1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) { }
95 
96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
97                                  GISelChangeObserver &Observer,
98                                  MachineIRBuilder &B)
99   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
100     TLI(*MF.getSubtarget().getTargetLowering()) { }
101 
102 LegalizerHelper::LegalizeResult
103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
104   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
105 
106   MIRBuilder.setInstrAndDebugLoc(MI);
107 
108   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
109       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
110     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
111   auto Step = LI.getAction(MI, MRI);
112   switch (Step.Action) {
113   case Legal:
114     LLVM_DEBUG(dbgs() << ".. Already legal\n");
115     return AlreadyLegal;
116   case Libcall:
117     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
118     return libcall(MI);
119   case NarrowScalar:
120     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
121     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
122   case WidenScalar:
123     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
124     return widenScalar(MI, Step.TypeIdx, Step.NewType);
125   case Bitcast:
126     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
127     return bitcast(MI, Step.TypeIdx, Step.NewType);
128   case Lower:
129     LLVM_DEBUG(dbgs() << ".. Lower\n");
130     return lower(MI, Step.TypeIdx, Step.NewType);
131   case FewerElements:
132     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
133     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case MoreElements:
135     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
136     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case Custom:
138     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
139     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
140   default:
141     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
142     return UnableToLegalize;
143   }
144 }
145 
146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
147                                    SmallVectorImpl<Register> &VRegs) {
148   for (int i = 0; i < NumParts; ++i)
149     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
150   MIRBuilder.buildUnmerge(VRegs, Reg);
151 }
152 
153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
154                                    LLT MainTy, LLT &LeftoverTy,
155                                    SmallVectorImpl<Register> &VRegs,
156                                    SmallVectorImpl<Register> &LeftoverRegs) {
157   assert(!LeftoverTy.isValid() && "this is an out argument");
158 
159   unsigned RegSize = RegTy.getSizeInBits();
160   unsigned MainSize = MainTy.getSizeInBits();
161   unsigned NumParts = RegSize / MainSize;
162   unsigned LeftoverSize = RegSize - NumParts * MainSize;
163 
164   // Use an unmerge when possible.
165   if (LeftoverSize == 0) {
166     for (unsigned I = 0; I < NumParts; ++I)
167       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
168     MIRBuilder.buildUnmerge(VRegs, Reg);
169     return true;
170   }
171 
172   if (MainTy.isVector()) {
173     unsigned EltSize = MainTy.getScalarSizeInBits();
174     if (LeftoverSize % EltSize != 0)
175       return false;
176     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
177   } else {
178     LeftoverTy = LLT::scalar(LeftoverSize);
179   }
180 
181   // For irregular sizes, extract the individual parts.
182   for (unsigned I = 0; I != NumParts; ++I) {
183     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
184     VRegs.push_back(NewReg);
185     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
186   }
187 
188   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
189        Offset += LeftoverSize) {
190     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
191     LeftoverRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, Offset);
193   }
194 
195   return true;
196 }
197 
198 void LegalizerHelper::insertParts(Register DstReg,
199                                   LLT ResultTy, LLT PartTy,
200                                   ArrayRef<Register> PartRegs,
201                                   LLT LeftoverTy,
202                                   ArrayRef<Register> LeftoverRegs) {
203   if (!LeftoverTy.isValid()) {
204     assert(LeftoverRegs.empty());
205 
206     if (!ResultTy.isVector()) {
207       MIRBuilder.buildMerge(DstReg, PartRegs);
208       return;
209     }
210 
211     if (PartTy.isVector())
212       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
213     else
214       MIRBuilder.buildBuildVector(DstReg, PartRegs);
215     return;
216   }
217 
218   unsigned PartSize = PartTy.getSizeInBits();
219   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
220 
221   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
222   MIRBuilder.buildUndef(CurResultReg);
223 
224   unsigned Offset = 0;
225   for (Register PartReg : PartRegs) {
226     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
227     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
228     CurResultReg = NewResultReg;
229     Offset += PartSize;
230   }
231 
232   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
233     // Use the original output register for the final insert to avoid a copy.
234     Register NewResultReg = (I + 1 == E) ?
235       DstReg : MRI.createGenericVirtualRegister(ResultTy);
236 
237     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
238     CurResultReg = NewResultReg;
239     Offset += LeftoverPartSize;
240   }
241 }
242 
243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
245                               const MachineInstr &MI) {
246   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
247 
248   const int StartIdx = Regs.size();
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(Regs.size() + NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[StartIdx + I] = MI.getOperand(I).getReg();
253 }
254 
255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
256                                      LLT GCDTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 }
268 
269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
270                                     LLT NarrowTy, Register SrcReg) {
271   LLT SrcTy = MRI.getType(SrcReg);
272   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
273   extractGCDType(Parts, GCDTy, SrcReg);
274   return GCDTy;
275 }
276 
277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
278                                          SmallVectorImpl<Register> &VRegs,
279                                          unsigned PadStrategy) {
280   LLT LCMTy = getLCMType(DstTy, NarrowTy);
281 
282   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
283   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
284   int NumOrigSrc = VRegs.size();
285 
286   Register PadReg;
287 
288   // Get a value we can use to pad the source value if the sources won't evenly
289   // cover the result type.
290   if (NumOrigSrc < NumParts * NumSubParts) {
291     if (PadStrategy == TargetOpcode::G_ZEXT)
292       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
293     else if (PadStrategy == TargetOpcode::G_ANYEXT)
294       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
295     else {
296       assert(PadStrategy == TargetOpcode::G_SEXT);
297 
298       // Shift the sign bit of the low register through the high register.
299       auto ShiftAmt =
300         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
301       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
302     }
303   }
304 
305   // Registers for the final merge to be produced.
306   SmallVector<Register, 4> Remerge(NumParts);
307 
308   // Registers needed for intermediate merges, which will be merged into a
309   // source for Remerge.
310   SmallVector<Register, 4> SubMerge(NumSubParts);
311 
312   // Once we've fully read off the end of the original source bits, we can reuse
313   // the same high bits for remaining padding elements.
314   Register AllPadReg;
315 
316   // Build merges to the LCM type to cover the original result type.
317   for (int I = 0; I != NumParts; ++I) {
318     bool AllMergePartsArePadding = true;
319 
320     // Build the requested merges to the requested type.
321     for (int J = 0; J != NumSubParts; ++J) {
322       int Idx = I * NumSubParts + J;
323       if (Idx >= NumOrigSrc) {
324         SubMerge[J] = PadReg;
325         continue;
326       }
327 
328       SubMerge[J] = VRegs[Idx];
329 
330       // There are meaningful bits here we can't reuse later.
331       AllMergePartsArePadding = false;
332     }
333 
334     // If we've filled up a complete piece with padding bits, we can directly
335     // emit the natural sized constant if applicable, rather than a merge of
336     // smaller constants.
337     if (AllMergePartsArePadding && !AllPadReg) {
338       if (PadStrategy == TargetOpcode::G_ANYEXT)
339         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
340       else if (PadStrategy == TargetOpcode::G_ZEXT)
341         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
342 
343       // If this is a sign extension, we can't materialize a trivial constant
344       // with the right type and have to produce a merge.
345     }
346 
347     if (AllPadReg) {
348       // Avoid creating additional instructions if we're just adding additional
349       // copies of padding bits.
350       Remerge[I] = AllPadReg;
351       continue;
352     }
353 
354     if (NumSubParts == 1)
355       Remerge[I] = SubMerge[0];
356     else
357       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
358 
359     // In the sign extend padding case, re-use the first all-signbit merge.
360     if (AllMergePartsArePadding && !AllPadReg)
361       AllPadReg = Remerge[I];
362   }
363 
364   VRegs = std::move(Remerge);
365   return LCMTy;
366 }
367 
368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
369                                                ArrayRef<Register> RemergeRegs) {
370   LLT DstTy = MRI.getType(DstReg);
371 
372   // Create the merge to the widened source, and extract the relevant bits into
373   // the result.
374 
375   if (DstTy == LCMTy) {
376     MIRBuilder.buildMerge(DstReg, RemergeRegs);
377     return;
378   }
379 
380   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
381   if (DstTy.isScalar() && LCMTy.isScalar()) {
382     MIRBuilder.buildTrunc(DstReg, Remerge);
383     return;
384   }
385 
386   if (LCMTy.isVector()) {
387     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
388     SmallVector<Register, 8> UnmergeDefs(NumDefs);
389     UnmergeDefs[0] = DstReg;
390     for (unsigned I = 1; I != NumDefs; ++I)
391       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
392 
393     MIRBuilder.buildUnmerge(UnmergeDefs,
394                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
395     return;
396   }
397 
398   llvm_unreachable("unhandled case");
399 }
400 
401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
402 #define RTLIBCASE_INT(LibcallPrefix)                                           \
403   do {                                                                         \
404     switch (Size) {                                                            \
405     case 32:                                                                   \
406       return RTLIB::LibcallPrefix##32;                                         \
407     case 64:                                                                   \
408       return RTLIB::LibcallPrefix##64;                                         \
409     case 128:                                                                  \
410       return RTLIB::LibcallPrefix##128;                                        \
411     default:                                                                   \
412       llvm_unreachable("unexpected size");                                     \
413     }                                                                          \
414   } while (0)
415 
416 #define RTLIBCASE(LibcallPrefix)                                               \
417   do {                                                                         \
418     switch (Size) {                                                            \
419     case 32:                                                                   \
420       return RTLIB::LibcallPrefix##32;                                         \
421     case 64:                                                                   \
422       return RTLIB::LibcallPrefix##64;                                         \
423     case 80:                                                                   \
424       return RTLIB::LibcallPrefix##80;                                         \
425     case 128:                                                                  \
426       return RTLIB::LibcallPrefix##128;                                        \
427     default:                                                                   \
428       llvm_unreachable("unexpected size");                                     \
429     }                                                                          \
430   } while (0)
431 
432   switch (Opcode) {
433   case TargetOpcode::G_SDIV:
434     RTLIBCASE_INT(SDIV_I);
435   case TargetOpcode::G_UDIV:
436     RTLIBCASE_INT(UDIV_I);
437   case TargetOpcode::G_SREM:
438     RTLIBCASE_INT(SREM_I);
439   case TargetOpcode::G_UREM:
440     RTLIBCASE_INT(UREM_I);
441   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
442     RTLIBCASE_INT(CTLZ_I);
443   case TargetOpcode::G_FADD:
444     RTLIBCASE(ADD_F);
445   case TargetOpcode::G_FSUB:
446     RTLIBCASE(SUB_F);
447   case TargetOpcode::G_FMUL:
448     RTLIBCASE(MUL_F);
449   case TargetOpcode::G_FDIV:
450     RTLIBCASE(DIV_F);
451   case TargetOpcode::G_FEXP:
452     RTLIBCASE(EXP_F);
453   case TargetOpcode::G_FEXP2:
454     RTLIBCASE(EXP2_F);
455   case TargetOpcode::G_FREM:
456     RTLIBCASE(REM_F);
457   case TargetOpcode::G_FPOW:
458     RTLIBCASE(POW_F);
459   case TargetOpcode::G_FMA:
460     RTLIBCASE(FMA_F);
461   case TargetOpcode::G_FSIN:
462     RTLIBCASE(SIN_F);
463   case TargetOpcode::G_FCOS:
464     RTLIBCASE(COS_F);
465   case TargetOpcode::G_FLOG10:
466     RTLIBCASE(LOG10_F);
467   case TargetOpcode::G_FLOG:
468     RTLIBCASE(LOG_F);
469   case TargetOpcode::G_FLOG2:
470     RTLIBCASE(LOG2_F);
471   case TargetOpcode::G_FCEIL:
472     RTLIBCASE(CEIL_F);
473   case TargetOpcode::G_FFLOOR:
474     RTLIBCASE(FLOOR_F);
475   case TargetOpcode::G_FMINNUM:
476     RTLIBCASE(FMIN_F);
477   case TargetOpcode::G_FMAXNUM:
478     RTLIBCASE(FMAX_F);
479   case TargetOpcode::G_FSQRT:
480     RTLIBCASE(SQRT_F);
481   case TargetOpcode::G_FRINT:
482     RTLIBCASE(RINT_F);
483   case TargetOpcode::G_FNEARBYINT:
484     RTLIBCASE(NEARBYINT_F);
485   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
486     RTLIBCASE(ROUNDEVEN_F);
487   }
488   llvm_unreachable("Unknown libcall function");
489 }
490 
491 /// True if an instruction is in tail position in its caller. Intended for
492 /// legalizing libcalls as tail calls when possible.
493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
494                                     MachineInstr &MI) {
495   MachineBasicBlock &MBB = *MI.getParent();
496   const Function &F = MBB.getParent()->getFunction();
497 
498   // Conservatively require the attributes of the call to match those of
499   // the return. Ignore NoAlias and NonNull because they don't affect the
500   // call sequence.
501   AttributeList CallerAttrs = F.getAttributes();
502   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
503           .removeAttribute(Attribute::NoAlias)
504           .removeAttribute(Attribute::NonNull)
505           .hasAttributes())
506     return false;
507 
508   // It's not safe to eliminate the sign / zero extension of the return value.
509   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
510       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
511     return false;
512 
513   // Only tail call if the following instruction is a standard return.
514   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
515   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
516     return false;
517 
518   return true;
519 }
520 
521 LegalizerHelper::LegalizeResult
522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
523                     const CallLowering::ArgInfo &Result,
524                     ArrayRef<CallLowering::ArgInfo> Args,
525                     const CallingConv::ID CC) {
526   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
527 
528   CallLowering::CallLoweringInfo Info;
529   Info.CallConv = CC;
530   Info.Callee = MachineOperand::CreateES(Name);
531   Info.OrigRet = Result;
532   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
533   if (!CLI.lowerCall(MIRBuilder, Info))
534     return LegalizerHelper::UnableToLegalize;
535 
536   return LegalizerHelper::Legalized;
537 }
538 
539 LegalizerHelper::LegalizeResult
540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
541                     const CallLowering::ArgInfo &Result,
542                     ArrayRef<CallLowering::ArgInfo> Args) {
543   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
544   const char *Name = TLI.getLibcallName(Libcall);
545   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
546   return createLibcall(MIRBuilder, Name, Result, Args, CC);
547 }
548 
549 // Useful for libcalls where all operands have the same type.
550 static LegalizerHelper::LegalizeResult
551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
552               Type *OpType) {
553   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
554 
555   SmallVector<CallLowering::ArgInfo, 3> Args;
556   for (unsigned i = 1; i < MI.getNumOperands(); i++)
557     Args.push_back({MI.getOperand(i).getReg(), OpType});
558   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
559                        Args);
560 }
561 
562 LegalizerHelper::LegalizeResult
563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
564                        MachineInstr &MI) {
565   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
566 
567   SmallVector<CallLowering::ArgInfo, 3> Args;
568   // Add all the args, except for the last which is an imm denoting 'tail'.
569   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
570     Register Reg = MI.getOperand(i).getReg();
571 
572     // Need derive an IR type for call lowering.
573     LLT OpLLT = MRI.getType(Reg);
574     Type *OpTy = nullptr;
575     if (OpLLT.isPointer())
576       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
577     else
578       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
579     Args.push_back({Reg, OpTy});
580   }
581 
582   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
583   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
584   RTLIB::Libcall RTLibcall;
585   switch (MI.getOpcode()) {
586   case TargetOpcode::G_MEMCPY:
587     RTLibcall = RTLIB::MEMCPY;
588     break;
589   case TargetOpcode::G_MEMMOVE:
590     RTLibcall = RTLIB::MEMMOVE;
591     break;
592   case TargetOpcode::G_MEMSET:
593     RTLibcall = RTLIB::MEMSET;
594     break;
595   default:
596     return LegalizerHelper::UnableToLegalize;
597   }
598   const char *Name = TLI.getLibcallName(RTLibcall);
599 
600   CallLowering::CallLoweringInfo Info;
601   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
602   Info.Callee = MachineOperand::CreateES(Name);
603   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
604   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
605                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
606 
607   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
608   if (!CLI.lowerCall(MIRBuilder, Info))
609     return LegalizerHelper::UnableToLegalize;
610 
611   if (Info.LoweredTailCall) {
612     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
613     // We must have a return following the call (or debug insts) to get past
614     // isLibCallInTailPosition.
615     do {
616       MachineInstr *Next = MI.getNextNode();
617       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
618              "Expected instr following MI to be return or debug inst?");
619       // We lowered a tail call, so the call is now the return from the block.
620       // Delete the old return.
621       Next->eraseFromParent();
622     } while (MI.getNextNode());
623   }
624 
625   return LegalizerHelper::Legalized;
626 }
627 
628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
629                                        Type *FromType) {
630   auto ToMVT = MVT::getVT(ToType);
631   auto FromMVT = MVT::getVT(FromType);
632 
633   switch (Opcode) {
634   case TargetOpcode::G_FPEXT:
635     return RTLIB::getFPEXT(FromMVT, ToMVT);
636   case TargetOpcode::G_FPTRUNC:
637     return RTLIB::getFPROUND(FromMVT, ToMVT);
638   case TargetOpcode::G_FPTOSI:
639     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
640   case TargetOpcode::G_FPTOUI:
641     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
642   case TargetOpcode::G_SITOFP:
643     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
644   case TargetOpcode::G_UITOFP:
645     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
646   }
647   llvm_unreachable("Unsupported libcall function");
648 }
649 
650 static LegalizerHelper::LegalizeResult
651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
652                   Type *FromType) {
653   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
654   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
655                        {{MI.getOperand(1).getReg(), FromType}});
656 }
657 
658 LegalizerHelper::LegalizeResult
659 LegalizerHelper::libcall(MachineInstr &MI) {
660   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
661   unsigned Size = LLTy.getSizeInBits();
662   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
663 
664   switch (MI.getOpcode()) {
665   default:
666     return UnableToLegalize;
667   case TargetOpcode::G_SDIV:
668   case TargetOpcode::G_UDIV:
669   case TargetOpcode::G_SREM:
670   case TargetOpcode::G_UREM:
671   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
672     Type *HLTy = IntegerType::get(Ctx, Size);
673     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
674     if (Status != Legalized)
675       return Status;
676     break;
677   }
678   case TargetOpcode::G_FADD:
679   case TargetOpcode::G_FSUB:
680   case TargetOpcode::G_FMUL:
681   case TargetOpcode::G_FDIV:
682   case TargetOpcode::G_FMA:
683   case TargetOpcode::G_FPOW:
684   case TargetOpcode::G_FREM:
685   case TargetOpcode::G_FCOS:
686   case TargetOpcode::G_FSIN:
687   case TargetOpcode::G_FLOG10:
688   case TargetOpcode::G_FLOG:
689   case TargetOpcode::G_FLOG2:
690   case TargetOpcode::G_FEXP:
691   case TargetOpcode::G_FEXP2:
692   case TargetOpcode::G_FCEIL:
693   case TargetOpcode::G_FFLOOR:
694   case TargetOpcode::G_FMINNUM:
695   case TargetOpcode::G_FMAXNUM:
696   case TargetOpcode::G_FSQRT:
697   case TargetOpcode::G_FRINT:
698   case TargetOpcode::G_FNEARBYINT:
699   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
700     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
701     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
702       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
703       return UnableToLegalize;
704     }
705     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_FPEXT:
711   case TargetOpcode::G_FPTRUNC: {
712     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
713     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
714     if (!FromTy || !ToTy)
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPTOSI:
722   case TargetOpcode::G_FPTOUI: {
723     // FIXME: Support other types
724     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
725     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
726     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(
729         MI, MIRBuilder,
730         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
731         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
732     if (Status != Legalized)
733       return Status;
734     break;
735   }
736   case TargetOpcode::G_SITOFP:
737   case TargetOpcode::G_UITOFP: {
738     // FIXME: Support other types
739     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
740     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
741     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
742       return UnableToLegalize;
743     LegalizeResult Status = conversionLibcall(
744         MI, MIRBuilder,
745         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
746         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
747     if (Status != Legalized)
748       return Status;
749     break;
750   }
751   case TargetOpcode::G_MEMCPY:
752   case TargetOpcode::G_MEMMOVE:
753   case TargetOpcode::G_MEMSET: {
754     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
755     MI.eraseFromParent();
756     return Result;
757   }
758   }
759 
760   MI.eraseFromParent();
761   return Legalized;
762 }
763 
764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
765                                                               unsigned TypeIdx,
766                                                               LLT NarrowTy) {
767   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
768   uint64_t NarrowSize = NarrowTy.getSizeInBits();
769 
770   switch (MI.getOpcode()) {
771   default:
772     return UnableToLegalize;
773   case TargetOpcode::G_IMPLICIT_DEF: {
774     Register DstReg = MI.getOperand(0).getReg();
775     LLT DstTy = MRI.getType(DstReg);
776 
777     // If SizeOp0 is not an exact multiple of NarrowSize, emit
778     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
779     // FIXME: Although this would also be legal for the general case, it causes
780     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
781     //  combines not being hit). This seems to be a problem related to the
782     //  artifact combiner.
783     if (SizeOp0 % NarrowSize != 0) {
784       LLT ImplicitTy = NarrowTy;
785       if (DstTy.isVector())
786         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
787 
788       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
789       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
790 
791       MI.eraseFromParent();
792       return Legalized;
793     }
794 
795     int NumParts = SizeOp0 / NarrowSize;
796 
797     SmallVector<Register, 2> DstRegs;
798     for (int i = 0; i < NumParts; ++i)
799       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
800 
801     if (DstTy.isVector())
802       MIRBuilder.buildBuildVector(DstReg, DstRegs);
803     else
804       MIRBuilder.buildMerge(DstReg, DstRegs);
805     MI.eraseFromParent();
806     return Legalized;
807   }
808   case TargetOpcode::G_CONSTANT: {
809     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
810     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
811     unsigned TotalSize = Ty.getSizeInBits();
812     unsigned NarrowSize = NarrowTy.getSizeInBits();
813     int NumParts = TotalSize / NarrowSize;
814 
815     SmallVector<Register, 4> PartRegs;
816     for (int I = 0; I != NumParts; ++I) {
817       unsigned Offset = I * NarrowSize;
818       auto K = MIRBuilder.buildConstant(NarrowTy,
819                                         Val.lshr(Offset).trunc(NarrowSize));
820       PartRegs.push_back(K.getReg(0));
821     }
822 
823     LLT LeftoverTy;
824     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
825     SmallVector<Register, 1> LeftoverRegs;
826     if (LeftoverBits != 0) {
827       LeftoverTy = LLT::scalar(LeftoverBits);
828       auto K = MIRBuilder.buildConstant(
829         LeftoverTy,
830         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
831       LeftoverRegs.push_back(K.getReg(0));
832     }
833 
834     insertParts(MI.getOperand(0).getReg(),
835                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
836 
837     MI.eraseFromParent();
838     return Legalized;
839   }
840   case TargetOpcode::G_SEXT:
841   case TargetOpcode::G_ZEXT:
842   case TargetOpcode::G_ANYEXT:
843     return narrowScalarExt(MI, TypeIdx, NarrowTy);
844   case TargetOpcode::G_TRUNC: {
845     if (TypeIdx != 1)
846       return UnableToLegalize;
847 
848     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
849     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
850       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
851       return UnableToLegalize;
852     }
853 
854     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
855     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
856     MI.eraseFromParent();
857     return Legalized;
858   }
859 
860   case TargetOpcode::G_FREEZE:
861     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
862   case TargetOpcode::G_ADD:
863   case TargetOpcode::G_SUB:
864   case TargetOpcode::G_SADDO:
865   case TargetOpcode::G_SSUBO:
866   case TargetOpcode::G_SADDE:
867   case TargetOpcode::G_SSUBE:
868   case TargetOpcode::G_UADDO:
869   case TargetOpcode::G_USUBO:
870   case TargetOpcode::G_UADDE:
871   case TargetOpcode::G_USUBE:
872     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
873   case TargetOpcode::G_MUL:
874   case TargetOpcode::G_UMULH:
875     return narrowScalarMul(MI, NarrowTy);
876   case TargetOpcode::G_EXTRACT:
877     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
878   case TargetOpcode::G_INSERT:
879     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
880   case TargetOpcode::G_LOAD: {
881     auto &MMO = **MI.memoperands_begin();
882     Register DstReg = MI.getOperand(0).getReg();
883     LLT DstTy = MRI.getType(DstReg);
884     if (DstTy.isVector())
885       return UnableToLegalize;
886 
887     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
888       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
889       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
890       MIRBuilder.buildAnyExt(DstReg, TmpReg);
891       MI.eraseFromParent();
892       return Legalized;
893     }
894 
895     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
896   }
897   case TargetOpcode::G_ZEXTLOAD:
898   case TargetOpcode::G_SEXTLOAD: {
899     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
900     Register DstReg = MI.getOperand(0).getReg();
901     Register PtrReg = MI.getOperand(1).getReg();
902 
903     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
904     auto &MMO = **MI.memoperands_begin();
905     unsigned MemSize = MMO.getSizeInBits();
906 
907     if (MemSize == NarrowSize) {
908       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
909     } else if (MemSize < NarrowSize) {
910       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
911     } else if (MemSize > NarrowSize) {
912       // FIXME: Need to split the load.
