1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()), 94 TLI(*MF.getSubtarget().getTargetLowering()) { } 95 96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 97 GISelChangeObserver &Observer, 98 MachineIRBuilder &B) 99 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 100 TLI(*MF.getSubtarget().getTargetLowering()) { } 101 102 LegalizerHelper::LegalizeResult 103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 104 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 105 106 MIRBuilder.setInstrAndDebugLoc(MI); 107 108 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 109 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 110 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 111 auto Step = LI.getAction(MI, MRI); 112 switch (Step.Action) { 113 case Legal: 114 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 115 return AlreadyLegal; 116 case Libcall: 117 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 118 return libcall(MI); 119 case NarrowScalar: 120 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 121 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 122 case WidenScalar: 123 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 124 return widenScalar(MI, Step.TypeIdx, Step.NewType); 125 case Bitcast: 126 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 127 return bitcast(MI, Step.TypeIdx, Step.NewType); 128 case Lower: 129 LLVM_DEBUG(dbgs() << ".. Lower\n"); 130 return lower(MI, Step.TypeIdx, Step.NewType); 131 case FewerElements: 132 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 133 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case MoreElements: 135 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 136 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 137 case Custom: 138 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 139 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 140 default: 141 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 142 return UnableToLegalize; 143 } 144 } 145 146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 147 SmallVectorImpl<Register> &VRegs) { 148 for (int i = 0; i < NumParts; ++i) 149 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 150 MIRBuilder.buildUnmerge(VRegs, Reg); 151 } 152 153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 154 LLT MainTy, LLT &LeftoverTy, 155 SmallVectorImpl<Register> &VRegs, 156 SmallVectorImpl<Register> &LeftoverRegs) { 157 assert(!LeftoverTy.isValid() && "this is an out argument"); 158 159 unsigned RegSize = RegTy.getSizeInBits(); 160 unsigned MainSize = MainTy.getSizeInBits(); 161 unsigned NumParts = RegSize / MainSize; 162 unsigned LeftoverSize = RegSize - NumParts * MainSize; 163 164 // Use an unmerge when possible. 165 if (LeftoverSize == 0) { 166 for (unsigned I = 0; I < NumParts; ++I) 167 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 168 MIRBuilder.buildUnmerge(VRegs, Reg); 169 return true; 170 } 171 172 if (MainTy.isVector()) { 173 unsigned EltSize = MainTy.getScalarSizeInBits(); 174 if (LeftoverSize % EltSize != 0) 175 return false; 176 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 177 } else { 178 LeftoverTy = LLT::scalar(LeftoverSize); 179 } 180 181 // For irregular sizes, extract the individual parts. 182 for (unsigned I = 0; I != NumParts; ++I) { 183 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 184 VRegs.push_back(NewReg); 185 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 186 } 187 188 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 189 Offset += LeftoverSize) { 190 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 191 LeftoverRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, Offset); 193 } 194 195 return true; 196 } 197 198 void LegalizerHelper::insertParts(Register DstReg, 199 LLT ResultTy, LLT PartTy, 200 ArrayRef<Register> PartRegs, 201 LLT LeftoverTy, 202 ArrayRef<Register> LeftoverRegs) { 203 if (!LeftoverTy.isValid()) { 204 assert(LeftoverRegs.empty()); 205 206 if (!ResultTy.isVector()) { 207 MIRBuilder.buildMerge(DstReg, PartRegs); 208 return; 209 } 210 211 if (PartTy.isVector()) 212 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 213 else 214 MIRBuilder.buildBuildVector(DstReg, PartRegs); 215 return; 216 } 217 218 unsigned PartSize = PartTy.getSizeInBits(); 219 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 220 221 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 222 MIRBuilder.buildUndef(CurResultReg); 223 224 unsigned Offset = 0; 225 for (Register PartReg : PartRegs) { 226 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 227 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 228 CurResultReg = NewResultReg; 229 Offset += PartSize; 230 } 231 232 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 233 // Use the original output register for the final insert to avoid a copy. 234 Register NewResultReg = (I + 1 == E) ? 235 DstReg : MRI.createGenericVirtualRegister(ResultTy); 236 237 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 238 CurResultReg = NewResultReg; 239 Offset += LeftoverPartSize; 240 } 241 } 242 243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 245 const MachineInstr &MI) { 246 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 247 248 const int StartIdx = Regs.size(); 249 const int NumResults = MI.getNumOperands() - 1; 250 Regs.resize(Regs.size() + NumResults); 251 for (int I = 0; I != NumResults; ++I) 252 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 253 } 254 255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 256 LLT GCDTy, Register SrcReg) { 257 LLT SrcTy = MRI.getType(SrcReg); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 } 268 269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 270 LLT NarrowTy, Register SrcReg) { 271 LLT SrcTy = MRI.getType(SrcReg); 272 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 273 extractGCDType(Parts, GCDTy, SrcReg); 274 return GCDTy; 275 } 276 277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 278 SmallVectorImpl<Register> &VRegs, 279 unsigned PadStrategy) { 280 LLT LCMTy = getLCMType(DstTy, NarrowTy); 281 282 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 283 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 284 int NumOrigSrc = VRegs.size(); 285 286 Register PadReg; 287 288 // Get a value we can use to pad the source value if the sources won't evenly 289 // cover the result type. 290 if (NumOrigSrc < NumParts * NumSubParts) { 291 if (PadStrategy == TargetOpcode::G_ZEXT) 292 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 293 else if (PadStrategy == TargetOpcode::G_ANYEXT) 294 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 295 else { 296 assert(PadStrategy == TargetOpcode::G_SEXT); 297 298 // Shift the sign bit of the low register through the high register. 299 auto ShiftAmt = 300 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 301 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 302 } 303 } 304 305 // Registers for the final merge to be produced. 306 SmallVector<Register, 4> Remerge(NumParts); 307 308 // Registers needed for intermediate merges, which will be merged into a 309 // source for Remerge. 310 SmallVector<Register, 4> SubMerge(NumSubParts); 311 312 // Once we've fully read off the end of the original source bits, we can reuse 313 // the same high bits for remaining padding elements. 314 Register AllPadReg; 315 316 // Build merges to the LCM type to cover the original result type. 317 for (int I = 0; I != NumParts; ++I) { 318 bool AllMergePartsArePadding = true; 319 320 // Build the requested merges to the requested type. 321 for (int J = 0; J != NumSubParts; ++J) { 322 int Idx = I * NumSubParts + J; 323 if (Idx >= NumOrigSrc) { 324 SubMerge[J] = PadReg; 325 continue; 326 } 327 328 SubMerge[J] = VRegs[Idx]; 329 330 // There are meaningful bits here we can't reuse later. 331 AllMergePartsArePadding = false; 332 } 333 334 // If we've filled up a complete piece with padding bits, we can directly 335 // emit the natural sized constant if applicable, rather than a merge of 336 // smaller constants. 337 if (AllMergePartsArePadding && !AllPadReg) { 338 if (PadStrategy == TargetOpcode::G_ANYEXT) 339 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 340 else if (PadStrategy == TargetOpcode::G_ZEXT) 341 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 342 343 // If this is a sign extension, we can't materialize a trivial constant 344 // with the right type and have to produce a merge. 345 } 346 347 if (AllPadReg) { 348 // Avoid creating additional instructions if we're just adding additional 349 // copies of padding bits. 350 Remerge[I] = AllPadReg; 351 continue; 352 } 353 354 if (NumSubParts == 1) 355 Remerge[I] = SubMerge[0]; 356 else 357 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 358 359 // In the sign extend padding case, re-use the first all-signbit merge. 360 if (AllMergePartsArePadding && !AllPadReg) 361 AllPadReg = Remerge[I]; 362 } 363 364 VRegs = std::move(Remerge); 365 return LCMTy; 366 } 367 368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 369 ArrayRef<Register> RemergeRegs) { 370 LLT DstTy = MRI.getType(DstReg); 371 372 // Create the merge to the widened source, and extract the relevant bits into 373 // the result. 374 375 if (DstTy == LCMTy) { 376 MIRBuilder.buildMerge(DstReg, RemergeRegs); 377 return; 378 } 379 380 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 381 if (DstTy.isScalar() && LCMTy.isScalar()) { 382 MIRBuilder.buildTrunc(DstReg, Remerge); 383 return; 384 } 385 386 if (LCMTy.isVector()) { 387 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 388 SmallVector<Register, 8> UnmergeDefs(NumDefs); 389 UnmergeDefs[0] = DstReg; 390 for (unsigned I = 1; I != NumDefs; ++I) 391 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 392 393 MIRBuilder.buildUnmerge(UnmergeDefs, 394 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 395 return; 396 } 397 398 llvm_unreachable("unhandled case"); 399 } 400 401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 402 #define RTLIBCASE_INT(LibcallPrefix) \ 403 do { \ 404 switch (Size) { \ 405 case 32: \ 406 return RTLIB::LibcallPrefix##32; \ 407 case 64: \ 408 return RTLIB::LibcallPrefix##64; \ 409 case 128: \ 410 return RTLIB::LibcallPrefix##128; \ 411 default: \ 412 llvm_unreachable("unexpected size"); \ 413 } \ 414 } while (0) 415 416 #define RTLIBCASE(LibcallPrefix) \ 417 do { \ 418 switch (Size) { \ 419 case 32: \ 420 return RTLIB::LibcallPrefix##32; \ 421 case 64: \ 422 return RTLIB::LibcallPrefix##64; \ 423 case 80: \ 424 return RTLIB::LibcallPrefix##80; \ 425 case 128: \ 426 return RTLIB::LibcallPrefix##128; \ 427 default: \ 428 llvm_unreachable("unexpected size"); \ 429 } \ 430 } while (0) 431 432 switch (Opcode) { 433 case TargetOpcode::G_SDIV: 434 RTLIBCASE_INT(SDIV_I); 435 case TargetOpcode::G_UDIV: 436 RTLIBCASE_INT(UDIV_I); 437 case TargetOpcode::G_SREM: 438 RTLIBCASE_INT(SREM_I); 439 case TargetOpcode::G_UREM: 440 RTLIBCASE_INT(UREM_I); 441 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 442 RTLIBCASE_INT(CTLZ_I); 443 case TargetOpcode::G_FADD: 444 RTLIBCASE(ADD_F); 445 case TargetOpcode::G_FSUB: 446 RTLIBCASE(SUB_F); 447 case TargetOpcode::G_FMUL: 448 RTLIBCASE(MUL_F); 449 case TargetOpcode::G_FDIV: 450 RTLIBCASE(DIV_F); 451 case TargetOpcode::G_FEXP: 452 RTLIBCASE(EXP_F); 453 case TargetOpcode::G_FEXP2: 454 RTLIBCASE(EXP2_F); 455 case TargetOpcode::G_FREM: 456 RTLIBCASE(REM_F); 457 case TargetOpcode::G_FPOW: 458 RTLIBCASE(POW_F); 459 case TargetOpcode::G_FMA: 460 RTLIBCASE(FMA_F); 461 case TargetOpcode::G_FSIN: 462 RTLIBCASE(SIN_F); 463 case TargetOpcode::G_FCOS: 464 RTLIBCASE(COS_F); 465 case TargetOpcode::G_FLOG10: 466 RTLIBCASE(LOG10_F); 467 case TargetOpcode::G_FLOG: 468 RTLIBCASE(LOG_F); 469 case TargetOpcode::G_FLOG2: 470 RTLIBCASE(LOG2_F); 471 case TargetOpcode::G_FCEIL: 472 RTLIBCASE(CEIL_F); 473 case TargetOpcode::G_FFLOOR: 474 RTLIBCASE(FLOOR_F); 475 case TargetOpcode::G_FMINNUM: 476 RTLIBCASE(FMIN_F); 477 case TargetOpcode::G_FMAXNUM: 478 RTLIBCASE(FMAX_F); 479 case TargetOpcode::G_FSQRT: 480 RTLIBCASE(SQRT_F); 481 case TargetOpcode::G_FRINT: 482 RTLIBCASE(RINT_F); 483 case TargetOpcode::G_FNEARBYINT: 484 RTLIBCASE(NEARBYINT_F); 485 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 486 RTLIBCASE(ROUNDEVEN_F); 487 } 488 llvm_unreachable("Unknown libcall function"); 489 } 490 491 /// True if an instruction is in tail position in its caller. Intended for 492 /// legalizing libcalls as tail calls when possible. 493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 494 MachineInstr &MI) { 495 MachineBasicBlock &MBB = *MI.getParent(); 496 const Function &F = MBB.getParent()->getFunction(); 497 498 // Conservatively require the attributes of the call to match those of 499 // the return. Ignore NoAlias and NonNull because they don't affect the 500 // call sequence. 501 AttributeList CallerAttrs = F.getAttributes(); 502 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 503 .removeAttribute(Attribute::NoAlias) 504 .removeAttribute(Attribute::NonNull) 505 .hasAttributes()) 506 return false; 507 508 // It's not safe to eliminate the sign / zero extension of the return value. 509 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 510 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 511 return false; 512 513 // Only tail call if the following instruction is a standard return. 514 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 515 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 516 return false; 517 518 return true; 519 } 520 521 LegalizerHelper::LegalizeResult 522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 523 const CallLowering::ArgInfo &Result, 524 ArrayRef<CallLowering::ArgInfo> Args, 525 const CallingConv::ID CC) { 526 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 527 528 CallLowering::CallLoweringInfo Info; 529 Info.CallConv = CC; 530 Info.Callee = MachineOperand::CreateES(Name); 531 Info.OrigRet = Result; 532 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 533 if (!CLI.lowerCall(MIRBuilder, Info)) 534 return LegalizerHelper::UnableToLegalize; 535 536 return LegalizerHelper::Legalized; 537 } 538 539 LegalizerHelper::LegalizeResult 540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 541 const CallLowering::ArgInfo &Result, 542 ArrayRef<CallLowering::ArgInfo> Args) { 543 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 544 const char *Name = TLI.getLibcallName(Libcall); 545 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 546 return createLibcall(MIRBuilder, Name, Result, Args, CC); 547 } 548 549 // Useful for libcalls where all operands have the same type. 550 static LegalizerHelper::LegalizeResult 551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 552 Type *OpType) { 553 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 554 555 SmallVector<CallLowering::ArgInfo, 3> Args; 556 for (unsigned i = 1; i < MI.getNumOperands(); i++) 557 Args.push_back({MI.getOperand(i).getReg(), OpType}); 558 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 559 Args); 560 } 561 562 LegalizerHelper::LegalizeResult 563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 564 MachineInstr &MI) { 565 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 566 567 SmallVector<CallLowering::ArgInfo, 3> Args; 568 // Add all the args, except for the last which is an imm denoting 'tail'. 569 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 570 Register Reg = MI.getOperand(i).getReg(); 571 572 // Need derive an IR type for call lowering. 573 LLT OpLLT = MRI.getType(Reg); 574 Type *OpTy = nullptr; 575 if (OpLLT.isPointer()) 576 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 577 else 578 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 579 Args.push_back({Reg, OpTy}); 580 } 581 582 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 583 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 584 RTLIB::Libcall RTLibcall; 585 switch (MI.getOpcode()) { 586 case TargetOpcode::G_MEMCPY: 587 RTLibcall = RTLIB::MEMCPY; 588 break; 589 case TargetOpcode::G_MEMMOVE: 590 RTLibcall = RTLIB::MEMMOVE; 591 break; 592 case TargetOpcode::G_MEMSET: 593 RTLibcall = RTLIB::MEMSET; 594 break; 595 default: 596 return LegalizerHelper::UnableToLegalize; 597 } 598 const char *Name = TLI.getLibcallName(RTLibcall); 599 600 CallLowering::CallLoweringInfo Info; 601 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 602 Info.Callee = MachineOperand::CreateES(Name); 603 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 604 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 605 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 606 607 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 608 if (!CLI.lowerCall(MIRBuilder, Info)) 609 return LegalizerHelper::UnableToLegalize; 610 611 if (Info.LoweredTailCall) { 612 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 613 // We must have a return following the call (or debug insts) to get past 614 // isLibCallInTailPosition. 615 do { 616 MachineInstr *Next = MI.getNextNode(); 617 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 618 "Expected instr following MI to be return or debug inst?"); 619 // We lowered a tail call, so the call is now the return from the block. 620 // Delete the old return. 621 Next->eraseFromParent(); 622 } while (MI.getNextNode()); 623 } 624 625 return LegalizerHelper::Legalized; 626 } 627 628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 629 Type *FromType) { 630 auto ToMVT = MVT::getVT(ToType); 631 auto FromMVT = MVT::getVT(FromType); 632 633 switch (Opcode) { 634 case TargetOpcode::G_FPEXT: 635 return RTLIB::getFPEXT(FromMVT, ToMVT); 636 case TargetOpcode::G_FPTRUNC: 637 return RTLIB::getFPROUND(FromMVT, ToMVT); 638 case TargetOpcode::G_FPTOSI: 639 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 640 case TargetOpcode::G_FPTOUI: 641 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 642 case TargetOpcode::G_SITOFP: 643 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 644 case TargetOpcode::G_UITOFP: 645 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 646 } 647 llvm_unreachable("Unsupported libcall function"); 648 } 649 650 static LegalizerHelper::LegalizeResult 651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 652 Type *FromType) { 653 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 654 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 655 {{MI.getOperand(1).getReg(), FromType}}); 656 } 657 658 LegalizerHelper::LegalizeResult 659 LegalizerHelper::libcall(MachineInstr &MI) { 660 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 661 unsigned Size = LLTy.getSizeInBits(); 662 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 663 664 switch (MI.getOpcode()) { 665 default: 666 return UnableToLegalize; 667 case TargetOpcode::G_SDIV: 668 case TargetOpcode::G_UDIV: 669 case TargetOpcode::G_SREM: 670 case TargetOpcode::G_UREM: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 672 Type *HLTy = IntegerType::get(Ctx, Size); 673 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 674 if (Status != Legalized) 675 return Status; 676 break; 677 } 678 case TargetOpcode::G_FADD: 679 case TargetOpcode::G_FSUB: 680 case TargetOpcode::G_FMUL: 681 case TargetOpcode::G_FDIV: 682 case TargetOpcode::G_FMA: 683 case TargetOpcode::G_FPOW: 684 case TargetOpcode::G_FREM: 685 case TargetOpcode::G_FCOS: 686 case TargetOpcode::G_FSIN: 687 case TargetOpcode::G_FLOG10: 688 case TargetOpcode::G_FLOG: 689 case TargetOpcode::G_FLOG2: 690 case TargetOpcode::G_FEXP: 691 case TargetOpcode::G_FEXP2: 692 case TargetOpcode::G_FCEIL: 693 case TargetOpcode::G_FFLOOR: 694 case TargetOpcode::G_FMINNUM: 695 case TargetOpcode::G_FMAXNUM: 696 case TargetOpcode::G_FSQRT: 697 case TargetOpcode::G_FRINT: 698 case TargetOpcode::G_FNEARBYINT: 699 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 700 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 701 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 702 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 703 return UnableToLegalize; 704 } 705 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_FPEXT: 711 case TargetOpcode::G_FPTRUNC: { 712 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 713 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 714 if (!FromTy || !ToTy) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 717 if (Status != Legalized) 718 return Status; 719 break; 720 } 721 case TargetOpcode::G_FPTOSI: 722 case TargetOpcode::G_FPTOUI: { 723 // FIXME: Support other types 724 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 725 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 726 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 727 return UnableToLegalize; 728 LegalizeResult Status = conversionLibcall( 729 MI, MIRBuilder, 730 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 731 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 732 if (Status != Legalized) 733 return Status; 734 break; 735 } 736 case TargetOpcode::G_SITOFP: 737 case TargetOpcode::G_UITOFP: { 738 // FIXME: Support other types 739 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 740 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 741 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 742 return UnableToLegalize; 743 LegalizeResult Status = conversionLibcall( 744 MI, MIRBuilder, 745 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 746 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 747 if (Status != Legalized) 748 return Status; 749 break; 750 } 751 case TargetOpcode::G_MEMCPY: 752 case TargetOpcode::G_MEMMOVE: 753 case TargetOpcode::G_MEMSET: { 754 LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); 755 MI.eraseFromParent(); 756 return Result; 757 } 758 } 759 760 MI.eraseFromParent(); 761 return Legalized; 762 } 763 764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 765 unsigned TypeIdx, 766 LLT NarrowTy) { 767 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 768 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 769 770 switch (MI.getOpcode()) { 771 default: 772 return UnableToLegalize; 773 case TargetOpcode::G_IMPLICIT_DEF: { 774 Register DstReg = MI.getOperand(0).getReg(); 775 LLT DstTy = MRI.getType(DstReg); 776 777 // If SizeOp0 is not an exact multiple of NarrowSize, emit 778 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 779 // FIXME: Although this would also be legal for the general case, it causes 780 // a lot of regressions in the emitted code (superfluous COPYs, artifact 781 // combines not being hit). This seems to be a problem related to the 782 // artifact combiner. 783 if (SizeOp0 % NarrowSize != 0) { 784 LLT ImplicitTy = NarrowTy; 785 if (DstTy.isVector()) 786 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 787 788 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 789 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 790 791 MI.eraseFromParent(); 792 return Legalized; 793 } 794 795 int NumParts = SizeOp0 / NarrowSize; 796 797 SmallVector<Register, 2> DstRegs; 798 for (int i = 0; i < NumParts; ++i) 799 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 800 801 if (DstTy.isVector()) 802 MIRBuilder.buildBuildVector(DstReg, DstRegs); 803 else 804 MIRBuilder.buildMerge(DstReg, DstRegs); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 case TargetOpcode::G_CONSTANT: { 809 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 810 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 811 unsigned TotalSize = Ty.getSizeInBits(); 812 unsigned NarrowSize = NarrowTy.getSizeInBits(); 813 int NumParts = TotalSize / NarrowSize; 814 815 SmallVector<Register, 4> PartRegs; 816 for (int I = 0; I != NumParts; ++I) { 817 unsigned Offset = I * NarrowSize; 818 auto K = MIRBuilder.buildConstant(NarrowTy, 819 Val.lshr(Offset).trunc(NarrowSize)); 820 PartRegs.push_back(K.getReg(0)); 821 } 822 823 LLT LeftoverTy; 824 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 825 SmallVector<Register, 1> LeftoverRegs; 826 if (LeftoverBits != 0) { 827 LeftoverTy = LLT::scalar(LeftoverBits); 828 auto K = MIRBuilder.buildConstant( 829 LeftoverTy, 830 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 831 LeftoverRegs.push_back(K.getReg(0)); 832 } 833 834 insertParts(MI.getOperand(0).getReg(), 835 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 836 837 MI.eraseFromParent(); 838 return Legalized; 839 } 840 case TargetOpcode::G_SEXT: 841 case TargetOpcode::G_ZEXT: 842 case TargetOpcode::G_ANYEXT: 843 return narrowScalarExt(MI, TypeIdx, NarrowTy); 844 case TargetOpcode::G_TRUNC: { 845 if (TypeIdx != 1) 846 return UnableToLegalize; 847 848 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 849 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 850 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 851 return UnableToLegalize; 852 } 853 854 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 855 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 856 MI.eraseFromParent(); 857 return Legalized; 858 } 859 860 case TargetOpcode::G_FREEZE: 861 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 862 863 case TargetOpcode::G_ADD: { 864 // FIXME: add support for when SizeOp0 isn't an exact multiple of 865 // NarrowSize. 866 if (SizeOp0 % NarrowSize != 0) 867 return UnableToLegalize; 868 // Expand in terms of carry-setting/consuming G_ADDE instructions. 869 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 870 871 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 872 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 873 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 874 875 Register CarryIn; 876 for (int i = 0; i < NumParts; ++i) { 877 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 878 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 879 880 if (i == 0) 881 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 882 else { 883 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 884 Src2Regs[i], CarryIn); 885 } 886 887 DstRegs.push_back(DstReg); 888 CarryIn = CarryOut; 889 } 890 Register DstReg = MI.getOperand(0).getReg(); 891 if(MRI.getType(DstReg).isVector()) 892 MIRBuilder.buildBuildVector(DstReg, DstRegs); 893 else 894 MIRBuilder.buildMerge(DstReg, DstRegs); 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 case TargetOpcode::G_SUB: { 899 // FIXME: add support for when SizeOp0 isn't an exact multiple of 900 // NarrowSize. 