1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()), 94 TLI(*MF.getSubtarget().getTargetLowering()) { } 95 96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 97 GISelChangeObserver &Observer, 98 MachineIRBuilder &B) 99 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 100 TLI(*MF.getSubtarget().getTargetLowering()) { } 101 102 LegalizerHelper::LegalizeResult 103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 104 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 105 106 MIRBuilder.setInstrAndDebugLoc(MI); 107 108 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 109 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 110 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 111 auto Step = LI.getAction(MI, MRI); 112 switch (Step.Action) { 113 case Legal: 114 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 115 return AlreadyLegal; 116 case Libcall: 117 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 118 return libcall(MI); 119 case NarrowScalar: 120 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 121 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 122 case WidenScalar: 123 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 124 return widenScalar(MI, Step.TypeIdx, Step.NewType); 125 case Bitcast: 126 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 127 return bitcast(MI, Step.TypeIdx, Step.NewType); 128 case Lower: 129 LLVM_DEBUG(dbgs() << ".. Lower\n"); 130 return lower(MI, Step.TypeIdx, Step.NewType); 131 case FewerElements: 132 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 133 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case MoreElements: 135 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 136 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 137 case Custom: 138 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 139 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 140 default: 141 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 142 return UnableToLegalize; 143 } 144 } 145 146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 147 SmallVectorImpl<Register> &VRegs) { 148 for (int i = 0; i < NumParts; ++i) 149 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 150 MIRBuilder.buildUnmerge(VRegs, Reg); 151 } 152 153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 154 LLT MainTy, LLT &LeftoverTy, 155 SmallVectorImpl<Register> &VRegs, 156 SmallVectorImpl<Register> &LeftoverRegs) { 157 assert(!LeftoverTy.isValid() && "this is an out argument"); 158 159 unsigned RegSize = RegTy.getSizeInBits(); 160 unsigned MainSize = MainTy.getSizeInBits(); 161 unsigned NumParts = RegSize / MainSize; 162 unsigned LeftoverSize = RegSize - NumParts * MainSize; 163 164 // Use an unmerge when possible. 165 if (LeftoverSize == 0) { 166 for (unsigned I = 0; I < NumParts; ++I) 167 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 168 MIRBuilder.buildUnmerge(VRegs, Reg); 169 return true; 170 } 171 172 if (MainTy.isVector()) { 173 unsigned EltSize = MainTy.getScalarSizeInBits(); 174 if (LeftoverSize % EltSize != 0) 175 return false; 176 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 177 } else { 178 LeftoverTy = LLT::scalar(LeftoverSize); 179 } 180 181 // For irregular sizes, extract the individual parts. 182 for (unsigned I = 0; I != NumParts; ++I) { 183 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 184 VRegs.push_back(NewReg); 185 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 186 } 187 188 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 189 Offset += LeftoverSize) { 190 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 191 LeftoverRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, Offset); 193 } 194 195 return true; 196 } 197 198 void LegalizerHelper::insertParts(Register DstReg, 199 LLT ResultTy, LLT PartTy, 200 ArrayRef<Register> PartRegs, 201 LLT LeftoverTy, 202 ArrayRef<Register> LeftoverRegs) { 203 if (!LeftoverTy.isValid()) { 204 assert(LeftoverRegs.empty()); 205 206 if (!ResultTy.isVector()) { 207 MIRBuilder.buildMerge(DstReg, PartRegs); 208 return; 209 } 210 211 if (PartTy.isVector()) 212 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 213 else 214 MIRBuilder.buildBuildVector(DstReg, PartRegs); 215 return; 216 } 217 218 unsigned PartSize = PartTy.getSizeInBits(); 219 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 220 221 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 222 MIRBuilder.buildUndef(CurResultReg); 223 224 unsigned Offset = 0; 225 for (Register PartReg : PartRegs) { 226 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 227 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 228 CurResultReg = NewResultReg; 229 Offset += PartSize; 230 } 231 232 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 233 // Use the original output register for the final insert to avoid a copy. 234 Register NewResultReg = (I + 1 == E) ? 235 DstReg : MRI.createGenericVirtualRegister(ResultTy); 236 237 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 238 CurResultReg = NewResultReg; 239 Offset += LeftoverPartSize; 240 } 241 } 242 243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 245 const MachineInstr &MI) { 246 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 247 248 const int StartIdx = Regs.size(); 249 const int NumResults = MI.getNumOperands() - 1; 250 Regs.resize(Regs.size() + NumResults); 251 for (int I = 0; I != NumResults; ++I) 252 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 253 } 254 255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 256 LLT GCDTy, Register SrcReg) { 257 LLT SrcTy = MRI.getType(SrcReg); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 } 268 269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 270 LLT NarrowTy, Register SrcReg) { 271 LLT SrcTy = MRI.getType(SrcReg); 272 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 273 extractGCDType(Parts, GCDTy, SrcReg); 274 return GCDTy; 275 } 276 277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 278 SmallVectorImpl<Register> &VRegs, 279 unsigned PadStrategy) { 280 LLT LCMTy = getLCMType(DstTy, NarrowTy); 281 282 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 283 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 284 int NumOrigSrc = VRegs.size(); 285 286 Register PadReg; 287 288 // Get a value we can use to pad the source value if the sources won't evenly 289 // cover the result type. 290 if (NumOrigSrc < NumParts * NumSubParts) { 291 if (PadStrategy == TargetOpcode::G_ZEXT) 292 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 293 else if (PadStrategy == TargetOpcode::G_ANYEXT) 294 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 295 else { 296 assert(PadStrategy == TargetOpcode::G_SEXT); 297 298 // Shift the sign bit of the low register through the high register. 299 auto ShiftAmt = 300 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 301 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 302 } 303 } 304 305 // Registers for the final merge to be produced. 306 SmallVector<Register, 4> Remerge(NumParts); 307 308 // Registers needed for intermediate merges, which will be merged into a 309 // source for Remerge. 310 SmallVector<Register, 4> SubMerge(NumSubParts); 311 312 // Once we've fully read off the end of the original source bits, we can reuse 313 // the same high bits for remaining padding elements. 314 Register AllPadReg; 315 316 // Build merges to the LCM type to cover the original result type. 317 for (int I = 0; I != NumParts; ++I) { 318 bool AllMergePartsArePadding = true; 319 320 // Build the requested merges to the requested type. 321 for (int J = 0; J != NumSubParts; ++J) { 322 int Idx = I * NumSubParts + J; 323 if (Idx >= NumOrigSrc) { 324 SubMerge[J] = PadReg; 325 continue; 326 } 327 328 SubMerge[J] = VRegs[Idx]; 329 330 // There are meaningful bits here we can't reuse later. 331 AllMergePartsArePadding = false; 332 } 333 334 // If we've filled up a complete piece with padding bits, we can directly 335 // emit the natural sized constant if applicable, rather than a merge of 336 // smaller constants. 337 if (AllMergePartsArePadding && !AllPadReg) { 338 if (PadStrategy == TargetOpcode::G_ANYEXT) 339 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 340 else if (PadStrategy == TargetOpcode::G_ZEXT) 341 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 342 343 // If this is a sign extension, we can't materialize a trivial constant 344 // with the right type and have to produce a merge. 345 } 346 347 if (AllPadReg) { 348 // Avoid creating additional instructions if we're just adding additional 349 // copies of padding bits. 350 Remerge[I] = AllPadReg; 351 continue; 352 } 353 354 if (NumSubParts == 1) 355 Remerge[I] = SubMerge[0]; 356 else 357 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 358 359 // In the sign extend padding case, re-use the first all-signbit merge. 360 if (AllMergePartsArePadding && !AllPadReg) 361 AllPadReg = Remerge[I]; 362 } 363 364 VRegs = std::move(Remerge); 365 return LCMTy; 366 } 367 368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 369 ArrayRef<Register> RemergeRegs) { 370 LLT DstTy = MRI.getType(DstReg); 371 372 // Create the merge to the widened source, and extract the relevant bits into 373 // the result. 374 375 if (DstTy == LCMTy) { 376 MIRBuilder.buildMerge(DstReg, RemergeRegs); 377 return; 378 } 379 380 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 381 if (DstTy.isScalar() && LCMTy.isScalar()) { 382 MIRBuilder.buildTrunc(DstReg, Remerge); 383 return; 384 } 385 386 if (LCMTy.isVector()) { 387 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 388 SmallVector<Register, 8> UnmergeDefs(NumDefs); 389 UnmergeDefs[0] = DstReg; 390 for (unsigned I = 1; I != NumDefs; ++I) 391 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 392 393 MIRBuilder.buildUnmerge(UnmergeDefs, 394 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 395 return; 396 } 397 398 llvm_unreachable("unhandled case"); 399 } 400 401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 402 #define RTLIBCASE_INT(LibcallPrefix) \ 403 do { \ 404 switch (Size) { \ 405 case 32: \ 406 return RTLIB::LibcallPrefix##32; \ 407 case 64: \ 408 return RTLIB::LibcallPrefix##64; \ 409 case 128: \ 410 return RTLIB::LibcallPrefix##128; \ 411 default: \ 412 llvm_unreachable("unexpected size"); \ 413 } \ 414 } while (0) 415 416 #define RTLIBCASE(LibcallPrefix) \ 417 do { \ 418 switch (Size) { \ 419 case 32: \ 420 return RTLIB::LibcallPrefix##32; \ 421 case 64: \ 422 return RTLIB::LibcallPrefix##64; \ 423 case 80: \ 424 return RTLIB::LibcallPrefix##80; \ 425 case 128: \ 426 return RTLIB::LibcallPrefix##128; \ 427 default: \ 428 llvm_unreachable("unexpected size"); \ 429 } \ 430 } while (0) 431 432 switch (Opcode) { 433 case TargetOpcode::G_SDIV: 434 RTLIBCASE_INT(SDIV_I); 435 case TargetOpcode::G_UDIV: 436 RTLIBCASE_INT(UDIV_I); 437 case TargetOpcode::G_SREM: 438 RTLIBCASE_INT(SREM_I); 439 case TargetOpcode::G_UREM: 440 RTLIBCASE_INT(UREM_I); 441 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 442 RTLIBCASE_INT(CTLZ_I); 443 case TargetOpcode::G_FADD: 444 RTLIBCASE(ADD_F); 445 case TargetOpcode::G_FSUB: 446 RTLIBCASE(SUB_F); 447 case TargetOpcode::G_FMUL: 448 RTLIBCASE(MUL_F); 449 case TargetOpcode::G_FDIV: 450 RTLIBCASE(DIV_F); 451 case TargetOpcode::G_FEXP: 452 RTLIBCASE(EXP_F); 453 case TargetOpcode::G_FEXP2: 454 RTLIBCASE(EXP2_F); 455 case TargetOpcode::G_FREM: 456 RTLIBCASE(REM_F); 457 case TargetOpcode::G_FPOW: 458 RTLIBCASE(POW_F); 459 case TargetOpcode::G_FMA: 460 RTLIBCASE(FMA_F); 461 case TargetOpcode::G_FSIN: 462 RTLIBCASE(SIN_F); 463 case TargetOpcode::G_FCOS: 464 RTLIBCASE(COS_F); 465 case TargetOpcode::G_FLOG10: 466 RTLIBCASE(LOG10_F); 467 case TargetOpcode::G_FLOG: 468 RTLIBCASE(LOG_F); 469 case TargetOpcode::G_FLOG2: 470 RTLIBCASE(LOG2_F); 471 case TargetOpcode::G_FCEIL: 472 RTLIBCASE(CEIL_F); 473 case TargetOpcode::G_FFLOOR: 474 RTLIBCASE(FLOOR_F); 475 case TargetOpcode::G_FMINNUM: 476 RTLIBCASE(FMIN_F); 477 case TargetOpcode::G_FMAXNUM: 478 RTLIBCASE(FMAX_F); 479 case TargetOpcode::G_FSQRT: 480 RTLIBCASE(SQRT_F); 481 case TargetOpcode::G_FRINT: 482 RTLIBCASE(RINT_F); 483 case TargetOpcode::G_FNEARBYINT: 484 RTLIBCASE(NEARBYINT_F); 485 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 486 RTLIBCASE(ROUNDEVEN_F); 487 } 488 llvm_unreachable("Unknown libcall function"); 489 } 490 491 /// True if an instruction is in tail position in its caller. Intended for 492 /// legalizing libcalls as tail calls when possible. 493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 494 MachineInstr &MI) { 495 MachineBasicBlock &MBB = *MI.getParent(); 496 const Function &F = MBB.getParent()->getFunction(); 497 498 // Conservatively require the attributes of the call to match those of 499 // the return. Ignore NoAlias and NonNull because they don't affect the 500 // call sequence. 501 AttributeList CallerAttrs = F.getAttributes(); 502 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 503 .removeAttribute(Attribute::NoAlias) 504 .removeAttribute(Attribute::NonNull) 505 .hasAttributes()) 506 return false; 507 508 // It's not safe to eliminate the sign / zero extension of the return value. 509 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 510 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 511 return false; 512 513 // Only tail call if the following instruction is a standard return. 514 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 515 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 516 return false; 517 518 return true; 519 } 520 521 LegalizerHelper::LegalizeResult 522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 523 const CallLowering::ArgInfo &Result, 524 ArrayRef<CallLowering::ArgInfo> Args, 525 const CallingConv::ID CC) { 526 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 527 528 CallLowering::CallLoweringInfo Info; 529 Info.CallConv = CC; 530 Info.Callee = MachineOperand::CreateES(Name); 531 Info.OrigRet = Result; 532 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 533 if (!CLI.lowerCall(MIRBuilder, Info)) 534 return LegalizerHelper::UnableToLegalize; 535 536 return LegalizerHelper::Legalized; 537 } 538 539 LegalizerHelper::LegalizeResult 540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 541 const CallLowering::ArgInfo &Result, 542 ArrayRef<CallLowering::ArgInfo> Args) { 543 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 544 const char *Name = TLI.getLibcallName(Libcall); 545 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 546 return createLibcall(MIRBuilder, Name, Result, Args, CC); 547 } 548 549 // Useful for libcalls where all operands have the same type. 550 static LegalizerHelper::LegalizeResult 551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 552 Type *OpType) { 553 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 554 555 SmallVector<CallLowering::ArgInfo, 3> Args; 556 for (unsigned i = 1; i < MI.getNumOperands(); i++) 557 Args.push_back({MI.getOperand(i).getReg(), OpType}); 558 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 559 Args); 560 } 561 562 LegalizerHelper::LegalizeResult 563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 564 MachineInstr &MI) { 565 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 566 567 SmallVector<CallLowering::ArgInfo, 3> Args; 568 // Add all the args, except for the last which is an imm denoting 'tail'. 569 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 570 Register Reg = MI.getOperand(i).getReg(); 571 572 // Need derive an IR type for call lowering. 573 LLT OpLLT = MRI.getType(Reg); 574 Type *OpTy = nullptr; 575 if (OpLLT.isPointer()) 576 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 577 else 578 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 579 Args.push_back({Reg, OpTy}); 580 } 581 582 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 583 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 584 RTLIB::Libcall RTLibcall; 585 switch (MI.getOpcode()) { 586 case TargetOpcode::G_MEMCPY: 587 RTLibcall = RTLIB::MEMCPY; 588 break; 589 case TargetOpcode::G_MEMMOVE: 590 RTLibcall = RTLIB::MEMMOVE; 591 break; 592 case TargetOpcode::G_MEMSET: 593 RTLibcall = RTLIB::MEMSET; 594 break; 595 default: 596 return LegalizerHelper::UnableToLegalize; 597 } 598 const char *Name = TLI.getLibcallName(RTLibcall); 599 600 CallLowering::CallLoweringInfo Info; 601 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 602 Info.Callee = MachineOperand::CreateES(Name); 603 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 604 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 605 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 606 607 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 608 if (!CLI.lowerCall(MIRBuilder, Info)) 609 return LegalizerHelper::UnableToLegalize; 610 611 if (Info.LoweredTailCall) { 612 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 613 // We must have a return following the call (or debug insts) to get past 614 // isLibCallInTailPosition. 615 do { 616 MachineInstr *Next = MI.getNextNode(); 617 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 618 "Expected instr following MI to be return or debug inst?"); 619 // We lowered a tail call, so the call is now the return from the block. 620 // Delete the old return. 621 Next->eraseFromParent(); 622 } while (MI.getNextNode()); 623 } 624 625 return LegalizerHelper::Legalized; 626 } 627 628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 629 Type *FromType) { 630 auto ToMVT = MVT::getVT(ToType); 631 auto FromMVT = MVT::getVT(FromType); 632 633 switch (Opcode) { 634 case TargetOpcode::G_FPEXT: 635 return RTLIB::getFPEXT(FromMVT, ToMVT); 636 case TargetOpcode::G_FPTRUNC: 637 return RTLIB::getFPROUND(FromMVT, ToMVT); 638 case TargetOpcode::G_FPTOSI: 639 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 640 case TargetOpcode::G_FPTOUI: 641 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 642 case TargetOpcode::G_SITOFP: 643 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 644 case TargetOpcode::G_UITOFP: 645 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 646 } 647 llvm_unreachable("Unsupported libcall function"); 648 } 649 650 static LegalizerHelper::LegalizeResult 651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 652 Type *FromType) { 653 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 654 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 655 {{MI.getOperand(1).getReg(), FromType}}); 656 } 657 658 LegalizerHelper::LegalizeResult 659 LegalizerHelper::libcall(MachineInstr &MI) { 660 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 661 unsigned Size = LLTy.getSizeInBits(); 662 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 663 664 switch (MI.getOpcode()) { 665 default: 666 return UnableToLegalize; 667 case TargetOpcode::G_SDIV: 668 case TargetOpcode::G_UDIV: 669 case TargetOpcode::G_SREM: 670 case TargetOpcode::G_UREM: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 672 Type *HLTy = IntegerType::get(Ctx, Size); 673 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 674 if (Status != Legalized) 675 return Status; 676 break; 677 } 678 case TargetOpcode::G_FADD: 679 case TargetOpcode::G_FSUB: 680 case TargetOpcode::G_FMUL: 681 case TargetOpcode::G_FDIV: 682 case TargetOpcode::G_FMA: 683 case TargetOpcode::G_FPOW: 684 case TargetOpcode::G_FREM: 685 case TargetOpcode::G_FCOS: 686 case TargetOpcode::G_FSIN: 687 case TargetOpcode::G_FLOG10: 688 case TargetOpcode::G_FLOG: 689 case TargetOpcode::G_FLOG2: 690 case TargetOpcode::G_FEXP: 691 case TargetOpcode::G_FEXP2: 692 case TargetOpcode::G_FCEIL: 693 case TargetOpcode::G_FFLOOR: 694 case TargetOpcode::G_FMINNUM: 695 case TargetOpcode::G_FMAXNUM: 696 case TargetOpcode::G_FSQRT: 697 case TargetOpcode::G_FRINT: 698 case TargetOpcode::G_FNEARBYINT: 699 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 700 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 701 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 702 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 703 return UnableToLegalize; 704 } 705 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_FPEXT: 711 case TargetOpcode::G_FPTRUNC: { 712 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 713 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 714 if (!FromTy || !ToTy) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 717 if (Status != Legalized) 718 return Status; 719 break; 720 } 721 case TargetOpcode::G_FPTOSI: 722 case TargetOpcode::G_FPTOUI: { 723 // FIXME: Support other types 724 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 725 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 726 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 727 return UnableToLegalize; 728 LegalizeResult Status = conversionLibcall( 729 MI, MIRBuilder, 730 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 731 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 732 if (Status != Legalized) 733 return Status; 734 break; 735 } 736 case TargetOpcode::G_SITOFP: 737 case TargetOpcode::G_UITOFP: { 738 // FIXME: Support other types 739 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 740 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 741 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 742 return UnableToLegalize; 743 LegalizeResult Status = conversionLibcall( 744 MI, MIRBuilder, 745 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 746 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 747 if (Status != Legalized) 748 return Status; 749 break; 750 } 751 case TargetOpcode::G_MEMCPY: 752 case TargetOpcode::G_MEMMOVE: 753 case TargetOpcode::G_MEMSET: { 754 LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); 755 MI.eraseFromParent(); 756 return Result; 757 } 758 } 759 760 MI.eraseFromParent(); 761 return Legalized; 762 } 763 764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 765 unsigned TypeIdx, 766 LLT NarrowTy) { 767 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 768 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 769 770 switch (MI.getOpcode()) { 771 default: 772 return UnableToLegalize; 773 case TargetOpcode::G_IMPLICIT_DEF: { 774 Register DstReg = MI.getOperand(0).getReg(); 775 LLT DstTy = MRI.getType(DstReg); 776 777 // If SizeOp0 is not an exact multiple of NarrowSize, emit 778 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 779 // FIXME: Although this would also be legal for the general case, it causes 780 // a lot of regressions in the emitted code (superfluous COPYs, artifact 781 // combines not being hit). This seems to be a problem related to the 782 // artifact combiner. 783 if (SizeOp0 % NarrowSize != 0) { 784 LLT ImplicitTy = NarrowTy; 785 if (DstTy.isVector()) 786 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 787 788 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 789 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 790 791 MI.eraseFromParent(); 792 return Legalized; 793 } 794 795 int NumParts = SizeOp0 / NarrowSize; 796 797 SmallVector<Register, 2> DstRegs; 798 for (int i = 0; i < NumParts; ++i) 799 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 800 801 if (DstTy.isVector()) 802 MIRBuilder.buildBuildVector(DstReg, DstRegs); 803 else 804 MIRBuilder.buildMerge(DstReg, DstRegs); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 case TargetOpcode::G_CONSTANT: { 809 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 810 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 811 unsigned TotalSize = Ty.getSizeInBits(); 812 unsigned NarrowSize = NarrowTy.getSizeInBits(); 813 int NumParts = TotalSize / NarrowSize; 814 815 SmallVector<Register, 4> PartRegs; 816 for (int I = 0; I != NumParts; ++I) { 817 unsigned Offset = I * NarrowSize; 818 auto K = MIRBuilder.buildConstant(NarrowTy, 819 Val.lshr(Offset).trunc(NarrowSize)); 820 PartRegs.push_back(K.getReg(0)); 821 } 822 823 LLT LeftoverTy; 824 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 825 SmallVector<Register, 1> LeftoverRegs; 826 if (LeftoverBits != 0) { 827 LeftoverTy = LLT::scalar(LeftoverBits); 828 auto K = MIRBuilder.buildConstant( 829 LeftoverTy, 830 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 831 LeftoverRegs.push_back(K.getReg(0)); 832 } 833 834 insertParts(MI.getOperand(0).getReg(), 835 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 836 837 MI.eraseFromParent(); 838 return Legalized; 839 } 840 case TargetOpcode::G_SEXT: 841 case TargetOpcode::G_ZEXT: 842 case TargetOpcode::G_ANYEXT: 843 return narrowScalarExt(MI, TypeIdx, NarrowTy); 844 case TargetOpcode::G_TRUNC: { 845 if (TypeIdx != 1) 846 return UnableToLegalize; 847 848 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 849 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 850 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 851 return UnableToLegalize; 852 } 853 854 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 855 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 856 MI.eraseFromParent(); 857 return Legalized; 858 } 859 860 case TargetOpcode::G_FREEZE: 861 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 862 case TargetOpcode::G_ADD: 863 case TargetOpcode::G_SUB: 864 case TargetOpcode::G_SADDO: 865 case TargetOpcode::G_SSUBO: 866 case TargetOpcode::G_SADDE: 867 case TargetOpcode::G_SSUBE: 868 case TargetOpcode::G_UADDO: 869 case TargetOpcode::G_USUBO: 870 case TargetOpcode::G_UADDE: 871 case TargetOpcode::G_USUBE: 872 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 873 case TargetOpcode::G_MUL: 874 case TargetOpcode::G_UMULH: 875 return narrowScalarMul(MI, NarrowTy); 876 case TargetOpcode::G_EXTRACT: 877 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 878 case TargetOpcode::G_INSERT: 879 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 880 case TargetOpcode::G_LOAD: { 881 auto &MMO = **MI.memoperands_begin(); 882 Register DstReg = MI.getOperand(0).getReg(); 883 LLT DstTy = MRI.getType(DstReg); 884 if (DstTy.isVector()) 885 return UnableToLegalize; 886 887 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 888 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 889 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 890 MIRBuilder.buildAnyExt(DstReg, TmpReg); 891 MI.eraseFromParent(); 892 return Legalized; 893 } 894 895 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 896 } 897 case TargetOpcode::G_ZEXTLOAD: 898 case TargetOpcode::G_SEXTLOAD: { 899 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 900 Register DstReg = MI.getOperand(0).getReg(); 901 Register PtrReg = MI.getOperand(1).getReg(); 902 903 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 904 auto &MMO = **MI.memoperands_begin(); 905 unsigned MemSize = MMO.getSizeInBits(); 906 907 if (MemSize == NarrowSize) { 908 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 909 } else if (MemSize < NarrowSize) { 910 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 911 } else if (MemSize > NarrowSize) { 912 // FIXME: Need to split the load. 913 return UnableToLegalize; 914 } 915 916 if (ZExt) 917 MIRBuilder.buildZExt(DstReg, TmpReg); 918 else 919 MIRBuilder.buildSExt(DstReg, TmpReg); 920 921 MI.eraseFromParent(); 922 return Legalized; 923 } 924 case TargetOpcode::G_STORE: { 925 const auto &MMO = **MI.memoperands_begin(); 926 927 Register SrcReg = MI.getOperand(0).getReg(); 928 LLT SrcTy = MRI.getType(SrcReg); 929 if (SrcTy.isVector()) 930 return UnableToLegalize; 931 932 int NumParts = SizeOp0 / NarrowSize; 933 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 934 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 935 if (SrcTy.isVector() && LeftoverBits != 0) 936 return UnableToLegalize; 937 938 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 939 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 940 auto &MMO = **MI.memoperands_begin(); 941 MIRBuilder.buildTrunc(TmpReg, SrcReg); 942 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 943 MI.eraseFromParent(); 944 return Legalized; 945 } 946 947 return reduceLoadStoreWidth(MI, 0, NarrowTy); 948 } 949 case TargetOpcode::G_SELECT: 950 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 951 case TargetOpcode::G_AND: 952 case TargetOpcode::G_OR: 953 case TargetOpcode::G_XOR: { 954 // Legalize bitwise operation: 955 // A = BinOp<Ty> B, C 956 // into: 957 // B1, ..., BN = G_UNMERGE_VALUES B 958 // C1, ..., CN = G_UNMERGE_VALUES C 959 // A1 = BinOp<Ty/N> B1, C2 960 // ... 