913       return UnableToLegalize;
914     }
915 
916     if (ZExt)
917       MIRBuilder.buildZExt(DstReg, TmpReg);
918     else
919       MIRBuilder.buildSExt(DstReg, TmpReg);
920 
921     MI.eraseFromParent();
922     return Legalized;
923   }
924   case TargetOpcode::G_STORE: {
925     const auto &MMO = **MI.memoperands_begin();
926 
927     Register SrcReg = MI.getOperand(0).getReg();
928     LLT SrcTy = MRI.getType(SrcReg);
929     if (SrcTy.isVector())
930       return UnableToLegalize;
931 
932     int NumParts = SizeOp0 / NarrowSize;
933     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
934     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
935     if (SrcTy.isVector() && LeftoverBits != 0)
936       return UnableToLegalize;
937 
938     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
939       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
940       auto &MMO = **MI.memoperands_begin();
941       MIRBuilder.buildTrunc(TmpReg, SrcReg);
942       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
943       MI.eraseFromParent();
944       return Legalized;
945     }
946 
947     return reduceLoadStoreWidth(MI, 0, NarrowTy);
948   }
949   case TargetOpcode::G_SELECT:
950     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
951   case TargetOpcode::G_AND:
952   case TargetOpcode::G_OR:
953   case TargetOpcode::G_XOR: {
954     // Legalize bitwise operation:
955     // A = BinOp<Ty> B, C
956     // into:
957     // B1, ..., BN = G_UNMERGE_VALUES B
958     // C1, ..., CN = G_UNMERGE_VALUES C
959     // A1 = BinOp<Ty/N> B1, C2
960     // ...
961     // AN = BinOp<Ty/N> BN, CN
962     // A = G_MERGE_VALUES A1, ..., AN
963     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
964   }
965   case TargetOpcode::G_SHL:
966   case TargetOpcode::G_LSHR:
967   case TargetOpcode::G_ASHR:
968     return narrowScalarShift(MI, TypeIdx, NarrowTy);
969   case TargetOpcode::G_CTLZ:
970   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
971   case TargetOpcode::G_CTTZ:
972   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
973   case TargetOpcode::G_CTPOP:
974     if (TypeIdx == 1)
975       switch (MI.getOpcode()) {
976       case TargetOpcode::G_CTLZ:
977       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
978         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
979       case TargetOpcode::G_CTTZ:
980       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
981         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
982       case TargetOpcode::G_CTPOP:
983         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
984       default:
985         return UnableToLegalize;
986       }
987 
988     Observer.changingInstr(MI);
989     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
990     Observer.changedInstr(MI);
991     return Legalized;
992   case TargetOpcode::G_INTTOPTR:
993     if (TypeIdx != 1)
994       return UnableToLegalize;
995 
996     Observer.changingInstr(MI);
997     narrowScalarSrc(MI, NarrowTy, 1);
998     Observer.changedInstr(MI);
999     return Legalized;
1000   case TargetOpcode::G_PTRTOINT:
1001     if (TypeIdx != 0)
1002       return UnableToLegalize;
1003 
1004     Observer.changingInstr(MI);
1005     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1006     Observer.changedInstr(MI);
1007     return Legalized;
1008   case TargetOpcode::G_PHI: {
1009     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1010     // NarrowSize.
1011     if (SizeOp0 % NarrowSize != 0)
1012       return UnableToLegalize;
1013 
1014     unsigned NumParts = SizeOp0 / NarrowSize;
1015     SmallVector<Register, 2> DstRegs(NumParts);
1016     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1017     Observer.changingInstr(MI);
1018     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1019       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1020       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1021       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1022                    SrcRegs[i / 2]);
1023     }
1024     MachineBasicBlock &MBB = *MI.getParent();
1025     MIRBuilder.setInsertPt(MBB, MI);
1026     for (unsigned i = 0; i < NumParts; ++i) {
1027       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1028       MachineInstrBuilder MIB =
1029           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1030       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1031         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1032     }
1033     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1034     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1035     Observer.changedInstr(MI);
1036     MI.eraseFromParent();
1037     return Legalized;
1038   }
1039   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1040   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1041     if (TypeIdx != 2)
1042       return UnableToLegalize;
1043 
1044     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1045     Observer.changingInstr(MI);
1046     narrowScalarSrc(MI, NarrowTy, OpIdx);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   }
1050   case TargetOpcode::G_ICMP: {
1051     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1052     if (NarrowSize * 2 != SrcSize)
1053       return UnableToLegalize;
1054 
1055     Observer.changingInstr(MI);
1056     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1057     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1058     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1059 
1060     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1061     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1062     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1063 
1064     CmpInst::Predicate Pred =
1065         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1066     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1067 
1068     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1069       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1070       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1071       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1072       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1073       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1074     } else {
1075       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1076       MachineInstrBuilder CmpHEQ =
1077           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1078       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1079           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1080       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1081     }
1082     Observer.changedInstr(MI);
1083     MI.eraseFromParent();
1084     return Legalized;
1085   }
1086   case TargetOpcode::G_SEXT_INREG: {
1087     if (TypeIdx != 0)
1088       return UnableToLegalize;
1089 
1090     int64_t SizeInBits = MI.getOperand(2).getImm();
1091 
1092     // So long as the new type has more bits than the bits we're extending we
1093     // don't need to break it apart.
1094     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1095       Observer.changingInstr(MI);
1096       // We don't lose any non-extension bits by truncating the src and
1097       // sign-extending the dst.
1098       MachineOperand &MO1 = MI.getOperand(1);
1099       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1100       MO1.setReg(TruncMIB.getReg(0));
1101 
1102       MachineOperand &MO2 = MI.getOperand(0);
1103       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1104       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1105       MIRBuilder.buildSExt(MO2, DstExt);
1106       MO2.setReg(DstExt);
1107       Observer.changedInstr(MI);
1108       return Legalized;
1109     }
1110 
1111     // Break it apart. Components below the extension point are unmodified. The
1112     // component containing the extension point becomes a narrower SEXT_INREG.
1113     // Components above it are ashr'd from the component containing the
1114     // extension point.
1115     if (SizeOp0 % NarrowSize != 0)
1116       return UnableToLegalize;
1117     int NumParts = SizeOp0 / NarrowSize;
1118 
1119     // List the registers where the destination will be scattered.
1120     SmallVector<Register, 2> DstRegs;
1121     // List the registers where the source will be split.
1122     SmallVector<Register, 2> SrcRegs;
1123 
1124     // Create all the temporary registers.
1125     for (int i = 0; i < NumParts; ++i) {
1126       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1127 
1128       SrcRegs.push_back(SrcReg);
1129     }
1130 
1131     // Explode the big arguments into smaller chunks.
1132     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1133 
1134     Register AshrCstReg =
1135         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1136             .getReg(0);
1137     Register FullExtensionReg = 0;
1138     Register PartialExtensionReg = 0;
1139 
1140     // Do the operation on each small part.
1141     for (int i = 0; i < NumParts; ++i) {
1142       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1143         DstRegs.push_back(SrcRegs[i]);
1144       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1145         assert(PartialExtensionReg &&
1146                "Expected to visit partial extension before full");
1147         if (FullExtensionReg) {
1148           DstRegs.push_back(FullExtensionReg);
1149           continue;
1150         }
1151         DstRegs.push_back(
1152             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1153                 .getReg(0));
1154         FullExtensionReg = DstRegs.back();
1155       } else {
1156         DstRegs.push_back(
1157             MIRBuilder
1158                 .buildInstr(
1159                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1160                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1161                 .getReg(0));
1162         PartialExtensionReg = DstRegs.back();
1163       }
1164     }
1165 
1166     // Gather the destination registers into the final destination.
1167     Register DstReg = MI.getOperand(0).getReg();
1168     MIRBuilder.buildMerge(DstReg, DstRegs);
1169     MI.eraseFromParent();
1170     return Legalized;
1171   }
1172   case TargetOpcode::G_BSWAP:
1173   case TargetOpcode::G_BITREVERSE: {
1174     if (SizeOp0 % NarrowSize != 0)
1175       return UnableToLegalize;
1176 
1177     Observer.changingInstr(MI);
1178     SmallVector<Register, 2> SrcRegs, DstRegs;
1179     unsigned NumParts = SizeOp0 / NarrowSize;
1180     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1181 
1182     for (unsigned i = 0; i < NumParts; ++i) {
1183       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1184                                            {SrcRegs[NumParts - 1 - i]});
1185       DstRegs.push_back(DstPart.getReg(0));
1186     }
1187 
1188     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1189 
1190     Observer.changedInstr(MI);
1191     MI.eraseFromParent();
1192     return Legalized;
1193   }
1194   case TargetOpcode::G_PTR_ADD:
1195   case TargetOpcode::G_PTRMASK: {
1196     if (TypeIdx != 1)
1197       return UnableToLegalize;
1198     Observer.changingInstr(MI);
1199     narrowScalarSrc(MI, NarrowTy, 2);
1200     Observer.changedInstr(MI);
1201     return Legalized;
1202   }
1203   case TargetOpcode::G_FPTOUI: {
1204     if (TypeIdx != 0)
1205       return UnableToLegalize;
1206     Observer.changingInstr(MI);
1207     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1208     Observer.changedInstr(MI);
1209     return Legalized;
1210   }
1211   case TargetOpcode::G_FPTOSI: {
1212     if (TypeIdx != 0)
1213       return UnableToLegalize;
1214     Observer.changingInstr(MI);
1215     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1216     Observer.changedInstr(MI);
1217     return Legalized;
1218   }
1219   case TargetOpcode::G_FPEXT:
1220     if (TypeIdx != 0)
1221       return UnableToLegalize;
1222     Observer.changingInstr(MI);
1223     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1224     Observer.changedInstr(MI);
1225     return Legalized;
1226   }
1227 }
1228 
1229 Register LegalizerHelper::coerceToScalar(Register Val) {
1230   LLT Ty = MRI.getType(Val);
1231   if (Ty.isScalar())
1232     return Val;
1233 
1234   const DataLayout &DL = MIRBuilder.getDataLayout();
1235   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1236   if (Ty.isPointer()) {
1237     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1238       return Register();
1239     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1240   }
1241 
1242   Register NewVal = Val;
1243 
1244   assert(Ty.isVector());
1245   LLT EltTy = Ty.getElementType();
1246   if (EltTy.isPointer())
1247     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1248   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1249 }
1250 
1251 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1252                                      unsigned OpIdx, unsigned ExtOpcode) {
1253   MachineOperand &MO = MI.getOperand(OpIdx);
1254   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1255   MO.setReg(ExtB.getReg(0));
1256 }
1257 
1258 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1259                                       unsigned OpIdx) {
1260   MachineOperand &MO = MI.getOperand(OpIdx);
1261   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1262   MO.setReg(ExtB.getReg(0));
1263 }
1264 
1265 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1266                                      unsigned OpIdx, unsigned TruncOpcode) {
1267   MachineOperand &MO = MI.getOperand(OpIdx);
1268   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1269   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1270   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1271   MO.setReg(DstExt);
1272 }
1273 
1274 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1275                                       unsigned OpIdx, unsigned ExtOpcode) {
1276   MachineOperand &MO = MI.getOperand(OpIdx);
1277   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1278   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1279   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1280   MO.setReg(DstTrunc);
1281 }
1282 
1283 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1284                                             unsigned OpIdx) {
1285   MachineOperand &MO = MI.getOperand(OpIdx);
1286   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1287   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1288 }
1289 
1290 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1291                                             unsigned OpIdx) {
1292   MachineOperand &MO = MI.getOperand(OpIdx);
1293 
1294   LLT OldTy = MRI.getType(MO.getReg());
1295   unsigned OldElts = OldTy.getNumElements();
1296   unsigned NewElts = MoreTy.getNumElements();
1297 
1298   unsigned NumParts = NewElts / OldElts;
1299 
1300   // Use concat_vectors if the result is a multiple of the number of elements.
1301   if (NumParts * OldElts == NewElts) {
1302     SmallVector<Register, 8> Parts;
1303     Parts.push_back(MO.getReg());
1304 
1305     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1306     for (unsigned I = 1; I != NumParts; ++I)
1307       Parts.push_back(ImpDef);
1308 
1309     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1310     MO.setReg(Concat.getReg(0));
1311     return;
1312   }
1313 
1314   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1315   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1316   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1317   MO.setReg(MoreReg);
1318 }
1319 
1320 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1321   MachineOperand &Op = MI.getOperand(OpIdx);
1322   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1323 }
1324 
1325 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1326   MachineOperand &MO = MI.getOperand(OpIdx);
1327   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1328   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1329   MIRBuilder.buildBitcast(MO, CastDst);
1330   MO.setReg(CastDst);
1331 }
1332 
1333 LegalizerHelper::LegalizeResult
1334 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1335                                         LLT WideTy) {
1336   if (TypeIdx != 1)
1337     return UnableToLegalize;
1338 
1339   Register DstReg = MI.getOperand(0).getReg();
1340   LLT DstTy = MRI.getType(DstReg);
1341   if (DstTy.isVector())
1342     return UnableToLegalize;
1343 
1344   Register Src1 = MI.getOperand(1).getReg();
1345   LLT SrcTy = MRI.getType(Src1);
1346   const int DstSize = DstTy.getSizeInBits();
1347   const int SrcSize = SrcTy.getSizeInBits();
1348   const int WideSize = WideTy.getSizeInBits();
1349   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1350 
1351   unsigned NumOps = MI.getNumOperands();
1352   unsigned NumSrc = MI.getNumOperands() - 1;
1353   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1354 
1355   if (WideSize >= DstSize) {
1356     // Directly pack the bits in the target type.
1357     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1358 
1359     for (unsigned I = 2; I != NumOps; ++I) {
1360       const unsigned Offset = (I - 1) * PartSize;
1361 
1362       Register SrcReg = MI.getOperand(I).getReg();
1363       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1364 
1365       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1366 
1367       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1368         MRI.createGenericVirtualRegister(WideTy);
1369 
1370       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1371       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1372       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1373       ResultReg = NextResult;
1374     }
1375 
1376     if (WideSize > DstSize)
1377       MIRBuilder.buildTrunc(DstReg, ResultReg);
1378     else if (DstTy.isPointer())
1379       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1380 
1381     MI.eraseFromParent();
1382     return Legalized;
1383   }
1384 
1385   // Unmerge the original values to the GCD type, and recombine to the next
1386   // multiple greater than the original type.
1387   //
1388   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1389   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1390   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1391   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1392   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1393   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1394   // %12:_(s12) = G_MERGE_VALUES %10, %11
1395   //
1396   // Padding with undef if necessary:
1397   //
1398   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1399   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1400   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1401   // %7:_(s2) = G_IMPLICIT_DEF
1402   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1403   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1404   // %10:_(s12) = G_MERGE_VALUES %8, %9
1405 
1406   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1407   LLT GCDTy = LLT::scalar(GCD);
1408 
1409   SmallVector<Register, 8> Parts;
1410   SmallVector<Register, 8> NewMergeRegs;
1411   SmallVector<Register, 8> Unmerges;
1412   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1413 
1414   // Decompose the original operands if they don't evenly divide.
1415   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1416     Register SrcReg = MI.getOperand(I).getReg();
1417     if (GCD == SrcSize) {
1418       Unmerges.push_back(SrcReg);
1419     } else {
1420       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1421       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1422         Unmerges.push_back(Unmerge.getReg(J));
1423     }
1424   }
1425 
1426   // Pad with undef to the next size that is a multiple of the requested size.
1427   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1428     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1429     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1430       Unmerges.push_back(UndefReg);
1431   }
1432 
1433   const int PartsPerGCD = WideSize / GCD;
1434 
1435   // Build merges of each piece.
1436   ArrayRef<Register> Slicer(Unmerges);
1437   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1438     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1439     NewMergeRegs.push_back(Merge.getReg(0));
1440   }
1441 
1442   // A truncate may be necessary if the requested type doesn't evenly divide the
1443   // original result type.
1444   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1445     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1446   } else {
1447     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1448     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1449   }
1450 
1451   MI.eraseFromParent();
1452   return Legalized;
1453 }
1454 
1455 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1456   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1457   LLT OrigTy = MRI.getType(OrigReg);
1458   LLT LCMTy = getLCMType(WideTy, OrigTy);
1459 
1460   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1461   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1462 
1463   Register UnmergeSrc = WideReg;
1464 
1465   // Create a merge to the LCM type, padding with undef
1466   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1467   // =>
1468   // %1:_(<4 x s32>) = G_FOO
1469   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1470   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1471   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1472   if (NumMergeParts > 1) {
1473     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1474     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1475     MergeParts[0] = WideReg;
1476     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1477   }
1478 
1479   // Unmerge to the original register and pad with dead defs.
1480   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1481   UnmergeResults[0] = OrigReg;
1482   for (int I = 1; I != NumUnmergeParts; ++I)
1483     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1484 
1485   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1486   return WideReg;
1487 }
1488 
1489 LegalizerHelper::LegalizeResult
1490 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1491                                           LLT WideTy) {
1492   if (TypeIdx != 0)
1493     return UnableToLegalize;
1494 
1495   int NumDst = MI.getNumOperands() - 1;
1496   Register SrcReg = MI.getOperand(NumDst).getReg();
1497   LLT SrcTy = MRI.getType(SrcReg);
1498   if (SrcTy.isVector())
1499     return UnableToLegalize;
1500 
1501   Register Dst0Reg = MI.getOperand(0).getReg();
1502   LLT DstTy = MRI.getType(Dst0Reg);
1503   if (!DstTy.isScalar())
1504     return UnableToLegalize;
1505 
1506   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1507     if (SrcTy.isPointer()) {
1508       const DataLayout &DL = MIRBuilder.getDataLayout();
1509       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1510         LLVM_DEBUG(
1511             dbgs() << "Not casting non-integral address space integer\n");
1512         return UnableToLegalize;
1513       }
1514 
1515       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1516       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1517     }
1518 
1519     // Widen SrcTy to WideTy. This does not affect the result, but since the
1520     // user requested this size, it is probably better handled than SrcTy and
1521     // should reduce the total number of legalization artifacts
1522     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1523       SrcTy = WideTy;
1524       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1525     }
1526 
1527     // Theres no unmerge type to target. Directly extract the bits from the
1528     // source type
1529     unsigned DstSize = DstTy.getSizeInBits();
1530 
1531     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1532     for (int I = 1; I != NumDst; ++I) {
1533       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1534       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1535       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1536     }
1537 
1538     MI.eraseFromParent();
1539     return Legalized;
1540   }
1541 
1542   // Extend the source to a wider type.
1543   LLT LCMTy = getLCMType(SrcTy, WideTy);
1544 
1545   Register WideSrc = SrcReg;
1546   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1547     // TODO: If this is an integral address space, cast to integer and anyext.
1548     if (SrcTy.isPointer()) {
1549       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1550       return UnableToLegalize;
1551     }
1552 
1553     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1554   }
1555 
1556   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1557 
1558   // Create a sequence of unmerges and merges to the original results. Since we
1559   // may have widened the source, we will need to pad the results with dead defs
1560   // to cover the source register.
1561   // e.g. widen s48 to s64:
1562   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1563   //
1564   // =>
1565   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1566   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1567   //  ; unpack to GCD type, with extra dead defs
1568   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1569   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1570   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1571   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1572   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1573   const LLT GCDTy = getGCDType(WideTy, DstTy);
1574   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1575   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1576 
1577   // Directly unmerge to the destination without going through a GCD type
1578   // if possible
1579   if (PartsPerRemerge == 1) {
1580     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1581 
1582     for (int I = 0; I != NumUnmerge; ++I) {
1583       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1584 
1585       for (int J = 0; J != PartsPerUnmerge; ++J) {
1586         int Idx = I * PartsPerUnmerge + J;
1587         if (Idx < NumDst)
1588           MIB.addDef(MI.getOperand(Idx).getReg());
1589         else {
1590           // Create dead def for excess components.
1591           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1592         }
1593       }
1594 
1595       MIB.addUse(Unmerge.getReg(I));
1596     }
1597   } else {
1598     SmallVector<Register, 16> Parts;
1599     for (int J = 0; J != NumUnmerge; ++J)
1600       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1601 
1602     SmallVector<Register, 8> RemergeParts;
1603     for (int I = 0; I != NumDst; ++I) {
1604       for (int J = 0; J < PartsPerRemerge; ++J) {
1605         const int Idx = I * PartsPerRemerge + J;
1606         RemergeParts.emplace_back(Parts[Idx]);
1607       }
1608 
1609       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1610       RemergeParts.clear();
1611     }
1612   }
1613 
1614   MI.eraseFromParent();
1615   return Legalized;
1616 }
1617 
1618 LegalizerHelper::LegalizeResult
1619 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1620                                     LLT WideTy) {
1621   Register DstReg = MI.getOperand(0).getReg();
1622   Register SrcReg = MI.getOperand(1).getReg();
1623   LLT SrcTy = MRI.getType(SrcReg);
1624 
1625   LLT DstTy = MRI.getType(DstReg);
1626   unsigned Offset = MI.getOperand(2).getImm();
1627 
1628   if (TypeIdx == 0) {
1629     if (SrcTy.isVector() || DstTy.isVector())
1630       return UnableToLegalize;
1631 
1632     SrcOp Src(SrcReg);
1633     if (SrcTy.isPointer()) {
1634       // Extracts from pointers can be handled only if they are really just
1635       // simple integers.
1636       const DataLayout &DL = MIRBuilder.getDataLayout();
1637       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1638         return UnableToLegalize;
1639 
1640       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1641       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1642       SrcTy = SrcAsIntTy;
1643     }
1644 
1645     if (DstTy.isPointer())
1646       return UnableToLegalize;
1647 
1648     if (Offset == 0) {
1649       // Avoid a shift in the degenerate case.
1650       MIRBuilder.buildTrunc(DstReg,
1651                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1652       MI.eraseFromParent();
1653       return Legalized;
1654     }
1655 
1656     // Do a shift in the source type.
