1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
23 #include "llvm/CodeGen/GlobalISel/Utils.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetOpcodes.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 
37 #define DEBUG_TYPE "legalizer"
38 
39 using namespace llvm;
40 using namespace LegalizeActions;
41 using namespace MIPatternMatch;
42 
43 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
44 ///
45 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
46 /// with any leftover piece as type \p LeftoverTy
47 ///
48 /// Returns -1 in the first element of the pair if the breakdown is not
49 /// satisfiable.
50 static std::pair<int, int>
51 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
52   assert(!LeftoverTy.isValid() && "this is an out argument");
53 
54   unsigned Size = OrigTy.getSizeInBits();
55   unsigned NarrowSize = NarrowTy.getSizeInBits();
56   unsigned NumParts = Size / NarrowSize;
57   unsigned LeftoverSize = Size - NumParts * NarrowSize;
58   assert(Size > NarrowSize);
59 
60   if (LeftoverSize == 0)
61     return {NumParts, 0};
62 
63   if (NarrowTy.isVector()) {
64     unsigned EltSize = OrigTy.getScalarSizeInBits();
65     if (LeftoverSize % EltSize != 0)
66       return {-1, -1};
67     LeftoverTy = LLT::scalarOrVector(
68         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
69   } else {
70     LeftoverTy = LLT::scalar(LeftoverSize);
71   }
72 
73   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
74   return std::make_pair(NumParts, NumLeftover);
75 }
76 
77 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
78 
79   if (!Ty.isScalar())
80     return nullptr;
81 
82   switch (Ty.getSizeInBits()) {
83   case 16:
84     return Type::getHalfTy(Ctx);
85   case 32:
86     return Type::getFloatTy(Ctx);
87   case 64:
88     return Type::getDoubleTy(Ctx);
89   case 80:
90     return Type::getX86_FP80Ty(Ctx);
91   case 128:
92     return Type::getFP128Ty(Ctx);
93   default:
94     return nullptr;
95   }
96 }
97 
98 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
99                                  GISelChangeObserver &Observer,
100                                  MachineIRBuilder &Builder)
101     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
102       LI(*MF.getSubtarget().getLegalizerInfo()),
103       TLI(*MF.getSubtarget().getTargetLowering()) { }
104 
105 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
106                                  GISelChangeObserver &Observer,
107                                  MachineIRBuilder &B)
108   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
109     TLI(*MF.getSubtarget().getTargetLowering()) { }
110 
111 LegalizerHelper::LegalizeResult
112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
113                                    LostDebugLocObserver &LocObserver) {
114   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
115 
116   MIRBuilder.setInstrAndDebugLoc(MI);
117 
118   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
119       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
120     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
121   auto Step = LI.getAction(MI, MRI);
122   switch (Step.Action) {
123   case Legal:
124     LLVM_DEBUG(dbgs() << ".. Already legal\n");
125     return AlreadyLegal;
126   case Libcall:
127     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
128     return libcall(MI, LocObserver);
129   case NarrowScalar:
130     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
131     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
132   case WidenScalar:
133     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
134     return widenScalar(MI, Step.TypeIdx, Step.NewType);
135   case Bitcast:
136     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
137     return bitcast(MI, Step.TypeIdx, Step.NewType);
138   case Lower:
139     LLVM_DEBUG(dbgs() << ".. Lower\n");
140     return lower(MI, Step.TypeIdx, Step.NewType);
141   case FewerElements:
142     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
143     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
144   case MoreElements:
145     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
146     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
147   case Custom:
148     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
149     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
150   default:
151     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
152     return UnableToLegalize;
153   }
154 }
155 
156 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
157                                    SmallVectorImpl<Register> &VRegs) {
158   for (int i = 0; i < NumParts; ++i)
159     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
160   MIRBuilder.buildUnmerge(VRegs, Reg);
161 }
162 
163 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
164                                    LLT MainTy, LLT &LeftoverTy,
165                                    SmallVectorImpl<Register> &VRegs,
166                                    SmallVectorImpl<Register> &LeftoverRegs) {
167   assert(!LeftoverTy.isValid() && "this is an out argument");
168 
169   unsigned RegSize = RegTy.getSizeInBits();
170   unsigned MainSize = MainTy.getSizeInBits();
171   unsigned NumParts = RegSize / MainSize;
172   unsigned LeftoverSize = RegSize - NumParts * MainSize;
173 
174   // Use an unmerge when possible.
175   if (LeftoverSize == 0) {
176     for (unsigned I = 0; I < NumParts; ++I)
177       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
178     MIRBuilder.buildUnmerge(VRegs, Reg);
179     return true;
180   }
181 
182   // Perform irregular split. Leftover is last element of RegPieces.
183   if (MainTy.isVector()) {
184     SmallVector<Register, 8> RegPieces;
185     extractVectorParts(Reg, MainTy.getNumElements(), RegPieces);
186     for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
187       VRegs.push_back(RegPieces[i]);
188     LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
189     LeftoverTy = MRI.getType(LeftoverRegs[0]);
190     return true;
191   }
192 
193   LeftoverTy = LLT::scalar(LeftoverSize);
194   // For irregular sizes, extract the individual parts.
195   for (unsigned I = 0; I != NumParts; ++I) {
196     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
197     VRegs.push_back(NewReg);
198     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
199   }
200 
201   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
202        Offset += LeftoverSize) {
203     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
204     LeftoverRegs.push_back(NewReg);
205     MIRBuilder.buildExtract(NewReg, Reg, Offset);
206   }
207 
208   return true;
209 }
210 
211 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts,
212                                          SmallVectorImpl<Register> &VRegs) {
213   LLT RegTy = MRI.getType(Reg);
214   assert(RegTy.isVector() && "Expected a vector type");
215 
216   LLT EltTy = RegTy.getElementType();
217   LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
218   unsigned RegNumElts = RegTy.getNumElements();
219   unsigned LeftoverNumElts = RegNumElts % NumElts;
220   unsigned NumNarrowTyPieces = RegNumElts / NumElts;
221 
222   // Perfect split without leftover
223   if (LeftoverNumElts == 0)
224     return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs);
225 
226   // Irregular split. Provide direct access to all elements for artifact
227   // combiner using unmerge to elements. Then build vectors with NumElts
228   // elements. Remaining element(s) will be (used to build vector) Leftover.
229   SmallVector<Register, 8> Elts;
230   extractParts(Reg, EltTy, RegNumElts, Elts);
231 
232   unsigned Offset = 0;
233   // Requested sub-vectors of NarrowTy.
234   for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
235     ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
236     VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
237   }
238 
239   // Leftover element(s).
240   if (LeftoverNumElts == 1) {
241     VRegs.push_back(Elts[Offset]);
242   } else {
243     LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
244     ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
245     VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0));
246   }
247 }
248 
249 void LegalizerHelper::insertParts(Register DstReg,
250                                   LLT ResultTy, LLT PartTy,
251                                   ArrayRef<Register> PartRegs,
252                                   LLT LeftoverTy,
253                                   ArrayRef<Register> LeftoverRegs) {
254   if (!LeftoverTy.isValid()) {
255     assert(LeftoverRegs.empty());
256 
257     if (!ResultTy.isVector()) {
258       MIRBuilder.buildMerge(DstReg, PartRegs);
259       return;
260     }
261 
262     if (PartTy.isVector())
263       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
264     else
265       MIRBuilder.buildBuildVector(DstReg, PartRegs);
266     return;
267   }
268 
269   // Merge sub-vectors with different number of elements and insert into DstReg.
270   if (ResultTy.isVector()) {
271     assert(LeftoverRegs.size() == 1 && "Expected one leftover register");
272     SmallVector<Register, 8> AllRegs;
273     for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs))
274       AllRegs.push_back(Reg);
275     return mergeMixedSubvectors(DstReg, AllRegs);
276   }
277 
278   SmallVector<Register> GCDRegs;
279   LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
280   for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
281     extractGCDType(GCDRegs, GCDTy, PartReg);
282   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
283   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
284 }
285 
286 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts,
287                                        Register Reg) {
288   LLT Ty = MRI.getType(Reg);
289   SmallVector<Register, 8> RegElts;
290   extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts);
291   Elts.append(RegElts);
292 }
293 
294 /// Merge \p PartRegs with different types into \p DstReg.
295 void LegalizerHelper::mergeMixedSubvectors(Register DstReg,
296                                            ArrayRef<Register> PartRegs) {
297   SmallVector<Register, 8> AllElts;
298   for (unsigned i = 0; i < PartRegs.size() - 1; ++i)
299     appendVectorElts(AllElts, PartRegs[i]);
300 
301   Register Leftover = PartRegs[PartRegs.size() - 1];
302   if (MRI.getType(Leftover).isScalar())
303     AllElts.push_back(Leftover);
304   else
305     appendVectorElts(AllElts, Leftover);
306 
307   MIRBuilder.buildMerge(DstReg, AllElts);
308 }
309 
310 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
311 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
312                               const MachineInstr &MI) {
313   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
314 
315   const int StartIdx = Regs.size();
316   const int NumResults = MI.getNumOperands() - 1;
317   Regs.resize(Regs.size() + NumResults);
318   for (int I = 0; I != NumResults; ++I)
319     Regs[StartIdx + I] = MI.getOperand(I).getReg();
320 }
321 
322 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
323                                      LLT GCDTy, Register SrcReg) {
324   LLT SrcTy = MRI.getType(SrcReg);
325   if (SrcTy == GCDTy) {
326     // If the source already evenly divides the result type, we don't need to do
327     // anything.
328     Parts.push_back(SrcReg);
329   } else {
330     // Need to split into common type sized pieces.
331     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
332     getUnmergeResults(Parts, *Unmerge);
333   }
334 }
335 
336 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
337                                     LLT NarrowTy, Register SrcReg) {
338   LLT SrcTy = MRI.getType(SrcReg);
339   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
340   extractGCDType(Parts, GCDTy, SrcReg);
341   return GCDTy;
342 }
343 
344 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
345                                          SmallVectorImpl<Register> &VRegs,
346                                          unsigned PadStrategy) {
347   LLT LCMTy = getLCMType(DstTy, NarrowTy);
348 
349   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
350   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
351   int NumOrigSrc = VRegs.size();
352 
353   Register PadReg;
354 
355   // Get a value we can use to pad the source value if the sources won't evenly
356   // cover the result type.
357   if (NumOrigSrc < NumParts * NumSubParts) {
358     if (PadStrategy == TargetOpcode::G_ZEXT)
359       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
360     else if (PadStrategy == TargetOpcode::G_ANYEXT)
361       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
362     else {
363       assert(PadStrategy == TargetOpcode::G_SEXT);
364 
365       // Shift the sign bit of the low register through the high register.
366       auto ShiftAmt =
367         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
368       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
369     }
370   }
371 
372   // Registers for the final merge to be produced.
373   SmallVector<Register, 4> Remerge(NumParts);
374 
375   // Registers needed for intermediate merges, which will be merged into a
376   // source for Remerge.
377   SmallVector<Register, 4> SubMerge(NumSubParts);
378 
379   // Once we've fully read off the end of the original source bits, we can reuse
380   // the same high bits for remaining padding elements.
381   Register AllPadReg;
382 
383   // Build merges to the LCM type to cover the original result type.
384   for (int I = 0; I != NumParts; ++I) {
385     bool AllMergePartsArePadding = true;
386 
387     // Build the requested merges to the requested type.
388     for (int J = 0; J != NumSubParts; ++J) {
389       int Idx = I * NumSubParts + J;
390       if (Idx >= NumOrigSrc) {
391         SubMerge[J] = PadReg;
392         continue;
393       }
394 
395       SubMerge[J] = VRegs[Idx];
396 
397       // There are meaningful bits here we can't reuse later.
398       AllMergePartsArePadding = false;
399     }
400 
401     // If we've filled up a complete piece with padding bits, we can directly
402     // emit the natural sized constant if applicable, rather than a merge of
403     // smaller constants.
404     if (AllMergePartsArePadding && !AllPadReg) {
405       if (PadStrategy == TargetOpcode::G_ANYEXT)
406         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
407       else if (PadStrategy == TargetOpcode::G_ZEXT)
408         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
409 
410       // If this is a sign extension, we can't materialize a trivial constant
411       // with the right type and have to produce a merge.
412     }
413 
414     if (AllPadReg) {
415       // Avoid creating additional instructions if we're just adding additional
416       // copies of padding bits.
417       Remerge[I] = AllPadReg;
418       continue;
419     }
420 
421     if (NumSubParts == 1)
422       Remerge[I] = SubMerge[0];
423     else
424       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
425 
426     // In the sign extend padding case, re-use the first all-signbit merge.
427     if (AllMergePartsArePadding && !AllPadReg)
428       AllPadReg = Remerge[I];
429   }
430 
431   VRegs = std::move(Remerge);
432   return LCMTy;
433 }
434 
435 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
436                                                ArrayRef<Register> RemergeRegs) {
437   LLT DstTy = MRI.getType(DstReg);
438 
439   // Create the merge to the widened source, and extract the relevant bits into
440   // the result.
441 
442   if (DstTy == LCMTy) {
443     MIRBuilder.buildMerge(DstReg, RemergeRegs);
444     return;
445   }
446 
447   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
448   if (DstTy.isScalar() && LCMTy.isScalar()) {
449     MIRBuilder.buildTrunc(DstReg, Remerge);
450     return;
451   }
452 
453   if (LCMTy.isVector()) {
454     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
455     SmallVector<Register, 8> UnmergeDefs(NumDefs);
456     UnmergeDefs[0] = DstReg;
457     for (unsigned I = 1; I != NumDefs; ++I)
458       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
459 
460     MIRBuilder.buildUnmerge(UnmergeDefs,
461                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
462     return;
463   }
464 
465   llvm_unreachable("unhandled case");
466 }
467 
468 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
469 #define RTLIBCASE_INT(LibcallPrefix)                                           \
470   do {                                                                         \
471     switch (Size) {                                                            \
472     case 32:                                                                   \
473       return RTLIB::LibcallPrefix##32;                                         \
474     case 64:                                                                   \
475       return RTLIB::LibcallPrefix##64;                                         \
476     case 128:                                                                  \
477       return RTLIB::LibcallPrefix##128;                                        \
478     default:                                                                   \
479       llvm_unreachable("unexpected size");                                     \
480     }                                                                          \
481   } while (0)
482 
483 #define RTLIBCASE(LibcallPrefix)                                               \
484   do {                                                                         \
485     switch (Size) {                                                            \
486     case 32:                                                                   \
487       return RTLIB::LibcallPrefix##32;                                         \
488     case 64:                                                                   \
489       return RTLIB::LibcallPrefix##64;                                         \
490     case 80:                                                                   \
491       return RTLIB::LibcallPrefix##80;                                         \
492     case 128:                                                                  \
493       return RTLIB::LibcallPrefix##128;                                        \
494     default:                                                                   \
495       llvm_unreachable("unexpected size");                                     \
496     }                                                                          \
497   } while (0)
498 
499   switch (Opcode) {
500   case TargetOpcode::G_SDIV:
501     RTLIBCASE_INT(SDIV_I);
502   case TargetOpcode::G_UDIV:
503     RTLIBCASE_INT(UDIV_I);
504   case TargetOpcode::G_SREM:
505     RTLIBCASE_INT(SREM_I);
506   case TargetOpcode::G_UREM:
507     RTLIBCASE_INT(UREM_I);
508   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
509     RTLIBCASE_INT(CTLZ_I);
510   case TargetOpcode::G_FADD:
511     RTLIBCASE(ADD_F);
512   case TargetOpcode::G_FSUB:
513     RTLIBCASE(SUB_F);
514   case TargetOpcode::G_FMUL:
515     RTLIBCASE(MUL_F);
516   case TargetOpcode::G_FDIV:
517     RTLIBCASE(DIV_F);
518   case TargetOpcode::G_FEXP:
519     RTLIBCASE(EXP_F);
520   case TargetOpcode::G_FEXP2:
521     RTLIBCASE(EXP2_F);
522   case TargetOpcode::G_FREM:
523     RTLIBCASE(REM_F);
524   case TargetOpcode::G_FPOW:
525     RTLIBCASE(POW_F);
526   case TargetOpcode::G_FMA:
527     RTLIBCASE(FMA_F);
528   case TargetOpcode::G_FSIN:
529     RTLIBCASE(SIN_F);
530   case TargetOpcode::G_FCOS:
531     RTLIBCASE(COS_F);
532   case TargetOpcode::G_FLOG10:
533     RTLIBCASE(LOG10_F);
534   case TargetOpcode::G_FLOG:
535     RTLIBCASE(LOG_F);
536   case TargetOpcode::G_FLOG2:
537     RTLIBCASE(LOG2_F);
538   case TargetOpcode::G_FCEIL:
539     RTLIBCASE(CEIL_F);
540   case TargetOpcode::G_FFLOOR:
541     RTLIBCASE(FLOOR_F);
542   case TargetOpcode::G_FMINNUM:
543     RTLIBCASE(FMIN_F);
544   case TargetOpcode::G_FMAXNUM:
545     RTLIBCASE(FMAX_F);
546   case TargetOpcode::G_FSQRT:
547     RTLIBCASE(SQRT_F);
548   case TargetOpcode::G_FRINT:
549     RTLIBCASE(RINT_F);
550   case TargetOpcode::G_FNEARBYINT:
551     RTLIBCASE(NEARBYINT_F);
552   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
553     RTLIBCASE(ROUNDEVEN_F);
554   }
555   llvm_unreachable("Unknown libcall function");
556 }
557 
558 /// True if an instruction is in tail position in its caller. Intended for
559 /// legalizing libcalls as tail calls when possible.
560 static bool isLibCallInTailPosition(MachineInstr &MI,
561                                     const TargetInstrInfo &TII,
562                                     MachineRegisterInfo &MRI) {
563   MachineBasicBlock &MBB = *MI.getParent();
564   const Function &F = MBB.getParent()->getFunction();
565 
566   // Conservatively require the attributes of the call to match those of
567   // the return. Ignore NoAlias and NonNull because they don't affect the
568   // call sequence.
569   AttributeList CallerAttrs = F.getAttributes();
570   if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs())
571           .removeAttribute(Attribute::NoAlias)
572           .removeAttribute(Attribute::NonNull)
573           .hasAttributes())
574     return false;
575 
576   // It's not safe to eliminate the sign / zero extension of the return value.
577   if (CallerAttrs.hasRetAttr(Attribute::ZExt) ||
578       CallerAttrs.hasRetAttr(Attribute::SExt))
579     return false;
580 
581   // Only tail call if the following instruction is a standard return or if we
582   // have a `thisreturn` callee, and a sequence like:
583   //
584   //   G_MEMCPY %0, %1, %2
585   //   $x0 = COPY %0
586   //   RET_ReallyLR implicit $x0
587   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
588   if (Next != MBB.instr_end() && Next->isCopy()) {
589     switch (MI.getOpcode()) {
590     default:
591       llvm_unreachable("unsupported opcode");
592     case TargetOpcode::G_BZERO:
593       return false;
594     case TargetOpcode::G_MEMCPY:
595     case TargetOpcode::G_MEMMOVE:
596     case TargetOpcode::G_MEMSET:
597       break;
598     }
599 
600     Register VReg = MI.getOperand(0).getReg();
601     if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
602       return false;
603 
604     Register PReg = Next->getOperand(0).getReg();
605     if (!PReg.isPhysical())
606       return false;
607 
608     auto Ret = next_nodbg(Next, MBB.instr_end());
609     if (Ret == MBB.instr_end() || !Ret->isReturn())
610       return false;
611 
612     if (Ret->getNumImplicitOperands() != 1)
613       return false;
614 
615     if (PReg != Ret->getOperand(0).getReg())
616       return false;
617 
618     // Skip over the COPY that we just validated.
619     Next = Ret;
620   }
621 
622   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
623     return false;
624 
625   return true;
626 }
627 
628 LegalizerHelper::LegalizeResult
629 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
630                     const CallLowering::ArgInfo &Result,
631                     ArrayRef<CallLowering::ArgInfo> Args,
632                     const CallingConv::ID CC) {
633   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
634 
635   CallLowering::CallLoweringInfo Info;
636   Info.CallConv = CC;
637   Info.Callee = MachineOperand::CreateES(Name);
638   Info.OrigRet = Result;
639   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
640   if (!CLI.lowerCall(MIRBuilder, Info))
641     return LegalizerHelper::UnableToLegalize;
642 
643   return LegalizerHelper::Legalized;
644 }
645 
646 LegalizerHelper::LegalizeResult
647 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
648                     const CallLowering::ArgInfo &Result,
649                     ArrayRef<CallLowering::ArgInfo> Args) {
650   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
651   const char *Name = TLI.getLibcallName(Libcall);
652   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
653   return createLibcall(MIRBuilder, Name, Result, Args, CC);
654 }
655 
656 // Useful for libcalls where all operands have the same type.
657 static LegalizerHelper::LegalizeResult
658 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
659               Type *OpType) {
660   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
661 
662   // FIXME: What does the original arg index mean here?
663   SmallVector<CallLowering::ArgInfo, 3> Args;
664   for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
665     Args.push_back({MO.getReg(), OpType, 0});
666   return createLibcall(MIRBuilder, Libcall,
667                        {MI.getOperand(0).getReg(), OpType, 0}, Args);
668 }
669 
670 LegalizerHelper::LegalizeResult
671 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
672                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
673   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
674 
675   SmallVector<CallLowering::ArgInfo, 3> Args;
676   // Add all the args, except for the last which is an imm denoting 'tail'.
677   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
678     Register Reg = MI.getOperand(i).getReg();
679 
680     // Need derive an IR type for call lowering.
681     LLT OpLLT = MRI.getType(Reg);
682     Type *OpTy = nullptr;
683     if (OpLLT.isPointer())
684       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
685     else
686       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
687     Args.push_back({Reg, OpTy, 0});
688   }
689 
690   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
691   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
692   RTLIB::Libcall RTLibcall;
693   unsigned Opc = MI.getOpcode();
694   switch (Opc) {
695   case TargetOpcode::G_BZERO:
696     RTLibcall = RTLIB::BZERO;
697     break;
698   case TargetOpcode::G_MEMCPY:
699     RTLibcall = RTLIB::MEMCPY;
700     Args[0].Flags[0].setReturned();
701     break;
702   case TargetOpcode::G_MEMMOVE:
703     RTLibcall = RTLIB::MEMMOVE;
704     Args[0].Flags[0].setReturned();
705     break;
706   case TargetOpcode::G_MEMSET:
707     RTLibcall = RTLIB::MEMSET;
708     Args[0].Flags[0].setReturned();
709     break;
710   default:
711     llvm_unreachable("unsupported opcode");
712   }
713   const char *Name = TLI.getLibcallName(RTLibcall);
714 
715   // Unsupported libcall on the target.
716   if (!Name) {
717     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
718                       << MIRBuilder.getTII().getName(Opc) << "\n");
719     return LegalizerHelper::UnableToLegalize;
720   }
721 
722   CallLowering::CallLoweringInfo Info;
723   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
724   Info.Callee = MachineOperand::CreateES(Name);
725   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
726   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
727                     isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI);
728 
729   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
730   if (!CLI.lowerCall(MIRBuilder, Info))
731     return LegalizerHelper::UnableToLegalize;
732 
733   if (Info.LoweredTailCall) {
734     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
735 
736     // Check debug locations before removing the return.
737     LocObserver.checkpoint(true);
738 
739     // We must have a return following the call (or debug insts) to get past
740     // isLibCallInTailPosition.
741     do {
742       MachineInstr *Next = MI.getNextNode();
743       assert(Next &&
744              (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
745              "Expected instr following MI to be return or debug inst?");
746       // We lowered a tail call, so the call is now the return from the block.
747       // Delete the old return.
748       Next->eraseFromParent();
749     } while (MI.getNextNode());
750 
751     // We expect to lose the debug location from the return.
752     LocObserver.checkpoint(false);
753   }
754 
755   return LegalizerHelper::Legalized;
756 }
757 
758 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
759                                        Type *FromType) {
760   auto ToMVT = MVT::getVT(ToType);
761   auto FromMVT = MVT::getVT(FromType);
762 
763   switch (Opcode) {
764   case TargetOpcode::G_FPEXT:
765     return RTLIB::getFPEXT(FromMVT, ToMVT);
766   case TargetOpcode::G_FPTRUNC:
767     return RTLIB::getFPROUND(FromMVT, ToMVT);
768   case TargetOpcode::G_FPTOSI:
769     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
770   case TargetOpcode::G_FPTOUI:
771     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
772   case TargetOpcode::G_SITOFP:
773     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
774   case TargetOpcode::G_UITOFP:
775     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
776   }
777   llvm_unreachable("Unsupported libcall function");
778 }
779 
780 static LegalizerHelper::LegalizeResult
781 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
782                   Type *FromType) {
783   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
784   return createLibcall(MIRBuilder, Libcall,
785                        {MI.getOperand(0).getReg(), ToType, 0},
786                        {{MI.getOperand(1).getReg(), FromType, 0}});
787 }
788 
789 LegalizerHelper::LegalizeResult
790 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
791   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
792   unsigned Size = LLTy.getSizeInBits();
793   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
794 
795   switch (MI.getOpcode()) {
796   default:
797     return UnableToLegalize;
798   case TargetOpcode::G_SDIV:
799   case TargetOpcode::G_UDIV:
800   case TargetOpcode::G_SREM:
801   case TargetOpcode::G_UREM:
802   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
803     Type *HLTy = IntegerType::get(Ctx, Size);
804     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
805     if (Status != Legalized)
806       return Status;
807     break;
808   }
809   case TargetOpcode::G_FADD:
810   case TargetOpcode::G_FSUB:
811   case TargetOpcode::G_FMUL:
812   case TargetOpcode::G_FDIV:
813   case TargetOpcode::G_FMA:
814   case TargetOpcode::G_FPOW:
815   case TargetOpcode::G_FREM:
816   case TargetOpcode::G_FCOS:
817   case TargetOpcode::G_FSIN:
818   case TargetOpcode::G_FLOG10:
819   case TargetOpcode::G_FLOG:
820   case TargetOpcode::G_FLOG2:
821   case TargetOpcode::G_FEXP:
822   case TargetOpcode::G_FEXP2:
823   case TargetOpcode::G_FCEIL:
824   case TargetOpcode::G_FFLOOR:
825   case TargetOpcode::G_FMINNUM:
826   case TargetOpcode::G_FMAXNUM:
827   case TargetOpcode::G_FSQRT:
828   case TargetOpcode::G_FRINT:
829   case TargetOpcode::G_FNEARBYINT:
830   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
831     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
832     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
833       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
834       return UnableToLegalize;
835     }
836     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
837     if (Status != Legalized)
838       return Status;
839     break;
840   }
841   case TargetOpcode::G_FPEXT:
842   case TargetOpcode::G_FPTRUNC: {
843     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
844     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
845     if (!FromTy || !ToTy)
846       return UnableToLegalize;
847     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
848     if (Status != Legalized)
849       return Status;
850     break;
851   }
852   case TargetOpcode::G_FPTOSI:
853   case TargetOpcode::G_FPTOUI: {
854     // FIXME: Support other types
855     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
856     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
857     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
858       return UnableToLegalize;
859     LegalizeResult Status = conversionLibcall(
860         MI, MIRBuilder,
861         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
862         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
863     if (Status != Legalized)
864       return Status;
865     break;
866   }
867   case TargetOpcode::G_SITOFP:
868   case TargetOpcode::G_UITOFP: {
869     // FIXME: Support other types
870     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
871     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
872     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
873       return UnableToLegalize;
874     LegalizeResult Status = conversionLibcall(
875         MI, MIRBuilder,
876         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
877         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
878     if (Status != Legalized)
879       return Status;
880     break;
881   }
882   case TargetOpcode::G_BZERO:
883   case TargetOpcode::G_MEMCPY:
884   case TargetOpcode::G_MEMMOVE:
885   case TargetOpcode::G_MEMSET: {
886     LegalizeResult Result =
887         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
888     if (Result != Legalized)
889       return Result;
890     MI.eraseFromParent();
891     return Result;
892   }
893   }
894 
895   MI.eraseFromParent();
896   return Legalized;
897 }
898 
899 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
900                                                               unsigned TypeIdx,
901                                                               LLT NarrowTy) {
902   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
903   uint64_t NarrowSize = NarrowTy.getSizeInBits();
904 
905   switch (MI.getOpcode()) {
906   default:
907     return UnableToLegalize;
908   case TargetOpcode::G_IMPLICIT_DEF: {
909     Register DstReg = MI.getOperand(0).getReg();
910     LLT DstTy = MRI.getType(DstReg);
911 
912     // If SizeOp0 is not an exact multiple of NarrowSize, emit
913     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
914     // FIXME: Although this would also be legal for the general case, it causes
915     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
916     //  combines not being hit). This seems to be a problem related to the
917     //  artifact combiner.
