1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(
64         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
65   } else {
66     LeftoverTy = LLT::scalar(LeftoverSize);
67   }
68 
69   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
70   return std::make_pair(NumParts, NumLeftover);
71 }
72 
73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
74 
75   if (!Ty.isScalar())
76     return nullptr;
77 
78   switch (Ty.getSizeInBits()) {
79   case 16:
80     return Type::getHalfTy(Ctx);
81   case 32:
82     return Type::getFloatTy(Ctx);
83   case 64:
84     return Type::getDoubleTy(Ctx);
85   case 80:
86     return Type::getX86_FP80Ty(Ctx);
87   case 128:
88     return Type::getFP128Ty(Ctx);
89   default:
90     return nullptr;
91   }
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &Builder)
97     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
98       LI(*MF.getSubtarget().getLegalizerInfo()),
99       TLI(*MF.getSubtarget().getTargetLowering()) { }
100 
101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
102                                  GISelChangeObserver &Observer,
103                                  MachineIRBuilder &B)
104   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
105     TLI(*MF.getSubtarget().getTargetLowering()) { }
106 
107 LegalizerHelper::LegalizeResult
108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
109                                    LostDebugLocObserver &LocObserver) {
110   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
111 
112   MIRBuilder.setInstrAndDebugLoc(MI);
113 
114   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
115       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
116     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
117   auto Step = LI.getAction(MI, MRI);
118   switch (Step.Action) {
119   case Legal:
120     LLVM_DEBUG(dbgs() << ".. Already legal\n");
121     return AlreadyLegal;
122   case Libcall:
123     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
124     return libcall(MI, LocObserver);
125   case NarrowScalar:
126     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
127     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
128   case WidenScalar:
129     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
130     return widenScalar(MI, Step.TypeIdx, Step.NewType);
131   case Bitcast:
132     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
133     return bitcast(MI, Step.TypeIdx, Step.NewType);
134   case Lower:
135     LLVM_DEBUG(dbgs() << ".. Lower\n");
136     return lower(MI, Step.TypeIdx, Step.NewType);
137   case FewerElements:
138     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
139     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case MoreElements:
141     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
142     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
143   case Custom:
144     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
145     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
146   default:
147     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
148     return UnableToLegalize;
149   }
150 }
151 
152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
153                                    SmallVectorImpl<Register> &VRegs) {
154   for (int i = 0; i < NumParts; ++i)
155     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
156   MIRBuilder.buildUnmerge(VRegs, Reg);
157 }
158 
159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
160                                    LLT MainTy, LLT &LeftoverTy,
161                                    SmallVectorImpl<Register> &VRegs,
162                                    SmallVectorImpl<Register> &LeftoverRegs) {
163   assert(!LeftoverTy.isValid() && "this is an out argument");
164 
165   unsigned RegSize = RegTy.getSizeInBits();
166   unsigned MainSize = MainTy.getSizeInBits();
167   unsigned NumParts = RegSize / MainSize;
168   unsigned LeftoverSize = RegSize - NumParts * MainSize;
169 
170   // Use an unmerge when possible.
171   if (LeftoverSize == 0) {
172     for (unsigned I = 0; I < NumParts; ++I)
173       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
174     MIRBuilder.buildUnmerge(VRegs, Reg);
175     return true;
176   }
177 
178   if (MainTy.isVector()) {
179     unsigned EltSize = MainTy.getScalarSizeInBits();
180     if (LeftoverSize % EltSize != 0)
181       return false;
182     LeftoverTy = LLT::scalarOrVector(
183         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
184   } else {
185     LeftoverTy = LLT::scalar(LeftoverSize);
186   }
187 
188   // For irregular sizes, extract the individual parts.
189   for (unsigned I = 0; I != NumParts; ++I) {
190     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
191     VRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
193   }
194 
195   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
196        Offset += LeftoverSize) {
197     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
198     LeftoverRegs.push_back(NewReg);
199     MIRBuilder.buildExtract(NewReg, Reg, Offset);
200   }
201 
202   return true;
203 }
204 
205 void LegalizerHelper::insertParts(Register DstReg,
206                                   LLT ResultTy, LLT PartTy,
207                                   ArrayRef<Register> PartRegs,
208                                   LLT LeftoverTy,
209                                   ArrayRef<Register> LeftoverRegs) {
210   if (!LeftoverTy.isValid()) {
211     assert(LeftoverRegs.empty());
212 
213     if (!ResultTy.isVector()) {
214       MIRBuilder.buildMerge(DstReg, PartRegs);
215       return;
216     }
217 
218     if (PartTy.isVector())
219       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
220     else
221       MIRBuilder.buildBuildVector(DstReg, PartRegs);
222     return;
223   }
224 
225   SmallVector<Register> GCDRegs;
226   LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
227   for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
228     extractGCDType(GCDRegs, GCDTy, PartReg);
229   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
230   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
231 }
232 
233 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
234 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
235                               const MachineInstr &MI) {
236   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
237 
238   const int StartIdx = Regs.size();
239   const int NumResults = MI.getNumOperands() - 1;
240   Regs.resize(Regs.size() + NumResults);
241   for (int I = 0; I != NumResults; ++I)
242     Regs[StartIdx + I] = MI.getOperand(I).getReg();
243 }
244 
245 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
246                                      LLT GCDTy, Register SrcReg) {
247   LLT SrcTy = MRI.getType(SrcReg);
248   if (SrcTy == GCDTy) {
249     // If the source already evenly divides the result type, we don't need to do
250     // anything.
251     Parts.push_back(SrcReg);
252   } else {
253     // Need to split into common type sized pieces.
254     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
255     getUnmergeResults(Parts, *Unmerge);
256   }
257 }
258 
259 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
260                                     LLT NarrowTy, Register SrcReg) {
261   LLT SrcTy = MRI.getType(SrcReg);
262   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
263   extractGCDType(Parts, GCDTy, SrcReg);
264   return GCDTy;
265 }
266 
267 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
268                                          SmallVectorImpl<Register> &VRegs,
269                                          unsigned PadStrategy) {
270   LLT LCMTy = getLCMType(DstTy, NarrowTy);
271 
272   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
273   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
274   int NumOrigSrc = VRegs.size();
275 
276   Register PadReg;
277 
278   // Get a value we can use to pad the source value if the sources won't evenly
279   // cover the result type.
280   if (NumOrigSrc < NumParts * NumSubParts) {
281     if (PadStrategy == TargetOpcode::G_ZEXT)
282       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
283     else if (PadStrategy == TargetOpcode::G_ANYEXT)
284       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
285     else {
286       assert(PadStrategy == TargetOpcode::G_SEXT);
287 
288       // Shift the sign bit of the low register through the high register.
289       auto ShiftAmt =
290         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
291       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
292     }
293   }
294 
295   // Registers for the final merge to be produced.
296   SmallVector<Register, 4> Remerge(NumParts);
297 
298   // Registers needed for intermediate merges, which will be merged into a
299   // source for Remerge.
300   SmallVector<Register, 4> SubMerge(NumSubParts);
301 
302   // Once we've fully read off the end of the original source bits, we can reuse
303   // the same high bits for remaining padding elements.
304   Register AllPadReg;
305 
306   // Build merges to the LCM type to cover the original result type.
307   for (int I = 0; I != NumParts; ++I) {
308     bool AllMergePartsArePadding = true;
309 
310     // Build the requested merges to the requested type.
311     for (int J = 0; J != NumSubParts; ++J) {
312       int Idx = I * NumSubParts + J;
313       if (Idx >= NumOrigSrc) {
314         SubMerge[J] = PadReg;
315         continue;
316       }
317 
318       SubMerge[J] = VRegs[Idx];
319 
320       // There are meaningful bits here we can't reuse later.
321       AllMergePartsArePadding = false;
322     }
323 
324     // If we've filled up a complete piece with padding bits, we can directly
325     // emit the natural sized constant if applicable, rather than a merge of
326     // smaller constants.
327     if (AllMergePartsArePadding && !AllPadReg) {
328       if (PadStrategy == TargetOpcode::G_ANYEXT)
329         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
330       else if (PadStrategy == TargetOpcode::G_ZEXT)
331         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
332 
333       // If this is a sign extension, we can't materialize a trivial constant
334       // with the right type and have to produce a merge.
335     }
336 
337     if (AllPadReg) {
338       // Avoid creating additional instructions if we're just adding additional
339       // copies of padding bits.
340       Remerge[I] = AllPadReg;
341       continue;
342     }
343 
344     if (NumSubParts == 1)
345       Remerge[I] = SubMerge[0];
346     else
347       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
348 
349     // In the sign extend padding case, re-use the first all-signbit merge.
350     if (AllMergePartsArePadding && !AllPadReg)
351       AllPadReg = Remerge[I];
352   }
353 
354   VRegs = std::move(Remerge);
355   return LCMTy;
356 }
357 
358 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
359                                                ArrayRef<Register> RemergeRegs) {
360   LLT DstTy = MRI.getType(DstReg);
361 
362   // Create the merge to the widened source, and extract the relevant bits into
363   // the result.
364 
365   if (DstTy == LCMTy) {
366     MIRBuilder.buildMerge(DstReg, RemergeRegs);
367     return;
368   }
369 
370   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
371   if (DstTy.isScalar() && LCMTy.isScalar()) {
372     MIRBuilder.buildTrunc(DstReg, Remerge);
373     return;
374   }
375 
376   if (LCMTy.isVector()) {
377     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
378     SmallVector<Register, 8> UnmergeDefs(NumDefs);
379     UnmergeDefs[0] = DstReg;
380     for (unsigned I = 1; I != NumDefs; ++I)
381       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
382 
383     MIRBuilder.buildUnmerge(UnmergeDefs,
384                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
385     return;
386   }
387 
388   llvm_unreachable("unhandled case");
389 }
390 
391 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
392 #define RTLIBCASE_INT(LibcallPrefix)                                           \
393   do {                                                                         \
394     switch (Size) {                                                            \
395     case 32:                                                                   \
396       return RTLIB::LibcallPrefix##32;                                         \
397     case 64:                                                                   \
398       return RTLIB::LibcallPrefix##64;                                         \
399     case 128:                                                                  \
400       return RTLIB::LibcallPrefix##128;                                        \
401     default:                                                                   \
402       llvm_unreachable("unexpected size");                                     \
403     }                                                                          \
404   } while (0)
405 
406 #define RTLIBCASE(LibcallPrefix)                                               \
407   do {                                                                         \
408     switch (Size) {                                                            \
409     case 32:                                                                   \
410       return RTLIB::LibcallPrefix##32;                                         \
411     case 64:                                                                   \
412       return RTLIB::LibcallPrefix##64;                                         \
413     case 80:                                                                   \
414       return RTLIB::LibcallPrefix##80;                                         \
415     case 128:                                                                  \
416       return RTLIB::LibcallPrefix##128;                                        \
417     default:                                                                   \
418       llvm_unreachable("unexpected size");                                     \
419     }                                                                          \
420   } while (0)
421 
422   switch (Opcode) {
423   case TargetOpcode::G_SDIV:
424     RTLIBCASE_INT(SDIV_I);
425   case TargetOpcode::G_UDIV:
426     RTLIBCASE_INT(UDIV_I);
427   case TargetOpcode::G_SREM:
428     RTLIBCASE_INT(SREM_I);
429   case TargetOpcode::G_UREM:
430     RTLIBCASE_INT(UREM_I);
431   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
432     RTLIBCASE_INT(CTLZ_I);
433   case TargetOpcode::G_FADD:
434     RTLIBCASE(ADD_F);
435   case TargetOpcode::G_FSUB:
436     RTLIBCASE(SUB_F);
437   case TargetOpcode::G_FMUL:
438     RTLIBCASE(MUL_F);
439   case TargetOpcode::G_FDIV:
440     RTLIBCASE(DIV_F);
441   case TargetOpcode::G_FEXP:
442     RTLIBCASE(EXP_F);
443   case TargetOpcode::G_FEXP2:
444     RTLIBCASE(EXP2_F);
445   case TargetOpcode::G_FREM:
446     RTLIBCASE(REM_F);
447   case TargetOpcode::G_FPOW:
448     RTLIBCASE(POW_F);
449   case TargetOpcode::G_FMA:
450     RTLIBCASE(FMA_F);
451   case TargetOpcode::G_FSIN:
452     RTLIBCASE(SIN_F);
453   case TargetOpcode::G_FCOS:
454     RTLIBCASE(COS_F);
455   case TargetOpcode::G_FLOG10:
456     RTLIBCASE(LOG10_F);
457   case TargetOpcode::G_FLOG:
458     RTLIBCASE(LOG_F);
459   case TargetOpcode::G_FLOG2:
460     RTLIBCASE(LOG2_F);
461   case TargetOpcode::G_FCEIL:
462     RTLIBCASE(CEIL_F);
463   case TargetOpcode::G_FFLOOR:
464     RTLIBCASE(FLOOR_F);
465   case TargetOpcode::G_FMINNUM:
466     RTLIBCASE(FMIN_F);
467   case TargetOpcode::G_FMAXNUM:
468     RTLIBCASE(FMAX_F);
469   case TargetOpcode::G_FSQRT:
470     RTLIBCASE(SQRT_F);
471   case TargetOpcode::G_FRINT:
472     RTLIBCASE(RINT_F);
473   case TargetOpcode::G_FNEARBYINT:
474     RTLIBCASE(NEARBYINT_F);
475   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
476     RTLIBCASE(ROUNDEVEN_F);
477   }
478   llvm_unreachable("Unknown libcall function");
479 }
480 
481 /// True if an instruction is in tail position in its caller. Intended for
482 /// legalizing libcalls as tail calls when possible.
483 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
484                                     MachineInstr &MI) {
485   MachineBasicBlock &MBB = *MI.getParent();
486   const Function &F = MBB.getParent()->getFunction();
487 
488   // Conservatively require the attributes of the call to match those of
489   // the return. Ignore NoAlias and NonNull because they don't affect the
490   // call sequence.
491   AttributeList CallerAttrs = F.getAttributes();
492   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
493           .removeAttribute(Attribute::NoAlias)
494           .removeAttribute(Attribute::NonNull)
495           .hasAttributes())
496     return false;
497 
498   // It's not safe to eliminate the sign / zero extension of the return value.
499   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
500       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
501     return false;
502 
503   // Only tail call if the following instruction is a standard return.
504   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
505   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
506     return false;
507 
508   return true;
509 }
510 
511 LegalizerHelper::LegalizeResult
512 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
513                     const CallLowering::ArgInfo &Result,
514                     ArrayRef<CallLowering::ArgInfo> Args,
515                     const CallingConv::ID CC) {
516   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
517 
518   CallLowering::CallLoweringInfo Info;
519   Info.CallConv = CC;
520   Info.Callee = MachineOperand::CreateES(Name);
521   Info.OrigRet = Result;
522   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
523   if (!CLI.lowerCall(MIRBuilder, Info))
524     return LegalizerHelper::UnableToLegalize;
525 
526   return LegalizerHelper::Legalized;
527 }
528 
529 LegalizerHelper::LegalizeResult
530 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
531                     const CallLowering::ArgInfo &Result,
532                     ArrayRef<CallLowering::ArgInfo> Args) {
533   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
534   const char *Name = TLI.getLibcallName(Libcall);
535   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
536   return createLibcall(MIRBuilder, Name, Result, Args, CC);
537 }
538 
539 // Useful for libcalls where all operands have the same type.
540 static LegalizerHelper::LegalizeResult
541 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
542               Type *OpType) {
543   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
544 
545   // FIXME: What does the original arg index mean here?
546   SmallVector<CallLowering::ArgInfo, 3> Args;
547   for (unsigned i = 1; i < MI.getNumOperands(); i++)
548     Args.push_back({MI.getOperand(i).getReg(), OpType, 0});
549   return createLibcall(MIRBuilder, Libcall,
550                        {MI.getOperand(0).getReg(), OpType, 0}, Args);
551 }
552 
553 LegalizerHelper::LegalizeResult
554 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
555                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
556   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
557 
558   SmallVector<CallLowering::ArgInfo, 3> Args;
559   // Add all the args, except for the last which is an imm denoting 'tail'.
560   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
561     Register Reg = MI.getOperand(i).getReg();
562 
563     // Need derive an IR type for call lowering.
564     LLT OpLLT = MRI.getType(Reg);
565     Type *OpTy = nullptr;
566     if (OpLLT.isPointer())
567       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
568     else
569       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
570     Args.push_back({Reg, OpTy, 0});
571   }
572 
573   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
574   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
575   RTLIB::Libcall RTLibcall;
576   unsigned Opc = MI.getOpcode();
577   switch (Opc) {
578   case TargetOpcode::G_BZERO:
579     RTLibcall = RTLIB::BZERO;
580     break;
581   case TargetOpcode::G_MEMCPY:
582     RTLibcall = RTLIB::MEMCPY;
583     break;
584   case TargetOpcode::G_MEMMOVE:
585     RTLibcall = RTLIB::MEMMOVE;
586     break;
587   case TargetOpcode::G_MEMSET:
588     RTLibcall = RTLIB::MEMSET;
589     break;
590   default:
591     return LegalizerHelper::UnableToLegalize;
592   }
593   const char *Name = TLI.getLibcallName(RTLibcall);
594 
595   // Unsupported libcall on the target.
596   if (!Name) {
597     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
598                       << MIRBuilder.getTII().getName(Opc) << "\n");
599     return LegalizerHelper::UnableToLegalize;
600   }
601 
602   CallLowering::CallLoweringInfo Info;
603   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
604   Info.Callee = MachineOperand::CreateES(Name);
605   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
606   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
607                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
608 
609   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
610   if (!CLI.lowerCall(MIRBuilder, Info))
611     return LegalizerHelper::UnableToLegalize;
612 
613 
614   if (Info.LoweredTailCall) {
615     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
616 
617     // Check debug locations before removing the return.
618     LocObserver.checkpoint(true);
619 
620     // We must have a return following the call (or debug insts) to get past
621     // isLibCallInTailPosition.
622     do {
623       MachineInstr *Next = MI.getNextNode();
624       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
625              "Expected instr following MI to be return or debug inst?");
626       // We lowered a tail call, so the call is now the return from the block.
627       // Delete the old return.
628       Next->eraseFromParent();
629     } while (MI.getNextNode());
630 
631     // We expect to lose the debug location from the return.
632     LocObserver.checkpoint(false);
633   }
634 
635   return LegalizerHelper::Legalized;
636 }
637 
638 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
639                                        Type *FromType) {
640   auto ToMVT = MVT::getVT(ToType);
641   auto FromMVT = MVT::getVT(FromType);
642 
643   switch (Opcode) {
644   case TargetOpcode::G_FPEXT:
645     return RTLIB::getFPEXT(FromMVT, ToMVT);
646   case TargetOpcode::G_FPTRUNC:
647     return RTLIB::getFPROUND(FromMVT, ToMVT);
648   case TargetOpcode::G_FPTOSI:
649     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
650   case TargetOpcode::G_FPTOUI:
651     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
652   case TargetOpcode::G_SITOFP:
653     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
654   case TargetOpcode::G_UITOFP:
655     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
656   }
657   llvm_unreachable("Unsupported libcall function");
658 }
659 
660 static LegalizerHelper::LegalizeResult
661 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
662                   Type *FromType) {
663   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
664   return createLibcall(MIRBuilder, Libcall,
665                        {MI.getOperand(0).getReg(), ToType, 0},
666                        {{MI.getOperand(1).getReg(), FromType, 0}});
667 }
668 
669 LegalizerHelper::LegalizeResult
670 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
671   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
672   unsigned Size = LLTy.getSizeInBits();
673   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
674 
675   switch (MI.getOpcode()) {
676   default:
677     return UnableToLegalize;
678   case TargetOpcode::G_SDIV:
679   case TargetOpcode::G_UDIV:
680   case TargetOpcode::G_SREM:
681   case TargetOpcode::G_UREM:
682   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
683     Type *HLTy = IntegerType::get(Ctx, Size);
684     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
685     if (Status != Legalized)
686       return Status;
687     break;
688   }
689   case TargetOpcode::G_FADD:
690   case TargetOpcode::G_FSUB:
691   case TargetOpcode::G_FMUL:
692   case TargetOpcode::G_FDIV:
693   case TargetOpcode::G_FMA:
694   case TargetOpcode::G_FPOW:
695   case TargetOpcode::G_FREM:
696   case TargetOpcode::G_FCOS:
697   case TargetOpcode::G_FSIN:
698   case TargetOpcode::G_FLOG10:
699   case TargetOpcode::G_FLOG:
700   case TargetOpcode::G_FLOG2:
701   case TargetOpcode::G_FEXP:
702   case TargetOpcode::G_FEXP2:
703   case TargetOpcode::G_FCEIL:
704   case TargetOpcode::G_FFLOOR:
705   case TargetOpcode::G_FMINNUM:
706   case TargetOpcode::G_FMAXNUM:
707   case TargetOpcode::G_FSQRT:
708   case TargetOpcode::G_FRINT:
709   case TargetOpcode::G_FNEARBYINT:
710   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
711     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
712     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
713       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
714       return UnableToLegalize;
715     }
716     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPEXT:
722   case TargetOpcode::G_FPTRUNC: {
723     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
724     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
725     if (!FromTy || !ToTy)
726       return UnableToLegalize;
727     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
728     if (Status != Legalized)
729       return Status;
730     break;
731   }
732   case TargetOpcode::G_FPTOSI:
733   case TargetOpcode::G_FPTOUI: {
734     // FIXME: Support other types
735     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
736     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
737     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
738       return UnableToLegalize;
739     LegalizeResult Status = conversionLibcall(
740         MI, MIRBuilder,
741         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
742         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
743     if (Status != Legalized)
744       return Status;
745     break;
746   }
747   case TargetOpcode::G_SITOFP:
748   case TargetOpcode::G_UITOFP: {
749     // FIXME: Support other types
750     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
751     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
752     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
753       return UnableToLegalize;
754     LegalizeResult Status = conversionLibcall(
755         MI, MIRBuilder,
756         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
757         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
758     if (Status != Legalized)
759       return Status;
760     break;
761   }
762   case TargetOpcode::G_BZERO:
763   case TargetOpcode::G_MEMCPY:
764   case TargetOpcode::G_MEMMOVE:
765   case TargetOpcode::G_MEMSET: {
766     LegalizeResult Result =
767         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
768     if (Result != Legalized)
769       return Result;
770     MI.eraseFromParent();
771     return Result;
772   }
773   }
774 
775   MI.eraseFromParent();
776   return Legalized;
777 }
778 
779 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
780                                                               unsigned TypeIdx,
781                                                               LLT NarrowTy) {
782   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
783   uint64_t NarrowSize = NarrowTy.getSizeInBits();
784 
785   switch (MI.getOpcode()) {
786   default:
787     return UnableToLegalize;
788   case TargetOpcode::G_IMPLICIT_DEF: {
789     Register DstReg = MI.getOperand(0).getReg();
790     LLT DstTy = MRI.getType(DstReg);
791 
792     // If SizeOp0 is not an exact multiple of NarrowSize, emit
793     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
794     // FIXME: Although this would also be legal for the general case, it causes
795     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
796     //  combines not being hit). This seems to be a problem related to the
797     //  artifact combiner.
798     if (SizeOp0 % NarrowSize != 0) {
799       LLT ImplicitTy = NarrowTy;
800       if (DstTy.isVector())
801         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
802 
803       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
804       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
805 
806       MI.eraseFromParent();
807       return Legalized;
808     }
809 
810     int NumParts = SizeOp0 / NarrowSize;
811 
812     SmallVector<Register, 2> DstRegs;
813     for (int i = 0; i < NumParts; ++i)
814       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
815 
816     if (DstTy.isVector())
817       MIRBuilder.buildBuildVector(DstReg, DstRegs);
818     else
819       MIRBuilder.buildMerge(DstReg, DstRegs);
820     MI.eraseFromParent();
821     return Legalized;
822   }
823   case TargetOpcode::G_CONSTANT: {
824     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
825     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
826     unsigned TotalSize = Ty.getSizeInBits();
827     unsigned NarrowSize = NarrowTy.getSizeInBits();
828     int NumParts = TotalSize / NarrowSize;
829 
830     SmallVector<Register, 4> PartRegs;
831     for (int I = 0; I != NumParts; ++I) {
832       unsigned Offset = I * NarrowSize;
833       auto K = MIRBuilder.buildConstant(NarrowTy,
834                                         Val.lshr(Offset).trunc(NarrowSize));
835       PartRegs.push_back(K.getReg(0));
836     }
837 
838     LLT LeftoverTy;
839     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
840     SmallVector<Register, 1> LeftoverRegs;
841     if (LeftoverBits != 0) {
842       LeftoverTy = LLT::scalar(LeftoverBits);
843       auto K = MIRBuilder.buildConstant(
844         LeftoverTy,
845         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
846       LeftoverRegs.push_back(K.getReg(0));
847     }
848 
849     insertParts(MI.getOperand(0).getReg(),
850                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
851 
852     MI.eraseFromParent();
853     return Legalized;
854   }
855   case TargetOpcode::G_SEXT:
856   case TargetOpcode::G_ZEXT:
857   case TargetOpcode::G_ANYEXT:
858     return narrowScalarExt(MI, TypeIdx, NarrowTy);
859   case TargetOpcode::G_TRUNC: {
860     if (TypeIdx != 1)
861       return UnableToLegalize;
862 
863     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
864     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
865       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
866       return UnableToLegalize;
867     }
868 
869     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
870     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
871     MI.eraseFromParent();
872     return Legalized;
873   }
874 
875   case TargetOpcode::G_FREEZE:
876     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
877   case TargetOpcode::G_ADD:
878   case TargetOpcode::G_SUB:
879   case TargetOpcode::G_SADDO:
880   case TargetOpcode::G_SSUBO:
881   case TargetOpcode::G_SADDE:
882   case TargetOpcode::G_SSUBE:
883   case TargetOpcode::G_UADDO:
884   case TargetOpcode::G_USUBO:
885   case TargetOpcode::G_UADDE:
886   case TargetOpcode::G_USUBE:
887     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
888   case TargetOpcode::G_MUL:
889   case TargetOpcode::G_UMULH:
890     return narrowScalarMul(MI, NarrowTy);
891   case TargetOpcode::G_EXTRACT:
892     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
893   case TargetOpcode::G_INSERT:
894     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
895   case TargetOpcode::G_LOAD: {
896     auto &MMO = **MI.memoperands_begin();
897     Register DstReg = MI.getOperand(0).getReg();
898     LLT DstTy = MRI.getType(DstReg);
899     if (DstTy.isVector())
900       return UnableToLegalize;
901 
902     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
903       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
904       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
905       MIRBuilder.buildAnyExt(DstReg, TmpReg);
906       MI.eraseFromParent();
907       return Legalized;
908     }
909 
910     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
911   }
912   case TargetOpcode::G_ZEXTLOAD:
913   case TargetOpcode::G_SEXTLOAD: {
914     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
915     Register DstReg = MI.getOperand(0).getReg();
916     Register PtrReg = MI.getOperand(1).getReg();
917 
918     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
919     auto &MMO = **MI.memoperands_begin();
920     unsigned MemSize = MMO.getSizeInBits();
921 
922     if (MemSize == NarrowSize) {
923       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
924     } else if (MemSize < NarrowSize) {
925       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
926     } else if (MemSize > NarrowSize) {
927       // FIXME: Need to split the load.
