
879 
880       if (i == 0)
881         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
882       else {
883         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
884                               Src2Regs[i], CarryIn);
885       }
886 
887       DstRegs.push_back(DstReg);
888       CarryIn = CarryOut;
889     }
890     Register DstReg = MI.getOperand(0).getReg();
891     if(MRI.getType(DstReg).isVector())
892       MIRBuilder.buildBuildVector(DstReg, DstRegs);
893     else
894       MIRBuilder.buildMerge(DstReg, DstRegs);
895     MI.eraseFromParent();
896     return Legalized;
897   }
898   case TargetOpcode::G_SUB: {
899     // FIXME: add support for when SizeOp0 isn't an exact multiple of
900     // NarrowSize.
901     if (SizeOp0 % NarrowSize != 0)
902       return UnableToLegalize;
903 
904     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
905 
906     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
907     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
908     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
909 
910     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
911     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
912     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
913                           {Src1Regs[0], Src2Regs[0]});
914     DstRegs.push_back(DstReg);
915     Register BorrowIn = BorrowOut;
916     for (int i = 1; i < NumParts; ++i) {
917       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
918       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
919 
920       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
921                             {Src1Regs[i], Src2Regs[i], BorrowIn});
922 
923       DstRegs.push_back(DstReg);
924       BorrowIn = BorrowOut;
925     }
926     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
927     MI.eraseFromParent();
928     return Legalized;
929   }
930   case TargetOpcode::G_MUL:
931   case TargetOpcode::G_UMULH:
932     return narrowScalarMul(MI, NarrowTy);
933   case TargetOpcode::G_EXTRACT:
934     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
935   case TargetOpcode::G_INSERT:
936     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
937   case TargetOpcode::G_LOAD: {
938     auto &MMO = **MI.memoperands_begin();
939     Register DstReg = MI.getOperand(0).getReg();
940     LLT DstTy = MRI.getType(DstReg);
941     if (DstTy.isVector())
942       return UnableToLegalize;
943 
944     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
945       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
946       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
947       MIRBuilder.buildAnyExt(DstReg, TmpReg);
948       MI.eraseFromParent();
949       return Legalized;
950     }
951 
952     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
953   }
954   case TargetOpcode::G_ZEXTLOAD:
955   case TargetOpcode::G_SEXTLOAD: {
956     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
957     Register DstReg = MI.getOperand(0).getReg();
958     Register PtrReg = MI.getOperand(1).getReg();
959 
960     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
961     auto &MMO = **MI.memoperands_begin();
962     unsigned MemSize = MMO.getSizeInBits();
963 
964     if (MemSize == NarrowSize) {
965       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
966     } else if (MemSize < NarrowSize) {
967       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
968     } else if (MemSize > NarrowSize) {
969       // FIXME: Need to split the load.
970       return UnableToLegalize;
971     }
972 
973     if (ZExt)
974       MIRBuilder.buildZExt(DstReg, TmpReg);
975     else
976       MIRBuilder.buildSExt(DstReg, TmpReg);
977 
978     MI.eraseFromParent();
979     return Legalized;
980   }
981   case TargetOpcode::G_STORE: {
982     const auto &MMO = **MI.memoperands_begin();
983 
984     Register SrcReg = MI.getOperand(0).getReg();
985     LLT SrcTy = MRI.getType(SrcReg);
986     if (SrcTy.isVector())
987       return UnableToLegalize;
988 
989     int NumParts = SizeOp0 / NarrowSize;
990     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
991     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
992     if (SrcTy.isVector() && LeftoverBits != 0)
993       return UnableToLegalize;
994 
995     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
996       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
997       auto &MMO = **MI.memoperands_begin();
998       MIRBuilder.buildTrunc(TmpReg, SrcReg);
999       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
1000       MI.eraseFromParent();
1001       return Legalized;
1002     }
1003 
1004     return reduceLoadStoreWidth(MI, 0, NarrowTy);
1005   }
1006   case TargetOpcode::G_SELECT:
1007     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1008   case TargetOpcode::G_AND:
1009   case TargetOpcode::G_OR:
1010   case TargetOpcode::G_XOR: {
1011     // Legalize bitwise operation:
1012     // A = BinOp<Ty> B, C
1013     // into:
1014     // B1, ..., BN = G_UNMERGE_VALUES B
1015     // C1, ..., CN = G_UNMERGE_VALUES C
1016     // A1 = BinOp<Ty/N> B1, C2
1017     // ...
1018     // AN = BinOp<Ty/N> BN, CN
1019     // A = G_MERGE_VALUES A1, ..., AN
1020     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1021   }
1022   case TargetOpcode::G_SHL:
1023   case TargetOpcode::G_LSHR:
1024   case TargetOpcode::G_ASHR:
1025     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_CTLZ:
1027   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1028   case TargetOpcode::G_CTTZ:
1029   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1030   case TargetOpcode::G_CTPOP:
1031     if (TypeIdx == 1)
1032       switch (MI.getOpcode()) {
1033       case TargetOpcode::G_CTLZ:
1034       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1035         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1036       case TargetOpcode::G_CTTZ:
1037       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1038         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1039       case TargetOpcode::G_CTPOP:
1040         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1041       default:
1042         return UnableToLegalize;
1043       }
1044 
1045     Observer.changingInstr(MI);
1046     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   case TargetOpcode::G_INTTOPTR:
1050     if (TypeIdx != 1)
1051       return UnableToLegalize;
1052 
1053     Observer.changingInstr(MI);
1054     narrowScalarSrc(MI, NarrowTy, 1);
1055     Observer.changedInstr(MI);
1056     return Legalized;
1057   case TargetOpcode::G_PTRTOINT:
1058     if (TypeIdx != 0)
1059       return UnableToLegalize;
1060 
1061     Observer.changingInstr(MI);
1062     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   case TargetOpcode::G_PHI: {
1066     unsigned NumParts = SizeOp0 / NarrowSize;
1067     SmallVector<Register, 2> DstRegs(NumParts);
1068     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1069     Observer.changingInstr(MI);
1070     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1071       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1072       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1073       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1074                    SrcRegs[i / 2]);
1075     }
1076     MachineBasicBlock &MBB = *MI.getParent();
1077     MIRBuilder.setInsertPt(MBB, MI);
1078     for (unsigned i = 0; i < NumParts; ++i) {
1079       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1080       MachineInstrBuilder MIB =
1081           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1082       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1083         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1084     }
1085     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1086     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1087     Observer.changedInstr(MI);
1088     MI.eraseFromParent();
1089     return Legalized;
1090   }
1091   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1092   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1093     if (TypeIdx != 2)
1094       return UnableToLegalize;
1095 
1096     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1097     Observer.changingInstr(MI);
1098     narrowScalarSrc(MI, NarrowTy, OpIdx);
1099     Observer.changedInstr(MI);
1100     return Legalized;
1101   }
1102   case TargetOpcode::G_ICMP: {
1103     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1104     if (NarrowSize * 2 != SrcSize)
1105       return UnableToLegalize;
1106 
1107     Observer.changingInstr(MI);
1108     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1109     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1110     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1111 
1112     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1113     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1114     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1115 
1116     CmpInst::Predicate Pred =
1117         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1118     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1119 
1120     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1121       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1122       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1123       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1124       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1125       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1126     } else {
1127       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1128       MachineInstrBuilder CmpHEQ =
1129           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1130       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1131           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1132       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1133     }
1134     Observer.changedInstr(MI);
1135     MI.eraseFromParent();
1136     return Legalized;
1137   }
1138   case TargetOpcode::G_SEXT_INREG: {
1139     if (TypeIdx != 0)
1140       return UnableToLegalize;
1141 
1142     int64_t SizeInBits = MI.getOperand(2).getImm();
1143 
1144     // So long as the new type has more bits than the bits we're extending we
1145     // don't need to break it apart.
1146     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1147       Observer.changingInstr(MI);
1148       // We don't lose any non-extension bits by truncating the src and
1149       // sign-extending the dst.
1150       MachineOperand &MO1 = MI.getOperand(1);
1151       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1152       MO1.setReg(TruncMIB.getReg(0));
1153 
1154       MachineOperand &MO2 = MI.getOperand(0);
1155       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1156       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1157       MIRBuilder.buildSExt(MO2, DstExt);
1158       MO2.setReg(DstExt);
1159       Observer.changedInstr(MI);
1160       return Legalized;
1161     }
1162 
1163     // Break it apart. Components below the extension point are unmodified. The
1164     // component containing the extension point becomes a narrower SEXT_INREG.
1165     // Components above it are ashr'd from the component containing the
1166     // extension point.
1167     if (SizeOp0 % NarrowSize != 0)
1168       return UnableToLegalize;
1169     int NumParts = SizeOp0 / NarrowSize;
1170 
1171     // List the registers where the destination will be scattered.
1172     SmallVector<Register, 2> DstRegs;
1173     // List the registers where the source will be split.
1174     SmallVector<Register, 2> SrcRegs;
1175 
1176     // Create all the temporary registers.
1177     for (int i = 0; i < NumParts; ++i) {
1178       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1179 
1180       SrcRegs.push_back(SrcReg);
1181     }
1182 
1183     // Explode the big arguments into smaller chunks.
1184     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1185 
1186     Register AshrCstReg =
1187         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1188             .getReg(0);
1189     Register FullExtensionReg = 0;
1190     Register PartialExtensionReg = 0;
1191 
1192     // Do the operation on each small part.
1193     for (int i = 0; i < NumParts; ++i) {
1194       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1195         DstRegs.push_back(SrcRegs[i]);
1196       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1197         assert(PartialExtensionReg &&
1198                "Expected to visit partial extension before full");
1199         if (FullExtensionReg) {
1200           DstRegs.push_back(FullExtensionReg);
1201           continue;
1202         }
1203         DstRegs.push_back(
1204             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1205                 .getReg(0));
1206         FullExtensionReg = DstRegs.back();
1207       } else {
1208         DstRegs.push_back(
1209             MIRBuilder
1210                 .buildInstr(
1211                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1212                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1213                 .getReg(0));
1214         PartialExtensionReg = DstRegs.back();
1215       }
1216     }
1217 
1218     // Gather the destination registers into the final destination.
1219     Register DstReg = MI.getOperand(0).getReg();
1220     MIRBuilder.buildMerge(DstReg, DstRegs);
1221     MI.eraseFromParent();
1222     return Legalized;
1223   }
1224   case TargetOpcode::G_BSWAP:
1225   case TargetOpcode::G_BITREVERSE: {
1226     if (SizeOp0 % NarrowSize != 0)
1227       return UnableToLegalize;
1228 
1229     Observer.changingInstr(MI);
1230     SmallVector<Register, 2> SrcRegs, DstRegs;
1231     unsigned NumParts = SizeOp0 / NarrowSize;
1232     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1233 
1234     for (unsigned i = 0; i < NumParts; ++i) {
1235       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1236                                            {SrcRegs[NumParts - 1 - i]});
1237       DstRegs.push_back(DstPart.getReg(0));
1238     }
1239 
1240     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1241 
1242     Observer.changedInstr(MI);
1243     MI.eraseFromParent();
1244     return Legalized;
1245   }
1246   case TargetOpcode::G_PTR_ADD:
1247   case TargetOpcode::G_PTRMASK: {
1248     if (TypeIdx != 1)
1249       return UnableToLegalize;
1250     Observer.changingInstr(MI);
1251     narrowScalarSrc(MI, NarrowTy, 2);
1252     Observer.changedInstr(MI);
1253     return Legalized;
1254   }
1255   case TargetOpcode::G_FPTOUI: {
1256     if (TypeIdx != 0)
1257       return UnableToLegalize;
1258     Observer.changingInstr(MI);
1259     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1260     Observer.changedInstr(MI);
1261     return Legalized;
1262   }
1263   case TargetOpcode::G_FPTOSI: {
1264     if (TypeIdx != 0)
1265       return UnableToLegalize;
1266     Observer.changingInstr(MI);
1267     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1268     Observer.changedInstr(MI);
1269     return Legalized;
1270   }
1271   case TargetOpcode::G_FPEXT:
1272     if (TypeIdx != 0)
1273       return UnableToLegalize;
1274     Observer.changingInstr(MI);
1275     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1276     Observer.changedInstr(MI);
1277     return Legalized;
1278   }
1279 }
1280 
1281 Register LegalizerHelper::coerceToScalar(Register Val) {
1282   LLT Ty = MRI.getType(Val);
1283   if (Ty.isScalar())
1284     return Val;
1285 
1286   const DataLayout &DL = MIRBuilder.getDataLayout();
1287   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1288   if (Ty.isPointer()) {
1289     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1290       return Register();
1291     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1292   }
1293 
1294   Register NewVal = Val;
1295 
1296   assert(Ty.isVector());
1297   LLT EltTy = Ty.getElementType();
1298   if (EltTy.isPointer())
1299     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1300   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1301 }
1302 
1303 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1304                                      unsigned OpIdx, unsigned ExtOpcode) {
1305   MachineOperand &MO = MI.getOperand(OpIdx);
1306   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1307   MO.setReg(ExtB.getReg(0));
1308 }
1309 
1310 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1311                                       unsigned OpIdx) {
1312   MachineOperand &MO = MI.getOperand(OpIdx);
1313   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1314   MO.setReg(ExtB.getReg(0));
1315 }
1316 
1317 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1318                                      unsigned OpIdx, unsigned TruncOpcode) {
1319   MachineOperand &MO = MI.getOperand(OpIdx);
1320   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1321   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1322   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1323   MO.setReg(DstExt);
1324 }
1325 
1326 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1327                                       unsigned OpIdx, unsigned ExtOpcode) {
1328   MachineOperand &MO = MI.getOperand(OpIdx);
1329   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1330   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1331   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1332   MO.setReg(DstTrunc);
1333 }
1334 
1335 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1336                                             unsigned OpIdx) {
1337   MachineOperand &MO = MI.getOperand(OpIdx);
1338   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1339   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1340 }
1341 
1342 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1343                                             unsigned OpIdx) {
1344   MachineOperand &MO = MI.getOperand(OpIdx);
1345 
1346   LLT OldTy = MRI.getType(MO.getReg());
1347   unsigned OldElts = OldTy.getNumElements();
1348   unsigned NewElts = MoreTy.getNumElements();
1349 
1350   unsigned NumParts = NewElts / OldElts;
1351 
1352   // Use concat_vectors if the result is a multiple of the number of elements.
1353   if (NumParts * OldElts == NewElts) {
1354     SmallVector<Register, 8> Parts;
1355     Parts.push_back(MO.getReg());
1356 
1357     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1358     for (unsigned I = 1; I != NumParts; ++I)
1359       Parts.push_back(ImpDef);
1360 
1361     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1362     MO.setReg(Concat.getReg(0));
1363     return;
1364   }
1365 
1366   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1367   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1368   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1369   MO.setReg(MoreReg);
1370 }
1371 
1372 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1373   MachineOperand &Op = MI.getOperand(OpIdx);
1374   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1375 }
1376 
1377 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1378   MachineOperand &MO = MI.getOperand(OpIdx);
1379   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1380   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1381   MIRBuilder.buildBitcast(MO, CastDst);
1382   MO.setReg(CastDst);
1383 }
1384 
1385 LegalizerHelper::LegalizeResult
1386 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1387                                         LLT WideTy) {
1388   if (TypeIdx != 1)
1389     return UnableToLegalize;
1390 
1391   Register DstReg = MI.getOperand(0).getReg();
1392   LLT DstTy = MRI.getType(DstReg);
1393   if (DstTy.isVector())
1394     return UnableToLegalize;
1395 
1396   Register Src1 = MI.getOperand(1).getReg();
1397   LLT SrcTy = MRI.getType(Src1);
1398   const int DstSize = DstTy.getSizeInBits();
1399   const int SrcSize = SrcTy.getSizeInBits();
1400   const int WideSize = WideTy.getSizeInBits();
1401   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1402 
1403   unsigned NumOps = MI.getNumOperands();
1404   unsigned NumSrc = MI.getNumOperands() - 1;
1405   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1406 
1407   if (WideSize >= DstSize) {
1408     // Directly pack the bits in the target type.
1409     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1410 
1411     for (unsigned I = 2; I != NumOps; ++I) {
1412       const unsigned Offset = (I - 1) * PartSize;
1413 
1414       Register SrcReg = MI.getOperand(I).getReg();
1415       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1416 
1417       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1418 
1419       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1420         MRI.createGenericVirtualRegister(WideTy);
1421 
1422       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1423       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1424       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1425       ResultReg = NextResult;
1426     }
1427 
1428     if (WideSize > DstSize)
1429       MIRBuilder.buildTrunc(DstReg, ResultReg);
1430     else if (DstTy.isPointer())
1431       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1432 
1433     MI.eraseFromParent();
1434     return Legalized;
1435   }
1436 
1437   // Unmerge the original values to the GCD type, and recombine to the next
1438   // multiple greater than the original type.
1439   //
1440   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1441   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1442   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1443   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1444   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1445   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1446   // %12:_(s12) = G_MERGE_VALUES %10, %11
1447   //
1448   // Padding with undef if necessary:
1449   //
1450   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1451   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1452   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1453   // %7:_(s2) = G_IMPLICIT_DEF
1454   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1455   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1456   // %10:_(s12) = G_MERGE_VALUES %8, %9
1457 
1458   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1459   LLT GCDTy = LLT::scalar(GCD);
1460 
1461   SmallVector<Register, 8> Parts;
1462   SmallVector<Register, 8> NewMergeRegs;
1463   SmallVector<Register, 8> Unmerges;
1464   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1465 
1466   // Decompose the original operands if they don't evenly divide.
1467   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1468     Register SrcReg = MI.getOperand(I).getReg();
1469     if (GCD == SrcSize) {
1470       Unmerges.push_back(SrcReg);
1471     } else {
1472       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1473       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1474         Unmerges.push_back(Unmerge.getReg(J));
1475     }
1476   }
1477 
1478   // Pad with undef to the next size that is a multiple of the requested size.
1479   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1480     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1481     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1482       Unmerges.push_back(UndefReg);
1483   }
1484 
1485   const int PartsPerGCD = WideSize / GCD;
1486 
1487   // Build merges of each piece.
1488   ArrayRef<Register> Slicer(Unmerges);
1489   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1490     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1491     NewMergeRegs.push_back(Merge.getReg(0));
1492   }
1493 
1494   // A truncate may be necessary if the requested type doesn't evenly divide the
1495   // original result type.
1496   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1497     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1498   } else {
1499     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1500     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1501   }
1502 
1503   MI.eraseFromParent();
1504   return Legalized;
1505 }
1506 
1507 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1508   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1509   LLT OrigTy = MRI.getType(OrigReg);
1510   LLT LCMTy = getLCMType(WideTy, OrigTy);
1511 
1512   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1513   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1514 
1515   Register UnmergeSrc = WideReg;
1516 
1517   // Create a merge to the LCM type, padding with undef
1518   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1519   // =>
1520   // %1:_(<4 x s32>) = G_FOO
1521   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1522   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1523   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1524   if (NumMergeParts > 1) {
1525     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1526     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1527     MergeParts[0] = WideReg;
1528     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1529   }
1530 
1531   // Unmerge to the original register and pad with dead defs.