901 if (SizeOp0 % NarrowSize != 0) 902 return UnableToLegalize; 903 904 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 905 906 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 907 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 908 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 909 910 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 911 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 912 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 913 {Src1Regs[0], Src2Regs[0]}); 914 DstRegs.push_back(DstReg); 915 Register BorrowIn = BorrowOut; 916 for (int i = 1; i < NumParts; ++i) { 917 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 918 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 919 920 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 921 {Src1Regs[i], Src2Regs[i], BorrowIn}); 922 923 DstRegs.push_back(DstReg); 924 BorrowIn = BorrowOut; 925 } 926 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 927 MI.eraseFromParent(); 928 return Legalized; 929 } 930 case TargetOpcode::G_MUL: 931 case TargetOpcode::G_UMULH: 932 return narrowScalarMul(MI, NarrowTy); 933 case TargetOpcode::G_EXTRACT: 934 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 935 case TargetOpcode::G_INSERT: 936 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 937 case TargetOpcode::G_LOAD: { 938 auto &MMO = **MI.memoperands_begin(); 939 Register DstReg = MI.getOperand(0).getReg(); 940 LLT DstTy = MRI.getType(DstReg); 941 if (DstTy.isVector()) 942 return UnableToLegalize; 943 944 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 945 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 946 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 947 MIRBuilder.buildAnyExt(DstReg, TmpReg); 948 MI.eraseFromParent(); 949 return Legalized; 950 } 951 952 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 953 } 954 case TargetOpcode::G_ZEXTLOAD: 955 case TargetOpcode::G_SEXTLOAD: { 956 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 957 Register DstReg = MI.getOperand(0).getReg(); 958 Register PtrReg = MI.getOperand(1).getReg(); 959 960 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 961 auto &MMO = **MI.memoperands_begin(); 962 unsigned MemSize = MMO.getSizeInBits(); 963 964 if (MemSize == NarrowSize) { 965 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 966 } else if (MemSize < NarrowSize) { 967 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 968 } else if (MemSize > NarrowSize) { 969 // FIXME: Need to split the load. 970 return UnableToLegalize; 971 } 972 973 if (ZExt) 974 MIRBuilder.buildZExt(DstReg, TmpReg); 975 else 976 MIRBuilder.buildSExt(DstReg, TmpReg); 977 978 MI.eraseFromParent(); 979 return Legalized; 980 } 981 case TargetOpcode::G_STORE: { 982 const auto &MMO = **MI.memoperands_begin(); 983 984 Register SrcReg = MI.getOperand(0).getReg(); 985 LLT SrcTy = MRI.getType(SrcReg); 986 if (SrcTy.isVector()) 987 return UnableToLegalize; 988 989 int NumParts = SizeOp0 / NarrowSize; 990 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 991 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 992 if (SrcTy.isVector() && LeftoverBits != 0) 993 return UnableToLegalize; 994 995 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 996 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 997 auto &MMO = **MI.memoperands_begin(); 998 MIRBuilder.buildTrunc(TmpReg, SrcReg); 999 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 1000 MI.eraseFromParent(); 1001 return Legalized; 1002 } 1003 1004 return reduceLoadStoreWidth(MI, 0, NarrowTy); 1005 } 1006 case TargetOpcode::G_SELECT: 1007 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1008 case TargetOpcode::G_AND: 1009 case TargetOpcode::G_OR: 1010 case TargetOpcode::G_XOR: { 1011 // Legalize bitwise operation: 1012 // A = BinOp<Ty> B, C 1013 // into: 1014 // B1, ..., BN = G_UNMERGE_VALUES B 1015 // C1, ..., CN = G_UNMERGE_VALUES C 1016 // A1 = BinOp<Ty/N> B1, C2 1017 // ... 1018 // AN = BinOp<Ty/N> BN, CN 1019 // A = G_MERGE_VALUES A1, ..., AN 1020 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1021 } 1022 case TargetOpcode::G_SHL: 1023 case TargetOpcode::G_LSHR: 1024 case TargetOpcode::G_ASHR: 1025 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_CTLZ: 1027 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1028 case TargetOpcode::G_CTTZ: 1029 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1030 case TargetOpcode::G_CTPOP: 1031 if (TypeIdx == 1) 1032 switch (MI.getOpcode()) { 1033 case TargetOpcode::G_CTLZ: 1034 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1035 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1036 case TargetOpcode::G_CTTZ: 1037 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1038 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1039 case TargetOpcode::G_CTPOP: 1040 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1041 default: 1042 return UnableToLegalize; 1043 } 1044 1045 Observer.changingInstr(MI); 1046 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1047 Observer.changedInstr(MI); 1048 return Legalized; 1049 case TargetOpcode::G_INTTOPTR: 1050 if (TypeIdx != 1) 1051 return UnableToLegalize; 1052 1053 Observer.changingInstr(MI); 1054 narrowScalarSrc(MI, NarrowTy, 1); 1055 Observer.changedInstr(MI); 1056 return Legalized; 1057 case TargetOpcode::G_PTRTOINT: 1058 if (TypeIdx != 0) 1059 return UnableToLegalize; 1060 1061 Observer.changingInstr(MI); 1062 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1063 Observer.changedInstr(MI); 1064 return Legalized; 1065 case TargetOpcode::G_PHI: { 1066 unsigned NumParts = SizeOp0 / NarrowSize; 1067 SmallVector<Register, 2> DstRegs(NumParts); 1068 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1069 Observer.changingInstr(MI); 1070 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1071 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1072 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1073 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1074 SrcRegs[i / 2]); 1075 } 1076 MachineBasicBlock &MBB = *MI.getParent(); 1077 MIRBuilder.setInsertPt(MBB, MI); 1078 for (unsigned i = 0; i < NumParts; ++i) { 1079 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1080 MachineInstrBuilder MIB = 1081 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1082 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1083 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1084 } 1085 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1086 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1087 Observer.changedInstr(MI); 1088 MI.eraseFromParent(); 1089 return Legalized; 1090 } 1091 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1092 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1093 if (TypeIdx != 2) 1094 return UnableToLegalize; 1095 1096 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1097 Observer.changingInstr(MI); 1098 narrowScalarSrc(MI, NarrowTy, OpIdx); 1099 Observer.changedInstr(MI); 1100 return Legalized; 1101 } 1102 case TargetOpcode::G_ICMP: { 1103 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1104 if (NarrowSize * 2 != SrcSize) 1105 return UnableToLegalize; 1106 1107 Observer.changingInstr(MI); 1108 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1109 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1110 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1111 1112 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1113 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1114 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1115 1116 CmpInst::Predicate Pred = 1117 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1118 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1119 1120 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1121 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1122 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1123 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1124 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1125 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1126 } else { 1127 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1128 MachineInstrBuilder CmpHEQ = 1129 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1130 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1131 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1132 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1133 } 1134 Observer.changedInstr(MI); 1135 MI.eraseFromParent(); 1136 return Legalized; 1137 } 1138 case TargetOpcode::G_SEXT_INREG: { 1139 if (TypeIdx != 0) 1140 return UnableToLegalize; 1141 1142 int64_t SizeInBits = MI.getOperand(2).getImm(); 1143 1144 // So long as the new type has more bits than the bits we're extending we 1145 // don't need to break it apart. 1146 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1147 Observer.changingInstr(MI); 1148 // We don't lose any non-extension bits by truncating the src and 1149 // sign-extending the dst. 1150 MachineOperand &MO1 = MI.getOperand(1); 1151 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1152 MO1.setReg(TruncMIB.getReg(0)); 1153 1154 MachineOperand &MO2 = MI.getOperand(0); 1155 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1156 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1157 MIRBuilder.buildSExt(MO2, DstExt); 1158 MO2.setReg(DstExt); 1159 Observer.changedInstr(MI); 1160 return Legalized; 1161 } 1162 1163 // Break it apart. Components below the extension point are unmodified. The 1164 // component containing the extension point becomes a narrower SEXT_INREG. 1165 // Components above it are ashr'd from the component containing the 1166 // extension point. 1167 if (SizeOp0 % NarrowSize != 0) 1168 return UnableToLegalize; 1169 int NumParts = SizeOp0 / NarrowSize; 1170 1171 // List the registers where the destination will be scattered. 1172 SmallVector<Register, 2> DstRegs; 1173 // List the registers where the source will be split. 1174 SmallVector<Register, 2> SrcRegs; 1175 1176 // Create all the temporary registers. 1177 for (int i = 0; i < NumParts; ++i) { 1178 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1179 1180 SrcRegs.push_back(SrcReg); 1181 } 1182 1183 // Explode the big arguments into smaller chunks. 1184 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1185 1186 Register AshrCstReg = 1187 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1188 .getReg(0); 1189 Register FullExtensionReg = 0; 1190 Register PartialExtensionReg = 0; 1191 1192 // Do the operation on each small part. 1193 for (int i = 0; i < NumParts; ++i) { 1194 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1195 DstRegs.push_back(SrcRegs[i]); 1196 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1197 assert(PartialExtensionReg && 1198 "Expected to visit partial extension before full"); 1199 if (FullExtensionReg) { 1200 DstRegs.push_back(FullExtensionReg); 1201 continue; 1202 } 1203 DstRegs.push_back( 1204 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1205 .getReg(0)); 1206 FullExtensionReg = DstRegs.back(); 1207 } else { 1208 DstRegs.push_back( 1209 MIRBuilder 1210 .buildInstr( 1211 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1212 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1213 .getReg(0)); 1214 PartialExtensionReg = DstRegs.back(); 1215 } 1216 } 1217 1218 // Gather the destination registers into the final destination. 1219 Register DstReg = MI.getOperand(0).getReg(); 1220 MIRBuilder.buildMerge(DstReg, DstRegs); 1221 MI.eraseFromParent(); 1222 return Legalized; 1223 } 1224 case TargetOpcode::G_BSWAP: 1225 case TargetOpcode::G_BITREVERSE: { 1226 if (SizeOp0 % NarrowSize != 0) 1227 return UnableToLegalize; 1228 1229 Observer.changingInstr(MI); 1230 SmallVector<Register, 2> SrcRegs, DstRegs; 1231 unsigned NumParts = SizeOp0 / NarrowSize; 1232 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1233 1234 for (unsigned i = 0; i < NumParts; ++i) { 1235 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1236 {SrcRegs[NumParts - 1 - i]}); 1237 DstRegs.push_back(DstPart.getReg(0)); 1238 } 1239 1240 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1241 1242 Observer.changedInstr(MI); 1243 MI.eraseFromParent(); 1244 return Legalized; 1245 } 1246 case TargetOpcode::G_PTR_ADD: 1247 case TargetOpcode::G_PTRMASK: { 1248 if (TypeIdx != 1) 1249 return UnableToLegalize; 1250 Observer.changingInstr(MI); 1251 narrowScalarSrc(MI, NarrowTy, 2); 1252 Observer.changedInstr(MI); 1253 return Legalized; 1254 } 1255 case TargetOpcode::G_FPTOUI: { 1256 if (TypeIdx != 0) 1257 return UnableToLegalize; 1258 Observer.changingInstr(MI); 1259 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1260 Observer.changedInstr(MI); 1261 return Legalized; 1262 } 1263 case TargetOpcode::G_FPTOSI: { 1264 if (TypeIdx != 0) 1265 return UnableToLegalize; 1266 Observer.changingInstr(MI); 1267 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1268 Observer.changedInstr(MI); 1269 return Legalized; 1270 } 1271 case TargetOpcode::G_FPEXT: 1272 if (TypeIdx != 0) 1273 return UnableToLegalize; 1274 Observer.changingInstr(MI); 1275 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1276 Observer.changedInstr(MI); 1277 return Legalized; 1278 } 1279 } 1280 1281 Register LegalizerHelper::coerceToScalar(Register Val) { 1282 LLT Ty = MRI.getType(Val); 1283 if (Ty.isScalar()) 1284 return Val; 1285 1286 const DataLayout &DL = MIRBuilder.getDataLayout(); 1287 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1288 if (Ty.isPointer()) { 1289 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1290 return Register(); 1291 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1292 } 1293 1294 Register NewVal = Val; 1295 1296 assert(Ty.isVector()); 1297 LLT EltTy = Ty.getElementType(); 1298 if (EltTy.isPointer()) 1299 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1300 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1301 } 1302 1303 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1304 unsigned OpIdx, unsigned ExtOpcode) { 1305 MachineOperand &MO = MI.getOperand(OpIdx); 1306 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1307 MO.setReg(ExtB.getReg(0)); 1308 } 1309 1310 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1311 unsigned OpIdx) { 1312 MachineOperand &MO = MI.getOperand(OpIdx); 1313 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1314 MO.setReg(ExtB.getReg(0)); 1315 } 1316 1317 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1318 unsigned OpIdx, unsigned TruncOpcode) { 1319 MachineOperand &MO = MI.getOperand(OpIdx); 1320 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1321 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1322 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1323 MO.setReg(DstExt); 1324 } 1325 1326 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1327 unsigned OpIdx, unsigned ExtOpcode) { 1328 MachineOperand &MO = MI.getOperand(OpIdx); 1329 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1330 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1331 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1332 MO.setReg(DstTrunc); 1333 } 1334 1335 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1336 unsigned OpIdx) { 1337 MachineOperand &MO = MI.getOperand(OpIdx); 1338 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1339 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1340 } 1341 1342 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1343 unsigned OpIdx) { 1344 MachineOperand &MO = MI.getOperand(OpIdx); 1345 1346 LLT OldTy = MRI.getType(MO.getReg()); 1347 unsigned OldElts = OldTy.getNumElements(); 1348 unsigned NewElts = MoreTy.getNumElements(); 1349 1350 unsigned NumParts = NewElts / OldElts; 1351 1352 // Use concat_vectors if the result is a multiple of the number of elements. 1353 if (NumParts * OldElts == NewElts) { 1354 SmallVector<Register, 8> Parts; 1355 Parts.push_back(MO.getReg()); 1356 1357 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1358 for (unsigned I = 1; I != NumParts; ++I) 1359 Parts.push_back(ImpDef); 1360 1361 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1362 MO.setReg(Concat.getReg(0)); 1363 return; 1364 } 1365 1366 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1367 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1368 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1369 MO.setReg(MoreReg); 1370 } 1371 1372 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1373 MachineOperand &Op = MI.getOperand(OpIdx); 1374 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1375 } 1376 1377 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1378 MachineOperand &MO = MI.getOperand(OpIdx); 1379 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1380 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1381 MIRBuilder.buildBitcast(MO, CastDst); 1382 MO.setReg(CastDst); 1383 } 1384 1385 LegalizerHelper::LegalizeResult 1386 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1387 LLT WideTy) { 1388 if (TypeIdx != 1) 1389 return UnableToLegalize; 1390 1391 Register DstReg = MI.getOperand(0).getReg(); 1392 LLT DstTy = MRI.getType(DstReg); 1393 if (DstTy.isVector()) 1394 return UnableToLegalize; 1395 1396 Register Src1 = MI.getOperand(1).getReg(); 1397 LLT SrcTy = MRI.getType(Src1); 1398 const int DstSize = DstTy.getSizeInBits(); 1399 const int SrcSize = SrcTy.getSizeInBits(); 1400 const int WideSize = WideTy.getSizeInBits(); 1401 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1402 1403 unsigned NumOps = MI.getNumOperands(); 1404 unsigned NumSrc = MI.getNumOperands() - 1; 1405 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1406 1407 if (WideSize >= DstSize) { 1408 // Directly pack the bits in the target type. 1409 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1410 1411 for (unsigned I = 2; I != NumOps; ++I) { 1412 const unsigned Offset = (I - 1) * PartSize; 1413 1414 Register SrcReg = MI.getOperand(I).getReg(); 1415 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1416 1417 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1418 1419 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1420 MRI.createGenericVirtualRegister(WideTy); 1421 1422 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1423 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1424 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1425 ResultReg = NextResult; 1426 } 1427 1428 if (WideSize > DstSize) 1429 MIRBuilder.buildTrunc(DstReg, ResultReg); 1430 else if (DstTy.isPointer()) 1431 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1432 1433 MI.eraseFromParent(); 1434 return Legalized; 1435 } 1436 1437 // Unmerge the original values to the GCD type, and recombine to the next 1438 // multiple greater than the original type. 1439 // 1440 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1441 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1442 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1443 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1444 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1445 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1446 // %12:_(s12) = G_MERGE_VALUES %10, %11 1447 // 1448 // Padding with undef if necessary: 1449 // 1450 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1451 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1452 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1453 // %7:_(s2) = G_IMPLICIT_DEF 1454 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1455 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1456 // %10:_(s12) = G_MERGE_VALUES %8, %9 1457 1458 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1459 LLT GCDTy = LLT::scalar(GCD); 1460 1461 SmallVector<Register, 8> Parts; 1462 SmallVector<Register, 8> NewMergeRegs; 1463 SmallVector<Register, 8> Unmerges; 1464 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1465 1466 // Decompose the original operands if they don't evenly divide. 1467 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1468 Register SrcReg = MI.getOperand(I).getReg(); 1469 if (GCD == SrcSize) { 1470 Unmerges.push_back(SrcReg); 1471 } else { 1472 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1473 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1474 Unmerges.push_back(Unmerge.getReg(J)); 1475 } 1476 } 1477 1478 // Pad with undef to the next size that is a multiple of the requested size. 1479 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1480 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1481 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1482 Unmerges.push_back(UndefReg); 1483 } 1484 1485 const int PartsPerGCD = WideSize / GCD; 1486 1487 // Build merges of each piece. 1488 ArrayRef<Register> Slicer(Unmerges); 1489 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1490 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1491 NewMergeRegs.push_back(Merge.getReg(0)); 1492 } 1493 1494 // A truncate may be necessary if the requested type doesn't evenly divide the 1495 // original result type. 1496 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1497 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1498 } else { 1499 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1500 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1501 } 1502 1503 MI.eraseFromParent(); 1504 return Legalized; 1505 } 1506 1507 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1508 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1509 LLT OrigTy = MRI.getType(OrigReg); 1510 LLT LCMTy = getLCMType(WideTy, OrigTy); 1511 1512 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1513 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1514 1515 Register UnmergeSrc = WideReg; 1516 1517 // Create a merge to the LCM type, padding with undef 1518 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1519 // => 1520 // %1:_(<4 x s32>) = G_FOO 1521 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1522 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1523 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1524 if (NumMergeParts > 1) { 1525 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1526 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1527 MergeParts[0] = WideReg; 1528 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1529 } 1530 1531 // Unmerge to the original register and pad with dead defs. 1532 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1533 UnmergeResults[0] = OrigReg; 1534 for (int I = 1; I != NumUnmergeParts; ++I) 1535 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1536 1537 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1538 return WideReg; 1539 } 1540 1541 LegalizerHelper::LegalizeResult 1542 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1543 LLT WideTy) { 1544 if (TypeIdx != 0) 1545 return UnableToLegalize; 1546 1547 int NumDst = MI.getNumOperands() - 1; 1548 Register SrcReg = MI.getOperand(NumDst).getReg(); 1549 LLT SrcTy = MRI.getType(SrcReg); 1550 if (SrcTy.isVector()) 1551 return UnableToLegalize; 1552 1553 Register Dst0Reg = MI.getOperand(0).getReg(); 1554 LLT DstTy = MRI.getType(Dst0Reg); 1555 if (!DstTy.isScalar()) 1556 return UnableToLegalize; 1557 1558 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1559 if (SrcTy.isPointer()) { 1560 const DataLayout &DL = MIRBuilder.getDataLayout(); 1561 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1562 LLVM_DEBUG( 1563 dbgs() << "Not casting non-integral address space integer\n"); 1564 return UnableToLegalize; 1565 } 1566 1567 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1568 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1569 } 1570 1571 // Widen SrcTy to WideTy. This does not affect the result, but since the 1572 // user requested this size, it is probably better handled than SrcTy and 1573 // should reduce the total number of legalization artifacts 1574 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1575 SrcTy = WideTy; 1576 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1577 } 1578 1579 // Theres no unmerge type to target. Directly extract the bits from the 1580 // source type 1581 unsigned DstSize = DstTy.getSizeInBits(); 1582 1583 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1584 for (int I = 1; I != NumDst; ++I) { 1585 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1586 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1587 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1588 } 1589 1590 MI.eraseFromParent(); 1591 return Legalized; 1592 } 1593 1594 // Extend the source to a wider type. 1595 LLT LCMTy = getLCMType(SrcTy, WideTy); 1596 1597 Register WideSrc = SrcReg; 1598 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1599 // TODO: If this is an integral address space, cast to integer and anyext. 1600 if (SrcTy.isPointer()) { 1601 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1602 return UnableToLegalize; 1603 } 1604 1605 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1606 } 1607 1608 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1609 1610 // Create a sequence of unmerges and merges to the original results. Since we 1611 // may have widened the source, we will need to pad the results with dead defs 1612 // to cover the source register. 1613 // e.g. widen s48 to s64: 1614 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1615 // 1616 // => 1617 // %4:_(s192) = G_ANYEXT %0:_(s96) 1618 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1619 // ; unpack to GCD type, with extra dead defs 1620 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1621 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1622 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1623 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1624 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1625 const LLT GCDTy = getGCDType(WideTy, DstTy); 1626 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1627 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1628 1629 // Directly unmerge to the destination without going through a GCD type 1630 // if possible 1631 if (PartsPerRemerge == 1) { 1632 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1633 1634 for (int I = 0; I != NumUnmerge; ++I) { 1635 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1636 1637 for (int J = 0; J != PartsPerUnmerge; ++J) { 1638 int Idx = I * PartsPerUnmerge + J; 1639 if (Idx < NumDst) 1640 MIB.addDef(MI.getOperand(Idx).getReg()); 1641 else { 1642 // Create dead def for excess components. 