928       return UnableToLegalize;
929     }
930 
931     if (ZExt)
932       MIRBuilder.buildZExt(DstReg, TmpReg);
933     else
934       MIRBuilder.buildSExt(DstReg, TmpReg);
935 
936     MI.eraseFromParent();
937     return Legalized;
938   }
939   case TargetOpcode::G_STORE: {
940     const auto &MMO = **MI.memoperands_begin();
941 
942     Register SrcReg = MI.getOperand(0).getReg();
943     LLT SrcTy = MRI.getType(SrcReg);
944     if (SrcTy.isVector())
945       return UnableToLegalize;
946 
947     int NumParts = SizeOp0 / NarrowSize;
948     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
949     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
950     if (SrcTy.isVector() && LeftoverBits != 0)
951       return UnableToLegalize;
952 
953     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
954       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
955       auto &MMO = **MI.memoperands_begin();
956       MIRBuilder.buildTrunc(TmpReg, SrcReg);
957       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
958       MI.eraseFromParent();
959       return Legalized;
960     }
961 
962     return reduceLoadStoreWidth(MI, 0, NarrowTy);
963   }
964   case TargetOpcode::G_SELECT:
965     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
966   case TargetOpcode::G_AND:
967   case TargetOpcode::G_OR:
968   case TargetOpcode::G_XOR: {
969     // Legalize bitwise operation:
970     // A = BinOp<Ty> B, C
971     // into:
972     // B1, ..., BN = G_UNMERGE_VALUES B
973     // C1, ..., CN = G_UNMERGE_VALUES C
974     // A1 = BinOp<Ty/N> B1, C2
975     // ...
976     // AN = BinOp<Ty/N> BN, CN
977     // A = G_MERGE_VALUES A1, ..., AN
978     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
979   }
980   case TargetOpcode::G_SHL:
981   case TargetOpcode::G_LSHR:
982   case TargetOpcode::G_ASHR:
983     return narrowScalarShift(MI, TypeIdx, NarrowTy);
984   case TargetOpcode::G_CTLZ:
985   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
986   case TargetOpcode::G_CTTZ:
987   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
988   case TargetOpcode::G_CTPOP:
989     if (TypeIdx == 1)
990       switch (MI.getOpcode()) {
991       case TargetOpcode::G_CTLZ:
992       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
993         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
994       case TargetOpcode::G_CTTZ:
995       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
996         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
997       case TargetOpcode::G_CTPOP:
998         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
999       default:
1000         return UnableToLegalize;
1001       }
1002 
1003     Observer.changingInstr(MI);
1004     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1005     Observer.changedInstr(MI);
1006     return Legalized;
1007   case TargetOpcode::G_INTTOPTR:
1008     if (TypeIdx != 1)
1009       return UnableToLegalize;
1010 
1011     Observer.changingInstr(MI);
1012     narrowScalarSrc(MI, NarrowTy, 1);
1013     Observer.changedInstr(MI);
1014     return Legalized;
1015   case TargetOpcode::G_PTRTOINT:
1016     if (TypeIdx != 0)
1017       return UnableToLegalize;
1018 
1019     Observer.changingInstr(MI);
1020     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1021     Observer.changedInstr(MI);
1022     return Legalized;
1023   case TargetOpcode::G_PHI: {
1024     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1025     // NarrowSize.
1026     if (SizeOp0 % NarrowSize != 0)
1027       return UnableToLegalize;
1028 
1029     unsigned NumParts = SizeOp0 / NarrowSize;
1030     SmallVector<Register, 2> DstRegs(NumParts);
1031     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1032     Observer.changingInstr(MI);
1033     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1034       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1035       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1036       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1037                    SrcRegs[i / 2]);
1038     }
1039     MachineBasicBlock &MBB = *MI.getParent();
1040     MIRBuilder.setInsertPt(MBB, MI);
1041     for (unsigned i = 0; i < NumParts; ++i) {
1042       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1043       MachineInstrBuilder MIB =
1044           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1045       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1046         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1047     }
1048     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1049     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1050     Observer.changedInstr(MI);
1051     MI.eraseFromParent();
1052     return Legalized;
1053   }
1054   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1055   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1056     if (TypeIdx != 2)
1057       return UnableToLegalize;
1058 
1059     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1060     Observer.changingInstr(MI);
1061     narrowScalarSrc(MI, NarrowTy, OpIdx);
1062     Observer.changedInstr(MI);
1063     return Legalized;
1064   }
1065   case TargetOpcode::G_ICMP: {
1066     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1067     if (NarrowSize * 2 != SrcSize)
1068       return UnableToLegalize;
1069 
1070     Observer.changingInstr(MI);
1071     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1072     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1073     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1074 
1075     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1076     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1077     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1078 
1079     CmpInst::Predicate Pred =
1080         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1081     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1082 
1083     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1084       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1085       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1086       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1087       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1088       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1089     } else {
1090       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1091       MachineInstrBuilder CmpHEQ =
1092           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1093       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1094           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1095       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1096     }
1097     Observer.changedInstr(MI);
1098     MI.eraseFromParent();
1099     return Legalized;
1100   }
1101   case TargetOpcode::G_SEXT_INREG: {
1102     if (TypeIdx != 0)
1103       return UnableToLegalize;
1104 
1105     int64_t SizeInBits = MI.getOperand(2).getImm();
1106 
1107     // So long as the new type has more bits than the bits we're extending we
1108     // don't need to break it apart.
1109     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1110       Observer.changingInstr(MI);
1111       // We don't lose any non-extension bits by truncating the src and
1112       // sign-extending the dst.
1113       MachineOperand &MO1 = MI.getOperand(1);
1114       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1115       MO1.setReg(TruncMIB.getReg(0));
1116 
1117       MachineOperand &MO2 = MI.getOperand(0);
1118       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1119       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1120       MIRBuilder.buildSExt(MO2, DstExt);
1121       MO2.setReg(DstExt);
1122       Observer.changedInstr(MI);
1123       return Legalized;
1124     }
1125 
1126     // Break it apart. Components below the extension point are unmodified. The
1127     // component containing the extension point becomes a narrower SEXT_INREG.
1128     // Components above it are ashr'd from the component containing the
1129     // extension point.
1130     if (SizeOp0 % NarrowSize != 0)
1131       return UnableToLegalize;
1132     int NumParts = SizeOp0 / NarrowSize;
1133 
1134     // List the registers where the destination will be scattered.
1135     SmallVector<Register, 2> DstRegs;
1136     // List the registers where the source will be split.
1137     SmallVector<Register, 2> SrcRegs;
1138 
1139     // Create all the temporary registers.
1140     for (int i = 0; i < NumParts; ++i) {
1141       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1142 
1143       SrcRegs.push_back(SrcReg);
1144     }
1145 
1146     // Explode the big arguments into smaller chunks.
1147     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1148 
1149     Register AshrCstReg =
1150         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1151             .getReg(0);
1152     Register FullExtensionReg = 0;
1153     Register PartialExtensionReg = 0;
1154 
1155     // Do the operation on each small part.
1156     for (int i = 0; i < NumParts; ++i) {
1157       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1158         DstRegs.push_back(SrcRegs[i]);
1159       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1160         assert(PartialExtensionReg &&
1161                "Expected to visit partial extension before full");
1162         if (FullExtensionReg) {
1163           DstRegs.push_back(FullExtensionReg);
1164           continue;
1165         }
1166         DstRegs.push_back(
1167             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1168                 .getReg(0));
1169         FullExtensionReg = DstRegs.back();
1170       } else {
1171         DstRegs.push_back(
1172             MIRBuilder
1173                 .buildInstr(
1174                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1175                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1176                 .getReg(0));
1177         PartialExtensionReg = DstRegs.back();
1178       }
1179     }
1180 
1181     // Gather the destination registers into the final destination.
1182     Register DstReg = MI.getOperand(0).getReg();
1183     MIRBuilder.buildMerge(DstReg, DstRegs);
1184     MI.eraseFromParent();
1185     return Legalized;
1186   }
1187   case TargetOpcode::G_BSWAP:
1188   case TargetOpcode::G_BITREVERSE: {
1189     if (SizeOp0 % NarrowSize != 0)
1190       return UnableToLegalize;
1191 
1192     Observer.changingInstr(MI);
1193     SmallVector<Register, 2> SrcRegs, DstRegs;
1194     unsigned NumParts = SizeOp0 / NarrowSize;
1195     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1196 
1197     for (unsigned i = 0; i < NumParts; ++i) {
1198       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1199                                            {SrcRegs[NumParts - 1 - i]});
1200       DstRegs.push_back(DstPart.getReg(0));
1201     }
1202 
1203     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1204 
1205     Observer.changedInstr(MI);
1206     MI.eraseFromParent();
1207     return Legalized;
1208   }
1209   case TargetOpcode::G_PTR_ADD:
1210   case TargetOpcode::G_PTRMASK: {
1211     if (TypeIdx != 1)
1212       return UnableToLegalize;
1213     Observer.changingInstr(MI);
1214     narrowScalarSrc(MI, NarrowTy, 2);
1215     Observer.changedInstr(MI);
1216     return Legalized;
1217   }
1218   case TargetOpcode::G_FPTOUI:
1219   case TargetOpcode::G_FPTOSI:
1220     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1221   case TargetOpcode::G_FPEXT:
1222     if (TypeIdx != 0)
1223       return UnableToLegalize;
1224     Observer.changingInstr(MI);
1225     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1226     Observer.changedInstr(MI);
1227     return Legalized;
1228   }
1229 }
1230 
1231 Register LegalizerHelper::coerceToScalar(Register Val) {
1232   LLT Ty = MRI.getType(Val);
1233   if (Ty.isScalar())
1234     return Val;
1235 
1236   const DataLayout &DL = MIRBuilder.getDataLayout();
1237   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1238   if (Ty.isPointer()) {
1239     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1240       return Register();
1241     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1242   }
1243 
1244   Register NewVal = Val;
1245 
1246   assert(Ty.isVector());
1247   LLT EltTy = Ty.getElementType();
1248   if (EltTy.isPointer())
1249     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1250   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1251 }
1252 
1253 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1254                                      unsigned OpIdx, unsigned ExtOpcode) {
1255   MachineOperand &MO = MI.getOperand(OpIdx);
1256   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1257   MO.setReg(ExtB.getReg(0));
1258 }
1259 
1260 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1261                                       unsigned OpIdx) {
1262   MachineOperand &MO = MI.getOperand(OpIdx);
1263   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1264   MO.setReg(ExtB.getReg(0));
1265 }
1266 
1267 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1268                                      unsigned OpIdx, unsigned TruncOpcode) {
1269   MachineOperand &MO = MI.getOperand(OpIdx);
1270   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1271   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1272   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1273   MO.setReg(DstExt);
1274 }
1275 
1276 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1277                                       unsigned OpIdx, unsigned ExtOpcode) {
1278   MachineOperand &MO = MI.getOperand(OpIdx);
1279   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1280   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1281   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1282   MO.setReg(DstTrunc);
1283 }
1284 
1285 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1286                                             unsigned OpIdx) {
1287   MachineOperand &MO = MI.getOperand(OpIdx);
1288   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1289   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1290 }
1291 
1292 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1293                                             unsigned OpIdx) {
1294   MachineOperand &MO = MI.getOperand(OpIdx);
1295 
1296   LLT OldTy = MRI.getType(MO.getReg());
1297   unsigned OldElts = OldTy.getNumElements();
1298   unsigned NewElts = MoreTy.getNumElements();
1299 
1300   unsigned NumParts = NewElts / OldElts;
1301 
1302   // Use concat_vectors if the result is a multiple of the number of elements.
1303   if (NumParts * OldElts == NewElts) {
1304     SmallVector<Register, 8> Parts;
1305     Parts.push_back(MO.getReg());
1306 
1307     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1308     for (unsigned I = 1; I != NumParts; ++I)
1309       Parts.push_back(ImpDef);
1310 
1311     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1312     MO.setReg(Concat.getReg(0));
1313     return;
1314   }
1315 
1316   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1317   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1318   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1319   MO.setReg(MoreReg);
1320 }
1321 
1322 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1323   MachineOperand &Op = MI.getOperand(OpIdx);
1324   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1325 }
1326 
1327 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1328   MachineOperand &MO = MI.getOperand(OpIdx);
1329   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1330   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1331   MIRBuilder.buildBitcast(MO, CastDst);
1332   MO.setReg(CastDst);
1333 }
1334 
1335 LegalizerHelper::LegalizeResult
1336 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1337                                         LLT WideTy) {
1338   if (TypeIdx != 1)
1339     return UnableToLegalize;
1340 
1341   Register DstReg = MI.getOperand(0).getReg();
1342   LLT DstTy = MRI.getType(DstReg);
1343   if (DstTy.isVector())
1344     return UnableToLegalize;
1345 
1346   Register Src1 = MI.getOperand(1).getReg();
1347   LLT SrcTy = MRI.getType(Src1);
1348   const int DstSize = DstTy.getSizeInBits();
1349   const int SrcSize = SrcTy.getSizeInBits();
1350   const int WideSize = WideTy.getSizeInBits();
1351   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1352 
1353   unsigned NumOps = MI.getNumOperands();
1354   unsigned NumSrc = MI.getNumOperands() - 1;
1355   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1356 
1357   if (WideSize >= DstSize) {
1358     // Directly pack the bits in the target type.
1359     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1360 
1361     for (unsigned I = 2; I != NumOps; ++I) {
1362       const unsigned Offset = (I - 1) * PartSize;
1363 
1364       Register SrcReg = MI.getOperand(I).getReg();
1365       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1366 
1367       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1368 
1369       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1370         MRI.createGenericVirtualRegister(WideTy);
1371 
1372       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1373       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1374       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1375       ResultReg = NextResult;
1376     }
1377 
1378     if (WideSize > DstSize)
1379       MIRBuilder.buildTrunc(DstReg, ResultReg);
1380     else if (DstTy.isPointer())
1381       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1382 
1383     MI.eraseFromParent();
1384     return Legalized;
1385   }
1386 
1387   // Unmerge the original values to the GCD type, and recombine to the next
1388   // multiple greater than the original type.
1389   //
1390   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1391   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1392   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1393   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1394   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1395   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1396   // %12:_(s12) = G_MERGE_VALUES %10, %11
1397   //
1398   // Padding with undef if necessary:
1399   //
1400   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1401   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1402   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1403   // %7:_(s2) = G_IMPLICIT_DEF
1404   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1405   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1406   // %10:_(s12) = G_MERGE_VALUES %8, %9
1407 
1408   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1409   LLT GCDTy = LLT::scalar(GCD);
1410 
1411   SmallVector<Register, 8> Parts;
1412   SmallVector<Register, 8> NewMergeRegs;
1413   SmallVector<Register, 8> Unmerges;
1414   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1415 
1416   // Decompose the original operands if they don't evenly divide.
1417   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1418     Register SrcReg = MI.getOperand(I).getReg();
1419     if (GCD == SrcSize) {
1420       Unmerges.push_back(SrcReg);
1421     } else {
1422       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1423       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1424         Unmerges.push_back(Unmerge.getReg(J));
1425     }
1426   }
1427 
1428   // Pad with undef to the next size that is a multiple of the requested size.
1429   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1430     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1431     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1432       Unmerges.push_back(UndefReg);
1433   }
1434 
1435   const int PartsPerGCD = WideSize / GCD;
1436 
1437   // Build merges of each piece.
1438   ArrayRef<Register> Slicer(Unmerges);
1439   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1440     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1441     NewMergeRegs.push_back(Merge.getReg(0));
1442   }
1443 
1444   // A truncate may be necessary if the requested type doesn't evenly divide the
1445   // original result type.
1446   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1447     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1448   } else {
1449     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1450     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1451   }
1452 
1453   MI.eraseFromParent();
1454   return Legalized;
1455 }
1456 
1457 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1458   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1459   LLT OrigTy = MRI.getType(OrigReg);
1460   LLT LCMTy = getLCMType(WideTy, OrigTy);
1461 
1462   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1463   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1464 
1465   Register UnmergeSrc = WideReg;
1466 
1467   // Create a merge to the LCM type, padding with undef
1468   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1469   // =>
1470   // %1:_(<4 x s32>) = G_FOO
1471   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1472   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1473   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1474   if (NumMergeParts > 1) {
1475     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1476     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1477     MergeParts[0] = WideReg;
1478     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1479   }
1480 
1481   // Unmerge to the original register and pad with dead defs.
1482   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1483   UnmergeResults[0] = OrigReg;
1484   for (int I = 1; I != NumUnmergeParts; ++I)
1485     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1486 
1487   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1488   return WideReg;
1489 }
1490 
1491 LegalizerHelper::LegalizeResult
1492 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1493                                           LLT WideTy) {
1494   if (TypeIdx != 0)
1495     return UnableToLegalize;
1496 
1497   int NumDst = MI.getNumOperands() - 1;
1498   Register SrcReg = MI.getOperand(NumDst).getReg();
1499   LLT SrcTy = MRI.getType(SrcReg);
1500   if (SrcTy.isVector())
1501     return UnableToLegalize;
1502 
1503   Register Dst0Reg = MI.getOperand(0).getReg();
1504   LLT DstTy = MRI.getType(Dst0Reg);
1505   if (!DstTy.isScalar())
1506     return UnableToLegalize;
1507 
1508   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1509     if (SrcTy.isPointer()) {
1510       const DataLayout &DL = MIRBuilder.getDataLayout();
1511       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1512         LLVM_DEBUG(
1513             dbgs() << "Not casting non-integral address space integer\n");
1514         return UnableToLegalize;
1515       }
1516 
1517       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1518       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1519     }
1520 
1521     // Widen SrcTy to WideTy. This does not affect the result, but since the
1522     // user requested this size, it is probably better handled than SrcTy and
1523     // should reduce the total number of legalization artifacts
1524     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1525       SrcTy = WideTy;
1526       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1527     }
1528 
1529     // Theres no unmerge type to target. Directly extract the bits from the
1530     // source type
1531     unsigned DstSize = DstTy.getSizeInBits();
1532 
1533     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1534     for (int I = 1; I != NumDst; ++I) {
1535       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1536       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1537       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1538     }
1539 
1540     MI.eraseFromParent();
1541     return Legalized;
1542   }
1543 
1544   // Extend the source to a wider type.
1545   LLT LCMTy = getLCMType(SrcTy, WideTy);
1546 
1547   Register WideSrc = SrcReg;
1548   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1549     // TODO: If this is an integral address space, cast to integer and anyext.
1550     if (SrcTy.isPointer()) {
1551       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1552       return UnableToLegalize;
1553     }
1554 
1555     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1556   }
1557 
1558   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1559 
1560   // Create a sequence of unmerges and merges to the original results. Since we
1561   // may have widened the source, we will need to pad the results with dead defs
1562   // to cover the source register.
1563   // e.g. widen s48 to s64:
1564   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1565   //
1566   // =>
1567   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1568   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1569   //  ; unpack to GCD type, with extra dead defs
1570   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1571   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1572   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1573   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1574   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1575   const LLT GCDTy = getGCDType(WideTy, DstTy);
1576   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1577   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1578 
1579   // Directly unmerge to the destination without going through a GCD type
1580   // if possible
1581   if (PartsPerRemerge == 1) {
1582     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1583 
1584     for (int I = 0; I != NumUnmerge; ++I) {
1585       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1586 
1587       for (int J = 0; J != PartsPerUnmerge; ++J) {
1588         int Idx = I * PartsPerUnmerge + J;
1589         if (Idx < NumDst)
1590           MIB.addDef(MI.getOperand(Idx).getReg());
1591         else {
1592           // Create dead def for excess components.
1593           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1594         }
1595       }
1596 
1597       MIB.addUse(Unmerge.getReg(I));
1598     }
1599   } else {
1600     SmallVector<Register, 16> Parts;
1601     for (int J = 0; J != NumUnmerge; ++J)
1602       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1603 
1604     SmallVector<Register, 8> RemergeParts;
1605     for (int I = 0; I != NumDst; ++I) {
1606       for (int J = 0; J < PartsPerRemerge; ++J) {
1607         const int Idx = I * PartsPerRemerge + J;
1608         RemergeParts.emplace_back(Parts[Idx]);
1609       }
1610 
1611       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1612       RemergeParts.clear();
1613     }
1614   }
1615 
1616   MI.eraseFromParent();
1617   return Legalized;
1618 }
1619 
1620 LegalizerHelper::LegalizeResult
1621 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1622                                     LLT WideTy) {
1623   Register DstReg = MI.getOperand(0).getReg();
1624   Register SrcReg = MI.getOperand(1).getReg();
1625   LLT SrcTy = MRI.getType(SrcReg);
1626 
1627   LLT DstTy = MRI.getType(DstReg);
1628   unsigned Offset = MI.getOperand(2).getImm();
1629 
1630   if (TypeIdx == 0) {
1631     if (SrcTy.isVector() || DstTy.isVector())
1632       return UnableToLegalize;
1633 
1634     SrcOp Src(SrcReg);
1635     if (SrcTy.isPointer()) {
1636       // Extracts from pointers can be handled only if they are really just
1637       // simple integers.
1638       const DataLayout &DL = MIRBuilder.getDataLayout();
1639       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1640         return UnableToLegalize;
1641 
1642       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1643       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1644       SrcTy = SrcAsIntTy;
1645     }
1646 
1647     if (DstTy.isPointer())
1648       return UnableToLegalize;
1649 
1650     if (Offset == 0) {
1651       // Avoid a shift in the degenerate case.
1652       MIRBuilder.buildTrunc(DstReg,
1653                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1654       MI.eraseFromParent();
1655       return Legalized;
1656     }
1657 
1658     // Do a shift in the source type.
1659     LLT ShiftTy = SrcTy;
1660     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1661       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1662       ShiftTy = WideTy;
1663     }
1664 
1665     auto LShr = MIRBuilder.buildLShr(
1666       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1667     MIRBuilder.buildTrunc(DstReg, LShr);
1668     MI.eraseFromParent();
1669     return Legalized;
1670   }
1671 
1672   if (SrcTy.isScalar()) {
1673     Observer.changingInstr(MI);
1674     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1675     Observer.changedInstr(MI);
1676     return Legalized;
1677   }
1678 
1679   if (!SrcTy.isVector())
1680     return UnableToLegalize;
1681 
1682   if (DstTy != SrcTy.getElementType())
1683     return UnableToLegalize;
1684 
1685   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1686     return UnableToLegalize;
1687 
1688   Observer.changingInstr(MI);
1689   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1690 
1691   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1692                           Offset);
1693   widenScalarDst(MI, WideTy.getScalarType(), 0);
1694   Observer.changedInstr(MI);
1695   return Legalized;
1696 }
1697 
1698 LegalizerHelper::LegalizeResult
1699 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1700                                    LLT WideTy) {
1701   if (TypeIdx != 0 || WideTy.isVector())
1702     return UnableToLegalize;
1703   Observer.changingInstr(MI);
1704   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1705   widenScalarDst(MI, WideTy);
1706   Observer.changedInstr(MI);
1707   return Legalized;
1708 }
1709 
1710 LegalizerHelper::LegalizeResult
1711 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1712                                            LLT WideTy) {
1713   if (TypeIdx == 1)
1714     return UnableToLegalize; // TODO
1715 
1716   unsigned Opcode;
1717   unsigned ExtOpcode;
1718   Optional<Register> CarryIn = None;
1719   switch (MI.getOpcode()) {
1720   default:
1721     llvm_unreachable("Unexpected opcode!");
1722   case TargetOpcode::G_SADDO:
1723     Opcode = TargetOpcode::G_ADD;
1724     ExtOpcode = TargetOpcode::G_SEXT;
1725     break;
1726   case TargetOpcode::G_SSUBO:
1727     Opcode = TargetOpcode::G_SUB;
1728     ExtOpcode = TargetOpcode::G_SEXT;
1729     break;
1730   case TargetOpcode::G_UADDO:
1731     Opcode = TargetOpcode::G_ADD;
1732     ExtOpcode = TargetOpcode::G_ZEXT;
1733     break;
1734   case TargetOpcode::G_USUBO:
1735     Opcode = TargetOpcode::G_SUB;
1736     ExtOpcode = TargetOpcode::G_ZEXT;
1737     break;
1738   case TargetOpcode::G_SADDE:
1739     Opcode = TargetOpcode::G_UADDE;
1740     ExtOpcode = TargetOpcode::G_SEXT;
1741     CarryIn = MI.getOperand(4).getReg();
1742     break;
1743   case TargetOpcode::G_SSUBE:
1744     Opcode = TargetOpcode::G_USUBE;
1745     ExtOpcode = TargetOpcode::G_SEXT;
1746     CarryIn = MI.getOperand(4).getReg();
1747     break;
1748   case TargetOpcode::G_UADDE:
1749     Opcode = TargetOpcode::G_UADDE;
1750     ExtOpcode = TargetOpcode::G_ZEXT;
1751     CarryIn = MI.getOperand(4).getReg();
1752     break;
1753   case TargetOpcode::G_USUBE:
1754     Opcode = TargetOpcode::G_USUBE;
1755     ExtOpcode = TargetOpcode::G_ZEXT;
1756     CarryIn = MI.getOperand(4).getReg();
1757     break;
1758   }
1759 
1760   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1761   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1762   // Do the arithmetic in the larger type.
1763   Register NewOp;
1764   if (CarryIn) {
1765     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1766     NewOp = MIRBuilder
1767                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1768                             {LHSExt, RHSExt, *CarryIn})
1769                 .getReg(0);
1770   } else {
1771     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1772   }
1773   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1774   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1775   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1776   // There is no overflow if the ExtOp is the same as NewOp.
1777   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1778   // Now trunc the NewOp to the original result.
1779   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1780   MI.eraseFromParent();
1781   return Legalized;
1782 }
1783 
1784 LegalizerHelper::LegalizeResult
1785 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1786                                          LLT WideTy) {
1787   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1788                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1789                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1790   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1791                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1792   // We can convert this to:
1793   //   1. Any extend iN to iM
1794   //   2. SHL by M-N
1795   //   3. [US][ADD|SUB|SHL]SAT
1796   //   4. L/ASHR by M-N
1797   //
1798   // It may be more efficient to lower this to a min and a max operation in
1799   // the higher precision arithmetic if the promoted operation isn't legal,
1800   // but this decision is up to the target's lowering request.
1801   Register DstReg = MI.getOperand(0).getReg();
1802 
1803   unsigned NewBits = WideTy.getScalarSizeInBits();
1804   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1805 
1806   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1807   // must not left shift the RHS to preserve the shift amount.
1808   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1809   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1810                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1811   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1812   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1813   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1814 
1815   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1816                                         {ShiftL, ShiftR}, MI.getFlags());
1817 
1818   // Use a shift that will preserve the number of sign bits when the trunc is
1819   // folded away.