1532   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1533   UnmergeResults[0] = OrigReg;
1534   for (int I = 1; I != NumUnmergeParts; ++I)
1535     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1536 
1537   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1538   return WideReg;
1539 }
1540 
1541 LegalizerHelper::LegalizeResult
1542 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1543                                           LLT WideTy) {
1544   if (TypeIdx != 0)
1545     return UnableToLegalize;
1546 
1547   int NumDst = MI.getNumOperands() - 1;
1548   Register SrcReg = MI.getOperand(NumDst).getReg();
1549   LLT SrcTy = MRI.getType(SrcReg);
1550   if (SrcTy.isVector())
1551     return UnableToLegalize;
1552 
1553   Register Dst0Reg = MI.getOperand(0).getReg();
1554   LLT DstTy = MRI.getType(Dst0Reg);
1555   if (!DstTy.isScalar())
1556     return UnableToLegalize;
1557 
1558   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1559     if (SrcTy.isPointer()) {
1560       const DataLayout &DL = MIRBuilder.getDataLayout();
1561       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1562         LLVM_DEBUG(
1563             dbgs() << "Not casting non-integral address space integer\n");
1564         return UnableToLegalize;
1565       }
1566 
1567       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1568       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1569     }
1570 
1571     // Widen SrcTy to WideTy. This does not affect the result, but since the
1572     // user requested this size, it is probably better handled than SrcTy and
1573     // should reduce the total number of legalization artifacts
1574     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1575       SrcTy = WideTy;
1576       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1577     }
1578 
1579     // Theres no unmerge type to target. Directly extract the bits from the
1580     // source type
1581     unsigned DstSize = DstTy.getSizeInBits();
1582 
1583     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1584     for (int I = 1; I != NumDst; ++I) {
1585       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1586       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1587       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1588     }
1589 
1590     MI.eraseFromParent();
1591     return Legalized;
1592   }
1593 
1594   // Extend the source to a wider type.
1595   LLT LCMTy = getLCMType(SrcTy, WideTy);
1596 
1597   Register WideSrc = SrcReg;
1598   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1599     // TODO: If this is an integral address space, cast to integer and anyext.
1600     if (SrcTy.isPointer()) {
1601       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1602       return UnableToLegalize;
1603     }
1604 
1605     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1606   }
1607 
1608   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1609 
1610   // Create a sequence of unmerges and merges to the original results. Since we
1611   // may have widened the source, we will need to pad the results with dead defs
1612   // to cover the source register.
1613   // e.g. widen s48 to s64:
1614   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1615   //
1616   // =>
1617   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1618   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1619   //  ; unpack to GCD type, with extra dead defs
1620   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1621   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1622   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1623   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1624   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1625   const LLT GCDTy = getGCDType(WideTy, DstTy);
1626   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1627   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1628 
1629   // Directly unmerge to the destination without going through a GCD type
1630   // if possible
1631   if (PartsPerRemerge == 1) {
1632     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1633 
1634     for (int I = 0; I != NumUnmerge; ++I) {
1635       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1636 
1637       for (int J = 0; J != PartsPerUnmerge; ++J) {
1638         int Idx = I * PartsPerUnmerge + J;
1639         if (Idx < NumDst)
1640           MIB.addDef(MI.getOperand(Idx).getReg());
1641         else {
1642           // Create dead def for excess components.
1643           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1644         }
1645       }
1646 
1647       MIB.addUse(Unmerge.getReg(I));
1648     }
1649   } else {
1650     SmallVector<Register, 16> Parts;
1651     for (int J = 0; J != NumUnmerge; ++J)
1652       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1653 
1654     SmallVector<Register, 8> RemergeParts;
1655     for (int I = 0; I != NumDst; ++I) {
1656       for (int J = 0; J < PartsPerRemerge; ++J) {
1657         const int Idx = I * PartsPerRemerge + J;
1658         RemergeParts.emplace_back(Parts[Idx]);
1659       }
1660 
1661       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1662       RemergeParts.clear();
1663     }
1664   }
1665 
1666   MI.eraseFromParent();
1667   return Legalized;
1668 }
1669 
1670 LegalizerHelper::LegalizeResult
1671 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1672                                     LLT WideTy) {
1673   Register DstReg = MI.getOperand(0).getReg();
1674   Register SrcReg = MI.getOperand(1).getReg();
1675   LLT SrcTy = MRI.getType(SrcReg);
1676 
1677   LLT DstTy = MRI.getType(DstReg);
1678   unsigned Offset = MI.getOperand(2).getImm();
1679 
1680   if (TypeIdx == 0) {
1681     if (SrcTy.isVector() || DstTy.isVector())
1682       return UnableToLegalize;
1683 
1684     SrcOp Src(SrcReg);
1685     if (SrcTy.isPointer()) {
1686       // Extracts from pointers can be handled only if they are really just
1687       // simple integers.
1688       const DataLayout &DL = MIRBuilder.getDataLayout();
1689       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1690         return UnableToLegalize;
1691 
1692       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1693       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1694       SrcTy = SrcAsIntTy;
1695     }
1696 
1697     if (DstTy.isPointer())
1698       return UnableToLegalize;
1699 
1700     if (Offset == 0) {
1701       // Avoid a shift in the degenerate case.
1702       MIRBuilder.buildTrunc(DstReg,
1703                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1704       MI.eraseFromParent();
1705       return Legalized;
1706     }
1707 
1708     // Do a shift in the source type.
1709     LLT ShiftTy = SrcTy;
1710     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1711       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1712       ShiftTy = WideTy;
1713     }
1714 
1715     auto LShr = MIRBuilder.buildLShr(
1716       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1717     MIRBuilder.buildTrunc(DstReg, LShr);
1718     MI.eraseFromParent();
1719     return Legalized;
1720   }
1721 
1722   if (SrcTy.isScalar()) {
1723     Observer.changingInstr(MI);
1724     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1725     Observer.changedInstr(MI);
1726     return Legalized;
1727   }
1728 
1729   if (!SrcTy.isVector())
1730     return UnableToLegalize;
1731 
1732   if (DstTy != SrcTy.getElementType())
1733     return UnableToLegalize;
1734 
1735   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1736     return UnableToLegalize;
1737 
1738   Observer.changingInstr(MI);
1739   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1740 
1741   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1742                           Offset);
1743   widenScalarDst(MI, WideTy.getScalarType(), 0);
1744   Observer.changedInstr(MI);
1745   return Legalized;
1746 }
1747 
1748 LegalizerHelper::LegalizeResult
1749 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1750                                    LLT WideTy) {
1751   if (TypeIdx != 0 || WideTy.isVector())
1752     return UnableToLegalize;
1753   Observer.changingInstr(MI);
1754   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1755   widenScalarDst(MI, WideTy);
1756   Observer.changedInstr(MI);
1757   return Legalized;
1758 }
1759 
1760 LegalizerHelper::LegalizeResult
1761 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1762                                          LLT WideTy) {
1763   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1764                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1765                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1766   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1767                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1768   // We can convert this to:
1769   //   1. Any extend iN to iM
1770   //   2. SHL by M-N
1771   //   3. [US][ADD|SUB|SHL]SAT
1772   //   4. L/ASHR by M-N
1773   //
1774   // It may be more efficient to lower this to a min and a max operation in
1775   // the higher precision arithmetic if the promoted operation isn't legal,
1776   // but this decision is up to the target's lowering request.
1777   Register DstReg = MI.getOperand(0).getReg();
1778 
1779   unsigned NewBits = WideTy.getScalarSizeInBits();
1780   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1781 
1782   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1783   // must not left shift the RHS to preserve the shift amount.
1784   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1785   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1786                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1787   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1788   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1789   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1790 
1791   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1792                                         {ShiftL, ShiftR}, MI.getFlags());
1793 
1794   // Use a shift that will preserve the number of sign bits when the trunc is
1795   // folded away.
1796   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1797                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1798 
1799   MIRBuilder.buildTrunc(DstReg, Result);
1800   MI.eraseFromParent();
1801   return Legalized;
1802 }
1803 
1804 LegalizerHelper::LegalizeResult
1805 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1806   switch (MI.getOpcode()) {
1807   default:
1808     return UnableToLegalize;
1809   case TargetOpcode::G_EXTRACT:
1810     return widenScalarExtract(MI, TypeIdx, WideTy);
1811   case TargetOpcode::G_INSERT:
1812     return widenScalarInsert(MI, TypeIdx, WideTy);
1813   case TargetOpcode::G_MERGE_VALUES:
1814     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1815   case TargetOpcode::G_UNMERGE_VALUES:
1816     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1817   case TargetOpcode::G_UADDO:
1818   case TargetOpcode::G_USUBO: {
1819     if (TypeIdx == 1)
1820       return UnableToLegalize; // TODO
1821     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1822     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1823     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1824                           ? TargetOpcode::G_ADD
1825                           : TargetOpcode::G_SUB;
1826     // Do the arithmetic in the larger type.
1827     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1828     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1829     APInt Mask =
1830         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1831     auto AndOp = MIRBuilder.buildAnd(
1832         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1833     // There is no overflow if the AndOp is the same as NewOp.
1834     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1835     // Now trunc the NewOp to the original result.
1836     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1837     MI.eraseFromParent();
1838     return Legalized;
1839   }
1840   case TargetOpcode::G_SADDSAT:
1841   case TargetOpcode::G_SSUBSAT:
1842   case TargetOpcode::G_SSHLSAT:
1843   case TargetOpcode::G_UADDSAT:
1844   case TargetOpcode::G_USUBSAT:
1845   case TargetOpcode::G_USHLSAT:
1846     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1847   case TargetOpcode::G_CTTZ:
1848   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1849   case TargetOpcode::G_CTLZ:
1850   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1851   case TargetOpcode::G_CTPOP: {
1852     if (TypeIdx == 0) {
1853       Observer.changingInstr(MI);
1854       widenScalarDst(MI, WideTy, 0);
1855       Observer.changedInstr(MI);
1856       return Legalized;
1857     }
1858 
1859     Register SrcReg = MI.getOperand(1).getReg();
1860 
1861     // First ZEXT the input.
1862     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1863     LLT CurTy = MRI.getType(SrcReg);
1864     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1865       // The count is the same in the larger type except if the original
1866       // value was zero.  This can be handled by setting the bit just off
1867       // the top of the original type.
1868       auto TopBit =
1869           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1870       MIBSrc = MIRBuilder.buildOr(
1871         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1872     }
1873 
1874     // Perform the operation at the larger size.
1875     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1876     // This is already the correct result for CTPOP and CTTZs
1877     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1878         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1879       // The correct result is NewOp - (Difference in widety and current ty).
1880       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1881       MIBNewOp = MIRBuilder.buildSub(
1882           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1883     }
1884 
1885     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1886     MI.eraseFromParent();
1887     return Legalized;
1888   }
1889   case TargetOpcode::G_BSWAP: {
1890     Observer.changingInstr(MI);
1891     Register DstReg = MI.getOperand(0).getReg();
1892 
1893     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1894     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1895     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1896     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1897 
1898     MI.getOperand(0).setReg(DstExt);
1899 
1900     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1901 
1902     LLT Ty = MRI.getType(DstReg);
1903     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1904     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1905     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1906 
1907     MIRBuilder.buildTrunc(DstReg, ShrReg);
1908     Observer.changedInstr(MI);
1909     return Legalized;
1910   }
1911   case TargetOpcode::G_BITREVERSE: {
1912     Observer.changingInstr(MI);
1913 
1914     Register DstReg = MI.getOperand(0).getReg();
1915     LLT Ty = MRI.getType(DstReg);
1916     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1917 
1918     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1919     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1920     MI.getOperand(0).setReg(DstExt);
1921     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1922 
1923     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1924     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1925     MIRBuilder.buildTrunc(DstReg, Shift);
1926     Observer.changedInstr(MI);
1927     return Legalized;
1928   }
1929   case TargetOpcode::G_FREEZE:
1930     Observer.changingInstr(MI);
1931     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1932     widenScalarDst(MI, WideTy);
1933     Observer.changedInstr(MI);
1934     return Legalized;
1935 
1936   case TargetOpcode::G_ADD:
1937   case TargetOpcode::G_AND:
1938   case TargetOpcode::G_MUL:
1939   case TargetOpcode::G_OR:
1940   case TargetOpcode::G_XOR:
1941   case TargetOpcode::G_SUB:
1942     // Perform operation at larger width (any extension is fines here, high bits
1943     // don't affect the result) and then truncate the result back to the
1944     // original type.
1945     Observer.changingInstr(MI);
1946     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1947     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1948     widenScalarDst(MI, WideTy);
1949     Observer.changedInstr(MI);
1950     return Legalized;
1951 
1952   case TargetOpcode::G_SHL:
1953     Observer.changingInstr(MI);
1954 
1955     if (TypeIdx == 0) {
1956       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1957       widenScalarDst(MI, WideTy);
1958     } else {
1959       assert(TypeIdx == 1);
1960       // The "number of bits to shift" operand must preserve its value as an
1961       // unsigned integer:
1962       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1963     }
1964 
1965     Observer.changedInstr(MI);
1966     return Legalized;
1967 
1968   case TargetOpcode::G_SDIV:
1969   case TargetOpcode::G_SREM:
1970   case TargetOpcode::G_SMIN:
1971   case TargetOpcode::G_SMAX:
1972     Observer.changingInstr(MI);
1973     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1974     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1975     widenScalarDst(MI, WideTy);
1976     Observer.changedInstr(MI);
1977     return Legalized;
1978 
1979   case TargetOpcode::G_ASHR:
1980   case TargetOpcode::G_LSHR:
1981     Observer.changingInstr(MI);
1982 
1983     if (TypeIdx == 0) {
1984       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1985         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1986 
1987       widenScalarSrc(MI, WideTy, 1, CvtOp);
1988       widenScalarDst(MI, WideTy);
1989     } else {
1990       assert(TypeIdx == 1);
1991       // The "number of bits to shift" operand must preserve its value as an
1992       // unsigned integer:
1993       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1994     }
1995 
1996     Observer.changedInstr(MI);
1997     return Legalized;
1998   case TargetOpcode::G_UDIV:
1999   case TargetOpcode::G_UREM:
2000   case TargetOpcode::G_UMIN:
2001   case TargetOpcode::G_UMAX:
2002     Observer.changingInstr(MI);
2003     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2004     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2005     widenScalarDst(MI, WideTy);
2006     Observer.changedInstr(MI);
2007     return Legalized;
2008 
2009   case TargetOpcode::G_SELECT:
2010     Observer.changingInstr(MI);
2011     if (TypeIdx == 0) {
2012       // Perform operation at larger width (any extension is fine here, high
2013       // bits don't affect the result) and then truncate the result back to the
2014       // original type.
2015       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2016       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2017       widenScalarDst(MI, WideTy);
2018     } else {
2019       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2020       // Explicit extension is required here since high bits affect the result.
2021       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2022     }
2023     Observer.changedInstr(MI);
2024     return Legalized;
2025 
2026   case TargetOpcode::G_FPTOSI:
2027   case TargetOpcode::G_FPTOUI:
2028     Observer.changingInstr(MI);
2029 
2030     if (TypeIdx == 0)
2031       widenScalarDst(MI, WideTy);
2032     else
2033       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2034 
2035     Observer.changedInstr(MI);
2036     return Legalized;
2037   case TargetOpcode::G_SITOFP:
2038     Observer.changingInstr(MI);
2039 
2040     if (TypeIdx == 0)
2041       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2042     else
2043       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2044 
2045     Observer.changedInstr(MI);
2046     return Legalized;
2047   case TargetOpcode::G_UITOFP:
2048     Observer.changingInstr(MI);
2049 
2050     if (TypeIdx == 0)
2051       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2052     else
2053       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2054 
2055     Observer.changedInstr(MI);
2056     return Legalized;
2057   case TargetOpcode::G_LOAD:
2058   case TargetOpcode::G_SEXTLOAD:
2059   case TargetOpcode::G_ZEXTLOAD:
2060     Observer.changingInstr(MI);
2061     widenScalarDst(MI, WideTy);
2062     Observer.changedInstr(MI);
2063     return Legalized;
2064 
2065   case TargetOpcode::G_STORE: {
2066     if (TypeIdx != 0)
2067       return UnableToLegalize;
2068 
2069     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2070     if (!Ty.isScalar())
2071       return UnableToLegalize;
2072 
2073     Observer.changingInstr(MI);
2074 
2075     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2076       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2077     widenScalarSrc(MI, WideTy, 0, ExtType);
2078 
2079     Observer.changedInstr(MI);
2080     return Legalized;
2081   }
2082   case TargetOpcode::G_CONSTANT: {
2083     MachineOperand &SrcMO = MI.getOperand(1);
2084     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2085     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2086         MRI.getType(MI.getOperand(0).getReg()));
2087     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2088             ExtOpc == TargetOpcode::G_ANYEXT) &&
2089            "Illegal Extend");
2090     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2091     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2092                            ? SrcVal.sext(WideTy.getSizeInBits())
2093                            : SrcVal.zext(WideTy.getSizeInBits());
2094     Observer.changingInstr(MI);
2095     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2096 
2097     widenScalarDst(MI, WideTy);
2098     Observer.changedInstr(MI);
2099     return Legalized;
2100   }
2101   case TargetOpcode::G_FCONSTANT: {
2102     MachineOperand &SrcMO = MI.getOperand(1);
2103     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2104     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2105     bool LosesInfo;
2106     switch (WideTy.getSizeInBits()) {
2107     case 32:
2108       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2109                   &LosesInfo);
2110       break;
2111     case 64:
2112       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2113                   &LosesInfo);
2114       break;
2115     default:
2116       return UnableToLegalize;
2117     }
2118 
2119     assert(!LosesInfo && "extend should always be lossless");
2120 
2121     Observer.changingInstr(MI);
2122     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2123 
2124     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2125     Observer.changedInstr(MI);
2126     return Legalized;
2127   }
2128   case TargetOpcode::G_IMPLICIT_DEF: {
2129     Observer.changingInstr(MI);
2130     widenScalarDst(MI, WideTy);
2131     Observer.changedInstr(MI);
2132     return Legalized;
2133   }
2134   case TargetOpcode::G_BRCOND:
2135     Observer.changingInstr(MI);
2136     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2137     Observer.changedInstr(MI);
2138     return Legalized;
2139 
2140   case TargetOpcode::G_FCMP:
2141     Observer.changingInstr(MI);
2142     if (TypeIdx == 0)
2143       widenScalarDst(MI, WideTy);
2144     else {
2145       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2146       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2147     }
2148     Observer.changedInstr(MI);
2149     return Legalized;
2150 
2151   case TargetOpcode::G_ICMP:
2152     Observer.changingInstr(MI);
2153     if (TypeIdx == 0)
2154       widenScalarDst(MI, WideTy);
2155     else {
2156       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2157                                MI.getOperand(1).getPredicate()))
2158                                ? TargetOpcode::G_SEXT
2159                                : TargetOpcode::G_ZEXT;
2160       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2161       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2162     }
2163     Observer.changedInstr(MI);
2164     return Legalized;
2165 
2166   case TargetOpcode::G_PTR_ADD:
2167     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2168     Observer.changingInstr(MI);
2169     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2170     Observer.changedInstr(MI);
2171     return Legalized;
2172 
2173   case TargetOpcode::G_PHI: {
2174     assert(TypeIdx == 0 && "Expecting only Idx 0");
2175 
2176     Observer.changingInstr(MI);
2177     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2178       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2179       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2180       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2181     }
2182 
2183     MachineBasicBlock &MBB = *MI.getParent();
2184     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2185     widenScalarDst(MI, WideTy);
2186     Observer.changedInstr(MI);
2187     return Legalized;
2188   }
2189   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2190     if (TypeIdx == 0) {
2191       Register VecReg = MI.getOperand(1).getReg();
2192       LLT VecTy = MRI.getType(VecReg);
2193       Observer.changingInstr(MI);
2194 
2195       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2196                                      WideTy.getSizeInBits()),
2197                      1, TargetOpcode::G_SEXT);
2198 
2199       widenScalarDst(MI, WideTy, 0);
2200       Observer.changedInstr(MI);
2201       return Legalized;
2202     }
2203 
2204     if (TypeIdx != 2)
2205       return UnableToLegalize;
2206     Observer.changingInstr(MI);
2207     // TODO: Probably should be zext
2208     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2209     Observer.changedInstr(MI);
2210     return Legalized;
2211   }
2212   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2213     if (TypeIdx == 1) {
2214       Observer.changingInstr(MI);
2215 
2216       Register VecReg = MI.getOperand(1).getReg();
2217       LLT VecTy = MRI.getType(VecReg);
2218       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2219 
2220       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2221       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2222       widenScalarDst(MI, WideVecTy, 0);
2223       Observer.changedInstr(MI);
2224       return Legalized;
2225     }
2226 
2227     if (TypeIdx == 2) {
2228       Observer.changingInstr(MI);
2229       // TODO: Probably should be zext
2230       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2231       Observer.changedInstr(MI);
2232       return Legalized;
2233     }
2234 
2235     return UnableToLegalize;
2236   }
2237   case TargetOpcode::G_FADD:
2238   case TargetOpcode::G_FMUL:
2239   case TargetOpcode::G_FSUB:
2240   case TargetOpcode::G_FMA:
2241   case TargetOpcode::G_FMAD:
2242   case TargetOpcode::G_FNEG:
2243   case TargetOpcode::G_FABS:
2244   case TargetOpcode::G_FCANONICALIZE:
2245   case TargetOpcode::G_FMINNUM:
2246   case TargetOpcode::G_FMAXNUM:
2247   case TargetOpcode::G_FMINNUM_IEEE:
2248   case TargetOpcode::G_FMAXNUM_IEEE:
2249   case TargetOpcode::G_FMINIMUM:
2250   case TargetOpcode::G_FMAXIMUM:
2251   case TargetOpcode::G_FDIV:
2252   case TargetOpcode::G_FREM:
2253   case TargetOpcode::G_FCEIL:
2254   case TargetOpcode::G_FFLOOR:
2255   case TargetOpcode::G_FCOS:
2256   case TargetOpcode::G_FSIN:
2257   case TargetOpcode::G_FLOG10:
2258   case TargetOpcode::G_FLOG:
2259   case TargetOpcode::G_FLOG2:
2260   case TargetOpcode::G_FRINT:
2261   case TargetOpcode::G_FNEARBYINT:
2262   case TargetOpcode::G_FSQRT:
2263   case TargetOpcode::G_FEXP:
2264   case TargetOpcode::G_FEXP2:
2265   case TargetOpcode::G_FPOW:
2266   case TargetOpcode::G_INTRINSIC_TRUNC:
2267   case TargetOpcode::G_INTRINSIC_ROUND:
2268   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2269     assert(TypeIdx == 0);
2270     Observer.changingInstr(MI);
2271 
2272     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2273       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2274 
2275     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2276     Observer.changedInstr(MI);
2277     return Legalized;
2278   case TargetOpcode::G_FPOWI: {
2279     if (TypeIdx != 0)
2280       return UnableToLegalize;
2281     Observer.changingInstr(MI);
2282     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2283     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2284     Observer.changedInstr(MI);
2285     return Legalized;
2286   }
2287   case TargetOpcode::G_INTTOPTR:
2288     if (TypeIdx != 1)
2289       return UnableToLegalize;
2290 
2291     Observer.changingInstr(MI);
2292     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2293     Observer.changedInstr(MI);
2294     return Legalized;
2295   case TargetOpcode::G_PTRTOINT:
2296     if (TypeIdx != 0)
2297       return UnableToLegalize;
2298 
2299     Observer.changingInstr(MI);
2300     widenScalarDst(MI, WideTy, 0);
2301     Observer.changedInstr(MI);
2302     return Legalized;
2303   case TargetOpcode::G_BUILD_VECTOR: {
2304     Observer.changingInstr(MI);
2305 
2306     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2307     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2308       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2309 
2310     // Avoid changing the result vector type if the source element type was
2311     // requested.