1643 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1644 } 1645 } 1646 1647 MIB.addUse(Unmerge.getReg(I)); 1648 } 1649 } else { 1650 SmallVector<Register, 16> Parts; 1651 for (int J = 0; J != NumUnmerge; ++J) 1652 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1653 1654 SmallVector<Register, 8> RemergeParts; 1655 for (int I = 0; I != NumDst; ++I) { 1656 for (int J = 0; J < PartsPerRemerge; ++J) { 1657 const int Idx = I * PartsPerRemerge + J; 1658 RemergeParts.emplace_back(Parts[Idx]); 1659 } 1660 1661 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1662 RemergeParts.clear(); 1663 } 1664 } 1665 1666 MI.eraseFromParent(); 1667 return Legalized; 1668 } 1669 1670 LegalizerHelper::LegalizeResult 1671 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1672 LLT WideTy) { 1673 Register DstReg = MI.getOperand(0).getReg(); 1674 Register SrcReg = MI.getOperand(1).getReg(); 1675 LLT SrcTy = MRI.getType(SrcReg); 1676 1677 LLT DstTy = MRI.getType(DstReg); 1678 unsigned Offset = MI.getOperand(2).getImm(); 1679 1680 if (TypeIdx == 0) { 1681 if (SrcTy.isVector() || DstTy.isVector()) 1682 return UnableToLegalize; 1683 1684 SrcOp Src(SrcReg); 1685 if (SrcTy.isPointer()) { 1686 // Extracts from pointers can be handled only if they are really just 1687 // simple integers. 1688 const DataLayout &DL = MIRBuilder.getDataLayout(); 1689 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1690 return UnableToLegalize; 1691 1692 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1693 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1694 SrcTy = SrcAsIntTy; 1695 } 1696 1697 if (DstTy.isPointer()) 1698 return UnableToLegalize; 1699 1700 if (Offset == 0) { 1701 // Avoid a shift in the degenerate case. 1702 MIRBuilder.buildTrunc(DstReg, 1703 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1704 MI.eraseFromParent(); 1705 return Legalized; 1706 } 1707 1708 // Do a shift in the source type. 1709 LLT ShiftTy = SrcTy; 1710 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1711 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1712 ShiftTy = WideTy; 1713 } 1714 1715 auto LShr = MIRBuilder.buildLShr( 1716 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1717 MIRBuilder.buildTrunc(DstReg, LShr); 1718 MI.eraseFromParent(); 1719 return Legalized; 1720 } 1721 1722 if (SrcTy.isScalar()) { 1723 Observer.changingInstr(MI); 1724 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1725 Observer.changedInstr(MI); 1726 return Legalized; 1727 } 1728 1729 if (!SrcTy.isVector()) 1730 return UnableToLegalize; 1731 1732 if (DstTy != SrcTy.getElementType()) 1733 return UnableToLegalize; 1734 1735 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1736 return UnableToLegalize; 1737 1738 Observer.changingInstr(MI); 1739 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1740 1741 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1742 Offset); 1743 widenScalarDst(MI, WideTy.getScalarType(), 0); 1744 Observer.changedInstr(MI); 1745 return Legalized; 1746 } 1747 1748 LegalizerHelper::LegalizeResult 1749 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1750 LLT WideTy) { 1751 if (TypeIdx != 0 || WideTy.isVector()) 1752 return UnableToLegalize; 1753 Observer.changingInstr(MI); 1754 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1755 widenScalarDst(MI, WideTy); 1756 Observer.changedInstr(MI); 1757 return Legalized; 1758 } 1759 1760 LegalizerHelper::LegalizeResult 1761 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1762 LLT WideTy) { 1763 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1764 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1765 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1766 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1767 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1768 // We can convert this to: 1769 // 1. Any extend iN to iM 1770 // 2. SHL by M-N 1771 // 3. [US][ADD|SUB|SHL]SAT 1772 // 4. L/ASHR by M-N 1773 // 1774 // It may be more efficient to lower this to a min and a max operation in 1775 // the higher precision arithmetic if the promoted operation isn't legal, 1776 // but this decision is up to the target's lowering request. 1777 Register DstReg = MI.getOperand(0).getReg(); 1778 1779 unsigned NewBits = WideTy.getScalarSizeInBits(); 1780 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1781 1782 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1783 // must not left shift the RHS to preserve the shift amount. 1784 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1785 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1786 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1787 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1788 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1789 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1790 1791 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1792 {ShiftL, ShiftR}, MI.getFlags()); 1793 1794 // Use a shift that will preserve the number of sign bits when the trunc is 1795 // folded away. 1796 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1797 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1798 1799 MIRBuilder.buildTrunc(DstReg, Result); 1800 MI.eraseFromParent(); 1801 return Legalized; 1802 } 1803 1804 LegalizerHelper::LegalizeResult 1805 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1806 switch (MI.getOpcode()) { 1807 default: 1808 return UnableToLegalize; 1809 case TargetOpcode::G_EXTRACT: 1810 return widenScalarExtract(MI, TypeIdx, WideTy); 1811 case TargetOpcode::G_INSERT: 1812 return widenScalarInsert(MI, TypeIdx, WideTy); 1813 case TargetOpcode::G_MERGE_VALUES: 1814 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1815 case TargetOpcode::G_UNMERGE_VALUES: 1816 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1817 case TargetOpcode::G_UADDO: 1818 case TargetOpcode::G_USUBO: { 1819 if (TypeIdx == 1) 1820 return UnableToLegalize; // TODO 1821 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1822 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1823 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1824 ? TargetOpcode::G_ADD 1825 : TargetOpcode::G_SUB; 1826 // Do the arithmetic in the larger type. 1827 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1828 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1829 APInt Mask = 1830 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1831 auto AndOp = MIRBuilder.buildAnd( 1832 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1833 // There is no overflow if the AndOp is the same as NewOp. 1834 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1835 // Now trunc the NewOp to the original result. 1836 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1837 MI.eraseFromParent(); 1838 return Legalized; 1839 } 1840 case TargetOpcode::G_SADDSAT: 1841 case TargetOpcode::G_SSUBSAT: 1842 case TargetOpcode::G_SSHLSAT: 1843 case TargetOpcode::G_UADDSAT: 1844 case TargetOpcode::G_USUBSAT: 1845 case TargetOpcode::G_USHLSAT: 1846 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1847 case TargetOpcode::G_CTTZ: 1848 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1849 case TargetOpcode::G_CTLZ: 1850 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1851 case TargetOpcode::G_CTPOP: { 1852 if (TypeIdx == 0) { 1853 Observer.changingInstr(MI); 1854 widenScalarDst(MI, WideTy, 0); 1855 Observer.changedInstr(MI); 1856 return Legalized; 1857 } 1858 1859 Register SrcReg = MI.getOperand(1).getReg(); 1860 1861 // First ZEXT the input. 1862 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1863 LLT CurTy = MRI.getType(SrcReg); 1864 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1865 // The count is the same in the larger type except if the original 1866 // value was zero. This can be handled by setting the bit just off 1867 // the top of the original type. 1868 auto TopBit = 1869 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1870 MIBSrc = MIRBuilder.buildOr( 1871 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1872 } 1873 1874 // Perform the operation at the larger size. 1875 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1876 // This is already the correct result for CTPOP and CTTZs 1877 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1878 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1879 // The correct result is NewOp - (Difference in widety and current ty). 1880 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1881 MIBNewOp = MIRBuilder.buildSub( 1882 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1883 } 1884 1885 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1886 MI.eraseFromParent(); 1887 return Legalized; 1888 } 1889 case TargetOpcode::G_BSWAP: { 1890 Observer.changingInstr(MI); 1891 Register DstReg = MI.getOperand(0).getReg(); 1892 1893 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1894 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1895 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1896 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1897 1898 MI.getOperand(0).setReg(DstExt); 1899 1900 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1901 1902 LLT Ty = MRI.getType(DstReg); 1903 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1904 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1905 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1906 1907 MIRBuilder.buildTrunc(DstReg, ShrReg); 1908 Observer.changedInstr(MI); 1909 return Legalized; 1910 } 1911 case TargetOpcode::G_BITREVERSE: { 1912 Observer.changingInstr(MI); 1913 1914 Register DstReg = MI.getOperand(0).getReg(); 1915 LLT Ty = MRI.getType(DstReg); 1916 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1917 1918 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1919 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1920 MI.getOperand(0).setReg(DstExt); 1921 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1922 1923 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1924 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1925 MIRBuilder.buildTrunc(DstReg, Shift); 1926 Observer.changedInstr(MI); 1927 return Legalized; 1928 } 1929 case TargetOpcode::G_FREEZE: 1930 Observer.changingInstr(MI); 1931 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1932 widenScalarDst(MI, WideTy); 1933 Observer.changedInstr(MI); 1934 return Legalized; 1935 1936 case TargetOpcode::G_ADD: 1937 case TargetOpcode::G_AND: 1938 case TargetOpcode::G_MUL: 1939 case TargetOpcode::G_OR: 1940 case TargetOpcode::G_XOR: 1941 case TargetOpcode::G_SUB: 1942 // Perform operation at larger width (any extension is fines here, high bits 1943 // don't affect the result) and then truncate the result back to the 1944 // original type. 1945 Observer.changingInstr(MI); 1946 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1947 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1948 widenScalarDst(MI, WideTy); 1949 Observer.changedInstr(MI); 1950 return Legalized; 1951 1952 case TargetOpcode::G_SHL: 1953 Observer.changingInstr(MI); 1954 1955 if (TypeIdx == 0) { 1956 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1957 widenScalarDst(MI, WideTy); 1958 } else { 1959 assert(TypeIdx == 1); 1960 // The "number of bits to shift" operand must preserve its value as an 1961 // unsigned integer: 1962 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1963 } 1964 1965 Observer.changedInstr(MI); 1966 return Legalized; 1967 1968 case TargetOpcode::G_SDIV: 1969 case TargetOpcode::G_SREM: 1970 case TargetOpcode::G_SMIN: 1971 case TargetOpcode::G_SMAX: 1972 Observer.changingInstr(MI); 1973 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1974 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1975 widenScalarDst(MI, WideTy); 1976 Observer.changedInstr(MI); 1977 return Legalized; 1978 1979 case TargetOpcode::G_ASHR: 1980 case TargetOpcode::G_LSHR: 1981 Observer.changingInstr(MI); 1982 1983 if (TypeIdx == 0) { 1984 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1985 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1986 1987 widenScalarSrc(MI, WideTy, 1, CvtOp); 1988 widenScalarDst(MI, WideTy); 1989 } else { 1990 assert(TypeIdx == 1); 1991 // The "number of bits to shift" operand must preserve its value as an 1992 // unsigned integer: 1993 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1994 } 1995 1996 Observer.changedInstr(MI); 1997 return Legalized; 1998 case TargetOpcode::G_UDIV: 1999 case TargetOpcode::G_UREM: 2000 case TargetOpcode::G_UMIN: 2001 case TargetOpcode::G_UMAX: 2002 Observer.changingInstr(MI); 2003 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2004 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2005 widenScalarDst(MI, WideTy); 2006 Observer.changedInstr(MI); 2007 return Legalized; 2008 2009 case TargetOpcode::G_SELECT: 2010 Observer.changingInstr(MI); 2011 if (TypeIdx == 0) { 2012 // Perform operation at larger width (any extension is fine here, high 2013 // bits don't affect the result) and then truncate the result back to the 2014 // original type. 2015 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2016 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2017 widenScalarDst(MI, WideTy); 2018 } else { 2019 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2020 // Explicit extension is required here since high bits affect the result. 2021 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2022 } 2023 Observer.changedInstr(MI); 2024 return Legalized; 2025 2026 case TargetOpcode::G_FPTOSI: 2027 case TargetOpcode::G_FPTOUI: 2028 Observer.changingInstr(MI); 2029 2030 if (TypeIdx == 0) 2031 widenScalarDst(MI, WideTy); 2032 else 2033 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2034 2035 Observer.changedInstr(MI); 2036 return Legalized; 2037 case TargetOpcode::G_SITOFP: 2038 Observer.changingInstr(MI); 2039 2040 if (TypeIdx == 0) 2041 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2042 else 2043 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2044 2045 Observer.changedInstr(MI); 2046 return Legalized; 2047 case TargetOpcode::G_UITOFP: 2048 Observer.changingInstr(MI); 2049 2050 if (TypeIdx == 0) 2051 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2052 else 2053 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2054 2055 Observer.changedInstr(MI); 2056 return Legalized; 2057 case TargetOpcode::G_LOAD: 2058 case TargetOpcode::G_SEXTLOAD: 2059 case TargetOpcode::G_ZEXTLOAD: 2060 Observer.changingInstr(MI); 2061 widenScalarDst(MI, WideTy); 2062 Observer.changedInstr(MI); 2063 return Legalized; 2064 2065 case TargetOpcode::G_STORE: { 2066 if (TypeIdx != 0) 2067 return UnableToLegalize; 2068 2069 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2070 if (!Ty.isScalar()) 2071 return UnableToLegalize; 2072 2073 Observer.changingInstr(MI); 2074 2075 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2076 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2077 widenScalarSrc(MI, WideTy, 0, ExtType); 2078 2079 Observer.changedInstr(MI); 2080 return Legalized; 2081 } 2082 case TargetOpcode::G_CONSTANT: { 2083 MachineOperand &SrcMO = MI.getOperand(1); 2084 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2085 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2086 MRI.getType(MI.getOperand(0).getReg())); 2087 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2088 ExtOpc == TargetOpcode::G_ANYEXT) && 2089 "Illegal Extend"); 2090 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2091 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2092 ? SrcVal.sext(WideTy.getSizeInBits()) 2093 : SrcVal.zext(WideTy.getSizeInBits()); 2094 Observer.changingInstr(MI); 2095 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2096 2097 widenScalarDst(MI, WideTy); 2098 Observer.changedInstr(MI); 2099 return Legalized; 2100 } 2101 case TargetOpcode::G_FCONSTANT: { 2102 MachineOperand &SrcMO = MI.getOperand(1); 2103 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2104 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2105 bool LosesInfo; 2106 switch (WideTy.getSizeInBits()) { 2107 case 32: 2108 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2109 &LosesInfo); 2110 break; 2111 case 64: 2112 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2113 &LosesInfo); 2114 break; 2115 default: 2116 return UnableToLegalize; 2117 } 2118 2119 assert(!LosesInfo && "extend should always be lossless"); 2120 2121 Observer.changingInstr(MI); 2122 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2123 2124 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2125 Observer.changedInstr(MI); 2126 return Legalized; 2127 } 2128 case TargetOpcode::G_IMPLICIT_DEF: { 2129 Observer.changingInstr(MI); 2130 widenScalarDst(MI, WideTy); 2131 Observer.changedInstr(MI); 2132 return Legalized; 2133 } 2134 case TargetOpcode::G_BRCOND: 2135 Observer.changingInstr(MI); 2136 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2137 Observer.changedInstr(MI); 2138 return Legalized; 2139 2140 case TargetOpcode::G_FCMP: 2141 Observer.changingInstr(MI); 2142 if (TypeIdx == 0) 2143 widenScalarDst(MI, WideTy); 2144 else { 2145 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2146 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2147 } 2148 Observer.changedInstr(MI); 2149 return Legalized; 2150 2151 case TargetOpcode::G_ICMP: 2152 Observer.changingInstr(MI); 2153 if (TypeIdx == 0) 2154 widenScalarDst(MI, WideTy); 2155 else { 2156 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2157 MI.getOperand(1).getPredicate())) 2158 ? TargetOpcode::G_SEXT 2159 : TargetOpcode::G_ZEXT; 2160 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2161 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2162 } 2163 Observer.changedInstr(MI); 2164 return Legalized; 2165 2166 case TargetOpcode::G_PTR_ADD: 2167 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2168 Observer.changingInstr(MI); 2169 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2170 Observer.changedInstr(MI); 2171 return Legalized; 2172 2173 case TargetOpcode::G_PHI: { 2174 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2175 2176 Observer.changingInstr(MI); 2177 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2178 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2179 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2180 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2181 } 2182 2183 MachineBasicBlock &MBB = *MI.getParent(); 2184 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2185 widenScalarDst(MI, WideTy); 2186 Observer.changedInstr(MI); 2187 return Legalized; 2188 } 2189 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2190 if (TypeIdx == 0) { 2191 Register VecReg = MI.getOperand(1).getReg(); 2192 LLT VecTy = MRI.getType(VecReg); 2193 Observer.changingInstr(MI); 2194 2195 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2196 WideTy.getSizeInBits()), 2197 1, TargetOpcode::G_SEXT); 2198 2199 widenScalarDst(MI, WideTy, 0); 2200 Observer.changedInstr(MI); 2201 return Legalized; 2202 } 2203 2204 if (TypeIdx != 2) 2205 return UnableToLegalize; 2206 Observer.changingInstr(MI); 2207 // TODO: Probably should be zext 2208 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2209 Observer.changedInstr(MI); 2210 return Legalized; 2211 } 2212 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2213 if (TypeIdx == 1) { 2214 Observer.changingInstr(MI); 2215 2216 Register VecReg = MI.getOperand(1).getReg(); 2217 LLT VecTy = MRI.getType(VecReg); 2218 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2219 2220 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2221 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2222 widenScalarDst(MI, WideVecTy, 0); 2223 Observer.changedInstr(MI); 2224 return Legalized; 2225 } 2226 2227 if (TypeIdx == 2) { 2228 Observer.changingInstr(MI); 2229 // TODO: Probably should be zext 2230 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2231 Observer.changedInstr(MI); 2232 return Legalized; 2233 } 2234 2235 return UnableToLegalize; 2236 } 2237 case TargetOpcode::G_FADD: 2238 case TargetOpcode::G_FMUL: 2239 case TargetOpcode::G_FSUB: 2240 case TargetOpcode::G_FMA: 2241 case TargetOpcode::G_FMAD: 2242 case TargetOpcode::G_FNEG: 2243 case TargetOpcode::G_FABS: 2244 case TargetOpcode::G_FCANONICALIZE: 2245 case TargetOpcode::G_FMINNUM: 2246 case TargetOpcode::G_FMAXNUM: 2247 case TargetOpcode::G_FMINNUM_IEEE: 2248 case TargetOpcode::G_FMAXNUM_IEEE: 2249 case TargetOpcode::G_FMINIMUM: 2250 case TargetOpcode::G_FMAXIMUM: 2251 case TargetOpcode::G_FDIV: 2252 case TargetOpcode::G_FREM: 2253 case TargetOpcode::G_FCEIL: 2254 case TargetOpcode::G_FFLOOR: 2255 case TargetOpcode::G_FCOS: 2256 case TargetOpcode::G_FSIN: 2257 case TargetOpcode::G_FLOG10: 2258 case TargetOpcode::G_FLOG: 2259 case TargetOpcode::G_FLOG2: 2260 case TargetOpcode::G_FRINT: 2261 case TargetOpcode::G_FNEARBYINT: 2262 case TargetOpcode::G_FSQRT: 2263 case TargetOpcode::G_FEXP: 2264 case TargetOpcode::G_FEXP2: 2265 case TargetOpcode::G_FPOW: 2266 case TargetOpcode::G_INTRINSIC_TRUNC: 2267 case TargetOpcode::G_INTRINSIC_ROUND: 2268 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2269 assert(TypeIdx == 0); 2270 Observer.changingInstr(MI); 2271 2272 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2273 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2274 2275 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2276 Observer.changedInstr(MI); 2277 return Legalized; 2278 case TargetOpcode::G_FPOWI: { 2279 if (TypeIdx != 0) 2280 return UnableToLegalize; 2281 Observer.changingInstr(MI); 2282 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2283 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2284 Observer.changedInstr(MI); 2285 return Legalized; 2286 } 2287 case TargetOpcode::G_INTTOPTR: 2288 if (TypeIdx != 1) 2289 return UnableToLegalize; 2290 2291 Observer.changingInstr(MI); 2292 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2293 Observer.changedInstr(MI); 2294 return Legalized; 2295 case TargetOpcode::G_PTRTOINT: 2296 if (TypeIdx != 0) 2297 return UnableToLegalize; 2298 2299 Observer.changingInstr(MI); 2300 widenScalarDst(MI, WideTy, 0); 2301 Observer.changedInstr(MI); 2302 return Legalized; 2303 case TargetOpcode::G_BUILD_VECTOR: { 2304 Observer.changingInstr(MI); 2305 2306 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2307 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2308 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2309 2310 // Avoid changing the result vector type if the source element type was 2311 // requested. 2312 if (TypeIdx == 1) { 2313 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2314 } else { 2315 widenScalarDst(MI, WideTy, 0); 2316 } 2317 2318 Observer.changedInstr(MI); 2319 return Legalized; 2320 } 2321 case TargetOpcode::G_SEXT_INREG: 2322 if (TypeIdx != 0) 2323 return UnableToLegalize; 2324 2325 Observer.changingInstr(MI); 2326 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2327 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2328 Observer.changedInstr(MI); 2329 return Legalized; 2330 case TargetOpcode::G_PTRMASK: { 2331 if (TypeIdx != 1) 2332 return UnableToLegalize; 2333 Observer.changingInstr(MI); 2334 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2335 Observer.changedInstr(MI); 2336 return Legalized; 2337 } 2338 } 2339 } 2340 2341 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2342 MachineIRBuilder &B, Register Src, LLT Ty) { 2343 auto Unmerge = B.buildUnmerge(Ty, Src); 2344 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2345 Pieces.push_back(Unmerge.getReg(I)); 2346 } 2347 2348 LegalizerHelper::LegalizeResult 2349 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2350 Register Dst = MI.getOperand(0).getReg(); 2351 Register Src = MI.getOperand(1).getReg(); 2352 LLT DstTy = MRI.getType(Dst); 2353 LLT SrcTy = MRI.getType(Src); 2354 2355 if (SrcTy.isVector()) { 2356 LLT SrcEltTy = SrcTy.getElementType(); 2357 SmallVector<Register, 8> SrcRegs; 2358 2359 if (DstTy.isVector()) { 2360 int NumDstElt = DstTy.getNumElements(); 2361 int NumSrcElt = SrcTy.getNumElements(); 2362 2363 LLT DstEltTy = DstTy.getElementType(); 2364 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2365 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2366 2367 // If there's an element size mismatch, insert intermediate casts to match 2368 // the result element type. 2369 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2370 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2371 // 2372 // => 2373 // 2374 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2375 // %3:_(<2 x s8>) = G_BITCAST %2 2376 // %4:_(<2 x s8>) = G_BITCAST %3 2377 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2378 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2379 SrcPartTy = SrcEltTy; 2380 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2381 // 2382 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2383 // 2384 // => 2385 // 2386 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2387 // %3:_(s16) = G_BITCAST %2 2388 // %4:_(s16) = G_BITCAST %3 2389 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2390 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2391 DstCastTy = DstEltTy; 2392 } 2393 2394 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2395 for (Register &SrcReg : SrcRegs) 2396 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2397 } else 2398 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2399 2400 MIRBuilder.buildMerge(Dst, SrcRegs); 2401 MI.eraseFromParent(); 2402 return Legalized; 2403 } 2404 2405 if (DstTy.isVector()) { 2406 SmallVector<Register, 8> SrcRegs; 2407 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2408 MIRBuilder.buildMerge(Dst, SrcRegs); 2409 MI.eraseFromParent(); 2410 return Legalized; 2411 } 2412 2413 return UnableToLegalize; 2414 } 2415 2416 /// Figure out the bit offset into a register when coercing a vector index for 2417 /// the wide element type. This is only for the case when promoting vector to 2418 /// one with larger elements. 2419 // 2420 /// 2421 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2422 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2423 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2424 Register Idx, 2425 unsigned NewEltSize, 2426 unsigned OldEltSize) { 2427 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2428 LLT IdxTy = B.getMRI()->getType(Idx); 2429 2430 // Now figure out the amount we need to shift to get the target bits. 2431 auto OffsetMask = B.buildConstant( 2432 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2433 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2434 return B.buildShl(IdxTy, OffsetIdx, 2435 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2436 } 2437 2438 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2439 /// is casting to a vector with a smaller element size, perform multiple element 2440 /// extracts and merge the results. If this is coercing to a vector with larger 2441 /// elements, index the bitcasted vector and extract the target element with bit 2442 /// operations. This is intended to force the indexing in the native register 2443 /// size for architectures that can dynamically index the register file. 2444 LegalizerHelper::LegalizeResult 2445 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2446 LLT CastTy) { 2447 if (TypeIdx != 1) 2448 return UnableToLegalize; 2449 2450 Register Dst = MI.getOperand(0).getReg(); 2451 Register SrcVec = MI.getOperand(1).getReg(); 2452 Register Idx = MI.getOperand(2).getReg(); 2453 LLT SrcVecTy = MRI.getType(SrcVec); 2454 LLT IdxTy = MRI.getType(Idx); 2455 2456 LLT SrcEltTy = SrcVecTy.getElementType(); 2457 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2458 unsigned OldNumElts = SrcVecTy.getNumElements(); 2459 2460 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2461 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2462 2463 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2464 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2465 if (NewNumElts > OldNumElts) { 2466 // Decreasing the vector element size 2467 // 2468 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2469 // => 2470 // v4i32:castx = bitcast x:v2i64 2471 // 2472 // i64 = bitcast 2473 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2474 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2475 // 2476 if (NewNumElts % OldNumElts != 0) 2477 return UnableToLegalize; 2478 2479 // Type of the intermediate result vector. 