1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #define DEBUG_TYPE "legalizer" 28 29 using namespace llvm; 30 using namespace LegalizeActions; 31 32 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 33 GISelChangeObserver &Observer, 34 MachineIRBuilder &Builder) 35 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 36 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 37 MIRBuilder.setMF(MF); 38 MIRBuilder.setChangeObserver(Observer); 39 } 40 41 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 42 GISelChangeObserver &Observer, 43 MachineIRBuilder &B) 44 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 45 MIRBuilder.setMF(MF); 46 MIRBuilder.setChangeObserver(Observer); 47 } 48 LegalizerHelper::LegalizeResult 49 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 50 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 51 52 auto Step = LI.getAction(MI, MRI); 53 switch (Step.Action) { 54 case Legal: 55 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 56 return AlreadyLegal; 57 case Libcall: 58 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 59 return libcall(MI); 60 case NarrowScalar: 61 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 62 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 63 case WidenScalar: 64 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 65 return widenScalar(MI, Step.TypeIdx, Step.NewType); 66 case Lower: 67 LLVM_DEBUG(dbgs() << ".. Lower\n"); 68 return lower(MI, Step.TypeIdx, Step.NewType); 69 case FewerElements: 70 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 71 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 72 case Custom: 73 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 74 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 75 : UnableToLegalize; 76 default: 77 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 78 return UnableToLegalize; 79 } 80 } 81 82 void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts, 83 SmallVectorImpl<unsigned> &VRegs) { 84 for (int i = 0; i < NumParts; ++i) 85 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 86 MIRBuilder.buildUnmerge(VRegs, Reg); 87 } 88 89 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 90 switch (Opcode) { 91 case TargetOpcode::G_SDIV: 92 assert((Size == 32 || Size == 64) && "Unsupported size"); 93 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 94 case TargetOpcode::G_UDIV: 95 assert((Size == 32 || Size == 64) && "Unsupported size"); 96 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 97 case TargetOpcode::G_SREM: 98 assert((Size == 32 || Size == 64) && "Unsupported size"); 99 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 100 case TargetOpcode::G_UREM: 101 assert((Size == 32 || Size == 64) && "Unsupported size"); 102 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 103 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 104 assert(Size == 32 && "Unsupported size"); 105 return RTLIB::CTLZ_I32; 106 case TargetOpcode::G_FADD: 107 assert((Size == 32 || Size == 64) && "Unsupported size"); 108 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 109 case TargetOpcode::G_FSUB: 110 assert((Size == 32 || Size == 64) && "Unsupported size"); 111 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 112 case TargetOpcode::G_FMUL: 113 assert((Size == 32 || Size == 64) && "Unsupported size"); 114 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 115 case TargetOpcode::G_FDIV: 116 assert((Size == 32 || Size == 64) && "Unsupported size"); 117 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 118 case TargetOpcode::G_FREM: 119 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 120 case TargetOpcode::G_FPOW: 121 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 122 case TargetOpcode::G_FMA: 123 assert((Size == 32 || Size == 64) && "Unsupported size"); 124 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 125 } 126 llvm_unreachable("Unknown libcall function"); 127 } 128 129 LegalizerHelper::LegalizeResult 130 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 131 const CallLowering::ArgInfo &Result, 132 ArrayRef<CallLowering::ArgInfo> Args) { 