1820   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1821                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1822 
1823   MIRBuilder.buildTrunc(DstReg, Result);
1824   MI.eraseFromParent();
1825   return Legalized;
1826 }
1827 
1828 LegalizerHelper::LegalizeResult
1829 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1830                                  LLT WideTy) {
1831   if (TypeIdx == 1)
1832     return UnableToLegalize;
1833 
1834   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1835   Register Result = MI.getOperand(0).getReg();
1836   Register OriginalOverflow = MI.getOperand(1).getReg();
1837   Register LHS = MI.getOperand(2).getReg();
1838   Register RHS = MI.getOperand(3).getReg();
1839   LLT SrcTy = MRI.getType(LHS);
1840   LLT OverflowTy = MRI.getType(OriginalOverflow);
1841   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1842 
1843   // To determine if the result overflowed in the larger type, we extend the
1844   // input to the larger type, do the multiply (checking if it overflows),
1845   // then also check the high bits of the result to see if overflow happened
1846   // there.
1847   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1848   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1849   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1850 
1851   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1852                                     {LeftOperand, RightOperand});
1853   auto Mul = Mulo->getOperand(0);
1854   MIRBuilder.buildTrunc(Result, Mul);
1855 
1856   MachineInstrBuilder ExtResult;
1857   // Overflow occurred if it occurred in the larger type, or if the high part
1858   // of the result does not zero/sign-extend the low part.  Check this second
1859   // possibility first.
1860   if (IsSigned) {
1861     // For signed, overflow occurred when the high part does not sign-extend
1862     // the low part.
1863     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1864   } else {
1865     // Unsigned overflow occurred when the high part does not zero-extend the
1866     // low part.
1867     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1868   }
1869 
1870   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1871   // so we don't need to check the overflow result of larger type Mulo.
1872   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1873     auto Overflow =
1874         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1875     // Finally check if the multiplication in the larger type itself overflowed.
1876     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1877   } else {
1878     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1879   }
1880   MI.eraseFromParent();
1881   return Legalized;
1882 }
1883 
1884 LegalizerHelper::LegalizeResult
1885 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1886   switch (MI.getOpcode()) {
1887   default:
1888     return UnableToLegalize;
1889   case TargetOpcode::G_EXTRACT:
1890     return widenScalarExtract(MI, TypeIdx, WideTy);
1891   case TargetOpcode::G_INSERT:
1892     return widenScalarInsert(MI, TypeIdx, WideTy);
1893   case TargetOpcode::G_MERGE_VALUES:
1894     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1895   case TargetOpcode::G_UNMERGE_VALUES:
1896     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1897   case TargetOpcode::G_SADDO:
1898   case TargetOpcode::G_SSUBO:
1899   case TargetOpcode::G_UADDO:
1900   case TargetOpcode::G_USUBO:
1901   case TargetOpcode::G_SADDE:
1902   case TargetOpcode::G_SSUBE:
1903   case TargetOpcode::G_UADDE:
1904   case TargetOpcode::G_USUBE:
1905     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1906   case TargetOpcode::G_UMULO:
1907   case TargetOpcode::G_SMULO:
1908     return widenScalarMulo(MI, TypeIdx, WideTy);
1909   case TargetOpcode::G_SADDSAT:
1910   case TargetOpcode::G_SSUBSAT:
1911   case TargetOpcode::G_SSHLSAT:
1912   case TargetOpcode::G_UADDSAT:
1913   case TargetOpcode::G_USUBSAT:
1914   case TargetOpcode::G_USHLSAT:
1915     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1916   case TargetOpcode::G_CTTZ:
1917   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1918   case TargetOpcode::G_CTLZ:
1919   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1920   case TargetOpcode::G_CTPOP: {
1921     if (TypeIdx == 0) {
1922       Observer.changingInstr(MI);
1923       widenScalarDst(MI, WideTy, 0);
1924       Observer.changedInstr(MI);
1925       return Legalized;
1926     }
1927 
1928     Register SrcReg = MI.getOperand(1).getReg();
1929 
1930     // First ZEXT the input.
1931     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1932     LLT CurTy = MRI.getType(SrcReg);
1933     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1934       // The count is the same in the larger type except if the original
1935       // value was zero.  This can be handled by setting the bit just off
1936       // the top of the original type.
1937       auto TopBit =
1938           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1939       MIBSrc = MIRBuilder.buildOr(
1940         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1941     }
1942 
1943     // Perform the operation at the larger size.
1944     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1945     // This is already the correct result for CTPOP and CTTZs
1946     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1947         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1948       // The correct result is NewOp - (Difference in widety and current ty).
1949       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1950       MIBNewOp = MIRBuilder.buildSub(
1951           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1952     }
1953 
1954     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1955     MI.eraseFromParent();
1956     return Legalized;
1957   }
1958   case TargetOpcode::G_BSWAP: {
1959     Observer.changingInstr(MI);
1960     Register DstReg = MI.getOperand(0).getReg();
1961 
1962     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1963     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1964     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1965     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1966 
1967     MI.getOperand(0).setReg(DstExt);
1968 
1969     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1970 
1971     LLT Ty = MRI.getType(DstReg);
1972     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1973     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1974     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1975 
1976     MIRBuilder.buildTrunc(DstReg, ShrReg);
1977     Observer.changedInstr(MI);
1978     return Legalized;
1979   }
1980   case TargetOpcode::G_BITREVERSE: {
1981     Observer.changingInstr(MI);
1982 
1983     Register DstReg = MI.getOperand(0).getReg();
1984     LLT Ty = MRI.getType(DstReg);
1985     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1986 
1987     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1988     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1989     MI.getOperand(0).setReg(DstExt);
1990     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1991 
1992     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1993     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1994     MIRBuilder.buildTrunc(DstReg, Shift);
1995     Observer.changedInstr(MI);
1996     return Legalized;
1997   }
1998   case TargetOpcode::G_FREEZE:
1999     Observer.changingInstr(MI);
2000     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2001     widenScalarDst(MI, WideTy);
2002     Observer.changedInstr(MI);
2003     return Legalized;
2004 
2005   case TargetOpcode::G_ABS:
2006     Observer.changingInstr(MI);
2007     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2008     widenScalarDst(MI, WideTy);
2009     Observer.changedInstr(MI);
2010     return Legalized;
2011 
2012   case TargetOpcode::G_ADD:
2013   case TargetOpcode::G_AND:
2014   case TargetOpcode::G_MUL:
2015   case TargetOpcode::G_OR:
2016   case TargetOpcode::G_XOR:
2017   case TargetOpcode::G_SUB:
2018     // Perform operation at larger width (any extension is fines here, high bits
2019     // don't affect the result) and then truncate the result back to the
2020     // original type.
2021     Observer.changingInstr(MI);
2022     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2023     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2024     widenScalarDst(MI, WideTy);
2025     Observer.changedInstr(MI);
2026     return Legalized;
2027 
2028   case TargetOpcode::G_SBFX:
2029   case TargetOpcode::G_UBFX:
2030     Observer.changingInstr(MI);
2031 
2032     if (TypeIdx == 0) {
2033       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2034       widenScalarDst(MI, WideTy);
2035     } else {
2036       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2037       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2038     }
2039 
2040     Observer.changedInstr(MI);
2041     return Legalized;
2042 
2043   case TargetOpcode::G_SHL:
2044     Observer.changingInstr(MI);
2045 
2046     if (TypeIdx == 0) {
2047       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2048       widenScalarDst(MI, WideTy);
2049     } else {
2050       assert(TypeIdx == 1);
2051       // The "number of bits to shift" operand must preserve its value as an
2052       // unsigned integer:
2053       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2054     }
2055 
2056     Observer.changedInstr(MI);
2057     return Legalized;
2058 
2059   case TargetOpcode::G_SDIV:
2060   case TargetOpcode::G_SREM:
2061   case TargetOpcode::G_SMIN:
2062   case TargetOpcode::G_SMAX:
2063     Observer.changingInstr(MI);
2064     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2065     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2066     widenScalarDst(MI, WideTy);
2067     Observer.changedInstr(MI);
2068     return Legalized;
2069 
2070   case TargetOpcode::G_SDIVREM:
2071     Observer.changingInstr(MI);
2072     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2073     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2074     widenScalarDst(MI, WideTy);
2075     widenScalarDst(MI, WideTy, 1);
2076     Observer.changedInstr(MI);
2077     return Legalized;
2078 
2079   case TargetOpcode::G_ASHR:
2080   case TargetOpcode::G_LSHR:
2081     Observer.changingInstr(MI);
2082 
2083     if (TypeIdx == 0) {
2084       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2085         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2086 
2087       widenScalarSrc(MI, WideTy, 1, CvtOp);
2088       widenScalarDst(MI, WideTy);
2089     } else {
2090       assert(TypeIdx == 1);
2091       // The "number of bits to shift" operand must preserve its value as an
2092       // unsigned integer:
2093       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2094     }
2095 
2096     Observer.changedInstr(MI);
2097     return Legalized;
2098   case TargetOpcode::G_UDIV:
2099   case TargetOpcode::G_UREM:
2100   case TargetOpcode::G_UMIN:
2101   case TargetOpcode::G_UMAX:
2102     Observer.changingInstr(MI);
2103     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2104     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2105     widenScalarDst(MI, WideTy);
2106     Observer.changedInstr(MI);
2107     return Legalized;
2108 
2109   case TargetOpcode::G_UDIVREM:
2110     Observer.changingInstr(MI);
2111     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2112     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2113     widenScalarDst(MI, WideTy);
2114     widenScalarDst(MI, WideTy, 1);
2115     Observer.changedInstr(MI);
2116     return Legalized;
2117 
2118   case TargetOpcode::G_SELECT:
2119     Observer.changingInstr(MI);
2120     if (TypeIdx == 0) {
2121       // Perform operation at larger width (any extension is fine here, high
2122       // bits don't affect the result) and then truncate the result back to the
2123       // original type.
2124       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2125       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2126       widenScalarDst(MI, WideTy);
2127     } else {
2128       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2129       // Explicit extension is required here since high bits affect the result.
2130       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2131     }
2132     Observer.changedInstr(MI);
2133     return Legalized;
2134 
2135   case TargetOpcode::G_FPTOSI:
2136   case TargetOpcode::G_FPTOUI:
2137     Observer.changingInstr(MI);
2138 
2139     if (TypeIdx == 0)
2140       widenScalarDst(MI, WideTy);
2141     else
2142       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2143 
2144     Observer.changedInstr(MI);
2145     return Legalized;
2146   case TargetOpcode::G_SITOFP:
2147     Observer.changingInstr(MI);
2148 
2149     if (TypeIdx == 0)
2150       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2151     else
2152       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2153 
2154     Observer.changedInstr(MI);
2155     return Legalized;
2156   case TargetOpcode::G_UITOFP:
2157     Observer.changingInstr(MI);
2158 
2159     if (TypeIdx == 0)
2160       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2161     else
2162       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2163 
2164     Observer.changedInstr(MI);
2165     return Legalized;
2166   case TargetOpcode::G_LOAD:
2167   case TargetOpcode::G_SEXTLOAD:
2168   case TargetOpcode::G_ZEXTLOAD:
2169     Observer.changingInstr(MI);
2170     widenScalarDst(MI, WideTy);
2171     Observer.changedInstr(MI);
2172     return Legalized;
2173 
2174   case TargetOpcode::G_STORE: {
2175     if (TypeIdx != 0)
2176       return UnableToLegalize;
2177 
2178     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2179     if (!Ty.isScalar())
2180       return UnableToLegalize;
2181 
2182     Observer.changingInstr(MI);
2183 
2184     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2185       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2186     widenScalarSrc(MI, WideTy, 0, ExtType);
2187 
2188     Observer.changedInstr(MI);
2189     return Legalized;
2190   }
2191   case TargetOpcode::G_CONSTANT: {
2192     MachineOperand &SrcMO = MI.getOperand(1);
2193     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2194     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2195         MRI.getType(MI.getOperand(0).getReg()));
2196     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2197             ExtOpc == TargetOpcode::G_ANYEXT) &&
2198            "Illegal Extend");
2199     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2200     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2201                            ? SrcVal.sext(WideTy.getSizeInBits())
2202                            : SrcVal.zext(WideTy.getSizeInBits());
2203     Observer.changingInstr(MI);
2204     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2205 
2206     widenScalarDst(MI, WideTy);
2207     Observer.changedInstr(MI);
2208     return Legalized;
2209   }
2210   case TargetOpcode::G_FCONSTANT: {
2211     MachineOperand &SrcMO = MI.getOperand(1);
2212     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2213     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2214     bool LosesInfo;
2215     switch (WideTy.getSizeInBits()) {
2216     case 32:
2217       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2218                   &LosesInfo);
2219       break;
2220     case 64:
2221       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2222                   &LosesInfo);
2223       break;
2224     default:
2225       return UnableToLegalize;
2226     }
2227 
2228     assert(!LosesInfo && "extend should always be lossless");
2229 
2230     Observer.changingInstr(MI);
2231     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2232 
2233     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2234     Observer.changedInstr(MI);
2235     return Legalized;
2236   }
2237   case TargetOpcode::G_IMPLICIT_DEF: {
2238     Observer.changingInstr(MI);
2239     widenScalarDst(MI, WideTy);
2240     Observer.changedInstr(MI);
2241     return Legalized;
2242   }
2243   case TargetOpcode::G_BRCOND:
2244     Observer.changingInstr(MI);
2245     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2246     Observer.changedInstr(MI);
2247     return Legalized;
2248 
2249   case TargetOpcode::G_FCMP:
2250     Observer.changingInstr(MI);
2251     if (TypeIdx == 0)
2252       widenScalarDst(MI, WideTy);
2253     else {
2254       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2255       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2256     }
2257     Observer.changedInstr(MI);
2258     return Legalized;
2259 
2260   case TargetOpcode::G_ICMP:
2261     Observer.changingInstr(MI);
2262     if (TypeIdx == 0)
2263       widenScalarDst(MI, WideTy);
2264     else {
2265       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2266                                MI.getOperand(1).getPredicate()))
2267                                ? TargetOpcode::G_SEXT
2268                                : TargetOpcode::G_ZEXT;
2269       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2270       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2271     }
2272     Observer.changedInstr(MI);
2273     return Legalized;
2274 
2275   case TargetOpcode::G_PTR_ADD:
2276     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2277     Observer.changingInstr(MI);
2278     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2279     Observer.changedInstr(MI);
2280     return Legalized;
2281 
2282   case TargetOpcode::G_PHI: {
2283     assert(TypeIdx == 0 && "Expecting only Idx 0");
2284 
2285     Observer.changingInstr(MI);
2286     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2287       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2288       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2289       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2290     }
2291 
2292     MachineBasicBlock &MBB = *MI.getParent();
2293     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2294     widenScalarDst(MI, WideTy);
2295     Observer.changedInstr(MI);
2296     return Legalized;
2297   }
2298   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2299     if (TypeIdx == 0) {
2300       Register VecReg = MI.getOperand(1).getReg();
2301       LLT VecTy = MRI.getType(VecReg);
2302       Observer.changingInstr(MI);
2303 
2304       widenScalarSrc(
2305           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2306           TargetOpcode::G_SEXT);
2307 
2308       widenScalarDst(MI, WideTy, 0);
2309       Observer.changedInstr(MI);
2310       return Legalized;
2311     }
2312 
2313     if (TypeIdx != 2)
2314       return UnableToLegalize;
2315     Observer.changingInstr(MI);
2316     // TODO: Probably should be zext
2317     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2318     Observer.changedInstr(MI);
2319     return Legalized;
2320   }
2321   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2322     if (TypeIdx == 1) {
2323       Observer.changingInstr(MI);
2324 
2325       Register VecReg = MI.getOperand(1).getReg();
2326       LLT VecTy = MRI.getType(VecReg);
2327       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2328 
2329       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2330       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2331       widenScalarDst(MI, WideVecTy, 0);
2332       Observer.changedInstr(MI);
2333       return Legalized;
2334     }
2335 
2336     if (TypeIdx == 2) {
2337       Observer.changingInstr(MI);
2338       // TODO: Probably should be zext
2339       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2340       Observer.changedInstr(MI);
2341       return Legalized;
2342     }
2343 
2344     return UnableToLegalize;
2345   }
2346   case TargetOpcode::G_FADD:
2347   case TargetOpcode::G_FMUL:
2348   case TargetOpcode::G_FSUB:
2349   case TargetOpcode::G_FMA:
2350   case TargetOpcode::G_FMAD:
2351   case TargetOpcode::G_FNEG:
2352   case TargetOpcode::G_FABS:
2353   case TargetOpcode::G_FCANONICALIZE:
2354   case TargetOpcode::G_FMINNUM:
2355   case TargetOpcode::G_FMAXNUM:
2356   case TargetOpcode::G_FMINNUM_IEEE:
2357   case TargetOpcode::G_FMAXNUM_IEEE:
2358   case TargetOpcode::G_FMINIMUM:
2359   case TargetOpcode::G_FMAXIMUM:
2360   case TargetOpcode::G_FDIV:
2361   case TargetOpcode::G_FREM:
2362   case TargetOpcode::G_FCEIL:
2363   case TargetOpcode::G_FFLOOR:
2364   case TargetOpcode::G_FCOS:
2365   case TargetOpcode::G_FSIN:
2366   case TargetOpcode::G_FLOG10:
2367   case TargetOpcode::G_FLOG:
2368   case TargetOpcode::G_FLOG2:
2369   case TargetOpcode::G_FRINT:
2370   case TargetOpcode::G_FNEARBYINT:
2371   case TargetOpcode::G_FSQRT:
2372   case TargetOpcode::G_FEXP:
2373   case TargetOpcode::G_FEXP2:
2374   case TargetOpcode::G_FPOW:
2375   case TargetOpcode::G_INTRINSIC_TRUNC:
2376   case TargetOpcode::G_INTRINSIC_ROUND:
2377   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2378     assert(TypeIdx == 0);
2379     Observer.changingInstr(MI);
2380 
2381     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2382       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2383 
2384     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2385     Observer.changedInstr(MI);
2386     return Legalized;
2387   case TargetOpcode::G_FPOWI: {
2388     if (TypeIdx != 0)
2389       return UnableToLegalize;
2390     Observer.changingInstr(MI);
2391     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2392     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2393     Observer.changedInstr(MI);
2394     return Legalized;
2395   }
2396   case TargetOpcode::G_INTTOPTR:
2397     if (TypeIdx != 1)
2398       return UnableToLegalize;
2399 
2400     Observer.changingInstr(MI);
2401     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2402     Observer.changedInstr(MI);
2403     return Legalized;
2404   case TargetOpcode::G_PTRTOINT:
2405     if (TypeIdx != 0)
2406       return UnableToLegalize;
2407 
2408     Observer.changingInstr(MI);
2409     widenScalarDst(MI, WideTy, 0);
2410     Observer.changedInstr(MI);
2411     return Legalized;
2412   case TargetOpcode::G_BUILD_VECTOR: {
2413     Observer.changingInstr(MI);
2414 
2415     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2416     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2417       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2418 
2419     // Avoid changing the result vector type if the source element type was
2420     // requested.
2421     if (TypeIdx == 1) {
2422       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2423     } else {
2424       widenScalarDst(MI, WideTy, 0);
2425     }
2426 
2427     Observer.changedInstr(MI);
2428     return Legalized;
2429   }
2430   case TargetOpcode::G_SEXT_INREG:
2431     if (TypeIdx != 0)
2432       return UnableToLegalize;
2433 
2434     Observer.changingInstr(MI);
2435     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2436     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2437     Observer.changedInstr(MI);
2438     return Legalized;
2439   case TargetOpcode::G_PTRMASK: {
2440     if (TypeIdx != 1)
2441       return UnableToLegalize;
2442     Observer.changingInstr(MI);
2443     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2444     Observer.changedInstr(MI);
2445     return Legalized;
2446   }
2447   }
2448 }
2449 
2450 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2451                              MachineIRBuilder &B, Register Src, LLT Ty) {
2452   auto Unmerge = B.buildUnmerge(Ty, Src);
2453   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2454     Pieces.push_back(Unmerge.getReg(I));
2455 }
2456 
2457 LegalizerHelper::LegalizeResult
2458 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2459   Register Dst = MI.getOperand(0).getReg();
2460   Register Src = MI.getOperand(1).getReg();
2461   LLT DstTy = MRI.getType(Dst);
2462   LLT SrcTy = MRI.getType(Src);
2463 
2464   if (SrcTy.isVector()) {
2465     LLT SrcEltTy = SrcTy.getElementType();
2466     SmallVector<Register, 8> SrcRegs;
2467 
2468     if (DstTy.isVector()) {
2469       int NumDstElt = DstTy.getNumElements();
2470       int NumSrcElt = SrcTy.getNumElements();
2471 
2472       LLT DstEltTy = DstTy.getElementType();
2473       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2474       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2475 
2476       // If there's an element size mismatch, insert intermediate casts to match
2477       // the result element type.
2478       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2479         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2480         //
2481         // =>
2482         //
2483         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2484         // %3:_(<2 x s8>) = G_BITCAST %2
2485         // %4:_(<2 x s8>) = G_BITCAST %3
2486         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2487         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2488         SrcPartTy = SrcEltTy;
2489       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2490         //
2491         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2492         //
2493         // =>
2494         //
2495         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2496         // %3:_(s16) = G_BITCAST %2
2497         // %4:_(s16) = G_BITCAST %3
2498         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2499         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2500         DstCastTy = DstEltTy;
2501       }
2502 
2503       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2504       for (Register &SrcReg : SrcRegs)
2505         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2506     } else
2507       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2508 
2509     MIRBuilder.buildMerge(Dst, SrcRegs);
2510     MI.eraseFromParent();
2511     return Legalized;
2512   }
2513 
2514   if (DstTy.isVector()) {
2515     SmallVector<Register, 8> SrcRegs;
2516     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2517     MIRBuilder.buildMerge(Dst, SrcRegs);
2518     MI.eraseFromParent();
2519     return Legalized;
2520   }
2521 
2522   return UnableToLegalize;
2523 }
2524 
2525 /// Figure out the bit offset into a register when coercing a vector index for
2526 /// the wide element type. This is only for the case when promoting vector to
2527 /// one with larger elements.
2528 //
2529 ///
2530 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2531 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2532 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2533                                                    Register Idx,
2534                                                    unsigned NewEltSize,
2535                                                    unsigned OldEltSize) {
2536   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2537   LLT IdxTy = B.getMRI()->getType(Idx);
2538 
2539   // Now figure out the amount we need to shift to get the target bits.
2540   auto OffsetMask = B.buildConstant(
2541     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2542   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2543   return B.buildShl(IdxTy, OffsetIdx,
2544                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2545 }
2546 
2547 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2548 /// is casting to a vector with a smaller element size, perform multiple element
2549 /// extracts and merge the results. If this is coercing to a vector with larger
2550 /// elements, index the bitcasted vector and extract the target element with bit
2551 /// operations. This is intended to force the indexing in the native register
2552 /// size for architectures that can dynamically index the register file.
2553 LegalizerHelper::LegalizeResult
2554 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2555                                          LLT CastTy) {
2556   if (TypeIdx != 1)
2557     return UnableToLegalize;
2558 
2559   Register Dst = MI.getOperand(0).getReg();
2560   Register SrcVec = MI.getOperand(1).getReg();
2561   Register Idx = MI.getOperand(2).getReg();
2562   LLT SrcVecTy = MRI.getType(SrcVec);
2563   LLT IdxTy = MRI.getType(Idx);
2564 
2565   LLT SrcEltTy = SrcVecTy.getElementType();
2566   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2567   unsigned OldNumElts = SrcVecTy.getNumElements();
2568 
2569   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2570   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2571 
2572   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2573   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2574   if (NewNumElts > OldNumElts) {
2575     // Decreasing the vector element size
2576     //
2577     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2578     //  =>
2579     //  v4i32:castx = bitcast x:v2i64
2580     //
2581     // i64 = bitcast
2582     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2583     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2584     //
2585     if (NewNumElts % OldNumElts != 0)
2586       return UnableToLegalize;
2587 
2588     // Type of the intermediate result vector.
2589     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2590     LLT MidTy =
2591         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2592 
2593     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2594 
2595     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2596     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2597 
2598     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2599       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2600       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2601       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2602       NewOps[I] = Elt.getReg(0);
2603     }
2604 
2605     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2606     MIRBuilder.buildBitcast(Dst, NewVec);
2607     MI.eraseFromParent();
2608     return Legalized;
2609   }
2610 
2611   if (NewNumElts < OldNumElts) {
2612     if (NewEltSize % OldEltSize != 0)
2613       return UnableToLegalize;
2614 
2615     // This only depends on powers of 2 because we use bit tricks to figure out
2616     // the bit offset we need to shift to get the target element. A general
2617     // expansion could emit division/multiply.
2618     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2619       return UnableToLegalize;
2620 
2621     // Increasing the vector element size.
2622     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2623     //
2624     //   =>
2625     //
2626     // %cast = G_BITCAST %vec
2627     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2628     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2629     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2630     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2631     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2632     // %elt = G_TRUNC %elt_bits
2633 
2634     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2635     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2636 
2637     // Divide to get the index in the wider element type.
2638     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2639 
2640     Register WideElt = CastVec;
2641     if (CastTy.isVector()) {
2642       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2643                                                      ScaledIdx).getReg(0);
2644     }
2645 
2646     // Compute the bit offset into the register of the target element.
2647     Register OffsetBits = getBitcastWiderVectorElementOffset(
2648       MIRBuilder, Idx, NewEltSize, OldEltSize);
2649 
2650     // Shift the wide element to get the target element.
2651     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2652     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2653     MI.eraseFromParent();
2654     return Legalized;
2655   }
2656 
2657   return UnableToLegalize;
2658 }
2659 
2660 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2661 /// TargetReg, while preserving other bits in \p TargetReg.
2662 ///
2663 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2664 static Register buildBitFieldInsert(MachineIRBuilder &B,
2665                                     Register TargetReg, Register InsertReg,
2666                                     Register OffsetBits) {
2667   LLT TargetTy = B.getMRI()->getType(TargetReg);
2668   LLT InsertTy = B.getMRI()->getType(InsertReg);
2669   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2670   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2671 
2672   // Produce a bitmask of the value to insert
2673   auto EltMask = B.buildConstant(
2674     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2675                                    InsertTy.getSizeInBits()));
2676   // Shift it into position
2677   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2678   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2679 
2680   // Clear out the bits in the wide element
2681   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2682 
2683   // The value to insert has all zeros already, so stick it into the masked
2684   // wide element.
2685   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2686 }
2687 
2688 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2689 /// is increasing the element size, perform the indexing in the target element
2690 /// type, and use bit operations to insert at the element position. This is
2691 /// intended for architectures that can dynamically index the register file and
2692 /// want to force indexing in the native register size.