2480 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2481 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2482 2483 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2484 2485 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2486 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2487 2488 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2489 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2490 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2491 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2492 NewOps[I] = Elt.getReg(0); 2493 } 2494 2495 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2496 MIRBuilder.buildBitcast(Dst, NewVec); 2497 MI.eraseFromParent(); 2498 return Legalized; 2499 } 2500 2501 if (NewNumElts < OldNumElts) { 2502 if (NewEltSize % OldEltSize != 0) 2503 return UnableToLegalize; 2504 2505 // This only depends on powers of 2 because we use bit tricks to figure out 2506 // the bit offset we need to shift to get the target element. A general 2507 // expansion could emit division/multiply. 2508 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2509 return UnableToLegalize; 2510 2511 // Increasing the vector element size. 2512 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2513 // 2514 // => 2515 // 2516 // %cast = G_BITCAST %vec 2517 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2518 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2519 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2520 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2521 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2522 // %elt = G_TRUNC %elt_bits 2523 2524 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2525 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2526 2527 // Divide to get the index in the wider element type. 2528 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2529 2530 Register WideElt = CastVec; 2531 if (CastTy.isVector()) { 2532 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2533 ScaledIdx).getReg(0); 2534 } 2535 2536 // Compute the bit offset into the register of the target element. 2537 Register OffsetBits = getBitcastWiderVectorElementOffset( 2538 MIRBuilder, Idx, NewEltSize, OldEltSize); 2539 2540 // Shift the wide element to get the target element. 2541 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2542 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2543 MI.eraseFromParent(); 2544 return Legalized; 2545 } 2546 2547 return UnableToLegalize; 2548 } 2549 2550 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2551 /// TargetReg, while preserving other bits in \p TargetReg. 2552 /// 2553 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2554 static Register buildBitFieldInsert(MachineIRBuilder &B, 2555 Register TargetReg, Register InsertReg, 2556 Register OffsetBits) { 2557 LLT TargetTy = B.getMRI()->getType(TargetReg); 2558 LLT InsertTy = B.getMRI()->getType(InsertReg); 2559 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2560 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2561 2562 // Produce a bitmask of the value to insert 2563 auto EltMask = B.buildConstant( 2564 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2565 InsertTy.getSizeInBits())); 2566 // Shift it into position 2567 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2568 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2569 2570 // Clear out the bits in the wide element 2571 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2572 2573 // The value to insert has all zeros already, so stick it into the masked 2574 // wide element. 2575 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2576 } 2577 2578 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2579 /// is increasing the element size, perform the indexing in the target element 2580 /// type, and use bit operations to insert at the element position. This is 2581 /// intended for architectures that can dynamically index the register file and 2582 /// want to force indexing in the native register size. 2583 LegalizerHelper::LegalizeResult 2584 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2585 LLT CastTy) { 2586 if (TypeIdx != 0) 2587 return UnableToLegalize; 2588 2589 Register Dst = MI.getOperand(0).getReg(); 2590 Register SrcVec = MI.getOperand(1).getReg(); 2591 Register Val = MI.getOperand(2).getReg(); 2592 Register Idx = MI.getOperand(3).getReg(); 2593 2594 LLT VecTy = MRI.getType(Dst); 2595 LLT IdxTy = MRI.getType(Idx); 2596 2597 LLT VecEltTy = VecTy.getElementType(); 2598 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2599 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2600 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2601 2602 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2603 unsigned OldNumElts = VecTy.getNumElements(); 2604 2605 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2606 if (NewNumElts < OldNumElts) { 2607 if (NewEltSize % OldEltSize != 0) 2608 return UnableToLegalize; 2609 2610 // This only depends on powers of 2 because we use bit tricks to figure out 2611 // the bit offset we need to shift to get the target element. A general 2612 // expansion could emit division/multiply. 2613 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2614 return UnableToLegalize; 2615 2616 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2617 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2618 2619 // Divide to get the index in the wider element type. 2620 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2621 2622 Register ExtractedElt = CastVec; 2623 if (CastTy.isVector()) { 2624 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2625 ScaledIdx).getReg(0); 2626 } 2627 2628 // Compute the bit offset into the register of the target element. 2629 Register OffsetBits = getBitcastWiderVectorElementOffset( 2630 MIRBuilder, Idx, NewEltSize, OldEltSize); 2631 2632 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2633 Val, OffsetBits); 2634 if (CastTy.isVector()) { 2635 InsertedElt = MIRBuilder.buildInsertVectorElement( 2636 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2637 } 2638 2639 MIRBuilder.buildBitcast(Dst, InsertedElt); 2640 MI.eraseFromParent(); 2641 return Legalized; 2642 } 2643 2644 return UnableToLegalize; 2645 } 2646 2647 LegalizerHelper::LegalizeResult 2648 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2649 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2650 Register DstReg = MI.getOperand(0).getReg(); 2651 Register PtrReg = MI.getOperand(1).getReg(); 2652 LLT DstTy = MRI.getType(DstReg); 2653 auto &MMO = **MI.memoperands_begin(); 2654 2655 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2656 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2657 // This load needs splitting into power of 2 sized loads. 2658 if (DstTy.isVector()) 2659 return UnableToLegalize; 2660 if (isPowerOf2_32(DstTy.getSizeInBits())) 2661 return UnableToLegalize; // Don't know what we're being asked to do. 2662 2663 // Our strategy here is to generate anyextending loads for the smaller 2664 // types up to next power-2 result type, and then combine the two larger 2665 // result values together, before truncating back down to the non-pow-2 2666 // type. 2667 // E.g. v1 = i24 load => 2668 // v2 = i32 zextload (2 byte) 2669 // v3 = i32 load (1 byte) 2670 // v4 = i32 shl v3, 16 2671 // v5 = i32 or v4, v2 2672 // v1 = i24 trunc v5 2673 // By doing this we generate the correct truncate which should get 2674 // combined away as an artifact with a matching extend. 2675 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2676 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2677 2678 MachineFunction &MF = MIRBuilder.getMF(); 2679 MachineMemOperand *LargeMMO = 2680 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2681 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2682 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2683 2684 LLT PtrTy = MRI.getType(PtrReg); 2685 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2686 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2687 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2688 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2689 auto LargeLoad = MIRBuilder.buildLoadInstr( 2690 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2691 2692 auto OffsetCst = MIRBuilder.buildConstant( 2693 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2694 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2695 auto SmallPtr = 2696 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2697 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2698 *SmallMMO); 2699 2700 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2701 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2702 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2703 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2704 MI.eraseFromParent(); 2705 return Legalized; 2706 } 2707 2708 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2709 MI.eraseFromParent(); 2710 return Legalized; 2711 } 2712 2713 if (DstTy.isScalar()) { 2714 Register TmpReg = 2715 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2716 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2717 switch (MI.getOpcode()) { 2718 default: 2719 llvm_unreachable("Unexpected opcode"); 2720 case TargetOpcode::G_LOAD: 2721 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2722 break; 2723 case TargetOpcode::G_SEXTLOAD: 2724 MIRBuilder.buildSExt(DstReg, TmpReg); 2725 break; 2726 case TargetOpcode::G_ZEXTLOAD: 2727 MIRBuilder.buildZExt(DstReg, TmpReg); 2728 break; 2729 } 2730 2731 MI.eraseFromParent(); 2732 return Legalized; 2733 } 2734 2735 return UnableToLegalize; 2736 } 2737 2738 LegalizerHelper::LegalizeResult 2739 LegalizerHelper::lowerStore(MachineInstr &MI) { 2740 // Lower a non-power of 2 store into multiple pow-2 stores. 2741 // E.g. split an i24 store into an i16 store + i8 store. 2742 // We do this by first extending the stored value to the next largest power 2743 // of 2 type, and then using truncating stores to store the components. 2744 // By doing this, likewise with G_LOAD, generate an extend that can be 2745 // artifact-combined away instead of leaving behind extracts. 2746 Register SrcReg = MI.getOperand(0).getReg(); 2747 Register PtrReg = MI.getOperand(1).getReg(); 2748 LLT SrcTy = MRI.getType(SrcReg); 2749 MachineMemOperand &MMO = **MI.memoperands_begin(); 2750 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2751 return UnableToLegalize; 2752 if (SrcTy.isVector()) 2753 return UnableToLegalize; 2754 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2755 return UnableToLegalize; // Don't know what we're being asked to do. 2756 2757 // Extend to the next pow-2. 2758 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2759 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2760 2761 // Obtain the smaller value by shifting away the larger value. 2762 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2763 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2764 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2765 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2766 2767 // Generate the PtrAdd and truncating stores. 2768 LLT PtrTy = MRI.getType(PtrReg); 2769 auto OffsetCst = MIRBuilder.buildConstant( 2770 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2771 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2772 auto SmallPtr = 2773 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2774 2775 MachineFunction &MF = MIRBuilder.getMF(); 2776 MachineMemOperand *LargeMMO = 2777 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2778 MachineMemOperand *SmallMMO = 2779 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2780 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2781 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2782 MI.eraseFromParent(); 2783 return Legalized; 2784 } 2785 2786 LegalizerHelper::LegalizeResult 2787 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2788 switch (MI.getOpcode()) { 2789 case TargetOpcode::G_LOAD: { 2790 if (TypeIdx != 0) 2791 return UnableToLegalize; 2792 2793 Observer.changingInstr(MI); 2794 bitcastDst(MI, CastTy, 0); 2795 Observer.changedInstr(MI); 2796 return Legalized; 2797 } 2798 case TargetOpcode::G_STORE: { 2799 if (TypeIdx != 0) 2800 return UnableToLegalize; 2801 2802 Observer.changingInstr(MI); 2803 bitcastSrc(MI, CastTy, 0); 2804 Observer.changedInstr(MI); 2805 return Legalized; 2806 } 2807 case TargetOpcode::G_SELECT: { 2808 if (TypeIdx != 0) 2809 return UnableToLegalize; 2810 2811 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2812 LLVM_DEBUG( 2813 dbgs() << "bitcast action not implemented for vector select\n"); 2814 return UnableToLegalize; 2815 } 2816 2817 Observer.changingInstr(MI); 2818 bitcastSrc(MI, CastTy, 2); 2819 bitcastSrc(MI, CastTy, 3); 2820 bitcastDst(MI, CastTy, 0); 2821 Observer.changedInstr(MI); 2822 return Legalized; 2823 } 2824 case TargetOpcode::G_AND: 2825 case TargetOpcode::G_OR: 2826 case TargetOpcode::G_XOR: { 2827 Observer.changingInstr(MI); 2828 bitcastSrc(MI, CastTy, 1); 2829 bitcastSrc(MI, CastTy, 2); 2830 bitcastDst(MI, CastTy, 0); 2831 Observer.changedInstr(MI); 2832 return Legalized; 2833 } 2834 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2835 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2836 case TargetOpcode::G_INSERT_VECTOR_ELT: 2837 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2838 default: 2839 return UnableToLegalize; 2840 } 2841 } 2842 2843 // Legalize an instruction by changing the opcode in place. 2844 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2845 Observer.changingInstr(MI); 2846 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2847 Observer.changedInstr(MI); 2848 } 2849 2850 LegalizerHelper::LegalizeResult 2851 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2852 using namespace TargetOpcode; 2853 2854 switch(MI.getOpcode()) { 2855 default: 2856 return UnableToLegalize; 2857 case TargetOpcode::G_BITCAST: 2858 return lowerBitcast(MI); 2859 case TargetOpcode::G_SREM: 2860 case TargetOpcode::G_UREM: { 2861 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2862 auto Quot = 2863 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2864 {MI.getOperand(1), MI.getOperand(2)}); 2865 2866 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2867 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2868 MI.eraseFromParent(); 2869 return Legalized; 2870 } 2871 case TargetOpcode::G_SADDO: 2872 case TargetOpcode::G_SSUBO: 2873 return lowerSADDO_SSUBO(MI); 2874 case TargetOpcode::G_UMULH: 2875 case TargetOpcode::G_SMULH: 2876 return lowerSMULH_UMULH(MI); 2877 case TargetOpcode::G_SMULO: 2878 case TargetOpcode::G_UMULO: { 2879 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2880 // result. 2881 Register Res = MI.getOperand(0).getReg(); 2882 Register Overflow = MI.getOperand(1).getReg(); 2883 Register LHS = MI.getOperand(2).getReg(); 2884 Register RHS = MI.getOperand(3).getReg(); 2885 LLT Ty = MRI.getType(Res); 2886 2887 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2888 ? TargetOpcode::G_SMULH 2889 : TargetOpcode::G_UMULH; 2890 2891 Observer.changingInstr(MI); 2892 const auto &TII = MIRBuilder.getTII(); 2893 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2894 MI.RemoveOperand(1); 2895 Observer.changedInstr(MI); 2896 2897 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2898 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2899 2900 // Move insert point forward so we can use the Res register if needed. 2901 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2902 2903 // For *signed* multiply, overflow is detected by checking: 2904 // (hi != (lo >> bitwidth-1)) 2905 if (Opcode == TargetOpcode::G_SMULH) { 2906 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2907 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2908 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2909 } else { 2910 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2911 } 2912 return Legalized; 2913 } 2914 case TargetOpcode::G_FNEG: { 2915 Register Res = MI.getOperand(0).getReg(); 2916 LLT Ty = MRI.getType(Res); 2917 2918 // TODO: Handle vector types once we are able to 2919 // represent them. 2920 if (Ty.isVector()) 2921 return UnableToLegalize; 2922 auto SignMask = 2923 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 2924 Register SubByReg = MI.getOperand(1).getReg(); 2925 MIRBuilder.buildXor(Res, SubByReg, SignMask); 2926 MI.eraseFromParent(); 2927 return Legalized; 2928 } 2929 case TargetOpcode::G_FSUB: { 2930 Register Res = MI.getOperand(0).getReg(); 2931 LLT Ty = MRI.getType(Res); 2932 2933 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2934 // First, check if G_FNEG is marked as Lower. If so, we may 2935 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2936 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2937 return UnableToLegalize; 2938 Register LHS = MI.getOperand(1).getReg(); 2939 Register RHS = MI.getOperand(2).getReg(); 2940 Register Neg = MRI.createGenericVirtualRegister(Ty); 2941 MIRBuilder.buildFNeg(Neg, RHS); 2942 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2943 MI.eraseFromParent(); 2944 return Legalized; 2945 } 2946 case TargetOpcode::G_FMAD: 2947 return lowerFMad(MI); 2948 case TargetOpcode::G_FFLOOR: 2949 return lowerFFloor(MI); 2950 case TargetOpcode::G_INTRINSIC_ROUND: 2951 return lowerIntrinsicRound(MI); 2952 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2953 // Since round even is the assumed rounding mode for unconstrained FP 2954 // operations, rint and roundeven are the same operation. 2955 changeOpcode(MI, TargetOpcode::G_FRINT); 2956 return Legalized; 2957 } 2958 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2959 Register OldValRes = MI.getOperand(0).getReg(); 2960 Register SuccessRes = MI.getOperand(1).getReg(); 2961 Register Addr = MI.getOperand(2).getReg(); 2962 Register CmpVal = MI.getOperand(3).getReg(); 2963 Register NewVal = MI.getOperand(4).getReg(); 2964 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2965 **MI.memoperands_begin()); 2966 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2967 MI.eraseFromParent(); 2968 return Legalized; 2969 } 2970 case TargetOpcode::G_LOAD: 2971 case TargetOpcode::G_SEXTLOAD: 2972 case TargetOpcode::G_ZEXTLOAD: 2973 return lowerLoad(MI); 2974 case TargetOpcode::G_STORE: 2975 return lowerStore(MI); 2976 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2977 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2978 case TargetOpcode::G_CTLZ: 2979 case TargetOpcode::G_CTTZ: 2980 case TargetOpcode::G_CTPOP: 2981 return lowerBitCount(MI); 2982 case G_UADDO: { 2983 Register Res = MI.getOperand(0).getReg(); 2984 Register CarryOut = MI.getOperand(1).getReg(); 2985 Register LHS = MI.getOperand(2).getReg(); 2986 Register RHS = MI.getOperand(3).getReg(); 2987 2988 MIRBuilder.buildAdd(Res, LHS, RHS); 2989 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2990 2991 MI.eraseFromParent(); 2992 return Legalized; 2993 } 2994 case G_UADDE: { 2995 Register Res = MI.getOperand(0).getReg(); 2996 Register CarryOut = MI.getOperand(1).getReg(); 2997 Register LHS = MI.getOperand(2).getReg(); 2998 Register RHS = MI.getOperand(3).getReg(); 2999 Register CarryIn = MI.getOperand(4).getReg(); 3000 LLT Ty = MRI.getType(Res); 3001 3002 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3003 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3004 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3005 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3006 3007 MI.eraseFromParent(); 3008 return Legalized; 3009 } 3010 case G_USUBO: { 3011 Register Res = MI.getOperand(0).getReg(); 3012 Register BorrowOut = MI.getOperand(1).getReg(); 3013 Register LHS = MI.getOperand(2).getReg(); 3014 Register RHS = MI.getOperand(3).getReg(); 3015 3016 MIRBuilder.buildSub(Res, LHS, RHS); 3017 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3018 3019 MI.eraseFromParent(); 3020 return Legalized; 3021 } 3022 case G_USUBE: { 3023 Register Res = MI.getOperand(0).getReg(); 3024 Register BorrowOut = MI.getOperand(1).getReg(); 3025 Register LHS = MI.getOperand(2).getReg(); 3026 Register RHS = MI.getOperand(3).getReg(); 3027 Register BorrowIn = MI.getOperand(4).getReg(); 3028 const LLT CondTy = MRI.getType(BorrowOut); 3029 const LLT Ty = MRI.getType(Res); 3030 3031 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3032 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3033 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3034 3035 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3036 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3037 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3038 3039 MI.eraseFromParent(); 3040 return Legalized; 3041 } 3042 case G_UITOFP: 3043 return lowerUITOFP(MI); 3044 case G_SITOFP: 3045 return lowerSITOFP(MI); 3046 case G_FPTOUI: 3047 return lowerFPTOUI(MI); 3048 case G_FPTOSI: 3049 return lowerFPTOSI(MI); 3050 case G_FPTRUNC: 3051 return lowerFPTRUNC(MI); 3052 case G_FPOWI: 3053 return lowerFPOWI(MI); 3054 case G_SMIN: 3055 case G_SMAX: 3056 case G_UMIN: 3057 case G_UMAX: 3058 return lowerMinMax(MI); 3059 case G_FCOPYSIGN: 3060 return lowerFCopySign(MI); 3061 case G_FMINNUM: 3062 case G_FMAXNUM: 3063 return lowerFMinNumMaxNum(MI); 3064 case G_MERGE_VALUES: 3065 return lowerMergeValues(MI); 3066 case G_UNMERGE_VALUES: 3067 return lowerUnmergeValues(MI); 3068 case TargetOpcode::G_SEXT_INREG: { 3069 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3070 int64_t SizeInBits = MI.getOperand(2).getImm(); 3071 3072 Register DstReg = MI.getOperand(0).getReg(); 3073 Register SrcReg = MI.getOperand(1).getReg(); 3074 LLT DstTy = MRI.getType(DstReg); 3075 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3076 3077 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3078 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3079 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3080 MI.eraseFromParent(); 3081 return Legalized; 3082 } 3083 case G_EXTRACT_VECTOR_ELT: 3084 case G_INSERT_VECTOR_ELT: 3085 return lowerExtractInsertVectorElt(MI); 3086 case G_SHUFFLE_VECTOR: 3087 return lowerShuffleVector(MI); 3088 case G_DYN_STACKALLOC: 3089 return lowerDynStackAlloc(MI); 3090 case G_EXTRACT: 3091 return lowerExtract(MI); 3092 case G_INSERT: 3093 return lowerInsert(MI); 3094 case G_BSWAP: 3095 return lowerBswap(MI); 3096 case G_BITREVERSE: 3097 return lowerBitreverse(MI); 3098 case G_READ_REGISTER: 3099 case G_WRITE_REGISTER: 3100 return lowerReadWriteRegister(MI); 3101 case G_UADDSAT: 3102 case G_USUBSAT: { 3103 // Try to make a reasonable guess about which lowering strategy to use. The 3104 // target can override this with custom lowering and calling the 3105 // implementation functions. 3106 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3107 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3108 return lowerAddSubSatToMinMax(MI); 3109 return lowerAddSubSatToAddoSubo(MI); 3110 } 3111 case G_SADDSAT: 3112 case G_SSUBSAT: { 3113 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3114 3115 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3116 // since it's a shorter expansion. However, we would need to figure out the 3117 // preferred boolean type for the carry out for the query. 3118 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3119 return lowerAddSubSatToMinMax(MI); 3120 return lowerAddSubSatToAddoSubo(MI); 3121 } 3122 case G_SSHLSAT: 3123 case G_USHLSAT: 3124 return lowerShlSat(MI); 3125 case G_ABS: { 3126 // Expand %res = G_ABS %a into: 3127 // %v1 = G_ASHR %a, scalar_size-1 3128 // %v2 = G_ADD %a, %v1 3129 // %res = G_XOR %v2, %v1 3130 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3131 Register OpReg = MI.getOperand(1).getReg(); 3132 auto ShiftAmt = 3133 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3134 auto Shift = 3135 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3136 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3137 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3138 MI.eraseFromParent(); 3139 return Legalized; 3140 } 3141 case G_SELECT: 3142 return lowerSelect(MI); 3143 } 3144 } 3145 3146 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3147 Align MinAlign) const { 3148 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3149 // datalayout for the preferred alignment. Also there should be a target hook 3150 // for this to allow targets to reduce the alignment and ignore the 3151 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3152 // the type. 3153 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3154 } 3155 3156 MachineInstrBuilder 3157 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3158 MachinePointerInfo &PtrInfo) { 3159 MachineFunction &MF = MIRBuilder.getMF(); 3160 const DataLayout &DL = MIRBuilder.getDataLayout(); 3161 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3162 3163 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3164 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3165 3166 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3167 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3168 } 3169 3170 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3171 LLT VecTy) { 3172 int64_t IdxVal; 3173 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3174 return IdxReg; 3175 3176 LLT IdxTy = B.getMRI()->getType(IdxReg); 3177 unsigned NElts = VecTy.getNumElements(); 3178 if (isPowerOf2_32(NElts)) { 3179 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3180 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3181 } 3182 3183 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3184 .getReg(0); 3185 } 3186 3187 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3188 Register Index) { 3189 LLT EltTy = VecTy.getElementType(); 3190 3191 // Calculate the element offset and add it to the pointer. 