918     if (SizeOp0 % NarrowSize != 0) {
919       LLT ImplicitTy = NarrowTy;
920       if (DstTy.isVector())
921         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
922 
923       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
924       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
925 
926       MI.eraseFromParent();
927       return Legalized;
928     }
929 
930     int NumParts = SizeOp0 / NarrowSize;
931 
932     SmallVector<Register, 2> DstRegs;
933     for (int i = 0; i < NumParts; ++i)
934       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
935 
936     if (DstTy.isVector())
937       MIRBuilder.buildBuildVector(DstReg, DstRegs);
938     else
939       MIRBuilder.buildMerge(DstReg, DstRegs);
940     MI.eraseFromParent();
941     return Legalized;
942   }
943   case TargetOpcode::G_CONSTANT: {
944     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
945     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
946     unsigned TotalSize = Ty.getSizeInBits();
947     unsigned NarrowSize = NarrowTy.getSizeInBits();
948     int NumParts = TotalSize / NarrowSize;
949 
950     SmallVector<Register, 4> PartRegs;
951     for (int I = 0; I != NumParts; ++I) {
952       unsigned Offset = I * NarrowSize;
953       auto K = MIRBuilder.buildConstant(NarrowTy,
954                                         Val.lshr(Offset).trunc(NarrowSize));
955       PartRegs.push_back(K.getReg(0));
956     }
957 
958     LLT LeftoverTy;
959     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
960     SmallVector<Register, 1> LeftoverRegs;
961     if (LeftoverBits != 0) {
962       LeftoverTy = LLT::scalar(LeftoverBits);
963       auto K = MIRBuilder.buildConstant(
964         LeftoverTy,
965         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
966       LeftoverRegs.push_back(K.getReg(0));
967     }
968 
969     insertParts(MI.getOperand(0).getReg(),
970                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
971 
972     MI.eraseFromParent();
973     return Legalized;
974   }
975   case TargetOpcode::G_SEXT:
976   case TargetOpcode::G_ZEXT:
977   case TargetOpcode::G_ANYEXT:
978     return narrowScalarExt(MI, TypeIdx, NarrowTy);
979   case TargetOpcode::G_TRUNC: {
980     if (TypeIdx != 1)
981       return UnableToLegalize;
982 
983     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
984     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
985       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
986       return UnableToLegalize;
987     }
988 
989     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
990     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
991     MI.eraseFromParent();
992     return Legalized;
993   }
994 
995   case TargetOpcode::G_FREEZE: {
996     if (TypeIdx != 0)
997       return UnableToLegalize;
998 
999     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1000     // Should widen scalar first
1001     if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0)
1002       return UnableToLegalize;
1003 
1004     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
1005     SmallVector<Register, 8> Parts;
1006     for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) {
1007       Parts.push_back(
1008           MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0));
1009     }
1010 
1011     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts);
1012     MI.eraseFromParent();
1013     return Legalized;
1014   }
1015   case TargetOpcode::G_ADD:
1016   case TargetOpcode::G_SUB:
1017   case TargetOpcode::G_SADDO:
1018   case TargetOpcode::G_SSUBO:
1019   case TargetOpcode::G_SADDE:
1020   case TargetOpcode::G_SSUBE:
1021   case TargetOpcode::G_UADDO:
1022   case TargetOpcode::G_USUBO:
1023   case TargetOpcode::G_UADDE:
1024   case TargetOpcode::G_USUBE:
1025     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_MUL:
1027   case TargetOpcode::G_UMULH:
1028     return narrowScalarMul(MI, NarrowTy);
1029   case TargetOpcode::G_EXTRACT:
1030     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
1031   case TargetOpcode::G_INSERT:
1032     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
1033   case TargetOpcode::G_LOAD: {
1034     auto &LoadMI = cast<GLoad>(MI);
1035     Register DstReg = LoadMI.getDstReg();
1036     LLT DstTy = MRI.getType(DstReg);
1037     if (DstTy.isVector())
1038       return UnableToLegalize;
1039 
1040     if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
1041       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1042       MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
1043       MIRBuilder.buildAnyExt(DstReg, TmpReg);
1044       LoadMI.eraseFromParent();
1045       return Legalized;
1046     }
1047 
1048     return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
1049   }
1050   case TargetOpcode::G_ZEXTLOAD:
1051   case TargetOpcode::G_SEXTLOAD: {
1052     auto &LoadMI = cast<GExtLoad>(MI);
1053     Register DstReg = LoadMI.getDstReg();
1054     Register PtrReg = LoadMI.getPointerReg();
1055 
1056     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1057     auto &MMO = LoadMI.getMMO();
1058     unsigned MemSize = MMO.getSizeInBits();
1059 
1060     if (MemSize == NarrowSize) {
1061       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1062     } else if (MemSize < NarrowSize) {
1063       MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
1064     } else if (MemSize > NarrowSize) {
1065       // FIXME: Need to split the load.
1066       return UnableToLegalize;
1067     }
1068 
1069     if (isa<GZExtLoad>(LoadMI))
1070       MIRBuilder.buildZExt(DstReg, TmpReg);
1071     else
1072       MIRBuilder.buildSExt(DstReg, TmpReg);
1073 
1074     LoadMI.eraseFromParent();
1075     return Legalized;
1076   }
1077   case TargetOpcode::G_STORE: {
1078     auto &StoreMI = cast<GStore>(MI);
1079 
1080     Register SrcReg = StoreMI.getValueReg();
1081     LLT SrcTy = MRI.getType(SrcReg);
1082     if (SrcTy.isVector())
1083       return UnableToLegalize;
1084 
1085     int NumParts = SizeOp0 / NarrowSize;
1086     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
1087     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
1088     if (SrcTy.isVector() && LeftoverBits != 0)
1089       return UnableToLegalize;
1090 
1091     if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
1092       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1093       MIRBuilder.buildTrunc(TmpReg, SrcReg);
1094       MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1095       StoreMI.eraseFromParent();
1096       return Legalized;
1097     }
1098 
1099     return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1100   }
1101   case TargetOpcode::G_SELECT:
1102     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1103   case TargetOpcode::G_AND:
1104   case TargetOpcode::G_OR:
1105   case TargetOpcode::G_XOR: {
1106     // Legalize bitwise operation:
1107     // A = BinOp<Ty> B, C
1108     // into:
1109     // B1, ..., BN = G_UNMERGE_VALUES B
1110     // C1, ..., CN = G_UNMERGE_VALUES C
1111     // A1 = BinOp<Ty/N> B1, C2
1112     // ...
1113     // AN = BinOp<Ty/N> BN, CN
1114     // A = G_MERGE_VALUES A1, ..., AN
1115     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1116   }
1117   case TargetOpcode::G_SHL:
1118   case TargetOpcode::G_LSHR:
1119   case TargetOpcode::G_ASHR:
1120     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1121   case TargetOpcode::G_CTLZ:
1122   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1123   case TargetOpcode::G_CTTZ:
1124   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1125   case TargetOpcode::G_CTPOP:
1126     if (TypeIdx == 1)
1127       switch (MI.getOpcode()) {
1128       case TargetOpcode::G_CTLZ:
1129       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1130         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1131       case TargetOpcode::G_CTTZ:
1132       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1133         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1134       case TargetOpcode::G_CTPOP:
1135         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1136       default:
1137         return UnableToLegalize;
1138       }
1139 
1140     Observer.changingInstr(MI);
1141     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1142     Observer.changedInstr(MI);
1143     return Legalized;
1144   case TargetOpcode::G_INTTOPTR:
1145     if (TypeIdx != 1)
1146       return UnableToLegalize;
1147 
1148     Observer.changingInstr(MI);
1149     narrowScalarSrc(MI, NarrowTy, 1);
1150     Observer.changedInstr(MI);
1151     return Legalized;
1152   case TargetOpcode::G_PTRTOINT:
1153     if (TypeIdx != 0)
1154       return UnableToLegalize;
1155 
1156     Observer.changingInstr(MI);
1157     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1158     Observer.changedInstr(MI);
1159     return Legalized;
1160   case TargetOpcode::G_PHI: {
1161     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1162     // NarrowSize.
1163     if (SizeOp0 % NarrowSize != 0)
1164       return UnableToLegalize;
1165 
1166     unsigned NumParts = SizeOp0 / NarrowSize;
1167     SmallVector<Register, 2> DstRegs(NumParts);
1168     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1169     Observer.changingInstr(MI);
1170     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1171       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1172       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1173       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1174                    SrcRegs[i / 2]);
1175     }
1176     MachineBasicBlock &MBB = *MI.getParent();
1177     MIRBuilder.setInsertPt(MBB, MI);
1178     for (unsigned i = 0; i < NumParts; ++i) {
1179       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1180       MachineInstrBuilder MIB =
1181           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1182       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1183         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1184     }
1185     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1186     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1187     Observer.changedInstr(MI);
1188     MI.eraseFromParent();
1189     return Legalized;
1190   }
1191   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1192   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1193     if (TypeIdx != 2)
1194       return UnableToLegalize;
1195 
1196     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1197     Observer.changingInstr(MI);
1198     narrowScalarSrc(MI, NarrowTy, OpIdx);
1199     Observer.changedInstr(MI);
1200     return Legalized;
1201   }
1202   case TargetOpcode::G_ICMP: {
1203     Register LHS = MI.getOperand(2).getReg();
1204     LLT SrcTy = MRI.getType(LHS);
1205     uint64_t SrcSize = SrcTy.getSizeInBits();
1206     CmpInst::Predicate Pred =
1207         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1208 
1209     // TODO: Handle the non-equality case for weird sizes.
1210     if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1211       return UnableToLegalize;
1212 
1213     LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1214     SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1215     if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1216                       LHSLeftoverRegs))
1217       return UnableToLegalize;
1218 
1219     LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1220     SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1221     if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1222                       RHSPartRegs, RHSLeftoverRegs))
1223       return UnableToLegalize;
1224 
1225     // We now have the LHS and RHS of the compare split into narrow-type
1226     // registers, plus potentially some leftover type.
1227     Register Dst = MI.getOperand(0).getReg();
1228     LLT ResTy = MRI.getType(Dst);
1229     if (ICmpInst::isEquality(Pred)) {
1230       // For each part on the LHS and RHS, keep track of the result of XOR-ing
1231       // them together. For each equal part, the result should be all 0s. For
1232       // each non-equal part, we'll get at least one 1.
1233       auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1234       SmallVector<Register, 4> Xors;
1235       for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1236         auto LHS = std::get<0>(LHSAndRHS);
1237         auto RHS = std::get<1>(LHSAndRHS);
1238         auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1239         Xors.push_back(Xor);
1240       }
1241 
1242       // Build a G_XOR for each leftover register. Each G_XOR must be widened
1243       // to the desired narrow type so that we can OR them together later.
1244       SmallVector<Register, 4> WidenedXors;
1245       for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1246         auto LHS = std::get<0>(LHSAndRHS);
1247         auto RHS = std::get<1>(LHSAndRHS);
1248         auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1249         LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1250         buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1251                             /* PadStrategy = */ TargetOpcode::G_ZEXT);
1252         Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1253       }
1254 
1255       // Now, for each part we broke up, we know if they are equal/not equal
1256       // based off the G_XOR. We can OR these all together and compare against
1257       // 0 to get the result.
1258       assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1259       auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1260       for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1261         Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1262       MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1263     } else {
1264       // TODO: Handle non-power-of-two types.
1265       assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1266       assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1267       Register LHSL = LHSPartRegs[0];
1268       Register LHSH = LHSPartRegs[1];
1269       Register RHSL = RHSPartRegs[0];
1270       Register RHSH = RHSPartRegs[1];
1271       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1272       MachineInstrBuilder CmpHEQ =
1273           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1274       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1275           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1276       MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1277     }
1278     MI.eraseFromParent();
1279     return Legalized;
1280   }
1281   case TargetOpcode::G_SEXT_INREG: {
1282     if (TypeIdx != 0)
1283       return UnableToLegalize;
1284 
1285     int64_t SizeInBits = MI.getOperand(2).getImm();
1286 
1287     // So long as the new type has more bits than the bits we're extending we
1288     // don't need to break it apart.
1289     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1290       Observer.changingInstr(MI);
1291       // We don't lose any non-extension bits by truncating the src and
1292       // sign-extending the dst.
1293       MachineOperand &MO1 = MI.getOperand(1);
1294       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1295       MO1.setReg(TruncMIB.getReg(0));
1296 
1297       MachineOperand &MO2 = MI.getOperand(0);
1298       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1299       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1300       MIRBuilder.buildSExt(MO2, DstExt);
1301       MO2.setReg(DstExt);
1302       Observer.changedInstr(MI);
1303       return Legalized;
1304     }
1305 
1306     // Break it apart. Components below the extension point are unmodified. The
1307     // component containing the extension point becomes a narrower SEXT_INREG.
1308     // Components above it are ashr'd from the component containing the
1309     // extension point.
1310     if (SizeOp0 % NarrowSize != 0)
1311       return UnableToLegalize;
1312     int NumParts = SizeOp0 / NarrowSize;
1313 
1314     // List the registers where the destination will be scattered.
1315     SmallVector<Register, 2> DstRegs;
1316     // List the registers where the source will be split.
1317     SmallVector<Register, 2> SrcRegs;
1318 
1319     // Create all the temporary registers.
1320     for (int i = 0; i < NumParts; ++i) {
1321       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1322 
1323       SrcRegs.push_back(SrcReg);
1324     }
1325 
1326     // Explode the big arguments into smaller chunks.
1327     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1328 
1329     Register AshrCstReg =
1330         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1331             .getReg(0);
1332     Register FullExtensionReg = 0;
1333     Register PartialExtensionReg = 0;
1334 
1335     // Do the operation on each small part.
1336     for (int i = 0; i < NumParts; ++i) {
1337       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1338         DstRegs.push_back(SrcRegs[i]);
1339       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1340         assert(PartialExtensionReg &&
1341                "Expected to visit partial extension before full");
1342         if (FullExtensionReg) {
1343           DstRegs.push_back(FullExtensionReg);
1344           continue;
1345         }
1346         DstRegs.push_back(
1347             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1348                 .getReg(0));
1349         FullExtensionReg = DstRegs.back();
1350       } else {
1351         DstRegs.push_back(
1352             MIRBuilder
1353                 .buildInstr(
1354                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1355                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1356                 .getReg(0));
1357         PartialExtensionReg = DstRegs.back();
1358       }
1359     }
1360 
1361     // Gather the destination registers into the final destination.
1362     Register DstReg = MI.getOperand(0).getReg();
1363     MIRBuilder.buildMerge(DstReg, DstRegs);
1364     MI.eraseFromParent();
1365     return Legalized;
1366   }
1367   case TargetOpcode::G_BSWAP:
1368   case TargetOpcode::G_BITREVERSE: {
1369     if (SizeOp0 % NarrowSize != 0)
1370       return UnableToLegalize;
1371 
1372     Observer.changingInstr(MI);
1373     SmallVector<Register, 2> SrcRegs, DstRegs;
1374     unsigned NumParts = SizeOp0 / NarrowSize;
1375     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1376 
1377     for (unsigned i = 0; i < NumParts; ++i) {
1378       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1379                                            {SrcRegs[NumParts - 1 - i]});
1380       DstRegs.push_back(DstPart.getReg(0));
1381     }
1382 
1383     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1384 
1385     Observer.changedInstr(MI);
1386     MI.eraseFromParent();
1387     return Legalized;
1388   }
1389   case TargetOpcode::G_PTR_ADD:
1390   case TargetOpcode::G_PTRMASK: {
1391     if (TypeIdx != 1)
1392       return UnableToLegalize;
1393     Observer.changingInstr(MI);
1394     narrowScalarSrc(MI, NarrowTy, 2);
1395     Observer.changedInstr(MI);
1396     return Legalized;
1397   }
1398   case TargetOpcode::G_FPTOUI:
1399   case TargetOpcode::G_FPTOSI:
1400     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1401   case TargetOpcode::G_FPEXT:
1402     if (TypeIdx != 0)
1403       return UnableToLegalize;
1404     Observer.changingInstr(MI);
1405     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1406     Observer.changedInstr(MI);
1407     return Legalized;
1408   }
1409 }
1410 
1411 Register LegalizerHelper::coerceToScalar(Register Val) {
1412   LLT Ty = MRI.getType(Val);
1413   if (Ty.isScalar())
1414     return Val;
1415 
1416   const DataLayout &DL = MIRBuilder.getDataLayout();
1417   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1418   if (Ty.isPointer()) {
1419     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1420       return Register();
1421     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1422   }
1423 
1424   Register NewVal = Val;
1425 
1426   assert(Ty.isVector());
1427   LLT EltTy = Ty.getElementType();
1428   if (EltTy.isPointer())
1429     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1430   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1431 }
1432 
1433 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1434                                      unsigned OpIdx, unsigned ExtOpcode) {
1435   MachineOperand &MO = MI.getOperand(OpIdx);
1436   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1437   MO.setReg(ExtB.getReg(0));
1438 }
1439 
1440 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1441                                       unsigned OpIdx) {
1442   MachineOperand &MO = MI.getOperand(OpIdx);
1443   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1444   MO.setReg(ExtB.getReg(0));
1445 }
1446 
1447 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1448                                      unsigned OpIdx, unsigned TruncOpcode) {
1449   MachineOperand &MO = MI.getOperand(OpIdx);
1450   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1451   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1452   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1453   MO.setReg(DstExt);
1454 }
1455 
1456 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1457                                       unsigned OpIdx, unsigned ExtOpcode) {
1458   MachineOperand &MO = MI.getOperand(OpIdx);
1459   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1460   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1461   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1462   MO.setReg(DstTrunc);
1463 }
1464 
1465 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1466                                             unsigned OpIdx) {
1467   MachineOperand &MO = MI.getOperand(OpIdx);
1468   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1469   Register Dst = MO.getReg();
1470   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1471   MO.setReg(DstExt);
1472   MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt);
1473 }
1474 
1475 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1476                                             unsigned OpIdx) {
1477   MachineOperand &MO = MI.getOperand(OpIdx);
1478   SmallVector<Register, 8> Regs;
1479   MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0));
1480 }
1481 
1482 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1483   MachineOperand &Op = MI.getOperand(OpIdx);
1484   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1485 }
1486 
1487 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1488   MachineOperand &MO = MI.getOperand(OpIdx);
1489   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1490   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1491   MIRBuilder.buildBitcast(MO, CastDst);
1492   MO.setReg(CastDst);
1493 }
1494 
1495 LegalizerHelper::LegalizeResult
1496 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1497                                         LLT WideTy) {
1498   if (TypeIdx != 1)
1499     return UnableToLegalize;
1500 
1501   Register DstReg = MI.getOperand(0).getReg();
1502   LLT DstTy = MRI.getType(DstReg);
1503   if (DstTy.isVector())
1504     return UnableToLegalize;
1505 
1506   Register Src1 = MI.getOperand(1).getReg();
1507   LLT SrcTy = MRI.getType(Src1);
1508   const int DstSize = DstTy.getSizeInBits();
1509   const int SrcSize = SrcTy.getSizeInBits();
1510   const int WideSize = WideTy.getSizeInBits();
1511   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1512 
1513   unsigned NumOps = MI.getNumOperands();
1514   unsigned NumSrc = MI.getNumOperands() - 1;
1515   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1516 
1517   if (WideSize >= DstSize) {
1518     // Directly pack the bits in the target type.
1519     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1520 
1521     for (unsigned I = 2; I != NumOps; ++I) {
1522       const unsigned Offset = (I - 1) * PartSize;
1523 
1524       Register SrcReg = MI.getOperand(I).getReg();
1525       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1526 
1527       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1528 
1529       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1530         MRI.createGenericVirtualRegister(WideTy);
1531 
1532       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1533       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1534       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1535       ResultReg = NextResult;
1536     }
1537 
1538     if (WideSize > DstSize)
1539       MIRBuilder.buildTrunc(DstReg, ResultReg);
1540     else if (DstTy.isPointer())
1541       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1542 
1543     MI.eraseFromParent();
1544     return Legalized;
1545   }
1546 
1547   // Unmerge the original values to the GCD type, and recombine to the next
1548   // multiple greater than the original type.
1549   //
1550   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1551   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1552   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1553   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1554   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1555   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1556   // %12:_(s12) = G_MERGE_VALUES %10, %11
1557   //
1558   // Padding with undef if necessary:
1559   //
1560   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1561   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1562   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1563   // %7:_(s2) = G_IMPLICIT_DEF
1564   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1565   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1566   // %10:_(s12) = G_MERGE_VALUES %8, %9
1567 
1568   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1569   LLT GCDTy = LLT::scalar(GCD);
1570 
1571   SmallVector<Register, 8> Parts;
1572   SmallVector<Register, 8> NewMergeRegs;
1573   SmallVector<Register, 8> Unmerges;
1574   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1575 
1576   // Decompose the original operands if they don't evenly divide.
1577   for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
1578     Register SrcReg = MO.getReg();
1579     if (GCD == SrcSize) {
1580       Unmerges.push_back(SrcReg);
1581     } else {
1582       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1583       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1584         Unmerges.push_back(Unmerge.getReg(J));
1585     }
1586   }
1587 
1588   // Pad with undef to the next size that is a multiple of the requested size.
1589   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1590     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1591     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1592       Unmerges.push_back(UndefReg);
1593   }
1594 
1595   const int PartsPerGCD = WideSize / GCD;
1596 
1597   // Build merges of each piece.
1598   ArrayRef<Register> Slicer(Unmerges);
1599   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1600     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1601     NewMergeRegs.push_back(Merge.getReg(0));
1602   }
1603 
1604   // A truncate may be necessary if the requested type doesn't evenly divide the
1605   // original result type.
1606   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1607     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1608   } else {
1609     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1610     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1611   }
1612 
1613   MI.eraseFromParent();
1614   return Legalized;
1615 }
1616 
1617 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1618   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1619   LLT OrigTy = MRI.getType(OrigReg);
1620   LLT LCMTy = getLCMType(WideTy, OrigTy);
1621 
1622   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1623   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1624 
1625   Register UnmergeSrc = WideReg;
1626 
1627   // Create a merge to the LCM type, padding with undef
1628   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1629   // =>
1630   // %1:_(<4 x s32>) = G_FOO
1631   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1632   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1633   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1634   if (NumMergeParts > 1) {
1635     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1636     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1637     MergeParts[0] = WideReg;
1638     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1639   }
1640 
1641   // Unmerge to the original register and pad with dead defs.
1642   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1643   UnmergeResults[0] = OrigReg;
1644   for (int I = 1; I != NumUnmergeParts; ++I)
1645     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1646 
1647   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1648   return WideReg;
1649 }
1650 
1651 LegalizerHelper::LegalizeResult
1652 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1653                                           LLT WideTy) {
1654   if (TypeIdx != 0)
1655     return UnableToLegalize;
1656 
1657   int NumDst = MI.getNumOperands() - 1;
1658   Register SrcReg = MI.getOperand(NumDst).getReg();
1659   LLT SrcTy = MRI.getType(SrcReg);
1660   if (SrcTy.isVector())
1661     return UnableToLegalize;
1662 
1663   Register Dst0Reg = MI.getOperand(0).getReg();
1664   LLT DstTy = MRI.getType(Dst0Reg);
1665   if (!DstTy.isScalar())
1666     return UnableToLegalize;
1667 
1668   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1669     if (SrcTy.isPointer()) {
1670       const DataLayout &DL = MIRBuilder.getDataLayout();
1671       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1672         LLVM_DEBUG(
1673             dbgs() << "Not casting non-integral address space integer\n");
1674         return UnableToLegalize;
1675       }
1676 
1677       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1678       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1679     }
1680 
1681     // Widen SrcTy to WideTy. This does not affect the result, but since the
1682     // user requested this size, it is probably better handled than SrcTy and
1683     // should reduce the total number of legalization artifacts.
1684     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1685       SrcTy = WideTy;
1686       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1687     }
1688 
1689     // Theres no unmerge type to target. Directly extract the bits from the
1690     // source type
1691     unsigned DstSize = DstTy.getSizeInBits();
1692 
1693     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1694     for (int I = 1; I != NumDst; ++I) {
1695       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1696       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1697       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1698     }
1699 
1700     MI.eraseFromParent();
1701     return Legalized;
1702   }
1703 
1704   // Extend the source to a wider type.
1705   LLT LCMTy = getLCMType(SrcTy, WideTy);
1706 
1707   Register WideSrc = SrcReg;
1708   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1709     // TODO: If this is an integral address space, cast to integer and anyext.
1710     if (SrcTy.isPointer()) {
1711       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1712       return UnableToLegalize;
1713     }
1714 
1715     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1716   }
1717 
1718   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1719 
1720   // Create a sequence of unmerges and merges to the original results. Since we
1721   // may have widened the source, we will need to pad the results with dead defs
1722   // to cover the source register.
1723   // e.g. widen s48 to s64:
1724   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1725   //
1726   // =>
1727   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1728   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1729   //  ; unpack to GCD type, with extra dead defs
1730   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1731   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1732   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1733   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1734   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1735   const LLT GCDTy = getGCDType(WideTy, DstTy);
1736   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1737   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1738 
1739   // Directly unmerge to the destination without going through a GCD type
1740   // if possible
1741   if (PartsPerRemerge == 1) {
1742     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1743 
1744     for (int I = 0; I != NumUnmerge; ++I) {
1745       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1746 
1747       for (int J = 0; J != PartsPerUnmerge; ++J) {
1748         int Idx = I * PartsPerUnmerge + J;
1749         if (Idx < NumDst)
1750           MIB.addDef(MI.getOperand(Idx).getReg());
1751         else {
1752           // Create dead def for excess components.
1753           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1754         }
1755       }
1756 
1757       MIB.addUse(Unmerge.getReg(I));
1758     }
1759   } else {
1760     SmallVector<Register, 16> Parts;
1761     for (int J = 0; J != NumUnmerge; ++J)
1762       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1763 
1764     SmallVector<Register, 8> RemergeParts;
1765     for (int I = 0; I != NumDst; ++I) {
1766       for (int J = 0; J < PartsPerRemerge; ++J) {
1767         const int Idx = I * PartsPerRemerge + J;
1768         RemergeParts.emplace_back(Parts[Idx]);
1769       }
1770 
1771       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1772       RemergeParts.clear();
1773     }
1774   }
1775 
1776   MI.eraseFromParent();
1777   return Legalized;
1778 }
1779 
1780 LegalizerHelper::LegalizeResult
1781 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1782                                     LLT WideTy) {
1783   Register DstReg = MI.getOperand(0).getReg();
1784   Register SrcReg = MI.getOperand(1).getReg();
1785   LLT SrcTy = MRI.getType(SrcReg);
1786 
1787   LLT DstTy = MRI.getType(DstReg);
1788   unsigned Offset = MI.getOperand(2).getImm();
1789 
1790   if (TypeIdx == 0) {
1791     if (SrcTy.isVector() || DstTy.isVector())
1792       return UnableToLegalize;
1793 
1794     SrcOp Src(SrcReg);
1795     if (SrcTy.isPointer()) {
1796       // Extracts from pointers can be handled only if they are really just
1797       // simple integers.
1798       const DataLayout &DL = MIRBuilder.getDataLayout();
1799       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1800         return UnableToLegalize;
1801 
1802       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1803       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1804       SrcTy = SrcAsIntTy;
1805     }
1806 
1807     if (DstTy.isPointer())
1808       return UnableToLegalize;
1809 
1810     if (Offset == 0) {
1811       // Avoid a shift in the degenerate case.
1812       MIRBuilder.buildTrunc(DstReg,
1813                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1814       MI.eraseFromParent();
1815       return Legalized;
1816     }
1817 
1818     // Do a shift in the source type.
1819     LLT ShiftTy = SrcTy;
1820     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1821       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1822       ShiftTy = WideTy;
1823     }
1824 
1825     auto LShr = MIRBuilder.buildLShr(
1826       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1827     MIRBuilder.buildTrunc(DstReg, LShr);
1828     MI.eraseFromParent();
1829     return Legalized;
1830   }
1831 
1832   if (SrcTy.isScalar()) {
1833     Observer.changingInstr(MI);
1834     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1835     Observer.changedInstr(MI);
1836     return Legalized;
1837   }
1838 
1839   if (!SrcTy.isVector())
1840     return UnableToLegalize;
1841 
1842   if (DstTy != SrcTy.getElementType())
1843     return UnableToLegalize;
1844 
1845   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1846     return UnableToLegalize;
1847 
1848   Observer.changingInstr(MI);
1849   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1850 
1851   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1852                           Offset);
1853   widenScalarDst(MI, WideTy.getScalarType(), 0);
1854   Observer.changedInstr(MI);
1855   return Legalized;
1856 }
1857 
1858 LegalizerHelper::LegalizeResult
1859 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1860                                    LLT WideTy) {
1861   if (TypeIdx != 0 || WideTy.isVector())
1862     return UnableToLegalize;
1863   Observer.changingInstr(MI);
1864   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1865   widenScalarDst(MI, WideTy);
1866   Observer.changedInstr(MI);
1867   return Legalized;
1868 }
1869 
1870 LegalizerHelper::LegalizeResult
1871 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1872                                            LLT WideTy) {
1873   unsigned Opcode;
1874   unsigned ExtOpcode;
1875   Optional<Register> CarryIn = None;
1876   switch (MI.getOpcode()) {
1877   default:
1878     llvm_unreachable("Unexpected opcode!");
1879   case TargetOpcode::G_SADDO:
1880     Opcode = TargetOpcode::G_ADD;
1881     ExtOpcode = TargetOpcode::G_SEXT;
1882     break;
1883   case TargetOpcode::G_SSUBO:
1884     Opcode = TargetOpcode::G_SUB;
1885     ExtOpcode = TargetOpcode::G_SEXT;
1886     break;
1887   case TargetOpcode::G_UADDO:
1888     Opcode = TargetOpcode::G_ADD;
1889     ExtOpcode = TargetOpcode::G_ZEXT;
1890     break;
1891   case TargetOpcode::G_USUBO:
1892     Opcode = TargetOpcode::G_SUB;
1893     ExtOpcode = TargetOpcode::G_ZEXT;
1894     break;
1895   case TargetOpcode::G_SADDE:
1896     Opcode = TargetOpcode::G_UADDE;
1897     ExtOpcode = TargetOpcode::G_SEXT;
1898     CarryIn = MI.getOperand(4).getReg();
1899     break;
1900   case TargetOpcode::G_SSUBE:
1901     Opcode = TargetOpcode::G_USUBE;
1902     ExtOpcode = TargetOpcode::G_SEXT;
1903     CarryIn = MI.getOperand(4).getReg();
1904     break;
1905   case TargetOpcode::G_UADDE:
1906     Opcode = TargetOpcode::G_UADDE;
1907     ExtOpcode = TargetOpcode::G_ZEXT;
1908     CarryIn = MI.getOperand(4).getReg();
1909     break;
1910   case TargetOpcode::G_USUBE:
1911     Opcode = TargetOpcode::G_USUBE;
1912     ExtOpcode = TargetOpcode::G_ZEXT;
1913     CarryIn = MI.getOperand(4).getReg();
1914     break;
1915   }
1916 
1917   if (TypeIdx == 1) {
1918     unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false);
1919 
1920     Observer.changingInstr(MI);
1921     widenScalarDst(MI, WideTy, 1);
1922     if (CarryIn)
1923       widenScalarSrc(MI, WideTy, 4, BoolExtOp);
1924 
1925     Observer.changedInstr(MI);
1926     return Legalized;
1927   }
1928 
1929   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1930   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1931   // Do the arithmetic in the larger type.
1932   Register NewOp;
1933   if (CarryIn) {
1934     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1935     NewOp = MIRBuilder
1936                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1937                             {LHSExt, RHSExt, *CarryIn})
1938                 .getReg(0);
1939   } else {
1940     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1941   }
1942   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1943   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1944   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1945   // There is no overflow if the ExtOp is the same as NewOp.
1946   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1947   // Now trunc the NewOp to the original result.
1948   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1949   MI.eraseFromParent();
1950   return Legalized;
1951 }
1952 
1953 LegalizerHelper::LegalizeResult
1954 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1955                                          LLT WideTy) {
1956   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1957                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1958                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1959   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1960                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1961   // We can convert this to:
1962   //   1. Any extend iN to iM
1963   //   2. SHL by M-N
1964   //   3. [US][ADD|SUB|SHL]SAT
1965   //   4. L/ASHR by M-N
1966   //
1967   // It may be more efficient to lower this to a min and a max operation in
1968   // the higher precision arithmetic if the promoted operation isn't legal,
1969   // but this decision is up to the target's lowering request.
1970   Register DstReg = MI.getOperand(0).getReg();
1971 
1972   unsigned NewBits = WideTy.getScalarSizeInBits();
1973   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1974 
1975   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1976   // must not left shift the RHS to preserve the shift amount.
1977   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1978   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1979                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1980   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1981   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1982   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1983 
1984   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1985                                         {ShiftL, ShiftR}, MI.getFlags());
1986 
1987   // Use a shift that will preserve the number of sign bits when the trunc is
1988   // folded away.