2312     if (TypeIdx == 1) {
2313       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2314     } else {
2315       widenScalarDst(MI, WideTy, 0);
2316     }
2317 
2318     Observer.changedInstr(MI);
2319     return Legalized;
2320   }
2321   case TargetOpcode::G_SEXT_INREG:
2322     if (TypeIdx != 0)
2323       return UnableToLegalize;
2324 
2325     Observer.changingInstr(MI);
2326     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2327     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2328     Observer.changedInstr(MI);
2329     return Legalized;
2330   case TargetOpcode::G_PTRMASK: {
2331     if (TypeIdx != 1)
2332       return UnableToLegalize;
2333     Observer.changingInstr(MI);
2334     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2335     Observer.changedInstr(MI);
2336     return Legalized;
2337   }
2338   }
2339 }
2340 
2341 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2342                              MachineIRBuilder &B, Register Src, LLT Ty) {
2343   auto Unmerge = B.buildUnmerge(Ty, Src);
2344   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2345     Pieces.push_back(Unmerge.getReg(I));
2346 }
2347 
2348 LegalizerHelper::LegalizeResult
2349 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2350   Register Dst = MI.getOperand(0).getReg();
2351   Register Src = MI.getOperand(1).getReg();
2352   LLT DstTy = MRI.getType(Dst);
2353   LLT SrcTy = MRI.getType(Src);
2354 
2355   if (SrcTy.isVector()) {
2356     LLT SrcEltTy = SrcTy.getElementType();
2357     SmallVector<Register, 8> SrcRegs;
2358 
2359     if (DstTy.isVector()) {
2360       int NumDstElt = DstTy.getNumElements();
2361       int NumSrcElt = SrcTy.getNumElements();
2362 
2363       LLT DstEltTy = DstTy.getElementType();
2364       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2365       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2366 
2367       // If there's an element size mismatch, insert intermediate casts to match
2368       // the result element type.
2369       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2370         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2371         //
2372         // =>
2373         //
2374         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2375         // %3:_(<2 x s8>) = G_BITCAST %2
2376         // %4:_(<2 x s8>) = G_BITCAST %3
2377         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2378         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2379         SrcPartTy = SrcEltTy;
2380       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2381         //
2382         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2383         //
2384         // =>
2385         //
2386         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2387         // %3:_(s16) = G_BITCAST %2
2388         // %4:_(s16) = G_BITCAST %3
2389         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2390         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2391         DstCastTy = DstEltTy;
2392       }
2393 
2394       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2395       for (Register &SrcReg : SrcRegs)
2396         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2397     } else
2398       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2399 
2400     MIRBuilder.buildMerge(Dst, SrcRegs);
2401     MI.eraseFromParent();
2402     return Legalized;
2403   }
2404 
2405   if (DstTy.isVector()) {
2406     SmallVector<Register, 8> SrcRegs;
2407     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2408     MIRBuilder.buildMerge(Dst, SrcRegs);
2409     MI.eraseFromParent();
2410     return Legalized;
2411   }
2412 
2413   return UnableToLegalize;
2414 }
2415 
2416 /// Figure out the bit offset into a register when coercing a vector index for
2417 /// the wide element type. This is only for the case when promoting vector to
2418 /// one with larger elements.
2419 //
2420 ///
2421 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2422 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2423 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2424                                                    Register Idx,
2425                                                    unsigned NewEltSize,
2426                                                    unsigned OldEltSize) {
2427   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2428   LLT IdxTy = B.getMRI()->getType(Idx);
2429 
2430   // Now figure out the amount we need to shift to get the target bits.
2431   auto OffsetMask = B.buildConstant(
2432     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2433   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2434   return B.buildShl(IdxTy, OffsetIdx,
2435                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2436 }
2437 
2438 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2439 /// is casting to a vector with a smaller element size, perform multiple element
2440 /// extracts and merge the results. If this is coercing to a vector with larger
2441 /// elements, index the bitcasted vector and extract the target element with bit
2442 /// operations. This is intended to force the indexing in the native register
2443 /// size for architectures that can dynamically index the register file.
2444 LegalizerHelper::LegalizeResult
2445 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2446                                          LLT CastTy) {
2447   if (TypeIdx != 1)
2448     return UnableToLegalize;
2449 
2450   Register Dst = MI.getOperand(0).getReg();
2451   Register SrcVec = MI.getOperand(1).getReg();
2452   Register Idx = MI.getOperand(2).getReg();
2453   LLT SrcVecTy = MRI.getType(SrcVec);
2454   LLT IdxTy = MRI.getType(Idx);
2455 
2456   LLT SrcEltTy = SrcVecTy.getElementType();
2457   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2458   unsigned OldNumElts = SrcVecTy.getNumElements();
2459 
2460   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2461   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2462 
2463   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2464   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2465   if (NewNumElts > OldNumElts) {
2466     // Decreasing the vector element size
2467     //
2468     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2469     //  =>
2470     //  v4i32:castx = bitcast x:v2i64
2471     //
2472     // i64 = bitcast
2473     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2474     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2475     //
2476     if (NewNumElts % OldNumElts != 0)
2477       return UnableToLegalize;
2478 
2479     // Type of the intermediate result vector.
2480     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2481     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2482 
2483     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2484 
2485     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2486     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2487 
2488     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2489       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2490       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2491       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2492       NewOps[I] = Elt.getReg(0);
2493     }
2494 
2495     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2496     MIRBuilder.buildBitcast(Dst, NewVec);
2497     MI.eraseFromParent();
2498     return Legalized;
2499   }
2500 
2501   if (NewNumElts < OldNumElts) {
2502     if (NewEltSize % OldEltSize != 0)
2503       return UnableToLegalize;
2504 
2505     // This only depends on powers of 2 because we use bit tricks to figure out
2506     // the bit offset we need to shift to get the target element. A general
2507     // expansion could emit division/multiply.
2508     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2509       return UnableToLegalize;
2510 
2511     // Increasing the vector element size.
2512     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2513     //
2514     //   =>
2515     //
2516     // %cast = G_BITCAST %vec
2517     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2518     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2519     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2520     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2521     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2522     // %elt = G_TRUNC %elt_bits
2523 
2524     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2525     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2526 
2527     // Divide to get the index in the wider element type.
2528     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2529 
2530     Register WideElt = CastVec;
2531     if (CastTy.isVector()) {
2532       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2533                                                      ScaledIdx).getReg(0);
2534     }
2535 
2536     // Compute the bit offset into the register of the target element.
2537     Register OffsetBits = getBitcastWiderVectorElementOffset(
2538       MIRBuilder, Idx, NewEltSize, OldEltSize);
2539 
2540     // Shift the wide element to get the target element.
2541     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2542     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2543     MI.eraseFromParent();
2544     return Legalized;
2545   }
2546 
2547   return UnableToLegalize;
2548 }
2549 
2550 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2551 /// TargetReg, while preserving other bits in \p TargetReg.
2552 ///
2553 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2554 static Register buildBitFieldInsert(MachineIRBuilder &B,
2555                                     Register TargetReg, Register InsertReg,
2556                                     Register OffsetBits) {
2557   LLT TargetTy = B.getMRI()->getType(TargetReg);
2558   LLT InsertTy = B.getMRI()->getType(InsertReg);
2559   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2560   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2561 
2562   // Produce a bitmask of the value to insert
2563   auto EltMask = B.buildConstant(
2564     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2565                                    InsertTy.getSizeInBits()));
2566   // Shift it into position
2567   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2568   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2569 
2570   // Clear out the bits in the wide element
2571   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2572 
2573   // The value to insert has all zeros already, so stick it into the masked
2574   // wide element.
2575   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2576 }
2577 
2578 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2579 /// is increasing the element size, perform the indexing in the target element
2580 /// type, and use bit operations to insert at the element position. This is
2581 /// intended for architectures that can dynamically index the register file and
2582 /// want to force indexing in the native register size.
2583 LegalizerHelper::LegalizeResult
2584 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2585                                         LLT CastTy) {
2586   if (TypeIdx != 0)
2587     return UnableToLegalize;
2588 
2589   Register Dst = MI.getOperand(0).getReg();
2590   Register SrcVec = MI.getOperand(1).getReg();
2591   Register Val = MI.getOperand(2).getReg();
2592   Register Idx = MI.getOperand(3).getReg();
2593 
2594   LLT VecTy = MRI.getType(Dst);
2595   LLT IdxTy = MRI.getType(Idx);
2596 
2597   LLT VecEltTy = VecTy.getElementType();
2598   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2599   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2600   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2601 
2602   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2603   unsigned OldNumElts = VecTy.getNumElements();
2604 
2605   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2606   if (NewNumElts < OldNumElts) {
2607     if (NewEltSize % OldEltSize != 0)
2608       return UnableToLegalize;
2609 
2610     // This only depends on powers of 2 because we use bit tricks to figure out
2611     // the bit offset we need to shift to get the target element. A general
2612     // expansion could emit division/multiply.
2613     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2614       return UnableToLegalize;
2615 
2616     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2617     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2618 
2619     // Divide to get the index in the wider element type.
2620     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2621 
2622     Register ExtractedElt = CastVec;
2623     if (CastTy.isVector()) {
2624       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2625                                                           ScaledIdx).getReg(0);
2626     }
2627 
2628     // Compute the bit offset into the register of the target element.
2629     Register OffsetBits = getBitcastWiderVectorElementOffset(
2630       MIRBuilder, Idx, NewEltSize, OldEltSize);
2631 
2632     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2633                                                Val, OffsetBits);
2634     if (CastTy.isVector()) {
2635       InsertedElt = MIRBuilder.buildInsertVectorElement(
2636         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2637     }
2638 
2639     MIRBuilder.buildBitcast(Dst, InsertedElt);
2640     MI.eraseFromParent();
2641     return Legalized;
2642   }
2643 
2644   return UnableToLegalize;
2645 }
2646 
2647 LegalizerHelper::LegalizeResult
2648 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2649   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2650   Register DstReg = MI.getOperand(0).getReg();
2651   Register PtrReg = MI.getOperand(1).getReg();
2652   LLT DstTy = MRI.getType(DstReg);
2653   auto &MMO = **MI.memoperands_begin();
2654 
2655   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2656     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2657       // This load needs splitting into power of 2 sized loads.
2658       if (DstTy.isVector())
2659         return UnableToLegalize;
2660       if (isPowerOf2_32(DstTy.getSizeInBits()))
2661         return UnableToLegalize; // Don't know what we're being asked to do.
2662 
2663       // Our strategy here is to generate anyextending loads for the smaller
2664       // types up to next power-2 result type, and then combine the two larger
2665       // result values together, before truncating back down to the non-pow-2
2666       // type.
2667       // E.g. v1 = i24 load =>
2668       // v2 = i32 zextload (2 byte)
2669       // v3 = i32 load (1 byte)
2670       // v4 = i32 shl v3, 16
2671       // v5 = i32 or v4, v2
2672       // v1 = i24 trunc v5
2673       // By doing this we generate the correct truncate which should get
2674       // combined away as an artifact with a matching extend.
2675       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2676       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2677 
2678       MachineFunction &MF = MIRBuilder.getMF();
2679       MachineMemOperand *LargeMMO =
2680         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2681       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2682         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2683 
2684       LLT PtrTy = MRI.getType(PtrReg);
2685       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2686       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2687       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2688       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2689       auto LargeLoad = MIRBuilder.buildLoadInstr(
2690         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2691 
2692       auto OffsetCst = MIRBuilder.buildConstant(
2693         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2694       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2695       auto SmallPtr =
2696         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2697       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2698                                             *SmallMMO);
2699 
2700       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2701       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2702       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2703       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2704       MI.eraseFromParent();
2705       return Legalized;
2706     }
2707 
2708     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2709     MI.eraseFromParent();
2710     return Legalized;
2711   }
2712 
2713   if (DstTy.isScalar()) {
2714     Register TmpReg =
2715       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2716     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2717     switch (MI.getOpcode()) {
2718     default:
2719       llvm_unreachable("Unexpected opcode");
2720     case TargetOpcode::G_LOAD:
2721       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2722       break;
2723     case TargetOpcode::G_SEXTLOAD:
2724       MIRBuilder.buildSExt(DstReg, TmpReg);
2725       break;
2726     case TargetOpcode::G_ZEXTLOAD:
2727       MIRBuilder.buildZExt(DstReg, TmpReg);
2728       break;
2729     }
2730 
2731     MI.eraseFromParent();
2732     return Legalized;
2733   }
2734 
2735   return UnableToLegalize;
2736 }
2737 
2738 LegalizerHelper::LegalizeResult
2739 LegalizerHelper::lowerStore(MachineInstr &MI) {
2740   // Lower a non-power of 2 store into multiple pow-2 stores.
2741   // E.g. split an i24 store into an i16 store + i8 store.
2742   // We do this by first extending the stored value to the next largest power
2743   // of 2 type, and then using truncating stores to store the components.
2744   // By doing this, likewise with G_LOAD, generate an extend that can be
2745   // artifact-combined away instead of leaving behind extracts.
2746   Register SrcReg = MI.getOperand(0).getReg();
2747   Register PtrReg = MI.getOperand(1).getReg();
2748   LLT SrcTy = MRI.getType(SrcReg);
2749   MachineMemOperand &MMO = **MI.memoperands_begin();
2750   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2751     return UnableToLegalize;
2752   if (SrcTy.isVector())
2753     return UnableToLegalize;
2754   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2755     return UnableToLegalize; // Don't know what we're being asked to do.
2756 
2757   // Extend to the next pow-2.
2758   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2759   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2760 
2761   // Obtain the smaller value by shifting away the larger value.
2762   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2763   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2764   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2765   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2766 
2767   // Generate the PtrAdd and truncating stores.
2768   LLT PtrTy = MRI.getType(PtrReg);
2769   auto OffsetCst = MIRBuilder.buildConstant(
2770     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2771   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2772   auto SmallPtr =
2773     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2774 
2775   MachineFunction &MF = MIRBuilder.getMF();
2776   MachineMemOperand *LargeMMO =
2777     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2778   MachineMemOperand *SmallMMO =
2779     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2780   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2781   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2782   MI.eraseFromParent();
2783   return Legalized;
2784 }
2785 
2786 LegalizerHelper::LegalizeResult
2787 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2788   switch (MI.getOpcode()) {
2789   case TargetOpcode::G_LOAD: {
2790     if (TypeIdx != 0)
2791       return UnableToLegalize;
2792 
2793     Observer.changingInstr(MI);
2794     bitcastDst(MI, CastTy, 0);
2795     Observer.changedInstr(MI);
2796     return Legalized;
2797   }
2798   case TargetOpcode::G_STORE: {
2799     if (TypeIdx != 0)
2800       return UnableToLegalize;
2801 
2802     Observer.changingInstr(MI);
2803     bitcastSrc(MI, CastTy, 0);
2804     Observer.changedInstr(MI);
2805     return Legalized;
2806   }
2807   case TargetOpcode::G_SELECT: {
2808     if (TypeIdx != 0)
2809       return UnableToLegalize;
2810 
2811     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2812       LLVM_DEBUG(
2813           dbgs() << "bitcast action not implemented for vector select\n");
2814       return UnableToLegalize;
2815     }
2816 
2817     Observer.changingInstr(MI);
2818     bitcastSrc(MI, CastTy, 2);
2819     bitcastSrc(MI, CastTy, 3);
2820     bitcastDst(MI, CastTy, 0);
2821     Observer.changedInstr(MI);
2822     return Legalized;
2823   }
2824   case TargetOpcode::G_AND:
2825   case TargetOpcode::G_OR:
2826   case TargetOpcode::G_XOR: {
2827     Observer.changingInstr(MI);
2828     bitcastSrc(MI, CastTy, 1);
2829     bitcastSrc(MI, CastTy, 2);
2830     bitcastDst(MI, CastTy, 0);
2831     Observer.changedInstr(MI);
2832     return Legalized;
2833   }
2834   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2835     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2836   case TargetOpcode::G_INSERT_VECTOR_ELT:
2837     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2838   default:
2839     return UnableToLegalize;
2840   }
2841 }
2842 
2843 // Legalize an instruction by changing the opcode in place.
2844 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2845     Observer.changingInstr(MI);
2846     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2847     Observer.changedInstr(MI);
2848 }
2849 
2850 LegalizerHelper::LegalizeResult
2851 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2852   using namespace TargetOpcode;
2853 
2854   switch(MI.getOpcode()) {
2855   default:
2856     return UnableToLegalize;
2857   case TargetOpcode::G_BITCAST:
2858     return lowerBitcast(MI);
2859   case TargetOpcode::G_SREM:
2860   case TargetOpcode::G_UREM: {
2861     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2862     auto Quot =
2863         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2864                               {MI.getOperand(1), MI.getOperand(2)});
2865 
2866     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2867     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2868     MI.eraseFromParent();
2869     return Legalized;
2870   }
2871   case TargetOpcode::G_SADDO:
2872   case TargetOpcode::G_SSUBO:
2873     return lowerSADDO_SSUBO(MI);
2874   case TargetOpcode::G_UMULH:
2875   case TargetOpcode::G_SMULH:
2876     return lowerSMULH_UMULH(MI);
2877   case TargetOpcode::G_SMULO:
2878   case TargetOpcode::G_UMULO: {
2879     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2880     // result.