961 // AN = BinOp<Ty/N> BN, CN 962 // A = G_MERGE_VALUES A1, ..., AN 963 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 964 } 965 case TargetOpcode::G_SHL: 966 case TargetOpcode::G_LSHR: 967 case TargetOpcode::G_ASHR: 968 return narrowScalarShift(MI, TypeIdx, NarrowTy); 969 case TargetOpcode::G_CTLZ: 970 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 971 case TargetOpcode::G_CTTZ: 972 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 973 case TargetOpcode::G_CTPOP: 974 if (TypeIdx == 1) 975 switch (MI.getOpcode()) { 976 case TargetOpcode::G_CTLZ: 977 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 978 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 979 case TargetOpcode::G_CTTZ: 980 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 981 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 982 case TargetOpcode::G_CTPOP: 983 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 984 default: 985 return UnableToLegalize; 986 } 987 988 Observer.changingInstr(MI); 989 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 990 Observer.changedInstr(MI); 991 return Legalized; 992 case TargetOpcode::G_INTTOPTR: 993 if (TypeIdx != 1) 994 return UnableToLegalize; 995 996 Observer.changingInstr(MI); 997 narrowScalarSrc(MI, NarrowTy, 1); 998 Observer.changedInstr(MI); 999 return Legalized; 1000 case TargetOpcode::G_PTRTOINT: 1001 if (TypeIdx != 0) 1002 return UnableToLegalize; 1003 1004 Observer.changingInstr(MI); 1005 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1006 Observer.changedInstr(MI); 1007 return Legalized; 1008 case TargetOpcode::G_PHI: { 1009 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1010 // NarrowSize. 1011 if (SizeOp0 % NarrowSize != 0) 1012 return UnableToLegalize; 1013 1014 unsigned NumParts = SizeOp0 / NarrowSize; 1015 SmallVector<Register, 2> DstRegs(NumParts); 1016 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1017 Observer.changingInstr(MI); 1018 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1019 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1020 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1021 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1022 SrcRegs[i / 2]); 1023 } 1024 MachineBasicBlock &MBB = *MI.getParent(); 1025 MIRBuilder.setInsertPt(MBB, MI); 1026 for (unsigned i = 0; i < NumParts; ++i) { 1027 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1028 MachineInstrBuilder MIB = 1029 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1030 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1031 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1032 } 1033 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1034 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1035 Observer.changedInstr(MI); 1036 MI.eraseFromParent(); 1037 return Legalized; 1038 } 1039 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1040 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1041 if (TypeIdx != 2) 1042 return UnableToLegalize; 1043 1044 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1045 Observer.changingInstr(MI); 1046 narrowScalarSrc(MI, NarrowTy, OpIdx); 1047 Observer.changedInstr(MI); 1048 return Legalized; 1049 } 1050 case TargetOpcode::G_ICMP: { 1051 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1052 if (NarrowSize * 2 != SrcSize) 1053 return UnableToLegalize; 1054 1055 Observer.changingInstr(MI); 1056 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1057 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1058 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1059 1060 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1061 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1062 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1063 1064 CmpInst::Predicate Pred = 1065 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1066 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1067 1068 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1069 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1070 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1071 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1072 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1073 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1074 } else { 1075 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1076 MachineInstrBuilder CmpHEQ = 1077 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1078 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1079 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1080 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1081 } 1082 Observer.changedInstr(MI); 1083 MI.eraseFromParent(); 1084 return Legalized; 1085 } 1086 case TargetOpcode::G_SEXT_INREG: { 1087 if (TypeIdx != 0) 1088 return UnableToLegalize; 1089 1090 int64_t SizeInBits = MI.getOperand(2).getImm(); 1091 1092 // So long as the new type has more bits than the bits we're extending we 1093 // don't need to break it apart. 1094 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1095 Observer.changingInstr(MI); 1096 // We don't lose any non-extension bits by truncating the src and 1097 // sign-extending the dst. 1098 MachineOperand &MO1 = MI.getOperand(1); 1099 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1100 MO1.setReg(TruncMIB.getReg(0)); 1101 1102 MachineOperand &MO2 = MI.getOperand(0); 1103 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1104 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1105 MIRBuilder.buildSExt(MO2, DstExt); 1106 MO2.setReg(DstExt); 1107 Observer.changedInstr(MI); 1108 return Legalized; 1109 } 1110 1111 // Break it apart. Components below the extension point are unmodified. The 1112 // component containing the extension point becomes a narrower SEXT_INREG. 1113 // Components above it are ashr'd from the component containing the 1114 // extension point. 1115 if (SizeOp0 % NarrowSize != 0) 1116 return UnableToLegalize; 1117 int NumParts = SizeOp0 / NarrowSize; 1118 1119 // List the registers where the destination will be scattered. 1120 SmallVector<Register, 2> DstRegs; 1121 // List the registers where the source will be split. 1122 SmallVector<Register, 2> SrcRegs; 1123 1124 // Create all the temporary registers. 1125 for (int i = 0; i < NumParts; ++i) { 1126 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1127 1128 SrcRegs.push_back(SrcReg); 1129 } 1130 1131 // Explode the big arguments into smaller chunks. 1132 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1133 1134 Register AshrCstReg = 1135 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1136 .getReg(0); 1137 Register FullExtensionReg = 0; 1138 Register PartialExtensionReg = 0; 1139 1140 // Do the operation on each small part. 1141 for (int i = 0; i < NumParts; ++i) { 1142 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1143 DstRegs.push_back(SrcRegs[i]); 1144 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1145 assert(PartialExtensionReg && 1146 "Expected to visit partial extension before full"); 1147 if (FullExtensionReg) { 1148 DstRegs.push_back(FullExtensionReg); 1149 continue; 1150 } 1151 DstRegs.push_back( 1152 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1153 .getReg(0)); 1154 FullExtensionReg = DstRegs.back(); 1155 } else { 1156 DstRegs.push_back( 1157 MIRBuilder 1158 .buildInstr( 1159 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1160 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1161 .getReg(0)); 1162 PartialExtensionReg = DstRegs.back(); 1163 } 1164 } 1165 1166 // Gather the destination registers into the final destination. 1167 Register DstReg = MI.getOperand(0).getReg(); 1168 MIRBuilder.buildMerge(DstReg, DstRegs); 1169 MI.eraseFromParent(); 1170 return Legalized; 1171 } 1172 case TargetOpcode::G_BSWAP: 1173 case TargetOpcode::G_BITREVERSE: { 1174 if (SizeOp0 % NarrowSize != 0) 1175 return UnableToLegalize; 1176 1177 Observer.changingInstr(MI); 1178 SmallVector<Register, 2> SrcRegs, DstRegs; 1179 unsigned NumParts = SizeOp0 / NarrowSize; 1180 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1181 1182 for (unsigned i = 0; i < NumParts; ++i) { 1183 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1184 {SrcRegs[NumParts - 1 - i]}); 1185 DstRegs.push_back(DstPart.getReg(0)); 1186 } 1187 1188 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1189 1190 Observer.changedInstr(MI); 1191 MI.eraseFromParent(); 1192 return Legalized; 1193 } 1194 case TargetOpcode::G_PTR_ADD: 1195 case TargetOpcode::G_PTRMASK: { 1196 if (TypeIdx != 1) 1197 return UnableToLegalize; 1198 Observer.changingInstr(MI); 1199 narrowScalarSrc(MI, NarrowTy, 2); 1200 Observer.changedInstr(MI); 1201 return Legalized; 1202 } 1203 case TargetOpcode::G_FPTOUI: { 1204 if (TypeIdx != 0) 1205 return UnableToLegalize; 1206 Observer.changingInstr(MI); 1207 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1208 Observer.changedInstr(MI); 1209 return Legalized; 1210 } 1211 case TargetOpcode::G_FPTOSI: { 1212 if (TypeIdx != 0) 1213 return UnableToLegalize; 1214 Observer.changingInstr(MI); 1215 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1216 Observer.changedInstr(MI); 1217 return Legalized; 1218 } 1219 case TargetOpcode::G_FPEXT: 1220 if (TypeIdx != 0) 1221 return UnableToLegalize; 1222 Observer.changingInstr(MI); 1223 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1224 Observer.changedInstr(MI); 1225 return Legalized; 1226 } 1227 } 1228 1229 Register LegalizerHelper::coerceToScalar(Register Val) { 1230 LLT Ty = MRI.getType(Val); 1231 if (Ty.isScalar()) 1232 return Val; 1233 1234 const DataLayout &DL = MIRBuilder.getDataLayout(); 1235 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1236 if (Ty.isPointer()) { 1237 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1238 return Register(); 1239 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1240 } 1241 1242 Register NewVal = Val; 1243 1244 assert(Ty.isVector()); 1245 LLT EltTy = Ty.getElementType(); 1246 if (EltTy.isPointer()) 1247 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1248 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1249 } 1250 1251 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1252 unsigned OpIdx, unsigned ExtOpcode) { 1253 MachineOperand &MO = MI.getOperand(OpIdx); 1254 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1255 MO.setReg(ExtB.getReg(0)); 1256 } 1257 1258 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1259 unsigned OpIdx) { 1260 MachineOperand &MO = MI.getOperand(OpIdx); 1261 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1262 MO.setReg(ExtB.getReg(0)); 1263 } 1264 1265 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1266 unsigned OpIdx, unsigned TruncOpcode) { 1267 MachineOperand &MO = MI.getOperand(OpIdx); 1268 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1269 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1270 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1271 MO.setReg(DstExt); 1272 } 1273 1274 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1275 unsigned OpIdx, unsigned ExtOpcode) { 1276 MachineOperand &MO = MI.getOperand(OpIdx); 1277 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1278 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1279 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1280 MO.setReg(DstTrunc); 1281 } 1282 1283 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1284 unsigned OpIdx) { 1285 MachineOperand &MO = MI.getOperand(OpIdx); 1286 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1287 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1288 } 1289 1290 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1291 unsigned OpIdx) { 1292 MachineOperand &MO = MI.getOperand(OpIdx); 1293 1294 LLT OldTy = MRI.getType(MO.getReg()); 1295 unsigned OldElts = OldTy.getNumElements(); 1296 unsigned NewElts = MoreTy.getNumElements(); 1297 1298 unsigned NumParts = NewElts / OldElts; 1299 1300 // Use concat_vectors if the result is a multiple of the number of elements. 1301 if (NumParts * OldElts == NewElts) { 1302 SmallVector<Register, 8> Parts; 1303 Parts.push_back(MO.getReg()); 1304 1305 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1306 for (unsigned I = 1; I != NumParts; ++I) 1307 Parts.push_back(ImpDef); 1308 1309 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1310 MO.setReg(Concat.getReg(0)); 1311 return; 1312 } 1313 1314 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1315 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1316 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1317 MO.setReg(MoreReg); 1318 } 1319 1320 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1321 MachineOperand &Op = MI.getOperand(OpIdx); 1322 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1323 } 1324 1325 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1326 MachineOperand &MO = MI.getOperand(OpIdx); 1327 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1328 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1329 MIRBuilder.buildBitcast(MO, CastDst); 1330 MO.setReg(CastDst); 1331 } 1332 1333 LegalizerHelper::LegalizeResult 1334 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1335 LLT WideTy) { 1336 if (TypeIdx != 1) 1337 return UnableToLegalize; 1338 1339 Register DstReg = MI.getOperand(0).getReg(); 1340 LLT DstTy = MRI.getType(DstReg); 1341 if (DstTy.isVector()) 1342 return UnableToLegalize; 1343 1344 Register Src1 = MI.getOperand(1).getReg(); 1345 LLT SrcTy = MRI.getType(Src1); 1346 const int DstSize = DstTy.getSizeInBits(); 1347 const int SrcSize = SrcTy.getSizeInBits(); 1348 const int WideSize = WideTy.getSizeInBits(); 1349 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1350 1351 unsigned NumOps = MI.getNumOperands(); 1352 unsigned NumSrc = MI.getNumOperands() - 1; 1353 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1354 1355 if (WideSize >= DstSize) { 1356 // Directly pack the bits in the target type. 1357 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1358 1359 for (unsigned I = 2; I != NumOps; ++I) { 1360 const unsigned Offset = (I - 1) * PartSize; 1361 1362 Register SrcReg = MI.getOperand(I).getReg(); 1363 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1364 1365 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1366 1367 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1368 MRI.createGenericVirtualRegister(WideTy); 1369 1370 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1371 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1372 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1373 ResultReg = NextResult; 1374 } 1375 1376 if (WideSize > DstSize) 1377 MIRBuilder.buildTrunc(DstReg, ResultReg); 1378 else if (DstTy.isPointer()) 1379 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1380 1381 MI.eraseFromParent(); 1382 return Legalized; 1383 } 1384 1385 // Unmerge the original values to the GCD type, and recombine to the next 1386 // multiple greater than the original type. 1387 // 1388 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1389 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1390 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1391 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1392 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1393 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1394 // %12:_(s12) = G_MERGE_VALUES %10, %11 1395 // 1396 // Padding with undef if necessary: 1397 // 1398 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1399 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1400 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1401 // %7:_(s2) = G_IMPLICIT_DEF 1402 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1403 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1404 // %10:_(s12) = G_MERGE_VALUES %8, %9 1405 1406 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1407 LLT GCDTy = LLT::scalar(GCD); 1408 1409 SmallVector<Register, 8> Parts; 1410 SmallVector<Register, 8> NewMergeRegs; 1411 SmallVector<Register, 8> Unmerges; 1412 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1413 1414 // Decompose the original operands if they don't evenly divide. 1415 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1416 Register SrcReg = MI.getOperand(I).getReg(); 1417 if (GCD == SrcSize) { 1418 Unmerges.push_back(SrcReg); 1419 } else { 1420 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1421 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1422 Unmerges.push_back(Unmerge.getReg(J)); 1423 } 1424 } 1425 1426 // Pad with undef to the next size that is a multiple of the requested size. 1427 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1428 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1429 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1430 Unmerges.push_back(UndefReg); 1431 } 1432 1433 const int PartsPerGCD = WideSize / GCD; 1434 1435 // Build merges of each piece. 1436 ArrayRef<Register> Slicer(Unmerges); 1437 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1438 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1439 NewMergeRegs.push_back(Merge.getReg(0)); 1440 } 1441 1442 // A truncate may be necessary if the requested type doesn't evenly divide the 1443 // original result type. 1444 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1445 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1446 } else { 1447 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1448 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1449 } 1450 1451 MI.eraseFromParent(); 1452 return Legalized; 1453 } 1454 1455 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1456 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1457 LLT OrigTy = MRI.getType(OrigReg); 1458 LLT LCMTy = getLCMType(WideTy, OrigTy); 1459 1460 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1461 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1462 1463 Register UnmergeSrc = WideReg; 1464 1465 // Create a merge to the LCM type, padding with undef 1466 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1467 // => 1468 // %1:_(<4 x s32>) = G_FOO 1469 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1470 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1471 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1472 if (NumMergeParts > 1) { 1473 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1474 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1475 MergeParts[0] = WideReg; 1476 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1477 } 1478 1479 // Unmerge to the original register and pad with dead defs. 1480 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1481 UnmergeResults[0] = OrigReg; 1482 for (int I = 1; I != NumUnmergeParts; ++I) 1483 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1484 1485 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1486 return WideReg; 1487 } 1488 1489 LegalizerHelper::LegalizeResult 1490 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1491 LLT WideTy) { 1492 if (TypeIdx != 0) 1493 return UnableToLegalize; 1494 1495 int NumDst = MI.getNumOperands() - 1; 1496 Register SrcReg = MI.getOperand(NumDst).getReg(); 1497 LLT SrcTy = MRI.getType(SrcReg); 1498 if (SrcTy.isVector()) 1499 return UnableToLegalize; 1500 1501 Register Dst0Reg = MI.getOperand(0).getReg(); 1502 LLT DstTy = MRI.getType(Dst0Reg); 1503 if (!DstTy.isScalar()) 1504 return UnableToLegalize; 1505 1506 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1507 if (SrcTy.isPointer()) { 1508 const DataLayout &DL = MIRBuilder.getDataLayout(); 1509 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1510 LLVM_DEBUG( 1511 dbgs() << "Not casting non-integral address space integer\n"); 1512 return UnableToLegalize; 1513 } 1514 1515 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1516 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1517 } 1518 1519 // Widen SrcTy to WideTy. This does not affect the result, but since the 1520 // user requested this size, it is probably better handled than SrcTy and 1521 // should reduce the total number of legalization artifacts 1522 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1523 SrcTy = WideTy; 1524 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1525 } 1526 1527 // Theres no unmerge type to target. Directly extract the bits from the 1528 // source type 1529 unsigned DstSize = DstTy.getSizeInBits(); 1530 1531 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1532 for (int I = 1; I != NumDst; ++I) { 1533 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1534 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1535 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1536 } 1537 1538 MI.eraseFromParent(); 1539 return Legalized; 1540 } 1541 1542 // Extend the source to a wider type. 1543 LLT LCMTy = getLCMType(SrcTy, WideTy); 1544 1545 Register WideSrc = SrcReg; 1546 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1547 // TODO: If this is an integral address space, cast to integer and anyext. 1548 if (SrcTy.isPointer()) { 1549 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1550 return UnableToLegalize; 1551 } 1552 1553 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1554 } 1555 1556 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1557 1558 // Create a sequence of unmerges and merges to the original results. Since we 1559 // may have widened the source, we will need to pad the results with dead defs 1560 // to cover the source register. 1561 // e.g. widen s48 to s64: 1562 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1563 // 1564 // => 1565 // %4:_(s192) = G_ANYEXT %0:_(s96) 1566 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1567 // ; unpack to GCD type, with extra dead defs 1568 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1569 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1570 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1571 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1572 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1573 const LLT GCDTy = getGCDType(WideTy, DstTy); 1574 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1575 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1576 1577 // Directly unmerge to the destination without going through a GCD type 1578 // if possible 1579 if (PartsPerRemerge == 1) { 1580 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1581 1582 for (int I = 0; I != NumUnmerge; ++I) { 1583 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1584 1585 for (int J = 0; J != PartsPerUnmerge; ++J) { 1586 int Idx = I * PartsPerUnmerge + J; 1587 if (Idx < NumDst) 1588 MIB.addDef(MI.getOperand(Idx).getReg()); 1589 else { 1590 // Create dead def for excess components. 1591 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1592 } 1593 } 1594 1595 MIB.addUse(Unmerge.getReg(I)); 1596 } 1597 } else { 1598 SmallVector<Register, 16> Parts; 1599 for (int J = 0; J != NumUnmerge; ++J) 1600 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1601 1602 SmallVector<Register, 8> RemergeParts; 1603 for (int I = 0; I != NumDst; ++I) { 1604 for (int J = 0; J < PartsPerRemerge; ++J) { 1605 const int Idx = I * PartsPerRemerge + J; 1606 RemergeParts.emplace_back(Parts[Idx]); 1607 } 1608 1609 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1610 RemergeParts.clear(); 1611 } 1612 } 1613 1614 MI.eraseFromParent(); 1615 return Legalized; 1616 } 1617 1618 LegalizerHelper::LegalizeResult 1619 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1620 LLT WideTy) { 1621 Register DstReg = MI.getOperand(0).getReg(); 1622 Register SrcReg = MI.getOperand(1).getReg(); 1623 LLT SrcTy = MRI.getType(SrcReg); 1624 1625 LLT DstTy = MRI.getType(DstReg); 1626 unsigned Offset = MI.getOperand(2).getImm(); 1627 1628 if (TypeIdx == 0) { 1629 if (SrcTy.isVector() || DstTy.isVector()) 1630 return UnableToLegalize; 1631 1632 SrcOp Src(SrcReg); 1633 if (SrcTy.isPointer()) { 1634 // Extracts from pointers can be handled only if they are really just 1635 // simple integers. 