133 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 134 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 135 const char *Name = TLI.getLibcallName(Libcall); 136 137 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 138 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 139 MachineOperand::CreateES(Name), Result, Args)) 140 return LegalizerHelper::UnableToLegalize; 141 142 return LegalizerHelper::Legalized; 143 } 144 145 // Useful for libcalls where all operands have the same type. 146 static LegalizerHelper::LegalizeResult 147 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 148 Type *OpType) { 149 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 150 151 SmallVector<CallLowering::ArgInfo, 3> Args; 152 for (unsigned i = 1; i < MI.getNumOperands(); i++) 153 Args.push_back({MI.getOperand(i).getReg(), OpType}); 154 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 155 Args); 156 } 157 158 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 159 Type *FromType) { 160 auto ToMVT = MVT::getVT(ToType); 161 auto FromMVT = MVT::getVT(FromType); 162 163 switch (Opcode) { 164 case TargetOpcode::G_FPEXT: 165 return RTLIB::getFPEXT(FromMVT, ToMVT); 166 case TargetOpcode::G_FPTRUNC: 167 return RTLIB::getFPROUND(FromMVT, ToMVT); 168 case TargetOpcode::G_FPTOSI: 169 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 170 case TargetOpcode::G_FPTOUI: 171 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 172 case TargetOpcode::G_SITOFP: 173 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 174 case TargetOpcode::G_UITOFP: 175 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 176 } 177 llvm_unreachable("Unsupported libcall function"); 178 } 179 180 static LegalizerHelper::LegalizeResult 181 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 182 Type *FromType) { 183 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 184 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 185 {{MI.getOperand(1).getReg(), FromType}}); 186 } 187 188 LegalizerHelper::LegalizeResult 189 LegalizerHelper::libcall(MachineInstr &MI) { 190 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 191 unsigned Size = LLTy.getSizeInBits(); 192 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 193 194 MIRBuilder.setInstr(MI); 195 196 switch (MI.getOpcode()) { 197 default: 198 return UnableToLegalize; 199 case TargetOpcode::G_SDIV: 200 case TargetOpcode::G_UDIV: 201 case TargetOpcode::G_SREM: 202 case TargetOpcode::G_UREM: 203 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 204 Type *HLTy = IntegerType::get(Ctx, Size); 205 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 206 if (Status != Legalized) 207 return Status; 208 break; 209 } 210 case TargetOpcode::G_FADD: 211 case TargetOpcode::G_FSUB: 212 case TargetOpcode::G_FMUL: 213 case TargetOpcode::G_FDIV: 214 case TargetOpcode::G_FMA: 215 case TargetOpcode::G_FPOW: 216 case TargetOpcode::G_FREM: { 217 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 218 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 219 if (Status != Legalized) 220 return Status; 221 break; 222 } 223 case TargetOpcode::G_FPEXT: { 224 // FIXME: Support other floating point types (half, fp128 etc) 225 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 226 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 227 if (ToSize != 64 || FromSize != 32) 228 return UnableToLegalize; 229 LegalizeResult Status = conversionLibcall( 230 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 231 if (Status != Legalized) 232 return Status; 233 break; 234 } 235 case TargetOpcode::G_FPTRUNC: { 236 // FIXME: Support other floating point types (half, fp128 etc) 237 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 238 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 239 if (ToSize != 32 || FromSize != 64) 240 return UnableToLegalize; 241 LegalizeResult Status = conversionLibcall( 242 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 243 if (Status != Legalized) 244 return Status; 245 break; 246 } 247 case TargetOpcode::G_FPTOSI: 248 case TargetOpcode::G_FPTOUI: { 249 // FIXME: Support other