3192 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3193 assert(EltSize * 8 == EltTy.getSizeInBits() && 3194 "Converting bits to bytes lost precision"); 3195 3196 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3197 3198 LLT IdxTy = MRI.getType(Index); 3199 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3200 MIRBuilder.buildConstant(IdxTy, EltSize)); 3201 3202 LLT PtrTy = MRI.getType(VecPtr); 3203 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3204 } 3205 3206 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3207 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3208 Register DstReg = MI.getOperand(0).getReg(); 3209 LLT DstTy = MRI.getType(DstReg); 3210 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3211 3212 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3213 3214 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3215 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3216 3217 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3218 MI.eraseFromParent(); 3219 return Legalized; 3220 } 3221 3222 // Handle splitting vector operations which need to have the same number of 3223 // elements in each type index, but each type index may have a different element 3224 // type. 3225 // 3226 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3227 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3228 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3229 // 3230 // Also handles some irregular breakdown cases, e.g. 3231 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3232 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3233 // s64 = G_SHL s64, s32 3234 LegalizerHelper::LegalizeResult 3235 LegalizerHelper::fewerElementsVectorMultiEltType( 3236 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3237 if (TypeIdx != 0) 3238 return UnableToLegalize; 3239 3240 const LLT NarrowTy0 = NarrowTyArg; 3241 const unsigned NewNumElts = 3242 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3243 3244 const Register DstReg = MI.getOperand(0).getReg(); 3245 LLT DstTy = MRI.getType(DstReg); 3246 LLT LeftoverTy0; 3247 3248 // All of the operands need to have the same number of elements, so if we can 3249 // determine a type breakdown for the result type, we can for all of the 3250 // source types. 3251 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3252 if (NumParts < 0) 3253 return UnableToLegalize; 3254 3255 SmallVector<MachineInstrBuilder, 4> NewInsts; 3256 3257 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3258 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3259 3260 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3261 Register SrcReg = MI.getOperand(I).getReg(); 3262 LLT SrcTyI = MRI.getType(SrcReg); 3263 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3264 LLT LeftoverTyI; 3265 3266 // Split this operand into the requested typed registers, and any leftover 3267 // required to reproduce the original type. 3268 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3269 LeftoverRegs)) 3270 return UnableToLegalize; 3271 3272 if (I == 1) { 3273 // For the first operand, create an instruction for each part and setup 3274 // the result. 3275 for (Register PartReg : PartRegs) { 3276 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3277 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3278 .addDef(PartDstReg) 3279 .addUse(PartReg)); 3280 DstRegs.push_back(PartDstReg); 3281 } 3282 3283 for (Register LeftoverReg : LeftoverRegs) { 3284 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3285 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3286 .addDef(PartDstReg) 3287 .addUse(LeftoverReg)); 3288 LeftoverDstRegs.push_back(PartDstReg); 3289 } 3290 } else { 3291 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3292 3293 // Add the newly created operand splits to the existing instructions. The 3294 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3295 // pieces. 3296 unsigned InstCount = 0; 3297 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3298 NewInsts[InstCount++].addUse(PartRegs[J]); 3299 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3300 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3301 } 3302 3303 PartRegs.clear(); 3304 LeftoverRegs.clear(); 3305 } 3306 3307 // Insert the newly built operations and rebuild the result register. 3308 for (auto &MIB : NewInsts) 3309 MIRBuilder.insertInstr(MIB); 3310 3311 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3312 3313 MI.eraseFromParent(); 3314 return Legalized; 3315 } 3316 3317 LegalizerHelper::LegalizeResult 3318 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3319 LLT NarrowTy) { 3320 if (TypeIdx != 0) 3321 return UnableToLegalize; 3322 3323 Register DstReg = MI.getOperand(0).getReg(); 3324 Register SrcReg = MI.getOperand(1).getReg(); 3325 LLT DstTy = MRI.getType(DstReg); 3326 LLT SrcTy = MRI.getType(SrcReg); 3327 3328 LLT NarrowTy0 = NarrowTy; 3329 LLT NarrowTy1; 3330 unsigned NumParts; 3331 3332 if (NarrowTy.isVector()) { 3333 // Uneven breakdown not handled. 3334 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3335 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3336 return UnableToLegalize; 3337 3338 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3339 } else { 3340 NumParts = DstTy.getNumElements(); 3341 NarrowTy1 = SrcTy.getElementType(); 3342 } 3343 3344 SmallVector<Register, 4> SrcRegs, DstRegs; 3345 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3346 3347 for (unsigned I = 0; I < NumParts; ++I) { 3348 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3349 MachineInstr *NewInst = 3350 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3351 3352 NewInst->setFlags(MI.getFlags()); 3353 DstRegs.push_back(DstReg); 3354 } 3355 3356 if (NarrowTy.isVector()) 3357 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3358 else 3359 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3360 3361 MI.eraseFromParent(); 3362 return Legalized; 3363 } 3364 3365 LegalizerHelper::LegalizeResult 3366 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3367 LLT NarrowTy) { 3368 Register DstReg = MI.getOperand(0).getReg(); 3369 Register Src0Reg = MI.getOperand(2).getReg(); 3370 LLT DstTy = MRI.getType(DstReg); 3371 LLT SrcTy = MRI.getType(Src0Reg); 3372 3373 unsigned NumParts; 3374 LLT NarrowTy0, NarrowTy1; 3375 3376 if (TypeIdx == 0) { 3377 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3378 unsigned OldElts = DstTy.getNumElements(); 3379 3380 NarrowTy0 = NarrowTy; 3381 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3382 NarrowTy1 = NarrowTy.isVector() ? 3383 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3384 SrcTy.getElementType(); 3385 3386 } else { 3387 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3388 unsigned OldElts = SrcTy.getNumElements(); 3389 3390 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3391 NarrowTy.getNumElements(); 3392 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3393 DstTy.getScalarSizeInBits()); 3394 NarrowTy1 = NarrowTy; 3395 } 3396 3397 // FIXME: Don't know how to handle the situation where the small vectors 3398 // aren't all the same size yet. 3399 if (NarrowTy1.isVector() && 3400 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3401 return UnableToLegalize; 3402 3403 CmpInst::Predicate Pred 3404 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3405 3406 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3407 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3408 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3409 3410 for (unsigned I = 0; I < NumParts; ++I) { 3411 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3412 DstRegs.push_back(DstReg); 3413 3414 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3415 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3416 else { 3417 MachineInstr *NewCmp 3418 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3419 NewCmp->setFlags(MI.getFlags()); 3420 } 3421 } 3422 3423 if (NarrowTy1.isVector()) 3424 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3425 else 3426 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3427 3428 MI.eraseFromParent(); 3429 return Legalized; 3430 } 3431 3432 LegalizerHelper::LegalizeResult 3433 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3434 LLT NarrowTy) { 3435 Register DstReg = MI.getOperand(0).getReg(); 3436 Register CondReg = MI.getOperand(1).getReg(); 3437 3438 unsigned NumParts = 0; 3439 LLT NarrowTy0, NarrowTy1; 3440 3441 LLT DstTy = MRI.getType(DstReg); 3442 LLT CondTy = MRI.getType(CondReg); 3443 unsigned Size = DstTy.getSizeInBits(); 3444 3445 assert(TypeIdx == 0 || CondTy.isVector()); 3446 3447 if (TypeIdx == 0) { 3448 NarrowTy0 = NarrowTy; 3449 NarrowTy1 = CondTy; 3450 3451 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3452 // FIXME: Don't know how to handle the situation where the small vectors 3453 // aren't all the same size yet. 3454 if (Size % NarrowSize != 0) 3455 return UnableToLegalize; 3456 3457 NumParts = Size / NarrowSize; 3458 3459 // Need to break down the condition type 3460 if (CondTy.isVector()) { 3461 if (CondTy.getNumElements() == NumParts) 3462 NarrowTy1 = CondTy.getElementType(); 3463 else 3464 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3465 CondTy.getScalarSizeInBits()); 3466 } 3467 } else { 3468 NumParts = CondTy.getNumElements(); 3469 if (NarrowTy.isVector()) { 3470 // TODO: Handle uneven breakdown. 3471 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3472 return UnableToLegalize; 3473 3474 return UnableToLegalize; 3475 } else { 3476 NarrowTy0 = DstTy.getElementType(); 3477 NarrowTy1 = NarrowTy; 3478 } 3479 } 3480 3481 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3482 if (CondTy.isVector()) 3483 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3484 3485 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3486 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3487 3488 for (unsigned i = 0; i < NumParts; ++i) { 3489 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3490 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3491 Src1Regs[i], Src2Regs[i]); 3492 DstRegs.push_back(DstReg); 3493 } 3494 3495 if (NarrowTy0.isVector()) 3496 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3497 else 3498 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3499 3500 MI.eraseFromParent(); 3501 return Legalized; 3502 } 3503 3504 LegalizerHelper::LegalizeResult 3505 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3506 LLT NarrowTy) { 3507 const Register DstReg = MI.getOperand(0).getReg(); 3508 LLT PhiTy = MRI.getType(DstReg); 3509 LLT LeftoverTy; 3510 3511 // All of the operands need to have the same number of elements, so if we can 3512 // determine a type breakdown for the result type, we can for all of the 3513 // source types. 3514 int NumParts, NumLeftover; 3515 std::tie(NumParts, NumLeftover) 3516 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3517 if (NumParts < 0) 3518 return UnableToLegalize; 3519 3520 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3521 SmallVector<MachineInstrBuilder, 4> NewInsts; 3522 3523 const int TotalNumParts = NumParts + NumLeftover; 3524 3525 // Insert the new phis in the result block first. 3526 for (int I = 0; I != TotalNumParts; ++I) { 3527 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3528 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3529 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3530 .addDef(PartDstReg)); 3531 if (I < NumParts) 3532 DstRegs.push_back(PartDstReg); 3533 else 3534 LeftoverDstRegs.push_back(PartDstReg); 3535 } 3536 3537 MachineBasicBlock *MBB = MI.getParent(); 3538 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3539 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3540 3541 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3542 3543 // Insert code to extract the incoming values in each predecessor block. 3544 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3545 PartRegs.clear(); 3546 LeftoverRegs.clear(); 3547 3548 Register SrcReg = MI.getOperand(I).getReg(); 3549 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3550 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3551 3552 LLT Unused; 3553 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3554 LeftoverRegs)) 3555 return UnableToLegalize; 3556 3557 // Add the newly created operand splits to the existing instructions. The 3558 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3559 // pieces. 3560 for (int J = 0; J != TotalNumParts; ++J) { 3561 MachineInstrBuilder MIB = NewInsts[J]; 3562 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3563 MIB.addMBB(&OpMBB); 3564 } 3565 } 3566 3567 MI.eraseFromParent(); 3568 return Legalized; 3569 } 3570 3571 LegalizerHelper::LegalizeResult 3572 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3573 unsigned TypeIdx, 3574 LLT NarrowTy) { 3575 if (TypeIdx != 1) 3576 return UnableToLegalize; 3577 3578 const int NumDst = MI.getNumOperands() - 1; 3579 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3580 LLT SrcTy = MRI.getType(SrcReg); 3581 3582 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3583 3584 // TODO: Create sequence of extracts. 3585 if (DstTy == NarrowTy) 3586 return UnableToLegalize; 3587 3588 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3589 if (DstTy == GCDTy) { 3590 // This would just be a copy of the same unmerge. 3591 // TODO: Create extracts, pad with undef and create intermediate merges. 3592 return UnableToLegalize; 3593 } 3594 3595 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3596 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3597 const int PartsPerUnmerge = NumDst / NumUnmerge; 3598 3599 for (int I = 0; I != NumUnmerge; ++I) { 3600 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3601 3602 for (int J = 0; J != PartsPerUnmerge; ++J) 3603 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3604 MIB.addUse(Unmerge.getReg(I)); 3605 } 3606 3607 MI.eraseFromParent(); 3608 return Legalized; 3609 } 3610 3611 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3612 // a vector 3613 // 3614 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3615 // undef as necessary. 3616 // 3617 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3618 // -> <2 x s16> 3619 // 3620 // %4:_(s16) = G_IMPLICIT_DEF 3621 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3622 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3623 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3624 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3625 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3626 LegalizerHelper::LegalizeResult 3627 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3628 LLT NarrowTy) { 3629 Register DstReg = MI.getOperand(0).getReg(); 3630 LLT DstTy = MRI.getType(DstReg); 3631 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3632 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3633 3634 // Break into a common type 3635 SmallVector<Register, 16> Parts; 3636 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3637 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3638 3639 // Build the requested new merge, padding with undef. 3640 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3641 TargetOpcode::G_ANYEXT); 3642 3643 // Pack into the original result register. 3644 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3645 3646 MI.eraseFromParent(); 3647 return Legalized; 3648 } 3649 3650 LegalizerHelper::LegalizeResult 3651 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3652 unsigned TypeIdx, 3653 LLT NarrowVecTy) { 3654 Register DstReg = MI.getOperand(0).getReg(); 3655 Register SrcVec = MI.getOperand(1).getReg(); 3656 Register InsertVal; 3657 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3658 3659 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3660 if (IsInsert) 3661 InsertVal = MI.getOperand(2).getReg(); 3662 3663 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3664 3665 // TODO: Handle total scalarization case. 3666 if (!NarrowVecTy.isVector()) 3667 return UnableToLegalize; 3668 3669 LLT VecTy = MRI.getType(SrcVec); 3670 3671 // If the index is a constant, we can really break this down as you would 3672 // expect, and index into the target size pieces. 3673 int64_t IdxVal; 3674 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3675 // Avoid out of bounds indexing the pieces. 3676 if (IdxVal >= VecTy.getNumElements()) { 3677 MIRBuilder.buildUndef(DstReg); 3678 MI.eraseFromParent(); 3679 return Legalized; 3680 } 3681 3682 SmallVector<Register, 8> VecParts; 3683 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3684 3685 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3686 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3687 TargetOpcode::G_ANYEXT); 3688 3689 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3690 3691 LLT IdxTy = MRI.getType(Idx); 3692 int64_t PartIdx = IdxVal / NewNumElts; 3693 auto NewIdx = 3694 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3695 3696 if (IsInsert) { 3697 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3698 3699 // Use the adjusted index to insert into one of the subvectors. 3700 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3701 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3702 VecParts[PartIdx] = InsertPart.getReg(0); 3703 3704 // Recombine the inserted subvector with the others to reform the result 3705 // vector. 3706 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3707 } else { 3708 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3709 } 3710 3711 MI.eraseFromParent(); 3712 return Legalized; 3713 } 3714 3715 // With a variable index, we can't perform the operation in a smaller type, so 3716 // we're forced to expand this. 3717 // 3718 // TODO: We could emit a chain of compare/select to figure out which piece to 3719 // index. 3720 return lowerExtractInsertVectorElt(MI); 3721 } 3722 3723 LegalizerHelper::LegalizeResult 3724 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3725 LLT NarrowTy) { 3726 // FIXME: Don't know how to handle secondary types yet. 3727 if (TypeIdx != 0) 3728 return UnableToLegalize; 3729 3730 MachineMemOperand *MMO = *MI.memoperands_begin(); 3731 3732 // This implementation doesn't work for atomics. Give up instead of doing 3733 // something invalid. 3734 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3735 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3736 return UnableToLegalize; 3737 3738 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3739 Register ValReg = MI.getOperand(0).getReg(); 3740 Register AddrReg = MI.getOperand(1).getReg(); 3741 LLT ValTy = MRI.getType(ValReg); 3742 3743 // FIXME: Do we need a distinct NarrowMemory legalize action? 3744 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3745 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3746 return UnableToLegalize; 3747 } 3748 3749 int NumParts = -1; 3750 int NumLeftover = -1; 3751 LLT LeftoverTy; 3752 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3753 if (IsLoad) { 3754 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3755 } else { 3756 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3757 NarrowLeftoverRegs)) { 3758 NumParts = NarrowRegs.size(); 3759 NumLeftover = NarrowLeftoverRegs.size(); 3760 } 3761 } 3762 3763 if (NumParts == -1) 3764 return UnableToLegalize; 3765 3766 LLT PtrTy = MRI.getType(AddrReg); 3767 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3768 3769 unsigned TotalSize = ValTy.getSizeInBits(); 3770 3771 // Split the load/store into PartTy sized pieces starting at Offset. If this 3772 // is a load, return the new registers in ValRegs. For a store, each elements 3773 // of ValRegs should be PartTy. Returns the next offset that needs to be 3774 // handled. 3775 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3776 unsigned Offset) -> unsigned { 3777 MachineFunction &MF = MIRBuilder.getMF(); 3778 unsigned PartSize = PartTy.getSizeInBits(); 3779 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3780 Offset += PartSize, ++Idx) { 3781 unsigned ByteSize = PartSize / 8; 3782 unsigned ByteOffset = Offset / 8; 3783 Register NewAddrReg; 3784 3785 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3786 3787 MachineMemOperand *NewMMO = 3788 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3789 3790 if (IsLoad) { 3791 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3792 ValRegs.push_back(Dst); 3793 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3794 } else { 3795 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3796 } 3797 } 3798 3799 return Offset; 3800 }; 3801 3802 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3803 3804 // Handle the rest of the register if this isn't an even type breakdown. 3805 if (LeftoverTy.isValid()) 3806 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3807 3808 if (IsLoad) { 3809 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3810 LeftoverTy, NarrowLeftoverRegs); 3811 } 3812 3813 MI.eraseFromParent(); 3814 return Legalized; 3815 } 3816 3817 LegalizerHelper::LegalizeResult 3818 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3819 LLT NarrowTy) { 3820 assert(TypeIdx == 0 && "only one type index expected"); 3821 3822 const unsigned Opc = MI.getOpcode(); 3823 const int NumOps = MI.getNumOperands() - 1; 3824 const Register DstReg = MI.getOperand(0).getReg(); 3825 const unsigned Flags = MI.getFlags(); 3826 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3827 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3828 3829 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3830 3831 // First of all check whether we are narrowing (changing the element type) 3832 // or reducing the vector elements 3833 const LLT DstTy = MRI.getType(DstReg); 3834 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3835 3836 SmallVector<Register, 8> ExtractedRegs[3]; 3837 SmallVector<Register, 8> Parts; 3838 3839 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3840 3841 // Break down all the sources into NarrowTy pieces we can operate on. This may 3842 // involve creating merges to a wider type, padded with undef. 3843 for (int I = 0; I != NumOps; ++I) { 3844 Register SrcReg = MI.getOperand(I + 1).getReg(); 3845 LLT SrcTy = MRI.getType(SrcReg); 3846 3847 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3848 // For fewerElements, this is a smaller vector with the same element type. 3849 LLT OpNarrowTy; 3850 if (IsNarrow) { 3851 OpNarrowTy = NarrowScalarTy; 3852 3853 // In case of narrowing, we need to cast vectors to scalars for this to 3854 // work properly 3855 // FIXME: Can we do without the bitcast here if we're narrowing? 3856 if (SrcTy.isVector()) { 3857 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3858 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3859 } 3860 } else { 3861 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3862 } 3863 3864 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3865 3866 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3867 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3868 TargetOpcode::G_ANYEXT); 3869 } 3870 3871 SmallVector<Register, 8> ResultRegs; 3872 3873 // Input operands for each sub-instruction. 3874 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3875 3876 int NumParts = ExtractedRegs[0].size(); 3877 const unsigned DstSize = DstTy.getSizeInBits(); 3878 const LLT DstScalarTy = LLT::scalar(DstSize); 3879 3880 // Narrowing needs to use scalar types 3881 LLT DstLCMTy, NarrowDstTy; 3882 if (IsNarrow) { 3883 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3884 NarrowDstTy = NarrowScalarTy; 3885 } else { 3886 DstLCMTy = getLCMType(DstTy, NarrowTy); 3887 NarrowDstTy = NarrowTy; 3888 } 3889 3890 // We widened the source registers to satisfy merge/unmerge size 3891 // constraints. We'll have some extra fully undef parts. 3892 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3893 3894 for (int I = 0; I != NumRealParts; ++I) { 3895 // Emit this instruction on each of the split pieces. 3896 for (int J = 0; J != NumOps; ++J) 3897 InputRegs[J] = ExtractedRegs[J][I]; 3898 3899 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3900 ResultRegs.push_back(Inst.getReg(0)); 3901 } 3902 3903 // Fill out the widened result with undef instead of creating instructions 3904 // with undef inputs. 3905 int NumUndefParts = NumParts - NumRealParts; 3906 if (NumUndefParts != 0) 3907 ResultRegs.append(NumUndefParts, 3908 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3909 3910 // Extract the possibly padded result. Use a scratch register if we need to do 3911 // a final bitcast, otherwise use the original result register. 