1636 const DataLayout &DL = MIRBuilder.getDataLayout(); 1637 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1638 return UnableToLegalize; 1639 1640 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1641 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1642 SrcTy = SrcAsIntTy; 1643 } 1644 1645 if (DstTy.isPointer()) 1646 return UnableToLegalize; 1647 1648 if (Offset == 0) { 1649 // Avoid a shift in the degenerate case. 1650 MIRBuilder.buildTrunc(DstReg, 1651 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1652 MI.eraseFromParent(); 1653 return Legalized; 1654 } 1655 1656 // Do a shift in the source type. 1657 LLT ShiftTy = SrcTy; 1658 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1659 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1660 ShiftTy = WideTy; 1661 } 1662 1663 auto LShr = MIRBuilder.buildLShr( 1664 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1665 MIRBuilder.buildTrunc(DstReg, LShr); 1666 MI.eraseFromParent(); 1667 return Legalized; 1668 } 1669 1670 if (SrcTy.isScalar()) { 1671 Observer.changingInstr(MI); 1672 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1673 Observer.changedInstr(MI); 1674 return Legalized; 1675 } 1676 1677 if (!SrcTy.isVector()) 1678 return UnableToLegalize; 1679 1680 if (DstTy != SrcTy.getElementType()) 1681 return UnableToLegalize; 1682 1683 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1684 return UnableToLegalize; 1685 1686 Observer.changingInstr(MI); 1687 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1688 1689 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1690 Offset); 1691 widenScalarDst(MI, WideTy.getScalarType(), 0); 1692 Observer.changedInstr(MI); 1693 return Legalized; 1694 } 1695 1696 LegalizerHelper::LegalizeResult 1697 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1698 LLT WideTy) { 1699 if (TypeIdx != 0 || WideTy.isVector()) 1700 return UnableToLegalize; 1701 Observer.changingInstr(MI); 1702 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1703 widenScalarDst(MI, WideTy); 1704 Observer.changedInstr(MI); 1705 return Legalized; 1706 } 1707 1708 LegalizerHelper::LegalizeResult 1709 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1710 LLT WideTy) { 1711 if (TypeIdx == 1) 1712 return UnableToLegalize; // TODO 1713 1714 unsigned Opcode; 1715 unsigned ExtOpcode; 1716 Optional<Register> CarryIn = None; 1717 switch (MI.getOpcode()) { 1718 default: 1719 llvm_unreachable("Unexpected opcode!"); 1720 case TargetOpcode::G_SADDO: 1721 Opcode = TargetOpcode::G_ADD; 1722 ExtOpcode = TargetOpcode::G_SEXT; 1723 break; 1724 case TargetOpcode::G_SSUBO: 1725 Opcode = TargetOpcode::G_SUB; 1726 ExtOpcode = TargetOpcode::G_SEXT; 1727 break; 1728 case TargetOpcode::G_UADDO: 1729 Opcode = TargetOpcode::G_ADD; 1730 ExtOpcode = TargetOpcode::G_ZEXT; 1731 break; 1732 case TargetOpcode::G_USUBO: 1733 Opcode = TargetOpcode::G_SUB; 1734 ExtOpcode = TargetOpcode::G_ZEXT; 1735 break; 1736 case TargetOpcode::G_SADDE: 1737 Opcode = TargetOpcode::G_UADDE; 1738 ExtOpcode = TargetOpcode::G_SEXT; 1739 CarryIn = MI.getOperand(4).getReg(); 1740 break; 1741 case TargetOpcode::G_SSUBE: 1742 Opcode = TargetOpcode::G_USUBE; 1743 ExtOpcode = TargetOpcode::G_SEXT; 1744 CarryIn = MI.getOperand(4).getReg(); 1745 break; 1746 case TargetOpcode::G_UADDE: 1747 Opcode = TargetOpcode::G_UADDE; 1748 ExtOpcode = TargetOpcode::G_ZEXT; 1749 CarryIn = MI.getOperand(4).getReg(); 1750 break; 1751 case TargetOpcode::G_USUBE: 1752 Opcode = TargetOpcode::G_USUBE; 1753 ExtOpcode = TargetOpcode::G_ZEXT; 1754 CarryIn = MI.getOperand(4).getReg(); 1755 break; 1756 } 1757 1758 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1759 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1760 // Do the arithmetic in the larger type. 1761 Register NewOp; 1762 if (CarryIn) { 1763 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1764 NewOp = MIRBuilder 1765 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1766 {LHSExt, RHSExt, *CarryIn}) 1767 .getReg(0); 1768 } else { 1769 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1770 } 1771 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1772 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1773 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1774 // There is no overflow if the ExtOp is the same as NewOp. 1775 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1776 // Now trunc the NewOp to the original result. 1777 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1778 MI.eraseFromParent(); 1779 return Legalized; 1780 } 1781 1782 LegalizerHelper::LegalizeResult 1783 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1784 LLT WideTy) { 1785 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1786 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1787 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1788 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1789 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1790 // We can convert this to: 1791 // 1. Any extend iN to iM 1792 // 2. SHL by M-N 1793 // 3. [US][ADD|SUB|SHL]SAT 1794 // 4. L/ASHR by M-N 1795 // 1796 // It may be more efficient to lower this to a min and a max operation in 1797 // the higher precision arithmetic if the promoted operation isn't legal, 1798 // but this decision is up to the target's lowering request. 1799 Register DstReg = MI.getOperand(0).getReg(); 1800 1801 unsigned NewBits = WideTy.getScalarSizeInBits(); 1802 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1803 1804 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1805 // must not left shift the RHS to preserve the shift amount. 1806 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1807 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1808 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1809 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1810 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1811 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1812 1813 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1814 {ShiftL, ShiftR}, MI.getFlags()); 1815 1816 // Use a shift that will preserve the number of sign bits when the trunc is 1817 // folded away. 1818 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1819 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1820 1821 MIRBuilder.buildTrunc(DstReg, Result); 1822 MI.eraseFromParent(); 1823 return Legalized; 1824 } 1825 1826 LegalizerHelper::LegalizeResult 1827 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1828 switch (MI.getOpcode()) { 1829 default: 1830 return UnableToLegalize; 1831 case TargetOpcode::G_EXTRACT: 1832 return widenScalarExtract(MI, TypeIdx, WideTy); 1833 case TargetOpcode::G_INSERT: 1834 return widenScalarInsert(MI, TypeIdx, WideTy); 1835 case TargetOpcode::G_MERGE_VALUES: 1836 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1837 case TargetOpcode::G_UNMERGE_VALUES: 1838 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1839 case TargetOpcode::G_SADDO: 1840 case TargetOpcode::G_SSUBO: 1841 case TargetOpcode::G_UADDO: 1842 case TargetOpcode::G_USUBO: 1843 case TargetOpcode::G_SADDE: 1844 case TargetOpcode::G_SSUBE: 1845 case TargetOpcode::G_UADDE: 1846 case TargetOpcode::G_USUBE: 1847 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 1848 case TargetOpcode::G_SADDSAT: 1849 case TargetOpcode::G_SSUBSAT: 1850 case TargetOpcode::G_SSHLSAT: 1851 case TargetOpcode::G_UADDSAT: 1852 case TargetOpcode::G_USUBSAT: 1853 case TargetOpcode::G_USHLSAT: 1854 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1855 case TargetOpcode::G_CTTZ: 1856 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1857 case TargetOpcode::G_CTLZ: 1858 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1859 case TargetOpcode::G_CTPOP: { 1860 if (TypeIdx == 0) { 1861 Observer.changingInstr(MI); 1862 widenScalarDst(MI, WideTy, 0); 1863 Observer.changedInstr(MI); 1864 return Legalized; 1865 } 1866 1867 Register SrcReg = MI.getOperand(1).getReg(); 1868 1869 // First ZEXT the input. 1870 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1871 LLT CurTy = MRI.getType(SrcReg); 1872 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1873 // The count is the same in the larger type except if the original 1874 // value was zero. This can be handled by setting the bit just off 1875 // the top of the original type. 1876 auto TopBit = 1877 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1878 MIBSrc = MIRBuilder.buildOr( 1879 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1880 } 1881 1882 // Perform the operation at the larger size. 1883 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1884 // This is already the correct result for CTPOP and CTTZs 1885 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1886 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1887 // The correct result is NewOp - (Difference in widety and current ty). 1888 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1889 MIBNewOp = MIRBuilder.buildSub( 1890 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1891 } 1892 1893 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1894 MI.eraseFromParent(); 1895 return Legalized; 1896 } 1897 case TargetOpcode::G_BSWAP: { 1898 Observer.changingInstr(MI); 1899 Register DstReg = MI.getOperand(0).getReg(); 1900 1901 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1902 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1903 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1904 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1905 1906 MI.getOperand(0).setReg(DstExt); 1907 1908 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1909 1910 LLT Ty = MRI.getType(DstReg); 1911 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1912 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1913 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1914 1915 MIRBuilder.buildTrunc(DstReg, ShrReg); 1916 Observer.changedInstr(MI); 1917 return Legalized; 1918 } 1919 case TargetOpcode::G_BITREVERSE: { 1920 Observer.changingInstr(MI); 1921 1922 Register DstReg = MI.getOperand(0).getReg(); 1923 LLT Ty = MRI.getType(DstReg); 1924 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1925 1926 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1927 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1928 MI.getOperand(0).setReg(DstExt); 1929 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1930 1931 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1932 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1933 MIRBuilder.buildTrunc(DstReg, Shift); 1934 Observer.changedInstr(MI); 1935 return Legalized; 1936 } 1937 case TargetOpcode::G_FREEZE: 1938 Observer.changingInstr(MI); 1939 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1940 widenScalarDst(MI, WideTy); 1941 Observer.changedInstr(MI); 1942 return Legalized; 1943 1944 case TargetOpcode::G_ADD: 1945 case TargetOpcode::G_AND: 1946 case TargetOpcode::G_MUL: 1947 case TargetOpcode::G_OR: 1948 case TargetOpcode::G_XOR: 1949 case TargetOpcode::G_SUB: 1950 // Perform operation at larger width (any extension is fines here, high bits 1951 // don't affect the result) and then truncate the result back to the 1952 // original type. 1953 Observer.changingInstr(MI); 1954 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1955 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1956 widenScalarDst(MI, WideTy); 1957 Observer.changedInstr(MI); 1958 return Legalized; 1959 1960 case TargetOpcode::G_SHL: 1961 Observer.changingInstr(MI); 1962 1963 if (TypeIdx == 0) { 1964 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1965 widenScalarDst(MI, WideTy); 1966 } else { 1967 assert(TypeIdx == 1); 1968 // The "number of bits to shift" operand must preserve its value as an 1969 // unsigned integer: 1970 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1971 } 1972 1973 Observer.changedInstr(MI); 1974 return Legalized; 1975 1976 case TargetOpcode::G_SDIV: 1977 case TargetOpcode::G_SREM: 1978 case TargetOpcode::G_SMIN: 1979 case TargetOpcode::G_SMAX: 1980 Observer.changingInstr(MI); 1981 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1982 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1983 widenScalarDst(MI, WideTy); 1984 Observer.changedInstr(MI); 1985 return Legalized; 1986 1987 case TargetOpcode::G_ASHR: 1988 case TargetOpcode::G_LSHR: 1989 Observer.changingInstr(MI); 1990 1991 if (TypeIdx == 0) { 1992 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1993 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1994 1995 widenScalarSrc(MI, WideTy, 1, CvtOp); 1996 widenScalarDst(MI, WideTy); 1997 } else { 1998 assert(TypeIdx == 1); 1999 // The "number of bits to shift" operand must preserve its value as an 2000 // unsigned integer: 2001 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2002 } 2003 2004 Observer.changedInstr(MI); 2005 return Legalized; 2006 case TargetOpcode::G_UDIV: 2007 case TargetOpcode::G_UREM: 2008 case TargetOpcode::G_UMIN: 2009 case TargetOpcode::G_UMAX: 2010 Observer.changingInstr(MI); 2011 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2012 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2013 widenScalarDst(MI, WideTy); 2014 Observer.changedInstr(MI); 2015 return Legalized; 2016 2017 case TargetOpcode::G_SELECT: 2018 Observer.changingInstr(MI); 2019 if (TypeIdx == 0) { 2020 // Perform operation at larger width (any extension is fine here, high 2021 // bits don't affect the result) and then truncate the result back to the 2022 // original type. 2023 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2024 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2025 widenScalarDst(MI, WideTy); 2026 } else { 2027 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2028 // Explicit extension is required here since high bits affect the result. 2029 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2030 } 2031 Observer.changedInstr(MI); 2032 return Legalized; 2033 2034 case TargetOpcode::G_FPTOSI: 2035 case TargetOpcode::G_FPTOUI: 2036 Observer.changingInstr(MI); 2037 2038 if (TypeIdx == 0) 2039 widenScalarDst(MI, WideTy); 2040 else 2041 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2042 2043 Observer.changedInstr(MI); 2044 return Legalized; 2045 case TargetOpcode::G_SITOFP: 2046 Observer.changingInstr(MI); 2047 2048 if (TypeIdx == 0) 2049 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2050 else 2051 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2052 2053 Observer.changedInstr(MI); 2054 return Legalized; 2055 case TargetOpcode::G_UITOFP: 2056 Observer.changingInstr(MI); 2057 2058 if (TypeIdx == 0) 2059 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2060 else 2061 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2062 2063 Observer.changedInstr(MI); 2064 return Legalized; 2065 case TargetOpcode::G_LOAD: 2066 case TargetOpcode::G_SEXTLOAD: 2067 case TargetOpcode::G_ZEXTLOAD: 2068 Observer.changingInstr(MI); 2069 widenScalarDst(MI, WideTy); 2070 Observer.changedInstr(MI); 2071 return Legalized; 2072 2073 case TargetOpcode::G_STORE: { 2074 if (TypeIdx != 0) 2075 return UnableToLegalize; 2076 2077 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2078 if (!Ty.isScalar()) 2079 return UnableToLegalize; 2080 2081 Observer.changingInstr(MI); 2082 2083 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2084 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2085 widenScalarSrc(MI, WideTy, 0, ExtType); 2086 2087 Observer.changedInstr(MI); 2088 return Legalized; 2089 } 2090 case TargetOpcode::G_CONSTANT: { 2091 MachineOperand &SrcMO = MI.getOperand(1); 2092 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2093 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2094 MRI.getType(MI.getOperand(0).getReg())); 2095 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2096 ExtOpc == TargetOpcode::G_ANYEXT) && 2097 "Illegal Extend"); 2098 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2099 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2100 ? SrcVal.sext(WideTy.getSizeInBits()) 2101 : SrcVal.zext(WideTy.getSizeInBits()); 2102 Observer.changingInstr(MI); 2103 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2104 2105 widenScalarDst(MI, WideTy); 2106 Observer.changedInstr(MI); 2107 return Legalized; 2108 } 2109 case TargetOpcode::G_FCONSTANT: { 2110 MachineOperand &SrcMO = MI.getOperand(1); 2111 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2112 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2113 bool LosesInfo; 2114 switch (WideTy.getSizeInBits()) { 2115 case 32: 2116 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2117 &LosesInfo); 2118 break; 2119 case 64: 2120 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2121 &LosesInfo); 2122 break; 2123 default: 2124 return UnableToLegalize; 2125 } 2126 2127 assert(!LosesInfo && "extend should always be lossless"); 2128 2129 Observer.changingInstr(MI); 2130 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2131 2132 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2133 Observer.changedInstr(MI); 2134 return Legalized; 2135 } 2136 case TargetOpcode::G_IMPLICIT_DEF: { 2137 Observer.changingInstr(MI); 2138 widenScalarDst(MI, WideTy); 2139 Observer.changedInstr(MI); 2140 return Legalized; 2141 } 2142 case TargetOpcode::G_BRCOND: 2143 Observer.changingInstr(MI); 2144 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2145 Observer.changedInstr(MI); 2146 return Legalized; 2147 2148 case TargetOpcode::G_FCMP: 2149 Observer.changingInstr(MI); 2150 if (TypeIdx == 0) 2151 widenScalarDst(MI, WideTy); 2152 else { 2153 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2154 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2155 } 2156 Observer.changedInstr(MI); 2157 return Legalized; 2158 2159 case TargetOpcode::G_ICMP: 2160 Observer.changingInstr(MI); 2161 if (TypeIdx == 0) 2162 widenScalarDst(MI, WideTy); 2163 else { 2164 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2165 MI.getOperand(1).getPredicate())) 2166 ? TargetOpcode::G_SEXT 2167 : TargetOpcode::G_ZEXT; 2168 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2169 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2170 } 2171 Observer.changedInstr(MI); 2172 return Legalized; 2173 2174 case TargetOpcode::G_PTR_ADD: 2175 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2176 Observer.changingInstr(MI); 2177 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2178 Observer.changedInstr(MI); 2179 return Legalized; 2180 2181 case TargetOpcode::G_PHI: { 2182 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2183 2184 Observer.changingInstr(MI); 2185 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2186 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2187 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2188 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2189 } 2190 2191 MachineBasicBlock &MBB = *MI.getParent(); 2192 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2193 widenScalarDst(MI, WideTy); 2194 Observer.changedInstr(MI); 2195 return Legalized; 2196 } 2197 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2198 if (TypeIdx == 0) { 2199 Register VecReg = MI.getOperand(1).getReg(); 2200 LLT VecTy = MRI.getType(VecReg); 2201 Observer.changingInstr(MI); 2202 2203 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2204 WideTy.getSizeInBits()), 2205 1, TargetOpcode::G_SEXT); 2206 2207 widenScalarDst(MI, WideTy, 0); 2208 Observer.changedInstr(MI); 2209 return Legalized; 2210 } 2211 2212 if (TypeIdx != 2) 2213 return UnableToLegalize; 2214 Observer.changingInstr(MI); 2215 // TODO: Probably should be zext 2216 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2217 Observer.changedInstr(MI); 2218 return Legalized; 2219 } 2220 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2221 if (TypeIdx == 1) { 2222 Observer.changingInstr(MI); 2223 2224 Register VecReg = MI.getOperand(1).getReg(); 2225 LLT VecTy = MRI.getType(VecReg); 2226 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2227 2228 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2229 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2230 widenScalarDst(MI, WideVecTy, 0); 2231 Observer.changedInstr(MI); 2232 return Legalized; 2233 } 2234 2235 if (TypeIdx == 2) { 2236 Observer.changingInstr(MI); 2237 // TODO: Probably should be zext 2238 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2239 Observer.changedInstr(MI); 2240 return Legalized; 2241 } 2242 2243 return UnableToLegalize; 2244 } 2245 case TargetOpcode::G_FADD: 2246 case TargetOpcode::G_FMUL: 2247 case TargetOpcode::G_FSUB: 2248 case TargetOpcode::G_FMA: 2249 case TargetOpcode::G_FMAD: 2250 case TargetOpcode::G_FNEG: 2251 case TargetOpcode::G_FABS: 2252 case TargetOpcode::G_FCANONICALIZE: 2253 case TargetOpcode::G_FMINNUM: 2254 case TargetOpcode::G_FMAXNUM: 2255 case TargetOpcode::G_FMINNUM_IEEE: 2256 case TargetOpcode::G_FMAXNUM_IEEE: 2257 case TargetOpcode::G_FMINIMUM: 2258 case TargetOpcode::G_FMAXIMUM: 2259 case TargetOpcode::G_FDIV: 2260 case TargetOpcode::G_FREM: 2261 case TargetOpcode::G_FCEIL: 2262 case TargetOpcode::G_FFLOOR: 2263 case TargetOpcode::G_FCOS: 2264 case TargetOpcode::G_FSIN: 2265 case TargetOpcode::G_FLOG10: 2266 case TargetOpcode::G_FLOG: 2267 case TargetOpcode::G_FLOG2: 2268 case TargetOpcode::G_FRINT: 2269 case TargetOpcode::G_FNEARBYINT: 2270 case TargetOpcode::G_FSQRT: 2271 case TargetOpcode::G_FEXP: 2272 case TargetOpcode::G_FEXP2: 2273 case TargetOpcode::G_FPOW: 2274 case TargetOpcode::G_INTRINSIC_TRUNC: 2275 case TargetOpcode::G_INTRINSIC_ROUND: 2276 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2277 assert(TypeIdx == 0); 2278 Observer.changingInstr(MI); 2279 2280 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2281 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2282 2283 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2284 Observer.changedInstr(MI); 2285 return Legalized; 2286 case TargetOpcode::G_FPOWI: { 2287 if (TypeIdx != 0) 2288 return UnableToLegalize; 2289 Observer.changingInstr(MI); 2290 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2291 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2292 Observer.changedInstr(MI); 2293 return Legalized; 2294 } 2295 case TargetOpcode::G_INTTOPTR: 2296 if (TypeIdx != 1) 2297 return UnableToLegalize; 2298 2299 Observer.changingInstr(MI); 2300 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2301 Observer.changedInstr(MI); 2302 return Legalized; 2303 case TargetOpcode::G_PTRTOINT: 2304 if (TypeIdx != 0) 2305 return UnableToLegalize; 2306 2307 Observer.changingInstr(MI); 2308 widenScalarDst(MI, WideTy, 0); 2309 Observer.changedInstr(MI); 2310 return Legalized; 2311 case TargetOpcode::G_BUILD_VECTOR: { 2312 Observer.changingInstr(MI); 2313 2314 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2315 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2316 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2317 2318 // Avoid changing the result vector type if the source element type was 2319 // requested. 2320 if (TypeIdx == 1) { 2321 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2322 } else { 2323 widenScalarDst(MI, WideTy, 0); 2324 } 2325 2326 Observer.changedInstr(MI); 2327 return Legalized; 2328 } 2329 case TargetOpcode::G_SEXT_INREG: 2330 if (TypeIdx != 0) 2331 return UnableToLegalize; 2332 2333 Observer.changingInstr(MI); 2334 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2335 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2336 Observer.changedInstr(MI); 2337 return Legalized; 2338 case TargetOpcode::G_PTRMASK: { 2339 if (TypeIdx != 1) 2340 return UnableToLegalize; 2341 Observer.changingInstr(MI); 2342 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2343 Observer.changedInstr(MI); 2344 return Legalized; 2345 } 2346 } 2347 } 2348 2349 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2350 MachineIRBuilder &B, Register Src, LLT Ty) { 2351 auto Unmerge = B.buildUnmerge(Ty, Src); 2352 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2353 Pieces.push_back(Unmerge.getReg(I)); 2354 } 2355 2356 LegalizerHelper::LegalizeResult 2357 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2358 Register Dst = MI.getOperand(0).getReg(); 2359 Register Src = MI.getOperand(1).getReg(); 2360 LLT DstTy = MRI.getType(Dst); 2361 LLT SrcTy = MRI.getType(Src); 2362 2363 if (SrcTy.isVector()) { 2364 LLT SrcEltTy = SrcTy.getElementType(); 2365 SmallVector<Register, 8> SrcRegs; 2366 2367 if (DstTy.isVector()) { 2368 int NumDstElt = DstTy.getNumElements(); 2369 int NumSrcElt = SrcTy.getNumElements(); 2370 2371 LLT DstEltTy = DstTy.getElementType(); 2372 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2373 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2374 2375 // If there's an element size mismatch, insert intermediate casts to match 2376 // the result element type. 2377 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2378 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2379 // 2380 // => 2381 // 2382 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2383 // %3:_(<2 x s8>) = G_BITCAST %2 2384 // %4:_(<2 x s8>) = G_BITCAST %3 2385 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2386 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2387 SrcPartTy = SrcEltTy; 2388 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2389 // 2390 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2391 // 2392 // => 2393 // 2394 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2395 // %3:_(s16) = G_BITCAST %2 2396 // %4:_(s16) = G_BITCAST %3 2397 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2398 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2399 DstCastTy = DstEltTy; 2400 } 2401 2402 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2403 for (Register &SrcReg : SrcRegs) 2404 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2405 } else 2406 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2407 2408 MIRBuilder.buildMerge(Dst, SrcRegs); 2409 MI.eraseFromParent(); 2410 return Legalized; 2411 } 2412 2413 if (DstTy.isVector()) { 2414 SmallVector<Register, 8> SrcRegs; 2415 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2416 MIRBuilder.buildMerge(Dst, SrcRegs); 2417 MI.eraseFromParent(); 2418 return Legalized; 2419 } 2420 2421 return UnableToLegalize; 2422 } 2423 2424 /// Figure out the bit offset into a register when coercing a vector index for 2425 /// the wide element type. This is only for the case when promoting vector to 2426 /// one with larger elements. 2427 // 2428 /// 2429 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2430 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2431 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2432 Register Idx, 2433 unsigned NewEltSize, 2434 unsigned OldEltSize) { 2435 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2436 LLT IdxTy = B.getMRI()->getType(Idx); 2437 2438 // Now figure out the amount we need to shift to get the target bits. 2439 auto OffsetMask = B.buildConstant( 2440 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2441 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2442 return B.buildShl(IdxTy, OffsetIdx, 2443 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2444 } 2445 2446 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2447 /// is casting to a vector with a smaller element size, perform multiple element 2448 /// extracts and merge the results. If this is coercing to a vector with larger 2449 /// elements, index the bitcasted vector and extract the target element with bit 2450 /// operations. This is intended to force the indexing in the native register 2451 /// size for architectures that can dynamically index the register file. 2452 LegalizerHelper::LegalizeResult 2453 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2454 LLT CastTy) { 2455 if (TypeIdx != 1) 2456 return UnableToLegalize; 2457 2458 Register Dst = MI.getOperand(0).getReg(); 2459 Register SrcVec = MI.getOperand(1).getReg(); 2460 Register Idx = MI.getOperand(2).getReg(); 2461 LLT SrcVecTy = MRI.getType(SrcVec); 2462 LLT IdxTy = MRI.getType(Idx); 2463 2464 LLT SrcEltTy = SrcVecTy.getElementType(); 2465 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2466 unsigned OldNumElts = SrcVecTy.getNumElements(); 2467 2468 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2469 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2470 2471 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2472 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2473 if (NewNumElts > OldNumElts) { 2474 // Decreasing the vector element size 2475 // 2476 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2477 // => 2478 // v4i32:castx = bitcast x:v2i64 2479 // 2480 // i64 = bitcast 2481 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2482 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2483 // 2484 if (NewNumElts % OldNumElts != 0) 2485 return UnableToLegalize; 2486 2487 // Type of the intermediate result vector. 