1657     LLT ShiftTy = SrcTy;
1658     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1659       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1660       ShiftTy = WideTy;
1661     }
1662 
1663     auto LShr = MIRBuilder.buildLShr(
1664       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1665     MIRBuilder.buildTrunc(DstReg, LShr);
1666     MI.eraseFromParent();
1667     return Legalized;
1668   }
1669 
1670   if (SrcTy.isScalar()) {
1671     Observer.changingInstr(MI);
1672     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1673     Observer.changedInstr(MI);
1674     return Legalized;
1675   }
1676 
1677   if (!SrcTy.isVector())
1678     return UnableToLegalize;
1679 
1680   if (DstTy != SrcTy.getElementType())
1681     return UnableToLegalize;
1682 
1683   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1684     return UnableToLegalize;
1685 
1686   Observer.changingInstr(MI);
1687   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1688 
1689   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1690                           Offset);
1691   widenScalarDst(MI, WideTy.getScalarType(), 0);
1692   Observer.changedInstr(MI);
1693   return Legalized;
1694 }
1695 
1696 LegalizerHelper::LegalizeResult
1697 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1698                                    LLT WideTy) {
1699   if (TypeIdx != 0 || WideTy.isVector())
1700     return UnableToLegalize;
1701   Observer.changingInstr(MI);
1702   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1703   widenScalarDst(MI, WideTy);
1704   Observer.changedInstr(MI);
1705   return Legalized;
1706 }
1707 
1708 LegalizerHelper::LegalizeResult
1709 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1710                                            LLT WideTy) {
1711   if (TypeIdx == 1)
1712     return UnableToLegalize; // TODO
1713 
1714   unsigned Opcode;
1715   unsigned ExtOpcode;
1716   Optional<Register> CarryIn = None;
1717   switch (MI.getOpcode()) {
1718   default:
1719     llvm_unreachable("Unexpected opcode!");
1720   case TargetOpcode::G_SADDO:
1721     Opcode = TargetOpcode::G_ADD;
1722     ExtOpcode = TargetOpcode::G_SEXT;
1723     break;
1724   case TargetOpcode::G_SSUBO:
1725     Opcode = TargetOpcode::G_SUB;
1726     ExtOpcode = TargetOpcode::G_SEXT;
1727     break;
1728   case TargetOpcode::G_UADDO:
1729     Opcode = TargetOpcode::G_ADD;
1730     ExtOpcode = TargetOpcode::G_ZEXT;
1731     break;
1732   case TargetOpcode::G_USUBO:
1733     Opcode = TargetOpcode::G_SUB;
1734     ExtOpcode = TargetOpcode::G_ZEXT;
1735     break;
1736   case TargetOpcode::G_SADDE:
1737     Opcode = TargetOpcode::G_UADDE;
1738     ExtOpcode = TargetOpcode::G_SEXT;
1739     CarryIn = MI.getOperand(4).getReg();
1740     break;
1741   case TargetOpcode::G_SSUBE:
1742     Opcode = TargetOpcode::G_USUBE;
1743     ExtOpcode = TargetOpcode::G_SEXT;
1744     CarryIn = MI.getOperand(4).getReg();
1745     break;
1746   case TargetOpcode::G_UADDE:
1747     Opcode = TargetOpcode::G_UADDE;
1748     ExtOpcode = TargetOpcode::G_ZEXT;
1749     CarryIn = MI.getOperand(4).getReg();
1750     break;
1751   case TargetOpcode::G_USUBE:
1752     Opcode = TargetOpcode::G_USUBE;
1753     ExtOpcode = TargetOpcode::G_ZEXT;
1754     CarryIn = MI.getOperand(4).getReg();
1755     break;
1756   }
1757 
1758   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1759   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1760   // Do the arithmetic in the larger type.
1761   Register NewOp;
1762   if (CarryIn) {
1763     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1764     NewOp = MIRBuilder
1765                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1766                             {LHSExt, RHSExt, *CarryIn})
1767                 .getReg(0);
1768   } else {
1769     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1770   }
1771   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1772   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1773   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1774   // There is no overflow if the ExtOp is the same as NewOp.
1775   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1776   // Now trunc the NewOp to the original result.
1777   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1778   MI.eraseFromParent();
1779   return Legalized;
1780 }
1781 
1782 LegalizerHelper::LegalizeResult
1783 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1784                                          LLT WideTy) {
1785   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1786                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1787                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1788   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1789                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1790   // We can convert this to:
1791   //   1. Any extend iN to iM
1792   //   2. SHL by M-N
1793   //   3. [US][ADD|SUB|SHL]SAT
1794   //   4. L/ASHR by M-N
1795   //
1796   // It may be more efficient to lower this to a min and a max operation in
1797   // the higher precision arithmetic if the promoted operation isn't legal,
1798   // but this decision is up to the target's lowering request.
1799   Register DstReg = MI.getOperand(0).getReg();
1800 
1801   unsigned NewBits = WideTy.getScalarSizeInBits();
1802   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1803 
1804   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1805   // must not left shift the RHS to preserve the shift amount.
1806   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1807   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1808                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1809   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1810   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1811   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1812 
1813   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1814                                         {ShiftL, ShiftR}, MI.getFlags());
1815 
1816   // Use a shift that will preserve the number of sign bits when the trunc is
1817   // folded away.
1818   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1819                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1820 
1821   MIRBuilder.buildTrunc(DstReg, Result);
1822   MI.eraseFromParent();
1823   return Legalized;
1824 }
1825 
1826 LegalizerHelper::LegalizeResult
1827 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1828   switch (MI.getOpcode()) {
1829   default:
1830     return UnableToLegalize;
1831   case TargetOpcode::G_EXTRACT:
1832     return widenScalarExtract(MI, TypeIdx, WideTy);
1833   case TargetOpcode::G_INSERT:
1834     return widenScalarInsert(MI, TypeIdx, WideTy);
1835   case TargetOpcode::G_MERGE_VALUES:
1836     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1837   case TargetOpcode::G_UNMERGE_VALUES:
1838     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1839   case TargetOpcode::G_SADDO:
1840   case TargetOpcode::G_SSUBO:
1841   case TargetOpcode::G_UADDO:
1842   case TargetOpcode::G_USUBO:
1843   case TargetOpcode::G_SADDE:
1844   case TargetOpcode::G_SSUBE:
1845   case TargetOpcode::G_UADDE:
1846   case TargetOpcode::G_USUBE:
1847     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1848   case TargetOpcode::G_SADDSAT:
1849   case TargetOpcode::G_SSUBSAT:
1850   case TargetOpcode::G_SSHLSAT:
1851   case TargetOpcode::G_UADDSAT:
1852   case TargetOpcode::G_USUBSAT:
1853   case TargetOpcode::G_USHLSAT:
1854     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1855   case TargetOpcode::G_CTTZ:
1856   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1857   case TargetOpcode::G_CTLZ:
1858   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1859   case TargetOpcode::G_CTPOP: {
1860     if (TypeIdx == 0) {
1861       Observer.changingInstr(MI);
1862       widenScalarDst(MI, WideTy, 0);
1863       Observer.changedInstr(MI);
1864       return Legalized;
1865     }
1866 
1867     Register SrcReg = MI.getOperand(1).getReg();
1868 
1869     // First ZEXT the input.
1870     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1871     LLT CurTy = MRI.getType(SrcReg);
1872     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1873       // The count is the same in the larger type except if the original
1874       // value was zero.  This can be handled by setting the bit just off
1875       // the top of the original type.
1876       auto TopBit =
1877           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1878       MIBSrc = MIRBuilder.buildOr(
1879         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1880     }
1881 
1882     // Perform the operation at the larger size.
1883     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1884     // This is already the correct result for CTPOP and CTTZs
1885     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1886         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1887       // The correct result is NewOp - (Difference in widety and current ty).
1888       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1889       MIBNewOp = MIRBuilder.buildSub(
1890           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1891     }
1892 
1893     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1894     MI.eraseFromParent();
1895     return Legalized;
1896   }
1897   case TargetOpcode::G_BSWAP: {
1898     Observer.changingInstr(MI);
1899     Register DstReg = MI.getOperand(0).getReg();
1900 
1901     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1902     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1903     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1904     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1905 
1906     MI.getOperand(0).setReg(DstExt);
1907 
1908     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1909 
1910     LLT Ty = MRI.getType(DstReg);
1911     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1912     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1913     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1914 
1915     MIRBuilder.buildTrunc(DstReg, ShrReg);
1916     Observer.changedInstr(MI);
1917     return Legalized;
1918   }
1919   case TargetOpcode::G_BITREVERSE: {
1920     Observer.changingInstr(MI);
1921 
1922     Register DstReg = MI.getOperand(0).getReg();
1923     LLT Ty = MRI.getType(DstReg);
1924     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1925 
1926     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1927     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1928     MI.getOperand(0).setReg(DstExt);
1929     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1930 
1931     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1932     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1933     MIRBuilder.buildTrunc(DstReg, Shift);
1934     Observer.changedInstr(MI);
1935     return Legalized;
1936   }
1937   case TargetOpcode::G_FREEZE:
1938     Observer.changingInstr(MI);
1939     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1940     widenScalarDst(MI, WideTy);
1941     Observer.changedInstr(MI);
1942     return Legalized;
1943 
1944   case TargetOpcode::G_ADD:
1945   case TargetOpcode::G_AND:
1946   case TargetOpcode::G_MUL:
1947   case TargetOpcode::G_OR:
1948   case TargetOpcode::G_XOR:
1949   case TargetOpcode::G_SUB:
1950     // Perform operation at larger width (any extension is fines here, high bits
1951     // don't affect the result) and then truncate the result back to the
1952     // original type.
1953     Observer.changingInstr(MI);
1954     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1955     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1956     widenScalarDst(MI, WideTy);
1957     Observer.changedInstr(MI);
1958     return Legalized;
1959 
1960   case TargetOpcode::G_SHL:
1961     Observer.changingInstr(MI);
1962 
1963     if (TypeIdx == 0) {
1964       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1965       widenScalarDst(MI, WideTy);
1966     } else {
1967       assert(TypeIdx == 1);
1968       // The "number of bits to shift" operand must preserve its value as an
1969       // unsigned integer:
1970       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1971     }
1972 
1973     Observer.changedInstr(MI);
1974     return Legalized;
1975 
1976   case TargetOpcode::G_SDIV:
1977   case TargetOpcode::G_SREM:
1978   case TargetOpcode::G_SMIN:
1979   case TargetOpcode::G_SMAX:
1980     Observer.changingInstr(MI);
1981     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1982     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1983     widenScalarDst(MI, WideTy);
1984     Observer.changedInstr(MI);
1985     return Legalized;
1986 
1987   case TargetOpcode::G_ASHR:
1988   case TargetOpcode::G_LSHR:
1989     Observer.changingInstr(MI);
1990 
1991     if (TypeIdx == 0) {
1992       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1993         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1994 
1995       widenScalarSrc(MI, WideTy, 1, CvtOp);
1996       widenScalarDst(MI, WideTy);
1997     } else {
1998       assert(TypeIdx == 1);
1999       // The "number of bits to shift" operand must preserve its value as an
2000       // unsigned integer:
2001       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2002     }
2003 
2004     Observer.changedInstr(MI);
2005     return Legalized;
2006   case TargetOpcode::G_UDIV:
2007   case TargetOpcode::G_UREM:
2008   case TargetOpcode::G_UMIN:
2009   case TargetOpcode::G_UMAX:
2010     Observer.changingInstr(MI);
2011     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2012     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2013     widenScalarDst(MI, WideTy);
2014     Observer.changedInstr(MI);
2015     return Legalized;
2016 
2017   case TargetOpcode::G_SELECT:
2018     Observer.changingInstr(MI);
2019     if (TypeIdx == 0) {
2020       // Perform operation at larger width (any extension is fine here, high
2021       // bits don't affect the result) and then truncate the result back to the
2022       // original type.
2023       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2024       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2025       widenScalarDst(MI, WideTy);
2026     } else {
2027       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2028       // Explicit extension is required here since high bits affect the result.
2029       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2030     }
2031     Observer.changedInstr(MI);
2032     return Legalized;
2033 
2034   case TargetOpcode::G_FPTOSI:
2035   case TargetOpcode::G_FPTOUI:
2036     Observer.changingInstr(MI);
2037 
2038     if (TypeIdx == 0)
2039       widenScalarDst(MI, WideTy);
2040     else
2041       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2042 
2043     Observer.changedInstr(MI);
2044     return Legalized;
2045   case TargetOpcode::G_SITOFP:
2046     Observer.changingInstr(MI);
2047 
2048     if (TypeIdx == 0)
2049       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2050     else
2051       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2052 
2053     Observer.changedInstr(MI);
2054     return Legalized;
2055   case TargetOpcode::G_UITOFP:
2056     Observer.changingInstr(MI);
2057 
2058     if (TypeIdx == 0)
2059       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2060     else
2061       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2062 
2063     Observer.changedInstr(MI);
2064     return Legalized;
2065   case TargetOpcode::G_LOAD:
2066   case TargetOpcode::G_SEXTLOAD:
2067   case TargetOpcode::G_ZEXTLOAD:
2068     Observer.changingInstr(MI);
2069     widenScalarDst(MI, WideTy);
2070     Observer.changedInstr(MI);
2071     return Legalized;
2072 
2073   case TargetOpcode::G_STORE: {
2074     if (TypeIdx != 0)
2075       return UnableToLegalize;
2076 
2077     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2078     if (!Ty.isScalar())
2079       return UnableToLegalize;
2080 
2081     Observer.changingInstr(MI);
2082 
2083     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2084       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2085     widenScalarSrc(MI, WideTy, 0, ExtType);
2086 
2087     Observer.changedInstr(MI);
2088     return Legalized;
2089   }
2090   case TargetOpcode::G_CONSTANT: {
2091     MachineOperand &SrcMO = MI.getOperand(1);
2092     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2093     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2094         MRI.getType(MI.getOperand(0).getReg()));
2095     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2096             ExtOpc == TargetOpcode::G_ANYEXT) &&
2097            "Illegal Extend");
2098     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2099     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2100                            ? SrcVal.sext(WideTy.getSizeInBits())
2101                            : SrcVal.zext(WideTy.getSizeInBits());
2102     Observer.changingInstr(MI);
2103     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2104 
2105     widenScalarDst(MI, WideTy);
2106     Observer.changedInstr(MI);
2107     return Legalized;
2108   }
2109   case TargetOpcode::G_FCONSTANT: {
2110     MachineOperand &SrcMO = MI.getOperand(1);
2111     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2112     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2113     bool LosesInfo;
2114     switch (WideTy.getSizeInBits()) {
2115     case 32:
2116       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2117                   &LosesInfo);
2118       break;
2119     case 64:
2120       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2121                   &LosesInfo);
2122       break;
2123     default:
2124       return UnableToLegalize;
2125     }
2126 
2127     assert(!LosesInfo && "extend should always be lossless");
2128 
2129     Observer.changingInstr(MI);
2130     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2131 
2132     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2133     Observer.changedInstr(MI);
2134     return Legalized;
2135   }
2136   case TargetOpcode::G_IMPLICIT_DEF: {
2137     Observer.changingInstr(MI);
2138     widenScalarDst(MI, WideTy);
2139     Observer.changedInstr(MI);
2140     return Legalized;
2141   }
2142   case TargetOpcode::G_BRCOND:
2143     Observer.changingInstr(MI);
2144     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2145     Observer.changedInstr(MI);
2146     return Legalized;
2147 
2148   case TargetOpcode::G_FCMP:
2149     Observer.changingInstr(MI);
2150     if (TypeIdx == 0)
2151       widenScalarDst(MI, WideTy);
2152     else {
2153       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2154       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2155     }
2156     Observer.changedInstr(MI);
2157     return Legalized;
2158 
2159   case TargetOpcode::G_ICMP:
2160     Observer.changingInstr(MI);
2161     if (TypeIdx == 0)
2162       widenScalarDst(MI, WideTy);
2163     else {
2164       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2165                                MI.getOperand(1).getPredicate()))
2166                                ? TargetOpcode::G_SEXT
2167                                : TargetOpcode::G_ZEXT;
2168       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2169       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2170     }
2171     Observer.changedInstr(MI);
2172     return Legalized;
2173 
2174   case TargetOpcode::G_PTR_ADD:
2175     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2176     Observer.changingInstr(MI);
2177     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2178     Observer.changedInstr(MI);
2179     return Legalized;
2180 
2181   case TargetOpcode::G_PHI: {
2182     assert(TypeIdx == 0 && "Expecting only Idx 0");
2183 
2184     Observer.changingInstr(MI);
2185     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2186       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2187       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2188       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2189     }
2190 
2191     MachineBasicBlock &MBB = *MI.getParent();
2192     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2193     widenScalarDst(MI, WideTy);
2194     Observer.changedInstr(MI);
2195     return Legalized;
2196   }
2197   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2198     if (TypeIdx == 0) {
2199       Register VecReg = MI.getOperand(1).getReg();
2200       LLT VecTy = MRI.getType(VecReg);
2201       Observer.changingInstr(MI);
2202 
2203       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2204                                      WideTy.getSizeInBits()),
2205                      1, TargetOpcode::G_SEXT);
2206 
2207       widenScalarDst(MI, WideTy, 0);
2208       Observer.changedInstr(MI);
2209       return Legalized;
2210     }
2211 
2212     if (TypeIdx != 2)
2213       return UnableToLegalize;
2214     Observer.changingInstr(MI);
2215     // TODO: Probably should be zext
2216     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2217     Observer.changedInstr(MI);
2218     return Legalized;
2219   }
2220   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2221     if (TypeIdx == 1) {
2222       Observer.changingInstr(MI);
2223 
2224       Register VecReg = MI.getOperand(1).getReg();
2225       LLT VecTy = MRI.getType(VecReg);
2226       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2227 
2228       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2229       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2230       widenScalarDst(MI, WideVecTy, 0);
2231       Observer.changedInstr(MI);
2232       return Legalized;
2233     }
2234 
2235     if (TypeIdx == 2) {
2236       Observer.changingInstr(MI);
2237       // TODO: Probably should be zext
2238       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2239       Observer.changedInstr(MI);
2240       return Legalized;
2241     }
2242 
2243     return UnableToLegalize;
2244   }
2245   case TargetOpcode::G_FADD:
2246   case TargetOpcode::G_FMUL:
2247   case TargetOpcode::G_FSUB:
2248   case TargetOpcode::G_FMA:
2249   case TargetOpcode::G_FMAD:
2250   case TargetOpcode::G_FNEG:
2251   case TargetOpcode::G_FABS:
2252   case TargetOpcode::G_FCANONICALIZE:
2253   case TargetOpcode::G_FMINNUM:
2254   case TargetOpcode::G_FMAXNUM:
2255   case TargetOpcode::G_FMINNUM_IEEE:
2256   case TargetOpcode::G_FMAXNUM_IEEE:
2257   case TargetOpcode::G_FMINIMUM:
2258   case TargetOpcode::G_FMAXIMUM:
2259   case TargetOpcode::G_FDIV:
2260   case TargetOpcode::G_FREM:
2261   case TargetOpcode::G_FCEIL:
2262   case TargetOpcode::G_FFLOOR:
2263   case TargetOpcode::G_FCOS:
2264   case TargetOpcode::G_FSIN:
2265   case TargetOpcode::G_FLOG10:
2266   case TargetOpcode::G_FLOG:
2267   case TargetOpcode::G_FLOG2:
2268   case TargetOpcode::G_FRINT:
2269   case TargetOpcode::G_FNEARBYINT:
2270   case TargetOpcode::G_FSQRT:
2271   case TargetOpcode::G_FEXP:
2272   case TargetOpcode::G_FEXP2:
2273   case TargetOpcode::G_FPOW:
2274   case TargetOpcode::G_INTRINSIC_TRUNC:
2275   case TargetOpcode::G_INTRINSIC_ROUND:
2276   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2277     assert(TypeIdx == 0);
2278     Observer.changingInstr(MI);
2279 
2280     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2281       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2282 
2283     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2284     Observer.changedInstr(MI);
2285     return Legalized;
2286   case TargetOpcode::G_FPOWI: {
2287     if (TypeIdx != 0)
2288       return UnableToLegalize;
2289     Observer.changingInstr(MI);
2290     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2291     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2292     Observer.changedInstr(MI);
2293     return Legalized;
2294   }
2295   case TargetOpcode::G_INTTOPTR:
2296     if (TypeIdx != 1)
2297       return UnableToLegalize;
2298 
2299     Observer.changingInstr(MI);
2300     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2301     Observer.changedInstr(MI);
2302     return Legalized;
2303   case TargetOpcode::G_PTRTOINT:
2304     if (TypeIdx != 0)
2305       return UnableToLegalize;
2306 
2307     Observer.changingInstr(MI);
2308     widenScalarDst(MI, WideTy, 0);
2309     Observer.changedInstr(MI);
2310     return Legalized;
2311   case TargetOpcode::G_BUILD_VECTOR: {
2312     Observer.changingInstr(MI);
2313 
2314     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2315     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2316       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2317 
2318     // Avoid changing the result vector type if the source element type was
2319     // requested.
2320     if (TypeIdx == 1) {
2321       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2322     } else {
2323       widenScalarDst(MI, WideTy, 0);
2324     }
2325 
2326     Observer.changedInstr(MI);
2327     return Legalized;
2328   }
2329   case TargetOpcode::G_SEXT_INREG:
2330     if (TypeIdx != 0)
2331       return UnableToLegalize;
2332 
2333     Observer.changingInstr(MI);
2334     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2335     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2336     Observer.changedInstr(MI);
2337     return Legalized;
2338   case TargetOpcode::G_PTRMASK: {
2339     if (TypeIdx != 1)
2340       return UnableToLegalize;
2341     Observer.changingInstr(MI);
2342     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2343     Observer.changedInstr(MI);
2344     return Legalized;
2345   }
2346   }
2347 }
2348 
2349 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2350                              MachineIRBuilder &B, Register Src, LLT Ty) {
2351   auto Unmerge = B.buildUnmerge(Ty, Src);
2352   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2353     Pieces.push_back(Unmerge.getReg(I));
2354 }
2355 
2356 LegalizerHelper::LegalizeResult
2357 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2358   Register Dst = MI.getOperand(0).getReg();
2359   Register Src = MI.getOperand(1).getReg();
2360   LLT DstTy = MRI.getType(Dst);
2361   LLT SrcTy = MRI.getType(Src);
2362 
2363   if (SrcTy.isVector()) {
2364     LLT SrcEltTy = SrcTy.getElementType();
2365     SmallVector<Register, 8> SrcRegs;
2366 
2367     if (DstTy.isVector()) {
2368       int NumDstElt = DstTy.getNumElements();
2369       int NumSrcElt = SrcTy.getNumElements();
2370 
2371       LLT DstEltTy = DstTy.getElementType();
2372       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2373       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2374 
2375       // If there's an element size mismatch, insert intermediate casts to match
2376       // the result element type.