1989   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1990                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1991 
1992   MIRBuilder.buildTrunc(DstReg, Result);
1993   MI.eraseFromParent();
1994   return Legalized;
1995 }
1996 
1997 LegalizerHelper::LegalizeResult
1998 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1999                                  LLT WideTy) {
2000   if (TypeIdx == 1) {
2001     Observer.changingInstr(MI);
2002     widenScalarDst(MI, WideTy, 1);
2003     Observer.changedInstr(MI);
2004     return Legalized;
2005   }
2006 
2007   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
2008   Register Result = MI.getOperand(0).getReg();
2009   Register OriginalOverflow = MI.getOperand(1).getReg();
2010   Register LHS = MI.getOperand(2).getReg();
2011   Register RHS = MI.getOperand(3).getReg();
2012   LLT SrcTy = MRI.getType(LHS);
2013   LLT OverflowTy = MRI.getType(OriginalOverflow);
2014   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
2015 
2016   // To determine if the result overflowed in the larger type, we extend the
2017   // input to the larger type, do the multiply (checking if it overflows),
2018   // then also check the high bits of the result to see if overflow happened
2019   // there.
2020   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2021   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
2022   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
2023 
2024   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
2025                                     {LeftOperand, RightOperand});
2026   auto Mul = Mulo->getOperand(0);
2027   MIRBuilder.buildTrunc(Result, Mul);
2028 
2029   MachineInstrBuilder ExtResult;
2030   // Overflow occurred if it occurred in the larger type, or if the high part
2031   // of the result does not zero/sign-extend the low part.  Check this second
2032   // possibility first.
2033   if (IsSigned) {
2034     // For signed, overflow occurred when the high part does not sign-extend
2035     // the low part.
2036     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
2037   } else {
2038     // Unsigned overflow occurred when the high part does not zero-extend the
2039     // low part.
2040     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
2041   }
2042 
2043   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
2044   // so we don't need to check the overflow result of larger type Mulo.
2045   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
2046     auto Overflow =
2047         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
2048     // Finally check if the multiplication in the larger type itself overflowed.
2049     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
2050   } else {
2051     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
2052   }
2053   MI.eraseFromParent();
2054   return Legalized;
2055 }
2056 
2057 LegalizerHelper::LegalizeResult
2058 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
2059   switch (MI.getOpcode()) {
2060   default:
2061     return UnableToLegalize;
2062   case TargetOpcode::G_ATOMICRMW_XCHG:
2063   case TargetOpcode::G_ATOMICRMW_ADD:
2064   case TargetOpcode::G_ATOMICRMW_SUB:
2065   case TargetOpcode::G_ATOMICRMW_AND:
2066   case TargetOpcode::G_ATOMICRMW_OR:
2067   case TargetOpcode::G_ATOMICRMW_XOR:
2068   case TargetOpcode::G_ATOMICRMW_MIN:
2069   case TargetOpcode::G_ATOMICRMW_MAX:
2070   case TargetOpcode::G_ATOMICRMW_UMIN:
2071   case TargetOpcode::G_ATOMICRMW_UMAX:
2072     assert(TypeIdx == 0 && "atomicrmw with second scalar type");
2073     Observer.changingInstr(MI);
2074     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2075     widenScalarDst(MI, WideTy, 0);
2076     Observer.changedInstr(MI);
2077     return Legalized;
2078   case TargetOpcode::G_ATOMIC_CMPXCHG:
2079     assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
2080     Observer.changingInstr(MI);
2081     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2082     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2083     widenScalarDst(MI, WideTy, 0);
2084     Observer.changedInstr(MI);
2085     return Legalized;
2086   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
2087     if (TypeIdx == 0) {
2088       Observer.changingInstr(MI);
2089       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2090       widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2091       widenScalarDst(MI, WideTy, 0);
2092       Observer.changedInstr(MI);
2093       return Legalized;
2094     }
2095     assert(TypeIdx == 1 &&
2096            "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
2097     Observer.changingInstr(MI);
2098     widenScalarDst(MI, WideTy, 1);
2099     Observer.changedInstr(MI);
2100     return Legalized;
2101   case TargetOpcode::G_EXTRACT:
2102     return widenScalarExtract(MI, TypeIdx, WideTy);
2103   case TargetOpcode::G_INSERT:
2104     return widenScalarInsert(MI, TypeIdx, WideTy);
2105   case TargetOpcode::G_MERGE_VALUES:
2106     return widenScalarMergeValues(MI, TypeIdx, WideTy);
2107   case TargetOpcode::G_UNMERGE_VALUES:
2108     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2109   case TargetOpcode::G_SADDO:
2110   case TargetOpcode::G_SSUBO:
2111   case TargetOpcode::G_UADDO:
2112   case TargetOpcode::G_USUBO:
2113   case TargetOpcode::G_SADDE:
2114   case TargetOpcode::G_SSUBE:
2115   case TargetOpcode::G_UADDE:
2116   case TargetOpcode::G_USUBE:
2117     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2118   case TargetOpcode::G_UMULO:
2119   case TargetOpcode::G_SMULO:
2120     return widenScalarMulo(MI, TypeIdx, WideTy);
2121   case TargetOpcode::G_SADDSAT:
2122   case TargetOpcode::G_SSUBSAT:
2123   case TargetOpcode::G_SSHLSAT:
2124   case TargetOpcode::G_UADDSAT:
2125   case TargetOpcode::G_USUBSAT:
2126   case TargetOpcode::G_USHLSAT:
2127     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2128   case TargetOpcode::G_CTTZ:
2129   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2130   case TargetOpcode::G_CTLZ:
2131   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2132   case TargetOpcode::G_CTPOP: {
2133     if (TypeIdx == 0) {
2134       Observer.changingInstr(MI);
2135       widenScalarDst(MI, WideTy, 0);
2136       Observer.changedInstr(MI);
2137       return Legalized;
2138     }
2139 
2140     Register SrcReg = MI.getOperand(1).getReg();
2141 
2142     // First extend the input.
2143     unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ ||
2144                               MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF
2145                           ? TargetOpcode::G_ANYEXT
2146                           : TargetOpcode::G_ZEXT;
2147     auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg});
2148     LLT CurTy = MRI.getType(SrcReg);
2149     unsigned NewOpc = MI.getOpcode();
2150     if (NewOpc == TargetOpcode::G_CTTZ) {
2151       // The count is the same in the larger type except if the original
2152       // value was zero.  This can be handled by setting the bit just off
2153       // the top of the original type.
2154       auto TopBit =
2155           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2156       MIBSrc = MIRBuilder.buildOr(
2157         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2158       // Now we know the operand is non-zero, use the more relaxed opcode.
2159       NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF;
2160     }
2161 
2162     // Perform the operation at the larger size.
2163     auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc});
2164     // This is already the correct result for CTPOP and CTTZs
2165     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
2166         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2167       // The correct result is NewOp - (Difference in widety and current ty).
2168       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2169       MIBNewOp = MIRBuilder.buildSub(
2170           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2171     }
2172 
2173     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2174     MI.eraseFromParent();
2175     return Legalized;
2176   }
2177   case TargetOpcode::G_BSWAP: {
2178     Observer.changingInstr(MI);
2179     Register DstReg = MI.getOperand(0).getReg();
2180 
2181     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2182     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2183     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2184     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2185 
2186     MI.getOperand(0).setReg(DstExt);
2187 
2188     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2189 
2190     LLT Ty = MRI.getType(DstReg);
2191     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2192     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2193     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2194 
2195     MIRBuilder.buildTrunc(DstReg, ShrReg);
2196     Observer.changedInstr(MI);
2197     return Legalized;
2198   }
2199   case TargetOpcode::G_BITREVERSE: {
2200     Observer.changingInstr(MI);
2201 
2202     Register DstReg = MI.getOperand(0).getReg();
2203     LLT Ty = MRI.getType(DstReg);
2204     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2205 
2206     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2207     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2208     MI.getOperand(0).setReg(DstExt);
2209     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2210 
2211     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2212     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2213     MIRBuilder.buildTrunc(DstReg, Shift);
2214     Observer.changedInstr(MI);
2215     return Legalized;
2216   }
2217   case TargetOpcode::G_FREEZE:
2218     Observer.changingInstr(MI);
2219     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2220     widenScalarDst(MI, WideTy);
2221     Observer.changedInstr(MI);
2222     return Legalized;
2223 
2224   case TargetOpcode::G_ABS:
2225     Observer.changingInstr(MI);
2226     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2227     widenScalarDst(MI, WideTy);
2228     Observer.changedInstr(MI);
2229     return Legalized;
2230 
2231   case TargetOpcode::G_ADD:
2232   case TargetOpcode::G_AND:
2233   case TargetOpcode::G_MUL:
2234   case TargetOpcode::G_OR:
2235   case TargetOpcode::G_XOR:
2236   case TargetOpcode::G_SUB:
2237     // Perform operation at larger width (any extension is fines here, high bits
2238     // don't affect the result) and then truncate the result back to the
2239     // original type.
2240     Observer.changingInstr(MI);
2241     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2242     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2243     widenScalarDst(MI, WideTy);
2244     Observer.changedInstr(MI);
2245     return Legalized;
2246 
2247   case TargetOpcode::G_SBFX:
2248   case TargetOpcode::G_UBFX:
2249     Observer.changingInstr(MI);
2250 
2251     if (TypeIdx == 0) {
2252       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2253       widenScalarDst(MI, WideTy);
2254     } else {
2255       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2256       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2257     }
2258 
2259     Observer.changedInstr(MI);
2260     return Legalized;
2261 
2262   case TargetOpcode::G_SHL:
2263     Observer.changingInstr(MI);
2264 
2265     if (TypeIdx == 0) {
2266       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2267       widenScalarDst(MI, WideTy);
2268     } else {
2269       assert(TypeIdx == 1);
2270       // The "number of bits to shift" operand must preserve its value as an
2271       // unsigned integer:
2272       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2273     }
2274 
2275     Observer.changedInstr(MI);
2276     return Legalized;
2277 
2278   case TargetOpcode::G_SDIV:
2279   case TargetOpcode::G_SREM:
2280   case TargetOpcode::G_SMIN:
2281   case TargetOpcode::G_SMAX:
2282     Observer.changingInstr(MI);
2283     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2284     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2285     widenScalarDst(MI, WideTy);
2286     Observer.changedInstr(MI);
2287     return Legalized;
2288 
2289   case TargetOpcode::G_SDIVREM:
2290     Observer.changingInstr(MI);
2291     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2292     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2293     widenScalarDst(MI, WideTy);
2294     widenScalarDst(MI, WideTy, 1);
2295     Observer.changedInstr(MI);
2296     return Legalized;
2297 
2298   case TargetOpcode::G_ASHR:
2299   case TargetOpcode::G_LSHR:
2300     Observer.changingInstr(MI);
2301 
2302     if (TypeIdx == 0) {
2303       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2304         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2305 
2306       widenScalarSrc(MI, WideTy, 1, CvtOp);
2307       widenScalarDst(MI, WideTy);
2308     } else {
2309       assert(TypeIdx == 1);
2310       // The "number of bits to shift" operand must preserve its value as an
2311       // unsigned integer:
2312       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2313     }
2314 
2315     Observer.changedInstr(MI);
2316     return Legalized;
2317   case TargetOpcode::G_UDIV:
2318   case TargetOpcode::G_UREM:
2319   case TargetOpcode::G_UMIN:
2320   case TargetOpcode::G_UMAX:
2321     Observer.changingInstr(MI);
2322     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2323     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2324     widenScalarDst(MI, WideTy);
2325     Observer.changedInstr(MI);
2326     return Legalized;
2327 
2328   case TargetOpcode::G_UDIVREM:
2329     Observer.changingInstr(MI);
2330     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2331     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2332     widenScalarDst(MI, WideTy);
2333     widenScalarDst(MI, WideTy, 1);
2334     Observer.changedInstr(MI);
2335     return Legalized;
2336 
2337   case TargetOpcode::G_SELECT:
2338     Observer.changingInstr(MI);
2339     if (TypeIdx == 0) {
2340       // Perform operation at larger width (any extension is fine here, high
2341       // bits don't affect the result) and then truncate the result back to the
2342       // original type.
2343       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2344       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2345       widenScalarDst(MI, WideTy);
2346     } else {
2347       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2348       // Explicit extension is required here since high bits affect the result.
2349       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2350     }
2351     Observer.changedInstr(MI);
2352     return Legalized;
2353 
2354   case TargetOpcode::G_FPTOSI:
2355   case TargetOpcode::G_FPTOUI:
2356     Observer.changingInstr(MI);
2357 
2358     if (TypeIdx == 0)
2359       widenScalarDst(MI, WideTy);
2360     else
2361       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2362 
2363     Observer.changedInstr(MI);
2364     return Legalized;
2365   case TargetOpcode::G_SITOFP:
2366     Observer.changingInstr(MI);
2367 
2368     if (TypeIdx == 0)
2369       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2370     else
2371       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2372 
2373     Observer.changedInstr(MI);
2374     return Legalized;
2375   case TargetOpcode::G_UITOFP:
2376     Observer.changingInstr(MI);
2377 
2378     if (TypeIdx == 0)
2379       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2380     else
2381       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2382 
2383     Observer.changedInstr(MI);
2384     return Legalized;
2385   case TargetOpcode::G_LOAD:
2386   case TargetOpcode::G_SEXTLOAD:
2387   case TargetOpcode::G_ZEXTLOAD:
2388     Observer.changingInstr(MI);
2389     widenScalarDst(MI, WideTy);
2390     Observer.changedInstr(MI);
2391     return Legalized;
2392 
2393   case TargetOpcode::G_STORE: {
2394     if (TypeIdx != 0)
2395       return UnableToLegalize;
2396 
2397     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2398     if (!Ty.isScalar())
2399       return UnableToLegalize;
2400 
2401     Observer.changingInstr(MI);
2402 
2403     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2404       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2405     widenScalarSrc(MI, WideTy, 0, ExtType);
2406 
2407     Observer.changedInstr(MI);
2408     return Legalized;
2409   }
2410   case TargetOpcode::G_CONSTANT: {
2411     MachineOperand &SrcMO = MI.getOperand(1);
2412     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2413     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2414         MRI.getType(MI.getOperand(0).getReg()));
2415     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2416             ExtOpc == TargetOpcode::G_ANYEXT) &&
2417            "Illegal Extend");
2418     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2419     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2420                            ? SrcVal.sext(WideTy.getSizeInBits())
2421                            : SrcVal.zext(WideTy.getSizeInBits());
2422     Observer.changingInstr(MI);
2423     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2424 
2425     widenScalarDst(MI, WideTy);
2426     Observer.changedInstr(MI);
2427     return Legalized;
2428   }
2429   case TargetOpcode::G_FCONSTANT: {
2430     MachineOperand &SrcMO = MI.getOperand(1);
2431     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2432     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2433     bool LosesInfo;
2434     switch (WideTy.getSizeInBits()) {
2435     case 32:
2436       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2437                   &LosesInfo);
2438       break;
2439     case 64:
2440       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2441                   &LosesInfo);
2442       break;
2443     default:
2444       return UnableToLegalize;
2445     }
2446 
2447     assert(!LosesInfo && "extend should always be lossless");
2448 
2449     Observer.changingInstr(MI);
2450     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2451 
2452     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2453     Observer.changedInstr(MI);
2454     return Legalized;
2455   }
2456   case TargetOpcode::G_IMPLICIT_DEF: {
2457     Observer.changingInstr(MI);
2458     widenScalarDst(MI, WideTy);
2459     Observer.changedInstr(MI);
2460     return Legalized;
2461   }
2462   case TargetOpcode::G_BRCOND:
2463     Observer.changingInstr(MI);
2464     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2465     Observer.changedInstr(MI);
2466     return Legalized;
2467 
2468   case TargetOpcode::G_FCMP:
2469     Observer.changingInstr(MI);
2470     if (TypeIdx == 0)
2471       widenScalarDst(MI, WideTy);
2472     else {
2473       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2474       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2475     }
2476     Observer.changedInstr(MI);
2477     return Legalized;
2478 
2479   case TargetOpcode::G_ICMP:
2480     Observer.changingInstr(MI);
2481     if (TypeIdx == 0)
2482       widenScalarDst(MI, WideTy);
2483     else {
2484       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2485                                MI.getOperand(1).getPredicate()))
2486                                ? TargetOpcode::G_SEXT
2487                                : TargetOpcode::G_ZEXT;
2488       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2489       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2490     }
2491     Observer.changedInstr(MI);
2492     return Legalized;
2493 
2494   case TargetOpcode::G_PTR_ADD:
2495     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2496     Observer.changingInstr(MI);
2497     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2498     Observer.changedInstr(MI);
2499     return Legalized;
2500 
2501   case TargetOpcode::G_PHI: {
2502     assert(TypeIdx == 0 && "Expecting only Idx 0");
2503 
2504     Observer.changingInstr(MI);
2505     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2506       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2507       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2508       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2509     }
2510 
2511     MachineBasicBlock &MBB = *MI.getParent();
2512     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2513     widenScalarDst(MI, WideTy);
2514     Observer.changedInstr(MI);
2515     return Legalized;
2516   }
2517   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2518     if (TypeIdx == 0) {
2519       Register VecReg = MI.getOperand(1).getReg();
2520       LLT VecTy = MRI.getType(VecReg);
2521       Observer.changingInstr(MI);
2522 
2523       widenScalarSrc(
2524           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2525           TargetOpcode::G_ANYEXT);
2526 
2527       widenScalarDst(MI, WideTy, 0);
2528       Observer.changedInstr(MI);
2529       return Legalized;
2530     }
2531 
2532     if (TypeIdx != 2)
2533       return UnableToLegalize;
2534     Observer.changingInstr(MI);
2535     // TODO: Probably should be zext
2536     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2537     Observer.changedInstr(MI);
2538     return Legalized;
2539   }
2540   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2541     if (TypeIdx == 1) {
2542       Observer.changingInstr(MI);
2543 
2544       Register VecReg = MI.getOperand(1).getReg();
2545       LLT VecTy = MRI.getType(VecReg);
2546       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2547 
2548       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2549       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2550       widenScalarDst(MI, WideVecTy, 0);
2551       Observer.changedInstr(MI);
2552       return Legalized;
2553     }
2554 
2555     if (TypeIdx == 2) {
2556       Observer.changingInstr(MI);
2557       // TODO: Probably should be zext
2558       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2559       Observer.changedInstr(MI);
2560       return Legalized;
2561     }
2562 
2563     return UnableToLegalize;
2564   }
2565   case TargetOpcode::G_FADD:
2566   case TargetOpcode::G_FMUL:
2567   case TargetOpcode::G_FSUB:
2568   case TargetOpcode::G_FMA:
2569   case TargetOpcode::G_FMAD:
2570   case TargetOpcode::G_FNEG:
2571   case TargetOpcode::G_FABS:
2572   case TargetOpcode::G_FCANONICALIZE:
2573   case TargetOpcode::G_FMINNUM:
2574   case TargetOpcode::G_FMAXNUM:
2575   case TargetOpcode::G_FMINNUM_IEEE:
2576   case TargetOpcode::G_FMAXNUM_IEEE:
2577   case TargetOpcode::G_FMINIMUM:
2578   case TargetOpcode::G_FMAXIMUM:
2579   case TargetOpcode::G_FDIV:
2580   case TargetOpcode::G_FREM:
2581   case TargetOpcode::G_FCEIL:
2582   case TargetOpcode::G_FFLOOR:
2583   case TargetOpcode::G_FCOS:
2584   case TargetOpcode::G_FSIN:
2585   case TargetOpcode::G_FLOG10:
2586   case TargetOpcode::G_FLOG:
2587   case TargetOpcode::G_FLOG2:
2588   case TargetOpcode::G_FRINT:
2589   case TargetOpcode::G_FNEARBYINT:
2590   case TargetOpcode::G_FSQRT:
2591   case TargetOpcode::G_FEXP:
2592   case TargetOpcode::G_FEXP2:
2593   case TargetOpcode::G_FPOW:
2594   case TargetOpcode::G_INTRINSIC_TRUNC:
2595   case TargetOpcode::G_INTRINSIC_ROUND:
2596   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2597     assert(TypeIdx == 0);
2598     Observer.changingInstr(MI);
2599 
2600     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2601       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2602 
2603     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2604     Observer.changedInstr(MI);
2605     return Legalized;
2606   case TargetOpcode::G_FPOWI: {
2607     if (TypeIdx != 0)
2608       return UnableToLegalize;
2609     Observer.changingInstr(MI);
2610     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2611     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2612     Observer.changedInstr(MI);
2613     return Legalized;
2614   }
2615   case TargetOpcode::G_INTTOPTR:
2616     if (TypeIdx != 1)
2617       return UnableToLegalize;
2618 
2619     Observer.changingInstr(MI);
2620     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2621     Observer.changedInstr(MI);
2622     return Legalized;
2623   case TargetOpcode::G_PTRTOINT:
2624     if (TypeIdx != 0)
2625       return UnableToLegalize;
2626 
2627     Observer.changingInstr(MI);
2628     widenScalarDst(MI, WideTy, 0);
2629     Observer.changedInstr(MI);
2630     return Legalized;
2631   case TargetOpcode::G_BUILD_VECTOR: {
2632     Observer.changingInstr(MI);
2633 
2634     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2635     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2636       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2637 
2638     // Avoid changing the result vector type if the source element type was
2639     // requested.
2640     if (TypeIdx == 1) {
2641       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2642     } else {
2643       widenScalarDst(MI, WideTy, 0);
2644     }
2645 
2646     Observer.changedInstr(MI);
2647     return Legalized;
2648   }
2649   case TargetOpcode::G_SEXT_INREG:
2650     if (TypeIdx != 0)
2651       return UnableToLegalize;
2652 
2653     Observer.changingInstr(MI);
2654     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2655     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2656     Observer.changedInstr(MI);
2657     return Legalized;
2658   case TargetOpcode::G_PTRMASK: {
2659     if (TypeIdx != 1)
2660       return UnableToLegalize;
2661     Observer.changingInstr(MI);
2662     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2663     Observer.changedInstr(MI);
2664     return Legalized;
2665   }
2666   }
2667 }
2668 
2669 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2670                              MachineIRBuilder &B, Register Src, LLT Ty) {
2671   auto Unmerge = B.buildUnmerge(Ty, Src);
2672   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2673     Pieces.push_back(Unmerge.getReg(I));
2674 }
2675 
2676 LegalizerHelper::LegalizeResult
2677 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2678   Register Dst = MI.getOperand(0).getReg();
2679   Register Src = MI.getOperand(1).getReg();
2680   LLT DstTy = MRI.getType(Dst);
2681   LLT SrcTy = MRI.getType(Src);
2682 
2683   if (SrcTy.isVector()) {
2684     LLT SrcEltTy = SrcTy.getElementType();
2685     SmallVector<Register, 8> SrcRegs;
2686 
2687     if (DstTy.isVector()) {
2688       int NumDstElt = DstTy.getNumElements();
2689       int NumSrcElt = SrcTy.getNumElements();
2690 
2691       LLT DstEltTy = DstTy.getElementType();
2692       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2693       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2694 
2695       // If there's an element size mismatch, insert intermediate casts to match
2696       // the result element type.
2697       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2698         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2699         //
2700         // =>
2701         //
2702         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2703         // %3:_(<2 x s8>) = G_BITCAST %2
2704         // %4:_(<2 x s8>) = G_BITCAST %3
2705         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2706         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2707         SrcPartTy = SrcEltTy;
2708       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2709         //
2710         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2711         //
2712         // =>
2713         //
2714         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2715         // %3:_(s16) = G_BITCAST %2
2716         // %4:_(s16) = G_BITCAST %3
2717         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2718         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2719         DstCastTy = DstEltTy;
2720       }
2721 
2722       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2723       for (Register &SrcReg : SrcRegs)
2724         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2725     } else
2726       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2727 
2728     MIRBuilder.buildMerge(Dst, SrcRegs);
2729     MI.eraseFromParent();
2730     return Legalized;
2731   }
2732 
2733   if (DstTy.isVector()) {
2734     SmallVector<Register, 8> SrcRegs;
2735     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2736     MIRBuilder.buildMerge(Dst, SrcRegs);
2737     MI.eraseFromParent();
2738     return Legalized;
2739   }
2740 
2741   return UnableToLegalize;
2742 }
2743 
2744 /// Figure out the bit offset into a register when coercing a vector index for
2745 /// the wide element type. This is only for the case when promoting vector to
2746 /// one with larger elements.
2747 //
2748 ///
2749 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2750 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2751 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2752                                                    Register Idx,
2753                                                    unsigned NewEltSize,
2754                                                    unsigned OldEltSize) {
2755   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2756   LLT IdxTy = B.getMRI()->getType(Idx);
2757 
2758   // Now figure out the amount we need to shift to get the target bits.
2759   auto OffsetMask = B.buildConstant(
2760       IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio));
2761   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2762   return B.buildShl(IdxTy, OffsetIdx,
2763                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2764 }
2765 
2766 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2767 /// is casting to a vector with a smaller element size, perform multiple element
2768 /// extracts and merge the results. If this is coercing to a vector with larger
2769 /// elements, index the bitcasted vector and extract the target element with bit
2770 /// operations. This is intended to force the indexing in the native register
2771 /// size for architectures that can dynamically index the register file.
2772 LegalizerHelper::LegalizeResult
2773 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2774                                          LLT CastTy) {
2775   if (TypeIdx != 1)
2776     return UnableToLegalize;
2777 
2778   Register Dst = MI.getOperand(0).getReg();
2779   Register SrcVec = MI.getOperand(1).getReg();
2780   Register Idx = MI.getOperand(2).getReg();
2781   LLT SrcVecTy = MRI.getType(SrcVec);
2782   LLT IdxTy = MRI.getType(Idx);
2783 
2784   LLT SrcEltTy = SrcVecTy.getElementType();
2785   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2786   unsigned OldNumElts = SrcVecTy.getNumElements();
2787 
2788   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2789   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2790 
2791   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2792   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2793   if (NewNumElts > OldNumElts) {
2794     // Decreasing the vector element size
2795     //
2796     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2797     //  =>
2798     //  v4i32:castx = bitcast x:v2i64
2799     //
2800     // i64 = bitcast
2801     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2802     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2803     //
2804     if (NewNumElts % OldNumElts != 0)
2805       return UnableToLegalize;
2806 
2807     // Type of the intermediate result vector.
2808     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2809     LLT MidTy =
2810         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2811 
2812     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2813 
2814     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2815     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2816 
2817     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2818       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2819       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2820       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2821       NewOps[I] = Elt.getReg(0);
2822     }
2823 
2824     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2825     MIRBuilder.buildBitcast(Dst, NewVec);
2826     MI.eraseFromParent();
2827     return Legalized;
2828   }
2829 
2830   if (NewNumElts < OldNumElts) {
2831     if (NewEltSize % OldEltSize != 0)
2832       return UnableToLegalize;
2833 
2834     // This only depends on powers of 2 because we use bit tricks to figure out
2835     // the bit offset we need to shift to get the target element. A general
2836     // expansion could emit division/multiply.
2837     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2838       return UnableToLegalize;
2839 
2840     // Increasing the vector element size.
2841     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2842     //
2843     //   =>
2844     //
2845     // %cast = G_BITCAST %vec
2846     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2847     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2848     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2849     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2850     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2851     // %elt = G_TRUNC %elt_bits
2852 
2853     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2854     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2855 
2856     // Divide to get the index in the wider element type.
2857     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2858 
2859     Register WideElt = CastVec;
2860     if (CastTy.isVector()) {
2861       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2862                                                      ScaledIdx).getReg(0);
2863     }
2864 
2865     // Compute the bit offset into the register of the target element.
2866     Register OffsetBits = getBitcastWiderVectorElementOffset(
2867       MIRBuilder, Idx, NewEltSize, OldEltSize);
2868 
2869     // Shift the wide element to get the target element.
2870     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2871     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2872     MI.eraseFromParent();
2873     return Legalized;
2874   }
2875 
2876   return UnableToLegalize;
2877 }
2878 
2879 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2880 /// TargetReg, while preserving other bits in \p TargetReg.
2881 ///
2882 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2883 static Register buildBitFieldInsert(MachineIRBuilder &B,
2884                                     Register TargetReg, Register InsertReg,
2885                                     Register OffsetBits) {
2886   LLT TargetTy = B.getMRI()->getType(TargetReg);
2887   LLT InsertTy = B.getMRI()->getType(InsertReg);
2888   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2889   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2890 
2891   // Produce a bitmask of the value to insert
2892   auto EltMask = B.buildConstant(
2893     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2894                                    InsertTy.getSizeInBits()));
2895   // Shift it into position
2896   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2897   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2898 
2899   // Clear out the bits in the wide element
2900   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2901 
2902   // The value to insert has all zeros already, so stick it into the masked
2903   // wide element.
2904   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2905 }
2906 
2907 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2908 /// is increasing the element size, perform the indexing in the target element
2909 /// type, and use bit operations to insert at the element position. This is
2910 /// intended for architectures that can dynamically index the register file and
2911 /// want to force indexing in the native register size.
2912 LegalizerHelper::LegalizeResult
2913 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2914                                         LLT CastTy) {
2915   if (TypeIdx != 0)
2916     return UnableToLegalize;
2917 
2918   Register Dst = MI.getOperand(0).getReg();
2919   Register SrcVec = MI.getOperand(1).getReg();
2920   Register Val = MI.getOperand(2).getReg();
2921   Register Idx = MI.getOperand(3).getReg();
2922 
2923   LLT VecTy = MRI.getType(Dst);
2924   LLT IdxTy = MRI.getType(Idx);
2925 
2926   LLT VecEltTy = VecTy.getElementType();
2927   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2928   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2929   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2930 
2931   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2932   unsigned OldNumElts = VecTy.getNumElements();
2933 
2934   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2935   if (NewNumElts < OldNumElts) {
2936     if (NewEltSize % OldEltSize != 0)
2937       return UnableToLegalize;
2938 
2939     // This only depends on powers of 2 because we use bit tricks to figure out
2940     // the bit offset we need to shift to get the target element. A general
2941     // expansion could emit division/multiply.
2942     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2943       return UnableToLegalize;
2944 
2945     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2946     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2947 
2948     // Divide to get the index in the wider element type.
2949     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2950 
2951     Register ExtractedElt = CastVec;
2952     if (CastTy.isVector()) {
2953       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2954                                                           ScaledIdx).getReg(0);
2955     }
2956 
2957     // Compute the bit offset into the register of the target element.
2958     Register OffsetBits = getBitcastWiderVectorElementOffset(
2959       MIRBuilder, Idx, NewEltSize, OldEltSize);
2960 
2961     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2962                                                Val, OffsetBits);
2963     if (CastTy.isVector()) {
2964       InsertedElt = MIRBuilder.buildInsertVectorElement(
2965         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2966     }
2967 
2968     MIRBuilder.buildBitcast(Dst, InsertedElt);
2969     MI.eraseFromParent();
2970     return Legalized;
2971   }
2972 
2973   return UnableToLegalize;
2974 }
2975 
2976 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
2977   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2978   Register DstReg = LoadMI.getDstReg();
2979   Register PtrReg = LoadMI.getPointerReg();
2980   LLT DstTy = MRI.getType(DstReg);
2981   MachineMemOperand &MMO = LoadMI.getMMO();
2982   LLT MemTy = MMO.getMemoryType();
2983   MachineFunction &MF = MIRBuilder.getMF();
2984 
2985   unsigned MemSizeInBits = MemTy.getSizeInBits();
2986   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2987 
2988   if (MemSizeInBits != MemStoreSizeInBits) {
2989     if (MemTy.isVector())
2990       return UnableToLegalize;
2991 
2992     // Promote to a byte-sized load if not loading an integral number of
2993     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2994     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2995     MachineMemOperand *NewMMO =
2996         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2997 
2998     Register LoadReg = DstReg;
2999     LLT LoadTy = DstTy;
3000 
3001     // If this wasn't already an extending load, we need to widen the result
3002     // register to avoid creating a load with a narrower result than the source.