2881     Register Res = MI.getOperand(0).getReg();
2882     Register Overflow = MI.getOperand(1).getReg();
2883     Register LHS = MI.getOperand(2).getReg();
2884     Register RHS = MI.getOperand(3).getReg();
2885     LLT Ty = MRI.getType(Res);
2886 
2887     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2888                           ? TargetOpcode::G_SMULH
2889                           : TargetOpcode::G_UMULH;
2890 
2891     Observer.changingInstr(MI);
2892     const auto &TII = MIRBuilder.getTII();
2893     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2894     MI.RemoveOperand(1);
2895     Observer.changedInstr(MI);
2896 
2897     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2898     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2899 
2900     // Move insert point forward so we can use the Res register if needed.
2901     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2902 
2903     // For *signed* multiply, overflow is detected by checking:
2904     // (hi != (lo >> bitwidth-1))
2905     if (Opcode == TargetOpcode::G_SMULH) {
2906       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2907       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2908       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2909     } else {
2910       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2911     }
2912     return Legalized;
2913   }
2914   case TargetOpcode::G_FNEG: {
2915     Register Res = MI.getOperand(0).getReg();
2916     LLT Ty = MRI.getType(Res);
2917 
2918     // TODO: Handle vector types once we are able to
2919     // represent them.
2920     if (Ty.isVector())
2921       return UnableToLegalize;
2922     auto SignMask =
2923         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2924     Register SubByReg = MI.getOperand(1).getReg();
2925     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2926     MI.eraseFromParent();
2927     return Legalized;
2928   }
2929   case TargetOpcode::G_FSUB: {
2930     Register Res = MI.getOperand(0).getReg();
2931     LLT Ty = MRI.getType(Res);
2932 
2933     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2934     // First, check if G_FNEG is marked as Lower. If so, we may
2935     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2936     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2937       return UnableToLegalize;
2938     Register LHS = MI.getOperand(1).getReg();
2939     Register RHS = MI.getOperand(2).getReg();
2940     Register Neg = MRI.createGenericVirtualRegister(Ty);
2941     MIRBuilder.buildFNeg(Neg, RHS);
2942     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2943     MI.eraseFromParent();
2944     return Legalized;
2945   }
2946   case TargetOpcode::G_FMAD:
2947     return lowerFMad(MI);
2948   case TargetOpcode::G_FFLOOR:
2949     return lowerFFloor(MI);
2950   case TargetOpcode::G_INTRINSIC_ROUND:
2951     return lowerIntrinsicRound(MI);
2952   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2953     // Since round even is the assumed rounding mode for unconstrained FP
2954     // operations, rint and roundeven are the same operation.
2955     changeOpcode(MI, TargetOpcode::G_FRINT);
2956     return Legalized;
2957   }
2958   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2959     Register OldValRes = MI.getOperand(0).getReg();
2960     Register SuccessRes = MI.getOperand(1).getReg();
2961     Register Addr = MI.getOperand(2).getReg();
2962     Register CmpVal = MI.getOperand(3).getReg();
2963     Register NewVal = MI.getOperand(4).getReg();
2964     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2965                                   **MI.memoperands_begin());
2966     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2967     MI.eraseFromParent();
2968     return Legalized;
2969   }
2970   case TargetOpcode::G_LOAD:
2971   case TargetOpcode::G_SEXTLOAD:
2972   case TargetOpcode::G_ZEXTLOAD:
2973     return lowerLoad(MI);
2974   case TargetOpcode::G_STORE:
2975     return lowerStore(MI);
2976   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2977   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2978   case TargetOpcode::G_CTLZ:
2979   case TargetOpcode::G_CTTZ:
2980   case TargetOpcode::G_CTPOP:
2981     return lowerBitCount(MI);
2982   case G_UADDO: {
2983     Register Res = MI.getOperand(0).getReg();
2984     Register CarryOut = MI.getOperand(1).getReg();
2985     Register LHS = MI.getOperand(2).getReg();
2986     Register RHS = MI.getOperand(3).getReg();
2987 
2988     MIRBuilder.buildAdd(Res, LHS, RHS);
2989     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2990 
2991     MI.eraseFromParent();
2992     return Legalized;
2993   }
2994   case G_UADDE: {
2995     Register Res = MI.getOperand(0).getReg();
2996     Register CarryOut = MI.getOperand(1).getReg();
2997     Register LHS = MI.getOperand(2).getReg();
2998     Register RHS = MI.getOperand(3).getReg();
2999     Register CarryIn = MI.getOperand(4).getReg();
3000     LLT Ty = MRI.getType(Res);
3001 
3002     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3003     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3004     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3005     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3006 
3007     MI.eraseFromParent();
3008     return Legalized;
3009   }
3010   case G_USUBO: {
3011     Register Res = MI.getOperand(0).getReg();
3012     Register BorrowOut = MI.getOperand(1).getReg();
3013     Register LHS = MI.getOperand(2).getReg();
3014     Register RHS = MI.getOperand(3).getReg();
3015 
3016     MIRBuilder.buildSub(Res, LHS, RHS);
3017     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3018 
3019     MI.eraseFromParent();
3020     return Legalized;
3021   }
3022   case G_USUBE: {
3023     Register Res = MI.getOperand(0).getReg();
3024     Register BorrowOut = MI.getOperand(1).getReg();
3025     Register LHS = MI.getOperand(2).getReg();
3026     Register RHS = MI.getOperand(3).getReg();
3027     Register BorrowIn = MI.getOperand(4).getReg();
3028     const LLT CondTy = MRI.getType(BorrowOut);
3029     const LLT Ty = MRI.getType(Res);
3030 
3031     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3032     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3033     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3034 
3035     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3036     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3037     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3038 
3039     MI.eraseFromParent();
3040     return Legalized;
3041   }
3042   case G_UITOFP:
3043     return lowerUITOFP(MI);
3044   case G_SITOFP:
3045     return lowerSITOFP(MI);
3046   case G_FPTOUI:
3047     return lowerFPTOUI(MI);
3048   case G_FPTOSI:
3049     return lowerFPTOSI(MI);
3050   case G_FPTRUNC:
3051     return lowerFPTRUNC(MI);
3052   case G_FPOWI:
3053     return lowerFPOWI(MI);
3054   case G_SMIN:
3055   case G_SMAX:
3056   case G_UMIN:
3057   case G_UMAX:
3058     return lowerMinMax(MI);
3059   case G_FCOPYSIGN:
3060     return lowerFCopySign(MI);
3061   case G_FMINNUM:
3062   case G_FMAXNUM:
3063     return lowerFMinNumMaxNum(MI);
3064   case G_MERGE_VALUES:
3065     return lowerMergeValues(MI);
3066   case G_UNMERGE_VALUES:
3067     return lowerUnmergeValues(MI);
3068   case TargetOpcode::G_SEXT_INREG: {
3069     assert(MI.getOperand(2).isImm() && "Expected immediate");
3070     int64_t SizeInBits = MI.getOperand(2).getImm();
3071 
3072     Register DstReg = MI.getOperand(0).getReg();
3073     Register SrcReg = MI.getOperand(1).getReg();
3074     LLT DstTy = MRI.getType(DstReg);
3075     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3076 
3077     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3078     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3079     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3080     MI.eraseFromParent();
3081     return Legalized;
3082   }
3083   case G_EXTRACT_VECTOR_ELT:
3084   case G_INSERT_VECTOR_ELT:
3085     return lowerExtractInsertVectorElt(MI);
3086   case G_SHUFFLE_VECTOR:
3087     return lowerShuffleVector(MI);
3088   case G_DYN_STACKALLOC:
3089     return lowerDynStackAlloc(MI);
3090   case G_EXTRACT:
3091     return lowerExtract(MI);
3092   case G_INSERT:
3093     return lowerInsert(MI);
3094   case G_BSWAP:
3095     return lowerBswap(MI);
3096   case G_BITREVERSE:
3097     return lowerBitreverse(MI);
3098   case G_READ_REGISTER:
3099   case G_WRITE_REGISTER:
3100     return lowerReadWriteRegister(MI);
3101   case G_UADDSAT:
3102   case G_USUBSAT: {
3103     // Try to make a reasonable guess about which lowering strategy to use. The
3104     // target can override this with custom lowering and calling the
3105     // implementation functions.
3106     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3107     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3108       return lowerAddSubSatToMinMax(MI);
3109     return lowerAddSubSatToAddoSubo(MI);
3110   }
3111   case G_SADDSAT:
3112   case G_SSUBSAT: {
3113     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3114 
3115     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3116     // since it's a shorter expansion. However, we would need to figure out the
3117     // preferred boolean type for the carry out for the query.
3118     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3119       return lowerAddSubSatToMinMax(MI);
3120     return lowerAddSubSatToAddoSubo(MI);
3121   }
3122   case G_SSHLSAT:
3123   case G_USHLSAT:
3124     return lowerShlSat(MI);
3125   case G_ABS: {
3126     // Expand %res = G_ABS %a into:
3127     // %v1 = G_ASHR %a, scalar_size-1
3128     // %v2 = G_ADD %a, %v1
3129     // %res = G_XOR %v2, %v1
3130     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3131     Register OpReg = MI.getOperand(1).getReg();
3132     auto ShiftAmt =
3133         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3134     auto Shift =
3135         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3136     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3137     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3138     MI.eraseFromParent();
3139     return Legalized;
3140   }
3141   case G_SELECT:
3142     return lowerSelect(MI);
3143   }
3144 }
3145 
3146 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3147                                                   Align MinAlign) const {
3148   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3149   // datalayout for the preferred alignment. Also there should be a target hook
3150   // for this to allow targets to reduce the alignment and ignore the
3151   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3152   // the type.
3153   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3154 }
3155 
3156 MachineInstrBuilder
3157 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3158                                       MachinePointerInfo &PtrInfo) {
3159   MachineFunction &MF = MIRBuilder.getMF();
3160   const DataLayout &DL = MIRBuilder.getDataLayout();
3161   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3162 
3163   unsigned AddrSpace = DL.getAllocaAddrSpace();
3164   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3165 
3166   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3167   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3168 }
3169 
3170 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3171                                         LLT VecTy) {
3172   int64_t IdxVal;
3173   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3174     return IdxReg;
3175 
3176   LLT IdxTy = B.getMRI()->getType(IdxReg);
3177   unsigned NElts = VecTy.getNumElements();
3178   if (isPowerOf2_32(NElts)) {
3179     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3180     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3181   }
3182 
3183   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3184       .getReg(0);
3185 }
3186 
3187 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3188                                                   Register Index) {
3189   LLT EltTy = VecTy.getElementType();
3190 
3191   // Calculate the element offset and add it to the pointer.
3192   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3193   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3194          "Converting bits to bytes lost precision");
3195 
3196   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3197 
3198   LLT IdxTy = MRI.getType(Index);
3199   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3200                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3201 
3202   LLT PtrTy = MRI.getType(VecPtr);
3203   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3204 }
3205 
3206 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3207     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3208   Register DstReg = MI.getOperand(0).getReg();
3209   LLT DstTy = MRI.getType(DstReg);
3210   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3211 
3212   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3213 
3214   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3215   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3216 
3217   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3218   MI.eraseFromParent();
3219   return Legalized;
3220 }
3221 
3222 // Handle splitting vector operations which need to have the same number of
3223 // elements in each type index, but each type index may have a different element
3224 // type.
3225 //
3226 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3227 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3228 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3229 //
3230 // Also handles some irregular breakdown cases, e.g.
3231 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3232 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3233 //             s64 = G_SHL s64, s32
3234 LegalizerHelper::LegalizeResult
3235 LegalizerHelper::fewerElementsVectorMultiEltType(
3236   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3237   if (TypeIdx != 0)
3238     return UnableToLegalize;
3239 
3240   const LLT NarrowTy0 = NarrowTyArg;
3241   const unsigned NewNumElts =
3242       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3243 
3244   const Register DstReg = MI.getOperand(0).getReg();
3245   LLT DstTy = MRI.getType(DstReg);
3246   LLT LeftoverTy0;
3247 
3248   // All of the operands need to have the same number of elements, so if we can
3249   // determine a type breakdown for the result type, we can for all of the
3250   // source types.
3251   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3252   if (NumParts < 0)
3253     return UnableToLegalize;
3254 
3255   SmallVector<MachineInstrBuilder, 4> NewInsts;
3256 
3257   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3258   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3259 
3260   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3261     Register SrcReg = MI.getOperand(I).getReg();
3262     LLT SrcTyI = MRI.getType(SrcReg);
3263     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3264     LLT LeftoverTyI;
3265 
3266     // Split this operand into the requested typed registers, and any leftover
3267     // required to reproduce the original type.
3268     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3269                       LeftoverRegs))
3270       return UnableToLegalize;
3271 
3272     if (I == 1) {
3273       // For the first operand, create an instruction for each part and setup
3274       // the result.
3275       for (Register PartReg : PartRegs) {
3276         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3277         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3278                                .addDef(PartDstReg)
3279                                .addUse(PartReg));
3280         DstRegs.push_back(PartDstReg);
3281       }
3282 
3283       for (Register LeftoverReg : LeftoverRegs) {
3284         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3285         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3286                                .addDef(PartDstReg)
3287                                .addUse(LeftoverReg));
3288         LeftoverDstRegs.push_back(PartDstReg);
3289       }
3290     } else {
3291       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3292 
3293       // Add the newly created operand splits to the existing instructions. The
3294       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3295       // pieces.
3296       unsigned InstCount = 0;
3297       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3298         NewInsts[InstCount++].addUse(PartRegs[J]);
3299       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3300         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3301     }
3302 
3303     PartRegs.clear();
3304     LeftoverRegs.clear();
3305   }
3306 
3307   // Insert the newly built operations and rebuild the result register.
3308   for (auto &MIB : NewInsts)
3309     MIRBuilder.insertInstr(MIB);
3310 
3311   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3312 
3313   MI.eraseFromParent();
3314   return Legalized;
3315 }
3316 
3317 LegalizerHelper::LegalizeResult
3318 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3319                                           LLT NarrowTy) {
3320   if (TypeIdx != 0)
3321     return UnableToLegalize;
3322 
3323   Register DstReg = MI.getOperand(0).getReg();
3324   Register SrcReg = MI.getOperand(1).getReg();
3325   LLT DstTy = MRI.getType(DstReg);
3326   LLT SrcTy = MRI.getType(SrcReg);
3327 
3328   LLT NarrowTy0 = NarrowTy;
3329   LLT NarrowTy1;
3330   unsigned NumParts;
3331 
3332   if (NarrowTy.isVector()) {
3333     // Uneven breakdown not handled.
3334     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3335     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3336       return UnableToLegalize;
3337 
3338     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3339   } else {
3340     NumParts = DstTy.getNumElements();
3341     NarrowTy1 = SrcTy.getElementType();
3342   }
3343 
3344   SmallVector<Register, 4> SrcRegs, DstRegs;
3345   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3346 
3347   for (unsigned I = 0; I < NumParts; ++I) {
3348     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3349     MachineInstr *NewInst =
3350         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3351 
3352     NewInst->setFlags(MI.getFlags());
3353     DstRegs.push_back(DstReg);
3354   }
3355 
3356   if (NarrowTy.isVector())
3357     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3358   else
3359     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3360 
3361   MI.eraseFromParent();
3362   return Legalized;
3363 }
3364 
3365 LegalizerHelper::LegalizeResult
3366 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3367                                         LLT NarrowTy) {
3368   Register DstReg = MI.getOperand(0).getReg();
3369   Register Src0Reg = MI.getOperand(2).getReg();
3370   LLT DstTy = MRI.getType(DstReg);
3371   LLT SrcTy = MRI.getType(Src0Reg);
3372 
3373   unsigned NumParts;
3374   LLT NarrowTy0, NarrowTy1;
3375 
3376   if (TypeIdx == 0) {
3377     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3378     unsigned OldElts = DstTy.getNumElements();
3379 
3380     NarrowTy0 = NarrowTy;
3381     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3382     NarrowTy1 = NarrowTy.isVector() ?
3383       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3384       SrcTy.getElementType();
3385 
3386   } else {
3387     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3388     unsigned OldElts = SrcTy.getNumElements();
3389 
3390     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3391       NarrowTy.getNumElements();
3392     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3393                             DstTy.getScalarSizeInBits());
3394     NarrowTy1 = NarrowTy;
3395   }
3396 
3397   // FIXME: Don't know how to handle the situation where the small vectors
3398   // aren't all the same size yet.
3399   if (NarrowTy1.isVector() &&
3400       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3401     return UnableToLegalize;
3402 
3403   CmpInst::Predicate Pred
3404     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3405 
3406   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3407   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3408   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3409 
3410   for (unsigned I = 0; I < NumParts; ++I) {
3411     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3412     DstRegs.push_back(DstReg);
3413 
3414     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3415       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3416     else {
3417       MachineInstr *NewCmp
3418         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3419       NewCmp->setFlags(MI.getFlags());
3420     }
3421   }
3422 
3423   if (NarrowTy1.isVector())
3424     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3425   else
3426     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3427 
3428   MI.eraseFromParent();
3429   return Legalized;
3430 }
3431 
3432 LegalizerHelper::LegalizeResult
3433 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3434                                            LLT NarrowTy) {
3435   Register DstReg = MI.getOperand(0).getReg();
3436   Register CondReg = MI.getOperand(1).getReg();
3437 
3438   unsigned NumParts = 0;
3439   LLT NarrowTy0, NarrowTy1;
3440 
3441   LLT DstTy = MRI.getType(DstReg);
3442   LLT CondTy = MRI.getType(CondReg);
3443   unsigned Size = DstTy.getSizeInBits();
3444 
3445   assert(TypeIdx == 0 || CondTy.isVector());
3446 
3447   if (TypeIdx == 0) {
3448     NarrowTy0 = NarrowTy;
3449     NarrowTy1 = CondTy;
3450 
3451     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3452     // FIXME: Don't know how to handle the situation where the small vectors
3453     // aren't all the same size yet.
3454     if (Size % NarrowSize != 0)
3455       return UnableToLegalize;
3456 
3457     NumParts = Size / NarrowSize;
3458 
3459     // Need to break down the condition type
3460     if (CondTy.isVector()) {
3461       if (CondTy.getNumElements() == NumParts)
3462         NarrowTy1 = CondTy.getElementType();
3463       else
3464         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3465                                 CondTy.getScalarSizeInBits());
3466     }
3467   } else {
3468     NumParts = CondTy.getNumElements();
3469     if (NarrowTy.isVector()) {
3470       // TODO: Handle uneven breakdown.
3471       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3472         return UnableToLegalize;
3473 
3474       return UnableToLegalize;
3475     } else {
3476       NarrowTy0 = DstTy.getElementType();
3477       NarrowTy1 = NarrowTy;
3478     }
3479   }
3480 
3481   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3482   if (CondTy.isVector())
3483     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3484 
3485   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3486   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3487 
3488   for (unsigned i = 0; i < NumParts; ++i) {
3489     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3490     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3491                            Src1Regs[i], Src2Regs[i]);
3492     DstRegs.push_back(DstReg);
3493   }
3494 
3495   if (NarrowTy0.isVector())
3496     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3497   else
3498     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3499 
3500   MI.eraseFromParent();
3501   return Legalized;
3502 }
3503 
3504 LegalizerHelper::LegalizeResult
3505 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3506                                         LLT NarrowTy) {
3507   const Register DstReg = MI.getOperand(0).getReg();
3508   LLT PhiTy = MRI.getType(DstReg);
3509   LLT LeftoverTy;
3510 
3511   // All of the operands need to have the same number of elements, so if we can
3512   // determine a type breakdown for the result type, we can for all of the
3513   // source types.