2488 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2489 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2490 2491 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2492 2493 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2494 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2495 2496 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2497 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2498 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2499 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2500 NewOps[I] = Elt.getReg(0); 2501 } 2502 2503 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2504 MIRBuilder.buildBitcast(Dst, NewVec); 2505 MI.eraseFromParent(); 2506 return Legalized; 2507 } 2508 2509 if (NewNumElts < OldNumElts) { 2510 if (NewEltSize % OldEltSize != 0) 2511 return UnableToLegalize; 2512 2513 // This only depends on powers of 2 because we use bit tricks to figure out 2514 // the bit offset we need to shift to get the target element. A general 2515 // expansion could emit division/multiply. 2516 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2517 return UnableToLegalize; 2518 2519 // Increasing the vector element size. 2520 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2521 // 2522 // => 2523 // 2524 // %cast = G_BITCAST %vec 2525 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2526 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2527 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2528 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2529 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2530 // %elt = G_TRUNC %elt_bits 2531 2532 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2533 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2534 2535 // Divide to get the index in the wider element type. 2536 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2537 2538 Register WideElt = CastVec; 2539 if (CastTy.isVector()) { 2540 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2541 ScaledIdx).getReg(0); 2542 } 2543 2544 // Compute the bit offset into the register of the target element. 2545 Register OffsetBits = getBitcastWiderVectorElementOffset( 2546 MIRBuilder, Idx, NewEltSize, OldEltSize); 2547 2548 // Shift the wide element to get the target element. 2549 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2550 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2551 MI.eraseFromParent(); 2552 return Legalized; 2553 } 2554 2555 return UnableToLegalize; 2556 } 2557 2558 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2559 /// TargetReg, while preserving other bits in \p TargetReg. 2560 /// 2561 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2562 static Register buildBitFieldInsert(MachineIRBuilder &B, 2563 Register TargetReg, Register InsertReg, 2564 Register OffsetBits) { 2565 LLT TargetTy = B.getMRI()->getType(TargetReg); 2566 LLT InsertTy = B.getMRI()->getType(InsertReg); 2567 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2568 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2569 2570 // Produce a bitmask of the value to insert 2571 auto EltMask = B.buildConstant( 2572 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2573 InsertTy.getSizeInBits())); 2574 // Shift it into position 2575 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2576 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2577 2578 // Clear out the bits in the wide element 2579 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2580 2581 // The value to insert has all zeros already, so stick it into the masked 2582 // wide element. 2583 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2584 } 2585 2586 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2587 /// is increasing the element size, perform the indexing in the target element 2588 /// type, and use bit operations to insert at the element position. This is 2589 /// intended for architectures that can dynamically index the register file and 2590 /// want to force indexing in the native register size. 2591 LegalizerHelper::LegalizeResult 2592 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2593 LLT CastTy) { 2594 if (TypeIdx != 0) 2595 return UnableToLegalize; 2596 2597 Register Dst = MI.getOperand(0).getReg(); 2598 Register SrcVec = MI.getOperand(1).getReg(); 2599 Register Val = MI.getOperand(2).getReg(); 2600 Register Idx = MI.getOperand(3).getReg(); 2601 2602 LLT VecTy = MRI.getType(Dst); 2603 LLT IdxTy = MRI.getType(Idx); 2604 2605 LLT VecEltTy = VecTy.getElementType(); 2606 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2607 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2608 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2609 2610 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2611 unsigned OldNumElts = VecTy.getNumElements(); 2612 2613 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2614 if (NewNumElts < OldNumElts) { 2615 if (NewEltSize % OldEltSize != 0) 2616 return UnableToLegalize; 2617 2618 // This only depends on powers of 2 because we use bit tricks to figure out 2619 // the bit offset we need to shift to get the target element. A general 2620 // expansion could emit division/multiply. 2621 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2622 return UnableToLegalize; 2623 2624 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2625 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2626 2627 // Divide to get the index in the wider element type. 2628 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2629 2630 Register ExtractedElt = CastVec; 2631 if (CastTy.isVector()) { 2632 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2633 ScaledIdx).getReg(0); 2634 } 2635 2636 // Compute the bit offset into the register of the target element. 2637 Register OffsetBits = getBitcastWiderVectorElementOffset( 2638 MIRBuilder, Idx, NewEltSize, OldEltSize); 2639 2640 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2641 Val, OffsetBits); 2642 if (CastTy.isVector()) { 2643 InsertedElt = MIRBuilder.buildInsertVectorElement( 2644 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2645 } 2646 2647 MIRBuilder.buildBitcast(Dst, InsertedElt); 2648 MI.eraseFromParent(); 2649 return Legalized; 2650 } 2651 2652 return UnableToLegalize; 2653 } 2654 2655 LegalizerHelper::LegalizeResult 2656 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2657 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2658 Register DstReg = MI.getOperand(0).getReg(); 2659 Register PtrReg = MI.getOperand(1).getReg(); 2660 LLT DstTy = MRI.getType(DstReg); 2661 auto &MMO = **MI.memoperands_begin(); 2662 2663 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2664 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2665 // This load needs splitting into power of 2 sized loads. 2666 if (DstTy.isVector()) 2667 return UnableToLegalize; 2668 if (isPowerOf2_32(DstTy.getSizeInBits())) 2669 return UnableToLegalize; // Don't know what we're being asked to do. 2670 2671 // Our strategy here is to generate anyextending loads for the smaller 2672 // types up to next power-2 result type, and then combine the two larger 2673 // result values together, before truncating back down to the non-pow-2 2674 // type. 2675 // E.g. v1 = i24 load => 2676 // v2 = i32 zextload (2 byte) 2677 // v3 = i32 load (1 byte) 2678 // v4 = i32 shl v3, 16 2679 // v5 = i32 or v4, v2 2680 // v1 = i24 trunc v5 2681 // By doing this we generate the correct truncate which should get 2682 // combined away as an artifact with a matching extend. 2683 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2684 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2685 2686 MachineFunction &MF = MIRBuilder.getMF(); 2687 MachineMemOperand *LargeMMO = 2688 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2689 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2690 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2691 2692 LLT PtrTy = MRI.getType(PtrReg); 2693 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2694 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2695 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2696 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2697 auto LargeLoad = MIRBuilder.buildLoadInstr( 2698 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2699 2700 auto OffsetCst = MIRBuilder.buildConstant( 2701 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2702 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2703 auto SmallPtr = 2704 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2705 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2706 *SmallMMO); 2707 2708 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2709 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2710 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2711 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2712 MI.eraseFromParent(); 2713 return Legalized; 2714 } 2715 2716 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2717 MI.eraseFromParent(); 2718 return Legalized; 2719 } 2720 2721 if (DstTy.isScalar()) { 2722 Register TmpReg = 2723 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2724 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2725 switch (MI.getOpcode()) { 2726 default: 2727 llvm_unreachable("Unexpected opcode"); 2728 case TargetOpcode::G_LOAD: 2729 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2730 break; 2731 case TargetOpcode::G_SEXTLOAD: 2732 MIRBuilder.buildSExt(DstReg, TmpReg); 2733 break; 2734 case TargetOpcode::G_ZEXTLOAD: 2735 MIRBuilder.buildZExt(DstReg, TmpReg); 2736 break; 2737 } 2738 2739 MI.eraseFromParent(); 2740 return Legalized; 2741 } 2742 2743 return UnableToLegalize; 2744 } 2745 2746 LegalizerHelper::LegalizeResult 2747 LegalizerHelper::lowerStore(MachineInstr &MI) { 2748 // Lower a non-power of 2 store into multiple pow-2 stores. 2749 // E.g. split an i24 store into an i16 store + i8 store. 2750 // We do this by first extending the stored value to the next largest power 2751 // of 2 type, and then using truncating stores to store the components. 2752 // By doing this, likewise with G_LOAD, generate an extend that can be 2753 // artifact-combined away instead of leaving behind extracts. 2754 Register SrcReg = MI.getOperand(0).getReg(); 2755 Register PtrReg = MI.getOperand(1).getReg(); 2756 LLT SrcTy = MRI.getType(SrcReg); 2757 MachineMemOperand &MMO = **MI.memoperands_begin(); 2758 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2759 return UnableToLegalize; 2760 if (SrcTy.isVector()) 2761 return UnableToLegalize; 2762 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2763 return UnableToLegalize; // Don't know what we're being asked to do. 2764 2765 // Extend to the next pow-2. 2766 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2767 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2768 2769 // Obtain the smaller value by shifting away the larger value. 2770 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2771 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2772 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2773 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2774 2775 // Generate the PtrAdd and truncating stores. 2776 LLT PtrTy = MRI.getType(PtrReg); 2777 auto OffsetCst = MIRBuilder.buildConstant( 2778 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2779 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2780 auto SmallPtr = 2781 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2782 2783 MachineFunction &MF = MIRBuilder.getMF(); 2784 MachineMemOperand *LargeMMO = 2785 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2786 MachineMemOperand *SmallMMO = 2787 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2788 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2789 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2790 MI.eraseFromParent(); 2791 return Legalized; 2792 } 2793 2794 LegalizerHelper::LegalizeResult 2795 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2796 switch (MI.getOpcode()) { 2797 case TargetOpcode::G_LOAD: { 2798 if (TypeIdx != 0) 2799 return UnableToLegalize; 2800 2801 Observer.changingInstr(MI); 2802 bitcastDst(MI, CastTy, 0); 2803 Observer.changedInstr(MI); 2804 return Legalized; 2805 } 2806 case TargetOpcode::G_STORE: { 2807 if (TypeIdx != 0) 2808 return UnableToLegalize; 2809 2810 Observer.changingInstr(MI); 2811 bitcastSrc(MI, CastTy, 0); 2812 Observer.changedInstr(MI); 2813 return Legalized; 2814 } 2815 case TargetOpcode::G_SELECT: { 2816 if (TypeIdx != 0) 2817 return UnableToLegalize; 2818 2819 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2820 LLVM_DEBUG( 2821 dbgs() << "bitcast action not implemented for vector select\n"); 2822 return UnableToLegalize; 2823 } 2824 2825 Observer.changingInstr(MI); 2826 bitcastSrc(MI, CastTy, 2); 2827 bitcastSrc(MI, CastTy, 3); 2828 bitcastDst(MI, CastTy, 0); 2829 Observer.changedInstr(MI); 2830 return Legalized; 2831 } 2832 case TargetOpcode::G_AND: 2833 case TargetOpcode::G_OR: 2834 case TargetOpcode::G_XOR: { 2835 Observer.changingInstr(MI); 2836 bitcastSrc(MI, CastTy, 1); 2837 bitcastSrc(MI, CastTy, 2); 2838 bitcastDst(MI, CastTy, 0); 2839 Observer.changedInstr(MI); 2840 return Legalized; 2841 } 2842 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2843 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2844 case TargetOpcode::G_INSERT_VECTOR_ELT: 2845 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2846 default: 2847 return UnableToLegalize; 2848 } 2849 } 2850 2851 // Legalize an instruction by changing the opcode in place. 2852 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2853 Observer.changingInstr(MI); 2854 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2855 Observer.changedInstr(MI); 2856 } 2857 2858 LegalizerHelper::LegalizeResult 2859 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2860 using namespace TargetOpcode; 2861 2862 switch(MI.getOpcode()) { 2863 default: 2864 return UnableToLegalize; 2865 case TargetOpcode::G_BITCAST: 2866 return lowerBitcast(MI); 2867 case TargetOpcode::G_SREM: 2868 case TargetOpcode::G_UREM: { 2869 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2870 auto Quot = 2871 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2872 {MI.getOperand(1), MI.getOperand(2)}); 2873 2874 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2875 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2876 MI.eraseFromParent(); 2877 return Legalized; 2878 } 2879 case TargetOpcode::G_SADDO: 2880 case TargetOpcode::G_SSUBO: 2881 return lowerSADDO_SSUBO(MI); 2882 case TargetOpcode::G_UMULH: 2883 case TargetOpcode::G_SMULH: 2884 return lowerSMULH_UMULH(MI); 2885 case TargetOpcode::G_SMULO: 2886 case TargetOpcode::G_UMULO: { 2887 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2888 // result. 2889 Register Res = MI.getOperand(0).getReg(); 2890 Register Overflow = MI.getOperand(1).getReg(); 2891 Register LHS = MI.getOperand(2).getReg(); 2892 Register RHS = MI.getOperand(3).getReg(); 2893 LLT Ty = MRI.getType(Res); 2894 2895 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2896 ? TargetOpcode::G_SMULH 2897 : TargetOpcode::G_UMULH; 2898 2899 Observer.changingInstr(MI); 2900 const auto &TII = MIRBuilder.getTII(); 2901 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2902 MI.RemoveOperand(1); 2903 Observer.changedInstr(MI); 2904 2905 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2906 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2907 2908 // Move insert point forward so we can use the Res register if needed. 2909 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2910 2911 // For *signed* multiply, overflow is detected by checking: 2912 // (hi != (lo >> bitwidth-1)) 2913 if (Opcode == TargetOpcode::G_SMULH) { 2914 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2915 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2916 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2917 } else { 2918 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2919 } 2920 return Legalized; 2921 } 2922 case TargetOpcode::G_FNEG: { 2923 Register Res = MI.getOperand(0).getReg(); 2924 LLT Ty = MRI.getType(Res); 2925 2926 // TODO: Handle vector types once we are able to 2927 // represent them. 2928 if (Ty.isVector()) 2929 return UnableToLegalize; 2930 auto SignMask = 2931 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 2932 Register SubByReg = MI.getOperand(1).getReg(); 2933 MIRBuilder.buildXor(Res, SubByReg, SignMask); 2934 MI.eraseFromParent(); 2935 return Legalized; 2936 } 2937 case TargetOpcode::G_FSUB: { 2938 Register Res = MI.getOperand(0).getReg(); 2939 LLT Ty = MRI.getType(Res); 2940 2941 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2942 // First, check if G_FNEG is marked as Lower. If so, we may 2943 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2944 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2945 return UnableToLegalize; 2946 Register LHS = MI.getOperand(1).getReg(); 2947 Register RHS = MI.getOperand(2).getReg(); 2948 Register Neg = MRI.createGenericVirtualRegister(Ty); 2949 MIRBuilder.buildFNeg(Neg, RHS); 2950 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2951 MI.eraseFromParent(); 2952 return Legalized; 2953 } 2954 case TargetOpcode::G_FMAD: 2955 return lowerFMad(MI); 2956 case TargetOpcode::G_FFLOOR: 2957 return lowerFFloor(MI); 2958 case TargetOpcode::G_INTRINSIC_ROUND: 2959 return lowerIntrinsicRound(MI); 2960 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2961 // Since round even is the assumed rounding mode for unconstrained FP 2962 // operations, rint and roundeven are the same operation. 2963 changeOpcode(MI, TargetOpcode::G_FRINT); 2964 return Legalized; 2965 } 2966 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2967 Register OldValRes = MI.getOperand(0).getReg(); 2968 Register SuccessRes = MI.getOperand(1).getReg(); 2969 Register Addr = MI.getOperand(2).getReg(); 2970 Register CmpVal = MI.getOperand(3).getReg(); 2971 Register NewVal = MI.getOperand(4).getReg(); 2972 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2973 **MI.memoperands_begin()); 2974 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2975 MI.eraseFromParent(); 2976 return Legalized; 2977 } 2978 case TargetOpcode::G_LOAD: 2979 case TargetOpcode::G_SEXTLOAD: 2980 case TargetOpcode::G_ZEXTLOAD: 2981 return lowerLoad(MI); 2982 case TargetOpcode::G_STORE: 2983 return lowerStore(MI); 2984 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2985 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2986 case TargetOpcode::G_CTLZ: 2987 case TargetOpcode::G_CTTZ: 2988 case TargetOpcode::G_CTPOP: 2989 return lowerBitCount(MI); 2990 case G_UADDO: { 2991 Register Res = MI.getOperand(0).getReg(); 2992 Register CarryOut = MI.getOperand(1).getReg(); 2993 Register LHS = MI.getOperand(2).getReg(); 2994 Register RHS = MI.getOperand(3).getReg(); 2995 2996 MIRBuilder.buildAdd(Res, LHS, RHS); 2997 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2998 2999 MI.eraseFromParent(); 3000 return Legalized; 3001 } 3002 case G_UADDE: { 3003 Register Res = MI.getOperand(0).getReg(); 3004 Register CarryOut = MI.getOperand(1).getReg(); 3005 Register LHS = MI.getOperand(2).getReg(); 3006 Register RHS = MI.getOperand(3).getReg(); 3007 Register CarryIn = MI.getOperand(4).getReg(); 3008 LLT Ty = MRI.getType(Res); 3009 3010 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3011 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3012 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3013 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3014 3015 MI.eraseFromParent(); 3016 return Legalized; 3017 } 3018 case G_USUBO: { 3019 Register Res = MI.getOperand(0).getReg(); 3020 Register BorrowOut = MI.getOperand(1).getReg(); 3021 Register LHS = MI.getOperand(2).getReg(); 3022 Register RHS = MI.getOperand(3).getReg(); 3023 3024 MIRBuilder.buildSub(Res, LHS, RHS); 3025 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3026 3027 MI.eraseFromParent(); 3028 return Legalized; 3029 } 3030 case G_USUBE: { 3031 Register Res = MI.getOperand(0).getReg(); 3032 Register BorrowOut = MI.getOperand(1).getReg(); 3033 Register LHS = MI.getOperand(2).getReg(); 3034 Register RHS = MI.getOperand(3).getReg(); 3035 Register BorrowIn = MI.getOperand(4).getReg(); 3036 const LLT CondTy = MRI.getType(BorrowOut); 3037 const LLT Ty = MRI.getType(Res); 3038 3039 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3040 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3041 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3042 3043 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3044 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3045 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3046 3047 MI.eraseFromParent(); 3048 return Legalized; 3049 } 3050 case G_UITOFP: 3051 return lowerUITOFP(MI); 3052 case G_SITOFP: 3053 return lowerSITOFP(MI); 3054 case G_FPTOUI: 3055 return lowerFPTOUI(MI); 3056 case G_FPTOSI: 3057 return lowerFPTOSI(MI); 3058 case G_FPTRUNC: 3059 return lowerFPTRUNC(MI); 3060 case G_FPOWI: 3061 return lowerFPOWI(MI); 3062 case G_SMIN: 3063 case G_SMAX: 3064 case G_UMIN: 3065 case G_UMAX: 3066 return lowerMinMax(MI); 3067 case G_FCOPYSIGN: 3068 return lowerFCopySign(MI); 3069 case G_FMINNUM: 3070 case G_FMAXNUM: 3071 return lowerFMinNumMaxNum(MI); 3072 case G_MERGE_VALUES: 3073 return lowerMergeValues(MI); 3074 case G_UNMERGE_VALUES: 3075 return lowerUnmergeValues(MI); 3076 case TargetOpcode::G_SEXT_INREG: { 3077 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3078 int64_t SizeInBits = MI.getOperand(2).getImm(); 3079 3080 Register DstReg = MI.getOperand(0).getReg(); 3081 Register SrcReg = MI.getOperand(1).getReg(); 3082 LLT DstTy = MRI.getType(DstReg); 3083 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3084 3085 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3086 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3087 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3088 MI.eraseFromParent(); 3089 return Legalized; 3090 } 3091 case G_EXTRACT_VECTOR_ELT: 3092 case G_INSERT_VECTOR_ELT: 3093 return lowerExtractInsertVectorElt(MI); 3094 case G_SHUFFLE_VECTOR: 3095 return lowerShuffleVector(MI); 3096 case G_DYN_STACKALLOC: 3097 return lowerDynStackAlloc(MI); 3098 case G_EXTRACT: 3099 return lowerExtract(MI); 3100 case G_INSERT: 3101 return lowerInsert(MI); 3102 case G_BSWAP: 3103 return lowerBswap(MI); 3104 case G_BITREVERSE: 3105 return lowerBitreverse(MI); 3106 case G_READ_REGISTER: 3107 case G_WRITE_REGISTER: 3108 return lowerReadWriteRegister(MI); 3109 case G_UADDSAT: 3110 case G_USUBSAT: { 3111 // Try to make a reasonable guess about which lowering strategy to use. The 3112 // target can override this with custom lowering and calling the 3113 // implementation functions. 3114 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3115 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3116 return lowerAddSubSatToMinMax(MI); 3117 return lowerAddSubSatToAddoSubo(MI); 3118 } 3119 case G_SADDSAT: 3120 case G_SSUBSAT: { 3121 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3122 3123 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3124 // since it's a shorter expansion. However, we would need to figure out the 3125 // preferred boolean type for the carry out for the query. 3126 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3127 return lowerAddSubSatToMinMax(MI); 3128 return lowerAddSubSatToAddoSubo(MI); 3129 } 3130 case G_SSHLSAT: 3131 case G_USHLSAT: 3132 return lowerShlSat(MI); 3133 case G_ABS: { 3134 // Expand %res = G_ABS %a into: 3135 // %v1 = G_ASHR %a, scalar_size-1 3136 // %v2 = G_ADD %a, %v1 3137 // %res = G_XOR %v2, %v1 3138 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3139 Register OpReg = MI.getOperand(1).getReg(); 3140 auto ShiftAmt = 3141 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3142 auto Shift = 3143 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3144 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3145 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3146 MI.eraseFromParent(); 3147 return Legalized; 3148 } 3149 case G_SELECT: 3150 return lowerSelect(MI); 3151 case G_SDIVREM: 3152 case G_UDIVREM: 3153 return lowerDIVREM(MI); 3154 } 3155 } 3156 3157 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3158 Align MinAlign) const { 3159 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3160 // datalayout for the preferred alignment. Also there should be a target hook 3161 // for this to allow targets to reduce the alignment and ignore the 3162 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3163 // the type. 3164 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3165 } 3166 3167 MachineInstrBuilder 3168 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3169 MachinePointerInfo &PtrInfo) { 3170 MachineFunction &MF = MIRBuilder.getMF(); 3171 const DataLayout &DL = MIRBuilder.getDataLayout(); 3172 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3173 3174 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3175 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3176 3177 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3178 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3179 } 3180 3181 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3182 LLT VecTy) { 3183 int64_t IdxVal; 3184 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3185 return IdxReg; 3186 3187 LLT IdxTy = B.getMRI()->getType(IdxReg); 3188 unsigned NElts = VecTy.getNumElements(); 3189 if (isPowerOf2_32(NElts)) { 3190 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3191 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3192 } 3193 3194 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3195 .getReg(0); 3196 } 3197 3198 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3199 Register Index) { 3200 LLT EltTy = VecTy.getElementType(); 3201 3202 // Calculate the element offset and add it to the pointer. 3203 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3204 assert(EltSize * 8 == EltTy.getSizeInBits() && 3205 "Converting bits to bytes lost precision"); 3206 3207 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3208 3209 LLT IdxTy = MRI.getType(Index); 3210 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3211 MIRBuilder.buildConstant(IdxTy, EltSize)); 3212 3213 LLT PtrTy = MRI.getType(VecPtr); 3214 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3215 } 3216 3217 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3218 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3219 Register DstReg = MI.getOperand(0).getReg(); 3220 LLT DstTy = MRI.getType(DstReg); 3221 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3222 3223 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3224 3225 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3226 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3227 3228 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3229 MI.eraseFromParent(); 3230 return Legalized; 3231 } 3232 3233 // Handle splitting vector operations which need to have the same number of 3234 // elements in each type index, but each type index may have a different element 3235 // type. 3236 // 3237 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3238 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3239 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3240 // 3241 // Also handles some irregular breakdown cases, e.g. 3242 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3243 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3244 // s64 = G_SHL s64, s32 3245 LegalizerHelper::LegalizeResult 3246 LegalizerHelper::fewerElementsVectorMultiEltType( 3247 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3248 if (TypeIdx != 0) 3249 return UnableToLegalize; 3250 3251 const LLT NarrowTy0 = NarrowTyArg; 3252 const unsigned NewNumElts = 3253 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3254 3255 const Register DstReg = MI.getOperand(0).getReg(); 3256 LLT DstTy = MRI.getType(DstReg); 3257 LLT LeftoverTy0; 3258 3259 // All of the operands need to have the same number of elements, so if we can 3260 // determine a type breakdown for the result type, we can for all of the 3261 // source types. 