2693 LegalizerHelper::LegalizeResult
2694 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2695                                         LLT CastTy) {
2696   if (TypeIdx != 0)
2697     return UnableToLegalize;
2698 
2699   Register Dst = MI.getOperand(0).getReg();
2700   Register SrcVec = MI.getOperand(1).getReg();
2701   Register Val = MI.getOperand(2).getReg();
2702   Register Idx = MI.getOperand(3).getReg();
2703 
2704   LLT VecTy = MRI.getType(Dst);
2705   LLT IdxTy = MRI.getType(Idx);
2706 
2707   LLT VecEltTy = VecTy.getElementType();
2708   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2709   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2710   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2711 
2712   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2713   unsigned OldNumElts = VecTy.getNumElements();
2714 
2715   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2716   if (NewNumElts < OldNumElts) {
2717     if (NewEltSize % OldEltSize != 0)
2718       return UnableToLegalize;
2719 
2720     // This only depends on powers of 2 because we use bit tricks to figure out
2721     // the bit offset we need to shift to get the target element. A general
2722     // expansion could emit division/multiply.
2723     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2724       return UnableToLegalize;
2725 
2726     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2727     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2728 
2729     // Divide to get the index in the wider element type.
2730     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2731 
2732     Register ExtractedElt = CastVec;
2733     if (CastTy.isVector()) {
2734       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2735                                                           ScaledIdx).getReg(0);
2736     }
2737 
2738     // Compute the bit offset into the register of the target element.
2739     Register OffsetBits = getBitcastWiderVectorElementOffset(
2740       MIRBuilder, Idx, NewEltSize, OldEltSize);
2741 
2742     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2743                                                Val, OffsetBits);
2744     if (CastTy.isVector()) {
2745       InsertedElt = MIRBuilder.buildInsertVectorElement(
2746         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2747     }
2748 
2749     MIRBuilder.buildBitcast(Dst, InsertedElt);
2750     MI.eraseFromParent();
2751     return Legalized;
2752   }
2753 
2754   return UnableToLegalize;
2755 }
2756 
2757 LegalizerHelper::LegalizeResult
2758 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2759   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2760   Register DstReg = MI.getOperand(0).getReg();
2761   Register PtrReg = MI.getOperand(1).getReg();
2762   LLT DstTy = MRI.getType(DstReg);
2763   MachineMemOperand &MMO = **MI.memoperands_begin();
2764   LLT MemTy = MMO.getMemoryType();
2765   MachineFunction &MF = MIRBuilder.getMF();
2766   if (MemTy.isVector())
2767     return UnableToLegalize;
2768 
2769   unsigned MemSizeInBits = MemTy.getSizeInBits();
2770   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2771 
2772   if (MemSizeInBits != MemStoreSizeInBits) {
2773     // Promote to a byte-sized load if not loading an integral number of
2774     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2775     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2776     MachineMemOperand *NewMMO =
2777         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2778 
2779     Register LoadReg = DstReg;
2780     LLT LoadTy = DstTy;
2781 
2782     // If this wasn't already an extending load, we need to widen the result
2783     // register to avoid creating a load with a narrower result than the source.
2784     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2785       LoadTy = WideMemTy;
2786       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2787     }
2788 
2789     if (MI.getOpcode() == TargetOpcode::G_SEXTLOAD) {
2790       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2791       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
2792     } else if (MI.getOpcode() == TargetOpcode::G_ZEXTLOAD ||
2793                WideMemTy == DstTy) {
2794       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2795       // The extra bits are guaranteed to be zero, since we stored them that
2796       // way.  A zext load from Wide thus automatically gives zext from MemVT.
2797       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
2798     } else {
2799       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
2800     }
2801 
2802     if (DstTy != LoadTy)
2803       MIRBuilder.buildTrunc(DstReg, LoadReg);
2804 
2805     MI.eraseFromParent();
2806     return Legalized;
2807   }
2808 
2809   if (DstTy.getSizeInBits() != MMO.getSizeInBits())
2810     return UnableToLegalize;
2811 
2812   if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2813     // This load needs splitting into power of 2 sized loads.
2814     if (DstTy.isVector())
2815       return UnableToLegalize;
2816     if (isPowerOf2_32(DstTy.getSizeInBits()))
2817       return UnableToLegalize; // Don't know what we're being asked to do.
2818 
2819     // Our strategy here is to generate anyextending loads for the smaller
2820     // types up to next power-2 result type, and then combine the two larger
2821     // result values together, before truncating back down to the non-pow-2
2822     // type.
2823     // E.g. v1 = i24 load =>
2824     // v2 = i32 zextload (2 byte)
2825     // v3 = i32 load (1 byte)
2826     // v4 = i32 shl v3, 16
2827     // v5 = i32 or v4, v2
2828     // v1 = i24 trunc v5
2829     // By doing this we generate the correct truncate which should get
2830     // combined away as an artifact with a matching extend.
2831     uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2832     uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2833 
2834     MachineFunction &MF = MIRBuilder.getMF();
2835     MachineMemOperand *LargeMMO =
2836       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2837     MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2838       &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2839 
2840     LLT PtrTy = MRI.getType(PtrReg);
2841     unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2842     LLT AnyExtTy = LLT::scalar(AnyExtSize);
2843     auto LargeLoad = MIRBuilder.buildLoadInstr(
2844       TargetOpcode::G_ZEXTLOAD, AnyExtTy, PtrReg, *LargeMMO);
2845 
2846     auto OffsetCst = MIRBuilder.buildConstant(
2847       LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2848     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2849     auto SmallPtr =
2850       MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2851     auto SmallLoad = MIRBuilder.buildLoad(AnyExtTy, SmallPtr,
2852                                           *SmallMMO);
2853 
2854     auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2855     auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2856     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2857     MIRBuilder.buildTrunc(DstReg, {Or});
2858     MI.eraseFromParent();
2859     return Legalized;
2860   }
2861 
2862   return UnableToLegalize;
2863 }
2864 
2865 LegalizerHelper::LegalizeResult
2866 LegalizerHelper::lowerStore(MachineInstr &MI) {
2867   // Lower a non-power of 2 store into multiple pow-2 stores.
2868   // E.g. split an i24 store into an i16 store + i8 store.
2869   // We do this by first extending the stored value to the next largest power
2870   // of 2 type, and then using truncating stores to store the components.
2871   // By doing this, likewise with G_LOAD, generate an extend that can be
2872   // artifact-combined away instead of leaving behind extracts.
2873   Register SrcReg = MI.getOperand(0).getReg();
2874   Register PtrReg = MI.getOperand(1).getReg();
2875   LLT SrcTy = MRI.getType(SrcReg);
2876   MachineFunction &MF = MIRBuilder.getMF();
2877   MachineMemOperand &MMO = **MI.memoperands_begin();
2878   LLT MemTy = MMO.getMemoryType();
2879 
2880   if (SrcTy.isVector())
2881     return UnableToLegalize;
2882 
2883   unsigned StoreWidth = MemTy.getSizeInBits();
2884   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
2885 
2886   if (StoreWidth != StoreSizeInBits) {
2887     // Promote to a byte-sized store with upper bits zero if not
2888     // storing an integral number of bytes.  For example, promote
2889     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
2890     LLT WideTy = LLT::scalar(StoreSizeInBits);
2891 
2892     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
2893       // Avoid creating a store with a narrower source than result.
2894       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
2895       SrcTy = WideTy;
2896     }
2897 
2898     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
2899 
2900     MachineMemOperand *NewMMO =
2901         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
2902     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
2903     MI.eraseFromParent();
2904     return Legalized;
2905   }
2906 
2907   if (isPowerOf2_32(MemTy.getSizeInBits()))
2908     return UnableToLegalize; // Don't know what we're being asked to do.
2909 
2910   // Extend to the next pow-2.
2911   const LLT ExtendTy = LLT::scalar(NextPowerOf2(MemTy.getSizeInBits()));
2912   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2913 
2914   // Obtain the smaller value by shifting away the larger value.
2915   uint64_t LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
2916   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2917   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2918   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2919 
2920   // Generate the PtrAdd and truncating stores.
2921   LLT PtrTy = MRI.getType(PtrReg);
2922   auto OffsetCst = MIRBuilder.buildConstant(
2923     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2924   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2925   auto SmallPtr =
2926     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2927 
2928   MachineMemOperand *LargeMMO =
2929     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2930   MachineMemOperand *SmallMMO =
2931     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2932   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
2933   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
2934   MI.eraseFromParent();
2935   return Legalized;
2936 }
2937 
2938 LegalizerHelper::LegalizeResult
2939 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2940   switch (MI.getOpcode()) {
2941   case TargetOpcode::G_LOAD: {
2942     if (TypeIdx != 0)
2943       return UnableToLegalize;
2944 
2945     Observer.changingInstr(MI);
2946     bitcastDst(MI, CastTy, 0);
2947     Observer.changedInstr(MI);
2948     return Legalized;
2949   }
2950   case TargetOpcode::G_STORE: {
2951     if (TypeIdx != 0)
2952       return UnableToLegalize;
2953 
2954     Observer.changingInstr(MI);
2955     bitcastSrc(MI, CastTy, 0);
2956     Observer.changedInstr(MI);
2957     return Legalized;
2958   }
2959   case TargetOpcode::G_SELECT: {
2960     if (TypeIdx != 0)
2961       return UnableToLegalize;
2962 
2963     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2964       LLVM_DEBUG(
2965           dbgs() << "bitcast action not implemented for vector select\n");
2966       return UnableToLegalize;
2967     }
2968 
2969     Observer.changingInstr(MI);
2970     bitcastSrc(MI, CastTy, 2);
2971     bitcastSrc(MI, CastTy, 3);
2972     bitcastDst(MI, CastTy, 0);
2973     Observer.changedInstr(MI);
2974     return Legalized;
2975   }
2976   case TargetOpcode::G_AND:
2977   case TargetOpcode::G_OR:
2978   case TargetOpcode::G_XOR: {
2979     Observer.changingInstr(MI);
2980     bitcastSrc(MI, CastTy, 1);
2981     bitcastSrc(MI, CastTy, 2);
2982     bitcastDst(MI, CastTy, 0);
2983     Observer.changedInstr(MI);
2984     return Legalized;
2985   }
2986   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2987     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2988   case TargetOpcode::G_INSERT_VECTOR_ELT:
2989     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2990   default:
2991     return UnableToLegalize;
2992   }
2993 }
2994 
2995 // Legalize an instruction by changing the opcode in place.
2996 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2997     Observer.changingInstr(MI);
2998     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2999     Observer.changedInstr(MI);
3000 }
3001 
3002 LegalizerHelper::LegalizeResult
3003 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3004   using namespace TargetOpcode;
3005 
3006   switch(MI.getOpcode()) {
3007   default:
3008     return UnableToLegalize;
3009   case TargetOpcode::G_BITCAST:
3010     return lowerBitcast(MI);
3011   case TargetOpcode::G_SREM:
3012   case TargetOpcode::G_UREM: {
3013     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3014     auto Quot =
3015         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3016                               {MI.getOperand(1), MI.getOperand(2)});
3017 
3018     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3019     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3020     MI.eraseFromParent();
3021     return Legalized;
3022   }
3023   case TargetOpcode::G_SADDO:
3024   case TargetOpcode::G_SSUBO:
3025     return lowerSADDO_SSUBO(MI);
3026   case TargetOpcode::G_UMULH:
3027   case TargetOpcode::G_SMULH:
3028     return lowerSMULH_UMULH(MI);
3029   case TargetOpcode::G_SMULO:
3030   case TargetOpcode::G_UMULO: {
3031     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3032     // result.
3033     Register Res = MI.getOperand(0).getReg();
3034     Register Overflow = MI.getOperand(1).getReg();
3035     Register LHS = MI.getOperand(2).getReg();
3036     Register RHS = MI.getOperand(3).getReg();
3037     LLT Ty = MRI.getType(Res);
3038 
3039     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3040                           ? TargetOpcode::G_SMULH
3041                           : TargetOpcode::G_UMULH;
3042 
3043     Observer.changingInstr(MI);
3044     const auto &TII = MIRBuilder.getTII();
3045     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3046     MI.RemoveOperand(1);
3047     Observer.changedInstr(MI);
3048 
3049     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3050     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3051 
3052     // Move insert point forward so we can use the Res register if needed.
3053     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3054 
3055     // For *signed* multiply, overflow is detected by checking:
3056     // (hi != (lo >> bitwidth-1))
3057     if (Opcode == TargetOpcode::G_SMULH) {
3058       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3059       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3060       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3061     } else {
3062       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3063     }
3064     return Legalized;
3065   }
3066   case TargetOpcode::G_FNEG: {
3067     Register Res = MI.getOperand(0).getReg();
3068     LLT Ty = MRI.getType(Res);
3069 
3070     // TODO: Handle vector types once we are able to
3071     // represent them.
3072     if (Ty.isVector())
3073       return UnableToLegalize;
3074     auto SignMask =
3075         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3076     Register SubByReg = MI.getOperand(1).getReg();
3077     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3078     MI.eraseFromParent();
3079     return Legalized;
3080   }
3081   case TargetOpcode::G_FSUB: {
3082     Register Res = MI.getOperand(0).getReg();
3083     LLT Ty = MRI.getType(Res);
3084 
3085     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3086     // First, check if G_FNEG is marked as Lower. If so, we may
3087     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3088     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3089       return UnableToLegalize;
3090     Register LHS = MI.getOperand(1).getReg();
3091     Register RHS = MI.getOperand(2).getReg();
3092     Register Neg = MRI.createGenericVirtualRegister(Ty);
3093     MIRBuilder.buildFNeg(Neg, RHS);
3094     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3095     MI.eraseFromParent();
3096     return Legalized;
3097   }
3098   case TargetOpcode::G_FMAD:
3099     return lowerFMad(MI);
3100   case TargetOpcode::G_FFLOOR:
3101     return lowerFFloor(MI);
3102   case TargetOpcode::G_INTRINSIC_ROUND:
3103     return lowerIntrinsicRound(MI);
3104   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3105     // Since round even is the assumed rounding mode for unconstrained FP
3106     // operations, rint and roundeven are the same operation.
3107     changeOpcode(MI, TargetOpcode::G_FRINT);
3108     return Legalized;
3109   }
3110   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3111     Register OldValRes = MI.getOperand(0).getReg();
3112     Register SuccessRes = MI.getOperand(1).getReg();
3113     Register Addr = MI.getOperand(2).getReg();
3114     Register CmpVal = MI.getOperand(3).getReg();
3115     Register NewVal = MI.getOperand(4).getReg();
3116     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3117                                   **MI.memoperands_begin());
3118     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3119     MI.eraseFromParent();
3120     return Legalized;
3121   }
3122   case TargetOpcode::G_LOAD:
3123   case TargetOpcode::G_SEXTLOAD:
3124   case TargetOpcode::G_ZEXTLOAD:
3125     return lowerLoad(MI);
3126   case TargetOpcode::G_STORE:
3127     return lowerStore(MI);
3128   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3129   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3130   case TargetOpcode::G_CTLZ:
3131   case TargetOpcode::G_CTTZ:
3132   case TargetOpcode::G_CTPOP:
3133     return lowerBitCount(MI);
3134   case G_UADDO: {
3135     Register Res = MI.getOperand(0).getReg();
3136     Register CarryOut = MI.getOperand(1).getReg();
3137     Register LHS = MI.getOperand(2).getReg();
3138     Register RHS = MI.getOperand(3).getReg();
3139 
3140     MIRBuilder.buildAdd(Res, LHS, RHS);
3141     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3142 
3143     MI.eraseFromParent();
3144     return Legalized;
3145   }
3146   case G_UADDE: {
3147     Register Res = MI.getOperand(0).getReg();
3148     Register CarryOut = MI.getOperand(1).getReg();
3149     Register LHS = MI.getOperand(2).getReg();
3150     Register RHS = MI.getOperand(3).getReg();
3151     Register CarryIn = MI.getOperand(4).getReg();
3152     LLT Ty = MRI.getType(Res);
3153 
3154     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3155     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3156     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3157     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3158 
3159     MI.eraseFromParent();
3160     return Legalized;
3161   }
3162   case G_USUBO: {
3163     Register Res = MI.getOperand(0).getReg();
3164     Register BorrowOut = MI.getOperand(1).getReg();
3165     Register LHS = MI.getOperand(2).getReg();
3166     Register RHS = MI.getOperand(3).getReg();
3167 
3168     MIRBuilder.buildSub(Res, LHS, RHS);
3169     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3170 
3171     MI.eraseFromParent();
3172     return Legalized;
3173   }
3174   case G_USUBE: {
3175     Register Res = MI.getOperand(0).getReg();
3176     Register BorrowOut = MI.getOperand(1).getReg();
3177     Register LHS = MI.getOperand(2).getReg();
3178     Register RHS = MI.getOperand(3).getReg();
3179     Register BorrowIn = MI.getOperand(4).getReg();
3180     const LLT CondTy = MRI.getType(BorrowOut);
3181     const LLT Ty = MRI.getType(Res);
3182 
3183     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3184     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3185     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3186 
3187     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3188     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3189     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3190 
3191     MI.eraseFromParent();
3192     return Legalized;
3193   }
3194   case G_UITOFP:
3195     return lowerUITOFP(MI);
3196   case G_SITOFP:
3197     return lowerSITOFP(MI);
3198   case G_FPTOUI:
3199     return lowerFPTOUI(MI);
3200   case G_FPTOSI:
3201     return lowerFPTOSI(MI);
3202   case G_FPTRUNC:
3203     return lowerFPTRUNC(MI);
3204   case G_FPOWI:
3205     return lowerFPOWI(MI);
3206   case G_SMIN:
3207   case G_SMAX:
3208   case G_UMIN:
3209   case G_UMAX:
3210     return lowerMinMax(MI);
3211   case G_FCOPYSIGN:
3212     return lowerFCopySign(MI);
3213   case G_FMINNUM:
3214   case G_FMAXNUM:
3215     return lowerFMinNumMaxNum(MI);
3216   case G_MERGE_VALUES:
3217     return lowerMergeValues(MI);
3218   case G_UNMERGE_VALUES:
3219     return lowerUnmergeValues(MI);
3220   case TargetOpcode::G_SEXT_INREG: {
3221     assert(MI.getOperand(2).isImm() && "Expected immediate");
3222     int64_t SizeInBits = MI.getOperand(2).getImm();
3223 
3224     Register DstReg = MI.getOperand(0).getReg();
3225     Register SrcReg = MI.getOperand(1).getReg();
3226     LLT DstTy = MRI.getType(DstReg);
3227     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3228 
3229     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3230     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3231     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3232     MI.eraseFromParent();
3233     return Legalized;
3234   }
3235   case G_EXTRACT_VECTOR_ELT:
3236   case G_INSERT_VECTOR_ELT:
3237     return lowerExtractInsertVectorElt(MI);
3238   case G_SHUFFLE_VECTOR:
3239     return lowerShuffleVector(MI);
3240   case G_DYN_STACKALLOC:
3241     return lowerDynStackAlloc(MI);
3242   case G_EXTRACT:
3243     return lowerExtract(MI);
3244   case G_INSERT:
3245     return lowerInsert(MI);
3246   case G_BSWAP:
3247     return lowerBswap(MI);
3248   case G_BITREVERSE:
3249     return lowerBitreverse(MI);
3250   case G_READ_REGISTER:
3251   case G_WRITE_REGISTER:
3252     return lowerReadWriteRegister(MI);
3253   case G_UADDSAT:
3254   case G_USUBSAT: {
3255     // Try to make a reasonable guess about which lowering strategy to use. The
3256     // target can override this with custom lowering and calling the
3257     // implementation functions.
3258     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3259     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3260       return lowerAddSubSatToMinMax(MI);
3261     return lowerAddSubSatToAddoSubo(MI);
3262   }
3263   case G_SADDSAT:
3264   case G_SSUBSAT: {
3265     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3266 
3267     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3268     // since it's a shorter expansion. However, we would need to figure out the
3269     // preferred boolean type for the carry out for the query.
3270     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3271       return lowerAddSubSatToMinMax(MI);
3272     return lowerAddSubSatToAddoSubo(MI);
3273   }
3274   case G_SSHLSAT:
3275   case G_USHLSAT:
3276     return lowerShlSat(MI);
3277   case G_ABS:
3278     return lowerAbsToAddXor(MI);
3279   case G_SELECT:
3280     return lowerSelect(MI);
3281   case G_SDIVREM:
3282   case G_UDIVREM:
3283     return lowerDIVREM(MI);
3284   case G_FSHL:
3285   case G_FSHR:
3286     return lowerFunnelShift(MI);
3287   case G_ROTL:
3288   case G_ROTR:
3289     return lowerRotate(MI);
3290   }
3291 }
3292 
3293 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3294                                                   Align MinAlign) const {
3295   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3296   // datalayout for the preferred alignment. Also there should be a target hook
3297   // for this to allow targets to reduce the alignment and ignore the
3298   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3299   // the type.
3300   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3301 }
3302 
3303 MachineInstrBuilder
3304 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3305                                       MachinePointerInfo &PtrInfo) {
3306   MachineFunction &MF = MIRBuilder.getMF();
3307   const DataLayout &DL = MIRBuilder.getDataLayout();
3308   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3309 
3310   unsigned AddrSpace = DL.getAllocaAddrSpace();
3311   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3312 
3313   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3314   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3315 }
3316 
3317 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3318                                         LLT VecTy) {
3319   int64_t IdxVal;
3320   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3321     return IdxReg;
3322 
3323   LLT IdxTy = B.getMRI()->getType(IdxReg);
3324   unsigned NElts = VecTy.getNumElements();
3325   if (isPowerOf2_32(NElts)) {
3326     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3327     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3328   }
3329 
3330   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3331       .getReg(0);
3332 }
3333 
3334 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3335                                                   Register Index) {
3336   LLT EltTy = VecTy.getElementType();
3337 
3338   // Calculate the element offset and add it to the pointer.
3339   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3340   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3341          "Converting bits to bytes lost precision");
3342 
3343   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3344 
3345   LLT IdxTy = MRI.getType(Index);
3346   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3347                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3348 
3349   LLT PtrTy = MRI.getType(VecPtr);
3350   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3351 }
3352 
3353 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3354     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3355   Register DstReg = MI.getOperand(0).getReg();
3356   LLT DstTy = MRI.getType(DstReg);
3357   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3358 
3359   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3360 
3361   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3362   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3363 
3364   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3365   MI.eraseFromParent();
3366   return Legalized;
3367 }
3368 
3369 // Handle splitting vector operations which need to have the same number of
3370 // elements in each type index, but each type index may have a different element
3371 // type.
3372 //
3373 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3374 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3375 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3376 //
3377 // Also handles some irregular breakdown cases, e.g.
3378 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3379 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3380 //             s64 = G_SHL s64, s32
3381 LegalizerHelper::LegalizeResult
3382 LegalizerHelper::fewerElementsVectorMultiEltType(
3383   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3384   if (TypeIdx != 0)
3385     return UnableToLegalize;
3386 
3387   const LLT NarrowTy0 = NarrowTyArg;
3388   const Register DstReg = MI.getOperand(0).getReg();
3389   LLT DstTy = MRI.getType(DstReg);
3390   LLT LeftoverTy0;
3391 
3392   // All of the operands need to have the same number of elements, so if we can
3393   // determine a type breakdown for the result type, we can for all of the
3394   // source types.
3395   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3396   if (NumParts < 0)
3397     return UnableToLegalize;
3398 
3399   SmallVector<MachineInstrBuilder, 4> NewInsts;
3400 
3401   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3402   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3403 
3404   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3405     Register SrcReg = MI.getOperand(I).getReg();
3406     LLT SrcTyI = MRI.getType(SrcReg);
3407     const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount()
3408                                             : ElementCount::getFixed(1);
3409     LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType());
3410     LLT LeftoverTyI;
3411 
3412     // Split this operand into the requested typed registers, and any leftover
3413     // required to reproduce the original type.
3414     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3415                       LeftoverRegs))
3416       return UnableToLegalize;
3417 
3418     if (I == 1) {
3419       // For the first operand, create an instruction for each part and setup
3420       // the result.
3421       for (Register PartReg : PartRegs) {
3422         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3423         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3424                                .addDef(PartDstReg)
3425                                .addUse(PartReg));
3426         DstRegs.push_back(PartDstReg);
3427       }
3428 
3429       for (Register LeftoverReg : LeftoverRegs) {
3430         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3431         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3432                                .addDef(PartDstReg)
3433                                .addUse(LeftoverReg));
3434         LeftoverDstRegs.push_back(PartDstReg);
3435       }
3436     } else {
3437       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3438 
3439       // Add the newly created operand splits to the existing instructions. The
3440       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3441       // pieces.
3442       unsigned InstCount = 0;
3443       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3444         NewInsts[InstCount++].addUse(PartRegs[J]);
3445       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3446         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3447     }
3448 
3449     PartRegs.clear();
3450     LeftoverRegs.clear();
3451   }
3452 
3453   // Insert the newly built operations and rebuild the result register.
3454   for (auto &MIB : NewInsts)
3455     MIRBuilder.insertInstr(MIB);
3456 
3457   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3458 
3459   MI.eraseFromParent();
3460   return Legalized;
3461 }
3462 
3463 LegalizerHelper::LegalizeResult
3464 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3465                                           LLT NarrowTy) {
3466   if (TypeIdx != 0)
3467     return UnableToLegalize;
3468 
3469   Register DstReg = MI.getOperand(0).getReg();
3470   Register SrcReg = MI.getOperand(1).getReg();
3471   LLT DstTy = MRI.getType(DstReg);
3472   LLT SrcTy = MRI.getType(SrcReg);
3473 
3474   LLT NarrowTy0 = NarrowTy;
3475   LLT NarrowTy1;
3476   unsigned NumParts;
3477 
3478   if (NarrowTy.isVector()) {
3479     // Uneven breakdown not handled.
3480     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3481     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3482       return UnableToLegalize;
3483 
3484     NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType());
3485   } else {
3486     NumParts = DstTy.getNumElements();
3487     NarrowTy1 = SrcTy.getElementType();
3488   }
3489 
3490   SmallVector<Register, 4> SrcRegs, DstRegs;
3491   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3492 
3493   for (unsigned I = 0; I < NumParts; ++I) {
3494     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3495     MachineInstr *NewInst =
3496         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3497 
3498     NewInst->setFlags(MI.getFlags());
3499     DstRegs.push_back(DstReg);
3500   }
3501 
3502   if (NarrowTy.isVector())
3503     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3504   else
3505     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3506 
3507   MI.eraseFromParent();
3508   return Legalized;
3509 }
3510 
3511 LegalizerHelper::LegalizeResult
3512 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3513                                         LLT NarrowTy) {
3514   Register DstReg = MI.getOperand(0).getReg();
3515   Register Src0Reg = MI.getOperand(2).getReg();
3516   LLT DstTy = MRI.getType(DstReg);
3517   LLT SrcTy = MRI.getType(Src0Reg);
3518 
3519   unsigned NumParts;
3520   LLT NarrowTy0, NarrowTy1;
3521 
3522   if (TypeIdx == 0) {
3523     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3524     unsigned OldElts = DstTy.getNumElements();
3525 
3526     NarrowTy0 = NarrowTy;
3527     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3528     NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(),
3529                                                   SrcTy.getScalarSizeInBits())
3530                                     : SrcTy.getElementType();
3531 
3532   } else {
3533     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3534     unsigned OldElts = SrcTy.getNumElements();
3535 
3536     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3537       NarrowTy.getNumElements();
3538     NarrowTy0 =
3539         LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits());
3540     NarrowTy1 = NarrowTy;
3541   }
3542 
3543   // FIXME: Don't know how to handle the situation where the small vectors
3544   // aren't all the same size yet.