types 250 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 251 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 252 if (ToSize != 32 || (FromSize != 32 && FromSize != 64)) 253 return UnableToLegalize; 254 LegalizeResult Status = conversionLibcall( 255 MI, MIRBuilder, Type::getInt32Ty(Ctx), 256 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 257 if (Status != Legalized) 258 return Status; 259 break; 260 } 261 case TargetOpcode::G_SITOFP: 262 case TargetOpcode::G_UITOFP: { 263 // FIXME: Support other types 264 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 265 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 266 if (FromSize != 32 || (ToSize != 32 && ToSize != 64)) 267 return UnableToLegalize; 268 LegalizeResult Status = conversionLibcall( 269 MI, MIRBuilder, 270 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 271 Type::getInt32Ty(Ctx)); 272 if (Status != Legalized) 273 return Status; 274 break; 275 } 276 } 277 278 MI.eraseFromParent(); 279 return Legalized; 280 } 281 282 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 283 unsigned TypeIdx, 284 LLT NarrowTy) { 285 MIRBuilder.setInstr(MI); 286 287 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 288 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 289 290 switch (MI.getOpcode()) { 291 default: 292 return UnableToLegalize; 293 case TargetOpcode::G_IMPLICIT_DEF: { 294 // FIXME: add support for when SizeOp0 isn't an exact multiple of 295 // NarrowSize. 296 if (SizeOp0 % NarrowSize != 0) 297 return UnableToLegalize; 298 int NumParts = SizeOp0 / NarrowSize; 299 300 SmallVector<unsigned, 2> DstRegs; 301 for (int i = 0; i < NumParts; ++i) 302 DstRegs.push_back( 303 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 304 305 unsigned DstReg = MI.getOperand(0).getReg(); 306 if(MRI.getType(DstReg).isVector()) 307 MIRBuilder.buildBuildVector(DstReg, DstRegs); 308 else 309 MIRBuilder.buildMerge(DstReg, DstRegs); 310 MI.eraseFromParent(); 311 return Legalized; 312 } 313 case TargetOpcode::G_ADD: { 314 // FIXME: add support for when SizeOp0 isn't an exact multiple of 315 // NarrowSize. 316 if (SizeOp0 % NarrowSize != 0) 317 return UnableToLegalize; 318 // Expand in terms of carry-setting/consuming G_ADDE instructions. 319 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 320 321 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 322 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 323 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 324 325 unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 326 MIRBuilder.buildConstant(CarryIn, 0); 327 328 for (int i = 0; i < NumParts; ++i) { 329 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 330 unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 331 332 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 333 Src2Regs[i], CarryIn); 334 335 DstRegs.push_back(DstReg); 336 CarryIn = CarryOut; 337 } 338 unsigned DstReg = MI.getOperand(0).getReg(); 339 if(MRI.getType(DstReg).isVector()) 340 MIRBuilder.buildBuildVector(DstReg, DstRegs); 341 else 342 MIRBuilder.buildMerge(DstReg, DstRegs); 343 MI.eraseFromParent(); 344 return Legalized; 345 } 346 case TargetOpcode::G_EXTRACT: { 347 if (TypeIdx != 1) 348 return UnableToLegalize; 349 350 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 351 // FIXME: add support for when SizeOp1 isn't an exact multiple of 352 // NarrowSize. 353 if (SizeOp1 % NarrowSize != 0) 354 return UnableToLegalize; 355 int NumParts = SizeOp1 / NarrowSize; 356 357 SmallVector<unsigned, 2> SrcRegs, DstRegs; 358 SmallVector<uint64_t, 2> Indexes; 359 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 360 361 unsigned OpReg = MI.getOperand(0).getReg(); 362 uint64_t OpStart = MI.getOperand(2).getImm(); 363 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 364 for (int i = 0; i < NumParts; ++i) { 365 unsigned SrcStart = i * NarrowSize; 366 367 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 368 // No part of the extract uses this subregister, ignore it. 369 continue; 370 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 371 // The entire subregister is extracted, forward the value. 