3262 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3263 if (NumParts < 0) 3264 return UnableToLegalize; 3265 3266 SmallVector<MachineInstrBuilder, 4> NewInsts; 3267 3268 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3269 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3270 3271 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3272 Register SrcReg = MI.getOperand(I).getReg(); 3273 LLT SrcTyI = MRI.getType(SrcReg); 3274 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3275 LLT LeftoverTyI; 3276 3277 // Split this operand into the requested typed registers, and any leftover 3278 // required to reproduce the original type. 3279 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3280 LeftoverRegs)) 3281 return UnableToLegalize; 3282 3283 if (I == 1) { 3284 // For the first operand, create an instruction for each part and setup 3285 // the result. 3286 for (Register PartReg : PartRegs) { 3287 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3288 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3289 .addDef(PartDstReg) 3290 .addUse(PartReg)); 3291 DstRegs.push_back(PartDstReg); 3292 } 3293 3294 for (Register LeftoverReg : LeftoverRegs) { 3295 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3296 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3297 .addDef(PartDstReg) 3298 .addUse(LeftoverReg)); 3299 LeftoverDstRegs.push_back(PartDstReg); 3300 } 3301 } else { 3302 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3303 3304 // Add the newly created operand splits to the existing instructions. The 3305 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3306 // pieces. 3307 unsigned InstCount = 0; 3308 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3309 NewInsts[InstCount++].addUse(PartRegs[J]); 3310 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3311 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3312 } 3313 3314 PartRegs.clear(); 3315 LeftoverRegs.clear(); 3316 } 3317 3318 // Insert the newly built operations and rebuild the result register. 3319 for (auto &MIB : NewInsts) 3320 MIRBuilder.insertInstr(MIB); 3321 3322 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3323 3324 MI.eraseFromParent(); 3325 return Legalized; 3326 } 3327 3328 LegalizerHelper::LegalizeResult 3329 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3330 LLT NarrowTy) { 3331 if (TypeIdx != 0) 3332 return UnableToLegalize; 3333 3334 Register DstReg = MI.getOperand(0).getReg(); 3335 Register SrcReg = MI.getOperand(1).getReg(); 3336 LLT DstTy = MRI.getType(DstReg); 3337 LLT SrcTy = MRI.getType(SrcReg); 3338 3339 LLT NarrowTy0 = NarrowTy; 3340 LLT NarrowTy1; 3341 unsigned NumParts; 3342 3343 if (NarrowTy.isVector()) { 3344 // Uneven breakdown not handled. 3345 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3346 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3347 return UnableToLegalize; 3348 3349 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3350 } else { 3351 NumParts = DstTy.getNumElements(); 3352 NarrowTy1 = SrcTy.getElementType(); 3353 } 3354 3355 SmallVector<Register, 4> SrcRegs, DstRegs; 3356 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3357 3358 for (unsigned I = 0; I < NumParts; ++I) { 3359 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3360 MachineInstr *NewInst = 3361 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3362 3363 NewInst->setFlags(MI.getFlags()); 3364 DstRegs.push_back(DstReg); 3365 } 3366 3367 if (NarrowTy.isVector()) 3368 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3369 else 3370 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3371 3372 MI.eraseFromParent(); 3373 return Legalized; 3374 } 3375 3376 LegalizerHelper::LegalizeResult 3377 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3378 LLT NarrowTy) { 3379 Register DstReg = MI.getOperand(0).getReg(); 3380 Register Src0Reg = MI.getOperand(2).getReg(); 3381 LLT DstTy = MRI.getType(DstReg); 3382 LLT SrcTy = MRI.getType(Src0Reg); 3383 3384 unsigned NumParts; 3385 LLT NarrowTy0, NarrowTy1; 3386 3387 if (TypeIdx == 0) { 3388 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3389 unsigned OldElts = DstTy.getNumElements(); 3390 3391 NarrowTy0 = NarrowTy; 3392 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3393 NarrowTy1 = NarrowTy.isVector() ? 3394 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3395 SrcTy.getElementType(); 3396 3397 } else { 3398 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3399 unsigned OldElts = SrcTy.getNumElements(); 3400 3401 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3402 NarrowTy.getNumElements(); 3403 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3404 DstTy.getScalarSizeInBits()); 3405 NarrowTy1 = NarrowTy; 3406 } 3407 3408 // FIXME: Don't know how to handle the situation where the small vectors 3409 // aren't all the same size yet. 3410 if (NarrowTy1.isVector() && 3411 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3412 return UnableToLegalize; 3413 3414 CmpInst::Predicate Pred 3415 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3416 3417 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3418 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3419 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3420 3421 for (unsigned I = 0; I < NumParts; ++I) { 3422 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3423 DstRegs.push_back(DstReg); 3424 3425 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3426 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3427 else { 3428 MachineInstr *NewCmp 3429 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3430 NewCmp->setFlags(MI.getFlags()); 3431 } 3432 } 3433 3434 if (NarrowTy1.isVector()) 3435 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3436 else 3437 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3438 3439 MI.eraseFromParent(); 3440 return Legalized; 3441 } 3442 3443 LegalizerHelper::LegalizeResult 3444 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3445 LLT NarrowTy) { 3446 Register DstReg = MI.getOperand(0).getReg(); 3447 Register CondReg = MI.getOperand(1).getReg(); 3448 3449 unsigned NumParts = 0; 3450 LLT NarrowTy0, NarrowTy1; 3451 3452 LLT DstTy = MRI.getType(DstReg); 3453 LLT CondTy = MRI.getType(CondReg); 3454 unsigned Size = DstTy.getSizeInBits(); 3455 3456 assert(TypeIdx == 0 || CondTy.isVector()); 3457 3458 if (TypeIdx == 0) { 3459 NarrowTy0 = NarrowTy; 3460 NarrowTy1 = CondTy; 3461 3462 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3463 // FIXME: Don't know how to handle the situation where the small vectors 3464 // aren't all the same size yet. 3465 if (Size % NarrowSize != 0) 3466 return UnableToLegalize; 3467 3468 NumParts = Size / NarrowSize; 3469 3470 // Need to break down the condition type 3471 if (CondTy.isVector()) { 3472 if (CondTy.getNumElements() == NumParts) 3473 NarrowTy1 = CondTy.getElementType(); 3474 else 3475 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3476 CondTy.getScalarSizeInBits()); 3477 } 3478 } else { 3479 NumParts = CondTy.getNumElements(); 3480 if (NarrowTy.isVector()) { 3481 // TODO: Handle uneven breakdown. 3482 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3483 return UnableToLegalize; 3484 3485 return UnableToLegalize; 3486 } else { 3487 NarrowTy0 = DstTy.getElementType(); 3488 NarrowTy1 = NarrowTy; 3489 } 3490 } 3491 3492 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3493 if (CondTy.isVector()) 3494 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3495 3496 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3497 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3498 3499 for (unsigned i = 0; i < NumParts; ++i) { 3500 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3501 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3502 Src1Regs[i], Src2Regs[i]); 3503 DstRegs.push_back(DstReg); 3504 } 3505 3506 if (NarrowTy0.isVector()) 3507 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3508 else 3509 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3510 3511 MI.eraseFromParent(); 3512 return Legalized; 3513 } 3514 3515 LegalizerHelper::LegalizeResult 3516 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3517 LLT NarrowTy) { 3518 const Register DstReg = MI.getOperand(0).getReg(); 3519 LLT PhiTy = MRI.getType(DstReg); 3520 LLT LeftoverTy; 3521 3522 // All of the operands need to have the same number of elements, so if we can 3523 // determine a type breakdown for the result type, we can for all of the 3524 // source types. 3525 int NumParts, NumLeftover; 3526 std::tie(NumParts, NumLeftover) 3527 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3528 if (NumParts < 0) 3529 return UnableToLegalize; 3530 3531 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3532 SmallVector<MachineInstrBuilder, 4> NewInsts; 3533 3534 const int TotalNumParts = NumParts + NumLeftover; 3535 3536 // Insert the new phis in the result block first. 3537 for (int I = 0; I != TotalNumParts; ++I) { 3538 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3539 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3540 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3541 .addDef(PartDstReg)); 3542 if (I < NumParts) 3543 DstRegs.push_back(PartDstReg); 3544 else 3545 LeftoverDstRegs.push_back(PartDstReg); 3546 } 3547 3548 MachineBasicBlock *MBB = MI.getParent(); 3549 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3550 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3551 3552 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3553 3554 // Insert code to extract the incoming values in each predecessor block. 3555 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3556 PartRegs.clear(); 3557 LeftoverRegs.clear(); 3558 3559 Register SrcReg = MI.getOperand(I).getReg(); 3560 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3561 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3562 3563 LLT Unused; 3564 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3565 LeftoverRegs)) 3566 return UnableToLegalize; 3567 3568 // Add the newly created operand splits to the existing instructions. The 3569 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3570 // pieces. 3571 for (int J = 0; J != TotalNumParts; ++J) { 3572 MachineInstrBuilder MIB = NewInsts[J]; 3573 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3574 MIB.addMBB(&OpMBB); 3575 } 3576 } 3577 3578 MI.eraseFromParent(); 3579 return Legalized; 3580 } 3581 3582 LegalizerHelper::LegalizeResult 3583 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3584 unsigned TypeIdx, 3585 LLT NarrowTy) { 3586 if (TypeIdx != 1) 3587 return UnableToLegalize; 3588 3589 const int NumDst = MI.getNumOperands() - 1; 3590 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3591 LLT SrcTy = MRI.getType(SrcReg); 3592 3593 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3594 3595 // TODO: Create sequence of extracts. 3596 if (DstTy == NarrowTy) 3597 return UnableToLegalize; 3598 3599 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3600 if (DstTy == GCDTy) { 3601 // This would just be a copy of the same unmerge. 3602 // TODO: Create extracts, pad with undef and create intermediate merges. 3603 return UnableToLegalize; 3604 } 3605 3606 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3607 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3608 const int PartsPerUnmerge = NumDst / NumUnmerge; 3609 3610 for (int I = 0; I != NumUnmerge; ++I) { 3611 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3612 3613 for (int J = 0; J != PartsPerUnmerge; ++J) 3614 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3615 MIB.addUse(Unmerge.getReg(I)); 3616 } 3617 3618 MI.eraseFromParent(); 3619 return Legalized; 3620 } 3621 3622 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3623 // a vector 3624 // 3625 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3626 // undef as necessary. 3627 // 3628 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3629 // -> <2 x s16> 3630 // 3631 // %4:_(s16) = G_IMPLICIT_DEF 3632 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3633 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3634 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3635 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3636 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3637 LegalizerHelper::LegalizeResult 3638 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3639 LLT NarrowTy) { 3640 Register DstReg = MI.getOperand(0).getReg(); 3641 LLT DstTy = MRI.getType(DstReg); 3642 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3643 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3644 3645 // Break into a common type 3646 SmallVector<Register, 16> Parts; 3647 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3648 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3649 3650 // Build the requested new merge, padding with undef. 3651 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3652 TargetOpcode::G_ANYEXT); 3653 3654 // Pack into the original result register. 3655 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3656 3657 MI.eraseFromParent(); 3658 return Legalized; 3659 } 3660 3661 LegalizerHelper::LegalizeResult 3662 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3663 unsigned TypeIdx, 3664 LLT NarrowVecTy) { 3665 Register DstReg = MI.getOperand(0).getReg(); 3666 Register SrcVec = MI.getOperand(1).getReg(); 3667 Register InsertVal; 3668 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3669 3670 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3671 if (IsInsert) 3672 InsertVal = MI.getOperand(2).getReg(); 3673 3674 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3675 3676 // TODO: Handle total scalarization case. 3677 if (!NarrowVecTy.isVector()) 3678 return UnableToLegalize; 3679 3680 LLT VecTy = MRI.getType(SrcVec); 3681 3682 // If the index is a constant, we can really break this down as you would 3683 // expect, and index into the target size pieces. 3684 int64_t IdxVal; 3685 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3686 // Avoid out of bounds indexing the pieces. 3687 if (IdxVal >= VecTy.getNumElements()) { 3688 MIRBuilder.buildUndef(DstReg); 3689 MI.eraseFromParent(); 3690 return Legalized; 3691 } 3692 3693 SmallVector<Register, 8> VecParts; 3694 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3695 3696 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3697 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3698 TargetOpcode::G_ANYEXT); 3699 3700 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3701 3702 LLT IdxTy = MRI.getType(Idx); 3703 int64_t PartIdx = IdxVal / NewNumElts; 3704 auto NewIdx = 3705 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3706 3707 if (IsInsert) { 3708 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3709 3710 // Use the adjusted index to insert into one of the subvectors. 3711 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3712 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3713 VecParts[PartIdx] = InsertPart.getReg(0); 3714 3715 // Recombine the inserted subvector with the others to reform the result 3716 // vector. 3717 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3718 } else { 3719 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3720 } 3721 3722 MI.eraseFromParent(); 3723 return Legalized; 3724 } 3725 3726 // With a variable index, we can't perform the operation in a smaller type, so 3727 // we're forced to expand this. 3728 // 3729 // TODO: We could emit a chain of compare/select to figure out which piece to 3730 // index. 3731 return lowerExtractInsertVectorElt(MI); 3732 } 3733 3734 LegalizerHelper::LegalizeResult 3735 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3736 LLT NarrowTy) { 3737 // FIXME: Don't know how to handle secondary types yet. 3738 if (TypeIdx != 0) 3739 return UnableToLegalize; 3740 3741 MachineMemOperand *MMO = *MI.memoperands_begin(); 3742 3743 // This implementation doesn't work for atomics. Give up instead of doing 3744 // something invalid. 3745 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3746 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3747 return UnableToLegalize; 3748 3749 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3750 Register ValReg = MI.getOperand(0).getReg(); 3751 Register AddrReg = MI.getOperand(1).getReg(); 3752 LLT ValTy = MRI.getType(ValReg); 3753 3754 // FIXME: Do we need a distinct NarrowMemory legalize action? 3755 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3756 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3757 return UnableToLegalize; 3758 } 3759 3760 int NumParts = -1; 3761 int NumLeftover = -1; 3762 LLT LeftoverTy; 3763 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3764 if (IsLoad) { 3765 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3766 } else { 3767 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3768 NarrowLeftoverRegs)) { 3769 NumParts = NarrowRegs.size(); 3770 NumLeftover = NarrowLeftoverRegs.size(); 3771 } 3772 } 3773 3774 if (NumParts == -1) 3775 return UnableToLegalize; 3776 3777 LLT PtrTy = MRI.getType(AddrReg); 3778 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3779 3780 unsigned TotalSize = ValTy.getSizeInBits(); 3781 3782 // Split the load/store into PartTy sized pieces starting at Offset. If this 3783 // is a load, return the new registers in ValRegs. For a store, each elements 3784 // of ValRegs should be PartTy. Returns the next offset that needs to be 3785 // handled. 3786 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3787 unsigned Offset) -> unsigned { 3788 MachineFunction &MF = MIRBuilder.getMF(); 3789 unsigned PartSize = PartTy.getSizeInBits(); 3790 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3791 Offset += PartSize, ++Idx) { 3792 unsigned ByteSize = PartSize / 8; 3793 unsigned ByteOffset = Offset / 8; 3794 Register NewAddrReg; 3795 3796 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3797 3798 MachineMemOperand *NewMMO = 3799 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3800 3801 if (IsLoad) { 3802 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3803 ValRegs.push_back(Dst); 3804 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3805 } else { 3806 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3807 } 3808 } 3809 3810 return Offset; 3811 }; 3812 3813 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3814 3815 // Handle the rest of the register if this isn't an even type breakdown. 3816 if (LeftoverTy.isValid()) 3817 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3818 3819 if (IsLoad) { 3820 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3821 LeftoverTy, NarrowLeftoverRegs); 3822 } 3823 3824 MI.eraseFromParent(); 3825 return Legalized; 3826 } 3827 3828 LegalizerHelper::LegalizeResult 3829 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3830 LLT NarrowTy) { 3831 assert(TypeIdx == 0 && "only one type index expected"); 3832 3833 const unsigned Opc = MI.getOpcode(); 3834 const int NumOps = MI.getNumOperands() - 1; 3835 const Register DstReg = MI.getOperand(0).getReg(); 3836 const unsigned Flags = MI.getFlags(); 3837 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3838 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3839 3840 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3841 3842 // First of all check whether we are narrowing (changing the element type) 3843 // or reducing the vector elements 3844 const LLT DstTy = MRI.getType(DstReg); 3845 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3846 3847 SmallVector<Register, 8> ExtractedRegs[3]; 3848 SmallVector<Register, 8> Parts; 3849 3850 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3851 3852 // Break down all the sources into NarrowTy pieces we can operate on. This may 3853 // involve creating merges to a wider type, padded with undef. 3854 for (int I = 0; I != NumOps; ++I) { 3855 Register SrcReg = MI.getOperand(I + 1).getReg(); 3856 LLT SrcTy = MRI.getType(SrcReg); 3857 3858 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3859 // For fewerElements, this is a smaller vector with the same element type. 3860 LLT OpNarrowTy; 3861 if (IsNarrow) { 3862 OpNarrowTy = NarrowScalarTy; 3863 3864 // In case of narrowing, we need to cast vectors to scalars for this to 3865 // work properly 3866 // FIXME: Can we do without the bitcast here if we're narrowing? 3867 if (SrcTy.isVector()) { 3868 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3869 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3870 } 3871 } else { 3872 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3873 } 3874 3875 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3876 3877 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3878 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3879 TargetOpcode::G_ANYEXT); 3880 } 3881 3882 SmallVector<Register, 8> ResultRegs; 3883 3884 // Input operands for each sub-instruction. 3885 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3886 3887 int NumParts = ExtractedRegs[0].size(); 3888 const unsigned DstSize = DstTy.getSizeInBits(); 3889 const LLT DstScalarTy = LLT::scalar(DstSize); 3890 3891 // Narrowing needs to use scalar types 3892 LLT DstLCMTy, NarrowDstTy; 3893 if (IsNarrow) { 3894 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3895 NarrowDstTy = NarrowScalarTy; 3896 } else { 3897 DstLCMTy = getLCMType(DstTy, NarrowTy); 3898 NarrowDstTy = NarrowTy; 3899 } 3900 3901 // We widened the source registers to satisfy merge/unmerge size 3902 // constraints. We'll have some extra fully undef parts. 3903 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3904 3905 for (int I = 0; I != NumRealParts; ++I) { 3906 // Emit this instruction on each of the split pieces. 3907 for (int J = 0; J != NumOps; ++J) 3908 InputRegs[J] = ExtractedRegs[J][I]; 3909 3910 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3911 ResultRegs.push_back(Inst.getReg(0)); 3912 } 3913 3914 // Fill out the widened result with undef instead of creating instructions 3915 // with undef inputs. 3916 int NumUndefParts = NumParts - NumRealParts; 3917 if (NumUndefParts != 0) 3918 ResultRegs.append(NumUndefParts, 3919 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3920 3921 // Extract the possibly padded result. Use a scratch register if we need to do 3922 // a final bitcast, otherwise use the original result register. 3923 Register MergeDstReg; 3924 if (IsNarrow && DstTy.isVector()) 3925 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3926 else 3927 MergeDstReg = DstReg; 3928 3929 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3930 3931 // Recast to vector if we narrowed a vector 3932 if (IsNarrow && DstTy.isVector()) 3933 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3934 3935 MI.eraseFromParent(); 3936 return Legalized; 3937 } 3938 3939 LegalizerHelper::LegalizeResult 3940 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3941 LLT NarrowTy) { 3942 Register DstReg = MI.getOperand(0).getReg(); 3943 Register SrcReg = MI.getOperand(1).getReg(); 3944 int64_t Imm = MI.getOperand(2).getImm(); 3945 3946 LLT DstTy = MRI.getType(DstReg); 3947 3948 SmallVector<Register, 8> Parts; 3949 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3950 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3951 3952 for (Register &R : Parts) 3953 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3954 3955 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3956 3957 MI.eraseFromParent(); 3958 return Legalized; 3959 } 3960 3961 LegalizerHelper::LegalizeResult 3962 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3963 LLT NarrowTy) { 3964 using namespace TargetOpcode; 3965 3966 switch (MI.getOpcode()) { 3967 case G_IMPLICIT_DEF: 3968 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3969 case G_TRUNC: 3970 case G_AND: 3971 case G_OR: 3972 case G_XOR: 3973 case G_ADD: 3974 case G_SUB: 3975 case G_MUL: 3976 case G_PTR_ADD: 3977 case G_SMULH: 3978 case G_UMULH: 3979 case G_FADD: 3980 case G_FMUL: 3981 case G_FSUB: 3982 case G_FNEG: 3983 case G_FABS: 3984 case G_FCANONICALIZE: 3985 case G_FDIV: 3986 case G_FREM: 3987 case G_FMA: 3988 case G_FMAD: 3989 case G_FPOW: 3990 case G_FEXP: 3991 case G_FEXP2: 3992 case G_FLOG: 3993 case G_FLOG2: 3994 case G_FLOG10: 3995 case G_FNEARBYINT: 3996 case G_FCEIL: 3997 case G_FFLOOR: 3998 case G_FRINT: 3999 case G_INTRINSIC_ROUND: 4000 case G_INTRINSIC_ROUNDEVEN: 4001 case G_INTRINSIC_TRUNC: 4002 case G_FCOS: 4003 case G_FSIN: 4004 case G_FSQRT: 4005 case G_BSWAP: 4006 case G_BITREVERSE: 4007 case G_SDIV: 4008 case G_UDIV: 4009 case G_SREM: 4010 case G_UREM: 4011 case G_SMIN: 4012 case G_SMAX: 4013 case G_UMIN: 4014 case G_UMAX: 4015 case G_FMINNUM: 4016 case G_FMAXNUM: 4017 case G_FMINNUM_IEEE: 4018 case G_FMAXNUM_IEEE: 4019 case G_FMINIMUM: 4020 case G_FMAXIMUM: 4021 case G_FSHL: 4022 case G_FSHR: 4023 case G_FREEZE: 4024 case G_SADDSAT: 4025 case G_SSUBSAT: 4026 case G_UADDSAT: 4027 case G_USUBSAT: 4028 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4029 case G_SHL: 4030 case G_LSHR: 4031 case G_ASHR: 4032 case G_SSHLSAT: 4033 case G_USHLSAT: 4034 case G_CTLZ: 4035 case G_CTLZ_ZERO_UNDEF: 4036 case G_CTTZ: 4037 case G_CTTZ_ZERO_UNDEF: 4038 case G_CTPOP: 4039 case G_FCOPYSIGN: 4040 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4041 case G_ZEXT: 4042 case G_SEXT: 4043 case G_ANYEXT: 4044 case G_FPEXT: 4045 case G_FPTRUNC: 4046 case G_SITOFP: 4047 case G_UITOFP: 4048 case G_FPTOSI: 4049 case G_FPTOUI: 4050 case G_INTTOPTR: 4051 case G_PTRTOINT: 4052 case G_ADDRSPACE_CAST: 4053 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4054 case G_ICMP: 4055 case G_FCMP: 4056 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4057 case G_SELECT: 4058 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4059 case G_PHI: 4060 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4061 case G_UNMERGE_VALUES: 4062 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4063 case G_BUILD_VECTOR: 4064 assert(TypeIdx == 0 && "not a vector type index"); 4065 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4066 case G_CONCAT_VECTORS: 4067 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4068 return UnableToLegalize; 4069 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4070 case G_EXTRACT_VECTOR_ELT: 4071 case G_INSERT_VECTOR_ELT: 4072 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4073 case G_LOAD: 4074 case G_STORE: 4075 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4076 case G_SEXT_INREG: 4077 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4078 default: 4079 return UnableToLegalize; 4080 } 4081 } 4082 4083 LegalizerHelper::LegalizeResult 4084 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4085 const LLT HalfTy, const LLT AmtTy) { 4086 4087 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4088 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4089 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4090 4091 if (Amt.isNullValue()) { 4092 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4093 MI.eraseFromParent(); 4094 return Legalized; 4095 } 4096 4097 LLT NVT = HalfTy; 4098 unsigned NVTBits = HalfTy.getSizeInBits(); 4099 unsigned VTBits = 2 * NVTBits; 4100 4101 SrcOp Lo(Register(0)), Hi(Register(0)); 4102 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4103 if (Amt.ugt(VTBits)) { 4104 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4105 } else if (Amt.ugt(NVTBits)) { 4106 Lo = MIRBuilder.buildConstant(NVT, 0); 4107 Hi = MIRBuilder.buildShl(NVT, InL, 4108 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4109 } else if (Amt == NVTBits) { 4110 Lo = MIRBuilder.buildConstant(NVT, 0); 4111 Hi = InL; 4112 } else { 4113 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4114 auto OrLHS = 4115 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4116 auto OrRHS = MIRBuilder.buildLShr( 4117 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4118 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4119 } 4120 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4121 if (Amt.ugt(VTBits)) { 4122 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4123 } else if (Amt.ugt(NVTBits)) { 4124 Lo = MIRBuilder.buildLShr(NVT, InH, 4125 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4126 Hi = MIRBuilder.buildConstant(NVT, 0); 4127 } else if (Amt == NVTBits) { 4128 Lo = InH; 4129 Hi = MIRBuilder.buildConstant(NVT, 0); 4130 } else { 4131 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4132 4133 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4134 auto OrRHS = MIRBuilder.buildShl( 4135 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4136 4137 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4138 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4139 } 4140 } else { 4141 if (Amt.ugt(VTBits)) { 4142 Hi = Lo = MIRBuilder.buildAShr( 4143 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4144 } else if (Amt.ugt(NVTBits)) { 4145 Lo = MIRBuilder.buildAShr(NVT, InH, 4146 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4147 Hi = MIRBuilder.buildAShr(NVT, InH, 4148 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4149 } else if (Amt == NVTBits) { 4150 Lo = InH; 4151 Hi = MIRBuilder.buildAShr(NVT, InH, 4152 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4153 } else { 4154 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4155 4156 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4157 auto OrRHS = MIRBuilder.buildShl( 4158 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4159 4160 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4161 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4162 } 4163 } 4164 4165 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4166 MI.eraseFromParent(); 4167 4168 return Legalized; 4169 } 4170 4171 // TODO: Optimize if constant shift amount. 