3912 Register MergeDstReg; 3913 if (IsNarrow && DstTy.isVector()) 3914 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3915 else 3916 MergeDstReg = DstReg; 3917 3918 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3919 3920 // Recast to vector if we narrowed a vector 3921 if (IsNarrow && DstTy.isVector()) 3922 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3923 3924 MI.eraseFromParent(); 3925 return Legalized; 3926 } 3927 3928 LegalizerHelper::LegalizeResult 3929 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3930 LLT NarrowTy) { 3931 Register DstReg = MI.getOperand(0).getReg(); 3932 Register SrcReg = MI.getOperand(1).getReg(); 3933 int64_t Imm = MI.getOperand(2).getImm(); 3934 3935 LLT DstTy = MRI.getType(DstReg); 3936 3937 SmallVector<Register, 8> Parts; 3938 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3939 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3940 3941 for (Register &R : Parts) 3942 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3943 3944 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3945 3946 MI.eraseFromParent(); 3947 return Legalized; 3948 } 3949 3950 LegalizerHelper::LegalizeResult 3951 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3952 LLT NarrowTy) { 3953 using namespace TargetOpcode; 3954 3955 switch (MI.getOpcode()) { 3956 case G_IMPLICIT_DEF: 3957 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3958 case G_TRUNC: 3959 case G_AND: 3960 case G_OR: 3961 case G_XOR: 3962 case G_ADD: 3963 case G_SUB: 3964 case G_MUL: 3965 case G_PTR_ADD: 3966 case G_SMULH: 3967 case G_UMULH: 3968 case G_FADD: 3969 case G_FMUL: 3970 case G_FSUB: 3971 case G_FNEG: 3972 case G_FABS: 3973 case G_FCANONICALIZE: 3974 case G_FDIV: 3975 case G_FREM: 3976 case G_FMA: 3977 case G_FMAD: 3978 case G_FPOW: 3979 case G_FEXP: 3980 case G_FEXP2: 3981 case G_FLOG: 3982 case G_FLOG2: 3983 case G_FLOG10: 3984 case G_FNEARBYINT: 3985 case G_FCEIL: 3986 case G_FFLOOR: 3987 case G_FRINT: 3988 case G_INTRINSIC_ROUND: 3989 case G_INTRINSIC_ROUNDEVEN: 3990 case G_INTRINSIC_TRUNC: 3991 case G_FCOS: 3992 case G_FSIN: 3993 case G_FSQRT: 3994 case G_BSWAP: 3995 case G_BITREVERSE: 3996 case G_SDIV: 3997 case G_UDIV: 3998 case G_SREM: 3999 case G_UREM: 4000 case G_SMIN: 4001 case G_SMAX: 4002 case G_UMIN: 4003 case G_UMAX: 4004 case G_FMINNUM: 4005 case G_FMAXNUM: 4006 case G_FMINNUM_IEEE: 4007 case G_FMAXNUM_IEEE: 4008 case G_FMINIMUM: 4009 case G_FMAXIMUM: 4010 case G_FSHL: 4011 case G_FSHR: 4012 case G_FREEZE: 4013 case G_SADDSAT: 4014 case G_SSUBSAT: 4015 case G_UADDSAT: 4016 case G_USUBSAT: 4017 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4018 case G_SHL: 4019 case G_LSHR: 4020 case G_ASHR: 4021 case G_SSHLSAT: 4022 case G_USHLSAT: 4023 case G_CTLZ: 4024 case G_CTLZ_ZERO_UNDEF: 4025 case G_CTTZ: 4026 case G_CTTZ_ZERO_UNDEF: 4027 case G_CTPOP: 4028 case G_FCOPYSIGN: 4029 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4030 case G_ZEXT: 4031 case G_SEXT: 4032 case G_ANYEXT: 4033 case G_FPEXT: 4034 case G_FPTRUNC: 4035 case G_SITOFP: 4036 case G_UITOFP: 4037 case G_FPTOSI: 4038 case G_FPTOUI: 4039 case G_INTTOPTR: 4040 case G_PTRTOINT: 4041 case G_ADDRSPACE_CAST: 4042 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4043 case G_ICMP: 4044 case G_FCMP: 4045 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4046 case G_SELECT: 4047 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4048 case G_PHI: 4049 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4050 case G_UNMERGE_VALUES: 4051 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4052 case G_BUILD_VECTOR: 4053 assert(TypeIdx == 0 && "not a vector type index"); 4054 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4055 case G_CONCAT_VECTORS: 4056 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4057 return UnableToLegalize; 4058 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4059 case G_EXTRACT_VECTOR_ELT: 4060 case G_INSERT_VECTOR_ELT: 4061 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4062 case G_LOAD: 4063 case G_STORE: 4064 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4065 case G_SEXT_INREG: 4066 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4067 default: 4068 return UnableToLegalize; 4069 } 4070 } 4071 4072 LegalizerHelper::LegalizeResult 4073 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4074 const LLT HalfTy, const LLT AmtTy) { 4075 4076 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4077 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4078 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4079 4080 if (Amt.isNullValue()) { 4081 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4082 MI.eraseFromParent(); 4083 return Legalized; 4084 } 4085 4086 LLT NVT = HalfTy; 4087 unsigned NVTBits = HalfTy.getSizeInBits(); 4088 unsigned VTBits = 2 * NVTBits; 4089 4090 SrcOp Lo(Register(0)), Hi(Register(0)); 4091 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4092 if (Amt.ugt(VTBits)) { 4093 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4094 } else if (Amt.ugt(NVTBits)) { 4095 Lo = MIRBuilder.buildConstant(NVT, 0); 4096 Hi = MIRBuilder.buildShl(NVT, InL, 4097 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4098 } else if (Amt == NVTBits) { 4099 Lo = MIRBuilder.buildConstant(NVT, 0); 4100 Hi = InL; 4101 } else { 4102 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4103 auto OrLHS = 4104 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4105 auto OrRHS = MIRBuilder.buildLShr( 4106 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4107 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4108 } 4109 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4110 if (Amt.ugt(VTBits)) { 4111 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4112 } else if (Amt.ugt(NVTBits)) { 4113 Lo = MIRBuilder.buildLShr(NVT, InH, 4114 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4115 Hi = MIRBuilder.buildConstant(NVT, 0); 4116 } else if (Amt == NVTBits) { 4117 Lo = InH; 4118 Hi = MIRBuilder.buildConstant(NVT, 0); 4119 } else { 4120 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4121 4122 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4123 auto OrRHS = MIRBuilder.buildShl( 4124 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4125 4126 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4127 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4128 } 4129 } else { 4130 if (Amt.ugt(VTBits)) { 4131 Hi = Lo = MIRBuilder.buildAShr( 4132 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4133 } else if (Amt.ugt(NVTBits)) { 4134 Lo = MIRBuilder.buildAShr(NVT, InH, 4135 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4136 Hi = MIRBuilder.buildAShr(NVT, InH, 4137 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4138 } else if (Amt == NVTBits) { 4139 Lo = InH; 4140 Hi = MIRBuilder.buildAShr(NVT, InH, 4141 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4142 } else { 4143 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4144 4145 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4146 auto OrRHS = MIRBuilder.buildShl( 4147 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4148 4149 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4150 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4151 } 4152 } 4153 4154 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4155 MI.eraseFromParent(); 4156 4157 return Legalized; 4158 } 4159 4160 // TODO: Optimize if constant shift amount. 4161 LegalizerHelper::LegalizeResult 4162 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4163 LLT RequestedTy) { 4164 if (TypeIdx == 1) { 4165 Observer.changingInstr(MI); 4166 narrowScalarSrc(MI, RequestedTy, 2); 4167 Observer.changedInstr(MI); 4168 return Legalized; 4169 } 4170 4171 Register DstReg = MI.getOperand(0).getReg(); 4172 LLT DstTy = MRI.getType(DstReg); 4173 if (DstTy.isVector()) 4174 return UnableToLegalize; 4175 4176 Register Amt = MI.getOperand(2).getReg(); 4177 LLT ShiftAmtTy = MRI.getType(Amt); 4178 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4179 if (DstEltSize % 2 != 0) 4180 return UnableToLegalize; 4181 4182 // Ignore the input type. We can only go to exactly half the size of the 4183 // input. If that isn't small enough, the resulting pieces will be further 4184 // legalized. 4185 const unsigned NewBitSize = DstEltSize / 2; 4186 const LLT HalfTy = LLT::scalar(NewBitSize); 4187 const LLT CondTy = LLT::scalar(1); 4188 4189 if (const MachineInstr *KShiftAmt = 4190 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4191 return narrowScalarShiftByConstant( 4192 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4193 } 4194 4195 // TODO: Expand with known bits. 4196 4197 // Handle the fully general expansion by an unknown amount. 4198 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4199 4200 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4201 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4202 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4203 4204 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4205 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4206 4207 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4208 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4209 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4210 4211 Register ResultRegs[2]; 4212 switch (MI.getOpcode()) { 4213 case TargetOpcode::G_SHL: { 4214 // Short: ShAmt < NewBitSize 4215 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4216 4217 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4218 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4219 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4220 4221 // Long: ShAmt >= NewBitSize 4222 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4223 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4224 4225 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4226 auto Hi = MIRBuilder.buildSelect( 4227 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4228 4229 ResultRegs[0] = Lo.getReg(0); 4230 ResultRegs[1] = Hi.getReg(0); 4231 break; 4232 } 4233 case TargetOpcode::G_LSHR: 4234 case TargetOpcode::G_ASHR: { 4235 // Short: ShAmt < NewBitSize 4236 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4237 4238 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4239 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4240 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4241 4242 // Long: ShAmt >= NewBitSize 4243 MachineInstrBuilder HiL; 4244 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4245 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4246 } else { 4247 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4248 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4249 } 4250 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4251 {InH, AmtExcess}); // Lo from Hi part. 4252 4253 auto Lo = MIRBuilder.buildSelect( 4254 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4255 4256 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4257 4258 ResultRegs[0] = Lo.getReg(0); 4259 ResultRegs[1] = Hi.getReg(0); 4260 break; 4261 } 4262 default: 4263 llvm_unreachable("not a shift"); 4264 } 4265 4266 MIRBuilder.buildMerge(DstReg, ResultRegs); 4267 MI.eraseFromParent(); 4268 return Legalized; 4269 } 4270 4271 LegalizerHelper::LegalizeResult 4272 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4273 LLT MoreTy) { 4274 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4275 4276 Observer.changingInstr(MI); 4277 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4278 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4279 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4280 moreElementsVectorSrc(MI, MoreTy, I); 4281 } 4282 4283 MachineBasicBlock &MBB = *MI.getParent(); 4284 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4285 moreElementsVectorDst(MI, MoreTy, 0); 4286 Observer.changedInstr(MI); 4287 return Legalized; 4288 } 4289 4290 LegalizerHelper::LegalizeResult 4291 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4292 LLT MoreTy) { 4293 unsigned Opc = MI.getOpcode(); 4294 switch (Opc) { 4295 case TargetOpcode::G_IMPLICIT_DEF: 4296 case TargetOpcode::G_LOAD: { 4297 if (TypeIdx != 0) 4298 return UnableToLegalize; 4299 Observer.changingInstr(MI); 4300 moreElementsVectorDst(MI, MoreTy, 0); 4301 Observer.changedInstr(MI); 4302 return Legalized; 4303 } 4304 case TargetOpcode::G_STORE: 4305 if (TypeIdx != 0) 4306 return UnableToLegalize; 4307 Observer.changingInstr(MI); 4308 moreElementsVectorSrc(MI, MoreTy, 0); 4309 Observer.changedInstr(MI); 4310 return Legalized; 4311 case TargetOpcode::G_AND: 4312 case TargetOpcode::G_OR: 4313 case TargetOpcode::G_XOR: 4314 case TargetOpcode::G_SMIN: 4315 case TargetOpcode::G_SMAX: 4316 case TargetOpcode::G_UMIN: 4317 case TargetOpcode::G_UMAX: 4318 case TargetOpcode::G_FMINNUM: 4319 case TargetOpcode::G_FMAXNUM: 4320 case TargetOpcode::G_FMINNUM_IEEE: 4321 case TargetOpcode::G_FMAXNUM_IEEE: 4322 case TargetOpcode::G_FMINIMUM: 4323 case TargetOpcode::G_FMAXIMUM: { 4324 Observer.changingInstr(MI); 4325 moreElementsVectorSrc(MI, MoreTy, 1); 4326 moreElementsVectorSrc(MI, MoreTy, 2); 4327 moreElementsVectorDst(MI, MoreTy, 0); 4328 Observer.changedInstr(MI); 4329 return Legalized; 4330 } 4331 case TargetOpcode::G_EXTRACT: 4332 if (TypeIdx != 1) 4333 return UnableToLegalize; 4334 Observer.changingInstr(MI); 4335 moreElementsVectorSrc(MI, MoreTy, 1); 4336 Observer.changedInstr(MI); 4337 return Legalized; 4338 case TargetOpcode::G_INSERT: 4339 case TargetOpcode::G_FREEZE: 4340 if (TypeIdx != 0) 4341 return UnableToLegalize; 4342 Observer.changingInstr(MI); 4343 moreElementsVectorSrc(MI, MoreTy, 1); 4344 moreElementsVectorDst(MI, MoreTy, 0); 4345 Observer.changedInstr(MI); 4346 return Legalized; 4347 case TargetOpcode::G_SELECT: 4348 if (TypeIdx != 0) 4349 return UnableToLegalize; 4350 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4351 return UnableToLegalize; 4352 4353 Observer.changingInstr(MI); 4354 moreElementsVectorSrc(MI, MoreTy, 2); 4355 moreElementsVectorSrc(MI, MoreTy, 3); 4356 moreElementsVectorDst(MI, MoreTy, 0); 4357 Observer.changedInstr(MI); 4358 return Legalized; 4359 case TargetOpcode::G_UNMERGE_VALUES: { 4360 if (TypeIdx != 1) 4361 return UnableToLegalize; 4362 4363 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4364 int NumDst = MI.getNumOperands() - 1; 4365 moreElementsVectorSrc(MI, MoreTy, NumDst); 4366 4367 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4368 for (int I = 0; I != NumDst; ++I) 4369 MIB.addDef(MI.getOperand(I).getReg()); 4370 4371 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4372 for (int I = NumDst; I != NewNumDst; ++I) 4373 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4374 4375 MIB.addUse(MI.getOperand(NumDst).getReg()); 4376 MI.eraseFromParent(); 4377 return Legalized; 4378 } 4379 case TargetOpcode::G_PHI: 4380 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4381 default: 4382 return UnableToLegalize; 4383 } 4384 } 4385 4386 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4387 ArrayRef<Register> Src1Regs, 4388 ArrayRef<Register> Src2Regs, 4389 LLT NarrowTy) { 4390 MachineIRBuilder &B = MIRBuilder; 4391 unsigned SrcParts = Src1Regs.size(); 4392 unsigned DstParts = DstRegs.size(); 4393 4394 unsigned DstIdx = 0; // Low bits of the result. 4395 Register FactorSum = 4396 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4397 DstRegs[DstIdx] = FactorSum; 4398 4399 unsigned CarrySumPrevDstIdx; 4400 SmallVector<Register, 4> Factors; 4401 4402 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4403 // Collect low parts of muls for DstIdx. 4404 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4405 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4406 MachineInstrBuilder Mul = 4407 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4408 Factors.push_back(Mul.getReg(0)); 4409 } 4410 // Collect high parts of muls from previous DstIdx. 4411 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4412 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4413 MachineInstrBuilder Umulh = 4414 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4415 Factors.push_back(Umulh.getReg(0)); 4416 } 4417 // Add CarrySum from additions calculated for previous DstIdx. 4418 if (DstIdx != 1) { 4419 Factors.push_back(CarrySumPrevDstIdx); 4420 } 4421 4422 Register CarrySum; 4423 // Add all factors and accumulate all carries into CarrySum. 4424 if (DstIdx != DstParts - 1) { 4425 MachineInstrBuilder Uaddo = 4426 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4427 FactorSum = Uaddo.getReg(0); 4428 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4429 for (unsigned i = 2; i < Factors.size(); ++i) { 4430 MachineInstrBuilder Uaddo = 4431 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4432 FactorSum = Uaddo.getReg(0); 4433 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4434 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4435 } 4436 } else { 4437 // Since value for the next index is not calculated, neither is CarrySum. 4438 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4439 for (unsigned i = 2; i < Factors.size(); ++i) 4440 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4441 } 4442 4443 CarrySumPrevDstIdx = CarrySum; 4444 DstRegs[DstIdx] = FactorSum; 4445 Factors.clear(); 4446 } 4447 } 4448 4449 LegalizerHelper::LegalizeResult 4450 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4451 Register DstReg = MI.getOperand(0).getReg(); 4452 Register Src1 = MI.getOperand(1).getReg(); 4453 Register Src2 = MI.getOperand(2).getReg(); 4454 4455 LLT Ty = MRI.getType(DstReg); 4456 if (Ty.isVector()) 4457 return UnableToLegalize; 4458 4459 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4460 unsigned DstSize = Ty.getSizeInBits(); 4461 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4462 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4463 return UnableToLegalize; 4464 4465 unsigned NumDstParts = DstSize / NarrowSize; 4466 unsigned NumSrcParts = SrcSize / NarrowSize; 4467 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4468 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4469 4470 SmallVector<Register, 2> Src1Parts, Src2Parts; 4471 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4472 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4473 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4474 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4475 4476 // Take only high half of registers if this is high mul. 4477 ArrayRef<Register> DstRegs( 4478 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4479 MIRBuilder.buildMerge(DstReg, DstRegs); 4480 MI.eraseFromParent(); 4481 return Legalized; 4482 } 4483 4484 LegalizerHelper::LegalizeResult 4485 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4486 LLT NarrowTy) { 4487 if (TypeIdx != 1) 4488 return UnableToLegalize; 4489 4490 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4491 4492 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4493 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4494 // NarrowSize. 4495 if (SizeOp1 % NarrowSize != 0) 4496 return UnableToLegalize; 4497 int NumParts = SizeOp1 / NarrowSize; 4498 4499 SmallVector<Register, 2> SrcRegs, DstRegs; 4500 SmallVector<uint64_t, 2> Indexes; 4501 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4502 4503 Register OpReg = MI.getOperand(0).getReg(); 4504 uint64_t OpStart = MI.getOperand(2).getImm(); 4505 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4506 for (int i = 0; i < NumParts; ++i) { 4507 unsigned SrcStart = i * NarrowSize; 4508 4509 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4510 // No part of the extract uses this subregister, ignore it. 4511 continue; 4512 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4513 // The entire subregister is extracted, forward the value. 4514 DstRegs.push_back(SrcRegs[i]); 4515 continue; 4516 } 4517 4518 // OpSegStart is where this destination segment would start in OpReg if it 4519 // extended infinitely in both directions. 4520 int64_t ExtractOffset; 4521 uint64_t SegSize; 4522 if (OpStart < SrcStart) { 4523 ExtractOffset = 0; 4524 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4525 } else { 4526 ExtractOffset = OpStart - SrcStart; 4527 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4528 } 4529 4530 Register SegReg = SrcRegs[i]; 4531 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4532 // A genuine extract is needed. 4533 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4534 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4535 } 4536 4537 DstRegs.push_back(SegReg); 4538 } 4539 4540 Register DstReg = MI.getOperand(0).getReg(); 4541 if (MRI.getType(DstReg).isVector()) 4542 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4543 else if (DstRegs.size() > 1) 4544 MIRBuilder.buildMerge(DstReg, DstRegs); 4545 else 4546 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4547 MI.eraseFromParent(); 4548 return Legalized; 4549 } 4550 4551 LegalizerHelper::LegalizeResult 4552 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4553 LLT NarrowTy) { 4554 // FIXME: Don't know how to handle secondary types yet. 4555 if (TypeIdx != 0) 4556 return UnableToLegalize; 4557 4558 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4559 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4560 4561 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4562 // NarrowSize. 4563 if (SizeOp0 % NarrowSize != 0) 4564 return UnableToLegalize; 4565 4566 int NumParts = SizeOp0 / NarrowSize; 4567 4568 SmallVector<Register, 2> SrcRegs, DstRegs; 4569 SmallVector<uint64_t, 2> Indexes; 4570 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4571 4572 Register OpReg = MI.getOperand(2).getReg(); 4573 uint64_t OpStart = MI.getOperand(3).getImm(); 4574 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4575 for (int i = 0; i < NumParts; ++i) { 4576 unsigned DstStart = i * NarrowSize; 4577 4578 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4579 // No part of the insert affects this subregister, forward the original. 4580 DstRegs.push_back(SrcRegs[i]); 4581 continue; 4582 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4583 // The entire subregister is defined by this insert, forward the new 4584 // value. 4585 DstRegs.push_back(OpReg); 4586 continue; 4587 } 4588 4589 // OpSegStart is where this destination segment would start in OpReg if it 4590 // extended infinitely in both directions. 4591 int64_t ExtractOffset, InsertOffset; 4592 uint64_t SegSize; 4593 if (OpStart < DstStart) { 4594 InsertOffset = 0; 4595 ExtractOffset = DstStart - OpStart; 4596 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4597 } else { 4598 InsertOffset = OpStart - DstStart; 4599 ExtractOffset = 0; 4600 SegSize = 4601 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4602 } 4603 4604 Register SegReg = OpReg; 4605 if (ExtractOffset != 0 || SegSize != OpSize) { 4606 // A genuine extract is needed. 4607 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4608 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4609 } 4610 4611 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4612 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4613 DstRegs.push_back(DstReg); 4614 } 4615 4616 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4617 Register DstReg = MI.getOperand(0).getReg(); 4618 if(MRI.getType(DstReg).isVector()) 4619 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4620 else 4621 MIRBuilder.buildMerge(DstReg, DstRegs); 4622 MI.eraseFromParent(); 4623 return Legalized; 4624 } 4625 4626 LegalizerHelper::LegalizeResult 4627 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4628 LLT NarrowTy) { 4629 Register DstReg = MI.getOperand(0).getReg(); 4630 LLT DstTy = MRI.getType(DstReg); 4631 4632 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4633 4634 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4635 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4636 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4637 LLT LeftoverTy; 4638 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4639 Src0Regs, Src0LeftoverRegs)) 4640 return UnableToLegalize; 4641 4642 LLT Unused; 4643 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4644 Src1Regs, Src1LeftoverRegs)) 4645 llvm_unreachable("inconsistent extractParts result"); 4646 4647 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4648 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4649 {Src0Regs[I], Src1Regs[I]}); 4650 DstRegs.push_back(Inst.getReg(0)); 4651 } 4652 4653 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4654 auto Inst = MIRBuilder.buildInstr( 4655 MI.getOpcode(), 4656 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4657 DstLeftoverRegs.push_back(Inst.getReg(0)); 4658 } 4659 4660 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4661 LeftoverTy, DstLeftoverRegs); 4662 4663 MI.eraseFromParent(); 4664 return Legalized; 4665 } 4666 4667 LegalizerHelper::LegalizeResult 4668 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4669 LLT NarrowTy) { 4670 if (TypeIdx != 0) 4671 return UnableToLegalize; 4672 4673 Register DstReg = MI.getOperand(0).getReg(); 4674 Register SrcReg = MI.getOperand(1).getReg(); 4675 4676 LLT DstTy = MRI.getType(DstReg); 4677 if (DstTy.isVector()) 4678 return UnableToLegalize; 4679 4680 SmallVector<Register, 8> Parts; 4681 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4682 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4683 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4684 4685 MI.eraseFromParent(); 4686 return Legalized; 4687 } 4688 4689 LegalizerHelper::LegalizeResult 4690 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4691 LLT NarrowTy) { 4692 if (TypeIdx != 0) 4693 return UnableToLegalize; 4694 4695 Register CondReg = MI.getOperand(1).getReg(); 4696 LLT CondTy = MRI.getType(CondReg); 4697 if (CondTy.isVector()) // TODO: Handle vselect 4698 return UnableToLegalize; 4699 4700 Register DstReg = MI.getOperand(0).getReg(); 4701 LLT DstTy = MRI.getType(DstReg); 4702 4703 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4704 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4705 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4706 LLT LeftoverTy; 4707 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4708 Src1Regs, Src1LeftoverRegs)) 4709 return UnableToLegalize; 4710 4711 LLT Unused; 4712 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4713 Src2Regs, Src2LeftoverRegs)) 4714 llvm_unreachable("inconsistent extractParts result"); 4715 4716 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4717 auto Select = MIRBuilder.buildSelect(NarrowTy, 4718 CondReg, Src1Regs[I], Src2Regs[I]); 4719 DstRegs.push_back(Select.getReg(0)); 4720 } 4721 4722 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4723 auto Select = MIRBuilder.buildSelect( 4724 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4725 DstLeftoverRegs.push_back(Select.getReg(0)); 4726 } 4727 4728 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4729 LeftoverTy, DstLeftoverRegs); 4730 4731 MI.eraseFromParent(); 4732 return Legalized; 4733 } 4734 4735 LegalizerHelper::LegalizeResult 4736 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4737 LLT NarrowTy) { 4738 if (TypeIdx != 1) 4739 return UnableToLegalize; 4740 4741 Register DstReg = MI.getOperand(0).getReg(); 4742 Register SrcReg = MI.getOperand(1).getReg(); 4743 LLT DstTy = MRI.getType(DstReg); 4744 LLT SrcTy = MRI.getType(SrcReg); 4745 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4746 4747 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4748 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4749 4750 MachineIRBuilder &B = MIRBuilder; 4751 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4752 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4753 auto C_0 = B.buildConstant(NarrowTy, 0); 4754 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4755 UnmergeSrc.getReg(1), C_0); 4756 auto LoCTLZ = IsUndef ? 