372 DstRegs.push_back(SrcRegs[i]); 373 continue; 374 } 375 376 // OpSegStart is where this destination segment would start in OpReg if it 377 // extended infinitely in both directions. 378 int64_t ExtractOffset; 379 uint64_t SegSize; 380 if (OpStart < SrcStart) { 381 ExtractOffset = 0; 382 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 383 } else { 384 ExtractOffset = OpStart - SrcStart; 385 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 386 } 387 388 unsigned SegReg = SrcRegs[i]; 389 if (ExtractOffset != 0 || SegSize != NarrowSize) { 390 // A genuine extract is needed. 391 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 392 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 393 } 394 395 DstRegs.push_back(SegReg); 396 } 397 398 unsigned DstReg = MI.getOperand(0).getReg(); 399 if(MRI.getType(DstReg).isVector()) 400 MIRBuilder.buildBuildVector(DstReg, DstRegs); 401 else 402 MIRBuilder.buildMerge(DstReg, DstRegs); 403 MI.eraseFromParent(); 404 return Legalized; 405 } 406 case TargetOpcode::G_INSERT: { 407 // FIXME: Don't know how to handle secondary types yet. 408 if (TypeIdx != 0) 409 return UnableToLegalize; 410 411 // FIXME: add support for when SizeOp0 isn't an exact multiple of 412 // NarrowSize. 413 if (SizeOp0 % NarrowSize != 0) 414 return UnableToLegalize; 415 416 int NumParts = SizeOp0 / NarrowSize; 417 418 SmallVector<unsigned, 2> SrcRegs, DstRegs; 419 SmallVector<uint64_t, 2> Indexes; 420 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 421 422 unsigned OpReg = MI.getOperand(2).getReg(); 423 uint64_t OpStart = MI.getOperand(3).getImm(); 424 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 425 for (int i = 0; i < NumParts; ++i) { 426 unsigned DstStart = i * NarrowSize; 427 428 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 429 // No part of the insert affects this subregister, forward the original. 430 DstRegs.push_back(SrcRegs[i]); 431 continue; 432 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 433 // The entire subregister is defined by this insert, forward the new 434 // value. 435 DstRegs.push_back(OpReg); 436 continue; 437 } 438 439 // OpSegStart is where this destination segment would start in OpReg if it 440 // extended infinitely in both directions. 441 int64_t ExtractOffset, InsertOffset; 442 uint64_t SegSize; 443 if (OpStart < DstStart) { 444 InsertOffset = 0; 445 ExtractOffset = DstStart - OpStart; 446 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 447 } else { 448 InsertOffset = OpStart - DstStart; 449 ExtractOffset = 0; 450 SegSize = 451 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 452 } 453 454 unsigned SegReg = OpReg; 455 if (ExtractOffset != 0 || SegSize != OpSize) { 456 // A genuine extract is needed. 457 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 458 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 459 } 460 461 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 462 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 463 DstRegs.push_back(DstReg); 464 } 465 466 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 467 unsigned DstReg = MI.getOperand(0).getReg(); 468 if(MRI.getType(DstReg).isVector()) 469 MIRBuilder.buildBuildVector(DstReg, DstRegs); 470 else 471 MIRBuilder.buildMerge(DstReg, DstRegs); 472 MI.eraseFromParent(); 473 return Legalized; 474 } 475 case TargetOpcode::G_LOAD: { 476 // FIXME: add support for when SizeOp0 isn't an exact multiple of 477 // NarrowSize. 478 if (SizeOp0 % NarrowSize != 0) 479 return UnableToLegalize; 480 481 const auto &MMO = **MI.memoperands_begin(); 482 // This implementation doesn't work for atomics. Give up instead of doing 483 // something invalid. 