3545   if (NarrowTy1.isVector() &&
3546       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3547     return UnableToLegalize;
3548 
3549   CmpInst::Predicate Pred
3550     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3551 
3552   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3553   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3554   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3555 
3556   for (unsigned I = 0; I < NumParts; ++I) {
3557     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3558     DstRegs.push_back(DstReg);
3559 
3560     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3561       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3562     else {
3563       MachineInstr *NewCmp
3564         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3565       NewCmp->setFlags(MI.getFlags());
3566     }
3567   }
3568 
3569   if (NarrowTy1.isVector())
3570     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3571   else
3572     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3573 
3574   MI.eraseFromParent();
3575   return Legalized;
3576 }
3577 
3578 LegalizerHelper::LegalizeResult
3579 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3580                                            LLT NarrowTy) {
3581   Register DstReg = MI.getOperand(0).getReg();
3582   Register CondReg = MI.getOperand(1).getReg();
3583 
3584   unsigned NumParts = 0;
3585   LLT NarrowTy0, NarrowTy1;
3586 
3587   LLT DstTy = MRI.getType(DstReg);
3588   LLT CondTy = MRI.getType(CondReg);
3589   unsigned Size = DstTy.getSizeInBits();
3590 
3591   assert(TypeIdx == 0 || CondTy.isVector());
3592 
3593   if (TypeIdx == 0) {
3594     NarrowTy0 = NarrowTy;
3595     NarrowTy1 = CondTy;
3596 
3597     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3598     // FIXME: Don't know how to handle the situation where the small vectors
3599     // aren't all the same size yet.
3600     if (Size % NarrowSize != 0)
3601       return UnableToLegalize;
3602 
3603     NumParts = Size / NarrowSize;
3604 
3605     // Need to break down the condition type
3606     if (CondTy.isVector()) {
3607       if (CondTy.getNumElements() == NumParts)
3608         NarrowTy1 = CondTy.getElementType();
3609       else
3610         NarrowTy1 =
3611             LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts),
3612                         CondTy.getScalarSizeInBits());
3613     }
3614   } else {
3615     NumParts = CondTy.getNumElements();
3616     if (NarrowTy.isVector()) {
3617       // TODO: Handle uneven breakdown.
3618       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3619         return UnableToLegalize;
3620 
3621       return UnableToLegalize;
3622     } else {
3623       NarrowTy0 = DstTy.getElementType();
3624       NarrowTy1 = NarrowTy;
3625     }
3626   }
3627 
3628   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3629   if (CondTy.isVector())
3630     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3631 
3632   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3633   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3634 
3635   for (unsigned i = 0; i < NumParts; ++i) {
3636     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3637     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3638                            Src1Regs[i], Src2Regs[i]);
3639     DstRegs.push_back(DstReg);
3640   }
3641 
3642   if (NarrowTy0.isVector())
3643     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3644   else
3645     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3646 
3647   MI.eraseFromParent();
3648   return Legalized;
3649 }
3650 
3651 LegalizerHelper::LegalizeResult
3652 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3653                                         LLT NarrowTy) {
3654   const Register DstReg = MI.getOperand(0).getReg();
3655   LLT PhiTy = MRI.getType(DstReg);
3656   LLT LeftoverTy;
3657 
3658   // All of the operands need to have the same number of elements, so if we can
3659   // determine a type breakdown for the result type, we can for all of the
3660   // source types.
3661   int NumParts, NumLeftover;
3662   std::tie(NumParts, NumLeftover)
3663     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3664   if (NumParts < 0)
3665     return UnableToLegalize;
3666 
3667   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3668   SmallVector<MachineInstrBuilder, 4> NewInsts;
3669 
3670   const int TotalNumParts = NumParts + NumLeftover;
3671 
3672   // Insert the new phis in the result block first.
3673   for (int I = 0; I != TotalNumParts; ++I) {
3674     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3675     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3676     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3677                        .addDef(PartDstReg));
3678     if (I < NumParts)
3679       DstRegs.push_back(PartDstReg);
3680     else
3681       LeftoverDstRegs.push_back(PartDstReg);
3682   }
3683 
3684   MachineBasicBlock *MBB = MI.getParent();
3685   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3686   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3687 
3688   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3689 
3690   // Insert code to extract the incoming values in each predecessor block.
3691   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3692     PartRegs.clear();
3693     LeftoverRegs.clear();
3694 
3695     Register SrcReg = MI.getOperand(I).getReg();
3696     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3697     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3698 
3699     LLT Unused;
3700     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3701                       LeftoverRegs))
3702       return UnableToLegalize;
3703 
3704     // Add the newly created operand splits to the existing instructions. The
3705     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3706     // pieces.
3707     for (int J = 0; J != TotalNumParts; ++J) {
3708       MachineInstrBuilder MIB = NewInsts[J];
3709       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3710       MIB.addMBB(&OpMBB);
3711     }
3712   }
3713 
3714   MI.eraseFromParent();
3715   return Legalized;
3716 }
3717 
3718 LegalizerHelper::LegalizeResult
3719 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3720                                                   unsigned TypeIdx,
3721                                                   LLT NarrowTy) {
3722   if (TypeIdx != 1)
3723     return UnableToLegalize;
3724 
3725   const int NumDst = MI.getNumOperands() - 1;
3726   const Register SrcReg = MI.getOperand(NumDst).getReg();
3727   LLT SrcTy = MRI.getType(SrcReg);
3728 
3729   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3730 
3731   // TODO: Create sequence of extracts.
3732   if (DstTy == NarrowTy)
3733     return UnableToLegalize;
3734 
3735   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3736   if (DstTy == GCDTy) {
3737     // This would just be a copy of the same unmerge.
3738     // TODO: Create extracts, pad with undef and create intermediate merges.
3739     return UnableToLegalize;
3740   }
3741 
3742   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3743   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3744   const int PartsPerUnmerge = NumDst / NumUnmerge;
3745 
3746   for (int I = 0; I != NumUnmerge; ++I) {
3747     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3748 
3749     for (int J = 0; J != PartsPerUnmerge; ++J)
3750       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3751     MIB.addUse(Unmerge.getReg(I));
3752   }
3753 
3754   MI.eraseFromParent();
3755   return Legalized;
3756 }
3757 
3758 LegalizerHelper::LegalizeResult
3759 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3760                                          LLT NarrowTy) {
3761   Register Result = MI.getOperand(0).getReg();
3762   Register Overflow = MI.getOperand(1).getReg();
3763   Register LHS = MI.getOperand(2).getReg();
3764   Register RHS = MI.getOperand(3).getReg();
3765 
3766   LLT SrcTy = MRI.getType(LHS);
3767   if (!SrcTy.isVector())
3768     return UnableToLegalize;
3769 
3770   LLT ElementType = SrcTy.getElementType();
3771   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3772   const ElementCount NumResult = SrcTy.getElementCount();
3773   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3774 
3775   // Unmerge the operands to smaller parts of GCD type.
3776   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3777   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3778 
3779   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3780   const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps);
3781   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3782   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3783 
3784   // Perform the operation over unmerged parts.
3785   SmallVector<Register, 8> ResultParts;
3786   SmallVector<Register, 8> OverflowParts;
3787   for (int I = 0; I != NumOps; ++I) {
3788     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3789     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3790     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3791                                          {Operand1, Operand2});
3792     ResultParts.push_back(PartMul->getOperand(0).getReg());
3793     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3794   }
3795 
3796   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3797   LLT OverflowLCMTy =
3798       LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy);
3799 
3800   // Recombine the pieces to the original result and overflow registers.
3801   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3802   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3803   MI.eraseFromParent();
3804   return Legalized;
3805 }
3806 
3807 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3808 // a vector
3809 //
3810 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3811 // undef as necessary.
3812 //
3813 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3814 //   -> <2 x s16>
3815 //
3816 // %4:_(s16) = G_IMPLICIT_DEF
3817 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3818 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3819 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3820 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3821 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3822 LegalizerHelper::LegalizeResult
3823 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3824                                           LLT NarrowTy) {
3825   Register DstReg = MI.getOperand(0).getReg();
3826   LLT DstTy = MRI.getType(DstReg);
3827   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3828   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3829 
3830   // Break into a common type
3831   SmallVector<Register, 16> Parts;
3832   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3833     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3834 
3835   // Build the requested new merge, padding with undef.
3836   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3837                                   TargetOpcode::G_ANYEXT);
3838 
3839   // Pack into the original result register.
3840   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3841 
3842   MI.eraseFromParent();
3843   return Legalized;
3844 }
3845 
3846 LegalizerHelper::LegalizeResult
3847 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3848                                                            unsigned TypeIdx,
3849                                                            LLT NarrowVecTy) {
3850   Register DstReg = MI.getOperand(0).getReg();
3851   Register SrcVec = MI.getOperand(1).getReg();
3852   Register InsertVal;
3853   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3854 
3855   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3856   if (IsInsert)
3857     InsertVal = MI.getOperand(2).getReg();
3858 
3859   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3860 
3861   // TODO: Handle total scalarization case.
3862   if (!NarrowVecTy.isVector())
3863     return UnableToLegalize;
3864 
3865   LLT VecTy = MRI.getType(SrcVec);
3866 
3867   // If the index is a constant, we can really break this down as you would
3868   // expect, and index into the target size pieces.
3869   int64_t IdxVal;
3870   auto MaybeCst =
3871       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
3872                                         /*HandleFConstants*/ false);
3873   if (MaybeCst) {
3874     IdxVal = MaybeCst->Value.getSExtValue();
3875     // Avoid out of bounds indexing the pieces.
3876     if (IdxVal >= VecTy.getNumElements()) {
3877       MIRBuilder.buildUndef(DstReg);
3878       MI.eraseFromParent();
3879       return Legalized;
3880     }
3881 
3882     SmallVector<Register, 8> VecParts;
3883     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3884 
3885     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3886     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3887                                     TargetOpcode::G_ANYEXT);
3888 
3889     unsigned NewNumElts = NarrowVecTy.getNumElements();
3890 
3891     LLT IdxTy = MRI.getType(Idx);
3892     int64_t PartIdx = IdxVal / NewNumElts;
3893     auto NewIdx =
3894         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3895 
3896     if (IsInsert) {
3897       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3898 
3899       // Use the adjusted index to insert into one of the subvectors.
3900       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3901           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3902       VecParts[PartIdx] = InsertPart.getReg(0);
3903 
3904       // Recombine the inserted subvector with the others to reform the result
3905       // vector.
3906       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3907     } else {
3908       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3909     }
3910 
3911     MI.eraseFromParent();
3912     return Legalized;
3913   }
3914 
3915   // With a variable index, we can't perform the operation in a smaller type, so
3916   // we're forced to expand this.
3917   //
3918   // TODO: We could emit a chain of compare/select to figure out which piece to
3919   // index.
3920   return lowerExtractInsertVectorElt(MI);
3921 }
3922 
3923 LegalizerHelper::LegalizeResult
3924 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3925                                       LLT NarrowTy) {
3926   // FIXME: Don't know how to handle secondary types yet.
3927   if (TypeIdx != 0)
3928     return UnableToLegalize;
3929 
3930   MachineMemOperand *MMO = *MI.memoperands_begin();
3931 
3932   // This implementation doesn't work for atomics. Give up instead of doing
3933   // something invalid.
3934   if (MMO->isAtomic())
3935     return UnableToLegalize;
3936 
3937   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3938   Register ValReg = MI.getOperand(0).getReg();
3939   Register AddrReg = MI.getOperand(1).getReg();
3940   LLT ValTy = MRI.getType(ValReg);
3941 
3942   // FIXME: Do we need a distinct NarrowMemory legalize action?
3943   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3944     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3945     return UnableToLegalize;
3946   }
3947 
3948   int NumParts = -1;
3949   int NumLeftover = -1;
3950   LLT LeftoverTy;
3951   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3952   if (IsLoad) {
3953     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3954   } else {
3955     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3956                      NarrowLeftoverRegs)) {
3957       NumParts = NarrowRegs.size();
3958       NumLeftover = NarrowLeftoverRegs.size();
3959     }
3960   }
3961 
3962   if (NumParts == -1)
3963     return UnableToLegalize;
3964 
3965   LLT PtrTy = MRI.getType(AddrReg);
3966   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3967 
3968   unsigned TotalSize = ValTy.getSizeInBits();
3969 
3970   // Split the load/store into PartTy sized pieces starting at Offset. If this
3971   // is a load, return the new registers in ValRegs. For a store, each elements
3972   // of ValRegs should be PartTy. Returns the next offset that needs to be
3973   // handled.
3974   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3975                              unsigned Offset) -> unsigned {
3976     MachineFunction &MF = MIRBuilder.getMF();
3977     unsigned PartSize = PartTy.getSizeInBits();
3978     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3979          Offset += PartSize, ++Idx) {
3980       unsigned ByteOffset = Offset / 8;
3981       Register NewAddrReg;
3982 
3983       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3984 
3985       MachineMemOperand *NewMMO =
3986         MF.getMachineMemOperand(MMO, ByteOffset, PartTy);
3987 
3988       if (IsLoad) {
3989         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3990         ValRegs.push_back(Dst);
3991         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3992       } else {
3993         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3994       }
3995     }
3996 
3997     return Offset;
3998   };
3999 
4000   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
4001 
4002   // Handle the rest of the register if this isn't an even type breakdown.
4003   if (LeftoverTy.isValid())
4004     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
4005 
4006   if (IsLoad) {
4007     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4008                 LeftoverTy, NarrowLeftoverRegs);
4009   }
4010 
4011   MI.eraseFromParent();
4012   return Legalized;
4013 }
4014 
4015 LegalizerHelper::LegalizeResult
4016 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
4017                                       LLT NarrowTy) {
4018   assert(TypeIdx == 0 && "only one type index expected");
4019 
4020   const unsigned Opc = MI.getOpcode();
4021   const int NumDefOps = MI.getNumExplicitDefs();
4022   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
4023   const unsigned Flags = MI.getFlags();
4024   const unsigned NarrowSize = NarrowTy.getSizeInBits();
4025   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
4026 
4027   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
4028                                      "result and 1-3 sources or 2 results and "
4029                                      "1-2 sources");
4030 
4031   SmallVector<Register, 2> DstRegs;
4032   for (int I = 0; I < NumDefOps; ++I)
4033     DstRegs.push_back(MI.getOperand(I).getReg());
4034 
4035   // First of all check whether we are narrowing (changing the element type)
4036   // or reducing the vector elements
4037   const LLT DstTy = MRI.getType(DstRegs[0]);
4038   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
4039 
4040   SmallVector<Register, 8> ExtractedRegs[3];
4041   SmallVector<Register, 8> Parts;
4042 
4043   // Break down all the sources into NarrowTy pieces we can operate on. This may
4044   // involve creating merges to a wider type, padded with undef.
4045   for (int I = 0; I != NumSrcOps; ++I) {
4046     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
4047     LLT SrcTy = MRI.getType(SrcReg);
4048 
4049     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
4050     // For fewerElements, this is a smaller vector with the same element type.
4051     LLT OpNarrowTy;
4052     if (IsNarrow) {
4053       OpNarrowTy = NarrowScalarTy;
4054 
4055       // In case of narrowing, we need to cast vectors to scalars for this to
4056       // work properly
4057       // FIXME: Can we do without the bitcast here if we're narrowing?
4058       if (SrcTy.isVector()) {
4059         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
4060         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
4061       }
4062     } else {
4063       auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount()
4064                                           : ElementCount::getFixed(1);
4065       OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType());
4066     }
4067 
4068     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4069 
4070     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4071     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4072                         TargetOpcode::G_ANYEXT);
4073   }
4074 
4075   SmallVector<Register, 8> ResultRegs[2];
4076 
4077   // Input operands for each sub-instruction.
4078   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4079 
4080   int NumParts = ExtractedRegs[0].size();
4081   const unsigned DstSize = DstTy.getSizeInBits();
4082   const LLT DstScalarTy = LLT::scalar(DstSize);
4083 
4084   // Narrowing needs to use scalar types
4085   LLT DstLCMTy, NarrowDstTy;
4086   if (IsNarrow) {
4087     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4088     NarrowDstTy = NarrowScalarTy;
4089   } else {
4090     DstLCMTy = getLCMType(DstTy, NarrowTy);
4091     NarrowDstTy = NarrowTy;
4092   }
4093 
4094   // We widened the source registers to satisfy merge/unmerge size
4095   // constraints. We'll have some extra fully undef parts.
4096   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4097 
4098   for (int I = 0; I != NumRealParts; ++I) {
4099     // Emit this instruction on each of the split pieces.
4100     for (int J = 0; J != NumSrcOps; ++J)
4101       InputRegs[J] = ExtractedRegs[J][I];
4102 
4103     MachineInstrBuilder Inst;
4104     if (NumDefOps == 1)
4105       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4106     else
4107       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4108                                    Flags);
4109 
4110     for (int J = 0; J != NumDefOps; ++J)
4111       ResultRegs[J].push_back(Inst.getReg(J));
4112   }
4113 
4114   // Fill out the widened result with undef instead of creating instructions
4115   // with undef inputs.
4116   int NumUndefParts = NumParts - NumRealParts;
4117   if (NumUndefParts != 0) {
4118     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4119     for (int I = 0; I != NumDefOps; ++I)
4120       ResultRegs[I].append(NumUndefParts, Undef);
4121   }
4122 
4123   // Extract the possibly padded result. Use a scratch register if we need to do
4124   // a final bitcast, otherwise use the original result register.
4125   Register MergeDstReg;
4126   for (int I = 0; I != NumDefOps; ++I) {
4127     if (IsNarrow && DstTy.isVector())
4128       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4129     else
4130       MergeDstReg = DstRegs[I];
4131 
4132     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4133 
4134     // Recast to vector if we narrowed a vector
4135     if (IsNarrow && DstTy.isVector())
4136       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4137   }
4138 
4139   MI.eraseFromParent();
4140   return Legalized;
4141 }
4142 
4143 LegalizerHelper::LegalizeResult
4144 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4145                                               LLT NarrowTy) {
4146   Register DstReg = MI.getOperand(0).getReg();
4147   Register SrcReg = MI.getOperand(1).getReg();
4148   int64_t Imm = MI.getOperand(2).getImm();
4149 
4150   LLT DstTy = MRI.getType(DstReg);
4151 
4152   SmallVector<Register, 8> Parts;
4153   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4154   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4155 
4156   for (Register &R : Parts)
4157     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4158 
4159   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4160 
4161   MI.eraseFromParent();
4162   return Legalized;
4163 }
4164 
4165 LegalizerHelper::LegalizeResult
4166 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4167                                      LLT NarrowTy) {
4168   using namespace TargetOpcode;
4169 
4170   switch (MI.getOpcode()) {
4171   case G_IMPLICIT_DEF:
4172     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4173   case G_TRUNC:
4174   case G_AND:
4175   case G_OR:
4176   case G_XOR:
4177   case G_ADD:
4178   case G_SUB:
4179   case G_MUL:
4180   case G_PTR_ADD:
4181   case G_SMULH:
4182   case G_UMULH:
4183   case G_FADD:
4184   case G_FMUL:
4185   case G_FSUB:
4186   case G_FNEG:
4187   case G_FABS:
4188   case G_FCANONICALIZE:
4189   case G_FDIV:
4190   case G_FREM:
4191   case G_FMA:
4192   case G_FMAD:
4193   case G_FPOW:
4194   case G_FEXP:
4195   case G_FEXP2:
4196   case G_FLOG:
4197   case G_FLOG2:
4198   case G_FLOG10:
4199   case G_FNEARBYINT:
4200   case G_FCEIL:
4201   case G_FFLOOR:
4202   case G_FRINT:
4203   case G_INTRINSIC_ROUND:
4204   case G_INTRINSIC_ROUNDEVEN:
4205   case G_INTRINSIC_TRUNC:
4206   case G_FCOS:
4207   case G_FSIN:
4208   case G_FSQRT:
4209   case G_BSWAP:
4210   case G_BITREVERSE:
4211   case G_SDIV:
4212   case G_UDIV:
4213   case G_SREM:
4214   case G_UREM:
4215   case G_SDIVREM:
4216   case G_UDIVREM:
4217   case G_SMIN:
4218   case G_SMAX:
4219   case G_UMIN:
4220   case G_UMAX:
4221   case G_ABS:
4222   case G_FMINNUM:
4223   case G_FMAXNUM:
4224   case G_FMINNUM_IEEE:
4225   case G_FMAXNUM_IEEE:
4226   case G_FMINIMUM:
4227   case G_FMAXIMUM:
4228   case G_FSHL:
4229   case G_FSHR:
4230   case G_FREEZE:
4231   case G_SADDSAT:
4232   case G_SSUBSAT:
4233   case G_UADDSAT:
4234   case G_USUBSAT:
4235     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4236   case G_UMULO:
4237   case G_SMULO:
4238     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4239   case G_SHL:
4240   case G_LSHR:
4241   case G_ASHR:
4242   case G_SSHLSAT:
4243   case G_USHLSAT:
4244   case G_CTLZ:
4245   case G_CTLZ_ZERO_UNDEF:
4246   case G_CTTZ:
4247   case G_CTTZ_ZERO_UNDEF:
4248   case G_CTPOP:
4249   case G_FCOPYSIGN:
4250     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4251   case G_ZEXT:
4252   case G_SEXT:
4253   case G_ANYEXT:
4254   case G_FPEXT:
4255   case G_FPTRUNC:
4256   case G_SITOFP:
4257   case G_UITOFP:
4258   case G_FPTOSI:
4259   case G_FPTOUI:
4260   case G_INTTOPTR:
4261   case G_PTRTOINT:
4262   case G_ADDRSPACE_CAST:
4263     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4264   case G_ICMP:
4265   case G_FCMP:
4266     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4267   case G_SELECT:
4268     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4269   case G_PHI:
4270     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4271   case G_UNMERGE_VALUES:
4272     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4273   case G_BUILD_VECTOR:
4274     assert(TypeIdx == 0 && "not a vector type index");
4275     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4276   case G_CONCAT_VECTORS:
4277     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4278       return UnableToLegalize;
4279     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4280   case G_EXTRACT_VECTOR_ELT:
4281   case G_INSERT_VECTOR_ELT:
4282     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4283   case G_LOAD:
4284   case G_STORE:
4285     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4286   case G_SEXT_INREG:
4287     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4288   GISEL_VECREDUCE_CASES_NONSEQ
4289     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4290   case G_SHUFFLE_VECTOR:
4291     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4292   default:
4293     return UnableToLegalize;
4294   }
4295 }
4296 
4297 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4298     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4299   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4300   if (TypeIdx != 0)
4301     return UnableToLegalize;
4302 
4303   Register DstReg = MI.getOperand(0).getReg();
4304   Register Src1Reg = MI.getOperand(1).getReg();
4305   Register Src2Reg = MI.getOperand(2).getReg();
4306   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4307   LLT DstTy = MRI.getType(DstReg);
4308   LLT Src1Ty = MRI.getType(Src1Reg);
4309   LLT Src2Ty = MRI.getType(Src2Reg);
4310   // The shuffle should be canonicalized by now.
4311   if (DstTy != Src1Ty)
4312     return UnableToLegalize;
4313   if (DstTy != Src2Ty)
4314     return UnableToLegalize;
4315 
4316   if (!isPowerOf2_32(DstTy.getNumElements()))
4317     return UnableToLegalize;
4318 
4319   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4320   // Further legalization attempts will be needed to do split further.
4321   NarrowTy =
4322       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4323   unsigned NewElts = NarrowTy.getNumElements();
4324 
4325   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4326   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4327   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4328   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4329                         SplitSrc2Regs[1]};
4330 
4331   Register Hi, Lo;
4332 
4333   // If Lo or Hi uses elements from at most two of the four input vectors, then
4334   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4335   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4336   SmallVector<int, 16> Ops;
4337   for (unsigned High = 0; High < 2; ++High) {
4338     Register &Output = High ? Hi : Lo;
4339 
4340     // Build a shuffle mask for the output, discovering on the fly which
4341     // input vectors to use as shuffle operands (recorded in InputUsed).
4342     // If building a suitable shuffle vector proves too hard, then bail
4343     // out with useBuildVector set.
4344     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4345     unsigned FirstMaskIdx = High * NewElts;
4346     bool UseBuildVector = false;
4347     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4348       // The mask element.  This indexes into the input.
4349       int Idx = Mask[FirstMaskIdx + MaskOffset];
4350 
4351       // The input vector this mask element indexes into.
4352       unsigned Input = (unsigned)Idx / NewElts;
4353 
4354       if (Input >= array_lengthof(Inputs)) {
4355         // The mask element does not index into any input vector.
4356         Ops.push_back(-1);
4357         continue;
4358       }
4359 
4360       // Turn the index into an offset from the start of the input vector.
4361       Idx -= Input * NewElts;
4362 
4363       // Find or create a shuffle vector operand to hold this input.
4364       unsigned OpNo;
4365       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4366         if (InputUsed[OpNo] == Input) {
4367           // This input vector is already an operand.
4368           break;
4369         } else if (InputUsed[OpNo] == -1U) {
4370           // Create a new operand for this input vector.
4371           InputUsed[OpNo] = Input;
4372           break;
4373         }
4374       }
4375 
4376       if (OpNo >= array_lengthof(InputUsed)) {
4377         // More than two input vectors used!  Give up on trying to create a
4378         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4379         UseBuildVector = true;
4380         break;
4381       }
4382 
4383       // Add the mask index for the new shuffle vector.
4384       Ops.push_back(Idx + OpNo * NewElts);
4385     }
4386 
4387     if (UseBuildVector) {
4388       LLT EltTy = NarrowTy.getElementType();
4389       SmallVector<Register, 16> SVOps;
4390 
4391       // Extract the input elements by hand.
4392       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4393         // The mask element.  This indexes into the input.
4394         int Idx = Mask[FirstMaskIdx + MaskOffset];
4395 
4396         // The input vector this mask element indexes into.
4397         unsigned Input = (unsigned)Idx / NewElts;
4398 
4399         if (Input >= array_lengthof(Inputs)) {
4400           // The mask element is "undef" or indexes off the end of the input.
4401           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4402           continue;
4403         }
4404 
4405         // Turn the index into an offset from the start of the input vector.
4406         Idx -= Input * NewElts;
4407 
4408         // Extract the vector element by hand.