3003     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
3004       LoadTy = WideMemTy;
3005       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
3006     }
3007 
3008     if (isa<GSExtLoad>(LoadMI)) {
3009       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
3010       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
3011     } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) {
3012       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
3013       // The extra bits are guaranteed to be zero, since we stored them that
3014       // way.  A zext load from Wide thus automatically gives zext from MemVT.
3015       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
3016     } else {
3017       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
3018     }
3019 
3020     if (DstTy != LoadTy)
3021       MIRBuilder.buildTrunc(DstReg, LoadReg);
3022 
3023     LoadMI.eraseFromParent();
3024     return Legalized;
3025   }
3026 
3027   // Big endian lowering not implemented.
3028   if (MIRBuilder.getDataLayout().isBigEndian())
3029     return UnableToLegalize;
3030 
3031   // This load needs splitting into power of 2 sized loads.
3032   //
3033   // Our strategy here is to generate anyextending loads for the smaller
3034   // types up to next power-2 result type, and then combine the two larger
3035   // result values together, before truncating back down to the non-pow-2
3036   // type.
3037   // E.g. v1 = i24 load =>
3038   // v2 = i32 zextload (2 byte)
3039   // v3 = i32 load (1 byte)
3040   // v4 = i32 shl v3, 16
3041   // v5 = i32 or v4, v2
3042   // v1 = i24 trunc v5
3043   // By doing this we generate the correct truncate which should get
3044   // combined away as an artifact with a matching extend.
3045 
3046   uint64_t LargeSplitSize, SmallSplitSize;
3047 
3048   if (!isPowerOf2_32(MemSizeInBits)) {
3049     // This load needs splitting into power of 2 sized loads.
3050     LargeSplitSize = PowerOf2Floor(MemSizeInBits);
3051     SmallSplitSize = MemSizeInBits - LargeSplitSize;
3052   } else {
3053     // This is already a power of 2, but we still need to split this in half.
3054     //
3055     // Assume we're being asked to decompose an unaligned load.
3056     // TODO: If this requires multiple splits, handle them all at once.
3057     auto &Ctx = MF.getFunction().getContext();
3058     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3059       return UnableToLegalize;
3060 
3061     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3062   }
3063 
3064   if (MemTy.isVector()) {
3065     // TODO: Handle vector extloads
3066     if (MemTy != DstTy)
3067       return UnableToLegalize;
3068 
3069     // TODO: We can do better than scalarizing the vector and at least split it
3070     // in half.
3071     return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
3072   }
3073 
3074   MachineMemOperand *LargeMMO =
3075       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3076   MachineMemOperand *SmallMMO =
3077       MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3078 
3079   LLT PtrTy = MRI.getType(PtrReg);
3080   unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
3081   LLT AnyExtTy = LLT::scalar(AnyExtSize);
3082   auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
3083                                              PtrReg, *LargeMMO);
3084 
3085   auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
3086                                             LargeSplitSize / 8);
3087   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
3088   auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
3089   auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
3090                                              SmallPtr, *SmallMMO);
3091 
3092   auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
3093   auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
3094 
3095   if (AnyExtTy == DstTy)
3096     MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
3097   else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
3098     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3099     MIRBuilder.buildTrunc(DstReg, {Or});
3100   } else {
3101     assert(DstTy.isPointer() && "expected pointer");
3102     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3103 
3104     // FIXME: We currently consider this to be illegal for non-integral address
3105     // spaces, but we need still need a way to reinterpret the bits.
3106     MIRBuilder.buildIntToPtr(DstReg, Or);
3107   }
3108 
3109   LoadMI.eraseFromParent();
3110   return Legalized;
3111 }
3112 
3113 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
3114   // Lower a non-power of 2 store into multiple pow-2 stores.
3115   // E.g. split an i24 store into an i16 store + i8 store.
3116   // We do this by first extending the stored value to the next largest power
3117   // of 2 type, and then using truncating stores to store the components.
3118   // By doing this, likewise with G_LOAD, generate an extend that can be
3119   // artifact-combined away instead of leaving behind extracts.
3120   Register SrcReg = StoreMI.getValueReg();
3121   Register PtrReg = StoreMI.getPointerReg();
3122   LLT SrcTy = MRI.getType(SrcReg);
3123   MachineFunction &MF = MIRBuilder.getMF();
3124   MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3125   LLT MemTy = MMO.getMemoryType();
3126 
3127   unsigned StoreWidth = MemTy.getSizeInBits();
3128   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3129 
3130   if (StoreWidth != StoreSizeInBits) {
3131     if (SrcTy.isVector())
3132       return UnableToLegalize;
3133 
3134     // Promote to a byte-sized store with upper bits zero if not
3135     // storing an integral number of bytes.  For example, promote
3136     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3137     LLT WideTy = LLT::scalar(StoreSizeInBits);
3138 
3139     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3140       // Avoid creating a store with a narrower source than result.
3141       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3142       SrcTy = WideTy;
3143     }
3144 
3145     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3146 
3147     MachineMemOperand *NewMMO =
3148         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3149     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3150     StoreMI.eraseFromParent();
3151     return Legalized;
3152   }
3153 
3154   if (MemTy.isVector()) {
3155     // TODO: Handle vector trunc stores
3156     if (MemTy != SrcTy)
3157       return UnableToLegalize;
3158 
3159     // TODO: We can do better than scalarizing the vector and at least split it
3160     // in half.
3161     return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
3162   }
3163 
3164   unsigned MemSizeInBits = MemTy.getSizeInBits();
3165   uint64_t LargeSplitSize, SmallSplitSize;
3166 
3167   if (!isPowerOf2_32(MemSizeInBits)) {
3168     LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
3169     SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3170   } else {
3171     auto &Ctx = MF.getFunction().getContext();
3172     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3173       return UnableToLegalize; // Don't know what we're being asked to do.
3174 
3175     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3176   }
3177 
3178   // Extend to the next pow-2. If this store was itself the result of lowering,
3179   // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3180   // that's wider than the stored size.
3181   unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
3182   const LLT NewSrcTy = LLT::scalar(AnyExtSize);
3183 
3184   if (SrcTy.isPointer()) {
3185     const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
3186     SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
3187   }
3188 
3189   auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3190 
3191   // Obtain the smaller value by shifting away the larger value.
3192   auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3193   auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3194 
3195   // Generate the PtrAdd and truncating stores.
3196   LLT PtrTy = MRI.getType(PtrReg);
3197   auto OffsetCst = MIRBuilder.buildConstant(
3198     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3199   auto SmallPtr =
3200     MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
3201 
3202   MachineMemOperand *LargeMMO =
3203     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3204   MachineMemOperand *SmallMMO =
3205     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3206   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3207   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3208   StoreMI.eraseFromParent();
3209   return Legalized;
3210 }
3211 
3212 LegalizerHelper::LegalizeResult
3213 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3214   switch (MI.getOpcode()) {
3215   case TargetOpcode::G_LOAD: {
3216     if (TypeIdx != 0)
3217       return UnableToLegalize;
3218     MachineMemOperand &MMO = **MI.memoperands_begin();
3219 
3220     // Not sure how to interpret a bitcast of an extending load.
3221     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3222       return UnableToLegalize;
3223 
3224     Observer.changingInstr(MI);
3225     bitcastDst(MI, CastTy, 0);
3226     MMO.setType(CastTy);
3227     Observer.changedInstr(MI);
3228     return Legalized;
3229   }
3230   case TargetOpcode::G_STORE: {
3231     if (TypeIdx != 0)
3232       return UnableToLegalize;
3233 
3234     MachineMemOperand &MMO = **MI.memoperands_begin();
3235 
3236     // Not sure how to interpret a bitcast of a truncating store.
3237     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3238       return UnableToLegalize;
3239 
3240     Observer.changingInstr(MI);
3241     bitcastSrc(MI, CastTy, 0);
3242     MMO.setType(CastTy);
3243     Observer.changedInstr(MI);
3244     return Legalized;
3245   }
3246   case TargetOpcode::G_SELECT: {
3247     if (TypeIdx != 0)
3248       return UnableToLegalize;
3249 
3250     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3251       LLVM_DEBUG(
3252           dbgs() << "bitcast action not implemented for vector select\n");
3253       return UnableToLegalize;
3254     }
3255 
3256     Observer.changingInstr(MI);
3257     bitcastSrc(MI, CastTy, 2);
3258     bitcastSrc(MI, CastTy, 3);
3259     bitcastDst(MI, CastTy, 0);
3260     Observer.changedInstr(MI);
3261     return Legalized;
3262   }
3263   case TargetOpcode::G_AND:
3264   case TargetOpcode::G_OR:
3265   case TargetOpcode::G_XOR: {
3266     Observer.changingInstr(MI);
3267     bitcastSrc(MI, CastTy, 1);
3268     bitcastSrc(MI, CastTy, 2);
3269     bitcastDst(MI, CastTy, 0);
3270     Observer.changedInstr(MI);
3271     return Legalized;
3272   }
3273   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3274     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3275   case TargetOpcode::G_INSERT_VECTOR_ELT:
3276     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3277   default:
3278     return UnableToLegalize;
3279   }
3280 }
3281 
3282 // Legalize an instruction by changing the opcode in place.
3283 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3284     Observer.changingInstr(MI);
3285     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3286     Observer.changedInstr(MI);
3287 }
3288 
3289 LegalizerHelper::LegalizeResult
3290 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3291   using namespace TargetOpcode;
3292 
3293   switch(MI.getOpcode()) {
3294   default:
3295     return UnableToLegalize;
3296   case TargetOpcode::G_BITCAST:
3297     return lowerBitcast(MI);
3298   case TargetOpcode::G_SREM:
3299   case TargetOpcode::G_UREM: {
3300     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3301     auto Quot =
3302         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3303                               {MI.getOperand(1), MI.getOperand(2)});
3304 
3305     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3306     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3307     MI.eraseFromParent();
3308     return Legalized;
3309   }
3310   case TargetOpcode::G_SADDO:
3311   case TargetOpcode::G_SSUBO:
3312     return lowerSADDO_SSUBO(MI);
3313   case TargetOpcode::G_UMULH:
3314   case TargetOpcode::G_SMULH:
3315     return lowerSMULH_UMULH(MI);
3316   case TargetOpcode::G_SMULO:
3317   case TargetOpcode::G_UMULO: {
3318     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3319     // result.
3320     Register Res = MI.getOperand(0).getReg();
3321     Register Overflow = MI.getOperand(1).getReg();
3322     Register LHS = MI.getOperand(2).getReg();
3323     Register RHS = MI.getOperand(3).getReg();
3324     LLT Ty = MRI.getType(Res);
3325 
3326     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3327                           ? TargetOpcode::G_SMULH
3328                           : TargetOpcode::G_UMULH;
3329 
3330     Observer.changingInstr(MI);
3331     const auto &TII = MIRBuilder.getTII();
3332     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3333     MI.removeOperand(1);
3334     Observer.changedInstr(MI);
3335 
3336     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3337     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3338 
3339     // Move insert point forward so we can use the Res register if needed.
3340     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3341 
3342     // For *signed* multiply, overflow is detected by checking:
3343     // (hi != (lo >> bitwidth-1))
3344     if (Opcode == TargetOpcode::G_SMULH) {
3345       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3346       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3347       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3348     } else {
3349       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3350     }
3351     return Legalized;
3352   }
3353   case TargetOpcode::G_FNEG: {
3354     Register Res = MI.getOperand(0).getReg();
3355     LLT Ty = MRI.getType(Res);
3356 
3357     // TODO: Handle vector types once we are able to
3358     // represent them.
3359     if (Ty.isVector())
3360       return UnableToLegalize;
3361     auto SignMask =
3362         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3363     Register SubByReg = MI.getOperand(1).getReg();
3364     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3365     MI.eraseFromParent();
3366     return Legalized;
3367   }
3368   case TargetOpcode::G_FSUB: {
3369     Register Res = MI.getOperand(0).getReg();
3370     LLT Ty = MRI.getType(Res);
3371 
3372     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3373     // First, check if G_FNEG is marked as Lower. If so, we may
3374     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3375     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3376       return UnableToLegalize;
3377     Register LHS = MI.getOperand(1).getReg();
3378     Register RHS = MI.getOperand(2).getReg();
3379     Register Neg = MRI.createGenericVirtualRegister(Ty);
3380     MIRBuilder.buildFNeg(Neg, RHS);
3381     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3382     MI.eraseFromParent();
3383     return Legalized;
3384   }
3385   case TargetOpcode::G_FMAD:
3386     return lowerFMad(MI);
3387   case TargetOpcode::G_FFLOOR:
3388     return lowerFFloor(MI);
3389   case TargetOpcode::G_INTRINSIC_ROUND:
3390     return lowerIntrinsicRound(MI);
3391   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3392     // Since round even is the assumed rounding mode for unconstrained FP
3393     // operations, rint and roundeven are the same operation.
3394     changeOpcode(MI, TargetOpcode::G_FRINT);
3395     return Legalized;
3396   }
3397   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3398     Register OldValRes = MI.getOperand(0).getReg();
3399     Register SuccessRes = MI.getOperand(1).getReg();
3400     Register Addr = MI.getOperand(2).getReg();
3401     Register CmpVal = MI.getOperand(3).getReg();
3402     Register NewVal = MI.getOperand(4).getReg();
3403     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3404                                   **MI.memoperands_begin());
3405     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3406     MI.eraseFromParent();
3407     return Legalized;
3408   }
3409   case TargetOpcode::G_LOAD:
3410   case TargetOpcode::G_SEXTLOAD:
3411   case TargetOpcode::G_ZEXTLOAD:
3412     return lowerLoad(cast<GAnyLoad>(MI));
3413   case TargetOpcode::G_STORE:
3414     return lowerStore(cast<GStore>(MI));
3415   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3416   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3417   case TargetOpcode::G_CTLZ:
3418   case TargetOpcode::G_CTTZ:
3419   case TargetOpcode::G_CTPOP:
3420     return lowerBitCount(MI);
3421   case G_UADDO: {
3422     Register Res = MI.getOperand(0).getReg();
3423     Register CarryOut = MI.getOperand(1).getReg();
3424     Register LHS = MI.getOperand(2).getReg();
3425     Register RHS = MI.getOperand(3).getReg();
3426 
3427     MIRBuilder.buildAdd(Res, LHS, RHS);
3428     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3429 
3430     MI.eraseFromParent();
3431     return Legalized;
3432   }
3433   case G_UADDE: {
3434     Register Res = MI.getOperand(0).getReg();
3435     Register CarryOut = MI.getOperand(1).getReg();
3436     Register LHS = MI.getOperand(2).getReg();
3437     Register RHS = MI.getOperand(3).getReg();
3438     Register CarryIn = MI.getOperand(4).getReg();
3439     LLT Ty = MRI.getType(Res);
3440 
3441     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3442     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3443     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3444     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3445 
3446     MI.eraseFromParent();
3447     return Legalized;
3448   }
3449   case G_USUBO: {
3450     Register Res = MI.getOperand(0).getReg();
3451     Register BorrowOut = MI.getOperand(1).getReg();
3452     Register LHS = MI.getOperand(2).getReg();
3453     Register RHS = MI.getOperand(3).getReg();
3454 
3455     MIRBuilder.buildSub(Res, LHS, RHS);
3456     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3457 
3458     MI.eraseFromParent();
3459     return Legalized;
3460   }
3461   case G_USUBE: {
3462     Register Res = MI.getOperand(0).getReg();
3463     Register BorrowOut = MI.getOperand(1).getReg();
3464     Register LHS = MI.getOperand(2).getReg();
3465     Register RHS = MI.getOperand(3).getReg();
3466     Register BorrowIn = MI.getOperand(4).getReg();
3467     const LLT CondTy = MRI.getType(BorrowOut);
3468     const LLT Ty = MRI.getType(Res);
3469 
3470     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3471     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3472     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3473 
3474     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3475     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3476     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3477 
3478     MI.eraseFromParent();
3479     return Legalized;
3480   }
3481   case G_UITOFP:
3482     return lowerUITOFP(MI);
3483   case G_SITOFP:
3484     return lowerSITOFP(MI);
3485   case G_FPTOUI:
3486     return lowerFPTOUI(MI);
3487   case G_FPTOSI:
3488     return lowerFPTOSI(MI);
3489   case G_FPTRUNC:
3490     return lowerFPTRUNC(MI);
3491   case G_FPOWI:
3492     return lowerFPOWI(MI);
3493   case G_SMIN:
3494   case G_SMAX:
3495   case G_UMIN:
3496   case G_UMAX:
3497     return lowerMinMax(MI);
3498   case G_FCOPYSIGN:
3499     return lowerFCopySign(MI);
3500   case G_FMINNUM:
3501   case G_FMAXNUM:
3502     return lowerFMinNumMaxNum(MI);
3503   case G_MERGE_VALUES:
3504     return lowerMergeValues(MI);
3505   case G_UNMERGE_VALUES:
3506     return lowerUnmergeValues(MI);
3507   case TargetOpcode::G_SEXT_INREG: {
3508     assert(MI.getOperand(2).isImm() && "Expected immediate");
3509     int64_t SizeInBits = MI.getOperand(2).getImm();
3510 
3511     Register DstReg = MI.getOperand(0).getReg();
3512     Register SrcReg = MI.getOperand(1).getReg();
3513     LLT DstTy = MRI.getType(DstReg);
3514     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3515 
3516     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3517     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3518     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3519     MI.eraseFromParent();
3520     return Legalized;
3521   }
3522   case G_EXTRACT_VECTOR_ELT:
3523   case G_INSERT_VECTOR_ELT:
3524     return lowerExtractInsertVectorElt(MI);
3525   case G_SHUFFLE_VECTOR:
3526     return lowerShuffleVector(MI);
3527   case G_DYN_STACKALLOC:
3528     return lowerDynStackAlloc(MI);
3529   case G_EXTRACT:
3530     return lowerExtract(MI);
3531   case G_INSERT:
3532     return lowerInsert(MI);
3533   case G_BSWAP:
3534     return lowerBswap(MI);
3535   case G_BITREVERSE:
3536     return lowerBitreverse(MI);
3537   case G_READ_REGISTER:
3538   case G_WRITE_REGISTER:
3539     return lowerReadWriteRegister(MI);
3540   case G_UADDSAT:
3541   case G_USUBSAT: {
3542     // Try to make a reasonable guess about which lowering strategy to use. The
3543     // target can override this with custom lowering and calling the
3544     // implementation functions.
3545     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3546     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3547       return lowerAddSubSatToMinMax(MI);
3548     return lowerAddSubSatToAddoSubo(MI);
3549   }
3550   case G_SADDSAT:
3551   case G_SSUBSAT: {
3552     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3553 
3554     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3555     // since it's a shorter expansion. However, we would need to figure out the
3556     // preferred boolean type for the carry out for the query.
3557     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3558       return lowerAddSubSatToMinMax(MI);
3559     return lowerAddSubSatToAddoSubo(MI);
3560   }
3561   case G_SSHLSAT:
3562   case G_USHLSAT:
3563     return lowerShlSat(MI);
3564   case G_ABS:
3565     return lowerAbsToAddXor(MI);
3566   case G_SELECT:
3567     return lowerSelect(MI);
3568   case G_SDIVREM:
3569   case G_UDIVREM:
3570     return lowerDIVREM(MI);
3571   case G_FSHL:
3572   case G_FSHR:
3573     return lowerFunnelShift(MI);
3574   case G_ROTL:
3575   case G_ROTR:
3576     return lowerRotate(MI);
3577   case G_MEMSET:
3578   case G_MEMCPY:
3579   case G_MEMMOVE:
3580     return lowerMemCpyFamily(MI);
3581   case G_MEMCPY_INLINE:
3582     return lowerMemcpyInline(MI);
3583   GISEL_VECREDUCE_CASES_NONSEQ
3584     return lowerVectorReduction(MI);
3585   }
3586 }
3587 
3588 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3589                                                   Align MinAlign) const {
3590   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3591   // datalayout for the preferred alignment. Also there should be a target hook
3592   // for this to allow targets to reduce the alignment and ignore the
3593   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3594   // the type.
3595   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3596 }
3597 
3598 MachineInstrBuilder
3599 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3600                                       MachinePointerInfo &PtrInfo) {
3601   MachineFunction &MF = MIRBuilder.getMF();
3602   const DataLayout &DL = MIRBuilder.getDataLayout();
3603   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3604 
3605   unsigned AddrSpace = DL.getAllocaAddrSpace();
3606   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3607 
3608   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3609   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3610 }
3611 
3612 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3613                                         LLT VecTy) {
3614   int64_t IdxVal;
3615   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3616     return IdxReg;
3617 
3618   LLT IdxTy = B.getMRI()->getType(IdxReg);
3619   unsigned NElts = VecTy.getNumElements();
3620   if (isPowerOf2_32(NElts)) {
3621     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3622     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3623   }
3624 
3625   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3626       .getReg(0);
3627 }
3628 
3629 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3630                                                   Register Index) {
3631   LLT EltTy = VecTy.getElementType();
3632 
3633   // Calculate the element offset and add it to the pointer.
3634   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3635   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3636          "Converting bits to bytes lost precision");
3637 
3638   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3639 
3640   LLT IdxTy = MRI.getType(Index);
3641   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3642                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3643 
3644   LLT PtrTy = MRI.getType(VecPtr);
3645   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3646 }
3647 
3648 #ifndef NDEBUG
3649 /// Check that all vector operands have same number of elements. Other operands
3650 /// should be listed in NonVecOp.
3651 static bool hasSameNumEltsOnAllVectorOperands(
3652     GenericMachineInstr &MI, MachineRegisterInfo &MRI,
3653     std::initializer_list<unsigned> NonVecOpIndices) {
3654   if (MI.getNumMemOperands() != 0)
3655     return false;
3656 
3657   LLT VecTy = MRI.getType(MI.getReg(0));
3658   if (!VecTy.isVector())
3659     return false;
3660   unsigned NumElts = VecTy.getNumElements();
3661 
3662   for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
3663     MachineOperand &Op = MI.getOperand(OpIdx);
3664     if (!Op.isReg()) {
3665       if (!is_contained(NonVecOpIndices, OpIdx))
3666         return false;
3667       continue;
3668     }
3669 
3670     LLT Ty = MRI.getType(Op.getReg());
3671     if (!Ty.isVector()) {
3672       if (!is_contained(NonVecOpIndices, OpIdx))
3673         return false;
3674       continue;
3675     }
3676 
3677     if (Ty.getNumElements() != NumElts)
3678       return false;
3679   }
3680 
3681   return true;
3682 }
3683 #endif
3684 
3685 /// Fill \p DstOps with DstOps that have same number of elements combined as
3686 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are
3687 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple
3688 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements.
3689 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty,
3690                        unsigned NumElts) {
3691   LLT LeftoverTy;
3692   assert(Ty.isVector() && "Expected vector type");
3693   LLT EltTy = Ty.getElementType();
3694   LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
3695   int NumParts, NumLeftover;
3696   std::tie(NumParts, NumLeftover) =
3697       getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy);
3698 
3699   assert(NumParts > 0 && "Error in getNarrowTypeBreakDown");
3700   for (int i = 0; i < NumParts; ++i) {
3701     DstOps.push_back(NarrowTy);
3702   }
3703 
3704   if (LeftoverTy.isValid()) {
3705     assert(NumLeftover == 1 && "expected exactly one leftover");
3706     DstOps.push_back(LeftoverTy);
3707   }
3708 }
3709 
3710 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps
3711 /// made from \p Op depending on operand type.
3712 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N,
3713                            MachineOperand &Op) {
3714   for (unsigned i = 0; i < N; ++i) {
3715     if (Op.isReg())
3716       Ops.push_back(Op.getReg());
3717     else if (Op.isImm())
3718       Ops.push_back(Op.getImm());
3719     else if (Op.isPredicate())
3720       Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate()));
3721     else
3722       llvm_unreachable("Unsupported type");
3723   }
3724 }
3725 
3726 // Handle splitting vector operations which need to have the same number of
3727 // elements in each type index, but each type index may have a different element
3728 // type.
3729 //
3730 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3731 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3732 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3733 //
3734 // Also handles some irregular breakdown cases, e.g.
3735 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3736 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3737 //             s64 = G_SHL s64, s32
3738 LegalizerHelper::LegalizeResult
3739 LegalizerHelper::fewerElementsVectorMultiEltType(
3740     GenericMachineInstr &MI, unsigned NumElts,
3741     std::initializer_list<unsigned> NonVecOpIndices) {
3742   assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) &&
3743          "Non-compatible opcode or not specified non-vector operands");
3744   unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3745 
3746   unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3747   unsigned NumDefs = MI.getNumDefs();
3748 
3749   // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output.
3750   // Build instructions with DstOps to use instruction found by CSE directly.
3751   // CSE copies found instruction into given vreg when building with vreg dest.
3752   SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs);
3753   // Output registers will be taken from created instructions.
3754   SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs);
3755   for (unsigned i = 0; i < NumDefs; ++i) {
3756     makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts);
3757   }
3758 
3759   // Split vector input operands into sub-vectors with NumElts elts + Leftover.
3760   // Operands listed in NonVecOpIndices will be used as is without splitting;
3761   // examples: compare predicate in icmp and fcmp (op 1), vector select with i1
3762   // scalar condition (op 1), immediate in sext_inreg (op 2).
3763   SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs);
3764   for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3765        ++UseIdx, ++UseNo) {
3766     if (is_contained(NonVecOpIndices, UseIdx)) {
3767       broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(),
3768                      MI.getOperand(UseIdx));
3769     } else {
3770       SmallVector<Register, 8> SplitPieces;
3771       extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces);
3772       for (auto Reg : SplitPieces)
3773         InputOpsPieces[UseNo].push_back(Reg);
3774     }
3775   }
3776 
3777   unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3778 
3779   // Take i-th piece of each input operand split and build sub-vector/scalar
3780   // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s).
3781   for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3782     SmallVector<DstOp, 2> Defs;
3783     for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3784       Defs.push_back(OutputOpsPieces[DstNo][i]);
3785 
3786     SmallVector<SrcOp, 3> Uses;
3787     for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo)
3788       Uses.push_back(InputOpsPieces[InputNo][i]);
3789 
3790     auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags());
3791     for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3792       OutputRegs[DstNo].push_back(I.getReg(DstNo));
3793   }
3794 
3795   // Merge small outputs into MI's output for each def operand.
3796   if (NumLeftovers) {
3797     for (unsigned i = 0; i < NumDefs; ++i)
3798       mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]);
3799   } else {
3800     for (unsigned i = 0; i < NumDefs; ++i)
3801       MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]);
3802   }
3803 
3804   MI.eraseFromParent();
3805   return Legalized;
3806 }
3807 
3808 LegalizerHelper::LegalizeResult
3809 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI,
3810                                         unsigned NumElts) {
3811   unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3812 
3813   unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3814   unsigned NumDefs = MI.getNumDefs();
3815 
3816   SmallVector<DstOp, 8> OutputOpsPieces;
3817   SmallVector<Register, 8> OutputRegs;
3818   makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts);
3819 
3820   // Instructions that perform register split will be inserted in basic block
3821   // where register is defined (basic block is in the next operand).
3822   SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2);
3823   for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3824        UseIdx += 2, ++UseNo) {
3825     MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB();
3826     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3827     extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]);
3828   }
3829 
3830   // Build PHIs with fewer elements.
3831   unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3832   MIRBuilder.setInsertPt(*MI.getParent(), MI);
3833   for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3834     auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
3835     Phi.addDef(
3836         MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI)));
3837     OutputRegs.push_back(Phi.getReg(0));
3838 
3839     for (unsigned j = 0; j < NumInputs / 2; ++j) {
3840       Phi.addUse(InputOpsPieces[j][i]);
3841       Phi.add(MI.getOperand(1 + j * 2 + 1));
3842     }
3843   }
3844 
3845   // Merge small outputs into MI's def.
3846   if (NumLeftovers) {
3847     mergeMixedSubvectors(MI.getReg(0), OutputRegs);
3848   } else {
3849     MIRBuilder.buildMerge(MI.getReg(0), OutputRegs);
3850   }
3851 
3852   MI.eraseFromParent();
3853   return Legalized;
3854 }
3855 
3856 LegalizerHelper::LegalizeResult
3857 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3858                                                   unsigned TypeIdx,
3859                                                   LLT NarrowTy) {
3860   const int NumDst = MI.getNumOperands() - 1;
3861   const Register SrcReg = MI.getOperand(NumDst).getReg();
3862   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3863   LLT SrcTy = MRI.getType(SrcReg);
3864 
3865   if (TypeIdx != 1 || NarrowTy == DstTy)
3866     return UnableToLegalize;
3867 
3868   // Requires compatible types. Otherwise SrcReg should have been defined by
3869   // merge-like instruction that would get artifact combined. Most likely
3870   // instruction that defines SrcReg has to perform more/fewer elements
3871   // legalization compatible with NarrowTy.
3872   assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types");
3873   assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3874 
3875   if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3876       (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0))
3877     return UnableToLegalize;
3878 
3879   // This is most likely DstTy (smaller then register size) packed in SrcTy
3880   // (larger then register size) and since unmerge was not combined it will be
3881   // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy
3882   // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy.
3883 
3884   // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy)
3885   //
3886   // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence
3887   // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg
3888   // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy)
3889   auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg);
3890   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3891   const int PartsPerUnmerge = NumDst / NumUnmerge;
3892 
3893   for (int I = 0; I != NumUnmerge; ++I) {
3894     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3895 
3896     for (int J = 0; J != PartsPerUnmerge; ++J)
3897       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3898     MIB.addUse(Unmerge.getReg(I));
3899   }
3900 
3901   MI.eraseFromParent();
3902   return Legalized;
3903 }
3904 
3905 LegalizerHelper::LegalizeResult
3906 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3907                                           LLT NarrowTy) {
3908   Register DstReg = MI.getOperand(0).getReg();
3909   LLT DstTy = MRI.getType(DstReg);
3910   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3911   // Requires compatible types. Otherwise user of DstReg did not perform unmerge
3912   // that should have been artifact combined. Most likely instruction that uses
3913   // DstReg has to do more/fewer elements legalization compatible with NarrowTy.
3914   assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types");
3915   assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3916   if (NarrowTy == SrcTy)
3917     return UnableToLegalize;
3918 
3919   // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use
3920   // is for old mir tests. Since the changes to more/fewer elements it should no
3921   // longer be possible to generate MIR like this when starting from llvm-ir
3922   // because LCMTy approach was replaced with merge/unmerge to vector elements.