4172 LegalizerHelper::LegalizeResult 4173 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4174 LLT RequestedTy) { 4175 if (TypeIdx == 1) { 4176 Observer.changingInstr(MI); 4177 narrowScalarSrc(MI, RequestedTy, 2); 4178 Observer.changedInstr(MI); 4179 return Legalized; 4180 } 4181 4182 Register DstReg = MI.getOperand(0).getReg(); 4183 LLT DstTy = MRI.getType(DstReg); 4184 if (DstTy.isVector()) 4185 return UnableToLegalize; 4186 4187 Register Amt = MI.getOperand(2).getReg(); 4188 LLT ShiftAmtTy = MRI.getType(Amt); 4189 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4190 if (DstEltSize % 2 != 0) 4191 return UnableToLegalize; 4192 4193 // Ignore the input type. We can only go to exactly half the size of the 4194 // input. If that isn't small enough, the resulting pieces will be further 4195 // legalized. 4196 const unsigned NewBitSize = DstEltSize / 2; 4197 const LLT HalfTy = LLT::scalar(NewBitSize); 4198 const LLT CondTy = LLT::scalar(1); 4199 4200 if (const MachineInstr *KShiftAmt = 4201 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4202 return narrowScalarShiftByConstant( 4203 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4204 } 4205 4206 // TODO: Expand with known bits. 4207 4208 // Handle the fully general expansion by an unknown amount. 4209 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4210 4211 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4212 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4213 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4214 4215 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4216 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4217 4218 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4219 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4220 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4221 4222 Register ResultRegs[2]; 4223 switch (MI.getOpcode()) { 4224 case TargetOpcode::G_SHL: { 4225 // Short: ShAmt < NewBitSize 4226 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4227 4228 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4229 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4230 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4231 4232 // Long: ShAmt >= NewBitSize 4233 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4234 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4235 4236 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4237 auto Hi = MIRBuilder.buildSelect( 4238 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4239 4240 ResultRegs[0] = Lo.getReg(0); 4241 ResultRegs[1] = Hi.getReg(0); 4242 break; 4243 } 4244 case TargetOpcode::G_LSHR: 4245 case TargetOpcode::G_ASHR: { 4246 // Short: ShAmt < NewBitSize 4247 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4248 4249 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4250 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4251 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4252 4253 // Long: ShAmt >= NewBitSize 4254 MachineInstrBuilder HiL; 4255 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4256 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4257 } else { 4258 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4259 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4260 } 4261 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4262 {InH, AmtExcess}); // Lo from Hi part. 4263 4264 auto Lo = MIRBuilder.buildSelect( 4265 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4266 4267 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4268 4269 ResultRegs[0] = Lo.getReg(0); 4270 ResultRegs[1] = Hi.getReg(0); 4271 break; 4272 } 4273 default: 4274 llvm_unreachable("not a shift"); 4275 } 4276 4277 MIRBuilder.buildMerge(DstReg, ResultRegs); 4278 MI.eraseFromParent(); 4279 return Legalized; 4280 } 4281 4282 LegalizerHelper::LegalizeResult 4283 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4284 LLT MoreTy) { 4285 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4286 4287 Observer.changingInstr(MI); 4288 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4289 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4290 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4291 moreElementsVectorSrc(MI, MoreTy, I); 4292 } 4293 4294 MachineBasicBlock &MBB = *MI.getParent(); 4295 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4296 moreElementsVectorDst(MI, MoreTy, 0); 4297 Observer.changedInstr(MI); 4298 return Legalized; 4299 } 4300 4301 LegalizerHelper::LegalizeResult 4302 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4303 LLT MoreTy) { 4304 unsigned Opc = MI.getOpcode(); 4305 switch (Opc) { 4306 case TargetOpcode::G_IMPLICIT_DEF: 4307 case TargetOpcode::G_LOAD: { 4308 if (TypeIdx != 0) 4309 return UnableToLegalize; 4310 Observer.changingInstr(MI); 4311 moreElementsVectorDst(MI, MoreTy, 0); 4312 Observer.changedInstr(MI); 4313 return Legalized; 4314 } 4315 case TargetOpcode::G_STORE: 4316 if (TypeIdx != 0) 4317 return UnableToLegalize; 4318 Observer.changingInstr(MI); 4319 moreElementsVectorSrc(MI, MoreTy, 0); 4320 Observer.changedInstr(MI); 4321 return Legalized; 4322 case TargetOpcode::G_AND: 4323 case TargetOpcode::G_OR: 4324 case TargetOpcode::G_XOR: 4325 case TargetOpcode::G_SMIN: 4326 case TargetOpcode::G_SMAX: 4327 case TargetOpcode::G_UMIN: 4328 case TargetOpcode::G_UMAX: 4329 case TargetOpcode::G_FMINNUM: 4330 case TargetOpcode::G_FMAXNUM: 4331 case TargetOpcode::G_FMINNUM_IEEE: 4332 case TargetOpcode::G_FMAXNUM_IEEE: 4333 case TargetOpcode::G_FMINIMUM: 4334 case TargetOpcode::G_FMAXIMUM: { 4335 Observer.changingInstr(MI); 4336 moreElementsVectorSrc(MI, MoreTy, 1); 4337 moreElementsVectorSrc(MI, MoreTy, 2); 4338 moreElementsVectorDst(MI, MoreTy, 0); 4339 Observer.changedInstr(MI); 4340 return Legalized; 4341 } 4342 case TargetOpcode::G_EXTRACT: 4343 if (TypeIdx != 1) 4344 return UnableToLegalize; 4345 Observer.changingInstr(MI); 4346 moreElementsVectorSrc(MI, MoreTy, 1); 4347 Observer.changedInstr(MI); 4348 return Legalized; 4349 case TargetOpcode::G_INSERT: 4350 case TargetOpcode::G_FREEZE: 4351 if (TypeIdx != 0) 4352 return UnableToLegalize; 4353 Observer.changingInstr(MI); 4354 moreElementsVectorSrc(MI, MoreTy, 1); 4355 moreElementsVectorDst(MI, MoreTy, 0); 4356 Observer.changedInstr(MI); 4357 return Legalized; 4358 case TargetOpcode::G_SELECT: 4359 if (TypeIdx != 0) 4360 return UnableToLegalize; 4361 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4362 return UnableToLegalize; 4363 4364 Observer.changingInstr(MI); 4365 moreElementsVectorSrc(MI, MoreTy, 2); 4366 moreElementsVectorSrc(MI, MoreTy, 3); 4367 moreElementsVectorDst(MI, MoreTy, 0); 4368 Observer.changedInstr(MI); 4369 return Legalized; 4370 case TargetOpcode::G_UNMERGE_VALUES: { 4371 if (TypeIdx != 1) 4372 return UnableToLegalize; 4373 4374 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4375 int NumDst = MI.getNumOperands() - 1; 4376 moreElementsVectorSrc(MI, MoreTy, NumDst); 4377 4378 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4379 for (int I = 0; I != NumDst; ++I) 4380 MIB.addDef(MI.getOperand(I).getReg()); 4381 4382 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4383 for (int I = NumDst; I != NewNumDst; ++I) 4384 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4385 4386 MIB.addUse(MI.getOperand(NumDst).getReg()); 4387 MI.eraseFromParent(); 4388 return Legalized; 4389 } 4390 case TargetOpcode::G_PHI: 4391 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4392 default: 4393 return UnableToLegalize; 4394 } 4395 } 4396 4397 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4398 ArrayRef<Register> Src1Regs, 4399 ArrayRef<Register> Src2Regs, 4400 LLT NarrowTy) { 4401 MachineIRBuilder &B = MIRBuilder; 4402 unsigned SrcParts = Src1Regs.size(); 4403 unsigned DstParts = DstRegs.size(); 4404 4405 unsigned DstIdx = 0; // Low bits of the result. 4406 Register FactorSum = 4407 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4408 DstRegs[DstIdx] = FactorSum; 4409 4410 unsigned CarrySumPrevDstIdx; 4411 SmallVector<Register, 4> Factors; 4412 4413 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4414 // Collect low parts of muls for DstIdx. 4415 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4416 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4417 MachineInstrBuilder Mul = 4418 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4419 Factors.push_back(Mul.getReg(0)); 4420 } 4421 // Collect high parts of muls from previous DstIdx. 4422 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4423 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4424 MachineInstrBuilder Umulh = 4425 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4426 Factors.push_back(Umulh.getReg(0)); 4427 } 4428 // Add CarrySum from additions calculated for previous DstIdx. 4429 if (DstIdx != 1) { 4430 Factors.push_back(CarrySumPrevDstIdx); 4431 } 4432 4433 Register CarrySum; 4434 // Add all factors and accumulate all carries into CarrySum. 4435 if (DstIdx != DstParts - 1) { 4436 MachineInstrBuilder Uaddo = 4437 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4438 FactorSum = Uaddo.getReg(0); 4439 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4440 for (unsigned i = 2; i < Factors.size(); ++i) { 4441 MachineInstrBuilder Uaddo = 4442 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4443 FactorSum = Uaddo.getReg(0); 4444 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4445 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4446 } 4447 } else { 4448 // Since value for the next index is not calculated, neither is CarrySum. 4449 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4450 for (unsigned i = 2; i < Factors.size(); ++i) 4451 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4452 } 4453 4454 CarrySumPrevDstIdx = CarrySum; 4455 DstRegs[DstIdx] = FactorSum; 4456 Factors.clear(); 4457 } 4458 } 4459 4460 LegalizerHelper::LegalizeResult 4461 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 4462 LLT NarrowTy) { 4463 if (TypeIdx != 0) 4464 return UnableToLegalize; 4465 4466 Register DstReg = MI.getOperand(0).getReg(); 4467 LLT DstType = MRI.getType(DstReg); 4468 // FIXME: add support for vector types 4469 if (DstType.isVector()) 4470 return UnableToLegalize; 4471 4472 uint64_t SizeOp0 = DstType.getSizeInBits(); 4473 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4474 4475 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4476 // NarrowSize. 4477 if (SizeOp0 % NarrowSize != 0) 4478 return UnableToLegalize; 4479 4480 // Expand in terms of carry-setting/consuming G_<Op>E instructions. 4481 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 4482 4483 unsigned Opcode = MI.getOpcode(); 4484 unsigned OpO, OpE, OpF; 4485 switch (Opcode) { 4486 case TargetOpcode::G_SADDO: 4487 case TargetOpcode::G_SADDE: 4488 case TargetOpcode::G_UADDO: 4489 case TargetOpcode::G_UADDE: 4490 case TargetOpcode::G_ADD: 4491 OpO = TargetOpcode::G_UADDO; 4492 OpE = TargetOpcode::G_UADDE; 4493 OpF = TargetOpcode::G_UADDE; 4494 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 4495 OpF = TargetOpcode::G_SADDE; 4496 break; 4497 case TargetOpcode::G_SSUBO: 4498 case TargetOpcode::G_SSUBE: 4499 case TargetOpcode::G_USUBO: 4500 case TargetOpcode::G_USUBE: 4501 case TargetOpcode::G_SUB: 4502 OpO = TargetOpcode::G_USUBO; 4503 OpE = TargetOpcode::G_USUBE; 4504 OpF = TargetOpcode::G_USUBE; 4505 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 4506 OpF = TargetOpcode::G_SSUBE; 4507 break; 4508 default: 4509 llvm_unreachable("Unexpected add/sub opcode!"); 4510 } 4511 4512 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 4513 unsigned NumDefs = MI.getNumExplicitDefs(); 4514 Register Src1 = MI.getOperand(NumDefs).getReg(); 4515 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 4516 Register CarryDst; 4517 if (NumDefs == 2) 4518 CarryDst = MI.getOperand(1).getReg(); 4519 Register CarryIn; 4520 if (MI.getNumOperands() == NumDefs + 3) 4521 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 4522 4523 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 4524 extractParts(Src1, NarrowTy, NumParts, Src1Regs); 4525 extractParts(Src2, NarrowTy, NumParts, Src2Regs); 4526 4527 for (int i = 0; i < NumParts; ++i) { 4528 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4529 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 4530 // Forward the final carry-out to the destination register 4531 if (i == NumParts - 1 && CarryDst) 4532 CarryOut = CarryDst; 4533 4534 if (!CarryIn) { 4535 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 4536 {Src1Regs[i], Src2Regs[i]}); 4537 } else if (i == NumParts - 1) { 4538 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 4539 {Src1Regs[i], Src2Regs[i], CarryIn}); 4540 } else { 4541 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 4542 {Src1Regs[i], Src2Regs[i], CarryIn}); 4543 } 4544 4545 DstRegs.push_back(DstReg); 4546 CarryIn = CarryOut; 4547 } 4548 MIRBuilder.buildMerge(DstReg, DstRegs); 4549 MI.eraseFromParent(); 4550 return Legalized; 4551 } 4552 4553 LegalizerHelper::LegalizeResult 4554 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4555 Register DstReg = MI.getOperand(0).getReg(); 4556 Register Src1 = MI.getOperand(1).getReg(); 4557 Register Src2 = MI.getOperand(2).getReg(); 4558 4559 LLT Ty = MRI.getType(DstReg); 4560 if (Ty.isVector()) 4561 return UnableToLegalize; 4562 4563 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4564 unsigned DstSize = Ty.getSizeInBits(); 4565 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4566 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4567 return UnableToLegalize; 4568 4569 unsigned NumDstParts = DstSize / NarrowSize; 4570 unsigned NumSrcParts = SrcSize / NarrowSize; 4571 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4572 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4573 4574 SmallVector<Register, 2> Src1Parts, Src2Parts; 4575 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4576 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4577 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4578 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4579 4580 // Take only high half of registers if this is high mul. 4581 ArrayRef<Register> DstRegs( 4582 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4583 MIRBuilder.buildMerge(DstReg, DstRegs); 4584 MI.eraseFromParent(); 4585 return Legalized; 4586 } 4587 4588 LegalizerHelper::LegalizeResult 4589 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4590 LLT NarrowTy) { 4591 if (TypeIdx != 1) 4592 return UnableToLegalize; 4593 4594 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4595 4596 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4597 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4598 // NarrowSize. 4599 if (SizeOp1 % NarrowSize != 0) 4600 return UnableToLegalize; 4601 int NumParts = SizeOp1 / NarrowSize; 4602 4603 SmallVector<Register, 2> SrcRegs, DstRegs; 4604 SmallVector<uint64_t, 2> Indexes; 4605 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4606 4607 Register OpReg = MI.getOperand(0).getReg(); 4608 uint64_t OpStart = MI.getOperand(2).getImm(); 4609 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4610 for (int i = 0; i < NumParts; ++i) { 4611 unsigned SrcStart = i * NarrowSize; 4612 4613 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4614 // No part of the extract uses this subregister, ignore it. 4615 continue; 4616 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4617 // The entire subregister is extracted, forward the value. 4618 DstRegs.push_back(SrcRegs[i]); 4619 continue; 4620 } 4621 4622 // OpSegStart is where this destination segment would start in OpReg if it 4623 // extended infinitely in both directions. 4624 int64_t ExtractOffset; 4625 uint64_t SegSize; 4626 if (OpStart < SrcStart) { 4627 ExtractOffset = 0; 4628 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4629 } else { 4630 ExtractOffset = OpStart - SrcStart; 4631 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4632 } 4633 4634 Register SegReg = SrcRegs[i]; 4635 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4636 // A genuine extract is needed. 4637 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4638 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4639 } 4640 4641 DstRegs.push_back(SegReg); 4642 } 4643 4644 Register DstReg = MI.getOperand(0).getReg(); 4645 if (MRI.getType(DstReg).isVector()) 4646 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4647 else if (DstRegs.size() > 1) 4648 MIRBuilder.buildMerge(DstReg, DstRegs); 4649 else 4650 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4651 MI.eraseFromParent(); 4652 return Legalized; 4653 } 4654 4655 LegalizerHelper::LegalizeResult 4656 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4657 LLT NarrowTy) { 4658 // FIXME: Don't know how to handle secondary types yet. 4659 if (TypeIdx != 0) 4660 return UnableToLegalize; 4661 4662 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4663 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4664 4665 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4666 // NarrowSize. 4667 if (SizeOp0 % NarrowSize != 0) 4668 return UnableToLegalize; 4669 4670 int NumParts = SizeOp0 / NarrowSize; 4671 4672 SmallVector<Register, 2> SrcRegs, DstRegs; 4673 SmallVector<uint64_t, 2> Indexes; 4674 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4675 4676 Register OpReg = MI.getOperand(2).getReg(); 4677 uint64_t OpStart = MI.getOperand(3).getImm(); 4678 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4679 for (int i = 0; i < NumParts; ++i) { 4680 unsigned DstStart = i * NarrowSize; 4681 4682 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4683 // No part of the insert affects this subregister, forward the original. 4684 DstRegs.push_back(SrcRegs[i]); 4685 continue; 4686 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4687 // The entire subregister is defined by this insert, forward the new 4688 // value. 4689 DstRegs.push_back(OpReg); 4690 continue; 4691 } 4692 4693 // OpSegStart is where this destination segment would start in OpReg if it 4694 // extended infinitely in both directions. 4695 int64_t ExtractOffset, InsertOffset; 4696 uint64_t SegSize; 4697 if (OpStart < DstStart) { 4698 InsertOffset = 0; 4699 ExtractOffset = DstStart - OpStart; 4700 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4701 } else { 4702 InsertOffset = OpStart - DstStart; 4703 ExtractOffset = 0; 4704 SegSize = 4705 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4706 } 4707 4708 Register SegReg = OpReg; 4709 if (ExtractOffset != 0 || SegSize != OpSize) { 4710 // A genuine extract is needed. 4711 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4712 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4713 } 4714 4715 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4716 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4717 DstRegs.push_back(DstReg); 4718 } 4719 4720 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4721 Register DstReg = MI.getOperand(0).getReg(); 4722 if(MRI.getType(DstReg).isVector()) 4723 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4724 else 4725 MIRBuilder.buildMerge(DstReg, DstRegs); 4726 MI.eraseFromParent(); 4727 return Legalized; 4728 } 4729 4730 LegalizerHelper::LegalizeResult 4731 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4732 LLT NarrowTy) { 4733 Register DstReg = MI.getOperand(0).getReg(); 4734 LLT DstTy = MRI.getType(DstReg); 4735 4736 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4737 4738 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4739 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4740 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4741 LLT LeftoverTy; 4742 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4743 Src0Regs, Src0LeftoverRegs)) 4744 return UnableToLegalize; 4745 4746 LLT Unused; 4747 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4748 Src1Regs, Src1LeftoverRegs)) 4749 llvm_unreachable("inconsistent extractParts result"); 4750 4751 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4752 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4753 {Src0Regs[I], Src1Regs[I]}); 4754 DstRegs.push_back(Inst.getReg(0)); 4755 } 4756 4757 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4758 auto Inst = MIRBuilder.buildInstr( 4759 MI.getOpcode(), 4760 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4761 DstLeftoverRegs.push_back(Inst.getReg(0)); 4762 } 4763 4764 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4765 LeftoverTy, DstLeftoverRegs); 4766 4767 MI.eraseFromParent(); 4768 return Legalized; 4769 } 4770 4771 LegalizerHelper::LegalizeResult 4772 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4773 LLT NarrowTy) { 4774 if (TypeIdx != 0) 4775 return UnableToLegalize; 4776 4777 Register DstReg = MI.getOperand(0).getReg(); 4778 Register SrcReg = MI.getOperand(1).getReg(); 4779 4780 LLT DstTy = MRI.getType(DstReg); 4781 if (DstTy.isVector()) 4782 return UnableToLegalize; 4783 4784 SmallVector<Register, 8> Parts; 4785 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4786 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4787 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4788 4789 MI.eraseFromParent(); 4790 return Legalized; 4791 } 4792 4793 LegalizerHelper::LegalizeResult 4794 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4795 LLT NarrowTy) { 4796 if (TypeIdx != 0) 4797 return UnableToLegalize; 4798 4799 Register CondReg = MI.getOperand(1).getReg(); 4800 LLT CondTy = MRI.getType(CondReg); 4801 if (CondTy.isVector()) // TODO: Handle vselect 4802 return UnableToLegalize; 4803 4804 Register DstReg = MI.getOperand(0).getReg(); 4805 LLT DstTy = MRI.getType(DstReg); 4806 4807 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4808 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4809 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4810 LLT LeftoverTy; 4811 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4812 Src1Regs, Src1LeftoverRegs)) 4813 return UnableToLegalize; 4814 4815 LLT Unused; 4816 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4817 Src2Regs, Src2LeftoverRegs)) 4818 llvm_unreachable("inconsistent extractParts result"); 4819 4820 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4821 auto Select = MIRBuilder.buildSelect(NarrowTy, 4822 CondReg, Src1Regs[I], Src2Regs[I]); 4823 DstRegs.push_back(Select.getReg(0)); 4824 } 4825 4826 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4827 auto Select = MIRBuilder.buildSelect( 4828 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4829 DstLeftoverRegs.push_back(Select.getReg(0)); 4830 } 4831 4832 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4833 LeftoverTy, DstLeftoverRegs); 4834 4835 MI.eraseFromParent(); 4836 return Legalized; 4837 } 4838 4839 LegalizerHelper::LegalizeResult 4840 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4841 LLT NarrowTy) { 4842 if (TypeIdx != 1) 4843 return UnableToLegalize; 4844 4845 Register DstReg = MI.getOperand(0).getReg(); 4846 Register SrcReg = MI.getOperand(1).getReg(); 4847 LLT DstTy = MRI.getType(DstReg); 4848 LLT SrcTy = MRI.getType(SrcReg); 4849 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4850 4851 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4852 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4853 4854 MachineIRBuilder &B = MIRBuilder; 4855 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4856 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4857 auto C_0 = B.buildConstant(NarrowTy, 0); 4858 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4859 UnmergeSrc.getReg(1), C_0); 4860 auto LoCTLZ = IsUndef ? 