4409         SVOps.push_back(MIRBuilder
4410                             .buildExtractVectorElement(
4411                                 EltTy, Inputs[Input],
4412                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4413                             .getReg(0));
4414       }
4415 
4416       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4417       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4418     } else if (InputUsed[0] == -1U) {
4419       // No input vectors were used! The result is undefined.
4420       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4421     } else {
4422       Register Op0 = Inputs[InputUsed[0]];
4423       // If only one input was used, use an undefined vector for the other.
4424       Register Op1 = InputUsed[1] == -1U
4425                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4426                          : Inputs[InputUsed[1]];
4427       // At least one input vector was used. Create a new shuffle vector.
4428       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4429     }
4430 
4431     Ops.clear();
4432   }
4433 
4434   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4435   MI.eraseFromParent();
4436   return Legalized;
4437 }
4438 
4439 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4440     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4441   unsigned Opc = MI.getOpcode();
4442   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4443          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4444          "Sequential reductions not expected");
4445 
4446   if (TypeIdx != 1)
4447     return UnableToLegalize;
4448 
4449   // The semantics of the normal non-sequential reductions allow us to freely
4450   // re-associate the operation.
4451   Register SrcReg = MI.getOperand(1).getReg();
4452   LLT SrcTy = MRI.getType(SrcReg);
4453   Register DstReg = MI.getOperand(0).getReg();
4454   LLT DstTy = MRI.getType(DstReg);
4455 
4456   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4457     return UnableToLegalize;
4458 
4459   SmallVector<Register> SplitSrcs;
4460   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4461   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4462   SmallVector<Register> PartialReductions;
4463   for (unsigned Part = 0; Part < NumParts; ++Part) {
4464     PartialReductions.push_back(
4465         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4466   }
4467 
4468   unsigned ScalarOpc;
4469   switch (Opc) {
4470   case TargetOpcode::G_VECREDUCE_FADD:
4471     ScalarOpc = TargetOpcode::G_FADD;
4472     break;
4473   case TargetOpcode::G_VECREDUCE_FMUL:
4474     ScalarOpc = TargetOpcode::G_FMUL;
4475     break;
4476   case TargetOpcode::G_VECREDUCE_FMAX:
4477     ScalarOpc = TargetOpcode::G_FMAXNUM;
4478     break;
4479   case TargetOpcode::G_VECREDUCE_FMIN:
4480     ScalarOpc = TargetOpcode::G_FMINNUM;
4481     break;
4482   case TargetOpcode::G_VECREDUCE_ADD:
4483     ScalarOpc = TargetOpcode::G_ADD;
4484     break;
4485   case TargetOpcode::G_VECREDUCE_MUL:
4486     ScalarOpc = TargetOpcode::G_MUL;
4487     break;
4488   case TargetOpcode::G_VECREDUCE_AND:
4489     ScalarOpc = TargetOpcode::G_AND;
4490     break;
4491   case TargetOpcode::G_VECREDUCE_OR:
4492     ScalarOpc = TargetOpcode::G_OR;
4493     break;
4494   case TargetOpcode::G_VECREDUCE_XOR:
4495     ScalarOpc = TargetOpcode::G_XOR;
4496     break;
4497   case TargetOpcode::G_VECREDUCE_SMAX:
4498     ScalarOpc = TargetOpcode::G_SMAX;
4499     break;
4500   case TargetOpcode::G_VECREDUCE_SMIN:
4501     ScalarOpc = TargetOpcode::G_SMIN;
4502     break;
4503   case TargetOpcode::G_VECREDUCE_UMAX:
4504     ScalarOpc = TargetOpcode::G_UMAX;
4505     break;
4506   case TargetOpcode::G_VECREDUCE_UMIN:
4507     ScalarOpc = TargetOpcode::G_UMIN;
4508     break;
4509   default:
4510     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4511     return UnableToLegalize;
4512   }
4513 
4514   // If the types involved are powers of 2, we can generate intermediate vector
4515   // ops, before generating a final reduction operation.
4516   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4517       isPowerOf2_32(NarrowTy.getNumElements())) {
4518     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4519   }
4520 
4521   Register Acc = PartialReductions[0];
4522   for (unsigned Part = 1; Part < NumParts; ++Part) {
4523     if (Part == NumParts - 1) {
4524       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4525                             {Acc, PartialReductions[Part]});
4526     } else {
4527       Acc = MIRBuilder
4528                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4529                 .getReg(0);
4530     }
4531   }
4532   MI.eraseFromParent();
4533   return Legalized;
4534 }
4535 
4536 LegalizerHelper::LegalizeResult
4537 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4538                                         LLT SrcTy, LLT NarrowTy,
4539                                         unsigned ScalarOpc) {
4540   SmallVector<Register> SplitSrcs;
4541   // Split the sources into NarrowTy size pieces.
4542   extractParts(SrcReg, NarrowTy,
4543                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4544   // We're going to do a tree reduction using vector operations until we have
4545   // one NarrowTy size value left.
4546   while (SplitSrcs.size() > 1) {
4547     SmallVector<Register> PartialRdxs;
4548     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4549       Register LHS = SplitSrcs[Idx];
4550       Register RHS = SplitSrcs[Idx + 1];
4551       // Create the intermediate vector op.
4552       Register Res =
4553           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4554       PartialRdxs.push_back(Res);
4555     }
4556     SplitSrcs = std::move(PartialRdxs);
4557   }
4558   // Finally generate the requested NarrowTy based reduction.
4559   Observer.changingInstr(MI);
4560   MI.getOperand(1).setReg(SplitSrcs[0]);
4561   Observer.changedInstr(MI);
4562   return Legalized;
4563 }
4564 
4565 LegalizerHelper::LegalizeResult
4566 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4567                                              const LLT HalfTy, const LLT AmtTy) {
4568 
4569   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4570   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4571   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4572 
4573   if (Amt.isNullValue()) {
4574     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4575     MI.eraseFromParent();
4576     return Legalized;
4577   }
4578 
4579   LLT NVT = HalfTy;
4580   unsigned NVTBits = HalfTy.getSizeInBits();
4581   unsigned VTBits = 2 * NVTBits;
4582 
4583   SrcOp Lo(Register(0)), Hi(Register(0));
4584   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4585     if (Amt.ugt(VTBits)) {
4586       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4587     } else if (Amt.ugt(NVTBits)) {
4588       Lo = MIRBuilder.buildConstant(NVT, 0);
4589       Hi = MIRBuilder.buildShl(NVT, InL,
4590                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4591     } else if (Amt == NVTBits) {
4592       Lo = MIRBuilder.buildConstant(NVT, 0);
4593       Hi = InL;
4594     } else {
4595       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4596       auto OrLHS =
4597           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4598       auto OrRHS = MIRBuilder.buildLShr(
4599           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4600       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4601     }
4602   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4603     if (Amt.ugt(VTBits)) {
4604       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4605     } else if (Amt.ugt(NVTBits)) {
4606       Lo = MIRBuilder.buildLShr(NVT, InH,
4607                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4608       Hi = MIRBuilder.buildConstant(NVT, 0);
4609     } else if (Amt == NVTBits) {
4610       Lo = InH;
4611       Hi = MIRBuilder.buildConstant(NVT, 0);
4612     } else {
4613       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4614 
4615       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4616       auto OrRHS = MIRBuilder.buildShl(
4617           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4618 
4619       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4620       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4621     }
4622   } else {
4623     if (Amt.ugt(VTBits)) {
4624       Hi = Lo = MIRBuilder.buildAShr(
4625           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4626     } else if (Amt.ugt(NVTBits)) {
4627       Lo = MIRBuilder.buildAShr(NVT, InH,
4628                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4629       Hi = MIRBuilder.buildAShr(NVT, InH,
4630                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4631     } else if (Amt == NVTBits) {
4632       Lo = InH;
4633       Hi = MIRBuilder.buildAShr(NVT, InH,
4634                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4635     } else {
4636       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4637 
4638       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4639       auto OrRHS = MIRBuilder.buildShl(
4640           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4641 
4642       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4643       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4644     }
4645   }
4646 
4647   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4648   MI.eraseFromParent();
4649 
4650   return Legalized;
4651 }
4652 
4653 // TODO: Optimize if constant shift amount.
4654 LegalizerHelper::LegalizeResult
4655 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4656                                    LLT RequestedTy) {
4657   if (TypeIdx == 1) {
4658     Observer.changingInstr(MI);
4659     narrowScalarSrc(MI, RequestedTy, 2);
4660     Observer.changedInstr(MI);
4661     return Legalized;
4662   }
4663 
4664   Register DstReg = MI.getOperand(0).getReg();
4665   LLT DstTy = MRI.getType(DstReg);
4666   if (DstTy.isVector())
4667     return UnableToLegalize;
4668 
4669   Register Amt = MI.getOperand(2).getReg();
4670   LLT ShiftAmtTy = MRI.getType(Amt);
4671   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4672   if (DstEltSize % 2 != 0)
4673     return UnableToLegalize;
4674 
4675   // Ignore the input type. We can only go to exactly half the size of the
4676   // input. If that isn't small enough, the resulting pieces will be further
4677   // legalized.
4678   const unsigned NewBitSize = DstEltSize / 2;
4679   const LLT HalfTy = LLT::scalar(NewBitSize);
4680   const LLT CondTy = LLT::scalar(1);
4681 
4682   if (const MachineInstr *KShiftAmt =
4683           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4684     return narrowScalarShiftByConstant(
4685         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4686   }
4687 
4688   // TODO: Expand with known bits.
4689 
4690   // Handle the fully general expansion by an unknown amount.
4691   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4692 
4693   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4694   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4695   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4696 
4697   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4698   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4699 
4700   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4701   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4702   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4703 
4704   Register ResultRegs[2];
4705   switch (MI.getOpcode()) {
4706   case TargetOpcode::G_SHL: {
4707     // Short: ShAmt < NewBitSize
4708     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4709 
4710     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4711     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4712     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4713 
4714     // Long: ShAmt >= NewBitSize
4715     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4716     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4717 
4718     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4719     auto Hi = MIRBuilder.buildSelect(
4720         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4721 
4722     ResultRegs[0] = Lo.getReg(0);
4723     ResultRegs[1] = Hi.getReg(0);
4724     break;
4725   }
4726   case TargetOpcode::G_LSHR:
4727   case TargetOpcode::G_ASHR: {
4728     // Short: ShAmt < NewBitSize
4729     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4730 
4731     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4732     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4733     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4734 
4735     // Long: ShAmt >= NewBitSize
4736     MachineInstrBuilder HiL;
4737     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4738       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4739     } else {
4740       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4741       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4742     }
4743     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4744                                      {InH, AmtExcess});     // Lo from Hi part.
4745 
4746     auto Lo = MIRBuilder.buildSelect(
4747         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4748 
4749     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4750 
4751     ResultRegs[0] = Lo.getReg(0);
4752     ResultRegs[1] = Hi.getReg(0);
4753     break;
4754   }
4755   default:
4756     llvm_unreachable("not a shift");
4757   }
4758 
4759   MIRBuilder.buildMerge(DstReg, ResultRegs);
4760   MI.eraseFromParent();
4761   return Legalized;
4762 }
4763 
4764 LegalizerHelper::LegalizeResult
4765 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4766                                        LLT MoreTy) {
4767   assert(TypeIdx == 0 && "Expecting only Idx 0");
4768 
4769   Observer.changingInstr(MI);
4770   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4771     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4772     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4773     moreElementsVectorSrc(MI, MoreTy, I);
4774   }
4775 
4776   MachineBasicBlock &MBB = *MI.getParent();
4777   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4778   moreElementsVectorDst(MI, MoreTy, 0);
4779   Observer.changedInstr(MI);
4780   return Legalized;
4781 }
4782 
4783 LegalizerHelper::LegalizeResult
4784 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4785                                     LLT MoreTy) {
4786   unsigned Opc = MI.getOpcode();
4787   switch (Opc) {
4788   case TargetOpcode::G_IMPLICIT_DEF:
4789   case TargetOpcode::G_LOAD: {
4790     if (TypeIdx != 0)
4791       return UnableToLegalize;
4792     Observer.changingInstr(MI);
4793     moreElementsVectorDst(MI, MoreTy, 0);
4794     Observer.changedInstr(MI);
4795     return Legalized;
4796   }
4797   case TargetOpcode::G_STORE:
4798     if (TypeIdx != 0)
4799       return UnableToLegalize;
4800     Observer.changingInstr(MI);
4801     moreElementsVectorSrc(MI, MoreTy, 0);
4802     Observer.changedInstr(MI);
4803     return Legalized;
4804   case TargetOpcode::G_AND:
4805   case TargetOpcode::G_OR:
4806   case TargetOpcode::G_XOR:
4807   case TargetOpcode::G_SMIN:
4808   case TargetOpcode::G_SMAX:
4809   case TargetOpcode::G_UMIN:
4810   case TargetOpcode::G_UMAX:
4811   case TargetOpcode::G_FMINNUM:
4812   case TargetOpcode::G_FMAXNUM:
4813   case TargetOpcode::G_FMINNUM_IEEE:
4814   case TargetOpcode::G_FMAXNUM_IEEE:
4815   case TargetOpcode::G_FMINIMUM:
4816   case TargetOpcode::G_FMAXIMUM: {
4817     Observer.changingInstr(MI);
4818     moreElementsVectorSrc(MI, MoreTy, 1);
4819     moreElementsVectorSrc(MI, MoreTy, 2);
4820     moreElementsVectorDst(MI, MoreTy, 0);
4821     Observer.changedInstr(MI);
4822     return Legalized;
4823   }
4824   case TargetOpcode::G_EXTRACT:
4825     if (TypeIdx != 1)
4826       return UnableToLegalize;
4827     Observer.changingInstr(MI);
4828     moreElementsVectorSrc(MI, MoreTy, 1);
4829     Observer.changedInstr(MI);
4830     return Legalized;
4831   case TargetOpcode::G_INSERT:
4832   case TargetOpcode::G_FREEZE:
4833     if (TypeIdx != 0)
4834       return UnableToLegalize;
4835     Observer.changingInstr(MI);
4836     moreElementsVectorSrc(MI, MoreTy, 1);
4837     moreElementsVectorDst(MI, MoreTy, 0);
4838     Observer.changedInstr(MI);
4839     return Legalized;
4840   case TargetOpcode::G_SELECT:
4841     if (TypeIdx != 0)
4842       return UnableToLegalize;
4843     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4844       return UnableToLegalize;
4845 
4846     Observer.changingInstr(MI);
4847     moreElementsVectorSrc(MI, MoreTy, 2);
4848     moreElementsVectorSrc(MI, MoreTy, 3);
4849     moreElementsVectorDst(MI, MoreTy, 0);
4850     Observer.changedInstr(MI);
4851     return Legalized;
4852   case TargetOpcode::G_UNMERGE_VALUES: {
4853     if (TypeIdx != 1)
4854       return UnableToLegalize;
4855 
4856     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4857     int NumDst = MI.getNumOperands() - 1;
4858     moreElementsVectorSrc(MI, MoreTy, NumDst);
4859 
4860     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4861     for (int I = 0; I != NumDst; ++I)
4862       MIB.addDef(MI.getOperand(I).getReg());
4863 
4864     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4865     for (int I = NumDst; I != NewNumDst; ++I)
4866       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4867 
4868     MIB.addUse(MI.getOperand(NumDst).getReg());
4869     MI.eraseFromParent();
4870     return Legalized;
4871   }
4872   case TargetOpcode::G_PHI:
4873     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4874   case TargetOpcode::G_SHUFFLE_VECTOR:
4875     return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
4876   default:
4877     return UnableToLegalize;
4878   }
4879 }
4880 
4881 LegalizerHelper::LegalizeResult
4882 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
4883                                            unsigned int TypeIdx, LLT MoreTy) {
4884   if (TypeIdx != 0)
4885     return UnableToLegalize;
4886 
4887   Register DstReg = MI.getOperand(0).getReg();
4888   Register Src1Reg = MI.getOperand(1).getReg();
4889   Register Src2Reg = MI.getOperand(2).getReg();
4890   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4891   LLT DstTy = MRI.getType(DstReg);
4892   LLT Src1Ty = MRI.getType(Src1Reg);
4893   LLT Src2Ty = MRI.getType(Src2Reg);
4894   unsigned NumElts = DstTy.getNumElements();
4895   unsigned WidenNumElts = MoreTy.getNumElements();
4896 
4897   // Expect a canonicalized shuffle.
4898   if (DstTy != Src1Ty || DstTy != Src2Ty)
4899     return UnableToLegalize;
4900 
4901   moreElementsVectorSrc(MI, MoreTy, 1);
4902   moreElementsVectorSrc(MI, MoreTy, 2);
4903 
4904   // Adjust mask based on new input vector length.
4905   SmallVector<int, 16> NewMask;
4906   for (unsigned I = 0; I != NumElts; ++I) {
4907     int Idx = Mask[I];
4908     if (Idx < static_cast<int>(NumElts))
4909       NewMask.push_back(Idx);
4910     else
4911       NewMask.push_back(Idx - NumElts + WidenNumElts);
4912   }
4913   for (unsigned I = NumElts; I != WidenNumElts; ++I)
4914     NewMask.push_back(-1);
4915   moreElementsVectorDst(MI, MoreTy, 0);
4916   MIRBuilder.setInstrAndDebugLoc(MI);
4917   MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
4918                                 MI.getOperand(1).getReg(),
4919                                 MI.getOperand(2).getReg(), NewMask);
4920   MI.eraseFromParent();
4921   return Legalized;
4922 }
4923 
4924 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4925                                         ArrayRef<Register> Src1Regs,
4926                                         ArrayRef<Register> Src2Regs,
4927                                         LLT NarrowTy) {
4928   MachineIRBuilder &B = MIRBuilder;
4929   unsigned SrcParts = Src1Regs.size();
4930   unsigned DstParts = DstRegs.size();
4931 
4932   unsigned DstIdx = 0; // Low bits of the result.
4933   Register FactorSum =
4934       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4935   DstRegs[DstIdx] = FactorSum;
4936 
4937   unsigned CarrySumPrevDstIdx;
4938   SmallVector<Register, 4> Factors;
4939 
4940   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4941     // Collect low parts of muls for DstIdx.
4942     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4943          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4944       MachineInstrBuilder Mul =
4945           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4946       Factors.push_back(Mul.getReg(0));
4947     }
4948     // Collect high parts of muls from previous DstIdx.
4949     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4950          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4951       MachineInstrBuilder Umulh =
4952           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4953       Factors.push_back(Umulh.getReg(0));
4954     }
4955     // Add CarrySum from additions calculated for previous DstIdx.
4956     if (DstIdx != 1) {
4957       Factors.push_back(CarrySumPrevDstIdx);
4958     }
4959 
4960     Register CarrySum;
4961     // Add all factors and accumulate all carries into CarrySum.
4962     if (DstIdx != DstParts - 1) {
4963       MachineInstrBuilder Uaddo =
4964           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4965       FactorSum = Uaddo.getReg(0);
4966       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4967       for (unsigned i = 2; i < Factors.size(); ++i) {
4968         MachineInstrBuilder Uaddo =
4969             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4970         FactorSum = Uaddo.getReg(0);
4971         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4972         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4973       }
4974     } else {
4975       // Since value for the next index is not calculated, neither is CarrySum.
4976       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4977       for (unsigned i = 2; i < Factors.size(); ++i)
4978         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4979     }
4980 
4981     CarrySumPrevDstIdx = CarrySum;
4982     DstRegs[DstIdx] = FactorSum;
4983     Factors.clear();
4984   }
4985 }
4986 
4987 LegalizerHelper::LegalizeResult
4988 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4989                                     LLT NarrowTy) {
4990   if (TypeIdx != 0)
4991     return UnableToLegalize;
4992 
4993   Register DstReg = MI.getOperand(0).getReg();
4994   LLT DstType = MRI.getType(DstReg);
4995   // FIXME: add support for vector types
4996   if (DstType.isVector())
4997     return UnableToLegalize;
4998 
4999   unsigned Opcode = MI.getOpcode();
5000   unsigned OpO, OpE, OpF;
5001   switch (Opcode) {
5002   case TargetOpcode::G_SADDO:
5003   case TargetOpcode::G_SADDE:
5004   case TargetOpcode::G_UADDO:
5005   case TargetOpcode::G_UADDE:
5006   case TargetOpcode::G_ADD:
5007     OpO = TargetOpcode::G_UADDO;
5008     OpE = TargetOpcode::G_UADDE;
5009     OpF = TargetOpcode::G_UADDE;
5010     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5011       OpF = TargetOpcode::G_SADDE;
5012     break;
5013   case TargetOpcode::G_SSUBO:
5014   case TargetOpcode::G_SSUBE:
5015   case TargetOpcode::G_USUBO:
5016   case TargetOpcode::G_USUBE:
5017   case TargetOpcode::G_SUB:
5018     OpO = TargetOpcode::G_USUBO;
5019     OpE = TargetOpcode::G_USUBE;
5020     OpF = TargetOpcode::G_USUBE;
5021     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5022       OpF = TargetOpcode::G_SSUBE;
5023     break;
5024   default:
5025     llvm_unreachable("Unexpected add/sub opcode!");
5026   }
5027 
5028   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5029   unsigned NumDefs = MI.getNumExplicitDefs();
5030   Register Src1 = MI.getOperand(NumDefs).getReg();
5031   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5032   Register CarryDst, CarryIn;
5033   if (NumDefs == 2)
5034     CarryDst = MI.getOperand(1).getReg();
5035   if (MI.getNumOperands() == NumDefs + 3)
5036     CarryIn = MI.getOperand(NumDefs + 2).getReg();
5037 
5038   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5039   LLT LeftoverTy, DummyTy;
5040   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5041   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5042   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5043 
5044   int NarrowParts = Src1Regs.size();
5045   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5046     Src1Regs.push_back(Src1Left[I]);
5047     Src2Regs.push_back(Src2Left[I]);
5048   }
5049   DstRegs.reserve(Src1Regs.size());
5050 
5051   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5052     Register DstReg =
5053         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5054     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5055     // Forward the final carry-out to the destination register
5056     if (i == e - 1 && CarryDst)
5057       CarryOut = CarryDst;
5058 
5059     if (!CarryIn) {
5060       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5061                             {Src1Regs[i], Src2Regs[i]});
5062     } else if (i == e - 1) {
5063       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5064                             {Src1Regs[i], Src2Regs[i], CarryIn});
5065     } else {
5066       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5067                             {Src1Regs[i], Src2Regs[i], CarryIn});
5068     }
5069 
5070     DstRegs.push_back(DstReg);
5071     CarryIn = CarryOut;
5072   }
5073   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5074               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5075               makeArrayRef(DstRegs).drop_front(NarrowParts));
5076 
5077   MI.eraseFromParent();
5078   return Legalized;
5079 }
5080 
5081 LegalizerHelper::LegalizeResult
5082 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5083   Register DstReg = MI.getOperand(0).getReg();
5084   Register Src1 = MI.getOperand(1).getReg();
5085   Register Src2 = MI.getOperand(2).getReg();
5086 
5087   LLT Ty = MRI.getType(DstReg);
5088   if (Ty.isVector())
5089     return UnableToLegalize;
5090 
5091   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
5092   unsigned DstSize = Ty.getSizeInBits();
5093   unsigned NarrowSize = NarrowTy.getSizeInBits();
5094   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
5095     return UnableToLegalize;
5096 
5097   unsigned NumDstParts = DstSize / NarrowSize;
5098   unsigned NumSrcParts = SrcSize / NarrowSize;
5099   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5100   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
5101 
5102   SmallVector<Register, 2> Src1Parts, Src2Parts;
5103   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5104   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
5105   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
5106   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5107 
5108   // Take only high half of registers if this is high mul.
5109   ArrayRef<Register> DstRegs(
5110       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
5111   MIRBuilder.buildMerge(DstReg, DstRegs);
5112   MI.eraseFromParent();
5113   return Legalized;
5114 }
5115 
5116 LegalizerHelper::LegalizeResult
5117 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5118                                    LLT NarrowTy) {
5119   if (TypeIdx != 0)
5120     return UnableToLegalize;
5121 
5122   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5123 
5124   Register Src = MI.getOperand(1).getReg();
5125   LLT SrcTy = MRI.getType(Src);
5126 
5127   // If all finite floats fit into the narrowed integer type, we can just swap
5128   // out the result type. This is practically only useful for conversions from
5129   // half to at least 16-bits, so just handle the one case.
5130   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5131       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5132     return UnableToLegalize;
5133 
5134   Observer.changingInstr(MI);
5135   narrowScalarDst(MI, NarrowTy, 0,
5136                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5137   Observer.changedInstr(MI);
5138   return Legalized;
5139 }
5140 
5141 LegalizerHelper::LegalizeResult
5142 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5143                                      LLT NarrowTy) {
5144   if (TypeIdx != 1)
5145     return UnableToLegalize;
5146 
5147   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5148 
5149   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5150   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5151   // NarrowSize.
5152   if (SizeOp1 % NarrowSize != 0)
5153     return UnableToLegalize;
5154   int NumParts = SizeOp1 / NarrowSize;
5155 
5156   SmallVector<Register, 2> SrcRegs, DstRegs;
5157   SmallVector<uint64_t, 2> Indexes;
5158   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5159 
5160   Register OpReg = MI.getOperand(0).getReg();
5161   uint64_t OpStart = MI.getOperand(2).getImm();
5162   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5163   for (int i = 0; i < NumParts; ++i) {
5164     unsigned SrcStart = i * NarrowSize;
5165 
5166     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5167       // No part of the extract uses this subregister, ignore it.
5168       continue;
5169     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5170       // The entire subregister is extracted, forward the value.
5171       DstRegs.push_back(SrcRegs[i]);
5172       continue;
5173     }
5174 
5175     // OpSegStart is where this destination segment would start in OpReg if it
5176     // extended infinitely in both directions.
5177     int64_t ExtractOffset;
5178     uint64_t SegSize;
5179     if (OpStart < SrcStart) {
5180       ExtractOffset = 0;
5181       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5182     } else {
5183       ExtractOffset = OpStart - SrcStart;
5184       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5185     }
5186 
5187     Register SegReg = SrcRegs[i];
5188     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5189       // A genuine extract is needed.
5190       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5191       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5192     }
5193 
5194     DstRegs.push_back(SegReg);
5195   }
5196 
5197   Register DstReg = MI.getOperand(0).getReg();
5198   if (MRI.getType(DstReg).isVector())
5199     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5200   else if (DstRegs.size() > 1)
5201     MIRBuilder.buildMerge(DstReg, DstRegs);
5202   else
5203     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5204   MI.eraseFromParent();
5205   return Legalized;
5206 }
5207 
5208 LegalizerHelper::LegalizeResult
5209 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5210                                     LLT NarrowTy) {
5211   // FIXME: Don't know how to handle secondary types yet.