2377       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2378         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2379         //
2380         // =>
2381         //
2382         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2383         // %3:_(<2 x s8>) = G_BITCAST %2
2384         // %4:_(<2 x s8>) = G_BITCAST %3
2385         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2386         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2387         SrcPartTy = SrcEltTy;
2388       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2389         //
2390         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2391         //
2392         // =>
2393         //
2394         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2395         // %3:_(s16) = G_BITCAST %2
2396         // %4:_(s16) = G_BITCAST %3
2397         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2398         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2399         DstCastTy = DstEltTy;
2400       }
2401 
2402       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2403       for (Register &SrcReg : SrcRegs)
2404         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2405     } else
2406       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2407 
2408     MIRBuilder.buildMerge(Dst, SrcRegs);
2409     MI.eraseFromParent();
2410     return Legalized;
2411   }
2412 
2413   if (DstTy.isVector()) {
2414     SmallVector<Register, 8> SrcRegs;
2415     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2416     MIRBuilder.buildMerge(Dst, SrcRegs);
2417     MI.eraseFromParent();
2418     return Legalized;
2419   }
2420 
2421   return UnableToLegalize;
2422 }
2423 
2424 /// Figure out the bit offset into a register when coercing a vector index for
2425 /// the wide element type. This is only for the case when promoting vector to
2426 /// one with larger elements.
2427 //
2428 ///
2429 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2430 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2431 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2432                                                    Register Idx,
2433                                                    unsigned NewEltSize,
2434                                                    unsigned OldEltSize) {
2435   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2436   LLT IdxTy = B.getMRI()->getType(Idx);
2437 
2438   // Now figure out the amount we need to shift to get the target bits.
2439   auto OffsetMask = B.buildConstant(
2440     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2441   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2442   return B.buildShl(IdxTy, OffsetIdx,
2443                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2444 }
2445 
2446 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2447 /// is casting to a vector with a smaller element size, perform multiple element
2448 /// extracts and merge the results. If this is coercing to a vector with larger
2449 /// elements, index the bitcasted vector and extract the target element with bit
2450 /// operations. This is intended to force the indexing in the native register
2451 /// size for architectures that can dynamically index the register file.
2452 LegalizerHelper::LegalizeResult
2453 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2454                                          LLT CastTy) {
2455   if (TypeIdx != 1)
2456     return UnableToLegalize;
2457 
2458   Register Dst = MI.getOperand(0).getReg();
2459   Register SrcVec = MI.getOperand(1).getReg();
2460   Register Idx = MI.getOperand(2).getReg();
2461   LLT SrcVecTy = MRI.getType(SrcVec);
2462   LLT IdxTy = MRI.getType(Idx);
2463 
2464   LLT SrcEltTy = SrcVecTy.getElementType();
2465   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2466   unsigned OldNumElts = SrcVecTy.getNumElements();
2467 
2468   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2469   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2470 
2471   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2472   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2473   if (NewNumElts > OldNumElts) {
2474     // Decreasing the vector element size
2475     //
2476     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2477     //  =>
2478     //  v4i32:castx = bitcast x:v2i64
2479     //
2480     // i64 = bitcast
2481     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2482     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2483     //
2484     if (NewNumElts % OldNumElts != 0)
2485       return UnableToLegalize;
2486 
2487     // Type of the intermediate result vector.
2488     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2489     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2490 
2491     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2492 
2493     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2494     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2495 
2496     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2497       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2498       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2499       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2500       NewOps[I] = Elt.getReg(0);
2501     }
2502 
2503     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2504     MIRBuilder.buildBitcast(Dst, NewVec);
2505     MI.eraseFromParent();
2506     return Legalized;
2507   }
2508 
2509   if (NewNumElts < OldNumElts) {
2510     if (NewEltSize % OldEltSize != 0)
2511       return UnableToLegalize;
2512 
2513     // This only depends on powers of 2 because we use bit tricks to figure out
2514     // the bit offset we need to shift to get the target element. A general
2515     // expansion could emit division/multiply.
2516     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2517       return UnableToLegalize;
2518 
2519     // Increasing the vector element size.
2520     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2521     //
2522     //   =>
2523     //
2524     // %cast = G_BITCAST %vec
2525     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2526     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2527     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2528     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2529     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2530     // %elt = G_TRUNC %elt_bits
2531 
2532     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2533     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2534 
2535     // Divide to get the index in the wider element type.
2536     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2537 
2538     Register WideElt = CastVec;
2539     if (CastTy.isVector()) {
2540       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2541                                                      ScaledIdx).getReg(0);
2542     }
2543 
2544     // Compute the bit offset into the register of the target element.
2545     Register OffsetBits = getBitcastWiderVectorElementOffset(
2546       MIRBuilder, Idx, NewEltSize, OldEltSize);
2547 
2548     // Shift the wide element to get the target element.
2549     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2550     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2551     MI.eraseFromParent();
2552     return Legalized;
2553   }
2554 
2555   return UnableToLegalize;
2556 }
2557 
2558 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2559 /// TargetReg, while preserving other bits in \p TargetReg.
2560 ///
2561 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2562 static Register buildBitFieldInsert(MachineIRBuilder &B,
2563                                     Register TargetReg, Register InsertReg,
2564                                     Register OffsetBits) {
2565   LLT TargetTy = B.getMRI()->getType(TargetReg);
2566   LLT InsertTy = B.getMRI()->getType(InsertReg);
2567   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2568   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2569 
2570   // Produce a bitmask of the value to insert
2571   auto EltMask = B.buildConstant(
2572     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2573                                    InsertTy.getSizeInBits()));
2574   // Shift it into position
2575   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2576   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2577 
2578   // Clear out the bits in the wide element
2579   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2580 
2581   // The value to insert has all zeros already, so stick it into the masked
2582   // wide element.
2583   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2584 }
2585 
2586 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2587 /// is increasing the element size, perform the indexing in the target element
2588 /// type, and use bit operations to insert at the element position. This is
2589 /// intended for architectures that can dynamically index the register file and
2590 /// want to force indexing in the native register size.
2591 LegalizerHelper::LegalizeResult
2592 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2593                                         LLT CastTy) {
2594   if (TypeIdx != 0)
2595     return UnableToLegalize;
2596 
2597   Register Dst = MI.getOperand(0).getReg();
2598   Register SrcVec = MI.getOperand(1).getReg();
2599   Register Val = MI.getOperand(2).getReg();
2600   Register Idx = MI.getOperand(3).getReg();
2601 
2602   LLT VecTy = MRI.getType(Dst);
2603   LLT IdxTy = MRI.getType(Idx);
2604 
2605   LLT VecEltTy = VecTy.getElementType();
2606   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2607   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2608   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2609 
2610   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2611   unsigned OldNumElts = VecTy.getNumElements();
2612 
2613   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2614   if (NewNumElts < OldNumElts) {
2615     if (NewEltSize % OldEltSize != 0)
2616       return UnableToLegalize;
2617 
2618     // This only depends on powers of 2 because we use bit tricks to figure out
2619     // the bit offset we need to shift to get the target element. A general
2620     // expansion could emit division/multiply.
2621     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2622       return UnableToLegalize;
2623 
2624     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2625     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2626 
2627     // Divide to get the index in the wider element type.
2628     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2629 
2630     Register ExtractedElt = CastVec;
2631     if (CastTy.isVector()) {
2632       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2633                                                           ScaledIdx).getReg(0);
2634     }
2635 
2636     // Compute the bit offset into the register of the target element.
2637     Register OffsetBits = getBitcastWiderVectorElementOffset(
2638       MIRBuilder, Idx, NewEltSize, OldEltSize);
2639 
2640     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2641                                                Val, OffsetBits);
2642     if (CastTy.isVector()) {
2643       InsertedElt = MIRBuilder.buildInsertVectorElement(
2644         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2645     }
2646 
2647     MIRBuilder.buildBitcast(Dst, InsertedElt);
2648     MI.eraseFromParent();
2649     return Legalized;
2650   }
2651 
2652   return UnableToLegalize;
2653 }
2654 
2655 LegalizerHelper::LegalizeResult
2656 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2657   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2658   Register DstReg = MI.getOperand(0).getReg();
2659   Register PtrReg = MI.getOperand(1).getReg();
2660   LLT DstTy = MRI.getType(DstReg);
2661   auto &MMO = **MI.memoperands_begin();
2662 
2663   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2664     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2665       // This load needs splitting into power of 2 sized loads.
2666       if (DstTy.isVector())
2667         return UnableToLegalize;
2668       if (isPowerOf2_32(DstTy.getSizeInBits()))
2669         return UnableToLegalize; // Don't know what we're being asked to do.
2670 
2671       // Our strategy here is to generate anyextending loads for the smaller
2672       // types up to next power-2 result type, and then combine the two larger
2673       // result values together, before truncating back down to the non-pow-2
2674       // type.
2675       // E.g. v1 = i24 load =>
2676       // v2 = i32 zextload (2 byte)
2677       // v3 = i32 load (1 byte)
2678       // v4 = i32 shl v3, 16
2679       // v5 = i32 or v4, v2
2680       // v1 = i24 trunc v5
2681       // By doing this we generate the correct truncate which should get
2682       // combined away as an artifact with a matching extend.
2683       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2684       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2685 
2686       MachineFunction &MF = MIRBuilder.getMF();
2687       MachineMemOperand *LargeMMO =
2688         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2689       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2690         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2691 
2692       LLT PtrTy = MRI.getType(PtrReg);
2693       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2694       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2695       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2696       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2697       auto LargeLoad = MIRBuilder.buildLoadInstr(
2698         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2699 
2700       auto OffsetCst = MIRBuilder.buildConstant(
2701         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2702       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2703       auto SmallPtr =
2704         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2705       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2706                                             *SmallMMO);
2707 
2708       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2709       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2710       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2711       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2712       MI.eraseFromParent();
2713       return Legalized;
2714     }
2715 
2716     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2717     MI.eraseFromParent();
2718     return Legalized;
2719   }
2720 
2721   if (DstTy.isScalar()) {
2722     Register TmpReg =
2723       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2724     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2725     switch (MI.getOpcode()) {
2726     default:
2727       llvm_unreachable("Unexpected opcode");
2728     case TargetOpcode::G_LOAD:
2729       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2730       break;
2731     case TargetOpcode::G_SEXTLOAD:
2732       MIRBuilder.buildSExt(DstReg, TmpReg);
2733       break;
2734     case TargetOpcode::G_ZEXTLOAD:
2735       MIRBuilder.buildZExt(DstReg, TmpReg);
2736       break;
2737     }
2738 
2739     MI.eraseFromParent();
2740     return Legalized;
2741   }
2742 
2743   return UnableToLegalize;
2744 }
2745 
2746 LegalizerHelper::LegalizeResult
2747 LegalizerHelper::lowerStore(MachineInstr &MI) {
2748   // Lower a non-power of 2 store into multiple pow-2 stores.
2749   // E.g. split an i24 store into an i16 store + i8 store.
2750   // We do this by first extending the stored value to the next largest power
2751   // of 2 type, and then using truncating stores to store the components.
2752   // By doing this, likewise with G_LOAD, generate an extend that can be
2753   // artifact-combined away instead of leaving behind extracts.
2754   Register SrcReg = MI.getOperand(0).getReg();
2755   Register PtrReg = MI.getOperand(1).getReg();
2756   LLT SrcTy = MRI.getType(SrcReg);
2757   MachineMemOperand &MMO = **MI.memoperands_begin();
2758   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2759     return UnableToLegalize;
2760   if (SrcTy.isVector())
2761     return UnableToLegalize;
2762   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2763     return UnableToLegalize; // Don't know what we're being asked to do.
2764 
2765   // Extend to the next pow-2.
2766   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2767   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2768 
2769   // Obtain the smaller value by shifting away the larger value.
2770   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2771   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2772   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2773   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2774 
2775   // Generate the PtrAdd and truncating stores.
2776   LLT PtrTy = MRI.getType(PtrReg);
2777   auto OffsetCst = MIRBuilder.buildConstant(
2778     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2779   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2780   auto SmallPtr =
2781     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2782 
2783   MachineFunction &MF = MIRBuilder.getMF();
2784   MachineMemOperand *LargeMMO =
2785     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2786   MachineMemOperand *SmallMMO =
2787     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2788   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2789   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2790   MI.eraseFromParent();
2791   return Legalized;
2792 }
2793 
2794 LegalizerHelper::LegalizeResult
2795 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2796   switch (MI.getOpcode()) {
2797   case TargetOpcode::G_LOAD: {
2798     if (TypeIdx != 0)
2799       return UnableToLegalize;
2800 
2801     Observer.changingInstr(MI);
2802     bitcastDst(MI, CastTy, 0);
2803     Observer.changedInstr(MI);
2804     return Legalized;
2805   }
2806   case TargetOpcode::G_STORE: {
2807     if (TypeIdx != 0)
2808       return UnableToLegalize;
2809 
2810     Observer.changingInstr(MI);
2811     bitcastSrc(MI, CastTy, 0);
2812     Observer.changedInstr(MI);
2813     return Legalized;
2814   }
2815   case TargetOpcode::G_SELECT: {
2816     if (TypeIdx != 0)
2817       return UnableToLegalize;
2818 
2819     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2820       LLVM_DEBUG(
2821           dbgs() << "bitcast action not implemented for vector select\n");
2822       return UnableToLegalize;
2823     }
2824 
2825     Observer.changingInstr(MI);
2826     bitcastSrc(MI, CastTy, 2);
2827     bitcastSrc(MI, CastTy, 3);
2828     bitcastDst(MI, CastTy, 0);
2829     Observer.changedInstr(MI);
2830     return Legalized;
2831   }
2832   case TargetOpcode::G_AND:
2833   case TargetOpcode::G_OR:
2834   case TargetOpcode::G_XOR: {
2835     Observer.changingInstr(MI);
2836     bitcastSrc(MI, CastTy, 1);
2837     bitcastSrc(MI, CastTy, 2);
2838     bitcastDst(MI, CastTy, 0);
2839     Observer.changedInstr(MI);
2840     return Legalized;
2841   }
2842   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2843     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2844   case TargetOpcode::G_INSERT_VECTOR_ELT:
2845     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2846   default:
2847     return UnableToLegalize;
2848   }
2849 }
2850 
2851 // Legalize an instruction by changing the opcode in place.
2852 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2853     Observer.changingInstr(MI);
2854     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2855     Observer.changedInstr(MI);
2856 }
2857 
2858 LegalizerHelper::LegalizeResult
2859 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2860   using namespace TargetOpcode;
2861 
2862   switch(MI.getOpcode()) {
2863   default:
2864     return UnableToLegalize;
2865   case TargetOpcode::G_BITCAST:
2866     return lowerBitcast(MI);
2867   case TargetOpcode::G_SREM:
2868   case TargetOpcode::G_UREM: {
2869     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2870     auto Quot =
2871         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2872                               {MI.getOperand(1), MI.getOperand(2)});
2873 
2874     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2875     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2876     MI.eraseFromParent();
2877     return Legalized;
2878   }
2879   case TargetOpcode::G_SADDO:
2880   case TargetOpcode::G_SSUBO:
2881     return lowerSADDO_SSUBO(MI);
2882   case TargetOpcode::G_UMULH:
2883   case TargetOpcode::G_SMULH:
2884     return lowerSMULH_UMULH(MI);
2885   case TargetOpcode::G_SMULO:
2886   case TargetOpcode::G_UMULO: {
2887     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2888     // result.
2889     Register Res = MI.getOperand(0).getReg();
2890     Register Overflow = MI.getOperand(1).getReg();
2891     Register LHS = MI.getOperand(2).getReg();
2892     Register RHS = MI.getOperand(3).getReg();
2893     LLT Ty = MRI.getType(Res);
2894 
2895     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2896                           ? TargetOpcode::G_SMULH
2897                           : TargetOpcode::G_UMULH;
2898 
2899     Observer.changingInstr(MI);
2900     const auto &TII = MIRBuilder.getTII();
2901     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2902     MI.RemoveOperand(1);
2903     Observer.changedInstr(MI);
2904 
2905     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2906     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2907 
2908     // Move insert point forward so we can use the Res register if needed.
2909     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2910 
2911     // For *signed* multiply, overflow is detected by checking:
2912     // (hi != (lo >> bitwidth-1))
2913     if (Opcode == TargetOpcode::G_SMULH) {
2914       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2915       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2916       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2917     } else {
2918       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2919     }
2920     return Legalized;
2921   }
2922   case TargetOpcode::G_FNEG: {
2923     Register Res = MI.getOperand(0).getReg();
2924     LLT Ty = MRI.getType(Res);
2925 
2926     // TODO: Handle vector types once we are able to
2927     // represent them.
2928     if (Ty.isVector())
2929       return UnableToLegalize;
2930     auto SignMask =
2931         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2932     Register SubByReg = MI.getOperand(1).getReg();
2933     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2934     MI.eraseFromParent();
2935     return Legalized;
2936   }
2937   case TargetOpcode::G_FSUB: {
2938     Register Res = MI.getOperand(0).getReg();
2939     LLT Ty = MRI.getType(Res);
2940 
2941     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2942     // First, check if G_FNEG is marked as Lower. If so, we may
2943     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2944     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2945       return UnableToLegalize;
2946     Register LHS = MI.getOperand(1).getReg();
2947     Register RHS = MI.getOperand(2).getReg();
2948     Register Neg = MRI.createGenericVirtualRegister(Ty);
2949     MIRBuilder.buildFNeg(Neg, RHS);
2950     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2951     MI.eraseFromParent();
2952     return Legalized;
2953   }
2954   case TargetOpcode::G_FMAD:
2955     return lowerFMad(MI);
2956   case TargetOpcode::G_FFLOOR:
2957     return lowerFFloor(MI);
2958   case TargetOpcode::G_INTRINSIC_ROUND:
2959     return lowerIntrinsicRound(MI);
2960   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2961     // Since round even is the assumed rounding mode for unconstrained FP
2962     // operations, rint and roundeven are the same operation.
2963     changeOpcode(MI, TargetOpcode::G_FRINT);
2964     return Legalized;
2965   }
2966   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2967     Register OldValRes = MI.getOperand(0).getReg();
2968     Register SuccessRes = MI.getOperand(1).getReg();
2969     Register Addr = MI.getOperand(2).getReg();
2970     Register CmpVal = MI.getOperand(3).getReg();
2971     Register NewVal = MI.getOperand(4).getReg();
2972     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2973                                   **MI.memoperands_begin());
2974     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2975     MI.eraseFromParent();
2976     return Legalized;
2977   }
2978   case TargetOpcode::G_LOAD:
2979   case TargetOpcode::G_SEXTLOAD:
2980   case TargetOpcode::G_ZEXTLOAD:
2981     return lowerLoad(MI);
2982   case TargetOpcode::G_STORE:
2983     return lowerStore(MI);
2984   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2985   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2986   case TargetOpcode::G_CTLZ:
2987   case TargetOpcode::G_CTTZ:
2988   case TargetOpcode::G_CTPOP:
2989     return lowerBitCount(MI);
2990   case G_UADDO: {
2991     Register Res = MI.getOperand(0).getReg();
2992     Register CarryOut = MI.getOperand(1).getReg();
2993     Register LHS = MI.getOperand(2).getReg();
2994     Register RHS = MI.getOperand(3).getReg();
2995 
2996     MIRBuilder.buildAdd(Res, LHS, RHS);
2997     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2998 
2999     MI.eraseFromParent();
3000     return Legalized;
3001   }
3002   case G_UADDE: {
3003     Register Res = MI.getOperand(0).getReg();
3004     Register CarryOut = MI.getOperand(1).getReg();
3005     Register LHS = MI.getOperand(2).getReg();
3006     Register RHS = MI.getOperand(3).getReg();
3007     Register CarryIn = MI.getOperand(4).getReg();
3008     LLT Ty = MRI.getType(Res);
3009 
3010     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3011     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3012     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3013     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3014 
3015     MI.eraseFromParent();
3016     return Legalized;
3017   }
3018   case G_USUBO: {
3019     Register Res = MI.getOperand(0).getReg();
3020     Register BorrowOut = MI.getOperand(1).getReg();
3021     Register LHS = MI.getOperand(2).getReg();
3022     Register RHS = MI.getOperand(3).getReg();
3023 
3024     MIRBuilder.buildSub(Res, LHS, RHS);
3025     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3026 
3027     MI.eraseFromParent();
3028     return Legalized;
3029   }
3030   case G_USUBE: {
3031     Register Res = MI.getOperand(0).getReg();
3032     Register BorrowOut = MI.getOperand(1).getReg();
3033     Register LHS = MI.getOperand(2).getReg();
3034     Register RHS = MI.getOperand(3).getReg();
3035     Register BorrowIn = MI.getOperand(4).getReg();
3036     const LLT CondTy = MRI.getType(BorrowOut);
3037     const LLT Ty = MRI.getType(Res);
3038 
3039     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3040     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3041     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3042 
3043     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3044     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3045     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3046 
3047     MI.eraseFromParent();
3048     return Legalized;
3049   }
3050   case G_UITOFP:
3051     return lowerUITOFP(MI);
3052   case G_SITOFP:
3053     return lowerSITOFP(MI);
3054   case G_FPTOUI:
3055     return lowerFPTOUI(MI);
3056   case G_FPTOSI:
3057     return lowerFPTOSI(MI);
3058   case G_FPTRUNC:
3059     return lowerFPTRUNC(MI);
3060   case G_FPOWI:
3061     return lowerFPOWI(MI);
3062   case G_SMIN:
3063   case G_SMAX:
3064   case G_UMIN:
3065   case G_UMAX:
3066     return lowerMinMax(MI);
3067   case G_FCOPYSIGN:
3068     return lowerFCopySign(MI);
3069   case G_FMINNUM:
3070   case G_FMAXNUM:
3071     return lowerFMinNumMaxNum(MI);
3072   case G_MERGE_VALUES:
3073     return lowerMergeValues(MI);
3074   case G_UNMERGE_VALUES:
3075     return lowerUnmergeValues(MI);
3076   case TargetOpcode::G_SEXT_INREG: {
3077     assert(MI.getOperand(2).isImm() && "Expected immediate");
3078     int64_t SizeInBits = MI.getOperand(2).getImm();
3079 
3080     Register DstReg = MI.getOperand(0).getReg();
3081     Register SrcReg = MI.getOperand(1).getReg();
3082     LLT DstTy = MRI.getType(DstReg);
3083     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3084 
3085     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3086     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3087     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3088     MI.eraseFromParent();
3089     return Legalized;
3090   }
3091   case G_EXTRACT_VECTOR_ELT:
3092   case G_INSERT_VECTOR_ELT:
3093     return lowerExtractInsertVectorElt(MI);
3094   case G_SHUFFLE_VECTOR:
3095     return lowerShuffleVector(MI);
3096   case G_DYN_STACKALLOC:
3097     return lowerDynStackAlloc(MI);
3098   case G_EXTRACT:
3099     return lowerExtract(MI);
3100   case G_INSERT:
3101     return lowerInsert(MI);
3102   case G_BSWAP:
3103     return lowerBswap(MI);
3104   case G_BITREVERSE:
3105     return lowerBitreverse(MI);
3106   case G_READ_REGISTER:
3107   case G_WRITE_REGISTER:
3108     return lowerReadWriteRegister(MI);
3109   case G_UADDSAT:
3110   case G_USUBSAT: {
3111     // Try to make a reasonable guess about which lowering strategy to use. The
3112     // target can override this with custom lowering and calling the
3113     // implementation functions.
3114     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3115     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3116       return lowerAddSubSatToMinMax(MI);
3117     return lowerAddSubSatToAddoSubo(MI);
3118   }
3119   case G_SADDSAT:
3120   case G_SSUBSAT: {
3121     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3122 
3123     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3124     // since it's a shorter expansion. However, we would need to figure out the
3125     // preferred boolean type for the carry out for the query.