4757 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4758 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4759 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4760 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4761 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4762 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4763 4764 MI.eraseFromParent(); 4765 return Legalized; 4766 } 4767 4768 return UnableToLegalize; 4769 } 4770 4771 LegalizerHelper::LegalizeResult 4772 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4773 LLT NarrowTy) { 4774 if (TypeIdx != 1) 4775 return UnableToLegalize; 4776 4777 Register DstReg = MI.getOperand(0).getReg(); 4778 Register SrcReg = MI.getOperand(1).getReg(); 4779 LLT DstTy = MRI.getType(DstReg); 4780 LLT SrcTy = MRI.getType(SrcReg); 4781 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4782 4783 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4784 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4785 4786 MachineIRBuilder &B = MIRBuilder; 4787 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4788 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4789 auto C_0 = B.buildConstant(NarrowTy, 0); 4790 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4791 UnmergeSrc.getReg(0), C_0); 4792 auto HiCTTZ = IsUndef ? 4793 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4794 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4795 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4796 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4797 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4798 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4799 4800 MI.eraseFromParent(); 4801 return Legalized; 4802 } 4803 4804 return UnableToLegalize; 4805 } 4806 4807 LegalizerHelper::LegalizeResult 4808 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4809 LLT NarrowTy) { 4810 if (TypeIdx != 1) 4811 return UnableToLegalize; 4812 4813 Register DstReg = MI.getOperand(0).getReg(); 4814 LLT DstTy = MRI.getType(DstReg); 4815 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4816 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4817 4818 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4819 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4820 4821 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4822 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4823 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4824 4825 MI.eraseFromParent(); 4826 return Legalized; 4827 } 4828 4829 return UnableToLegalize; 4830 } 4831 4832 LegalizerHelper::LegalizeResult 4833 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 4834 unsigned Opc = MI.getOpcode(); 4835 const auto &TII = MIRBuilder.getTII(); 4836 auto isSupported = [this](const LegalityQuery &Q) { 4837 auto QAction = LI.getAction(Q).Action; 4838 return QAction == Legal || QAction == Libcall || QAction == Custom; 4839 }; 4840 switch (Opc) { 4841 default: 4842 return UnableToLegalize; 4843 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4844 // This trivially expands to CTLZ. 4845 Observer.changingInstr(MI); 4846 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4847 Observer.changedInstr(MI); 4848 return Legalized; 4849 } 4850 case TargetOpcode::G_CTLZ: { 4851 Register DstReg = MI.getOperand(0).getReg(); 4852 Register SrcReg = MI.getOperand(1).getReg(); 4853 LLT DstTy = MRI.getType(DstReg); 4854 LLT SrcTy = MRI.getType(SrcReg); 4855 unsigned Len = SrcTy.getSizeInBits(); 4856 4857 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4858 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4859 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4860 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4861 auto ICmp = MIRBuilder.buildICmp( 4862 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4863 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4864 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4865 MI.eraseFromParent(); 4866 return Legalized; 4867 } 4868 // for now, we do this: 4869 // NewLen = NextPowerOf2(Len); 4870 // x = x | (x >> 1); 4871 // x = x | (x >> 2); 4872 // ... 4873 // x = x | (x >>16); 4874 // x = x | (x >>32); // for 64-bit input 4875 // Upto NewLen/2 4876 // return Len - popcount(x); 4877 // 4878 // Ref: "Hacker's Delight" by Henry Warren 4879 Register Op = SrcReg; 4880 unsigned NewLen = PowerOf2Ceil(Len); 4881 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4882 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4883 auto MIBOp = MIRBuilder.buildOr( 4884 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4885 Op = MIBOp.getReg(0); 4886 } 4887 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4888 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4889 MIBPop); 4890 MI.eraseFromParent(); 4891 return Legalized; 4892 } 4893 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4894 // This trivially expands to CTTZ. 4895 Observer.changingInstr(MI); 4896 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4897 Observer.changedInstr(MI); 4898 return Legalized; 4899 } 4900 case TargetOpcode::G_CTTZ: { 4901 Register DstReg = MI.getOperand(0).getReg(); 4902 Register SrcReg = MI.getOperand(1).getReg(); 4903 LLT DstTy = MRI.getType(DstReg); 4904 LLT SrcTy = MRI.getType(SrcReg); 4905 4906 unsigned Len = SrcTy.getSizeInBits(); 4907 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4908 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4909 // zero. 4910 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4911 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4912 auto ICmp = MIRBuilder.buildICmp( 4913 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4914 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4915 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4916 MI.eraseFromParent(); 4917 return Legalized; 4918 } 4919 // for now, we use: { return popcount(~x & (x - 1)); } 4920 // unless the target has ctlz but not ctpop, in which case we use: 4921 // { return 32 - nlz(~x & (x-1)); } 4922 // Ref: "Hacker's Delight" by Henry Warren 4923 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 4924 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 4925 auto MIBTmp = MIRBuilder.buildAnd( 4926 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 4927 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 4928 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 4929 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 4930 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4931 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 4932 MI.eraseFromParent(); 4933 return Legalized; 4934 } 4935 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4936 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4937 return Legalized; 4938 } 4939 case TargetOpcode::G_CTPOP: { 4940 Register SrcReg = MI.getOperand(1).getReg(); 4941 LLT Ty = MRI.getType(SrcReg); 4942 unsigned Size = Ty.getSizeInBits(); 4943 MachineIRBuilder &B = MIRBuilder; 4944 4945 // Count set bits in blocks of 2 bits. Default approach would be 4946 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4947 // We use following formula instead: 4948 // B2Count = val - { (val >> 1) & 0x55555555 } 4949 // since it gives same result in blocks of 2 with one instruction less. 4950 auto C_1 = B.buildConstant(Ty, 1); 4951 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 4952 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4953 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4954 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4955 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 4956 4957 // In order to get count in blocks of 4 add values from adjacent block of 2. 4958 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4959 auto C_2 = B.buildConstant(Ty, 2); 4960 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4961 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4962 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4963 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4964 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4965 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4966 4967 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4968 // addition since count value sits in range {0,...,8} and 4 bits are enough 4969 // to hold such binary values. After addition high 4 bits still hold count 4970 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4971 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4972 auto C_4 = B.buildConstant(Ty, 4); 4973 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4974 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4975 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4976 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4977 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4978 4979 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4980 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4981 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4982 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4983 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4984 4985 // Shift count result from 8 high bits to low bits. 4986 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4987 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4988 4989 MI.eraseFromParent(); 4990 return Legalized; 4991 } 4992 } 4993 } 4994 4995 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4996 // representation. 4997 LegalizerHelper::LegalizeResult 4998 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4999 Register Dst = MI.getOperand(0).getReg(); 5000 Register Src = MI.getOperand(1).getReg(); 5001 const LLT S64 = LLT::scalar(64); 5002 const LLT S32 = LLT::scalar(32); 5003 const LLT S1 = LLT::scalar(1); 5004 5005 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5006 5007 // unsigned cul2f(ulong u) { 5008 // uint lz = clz(u); 5009 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5010 // u = (u << lz) & 0x7fffffffffffffffUL; 5011 // ulong t = u & 0xffffffffffUL; 5012 // uint v = (e << 23) | (uint)(u >> 40); 5013 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5014 // return as_float(v + r); 5015 // } 5016 5017 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5018 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5019 5020 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5021 5022 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5023 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5024 5025 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5026 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5027 5028 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5029 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5030 5031 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5032 5033 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5034 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5035 5036 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5037 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5038 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5039 5040 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5041 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5042 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5043 auto One = MIRBuilder.buildConstant(S32, 1); 5044 5045 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5046 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5047 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5048 MIRBuilder.buildAdd(Dst, V, R); 5049 5050 MI.eraseFromParent(); 5051 return Legalized; 5052 } 5053 5054 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5055 Register Dst = MI.getOperand(0).getReg(); 5056 Register Src = MI.getOperand(1).getReg(); 5057 LLT DstTy = MRI.getType(Dst); 5058 LLT SrcTy = MRI.getType(Src); 5059 5060 if (SrcTy == LLT::scalar(1)) { 5061 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5062 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5063 MIRBuilder.buildSelect(Dst, Src, True, False); 5064 MI.eraseFromParent(); 5065 return Legalized; 5066 } 5067 5068 if (SrcTy != LLT::scalar(64)) 5069 return UnableToLegalize; 5070 5071 if (DstTy == LLT::scalar(32)) { 5072 // TODO: SelectionDAG has several alternative expansions to port which may 5073 // be more reasonble depending on the available instructions. If a target 5074 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5075 // intermediate type, this is probably worse. 5076 return lowerU64ToF32BitOps(MI); 5077 } 5078 5079 return UnableToLegalize; 5080 } 5081 5082 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5083 Register Dst = MI.getOperand(0).getReg(); 5084 Register Src = MI.getOperand(1).getReg(); 5085 LLT DstTy = MRI.getType(Dst); 5086 LLT SrcTy = MRI.getType(Src); 5087 5088 const LLT S64 = LLT::scalar(64); 5089 const LLT S32 = LLT::scalar(32); 5090 const LLT S1 = LLT::scalar(1); 5091 5092 if (SrcTy == S1) { 5093 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5094 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5095 MIRBuilder.buildSelect(Dst, Src, True, False); 5096 MI.eraseFromParent(); 5097 return Legalized; 5098 } 5099 5100 if (SrcTy != S64) 5101 return UnableToLegalize; 5102 5103 if (DstTy == S32) { 5104 // signed cl2f(long l) { 5105 // long s = l >> 63; 5106 // float r = cul2f((l + s) ^ s); 5107 // return s ? -r : r; 5108 // } 5109 Register L = Src; 5110 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5111 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5112 5113 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5114 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5115 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5116 5117 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5118 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5119 MIRBuilder.buildConstant(S64, 0)); 5120 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5121 MI.eraseFromParent(); 5122 return Legalized; 5123 } 5124 5125 return UnableToLegalize; 5126 } 5127 5128 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5129 Register Dst = MI.getOperand(0).getReg(); 5130 Register Src = MI.getOperand(1).getReg(); 5131 LLT DstTy = MRI.getType(Dst); 5132 LLT SrcTy = MRI.getType(Src); 5133 const LLT S64 = LLT::scalar(64); 5134 const LLT S32 = LLT::scalar(32); 5135 5136 if (SrcTy != S64 && SrcTy != S32) 5137 return UnableToLegalize; 5138 if (DstTy != S32 && DstTy != S64) 5139 return UnableToLegalize; 5140 5141 // FPTOSI gives same result as FPTOUI for positive signed integers. 5142 // FPTOUI needs to deal with fp values that convert to unsigned integers 5143 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5144 5145 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5146 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5147 : APFloat::IEEEdouble(), 5148 APInt::getNullValue(SrcTy.getSizeInBits())); 5149 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5150 5151 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5152 5153 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5154 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5155 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5156 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5157 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5158 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5159 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5160 5161 const LLT S1 = LLT::scalar(1); 5162 5163 MachineInstrBuilder FCMP = 5164 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5165 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5166 5167 MI.eraseFromParent(); 5168 return Legalized; 5169 } 5170 5171 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5172 Register Dst = MI.getOperand(0).getReg(); 5173 Register Src = MI.getOperand(1).getReg(); 5174 LLT DstTy = MRI.getType(Dst); 5175 LLT SrcTy = MRI.getType(Src); 5176 const LLT S64 = LLT::scalar(64); 5177 const LLT S32 = LLT::scalar(32); 5178 5179 // FIXME: Only f32 to i64 conversions are supported. 5180 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5181 return UnableToLegalize; 5182 5183 // Expand f32 -> i64 conversion 5184 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5185 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5186 5187 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5188 5189 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5190 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5191 5192 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5193 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5194 5195 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5196 APInt::getSignMask(SrcEltBits)); 5197 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5198 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5199 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5200 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5201 5202 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5203 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5204 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5205 5206 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5207 R = MIRBuilder.buildZExt(DstTy, R); 5208 5209 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5210 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5211 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5212 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5213 5214 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5215 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5216 5217 const LLT S1 = LLT::scalar(1); 5218 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5219 S1, Exponent, ExponentLoBit); 5220 5221 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5222 5223 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5224 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5225 5226 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5227 5228 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5229 S1, Exponent, ZeroSrcTy); 5230 5231 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5232 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5233 5234 MI.eraseFromParent(); 5235 return Legalized; 5236 } 5237 5238 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5239 LegalizerHelper::LegalizeResult 5240 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5241 Register Dst = MI.getOperand(0).getReg(); 5242 Register Src = MI.getOperand(1).getReg(); 5243 5244 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5245 return UnableToLegalize; 5246 5247 const unsigned ExpMask = 0x7ff; 5248 const unsigned ExpBiasf64 = 1023; 5249 const unsigned ExpBiasf16 = 15; 5250 const LLT S32 = LLT::scalar(32); 5251 const LLT S1 = LLT::scalar(1); 5252 5253 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5254 Register U = Unmerge.getReg(0); 5255 Register UH = Unmerge.getReg(1); 5256 5257 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5258 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5259 5260 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5261 // add the f16 bias (15) to get the biased exponent for the f16 format. 5262 E = MIRBuilder.buildAdd( 5263 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5264 5265 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5266 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5267 5268 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5269 MIRBuilder.buildConstant(S32, 0x1ff)); 5270 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5271 5272 auto Zero = MIRBuilder.buildConstant(S32, 0); 5273 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5274 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5275 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5276 5277 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5278 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5279 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5280 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5281 5282 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5283 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5284 5285 // N = M | (E << 12); 5286 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5287 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5288 5289 // B = clamp(1-E, 0, 13); 5290 auto One = MIRBuilder.buildConstant(S32, 1); 5291 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5292 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5293 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5294 5295 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5296 MIRBuilder.buildConstant(S32, 0x1000)); 5297 5298 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5299 auto D0 = MIRBuilder.buildShl(S32, D, B); 5300 5301 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5302 D0, SigSetHigh); 5303 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5304 D = MIRBuilder.buildOr(S32, D, D1); 5305 5306 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5307 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5308 5309 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5310 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5311 5312 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5313 MIRBuilder.buildConstant(S32, 3)); 5314 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5315 5316 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5317 MIRBuilder.buildConstant(S32, 5)); 5318 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5319 5320 V1 = MIRBuilder.buildOr(S32, V0, V1); 5321 V = MIRBuilder.buildAdd(S32, V, V1); 5322 5323 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5324 E, MIRBuilder.buildConstant(S32, 30)); 5325 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5326 MIRBuilder.buildConstant(S32, 0x7c00), V); 5327 5328 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5329 E, MIRBuilder.buildConstant(S32, 1039)); 5330 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5331 5332 // Extract the sign bit. 5333 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5334 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5335 5336 // Insert the sign bit 5337 V = MIRBuilder.buildOr(S32, Sign, V); 5338 5339 MIRBuilder.buildTrunc(Dst, V); 5340 MI.eraseFromParent(); 5341 return Legalized; 5342 } 5343 5344 LegalizerHelper::LegalizeResult 5345 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5346 Register Dst = MI.getOperand(0).getReg(); 5347 Register Src = MI.getOperand(1).getReg(); 5348 5349 LLT DstTy = MRI.getType(Dst); 5350 LLT SrcTy = MRI.getType(Src); 5351 const LLT S64 = LLT::scalar(64); 5352 const LLT S16 = LLT::scalar(16); 5353 5354 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5355 return lowerFPTRUNC_F64_TO_F16(MI); 5356 5357 return UnableToLegalize; 5358 } 5359 5360 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5361 // multiplication tree. 5362 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5363 Register Dst = MI.getOperand(0).getReg(); 5364 Register Src0 = MI.getOperand(1).getReg(); 5365 Register Src1 = MI.getOperand(2).getReg(); 5366 LLT Ty = MRI.getType(Dst); 5367 5368 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5369 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5370 MI.eraseFromParent(); 5371 return Legalized; 5372 } 5373 5374 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5375 switch (Opc) { 5376 case TargetOpcode::G_SMIN: 5377 return CmpInst::ICMP_SLT; 5378 case TargetOpcode::G_SMAX: 5379 return CmpInst::ICMP_SGT; 5380 case TargetOpcode::G_UMIN: 5381 return CmpInst::ICMP_ULT; 5382 case TargetOpcode::G_UMAX: 5383 return CmpInst::ICMP_UGT; 5384 default: 5385 llvm_unreachable("not in integer min/max"); 5386 } 5387 } 5388 5389 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5390 Register Dst = MI.getOperand(0).getReg(); 5391 Register Src0 = MI.getOperand(1).getReg(); 5392 Register Src1 = MI.getOperand(2).getReg(); 5393 5394 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5395 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5396 5397 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5398 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5399 5400 MI.eraseFromParent(); 5401 return Legalized; 5402 } 5403 5404 LegalizerHelper::LegalizeResult 5405 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 5406 Register Dst = MI.getOperand(0).getReg(); 5407 Register Src0 = MI.getOperand(1).getReg(); 5408 Register Src1 = MI.getOperand(2).getReg(); 5409 5410 const LLT Src0Ty = MRI.getType(Src0); 5411 const LLT Src1Ty = MRI.getType(Src1); 5412 5413 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5414 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5415 5416 auto SignBitMask = MIRBuilder.buildConstant( 5417 Src0Ty, APInt::getSignMask(Src0Size)); 5418 5419 auto NotSignBitMask = MIRBuilder.buildConstant( 5420 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5421 5422 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 5423 MachineInstr *Or; 5424 5425 if (Src0Ty == Src1Ty) { 5426 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 5427 Or = MIRBuilder.buildOr(Dst, And0, And1); 5428 } else if (Src0Size > Src1Size) { 5429 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5430 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5431 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5432 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 5433 Or = MIRBuilder.buildOr(Dst, And0, And1); 5434 } else { 5435 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5436 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5437 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5438 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 5439 Or = MIRBuilder.buildOr(Dst, And0, And1); 5440 } 5441 5442 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5443 // constants are a nan and -0.0, but the final result should preserve 5444 // everything. 5445 if (unsigned Flags = MI.getFlags()) 5446 Or->setFlags(Flags); 5447 5448 MI.eraseFromParent(); 5449 return Legalized; 5450 } 5451 5452 LegalizerHelper::LegalizeResult 5453 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5454 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5455 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5456 5457 Register Dst = MI.getOperand(0).getReg(); 5458 Register Src0 = MI.getOperand(1).getReg(); 5459 Register Src1 = MI.getOperand(2).getReg(); 5460 LLT Ty = MRI.getType(Dst); 5461 5462 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5463 // Insert canonicalizes if it's possible we need to quiet to get correct 5464 // sNaN behavior. 5465 5466 // Note this must be done here, and not as an optimization combine in the 5467 // absence of a dedicate quiet-snan instruction as we're using an 5468 // omni-purpose G_FCANONICALIZE. 5469 if (!isKnownNeverSNaN(Src0, MRI)) 5470 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5471 5472 if (!isKnownNeverSNaN(Src1, MRI)) 5473 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5474 } 5475 5476 // If there are no nans, it's safe to simply replace this with the non-IEEE 5477 // version. 