3923   if (TypeIdx == 1) {
3924     assert(SrcTy.isVector() && "Expected vector types");
3925     assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3926     if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3927         (NarrowTy.getNumElements() >= SrcTy.getNumElements()))
3928       return UnableToLegalize;
3929     // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy)
3930     //
3931     // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy)
3932     // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy)
3933     // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4
3934     // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6
3935     // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8
3936     // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11
3937 
3938     SmallVector<Register, 8> Elts;
3939     LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType();
3940     for (unsigned i = 1; i < MI.getNumOperands(); ++i) {
3941       auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg());
3942       for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j)
3943         Elts.push_back(Unmerge.getReg(j));
3944     }
3945 
3946     SmallVector<Register, 8> NarrowTyElts;
3947     unsigned NumNarrowTyElts = NarrowTy.getNumElements();
3948     unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts;
3949     for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces;
3950          ++i, Offset += NumNarrowTyElts) {
3951       ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts);
3952       NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
3953     }
3954 
3955     MIRBuilder.buildMerge(DstReg, NarrowTyElts);
3956     MI.eraseFromParent();
3957     return Legalized;
3958   }
3959 
3960   assert(TypeIdx == 0 && "Bad type index");
3961   if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) ||
3962       (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0))
3963     return UnableToLegalize;
3964 
3965   // This is most likely SrcTy (smaller then register size) packed in DstTy
3966   // (larger then register size) and since merge was not combined it will be
3967   // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy
3968   // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy.
3969 
3970   // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4
3971   //
3972   // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg
3973   // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4
3974   // %0:_(DstTy)  = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence
3975   SmallVector<Register, 8> NarrowTyElts;
3976   unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3977   unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1;
3978   unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts;
3979   for (unsigned i = 0; i < NumParts; ++i) {
3980     SmallVector<Register, 8> Sources;
3981     for (unsigned j = 0; j < NumElts; ++j)
3982       Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg());
3983     NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0));
3984   }
3985 
3986   MIRBuilder.buildMerge(DstReg, NarrowTyElts);
3987   MI.eraseFromParent();
3988   return Legalized;
3989 }
3990 
3991 LegalizerHelper::LegalizeResult
3992 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3993                                                            unsigned TypeIdx,
3994                                                            LLT NarrowVecTy) {
3995   Register DstReg = MI.getOperand(0).getReg();
3996   Register SrcVec = MI.getOperand(1).getReg();
3997   Register InsertVal;
3998   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3999 
4000   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
4001   if (IsInsert)
4002     InsertVal = MI.getOperand(2).getReg();
4003 
4004   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
4005 
4006   // TODO: Handle total scalarization case.
4007   if (!NarrowVecTy.isVector())
4008     return UnableToLegalize;
4009 
4010   LLT VecTy = MRI.getType(SrcVec);
4011 
4012   // If the index is a constant, we can really break this down as you would
4013   // expect, and index into the target size pieces.
4014   int64_t IdxVal;
4015   auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI);
4016   if (MaybeCst) {
4017     IdxVal = MaybeCst->Value.getSExtValue();
4018     // Avoid out of bounds indexing the pieces.
4019     if (IdxVal >= VecTy.getNumElements()) {
4020       MIRBuilder.buildUndef(DstReg);
4021       MI.eraseFromParent();
4022       return Legalized;
4023     }
4024 
4025     SmallVector<Register, 8> VecParts;
4026     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
4027 
4028     // Build a sequence of NarrowTy pieces in VecParts for this operand.
4029     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
4030                                     TargetOpcode::G_ANYEXT);
4031 
4032     unsigned NewNumElts = NarrowVecTy.getNumElements();
4033 
4034     LLT IdxTy = MRI.getType(Idx);
4035     int64_t PartIdx = IdxVal / NewNumElts;
4036     auto NewIdx =
4037         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4038 
4039     if (IsInsert) {
4040       LLT PartTy = MRI.getType(VecParts[PartIdx]);
4041 
4042       // Use the adjusted index to insert into one of the subvectors.
4043       auto InsertPart = MIRBuilder.buildInsertVectorElement(
4044           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4045       VecParts[PartIdx] = InsertPart.getReg(0);
4046 
4047       // Recombine the inserted subvector with the others to reform the result
4048       // vector.
4049       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4050     } else {
4051       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4052     }
4053 
4054     MI.eraseFromParent();
4055     return Legalized;
4056   }
4057 
4058   // With a variable index, we can't perform the operation in a smaller type, so
4059   // we're forced to expand this.
4060   //
4061   // TODO: We could emit a chain of compare/select to figure out which piece to
4062   // index.
4063   return lowerExtractInsertVectorElt(MI);
4064 }
4065 
4066 LegalizerHelper::LegalizeResult
4067 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4068                                       LLT NarrowTy) {
4069   // FIXME: Don't know how to handle secondary types yet.
4070   if (TypeIdx != 0)
4071     return UnableToLegalize;
4072 
4073   // This implementation doesn't work for atomics. Give up instead of doing
4074   // something invalid.
4075   if (LdStMI.isAtomic())
4076     return UnableToLegalize;
4077 
4078   bool IsLoad = isa<GLoad>(LdStMI);
4079   Register ValReg = LdStMI.getReg(0);
4080   Register AddrReg = LdStMI.getPointerReg();
4081   LLT ValTy = MRI.getType(ValReg);
4082 
4083   // FIXME: Do we need a distinct NarrowMemory legalize action?
4084   if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
4085     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
4086     return UnableToLegalize;
4087   }
4088 
4089   int NumParts = -1;
4090   int NumLeftover = -1;
4091   LLT LeftoverTy;
4092   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4093   if (IsLoad) {
4094     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4095   } else {
4096     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4097                      NarrowLeftoverRegs)) {
4098       NumParts = NarrowRegs.size();
4099       NumLeftover = NarrowLeftoverRegs.size();
4100     }
4101   }
4102 
4103   if (NumParts == -1)
4104     return UnableToLegalize;
4105 
4106   LLT PtrTy = MRI.getType(AddrReg);
4107   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4108 
4109   unsigned TotalSize = ValTy.getSizeInBits();
4110 
4111   // Split the load/store into PartTy sized pieces starting at Offset. If this
4112   // is a load, return the new registers in ValRegs. For a store, each elements
4113   // of ValRegs should be PartTy. Returns the next offset that needs to be
4114   // handled.
4115   bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian();
4116   auto MMO = LdStMI.getMMO();
4117   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4118                              unsigned NumParts, unsigned Offset) -> unsigned {
4119     MachineFunction &MF = MIRBuilder.getMF();
4120     unsigned PartSize = PartTy.getSizeInBits();
4121     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4122          ++Idx) {
4123       unsigned ByteOffset = Offset / 8;
4124       Register NewAddrReg;
4125 
4126       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4127 
4128       MachineMemOperand *NewMMO =
4129           MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4130 
4131       if (IsLoad) {
4132         Register Dst = MRI.createGenericVirtualRegister(PartTy);
4133         ValRegs.push_back(Dst);
4134         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4135       } else {
4136         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4137       }
4138       Offset = isBigEndian ? Offset - PartSize : Offset + PartSize;
4139     }
4140 
4141     return Offset;
4142   };
4143 
4144   unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0;
4145   unsigned HandledOffset =
4146       splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset);
4147 
4148   // Handle the rest of the register if this isn't an even type breakdown.
4149   if (LeftoverTy.isValid())
4150     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset);
4151 
4152   if (IsLoad) {
4153     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4154                 LeftoverTy, NarrowLeftoverRegs);
4155   }
4156 
4157   LdStMI.eraseFromParent();
4158   return Legalized;
4159 }
4160 
4161 LegalizerHelper::LegalizeResult
4162 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4163                                      LLT NarrowTy) {
4164   using namespace TargetOpcode;
4165   GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI);
4166   unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
4167 
4168   switch (MI.getOpcode()) {
4169   case G_IMPLICIT_DEF:
4170   case G_TRUNC:
4171   case G_AND:
4172   case G_OR:
4173   case G_XOR:
4174   case G_ADD:
4175   case G_SUB:
4176   case G_MUL:
4177   case G_PTR_ADD:
4178   case G_SMULH:
4179   case G_UMULH:
4180   case G_FADD:
4181   case G_FMUL:
4182   case G_FSUB:
4183   case G_FNEG:
4184   case G_FABS:
4185   case G_FCANONICALIZE:
4186   case G_FDIV:
4187   case G_FREM:
4188   case G_FMA:
4189   case G_FMAD:
4190   case G_FPOW:
4191   case G_FEXP:
4192   case G_FEXP2:
4193   case G_FLOG:
4194   case G_FLOG2:
4195   case G_FLOG10:
4196   case G_FNEARBYINT:
4197   case G_FCEIL:
4198   case G_FFLOOR:
4199   case G_FRINT:
4200   case G_INTRINSIC_ROUND:
4201   case G_INTRINSIC_ROUNDEVEN:
4202   case G_INTRINSIC_TRUNC:
4203   case G_FCOS:
4204   case G_FSIN:
4205   case G_FSQRT:
4206   case G_BSWAP:
4207   case G_BITREVERSE:
4208   case G_SDIV:
4209   case G_UDIV:
4210   case G_SREM:
4211   case G_UREM:
4212   case G_SDIVREM:
4213   case G_UDIVREM:
4214   case G_SMIN:
4215   case G_SMAX:
4216   case G_UMIN:
4217   case G_UMAX:
4218   case G_ABS:
4219   case G_FMINNUM:
4220   case G_FMAXNUM:
4221   case G_FMINNUM_IEEE:
4222   case G_FMAXNUM_IEEE:
4223   case G_FMINIMUM:
4224   case G_FMAXIMUM:
4225   case G_FSHL:
4226   case G_FSHR:
4227   case G_ROTL:
4228   case G_ROTR:
4229   case G_FREEZE:
4230   case G_SADDSAT:
4231   case G_SSUBSAT:
4232   case G_UADDSAT:
4233   case G_USUBSAT:
4234   case G_UMULO:
4235   case G_SMULO:
4236   case G_SHL:
4237   case G_LSHR:
4238   case G_ASHR:
4239   case G_SSHLSAT:
4240   case G_USHLSAT:
4241   case G_CTLZ:
4242   case G_CTLZ_ZERO_UNDEF:
4243   case G_CTTZ:
4244   case G_CTTZ_ZERO_UNDEF:
4245   case G_CTPOP:
4246   case G_FCOPYSIGN:
4247   case G_ZEXT:
4248   case G_SEXT:
4249   case G_ANYEXT:
4250   case G_FPEXT:
4251   case G_FPTRUNC:
4252   case G_SITOFP:
4253   case G_UITOFP:
4254   case G_FPTOSI:
4255   case G_FPTOUI:
4256   case G_INTTOPTR:
4257   case G_PTRTOINT:
4258   case G_ADDRSPACE_CAST:
4259   case G_UADDO:
4260   case G_USUBO:
4261   case G_UADDE:
4262   case G_USUBE:
4263   case G_SADDO:
4264   case G_SSUBO:
4265   case G_SADDE:
4266   case G_SSUBE:
4267     return fewerElementsVectorMultiEltType(GMI, NumElts);
4268   case G_ICMP:
4269   case G_FCMP:
4270     return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/});
4271   case G_SELECT:
4272     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4273       return fewerElementsVectorMultiEltType(GMI, NumElts);
4274     return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/});
4275   case G_PHI:
4276     return fewerElementsVectorPhi(GMI, NumElts);
4277   case G_UNMERGE_VALUES:
4278     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4279   case G_BUILD_VECTOR:
4280     assert(TypeIdx == 0 && "not a vector type index");
4281     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4282   case G_CONCAT_VECTORS:
4283     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4284       return UnableToLegalize;
4285     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4286   case G_EXTRACT_VECTOR_ELT:
4287   case G_INSERT_VECTOR_ELT:
4288     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4289   case G_LOAD:
4290   case G_STORE:
4291     return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4292   case G_SEXT_INREG:
4293     return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/});
4294   GISEL_VECREDUCE_CASES_NONSEQ
4295     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4296   case G_SHUFFLE_VECTOR:
4297     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4298   default:
4299     return UnableToLegalize;
4300   }
4301 }
4302 
4303 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4304     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4305   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4306   if (TypeIdx != 0)
4307     return UnableToLegalize;
4308 
4309   Register DstReg = MI.getOperand(0).getReg();
4310   Register Src1Reg = MI.getOperand(1).getReg();
4311   Register Src2Reg = MI.getOperand(2).getReg();
4312   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4313   LLT DstTy = MRI.getType(DstReg);
4314   LLT Src1Ty = MRI.getType(Src1Reg);
4315   LLT Src2Ty = MRI.getType(Src2Reg);
4316   // The shuffle should be canonicalized by now.
4317   if (DstTy != Src1Ty)
4318     return UnableToLegalize;
4319   if (DstTy != Src2Ty)
4320     return UnableToLegalize;
4321 
4322   if (!isPowerOf2_32(DstTy.getNumElements()))
4323     return UnableToLegalize;
4324 
4325   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4326   // Further legalization attempts will be needed to do split further.
4327   NarrowTy =
4328       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4329   unsigned NewElts = NarrowTy.getNumElements();
4330 
4331   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4332   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4333   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4334   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4335                         SplitSrc2Regs[1]};
4336 
4337   Register Hi, Lo;
4338 
4339   // If Lo or Hi uses elements from at most two of the four input vectors, then
4340   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4341   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4342   SmallVector<int, 16> Ops;
4343   for (unsigned High = 0; High < 2; ++High) {
4344     Register &Output = High ? Hi : Lo;
4345 
4346     // Build a shuffle mask for the output, discovering on the fly which
4347     // input vectors to use as shuffle operands (recorded in InputUsed).
4348     // If building a suitable shuffle vector proves too hard, then bail
4349     // out with useBuildVector set.
4350     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4351     unsigned FirstMaskIdx = High * NewElts;
4352     bool UseBuildVector = false;
4353     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4354       // The mask element.  This indexes into the input.
4355       int Idx = Mask[FirstMaskIdx + MaskOffset];
4356 
4357       // The input vector this mask element indexes into.
4358       unsigned Input = (unsigned)Idx / NewElts;
4359 
4360       if (Input >= array_lengthof(Inputs)) {
4361         // The mask element does not index into any input vector.
4362         Ops.push_back(-1);
4363         continue;
4364       }
4365 
4366       // Turn the index into an offset from the start of the input vector.
4367       Idx -= Input * NewElts;
4368 
4369       // Find or create a shuffle vector operand to hold this input.
4370       unsigned OpNo;
4371       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4372         if (InputUsed[OpNo] == Input) {
4373           // This input vector is already an operand.
4374           break;
4375         } else if (InputUsed[OpNo] == -1U) {
4376           // Create a new operand for this input vector.
4377           InputUsed[OpNo] = Input;
4378           break;
4379         }
4380       }
4381 
4382       if (OpNo >= array_lengthof(InputUsed)) {
4383         // More than two input vectors used!  Give up on trying to create a
4384         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4385         UseBuildVector = true;
4386         break;
4387       }
4388 
4389       // Add the mask index for the new shuffle vector.
4390       Ops.push_back(Idx + OpNo * NewElts);
4391     }
4392 
4393     if (UseBuildVector) {
4394       LLT EltTy = NarrowTy.getElementType();
4395       SmallVector<Register, 16> SVOps;
4396 
4397       // Extract the input elements by hand.
4398       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4399         // The mask element.  This indexes into the input.
4400         int Idx = Mask[FirstMaskIdx + MaskOffset];
4401 
4402         // The input vector this mask element indexes into.
4403         unsigned Input = (unsigned)Idx / NewElts;
4404 
4405         if (Input >= array_lengthof(Inputs)) {
4406           // The mask element is "undef" or indexes off the end of the input.
4407           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4408           continue;
4409         }
4410 
4411         // Turn the index into an offset from the start of the input vector.
4412         Idx -= Input * NewElts;
4413 
4414         // Extract the vector element by hand.
4415         SVOps.push_back(MIRBuilder
4416                             .buildExtractVectorElement(
4417                                 EltTy, Inputs[Input],
4418                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4419                             .getReg(0));
4420       }
4421 
4422       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4423       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4424     } else if (InputUsed[0] == -1U) {
4425       // No input vectors were used! The result is undefined.
4426       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4427     } else {
4428       Register Op0 = Inputs[InputUsed[0]];
4429       // If only one input was used, use an undefined vector for the other.
4430       Register Op1 = InputUsed[1] == -1U
4431                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4432                          : Inputs[InputUsed[1]];
4433       // At least one input vector was used. Create a new shuffle vector.
4434       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4435     }
4436 
4437     Ops.clear();
4438   }
4439 
4440   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4441   MI.eraseFromParent();
4442   return Legalized;
4443 }
4444 
4445 static unsigned getScalarOpcForReduction(unsigned Opc) {
4446   unsigned ScalarOpc;
4447   switch (Opc) {
4448   case TargetOpcode::G_VECREDUCE_FADD:
4449     ScalarOpc = TargetOpcode::G_FADD;
4450     break;
4451   case TargetOpcode::G_VECREDUCE_FMUL:
4452     ScalarOpc = TargetOpcode::G_FMUL;
4453     break;
4454   case TargetOpcode::G_VECREDUCE_FMAX:
4455     ScalarOpc = TargetOpcode::G_FMAXNUM;
4456     break;
4457   case TargetOpcode::G_VECREDUCE_FMIN:
4458     ScalarOpc = TargetOpcode::G_FMINNUM;
4459     break;
4460   case TargetOpcode::G_VECREDUCE_ADD:
4461     ScalarOpc = TargetOpcode::G_ADD;
4462     break;
4463   case TargetOpcode::G_VECREDUCE_MUL:
4464     ScalarOpc = TargetOpcode::G_MUL;
4465     break;
4466   case TargetOpcode::G_VECREDUCE_AND:
4467     ScalarOpc = TargetOpcode::G_AND;
4468     break;
4469   case TargetOpcode::G_VECREDUCE_OR:
4470     ScalarOpc = TargetOpcode::G_OR;
4471     break;
4472   case TargetOpcode::G_VECREDUCE_XOR:
4473     ScalarOpc = TargetOpcode::G_XOR;
4474     break;
4475   case TargetOpcode::G_VECREDUCE_SMAX:
4476     ScalarOpc = TargetOpcode::G_SMAX;
4477     break;
4478   case TargetOpcode::G_VECREDUCE_SMIN:
4479     ScalarOpc = TargetOpcode::G_SMIN;
4480     break;
4481   case TargetOpcode::G_VECREDUCE_UMAX:
4482     ScalarOpc = TargetOpcode::G_UMAX;
4483     break;
4484   case TargetOpcode::G_VECREDUCE_UMIN:
4485     ScalarOpc = TargetOpcode::G_UMIN;
4486     break;
4487   default:
4488     llvm_unreachable("Unhandled reduction");
4489   }
4490   return ScalarOpc;
4491 }
4492 
4493 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4494     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4495   unsigned Opc = MI.getOpcode();
4496   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4497          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4498          "Sequential reductions not expected");
4499 
4500   if (TypeIdx != 1)
4501     return UnableToLegalize;
4502 
4503   // The semantics of the normal non-sequential reductions allow us to freely
4504   // re-associate the operation.
4505   Register SrcReg = MI.getOperand(1).getReg();
4506   LLT SrcTy = MRI.getType(SrcReg);
4507   Register DstReg = MI.getOperand(0).getReg();
4508   LLT DstTy = MRI.getType(DstReg);
4509 
4510   if (NarrowTy.isVector() &&
4511       (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0))
4512     return UnableToLegalize;
4513 
4514   unsigned ScalarOpc = getScalarOpcForReduction(Opc);
4515   SmallVector<Register> SplitSrcs;
4516   // If NarrowTy is a scalar then we're being asked to scalarize.
4517   const unsigned NumParts =
4518       NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements()
4519                           : SrcTy.getNumElements();
4520 
4521   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4522   if (NarrowTy.isScalar()) {
4523     if (DstTy != NarrowTy)
4524       return UnableToLegalize; // FIXME: handle implicit extensions.
4525 
4526     if (isPowerOf2_32(NumParts)) {
4527       // Generate a tree of scalar operations to reduce the critical path.
4528       SmallVector<Register> PartialResults;
4529       unsigned NumPartsLeft = NumParts;
4530       while (NumPartsLeft > 1) {
4531         for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) {
4532           PartialResults.emplace_back(
4533               MIRBuilder
4534                   .buildInstr(ScalarOpc, {NarrowTy},
4535                               {SplitSrcs[Idx], SplitSrcs[Idx + 1]})
4536                   .getReg(0));
4537         }
4538         SplitSrcs = PartialResults;
4539         PartialResults.clear();
4540         NumPartsLeft = SplitSrcs.size();
4541       }
4542       assert(SplitSrcs.size() == 1);
4543       MIRBuilder.buildCopy(DstReg, SplitSrcs[0]);
4544       MI.eraseFromParent();
4545       return Legalized;
4546     }
4547     // If we can't generate a tree, then just do sequential operations.
4548     Register Acc = SplitSrcs[0];
4549     for (unsigned Idx = 1; Idx < NumParts; ++Idx)
4550       Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]})
4551                 .getReg(0);
4552     MIRBuilder.buildCopy(DstReg, Acc);
4553     MI.eraseFromParent();
4554     return Legalized;
4555   }
4556   SmallVector<Register> PartialReductions;
4557   for (unsigned Part = 0; Part < NumParts; ++Part) {
4558     PartialReductions.push_back(
4559         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4560   }
4561 
4562 
4563   // If the types involved are powers of 2, we can generate intermediate vector
4564   // ops, before generating a final reduction operation.
4565   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4566       isPowerOf2_32(NarrowTy.getNumElements())) {
4567     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4568   }
4569 
4570   Register Acc = PartialReductions[0];
4571   for (unsigned Part = 1; Part < NumParts; ++Part) {
4572     if (Part == NumParts - 1) {
4573       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4574                             {Acc, PartialReductions[Part]});
4575     } else {
4576       Acc = MIRBuilder
4577                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4578                 .getReg(0);
4579     }
4580   }
4581   MI.eraseFromParent();
4582   return Legalized;
4583 }
4584 
4585 LegalizerHelper::LegalizeResult
4586 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4587                                         LLT SrcTy, LLT NarrowTy,
4588                                         unsigned ScalarOpc) {
4589   SmallVector<Register> SplitSrcs;
4590   // Split the sources into NarrowTy size pieces.
4591   extractParts(SrcReg, NarrowTy,
4592                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4593   // We're going to do a tree reduction using vector operations until we have
4594   // one NarrowTy size value left.
4595   while (SplitSrcs.size() > 1) {
4596     SmallVector<Register> PartialRdxs;
4597     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4598       Register LHS = SplitSrcs[Idx];
4599       Register RHS = SplitSrcs[Idx + 1];
4600       // Create the intermediate vector op.
4601       Register Res =
4602           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4603       PartialRdxs.push_back(Res);
4604     }
4605     SplitSrcs = std::move(PartialRdxs);
4606   }
4607   // Finally generate the requested NarrowTy based reduction.
4608   Observer.changingInstr(MI);
4609   MI.getOperand(1).setReg(SplitSrcs[0]);
4610   Observer.changedInstr(MI);
4611   return Legalized;
4612 }
4613 
4614 LegalizerHelper::LegalizeResult
4615 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4616                                              const LLT HalfTy, const LLT AmtTy) {
4617 
4618   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4619   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4620   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4621 
4622   if (Amt.isZero()) {
4623     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4624     MI.eraseFromParent();
4625     return Legalized;
4626   }
4627 
4628   LLT NVT = HalfTy;
4629   unsigned NVTBits = HalfTy.getSizeInBits();
4630   unsigned VTBits = 2 * NVTBits;
4631 
4632   SrcOp Lo(Register(0)), Hi(Register(0));
4633   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4634     if (Amt.ugt(VTBits)) {
4635       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4636     } else if (Amt.ugt(NVTBits)) {
4637       Lo = MIRBuilder.buildConstant(NVT, 0);
4638       Hi = MIRBuilder.buildShl(NVT, InL,
4639                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4640     } else if (Amt == NVTBits) {
4641       Lo = MIRBuilder.buildConstant(NVT, 0);
4642       Hi = InL;
4643     } else {
4644       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4645       auto OrLHS =
4646           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4647       auto OrRHS = MIRBuilder.buildLShr(
4648           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4649       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4650     }
4651   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4652     if (Amt.ugt(VTBits)) {
4653       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4654     } else if (Amt.ugt(NVTBits)) {
4655       Lo = MIRBuilder.buildLShr(NVT, InH,
4656                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4657       Hi = MIRBuilder.buildConstant(NVT, 0);
4658     } else if (Amt == NVTBits) {
4659       Lo = InH;
4660       Hi = MIRBuilder.buildConstant(NVT, 0);
4661     } else {
4662       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4663 
4664       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4665       auto OrRHS = MIRBuilder.buildShl(
4666           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4667 
4668       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4669       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4670     }
4671   } else {
4672     if (Amt.ugt(VTBits)) {
4673       Hi = Lo = MIRBuilder.buildAShr(
4674           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4675     } else if (Amt.ugt(NVTBits)) {
4676       Lo = MIRBuilder.buildAShr(NVT, InH,
4677                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4678       Hi = MIRBuilder.buildAShr(NVT, InH,
4679                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4680     } else if (Amt == NVTBits) {
4681       Lo = InH;
4682       Hi = MIRBuilder.buildAShr(NVT, InH,
4683                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4684     } else {
4685       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4686 
4687       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4688       auto OrRHS = MIRBuilder.buildShl(
4689           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4690 
4691       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4692       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4693     }
4694   }
4695 
4696   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4697   MI.eraseFromParent();
4698 
4699   return Legalized;
4700 }
4701 
4702 // TODO: Optimize if constant shift amount.
4703 LegalizerHelper::LegalizeResult
4704 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4705                                    LLT RequestedTy) {
4706   if (TypeIdx == 1) {
4707     Observer.changingInstr(MI);
4708     narrowScalarSrc(MI, RequestedTy, 2);
4709     Observer.changedInstr(MI);
4710     return Legalized;
4711   }
4712 
4713   Register DstReg = MI.getOperand(0).getReg();
4714   LLT DstTy = MRI.getType(DstReg);
4715   if (DstTy.isVector())
4716     return UnableToLegalize;
4717 
4718   Register Amt = MI.getOperand(2).getReg();
4719   LLT ShiftAmtTy = MRI.getType(Amt);
4720   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4721   if (DstEltSize % 2 != 0)
4722     return UnableToLegalize;
4723 
4724   // Ignore the input type. We can only go to exactly half the size of the
4725   // input. If that isn't small enough, the resulting pieces will be further
4726   // legalized.
4727   const unsigned NewBitSize = DstEltSize / 2;
4728   const LLT HalfTy = LLT::scalar(NewBitSize);
4729   const LLT CondTy = LLT::scalar(1);
4730 
4731   if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) {
4732     return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy,
4733                                        ShiftAmtTy);
4734   }
4735 
4736   // TODO: Expand with known bits.
4737 
4738   // Handle the fully general expansion by an unknown amount.
4739   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4740 
4741   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4742   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4743   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4744 
4745   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4746   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4747 
4748   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4749   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4750   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4751 
4752   Register ResultRegs[2];
4753   switch (MI.getOpcode()) {
4754   case TargetOpcode::G_SHL: {
4755     // Short: ShAmt < NewBitSize
4756     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4757 
4758     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4759     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4760     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4761 
4762     // Long: ShAmt >= NewBitSize
4763     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4764     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4765 
4766     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4767     auto Hi = MIRBuilder.buildSelect(
4768         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4769 
4770     ResultRegs[0] = Lo.getReg(0);
4771     ResultRegs[1] = Hi.getReg(0);
4772     break;
4773   }
4774   case TargetOpcode::G_LSHR:
4775   case TargetOpcode::G_ASHR: {
4776     // Short: ShAmt < NewBitSize
4777     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4778 
4779     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4780     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4781     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4782 
4783     // Long: ShAmt >= NewBitSize
4784     MachineInstrBuilder HiL;
4785     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4786       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4787     } else {
4788       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4789       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4790     }
4791     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4792                                      {InH, AmtExcess});     // Lo from Hi part.