3126     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3127       return lowerAddSubSatToMinMax(MI);
3128     return lowerAddSubSatToAddoSubo(MI);
3129   }
3130   case G_SSHLSAT:
3131   case G_USHLSAT:
3132     return lowerShlSat(MI);
3133   case G_ABS: {
3134     // Expand %res = G_ABS %a into:
3135     // %v1 = G_ASHR %a, scalar_size-1
3136     // %v2 = G_ADD %a, %v1
3137     // %res = G_XOR %v2, %v1
3138     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3139     Register OpReg = MI.getOperand(1).getReg();
3140     auto ShiftAmt =
3141         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3142     auto Shift =
3143         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3144     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3145     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3146     MI.eraseFromParent();
3147     return Legalized;
3148   }
3149   case G_SELECT:
3150     return lowerSelect(MI);
3151   case G_SDIVREM:
3152   case G_UDIVREM:
3153     return lowerDIVREM(MI);
3154   }
3155 }
3156 
3157 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3158                                                   Align MinAlign) const {
3159   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3160   // datalayout for the preferred alignment. Also there should be a target hook
3161   // for this to allow targets to reduce the alignment and ignore the
3162   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3163   // the type.
3164   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3165 }
3166 
3167 MachineInstrBuilder
3168 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3169                                       MachinePointerInfo &PtrInfo) {
3170   MachineFunction &MF = MIRBuilder.getMF();
3171   const DataLayout &DL = MIRBuilder.getDataLayout();
3172   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3173 
3174   unsigned AddrSpace = DL.getAllocaAddrSpace();
3175   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3176 
3177   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3178   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3179 }
3180 
3181 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3182                                         LLT VecTy) {
3183   int64_t IdxVal;
3184   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3185     return IdxReg;
3186 
3187   LLT IdxTy = B.getMRI()->getType(IdxReg);
3188   unsigned NElts = VecTy.getNumElements();
3189   if (isPowerOf2_32(NElts)) {
3190     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3191     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3192   }
3193 
3194   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3195       .getReg(0);
3196 }
3197 
3198 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3199                                                   Register Index) {
3200   LLT EltTy = VecTy.getElementType();
3201 
3202   // Calculate the element offset and add it to the pointer.
3203   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3204   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3205          "Converting bits to bytes lost precision");
3206 
3207   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3208 
3209   LLT IdxTy = MRI.getType(Index);
3210   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3211                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3212 
3213   LLT PtrTy = MRI.getType(VecPtr);
3214   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3215 }
3216 
3217 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3218     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3219   Register DstReg = MI.getOperand(0).getReg();
3220   LLT DstTy = MRI.getType(DstReg);
3221   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3222 
3223   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3224 
3225   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3226   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3227 
3228   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3229   MI.eraseFromParent();
3230   return Legalized;
3231 }
3232 
3233 // Handle splitting vector operations which need to have the same number of
3234 // elements in each type index, but each type index may have a different element
3235 // type.
3236 //
3237 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3238 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3239 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3240 //
3241 // Also handles some irregular breakdown cases, e.g.
3242 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3243 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3244 //             s64 = G_SHL s64, s32
3245 LegalizerHelper::LegalizeResult
3246 LegalizerHelper::fewerElementsVectorMultiEltType(
3247   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3248   if (TypeIdx != 0)
3249     return UnableToLegalize;
3250 
3251   const LLT NarrowTy0 = NarrowTyArg;
3252   const unsigned NewNumElts =
3253       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3254 
3255   const Register DstReg = MI.getOperand(0).getReg();
3256   LLT DstTy = MRI.getType(DstReg);
3257   LLT LeftoverTy0;
3258 
3259   // All of the operands need to have the same number of elements, so if we can
3260   // determine a type breakdown for the result type, we can for all of the
3261   // source types.
3262   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3263   if (NumParts < 0)
3264     return UnableToLegalize;
3265 
3266   SmallVector<MachineInstrBuilder, 4> NewInsts;
3267 
3268   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3269   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3270 
3271   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3272     Register SrcReg = MI.getOperand(I).getReg();
3273     LLT SrcTyI = MRI.getType(SrcReg);
3274     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3275     LLT LeftoverTyI;
3276 
3277     // Split this operand into the requested typed registers, and any leftover
3278     // required to reproduce the original type.
3279     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3280                       LeftoverRegs))
3281       return UnableToLegalize;
3282 
3283     if (I == 1) {
3284       // For the first operand, create an instruction for each part and setup
3285       // the result.
3286       for (Register PartReg : PartRegs) {
3287         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3288         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3289                                .addDef(PartDstReg)
3290                                .addUse(PartReg));
3291         DstRegs.push_back(PartDstReg);
3292       }
3293 
3294       for (Register LeftoverReg : LeftoverRegs) {
3295         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3296         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3297                                .addDef(PartDstReg)
3298                                .addUse(LeftoverReg));
3299         LeftoverDstRegs.push_back(PartDstReg);
3300       }
3301     } else {
3302       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3303 
3304       // Add the newly created operand splits to the existing instructions. The
3305       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3306       // pieces.
3307       unsigned InstCount = 0;
3308       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3309         NewInsts[InstCount++].addUse(PartRegs[J]);
3310       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3311         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3312     }
3313 
3314     PartRegs.clear();
3315     LeftoverRegs.clear();
3316   }
3317 
3318   // Insert the newly built operations and rebuild the result register.
3319   for (auto &MIB : NewInsts)
3320     MIRBuilder.insertInstr(MIB);
3321 
3322   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3323 
3324   MI.eraseFromParent();
3325   return Legalized;
3326 }
3327 
3328 LegalizerHelper::LegalizeResult
3329 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3330                                           LLT NarrowTy) {
3331   if (TypeIdx != 0)
3332     return UnableToLegalize;
3333 
3334   Register DstReg = MI.getOperand(0).getReg();
3335   Register SrcReg = MI.getOperand(1).getReg();
3336   LLT DstTy = MRI.getType(DstReg);
3337   LLT SrcTy = MRI.getType(SrcReg);
3338 
3339   LLT NarrowTy0 = NarrowTy;
3340   LLT NarrowTy1;
3341   unsigned NumParts;
3342 
3343   if (NarrowTy.isVector()) {
3344     // Uneven breakdown not handled.
3345     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3346     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3347       return UnableToLegalize;
3348 
3349     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3350   } else {
3351     NumParts = DstTy.getNumElements();
3352     NarrowTy1 = SrcTy.getElementType();
3353   }
3354 
3355   SmallVector<Register, 4> SrcRegs, DstRegs;
3356   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3357 
3358   for (unsigned I = 0; I < NumParts; ++I) {
3359     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3360     MachineInstr *NewInst =
3361         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3362 
3363     NewInst->setFlags(MI.getFlags());
3364     DstRegs.push_back(DstReg);
3365   }
3366 
3367   if (NarrowTy.isVector())
3368     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3369   else
3370     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3371 
3372   MI.eraseFromParent();
3373   return Legalized;
3374 }
3375 
3376 LegalizerHelper::LegalizeResult
3377 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3378                                         LLT NarrowTy) {
3379   Register DstReg = MI.getOperand(0).getReg();
3380   Register Src0Reg = MI.getOperand(2).getReg();
3381   LLT DstTy = MRI.getType(DstReg);
3382   LLT SrcTy = MRI.getType(Src0Reg);
3383 
3384   unsigned NumParts;
3385   LLT NarrowTy0, NarrowTy1;
3386 
3387   if (TypeIdx == 0) {
3388     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3389     unsigned OldElts = DstTy.getNumElements();
3390 
3391     NarrowTy0 = NarrowTy;
3392     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3393     NarrowTy1 = NarrowTy.isVector() ?
3394       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3395       SrcTy.getElementType();
3396 
3397   } else {
3398     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3399     unsigned OldElts = SrcTy.getNumElements();
3400 
3401     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3402       NarrowTy.getNumElements();
3403     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3404                             DstTy.getScalarSizeInBits());
3405     NarrowTy1 = NarrowTy;
3406   }
3407 
3408   // FIXME: Don't know how to handle the situation where the small vectors
3409   // aren't all the same size yet.
3410   if (NarrowTy1.isVector() &&
3411       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3412     return UnableToLegalize;
3413 
3414   CmpInst::Predicate Pred
3415     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3416 
3417   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3418   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3419   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3420 
3421   for (unsigned I = 0; I < NumParts; ++I) {
3422     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3423     DstRegs.push_back(DstReg);
3424 
3425     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3426       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3427     else {
3428       MachineInstr *NewCmp
3429         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3430       NewCmp->setFlags(MI.getFlags());
3431     }
3432   }
3433 
3434   if (NarrowTy1.isVector())
3435     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3436   else
3437     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3438 
3439   MI.eraseFromParent();
3440   return Legalized;
3441 }
3442 
3443 LegalizerHelper::LegalizeResult
3444 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3445                                            LLT NarrowTy) {
3446   Register DstReg = MI.getOperand(0).getReg();
3447   Register CondReg = MI.getOperand(1).getReg();
3448 
3449   unsigned NumParts = 0;
3450   LLT NarrowTy0, NarrowTy1;
3451 
3452   LLT DstTy = MRI.getType(DstReg);
3453   LLT CondTy = MRI.getType(CondReg);
3454   unsigned Size = DstTy.getSizeInBits();
3455 
3456   assert(TypeIdx == 0 || CondTy.isVector());
3457 
3458   if (TypeIdx == 0) {
3459     NarrowTy0 = NarrowTy;
3460     NarrowTy1 = CondTy;
3461 
3462     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3463     // FIXME: Don't know how to handle the situation where the small vectors
3464     // aren't all the same size yet.
3465     if (Size % NarrowSize != 0)
3466       return UnableToLegalize;
3467 
3468     NumParts = Size / NarrowSize;
3469 
3470     // Need to break down the condition type
3471     if (CondTy.isVector()) {
3472       if (CondTy.getNumElements() == NumParts)
3473         NarrowTy1 = CondTy.getElementType();
3474       else
3475         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3476                                 CondTy.getScalarSizeInBits());
3477     }
3478   } else {
3479     NumParts = CondTy.getNumElements();
3480     if (NarrowTy.isVector()) {
3481       // TODO: Handle uneven breakdown.
3482       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3483         return UnableToLegalize;
3484 
3485       return UnableToLegalize;
3486     } else {
3487       NarrowTy0 = DstTy.getElementType();
3488       NarrowTy1 = NarrowTy;
3489     }
3490   }
3491 
3492   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3493   if (CondTy.isVector())
3494     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3495 
3496   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3497   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3498 
3499   for (unsigned i = 0; i < NumParts; ++i) {
3500     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3501     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3502                            Src1Regs[i], Src2Regs[i]);
3503     DstRegs.push_back(DstReg);
3504   }
3505 
3506   if (NarrowTy0.isVector())
3507     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3508   else
3509     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3510 
3511   MI.eraseFromParent();
3512   return Legalized;
3513 }
3514 
3515 LegalizerHelper::LegalizeResult
3516 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3517                                         LLT NarrowTy) {
3518   const Register DstReg = MI.getOperand(0).getReg();
3519   LLT PhiTy = MRI.getType(DstReg);
3520   LLT LeftoverTy;
3521 
3522   // All of the operands need to have the same number of elements, so if we can
3523   // determine a type breakdown for the result type, we can for all of the
3524   // source types.
3525   int NumParts, NumLeftover;
3526   std::tie(NumParts, NumLeftover)
3527     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3528   if (NumParts < 0)
3529     return UnableToLegalize;
3530 
3531   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3532   SmallVector<MachineInstrBuilder, 4> NewInsts;
3533 
3534   const int TotalNumParts = NumParts + NumLeftover;
3535 
3536   // Insert the new phis in the result block first.
3537   for (int I = 0; I != TotalNumParts; ++I) {
3538     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3539     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3540     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3541                        .addDef(PartDstReg));
3542     if (I < NumParts)
3543       DstRegs.push_back(PartDstReg);
3544     else
3545       LeftoverDstRegs.push_back(PartDstReg);
3546   }
3547 
3548   MachineBasicBlock *MBB = MI.getParent();
3549   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3550   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3551 
3552   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3553 
3554   // Insert code to extract the incoming values in each predecessor block.
3555   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3556     PartRegs.clear();
3557     LeftoverRegs.clear();
3558 
3559     Register SrcReg = MI.getOperand(I).getReg();
3560     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3561     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3562 
3563     LLT Unused;
3564     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3565                       LeftoverRegs))
3566       return UnableToLegalize;
3567 
3568     // Add the newly created operand splits to the existing instructions. The
3569     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3570     // pieces.
3571     for (int J = 0; J != TotalNumParts; ++J) {
3572       MachineInstrBuilder MIB = NewInsts[J];
3573       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3574       MIB.addMBB(&OpMBB);
3575     }
3576   }
3577 
3578   MI.eraseFromParent();
3579   return Legalized;
3580 }
3581 
3582 LegalizerHelper::LegalizeResult
3583 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3584                                                   unsigned TypeIdx,
3585                                                   LLT NarrowTy) {
3586   if (TypeIdx != 1)
3587     return UnableToLegalize;
3588 
3589   const int NumDst = MI.getNumOperands() - 1;
3590   const Register SrcReg = MI.getOperand(NumDst).getReg();
3591   LLT SrcTy = MRI.getType(SrcReg);
3592 
3593   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3594 
3595   // TODO: Create sequence of extracts.
3596   if (DstTy == NarrowTy)
3597     return UnableToLegalize;
3598 
3599   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3600   if (DstTy == GCDTy) {
3601     // This would just be a copy of the same unmerge.
3602     // TODO: Create extracts, pad with undef and create intermediate merges.
3603     return UnableToLegalize;
3604   }
3605 
3606   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3607   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3608   const int PartsPerUnmerge = NumDst / NumUnmerge;
3609 
3610   for (int I = 0; I != NumUnmerge; ++I) {
3611     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3612 
3613     for (int J = 0; J != PartsPerUnmerge; ++J)
3614       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3615     MIB.addUse(Unmerge.getReg(I));
3616   }
3617 
3618   MI.eraseFromParent();
3619   return Legalized;
3620 }
3621 
3622 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3623 // a vector
3624 //
3625 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3626 // undef as necessary.
3627 //
3628 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3629 //   -> <2 x s16>
3630 //
3631 // %4:_(s16) = G_IMPLICIT_DEF
3632 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3633 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3634 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3635 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3636 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3637 LegalizerHelper::LegalizeResult
3638 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3639                                           LLT NarrowTy) {
3640   Register DstReg = MI.getOperand(0).getReg();
3641   LLT DstTy = MRI.getType(DstReg);
3642   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3643   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3644 
3645   // Break into a common type
3646   SmallVector<Register, 16> Parts;
3647   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3648     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3649 
3650   // Build the requested new merge, padding with undef.
3651   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3652                                   TargetOpcode::G_ANYEXT);
3653 
3654   // Pack into the original result register.
3655   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3656 
3657   MI.eraseFromParent();
3658   return Legalized;
3659 }
3660 
3661 LegalizerHelper::LegalizeResult
3662 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3663                                                            unsigned TypeIdx,
3664                                                            LLT NarrowVecTy) {
3665   Register DstReg = MI.getOperand(0).getReg();
3666   Register SrcVec = MI.getOperand(1).getReg();
3667   Register InsertVal;
3668   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3669 
3670   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3671   if (IsInsert)
3672     InsertVal = MI.getOperand(2).getReg();
3673 
3674   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3675 
3676   // TODO: Handle total scalarization case.
3677   if (!NarrowVecTy.isVector())
3678     return UnableToLegalize;
3679 
3680   LLT VecTy = MRI.getType(SrcVec);
3681 
3682   // If the index is a constant, we can really break this down as you would
3683   // expect, and index into the target size pieces.
3684   int64_t IdxVal;
3685   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3686     // Avoid out of bounds indexing the pieces.
3687     if (IdxVal >= VecTy.getNumElements()) {
3688       MIRBuilder.buildUndef(DstReg);
3689       MI.eraseFromParent();
3690       return Legalized;
3691     }
3692 
3693     SmallVector<Register, 8> VecParts;
3694     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3695 
3696     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3697     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3698                                     TargetOpcode::G_ANYEXT);
3699 
3700     unsigned NewNumElts = NarrowVecTy.getNumElements();
3701 
3702     LLT IdxTy = MRI.getType(Idx);
3703     int64_t PartIdx = IdxVal / NewNumElts;
3704     auto NewIdx =
3705         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3706 
3707     if (IsInsert) {
3708       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3709 
3710       // Use the adjusted index to insert into one of the subvectors.
3711       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3712           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3713       VecParts[PartIdx] = InsertPart.getReg(0);
3714 
3715       // Recombine the inserted subvector with the others to reform the result
3716       // vector.
3717       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3718     } else {
3719       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3720     }
3721 
3722     MI.eraseFromParent();
3723     return Legalized;
3724   }
3725 
3726   // With a variable index, we can't perform the operation in a smaller type, so
3727   // we're forced to expand this.
3728   //
3729   // TODO: We could emit a chain of compare/select to figure out which piece to
3730   // index.
3731   return lowerExtractInsertVectorElt(MI);
3732 }
3733 
3734 LegalizerHelper::LegalizeResult
3735 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3736                                       LLT NarrowTy) {
3737   // FIXME: Don't know how to handle secondary types yet.
3738   if (TypeIdx != 0)
3739     return UnableToLegalize;
3740 
3741   MachineMemOperand *MMO = *MI.memoperands_begin();
3742 
3743   // This implementation doesn't work for atomics. Give up instead of doing
3744   // something invalid.
3745   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3746       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3747     return UnableToLegalize;
3748 
3749   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3750   Register ValReg = MI.getOperand(0).getReg();
3751   Register AddrReg = MI.getOperand(1).getReg();
3752   LLT ValTy = MRI.getType(ValReg);
3753 
3754   // FIXME: Do we need a distinct NarrowMemory legalize action?
3755   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3756     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3757     return UnableToLegalize;
3758   }
3759 
3760   int NumParts = -1;
3761   int NumLeftover = -1;
3762   LLT LeftoverTy;
3763   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3764   if (IsLoad) {
3765     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3766   } else {
3767     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3768                      NarrowLeftoverRegs)) {
3769       NumParts = NarrowRegs.size();
3770       NumLeftover = NarrowLeftoverRegs.size();
3771     }
3772   }
3773 
3774   if (NumParts == -1)
3775     return UnableToLegalize;
3776 
3777   LLT PtrTy = MRI.getType(AddrReg);
3778   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3779 
3780   unsigned TotalSize = ValTy.getSizeInBits();
3781 
3782   // Split the load/store into PartTy sized pieces starting at Offset. If this
3783   // is a load, return the new registers in ValRegs. For a store, each elements
3784   // of ValRegs should be PartTy. Returns the next offset that needs to be
3785   // handled.
3786   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3787                              unsigned Offset) -> unsigned {
3788     MachineFunction &MF = MIRBuilder.getMF();
3789     unsigned PartSize = PartTy.getSizeInBits();
3790     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3791          Offset += PartSize, ++Idx) {
3792       unsigned ByteSize = PartSize / 8;
3793       unsigned ByteOffset = Offset / 8;
3794       Register NewAddrReg;
3795 
3796       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3797 
3798       MachineMemOperand *NewMMO =
3799         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3800 
3801       if (IsLoad) {
3802         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3803         ValRegs.push_back(Dst);
3804         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3805       } else {
3806         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3807       }
3808     }
3809 
3810     return Offset;
3811   };
3812 
3813   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3814 
3815   // Handle the rest of the register if this isn't an even type breakdown.
3816   if (LeftoverTy.isValid())
3817     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3818 
3819   if (IsLoad) {
3820     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3821                 LeftoverTy, NarrowLeftoverRegs);
3822   }
3823 
3824   MI.eraseFromParent();
3825   return Legalized;
3826 }
3827 
3828 LegalizerHelper::LegalizeResult
3829 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3830                                       LLT NarrowTy) {
3831   assert(TypeIdx == 0 && "only one type index expected");
3832 
3833   const unsigned Opc = MI.getOpcode();
3834   const int NumOps = MI.getNumOperands() - 1;
3835   const Register DstReg = MI.getOperand(0).getReg();
3836   const unsigned Flags = MI.getFlags();
3837   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3838   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3839 
3840   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3841 
3842   // First of all check whether we are narrowing (changing the element type)
3843   // or reducing the vector elements
3844   const LLT DstTy = MRI.getType(DstReg);
3845   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3846 
3847   SmallVector<Register, 8> ExtractedRegs[3];
3848   SmallVector<Register, 8> Parts;
3849 
3850   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3851 
3852   // Break down all the sources into NarrowTy pieces we can operate on. This may
3853   // involve creating merges to a wider type, padded with undef.
3854   for (int I = 0; I != NumOps; ++I) {
3855     Register SrcReg = MI.getOperand(I + 1).getReg();
3856     LLT SrcTy = MRI.getType(SrcReg);
3857 
3858     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3859     // For fewerElements, this is a smaller vector with the same element type.
3860     LLT OpNarrowTy;
3861     if (IsNarrow) {
3862       OpNarrowTy = NarrowScalarTy;
3863 
3864       // In case of narrowing, we need to cast vectors to scalars for this to
3865       // work properly
3866       // FIXME: Can we do without the bitcast here if we're narrowing?
3867       if (SrcTy.isVector()) {
3868         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3869         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3870       }
3871     } else {
3872       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3873     }
3874 
3875     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3876 
3877     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3878     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3879                         TargetOpcode::G_ANYEXT);
3880   }
3881 
3882   SmallVector<Register, 8> ResultRegs;
3883 
3884   // Input operands for each sub-instruction.
3885   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3886 
3887   int NumParts = ExtractedRegs[0].size();
3888   const unsigned DstSize = DstTy.getSizeInBits();
3889   const LLT DstScalarTy = LLT::scalar(DstSize);
3890 
3891   // Narrowing needs to use scalar types
3892   LLT DstLCMTy, NarrowDstTy;
3893   if (IsNarrow) {
3894     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3895     NarrowDstTy = NarrowScalarTy;
3896   } else {
3897     DstLCMTy = getLCMType(DstTy, NarrowTy);
3898     NarrowDstTy = NarrowTy;
3899   }
3900 
3901   // We widened the source registers to satisfy merge/unmerge size
3902   // constraints. We'll have some extra fully undef parts.
3903   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3904 
3905   for (int I = 0; I != NumRealParts; ++I) {
3906     // Emit this instruction on each of the split pieces.
3907     for (int J = 0; J != NumOps; ++J)
3908       InputRegs[J] = ExtractedRegs[J][I];
3909 
3910     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3911     ResultRegs.push_back(Inst.getReg(0));
3912   }
3913 
3914   // Fill out the widened result with undef instead of creating instructions
3915   // with undef inputs.
3916   int NumUndefParts = NumParts - NumRealParts;
3917   if (NumUndefParts != 0)
3918     ResultRegs.append(NumUndefParts,
3919                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3920 
3921   // Extract the possibly padded result. Use a scratch register if we need to do
3922   // a final bitcast, otherwise use the original result register.