5212   if (TypeIdx != 0)
5213     return UnableToLegalize;
5214 
5215   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5216   SmallVector<uint64_t, 2> Indexes;
5217   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5218   LLT LeftoverTy;
5219   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5220                LeftoverRegs);
5221 
5222   for (Register Reg : LeftoverRegs)
5223     SrcRegs.push_back(Reg);
5224 
5225   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5226   Register OpReg = MI.getOperand(2).getReg();
5227   uint64_t OpStart = MI.getOperand(3).getImm();
5228   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5229   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5230     unsigned DstStart = I * NarrowSize;
5231 
5232     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5233       // The entire subregister is defined by this insert, forward the new
5234       // value.
5235       DstRegs.push_back(OpReg);
5236       continue;
5237     }
5238 
5239     Register SrcReg = SrcRegs[I];
5240     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5241       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5242       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5243       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5244     }
5245 
5246     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5247       // No part of the insert affects this subregister, forward the original.
5248       DstRegs.push_back(SrcReg);
5249       continue;
5250     }
5251 
5252     // OpSegStart is where this destination segment would start in OpReg if it
5253     // extended infinitely in both directions.
5254     int64_t ExtractOffset, InsertOffset;
5255     uint64_t SegSize;
5256     if (OpStart < DstStart) {
5257       InsertOffset = 0;
5258       ExtractOffset = DstStart - OpStart;
5259       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5260     } else {
5261       InsertOffset = OpStart - DstStart;
5262       ExtractOffset = 0;
5263       SegSize =
5264         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5265     }
5266 
5267     Register SegReg = OpReg;
5268     if (ExtractOffset != 0 || SegSize != OpSize) {
5269       // A genuine extract is needed.
5270       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5271       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5272     }
5273 
5274     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5275     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5276     DstRegs.push_back(DstReg);
5277   }
5278 
5279   uint64_t WideSize = DstRegs.size() * NarrowSize;
5280   Register DstReg = MI.getOperand(0).getReg();
5281   if (WideSize > RegTy.getSizeInBits()) {
5282     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5283     MIRBuilder.buildMerge(MergeReg, DstRegs);
5284     MIRBuilder.buildTrunc(DstReg, MergeReg);
5285   } else
5286     MIRBuilder.buildMerge(DstReg, DstRegs);
5287 
5288   MI.eraseFromParent();
5289   return Legalized;
5290 }
5291 
5292 LegalizerHelper::LegalizeResult
5293 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5294                                    LLT NarrowTy) {
5295   Register DstReg = MI.getOperand(0).getReg();
5296   LLT DstTy = MRI.getType(DstReg);
5297 
5298   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5299 
5300   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5301   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5302   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5303   LLT LeftoverTy;
5304   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5305                     Src0Regs, Src0LeftoverRegs))
5306     return UnableToLegalize;
5307 
5308   LLT Unused;
5309   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5310                     Src1Regs, Src1LeftoverRegs))
5311     llvm_unreachable("inconsistent extractParts result");
5312 
5313   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5314     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5315                                         {Src0Regs[I], Src1Regs[I]});
5316     DstRegs.push_back(Inst.getReg(0));
5317   }
5318 
5319   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5320     auto Inst = MIRBuilder.buildInstr(
5321       MI.getOpcode(),
5322       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5323     DstLeftoverRegs.push_back(Inst.getReg(0));
5324   }
5325 
5326   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5327               LeftoverTy, DstLeftoverRegs);
5328 
5329   MI.eraseFromParent();
5330   return Legalized;
5331 }
5332 
5333 LegalizerHelper::LegalizeResult
5334 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5335                                  LLT NarrowTy) {
5336   if (TypeIdx != 0)
5337     return UnableToLegalize;
5338 
5339   Register DstReg = MI.getOperand(0).getReg();
5340   Register SrcReg = MI.getOperand(1).getReg();
5341 
5342   LLT DstTy = MRI.getType(DstReg);
5343   if (DstTy.isVector())
5344     return UnableToLegalize;
5345 
5346   SmallVector<Register, 8> Parts;
5347   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5348   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5349   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5350 
5351   MI.eraseFromParent();
5352   return Legalized;
5353 }
5354 
5355 LegalizerHelper::LegalizeResult
5356 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5357                                     LLT NarrowTy) {
5358   if (TypeIdx != 0)
5359     return UnableToLegalize;
5360 
5361   Register CondReg = MI.getOperand(1).getReg();
5362   LLT CondTy = MRI.getType(CondReg);
5363   if (CondTy.isVector()) // TODO: Handle vselect
5364     return UnableToLegalize;
5365 
5366   Register DstReg = MI.getOperand(0).getReg();
5367   LLT DstTy = MRI.getType(DstReg);
5368 
5369   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5370   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5371   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5372   LLT LeftoverTy;
5373   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5374                     Src1Regs, Src1LeftoverRegs))
5375     return UnableToLegalize;
5376 
5377   LLT Unused;
5378   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5379                     Src2Regs, Src2LeftoverRegs))
5380     llvm_unreachable("inconsistent extractParts result");
5381 
5382   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5383     auto Select = MIRBuilder.buildSelect(NarrowTy,
5384                                          CondReg, Src1Regs[I], Src2Regs[I]);
5385     DstRegs.push_back(Select.getReg(0));
5386   }
5387 
5388   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5389     auto Select = MIRBuilder.buildSelect(
5390       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5391     DstLeftoverRegs.push_back(Select.getReg(0));
5392   }
5393 
5394   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5395               LeftoverTy, DstLeftoverRegs);
5396 
5397   MI.eraseFromParent();
5398   return Legalized;
5399 }
5400 
5401 LegalizerHelper::LegalizeResult
5402 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5403                                   LLT NarrowTy) {
5404   if (TypeIdx != 1)
5405     return UnableToLegalize;
5406 
5407   Register DstReg = MI.getOperand(0).getReg();
5408   Register SrcReg = MI.getOperand(1).getReg();
5409   LLT DstTy = MRI.getType(DstReg);
5410   LLT SrcTy = MRI.getType(SrcReg);
5411   unsigned NarrowSize = NarrowTy.getSizeInBits();
5412 
5413   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5414     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5415 
5416     MachineIRBuilder &B = MIRBuilder;
5417     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5418     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5419     auto C_0 = B.buildConstant(NarrowTy, 0);
5420     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5421                                 UnmergeSrc.getReg(1), C_0);
5422     auto LoCTLZ = IsUndef ?
5423       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5424       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5425     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5426     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5427     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5428     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5429 
5430     MI.eraseFromParent();
5431     return Legalized;
5432   }
5433 
5434   return UnableToLegalize;
5435 }
5436 
5437 LegalizerHelper::LegalizeResult
5438 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5439                                   LLT NarrowTy) {
5440   if (TypeIdx != 1)
5441     return UnableToLegalize;
5442 
5443   Register DstReg = MI.getOperand(0).getReg();
5444   Register SrcReg = MI.getOperand(1).getReg();
5445   LLT DstTy = MRI.getType(DstReg);
5446   LLT SrcTy = MRI.getType(SrcReg);
5447   unsigned NarrowSize = NarrowTy.getSizeInBits();
5448 
5449   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5450     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5451 
5452     MachineIRBuilder &B = MIRBuilder;
5453     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5454     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5455     auto C_0 = B.buildConstant(NarrowTy, 0);
5456     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5457                                 UnmergeSrc.getReg(0), C_0);
5458     auto HiCTTZ = IsUndef ?
5459       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5460       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5461     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5462     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5463     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5464     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5465 
5466     MI.eraseFromParent();
5467     return Legalized;
5468   }
5469 
5470   return UnableToLegalize;
5471 }
5472 
5473 LegalizerHelper::LegalizeResult
5474 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5475                                    LLT NarrowTy) {
5476   if (TypeIdx != 1)
5477     return UnableToLegalize;
5478 
5479   Register DstReg = MI.getOperand(0).getReg();
5480   LLT DstTy = MRI.getType(DstReg);
5481   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5482   unsigned NarrowSize = NarrowTy.getSizeInBits();
5483 
5484   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5485     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5486 
5487     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5488     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5489     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5490 
5491     MI.eraseFromParent();
5492     return Legalized;
5493   }
5494 
5495   return UnableToLegalize;
5496 }
5497 
5498 LegalizerHelper::LegalizeResult
5499 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5500   unsigned Opc = MI.getOpcode();
5501   const auto &TII = MIRBuilder.getTII();
5502   auto isSupported = [this](const LegalityQuery &Q) {
5503     auto QAction = LI.getAction(Q).Action;
5504     return QAction == Legal || QAction == Libcall || QAction == Custom;
5505   };
5506   switch (Opc) {
5507   default:
5508     return UnableToLegalize;
5509   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5510     // This trivially expands to CTLZ.
5511     Observer.changingInstr(MI);
5512     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5513     Observer.changedInstr(MI);
5514     return Legalized;
5515   }
5516   case TargetOpcode::G_CTLZ: {
5517     Register DstReg = MI.getOperand(0).getReg();
5518     Register SrcReg = MI.getOperand(1).getReg();
5519     LLT DstTy = MRI.getType(DstReg);
5520     LLT SrcTy = MRI.getType(SrcReg);
5521     unsigned Len = SrcTy.getSizeInBits();
5522 
5523     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5524       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5525       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5526       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5527       auto ICmp = MIRBuilder.buildICmp(
5528           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5529       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5530       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5531       MI.eraseFromParent();
5532       return Legalized;
5533     }
5534     // for now, we do this:
5535     // NewLen = NextPowerOf2(Len);
5536     // x = x | (x >> 1);
5537     // x = x | (x >> 2);
5538     // ...
5539     // x = x | (x >>16);
5540     // x = x | (x >>32); // for 64-bit input
5541     // Upto NewLen/2
5542     // return Len - popcount(x);
5543     //
5544     // Ref: "Hacker's Delight" by Henry Warren
5545     Register Op = SrcReg;
5546     unsigned NewLen = PowerOf2Ceil(Len);
5547     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5548       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5549       auto MIBOp = MIRBuilder.buildOr(
5550           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5551       Op = MIBOp.getReg(0);
5552     }
5553     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5554     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5555                         MIBPop);
5556     MI.eraseFromParent();
5557     return Legalized;
5558   }
5559   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5560     // This trivially expands to CTTZ.
5561     Observer.changingInstr(MI);
5562     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5563     Observer.changedInstr(MI);
5564     return Legalized;
5565   }
5566   case TargetOpcode::G_CTTZ: {
5567     Register DstReg = MI.getOperand(0).getReg();
5568     Register SrcReg = MI.getOperand(1).getReg();
5569     LLT DstTy = MRI.getType(DstReg);
5570     LLT SrcTy = MRI.getType(SrcReg);
5571 
5572     unsigned Len = SrcTy.getSizeInBits();
5573     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5574       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5575       // zero.
5576       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5577       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5578       auto ICmp = MIRBuilder.buildICmp(
5579           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5580       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5581       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5582       MI.eraseFromParent();
5583       return Legalized;
5584     }
5585     // for now, we use: { return popcount(~x & (x - 1)); }
5586     // unless the target has ctlz but not ctpop, in which case we use:
5587     // { return 32 - nlz(~x & (x-1)); }
5588     // Ref: "Hacker's Delight" by Henry Warren
5589     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5590     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5591     auto MIBTmp = MIRBuilder.buildAnd(
5592         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5593     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5594         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5595       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5596       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5597                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5598       MI.eraseFromParent();
5599       return Legalized;
5600     }
5601     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5602     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5603     return Legalized;
5604   }
5605   case TargetOpcode::G_CTPOP: {
5606     Register SrcReg = MI.getOperand(1).getReg();
5607     LLT Ty = MRI.getType(SrcReg);
5608     unsigned Size = Ty.getSizeInBits();
5609     MachineIRBuilder &B = MIRBuilder;
5610 
5611     // Count set bits in blocks of 2 bits. Default approach would be
5612     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5613     // We use following formula instead:
5614     // B2Count = val - { (val >> 1) & 0x55555555 }
5615     // since it gives same result in blocks of 2 with one instruction less.
5616     auto C_1 = B.buildConstant(Ty, 1);
5617     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5618     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5619     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5620     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5621     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5622 
5623     // In order to get count in blocks of 4 add values from adjacent block of 2.
5624     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5625     auto C_2 = B.buildConstant(Ty, 2);
5626     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5627     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5628     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5629     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5630     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5631     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5632 
5633     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5634     // addition since count value sits in range {0,...,8} and 4 bits are enough
5635     // to hold such binary values. After addition high 4 bits still hold count
5636     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5637     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5638     auto C_4 = B.buildConstant(Ty, 4);
5639     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5640     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5641     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5642     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5643     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5644 
5645     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5646     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5647     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5648     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5649     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5650 
5651     // Shift count result from 8 high bits to low bits.
5652     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5653     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5654 
5655     MI.eraseFromParent();
5656     return Legalized;
5657   }
5658   }
5659 }
5660 
5661 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5662 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5663                                         Register Reg, unsigned BW) {
5664   return matchUnaryPredicate(
5665       MRI, Reg,
5666       [=](const Constant *C) {
5667         // Null constant here means an undef.
5668         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5669         return !CI || CI->getValue().urem(BW) != 0;
5670       },
5671       /*AllowUndefs*/ true);
5672 }
5673 
5674 LegalizerHelper::LegalizeResult
5675 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5676   Register Dst = MI.getOperand(0).getReg();
5677   Register X = MI.getOperand(1).getReg();
5678   Register Y = MI.getOperand(2).getReg();
5679   Register Z = MI.getOperand(3).getReg();
5680   LLT Ty = MRI.getType(Dst);
5681   LLT ShTy = MRI.getType(Z);
5682 
5683   unsigned BW = Ty.getScalarSizeInBits();
5684 
5685   if (!isPowerOf2_32(BW))
5686     return UnableToLegalize;
5687 
5688   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5689   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5690 
5691   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5692     // fshl X, Y, Z -> fshr X, Y, -Z
5693     // fshr X, Y, Z -> fshl X, Y, -Z
5694     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5695     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5696   } else {
5697     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5698     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5699     auto One = MIRBuilder.buildConstant(ShTy, 1);
5700     if (IsFSHL) {
5701       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5702       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5703     } else {
5704       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5705       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5706     }
5707 
5708     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5709   }
5710 
5711   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5712   MI.eraseFromParent();
5713   return Legalized;
5714 }
5715 
5716 LegalizerHelper::LegalizeResult
5717 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5718   Register Dst = MI.getOperand(0).getReg();
5719   Register X = MI.getOperand(1).getReg();
5720   Register Y = MI.getOperand(2).getReg();
5721   Register Z = MI.getOperand(3).getReg();
5722   LLT Ty = MRI.getType(Dst);
5723   LLT ShTy = MRI.getType(Z);
5724 
5725   const unsigned BW = Ty.getScalarSizeInBits();
5726   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5727 
5728   Register ShX, ShY;
5729   Register ShAmt, InvShAmt;
5730 
5731   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5732   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5733     // fshl: X << C | Y >> (BW - C)
5734     // fshr: X << (BW - C) | Y >> C
5735     // where C = Z % BW is not zero
5736     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5737     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5738     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5739     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5740     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5741   } else {
5742     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5743     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5744     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5745     if (isPowerOf2_32(BW)) {
5746       // Z % BW -> Z & (BW - 1)
5747       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5748       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5749       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5750       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5751     } else {
5752       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5753       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5754       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5755     }
5756 
5757     auto One = MIRBuilder.buildConstant(ShTy, 1);
5758     if (IsFSHL) {
5759       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5760       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5761       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5762     } else {
5763       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5764       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5765       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5766     }
5767   }
5768 
5769   MIRBuilder.buildOr(Dst, ShX, ShY);
5770   MI.eraseFromParent();
5771   return Legalized;
5772 }
5773 
5774 LegalizerHelper::LegalizeResult
5775 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5776   // These operations approximately do the following (while avoiding undefined
5777   // shifts by BW):
5778   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5779   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5780   Register Dst = MI.getOperand(0).getReg();
5781   LLT Ty = MRI.getType(Dst);
5782   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5783 
5784   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5785   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5786 
5787   // TODO: Use smarter heuristic that accounts for vector legalization.
5788   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5789     return lowerFunnelShiftAsShifts(MI);
5790 
5791   // This only works for powers of 2, fallback to shifts if it fails.
5792   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5793   if (Result == UnableToLegalize)
5794     return lowerFunnelShiftAsShifts(MI);
5795   return Result;
5796 }
5797 
5798 LegalizerHelper::LegalizeResult
5799 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5800   Register Dst = MI.getOperand(0).getReg();
5801   Register Src = MI.getOperand(1).getReg();
5802   Register Amt = MI.getOperand(2).getReg();
5803   LLT AmtTy = MRI.getType(Amt);
5804   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5805   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5806   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5807   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5808   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5809   MI.eraseFromParent();
5810   return Legalized;
5811 }
5812 
5813 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5814   Register Dst = MI.getOperand(0).getReg();
5815   Register Src = MI.getOperand(1).getReg();
5816   Register Amt = MI.getOperand(2).getReg();
5817   LLT DstTy = MRI.getType(Dst);
5818   LLT SrcTy = MRI.getType(Dst);
5819   LLT AmtTy = MRI.getType(Amt);
5820 
5821   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5822   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5823 
5824   MIRBuilder.setInstrAndDebugLoc(MI);
5825 
5826   // If a rotate in the other direction is supported, use it.
5827   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5828   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5829       isPowerOf2_32(EltSizeInBits))
5830     return lowerRotateWithReverseRotate(MI);
5831 
5832   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5833   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5834   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5835   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5836   Register ShVal;
5837   Register RevShiftVal;
5838   if (isPowerOf2_32(EltSizeInBits)) {
5839     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5840     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5841     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5842     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5843     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5844     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5845     RevShiftVal =
5846         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5847   } else {
5848     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5849     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5850     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5851     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5852     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5853     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5854     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5855     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5856     RevShiftVal =
5857         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5858   }
5859   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5860   MI.eraseFromParent();
5861   return Legalized;
5862 }
5863 
5864 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5865 // representation.
5866 LegalizerHelper::LegalizeResult
5867 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5868   Register Dst = MI.getOperand(0).getReg();
5869   Register Src = MI.getOperand(1).getReg();
5870   const LLT S64 = LLT::scalar(64);
5871   const LLT S32 = LLT::scalar(32);
5872   const LLT S1 = LLT::scalar(1);
5873 
5874   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5875 
5876   // unsigned cul2f(ulong u) {
5877   //   uint lz = clz(u);
5878   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5879   //   u = (u << lz) & 0x7fffffffffffffffUL;
5880   //   ulong t = u & 0xffffffffffUL;
5881   //   uint v = (e << 23) | (uint)(u >> 40);
5882   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5883   //   return as_float(v + r);
5884   // }
5885 
5886   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5887   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5888 
5889   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5890 
5891   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5892   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5893 
5894   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5895   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5896 
5897   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5898   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5899 
5900   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5901 
5902   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5903   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5904 
5905   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5906   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5907   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5908 
5909   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5910   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5911   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5912   auto One = MIRBuilder.buildConstant(S32, 1);
5913 
5914   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5915   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5916   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5917   MIRBuilder.buildAdd(Dst, V, R);
5918 
5919   MI.eraseFromParent();
5920   return Legalized;
5921 }
5922 
5923 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5924   Register Dst = MI.getOperand(0).getReg();
5925   Register Src = MI.getOperand(1).getReg();
5926   LLT DstTy = MRI.getType(Dst);
5927   LLT SrcTy = MRI.getType(Src);
5928 
5929   if (SrcTy == LLT::scalar(1)) {
5930     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5931     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5932     MIRBuilder.buildSelect(Dst, Src, True, False);
5933     MI.eraseFromParent();
5934     return Legalized;
5935   }
5936 
5937   if (SrcTy != LLT::scalar(64))
5938     return UnableToLegalize;
5939 
5940   if (DstTy == LLT::scalar(32)) {
5941     // TODO: SelectionDAG has several alternative expansions to port which may
5942     // be more reasonble depending on the available instructions. If a target
5943     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5944     // intermediate type, this is probably worse.
5945     return lowerU64ToF32BitOps(MI);
5946   }
5947 
5948   return UnableToLegalize;
5949 }
5950 
5951 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5952   Register Dst = MI.getOperand(0).getReg();
5953   Register Src = MI.getOperand(1).getReg();
5954   LLT DstTy = MRI.getType(Dst);
5955   LLT SrcTy = MRI.getType(Src);
5956 
5957   const LLT S64 = LLT::scalar(64);
5958   const LLT S32 = LLT::scalar(32);
5959   const LLT S1 = LLT::scalar(1);
5960 
5961   if (SrcTy == S1) {
5962     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5963     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5964     MIRBuilder.buildSelect(Dst, Src, True, False);
5965     MI.eraseFromParent();
5966     return Legalized;
5967   }
5968 
5969   if (SrcTy != S64)
5970     return UnableToLegalize;
5971 
5972   if (DstTy == S32) {
5973     // signed cl2f(long l) {
5974     //   long s = l >> 63;
5975     //   float r = cul2f((l + s) ^ s);
5976     //   return s ? -r : r;
5977     // }
5978     Register L = Src;
5979     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5980     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5981 
5982     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5983     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5984     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5985 
5986     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5987     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5988                                             MIRBuilder.buildConstant(S64, 0));
5989     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5990     MI.eraseFromParent();
5991     return Legalized;
5992   }
5993 
5994   return UnableToLegalize;
5995 }
5996 
5997 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5998   Register Dst = MI.getOperand(0).getReg();
5999   Register Src = MI.getOperand(1).getReg();
6000   LLT DstTy = MRI.getType(Dst);
6001   LLT SrcTy = MRI.getType(Src);
6002   const LLT S64 = LLT::scalar(64);
6003   const LLT S32 = LLT::scalar(32);
6004 
6005   if (SrcTy != S64 && SrcTy != S32)
6006     return UnableToLegalize;
6007   if (DstTy != S32 && DstTy != S64)
6008     return UnableToLegalize;
6009 
6010   // FPTOSI gives same result as FPTOUI for positive signed integers.
6011   // FPTOUI needs to deal with fp values that convert to unsigned integers
6012   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6013 
6014   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6015   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6016                                                 : APFloat::IEEEdouble(),
6017                     APInt::getNullValue(SrcTy.getSizeInBits()));
6018   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6019 
6020   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6021 
6022   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6023   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6024   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6025   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6026   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6027   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6028   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6029 
6030   const LLT S1 = LLT::scalar(1);
6031 
6032   MachineInstrBuilder FCMP =
6033       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6034   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6035 
6036   MI.eraseFromParent();
6037   return Legalized;
6038 }
6039 
6040 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6041   Register Dst = MI.getOperand(0).getReg();
6042   Register Src = MI.getOperand(1).getReg();
6043   LLT DstTy = MRI.getType(Dst);
6044   LLT SrcTy = MRI.getType(Src);
6045   const LLT S64 = LLT::scalar(64);
6046   const LLT S32 = LLT::scalar(32);
6047 
6048   // FIXME: Only f32 to i64 conversions are supported.
6049   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6050     return UnableToLegalize;
6051 
6052   // Expand f32 -> i64 conversion
6053   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6054   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6055 
6056   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6057 
6058   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6059   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6060 
6061   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6062   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6063 
6064   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6065                                            APInt::getSignMask(SrcEltBits));
6066   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6067   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6068   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6069   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6070 
6071   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6072   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6073   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6074 
6075   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6076   R = MIRBuilder.buildZExt(DstTy, R);
6077 
6078   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6079   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6080   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6081   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6082 
6083   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6084   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6085 
6086   const LLT S1 = LLT::scalar(1);
6087   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6088                                     S1, Exponent, ExponentLoBit);
6089 
6090   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6091 
6092   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6093   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6094 
6095   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6096 
6097   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6098                                           S1, Exponent, ZeroSrcTy);
6099 
6100   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6101   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6102 
6103   MI.eraseFromParent();
6104   return Legalized;
6105 }
6106 
6107 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6108 LegalizerHelper::LegalizeResult
6109 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6110   Register Dst = MI.getOperand(0).getReg();
6111   Register Src = MI.getOperand(1).getReg();
6112 
6113   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6114     return UnableToLegalize;
6115 
6116   const unsigned ExpMask = 0x7ff;
6117   const unsigned ExpBiasf64 = 1023;
6118   const unsigned ExpBiasf16 = 15;
6119   const LLT S32 = LLT::scalar(32);
6120   const LLT S1 = LLT::scalar(1);
6121 
6122   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6123   Register U = Unmerge.getReg(0);
6124   Register UH = Unmerge.getReg(1);
6125 
6126   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6127   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6128 
6129   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6130   // add the f16 bias (15) to get the biased exponent for the f16 format.
6131   E = MIRBuilder.buildAdd(
6132     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6133 
6134   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6135   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6136 
6137   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6138                                        MIRBuilder.buildConstant(S32, 0x1ff));
6139   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6140 
6141   auto Zero = MIRBuilder.buildConstant(S32, 0);
6142   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6143   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6144   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6145 
6146   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6147   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6148   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6149   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6150 
6151   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6152   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6153 
6154   // N = M | (E << 12);
6155   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6156   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6157 
6158   // B = clamp(1-E, 0, 13);
6159   auto One = MIRBuilder.buildConstant(S32, 1);
6160   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6161   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6162   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6163 
6164   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6165                                        MIRBuilder.buildConstant(S32, 0x1000));
6166 
6167   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6168   auto D0 = MIRBuilder.buildShl(S32, D, B);
6169 
6170   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6171                                              D0, SigSetHigh);
6172   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6173   D = MIRBuilder.buildOr(S32, D, D1);
6174 
6175   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6176   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6177 
6178   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6179   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6180 
6181   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6182                                        MIRBuilder.buildConstant(S32, 3));
6183   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6184 
6185   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6186                                        MIRBuilder.buildConstant(S32, 5));
6187   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6188 
6189   V1 = MIRBuilder.buildOr(S32, V0, V1);
6190   V = MIRBuilder.buildAdd(S32, V, V1);
6191 
6192   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6193                                        E, MIRBuilder.buildConstant(S32, 30));
6194   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6195                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6196 
6197   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6198                                          E, MIRBuilder.buildConstant(S32, 1039));
6199   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6200 
6201   // Extract the sign bit.
6202   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6203   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6204 
6205   // Insert the sign bit
6206   V = MIRBuilder.buildOr(S32, Sign, V);
6207 
6208   MIRBuilder.buildTrunc(Dst, V);
6209   MI.eraseFromParent();
6210   return Legalized;
6211 }
6212 
6213 LegalizerHelper::LegalizeResult
6214 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6215   Register Dst = MI.getOperand(0).getReg();
6216   Register Src = MI.getOperand(1).getReg();
6217 
6218   LLT DstTy = MRI.getType(Dst);
6219   LLT SrcTy = MRI.getType(Src);
6220   const LLT S64 = LLT::scalar(64);
6221   const LLT S16 = LLT::scalar(16);
6222 
6223   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6224     return lowerFPTRUNC_F64_TO_F16(MI);
6225 
6226   return UnableToLegalize;
6227 }
6228 
6229 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6230 // multiplication tree.