3514   int NumParts, NumLeftover;
3515   std::tie(NumParts, NumLeftover)
3516     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3517   if (NumParts < 0)
3518     return UnableToLegalize;
3519 
3520   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3521   SmallVector<MachineInstrBuilder, 4> NewInsts;
3522 
3523   const int TotalNumParts = NumParts + NumLeftover;
3524 
3525   // Insert the new phis in the result block first.
3526   for (int I = 0; I != TotalNumParts; ++I) {
3527     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3528     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3529     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3530                        .addDef(PartDstReg));
3531     if (I < NumParts)
3532       DstRegs.push_back(PartDstReg);
3533     else
3534       LeftoverDstRegs.push_back(PartDstReg);
3535   }
3536 
3537   MachineBasicBlock *MBB = MI.getParent();
3538   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3539   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3540 
3541   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3542 
3543   // Insert code to extract the incoming values in each predecessor block.
3544   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3545     PartRegs.clear();
3546     LeftoverRegs.clear();
3547 
3548     Register SrcReg = MI.getOperand(I).getReg();
3549     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3550     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3551 
3552     LLT Unused;
3553     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3554                       LeftoverRegs))
3555       return UnableToLegalize;
3556 
3557     // Add the newly created operand splits to the existing instructions. The
3558     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3559     // pieces.
3560     for (int J = 0; J != TotalNumParts; ++J) {
3561       MachineInstrBuilder MIB = NewInsts[J];
3562       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3563       MIB.addMBB(&OpMBB);
3564     }
3565   }
3566 
3567   MI.eraseFromParent();
3568   return Legalized;
3569 }
3570 
3571 LegalizerHelper::LegalizeResult
3572 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3573                                                   unsigned TypeIdx,
3574                                                   LLT NarrowTy) {
3575   if (TypeIdx != 1)
3576     return UnableToLegalize;
3577 
3578   const int NumDst = MI.getNumOperands() - 1;
3579   const Register SrcReg = MI.getOperand(NumDst).getReg();
3580   LLT SrcTy = MRI.getType(SrcReg);
3581 
3582   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3583 
3584   // TODO: Create sequence of extracts.
3585   if (DstTy == NarrowTy)
3586     return UnableToLegalize;
3587 
3588   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3589   if (DstTy == GCDTy) {
3590     // This would just be a copy of the same unmerge.
3591     // TODO: Create extracts, pad with undef and create intermediate merges.
3592     return UnableToLegalize;
3593   }
3594 
3595   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3596   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3597   const int PartsPerUnmerge = NumDst / NumUnmerge;
3598 
3599   for (int I = 0; I != NumUnmerge; ++I) {
3600     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3601 
3602     for (int J = 0; J != PartsPerUnmerge; ++J)
3603       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3604     MIB.addUse(Unmerge.getReg(I));
3605   }
3606 
3607   MI.eraseFromParent();
3608   return Legalized;
3609 }
3610 
3611 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3612 // a vector
3613 //
3614 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3615 // undef as necessary.
3616 //
3617 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3618 //   -> <2 x s16>
3619 //
3620 // %4:_(s16) = G_IMPLICIT_DEF
3621 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3622 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3623 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3624 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3625 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3626 LegalizerHelper::LegalizeResult
3627 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3628                                           LLT NarrowTy) {
3629   Register DstReg = MI.getOperand(0).getReg();
3630   LLT DstTy = MRI.getType(DstReg);
3631   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3632   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3633 
3634   // Break into a common type
3635   SmallVector<Register, 16> Parts;
3636   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3637     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3638 
3639   // Build the requested new merge, padding with undef.
3640   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3641                                   TargetOpcode::G_ANYEXT);
3642 
3643   // Pack into the original result register.
3644   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3645 
3646   MI.eraseFromParent();
3647   return Legalized;
3648 }
3649 
3650 LegalizerHelper::LegalizeResult
3651 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3652                                                            unsigned TypeIdx,
3653                                                            LLT NarrowVecTy) {
3654   Register DstReg = MI.getOperand(0).getReg();
3655   Register SrcVec = MI.getOperand(1).getReg();
3656   Register InsertVal;
3657   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3658 
3659   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3660   if (IsInsert)
3661     InsertVal = MI.getOperand(2).getReg();
3662 
3663   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3664 
3665   // TODO: Handle total scalarization case.
3666   if (!NarrowVecTy.isVector())
3667     return UnableToLegalize;
3668 
3669   LLT VecTy = MRI.getType(SrcVec);
3670 
3671   // If the index is a constant, we can really break this down as you would
3672   // expect, and index into the target size pieces.
3673   int64_t IdxVal;
3674   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3675     // Avoid out of bounds indexing the pieces.
3676     if (IdxVal >= VecTy.getNumElements()) {
3677       MIRBuilder.buildUndef(DstReg);
3678       MI.eraseFromParent();
3679       return Legalized;
3680     }
3681 
3682     SmallVector<Register, 8> VecParts;
3683     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3684 
3685     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3686     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3687                                     TargetOpcode::G_ANYEXT);
3688 
3689     unsigned NewNumElts = NarrowVecTy.getNumElements();
3690 
3691     LLT IdxTy = MRI.getType(Idx);
3692     int64_t PartIdx = IdxVal / NewNumElts;
3693     auto NewIdx =
3694         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3695 
3696     if (IsInsert) {
3697       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3698 
3699       // Use the adjusted index to insert into one of the subvectors.
3700       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3701           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3702       VecParts[PartIdx] = InsertPart.getReg(0);
3703 
3704       // Recombine the inserted subvector with the others to reform the result
3705       // vector.
3706       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3707     } else {
3708       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3709     }
3710 
3711     MI.eraseFromParent();
3712     return Legalized;
3713   }
3714 
3715   // With a variable index, we can't perform the operation in a smaller type, so
3716   // we're forced to expand this.
3717   //
3718   // TODO: We could emit a chain of compare/select to figure out which piece to
3719   // index.
3720   return lowerExtractInsertVectorElt(MI);
3721 }
3722 
3723 LegalizerHelper::LegalizeResult
3724 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3725                                       LLT NarrowTy) {
3726   // FIXME: Don't know how to handle secondary types yet.
3727   if (TypeIdx != 0)
3728     return UnableToLegalize;
3729 
3730   MachineMemOperand *MMO = *MI.memoperands_begin();
3731 
3732   // This implementation doesn't work for atomics. Give up instead of doing
3733   // something invalid.
3734   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3735       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3736     return UnableToLegalize;
3737 
3738   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3739   Register ValReg = MI.getOperand(0).getReg();
3740   Register AddrReg = MI.getOperand(1).getReg();
3741   LLT ValTy = MRI.getType(ValReg);
3742 
3743   // FIXME: Do we need a distinct NarrowMemory legalize action?
3744   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3745     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3746     return UnableToLegalize;
3747   }
3748 
3749   int NumParts = -1;
3750   int NumLeftover = -1;
3751   LLT LeftoverTy;
3752   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3753   if (IsLoad) {
3754     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3755   } else {
3756     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3757                      NarrowLeftoverRegs)) {
3758       NumParts = NarrowRegs.size();
3759       NumLeftover = NarrowLeftoverRegs.size();
3760     }
3761   }
3762 
3763   if (NumParts == -1)
3764     return UnableToLegalize;
3765 
3766   LLT PtrTy = MRI.getType(AddrReg);
3767   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3768 
3769   unsigned TotalSize = ValTy.getSizeInBits();
3770 
3771   // Split the load/store into PartTy sized pieces starting at Offset. If this
3772   // is a load, return the new registers in ValRegs. For a store, each elements
3773   // of ValRegs should be PartTy. Returns the next offset that needs to be
3774   // handled.
3775   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3776                              unsigned Offset) -> unsigned {
3777     MachineFunction &MF = MIRBuilder.getMF();
3778     unsigned PartSize = PartTy.getSizeInBits();
3779     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3780          Offset += PartSize, ++Idx) {
3781       unsigned ByteSize = PartSize / 8;
3782       unsigned ByteOffset = Offset / 8;
3783       Register NewAddrReg;
3784 
3785       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3786 
3787       MachineMemOperand *NewMMO =
3788         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3789 
3790       if (IsLoad) {
3791         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3792         ValRegs.push_back(Dst);
3793         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3794       } else {
3795         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3796       }
3797     }
3798 
3799     return Offset;
3800   };
3801 
3802   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3803 
3804   // Handle the rest of the register if this isn't an even type breakdown.
3805   if (LeftoverTy.isValid())
3806     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3807 
3808   if (IsLoad) {
3809     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3810                 LeftoverTy, NarrowLeftoverRegs);
3811   }
3812 
3813   MI.eraseFromParent();
3814   return Legalized;
3815 }
3816 
3817 LegalizerHelper::LegalizeResult
3818 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3819                                       LLT NarrowTy) {
3820   assert(TypeIdx == 0 && "only one type index expected");
3821 
3822   const unsigned Opc = MI.getOpcode();
3823   const int NumOps = MI.getNumOperands() - 1;
3824   const Register DstReg = MI.getOperand(0).getReg();
3825   const unsigned Flags = MI.getFlags();
3826   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3827   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3828 
3829   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3830 
3831   // First of all check whether we are narrowing (changing the element type)
3832   // or reducing the vector elements
3833   const LLT DstTy = MRI.getType(DstReg);
3834   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3835 
3836   SmallVector<Register, 8> ExtractedRegs[3];
3837   SmallVector<Register, 8> Parts;
3838 
3839   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3840 
3841   // Break down all the sources into NarrowTy pieces we can operate on. This may
3842   // involve creating merges to a wider type, padded with undef.
3843   for (int I = 0; I != NumOps; ++I) {
3844     Register SrcReg = MI.getOperand(I + 1).getReg();
3845     LLT SrcTy = MRI.getType(SrcReg);
3846 
3847     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3848     // For fewerElements, this is a smaller vector with the same element type.
3849     LLT OpNarrowTy;
3850     if (IsNarrow) {
3851       OpNarrowTy = NarrowScalarTy;
3852 
3853       // In case of narrowing, we need to cast vectors to scalars for this to
3854       // work properly
3855       // FIXME: Can we do without the bitcast here if we're narrowing?
3856       if (SrcTy.isVector()) {
3857         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3858         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3859       }
3860     } else {
3861       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3862     }
3863 
3864     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3865 
3866     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3867     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3868                         TargetOpcode::G_ANYEXT);
3869   }
3870 
3871   SmallVector<Register, 8> ResultRegs;
3872 
3873   // Input operands for each sub-instruction.
3874   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3875 
3876   int NumParts = ExtractedRegs[0].size();
3877   const unsigned DstSize = DstTy.getSizeInBits();
3878   const LLT DstScalarTy = LLT::scalar(DstSize);
3879 
3880   // Narrowing needs to use scalar types
3881   LLT DstLCMTy, NarrowDstTy;
3882   if (IsNarrow) {
3883     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3884     NarrowDstTy = NarrowScalarTy;
3885   } else {
3886     DstLCMTy = getLCMType(DstTy, NarrowTy);
3887     NarrowDstTy = NarrowTy;
3888   }
3889 
3890   // We widened the source registers to satisfy merge/unmerge size
3891   // constraints. We'll have some extra fully undef parts.
3892   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3893 
3894   for (int I = 0; I != NumRealParts; ++I) {
3895     // Emit this instruction on each of the split pieces.
3896     for (int J = 0; J != NumOps; ++J)
3897       InputRegs[J] = ExtractedRegs[J][I];
3898 
3899     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3900     ResultRegs.push_back(Inst.getReg(0));
3901   }
3902 
3903   // Fill out the widened result with undef instead of creating instructions
3904   // with undef inputs.
3905   int NumUndefParts = NumParts - NumRealParts;
3906   if (NumUndefParts != 0)
3907     ResultRegs.append(NumUndefParts,
3908                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3909 
3910   // Extract the possibly padded result. Use a scratch register if we need to do
3911   // a final bitcast, otherwise use the original result register.
3912   Register MergeDstReg;
3913   if (IsNarrow && DstTy.isVector())
3914     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3915   else
3916     MergeDstReg = DstReg;
3917 
3918   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3919 
3920   // Recast to vector if we narrowed a vector
3921   if (IsNarrow && DstTy.isVector())
3922     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3923 
3924   MI.eraseFromParent();
3925   return Legalized;
3926 }
3927 
3928 LegalizerHelper::LegalizeResult
3929 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3930                                               LLT NarrowTy) {
3931   Register DstReg = MI.getOperand(0).getReg();
3932   Register SrcReg = MI.getOperand(1).getReg();
3933   int64_t Imm = MI.getOperand(2).getImm();
3934 
3935   LLT DstTy = MRI.getType(DstReg);
3936 
3937   SmallVector<Register, 8> Parts;
3938   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3939   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3940 
3941   for (Register &R : Parts)
3942     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3943 
3944   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3945 
3946   MI.eraseFromParent();
3947   return Legalized;
3948 }
3949 
3950 LegalizerHelper::LegalizeResult
3951 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3952                                      LLT NarrowTy) {
3953   using namespace TargetOpcode;
3954 
3955   switch (MI.getOpcode()) {
3956   case G_IMPLICIT_DEF:
3957     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3958   case G_TRUNC:
3959   case G_AND:
3960   case G_OR:
3961   case G_XOR:
3962   case G_ADD:
3963   case G_SUB:
3964   case G_MUL:
3965   case G_PTR_ADD:
3966   case G_SMULH:
3967   case G_UMULH:
3968   case G_FADD:
3969   case G_FMUL:
3970   case G_FSUB:
3971   case G_FNEG:
3972   case G_FABS:
3973   case G_FCANONICALIZE:
3974   case G_FDIV:
3975   case G_FREM:
3976   case G_FMA:
3977   case G_FMAD:
3978   case G_FPOW:
3979   case G_FEXP:
3980   case G_FEXP2:
3981   case G_FLOG:
3982   case G_FLOG2:
3983   case G_FLOG10:
3984   case G_FNEARBYINT:
3985   case G_FCEIL:
3986   case G_FFLOOR:
3987   case G_FRINT:
3988   case G_INTRINSIC_ROUND:
3989   case G_INTRINSIC_ROUNDEVEN:
3990   case G_INTRINSIC_TRUNC:
3991   case G_FCOS:
3992   case G_FSIN:
3993   case G_FSQRT:
3994   case G_BSWAP:
3995   case G_BITREVERSE:
3996   case G_SDIV:
3997   case G_UDIV:
3998   case G_SREM:
3999   case G_UREM:
4000   case G_SMIN:
4001   case G_SMAX:
4002   case G_UMIN:
4003   case G_UMAX:
4004   case G_FMINNUM:
4005   case G_FMAXNUM:
4006   case G_FMINNUM_IEEE:
4007   case G_FMAXNUM_IEEE:
4008   case G_FMINIMUM:
4009   case G_FMAXIMUM:
4010   case G_FSHL:
4011   case G_FSHR:
4012   case G_FREEZE:
4013   case G_SADDSAT:
4014   case G_SSUBSAT:
4015   case G_UADDSAT:
4016   case G_USUBSAT:
4017     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4018   case G_SHL:
4019   case G_LSHR:
4020   case G_ASHR:
4021   case G_SSHLSAT:
4022   case G_USHLSAT:
4023   case G_CTLZ:
4024   case G_CTLZ_ZERO_UNDEF:
4025   case G_CTTZ:
4026   case G_CTTZ_ZERO_UNDEF:
4027   case G_CTPOP:
4028   case G_FCOPYSIGN:
4029     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4030   case G_ZEXT:
4031   case G_SEXT:
4032   case G_ANYEXT:
4033   case G_FPEXT:
4034   case G_FPTRUNC:
4035   case G_SITOFP:
4036   case G_UITOFP:
4037   case G_FPTOSI:
4038   case G_FPTOUI:
4039   case G_INTTOPTR:
4040   case G_PTRTOINT:
4041   case G_ADDRSPACE_CAST:
4042     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4043   case G_ICMP:
4044   case G_FCMP:
4045     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4046   case G_SELECT:
4047     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4048   case G_PHI:
4049     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4050   case G_UNMERGE_VALUES:
4051     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4052   case G_BUILD_VECTOR:
4053     assert(TypeIdx == 0 && "not a vector type index");
4054     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4055   case G_CONCAT_VECTORS:
4056     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4057       return UnableToLegalize;
4058     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4059   case G_EXTRACT_VECTOR_ELT:
4060   case G_INSERT_VECTOR_ELT:
4061     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4062   case G_LOAD:
4063   case G_STORE:
4064     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4065   case G_SEXT_INREG:
4066     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4067   default:
4068     return UnableToLegalize;
4069   }
4070 }
4071 
4072 LegalizerHelper::LegalizeResult
4073 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4074                                              const LLT HalfTy, const LLT AmtTy) {
4075 
4076   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4077   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4078   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4079 
4080   if (Amt.isNullValue()) {
4081     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4082     MI.eraseFromParent();
4083     return Legalized;
4084   }
4085 
4086   LLT NVT = HalfTy;
4087   unsigned NVTBits = HalfTy.getSizeInBits();
4088   unsigned VTBits = 2 * NVTBits;
4089 
4090   SrcOp Lo(Register(0)), Hi(Register(0));
4091   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4092     if (Amt.ugt(VTBits)) {
4093       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4094     } else if (Amt.ugt(NVTBits)) {
4095       Lo = MIRBuilder.buildConstant(NVT, 0);
4096       Hi = MIRBuilder.buildShl(NVT, InL,
4097                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4098     } else if (Amt == NVTBits) {
4099       Lo = MIRBuilder.buildConstant(NVT, 0);
4100       Hi = InL;
4101     } else {
4102       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4103       auto OrLHS =
4104           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4105       auto OrRHS = MIRBuilder.buildLShr(
4106           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4107       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4108     }
4109   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4110     if (Amt.ugt(VTBits)) {
4111       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4112     } else if (Amt.ugt(NVTBits)) {
4113       Lo = MIRBuilder.buildLShr(NVT, InH,
4114                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4115       Hi = MIRBuilder.buildConstant(NVT, 0);
4116     } else if (Amt == NVTBits) {
4117       Lo = InH;
4118       Hi = MIRBuilder.buildConstant(NVT, 0);
4119     } else {
4120       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4121 
4122       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4123       auto OrRHS = MIRBuilder.buildShl(
4124           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4125 
4126       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4127       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4128     }
4129   } else {
4130     if (Amt.ugt(VTBits)) {
4131       Hi = Lo = MIRBuilder.buildAShr(
4132           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4133     } else if (Amt.ugt(NVTBits)) {
4134       Lo = MIRBuilder.buildAShr(NVT, InH,
4135                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4136       Hi = MIRBuilder.buildAShr(NVT, InH,
4137                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4138     } else if (Amt == NVTBits) {
4139       Lo = InH;
4140       Hi = MIRBuilder.buildAShr(NVT, InH,
4141                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4142     } else {
4143       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4144 
4145       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4146       auto OrRHS = MIRBuilder.buildShl(
4147           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4148 
4149       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4150       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4151     }
4152   }
4153 
4154   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4155   MI.eraseFromParent();
4156 
4157   return Legalized;
4158 }
4159 
4160 // TODO: Optimize if constant shift amount.
4161 LegalizerHelper::LegalizeResult
4162 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4163                                    LLT RequestedTy) {
4164   if (TypeIdx == 1) {
4165     Observer.changingInstr(MI);
4166     narrowScalarSrc(MI, RequestedTy, 2);
4167     Observer.changedInstr(MI);
4168     return Legalized;
4169   }
4170 
4171   Register DstReg = MI.getOperand(0).getReg();
4172   LLT DstTy = MRI.getType(DstReg);
4173   if (DstTy.isVector())
4174     return UnableToLegalize;
4175 
4176   Register Amt = MI.getOperand(2).getReg();
4177   LLT ShiftAmtTy = MRI.getType(Amt);
4178   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4179   if (DstEltSize % 2 != 0)
4180     return UnableToLegalize;
4181 
4182   // Ignore the input type. We can only go to exactly half the size of the
4183   // input. If that isn't small enough, the resulting pieces will be further
4184   // legalized.