5478 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5479 MI.eraseFromParent(); 5480 return Legalized; 5481 } 5482 5483 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5484 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5485 Register DstReg = MI.getOperand(0).getReg(); 5486 LLT Ty = MRI.getType(DstReg); 5487 unsigned Flags = MI.getFlags(); 5488 5489 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5490 Flags); 5491 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5492 MI.eraseFromParent(); 5493 return Legalized; 5494 } 5495 5496 LegalizerHelper::LegalizeResult 5497 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5498 Register DstReg = MI.getOperand(0).getReg(); 5499 Register X = MI.getOperand(1).getReg(); 5500 const unsigned Flags = MI.getFlags(); 5501 const LLT Ty = MRI.getType(DstReg); 5502 const LLT CondTy = Ty.changeElementSize(1); 5503 5504 // round(x) => 5505 // t = trunc(x); 5506 // d = fabs(x - t); 5507 // o = copysign(1.0f, x); 5508 // return t + (d >= 0.5 ? o : 0.0); 5509 5510 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5511 5512 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5513 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5514 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5515 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5516 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5517 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5518 5519 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5520 Flags); 5521 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5522 5523 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5524 5525 MI.eraseFromParent(); 5526 return Legalized; 5527 } 5528 5529 LegalizerHelper::LegalizeResult 5530 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5531 Register DstReg = MI.getOperand(0).getReg(); 5532 Register SrcReg = MI.getOperand(1).getReg(); 5533 unsigned Flags = MI.getFlags(); 5534 LLT Ty = MRI.getType(DstReg); 5535 const LLT CondTy = Ty.changeElementSize(1); 5536 5537 // result = trunc(src); 5538 // if (src < 0.0 && src != result) 5539 // result += -1.0. 5540 5541 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5542 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5543 5544 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5545 SrcReg, Zero, Flags); 5546 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5547 SrcReg, Trunc, Flags); 5548 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5549 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5550 5551 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5552 MI.eraseFromParent(); 5553 return Legalized; 5554 } 5555 5556 LegalizerHelper::LegalizeResult 5557 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5558 const unsigned NumOps = MI.getNumOperands(); 5559 Register DstReg = MI.getOperand(0).getReg(); 5560 Register Src0Reg = MI.getOperand(1).getReg(); 5561 LLT DstTy = MRI.getType(DstReg); 5562 LLT SrcTy = MRI.getType(Src0Reg); 5563 unsigned PartSize = SrcTy.getSizeInBits(); 5564 5565 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5566 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5567 5568 for (unsigned I = 2; I != NumOps; ++I) { 5569 const unsigned Offset = (I - 1) * PartSize; 5570 5571 Register SrcReg = MI.getOperand(I).getReg(); 5572 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5573 5574 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5575 MRI.createGenericVirtualRegister(WideTy); 5576 5577 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5578 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5579 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5580 ResultReg = NextResult; 5581 } 5582 5583 if (DstTy.isPointer()) { 5584 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5585 DstTy.getAddressSpace())) { 5586 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5587 return UnableToLegalize; 5588 } 5589 5590 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5591 } 5592 5593 MI.eraseFromParent(); 5594 return Legalized; 5595 } 5596 5597 LegalizerHelper::LegalizeResult 5598 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5599 const unsigned NumDst = MI.getNumOperands() - 1; 5600 Register SrcReg = MI.getOperand(NumDst).getReg(); 5601 Register Dst0Reg = MI.getOperand(0).getReg(); 5602 LLT DstTy = MRI.getType(Dst0Reg); 5603 if (DstTy.isPointer()) 5604 return UnableToLegalize; // TODO 5605 5606 SrcReg = coerceToScalar(SrcReg); 5607 if (!SrcReg) 5608 return UnableToLegalize; 5609 5610 // Expand scalarizing unmerge as bitcast to integer and shift. 5611 LLT IntTy = MRI.getType(SrcReg); 5612 5613 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5614 5615 const unsigned DstSize = DstTy.getSizeInBits(); 5616 unsigned Offset = DstSize; 5617 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5618 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5619 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5620 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5621 } 5622 5623 MI.eraseFromParent(); 5624 return Legalized; 5625 } 5626 5627 /// Lower a vector extract or insert by writing the vector to a stack temporary 5628 /// and reloading the element or vector. 5629 /// 5630 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5631 /// => 5632 /// %stack_temp = G_FRAME_INDEX 5633 /// G_STORE %vec, %stack_temp 5634 /// %idx = clamp(%idx, %vec.getNumElements()) 5635 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5636 /// %dst = G_LOAD %element_ptr 5637 LegalizerHelper::LegalizeResult 5638 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5639 Register DstReg = MI.getOperand(0).getReg(); 5640 Register SrcVec = MI.getOperand(1).getReg(); 5641 Register InsertVal; 5642 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5643 InsertVal = MI.getOperand(2).getReg(); 5644 5645 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5646 5647 LLT VecTy = MRI.getType(SrcVec); 5648 LLT EltTy = VecTy.getElementType(); 5649 if (!EltTy.isByteSized()) { // Not implemented. 5650 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5651 return UnableToLegalize; 5652 } 5653 5654 unsigned EltBytes = EltTy.getSizeInBytes(); 5655 Align VecAlign = getStackTemporaryAlignment(VecTy); 5656 Align EltAlign; 5657 5658 MachinePointerInfo PtrInfo; 5659 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5660 VecAlign, PtrInfo); 5661 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5662 5663 // Get the pointer to the element, and be sure not to hit undefined behavior 5664 // if the index is out of bounds. 5665 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5666 5667 int64_t IdxVal; 5668 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5669 int64_t Offset = IdxVal * EltBytes; 5670 PtrInfo = PtrInfo.getWithOffset(Offset); 5671 EltAlign = commonAlignment(VecAlign, Offset); 5672 } else { 5673 // We lose information with a variable offset. 5674 EltAlign = getStackTemporaryAlignment(EltTy); 5675 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5676 } 5677 5678 if (InsertVal) { 5679 // Write the inserted element 5680 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5681 5682 // Reload the whole vector. 5683 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5684 } else { 5685 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5686 } 5687 5688 MI.eraseFromParent(); 5689 return Legalized; 5690 } 5691 5692 LegalizerHelper::LegalizeResult 5693 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5694 Register DstReg = MI.getOperand(0).getReg(); 5695 Register Src0Reg = MI.getOperand(1).getReg(); 5696 Register Src1Reg = MI.getOperand(2).getReg(); 5697 LLT Src0Ty = MRI.getType(Src0Reg); 5698 LLT DstTy = MRI.getType(DstReg); 5699 LLT IdxTy = LLT::scalar(32); 5700 5701 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5702 5703 if (DstTy.isScalar()) { 5704 if (Src0Ty.isVector()) 5705 return UnableToLegalize; 5706 5707 // This is just a SELECT. 5708 assert(Mask.size() == 1 && "Expected a single mask element"); 5709 Register Val; 5710 if (Mask[0] < 0 || Mask[0] > 1) 5711 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5712 else 5713 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5714 MIRBuilder.buildCopy(DstReg, Val); 5715 MI.eraseFromParent(); 5716 return Legalized; 5717 } 5718 5719 Register Undef; 5720 SmallVector<Register, 32> BuildVec; 5721 LLT EltTy = DstTy.getElementType(); 5722 5723 for (int Idx : Mask) { 5724 if (Idx < 0) { 5725 if (!Undef.isValid()) 5726 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5727 BuildVec.push_back(Undef); 5728 continue; 5729 } 5730 5731 if (Src0Ty.isScalar()) { 5732 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5733 } else { 5734 int NumElts = Src0Ty.getNumElements(); 5735 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5736 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5737 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5738 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5739 BuildVec.push_back(Extract.getReg(0)); 5740 } 5741 } 5742 5743 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5744 MI.eraseFromParent(); 5745 return Legalized; 5746 } 5747 5748 LegalizerHelper::LegalizeResult 5749 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5750 const auto &MF = *MI.getMF(); 5751 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5752 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5753 return UnableToLegalize; 5754 5755 Register Dst = MI.getOperand(0).getReg(); 5756 Register AllocSize = MI.getOperand(1).getReg(); 5757 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5758 5759 LLT PtrTy = MRI.getType(Dst); 5760 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5761 5762 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5763 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5764 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5765 5766 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5767 // have to generate an extra instruction to negate the alloc and then use 5768 // G_PTR_ADD to add the negative offset. 5769 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5770 if (Alignment > Align(1)) { 5771 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5772 AlignMask.negate(); 5773 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5774 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5775 } 5776 5777 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5778 MIRBuilder.buildCopy(SPReg, SPTmp); 5779 MIRBuilder.buildCopy(Dst, SPTmp); 5780 5781 MI.eraseFromParent(); 5782 return Legalized; 5783 } 5784 5785 LegalizerHelper::LegalizeResult 5786 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5787 Register Dst = MI.getOperand(0).getReg(); 5788 Register Src = MI.getOperand(1).getReg(); 5789 unsigned Offset = MI.getOperand(2).getImm(); 5790 5791 LLT DstTy = MRI.getType(Dst); 5792 LLT SrcTy = MRI.getType(Src); 5793 5794 if (DstTy.isScalar() && 5795 (SrcTy.isScalar() || 5796 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5797 LLT SrcIntTy = SrcTy; 5798 if (!SrcTy.isScalar()) { 5799 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5800 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5801 } 5802 5803 if (Offset == 0) 5804 MIRBuilder.buildTrunc(Dst, Src); 5805 else { 5806 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5807 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5808 MIRBuilder.buildTrunc(Dst, Shr); 5809 } 5810 5811 MI.eraseFromParent(); 5812 return Legalized; 5813 } 5814 5815 return UnableToLegalize; 5816 } 5817 5818 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5819 Register Dst = MI.getOperand(0).getReg(); 5820 Register Src = MI.getOperand(1).getReg(); 5821 Register InsertSrc = MI.getOperand(2).getReg(); 5822 uint64_t Offset = MI.getOperand(3).getImm(); 5823 5824 LLT DstTy = MRI.getType(Src); 5825 LLT InsertTy = MRI.getType(InsertSrc); 5826 5827 if (InsertTy.isVector() || 5828 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5829 return UnableToLegalize; 5830 5831 const DataLayout &DL = MIRBuilder.getDataLayout(); 5832 if ((DstTy.isPointer() && 5833 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5834 (InsertTy.isPointer() && 5835 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5836 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5837 return UnableToLegalize; 5838 } 5839 5840 LLT IntDstTy = DstTy; 5841 5842 if (!DstTy.isScalar()) { 5843 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5844 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5845 } 5846 5847 if (!InsertTy.isScalar()) { 5848 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5849 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5850 } 5851 5852 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5853 if (Offset != 0) { 5854 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5855 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5856 } 5857 5858 APInt MaskVal = APInt::getBitsSetWithWrap( 5859 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5860 5861 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5862 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5863 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5864 5865 MIRBuilder.buildCast(Dst, Or); 5866 MI.eraseFromParent(); 5867 return Legalized; 5868 } 5869 5870 LegalizerHelper::LegalizeResult 5871 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5872 Register Dst0 = MI.getOperand(0).getReg(); 5873 Register Dst1 = MI.getOperand(1).getReg(); 5874 Register LHS = MI.getOperand(2).getReg(); 5875 Register RHS = MI.getOperand(3).getReg(); 5876 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5877 5878 LLT Ty = MRI.getType(Dst0); 5879 LLT BoolTy = MRI.getType(Dst1); 5880 5881 if (IsAdd) 5882 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5883 else 5884 MIRBuilder.buildSub(Dst0, LHS, RHS); 5885 5886 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5887 5888 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5889 5890 // For an addition, the result should be less than one of the operands (LHS) 5891 // if and only if the other operand (RHS) is negative, otherwise there will 5892 // be overflow. 5893 // For a subtraction, the result should be less than one of the operands 5894 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5895 // otherwise there will be overflow. 5896 auto ResultLowerThanLHS = 5897 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5898 auto ConditionRHS = MIRBuilder.buildICmp( 5899 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5900 5901 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5902 MI.eraseFromParent(); 5903 return Legalized; 5904 } 5905 5906 LegalizerHelper::LegalizeResult 5907 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5908 Register Res = MI.getOperand(0).getReg(); 5909 Register LHS = MI.getOperand(1).getReg(); 5910 Register RHS = MI.getOperand(2).getReg(); 5911 LLT Ty = MRI.getType(Res); 5912 bool IsSigned; 5913 bool IsAdd; 5914 unsigned BaseOp; 5915 switch (MI.getOpcode()) { 5916 default: 5917 llvm_unreachable("unexpected addsat/subsat opcode"); 5918 case TargetOpcode::G_UADDSAT: 5919 IsSigned = false; 5920 IsAdd = true; 5921 BaseOp = TargetOpcode::G_ADD; 5922 break; 5923 case TargetOpcode::G_SADDSAT: 5924 IsSigned = true; 5925 IsAdd = true; 5926 BaseOp = TargetOpcode::G_ADD; 5927 break; 5928 case TargetOpcode::G_USUBSAT: 5929 IsSigned = false; 5930 IsAdd = false; 5931 BaseOp = TargetOpcode::G_SUB; 5932 break; 5933 case TargetOpcode::G_SSUBSAT: 5934 IsSigned = true; 5935 IsAdd = false; 5936 BaseOp = TargetOpcode::G_SUB; 5937 break; 5938 } 5939 5940 if (IsSigned) { 5941 // sadd.sat(a, b) -> 5942 // hi = 0x7fffffff - smax(a, 0) 5943 // lo = 0x80000000 - smin(a, 0) 5944 // a + smin(smax(lo, b), hi) 5945 // ssub.sat(a, b) -> 5946 // lo = smax(a, -1) - 0x7fffffff 5947 // hi = smin(a, -1) - 0x80000000 5948 // a - smin(smax(lo, b), hi) 5949 // TODO: AMDGPU can use a "median of 3" instruction here: 5950 // a +/- med3(lo, b, hi) 5951 uint64_t NumBits = Ty.getScalarSizeInBits(); 5952 auto MaxVal = 5953 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5954 auto MinVal = 5955 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5956 MachineInstrBuilder Hi, Lo; 5957 if (IsAdd) { 5958 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5959 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5960 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5961 } else { 5962 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5963 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5964 MaxVal); 5965 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5966 MinVal); 5967 } 5968 auto RHSClamped = 5969 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5970 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5971 } else { 5972 // uadd.sat(a, b) -> a + umin(~a, b) 5973 // usub.sat(a, b) -> a - umin(a, b) 5974 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 5975 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 5976 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 5977 } 5978 5979 MI.eraseFromParent(); 5980 return Legalized; 5981 } 5982 5983 LegalizerHelper::LegalizeResult 5984 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 5985 Register Res = MI.getOperand(0).getReg(); 5986 Register LHS = MI.getOperand(1).getReg(); 5987 Register RHS = MI.getOperand(2).getReg(); 5988 LLT Ty = MRI.getType(Res); 5989 LLT BoolTy = Ty.changeElementSize(1); 5990 bool IsSigned; 5991 bool IsAdd; 5992 unsigned OverflowOp; 5993 switch (MI.getOpcode()) { 5994 default: 5995 llvm_unreachable("unexpected addsat/subsat opcode"); 5996 case TargetOpcode::G_UADDSAT: 5997 IsSigned = false; 5998 IsAdd = true; 5999 OverflowOp = TargetOpcode::G_UADDO; 6000 break; 6001 case TargetOpcode::G_SADDSAT: 6002 IsSigned = true; 6003 IsAdd = true; 6004 OverflowOp = TargetOpcode::G_SADDO; 6005 break; 6006 case TargetOpcode::G_USUBSAT: 6007 IsSigned = false; 6008 IsAdd = false; 6009 OverflowOp = TargetOpcode::G_USUBO; 6010 break; 6011 case TargetOpcode::G_SSUBSAT: 6012 IsSigned = true; 6013 IsAdd = false; 6014 OverflowOp = TargetOpcode::G_SSUBO; 6015 break; 6016 } 6017 6018 auto OverflowRes = 6019 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6020 Register Tmp = OverflowRes.getReg(0); 6021 Register Ov = OverflowRes.getReg(1); 6022 MachineInstrBuilder Clamp; 6023 if (IsSigned) { 6024 // sadd.sat(a, b) -> 6025 // {tmp, ov} = saddo(a, b) 6026 // ov ? (tmp >>s 31) + 0x80000000 : r 6027 // ssub.sat(a, b) -> 6028 // {tmp, ov} = ssubo(a, b) 6029 // ov ? (tmp >>s 31) + 0x80000000 : r 6030 uint64_t NumBits = Ty.getScalarSizeInBits(); 6031 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6032 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6033 auto MinVal = 6034 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6035 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6036 } else { 6037 // uadd.sat(a, b) -> 6038 // {tmp, ov} = uaddo(a, b) 6039 // ov ? 0xffffffff : tmp 6040 // usub.sat(a, b) -> 6041 // {tmp, ov} = usubo(a, b) 6042 // ov ? 0 : tmp 6043 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6044 } 6045 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6046 6047 MI.eraseFromParent(); 6048 return Legalized; 6049 } 6050 6051 LegalizerHelper::LegalizeResult 6052 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6053 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6054 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6055 "Expected shlsat opcode!"); 6056 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6057 Register Res = MI.getOperand(0).getReg(); 6058 Register LHS = MI.getOperand(1).getReg(); 6059 Register RHS = MI.getOperand(2).getReg(); 6060 LLT Ty = MRI.getType(Res); 6061 LLT BoolTy = Ty.changeElementSize(1); 6062 6063 unsigned BW = Ty.getScalarSizeInBits(); 6064 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6065 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6066 : MIRBuilder.buildLShr(Ty, Result, RHS); 6067 6068 MachineInstrBuilder SatVal; 6069 if (IsSigned) { 6070 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6071 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6072 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6073 MIRBuilder.buildConstant(Ty, 0)); 6074 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6075 } else { 6076 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6077 } 6078 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6079 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6080 6081 MI.eraseFromParent(); 6082 return Legalized; 6083 } 6084 6085 LegalizerHelper::LegalizeResult 6086 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6087 Register Dst = MI.getOperand(0).getReg(); 6088 Register Src = MI.getOperand(1).getReg(); 6089 const LLT Ty = MRI.getType(Src); 6090 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6091 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6092 6093 // Swap most and least significant byte, set remaining bytes in Res to zero. 6094 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6095 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6096 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6097 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6098 6099 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6100 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6101 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6102 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6103 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6104 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6105 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6106 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6107 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6108 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6109 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6110 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6111 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6112 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6113 } 6114 Res.getInstr()->getOperand(0).setReg(Dst); 6115 6116 MI.eraseFromParent(); 6117 return Legalized; 6118 } 6119 6120 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6121 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6122 MachineInstrBuilder Src, APInt Mask) { 6123 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6124 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6125 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6126 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6127 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6128 return B.buildOr(Dst, LHS, RHS); 6129 } 6130 6131 LegalizerHelper::LegalizeResult 6132 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6133 Register Dst = MI.getOperand(0).getReg(); 6134 Register Src = MI.getOperand(1).getReg(); 6135 const LLT Ty = MRI.getType(Src); 6136 unsigned Size = Ty.getSizeInBits(); 6137 6138 MachineInstrBuilder BSWAP = 6139 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6140 6141 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6142 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6143 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6144 MachineInstrBuilder Swap4 = 6145 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6146 6147 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6148 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6149 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6150 MachineInstrBuilder Swap2 = 6151 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6152 6153 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6154 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6155 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6156 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6157 6158 MI.eraseFromParent(); 6159 return Legalized; 6160 } 6161 6162 LegalizerHelper::LegalizeResult 6163 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6164 MachineFunction &MF = MIRBuilder.getMF(); 6165 6166 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6167 int NameOpIdx = IsRead ? 1 : 0; 6168 int ValRegIndex = IsRead ? 0 : 1; 6169 6170 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6171 const LLT Ty = MRI.getType(ValReg); 6172 const MDString *RegStr = cast<MDString>( 6173 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6174 6175 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6176 if (!PhysReg.isValid()) 6177 return UnableToLegalize; 6178 6179 if (IsRead) 6180 MIRBuilder.buildCopy(ValReg, PhysReg); 6181 else 6182 MIRBuilder.buildCopy(PhysReg, ValReg); 6183 6184 MI.eraseFromParent(); 6185 return Legalized; 6186 } 6187 6188 LegalizerHelper::LegalizeResult 6189 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6190 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6191 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6192 Register Result = MI.getOperand(0).getReg(); 6193 LLT OrigTy = MRI.getType(Result); 6194 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6195 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6196 6197 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6198 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6199 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6200 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6201 6202 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6203 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6204 MIRBuilder.buildTrunc(Result, Shifted); 6205 6206 MI.eraseFromParent(); 6207 return Legalized; 6208 } 6209 6210 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6211 // Implement vector G_SELECT in terms of XOR, AND, OR. 6212 Register DstReg = MI.getOperand(0).getReg(); 6213 Register MaskReg = MI.getOperand(1).getReg(); 6214 Register Op1Reg = MI.getOperand(2).getReg(); 6215 Register Op2Reg = MI.getOperand(3).getReg(); 6216 LLT DstTy = MRI.getType(DstReg); 6217 LLT MaskTy = MRI.getType(MaskReg); 6218 LLT Op1Ty = MRI.getType(Op1Reg); 6219 if (!DstTy.isVector()) 6220 return UnableToLegalize; 6221 6222 // Vector selects can have a scalar predicate. If so, splat into a vector and 6223 // finish for later legalization attempts to try again. 6224 if (MaskTy.isScalar()) { 6225 Register MaskElt = MaskReg; 6226 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6227 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6228 // Generate a vector splat idiom to be pattern matched later. 6229 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6230 Observer.changingInstr(MI); 6231 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6232 Observer.changedInstr(MI); 6233 return Legalized; 6234 } 6235 6236 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6237 return UnableToLegalize; 6238 } 6239 6240 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6241 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6242 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6243 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6244 MI.eraseFromParent(); 6245 return Legalized; 6246 } 6247