4793 
4794     auto Lo = MIRBuilder.buildSelect(
4795         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4796 
4797     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4798 
4799     ResultRegs[0] = Lo.getReg(0);
4800     ResultRegs[1] = Hi.getReg(0);
4801     break;
4802   }
4803   default:
4804     llvm_unreachable("not a shift");
4805   }
4806 
4807   MIRBuilder.buildMerge(DstReg, ResultRegs);
4808   MI.eraseFromParent();
4809   return Legalized;
4810 }
4811 
4812 LegalizerHelper::LegalizeResult
4813 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4814                                        LLT MoreTy) {
4815   assert(TypeIdx == 0 && "Expecting only Idx 0");
4816 
4817   Observer.changingInstr(MI);
4818   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4819     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4820     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4821     moreElementsVectorSrc(MI, MoreTy, I);
4822   }
4823 
4824   MachineBasicBlock &MBB = *MI.getParent();
4825   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4826   moreElementsVectorDst(MI, MoreTy, 0);
4827   Observer.changedInstr(MI);
4828   return Legalized;
4829 }
4830 
4831 LegalizerHelper::LegalizeResult
4832 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4833                                     LLT MoreTy) {
4834   unsigned Opc = MI.getOpcode();
4835   switch (Opc) {
4836   case TargetOpcode::G_IMPLICIT_DEF:
4837   case TargetOpcode::G_LOAD: {
4838     if (TypeIdx != 0)
4839       return UnableToLegalize;
4840     Observer.changingInstr(MI);
4841     moreElementsVectorDst(MI, MoreTy, 0);
4842     Observer.changedInstr(MI);
4843     return Legalized;
4844   }
4845   case TargetOpcode::G_STORE:
4846     if (TypeIdx != 0)
4847       return UnableToLegalize;
4848     Observer.changingInstr(MI);
4849     moreElementsVectorSrc(MI, MoreTy, 0);
4850     Observer.changedInstr(MI);
4851     return Legalized;
4852   case TargetOpcode::G_AND:
4853   case TargetOpcode::G_OR:
4854   case TargetOpcode::G_XOR:
4855   case TargetOpcode::G_ADD:
4856   case TargetOpcode::G_SUB:
4857   case TargetOpcode::G_MUL:
4858   case TargetOpcode::G_FADD:
4859   case TargetOpcode::G_FMUL:
4860   case TargetOpcode::G_UADDSAT:
4861   case TargetOpcode::G_USUBSAT:
4862   case TargetOpcode::G_SADDSAT:
4863   case TargetOpcode::G_SSUBSAT:
4864   case TargetOpcode::G_SMIN:
4865   case TargetOpcode::G_SMAX:
4866   case TargetOpcode::G_UMIN:
4867   case TargetOpcode::G_UMAX:
4868   case TargetOpcode::G_FMINNUM:
4869   case TargetOpcode::G_FMAXNUM:
4870   case TargetOpcode::G_FMINNUM_IEEE:
4871   case TargetOpcode::G_FMAXNUM_IEEE:
4872   case TargetOpcode::G_FMINIMUM:
4873   case TargetOpcode::G_FMAXIMUM: {
4874     Observer.changingInstr(MI);
4875     moreElementsVectorSrc(MI, MoreTy, 1);
4876     moreElementsVectorSrc(MI, MoreTy, 2);
4877     moreElementsVectorDst(MI, MoreTy, 0);
4878     Observer.changedInstr(MI);
4879     return Legalized;
4880   }
4881   case TargetOpcode::G_FMA:
4882   case TargetOpcode::G_FSHR:
4883   case TargetOpcode::G_FSHL: {
4884     Observer.changingInstr(MI);
4885     moreElementsVectorSrc(MI, MoreTy, 1);
4886     moreElementsVectorSrc(MI, MoreTy, 2);
4887     moreElementsVectorSrc(MI, MoreTy, 3);
4888     moreElementsVectorDst(MI, MoreTy, 0);
4889     Observer.changedInstr(MI);
4890     return Legalized;
4891   }
4892   case TargetOpcode::G_EXTRACT:
4893     if (TypeIdx != 1)
4894       return UnableToLegalize;
4895     Observer.changingInstr(MI);
4896     moreElementsVectorSrc(MI, MoreTy, 1);
4897     Observer.changedInstr(MI);
4898     return Legalized;
4899   case TargetOpcode::G_INSERT:
4900   case TargetOpcode::G_FREEZE:
4901   case TargetOpcode::G_FNEG:
4902   case TargetOpcode::G_FABS:
4903   case TargetOpcode::G_BSWAP:
4904   case TargetOpcode::G_FCANONICALIZE:
4905   case TargetOpcode::G_SEXT_INREG:
4906     if (TypeIdx != 0)
4907       return UnableToLegalize;
4908     Observer.changingInstr(MI);
4909     moreElementsVectorSrc(MI, MoreTy, 1);
4910     moreElementsVectorDst(MI, MoreTy, 0);
4911     Observer.changedInstr(MI);
4912     return Legalized;
4913   case TargetOpcode::G_SELECT:
4914     if (TypeIdx != 0)
4915       return UnableToLegalize;
4916     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4917       return UnableToLegalize;
4918 
4919     Observer.changingInstr(MI);
4920     moreElementsVectorSrc(MI, MoreTy, 2);
4921     moreElementsVectorSrc(MI, MoreTy, 3);
4922     moreElementsVectorDst(MI, MoreTy, 0);
4923     Observer.changedInstr(MI);
4924     return Legalized;
4925   case TargetOpcode::G_UNMERGE_VALUES:
4926     return UnableToLegalize;
4927   case TargetOpcode::G_PHI:
4928     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4929   case TargetOpcode::G_SHUFFLE_VECTOR:
4930     return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
4931   case TargetOpcode::G_BUILD_VECTOR: {
4932     SmallVector<SrcOp, 8> Elts;
4933     for (auto Op : MI.uses()) {
4934       Elts.push_back(Op.getReg());
4935     }
4936 
4937     for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) {
4938       Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType()));
4939     }
4940 
4941     MIRBuilder.buildDeleteTrailingVectorElements(
4942         MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts));
4943     MI.eraseFromParent();
4944     return Legalized;
4945   }
4946   case TargetOpcode::G_TRUNC: {
4947     Observer.changingInstr(MI);
4948     moreElementsVectorSrc(MI, MoreTy, 1);
4949     moreElementsVectorDst(MI, MoreTy, 0);
4950     Observer.changedInstr(MI);
4951     return Legalized;
4952   }
4953   default:
4954     return UnableToLegalize;
4955   }
4956 }
4957 
4958 LegalizerHelper::LegalizeResult
4959 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
4960                                            unsigned int TypeIdx, LLT MoreTy) {
4961   if (TypeIdx != 0)
4962     return UnableToLegalize;
4963 
4964   Register DstReg = MI.getOperand(0).getReg();
4965   Register Src1Reg = MI.getOperand(1).getReg();
4966   Register Src2Reg = MI.getOperand(2).getReg();
4967   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4968   LLT DstTy = MRI.getType(DstReg);
4969   LLT Src1Ty = MRI.getType(Src1Reg);
4970   LLT Src2Ty = MRI.getType(Src2Reg);
4971   unsigned NumElts = DstTy.getNumElements();
4972   unsigned WidenNumElts = MoreTy.getNumElements();
4973 
4974   // Expect a canonicalized shuffle.
4975   if (DstTy != Src1Ty || DstTy != Src2Ty)
4976     return UnableToLegalize;
4977 
4978   moreElementsVectorSrc(MI, MoreTy, 1);
4979   moreElementsVectorSrc(MI, MoreTy, 2);
4980 
4981   // Adjust mask based on new input vector length.
4982   SmallVector<int, 16> NewMask;
4983   for (unsigned I = 0; I != NumElts; ++I) {
4984     int Idx = Mask[I];
4985     if (Idx < static_cast<int>(NumElts))
4986       NewMask.push_back(Idx);
4987     else
4988       NewMask.push_back(Idx - NumElts + WidenNumElts);
4989   }
4990   for (unsigned I = NumElts; I != WidenNumElts; ++I)
4991     NewMask.push_back(-1);
4992   moreElementsVectorDst(MI, MoreTy, 0);
4993   MIRBuilder.setInstrAndDebugLoc(MI);
4994   MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
4995                                 MI.getOperand(1).getReg(),
4996                                 MI.getOperand(2).getReg(), NewMask);
4997   MI.eraseFromParent();
4998   return Legalized;
4999 }
5000 
5001 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
5002                                         ArrayRef<Register> Src1Regs,
5003                                         ArrayRef<Register> Src2Regs,
5004                                         LLT NarrowTy) {
5005   MachineIRBuilder &B = MIRBuilder;
5006   unsigned SrcParts = Src1Regs.size();
5007   unsigned DstParts = DstRegs.size();
5008 
5009   unsigned DstIdx = 0; // Low bits of the result.
5010   Register FactorSum =
5011       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
5012   DstRegs[DstIdx] = FactorSum;
5013 
5014   unsigned CarrySumPrevDstIdx;
5015   SmallVector<Register, 4> Factors;
5016 
5017   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
5018     // Collect low parts of muls for DstIdx.
5019     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
5020          i <= std::min(DstIdx, SrcParts - 1); ++i) {
5021       MachineInstrBuilder Mul =
5022           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
5023       Factors.push_back(Mul.getReg(0));
5024     }
5025     // Collect high parts of muls from previous DstIdx.
5026     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
5027          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5028       MachineInstrBuilder Umulh =
5029           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5030       Factors.push_back(Umulh.getReg(0));
5031     }
5032     // Add CarrySum from additions calculated for previous DstIdx.
5033     if (DstIdx != 1) {
5034       Factors.push_back(CarrySumPrevDstIdx);
5035     }
5036 
5037     Register CarrySum;
5038     // Add all factors and accumulate all carries into CarrySum.
5039     if (DstIdx != DstParts - 1) {
5040       MachineInstrBuilder Uaddo =
5041           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5042       FactorSum = Uaddo.getReg(0);
5043       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5044       for (unsigned i = 2; i < Factors.size(); ++i) {
5045         MachineInstrBuilder Uaddo =
5046             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5047         FactorSum = Uaddo.getReg(0);
5048         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5049         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5050       }
5051     } else {
5052       // Since value for the next index is not calculated, neither is CarrySum.
5053       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5054       for (unsigned i = 2; i < Factors.size(); ++i)
5055         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5056     }
5057 
5058     CarrySumPrevDstIdx = CarrySum;
5059     DstRegs[DstIdx] = FactorSum;
5060     Factors.clear();
5061   }
5062 }
5063 
5064 LegalizerHelper::LegalizeResult
5065 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5066                                     LLT NarrowTy) {
5067   if (TypeIdx != 0)
5068     return UnableToLegalize;
5069 
5070   Register DstReg = MI.getOperand(0).getReg();
5071   LLT DstType = MRI.getType(DstReg);
5072   // FIXME: add support for vector types
5073   if (DstType.isVector())
5074     return UnableToLegalize;
5075 
5076   unsigned Opcode = MI.getOpcode();
5077   unsigned OpO, OpE, OpF;
5078   switch (Opcode) {
5079   case TargetOpcode::G_SADDO:
5080   case TargetOpcode::G_SADDE:
5081   case TargetOpcode::G_UADDO:
5082   case TargetOpcode::G_UADDE:
5083   case TargetOpcode::G_ADD:
5084     OpO = TargetOpcode::G_UADDO;
5085     OpE = TargetOpcode::G_UADDE;
5086     OpF = TargetOpcode::G_UADDE;
5087     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5088       OpF = TargetOpcode::G_SADDE;
5089     break;
5090   case TargetOpcode::G_SSUBO:
5091   case TargetOpcode::G_SSUBE:
5092   case TargetOpcode::G_USUBO:
5093   case TargetOpcode::G_USUBE:
5094   case TargetOpcode::G_SUB:
5095     OpO = TargetOpcode::G_USUBO;
5096     OpE = TargetOpcode::G_USUBE;
5097     OpF = TargetOpcode::G_USUBE;
5098     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5099       OpF = TargetOpcode::G_SSUBE;
5100     break;
5101   default:
5102     llvm_unreachable("Unexpected add/sub opcode!");
5103   }
5104 
5105   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5106   unsigned NumDefs = MI.getNumExplicitDefs();
5107   Register Src1 = MI.getOperand(NumDefs).getReg();
5108   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5109   Register CarryDst, CarryIn;
5110   if (NumDefs == 2)
5111     CarryDst = MI.getOperand(1).getReg();
5112   if (MI.getNumOperands() == NumDefs + 3)
5113     CarryIn = MI.getOperand(NumDefs + 2).getReg();
5114 
5115   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5116   LLT LeftoverTy, DummyTy;
5117   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5118   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5119   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5120 
5121   int NarrowParts = Src1Regs.size();
5122   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5123     Src1Regs.push_back(Src1Left[I]);
5124     Src2Regs.push_back(Src2Left[I]);
5125   }
5126   DstRegs.reserve(Src1Regs.size());
5127 
5128   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5129     Register DstReg =
5130         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5131     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5132     // Forward the final carry-out to the destination register
5133     if (i == e - 1 && CarryDst)
5134       CarryOut = CarryDst;
5135 
5136     if (!CarryIn) {
5137       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5138                             {Src1Regs[i], Src2Regs[i]});
5139     } else if (i == e - 1) {
5140       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5141                             {Src1Regs[i], Src2Regs[i], CarryIn});
5142     } else {
5143       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5144                             {Src1Regs[i], Src2Regs[i], CarryIn});
5145     }
5146 
5147     DstRegs.push_back(DstReg);
5148     CarryIn = CarryOut;
5149   }
5150   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5151               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5152               makeArrayRef(DstRegs).drop_front(NarrowParts));
5153 
5154   MI.eraseFromParent();
5155   return Legalized;
5156 }
5157 
5158 LegalizerHelper::LegalizeResult
5159 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5160   Register DstReg = MI.getOperand(0).getReg();
5161   Register Src1 = MI.getOperand(1).getReg();
5162   Register Src2 = MI.getOperand(2).getReg();
5163 
5164   LLT Ty = MRI.getType(DstReg);
5165   if (Ty.isVector())
5166     return UnableToLegalize;
5167 
5168   unsigned Size = Ty.getSizeInBits();
5169   unsigned NarrowSize = NarrowTy.getSizeInBits();
5170   if (Size % NarrowSize != 0)
5171     return UnableToLegalize;
5172 
5173   unsigned NumParts = Size / NarrowSize;
5174   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5175   unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1);
5176 
5177   SmallVector<Register, 2> Src1Parts, Src2Parts;
5178   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5179   extractParts(Src1, NarrowTy, NumParts, Src1Parts);
5180   extractParts(Src2, NarrowTy, NumParts, Src2Parts);
5181   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5182 
5183   // Take only high half of registers if this is high mul.
5184   ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts);
5185   MIRBuilder.buildMerge(DstReg, DstRegs);
5186   MI.eraseFromParent();
5187   return Legalized;
5188 }
5189 
5190 LegalizerHelper::LegalizeResult
5191 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5192                                    LLT NarrowTy) {
5193   if (TypeIdx != 0)
5194     return UnableToLegalize;
5195 
5196   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5197 
5198   Register Src = MI.getOperand(1).getReg();
5199   LLT SrcTy = MRI.getType(Src);
5200 
5201   // If all finite floats fit into the narrowed integer type, we can just swap
5202   // out the result type. This is practically only useful for conversions from
5203   // half to at least 16-bits, so just handle the one case.
5204   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5205       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5206     return UnableToLegalize;
5207 
5208   Observer.changingInstr(MI);
5209   narrowScalarDst(MI, NarrowTy, 0,
5210                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5211   Observer.changedInstr(MI);
5212   return Legalized;
5213 }
5214 
5215 LegalizerHelper::LegalizeResult
5216 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5217                                      LLT NarrowTy) {
5218   if (TypeIdx != 1)
5219     return UnableToLegalize;
5220 
5221   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5222 
5223   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5224   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5225   // NarrowSize.
5226   if (SizeOp1 % NarrowSize != 0)
5227     return UnableToLegalize;
5228   int NumParts = SizeOp1 / NarrowSize;
5229 
5230   SmallVector<Register, 2> SrcRegs, DstRegs;
5231   SmallVector<uint64_t, 2> Indexes;
5232   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5233 
5234   Register OpReg = MI.getOperand(0).getReg();
5235   uint64_t OpStart = MI.getOperand(2).getImm();
5236   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5237   for (int i = 0; i < NumParts; ++i) {
5238     unsigned SrcStart = i * NarrowSize;
5239 
5240     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5241       // No part of the extract uses this subregister, ignore it.
5242       continue;
5243     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5244       // The entire subregister is extracted, forward the value.
5245       DstRegs.push_back(SrcRegs[i]);
5246       continue;
5247     }
5248 
5249     // OpSegStart is where this destination segment would start in OpReg if it
5250     // extended infinitely in both directions.
5251     int64_t ExtractOffset;
5252     uint64_t SegSize;
5253     if (OpStart < SrcStart) {
5254       ExtractOffset = 0;
5255       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5256     } else {
5257       ExtractOffset = OpStart - SrcStart;
5258       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5259     }
5260 
5261     Register SegReg = SrcRegs[i];
5262     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5263       // A genuine extract is needed.
5264       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5265       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5266     }
5267 
5268     DstRegs.push_back(SegReg);
5269   }
5270 
5271   Register DstReg = MI.getOperand(0).getReg();
5272   if (MRI.getType(DstReg).isVector())
5273     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5274   else if (DstRegs.size() > 1)
5275     MIRBuilder.buildMerge(DstReg, DstRegs);
5276   else
5277     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5278   MI.eraseFromParent();
5279   return Legalized;
5280 }
5281 
5282 LegalizerHelper::LegalizeResult
5283 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5284                                     LLT NarrowTy) {
5285   // FIXME: Don't know how to handle secondary types yet.
5286   if (TypeIdx != 0)
5287     return UnableToLegalize;
5288 
5289   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5290   SmallVector<uint64_t, 2> Indexes;
5291   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5292   LLT LeftoverTy;
5293   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5294                LeftoverRegs);
5295 
5296   for (Register Reg : LeftoverRegs)
5297     SrcRegs.push_back(Reg);
5298 
5299   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5300   Register OpReg = MI.getOperand(2).getReg();
5301   uint64_t OpStart = MI.getOperand(3).getImm();
5302   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5303   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5304     unsigned DstStart = I * NarrowSize;
5305 
5306     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5307       // The entire subregister is defined by this insert, forward the new
5308       // value.
5309       DstRegs.push_back(OpReg);
5310       continue;
5311     }
5312 
5313     Register SrcReg = SrcRegs[I];
5314     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5315       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5316       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5317       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5318     }
5319 
5320     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5321       // No part of the insert affects this subregister, forward the original.
5322       DstRegs.push_back(SrcReg);
5323       continue;
5324     }
5325 
5326     // OpSegStart is where this destination segment would start in OpReg if it
5327     // extended infinitely in both directions.
5328     int64_t ExtractOffset, InsertOffset;
5329     uint64_t SegSize;
5330     if (OpStart < DstStart) {
5331       InsertOffset = 0;
5332       ExtractOffset = DstStart - OpStart;
5333       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5334     } else {
5335       InsertOffset = OpStart - DstStart;
5336       ExtractOffset = 0;
5337       SegSize =
5338         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5339     }
5340 
5341     Register SegReg = OpReg;
5342     if (ExtractOffset != 0 || SegSize != OpSize) {
5343       // A genuine extract is needed.
5344       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5345       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5346     }
5347 
5348     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5349     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5350     DstRegs.push_back(DstReg);
5351   }
5352 
5353   uint64_t WideSize = DstRegs.size() * NarrowSize;
5354   Register DstReg = MI.getOperand(0).getReg();
5355   if (WideSize > RegTy.getSizeInBits()) {
5356     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5357     MIRBuilder.buildMerge(MergeReg, DstRegs);
5358     MIRBuilder.buildTrunc(DstReg, MergeReg);
5359   } else
5360     MIRBuilder.buildMerge(DstReg, DstRegs);
5361 
5362   MI.eraseFromParent();
5363   return Legalized;
5364 }
5365 
5366 LegalizerHelper::LegalizeResult
5367 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5368                                    LLT NarrowTy) {
5369   Register DstReg = MI.getOperand(0).getReg();
5370   LLT DstTy = MRI.getType(DstReg);
5371 
5372   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5373 
5374   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5375   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5376   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5377   LLT LeftoverTy;
5378   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5379                     Src0Regs, Src0LeftoverRegs))
5380     return UnableToLegalize;
5381 
5382   LLT Unused;
5383   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5384                     Src1Regs, Src1LeftoverRegs))
5385     llvm_unreachable("inconsistent extractParts result");
5386 
5387   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5388     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5389                                         {Src0Regs[I], Src1Regs[I]});
5390     DstRegs.push_back(Inst.getReg(0));
5391   }
5392 
5393   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5394     auto Inst = MIRBuilder.buildInstr(
5395       MI.getOpcode(),
5396       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5397     DstLeftoverRegs.push_back(Inst.getReg(0));
5398   }
5399 
5400   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5401               LeftoverTy, DstLeftoverRegs);
5402 
5403   MI.eraseFromParent();
5404   return Legalized;
5405 }
5406 
5407 LegalizerHelper::LegalizeResult
5408 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5409                                  LLT NarrowTy) {
5410   if (TypeIdx != 0)
5411     return UnableToLegalize;
5412 
5413   Register DstReg = MI.getOperand(0).getReg();
5414   Register SrcReg = MI.getOperand(1).getReg();
5415 
5416   LLT DstTy = MRI.getType(DstReg);
5417   if (DstTy.isVector())
5418     return UnableToLegalize;
5419 
5420   SmallVector<Register, 8> Parts;
5421   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5422   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5423   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5424 
5425   MI.eraseFromParent();
5426   return Legalized;
5427 }
5428 
5429 LegalizerHelper::LegalizeResult
5430 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5431                                     LLT NarrowTy) {
5432   if (TypeIdx != 0)
5433     return UnableToLegalize;
5434 
5435   Register CondReg = MI.getOperand(1).getReg();
5436   LLT CondTy = MRI.getType(CondReg);
5437   if (CondTy.isVector()) // TODO: Handle vselect
5438     return UnableToLegalize;
5439 
5440   Register DstReg = MI.getOperand(0).getReg();
5441   LLT DstTy = MRI.getType(DstReg);
5442 
5443   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5444   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5445   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5446   LLT LeftoverTy;
5447   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5448                     Src1Regs, Src1LeftoverRegs))
5449     return UnableToLegalize;
5450 
5451   LLT Unused;
5452   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5453                     Src2Regs, Src2LeftoverRegs))
5454     llvm_unreachable("inconsistent extractParts result");
5455 
5456   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5457     auto Select = MIRBuilder.buildSelect(NarrowTy,
5458                                          CondReg, Src1Regs[I], Src2Regs[I]);
5459     DstRegs.push_back(Select.getReg(0));
5460   }
5461 
5462   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5463     auto Select = MIRBuilder.buildSelect(
5464       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5465     DstLeftoverRegs.push_back(Select.getReg(0));
5466   }
5467 
5468   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5469               LeftoverTy, DstLeftoverRegs);
5470 
5471   MI.eraseFromParent();
5472   return Legalized;
5473 }
5474 
5475 LegalizerHelper::LegalizeResult
5476 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5477                                   LLT NarrowTy) {
5478   if (TypeIdx != 1)
5479     return UnableToLegalize;
5480 
5481   Register DstReg = MI.getOperand(0).getReg();
5482   Register SrcReg = MI.getOperand(1).getReg();
5483   LLT DstTy = MRI.getType(DstReg);
5484   LLT SrcTy = MRI.getType(SrcReg);
5485   unsigned NarrowSize = NarrowTy.getSizeInBits();
5486 
5487   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5488     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5489 
5490     MachineIRBuilder &B = MIRBuilder;
5491     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5492     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5493     auto C_0 = B.buildConstant(NarrowTy, 0);
5494     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5495                                 UnmergeSrc.getReg(1), C_0);
5496     auto LoCTLZ = IsUndef ?
5497       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5498       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5499     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5500     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5501     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5502     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5503 
5504     MI.eraseFromParent();
5505     return Legalized;
5506   }
5507 
5508   return UnableToLegalize;
5509 }
5510 
5511 LegalizerHelper::LegalizeResult
5512 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5513                                   LLT NarrowTy) {
5514   if (TypeIdx != 1)
5515     return UnableToLegalize;
5516 
5517   Register DstReg = MI.getOperand(0).getReg();
5518   Register SrcReg = MI.getOperand(1).getReg();
5519   LLT DstTy = MRI.getType(DstReg);
5520   LLT SrcTy = MRI.getType(SrcReg);
5521   unsigned NarrowSize = NarrowTy.getSizeInBits();
5522 
5523   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5524     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5525 
5526     MachineIRBuilder &B = MIRBuilder;
5527     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5528     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5529     auto C_0 = B.buildConstant(NarrowTy, 0);
5530     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5531                                 UnmergeSrc.getReg(0), C_0);
5532     auto HiCTTZ = IsUndef ?
5533       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5534       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5535     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5536     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5537     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5538     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5539 
5540     MI.eraseFromParent();
5541     return Legalized;
5542   }
5543 
5544   return UnableToLegalize;
5545 }
5546 
5547 LegalizerHelper::LegalizeResult
5548 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5549                                    LLT NarrowTy) {
5550   if (TypeIdx != 1)
5551     return UnableToLegalize;
5552 
5553   Register DstReg = MI.getOperand(0).getReg();
5554   LLT DstTy = MRI.getType(DstReg);
5555   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5556   unsigned NarrowSize = NarrowTy.getSizeInBits();
5557 
5558   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5559     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5560 
5561     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5562     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5563     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5564 
5565     MI.eraseFromParent();
5566     return Legalized;
5567   }
5568 
5569   return UnableToLegalize;
5570 }
5571 
5572 LegalizerHelper::LegalizeResult
5573 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5574   unsigned Opc = MI.getOpcode();
5575   const auto &TII = MIRBuilder.getTII();
5576   auto isSupported = [this](const LegalityQuery &Q) {
5577     auto QAction = LI.getAction(Q).Action;
5578     return QAction == Legal || QAction == Libcall || QAction == Custom;
5579   };
5580   switch (Opc) {
5581   default:
5582     return UnableToLegalize;
5583   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5584     // This trivially expands to CTLZ.
5585     Observer.changingInstr(MI);
5586     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5587     Observer.changedInstr(MI);
5588     return Legalized;
5589   }
5590   case TargetOpcode::G_CTLZ: {
5591     Register DstReg = MI.getOperand(0).getReg();
5592     Register SrcReg = MI.getOperand(1).getReg();
5593     LLT DstTy = MRI.getType(DstReg);
5594     LLT SrcTy = MRI.getType(SrcReg);
5595     unsigned Len = SrcTy.getSizeInBits();
5596 
5597     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5598       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5599       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5600       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5601       auto ICmp = MIRBuilder.buildICmp(
5602           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5603       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5604       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5605       MI.eraseFromParent();
5606       return Legalized;
5607     }
5608     // for now, we do this:
5609     // NewLen = NextPowerOf2(Len);
5610     // x = x | (x >> 1);
5611     // x = x | (x >> 2);
5612     // ...
5613     // x = x | (x >>16);
5614     // x = x | (x >>32); // for 64-bit input
5615     // Upto NewLen/2
5616     // return Len - popcount(x);
5617     //
5618     // Ref: "Hacker's Delight" by Henry Warren
5619     Register Op = SrcReg;
5620     unsigned NewLen = PowerOf2Ceil(Len);
5621     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5622       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5623       auto MIBOp = MIRBuilder.buildOr(
5624           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5625       Op = MIBOp.getReg(0);
5626     }
5627     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5628     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5629                         MIBPop);
5630     MI.eraseFromParent();
5631     return Legalized;
5632   }
5633   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5634     // This trivially expands to CTTZ.
5635     Observer.changingInstr(MI);
5636     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5637     Observer.changedInstr(MI);
5638     return Legalized;
5639   }
5640   case TargetOpcode::G_CTTZ: {
5641     Register DstReg = MI.getOperand(0).getReg();
5642     Register SrcReg = MI.getOperand(1).getReg();
5643     LLT DstTy = MRI.getType(DstReg);
5644     LLT SrcTy = MRI.getType(SrcReg);
5645 
5646     unsigned Len = SrcTy.getSizeInBits();
5647     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5648       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5649       // zero.
5650       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5651       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5652       auto ICmp = MIRBuilder.buildICmp(
5653           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5654       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5655       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5656       MI.eraseFromParent();
5657       return Legalized;
5658     }
5659     // for now, we use: { return popcount(~x & (x - 1)); }
5660     // unless the target has ctlz but not ctpop, in which case we use:
5661     // { return 32 - nlz(~x & (x-1)); }
5662     // Ref: "Hacker's Delight" by Henry Warren
5663     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5664     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5665     auto MIBTmp = MIRBuilder.buildAnd(
5666         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5667     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5668         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5669       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5670       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5671                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5672       MI.eraseFromParent();
5673       return Legalized;
5674     }
5675     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5676     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5677     return Legalized;
5678   }
5679   case TargetOpcode::G_CTPOP: {
5680     Register SrcReg = MI.getOperand(1).getReg();
5681     LLT Ty = MRI.getType(SrcReg);
5682     unsigned Size = Ty.getSizeInBits();
5683     MachineIRBuilder &B = MIRBuilder;
5684 
5685     // Count set bits in blocks of 2 bits. Default approach would be
5686     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5687     // We use following formula instead:
5688     // B2Count = val - { (val >> 1) & 0x55555555 }
5689     // since it gives same result in blocks of 2 with one instruction less.
5690     auto C_1 = B.buildConstant(Ty, 1);
5691     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5692     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5693     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5694     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5695     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5696 
5697     // In order to get count in blocks of 4 add values from adjacent block of 2.
5698     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5699     auto C_2 = B.buildConstant(Ty, 2);
5700     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5701     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5702     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5703     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5704     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5705     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5706 
5707     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5708     // addition since count value sits in range {0,...,8} and 4 bits are enough
5709     // to hold such binary values. After addition high 4 bits still hold count
5710     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5711     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5712     auto C_4 = B.buildConstant(Ty, 4);
5713     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5714     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5715     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5716     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5717     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5718 
5719     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5720     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5721     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5722     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5723     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5724 
5725     // Shift count result from 8 high bits to low bits.
5726     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5727     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5728 
5729     MI.eraseFromParent();
5730     return Legalized;
5731   }
5732   }
5733 }
5734 
5735 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5736 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5737                                         Register Reg, unsigned BW) {
5738   return matchUnaryPredicate(
5739       MRI, Reg,
5740       [=](const Constant *C) {
5741         // Null constant here means an undef.
5742         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5743         return !CI || CI->getValue().urem(BW) != 0;
5744       },
5745       /*AllowUndefs*/ true);
5746 }
5747 
5748 LegalizerHelper::LegalizeResult
5749 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5750   Register Dst = MI.getOperand(0).getReg();
5751   Register X = MI.getOperand(1).getReg();
5752   Register Y = MI.getOperand(2).getReg();
5753   Register Z = MI.getOperand(3).getReg();
5754   LLT Ty = MRI.getType(Dst);
5755   LLT ShTy = MRI.getType(Z);
5756 
5757   unsigned BW = Ty.getScalarSizeInBits();
5758 
5759   if (!isPowerOf2_32(BW))
5760     return UnableToLegalize;
5761 
5762   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5763   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5764 
5765   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5766     // fshl X, Y, Z -> fshr X, Y, -Z
5767     // fshr X, Y, Z -> fshl X, Y, -Z
5768     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5769     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5770   } else {
5771     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5772     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5773     auto One = MIRBuilder.buildConstant(ShTy, 1);
5774     if (IsFSHL) {
5775       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5776       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5777     } else {
5778       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5779       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5780     }
5781 
5782     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5783   }
5784 
5785   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5786   MI.eraseFromParent();
5787   return Legalized;
5788 }
5789 
5790 LegalizerHelper::LegalizeResult
5791 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5792   Register Dst = MI.getOperand(0).getReg();
5793   Register X = MI.getOperand(1).getReg();
5794   Register Y = MI.getOperand(2).getReg();
5795   Register Z = MI.getOperand(3).getReg();
5796   LLT Ty = MRI.getType(Dst);
5797   LLT ShTy = MRI.getType(Z);
5798 
5799   const unsigned BW = Ty.getScalarSizeInBits();
5800   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5801 
5802   Register ShX, ShY;
5803   Register ShAmt, InvShAmt;
5804 
5805   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5806   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5807     // fshl: X << C | Y >> (BW - C)
5808     // fshr: X << (BW - C) | Y >> C
5809     // where C = Z % BW is not zero
5810     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5811     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5812     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5813     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5814     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5815   } else {
5816     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5817     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5818     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5819     if (isPowerOf2_32(BW)) {
5820       // Z % BW -> Z & (BW - 1)
5821       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5822       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5823       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5824       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5825     } else {
5826       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5827       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5828       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5829     }
5830 
5831     auto One = MIRBuilder.buildConstant(ShTy, 1);
5832     if (IsFSHL) {
5833       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5834       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5835       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5836     } else {
5837       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5838       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5839       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5840     }
5841   }
5842 
5843   MIRBuilder.buildOr(Dst, ShX, ShY);
5844   MI.eraseFromParent();
5845   return Legalized;
5846 }
5847 
5848 LegalizerHelper::LegalizeResult
5849 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5850   // These operations approximately do the following (while avoiding undefined
5851   // shifts by BW):
5852   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5853   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5854   Register Dst = MI.getOperand(0).getReg();
5855   LLT Ty = MRI.getType(Dst);
5856   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5857 
5858   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5859   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5860 
5861   // TODO: Use smarter heuristic that accounts for vector legalization.
5862   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5863     return lowerFunnelShiftAsShifts(MI);
5864 
5865   // This only works for powers of 2, fallback to shifts if it fails.