4185   const unsigned NewBitSize = DstEltSize / 2;
4186   const LLT HalfTy = LLT::scalar(NewBitSize);
4187   const LLT CondTy = LLT::scalar(1);
4188 
4189   if (const MachineInstr *KShiftAmt =
4190           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4191     return narrowScalarShiftByConstant(
4192         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4193   }
4194 
4195   // TODO: Expand with known bits.
4196 
4197   // Handle the fully general expansion by an unknown amount.
4198   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4199 
4200   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4201   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4202   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4203 
4204   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4205   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4206 
4207   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4208   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4209   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4210 
4211   Register ResultRegs[2];
4212   switch (MI.getOpcode()) {
4213   case TargetOpcode::G_SHL: {
4214     // Short: ShAmt < NewBitSize
4215     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4216 
4217     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4218     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4219     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4220 
4221     // Long: ShAmt >= NewBitSize
4222     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4223     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4224 
4225     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4226     auto Hi = MIRBuilder.buildSelect(
4227         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4228 
4229     ResultRegs[0] = Lo.getReg(0);
4230     ResultRegs[1] = Hi.getReg(0);
4231     break;
4232   }
4233   case TargetOpcode::G_LSHR:
4234   case TargetOpcode::G_ASHR: {
4235     // Short: ShAmt < NewBitSize
4236     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4237 
4238     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4239     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4240     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4241 
4242     // Long: ShAmt >= NewBitSize
4243     MachineInstrBuilder HiL;
4244     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4245       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4246     } else {
4247       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4248       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4249     }
4250     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4251                                      {InH, AmtExcess});     // Lo from Hi part.
4252 
4253     auto Lo = MIRBuilder.buildSelect(
4254         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4255 
4256     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4257 
4258     ResultRegs[0] = Lo.getReg(0);
4259     ResultRegs[1] = Hi.getReg(0);
4260     break;
4261   }
4262   default:
4263     llvm_unreachable("not a shift");
4264   }
4265 
4266   MIRBuilder.buildMerge(DstReg, ResultRegs);
4267   MI.eraseFromParent();
4268   return Legalized;
4269 }
4270 
4271 LegalizerHelper::LegalizeResult
4272 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4273                                        LLT MoreTy) {
4274   assert(TypeIdx == 0 && "Expecting only Idx 0");
4275 
4276   Observer.changingInstr(MI);
4277   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4278     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4279     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4280     moreElementsVectorSrc(MI, MoreTy, I);
4281   }
4282 
4283   MachineBasicBlock &MBB = *MI.getParent();
4284   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4285   moreElementsVectorDst(MI, MoreTy, 0);
4286   Observer.changedInstr(MI);
4287   return Legalized;
4288 }
4289 
4290 LegalizerHelper::LegalizeResult
4291 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4292                                     LLT MoreTy) {
4293   unsigned Opc = MI.getOpcode();
4294   switch (Opc) {
4295   case TargetOpcode::G_IMPLICIT_DEF:
4296   case TargetOpcode::G_LOAD: {
4297     if (TypeIdx != 0)
4298       return UnableToLegalize;
4299     Observer.changingInstr(MI);
4300     moreElementsVectorDst(MI, MoreTy, 0);
4301     Observer.changedInstr(MI);
4302     return Legalized;
4303   }
4304   case TargetOpcode::G_STORE:
4305     if (TypeIdx != 0)
4306       return UnableToLegalize;
4307     Observer.changingInstr(MI);
4308     moreElementsVectorSrc(MI, MoreTy, 0);
4309     Observer.changedInstr(MI);
4310     return Legalized;
4311   case TargetOpcode::G_AND:
4312   case TargetOpcode::G_OR:
4313   case TargetOpcode::G_XOR:
4314   case TargetOpcode::G_SMIN:
4315   case TargetOpcode::G_SMAX:
4316   case TargetOpcode::G_UMIN:
4317   case TargetOpcode::G_UMAX:
4318   case TargetOpcode::G_FMINNUM:
4319   case TargetOpcode::G_FMAXNUM:
4320   case TargetOpcode::G_FMINNUM_IEEE:
4321   case TargetOpcode::G_FMAXNUM_IEEE:
4322   case TargetOpcode::G_FMINIMUM:
4323   case TargetOpcode::G_FMAXIMUM: {
4324     Observer.changingInstr(MI);
4325     moreElementsVectorSrc(MI, MoreTy, 1);
4326     moreElementsVectorSrc(MI, MoreTy, 2);
4327     moreElementsVectorDst(MI, MoreTy, 0);
4328     Observer.changedInstr(MI);
4329     return Legalized;
4330   }
4331   case TargetOpcode::G_EXTRACT:
4332     if (TypeIdx != 1)
4333       return UnableToLegalize;
4334     Observer.changingInstr(MI);
4335     moreElementsVectorSrc(MI, MoreTy, 1);
4336     Observer.changedInstr(MI);
4337     return Legalized;
4338   case TargetOpcode::G_INSERT:
4339   case TargetOpcode::G_FREEZE:
4340     if (TypeIdx != 0)
4341       return UnableToLegalize;
4342     Observer.changingInstr(MI);
4343     moreElementsVectorSrc(MI, MoreTy, 1);
4344     moreElementsVectorDst(MI, MoreTy, 0);
4345     Observer.changedInstr(MI);
4346     return Legalized;
4347   case TargetOpcode::G_SELECT:
4348     if (TypeIdx != 0)
4349       return UnableToLegalize;
4350     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4351       return UnableToLegalize;
4352 
4353     Observer.changingInstr(MI);
4354     moreElementsVectorSrc(MI, MoreTy, 2);
4355     moreElementsVectorSrc(MI, MoreTy, 3);
4356     moreElementsVectorDst(MI, MoreTy, 0);
4357     Observer.changedInstr(MI);
4358     return Legalized;
4359   case TargetOpcode::G_UNMERGE_VALUES: {
4360     if (TypeIdx != 1)
4361       return UnableToLegalize;
4362 
4363     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4364     int NumDst = MI.getNumOperands() - 1;
4365     moreElementsVectorSrc(MI, MoreTy, NumDst);
4366 
4367     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4368     for (int I = 0; I != NumDst; ++I)
4369       MIB.addDef(MI.getOperand(I).getReg());
4370 
4371     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4372     for (int I = NumDst; I != NewNumDst; ++I)
4373       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4374 
4375     MIB.addUse(MI.getOperand(NumDst).getReg());
4376     MI.eraseFromParent();
4377     return Legalized;
4378   }
4379   case TargetOpcode::G_PHI:
4380     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4381   default:
4382     return UnableToLegalize;
4383   }
4384 }
4385 
4386 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4387                                         ArrayRef<Register> Src1Regs,
4388                                         ArrayRef<Register> Src2Regs,
4389                                         LLT NarrowTy) {
4390   MachineIRBuilder &B = MIRBuilder;
4391   unsigned SrcParts = Src1Regs.size();
4392   unsigned DstParts = DstRegs.size();
4393 
4394   unsigned DstIdx = 0; // Low bits of the result.
4395   Register FactorSum =
4396       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4397   DstRegs[DstIdx] = FactorSum;
4398 
4399   unsigned CarrySumPrevDstIdx;
4400   SmallVector<Register, 4> Factors;
4401 
4402   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4403     // Collect low parts of muls for DstIdx.
4404     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4405          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4406       MachineInstrBuilder Mul =
4407           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4408       Factors.push_back(Mul.getReg(0));
4409     }
4410     // Collect high parts of muls from previous DstIdx.
4411     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4412          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4413       MachineInstrBuilder Umulh =
4414           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4415       Factors.push_back(Umulh.getReg(0));
4416     }
4417     // Add CarrySum from additions calculated for previous DstIdx.
4418     if (DstIdx != 1) {
4419       Factors.push_back(CarrySumPrevDstIdx);
4420     }
4421 
4422     Register CarrySum;
4423     // Add all factors and accumulate all carries into CarrySum.
4424     if (DstIdx != DstParts - 1) {
4425       MachineInstrBuilder Uaddo =
4426           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4427       FactorSum = Uaddo.getReg(0);
4428       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4429       for (unsigned i = 2; i < Factors.size(); ++i) {
4430         MachineInstrBuilder Uaddo =
4431             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4432         FactorSum = Uaddo.getReg(0);
4433         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4434         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4435       }
4436     } else {
4437       // Since value for the next index is not calculated, neither is CarrySum.
4438       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4439       for (unsigned i = 2; i < Factors.size(); ++i)
4440         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4441     }
4442 
4443     CarrySumPrevDstIdx = CarrySum;
4444     DstRegs[DstIdx] = FactorSum;
4445     Factors.clear();
4446   }
4447 }
4448 
4449 LegalizerHelper::LegalizeResult
4450 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4451   Register DstReg = MI.getOperand(0).getReg();
4452   Register Src1 = MI.getOperand(1).getReg();
4453   Register Src2 = MI.getOperand(2).getReg();
4454 
4455   LLT Ty = MRI.getType(DstReg);
4456   if (Ty.isVector())
4457     return UnableToLegalize;
4458 
4459   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4460   unsigned DstSize = Ty.getSizeInBits();
4461   unsigned NarrowSize = NarrowTy.getSizeInBits();
4462   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4463     return UnableToLegalize;
4464 
4465   unsigned NumDstParts = DstSize / NarrowSize;
4466   unsigned NumSrcParts = SrcSize / NarrowSize;
4467   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4468   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4469 
4470   SmallVector<Register, 2> Src1Parts, Src2Parts;
4471   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4472   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4473   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4474   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4475 
4476   // Take only high half of registers if this is high mul.
4477   ArrayRef<Register> DstRegs(
4478       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4479   MIRBuilder.buildMerge(DstReg, DstRegs);
4480   MI.eraseFromParent();
4481   return Legalized;
4482 }
4483 
4484 LegalizerHelper::LegalizeResult
4485 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4486                                      LLT NarrowTy) {
4487   if (TypeIdx != 1)
4488     return UnableToLegalize;
4489 
4490   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4491 
4492   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4493   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4494   // NarrowSize.
4495   if (SizeOp1 % NarrowSize != 0)
4496     return UnableToLegalize;
4497   int NumParts = SizeOp1 / NarrowSize;
4498 
4499   SmallVector<Register, 2> SrcRegs, DstRegs;
4500   SmallVector<uint64_t, 2> Indexes;
4501   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4502 
4503   Register OpReg = MI.getOperand(0).getReg();
4504   uint64_t OpStart = MI.getOperand(2).getImm();
4505   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4506   for (int i = 0; i < NumParts; ++i) {
4507     unsigned SrcStart = i * NarrowSize;
4508 
4509     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4510       // No part of the extract uses this subregister, ignore it.
4511       continue;
4512     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4513       // The entire subregister is extracted, forward the value.
4514       DstRegs.push_back(SrcRegs[i]);
4515       continue;
4516     }
4517 
4518     // OpSegStart is where this destination segment would start in OpReg if it
4519     // extended infinitely in both directions.
4520     int64_t ExtractOffset;
4521     uint64_t SegSize;
4522     if (OpStart < SrcStart) {
4523       ExtractOffset = 0;
4524       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4525     } else {
4526       ExtractOffset = OpStart - SrcStart;
4527       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4528     }
4529 
4530     Register SegReg = SrcRegs[i];
4531     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4532       // A genuine extract is needed.
4533       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4534       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4535     }
4536 
4537     DstRegs.push_back(SegReg);
4538   }
4539 
4540   Register DstReg = MI.getOperand(0).getReg();
4541   if (MRI.getType(DstReg).isVector())
4542     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4543   else if (DstRegs.size() > 1)
4544     MIRBuilder.buildMerge(DstReg, DstRegs);
4545   else
4546     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4547   MI.eraseFromParent();
4548   return Legalized;
4549 }
4550 
4551 LegalizerHelper::LegalizeResult
4552 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4553                                     LLT NarrowTy) {
4554   // FIXME: Don't know how to handle secondary types yet.
4555   if (TypeIdx != 0)
4556     return UnableToLegalize;
4557 
4558   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4559   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4560 
4561   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4562   // NarrowSize.
4563   if (SizeOp0 % NarrowSize != 0)
4564     return UnableToLegalize;
4565 
4566   int NumParts = SizeOp0 / NarrowSize;
4567 
4568   SmallVector<Register, 2> SrcRegs, DstRegs;
4569   SmallVector<uint64_t, 2> Indexes;
4570   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4571 
4572   Register OpReg = MI.getOperand(2).getReg();
4573   uint64_t OpStart = MI.getOperand(3).getImm();
4574   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4575   for (int i = 0; i < NumParts; ++i) {
4576     unsigned DstStart = i * NarrowSize;
4577 
4578     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4579       // No part of the insert affects this subregister, forward the original.
4580       DstRegs.push_back(SrcRegs[i]);
4581       continue;
4582     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4583       // The entire subregister is defined by this insert, forward the new
4584       // value.
4585       DstRegs.push_back(OpReg);
4586       continue;
4587     }
4588 
4589     // OpSegStart is where this destination segment would start in OpReg if it
4590     // extended infinitely in both directions.
4591     int64_t ExtractOffset, InsertOffset;
4592     uint64_t SegSize;
4593     if (OpStart < DstStart) {
4594       InsertOffset = 0;
4595       ExtractOffset = DstStart - OpStart;
4596       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4597     } else {
4598       InsertOffset = OpStart - DstStart;
4599       ExtractOffset = 0;
4600       SegSize =
4601         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4602     }
4603 
4604     Register SegReg = OpReg;
4605     if (ExtractOffset != 0 || SegSize != OpSize) {
4606       // A genuine extract is needed.
4607       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4608       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4609     }
4610 
4611     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4612     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4613     DstRegs.push_back(DstReg);
4614   }
4615 
4616   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4617   Register DstReg = MI.getOperand(0).getReg();
4618   if(MRI.getType(DstReg).isVector())
4619     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4620   else
4621     MIRBuilder.buildMerge(DstReg, DstRegs);
4622   MI.eraseFromParent();
4623   return Legalized;
4624 }
4625 
4626 LegalizerHelper::LegalizeResult
4627 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4628                                    LLT NarrowTy) {
4629   Register DstReg = MI.getOperand(0).getReg();
4630   LLT DstTy = MRI.getType(DstReg);
4631 
4632   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4633 
4634   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4635   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4636   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4637   LLT LeftoverTy;
4638   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4639                     Src0Regs, Src0LeftoverRegs))
4640     return UnableToLegalize;
4641 
4642   LLT Unused;
4643   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4644                     Src1Regs, Src1LeftoverRegs))
4645     llvm_unreachable("inconsistent extractParts result");
4646 
4647   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4648     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4649                                         {Src0Regs[I], Src1Regs[I]});
4650     DstRegs.push_back(Inst.getReg(0));
4651   }
4652 
4653   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4654     auto Inst = MIRBuilder.buildInstr(
4655       MI.getOpcode(),
4656       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4657     DstLeftoverRegs.push_back(Inst.getReg(0));
4658   }
4659 
4660   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4661               LeftoverTy, DstLeftoverRegs);
4662 
4663   MI.eraseFromParent();
4664   return Legalized;
4665 }
4666 
4667 LegalizerHelper::LegalizeResult
4668 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4669                                  LLT NarrowTy) {
4670   if (TypeIdx != 0)
4671     return UnableToLegalize;
4672 
4673   Register DstReg = MI.getOperand(0).getReg();
4674   Register SrcReg = MI.getOperand(1).getReg();
4675 
4676   LLT DstTy = MRI.getType(DstReg);
4677   if (DstTy.isVector())
4678     return UnableToLegalize;
4679 
4680   SmallVector<Register, 8> Parts;
4681   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4682   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4683   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4684 
4685   MI.eraseFromParent();
4686   return Legalized;
4687 }
4688 
4689 LegalizerHelper::LegalizeResult
4690 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4691                                     LLT NarrowTy) {
4692   if (TypeIdx != 0)
4693     return UnableToLegalize;
4694 
4695   Register CondReg = MI.getOperand(1).getReg();
4696   LLT CondTy = MRI.getType(CondReg);
4697   if (CondTy.isVector()) // TODO: Handle vselect
4698     return UnableToLegalize;
4699 
4700   Register DstReg = MI.getOperand(0).getReg();
4701   LLT DstTy = MRI.getType(DstReg);
4702 
4703   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4704   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4705   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4706   LLT LeftoverTy;
4707   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4708                     Src1Regs, Src1LeftoverRegs))
4709     return UnableToLegalize;
4710 
4711   LLT Unused;
4712   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4713                     Src2Regs, Src2LeftoverRegs))
4714     llvm_unreachable("inconsistent extractParts result");
4715 
4716   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4717     auto Select = MIRBuilder.buildSelect(NarrowTy,
4718                                          CondReg, Src1Regs[I], Src2Regs[I]);
4719     DstRegs.push_back(Select.getReg(0));
4720   }
4721 
4722   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4723     auto Select = MIRBuilder.buildSelect(
4724       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4725     DstLeftoverRegs.push_back(Select.getReg(0));
4726   }
4727 
4728   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4729               LeftoverTy, DstLeftoverRegs);
4730 
4731   MI.eraseFromParent();
4732   return Legalized;
4733 }
4734 
4735 LegalizerHelper::LegalizeResult
4736 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4737                                   LLT NarrowTy) {
4738   if (TypeIdx != 1)
4739     return UnableToLegalize;
4740 
4741   Register DstReg = MI.getOperand(0).getReg();
4742   Register SrcReg = MI.getOperand(1).getReg();
4743   LLT DstTy = MRI.getType(DstReg);
4744   LLT SrcTy = MRI.getType(SrcReg);
4745   unsigned NarrowSize = NarrowTy.getSizeInBits();
4746 
4747   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4748     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4749 
4750     MachineIRBuilder &B = MIRBuilder;
4751     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4752     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4753     auto C_0 = B.buildConstant(NarrowTy, 0);
4754     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4755                                 UnmergeSrc.getReg(1), C_0);
4756     auto LoCTLZ = IsUndef ?
4757       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4758       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4759     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4760     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4761     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4762     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4763 
4764     MI.eraseFromParent();
4765     return Legalized;
4766   }
4767 
4768   return UnableToLegalize;
4769 }
4770 
4771 LegalizerHelper::LegalizeResult
4772 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4773                                   LLT NarrowTy) {
4774   if (TypeIdx != 1)
4775     return UnableToLegalize;
4776 
4777   Register DstReg = MI.getOperand(0).getReg();
4778   Register SrcReg = MI.getOperand(1).getReg();
4779   LLT DstTy = MRI.getType(DstReg);
4780   LLT SrcTy = MRI.getType(SrcReg);
4781   unsigned NarrowSize = NarrowTy.getSizeInBits();
4782 
4783   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4784     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4785 
4786     MachineIRBuilder &B = MIRBuilder;
4787     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4788     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4789     auto C_0 = B.buildConstant(NarrowTy, 0);
4790     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4791                                 UnmergeSrc.getReg(0), C_0);
4792     auto HiCTTZ = IsUndef ?
4793       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4794       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4795     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4796     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4797     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4798     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4799 
4800     MI.eraseFromParent();
4801     return Legalized;
4802   }
4803 
4804   return UnableToLegalize;
4805 }
4806 
4807 LegalizerHelper::LegalizeResult
4808 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4809                                    LLT NarrowTy) {
4810   if (TypeIdx != 1)
4811     return UnableToLegalize;
4812 
4813   Register DstReg = MI.getOperand(0).getReg();
4814   LLT DstTy = MRI.getType(DstReg);
4815   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4816   unsigned NarrowSize = NarrowTy.getSizeInBits();
4817 
4818   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4819     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4820 
4821     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4822     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4823     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4824 
4825     MI.eraseFromParent();
4826     return Legalized;
4827   }
4828 
4829   return UnableToLegalize;
4830 }
4831 
4832 LegalizerHelper::LegalizeResult
4833 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4834   unsigned Opc = MI.getOpcode();
4835   const auto &TII = MIRBuilder.getTII();
4836   auto isSupported = [this](const LegalityQuery &Q) {
4837     auto QAction = LI.getAction(Q).Action;
4838     return QAction == Legal || QAction == Libcall || QAction == Custom;
4839   };
4840   switch (Opc) {
4841   default:
4842     return UnableToLegalize;
4843   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4844     // This trivially expands to CTLZ.