484 if (MMO.getOrdering() != AtomicOrdering::NotAtomic || 485 MMO.getFailureOrdering() != AtomicOrdering::NotAtomic) 486 return UnableToLegalize; 487 488 int NumParts = SizeOp0 / NarrowSize; 489 LLT OffsetTy = LLT::scalar( 490 MRI.getType(MI.getOperand(1).getReg()).getScalarSizeInBits()); 491 492 SmallVector<unsigned, 2> DstRegs; 493 for (int i = 0; i < NumParts; ++i) { 494 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 495 unsigned SrcReg = 0; 496 unsigned Adjustment = i * NarrowSize / 8; 497 unsigned Alignment = MinAlign(MMO.getAlignment(), Adjustment); 498 499 MachineMemOperand *SplitMMO = MIRBuilder.getMF().getMachineMemOperand( 500 MMO.getPointerInfo().getWithOffset(Adjustment), MMO.getFlags(), 501 NarrowSize / 8, Alignment, MMO.getAAInfo(), MMO.getRanges(), 502 MMO.getSyncScopeID(), MMO.getOrdering(), MMO.getFailureOrdering()); 503 504 MIRBuilder.materializeGEP(SrcReg, MI.getOperand(1).getReg(), OffsetTy, 505 Adjustment); 506 507 MIRBuilder.buildLoad(DstReg, SrcReg, *SplitMMO); 508 509 DstRegs.push_back(DstReg); 510 } 511 unsigned DstReg = MI.getOperand(0).getReg(); 512 if(MRI.getType(DstReg).isVector()) 513 MIRBuilder.buildBuildVector(DstReg, DstRegs); 514 else 515 MIRBuilder.buildMerge(DstReg, DstRegs); 516 MI.eraseFromParent(); 517 return Legalized; 518 } 519 case TargetOpcode::G_ZEXTLOAD: 520 case TargetOpcode::G_SEXTLOAD: { 521 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 522 unsigned DstReg = MI.getOperand(0).getReg(); 523 unsigned PtrReg = MI.getOperand(1).getReg(); 524 525 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 526 auto &MMO = **MI.memoperands_begin(); 527 if (MMO.getSize() * 8 == NarrowSize) { 528 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 529 } else { 530 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 531 : TargetOpcode::G_SEXTLOAD; 532 MIRBuilder.buildInstr(ExtLoad) 533 .addDef(TmpReg) 534 .addUse(PtrReg) 535 .addMemOperand(&MMO); 536 } 537 538 if (ZExt) 539 MIRBuilder.buildZExt(DstReg, TmpReg); 540 else 541 MIRBuilder.buildSExt(DstReg, TmpReg); 542 543 MI.eraseFromParent(); 544 return Legalized; 545 } 546 case TargetOpcode::G_STORE: { 547 // FIXME: add support for when SizeOp0 isn't an exact multiple of 548 // NarrowSize. 549 if (SizeOp0 % NarrowSize != 0) 550 return UnableToLegalize; 551 552 const auto &MMO = **MI.memoperands_begin(); 553 // This implementation doesn't work for atomics. Give up instead of doing 554 // something invalid. 555 if (MMO.getOrdering() != AtomicOrdering::NotAtomic || 556 MMO.getFailureOrdering() != AtomicOrdering::NotAtomic) 557 return UnableToLegalize; 558 559 int NumParts = SizeOp0 / NarrowSize; 560 LLT OffsetTy = LLT::scalar( 561 MRI.getType(MI.getOperand(1).getReg()).getScalarSizeInBits()); 562 563 SmallVector<unsigned, 2> SrcRegs; 564 extractParts(MI.getOperand(0).getReg(), NarrowTy, NumParts, SrcRegs); 565 566 for (int i = 0; i < NumParts; ++i) { 567 unsigned DstReg = 0; 568 unsigned Adjustment = i * NarrowSize / 8; 569 unsigned Alignment = MinAlign(MMO.getAlignment(), Adjustment); 570 571 MachineMemOperand *SplitMMO = MIRBuilder.getMF().getMachineMemOperand( 572 MMO.getPointerInfo().getWithOffset(Adjustment), MMO.getFlags(), 573 NarrowSize / 8, Alignment, MMO.getAAInfo(), MMO.getRanges(), 574 MMO.getSyncScopeID(), MMO.getOrdering(), MMO.getFailureOrdering()); 575 576 MIRBuilder.materializeGEP(DstReg, MI.getOperand(1).getReg(), OffsetTy, 577 Adjustment); 578 579 MIRBuilder.buildStore(SrcRegs[i], DstReg, *SplitMMO); 580 } 581 MI.eraseFromParent(); 582 return Legalized; 583 } 584 case TargetOpcode::G_CONSTANT: { 585 // FIXME: add support for when SizeOp0 isn't an exact multiple of 586 // NarrowSize. 587 if (SizeOp0 % NarrowSize != 0) 588 return UnableToLegalize; 589 int NumParts = SizeOp0 / NarrowSize; 590 const APInt &Cst = MI.getOperand(1).getCImm()->getValue(); 591 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 592 593 SmallVector<unsigned, 2> DstRegs; 594 for (int i = 0; i < NumParts; ++i) { 595 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 596 ConstantInt *CI = 597 ConstantInt::get(Ctx, Cst.lshr(NarrowSize * i).trunc(NarrowSize)); 598 MIRBuilder.buildConstant(DstReg, *CI); 599 DstRegs.push_back(DstReg); 600 } 601 unsigned DstReg = MI.getOperand(0).getReg(); 602 if(MRI.getType(DstReg).isVector()) 603 MIRBuilder.buildBuildVector(DstReg, DstRegs); 604 else 605 MIRBuilder.buildMerge(DstReg, DstRegs); 606 MI.eraseFromParent(); 607 return Legalized; 608 } 609 case TargetOpcode::G_AND: 610 case TargetOpcode::G_OR: 611 case TargetOpcode::G_XOR: { 612 // Legalize bitwise operation: 613 // A = BinOp<Ty> B, C 614 // into: 615 // B1, ..., BN = G_UNMERGE_VALUES B 616 // C1, ..., CN = G_UNMERGE_VALUES C 617 // A1 = BinOp<Ty/N> B1, C2 618 // ... 