3923   Register MergeDstReg;
3924   if (IsNarrow && DstTy.isVector())
3925     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3926   else
3927     MergeDstReg = DstReg;
3928 
3929   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3930 
3931   // Recast to vector if we narrowed a vector
3932   if (IsNarrow && DstTy.isVector())
3933     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3934 
3935   MI.eraseFromParent();
3936   return Legalized;
3937 }
3938 
3939 LegalizerHelper::LegalizeResult
3940 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3941                                               LLT NarrowTy) {
3942   Register DstReg = MI.getOperand(0).getReg();
3943   Register SrcReg = MI.getOperand(1).getReg();
3944   int64_t Imm = MI.getOperand(2).getImm();
3945 
3946   LLT DstTy = MRI.getType(DstReg);
3947 
3948   SmallVector<Register, 8> Parts;
3949   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3950   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3951 
3952   for (Register &R : Parts)
3953     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3954 
3955   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3956 
3957   MI.eraseFromParent();
3958   return Legalized;
3959 }
3960 
3961 LegalizerHelper::LegalizeResult
3962 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3963                                      LLT NarrowTy) {
3964   using namespace TargetOpcode;
3965 
3966   switch (MI.getOpcode()) {
3967   case G_IMPLICIT_DEF:
3968     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3969   case G_TRUNC:
3970   case G_AND:
3971   case G_OR:
3972   case G_XOR:
3973   case G_ADD:
3974   case G_SUB:
3975   case G_MUL:
3976   case G_PTR_ADD:
3977   case G_SMULH:
3978   case G_UMULH:
3979   case G_FADD:
3980   case G_FMUL:
3981   case G_FSUB:
3982   case G_FNEG:
3983   case G_FABS:
3984   case G_FCANONICALIZE:
3985   case G_FDIV:
3986   case G_FREM:
3987   case G_FMA:
3988   case G_FMAD:
3989   case G_FPOW:
3990   case G_FEXP:
3991   case G_FEXP2:
3992   case G_FLOG:
3993   case G_FLOG2:
3994   case G_FLOG10:
3995   case G_FNEARBYINT:
3996   case G_FCEIL:
3997   case G_FFLOOR:
3998   case G_FRINT:
3999   case G_INTRINSIC_ROUND:
4000   case G_INTRINSIC_ROUNDEVEN:
4001   case G_INTRINSIC_TRUNC:
4002   case G_FCOS:
4003   case G_FSIN:
4004   case G_FSQRT:
4005   case G_BSWAP:
4006   case G_BITREVERSE:
4007   case G_SDIV:
4008   case G_UDIV:
4009   case G_SREM:
4010   case G_UREM:
4011   case G_SMIN:
4012   case G_SMAX:
4013   case G_UMIN:
4014   case G_UMAX:
4015   case G_FMINNUM:
4016   case G_FMAXNUM:
4017   case G_FMINNUM_IEEE:
4018   case G_FMAXNUM_IEEE:
4019   case G_FMINIMUM:
4020   case G_FMAXIMUM:
4021   case G_FSHL:
4022   case G_FSHR:
4023   case G_FREEZE:
4024   case G_SADDSAT:
4025   case G_SSUBSAT:
4026   case G_UADDSAT:
4027   case G_USUBSAT:
4028     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4029   case G_SHL:
4030   case G_LSHR:
4031   case G_ASHR:
4032   case G_SSHLSAT:
4033   case G_USHLSAT:
4034   case G_CTLZ:
4035   case G_CTLZ_ZERO_UNDEF:
4036   case G_CTTZ:
4037   case G_CTTZ_ZERO_UNDEF:
4038   case G_CTPOP:
4039   case G_FCOPYSIGN:
4040     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4041   case G_ZEXT:
4042   case G_SEXT:
4043   case G_ANYEXT:
4044   case G_FPEXT:
4045   case G_FPTRUNC:
4046   case G_SITOFP:
4047   case G_UITOFP:
4048   case G_FPTOSI:
4049   case G_FPTOUI:
4050   case G_INTTOPTR:
4051   case G_PTRTOINT:
4052   case G_ADDRSPACE_CAST:
4053     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4054   case G_ICMP:
4055   case G_FCMP:
4056     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4057   case G_SELECT:
4058     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4059   case G_PHI:
4060     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4061   case G_UNMERGE_VALUES:
4062     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4063   case G_BUILD_VECTOR:
4064     assert(TypeIdx == 0 && "not a vector type index");
4065     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4066   case G_CONCAT_VECTORS:
4067     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4068       return UnableToLegalize;
4069     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4070   case G_EXTRACT_VECTOR_ELT:
4071   case G_INSERT_VECTOR_ELT:
4072     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4073   case G_LOAD:
4074   case G_STORE:
4075     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4076   case G_SEXT_INREG:
4077     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4078   default:
4079     return UnableToLegalize;
4080   }
4081 }
4082 
4083 LegalizerHelper::LegalizeResult
4084 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4085                                              const LLT HalfTy, const LLT AmtTy) {
4086 
4087   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4088   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4089   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4090 
4091   if (Amt.isNullValue()) {
4092     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4093     MI.eraseFromParent();
4094     return Legalized;
4095   }
4096 
4097   LLT NVT = HalfTy;
4098   unsigned NVTBits = HalfTy.getSizeInBits();
4099   unsigned VTBits = 2 * NVTBits;
4100 
4101   SrcOp Lo(Register(0)), Hi(Register(0));
4102   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4103     if (Amt.ugt(VTBits)) {
4104       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4105     } else if (Amt.ugt(NVTBits)) {
4106       Lo = MIRBuilder.buildConstant(NVT, 0);
4107       Hi = MIRBuilder.buildShl(NVT, InL,
4108                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4109     } else if (Amt == NVTBits) {
4110       Lo = MIRBuilder.buildConstant(NVT, 0);
4111       Hi = InL;
4112     } else {
4113       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4114       auto OrLHS =
4115           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4116       auto OrRHS = MIRBuilder.buildLShr(
4117           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4118       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4119     }
4120   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4121     if (Amt.ugt(VTBits)) {
4122       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4123     } else if (Amt.ugt(NVTBits)) {
4124       Lo = MIRBuilder.buildLShr(NVT, InH,
4125                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4126       Hi = MIRBuilder.buildConstant(NVT, 0);
4127     } else if (Amt == NVTBits) {
4128       Lo = InH;
4129       Hi = MIRBuilder.buildConstant(NVT, 0);
4130     } else {
4131       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4132 
4133       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4134       auto OrRHS = MIRBuilder.buildShl(
4135           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4136 
4137       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4138       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4139     }
4140   } else {
4141     if (Amt.ugt(VTBits)) {
4142       Hi = Lo = MIRBuilder.buildAShr(
4143           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4144     } else if (Amt.ugt(NVTBits)) {
4145       Lo = MIRBuilder.buildAShr(NVT, InH,
4146                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4147       Hi = MIRBuilder.buildAShr(NVT, InH,
4148                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4149     } else if (Amt == NVTBits) {
4150       Lo = InH;
4151       Hi = MIRBuilder.buildAShr(NVT, InH,
4152                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4153     } else {
4154       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4155 
4156       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4157       auto OrRHS = MIRBuilder.buildShl(
4158           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4159 
4160       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4161       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4162     }
4163   }
4164 
4165   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4166   MI.eraseFromParent();
4167 
4168   return Legalized;
4169 }
4170 
4171 // TODO: Optimize if constant shift amount.
4172 LegalizerHelper::LegalizeResult
4173 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4174                                    LLT RequestedTy) {
4175   if (TypeIdx == 1) {
4176     Observer.changingInstr(MI);
4177     narrowScalarSrc(MI, RequestedTy, 2);
4178     Observer.changedInstr(MI);
4179     return Legalized;
4180   }
4181 
4182   Register DstReg = MI.getOperand(0).getReg();
4183   LLT DstTy = MRI.getType(DstReg);
4184   if (DstTy.isVector())
4185     return UnableToLegalize;
4186 
4187   Register Amt = MI.getOperand(2).getReg();
4188   LLT ShiftAmtTy = MRI.getType(Amt);
4189   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4190   if (DstEltSize % 2 != 0)
4191     return UnableToLegalize;
4192 
4193   // Ignore the input type. We can only go to exactly half the size of the
4194   // input. If that isn't small enough, the resulting pieces will be further
4195   // legalized.
4196   const unsigned NewBitSize = DstEltSize / 2;
4197   const LLT HalfTy = LLT::scalar(NewBitSize);
4198   const LLT CondTy = LLT::scalar(1);
4199 
4200   if (const MachineInstr *KShiftAmt =
4201           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4202     return narrowScalarShiftByConstant(
4203         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4204   }
4205 
4206   // TODO: Expand with known bits.
4207 
4208   // Handle the fully general expansion by an unknown amount.
4209   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4210 
4211   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4212   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4213   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4214 
4215   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4216   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4217 
4218   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4219   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4220   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4221 
4222   Register ResultRegs[2];
4223   switch (MI.getOpcode()) {
4224   case TargetOpcode::G_SHL: {
4225     // Short: ShAmt < NewBitSize
4226     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4227 
4228     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4229     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4230     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4231 
4232     // Long: ShAmt >= NewBitSize
4233     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4234     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4235 
4236     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4237     auto Hi = MIRBuilder.buildSelect(
4238         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4239 
4240     ResultRegs[0] = Lo.getReg(0);
4241     ResultRegs[1] = Hi.getReg(0);
4242     break;
4243   }
4244   case TargetOpcode::G_LSHR:
4245   case TargetOpcode::G_ASHR: {
4246     // Short: ShAmt < NewBitSize
4247     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4248 
4249     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4250     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4251     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4252 
4253     // Long: ShAmt >= NewBitSize
4254     MachineInstrBuilder HiL;
4255     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4256       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4257     } else {
4258       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4259       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4260     }
4261     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4262                                      {InH, AmtExcess});     // Lo from Hi part.
4263 
4264     auto Lo = MIRBuilder.buildSelect(
4265         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4266 
4267     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4268 
4269     ResultRegs[0] = Lo.getReg(0);
4270     ResultRegs[1] = Hi.getReg(0);
4271     break;
4272   }
4273   default:
4274     llvm_unreachable("not a shift");
4275   }
4276 
4277   MIRBuilder.buildMerge(DstReg, ResultRegs);
4278   MI.eraseFromParent();
4279   return Legalized;
4280 }
4281 
4282 LegalizerHelper::LegalizeResult
4283 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4284                                        LLT MoreTy) {
4285   assert(TypeIdx == 0 && "Expecting only Idx 0");
4286 
4287   Observer.changingInstr(MI);
4288   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4289     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4290     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4291     moreElementsVectorSrc(MI, MoreTy, I);
4292   }
4293 
4294   MachineBasicBlock &MBB = *MI.getParent();
4295   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4296   moreElementsVectorDst(MI, MoreTy, 0);
4297   Observer.changedInstr(MI);
4298   return Legalized;
4299 }
4300 
4301 LegalizerHelper::LegalizeResult
4302 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4303                                     LLT MoreTy) {
4304   unsigned Opc = MI.getOpcode();
4305   switch (Opc) {
4306   case TargetOpcode::G_IMPLICIT_DEF:
4307   case TargetOpcode::G_LOAD: {
4308     if (TypeIdx != 0)
4309       return UnableToLegalize;
4310     Observer.changingInstr(MI);
4311     moreElementsVectorDst(MI, MoreTy, 0);
4312     Observer.changedInstr(MI);
4313     return Legalized;
4314   }
4315   case TargetOpcode::G_STORE:
4316     if (TypeIdx != 0)
4317       return UnableToLegalize;
4318     Observer.changingInstr(MI);
4319     moreElementsVectorSrc(MI, MoreTy, 0);
4320     Observer.changedInstr(MI);
4321     return Legalized;
4322   case TargetOpcode::G_AND:
4323   case TargetOpcode::G_OR:
4324   case TargetOpcode::G_XOR:
4325   case TargetOpcode::G_SMIN:
4326   case TargetOpcode::G_SMAX:
4327   case TargetOpcode::G_UMIN:
4328   case TargetOpcode::G_UMAX:
4329   case TargetOpcode::G_FMINNUM:
4330   case TargetOpcode::G_FMAXNUM:
4331   case TargetOpcode::G_FMINNUM_IEEE:
4332   case TargetOpcode::G_FMAXNUM_IEEE:
4333   case TargetOpcode::G_FMINIMUM:
4334   case TargetOpcode::G_FMAXIMUM: {
4335     Observer.changingInstr(MI);
4336     moreElementsVectorSrc(MI, MoreTy, 1);
4337     moreElementsVectorSrc(MI, MoreTy, 2);
4338     moreElementsVectorDst(MI, MoreTy, 0);
4339     Observer.changedInstr(MI);
4340     return Legalized;
4341   }
4342   case TargetOpcode::G_EXTRACT:
4343     if (TypeIdx != 1)
4344       return UnableToLegalize;
4345     Observer.changingInstr(MI);
4346     moreElementsVectorSrc(MI, MoreTy, 1);
4347     Observer.changedInstr(MI);
4348     return Legalized;
4349   case TargetOpcode::G_INSERT:
4350   case TargetOpcode::G_FREEZE:
4351     if (TypeIdx != 0)
4352       return UnableToLegalize;
4353     Observer.changingInstr(MI);
4354     moreElementsVectorSrc(MI, MoreTy, 1);
4355     moreElementsVectorDst(MI, MoreTy, 0);
4356     Observer.changedInstr(MI);
4357     return Legalized;
4358   case TargetOpcode::G_SELECT:
4359     if (TypeIdx != 0)
4360       return UnableToLegalize;
4361     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4362       return UnableToLegalize;
4363 
4364     Observer.changingInstr(MI);
4365     moreElementsVectorSrc(MI, MoreTy, 2);
4366     moreElementsVectorSrc(MI, MoreTy, 3);
4367     moreElementsVectorDst(MI, MoreTy, 0);
4368     Observer.changedInstr(MI);
4369     return Legalized;
4370   case TargetOpcode::G_UNMERGE_VALUES: {
4371     if (TypeIdx != 1)
4372       return UnableToLegalize;
4373 
4374     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4375     int NumDst = MI.getNumOperands() - 1;
4376     moreElementsVectorSrc(MI, MoreTy, NumDst);
4377 
4378     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4379     for (int I = 0; I != NumDst; ++I)
4380       MIB.addDef(MI.getOperand(I).getReg());
4381 
4382     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4383     for (int I = NumDst; I != NewNumDst; ++I)
4384       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4385 
4386     MIB.addUse(MI.getOperand(NumDst).getReg());
4387     MI.eraseFromParent();
4388     return Legalized;
4389   }
4390   case TargetOpcode::G_PHI:
4391     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4392   default:
4393     return UnableToLegalize;
4394   }
4395 }
4396 
4397 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4398                                         ArrayRef<Register> Src1Regs,
4399                                         ArrayRef<Register> Src2Regs,
4400                                         LLT NarrowTy) {
4401   MachineIRBuilder &B = MIRBuilder;
4402   unsigned SrcParts = Src1Regs.size();
4403   unsigned DstParts = DstRegs.size();
4404 
4405   unsigned DstIdx = 0; // Low bits of the result.
4406   Register FactorSum =
4407       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4408   DstRegs[DstIdx] = FactorSum;
4409 
4410   unsigned CarrySumPrevDstIdx;
4411   SmallVector<Register, 4> Factors;
4412 
4413   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4414     // Collect low parts of muls for DstIdx.
4415     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4416          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4417       MachineInstrBuilder Mul =
4418           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4419       Factors.push_back(Mul.getReg(0));
4420     }
4421     // Collect high parts of muls from previous DstIdx.
4422     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4423          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4424       MachineInstrBuilder Umulh =
4425           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4426       Factors.push_back(Umulh.getReg(0));
4427     }
4428     // Add CarrySum from additions calculated for previous DstIdx.
4429     if (DstIdx != 1) {
4430       Factors.push_back(CarrySumPrevDstIdx);
4431     }
4432 
4433     Register CarrySum;
4434     // Add all factors and accumulate all carries into CarrySum.
4435     if (DstIdx != DstParts - 1) {
4436       MachineInstrBuilder Uaddo =
4437           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4438       FactorSum = Uaddo.getReg(0);
4439       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4440       for (unsigned i = 2; i < Factors.size(); ++i) {
4441         MachineInstrBuilder Uaddo =
4442             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4443         FactorSum = Uaddo.getReg(0);
4444         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4445         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4446       }
4447     } else {
4448       // Since value for the next index is not calculated, neither is CarrySum.
4449       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4450       for (unsigned i = 2; i < Factors.size(); ++i)
4451         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4452     }
4453 
4454     CarrySumPrevDstIdx = CarrySum;
4455     DstRegs[DstIdx] = FactorSum;
4456     Factors.clear();
4457   }
4458 }
4459 
4460 LegalizerHelper::LegalizeResult
4461 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4462                                     LLT NarrowTy) {
4463   if (TypeIdx != 0)
4464     return UnableToLegalize;
4465 
4466   Register DstReg = MI.getOperand(0).getReg();
4467   LLT DstType = MRI.getType(DstReg);
4468   // FIXME: add support for vector types
4469   if (DstType.isVector())
4470     return UnableToLegalize;
4471 
4472   uint64_t SizeOp0 = DstType.getSizeInBits();
4473   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4474 
4475   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4476   // NarrowSize.
4477   if (SizeOp0 % NarrowSize != 0)
4478     return UnableToLegalize;
4479 
4480   // Expand in terms of carry-setting/consuming G_<Op>E instructions.
4481   int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
4482 
4483   unsigned Opcode = MI.getOpcode();
4484   unsigned OpO, OpE, OpF;
4485   switch (Opcode) {
4486   case TargetOpcode::G_SADDO:
4487   case TargetOpcode::G_SADDE:
4488   case TargetOpcode::G_UADDO:
4489   case TargetOpcode::G_UADDE:
4490   case TargetOpcode::G_ADD:
4491     OpO = TargetOpcode::G_UADDO;
4492     OpE = TargetOpcode::G_UADDE;
4493     OpF = TargetOpcode::G_UADDE;
4494     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4495       OpF = TargetOpcode::G_SADDE;
4496     break;
4497   case TargetOpcode::G_SSUBO:
4498   case TargetOpcode::G_SSUBE:
4499   case TargetOpcode::G_USUBO:
4500   case TargetOpcode::G_USUBE:
4501   case TargetOpcode::G_SUB:
4502     OpO = TargetOpcode::G_USUBO;
4503     OpE = TargetOpcode::G_USUBE;
4504     OpF = TargetOpcode::G_USUBE;
4505     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4506       OpF = TargetOpcode::G_SSUBE;
4507     break;
4508   default:
4509     llvm_unreachable("Unexpected add/sub opcode!");
4510   }
4511 
4512   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4513   unsigned NumDefs = MI.getNumExplicitDefs();
4514   Register Src1 = MI.getOperand(NumDefs).getReg();
4515   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4516   Register CarryDst;
4517   if (NumDefs == 2)
4518     CarryDst = MI.getOperand(1).getReg();
4519   Register CarryIn;
4520   if (MI.getNumOperands() == NumDefs + 3)
4521     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4522 
4523   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
4524   extractParts(Src1, NarrowTy, NumParts, Src1Regs);
4525   extractParts(Src2, NarrowTy, NumParts, Src2Regs);
4526 
4527   for (int i = 0; i < NumParts; ++i) {
4528     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4529     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4530     // Forward the final carry-out to the destination register
4531     if (i == NumParts - 1 && CarryDst)
4532       CarryOut = CarryDst;
4533 
4534     if (!CarryIn) {
4535       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4536                             {Src1Regs[i], Src2Regs[i]});
4537     } else if (i == NumParts - 1) {
4538       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4539                             {Src1Regs[i], Src2Regs[i], CarryIn});
4540     } else {
4541       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4542                             {Src1Regs[i], Src2Regs[i], CarryIn});
4543     }
4544 
4545     DstRegs.push_back(DstReg);
4546     CarryIn = CarryOut;
4547   }
4548   MIRBuilder.buildMerge(DstReg, DstRegs);
4549   MI.eraseFromParent();
4550   return Legalized;
4551 }
4552 
4553 LegalizerHelper::LegalizeResult
4554 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4555   Register DstReg = MI.getOperand(0).getReg();
4556   Register Src1 = MI.getOperand(1).getReg();
4557   Register Src2 = MI.getOperand(2).getReg();
4558 
4559   LLT Ty = MRI.getType(DstReg);
4560   if (Ty.isVector())
4561     return UnableToLegalize;
4562 
4563   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4564   unsigned DstSize = Ty.getSizeInBits();
4565   unsigned NarrowSize = NarrowTy.getSizeInBits();
4566   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4567     return UnableToLegalize;
4568 
4569   unsigned NumDstParts = DstSize / NarrowSize;
4570   unsigned NumSrcParts = SrcSize / NarrowSize;
4571   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4572   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4573 
4574   SmallVector<Register, 2> Src1Parts, Src2Parts;
4575   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4576   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4577   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4578   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4579 
4580   // Take only high half of registers if this is high mul.
4581   ArrayRef<Register> DstRegs(
4582       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4583   MIRBuilder.buildMerge(DstReg, DstRegs);
4584   MI.eraseFromParent();
4585   return Legalized;
4586 }
4587 
4588 LegalizerHelper::LegalizeResult
4589 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4590                                      LLT NarrowTy) {
4591   if (TypeIdx != 1)
4592     return UnableToLegalize;
4593 
4594   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4595 
4596   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4597   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4598   // NarrowSize.
4599   if (SizeOp1 % NarrowSize != 0)
4600     return UnableToLegalize;
4601   int NumParts = SizeOp1 / NarrowSize;
4602 
4603   SmallVector<Register, 2> SrcRegs, DstRegs;
4604   SmallVector<uint64_t, 2> Indexes;
4605   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4606 
4607   Register OpReg = MI.getOperand(0).getReg();
4608   uint64_t OpStart = MI.getOperand(2).getImm();
4609   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4610   for (int i = 0; i < NumParts; ++i) {
4611     unsigned SrcStart = i * NarrowSize;
4612 
4613     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4614       // No part of the extract uses this subregister, ignore it.
4615       continue;
4616     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4617       // The entire subregister is extracted, forward the value.
4618       DstRegs.push_back(SrcRegs[i]);
4619       continue;
4620     }
4621 
4622     // OpSegStart is where this destination segment would start in OpReg if it
4623     // extended infinitely in both directions.
4624     int64_t ExtractOffset;
4625     uint64_t SegSize;
4626     if (OpStart < SrcStart) {
4627       ExtractOffset = 0;
4628       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4629     } else {
4630       ExtractOffset = OpStart - SrcStart;
4631       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4632     }
4633 
4634     Register SegReg = SrcRegs[i];
4635     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4636       // A genuine extract is needed.
4637       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4638       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4639     }
4640 
4641     DstRegs.push_back(SegReg);
4642   }
4643 
4644   Register DstReg = MI.getOperand(0).getReg();
4645   if (MRI.getType(DstReg).isVector())
4646     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4647   else if (DstRegs.size() > 1)
4648     MIRBuilder.buildMerge(DstReg, DstRegs);
4649   else
4650     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4651   MI.eraseFromParent();
4652   return Legalized;
4653 }
4654 
4655 LegalizerHelper::LegalizeResult
4656 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4657                                     LLT NarrowTy) {
4658   // FIXME: Don't know how to handle secondary types yet.
4659   if (TypeIdx != 0)
4660     return UnableToLegalize;
4661 
4662   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4663   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4664 
4665   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4666   // NarrowSize.
4667   if (SizeOp0 % NarrowSize != 0)
4668     return UnableToLegalize;
4669 
4670   int NumParts = SizeOp0 / NarrowSize;
4671 
4672   SmallVector<Register, 2> SrcRegs, DstRegs;
4673   SmallVector<uint64_t, 2> Indexes;
4674   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4675 
4676   Register OpReg = MI.getOperand(2).getReg();
4677   uint64_t OpStart = MI.getOperand(3).getImm();
4678   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4679   for (int i = 0; i < NumParts; ++i) {
4680     unsigned DstStart = i * NarrowSize;
4681 
4682     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4683       // No part of the insert affects this subregister, forward the original.