4845     Observer.changingInstr(MI);
4846     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4847     Observer.changedInstr(MI);
4848     return Legalized;
4849   }
4850   case TargetOpcode::G_CTLZ: {
4851     Register DstReg = MI.getOperand(0).getReg();
4852     Register SrcReg = MI.getOperand(1).getReg();
4853     LLT DstTy = MRI.getType(DstReg);
4854     LLT SrcTy = MRI.getType(SrcReg);
4855     unsigned Len = SrcTy.getSizeInBits();
4856 
4857     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4858       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4859       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4860       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4861       auto ICmp = MIRBuilder.buildICmp(
4862           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4863       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4864       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4865       MI.eraseFromParent();
4866       return Legalized;
4867     }
4868     // for now, we do this:
4869     // NewLen = NextPowerOf2(Len);
4870     // x = x | (x >> 1);
4871     // x = x | (x >> 2);
4872     // ...
4873     // x = x | (x >>16);
4874     // x = x | (x >>32); // for 64-bit input
4875     // Upto NewLen/2
4876     // return Len - popcount(x);
4877     //
4878     // Ref: "Hacker's Delight" by Henry Warren
4879     Register Op = SrcReg;
4880     unsigned NewLen = PowerOf2Ceil(Len);
4881     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4882       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4883       auto MIBOp = MIRBuilder.buildOr(
4884           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4885       Op = MIBOp.getReg(0);
4886     }
4887     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4888     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4889                         MIBPop);
4890     MI.eraseFromParent();
4891     return Legalized;
4892   }
4893   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4894     // This trivially expands to CTTZ.
4895     Observer.changingInstr(MI);
4896     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4897     Observer.changedInstr(MI);
4898     return Legalized;
4899   }
4900   case TargetOpcode::G_CTTZ: {
4901     Register DstReg = MI.getOperand(0).getReg();
4902     Register SrcReg = MI.getOperand(1).getReg();
4903     LLT DstTy = MRI.getType(DstReg);
4904     LLT SrcTy = MRI.getType(SrcReg);
4905 
4906     unsigned Len = SrcTy.getSizeInBits();
4907     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4908       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4909       // zero.
4910       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4911       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4912       auto ICmp = MIRBuilder.buildICmp(
4913           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4914       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4915       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4916       MI.eraseFromParent();
4917       return Legalized;
4918     }
4919     // for now, we use: { return popcount(~x & (x - 1)); }
4920     // unless the target has ctlz but not ctpop, in which case we use:
4921     // { return 32 - nlz(~x & (x-1)); }
4922     // Ref: "Hacker's Delight" by Henry Warren
4923     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4924     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4925     auto MIBTmp = MIRBuilder.buildAnd(
4926         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4927     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4928         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4929       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4930       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4931                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4932       MI.eraseFromParent();
4933       return Legalized;
4934     }
4935     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4936     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4937     return Legalized;
4938   }
4939   case TargetOpcode::G_CTPOP: {
4940     Register SrcReg = MI.getOperand(1).getReg();
4941     LLT Ty = MRI.getType(SrcReg);
4942     unsigned Size = Ty.getSizeInBits();
4943     MachineIRBuilder &B = MIRBuilder;
4944 
4945     // Count set bits in blocks of 2 bits. Default approach would be
4946     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4947     // We use following formula instead:
4948     // B2Count = val - { (val >> 1) & 0x55555555 }
4949     // since it gives same result in blocks of 2 with one instruction less.
4950     auto C_1 = B.buildConstant(Ty, 1);
4951     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
4952     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4953     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4954     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4955     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
4956 
4957     // In order to get count in blocks of 4 add values from adjacent block of 2.
4958     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4959     auto C_2 = B.buildConstant(Ty, 2);
4960     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4961     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4962     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4963     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4964     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4965     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4966 
4967     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4968     // addition since count value sits in range {0,...,8} and 4 bits are enough
4969     // to hold such binary values. After addition high 4 bits still hold count
4970     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4971     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4972     auto C_4 = B.buildConstant(Ty, 4);
4973     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4974     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4975     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4976     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4977     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4978 
4979     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4980     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4981     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4982     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4983     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4984 
4985     // Shift count result from 8 high bits to low bits.
4986     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4987     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4988 
4989     MI.eraseFromParent();
4990     return Legalized;
4991   }
4992   }
4993 }
4994 
4995 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4996 // representation.
4997 LegalizerHelper::LegalizeResult
4998 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4999   Register Dst = MI.getOperand(0).getReg();
5000   Register Src = MI.getOperand(1).getReg();
5001   const LLT S64 = LLT::scalar(64);
5002   const LLT S32 = LLT::scalar(32);
5003   const LLT S1 = LLT::scalar(1);
5004 
5005   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5006 
5007   // unsigned cul2f(ulong u) {
5008   //   uint lz = clz(u);
5009   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5010   //   u = (u << lz) & 0x7fffffffffffffffUL;
5011   //   ulong t = u & 0xffffffffffUL;
5012   //   uint v = (e << 23) | (uint)(u >> 40);
5013   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5014   //   return as_float(v + r);
5015   // }
5016 
5017   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5018   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5019 
5020   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5021 
5022   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5023   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5024 
5025   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5026   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5027 
5028   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5029   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5030 
5031   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5032 
5033   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5034   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5035 
5036   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5037   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5038   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5039 
5040   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5041   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5042   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5043   auto One = MIRBuilder.buildConstant(S32, 1);
5044 
5045   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5046   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5047   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5048   MIRBuilder.buildAdd(Dst, V, R);
5049 
5050   MI.eraseFromParent();
5051   return Legalized;
5052 }
5053 
5054 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5055   Register Dst = MI.getOperand(0).getReg();
5056   Register Src = MI.getOperand(1).getReg();
5057   LLT DstTy = MRI.getType(Dst);
5058   LLT SrcTy = MRI.getType(Src);
5059 
5060   if (SrcTy == LLT::scalar(1)) {
5061     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5062     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5063     MIRBuilder.buildSelect(Dst, Src, True, False);
5064     MI.eraseFromParent();
5065     return Legalized;
5066   }
5067 
5068   if (SrcTy != LLT::scalar(64))
5069     return UnableToLegalize;
5070 
5071   if (DstTy == LLT::scalar(32)) {
5072     // TODO: SelectionDAG has several alternative expansions to port which may
5073     // be more reasonble depending on the available instructions. If a target
5074     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5075     // intermediate type, this is probably worse.
5076     return lowerU64ToF32BitOps(MI);
5077   }
5078 
5079   return UnableToLegalize;
5080 }
5081 
5082 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5083   Register Dst = MI.getOperand(0).getReg();
5084   Register Src = MI.getOperand(1).getReg();
5085   LLT DstTy = MRI.getType(Dst);
5086   LLT SrcTy = MRI.getType(Src);
5087 
5088   const LLT S64 = LLT::scalar(64);
5089   const LLT S32 = LLT::scalar(32);
5090   const LLT S1 = LLT::scalar(1);
5091 
5092   if (SrcTy == S1) {
5093     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5094     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5095     MIRBuilder.buildSelect(Dst, Src, True, False);
5096     MI.eraseFromParent();
5097     return Legalized;
5098   }
5099 
5100   if (SrcTy != S64)
5101     return UnableToLegalize;
5102 
5103   if (DstTy == S32) {
5104     // signed cl2f(long l) {
5105     //   long s = l >> 63;
5106     //   float r = cul2f((l + s) ^ s);
5107     //   return s ? -r : r;
5108     // }
5109     Register L = Src;
5110     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5111     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5112 
5113     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5114     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5115     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5116 
5117     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5118     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5119                                             MIRBuilder.buildConstant(S64, 0));
5120     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5121     MI.eraseFromParent();
5122     return Legalized;
5123   }
5124 
5125   return UnableToLegalize;
5126 }
5127 
5128 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5129   Register Dst = MI.getOperand(0).getReg();
5130   Register Src = MI.getOperand(1).getReg();
5131   LLT DstTy = MRI.getType(Dst);
5132   LLT SrcTy = MRI.getType(Src);
5133   const LLT S64 = LLT::scalar(64);
5134   const LLT S32 = LLT::scalar(32);
5135 
5136   if (SrcTy != S64 && SrcTy != S32)
5137     return UnableToLegalize;
5138   if (DstTy != S32 && DstTy != S64)
5139     return UnableToLegalize;
5140 
5141   // FPTOSI gives same result as FPTOUI for positive signed integers.
5142   // FPTOUI needs to deal with fp values that convert to unsigned integers
5143   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5144 
5145   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5146   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5147                                                 : APFloat::IEEEdouble(),
5148                     APInt::getNullValue(SrcTy.getSizeInBits()));
5149   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5150 
5151   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5152 
5153   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5154   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5155   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5156   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5157   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5158   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5159   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5160 
5161   const LLT S1 = LLT::scalar(1);
5162 
5163   MachineInstrBuilder FCMP =
5164       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5165   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5166 
5167   MI.eraseFromParent();
5168   return Legalized;
5169 }
5170 
5171 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5172   Register Dst = MI.getOperand(0).getReg();
5173   Register Src = MI.getOperand(1).getReg();
5174   LLT DstTy = MRI.getType(Dst);
5175   LLT SrcTy = MRI.getType(Src);
5176   const LLT S64 = LLT::scalar(64);
5177   const LLT S32 = LLT::scalar(32);
5178 
5179   // FIXME: Only f32 to i64 conversions are supported.
5180   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5181     return UnableToLegalize;
5182 
5183   // Expand f32 -> i64 conversion
5184   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5185   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5186 
5187   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5188 
5189   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5190   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5191 
5192   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5193   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5194 
5195   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5196                                            APInt::getSignMask(SrcEltBits));
5197   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5198   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5199   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5200   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5201 
5202   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5203   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5204   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5205 
5206   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5207   R = MIRBuilder.buildZExt(DstTy, R);
5208 
5209   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5210   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5211   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5212   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5213 
5214   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5215   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5216 
5217   const LLT S1 = LLT::scalar(1);
5218   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5219                                     S1, Exponent, ExponentLoBit);
5220 
5221   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5222 
5223   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5224   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5225 
5226   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5227 
5228   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5229                                           S1, Exponent, ZeroSrcTy);
5230 
5231   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5232   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5233 
5234   MI.eraseFromParent();
5235   return Legalized;
5236 }
5237 
5238 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5239 LegalizerHelper::LegalizeResult
5240 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5241   Register Dst = MI.getOperand(0).getReg();
5242   Register Src = MI.getOperand(1).getReg();
5243 
5244   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5245     return UnableToLegalize;
5246 
5247   const unsigned ExpMask = 0x7ff;
5248   const unsigned ExpBiasf64 = 1023;
5249   const unsigned ExpBiasf16 = 15;
5250   const LLT S32 = LLT::scalar(32);
5251   const LLT S1 = LLT::scalar(1);
5252 
5253   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5254   Register U = Unmerge.getReg(0);
5255   Register UH = Unmerge.getReg(1);
5256 
5257   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5258   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5259 
5260   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5261   // add the f16 bias (15) to get the biased exponent for the f16 format.
5262   E = MIRBuilder.buildAdd(
5263     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5264 
5265   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5266   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5267 
5268   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5269                                        MIRBuilder.buildConstant(S32, 0x1ff));
5270   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5271 
5272   auto Zero = MIRBuilder.buildConstant(S32, 0);
5273   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5274   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5275   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5276 
5277   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5278   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5279   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5280   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5281 
5282   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5283   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5284 
5285   // N = M | (E << 12);
5286   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5287   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5288 
5289   // B = clamp(1-E, 0, 13);
5290   auto One = MIRBuilder.buildConstant(S32, 1);
5291   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5292   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5293   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5294 
5295   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5296                                        MIRBuilder.buildConstant(S32, 0x1000));
5297 
5298   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5299   auto D0 = MIRBuilder.buildShl(S32, D, B);
5300 
5301   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5302                                              D0, SigSetHigh);
5303   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5304   D = MIRBuilder.buildOr(S32, D, D1);
5305 
5306   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5307   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5308 
5309   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5310   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5311 
5312   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5313                                        MIRBuilder.buildConstant(S32, 3));
5314   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5315 
5316   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5317                                        MIRBuilder.buildConstant(S32, 5));
5318   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5319 
5320   V1 = MIRBuilder.buildOr(S32, V0, V1);
5321   V = MIRBuilder.buildAdd(S32, V, V1);
5322 
5323   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5324                                        E, MIRBuilder.buildConstant(S32, 30));
5325   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5326                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5327 
5328   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5329                                          E, MIRBuilder.buildConstant(S32, 1039));
5330   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5331 
5332   // Extract the sign bit.
5333   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5334   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5335 
5336   // Insert the sign bit
5337   V = MIRBuilder.buildOr(S32, Sign, V);
5338 
5339   MIRBuilder.buildTrunc(Dst, V);
5340   MI.eraseFromParent();
5341   return Legalized;
5342 }
5343 
5344 LegalizerHelper::LegalizeResult
5345 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5346   Register Dst = MI.getOperand(0).getReg();
5347   Register Src = MI.getOperand(1).getReg();
5348 
5349   LLT DstTy = MRI.getType(Dst);
5350   LLT SrcTy = MRI.getType(Src);
5351   const LLT S64 = LLT::scalar(64);
5352   const LLT S16 = LLT::scalar(16);
5353 
5354   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5355     return lowerFPTRUNC_F64_TO_F16(MI);
5356 
5357   return UnableToLegalize;
5358 }
5359 
5360 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5361 // multiplication tree.
5362 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5363   Register Dst = MI.getOperand(0).getReg();
5364   Register Src0 = MI.getOperand(1).getReg();
5365   Register Src1 = MI.getOperand(2).getReg();
5366   LLT Ty = MRI.getType(Dst);
5367 
5368   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5369   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5370   MI.eraseFromParent();
5371   return Legalized;
5372 }
5373 
5374 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5375   switch (Opc) {
5376   case TargetOpcode::G_SMIN:
5377     return CmpInst::ICMP_SLT;
5378   case TargetOpcode::G_SMAX:
5379     return CmpInst::ICMP_SGT;
5380   case TargetOpcode::G_UMIN:
5381     return CmpInst::ICMP_ULT;
5382   case TargetOpcode::G_UMAX:
5383     return CmpInst::ICMP_UGT;
5384   default:
5385     llvm_unreachable("not in integer min/max");
5386   }
5387 }
5388 
5389 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5390   Register Dst = MI.getOperand(0).getReg();
5391   Register Src0 = MI.getOperand(1).getReg();
5392   Register Src1 = MI.getOperand(2).getReg();
5393 
5394   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5395   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5396 
5397   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5398   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5399 
5400   MI.eraseFromParent();
5401   return Legalized;
5402 }
5403 
5404 LegalizerHelper::LegalizeResult
5405 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5406   Register Dst = MI.getOperand(0).getReg();
5407   Register Src0 = MI.getOperand(1).getReg();
5408   Register Src1 = MI.getOperand(2).getReg();
5409 
5410   const LLT Src0Ty = MRI.getType(Src0);
5411   const LLT Src1Ty = MRI.getType(Src1);
5412 
5413   const int Src0Size = Src0Ty.getScalarSizeInBits();
5414   const int Src1Size = Src1Ty.getScalarSizeInBits();
5415 
5416   auto SignBitMask = MIRBuilder.buildConstant(
5417     Src0Ty, APInt::getSignMask(Src0Size));
5418 
5419   auto NotSignBitMask = MIRBuilder.buildConstant(
5420     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5421 
5422   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5423   MachineInstr *Or;
5424 
5425   if (Src0Ty == Src1Ty) {
5426     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5427     Or = MIRBuilder.buildOr(Dst, And0, And1);
5428   } else if (Src0Size > Src1Size) {
5429     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5430     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5431     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5432     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5433     Or = MIRBuilder.buildOr(Dst, And0, And1);
5434   } else {
5435     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5436     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5437     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5438     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5439     Or = MIRBuilder.buildOr(Dst, And0, And1);
5440   }
5441 
5442   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5443   // constants are a nan and -0.0, but the final result should preserve
5444   // everything.
5445   if (unsigned Flags = MI.getFlags())
5446     Or->setFlags(Flags);
5447 
5448   MI.eraseFromParent();
5449   return Legalized;
5450 }
5451 
5452 LegalizerHelper::LegalizeResult
5453 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5454   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5455     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5456 
5457   Register Dst = MI.getOperand(0).getReg();
5458   Register Src0 = MI.getOperand(1).getReg();
5459   Register Src1 = MI.getOperand(2).getReg();
5460   LLT Ty = MRI.getType(Dst);
5461 
5462   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5463     // Insert canonicalizes if it's possible we need to quiet to get correct
5464     // sNaN behavior.
5465 
5466     // Note this must be done here, and not as an optimization combine in the
5467     // absence of a dedicate quiet-snan instruction as we're using an
5468     // omni-purpose G_FCANONICALIZE.
5469     if (!isKnownNeverSNaN(Src0, MRI))
5470       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5471 
5472     if (!isKnownNeverSNaN(Src1, MRI))
5473       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5474   }
5475 
5476   // If there are no nans, it's safe to simply replace this with the non-IEEE
5477   // version.
5478   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5479   MI.eraseFromParent();
5480   return Legalized;
5481 }
5482 
5483 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5484   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5485   Register DstReg = MI.getOperand(0).getReg();
5486   LLT Ty = MRI.getType(DstReg);
5487   unsigned Flags = MI.getFlags();
5488 
5489   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5490                                   Flags);
5491   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5492   MI.eraseFromParent();
5493   return Legalized;
5494 }
5495 
5496 LegalizerHelper::LegalizeResult
5497 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5498   Register DstReg = MI.getOperand(0).getReg();
5499   Register X = MI.getOperand(1).getReg();
5500   const unsigned Flags = MI.getFlags();
5501   const LLT Ty = MRI.getType(DstReg);
5502   const LLT CondTy = Ty.changeElementSize(1);
5503 
5504   // round(x) =>
5505   //  t = trunc(x);
5506   //  d = fabs(x - t);
5507   //  o = copysign(1.0f, x);
5508   //  return t + (d >= 0.5 ? o : 0.0);
5509 
5510   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5511 
5512   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5513   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5514   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5515   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5516   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5517   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5518 
5519   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5520                                   Flags);
5521   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5522 
5523   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5524 
5525   MI.eraseFromParent();
5526   return Legalized;
5527 }
5528 
5529 LegalizerHelper::LegalizeResult
5530 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5531   Register DstReg = MI.getOperand(0).getReg();
5532   Register SrcReg = MI.getOperand(1).getReg();
5533   unsigned Flags = MI.getFlags();
5534   LLT Ty = MRI.getType(DstReg);
5535   const LLT CondTy = Ty.changeElementSize(1);
5536 
5537   // result = trunc(src);
5538   // if (src < 0.0 && src != result)
5539   //   result += -1.0.