5866   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5867   if (Result == UnableToLegalize)
5868     return lowerFunnelShiftAsShifts(MI);
5869   return Result;
5870 }
5871 
5872 LegalizerHelper::LegalizeResult
5873 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5874   Register Dst = MI.getOperand(0).getReg();
5875   Register Src = MI.getOperand(1).getReg();
5876   Register Amt = MI.getOperand(2).getReg();
5877   LLT AmtTy = MRI.getType(Amt);
5878   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5879   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5880   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5881   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5882   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5883   MI.eraseFromParent();
5884   return Legalized;
5885 }
5886 
5887 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5888   Register Dst = MI.getOperand(0).getReg();
5889   Register Src = MI.getOperand(1).getReg();
5890   Register Amt = MI.getOperand(2).getReg();
5891   LLT DstTy = MRI.getType(Dst);
5892   LLT SrcTy = MRI.getType(Src);
5893   LLT AmtTy = MRI.getType(Amt);
5894 
5895   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5896   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5897 
5898   MIRBuilder.setInstrAndDebugLoc(MI);
5899 
5900   // If a rotate in the other direction is supported, use it.
5901   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5902   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5903       isPowerOf2_32(EltSizeInBits))
5904     return lowerRotateWithReverseRotate(MI);
5905 
5906   // If a funnel shift is supported, use it.
5907   unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5908   unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5909   bool IsFShLegal = false;
5910   if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) ||
5911       LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) {
5912     auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2,
5913                                 Register R3) {
5914       MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3});
5915       MI.eraseFromParent();
5916       return Legalized;
5917     };
5918     // If a funnel shift in the other direction is supported, use it.
5919     if (IsFShLegal) {
5920       return buildFunnelShift(FShOpc, Dst, Src, Amt);
5921     } else if (isPowerOf2_32(EltSizeInBits)) {
5922       Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0);
5923       return buildFunnelShift(RevFsh, Dst, Src, Amt);
5924     }
5925   }
5926 
5927   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5928   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5929   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5930   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5931   Register ShVal;
5932   Register RevShiftVal;
5933   if (isPowerOf2_32(EltSizeInBits)) {
5934     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5935     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5936     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5937     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5938     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5939     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5940     RevShiftVal =
5941         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5942   } else {
5943     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5944     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5945     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5946     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5947     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5948     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5949     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5950     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5951     RevShiftVal =
5952         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5953   }
5954   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5955   MI.eraseFromParent();
5956   return Legalized;
5957 }
5958 
5959 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5960 // representation.
5961 LegalizerHelper::LegalizeResult
5962 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5963   Register Dst = MI.getOperand(0).getReg();
5964   Register Src = MI.getOperand(1).getReg();
5965   const LLT S64 = LLT::scalar(64);
5966   const LLT S32 = LLT::scalar(32);
5967   const LLT S1 = LLT::scalar(1);
5968 
5969   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5970 
5971   // unsigned cul2f(ulong u) {
5972   //   uint lz = clz(u);
5973   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5974   //   u = (u << lz) & 0x7fffffffffffffffUL;
5975   //   ulong t = u & 0xffffffffffUL;
5976   //   uint v = (e << 23) | (uint)(u >> 40);
5977   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5978   //   return as_float(v + r);
5979   // }
5980 
5981   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5982   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5983 
5984   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5985 
5986   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5987   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5988 
5989   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5990   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5991 
5992   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5993   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5994 
5995   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5996 
5997   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5998   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5999 
6000   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
6001   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
6002   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
6003 
6004   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
6005   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
6006   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
6007   auto One = MIRBuilder.buildConstant(S32, 1);
6008 
6009   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
6010   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
6011   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
6012   MIRBuilder.buildAdd(Dst, V, R);
6013 
6014   MI.eraseFromParent();
6015   return Legalized;
6016 }
6017 
6018 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
6019   Register Dst = MI.getOperand(0).getReg();
6020   Register Src = MI.getOperand(1).getReg();
6021   LLT DstTy = MRI.getType(Dst);
6022   LLT SrcTy = MRI.getType(Src);
6023 
6024   if (SrcTy == LLT::scalar(1)) {
6025     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
6026     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6027     MIRBuilder.buildSelect(Dst, Src, True, False);
6028     MI.eraseFromParent();
6029     return Legalized;
6030   }
6031 
6032   if (SrcTy != LLT::scalar(64))
6033     return UnableToLegalize;
6034 
6035   if (DstTy == LLT::scalar(32)) {
6036     // TODO: SelectionDAG has several alternative expansions to port which may
6037     // be more reasonble depending on the available instructions. If a target
6038     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6039     // intermediate type, this is probably worse.
6040     return lowerU64ToF32BitOps(MI);
6041   }
6042 
6043   return UnableToLegalize;
6044 }
6045 
6046 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6047   Register Dst = MI.getOperand(0).getReg();
6048   Register Src = MI.getOperand(1).getReg();
6049   LLT DstTy = MRI.getType(Dst);
6050   LLT SrcTy = MRI.getType(Src);
6051 
6052   const LLT S64 = LLT::scalar(64);
6053   const LLT S32 = LLT::scalar(32);
6054   const LLT S1 = LLT::scalar(1);
6055 
6056   if (SrcTy == S1) {
6057     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6058     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6059     MIRBuilder.buildSelect(Dst, Src, True, False);
6060     MI.eraseFromParent();
6061     return Legalized;
6062   }
6063 
6064   if (SrcTy != S64)
6065     return UnableToLegalize;
6066 
6067   if (DstTy == S32) {
6068     // signed cl2f(long l) {
6069     //   long s = l >> 63;
6070     //   float r = cul2f((l + s) ^ s);
6071     //   return s ? -r : r;
6072     // }
6073     Register L = Src;
6074     auto SignBit = MIRBuilder.buildConstant(S64, 63);
6075     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6076 
6077     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6078     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6079     auto R = MIRBuilder.buildUITOFP(S32, Xor);
6080 
6081     auto RNeg = MIRBuilder.buildFNeg(S32, R);
6082     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6083                                             MIRBuilder.buildConstant(S64, 0));
6084     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6085     MI.eraseFromParent();
6086     return Legalized;
6087   }
6088 
6089   return UnableToLegalize;
6090 }
6091 
6092 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6093   Register Dst = MI.getOperand(0).getReg();
6094   Register Src = MI.getOperand(1).getReg();
6095   LLT DstTy = MRI.getType(Dst);
6096   LLT SrcTy = MRI.getType(Src);
6097   const LLT S64 = LLT::scalar(64);
6098   const LLT S32 = LLT::scalar(32);
6099 
6100   if (SrcTy != S64 && SrcTy != S32)
6101     return UnableToLegalize;
6102   if (DstTy != S32 && DstTy != S64)
6103     return UnableToLegalize;
6104 
6105   // FPTOSI gives same result as FPTOUI for positive signed integers.
6106   // FPTOUI needs to deal with fp values that convert to unsigned integers
6107   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6108 
6109   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6110   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6111                                                 : APFloat::IEEEdouble(),
6112                     APInt::getZero(SrcTy.getSizeInBits()));
6113   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6114 
6115   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6116 
6117   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6118   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6119   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6120   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6121   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6122   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6123   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6124 
6125   const LLT S1 = LLT::scalar(1);
6126 
6127   MachineInstrBuilder FCMP =
6128       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6129   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6130 
6131   MI.eraseFromParent();
6132   return Legalized;
6133 }
6134 
6135 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6136   Register Dst = MI.getOperand(0).getReg();
6137   Register Src = MI.getOperand(1).getReg();
6138   LLT DstTy = MRI.getType(Dst);
6139   LLT SrcTy = MRI.getType(Src);
6140   const LLT S64 = LLT::scalar(64);
6141   const LLT S32 = LLT::scalar(32);
6142 
6143   // FIXME: Only f32 to i64 conversions are supported.
6144   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6145     return UnableToLegalize;
6146 
6147   // Expand f32 -> i64 conversion
6148   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6149   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6150 
6151   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6152 
6153   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6154   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6155 
6156   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6157   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6158 
6159   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6160                                            APInt::getSignMask(SrcEltBits));
6161   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6162   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6163   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6164   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6165 
6166   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6167   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6168   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6169 
6170   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6171   R = MIRBuilder.buildZExt(DstTy, R);
6172 
6173   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6174   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6175   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6176   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6177 
6178   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6179   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6180 
6181   const LLT S1 = LLT::scalar(1);
6182   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6183                                     S1, Exponent, ExponentLoBit);
6184 
6185   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6186 
6187   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6188   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6189 
6190   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6191 
6192   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6193                                           S1, Exponent, ZeroSrcTy);
6194 
6195   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6196   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6197 
6198   MI.eraseFromParent();
6199   return Legalized;
6200 }
6201 
6202 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6203 LegalizerHelper::LegalizeResult
6204 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6205   Register Dst = MI.getOperand(0).getReg();
6206   Register Src = MI.getOperand(1).getReg();
6207 
6208   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6209     return UnableToLegalize;
6210 
6211   const unsigned ExpMask = 0x7ff;
6212   const unsigned ExpBiasf64 = 1023;
6213   const unsigned ExpBiasf16 = 15;
6214   const LLT S32 = LLT::scalar(32);
6215   const LLT S1 = LLT::scalar(1);
6216 
6217   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6218   Register U = Unmerge.getReg(0);
6219   Register UH = Unmerge.getReg(1);
6220 
6221   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6222   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6223 
6224   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6225   // add the f16 bias (15) to get the biased exponent for the f16 format.
6226   E = MIRBuilder.buildAdd(
6227     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6228 
6229   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6230   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6231 
6232   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6233                                        MIRBuilder.buildConstant(S32, 0x1ff));
6234   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6235 
6236   auto Zero = MIRBuilder.buildConstant(S32, 0);
6237   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6238   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6239   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6240 
6241   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6242   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6243   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6244   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6245 
6246   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6247   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6248 
6249   // N = M | (E << 12);
6250   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6251   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6252 
6253   // B = clamp(1-E, 0, 13);
6254   auto One = MIRBuilder.buildConstant(S32, 1);
6255   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6256   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6257   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6258 
6259   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6260                                        MIRBuilder.buildConstant(S32, 0x1000));
6261 
6262   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6263   auto D0 = MIRBuilder.buildShl(S32, D, B);
6264 
6265   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6266                                              D0, SigSetHigh);
6267   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6268   D = MIRBuilder.buildOr(S32, D, D1);
6269 
6270   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6271   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6272 
6273   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6274   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6275 
6276   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6277                                        MIRBuilder.buildConstant(S32, 3));
6278   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6279 
6280   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6281                                        MIRBuilder.buildConstant(S32, 5));
6282   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6283 
6284   V1 = MIRBuilder.buildOr(S32, V0, V1);
6285   V = MIRBuilder.buildAdd(S32, V, V1);
6286 
6287   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6288                                        E, MIRBuilder.buildConstant(S32, 30));
6289   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6290                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6291 
6292   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6293                                          E, MIRBuilder.buildConstant(S32, 1039));
6294   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6295 
6296   // Extract the sign bit.
6297   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6298   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6299 
6300   // Insert the sign bit
6301   V = MIRBuilder.buildOr(S32, Sign, V);
6302 
6303   MIRBuilder.buildTrunc(Dst, V);
6304   MI.eraseFromParent();
6305   return Legalized;
6306 }
6307 
6308 LegalizerHelper::LegalizeResult
6309 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6310   Register Dst = MI.getOperand(0).getReg();
6311   Register Src = MI.getOperand(1).getReg();
6312 
6313   LLT DstTy = MRI.getType(Dst);
6314   LLT SrcTy = MRI.getType(Src);
6315   const LLT S64 = LLT::scalar(64);
6316   const LLT S16 = LLT::scalar(16);
6317 
6318   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6319     return lowerFPTRUNC_F64_TO_F16(MI);
6320 
6321   return UnableToLegalize;
6322 }
6323 
6324 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6325 // multiplication tree.
6326 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6327   Register Dst = MI.getOperand(0).getReg();
6328   Register Src0 = MI.getOperand(1).getReg();
6329   Register Src1 = MI.getOperand(2).getReg();
6330   LLT Ty = MRI.getType(Dst);
6331 
6332   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6333   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6334   MI.eraseFromParent();
6335   return Legalized;
6336 }
6337 
6338 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6339   switch (Opc) {
6340   case TargetOpcode::G_SMIN:
6341     return CmpInst::ICMP_SLT;
6342   case TargetOpcode::G_SMAX:
6343     return CmpInst::ICMP_SGT;
6344   case TargetOpcode::G_UMIN:
6345     return CmpInst::ICMP_ULT;
6346   case TargetOpcode::G_UMAX:
6347     return CmpInst::ICMP_UGT;
6348   default:
6349     llvm_unreachable("not in integer min/max");
6350   }
6351 }
6352 
6353 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6354   Register Dst = MI.getOperand(0).getReg();
6355   Register Src0 = MI.getOperand(1).getReg();
6356   Register Src1 = MI.getOperand(2).getReg();
6357 
6358   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6359   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6360 
6361   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6362   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6363 
6364   MI.eraseFromParent();
6365   return Legalized;
6366 }
6367 
6368 LegalizerHelper::LegalizeResult
6369 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6370   Register Dst = MI.getOperand(0).getReg();
6371   Register Src0 = MI.getOperand(1).getReg();
6372   Register Src1 = MI.getOperand(2).getReg();
6373 
6374   const LLT Src0Ty = MRI.getType(Src0);
6375   const LLT Src1Ty = MRI.getType(Src1);
6376 
6377   const int Src0Size = Src0Ty.getScalarSizeInBits();
6378   const int Src1Size = Src1Ty.getScalarSizeInBits();
6379 
6380   auto SignBitMask = MIRBuilder.buildConstant(
6381     Src0Ty, APInt::getSignMask(Src0Size));
6382 
6383   auto NotSignBitMask = MIRBuilder.buildConstant(
6384     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6385 
6386   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6387   Register And1;
6388   if (Src0Ty == Src1Ty) {
6389     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6390   } else if (Src0Size > Src1Size) {
6391     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6392     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6393     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6394     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6395   } else {
6396     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6397     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6398     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6399     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6400   }
6401 
6402   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6403   // constants are a nan and -0.0, but the final result should preserve
6404   // everything.
6405   unsigned Flags = MI.getFlags();
6406   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6407 
6408   MI.eraseFromParent();
6409   return Legalized;
6410 }
6411 
6412 LegalizerHelper::LegalizeResult
6413 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6414   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6415     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6416 
6417   Register Dst = MI.getOperand(0).getReg();
6418   Register Src0 = MI.getOperand(1).getReg();
6419   Register Src1 = MI.getOperand(2).getReg();
6420   LLT Ty = MRI.getType(Dst);
6421 
6422   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6423     // Insert canonicalizes if it's possible we need to quiet to get correct
6424     // sNaN behavior.
6425 
6426     // Note this must be done here, and not as an optimization combine in the
6427     // absence of a dedicate quiet-snan instruction as we're using an
6428     // omni-purpose G_FCANONICALIZE.
6429     if (!isKnownNeverSNaN(Src0, MRI))
6430       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6431 
6432     if (!isKnownNeverSNaN(Src1, MRI))
6433       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6434   }
6435 
6436   // If there are no nans, it's safe to simply replace this with the non-IEEE
6437   // version.
6438   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6439   MI.eraseFromParent();
6440   return Legalized;
6441 }
6442 
6443 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6444   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6445   Register DstReg = MI.getOperand(0).getReg();
6446   LLT Ty = MRI.getType(DstReg);
6447   unsigned Flags = MI.getFlags();
6448 
6449   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6450                                   Flags);
6451   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6452   MI.eraseFromParent();
6453   return Legalized;
6454 }
6455 
6456 LegalizerHelper::LegalizeResult
6457 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6458   Register DstReg = MI.getOperand(0).getReg();
6459   Register X = MI.getOperand(1).getReg();
6460   const unsigned Flags = MI.getFlags();
6461   const LLT Ty = MRI.getType(DstReg);
6462   const LLT CondTy = Ty.changeElementSize(1);
6463 
6464   // round(x) =>
6465   //  t = trunc(x);
6466   //  d = fabs(x - t);
6467   //  o = copysign(1.0f, x);
6468   //  return t + (d >= 0.5 ? o : 0.0);
6469 
6470   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6471 
6472   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6473   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6474   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6475   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6476   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6477   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6478 
6479   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6480                                   Flags);
6481   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6482 
6483   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6484 
6485   MI.eraseFromParent();
6486   return Legalized;
6487 }
6488 
6489 LegalizerHelper::LegalizeResult
6490 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6491   Register DstReg = MI.getOperand(0).getReg();
6492   Register SrcReg = MI.getOperand(1).getReg();
6493   unsigned Flags = MI.getFlags();
6494   LLT Ty = MRI.getType(DstReg);
6495   const LLT CondTy = Ty.changeElementSize(1);
6496 
6497   // result = trunc(src);
6498   // if (src < 0.0 && src != result)
6499   //   result += -1.0.
6500 
6501   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6502   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6503 
6504   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6505                                   SrcReg, Zero, Flags);
6506   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6507                                       SrcReg, Trunc, Flags);
6508   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6509   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6510 
6511   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6512   MI.eraseFromParent();
6513   return Legalized;
6514 }
6515 
6516 LegalizerHelper::LegalizeResult
6517 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6518   const unsigned NumOps = MI.getNumOperands();
6519   Register DstReg = MI.getOperand(0).getReg();
6520   Register Src0Reg = MI.getOperand(1).getReg();
6521   LLT DstTy = MRI.getType(DstReg);
6522   LLT SrcTy = MRI.getType(Src0Reg);
6523   unsigned PartSize = SrcTy.getSizeInBits();
6524 
6525   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6526   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6527 
6528   for (unsigned I = 2; I != NumOps; ++I) {
6529     const unsigned Offset = (I - 1) * PartSize;
6530 
6531     Register SrcReg = MI.getOperand(I).getReg();
6532     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6533 
6534     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6535       MRI.createGenericVirtualRegister(WideTy);
6536 
6537     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6538     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6539     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6540     ResultReg = NextResult;
6541   }
6542 
6543   if (DstTy.isPointer()) {
6544     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6545           DstTy.getAddressSpace())) {
6546       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6547       return UnableToLegalize;
6548     }
6549 
6550     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6551   }
6552 
6553   MI.eraseFromParent();
6554   return Legalized;
6555 }
6556 
6557 LegalizerHelper::LegalizeResult
6558 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6559   const unsigned NumDst = MI.getNumOperands() - 1;
6560   Register SrcReg = MI.getOperand(NumDst).getReg();
6561   Register Dst0Reg = MI.getOperand(0).getReg();
6562   LLT DstTy = MRI.getType(Dst0Reg);
6563   if (DstTy.isPointer())
6564     return UnableToLegalize; // TODO
6565 
6566   SrcReg = coerceToScalar(SrcReg);
6567   if (!SrcReg)
6568     return UnableToLegalize;
6569 
6570   // Expand scalarizing unmerge as bitcast to integer and shift.
6571   LLT IntTy = MRI.getType(SrcReg);
6572 
6573   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6574 
6575   const unsigned DstSize = DstTy.getSizeInBits();
6576   unsigned Offset = DstSize;
6577   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6578     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6579     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6580     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6581   }
6582 
6583   MI.eraseFromParent();
6584   return Legalized;
6585 }
6586 
6587 /// Lower a vector extract or insert by writing the vector to a stack temporary
6588 /// and reloading the element or vector.
6589 ///
6590 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6591 ///  =>
6592 ///  %stack_temp = G_FRAME_INDEX
6593 ///  G_STORE %vec, %stack_temp
6594 ///  %idx = clamp(%idx, %vec.getNumElements())
6595 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6596 ///  %dst = G_LOAD %element_ptr
6597 LegalizerHelper::LegalizeResult
6598 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6599   Register DstReg = MI.getOperand(0).getReg();
6600   Register SrcVec = MI.getOperand(1).getReg();
6601   Register InsertVal;
6602   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6603     InsertVal = MI.getOperand(2).getReg();
6604 
6605   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6606 
6607   LLT VecTy = MRI.getType(SrcVec);
6608   LLT EltTy = VecTy.getElementType();
6609   unsigned NumElts = VecTy.getNumElements();
6610 
6611   int64_t IdxVal;
6612   if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) {
6613     SmallVector<Register, 8> SrcRegs;
6614     extractParts(SrcVec, EltTy, NumElts, SrcRegs);
6615 
6616     if (InsertVal) {
6617       SrcRegs[IdxVal] = MI.getOperand(2).getReg();
6618       MIRBuilder.buildMerge(DstReg, SrcRegs);
6619     } else {
6620       MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]);
6621     }
6622 
6623     MI.eraseFromParent();
6624     return Legalized;
6625   }
6626 
6627   if (!EltTy.isByteSized()) { // Not implemented.
6628     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6629     return UnableToLegalize;
6630   }
6631 
6632   unsigned EltBytes = EltTy.getSizeInBytes();
6633   Align VecAlign = getStackTemporaryAlignment(VecTy);
6634   Align EltAlign;
6635 
6636   MachinePointerInfo PtrInfo;
6637   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6638                                         VecAlign, PtrInfo);
6639   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6640 
6641   // Get the pointer to the element, and be sure not to hit undefined behavior
6642   // if the index is out of bounds.
6643   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6644 
6645   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6646     int64_t Offset = IdxVal * EltBytes;
6647     PtrInfo = PtrInfo.getWithOffset(Offset);
6648     EltAlign = commonAlignment(VecAlign, Offset);
6649   } else {
6650     // We lose information with a variable offset.
6651     EltAlign = getStackTemporaryAlignment(EltTy);
6652     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6653   }
6654 
6655   if (InsertVal) {
6656     // Write the inserted element
6657     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6658 
6659     // Reload the whole vector.
6660     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6661   } else {
6662     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6663   }
6664 
6665   MI.eraseFromParent();
6666   return Legalized;
6667 }
6668 
6669 LegalizerHelper::LegalizeResult
6670 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6671   Register DstReg = MI.getOperand(0).getReg();
6672   Register Src0Reg = MI.getOperand(1).getReg();
6673   Register Src1Reg = MI.getOperand(2).getReg();
6674   LLT Src0Ty = MRI.getType(Src0Reg);
6675   LLT DstTy = MRI.getType(DstReg);
6676   LLT IdxTy = LLT::scalar(32);
6677 
6678   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6679 
6680   if (DstTy.isScalar()) {
6681     if (Src0Ty.isVector())
6682       return UnableToLegalize;
6683 
6684     // This is just a SELECT.
6685     assert(Mask.size() == 1 && "Expected a single mask element");
6686     Register Val;
6687     if (Mask[0] < 0 || Mask[0] > 1)
6688       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6689     else
6690       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6691     MIRBuilder.buildCopy(DstReg, Val);
6692     MI.eraseFromParent();
6693     return Legalized;
6694   }
6695 
6696   Register Undef;
6697   SmallVector<Register, 32> BuildVec;
6698   LLT EltTy = DstTy.getElementType();
6699 
6700   for (int Idx : Mask) {
6701     if (Idx < 0) {
6702       if (!Undef.isValid())
6703         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6704       BuildVec.push_back(Undef);
6705       continue;
6706     }
6707 
6708     if (Src0Ty.isScalar()) {
6709       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6710     } else {
6711       int NumElts = Src0Ty.getNumElements();
6712       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6713       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6714       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6715       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6716       BuildVec.push_back(Extract.getReg(0));
6717     }
6718   }
6719 
6720   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6721   MI.eraseFromParent();
6722   return Legalized;
6723 }
6724 
6725 LegalizerHelper::LegalizeResult
6726 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6727   const auto &MF = *MI.getMF();
6728   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6729   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6730     return UnableToLegalize;
6731 
6732   Register Dst = MI.getOperand(0).getReg();
6733   Register AllocSize = MI.getOperand(1).getReg();
6734   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6735 
6736   LLT PtrTy = MRI.getType(Dst);
6737   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6738 
6739   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6740   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6741   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6742 
6743   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6744   // have to generate an extra instruction to negate the alloc and then use
6745   // G_PTR_ADD to add the negative offset.
6746   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6747   if (Alignment > Align(1)) {
6748     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6749     AlignMask.negate();
6750     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6751     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6752   }
6753 
6754   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6755   MIRBuilder.buildCopy(SPReg, SPTmp);
6756   MIRBuilder.buildCopy(Dst, SPTmp);
6757 
6758   MI.eraseFromParent();
6759   return Legalized;
6760 }
6761 
6762 LegalizerHelper::LegalizeResult
6763 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6764   Register Dst = MI.getOperand(0).getReg();
6765   Register Src = MI.getOperand(1).getReg();
6766   unsigned Offset = MI.getOperand(2).getImm();
6767 
6768   LLT DstTy = MRI.getType(Dst);
6769   LLT SrcTy = MRI.getType(Src);
6770 
6771   // Extract sub-vector or one element
6772   if (SrcTy.isVector()) {
6773     unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
6774     unsigned DstSize = DstTy.getSizeInBits();
6775 
6776     if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) &&
6777         (Offset + DstSize <= SrcTy.getSizeInBits())) {
6778       // Unmerge and allow access to each Src element for the artifact combiner.
6779       auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src);
6780 
6781       // Take element(s) we need to extract and copy it (merge them).
6782       SmallVector<Register, 8> SubVectorElts;
6783       for (unsigned Idx = Offset / SrcEltSize;
6784            Idx < (Offset + DstSize) / SrcEltSize; ++Idx) {
6785         SubVectorElts.push_back(Unmerge.getReg(Idx));
6786       }
6787       if (SubVectorElts.size() == 1)
6788         MIRBuilder.buildCopy(Dst, SubVectorElts[0]);
6789       else
6790         MIRBuilder.buildMerge(Dst, SubVectorElts);
6791 
6792       MI.eraseFromParent();
6793       return Legalized;
6794     }
6795   }
6796 
6797   if (DstTy.isScalar() &&
6798       (SrcTy.isScalar() ||
6799        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6800     LLT SrcIntTy = SrcTy;
6801     if (!SrcTy.isScalar()) {
6802       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6803       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6804     }
6805 
6806     if (Offset == 0)
6807       MIRBuilder.buildTrunc(Dst, Src);
6808     else {
6809       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6810       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6811       MIRBuilder.buildTrunc(Dst, Shr);
6812     }
6813 
6814     MI.eraseFromParent();
6815     return Legalized;
6816   }
6817 
6818   return UnableToLegalize;
6819 }
6820 
6821 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6822   Register Dst = MI.getOperand(0).getReg();
6823   Register Src = MI.getOperand(1).getReg();
6824   Register InsertSrc = MI.getOperand(2).getReg();
6825   uint64_t Offset = MI.getOperand(3).getImm();
6826 
6827   LLT DstTy = MRI.getType(Src);
6828   LLT InsertTy = MRI.getType(InsertSrc);
6829 
6830   // Insert sub-vector or one element
6831   if (DstTy.isVector() && !InsertTy.isPointer()) {
6832     LLT EltTy = DstTy.getElementType();
6833     unsigned EltSize = EltTy.getSizeInBits();
6834     unsigned InsertSize = InsertTy.getSizeInBits();
6835 
6836     if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) &&
6837         (Offset + InsertSize <= DstTy.getSizeInBits())) {
6838       auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src);
6839       SmallVector<Register, 8> DstElts;
6840       unsigned Idx = 0;
6841       // Elements from Src before insert start Offset
6842       for (; Idx < Offset / EltSize; ++Idx) {
6843         DstElts.push_back(UnmergeSrc.getReg(Idx));
6844       }
6845 
6846       // Replace elements in Src with elements from InsertSrc
6847       if (InsertTy.getSizeInBits() > EltSize) {
6848         auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc);
6849         for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize;
6850              ++Idx, ++i) {
6851           DstElts.push_back(UnmergeInsertSrc.getReg(i));
6852         }
6853       } else {
6854         DstElts.push_back(InsertSrc);
6855         ++Idx;
6856       }
6857 
6858       // Remaining elements from Src after insert
6859       for (; Idx < DstTy.getNumElements(); ++Idx) {
6860         DstElts.push_back(UnmergeSrc.getReg(Idx));
6861       }
6862 
6863       MIRBuilder.buildMerge(Dst, DstElts);
6864       MI.eraseFromParent();
6865       return Legalized;
6866     }
6867   }
6868 
6869   if (InsertTy.isVector() ||
6870       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6871     return UnableToLegalize;
6872 
6873   const DataLayout &DL = MIRBuilder.getDataLayout();
6874   if ((DstTy.isPointer() &&
6875        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6876       (InsertTy.isPointer() &&
6877        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6878     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6879     return UnableToLegalize;
6880   }
6881 
6882   LLT IntDstTy = DstTy;
6883 
6884   if (!DstTy.isScalar()) {
6885     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6886     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6887   }
6888 
6889   if (!InsertTy.isScalar()) {
6890     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6891     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6892   }
6893 
6894   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6895   if (Offset != 0) {
6896     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6897     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6898   }
6899 
6900   APInt MaskVal = APInt::getBitsSetWithWrap(
6901       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6902 
6903   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6904   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6905   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6906 
6907   MIRBuilder.buildCast(Dst, Or);
6908   MI.eraseFromParent();
6909   return Legalized;
6910 }
6911 
6912 LegalizerHelper::LegalizeResult
6913 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6914   Register Dst0 = MI.getOperand(0).getReg();
6915   Register Dst1 = MI.getOperand(1).getReg();
6916   Register LHS = MI.getOperand(2).getReg();
6917   Register RHS = MI.getOperand(3).getReg();
6918   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6919 
6920   LLT Ty = MRI.getType(Dst0);
6921   LLT BoolTy = MRI.getType(Dst1);
6922 
6923   if (IsAdd)
6924     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6925   else
6926     MIRBuilder.buildSub(Dst0, LHS, RHS);
6927 
6928   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6929 
6930   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6931 
6932   // For an addition, the result should be less than one of the operands (LHS)
6933   // if and only if the other operand (RHS) is negative, otherwise there will
6934   // be overflow.
6935   // For a subtraction, the result should be less than one of the operands
6936   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6937   // otherwise there will be overflow.