4861 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4862 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4863 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4864 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4865 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4866 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4867 4868 MI.eraseFromParent(); 4869 return Legalized; 4870 } 4871 4872 return UnableToLegalize; 4873 } 4874 4875 LegalizerHelper::LegalizeResult 4876 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4877 LLT NarrowTy) { 4878 if (TypeIdx != 1) 4879 return UnableToLegalize; 4880 4881 Register DstReg = MI.getOperand(0).getReg(); 4882 Register SrcReg = MI.getOperand(1).getReg(); 4883 LLT DstTy = MRI.getType(DstReg); 4884 LLT SrcTy = MRI.getType(SrcReg); 4885 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4886 4887 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4888 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4889 4890 MachineIRBuilder &B = MIRBuilder; 4891 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4892 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4893 auto C_0 = B.buildConstant(NarrowTy, 0); 4894 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4895 UnmergeSrc.getReg(0), C_0); 4896 auto HiCTTZ = IsUndef ? 4897 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4898 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4899 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4900 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4901 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4902 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4903 4904 MI.eraseFromParent(); 4905 return Legalized; 4906 } 4907 4908 return UnableToLegalize; 4909 } 4910 4911 LegalizerHelper::LegalizeResult 4912 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4913 LLT NarrowTy) { 4914 if (TypeIdx != 1) 4915 return UnableToLegalize; 4916 4917 Register DstReg = MI.getOperand(0).getReg(); 4918 LLT DstTy = MRI.getType(DstReg); 4919 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4920 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4921 4922 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4923 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4924 4925 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4926 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4927 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4928 4929 MI.eraseFromParent(); 4930 return Legalized; 4931 } 4932 4933 return UnableToLegalize; 4934 } 4935 4936 LegalizerHelper::LegalizeResult 4937 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 4938 unsigned Opc = MI.getOpcode(); 4939 const auto &TII = MIRBuilder.getTII(); 4940 auto isSupported = [this](const LegalityQuery &Q) { 4941 auto QAction = LI.getAction(Q).Action; 4942 return QAction == Legal || QAction == Libcall || QAction == Custom; 4943 }; 4944 switch (Opc) { 4945 default: 4946 return UnableToLegalize; 4947 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4948 // This trivially expands to CTLZ. 4949 Observer.changingInstr(MI); 4950 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4951 Observer.changedInstr(MI); 4952 return Legalized; 4953 } 4954 case TargetOpcode::G_CTLZ: { 4955 Register DstReg = MI.getOperand(0).getReg(); 4956 Register SrcReg = MI.getOperand(1).getReg(); 4957 LLT DstTy = MRI.getType(DstReg); 4958 LLT SrcTy = MRI.getType(SrcReg); 4959 unsigned Len = SrcTy.getSizeInBits(); 4960 4961 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4962 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4963 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4964 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4965 auto ICmp = MIRBuilder.buildICmp( 4966 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4967 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4968 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4969 MI.eraseFromParent(); 4970 return Legalized; 4971 } 4972 // for now, we do this: 4973 // NewLen = NextPowerOf2(Len); 4974 // x = x | (x >> 1); 4975 // x = x | (x >> 2); 4976 // ... 4977 // x = x | (x >>16); 4978 // x = x | (x >>32); // for 64-bit input 4979 // Upto NewLen/2 4980 // return Len - popcount(x); 4981 // 4982 // Ref: "Hacker's Delight" by Henry Warren 4983 Register Op = SrcReg; 4984 unsigned NewLen = PowerOf2Ceil(Len); 4985 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4986 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4987 auto MIBOp = MIRBuilder.buildOr( 4988 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4989 Op = MIBOp.getReg(0); 4990 } 4991 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4992 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4993 MIBPop); 4994 MI.eraseFromParent(); 4995 return Legalized; 4996 } 4997 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4998 // This trivially expands to CTTZ. 4999 Observer.changingInstr(MI); 5000 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5001 Observer.changedInstr(MI); 5002 return Legalized; 5003 } 5004 case TargetOpcode::G_CTTZ: { 5005 Register DstReg = MI.getOperand(0).getReg(); 5006 Register SrcReg = MI.getOperand(1).getReg(); 5007 LLT DstTy = MRI.getType(DstReg); 5008 LLT SrcTy = MRI.getType(SrcReg); 5009 5010 unsigned Len = SrcTy.getSizeInBits(); 5011 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5012 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5013 // zero. 5014 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5015 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5016 auto ICmp = MIRBuilder.buildICmp( 5017 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5018 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5019 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5020 MI.eraseFromParent(); 5021 return Legalized; 5022 } 5023 // for now, we use: { return popcount(~x & (x - 1)); } 5024 // unless the target has ctlz but not ctpop, in which case we use: 5025 // { return 32 - nlz(~x & (x-1)); } 5026 // Ref: "Hacker's Delight" by Henry Warren 5027 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5028 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5029 auto MIBTmp = MIRBuilder.buildAnd( 5030 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5031 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5032 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5033 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5034 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5035 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5036 MI.eraseFromParent(); 5037 return Legalized; 5038 } 5039 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5040 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5041 return Legalized; 5042 } 5043 case TargetOpcode::G_CTPOP: { 5044 Register SrcReg = MI.getOperand(1).getReg(); 5045 LLT Ty = MRI.getType(SrcReg); 5046 unsigned Size = Ty.getSizeInBits(); 5047 MachineIRBuilder &B = MIRBuilder; 5048 5049 // Count set bits in blocks of 2 bits. Default approach would be 5050 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5051 // We use following formula instead: 5052 // B2Count = val - { (val >> 1) & 0x55555555 } 5053 // since it gives same result in blocks of 2 with one instruction less. 5054 auto C_1 = B.buildConstant(Ty, 1); 5055 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5056 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5057 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5058 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5059 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5060 5061 // In order to get count in blocks of 4 add values from adjacent block of 2. 5062 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5063 auto C_2 = B.buildConstant(Ty, 2); 5064 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5065 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5066 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5067 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5068 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5069 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5070 5071 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5072 // addition since count value sits in range {0,...,8} and 4 bits are enough 5073 // to hold such binary values. After addition high 4 bits still hold count 5074 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5075 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5076 auto C_4 = B.buildConstant(Ty, 4); 5077 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5078 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5079 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5080 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5081 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5082 5083 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5084 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5085 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5086 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5087 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5088 5089 // Shift count result from 8 high bits to low bits. 5090 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5091 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5092 5093 MI.eraseFromParent(); 5094 return Legalized; 5095 } 5096 } 5097 } 5098 5099 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5100 // representation. 5101 LegalizerHelper::LegalizeResult 5102 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5103 Register Dst = MI.getOperand(0).getReg(); 5104 Register Src = MI.getOperand(1).getReg(); 5105 const LLT S64 = LLT::scalar(64); 5106 const LLT S32 = LLT::scalar(32); 5107 const LLT S1 = LLT::scalar(1); 5108 5109 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5110 5111 // unsigned cul2f(ulong u) { 5112 // uint lz = clz(u); 5113 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5114 // u = (u << lz) & 0x7fffffffffffffffUL; 5115 // ulong t = u & 0xffffffffffUL; 5116 // uint v = (e << 23) | (uint)(u >> 40); 5117 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5118 // return as_float(v + r); 5119 // } 5120 5121 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5122 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5123 5124 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5125 5126 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5127 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5128 5129 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5130 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5131 5132 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5133 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5134 5135 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5136 5137 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5138 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5139 5140 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5141 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5142 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5143 5144 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5145 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5146 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5147 auto One = MIRBuilder.buildConstant(S32, 1); 5148 5149 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5150 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5151 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5152 MIRBuilder.buildAdd(Dst, V, R); 5153 5154 MI.eraseFromParent(); 5155 return Legalized; 5156 } 5157 5158 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5159 Register Dst = MI.getOperand(0).getReg(); 5160 Register Src = MI.getOperand(1).getReg(); 5161 LLT DstTy = MRI.getType(Dst); 5162 LLT SrcTy = MRI.getType(Src); 5163 5164 if (SrcTy == LLT::scalar(1)) { 5165 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5166 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5167 MIRBuilder.buildSelect(Dst, Src, True, False); 5168 MI.eraseFromParent(); 5169 return Legalized; 5170 } 5171 5172 if (SrcTy != LLT::scalar(64)) 5173 return UnableToLegalize; 5174 5175 if (DstTy == LLT::scalar(32)) { 5176 // TODO: SelectionDAG has several alternative expansions to port which may 5177 // be more reasonble depending on the available instructions. If a target 5178 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5179 // intermediate type, this is probably worse. 5180 return lowerU64ToF32BitOps(MI); 5181 } 5182 5183 return UnableToLegalize; 5184 } 5185 5186 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5187 Register Dst = MI.getOperand(0).getReg(); 5188 Register Src = MI.getOperand(1).getReg(); 5189 LLT DstTy = MRI.getType(Dst); 5190 LLT SrcTy = MRI.getType(Src); 5191 5192 const LLT S64 = LLT::scalar(64); 5193 const LLT S32 = LLT::scalar(32); 5194 const LLT S1 = LLT::scalar(1); 5195 5196 if (SrcTy == S1) { 5197 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5198 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5199 MIRBuilder.buildSelect(Dst, Src, True, False); 5200 MI.eraseFromParent(); 5201 return Legalized; 5202 } 5203 5204 if (SrcTy != S64) 5205 return UnableToLegalize; 5206 5207 if (DstTy == S32) { 5208 // signed cl2f(long l) { 5209 // long s = l >> 63; 5210 // float r = cul2f((l + s) ^ s); 5211 // return s ? -r : r; 5212 // } 5213 Register L = Src; 5214 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5215 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5216 5217 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5218 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5219 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5220 5221 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5222 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5223 MIRBuilder.buildConstant(S64, 0)); 5224 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5225 MI.eraseFromParent(); 5226 return Legalized; 5227 } 5228 5229 return UnableToLegalize; 5230 } 5231 5232 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5233 Register Dst = MI.getOperand(0).getReg(); 5234 Register Src = MI.getOperand(1).getReg(); 5235 LLT DstTy = MRI.getType(Dst); 5236 LLT SrcTy = MRI.getType(Src); 5237 const LLT S64 = LLT::scalar(64); 5238 const LLT S32 = LLT::scalar(32); 5239 5240 if (SrcTy != S64 && SrcTy != S32) 5241 return UnableToLegalize; 5242 if (DstTy != S32 && DstTy != S64) 5243 return UnableToLegalize; 5244 5245 // FPTOSI gives same result as FPTOUI for positive signed integers. 5246 // FPTOUI needs to deal with fp values that convert to unsigned integers 5247 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5248 5249 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5250 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5251 : APFloat::IEEEdouble(), 5252 APInt::getNullValue(SrcTy.getSizeInBits())); 5253 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5254 5255 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5256 5257 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5258 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5259 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5260 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5261 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5262 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5263 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5264 5265 const LLT S1 = LLT::scalar(1); 5266 5267 MachineInstrBuilder FCMP = 5268 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5269 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5270 5271 MI.eraseFromParent(); 5272 return Legalized; 5273 } 5274 5275 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5276 Register Dst = MI.getOperand(0).getReg(); 5277 Register Src = MI.getOperand(1).getReg(); 5278 LLT DstTy = MRI.getType(Dst); 5279 LLT SrcTy = MRI.getType(Src); 5280 const LLT S64 = LLT::scalar(64); 5281 const LLT S32 = LLT::scalar(32); 5282 5283 // FIXME: Only f32 to i64 conversions are supported. 5284 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5285 return UnableToLegalize; 5286 5287 // Expand f32 -> i64 conversion 5288 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5289 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 5290 5291 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5292 5293 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5294 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5295 5296 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5297 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5298 5299 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5300 APInt::getSignMask(SrcEltBits)); 5301 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5302 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5303 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5304 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5305 5306 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5307 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5308 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5309 5310 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5311 R = MIRBuilder.buildZExt(DstTy, R); 5312 5313 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5314 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5315 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5316 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5317 5318 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5319 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5320 5321 const LLT S1 = LLT::scalar(1); 5322 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5323 S1, Exponent, ExponentLoBit); 5324 5325 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5326 5327 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5328 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5329 5330 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5331 5332 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5333 S1, Exponent, ZeroSrcTy); 5334 5335 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5336 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5337 5338 MI.eraseFromParent(); 5339 return Legalized; 5340 } 5341 5342 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5343 LegalizerHelper::LegalizeResult 5344 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5345 Register Dst = MI.getOperand(0).getReg(); 5346 Register Src = MI.getOperand(1).getReg(); 5347 5348 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5349 return UnableToLegalize; 5350 5351 const unsigned ExpMask = 0x7ff; 5352 const unsigned ExpBiasf64 = 1023; 5353 const unsigned ExpBiasf16 = 15; 5354 const LLT S32 = LLT::scalar(32); 5355 const LLT S1 = LLT::scalar(1); 5356 5357 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5358 Register U = Unmerge.getReg(0); 5359 Register UH = Unmerge.getReg(1); 5360 5361 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5362 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5363 5364 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5365 // add the f16 bias (15) to get the biased exponent for the f16 format. 5366 E = MIRBuilder.buildAdd( 5367 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5368 5369 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5370 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5371 5372 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5373 MIRBuilder.buildConstant(S32, 0x1ff)); 5374 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5375 5376 auto Zero = MIRBuilder.buildConstant(S32, 0); 5377 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5378 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5379 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5380 5381 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5382 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5383 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5384 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5385 5386 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5387 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5388 5389 // N = M | (E << 12); 5390 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5391 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5392 5393 // B = clamp(1-E, 0, 13); 5394 auto One = MIRBuilder.buildConstant(S32, 1); 5395 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5396 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5397 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5398 5399 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5400 MIRBuilder.buildConstant(S32, 0x1000)); 5401 5402 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5403 auto D0 = MIRBuilder.buildShl(S32, D, B); 5404 5405 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5406 D0, SigSetHigh); 5407 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5408 D = MIRBuilder.buildOr(S32, D, D1); 5409 5410 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5411 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5412 5413 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5414 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5415 5416 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5417 MIRBuilder.buildConstant(S32, 3)); 5418 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5419 5420 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5421 MIRBuilder.buildConstant(S32, 5)); 5422 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5423 5424 V1 = MIRBuilder.buildOr(S32, V0, V1); 5425 V = MIRBuilder.buildAdd(S32, V, V1); 5426 5427 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5428 E, MIRBuilder.buildConstant(S32, 30)); 5429 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5430 MIRBuilder.buildConstant(S32, 0x7c00), V); 5431 5432 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5433 E, MIRBuilder.buildConstant(S32, 1039)); 5434 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5435 5436 // Extract the sign bit. 5437 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5438 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5439 5440 // Insert the sign bit 5441 V = MIRBuilder.buildOr(S32, Sign, V); 5442 5443 MIRBuilder.buildTrunc(Dst, V); 5444 MI.eraseFromParent(); 5445 return Legalized; 5446 } 5447 5448 LegalizerHelper::LegalizeResult 5449 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5450 Register Dst = MI.getOperand(0).getReg(); 5451 Register Src = MI.getOperand(1).getReg(); 5452 5453 LLT DstTy = MRI.getType(Dst); 5454 LLT SrcTy = MRI.getType(Src); 5455 const LLT S64 = LLT::scalar(64); 5456 const LLT S16 = LLT::scalar(16); 5457 5458 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5459 return lowerFPTRUNC_F64_TO_F16(MI); 5460 5461 return UnableToLegalize; 5462 } 5463 5464 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5465 // multiplication tree. 5466 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5467 Register Dst = MI.getOperand(0).getReg(); 5468 Register Src0 = MI.getOperand(1).getReg(); 5469 Register Src1 = MI.getOperand(2).getReg(); 5470 LLT Ty = MRI.getType(Dst); 5471 5472 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5473 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5474 MI.eraseFromParent(); 5475 return Legalized; 5476 } 5477 5478 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5479 switch (Opc) { 5480 case TargetOpcode::G_SMIN: 5481 return CmpInst::ICMP_SLT; 5482 case TargetOpcode::G_SMAX: 5483 return CmpInst::ICMP_SGT; 5484 case TargetOpcode::G_UMIN: 5485 return CmpInst::ICMP_ULT; 5486 case TargetOpcode::G_UMAX: 5487 return CmpInst::ICMP_UGT; 5488 default: 5489 llvm_unreachable("not in integer min/max"); 5490 } 5491 } 5492 5493 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5494 Register Dst = MI.getOperand(0).getReg(); 5495 Register Src0 = MI.getOperand(1).getReg(); 5496 Register Src1 = MI.getOperand(2).getReg(); 5497 5498 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5499 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5500 5501 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5502 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5503 5504 MI.eraseFromParent(); 5505 return Legalized; 5506 } 5507 5508 LegalizerHelper::LegalizeResult 5509 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 5510 Register Dst = MI.getOperand(0).getReg(); 5511 Register Src0 = MI.getOperand(1).getReg(); 5512 Register Src1 = MI.getOperand(2).getReg(); 5513 5514 const LLT Src0Ty = MRI.getType(Src0); 5515 const LLT Src1Ty = MRI.getType(Src1); 5516 5517 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5518 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5519 5520 auto SignBitMask = MIRBuilder.buildConstant( 5521 Src0Ty, APInt::getSignMask(Src0Size)); 5522 5523 auto NotSignBitMask = MIRBuilder.buildConstant( 5524 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5525 5526 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 5527 Register And1; 5528 if (Src0Ty == Src1Ty) { 5529 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 5530 } else if (Src0Size > Src1Size) { 5531 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5532 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5533 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5534 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 5535 } else { 5536 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5537 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5538 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5539 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 5540 } 5541 5542 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5543 // constants are a nan and -0.0, but the final result should preserve 5544 // everything. 5545 unsigned Flags = MI.getFlags(); 5546 MIRBuilder.buildOr(Dst, And0, And1, Flags); 5547 5548 MI.eraseFromParent(); 5549 return Legalized; 5550 } 5551 5552 LegalizerHelper::LegalizeResult 5553 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5554 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5555 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5556 5557 Register Dst = MI.getOperand(0).getReg(); 5558 Register Src0 = MI.getOperand(1).getReg(); 5559 Register Src1 = MI.getOperand(2).getReg(); 5560 LLT Ty = MRI.getType(Dst); 5561 5562 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5563 // Insert canonicalizes if it's possible we need to quiet to get correct 5564 // sNaN behavior. 5565 5566 // Note this must be done here, and not as an optimization combine in the 5567 // absence of a dedicate quiet-snan instruction as we're using an 5568 // omni-purpose G_FCANONICALIZE. 5569 if (!isKnownNeverSNaN(Src0, MRI)) 5570 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5571 5572 if (!isKnownNeverSNaN(Src1, MRI)) 5573 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5574 } 5575 5576 // If there are no nans, it's safe to simply replace this with the non-IEEE 5577 // version. 