5540 
5541   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5542   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5543 
5544   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5545                                   SrcReg, Zero, Flags);
5546   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5547                                       SrcReg, Trunc, Flags);
5548   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5549   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5550 
5551   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5552   MI.eraseFromParent();
5553   return Legalized;
5554 }
5555 
5556 LegalizerHelper::LegalizeResult
5557 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5558   const unsigned NumOps = MI.getNumOperands();
5559   Register DstReg = MI.getOperand(0).getReg();
5560   Register Src0Reg = MI.getOperand(1).getReg();
5561   LLT DstTy = MRI.getType(DstReg);
5562   LLT SrcTy = MRI.getType(Src0Reg);
5563   unsigned PartSize = SrcTy.getSizeInBits();
5564 
5565   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5566   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5567 
5568   for (unsigned I = 2; I != NumOps; ++I) {
5569     const unsigned Offset = (I - 1) * PartSize;
5570 
5571     Register SrcReg = MI.getOperand(I).getReg();
5572     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5573 
5574     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5575       MRI.createGenericVirtualRegister(WideTy);
5576 
5577     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5578     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5579     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5580     ResultReg = NextResult;
5581   }
5582 
5583   if (DstTy.isPointer()) {
5584     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5585           DstTy.getAddressSpace())) {
5586       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5587       return UnableToLegalize;
5588     }
5589 
5590     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5591   }
5592 
5593   MI.eraseFromParent();
5594   return Legalized;
5595 }
5596 
5597 LegalizerHelper::LegalizeResult
5598 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5599   const unsigned NumDst = MI.getNumOperands() - 1;
5600   Register SrcReg = MI.getOperand(NumDst).getReg();
5601   Register Dst0Reg = MI.getOperand(0).getReg();
5602   LLT DstTy = MRI.getType(Dst0Reg);
5603   if (DstTy.isPointer())
5604     return UnableToLegalize; // TODO
5605 
5606   SrcReg = coerceToScalar(SrcReg);
5607   if (!SrcReg)
5608     return UnableToLegalize;
5609 
5610   // Expand scalarizing unmerge as bitcast to integer and shift.
5611   LLT IntTy = MRI.getType(SrcReg);
5612 
5613   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5614 
5615   const unsigned DstSize = DstTy.getSizeInBits();
5616   unsigned Offset = DstSize;
5617   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5618     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5619     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5620     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5621   }
5622 
5623   MI.eraseFromParent();
5624   return Legalized;
5625 }
5626 
5627 /// Lower a vector extract or insert by writing the vector to a stack temporary
5628 /// and reloading the element or vector.
5629 ///
5630 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5631 ///  =>
5632 ///  %stack_temp = G_FRAME_INDEX
5633 ///  G_STORE %vec, %stack_temp
5634 ///  %idx = clamp(%idx, %vec.getNumElements())
5635 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5636 ///  %dst = G_LOAD %element_ptr
5637 LegalizerHelper::LegalizeResult
5638 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5639   Register DstReg = MI.getOperand(0).getReg();
5640   Register SrcVec = MI.getOperand(1).getReg();
5641   Register InsertVal;
5642   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5643     InsertVal = MI.getOperand(2).getReg();
5644 
5645   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5646 
5647   LLT VecTy = MRI.getType(SrcVec);
5648   LLT EltTy = VecTy.getElementType();
5649   if (!EltTy.isByteSized()) { // Not implemented.
5650     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5651     return UnableToLegalize;
5652   }
5653 
5654   unsigned EltBytes = EltTy.getSizeInBytes();
5655   Align VecAlign = getStackTemporaryAlignment(VecTy);
5656   Align EltAlign;
5657 
5658   MachinePointerInfo PtrInfo;
5659   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5660                                         VecAlign, PtrInfo);
5661   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5662 
5663   // Get the pointer to the element, and be sure not to hit undefined behavior
5664   // if the index is out of bounds.
5665   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5666 
5667   int64_t IdxVal;
5668   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5669     int64_t Offset = IdxVal * EltBytes;
5670     PtrInfo = PtrInfo.getWithOffset(Offset);
5671     EltAlign = commonAlignment(VecAlign, Offset);
5672   } else {
5673     // We lose information with a variable offset.
5674     EltAlign = getStackTemporaryAlignment(EltTy);
5675     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5676   }
5677 
5678   if (InsertVal) {
5679     // Write the inserted element
5680     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5681 
5682     // Reload the whole vector.
5683     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5684   } else {
5685     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5686   }
5687 
5688   MI.eraseFromParent();
5689   return Legalized;
5690 }
5691 
5692 LegalizerHelper::LegalizeResult
5693 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5694   Register DstReg = MI.getOperand(0).getReg();
5695   Register Src0Reg = MI.getOperand(1).getReg();
5696   Register Src1Reg = MI.getOperand(2).getReg();
5697   LLT Src0Ty = MRI.getType(Src0Reg);
5698   LLT DstTy = MRI.getType(DstReg);
5699   LLT IdxTy = LLT::scalar(32);
5700 
5701   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5702 
5703   if (DstTy.isScalar()) {
5704     if (Src0Ty.isVector())
5705       return UnableToLegalize;
5706 
5707     // This is just a SELECT.
5708     assert(Mask.size() == 1 && "Expected a single mask element");
5709     Register Val;
5710     if (Mask[0] < 0 || Mask[0] > 1)
5711       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5712     else
5713       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5714     MIRBuilder.buildCopy(DstReg, Val);
5715     MI.eraseFromParent();
5716     return Legalized;
5717   }
5718 
5719   Register Undef;
5720   SmallVector<Register, 32> BuildVec;
5721   LLT EltTy = DstTy.getElementType();
5722 
5723   for (int Idx : Mask) {
5724     if (Idx < 0) {
5725       if (!Undef.isValid())
5726         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5727       BuildVec.push_back(Undef);
5728       continue;
5729     }
5730 
5731     if (Src0Ty.isScalar()) {
5732       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5733     } else {
5734       int NumElts = Src0Ty.getNumElements();
5735       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5736       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5737       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5738       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5739       BuildVec.push_back(Extract.getReg(0));
5740     }
5741   }
5742 
5743   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5744   MI.eraseFromParent();
5745   return Legalized;
5746 }
5747 
5748 LegalizerHelper::LegalizeResult
5749 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5750   const auto &MF = *MI.getMF();
5751   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5752   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5753     return UnableToLegalize;
5754 
5755   Register Dst = MI.getOperand(0).getReg();
5756   Register AllocSize = MI.getOperand(1).getReg();
5757   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5758 
5759   LLT PtrTy = MRI.getType(Dst);
5760   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5761 
5762   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5763   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5764   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5765 
5766   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5767   // have to generate an extra instruction to negate the alloc and then use
5768   // G_PTR_ADD to add the negative offset.
5769   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5770   if (Alignment > Align(1)) {
5771     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5772     AlignMask.negate();
5773     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5774     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5775   }
5776 
5777   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5778   MIRBuilder.buildCopy(SPReg, SPTmp);
5779   MIRBuilder.buildCopy(Dst, SPTmp);
5780 
5781   MI.eraseFromParent();
5782   return Legalized;
5783 }
5784 
5785 LegalizerHelper::LegalizeResult
5786 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5787   Register Dst = MI.getOperand(0).getReg();
5788   Register Src = MI.getOperand(1).getReg();
5789   unsigned Offset = MI.getOperand(2).getImm();
5790 
5791   LLT DstTy = MRI.getType(Dst);
5792   LLT SrcTy = MRI.getType(Src);
5793 
5794   if (DstTy.isScalar() &&
5795       (SrcTy.isScalar() ||
5796        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5797     LLT SrcIntTy = SrcTy;
5798     if (!SrcTy.isScalar()) {
5799       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5800       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5801     }
5802 
5803     if (Offset == 0)
5804       MIRBuilder.buildTrunc(Dst, Src);
5805     else {
5806       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5807       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5808       MIRBuilder.buildTrunc(Dst, Shr);
5809     }
5810 
5811     MI.eraseFromParent();
5812     return Legalized;
5813   }
5814 
5815   return UnableToLegalize;
5816 }
5817 
5818 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5819   Register Dst = MI.getOperand(0).getReg();
5820   Register Src = MI.getOperand(1).getReg();
5821   Register InsertSrc = MI.getOperand(2).getReg();
5822   uint64_t Offset = MI.getOperand(3).getImm();
5823 
5824   LLT DstTy = MRI.getType(Src);
5825   LLT InsertTy = MRI.getType(InsertSrc);
5826 
5827   if (InsertTy.isVector() ||
5828       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5829     return UnableToLegalize;
5830 
5831   const DataLayout &DL = MIRBuilder.getDataLayout();
5832   if ((DstTy.isPointer() &&
5833        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5834       (InsertTy.isPointer() &&
5835        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5836     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5837     return UnableToLegalize;
5838   }
5839 
5840   LLT IntDstTy = DstTy;
5841 
5842   if (!DstTy.isScalar()) {
5843     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5844     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5845   }
5846 
5847   if (!InsertTy.isScalar()) {
5848     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5849     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5850   }
5851 
5852   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5853   if (Offset != 0) {
5854     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5855     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5856   }
5857 
5858   APInt MaskVal = APInt::getBitsSetWithWrap(
5859       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5860 
5861   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5862   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5863   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5864 
5865   MIRBuilder.buildCast(Dst, Or);
5866   MI.eraseFromParent();
5867   return Legalized;
5868 }
5869 
5870 LegalizerHelper::LegalizeResult
5871 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5872   Register Dst0 = MI.getOperand(0).getReg();
5873   Register Dst1 = MI.getOperand(1).getReg();
5874   Register LHS = MI.getOperand(2).getReg();
5875   Register RHS = MI.getOperand(3).getReg();
5876   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5877 
5878   LLT Ty = MRI.getType(Dst0);
5879   LLT BoolTy = MRI.getType(Dst1);
5880 
5881   if (IsAdd)
5882     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5883   else
5884     MIRBuilder.buildSub(Dst0, LHS, RHS);
5885 
5886   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5887 
5888   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5889 
5890   // For an addition, the result should be less than one of the operands (LHS)
5891   // if and only if the other operand (RHS) is negative, otherwise there will
5892   // be overflow.
5893   // For a subtraction, the result should be less than one of the operands
5894   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5895   // otherwise there will be overflow.
5896   auto ResultLowerThanLHS =
5897       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5898   auto ConditionRHS = MIRBuilder.buildICmp(
5899       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5900 
5901   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5902   MI.eraseFromParent();
5903   return Legalized;
5904 }
5905 
5906 LegalizerHelper::LegalizeResult
5907 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5908   Register Res = MI.getOperand(0).getReg();
5909   Register LHS = MI.getOperand(1).getReg();
5910   Register RHS = MI.getOperand(2).getReg();
5911   LLT Ty = MRI.getType(Res);
5912   bool IsSigned;
5913   bool IsAdd;
5914   unsigned BaseOp;
5915   switch (MI.getOpcode()) {
5916   default:
5917     llvm_unreachable("unexpected addsat/subsat opcode");
5918   case TargetOpcode::G_UADDSAT:
5919     IsSigned = false;
5920     IsAdd = true;
5921     BaseOp = TargetOpcode::G_ADD;
5922     break;
5923   case TargetOpcode::G_SADDSAT:
5924     IsSigned = true;
5925     IsAdd = true;
5926     BaseOp = TargetOpcode::G_ADD;
5927     break;
5928   case TargetOpcode::G_USUBSAT:
5929     IsSigned = false;
5930     IsAdd = false;
5931     BaseOp = TargetOpcode::G_SUB;
5932     break;
5933   case TargetOpcode::G_SSUBSAT:
5934     IsSigned = true;
5935     IsAdd = false;
5936     BaseOp = TargetOpcode::G_SUB;
5937     break;
5938   }
5939 
5940   if (IsSigned) {
5941     // sadd.sat(a, b) ->
5942     //   hi = 0x7fffffff - smax(a, 0)
5943     //   lo = 0x80000000 - smin(a, 0)
5944     //   a + smin(smax(lo, b), hi)
5945     // ssub.sat(a, b) ->
5946     //   lo = smax(a, -1) - 0x7fffffff
5947     //   hi = smin(a, -1) - 0x80000000
5948     //   a - smin(smax(lo, b), hi)
5949     // TODO: AMDGPU can use a "median of 3" instruction here:
5950     //   a +/- med3(lo, b, hi)
5951     uint64_t NumBits = Ty.getScalarSizeInBits();
5952     auto MaxVal =
5953         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5954     auto MinVal =
5955         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5956     MachineInstrBuilder Hi, Lo;
5957     if (IsAdd) {
5958       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5959       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5960       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5961     } else {
5962       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5963       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5964                                MaxVal);
5965       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5966                                MinVal);
5967     }
5968     auto RHSClamped =
5969         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5970     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5971   } else {
5972     // uadd.sat(a, b) -> a + umin(~a, b)
5973     // usub.sat(a, b) -> a - umin(a, b)
5974     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5975     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5976     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5977   }
5978 
5979   MI.eraseFromParent();
5980   return Legalized;
5981 }
5982 
5983 LegalizerHelper::LegalizeResult
5984 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
5985   Register Res = MI.getOperand(0).getReg();
5986   Register LHS = MI.getOperand(1).getReg();
5987   Register RHS = MI.getOperand(2).getReg();
5988   LLT Ty = MRI.getType(Res);
5989   LLT BoolTy = Ty.changeElementSize(1);
5990   bool IsSigned;
5991   bool IsAdd;
5992   unsigned OverflowOp;
5993   switch (MI.getOpcode()) {
5994   default:
5995     llvm_unreachable("unexpected addsat/subsat opcode");
5996   case TargetOpcode::G_UADDSAT:
5997     IsSigned = false;
5998     IsAdd = true;
5999     OverflowOp = TargetOpcode::G_UADDO;
6000     break;
6001   case TargetOpcode::G_SADDSAT:
6002     IsSigned = true;
6003     IsAdd = true;
6004     OverflowOp = TargetOpcode::G_SADDO;
6005     break;
6006   case TargetOpcode::G_USUBSAT:
6007     IsSigned = false;
6008     IsAdd = false;
6009     OverflowOp = TargetOpcode::G_USUBO;
6010     break;
6011   case TargetOpcode::G_SSUBSAT:
6012     IsSigned = true;
6013     IsAdd = false;
6014     OverflowOp = TargetOpcode::G_SSUBO;
6015     break;
6016   }
6017 
6018   auto OverflowRes =
6019       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6020   Register Tmp = OverflowRes.getReg(0);
6021   Register Ov = OverflowRes.getReg(1);
6022   MachineInstrBuilder Clamp;
6023   if (IsSigned) {
6024     // sadd.sat(a, b) ->
6025     //   {tmp, ov} = saddo(a, b)
6026     //   ov ? (tmp >>s 31) + 0x80000000 : r
6027     // ssub.sat(a, b) ->
6028     //   {tmp, ov} = ssubo(a, b)
6029     //   ov ? (tmp >>s 31) + 0x80000000 : r
6030     uint64_t NumBits = Ty.getScalarSizeInBits();
6031     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6032     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6033     auto MinVal =
6034         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6035     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6036   } else {
6037     // uadd.sat(a, b) ->
6038     //   {tmp, ov} = uaddo(a, b)
6039     //   ov ? 0xffffffff : tmp
6040     // usub.sat(a, b) ->
6041     //   {tmp, ov} = usubo(a, b)
6042     //   ov ? 0 : tmp
6043     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6044   }
6045   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6046 
6047   MI.eraseFromParent();
6048   return Legalized;
6049 }
6050 
6051 LegalizerHelper::LegalizeResult
6052 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6053   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6054           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6055          "Expected shlsat opcode!");
6056   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6057   Register Res = MI.getOperand(0).getReg();
6058   Register LHS = MI.getOperand(1).getReg();
6059   Register RHS = MI.getOperand(2).getReg();
6060   LLT Ty = MRI.getType(Res);
6061   LLT BoolTy = Ty.changeElementSize(1);
6062 
6063   unsigned BW = Ty.getScalarSizeInBits();
6064   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6065   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6066                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6067 
6068   MachineInstrBuilder SatVal;
6069   if (IsSigned) {
6070     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6071     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6072     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6073                                     MIRBuilder.buildConstant(Ty, 0));
6074     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6075   } else {
6076     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6077   }
6078   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6079   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6080 
6081   MI.eraseFromParent();
6082   return Legalized;
6083 }
6084 
6085 LegalizerHelper::LegalizeResult
6086 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6087   Register Dst = MI.getOperand(0).getReg();
6088   Register Src = MI.getOperand(1).getReg();
6089   const LLT Ty = MRI.getType(Src);
6090   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6091   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6092 
6093   // Swap most and least significant byte, set remaining bytes in Res to zero.
6094   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6095   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6096   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6097   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6098 
6099   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6100   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6101     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6102     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6103     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6104     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6105     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6106     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6107     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6108     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6109     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6110     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6111     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6112     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6113   }
6114   Res.getInstr()->getOperand(0).setReg(Dst);
6115 
6116   MI.eraseFromParent();
6117   return Legalized;
6118 }
6119 
6120 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6121 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6122                                  MachineInstrBuilder Src, APInt Mask) {
6123   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6124   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6125   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6126   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6127   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6128   return B.buildOr(Dst, LHS, RHS);
6129 }
6130 
6131 LegalizerHelper::LegalizeResult
6132 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6133   Register Dst = MI.getOperand(0).getReg();
6134   Register Src = MI.getOperand(1).getReg();
6135   const LLT Ty = MRI.getType(Src);
6136   unsigned Size = Ty.getSizeInBits();
6137 
6138   MachineInstrBuilder BSWAP =
6139       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6140 
6141   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6142   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6143   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6144   MachineInstrBuilder Swap4 =
6145       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6146 
6147   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6148   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6149   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6150   MachineInstrBuilder Swap2 =
6151       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6152 
6153   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6154   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6155   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6156   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6157 
6158   MI.eraseFromParent();
6159   return Legalized;
6160 }
6161 
6162 LegalizerHelper::LegalizeResult
6163 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6164   MachineFunction &MF = MIRBuilder.getMF();
6165 
6166   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6167   int NameOpIdx = IsRead ? 1 : 0;
6168   int ValRegIndex = IsRead ? 0 : 1;
6169 
6170   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6171   const LLT Ty = MRI.getType(ValReg);
6172   const MDString *RegStr = cast<MDString>(
6173     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6174 
6175   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6176   if (!PhysReg.isValid())
6177     return UnableToLegalize;
6178 
6179   if (IsRead)
6180     MIRBuilder.buildCopy(ValReg, PhysReg);
6181   else
6182     MIRBuilder.buildCopy(PhysReg, ValReg);
6183 
6184   MI.eraseFromParent();
6185   return Legalized;
6186 }
6187 
6188 LegalizerHelper::LegalizeResult
6189 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6190   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6191   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6192   Register Result = MI.getOperand(0).getReg();
6193   LLT OrigTy = MRI.getType(Result);
6194   auto SizeInBits = OrigTy.getScalarSizeInBits();
6195   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6196 
6197   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6198   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6199   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6200   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6201 
6202   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6203   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6204   MIRBuilder.buildTrunc(Result, Shifted);
6205 
6206   MI.eraseFromParent();
6207   return Legalized;
6208 }
6209 
6210 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6211   // Implement vector G_SELECT in terms of XOR, AND, OR.
6212   Register DstReg = MI.getOperand(0).getReg();
6213   Register MaskReg = MI.getOperand(1).getReg();
6214   Register Op1Reg = MI.getOperand(2).getReg();
6215   Register Op2Reg = MI.getOperand(3).getReg();
6216   LLT DstTy = MRI.getType(DstReg);
6217   LLT MaskTy = MRI.getType(MaskReg);
6218   LLT Op1Ty = MRI.getType(Op1Reg);
6219   if (!DstTy.isVector())
6220     return UnableToLegalize;
6221 
6222   // Vector selects can have a scalar predicate. If so, splat into a vector and
6223   // finish for later legalization attempts to try again.
6224   if (MaskTy.isScalar()) {
6225     Register MaskElt = MaskReg;
6226     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6227       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6228     // Generate a vector splat idiom to be pattern matched later.
6229     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6230     Observer.changingInstr(MI);
6231     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6232     Observer.changedInstr(MI);
6233     return Legalized;
6234   }
6235 
6236   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6237     return UnableToLegalize;
6238   }
6239 
6240   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6241   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6242   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6243   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6244   MI.eraseFromParent();
6245   return Legalized;
6246 }
6247