4684       DstRegs.push_back(SrcRegs[i]);
4685       continue;
4686     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4687       // The entire subregister is defined by this insert, forward the new
4688       // value.
4689       DstRegs.push_back(OpReg);
4690       continue;
4691     }
4692 
4693     // OpSegStart is where this destination segment would start in OpReg if it
4694     // extended infinitely in both directions.
4695     int64_t ExtractOffset, InsertOffset;
4696     uint64_t SegSize;
4697     if (OpStart < DstStart) {
4698       InsertOffset = 0;
4699       ExtractOffset = DstStart - OpStart;
4700       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4701     } else {
4702       InsertOffset = OpStart - DstStart;
4703       ExtractOffset = 0;
4704       SegSize =
4705         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4706     }
4707 
4708     Register SegReg = OpReg;
4709     if (ExtractOffset != 0 || SegSize != OpSize) {
4710       // A genuine extract is needed.
4711       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4712       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4713     }
4714 
4715     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4716     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4717     DstRegs.push_back(DstReg);
4718   }
4719 
4720   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4721   Register DstReg = MI.getOperand(0).getReg();
4722   if(MRI.getType(DstReg).isVector())
4723     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4724   else
4725     MIRBuilder.buildMerge(DstReg, DstRegs);
4726   MI.eraseFromParent();
4727   return Legalized;
4728 }
4729 
4730 LegalizerHelper::LegalizeResult
4731 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4732                                    LLT NarrowTy) {
4733   Register DstReg = MI.getOperand(0).getReg();
4734   LLT DstTy = MRI.getType(DstReg);
4735 
4736   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4737 
4738   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4739   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4740   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4741   LLT LeftoverTy;
4742   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4743                     Src0Regs, Src0LeftoverRegs))
4744     return UnableToLegalize;
4745 
4746   LLT Unused;
4747   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4748                     Src1Regs, Src1LeftoverRegs))
4749     llvm_unreachable("inconsistent extractParts result");
4750 
4751   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4752     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4753                                         {Src0Regs[I], Src1Regs[I]});
4754     DstRegs.push_back(Inst.getReg(0));
4755   }
4756 
4757   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4758     auto Inst = MIRBuilder.buildInstr(
4759       MI.getOpcode(),
4760       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4761     DstLeftoverRegs.push_back(Inst.getReg(0));
4762   }
4763 
4764   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4765               LeftoverTy, DstLeftoverRegs);
4766 
4767   MI.eraseFromParent();
4768   return Legalized;
4769 }
4770 
4771 LegalizerHelper::LegalizeResult
4772 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4773                                  LLT NarrowTy) {
4774   if (TypeIdx != 0)
4775     return UnableToLegalize;
4776 
4777   Register DstReg = MI.getOperand(0).getReg();
4778   Register SrcReg = MI.getOperand(1).getReg();
4779 
4780   LLT DstTy = MRI.getType(DstReg);
4781   if (DstTy.isVector())
4782     return UnableToLegalize;
4783 
4784   SmallVector<Register, 8> Parts;
4785   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4786   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4787   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4788 
4789   MI.eraseFromParent();
4790   return Legalized;
4791 }
4792 
4793 LegalizerHelper::LegalizeResult
4794 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4795                                     LLT NarrowTy) {
4796   if (TypeIdx != 0)
4797     return UnableToLegalize;
4798 
4799   Register CondReg = MI.getOperand(1).getReg();
4800   LLT CondTy = MRI.getType(CondReg);
4801   if (CondTy.isVector()) // TODO: Handle vselect
4802     return UnableToLegalize;
4803 
4804   Register DstReg = MI.getOperand(0).getReg();
4805   LLT DstTy = MRI.getType(DstReg);
4806 
4807   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4808   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4809   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4810   LLT LeftoverTy;
4811   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4812                     Src1Regs, Src1LeftoverRegs))
4813     return UnableToLegalize;
4814 
4815   LLT Unused;
4816   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4817                     Src2Regs, Src2LeftoverRegs))
4818     llvm_unreachable("inconsistent extractParts result");
4819 
4820   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4821     auto Select = MIRBuilder.buildSelect(NarrowTy,
4822                                          CondReg, Src1Regs[I], Src2Regs[I]);
4823     DstRegs.push_back(Select.getReg(0));
4824   }
4825 
4826   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4827     auto Select = MIRBuilder.buildSelect(
4828       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4829     DstLeftoverRegs.push_back(Select.getReg(0));
4830   }
4831 
4832   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4833               LeftoverTy, DstLeftoverRegs);
4834 
4835   MI.eraseFromParent();
4836   return Legalized;
4837 }
4838 
4839 LegalizerHelper::LegalizeResult
4840 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4841                                   LLT NarrowTy) {
4842   if (TypeIdx != 1)
4843     return UnableToLegalize;
4844 
4845   Register DstReg = MI.getOperand(0).getReg();
4846   Register SrcReg = MI.getOperand(1).getReg();
4847   LLT DstTy = MRI.getType(DstReg);
4848   LLT SrcTy = MRI.getType(SrcReg);
4849   unsigned NarrowSize = NarrowTy.getSizeInBits();
4850 
4851   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4852     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4853 
4854     MachineIRBuilder &B = MIRBuilder;
4855     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4856     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4857     auto C_0 = B.buildConstant(NarrowTy, 0);
4858     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4859                                 UnmergeSrc.getReg(1), C_0);
4860     auto LoCTLZ = IsUndef ?
4861       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4862       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4863     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4864     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4865     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4866     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4867 
4868     MI.eraseFromParent();
4869     return Legalized;
4870   }
4871 
4872   return UnableToLegalize;
4873 }
4874 
4875 LegalizerHelper::LegalizeResult
4876 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4877                                   LLT NarrowTy) {
4878   if (TypeIdx != 1)
4879     return UnableToLegalize;
4880 
4881   Register DstReg = MI.getOperand(0).getReg();
4882   Register SrcReg = MI.getOperand(1).getReg();
4883   LLT DstTy = MRI.getType(DstReg);
4884   LLT SrcTy = MRI.getType(SrcReg);
4885   unsigned NarrowSize = NarrowTy.getSizeInBits();
4886 
4887   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4888     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4889 
4890     MachineIRBuilder &B = MIRBuilder;
4891     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4892     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4893     auto C_0 = B.buildConstant(NarrowTy, 0);
4894     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4895                                 UnmergeSrc.getReg(0), C_0);
4896     auto HiCTTZ = IsUndef ?
4897       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4898       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4899     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4900     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4901     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4902     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4903 
4904     MI.eraseFromParent();
4905     return Legalized;
4906   }
4907 
4908   return UnableToLegalize;
4909 }
4910 
4911 LegalizerHelper::LegalizeResult
4912 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4913                                    LLT NarrowTy) {
4914   if (TypeIdx != 1)
4915     return UnableToLegalize;
4916 
4917   Register DstReg = MI.getOperand(0).getReg();
4918   LLT DstTy = MRI.getType(DstReg);
4919   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4920   unsigned NarrowSize = NarrowTy.getSizeInBits();
4921 
4922   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4923     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4924 
4925     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4926     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4927     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4928 
4929     MI.eraseFromParent();
4930     return Legalized;
4931   }
4932 
4933   return UnableToLegalize;
4934 }
4935 
4936 LegalizerHelper::LegalizeResult
4937 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4938   unsigned Opc = MI.getOpcode();
4939   const auto &TII = MIRBuilder.getTII();
4940   auto isSupported = [this](const LegalityQuery &Q) {
4941     auto QAction = LI.getAction(Q).Action;
4942     return QAction == Legal || QAction == Libcall || QAction == Custom;
4943   };
4944   switch (Opc) {
4945   default:
4946     return UnableToLegalize;
4947   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4948     // This trivially expands to CTLZ.
4949     Observer.changingInstr(MI);
4950     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4951     Observer.changedInstr(MI);
4952     return Legalized;
4953   }
4954   case TargetOpcode::G_CTLZ: {
4955     Register DstReg = MI.getOperand(0).getReg();
4956     Register SrcReg = MI.getOperand(1).getReg();
4957     LLT DstTy = MRI.getType(DstReg);
4958     LLT SrcTy = MRI.getType(SrcReg);
4959     unsigned Len = SrcTy.getSizeInBits();
4960 
4961     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4962       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4963       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4964       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4965       auto ICmp = MIRBuilder.buildICmp(
4966           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4967       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4968       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4969       MI.eraseFromParent();
4970       return Legalized;
4971     }
4972     // for now, we do this:
4973     // NewLen = NextPowerOf2(Len);
4974     // x = x | (x >> 1);
4975     // x = x | (x >> 2);
4976     // ...
4977     // x = x | (x >>16);
4978     // x = x | (x >>32); // for 64-bit input
4979     // Upto NewLen/2
4980     // return Len - popcount(x);
4981     //
4982     // Ref: "Hacker's Delight" by Henry Warren
4983     Register Op = SrcReg;
4984     unsigned NewLen = PowerOf2Ceil(Len);
4985     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4986       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4987       auto MIBOp = MIRBuilder.buildOr(
4988           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4989       Op = MIBOp.getReg(0);
4990     }
4991     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4992     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4993                         MIBPop);
4994     MI.eraseFromParent();
4995     return Legalized;
4996   }
4997   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4998     // This trivially expands to CTTZ.
4999     Observer.changingInstr(MI);
5000     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5001     Observer.changedInstr(MI);
5002     return Legalized;
5003   }
5004   case TargetOpcode::G_CTTZ: {
5005     Register DstReg = MI.getOperand(0).getReg();
5006     Register SrcReg = MI.getOperand(1).getReg();
5007     LLT DstTy = MRI.getType(DstReg);
5008     LLT SrcTy = MRI.getType(SrcReg);
5009 
5010     unsigned Len = SrcTy.getSizeInBits();
5011     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5012       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5013       // zero.
5014       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5015       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5016       auto ICmp = MIRBuilder.buildICmp(
5017           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5018       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5019       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5020       MI.eraseFromParent();
5021       return Legalized;
5022     }
5023     // for now, we use: { return popcount(~x & (x - 1)); }
5024     // unless the target has ctlz but not ctpop, in which case we use:
5025     // { return 32 - nlz(~x & (x-1)); }
5026     // Ref: "Hacker's Delight" by Henry Warren
5027     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5028     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5029     auto MIBTmp = MIRBuilder.buildAnd(
5030         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5031     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5032         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5033       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5034       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5035                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5036       MI.eraseFromParent();
5037       return Legalized;
5038     }
5039     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5040     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5041     return Legalized;
5042   }
5043   case TargetOpcode::G_CTPOP: {
5044     Register SrcReg = MI.getOperand(1).getReg();
5045     LLT Ty = MRI.getType(SrcReg);
5046     unsigned Size = Ty.getSizeInBits();
5047     MachineIRBuilder &B = MIRBuilder;
5048 
5049     // Count set bits in blocks of 2 bits. Default approach would be
5050     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5051     // We use following formula instead:
5052     // B2Count = val - { (val >> 1) & 0x55555555 }
5053     // since it gives same result in blocks of 2 with one instruction less.
5054     auto C_1 = B.buildConstant(Ty, 1);
5055     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5056     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5057     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5058     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5059     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5060 
5061     // In order to get count in blocks of 4 add values from adjacent block of 2.
5062     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5063     auto C_2 = B.buildConstant(Ty, 2);
5064     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5065     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5066     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5067     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5068     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5069     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5070 
5071     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5072     // addition since count value sits in range {0,...,8} and 4 bits are enough
5073     // to hold such binary values. After addition high 4 bits still hold count
5074     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5075     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5076     auto C_4 = B.buildConstant(Ty, 4);
5077     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5078     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5079     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5080     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5081     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5082 
5083     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5084     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5085     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5086     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5087     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5088 
5089     // Shift count result from 8 high bits to low bits.
5090     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5091     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5092 
5093     MI.eraseFromParent();
5094     return Legalized;
5095   }
5096   }
5097 }
5098 
5099 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5100 // representation.
5101 LegalizerHelper::LegalizeResult
5102 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5103   Register Dst = MI.getOperand(0).getReg();
5104   Register Src = MI.getOperand(1).getReg();
5105   const LLT S64 = LLT::scalar(64);
5106   const LLT S32 = LLT::scalar(32);
5107   const LLT S1 = LLT::scalar(1);
5108 
5109   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5110 
5111   // unsigned cul2f(ulong u) {
5112   //   uint lz = clz(u);
5113   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5114   //   u = (u << lz) & 0x7fffffffffffffffUL;
5115   //   ulong t = u & 0xffffffffffUL;
5116   //   uint v = (e << 23) | (uint)(u >> 40);
5117   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5118   //   return as_float(v + r);
5119   // }
5120 
5121   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5122   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5123 
5124   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5125 
5126   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5127   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5128 
5129   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5130   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5131 
5132   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5133   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5134 
5135   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5136 
5137   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5138   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5139 
5140   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5141   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5142   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5143 
5144   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5145   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5146   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5147   auto One = MIRBuilder.buildConstant(S32, 1);
5148 
5149   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5150   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5151   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5152   MIRBuilder.buildAdd(Dst, V, R);
5153 
5154   MI.eraseFromParent();
5155   return Legalized;
5156 }
5157 
5158 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5159   Register Dst = MI.getOperand(0).getReg();
5160   Register Src = MI.getOperand(1).getReg();
5161   LLT DstTy = MRI.getType(Dst);
5162   LLT SrcTy = MRI.getType(Src);
5163 
5164   if (SrcTy == LLT::scalar(1)) {
5165     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5166     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5167     MIRBuilder.buildSelect(Dst, Src, True, False);
5168     MI.eraseFromParent();
5169     return Legalized;
5170   }
5171 
5172   if (SrcTy != LLT::scalar(64))
5173     return UnableToLegalize;
5174 
5175   if (DstTy == LLT::scalar(32)) {
5176     // TODO: SelectionDAG has several alternative expansions to port which may
5177     // be more reasonble depending on the available instructions. If a target
5178     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5179     // intermediate type, this is probably worse.
5180     return lowerU64ToF32BitOps(MI);
5181   }
5182 
5183   return UnableToLegalize;
5184 }
5185 
5186 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5187   Register Dst = MI.getOperand(0).getReg();
5188   Register Src = MI.getOperand(1).getReg();
5189   LLT DstTy = MRI.getType(Dst);
5190   LLT SrcTy = MRI.getType(Src);
5191 
5192   const LLT S64 = LLT::scalar(64);
5193   const LLT S32 = LLT::scalar(32);
5194   const LLT S1 = LLT::scalar(1);
5195 
5196   if (SrcTy == S1) {
5197     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5198     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5199     MIRBuilder.buildSelect(Dst, Src, True, False);
5200     MI.eraseFromParent();
5201     return Legalized;
5202   }
5203 
5204   if (SrcTy != S64)
5205     return UnableToLegalize;
5206 
5207   if (DstTy == S32) {
5208     // signed cl2f(long l) {
5209     //   long s = l >> 63;
5210     //   float r = cul2f((l + s) ^ s);
5211     //   return s ? -r : r;
5212     // }
5213     Register L = Src;
5214     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5215     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5216 
5217     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5218     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5219     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5220 
5221     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5222     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5223                                             MIRBuilder.buildConstant(S64, 0));
5224     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5225     MI.eraseFromParent();
5226     return Legalized;
5227   }
5228 
5229   return UnableToLegalize;
5230 }
5231 
5232 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5233   Register Dst = MI.getOperand(0).getReg();
5234   Register Src = MI.getOperand(1).getReg();
5235   LLT DstTy = MRI.getType(Dst);
5236   LLT SrcTy = MRI.getType(Src);
5237   const LLT S64 = LLT::scalar(64);
5238   const LLT S32 = LLT::scalar(32);
5239 
5240   if (SrcTy != S64 && SrcTy != S32)
5241     return UnableToLegalize;
5242   if (DstTy != S32 && DstTy != S64)
5243     return UnableToLegalize;
5244 
5245   // FPTOSI gives same result as FPTOUI for positive signed integers.
5246   // FPTOUI needs to deal with fp values that convert to unsigned integers
5247   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5248 
5249   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5250   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5251                                                 : APFloat::IEEEdouble(),
5252                     APInt::getNullValue(SrcTy.getSizeInBits()));
5253   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5254 
5255   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5256 
5257   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5258   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5259   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5260   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5261   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5262   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5263   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5264 
5265   const LLT S1 = LLT::scalar(1);
5266 
5267   MachineInstrBuilder FCMP =
5268       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5269   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5270 
5271   MI.eraseFromParent();
5272   return Legalized;
5273 }
5274 
5275 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5276   Register Dst = MI.getOperand(0).getReg();
5277   Register Src = MI.getOperand(1).getReg();
5278   LLT DstTy = MRI.getType(Dst);
5279   LLT SrcTy = MRI.getType(Src);
5280   const LLT S64 = LLT::scalar(64);
5281   const LLT S32 = LLT::scalar(32);
5282 
5283   // FIXME: Only f32 to i64 conversions are supported.
5284   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5285     return UnableToLegalize;
5286 
5287   // Expand f32 -> i64 conversion
5288   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5289   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5290 
5291   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5292 
5293   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5294   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5295 
5296   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5297   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5298 
5299   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5300                                            APInt::getSignMask(SrcEltBits));
5301   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5302   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5303   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5304   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5305 
5306   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5307   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5308   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5309 
5310   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5311   R = MIRBuilder.buildZExt(DstTy, R);
5312 
5313   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5314   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5315   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5316   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5317 
5318   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5319   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5320 
5321   const LLT S1 = LLT::scalar(1);
5322   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5323                                     S1, Exponent, ExponentLoBit);
5324 
5325   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5326 
5327   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5328   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5329 
5330   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5331 
5332   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5333                                           S1, Exponent, ZeroSrcTy);
5334 
5335   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5336   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5337 
5338   MI.eraseFromParent();
5339   return Legalized;
5340 }
5341 
5342 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5343 LegalizerHelper::LegalizeResult
5344 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5345   Register Dst = MI.getOperand(0).getReg();
5346   Register Src = MI.getOperand(1).getReg();
5347 
5348   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5349     return UnableToLegalize;
5350 
5351   const unsigned ExpMask = 0x7ff;
5352   const unsigned ExpBiasf64 = 1023;
5353   const unsigned ExpBiasf16 = 15;
5354   const LLT S32 = LLT::scalar(32);
5355   const LLT S1 = LLT::scalar(1);
5356 
5357   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5358   Register U = Unmerge.getReg(0);
5359   Register UH = Unmerge.getReg(1);
5360 
5361   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5362   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5363 
5364   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5365   // add the f16 bias (15) to get the biased exponent for the f16 format.
5366   E = MIRBuilder.buildAdd(
5367     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5368 
5369   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5370   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5371 
5372   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5373                                        MIRBuilder.buildConstant(S32, 0x1ff));
5374   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5375 
5376   auto Zero = MIRBuilder.buildConstant(S32, 0);
5377   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5378   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5379   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5380 
5381   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5382   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5383   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5384   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5385 
5386   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5387   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5388 
5389   // N = M | (E << 12);
5390   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5391   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5392 
5393   // B = clamp(1-E, 0, 13);
5394   auto One = MIRBuilder.buildConstant(S32, 1);
5395   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5396   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5397   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5398 
5399   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5400                                        MIRBuilder.buildConstant(S32, 0x1000));
5401 
5402   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5403   auto D0 = MIRBuilder.buildShl(S32, D, B);
5404 
5405   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5406                                              D0, SigSetHigh);
5407   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5408   D = MIRBuilder.buildOr(S32, D, D1);
5409 
5410   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5411   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5412 
5413   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5414   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5415 
5416   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5417                                        MIRBuilder.buildConstant(S32, 3));
5418   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5419 
5420   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5421                                        MIRBuilder.buildConstant(S32, 5));
5422   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5423 
5424   V1 = MIRBuilder.buildOr(S32, V0, V1);
5425   V = MIRBuilder.buildAdd(S32, V, V1);
5426 
5427   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5428                                        E, MIRBuilder.buildConstant(S32, 30));
5429   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5430                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5431 
5432   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5433                                          E, MIRBuilder.buildConstant(S32, 1039));
5434   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5435 
5436   // Extract the sign bit.
5437   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5438   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5439 
5440   // Insert the sign bit
5441   V = MIRBuilder.buildOr(S32, Sign, V);
5442 
5443   MIRBuilder.buildTrunc(Dst, V);
5444   MI.eraseFromParent();
5445   return Legalized;
5446 }
5447 
5448 LegalizerHelper::LegalizeResult
5449 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5450   Register Dst = MI.getOperand(0).getReg();
5451   Register Src = MI.getOperand(1).getReg();
5452 
5453   LLT DstTy = MRI.getType(Dst);
5454   LLT SrcTy = MRI.getType(Src);
5455   const LLT S64 = LLT::scalar(64);
5456   const LLT S16 = LLT::scalar(16);
5457 
5458   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5459     return lowerFPTRUNC_F64_TO_F16(MI);
5460 
5461   return UnableToLegalize;
5462 }
5463 
5464 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5465 // multiplication tree.
5466 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5467   Register Dst = MI.getOperand(0).getReg();
5468   Register Src0 = MI.getOperand(1).getReg();
5469   Register Src1 = MI.getOperand(2).getReg();
5470   LLT Ty = MRI.getType(Dst);
5471 
5472   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5473   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5474   MI.eraseFromParent();
5475   return Legalized;
5476 }
5477 
5478 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5479   switch (Opc) {
5480   case TargetOpcode::G_SMIN:
5481     return CmpInst::ICMP_SLT;
5482   case TargetOpcode::G_SMAX:
5483     return CmpInst::ICMP_SGT;
5484   case TargetOpcode::G_UMIN:
5485     return CmpInst::ICMP_ULT;
5486   case TargetOpcode::G_UMAX:
5487     return CmpInst::ICMP_UGT;
5488   default:
5489     llvm_unreachable("not in integer min/max");
5490   }
5491 }
5492 
5493 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5494   Register Dst = MI.getOperand(0).getReg();
5495   Register Src0 = MI.getOperand(1).getReg();
5496   Register Src1 = MI.getOperand(2).getReg();
5497 
5498   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5499   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5500 
5501   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5502   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5503 
5504   MI.eraseFromParent();
5505   return Legalized;
5506 }
5507 
5508 LegalizerHelper::LegalizeResult
5509 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5510   Register Dst = MI.getOperand(0).getReg();
5511   Register Src0 = MI.getOperand(1).getReg();
5512   Register Src1 = MI.getOperand(2).getReg();
5513 
5514   const LLT Src0Ty = MRI.getType(Src0);
5515   const LLT Src1Ty = MRI.getType(Src1);
5516 
5517   const int Src0Size = Src0Ty.getScalarSizeInBits();
5518   const int Src1Size = Src1Ty.getScalarSizeInBits();
5519 
5520   auto SignBitMask = MIRBuilder.buildConstant(
5521     Src0Ty, APInt::getSignMask(Src0Size));
5522 
5523   auto NotSignBitMask = MIRBuilder.buildConstant(
5524     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5525 
5526   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
5527   Register And1;
5528   if (Src0Ty == Src1Ty) {
5529     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
5530   } else if (Src0Size > Src1Size) {
5531     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5532     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5533     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5534     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
5535   } else {
5536     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5537     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5538     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5539     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
5540   }
5541 
5542   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5543   // constants are a nan and -0.0, but the final result should preserve
5544   // everything.