5578 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5579 MI.eraseFromParent(); 5580 return Legalized; 5581 } 5582 5583 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5584 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5585 Register DstReg = MI.getOperand(0).getReg(); 5586 LLT Ty = MRI.getType(DstReg); 5587 unsigned Flags = MI.getFlags(); 5588 5589 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5590 Flags); 5591 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5592 MI.eraseFromParent(); 5593 return Legalized; 5594 } 5595 5596 LegalizerHelper::LegalizeResult 5597 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5598 Register DstReg = MI.getOperand(0).getReg(); 5599 Register X = MI.getOperand(1).getReg(); 5600 const unsigned Flags = MI.getFlags(); 5601 const LLT Ty = MRI.getType(DstReg); 5602 const LLT CondTy = Ty.changeElementSize(1); 5603 5604 // round(x) => 5605 // t = trunc(x); 5606 // d = fabs(x - t); 5607 // o = copysign(1.0f, x); 5608 // return t + (d >= 0.5 ? o : 0.0); 5609 5610 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5611 5612 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5613 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5614 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5615 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5616 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5617 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5618 5619 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5620 Flags); 5621 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5622 5623 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5624 5625 MI.eraseFromParent(); 5626 return Legalized; 5627 } 5628 5629 LegalizerHelper::LegalizeResult 5630 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5631 Register DstReg = MI.getOperand(0).getReg(); 5632 Register SrcReg = MI.getOperand(1).getReg(); 5633 unsigned Flags = MI.getFlags(); 5634 LLT Ty = MRI.getType(DstReg); 5635 const LLT CondTy = Ty.changeElementSize(1); 5636 5637 // result = trunc(src); 5638 // if (src < 0.0 && src != result) 5639 // result += -1.0. 5640 5641 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5642 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5643 5644 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5645 SrcReg, Zero, Flags); 5646 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5647 SrcReg, Trunc, Flags); 5648 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5649 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5650 5651 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5652 MI.eraseFromParent(); 5653 return Legalized; 5654 } 5655 5656 LegalizerHelper::LegalizeResult 5657 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5658 const unsigned NumOps = MI.getNumOperands(); 5659 Register DstReg = MI.getOperand(0).getReg(); 5660 Register Src0Reg = MI.getOperand(1).getReg(); 5661 LLT DstTy = MRI.getType(DstReg); 5662 LLT SrcTy = MRI.getType(Src0Reg); 5663 unsigned PartSize = SrcTy.getSizeInBits(); 5664 5665 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5666 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5667 5668 for (unsigned I = 2; I != NumOps; ++I) { 5669 const unsigned Offset = (I - 1) * PartSize; 5670 5671 Register SrcReg = MI.getOperand(I).getReg(); 5672 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5673 5674 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5675 MRI.createGenericVirtualRegister(WideTy); 5676 5677 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5678 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5679 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5680 ResultReg = NextResult; 5681 } 5682 5683 if (DstTy.isPointer()) { 5684 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5685 DstTy.getAddressSpace())) { 5686 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5687 return UnableToLegalize; 5688 } 5689 5690 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5691 } 5692 5693 MI.eraseFromParent(); 5694 return Legalized; 5695 } 5696 5697 LegalizerHelper::LegalizeResult 5698 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5699 const unsigned NumDst = MI.getNumOperands() - 1; 5700 Register SrcReg = MI.getOperand(NumDst).getReg(); 5701 Register Dst0Reg = MI.getOperand(0).getReg(); 5702 LLT DstTy = MRI.getType(Dst0Reg); 5703 if (DstTy.isPointer()) 5704 return UnableToLegalize; // TODO 5705 5706 SrcReg = coerceToScalar(SrcReg); 5707 if (!SrcReg) 5708 return UnableToLegalize; 5709 5710 // Expand scalarizing unmerge as bitcast to integer and shift. 5711 LLT IntTy = MRI.getType(SrcReg); 5712 5713 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5714 5715 const unsigned DstSize = DstTy.getSizeInBits(); 5716 unsigned Offset = DstSize; 5717 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5718 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5719 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5720 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5721 } 5722 5723 MI.eraseFromParent(); 5724 return Legalized; 5725 } 5726 5727 /// Lower a vector extract or insert by writing the vector to a stack temporary 5728 /// and reloading the element or vector. 5729 /// 5730 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5731 /// => 5732 /// %stack_temp = G_FRAME_INDEX 5733 /// G_STORE %vec, %stack_temp 5734 /// %idx = clamp(%idx, %vec.getNumElements()) 5735 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5736 /// %dst = G_LOAD %element_ptr 5737 LegalizerHelper::LegalizeResult 5738 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5739 Register DstReg = MI.getOperand(0).getReg(); 5740 Register SrcVec = MI.getOperand(1).getReg(); 5741 Register InsertVal; 5742 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5743 InsertVal = MI.getOperand(2).getReg(); 5744 5745 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5746 5747 LLT VecTy = MRI.getType(SrcVec); 5748 LLT EltTy = VecTy.getElementType(); 5749 if (!EltTy.isByteSized()) { // Not implemented. 5750 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5751 return UnableToLegalize; 5752 } 5753 5754 unsigned EltBytes = EltTy.getSizeInBytes(); 5755 Align VecAlign = getStackTemporaryAlignment(VecTy); 5756 Align EltAlign; 5757 5758 MachinePointerInfo PtrInfo; 5759 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5760 VecAlign, PtrInfo); 5761 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5762 5763 // Get the pointer to the element, and be sure not to hit undefined behavior 5764 // if the index is out of bounds. 5765 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5766 5767 int64_t IdxVal; 5768 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5769 int64_t Offset = IdxVal * EltBytes; 5770 PtrInfo = PtrInfo.getWithOffset(Offset); 5771 EltAlign = commonAlignment(VecAlign, Offset); 5772 } else { 5773 // We lose information with a variable offset. 5774 EltAlign = getStackTemporaryAlignment(EltTy); 5775 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5776 } 5777 5778 if (InsertVal) { 5779 // Write the inserted element 5780 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5781 5782 // Reload the whole vector. 5783 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5784 } else { 5785 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5786 } 5787 5788 MI.eraseFromParent(); 5789 return Legalized; 5790 } 5791 5792 LegalizerHelper::LegalizeResult 5793 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5794 Register DstReg = MI.getOperand(0).getReg(); 5795 Register Src0Reg = MI.getOperand(1).getReg(); 5796 Register Src1Reg = MI.getOperand(2).getReg(); 5797 LLT Src0Ty = MRI.getType(Src0Reg); 5798 LLT DstTy = MRI.getType(DstReg); 5799 LLT IdxTy = LLT::scalar(32); 5800 5801 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5802 5803 if (DstTy.isScalar()) { 5804 if (Src0Ty.isVector()) 5805 return UnableToLegalize; 5806 5807 // This is just a SELECT. 5808 assert(Mask.size() == 1 && "Expected a single mask element"); 5809 Register Val; 5810 if (Mask[0] < 0 || Mask[0] > 1) 5811 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5812 else 5813 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5814 MIRBuilder.buildCopy(DstReg, Val); 5815 MI.eraseFromParent(); 5816 return Legalized; 5817 } 5818 5819 Register Undef; 5820 SmallVector<Register, 32> BuildVec; 5821 LLT EltTy = DstTy.getElementType(); 5822 5823 for (int Idx : Mask) { 5824 if (Idx < 0) { 5825 if (!Undef.isValid()) 5826 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5827 BuildVec.push_back(Undef); 5828 continue; 5829 } 5830 5831 if (Src0Ty.isScalar()) { 5832 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5833 } else { 5834 int NumElts = Src0Ty.getNumElements(); 5835 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5836 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5837 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5838 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5839 BuildVec.push_back(Extract.getReg(0)); 5840 } 5841 } 5842 5843 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5844 MI.eraseFromParent(); 5845 return Legalized; 5846 } 5847 5848 LegalizerHelper::LegalizeResult 5849 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5850 const auto &MF = *MI.getMF(); 5851 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5852 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5853 return UnableToLegalize; 5854 5855 Register Dst = MI.getOperand(0).getReg(); 5856 Register AllocSize = MI.getOperand(1).getReg(); 5857 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5858 5859 LLT PtrTy = MRI.getType(Dst); 5860 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5861 5862 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5863 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5864 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5865 5866 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5867 // have to generate an extra instruction to negate the alloc and then use 5868 // G_PTR_ADD to add the negative offset. 5869 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5870 if (Alignment > Align(1)) { 5871 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5872 AlignMask.negate(); 5873 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5874 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5875 } 5876 5877 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5878 MIRBuilder.buildCopy(SPReg, SPTmp); 5879 MIRBuilder.buildCopy(Dst, SPTmp); 5880 5881 MI.eraseFromParent(); 5882 return Legalized; 5883 } 5884 5885 LegalizerHelper::LegalizeResult 5886 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5887 Register Dst = MI.getOperand(0).getReg(); 5888 Register Src = MI.getOperand(1).getReg(); 5889 unsigned Offset = MI.getOperand(2).getImm(); 5890 5891 LLT DstTy = MRI.getType(Dst); 5892 LLT SrcTy = MRI.getType(Src); 5893 5894 if (DstTy.isScalar() && 5895 (SrcTy.isScalar() || 5896 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5897 LLT SrcIntTy = SrcTy; 5898 if (!SrcTy.isScalar()) { 5899 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5900 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5901 } 5902 5903 if (Offset == 0) 5904 MIRBuilder.buildTrunc(Dst, Src); 5905 else { 5906 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5907 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5908 MIRBuilder.buildTrunc(Dst, Shr); 5909 } 5910 5911 MI.eraseFromParent(); 5912 return Legalized; 5913 } 5914 5915 return UnableToLegalize; 5916 } 5917 5918 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5919 Register Dst = MI.getOperand(0).getReg(); 5920 Register Src = MI.getOperand(1).getReg(); 5921 Register InsertSrc = MI.getOperand(2).getReg(); 5922 uint64_t Offset = MI.getOperand(3).getImm(); 5923 5924 LLT DstTy = MRI.getType(Src); 5925 LLT InsertTy = MRI.getType(InsertSrc); 5926 5927 if (InsertTy.isVector() || 5928 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5929 return UnableToLegalize; 5930 5931 const DataLayout &DL = MIRBuilder.getDataLayout(); 5932 if ((DstTy.isPointer() && 5933 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5934 (InsertTy.isPointer() && 5935 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5936 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5937 return UnableToLegalize; 5938 } 5939 5940 LLT IntDstTy = DstTy; 5941 5942 if (!DstTy.isScalar()) { 5943 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5944 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5945 } 5946 5947 if (!InsertTy.isScalar()) { 5948 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5949 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5950 } 5951 5952 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5953 if (Offset != 0) { 5954 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5955 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5956 } 5957 5958 APInt MaskVal = APInt::getBitsSetWithWrap( 5959 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5960 5961 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5962 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5963 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5964 5965 MIRBuilder.buildCast(Dst, Or); 5966 MI.eraseFromParent(); 5967 return Legalized; 5968 } 5969 5970 LegalizerHelper::LegalizeResult 5971 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5972 Register Dst0 = MI.getOperand(0).getReg(); 5973 Register Dst1 = MI.getOperand(1).getReg(); 5974 Register LHS = MI.getOperand(2).getReg(); 5975 Register RHS = MI.getOperand(3).getReg(); 5976 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5977 5978 LLT Ty = MRI.getType(Dst0); 5979 LLT BoolTy = MRI.getType(Dst1); 5980 5981 if (IsAdd) 5982 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5983 else 5984 MIRBuilder.buildSub(Dst0, LHS, RHS); 5985 5986 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5987 5988 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5989 5990 // For an addition, the result should be less than one of the operands (LHS) 5991 // if and only if the other operand (RHS) is negative, otherwise there will 5992 // be overflow. 5993 // For a subtraction, the result should be less than one of the operands 5994 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5995 // otherwise there will be overflow. 5996 auto ResultLowerThanLHS = 5997 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5998 auto ConditionRHS = MIRBuilder.buildICmp( 5999 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6000 6001 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6002 MI.eraseFromParent(); 6003 return Legalized; 6004 } 6005 6006 LegalizerHelper::LegalizeResult 6007 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6008 Register Res = MI.getOperand(0).getReg(); 6009 Register LHS = MI.getOperand(1).getReg(); 6010 Register RHS = MI.getOperand(2).getReg(); 6011 LLT Ty = MRI.getType(Res); 6012 bool IsSigned; 6013 bool IsAdd; 6014 unsigned BaseOp; 6015 switch (MI.getOpcode()) { 6016 default: 6017 llvm_unreachable("unexpected addsat/subsat opcode"); 6018 case TargetOpcode::G_UADDSAT: 6019 IsSigned = false; 6020 IsAdd = true; 6021 BaseOp = TargetOpcode::G_ADD; 6022 break; 6023 case TargetOpcode::G_SADDSAT: 6024 IsSigned = true; 6025 IsAdd = true; 6026 BaseOp = TargetOpcode::G_ADD; 6027 break; 6028 case TargetOpcode::G_USUBSAT: 6029 IsSigned = false; 6030 IsAdd = false; 6031 BaseOp = TargetOpcode::G_SUB; 6032 break; 6033 case TargetOpcode::G_SSUBSAT: 6034 IsSigned = true; 6035 IsAdd = false; 6036 BaseOp = TargetOpcode::G_SUB; 6037 break; 6038 } 6039 6040 if (IsSigned) { 6041 // sadd.sat(a, b) -> 6042 // hi = 0x7fffffff - smax(a, 0) 6043 // lo = 0x80000000 - smin(a, 0) 6044 // a + smin(smax(lo, b), hi) 6045 // ssub.sat(a, b) -> 6046 // lo = smax(a, -1) - 0x7fffffff 6047 // hi = smin(a, -1) - 0x80000000 6048 // a - smin(smax(lo, b), hi) 6049 // TODO: AMDGPU can use a "median of 3" instruction here: 6050 // a +/- med3(lo, b, hi) 6051 uint64_t NumBits = Ty.getScalarSizeInBits(); 6052 auto MaxVal = 6053 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6054 auto MinVal = 6055 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6056 MachineInstrBuilder Hi, Lo; 6057 if (IsAdd) { 6058 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6059 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6060 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6061 } else { 6062 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6063 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6064 MaxVal); 6065 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6066 MinVal); 6067 } 6068 auto RHSClamped = 6069 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6070 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6071 } else { 6072 // uadd.sat(a, b) -> a + umin(~a, b) 6073 // usub.sat(a, b) -> a - umin(a, b) 6074 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6075 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6076 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6077 } 6078 6079 MI.eraseFromParent(); 6080 return Legalized; 6081 } 6082 6083 LegalizerHelper::LegalizeResult 6084 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6085 Register Res = MI.getOperand(0).getReg(); 6086 Register LHS = MI.getOperand(1).getReg(); 6087 Register RHS = MI.getOperand(2).getReg(); 6088 LLT Ty = MRI.getType(Res); 6089 LLT BoolTy = Ty.changeElementSize(1); 6090 bool IsSigned; 6091 bool IsAdd; 6092 unsigned OverflowOp; 6093 switch (MI.getOpcode()) { 6094 default: 6095 llvm_unreachable("unexpected addsat/subsat opcode"); 6096 case TargetOpcode::G_UADDSAT: 6097 IsSigned = false; 6098 IsAdd = true; 6099 OverflowOp = TargetOpcode::G_UADDO; 6100 break; 6101 case TargetOpcode::G_SADDSAT: 6102 IsSigned = true; 6103 IsAdd = true; 6104 OverflowOp = TargetOpcode::G_SADDO; 6105 break; 6106 case TargetOpcode::G_USUBSAT: 6107 IsSigned = false; 6108 IsAdd = false; 6109 OverflowOp = TargetOpcode::G_USUBO; 6110 break; 6111 case TargetOpcode::G_SSUBSAT: 6112 IsSigned = true; 6113 IsAdd = false; 6114 OverflowOp = TargetOpcode::G_SSUBO; 6115 break; 6116 } 6117 6118 auto OverflowRes = 6119 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6120 Register Tmp = OverflowRes.getReg(0); 6121 Register Ov = OverflowRes.getReg(1); 6122 MachineInstrBuilder Clamp; 6123 if (IsSigned) { 6124 // sadd.sat(a, b) -> 6125 // {tmp, ov} = saddo(a, b) 6126 // ov ? (tmp >>s 31) + 0x80000000 : r 6127 // ssub.sat(a, b) -> 6128 // {tmp, ov} = ssubo(a, b) 6129 // ov ? (tmp >>s 31) + 0x80000000 : r 6130 uint64_t NumBits = Ty.getScalarSizeInBits(); 6131 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6132 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6133 auto MinVal = 6134 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6135 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6136 } else { 6137 // uadd.sat(a, b) -> 6138 // {tmp, ov} = uaddo(a, b) 6139 // ov ? 0xffffffff : tmp 6140 // usub.sat(a, b) -> 6141 // {tmp, ov} = usubo(a, b) 6142 // ov ? 0 : tmp 6143 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6144 } 6145 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6146 6147 MI.eraseFromParent(); 6148 return Legalized; 6149 } 6150 6151 LegalizerHelper::LegalizeResult 6152 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6153 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6154 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6155 "Expected shlsat opcode!"); 6156 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6157 Register Res = MI.getOperand(0).getReg(); 6158 Register LHS = MI.getOperand(1).getReg(); 6159 Register RHS = MI.getOperand(2).getReg(); 6160 LLT Ty = MRI.getType(Res); 6161 LLT BoolTy = Ty.changeElementSize(1); 6162 6163 unsigned BW = Ty.getScalarSizeInBits(); 6164 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6165 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6166 : MIRBuilder.buildLShr(Ty, Result, RHS); 6167 6168 MachineInstrBuilder SatVal; 6169 if (IsSigned) { 6170 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6171 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6172 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6173 MIRBuilder.buildConstant(Ty, 0)); 6174 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6175 } else { 6176 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6177 } 6178 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6179 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6180 6181 MI.eraseFromParent(); 6182 return Legalized; 6183 } 6184 6185 LegalizerHelper::LegalizeResult 6186 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6187 Register Dst = MI.getOperand(0).getReg(); 6188 Register Src = MI.getOperand(1).getReg(); 6189 const LLT Ty = MRI.getType(Src); 6190 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6191 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6192 6193 // Swap most and least significant byte, set remaining bytes in Res to zero. 6194 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6195 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6196 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6197 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6198 6199 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6200 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6201 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6202 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6203 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6204 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6205 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6206 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6207 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6208 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6209 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6210 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6211 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6212 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6213 } 6214 Res.getInstr()->getOperand(0).setReg(Dst); 6215 6216 MI.eraseFromParent(); 6217 return Legalized; 6218 } 6219 6220 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6221 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6222 MachineInstrBuilder Src, APInt Mask) { 6223 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6224 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6225 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6226 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6227 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6228 return B.buildOr(Dst, LHS, RHS); 6229 } 6230 6231 LegalizerHelper::LegalizeResult 6232 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6233 Register Dst = MI.getOperand(0).getReg(); 6234 Register Src = MI.getOperand(1).getReg(); 6235 const LLT Ty = MRI.getType(Src); 6236 unsigned Size = Ty.getSizeInBits(); 6237 6238 MachineInstrBuilder BSWAP = 6239 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6240 6241 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6242 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6243 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6244 MachineInstrBuilder Swap4 = 6245 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6246 6247 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6248 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6249 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6250 MachineInstrBuilder Swap2 = 6251 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6252 6253 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6254 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6255 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6256 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6257 6258 MI.eraseFromParent(); 6259 return Legalized; 6260 } 6261 6262 LegalizerHelper::LegalizeResult 6263 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6264 MachineFunction &MF = MIRBuilder.getMF(); 6265 6266 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6267 int NameOpIdx = IsRead ? 1 : 0; 6268 int ValRegIndex = IsRead ? 0 : 1; 6269 6270 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6271 const LLT Ty = MRI.getType(ValReg); 6272 const MDString *RegStr = cast<MDString>( 6273 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6274 6275 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6276 if (!PhysReg.isValid()) 6277 return UnableToLegalize; 6278 6279 if (IsRead) 6280 MIRBuilder.buildCopy(ValReg, PhysReg); 6281 else 6282 MIRBuilder.buildCopy(PhysReg, ValReg); 6283 6284 MI.eraseFromParent(); 6285 return Legalized; 6286 } 6287 6288 LegalizerHelper::LegalizeResult 6289 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6290 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6291 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6292 Register Result = MI.getOperand(0).getReg(); 6293 LLT OrigTy = MRI.getType(Result); 6294 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6295 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6296 6297 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6298 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6299 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6300 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6301 6302 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6303 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6304 MIRBuilder.buildTrunc(Result, Shifted); 6305 6306 MI.eraseFromParent(); 6307 return Legalized; 6308 } 6309 6310 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6311 // Implement vector G_SELECT in terms of XOR, AND, OR. 6312 Register DstReg = MI.getOperand(0).getReg(); 6313 Register MaskReg = MI.getOperand(1).getReg(); 6314 Register Op1Reg = MI.getOperand(2).getReg(); 6315 Register Op2Reg = MI.getOperand(3).getReg(); 6316 LLT DstTy = MRI.getType(DstReg); 6317 LLT MaskTy = MRI.getType(MaskReg); 6318 LLT Op1Ty = MRI.getType(Op1Reg); 6319 if (!DstTy.isVector()) 6320 return UnableToLegalize; 6321 6322 // Vector selects can have a scalar predicate. If so, splat into a vector and 6323 // finish for later legalization attempts to try again. 6324 if (MaskTy.isScalar()) { 6325 Register MaskElt = MaskReg; 6326 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6327 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6328 // Generate a vector splat idiom to be pattern matched later. 6329 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6330 Observer.changingInstr(MI); 6331 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6332 Observer.changedInstr(MI); 6333 return Legalized; 6334 } 6335 6336 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6337 return UnableToLegalize; 6338 } 6339 6340 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6341 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6342 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6343 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6344 MI.eraseFromParent(); 6345 return Legalized; 6346 } 6347 6348 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 6349 // Split DIVREM into individual instructions. 6350 unsigned Opcode = MI.getOpcode(); 6351 6352 MIRBuilder.buildInstr( 6353 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 6354 : TargetOpcode::G_UDIV, 6355 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 6356 MIRBuilder.buildInstr( 6357 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 6358 : TargetOpcode::G_UREM, 6359 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 6360 MI.eraseFromParent(); 6361 return Legalized; 6362 } 6363