619 // AN = BinOp<Ty/N> BN, CN 620 // A = G_MERGE_VALUES A1, ..., AN 621 622 // FIXME: add support for when SizeOp0 isn't an exact multiple of 623 // NarrowSize. 624 if (SizeOp0 % NarrowSize != 0) 625 return UnableToLegalize; 626 int NumParts = SizeOp0 / NarrowSize; 627 628 // List the registers where the destination will be scattered. 629 SmallVector<unsigned, 2> DstRegs; 630 // List the registers where the first argument will be split. 631 SmallVector<unsigned, 2> SrcsReg1; 632 // List the registers where the second argument will be split. 633 SmallVector<unsigned, 2> SrcsReg2; 634 // Create all the temporary registers. 635 for (int i = 0; i < NumParts; ++i) { 636 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 637 unsigned SrcReg1 = MRI.createGenericVirtualRegister(NarrowTy); 638 unsigned SrcReg2 = MRI.createGenericVirtualRegister(NarrowTy); 639 640 DstRegs.push_back(DstReg); 641 SrcsReg1.push_back(SrcReg1); 642 SrcsReg2.push_back(SrcReg2); 643 } 644 // Explode the big arguments into smaller chunks. 645 MIRBuilder.buildUnmerge(SrcsReg1, MI.getOperand(1).getReg()); 646 MIRBuilder.buildUnmerge(SrcsReg2, MI.getOperand(2).getReg()); 647 648 // Do the operation on each small part. 649 for (int i = 0; i < NumParts; ++i) 650 MIRBuilder.buildInstr(MI.getOpcode(), {DstRegs[i]}, 651 {SrcsReg1[i], SrcsReg2[i]}); 652 653 // Gather the destination registers into the final destination. 654 unsigned DstReg = MI.getOperand(0).getReg(); 655 if(MRI.getType(DstReg).isVector()) 656 MIRBuilder.buildBuildVector(DstReg, DstRegs); 657 else 658 MIRBuilder.buildMerge(DstReg, DstRegs); 659 MI.eraseFromParent(); 660 return Legalized; 661 } 662 case TargetOpcode::G_SHL: 663 case TargetOpcode::G_LSHR: 664 case TargetOpcode::G_ASHR: { 665 if (TypeIdx != 1) 666 return UnableToLegalize; // TODO 667 narrowScalarSrc(MI, NarrowTy, 2); 668 return Legalized; 669 } 670 } 671 } 672 673 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 674 unsigned OpIdx, unsigned ExtOpcode) { 675 MachineOperand &MO = MI.getOperand(OpIdx); 676 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 677 MO.setReg(ExtB->getOperand(0).getReg()); 678 } 679 680 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 681 unsigned OpIdx) { 682 MachineOperand &MO = MI.getOperand(OpIdx); 683 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 684 {MO.getReg()}); 685 MO.setReg(ExtB->getOperand(0).getReg()); 686 } 687 688 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 689 unsigned OpIdx, unsigned TruncOpcode) { 690 MachineOperand &MO = MI.getOperand(OpIdx); 691 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 692 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 693 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 694 MO.setReg(DstExt); 695 } 696 697 LegalizerHelper::LegalizeResult 698 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 699 MIRBuilder.setInstr(MI); 700 701 switch (MI.getOpcode()) { 702 default: 703 return UnableToLegalize; 704 case TargetOpcode::G_UADDO: 705 case TargetOpcode::G_USUBO: { 706 if (TypeIdx == 1) 707 return UnableToLegalize; // TODO 708 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 709 {MI.getOperand(2).getReg()}); 710 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 711 {MI.getOperand(3).getReg()}); 712 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 713 ? TargetOpcode::G_ADD 714 : TargetOpcode::G_SUB; 715 // Do the arithmetic in the larger type. 716 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 717 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 718 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 719 auto AndOp = MIRBuilder.buildInstr( 720 TargetOpcode::G_AND, {WideTy}, 721 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 722 // There is no overflow if the AndOp is the same as NewOp. 723 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 724 AndOp); 725 // Now trunc the NewOp to the original result. 