6231 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6232   Register Dst = MI.getOperand(0).getReg();
6233   Register Src0 = MI.getOperand(1).getReg();
6234   Register Src1 = MI.getOperand(2).getReg();
6235   LLT Ty = MRI.getType(Dst);
6236 
6237   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6238   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6239   MI.eraseFromParent();
6240   return Legalized;
6241 }
6242 
6243 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6244   switch (Opc) {
6245   case TargetOpcode::G_SMIN:
6246     return CmpInst::ICMP_SLT;
6247   case TargetOpcode::G_SMAX:
6248     return CmpInst::ICMP_SGT;
6249   case TargetOpcode::G_UMIN:
6250     return CmpInst::ICMP_ULT;
6251   case TargetOpcode::G_UMAX:
6252     return CmpInst::ICMP_UGT;
6253   default:
6254     llvm_unreachable("not in integer min/max");
6255   }
6256 }
6257 
6258 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6259   Register Dst = MI.getOperand(0).getReg();
6260   Register Src0 = MI.getOperand(1).getReg();
6261   Register Src1 = MI.getOperand(2).getReg();
6262 
6263   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6264   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6265 
6266   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6267   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6268 
6269   MI.eraseFromParent();
6270   return Legalized;
6271 }
6272 
6273 LegalizerHelper::LegalizeResult
6274 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6275   Register Dst = MI.getOperand(0).getReg();
6276   Register Src0 = MI.getOperand(1).getReg();
6277   Register Src1 = MI.getOperand(2).getReg();
6278 
6279   const LLT Src0Ty = MRI.getType(Src0);
6280   const LLT Src1Ty = MRI.getType(Src1);
6281 
6282   const int Src0Size = Src0Ty.getScalarSizeInBits();
6283   const int Src1Size = Src1Ty.getScalarSizeInBits();
6284 
6285   auto SignBitMask = MIRBuilder.buildConstant(
6286     Src0Ty, APInt::getSignMask(Src0Size));
6287 
6288   auto NotSignBitMask = MIRBuilder.buildConstant(
6289     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6290 
6291   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6292   Register And1;
6293   if (Src0Ty == Src1Ty) {
6294     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6295   } else if (Src0Size > Src1Size) {
6296     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6297     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6298     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6299     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6300   } else {
6301     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6302     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6303     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6304     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6305   }
6306 
6307   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6308   // constants are a nan and -0.0, but the final result should preserve
6309   // everything.
6310   unsigned Flags = MI.getFlags();
6311   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6312 
6313   MI.eraseFromParent();
6314   return Legalized;
6315 }
6316 
6317 LegalizerHelper::LegalizeResult
6318 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6319   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6320     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6321 
6322   Register Dst = MI.getOperand(0).getReg();
6323   Register Src0 = MI.getOperand(1).getReg();
6324   Register Src1 = MI.getOperand(2).getReg();
6325   LLT Ty = MRI.getType(Dst);
6326 
6327   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6328     // Insert canonicalizes if it's possible we need to quiet to get correct
6329     // sNaN behavior.
6330 
6331     // Note this must be done here, and not as an optimization combine in the
6332     // absence of a dedicate quiet-snan instruction as we're using an
6333     // omni-purpose G_FCANONICALIZE.
6334     if (!isKnownNeverSNaN(Src0, MRI))
6335       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6336 
6337     if (!isKnownNeverSNaN(Src1, MRI))
6338       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6339   }
6340 
6341   // If there are no nans, it's safe to simply replace this with the non-IEEE
6342   // version.
6343   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6344   MI.eraseFromParent();
6345   return Legalized;
6346 }
6347 
6348 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6349   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6350   Register DstReg = MI.getOperand(0).getReg();
6351   LLT Ty = MRI.getType(DstReg);
6352   unsigned Flags = MI.getFlags();
6353 
6354   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6355                                   Flags);
6356   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6357   MI.eraseFromParent();
6358   return Legalized;
6359 }
6360 
6361 LegalizerHelper::LegalizeResult
6362 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6363   Register DstReg = MI.getOperand(0).getReg();
6364   Register X = MI.getOperand(1).getReg();
6365   const unsigned Flags = MI.getFlags();
6366   const LLT Ty = MRI.getType(DstReg);
6367   const LLT CondTy = Ty.changeElementSize(1);
6368 
6369   // round(x) =>
6370   //  t = trunc(x);
6371   //  d = fabs(x - t);
6372   //  o = copysign(1.0f, x);
6373   //  return t + (d >= 0.5 ? o : 0.0);
6374 
6375   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6376 
6377   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6378   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6379   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6380   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6381   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6382   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6383 
6384   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6385                                   Flags);
6386   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6387 
6388   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6389 
6390   MI.eraseFromParent();
6391   return Legalized;
6392 }
6393 
6394 LegalizerHelper::LegalizeResult
6395 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6396   Register DstReg = MI.getOperand(0).getReg();
6397   Register SrcReg = MI.getOperand(1).getReg();
6398   unsigned Flags = MI.getFlags();
6399   LLT Ty = MRI.getType(DstReg);
6400   const LLT CondTy = Ty.changeElementSize(1);
6401 
6402   // result = trunc(src);
6403   // if (src < 0.0 && src != result)
6404   //   result += -1.0.
6405 
6406   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6407   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6408 
6409   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6410                                   SrcReg, Zero, Flags);
6411   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6412                                       SrcReg, Trunc, Flags);
6413   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6414   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6415 
6416   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6417   MI.eraseFromParent();
6418   return Legalized;
6419 }
6420 
6421 LegalizerHelper::LegalizeResult
6422 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6423   const unsigned NumOps = MI.getNumOperands();
6424   Register DstReg = MI.getOperand(0).getReg();
6425   Register Src0Reg = MI.getOperand(1).getReg();
6426   LLT DstTy = MRI.getType(DstReg);
6427   LLT SrcTy = MRI.getType(Src0Reg);
6428   unsigned PartSize = SrcTy.getSizeInBits();
6429 
6430   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6431   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6432 
6433   for (unsigned I = 2; I != NumOps; ++I) {
6434     const unsigned Offset = (I - 1) * PartSize;
6435 
6436     Register SrcReg = MI.getOperand(I).getReg();
6437     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6438 
6439     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6440       MRI.createGenericVirtualRegister(WideTy);
6441 
6442     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6443     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6444     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6445     ResultReg = NextResult;
6446   }
6447 
6448   if (DstTy.isPointer()) {
6449     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6450           DstTy.getAddressSpace())) {
6451       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6452       return UnableToLegalize;
6453     }
6454 
6455     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6456   }
6457 
6458   MI.eraseFromParent();
6459   return Legalized;
6460 }
6461 
6462 LegalizerHelper::LegalizeResult
6463 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6464   const unsigned NumDst = MI.getNumOperands() - 1;
6465   Register SrcReg = MI.getOperand(NumDst).getReg();
6466   Register Dst0Reg = MI.getOperand(0).getReg();
6467   LLT DstTy = MRI.getType(Dst0Reg);
6468   if (DstTy.isPointer())
6469     return UnableToLegalize; // TODO
6470 
6471   SrcReg = coerceToScalar(SrcReg);
6472   if (!SrcReg)
6473     return UnableToLegalize;
6474 
6475   // Expand scalarizing unmerge as bitcast to integer and shift.
6476   LLT IntTy = MRI.getType(SrcReg);
6477 
6478   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6479 
6480   const unsigned DstSize = DstTy.getSizeInBits();
6481   unsigned Offset = DstSize;
6482   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6483     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6484     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6485     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6486   }
6487 
6488   MI.eraseFromParent();
6489   return Legalized;
6490 }
6491 
6492 /// Lower a vector extract or insert by writing the vector to a stack temporary
6493 /// and reloading the element or vector.
6494 ///
6495 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6496 ///  =>
6497 ///  %stack_temp = G_FRAME_INDEX
6498 ///  G_STORE %vec, %stack_temp
6499 ///  %idx = clamp(%idx, %vec.getNumElements())
6500 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6501 ///  %dst = G_LOAD %element_ptr
6502 LegalizerHelper::LegalizeResult
6503 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6504   Register DstReg = MI.getOperand(0).getReg();
6505   Register SrcVec = MI.getOperand(1).getReg();
6506   Register InsertVal;
6507   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6508     InsertVal = MI.getOperand(2).getReg();
6509 
6510   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6511 
6512   LLT VecTy = MRI.getType(SrcVec);
6513   LLT EltTy = VecTy.getElementType();
6514   if (!EltTy.isByteSized()) { // Not implemented.
6515     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6516     return UnableToLegalize;
6517   }
6518 
6519   unsigned EltBytes = EltTy.getSizeInBytes();
6520   Align VecAlign = getStackTemporaryAlignment(VecTy);
6521   Align EltAlign;
6522 
6523   MachinePointerInfo PtrInfo;
6524   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6525                                         VecAlign, PtrInfo);
6526   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6527 
6528   // Get the pointer to the element, and be sure not to hit undefined behavior
6529   // if the index is out of bounds.
6530   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6531 
6532   int64_t IdxVal;
6533   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6534     int64_t Offset = IdxVal * EltBytes;
6535     PtrInfo = PtrInfo.getWithOffset(Offset);
6536     EltAlign = commonAlignment(VecAlign, Offset);
6537   } else {
6538     // We lose information with a variable offset.
6539     EltAlign = getStackTemporaryAlignment(EltTy);
6540     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6541   }
6542 
6543   if (InsertVal) {
6544     // Write the inserted element
6545     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6546 
6547     // Reload the whole vector.
6548     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6549   } else {
6550     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6551   }
6552 
6553   MI.eraseFromParent();
6554   return Legalized;
6555 }
6556 
6557 LegalizerHelper::LegalizeResult
6558 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6559   Register DstReg = MI.getOperand(0).getReg();
6560   Register Src0Reg = MI.getOperand(1).getReg();
6561   Register Src1Reg = MI.getOperand(2).getReg();
6562   LLT Src0Ty = MRI.getType(Src0Reg);
6563   LLT DstTy = MRI.getType(DstReg);
6564   LLT IdxTy = LLT::scalar(32);
6565 
6566   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6567 
6568   if (DstTy.isScalar()) {
6569     if (Src0Ty.isVector())
6570       return UnableToLegalize;
6571 
6572     // This is just a SELECT.
6573     assert(Mask.size() == 1 && "Expected a single mask element");
6574     Register Val;
6575     if (Mask[0] < 0 || Mask[0] > 1)
6576       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6577     else
6578       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6579     MIRBuilder.buildCopy(DstReg, Val);
6580     MI.eraseFromParent();
6581     return Legalized;
6582   }
6583 
6584   Register Undef;
6585   SmallVector<Register, 32> BuildVec;
6586   LLT EltTy = DstTy.getElementType();
6587 
6588   for (int Idx : Mask) {
6589     if (Idx < 0) {
6590       if (!Undef.isValid())
6591         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6592       BuildVec.push_back(Undef);
6593       continue;
6594     }
6595 
6596     if (Src0Ty.isScalar()) {
6597       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6598     } else {
6599       int NumElts = Src0Ty.getNumElements();
6600       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6601       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6602       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6603       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6604       BuildVec.push_back(Extract.getReg(0));
6605     }
6606   }
6607 
6608   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6609   MI.eraseFromParent();
6610   return Legalized;
6611 }
6612 
6613 LegalizerHelper::LegalizeResult
6614 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6615   const auto &MF = *MI.getMF();
6616   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6617   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6618     return UnableToLegalize;
6619 
6620   Register Dst = MI.getOperand(0).getReg();
6621   Register AllocSize = MI.getOperand(1).getReg();
6622   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6623 
6624   LLT PtrTy = MRI.getType(Dst);
6625   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6626 
6627   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6628   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6629   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6630 
6631   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6632   // have to generate an extra instruction to negate the alloc and then use
6633   // G_PTR_ADD to add the negative offset.
6634   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6635   if (Alignment > Align(1)) {
6636     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6637     AlignMask.negate();
6638     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6639     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6640   }
6641 
6642   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6643   MIRBuilder.buildCopy(SPReg, SPTmp);
6644   MIRBuilder.buildCopy(Dst, SPTmp);
6645 
6646   MI.eraseFromParent();
6647   return Legalized;
6648 }
6649 
6650 LegalizerHelper::LegalizeResult
6651 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6652   Register Dst = MI.getOperand(0).getReg();
6653   Register Src = MI.getOperand(1).getReg();
6654   unsigned Offset = MI.getOperand(2).getImm();
6655 
6656   LLT DstTy = MRI.getType(Dst);
6657   LLT SrcTy = MRI.getType(Src);
6658 
6659   if (DstTy.isScalar() &&
6660       (SrcTy.isScalar() ||
6661        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6662     LLT SrcIntTy = SrcTy;
6663     if (!SrcTy.isScalar()) {
6664       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6665       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6666     }
6667 
6668     if (Offset == 0)
6669       MIRBuilder.buildTrunc(Dst, Src);
6670     else {
6671       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6672       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6673       MIRBuilder.buildTrunc(Dst, Shr);
6674     }
6675 
6676     MI.eraseFromParent();
6677     return Legalized;
6678   }
6679 
6680   return UnableToLegalize;
6681 }
6682 
6683 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6684   Register Dst = MI.getOperand(0).getReg();
6685   Register Src = MI.getOperand(1).getReg();
6686   Register InsertSrc = MI.getOperand(2).getReg();
6687   uint64_t Offset = MI.getOperand(3).getImm();
6688 
6689   LLT DstTy = MRI.getType(Src);
6690   LLT InsertTy = MRI.getType(InsertSrc);
6691 
6692   if (InsertTy.isVector() ||
6693       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6694     return UnableToLegalize;
6695 
6696   const DataLayout &DL = MIRBuilder.getDataLayout();
6697   if ((DstTy.isPointer() &&
6698        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6699       (InsertTy.isPointer() &&
6700        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6701     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6702     return UnableToLegalize;
6703   }
6704 
6705   LLT IntDstTy = DstTy;
6706 
6707   if (!DstTy.isScalar()) {
6708     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6709     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6710   }
6711 
6712   if (!InsertTy.isScalar()) {
6713     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6714     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6715   }
6716 
6717   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6718   if (Offset != 0) {
6719     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6720     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6721   }
6722 
6723   APInt MaskVal = APInt::getBitsSetWithWrap(
6724       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6725 
6726   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6727   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6728   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6729 
6730   MIRBuilder.buildCast(Dst, Or);
6731   MI.eraseFromParent();
6732   return Legalized;
6733 }
6734 
6735 LegalizerHelper::LegalizeResult
6736 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6737   Register Dst0 = MI.getOperand(0).getReg();
6738   Register Dst1 = MI.getOperand(1).getReg();
6739   Register LHS = MI.getOperand(2).getReg();
6740   Register RHS = MI.getOperand(3).getReg();
6741   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6742 
6743   LLT Ty = MRI.getType(Dst0);
6744   LLT BoolTy = MRI.getType(Dst1);
6745 
6746   if (IsAdd)
6747     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6748   else
6749     MIRBuilder.buildSub(Dst0, LHS, RHS);
6750 
6751   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6752 
6753   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6754 
6755   // For an addition, the result should be less than one of the operands (LHS)
6756   // if and only if the other operand (RHS) is negative, otherwise there will
6757   // be overflow.
6758   // For a subtraction, the result should be less than one of the operands
6759   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6760   // otherwise there will be overflow.
6761   auto ResultLowerThanLHS =
6762       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6763   auto ConditionRHS = MIRBuilder.buildICmp(
6764       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6765 
6766   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6767   MI.eraseFromParent();
6768   return Legalized;
6769 }
6770 
6771 LegalizerHelper::LegalizeResult
6772 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6773   Register Res = MI.getOperand(0).getReg();
6774   Register LHS = MI.getOperand(1).getReg();
6775   Register RHS = MI.getOperand(2).getReg();
6776   LLT Ty = MRI.getType(Res);
6777   bool IsSigned;
6778   bool IsAdd;
6779   unsigned BaseOp;
6780   switch (MI.getOpcode()) {
6781   default:
6782     llvm_unreachable("unexpected addsat/subsat opcode");
6783   case TargetOpcode::G_UADDSAT:
6784     IsSigned = false;
6785     IsAdd = true;
6786     BaseOp = TargetOpcode::G_ADD;
6787     break;
6788   case TargetOpcode::G_SADDSAT:
6789     IsSigned = true;
6790     IsAdd = true;
6791     BaseOp = TargetOpcode::G_ADD;
6792     break;
6793   case TargetOpcode::G_USUBSAT:
6794     IsSigned = false;
6795     IsAdd = false;
6796     BaseOp = TargetOpcode::G_SUB;
6797     break;
6798   case TargetOpcode::G_SSUBSAT:
6799     IsSigned = true;
6800     IsAdd = false;
6801     BaseOp = TargetOpcode::G_SUB;
6802     break;
6803   }
6804 
6805   if (IsSigned) {
6806     // sadd.sat(a, b) ->
6807     //   hi = 0x7fffffff - smax(a, 0)
6808     //   lo = 0x80000000 - smin(a, 0)
6809     //   a + smin(smax(lo, b), hi)
6810     // ssub.sat(a, b) ->
6811     //   lo = smax(a, -1) - 0x7fffffff
6812     //   hi = smin(a, -1) - 0x80000000
6813     //   a - smin(smax(lo, b), hi)
6814     // TODO: AMDGPU can use a "median of 3" instruction here:
6815     //   a +/- med3(lo, b, hi)
6816     uint64_t NumBits = Ty.getScalarSizeInBits();
6817     auto MaxVal =
6818         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6819     auto MinVal =
6820         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6821     MachineInstrBuilder Hi, Lo;
6822     if (IsAdd) {
6823       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6824       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6825       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6826     } else {
6827       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6828       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6829                                MaxVal);
6830       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6831                                MinVal);
6832     }
6833     auto RHSClamped =
6834         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6835     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6836   } else {
6837     // uadd.sat(a, b) -> a + umin(~a, b)
6838     // usub.sat(a, b) -> a - umin(a, b)
6839     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6840     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6841     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6842   }
6843 
6844   MI.eraseFromParent();
6845   return Legalized;
6846 }
6847 
6848 LegalizerHelper::LegalizeResult
6849 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6850   Register Res = MI.getOperand(0).getReg();
6851   Register LHS = MI.getOperand(1).getReg();
6852   Register RHS = MI.getOperand(2).getReg();
6853   LLT Ty = MRI.getType(Res);
6854   LLT BoolTy = Ty.changeElementSize(1);
6855   bool IsSigned;
6856   bool IsAdd;
6857   unsigned OverflowOp;
6858   switch (MI.getOpcode()) {
6859   default:
6860     llvm_unreachable("unexpected addsat/subsat opcode");
6861   case TargetOpcode::G_UADDSAT:
6862     IsSigned = false;
6863     IsAdd = true;
6864     OverflowOp = TargetOpcode::G_UADDO;
6865     break;
6866   case TargetOpcode::G_SADDSAT:
6867     IsSigned = true;
6868     IsAdd = true;
6869     OverflowOp = TargetOpcode::G_SADDO;
6870     break;
6871   case TargetOpcode::G_USUBSAT:
6872     IsSigned = false;
6873     IsAdd = false;
6874     OverflowOp = TargetOpcode::G_USUBO;
6875     break;
6876   case TargetOpcode::G_SSUBSAT:
6877     IsSigned = true;
6878     IsAdd = false;
6879     OverflowOp = TargetOpcode::G_SSUBO;
6880     break;
6881   }
6882 
6883   auto OverflowRes =
6884       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6885   Register Tmp = OverflowRes.getReg(0);
6886   Register Ov = OverflowRes.getReg(1);
6887   MachineInstrBuilder Clamp;
6888   if (IsSigned) {
6889     // sadd.sat(a, b) ->
6890     //   {tmp, ov} = saddo(a, b)
6891     //   ov ? (tmp >>s 31) + 0x80000000 : r
6892     // ssub.sat(a, b) ->
6893     //   {tmp, ov} = ssubo(a, b)
6894     //   ov ? (tmp >>s 31) + 0x80000000 : r
6895     uint64_t NumBits = Ty.getScalarSizeInBits();
6896     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6897     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6898     auto MinVal =
6899         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6900     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6901   } else {
6902     // uadd.sat(a, b) ->
6903     //   {tmp, ov} = uaddo(a, b)
6904     //   ov ? 0xffffffff : tmp
6905     // usub.sat(a, b) ->
6906     //   {tmp, ov} = usubo(a, b)
6907     //   ov ? 0 : tmp
6908     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6909   }
6910   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6911 
6912   MI.eraseFromParent();
6913   return Legalized;
6914 }
6915 
6916 LegalizerHelper::LegalizeResult
6917 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6918   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6919           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6920          "Expected shlsat opcode!");
6921   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6922   Register Res = MI.getOperand(0).getReg();
6923   Register LHS = MI.getOperand(1).getReg();
6924   Register RHS = MI.getOperand(2).getReg();
6925   LLT Ty = MRI.getType(Res);
6926   LLT BoolTy = Ty.changeElementSize(1);
6927 
6928   unsigned BW = Ty.getScalarSizeInBits();
6929   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6930   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6931                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6932 
6933   MachineInstrBuilder SatVal;
6934   if (IsSigned) {
6935     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6936     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6937     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6938                                     MIRBuilder.buildConstant(Ty, 0));
6939     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6940   } else {
6941     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6942   }
6943   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6944   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6945 
6946   MI.eraseFromParent();
6947   return Legalized;
6948 }
6949 
6950 LegalizerHelper::LegalizeResult
6951 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6952   Register Dst = MI.getOperand(0).getReg();
6953   Register Src = MI.getOperand(1).getReg();
6954   const LLT Ty = MRI.getType(Src);
6955   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6956   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6957 
6958   // Swap most and least significant byte, set remaining bytes in Res to zero.
6959   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6960   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6961   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6962   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6963 
6964   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6965   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6966     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6967     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6968     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6969     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6970     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6971     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6972     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6973     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6974     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6975     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6976     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6977     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6978   }
6979   Res.getInstr()->getOperand(0).setReg(Dst);
6980 
6981   MI.eraseFromParent();
6982   return Legalized;
6983 }
6984 
6985 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6986 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6987                                  MachineInstrBuilder Src, APInt Mask) {
6988   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6989   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6990   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6991   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6992   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6993   return B.buildOr(Dst, LHS, RHS);
6994 }
6995 
6996 LegalizerHelper::LegalizeResult
6997 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6998   Register Dst = MI.getOperand(0).getReg();
6999   Register Src = MI.getOperand(1).getReg();
7000   const LLT Ty = MRI.getType(Src);
7001   unsigned Size = Ty.getSizeInBits();
7002 
7003   MachineInstrBuilder BSWAP =
7004       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7005 
7006   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7007   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7008   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7009   MachineInstrBuilder Swap4 =
7010       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7011 
7012   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7013   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7014   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7015   MachineInstrBuilder Swap2 =
7016       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7017 
7018   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7019   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7020   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7021   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7022 
7023   MI.eraseFromParent();
7024   return Legalized;
7025 }
7026 
7027 LegalizerHelper::LegalizeResult
7028 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7029   MachineFunction &MF = MIRBuilder.getMF();
7030 
7031   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7032   int NameOpIdx = IsRead ? 1 : 0;
7033   int ValRegIndex = IsRead ? 0 : 1;
7034 
7035   Register ValReg = MI.getOperand(ValRegIndex).getReg();
7036   const LLT Ty = MRI.getType(ValReg);
7037   const MDString *RegStr = cast<MDString>(
7038     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7039 
7040   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7041   if (!PhysReg.isValid())
7042     return UnableToLegalize;
7043 
7044   if (IsRead)
7045     MIRBuilder.buildCopy(ValReg, PhysReg);
7046   else
7047     MIRBuilder.buildCopy(PhysReg, ValReg);
7048 
7049   MI.eraseFromParent();
7050   return Legalized;
7051 }
7052 
7053 LegalizerHelper::LegalizeResult
7054 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7055   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7056   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7057   Register Result = MI.getOperand(0).getReg();
7058   LLT OrigTy = MRI.getType(Result);
7059   auto SizeInBits = OrigTy.getScalarSizeInBits();
7060   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7061 
7062   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7063   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7064   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7065   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7066 
7067   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7068   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7069   MIRBuilder.buildTrunc(Result, Shifted);
7070 
7071   MI.eraseFromParent();
7072   return Legalized;
7073 }
7074 
7075 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7076   // Implement vector G_SELECT in terms of XOR, AND, OR.
7077   Register DstReg = MI.getOperand(0).getReg();
7078   Register MaskReg = MI.getOperand(1).getReg();
7079   Register Op1Reg = MI.getOperand(2).getReg();
7080   Register Op2Reg = MI.getOperand(3).getReg();
7081   LLT DstTy = MRI.getType(DstReg);
7082   LLT MaskTy = MRI.getType(MaskReg);
7083   LLT Op1Ty = MRI.getType(Op1Reg);
7084   if (!DstTy.isVector())
7085     return UnableToLegalize;
7086 
7087   // Vector selects can have a scalar predicate. If so, splat into a vector and
7088   // finish for later legalization attempts to try again.
7089   if (MaskTy.isScalar()) {
7090     Register MaskElt = MaskReg;
7091     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
7092       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
7093     // Generate a vector splat idiom to be pattern matched later.
7094     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7095     Observer.changingInstr(MI);
7096     MI.getOperand(1).setReg(ShufSplat.getReg(0));
7097     Observer.changedInstr(MI);
7098     return Legalized;
7099   }
7100 
7101   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
7102     return UnableToLegalize;
7103   }
7104 
7105   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7106   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7107   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7108   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7109   MI.eraseFromParent();
7110   return Legalized;
7111 }
7112 
7113 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7114   // Split DIVREM into individual instructions.
7115   unsigned Opcode = MI.getOpcode();
7116 
7117   MIRBuilder.buildInstr(
7118       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7119                                         : TargetOpcode::G_UDIV,
7120       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7121   MIRBuilder.buildInstr(
7122       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7123                                         : TargetOpcode::G_UREM,
7124       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7125   MI.eraseFromParent();
7126   return Legalized;
7127 }
7128 
7129 LegalizerHelper::LegalizeResult
7130 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7131   // Expand %res = G_ABS %a into:
7132   // %v1 = G_ASHR %a, scalar_size-1
7133   // %v2 = G_ADD %a, %v1
7134   // %res = G_XOR %v2, %v1
7135   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7136   Register OpReg = MI.getOperand(1).getReg();
7137   auto ShiftAmt =
7138       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7139   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7140   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7141   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7142   MI.eraseFromParent();
7143   return Legalized;
7144 }
7145 
7146 LegalizerHelper::LegalizeResult
7147 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7148   // Expand %res = G_ABS %a into:
7149   // %v1 = G_CONSTANT 0
7150   // %v2 = G_SUB %v1, %a
7151   // %res = G_SMAX %a, %v2
7152   Register SrcReg = MI.getOperand(1).getReg();
7153   LLT Ty = MRI.getType(SrcReg);
7154   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7155   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7156   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7157   MI.eraseFromParent();
7158   return Legalized;
7159 }
7160