5545   unsigned Flags = MI.getFlags();
5546   MIRBuilder.buildOr(Dst, And0, And1, Flags);
5547 
5548   MI.eraseFromParent();
5549   return Legalized;
5550 }
5551 
5552 LegalizerHelper::LegalizeResult
5553 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5554   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5555     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5556 
5557   Register Dst = MI.getOperand(0).getReg();
5558   Register Src0 = MI.getOperand(1).getReg();
5559   Register Src1 = MI.getOperand(2).getReg();
5560   LLT Ty = MRI.getType(Dst);
5561 
5562   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5563     // Insert canonicalizes if it's possible we need to quiet to get correct
5564     // sNaN behavior.
5565 
5566     // Note this must be done here, and not as an optimization combine in the
5567     // absence of a dedicate quiet-snan instruction as we're using an
5568     // omni-purpose G_FCANONICALIZE.
5569     if (!isKnownNeverSNaN(Src0, MRI))
5570       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5571 
5572     if (!isKnownNeverSNaN(Src1, MRI))
5573       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5574   }
5575 
5576   // If there are no nans, it's safe to simply replace this with the non-IEEE
5577   // version.
5578   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5579   MI.eraseFromParent();
5580   return Legalized;
5581 }
5582 
5583 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5584   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5585   Register DstReg = MI.getOperand(0).getReg();
5586   LLT Ty = MRI.getType(DstReg);
5587   unsigned Flags = MI.getFlags();
5588 
5589   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5590                                   Flags);
5591   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5592   MI.eraseFromParent();
5593   return Legalized;
5594 }
5595 
5596 LegalizerHelper::LegalizeResult
5597 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5598   Register DstReg = MI.getOperand(0).getReg();
5599   Register X = MI.getOperand(1).getReg();
5600   const unsigned Flags = MI.getFlags();
5601   const LLT Ty = MRI.getType(DstReg);
5602   const LLT CondTy = Ty.changeElementSize(1);
5603 
5604   // round(x) =>
5605   //  t = trunc(x);
5606   //  d = fabs(x - t);
5607   //  o = copysign(1.0f, x);
5608   //  return t + (d >= 0.5 ? o : 0.0);
5609 
5610   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5611 
5612   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5613   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5614   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5615   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5616   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5617   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5618 
5619   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5620                                   Flags);
5621   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5622 
5623   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5624 
5625   MI.eraseFromParent();
5626   return Legalized;
5627 }
5628 
5629 LegalizerHelper::LegalizeResult
5630 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5631   Register DstReg = MI.getOperand(0).getReg();
5632   Register SrcReg = MI.getOperand(1).getReg();
5633   unsigned Flags = MI.getFlags();
5634   LLT Ty = MRI.getType(DstReg);
5635   const LLT CondTy = Ty.changeElementSize(1);
5636 
5637   // result = trunc(src);
5638   // if (src < 0.0 && src != result)
5639   //   result += -1.0.
5640 
5641   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5642   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5643 
5644   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5645                                   SrcReg, Zero, Flags);
5646   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5647                                       SrcReg, Trunc, Flags);
5648   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5649   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5650 
5651   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5652   MI.eraseFromParent();
5653   return Legalized;
5654 }
5655 
5656 LegalizerHelper::LegalizeResult
5657 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5658   const unsigned NumOps = MI.getNumOperands();
5659   Register DstReg = MI.getOperand(0).getReg();
5660   Register Src0Reg = MI.getOperand(1).getReg();
5661   LLT DstTy = MRI.getType(DstReg);
5662   LLT SrcTy = MRI.getType(Src0Reg);
5663   unsigned PartSize = SrcTy.getSizeInBits();
5664 
5665   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5666   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5667 
5668   for (unsigned I = 2; I != NumOps; ++I) {
5669     const unsigned Offset = (I - 1) * PartSize;
5670 
5671     Register SrcReg = MI.getOperand(I).getReg();
5672     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5673 
5674     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5675       MRI.createGenericVirtualRegister(WideTy);
5676 
5677     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5678     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5679     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5680     ResultReg = NextResult;
5681   }
5682 
5683   if (DstTy.isPointer()) {
5684     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5685           DstTy.getAddressSpace())) {
5686       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5687       return UnableToLegalize;
5688     }
5689 
5690     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5691   }
5692 
5693   MI.eraseFromParent();
5694   return Legalized;
5695 }
5696 
5697 LegalizerHelper::LegalizeResult
5698 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5699   const unsigned NumDst = MI.getNumOperands() - 1;
5700   Register SrcReg = MI.getOperand(NumDst).getReg();
5701   Register Dst0Reg = MI.getOperand(0).getReg();
5702   LLT DstTy = MRI.getType(Dst0Reg);
5703   if (DstTy.isPointer())
5704     return UnableToLegalize; // TODO
5705 
5706   SrcReg = coerceToScalar(SrcReg);
5707   if (!SrcReg)
5708     return UnableToLegalize;
5709 
5710   // Expand scalarizing unmerge as bitcast to integer and shift.
5711   LLT IntTy = MRI.getType(SrcReg);
5712 
5713   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5714 
5715   const unsigned DstSize = DstTy.getSizeInBits();
5716   unsigned Offset = DstSize;
5717   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5718     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5719     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5720     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5721   }
5722 
5723   MI.eraseFromParent();
5724   return Legalized;
5725 }
5726 
5727 /// Lower a vector extract or insert by writing the vector to a stack temporary
5728 /// and reloading the element or vector.
5729 ///
5730 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5731 ///  =>
5732 ///  %stack_temp = G_FRAME_INDEX
5733 ///  G_STORE %vec, %stack_temp
5734 ///  %idx = clamp(%idx, %vec.getNumElements())
5735 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5736 ///  %dst = G_LOAD %element_ptr
5737 LegalizerHelper::LegalizeResult
5738 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5739   Register DstReg = MI.getOperand(0).getReg();
5740   Register SrcVec = MI.getOperand(1).getReg();
5741   Register InsertVal;
5742   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5743     InsertVal = MI.getOperand(2).getReg();
5744 
5745   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5746 
5747   LLT VecTy = MRI.getType(SrcVec);
5748   LLT EltTy = VecTy.getElementType();
5749   if (!EltTy.isByteSized()) { // Not implemented.
5750     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5751     return UnableToLegalize;
5752   }
5753 
5754   unsigned EltBytes = EltTy.getSizeInBytes();
5755   Align VecAlign = getStackTemporaryAlignment(VecTy);
5756   Align EltAlign;
5757 
5758   MachinePointerInfo PtrInfo;
5759   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5760                                         VecAlign, PtrInfo);
5761   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5762 
5763   // Get the pointer to the element, and be sure not to hit undefined behavior
5764   // if the index is out of bounds.
5765   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5766 
5767   int64_t IdxVal;
5768   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5769     int64_t Offset = IdxVal * EltBytes;
5770     PtrInfo = PtrInfo.getWithOffset(Offset);
5771     EltAlign = commonAlignment(VecAlign, Offset);
5772   } else {
5773     // We lose information with a variable offset.
5774     EltAlign = getStackTemporaryAlignment(EltTy);
5775     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5776   }
5777 
5778   if (InsertVal) {
5779     // Write the inserted element
5780     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5781 
5782     // Reload the whole vector.
5783     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5784   } else {
5785     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5786   }
5787 
5788   MI.eraseFromParent();
5789   return Legalized;
5790 }
5791 
5792 LegalizerHelper::LegalizeResult
5793 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5794   Register DstReg = MI.getOperand(0).getReg();
5795   Register Src0Reg = MI.getOperand(1).getReg();
5796   Register Src1Reg = MI.getOperand(2).getReg();
5797   LLT Src0Ty = MRI.getType(Src0Reg);
5798   LLT DstTy = MRI.getType(DstReg);
5799   LLT IdxTy = LLT::scalar(32);
5800 
5801   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5802 
5803   if (DstTy.isScalar()) {
5804     if (Src0Ty.isVector())
5805       return UnableToLegalize;
5806 
5807     // This is just a SELECT.
5808     assert(Mask.size() == 1 && "Expected a single mask element");
5809     Register Val;
5810     if (Mask[0] < 0 || Mask[0] > 1)
5811       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5812     else
5813       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5814     MIRBuilder.buildCopy(DstReg, Val);
5815     MI.eraseFromParent();
5816     return Legalized;
5817   }
5818 
5819   Register Undef;
5820   SmallVector<Register, 32> BuildVec;
5821   LLT EltTy = DstTy.getElementType();
5822 
5823   for (int Idx : Mask) {
5824     if (Idx < 0) {
5825       if (!Undef.isValid())
5826         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5827       BuildVec.push_back(Undef);
5828       continue;
5829     }
5830 
5831     if (Src0Ty.isScalar()) {
5832       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5833     } else {
5834       int NumElts = Src0Ty.getNumElements();
5835       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5836       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5837       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5838       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5839       BuildVec.push_back(Extract.getReg(0));
5840     }
5841   }
5842 
5843   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5844   MI.eraseFromParent();
5845   return Legalized;
5846 }
5847 
5848 LegalizerHelper::LegalizeResult
5849 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5850   const auto &MF = *MI.getMF();
5851   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5852   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5853     return UnableToLegalize;
5854 
5855   Register Dst = MI.getOperand(0).getReg();
5856   Register AllocSize = MI.getOperand(1).getReg();
5857   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5858 
5859   LLT PtrTy = MRI.getType(Dst);
5860   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5861 
5862   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5863   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5864   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5865 
5866   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5867   // have to generate an extra instruction to negate the alloc and then use
5868   // G_PTR_ADD to add the negative offset.
5869   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5870   if (Alignment > Align(1)) {
5871     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5872     AlignMask.negate();
5873     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5874     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5875   }
5876 
5877   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5878   MIRBuilder.buildCopy(SPReg, SPTmp);
5879   MIRBuilder.buildCopy(Dst, SPTmp);
5880 
5881   MI.eraseFromParent();
5882   return Legalized;
5883 }
5884 
5885 LegalizerHelper::LegalizeResult
5886 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5887   Register Dst = MI.getOperand(0).getReg();
5888   Register Src = MI.getOperand(1).getReg();
5889   unsigned Offset = MI.getOperand(2).getImm();
5890 
5891   LLT DstTy = MRI.getType(Dst);
5892   LLT SrcTy = MRI.getType(Src);
5893 
5894   if (DstTy.isScalar() &&
5895       (SrcTy.isScalar() ||
5896        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5897     LLT SrcIntTy = SrcTy;
5898     if (!SrcTy.isScalar()) {
5899       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5900       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5901     }
5902 
5903     if (Offset == 0)
5904       MIRBuilder.buildTrunc(Dst, Src);
5905     else {
5906       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5907       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5908       MIRBuilder.buildTrunc(Dst, Shr);
5909     }
5910 
5911     MI.eraseFromParent();
5912     return Legalized;
5913   }
5914 
5915   return UnableToLegalize;
5916 }
5917 
5918 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5919   Register Dst = MI.getOperand(0).getReg();
5920   Register Src = MI.getOperand(1).getReg();
5921   Register InsertSrc = MI.getOperand(2).getReg();
5922   uint64_t Offset = MI.getOperand(3).getImm();
5923 
5924   LLT DstTy = MRI.getType(Src);
5925   LLT InsertTy = MRI.getType(InsertSrc);
5926 
5927   if (InsertTy.isVector() ||
5928       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5929     return UnableToLegalize;
5930 
5931   const DataLayout &DL = MIRBuilder.getDataLayout();
5932   if ((DstTy.isPointer() &&
5933        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5934       (InsertTy.isPointer() &&
5935        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5936     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5937     return UnableToLegalize;
5938   }
5939 
5940   LLT IntDstTy = DstTy;
5941 
5942   if (!DstTy.isScalar()) {
5943     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5944     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5945   }
5946 
5947   if (!InsertTy.isScalar()) {
5948     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5949     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5950   }
5951 
5952   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5953   if (Offset != 0) {
5954     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5955     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5956   }
5957 
5958   APInt MaskVal = APInt::getBitsSetWithWrap(
5959       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5960 
5961   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5962   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5963   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5964 
5965   MIRBuilder.buildCast(Dst, Or);
5966   MI.eraseFromParent();
5967   return Legalized;
5968 }
5969 
5970 LegalizerHelper::LegalizeResult
5971 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5972   Register Dst0 = MI.getOperand(0).getReg();
5973   Register Dst1 = MI.getOperand(1).getReg();
5974   Register LHS = MI.getOperand(2).getReg();
5975   Register RHS = MI.getOperand(3).getReg();
5976   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5977 
5978   LLT Ty = MRI.getType(Dst0);
5979   LLT BoolTy = MRI.getType(Dst1);
5980 
5981   if (IsAdd)
5982     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5983   else
5984     MIRBuilder.buildSub(Dst0, LHS, RHS);
5985 
5986   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5987 
5988   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5989 
5990   // For an addition, the result should be less than one of the operands (LHS)
5991   // if and only if the other operand (RHS) is negative, otherwise there will
5992   // be overflow.
5993   // For a subtraction, the result should be less than one of the operands
5994   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5995   // otherwise there will be overflow.
5996   auto ResultLowerThanLHS =
5997       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5998   auto ConditionRHS = MIRBuilder.buildICmp(
5999       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6000 
6001   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6002   MI.eraseFromParent();
6003   return Legalized;
6004 }
6005 
6006 LegalizerHelper::LegalizeResult
6007 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6008   Register Res = MI.getOperand(0).getReg();
6009   Register LHS = MI.getOperand(1).getReg();
6010   Register RHS = MI.getOperand(2).getReg();
6011   LLT Ty = MRI.getType(Res);
6012   bool IsSigned;
6013   bool IsAdd;
6014   unsigned BaseOp;
6015   switch (MI.getOpcode()) {
6016   default:
6017     llvm_unreachable("unexpected addsat/subsat opcode");
6018   case TargetOpcode::G_UADDSAT:
6019     IsSigned = false;
6020     IsAdd = true;
6021     BaseOp = TargetOpcode::G_ADD;
6022     break;
6023   case TargetOpcode::G_SADDSAT:
6024     IsSigned = true;
6025     IsAdd = true;
6026     BaseOp = TargetOpcode::G_ADD;
6027     break;
6028   case TargetOpcode::G_USUBSAT:
6029     IsSigned = false;
6030     IsAdd = false;
6031     BaseOp = TargetOpcode::G_SUB;
6032     break;
6033   case TargetOpcode::G_SSUBSAT:
6034     IsSigned = true;
6035     IsAdd = false;
6036     BaseOp = TargetOpcode::G_SUB;
6037     break;
6038   }
6039 
6040   if (IsSigned) {
6041     // sadd.sat(a, b) ->
6042     //   hi = 0x7fffffff - smax(a, 0)
6043     //   lo = 0x80000000 - smin(a, 0)
6044     //   a + smin(smax(lo, b), hi)
6045     // ssub.sat(a, b) ->
6046     //   lo = smax(a, -1) - 0x7fffffff
6047     //   hi = smin(a, -1) - 0x80000000
6048     //   a - smin(smax(lo, b), hi)
6049     // TODO: AMDGPU can use a "median of 3" instruction here:
6050     //   a +/- med3(lo, b, hi)
6051     uint64_t NumBits = Ty.getScalarSizeInBits();
6052     auto MaxVal =
6053         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6054     auto MinVal =
6055         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6056     MachineInstrBuilder Hi, Lo;
6057     if (IsAdd) {
6058       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6059       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6060       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6061     } else {
6062       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6063       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6064                                MaxVal);
6065       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6066                                MinVal);
6067     }
6068     auto RHSClamped =
6069         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6070     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6071   } else {
6072     // uadd.sat(a, b) -> a + umin(~a, b)
6073     // usub.sat(a, b) -> a - umin(a, b)
6074     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6075     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6076     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6077   }
6078 
6079   MI.eraseFromParent();
6080   return Legalized;
6081 }
6082 
6083 LegalizerHelper::LegalizeResult
6084 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6085   Register Res = MI.getOperand(0).getReg();
6086   Register LHS = MI.getOperand(1).getReg();
6087   Register RHS = MI.getOperand(2).getReg();
6088   LLT Ty = MRI.getType(Res);
6089   LLT BoolTy = Ty.changeElementSize(1);
6090   bool IsSigned;
6091   bool IsAdd;
6092   unsigned OverflowOp;
6093   switch (MI.getOpcode()) {
6094   default:
6095     llvm_unreachable("unexpected addsat/subsat opcode");
6096   case TargetOpcode::G_UADDSAT:
6097     IsSigned = false;
6098     IsAdd = true;
6099     OverflowOp = TargetOpcode::G_UADDO;
6100     break;
6101   case TargetOpcode::G_SADDSAT:
6102     IsSigned = true;
6103     IsAdd = true;
6104     OverflowOp = TargetOpcode::G_SADDO;
6105     break;
6106   case TargetOpcode::G_USUBSAT:
6107     IsSigned = false;
6108     IsAdd = false;
6109     OverflowOp = TargetOpcode::G_USUBO;
6110     break;
6111   case TargetOpcode::G_SSUBSAT:
6112     IsSigned = true;
6113     IsAdd = false;
6114     OverflowOp = TargetOpcode::G_SSUBO;
6115     break;
6116   }
6117 
6118   auto OverflowRes =
6119       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6120   Register Tmp = OverflowRes.getReg(0);
6121   Register Ov = OverflowRes.getReg(1);
6122   MachineInstrBuilder Clamp;
6123   if (IsSigned) {
6124     // sadd.sat(a, b) ->
6125     //   {tmp, ov} = saddo(a, b)
6126     //   ov ? (tmp >>s 31) + 0x80000000 : r
6127     // ssub.sat(a, b) ->
6128     //   {tmp, ov} = ssubo(a, b)
6129     //   ov ? (tmp >>s 31) + 0x80000000 : r
6130     uint64_t NumBits = Ty.getScalarSizeInBits();
6131     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6132     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6133     auto MinVal =
6134         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6135     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6136   } else {
6137     // uadd.sat(a, b) ->
6138     //   {tmp, ov} = uaddo(a, b)
6139     //   ov ? 0xffffffff : tmp
6140     // usub.sat(a, b) ->
6141     //   {tmp, ov} = usubo(a, b)
6142     //   ov ? 0 : tmp
6143     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6144   }
6145   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6146 
6147   MI.eraseFromParent();
6148   return Legalized;
6149 }
6150 
6151 LegalizerHelper::LegalizeResult
6152 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6153   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6154           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6155          "Expected shlsat opcode!");
6156   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6157   Register Res = MI.getOperand(0).getReg();
6158   Register LHS = MI.getOperand(1).getReg();
6159   Register RHS = MI.getOperand(2).getReg();
6160   LLT Ty = MRI.getType(Res);
6161   LLT BoolTy = Ty.changeElementSize(1);
6162 
6163   unsigned BW = Ty.getScalarSizeInBits();
6164   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6165   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6166                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6167 
6168   MachineInstrBuilder SatVal;
6169   if (IsSigned) {
6170     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6171     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6172     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6173                                     MIRBuilder.buildConstant(Ty, 0));
6174     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6175   } else {
6176     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6177   }
6178   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6179   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6180 
6181   MI.eraseFromParent();
6182   return Legalized;
6183 }
6184 
6185 LegalizerHelper::LegalizeResult
6186 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6187   Register Dst = MI.getOperand(0).getReg();
6188   Register Src = MI.getOperand(1).getReg();
6189   const LLT Ty = MRI.getType(Src);
6190   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6191   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6192 
6193   // Swap most and least significant byte, set remaining bytes in Res to zero.
6194   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6195   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6196   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6197   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6198 
6199   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6200   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6201     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6202     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6203     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6204     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6205     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6206     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6207     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6208     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6209     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6210     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6211     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6212     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6213   }
6214   Res.getInstr()->getOperand(0).setReg(Dst);
6215 
6216   MI.eraseFromParent();
6217   return Legalized;
6218 }
6219 
6220 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6221 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6222                                  MachineInstrBuilder Src, APInt Mask) {
6223   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6224   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6225   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6226   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6227   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6228   return B.buildOr(Dst, LHS, RHS);
6229 }
6230 
6231 LegalizerHelper::LegalizeResult
6232 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6233   Register Dst = MI.getOperand(0).getReg();
6234   Register Src = MI.getOperand(1).getReg();
6235   const LLT Ty = MRI.getType(Src);
6236   unsigned Size = Ty.getSizeInBits();
6237 
6238   MachineInstrBuilder BSWAP =
6239       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6240 
6241   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6242   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6243   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6244   MachineInstrBuilder Swap4 =
6245       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6246 
6247   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6248   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6249   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6250   MachineInstrBuilder Swap2 =
6251       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6252 
6253   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6254   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6255   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6256   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6257 
6258   MI.eraseFromParent();
6259   return Legalized;
6260 }
6261 
6262 LegalizerHelper::LegalizeResult
6263 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6264   MachineFunction &MF = MIRBuilder.getMF();
6265 
6266   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6267   int NameOpIdx = IsRead ? 1 : 0;
6268   int ValRegIndex = IsRead ? 0 : 1;
6269 
6270   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6271   const LLT Ty = MRI.getType(ValReg);
6272   const MDString *RegStr = cast<MDString>(
6273     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6274 
6275   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6276   if (!PhysReg.isValid())
6277     return UnableToLegalize;
6278 
6279   if (IsRead)
6280     MIRBuilder.buildCopy(ValReg, PhysReg);
6281   else
6282     MIRBuilder.buildCopy(PhysReg, ValReg);
6283 
6284   MI.eraseFromParent();
6285   return Legalized;
6286 }
6287 
6288 LegalizerHelper::LegalizeResult
6289 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6290   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6291   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6292   Register Result = MI.getOperand(0).getReg();
6293   LLT OrigTy = MRI.getType(Result);
6294   auto SizeInBits = OrigTy.getScalarSizeInBits();
6295   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6296 
6297   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6298   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6299   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6300   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6301 
6302   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6303   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6304   MIRBuilder.buildTrunc(Result, Shifted);
6305 
6306   MI.eraseFromParent();
6307   return Legalized;
6308 }
6309 
6310 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6311   // Implement vector G_SELECT in terms of XOR, AND, OR.
6312   Register DstReg = MI.getOperand(0).getReg();
6313   Register MaskReg = MI.getOperand(1).getReg();
6314   Register Op1Reg = MI.getOperand(2).getReg();
6315   Register Op2Reg = MI.getOperand(3).getReg();
6316   LLT DstTy = MRI.getType(DstReg);
6317   LLT MaskTy = MRI.getType(MaskReg);
6318   LLT Op1Ty = MRI.getType(Op1Reg);
6319   if (!DstTy.isVector())
6320     return UnableToLegalize;
6321 
6322   // Vector selects can have a scalar predicate. If so, splat into a vector and
6323   // finish for later legalization attempts to try again.
6324   if (MaskTy.isScalar()) {
6325     Register MaskElt = MaskReg;
6326     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6327       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6328     // Generate a vector splat idiom to be pattern matched later.
6329     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6330     Observer.changingInstr(MI);
6331     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6332     Observer.changedInstr(MI);
6333     return Legalized;
6334   }
6335 
6336   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6337     return UnableToLegalize;
6338   }
6339 
6340   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6341   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6342   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6343   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6344   MI.eraseFromParent();
6345   return Legalized;
6346 }
6347 
6348 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
6349   // Split DIVREM into individual instructions.
6350   unsigned Opcode = MI.getOpcode();
6351 
6352   MIRBuilder.buildInstr(
6353       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
6354                                         : TargetOpcode::G_UDIV,
6355       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6356   MIRBuilder.buildInstr(
6357       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
6358                                         : TargetOpcode::G_UREM,
6359       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
6360   MI.eraseFromParent();
6361   return Legalized;
6362 }
6363