6938   auto ResultLowerThanLHS =
6939       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6940   auto ConditionRHS = MIRBuilder.buildICmp(
6941       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6942 
6943   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6944   MI.eraseFromParent();
6945   return Legalized;
6946 }
6947 
6948 LegalizerHelper::LegalizeResult
6949 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6950   Register Res = MI.getOperand(0).getReg();
6951   Register LHS = MI.getOperand(1).getReg();
6952   Register RHS = MI.getOperand(2).getReg();
6953   LLT Ty = MRI.getType(Res);
6954   bool IsSigned;
6955   bool IsAdd;
6956   unsigned BaseOp;
6957   switch (MI.getOpcode()) {
6958   default:
6959     llvm_unreachable("unexpected addsat/subsat opcode");
6960   case TargetOpcode::G_UADDSAT:
6961     IsSigned = false;
6962     IsAdd = true;
6963     BaseOp = TargetOpcode::G_ADD;
6964     break;
6965   case TargetOpcode::G_SADDSAT:
6966     IsSigned = true;
6967     IsAdd = true;
6968     BaseOp = TargetOpcode::G_ADD;
6969     break;
6970   case TargetOpcode::G_USUBSAT:
6971     IsSigned = false;
6972     IsAdd = false;
6973     BaseOp = TargetOpcode::G_SUB;
6974     break;
6975   case TargetOpcode::G_SSUBSAT:
6976     IsSigned = true;
6977     IsAdd = false;
6978     BaseOp = TargetOpcode::G_SUB;
6979     break;
6980   }
6981 
6982   if (IsSigned) {
6983     // sadd.sat(a, b) ->
6984     //   hi = 0x7fffffff - smax(a, 0)
6985     //   lo = 0x80000000 - smin(a, 0)
6986     //   a + smin(smax(lo, b), hi)
6987     // ssub.sat(a, b) ->
6988     //   lo = smax(a, -1) - 0x7fffffff
6989     //   hi = smin(a, -1) - 0x80000000
6990     //   a - smin(smax(lo, b), hi)
6991     // TODO: AMDGPU can use a "median of 3" instruction here:
6992     //   a +/- med3(lo, b, hi)
6993     uint64_t NumBits = Ty.getScalarSizeInBits();
6994     auto MaxVal =
6995         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6996     auto MinVal =
6997         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6998     MachineInstrBuilder Hi, Lo;
6999     if (IsAdd) {
7000       auto Zero = MIRBuilder.buildConstant(Ty, 0);
7001       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
7002       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
7003     } else {
7004       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
7005       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
7006                                MaxVal);
7007       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
7008                                MinVal);
7009     }
7010     auto RHSClamped =
7011         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
7012     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
7013   } else {
7014     // uadd.sat(a, b) -> a + umin(~a, b)
7015     // usub.sat(a, b) -> a - umin(a, b)
7016     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
7017     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
7018     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
7019   }
7020 
7021   MI.eraseFromParent();
7022   return Legalized;
7023 }
7024 
7025 LegalizerHelper::LegalizeResult
7026 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
7027   Register Res = MI.getOperand(0).getReg();
7028   Register LHS = MI.getOperand(1).getReg();
7029   Register RHS = MI.getOperand(2).getReg();
7030   LLT Ty = MRI.getType(Res);
7031   LLT BoolTy = Ty.changeElementSize(1);
7032   bool IsSigned;
7033   bool IsAdd;
7034   unsigned OverflowOp;
7035   switch (MI.getOpcode()) {
7036   default:
7037     llvm_unreachable("unexpected addsat/subsat opcode");
7038   case TargetOpcode::G_UADDSAT:
7039     IsSigned = false;
7040     IsAdd = true;
7041     OverflowOp = TargetOpcode::G_UADDO;
7042     break;
7043   case TargetOpcode::G_SADDSAT:
7044     IsSigned = true;
7045     IsAdd = true;
7046     OverflowOp = TargetOpcode::G_SADDO;
7047     break;
7048   case TargetOpcode::G_USUBSAT:
7049     IsSigned = false;
7050     IsAdd = false;
7051     OverflowOp = TargetOpcode::G_USUBO;
7052     break;
7053   case TargetOpcode::G_SSUBSAT:
7054     IsSigned = true;
7055     IsAdd = false;
7056     OverflowOp = TargetOpcode::G_SSUBO;
7057     break;
7058   }
7059 
7060   auto OverflowRes =
7061       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
7062   Register Tmp = OverflowRes.getReg(0);
7063   Register Ov = OverflowRes.getReg(1);
7064   MachineInstrBuilder Clamp;
7065   if (IsSigned) {
7066     // sadd.sat(a, b) ->
7067     //   {tmp, ov} = saddo(a, b)
7068     //   ov ? (tmp >>s 31) + 0x80000000 : r
7069     // ssub.sat(a, b) ->
7070     //   {tmp, ov} = ssubo(a, b)
7071     //   ov ? (tmp >>s 31) + 0x80000000 : r
7072     uint64_t NumBits = Ty.getScalarSizeInBits();
7073     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
7074     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
7075     auto MinVal =
7076         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7077     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
7078   } else {
7079     // uadd.sat(a, b) ->
7080     //   {tmp, ov} = uaddo(a, b)
7081     //   ov ? 0xffffffff : tmp
7082     // usub.sat(a, b) ->
7083     //   {tmp, ov} = usubo(a, b)
7084     //   ov ? 0 : tmp
7085     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
7086   }
7087   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
7088 
7089   MI.eraseFromParent();
7090   return Legalized;
7091 }
7092 
7093 LegalizerHelper::LegalizeResult
7094 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
7095   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
7096           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
7097          "Expected shlsat opcode!");
7098   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
7099   Register Res = MI.getOperand(0).getReg();
7100   Register LHS = MI.getOperand(1).getReg();
7101   Register RHS = MI.getOperand(2).getReg();
7102   LLT Ty = MRI.getType(Res);
7103   LLT BoolTy = Ty.changeElementSize(1);
7104 
7105   unsigned BW = Ty.getScalarSizeInBits();
7106   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
7107   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
7108                        : MIRBuilder.buildLShr(Ty, Result, RHS);
7109 
7110   MachineInstrBuilder SatVal;
7111   if (IsSigned) {
7112     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
7113     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
7114     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
7115                                     MIRBuilder.buildConstant(Ty, 0));
7116     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
7117   } else {
7118     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
7119   }
7120   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
7121   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
7122 
7123   MI.eraseFromParent();
7124   return Legalized;
7125 }
7126 
7127 LegalizerHelper::LegalizeResult
7128 LegalizerHelper::lowerBswap(MachineInstr &MI) {
7129   Register Dst = MI.getOperand(0).getReg();
7130   Register Src = MI.getOperand(1).getReg();
7131   const LLT Ty = MRI.getType(Src);
7132   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
7133   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
7134 
7135   // Swap most and least significant byte, set remaining bytes in Res to zero.
7136   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7137   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7138   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7139   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7140 
7141   // Set i-th high/low byte in Res to i-th low/high byte from Src.
7142   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7143     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7144     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7145     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7146     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7147     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7148     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7149     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7150     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7151     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7152     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7153     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7154     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7155   }
7156   Res.getInstr()->getOperand(0).setReg(Dst);
7157 
7158   MI.eraseFromParent();
7159   return Legalized;
7160 }
7161 
7162 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
7163 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7164                                  MachineInstrBuilder Src, APInt Mask) {
7165   const LLT Ty = Dst.getLLTTy(*B.getMRI());
7166   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7167   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7168   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7169   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7170   return B.buildOr(Dst, LHS, RHS);
7171 }
7172 
7173 LegalizerHelper::LegalizeResult
7174 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7175   Register Dst = MI.getOperand(0).getReg();
7176   Register Src = MI.getOperand(1).getReg();
7177   const LLT Ty = MRI.getType(Src);
7178   unsigned Size = Ty.getSizeInBits();
7179 
7180   MachineInstrBuilder BSWAP =
7181       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7182 
7183   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7184   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7185   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7186   MachineInstrBuilder Swap4 =
7187       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7188 
7189   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7190   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7191   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7192   MachineInstrBuilder Swap2 =
7193       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7194 
7195   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7196   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7197   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7198   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7199 
7200   MI.eraseFromParent();
7201   return Legalized;
7202 }
7203 
7204 LegalizerHelper::LegalizeResult
7205 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7206   MachineFunction &MF = MIRBuilder.getMF();
7207 
7208   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7209   int NameOpIdx = IsRead ? 1 : 0;
7210   int ValRegIndex = IsRead ? 0 : 1;
7211 
7212   Register ValReg = MI.getOperand(ValRegIndex).getReg();
7213   const LLT Ty = MRI.getType(ValReg);
7214   const MDString *RegStr = cast<MDString>(
7215     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7216 
7217   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7218   if (!PhysReg.isValid())
7219     return UnableToLegalize;
7220 
7221   if (IsRead)
7222     MIRBuilder.buildCopy(ValReg, PhysReg);
7223   else
7224     MIRBuilder.buildCopy(PhysReg, ValReg);
7225 
7226   MI.eraseFromParent();
7227   return Legalized;
7228 }
7229 
7230 LegalizerHelper::LegalizeResult
7231 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7232   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7233   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7234   Register Result = MI.getOperand(0).getReg();
7235   LLT OrigTy = MRI.getType(Result);
7236   auto SizeInBits = OrigTy.getScalarSizeInBits();
7237   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7238 
7239   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7240   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7241   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7242   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7243 
7244   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7245   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7246   MIRBuilder.buildTrunc(Result, Shifted);
7247 
7248   MI.eraseFromParent();
7249   return Legalized;
7250 }
7251 
7252 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7253   // Implement vector G_SELECT in terms of XOR, AND, OR.
7254   Register DstReg = MI.getOperand(0).getReg();
7255   Register MaskReg = MI.getOperand(1).getReg();
7256   Register Op1Reg = MI.getOperand(2).getReg();
7257   Register Op2Reg = MI.getOperand(3).getReg();
7258   LLT DstTy = MRI.getType(DstReg);
7259   LLT MaskTy = MRI.getType(MaskReg);
7260   if (!DstTy.isVector())
7261     return UnableToLegalize;
7262 
7263   if (MaskTy.isScalar()) {
7264     // Turn the scalar condition into a vector condition mask.
7265 
7266     Register MaskElt = MaskReg;
7267 
7268     // The condition was potentially zero extended before, but we want a sign
7269     // extended boolean.
7270     if (MaskTy.getSizeInBits() <= DstTy.getScalarSizeInBits() &&
7271         MaskTy != LLT::scalar(1)) {
7272       MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0);
7273     }
7274 
7275     // Continue the sign extension (or truncate) to match the data type.
7276     MaskElt = MIRBuilder.buildSExtOrTrunc(DstTy.getElementType(),
7277                                           MaskElt).getReg(0);
7278 
7279     // Generate a vector splat idiom.
7280     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7281     MaskReg = ShufSplat.getReg(0);
7282     MaskTy = DstTy;
7283   }
7284 
7285   if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) {
7286     return UnableToLegalize;
7287   }
7288 
7289   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7290   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7291   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7292   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7293   MI.eraseFromParent();
7294   return Legalized;
7295 }
7296 
7297 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7298   // Split DIVREM into individual instructions.
7299   unsigned Opcode = MI.getOpcode();
7300 
7301   MIRBuilder.buildInstr(
7302       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7303                                         : TargetOpcode::G_UDIV,
7304       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7305   MIRBuilder.buildInstr(
7306       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7307                                         : TargetOpcode::G_UREM,
7308       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7309   MI.eraseFromParent();
7310   return Legalized;
7311 }
7312 
7313 LegalizerHelper::LegalizeResult
7314 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7315   // Expand %res = G_ABS %a into:
7316   // %v1 = G_ASHR %a, scalar_size-1
7317   // %v2 = G_ADD %a, %v1
7318   // %res = G_XOR %v2, %v1
7319   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7320   Register OpReg = MI.getOperand(1).getReg();
7321   auto ShiftAmt =
7322       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7323   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7324   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7325   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7326   MI.eraseFromParent();
7327   return Legalized;
7328 }
7329 
7330 LegalizerHelper::LegalizeResult
7331 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7332   // Expand %res = G_ABS %a into:
7333   // %v1 = G_CONSTANT 0
7334   // %v2 = G_SUB %v1, %a
7335   // %res = G_SMAX %a, %v2
7336   Register SrcReg = MI.getOperand(1).getReg();
7337   LLT Ty = MRI.getType(SrcReg);
7338   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7339   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7340   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7341   MI.eraseFromParent();
7342   return Legalized;
7343 }
7344 
7345 LegalizerHelper::LegalizeResult
7346 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) {
7347   Register SrcReg = MI.getOperand(1).getReg();
7348   LLT SrcTy = MRI.getType(SrcReg);
7349   LLT DstTy = MRI.getType(SrcReg);
7350 
7351   // The source could be a scalar if the IR type was <1 x sN>.
7352   if (SrcTy.isScalar()) {
7353     if (DstTy.getSizeInBits() > SrcTy.getSizeInBits())
7354       return UnableToLegalize; // FIXME: handle extension.
7355     // This can be just a plain copy.
7356     Observer.changingInstr(MI);
7357     MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY));
7358     Observer.changedInstr(MI);
7359     return Legalized;
7360   }
7361   return UnableToLegalize;;
7362 }
7363 
7364 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
7365   // On Darwin, -Os means optimize for size without hurting performance, so
7366   // only really optimize for size when -Oz (MinSize) is used.
7367   if (MF.getTarget().getTargetTriple().isOSDarwin())
7368     return MF.getFunction().hasMinSize();
7369   return MF.getFunction().hasOptSize();
7370 }
7371 
7372 // Returns a list of types to use for memory op lowering in MemOps. A partial
7373 // port of findOptimalMemOpLowering in TargetLowering.
7374 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
7375                                           unsigned Limit, const MemOp &Op,
7376                                           unsigned DstAS, unsigned SrcAS,
7377                                           const AttributeList &FuncAttributes,
7378                                           const TargetLowering &TLI) {
7379   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
7380     return false;
7381 
7382   LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
7383 
7384   if (Ty == LLT()) {
7385     // Use the largest scalar type whose alignment constraints are satisfied.
7386     // We only need to check DstAlign here as SrcAlign is always greater or
7387     // equal to DstAlign (or zero).
7388     Ty = LLT::scalar(64);
7389     if (Op.isFixedDstAlign())
7390       while (Op.getDstAlign() < Ty.getSizeInBytes() &&
7391              !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
7392         Ty = LLT::scalar(Ty.getSizeInBytes());
7393     assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
7394     // FIXME: check for the largest legal type we can load/store to.
7395   }
7396 
7397   unsigned NumMemOps = 0;
7398   uint64_t Size = Op.size();
7399   while (Size) {
7400     unsigned TySize = Ty.getSizeInBytes();
7401     while (TySize > Size) {
7402       // For now, only use non-vector load / store's for the left-over pieces.
7403       LLT NewTy = Ty;
7404       // FIXME: check for mem op safety and legality of the types. Not all of
7405       // SDAGisms map cleanly to GISel concepts.
7406       if (NewTy.isVector())
7407         NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
7408       NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
7409       unsigned NewTySize = NewTy.getSizeInBytes();
7410       assert(NewTySize > 0 && "Could not find appropriate type");
7411 
7412       // If the new LLT cannot cover all of the remaining bits, then consider
7413       // issuing a (or a pair of) unaligned and overlapping load / store.
7414       bool Fast;
7415       // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
7416       MVT VT = getMVTForLLT(Ty);
7417       if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
7418           TLI.allowsMisalignedMemoryAccesses(
7419               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
7420               MachineMemOperand::MONone, &Fast) &&
7421           Fast)
7422         TySize = Size;
7423       else {
7424         Ty = NewTy;
7425         TySize = NewTySize;
7426       }
7427     }
7428 
7429     if (++NumMemOps > Limit)
7430       return false;
7431 
7432     MemOps.push_back(Ty);
7433     Size -= TySize;
7434   }
7435 
7436   return true;
7437 }
7438 
7439 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
7440   if (Ty.isVector())
7441     return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
7442                                 Ty.getNumElements());
7443   return IntegerType::get(C, Ty.getSizeInBits());
7444 }
7445 
7446 // Get a vectorized representation of the memset value operand, GISel edition.
7447 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
7448   MachineRegisterInfo &MRI = *MIB.getMRI();
7449   unsigned NumBits = Ty.getScalarSizeInBits();
7450   auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7451   if (!Ty.isVector() && ValVRegAndVal) {
7452     APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
7453     APInt SplatVal = APInt::getSplat(NumBits, Scalar);
7454     return MIB.buildConstant(Ty, SplatVal).getReg(0);
7455   }
7456 
7457   // Extend the byte value to the larger type, and then multiply by a magic
7458   // value 0x010101... in order to replicate it across every byte.
7459   // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
7460   if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
7461     return MIB.buildConstant(Ty, 0).getReg(0);
7462   }
7463 
7464   LLT ExtType = Ty.getScalarType();
7465   auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
7466   if (NumBits > 8) {
7467     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
7468     auto MagicMI = MIB.buildConstant(ExtType, Magic);
7469     Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
7470   }
7471 
7472   // For vector types create a G_BUILD_VECTOR.
7473   if (Ty.isVector())
7474     Val = MIB.buildSplatVector(Ty, Val).getReg(0);
7475 
7476   return Val;
7477 }
7478 
7479 LegalizerHelper::LegalizeResult
7480 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val,
7481                              uint64_t KnownLen, Align Alignment,
7482                              bool IsVolatile) {
7483   auto &MF = *MI.getParent()->getParent();
7484   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7485   auto &DL = MF.getDataLayout();
7486   LLVMContext &C = MF.getFunction().getContext();
7487 
7488   assert(KnownLen != 0 && "Have a zero length memset length!");
7489 
7490   bool DstAlignCanChange = false;
7491   MachineFrameInfo &MFI = MF.getFrameInfo();
7492   bool OptSize = shouldLowerMemFuncForSize(MF);
7493 
7494   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7495   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7496     DstAlignCanChange = true;
7497 
7498   unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
7499   std::vector<LLT> MemOps;
7500 
7501   const auto &DstMMO = **MI.memoperands_begin();
7502   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7503 
7504   auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7505   bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
7506 
7507   if (!findGISelOptimalMemOpLowering(MemOps, Limit,
7508                                      MemOp::Set(KnownLen, DstAlignCanChange,
7509                                                 Alignment,
7510                                                 /*IsZeroMemset=*/IsZeroVal,
7511                                                 /*IsVolatile=*/IsVolatile),
7512                                      DstPtrInfo.getAddrSpace(), ~0u,
7513                                      MF.getFunction().getAttributes(), TLI))
7514     return UnableToLegalize;
7515 
7516   if (DstAlignCanChange) {
7517     // Get an estimate of the type from the LLT.
7518     Type *IRTy = getTypeForLLT(MemOps[0], C);
7519     Align NewAlign = DL.getABITypeAlign(IRTy);
7520     if (NewAlign > Alignment) {
7521       Alignment = NewAlign;
7522       unsigned FI = FIDef->getOperand(1).getIndex();
7523       // Give the stack frame object a larger alignment if needed.
7524       if (MFI.getObjectAlign(FI) < Alignment)
7525         MFI.setObjectAlignment(FI, Alignment);
7526     }
7527   }
7528 
7529   MachineIRBuilder MIB(MI);
7530   // Find the largest store and generate the bit pattern for it.
7531   LLT LargestTy = MemOps[0];
7532   for (unsigned i = 1; i < MemOps.size(); i++)
7533     if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
7534       LargestTy = MemOps[i];
7535 
7536   // The memset stored value is always defined as an s8, so in order to make it
7537   // work with larger store types we need to repeat the bit pattern across the
7538   // wider type.
7539   Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
7540 
7541   if (!MemSetValue)
7542     return UnableToLegalize;
7543 
7544   // Generate the stores. For each store type in the list, we generate the
7545   // matching store of that type to the destination address.
7546   LLT PtrTy = MRI.getType(Dst);
7547   unsigned DstOff = 0;
7548   unsigned Size = KnownLen;
7549   for (unsigned I = 0; I < MemOps.size(); I++) {
7550     LLT Ty = MemOps[I];
7551     unsigned TySize = Ty.getSizeInBytes();
7552     if (TySize > Size) {
7553       // Issuing an unaligned load / store pair that overlaps with the previous
7554       // pair. Adjust the offset accordingly.
7555       assert(I == MemOps.size() - 1 && I != 0);
7556       DstOff -= TySize - Size;
7557     }
7558 
7559     // If this store is smaller than the largest store see whether we can get
7560     // the smaller value for free with a truncate.
7561     Register Value = MemSetValue;
7562     if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
7563       MVT VT = getMVTForLLT(Ty);
7564       MVT LargestVT = getMVTForLLT(LargestTy);
7565       if (!LargestTy.isVector() && !Ty.isVector() &&
7566           TLI.isTruncateFree(LargestVT, VT))
7567         Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
7568       else
7569         Value = getMemsetValue(Val, Ty, MIB);
7570       if (!Value)
7571         return UnableToLegalize;
7572     }
7573 
7574     auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
7575 
7576     Register Ptr = Dst;
7577     if (DstOff != 0) {
7578       auto Offset =
7579           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
7580       Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
7581     }
7582 
7583     MIB.buildStore(Value, Ptr, *StoreMMO);
7584     DstOff += Ty.getSizeInBytes();
7585     Size -= TySize;
7586   }
7587 
7588   MI.eraseFromParent();
7589   return Legalized;
7590 }
7591 
7592 LegalizerHelper::LegalizeResult
7593 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) {
7594   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
7595 
7596   Register Dst = MI.getOperand(0).getReg();
7597   Register Src = MI.getOperand(1).getReg();
7598   Register Len = MI.getOperand(2).getReg();
7599 
7600   const auto *MMOIt = MI.memoperands_begin();
7601   const MachineMemOperand *MemOp = *MMOIt;
7602   bool IsVolatile = MemOp->isVolatile();
7603 
7604   // See if this is a constant length copy
7605   auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7606   // FIXME: support dynamically sized G_MEMCPY_INLINE
7607   assert(LenVRegAndVal.hasValue() &&
7608          "inline memcpy with dynamic size is not yet supported");
7609   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7610   if (KnownLen == 0) {
7611     MI.eraseFromParent();
7612     return Legalized;
7613   }
7614 
7615   const auto &DstMMO = **MI.memoperands_begin();
7616   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7617   Align DstAlign = DstMMO.getBaseAlign();
7618   Align SrcAlign = SrcMMO.getBaseAlign();
7619 
7620   return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7621                            IsVolatile);
7622 }
7623 
7624 LegalizerHelper::LegalizeResult
7625 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src,
7626                                    uint64_t KnownLen, Align DstAlign,
7627                                    Align SrcAlign, bool IsVolatile) {
7628   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
7629   return lowerMemcpy(MI, Dst, Src, KnownLen,
7630                      std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign,
7631                      IsVolatile);
7632 }
7633 
7634 LegalizerHelper::LegalizeResult
7635 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src,
7636                              uint64_t KnownLen, uint64_t Limit, Align DstAlign,
7637                              Align SrcAlign, bool IsVolatile) {
7638   auto &MF = *MI.getParent()->getParent();
7639   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7640   auto &DL = MF.getDataLayout();
7641   LLVMContext &C = MF.getFunction().getContext();
7642 
7643   assert(KnownLen != 0 && "Have a zero length memcpy length!");
7644 
7645   bool DstAlignCanChange = false;
7646   MachineFrameInfo &MFI = MF.getFrameInfo();
7647   Align Alignment = commonAlignment(DstAlign, SrcAlign);
7648 
7649   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7650   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7651     DstAlignCanChange = true;
7652 
7653   // FIXME: infer better src pointer alignment like SelectionDAG does here.
7654   // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
7655   // if the memcpy is in a tail call position.
7656 
7657   std::vector<LLT> MemOps;
7658 
7659   const auto &DstMMO = **MI.memoperands_begin();
7660   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7661   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7662   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7663 
7664   if (!findGISelOptimalMemOpLowering(
7665           MemOps, Limit,
7666           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7667                       IsVolatile),
7668           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7669           MF.getFunction().getAttributes(), TLI))
7670     return UnableToLegalize;
7671 
7672   if (DstAlignCanChange) {
7673     // Get an estimate of the type from the LLT.
7674     Type *IRTy = getTypeForLLT(MemOps[0], C);
7675     Align NewAlign = DL.getABITypeAlign(IRTy);
7676 
7677     // Don't promote to an alignment that would require dynamic stack
7678     // realignment.
7679     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7680     if (!TRI->hasStackRealignment(MF))
7681       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7682         NewAlign = NewAlign / 2;
7683 
7684     if (NewAlign > Alignment) {
7685       Alignment = NewAlign;
7686       unsigned FI = FIDef->getOperand(1).getIndex();
7687       // Give the stack frame object a larger alignment if needed.
7688       if (MFI.getObjectAlign(FI) < Alignment)
7689         MFI.setObjectAlignment(FI, Alignment);
7690     }
7691   }
7692 
7693   LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
7694 
7695   MachineIRBuilder MIB(MI);
7696   // Now we need to emit a pair of load and stores for each of the types we've
7697   // collected. I.e. for each type, generate a load from the source pointer of
7698   // that type width, and then generate a corresponding store to the dest buffer
7699   // of that value loaded. This can result in a sequence of loads and stores
7700   // mixed types, depending on what the target specifies as good types to use.
7701   unsigned CurrOffset = 0;
7702   unsigned Size = KnownLen;
7703   for (auto CopyTy : MemOps) {
7704     // Issuing an unaligned load / store pair  that overlaps with the previous
7705     // pair. Adjust the offset accordingly.
7706     if (CopyTy.getSizeInBytes() > Size)
7707       CurrOffset -= CopyTy.getSizeInBytes() - Size;
7708 
7709     // Construct MMOs for the accesses.
7710     auto *LoadMMO =
7711         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7712     auto *StoreMMO =
7713         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7714 
7715     // Create the load.
7716     Register LoadPtr = Src;
7717     Register Offset;
7718     if (CurrOffset != 0) {
7719       LLT SrcTy = MRI.getType(Src);
7720       Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset)
7721                    .getReg(0);
7722       LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7723     }
7724     auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
7725 
7726     // Create the store.
7727     Register StorePtr = Dst;
7728     if (CurrOffset != 0) {
7729       LLT DstTy = MRI.getType(Dst);
7730       StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7731     }
7732     MIB.buildStore(LdVal, StorePtr, *StoreMMO);
7733     CurrOffset += CopyTy.getSizeInBytes();
7734     Size -= CopyTy.getSizeInBytes();
7735   }
7736 
7737   MI.eraseFromParent();
7738   return Legalized;
7739 }
7740 
7741 LegalizerHelper::LegalizeResult
7742 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src,
7743                               uint64_t KnownLen, Align DstAlign, Align SrcAlign,
7744                               bool IsVolatile) {
7745   auto &MF = *MI.getParent()->getParent();
7746   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7747   auto &DL = MF.getDataLayout();
7748   LLVMContext &C = MF.getFunction().getContext();
7749 
7750   assert(KnownLen != 0 && "Have a zero length memmove length!");
7751 
7752   bool DstAlignCanChange = false;
7753   MachineFrameInfo &MFI = MF.getFrameInfo();
7754   bool OptSize = shouldLowerMemFuncForSize(MF);
7755   Align Alignment = commonAlignment(DstAlign, SrcAlign);
7756 
7757   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7758   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7759     DstAlignCanChange = true;
7760 
7761   unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
7762   std::vector<LLT> MemOps;
7763 
7764   const auto &DstMMO = **MI.memoperands_begin();
7765   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7766   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7767   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7768 
7769   // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
7770   // to a bug in it's findOptimalMemOpLowering implementation. For now do the
7771   // same thing here.
7772   if (!findGISelOptimalMemOpLowering(
7773           MemOps, Limit,
7774           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7775                       /*IsVolatile*/ true),
7776           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7777           MF.getFunction().getAttributes(), TLI))
7778     return UnableToLegalize;
7779 
7780   if (DstAlignCanChange) {
7781     // Get an estimate of the type from the LLT.
7782     Type *IRTy = getTypeForLLT(MemOps[0], C);
7783     Align NewAlign = DL.getABITypeAlign(IRTy);
7784 
7785     // Don't promote to an alignment that would require dynamic stack
7786     // realignment.
7787     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7788     if (!TRI->hasStackRealignment(MF))
7789       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7790         NewAlign = NewAlign / 2;
7791 
7792     if (NewAlign > Alignment) {
7793       Alignment = NewAlign;
7794       unsigned FI = FIDef->getOperand(1).getIndex();
7795       // Give the stack frame object a larger alignment if needed.
7796       if (MFI.getObjectAlign(FI) < Alignment)
7797         MFI.setObjectAlignment(FI, Alignment);
7798     }
7799   }
7800 
7801   LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
7802 
7803   MachineIRBuilder MIB(MI);
7804   // Memmove requires that we perform the loads first before issuing the stores.
7805   // Apart from that, this loop is pretty much doing the same thing as the
7806   // memcpy codegen function.
7807   unsigned CurrOffset = 0;
7808   SmallVector<Register, 16> LoadVals;
7809   for (auto CopyTy : MemOps) {
7810     // Construct MMO for the load.
7811     auto *LoadMMO =
7812         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7813 
7814     // Create the load.
7815     Register LoadPtr = Src;
7816     if (CurrOffset != 0) {
7817       LLT SrcTy = MRI.getType(Src);
7818       auto Offset =
7819           MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset);
7820       LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7821     }
7822     LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
7823     CurrOffset += CopyTy.getSizeInBytes();
7824   }
7825 
7826   CurrOffset = 0;
7827   for (unsigned I = 0; I < MemOps.size(); ++I) {
7828     LLT CopyTy = MemOps[I];
7829     // Now store the values loaded.
7830     auto *StoreMMO =
7831         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7832 
7833     Register StorePtr = Dst;
7834     if (CurrOffset != 0) {
7835       LLT DstTy = MRI.getType(Dst);
7836       auto Offset =
7837           MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset);
7838       StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7839     }
7840     MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
7841     CurrOffset += CopyTy.getSizeInBytes();
7842   }
7843   MI.eraseFromParent();
7844   return Legalized;
7845 }
7846 
7847 LegalizerHelper::LegalizeResult
7848 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
7849   const unsigned Opc = MI.getOpcode();
7850   // This combine is fairly complex so it's not written with a separate
7851   // matcher function.
7852   assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
7853           Opc == TargetOpcode::G_MEMSET) &&
7854          "Expected memcpy like instruction");
7855 
7856   auto MMOIt = MI.memoperands_begin();
7857   const MachineMemOperand *MemOp = *MMOIt;
7858 
7859   Align DstAlign = MemOp->getBaseAlign();
7860   Align SrcAlign;
7861   Register Dst = MI.getOperand(0).getReg();
7862   Register Src = MI.getOperand(1).getReg();
7863   Register Len = MI.getOperand(2).getReg();
7864 
7865   if (Opc != TargetOpcode::G_MEMSET) {
7866     assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
7867     MemOp = *(++MMOIt);
7868     SrcAlign = MemOp->getBaseAlign();
7869   }
7870 
7871   // See if this is a constant length copy
7872   auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7873   if (!LenVRegAndVal)
7874     return UnableToLegalize;
7875   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7876 
7877   if (KnownLen == 0) {
7878     MI.eraseFromParent();
7879     return Legalized;
7880   }
7881 
7882   bool IsVolatile = MemOp->isVolatile();
7883   if (Opc == TargetOpcode::G_MEMCPY_INLINE)
7884     return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7885                              IsVolatile);
7886 
7887   // Don't try to optimize volatile.
7888   if (IsVolatile)
7889     return UnableToLegalize;
7890 
7891   if (MaxLen && KnownLen > MaxLen)
7892     return UnableToLegalize;
7893 
7894   if (Opc == TargetOpcode::G_MEMCPY) {
7895     auto &MF = *MI.getParent()->getParent();
7896     const auto &TLI = *MF.getSubtarget().getTargetLowering();
7897     bool OptSize = shouldLowerMemFuncForSize(MF);
7898     uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
7899     return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
7900                        IsVolatile);
7901   }
7902   if (Opc == TargetOpcode::G_MEMMOVE)
7903     return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
7904   if (Opc == TargetOpcode::G_MEMSET)
7905     return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
7906   return UnableToLegalize;
7907 }
7908