726 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 727 MI.eraseFromParent(); 728 return Legalized; 729 } 730 case TargetOpcode::G_CTTZ: 731 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 732 case TargetOpcode::G_CTLZ: 733 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 734 case TargetOpcode::G_CTPOP: { 735 // First ZEXT the input. 736 auto MIBSrc = MIRBuilder.buildZExt(WideTy, MI.getOperand(1).getReg()); 737 LLT CurTy = MRI.getType(MI.getOperand(0).getReg()); 738 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 739 // The count is the same in the larger type except if the original 740 // value was zero. This can be handled by setting the bit just off 741 // the top of the original type. 742 auto TopBit = 743 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 744 MIBSrc = MIRBuilder.buildInstr( 745 TargetOpcode::G_OR, {WideTy}, 746 {MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit.getSExtValue())}); 747 } 748 // Perform the operation at the larger size. 749 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 750 // This is already the correct result for CTPOP and CTTZs 751 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 752 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 753 // The correct result is NewOp - (Difference in widety and current ty). 754 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 755 MIBNewOp = MIRBuilder.buildInstr( 756 TargetOpcode::G_SUB, {WideTy}, 757 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 758 } 759 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 760 // Make the original instruction a trunc now, and update its source. 761 Observer.changingInstr(MI); 762 MI.setDesc(TII.get(TargetOpcode::G_TRUNC)); 763 MI.getOperand(1).setReg(MIBNewOp->getOperand(0).getReg()); 764 Observer.changedInstr(MI); 765 return Legalized; 766 } 767 768 case TargetOpcode::G_ADD: 769 case TargetOpcode::G_AND: 770 case TargetOpcode::G_MUL: 771 case TargetOpcode::G_OR: 772 case TargetOpcode::G_XOR: 773 case TargetOpcode::G_SUB: 774 // Perform operation at larger width (any extension is fine here, high bits 775 // don't affect the result) and then truncate the result back to the 776 // original type. 777 Observer.changingInstr(MI); 778 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 779 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 780 widenScalarDst(MI, WideTy); 781 Observer.changedInstr(MI); 782 return Legalized; 783 784 case TargetOpcode::G_SHL: 785 Observer.changingInstr(MI); 786 787 if (TypeIdx == 0) { 788 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 789 widenScalarDst(MI, WideTy); 790 } else { 791 assert(TypeIdx == 1); 792 // The "number of bits to shift" operand must preserve its value as an 793 // unsigned integer: 794 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 795 } 796 797 Observer.changedInstr(MI); 798 return Legalized; 799 800 case TargetOpcode::G_SDIV: 801 case TargetOpcode::G_SREM: 802 Observer.changingInstr(MI); 803 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 804 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 805 widenScalarDst(MI, WideTy); 806 Observer.changedInstr(MI); 807 return Legalized; 808 809 case TargetOpcode::G_ASHR: 810 case TargetOpcode::G_LSHR: 811 Observer.changingInstr(MI); 812 813 if (TypeIdx == 0) { 814 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 815 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 816 817 widenScalarSrc(MI, WideTy, 1, CvtOp); 818 widenScalarDst(MI, WideTy); 819 } else { 820 assert(TypeIdx == 1); 821 // The "number of bits to shift" operand must preserve its value as an 822 // unsigned integer: 823 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 824 } 825 826 Observer.changedInstr(MI); 827 return Legalized; 828 case TargetOpcode::G_UDIV: 829 case TargetOpcode::G_UREM: 830 Observer.changingInstr(MI); 831 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 832 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 833 widenScalarDst(MI, WideTy); 834 Observer.changedInstr(MI); 835 return Legalized; 836 837 case TargetOpcode::G_SELECT: 838 Observer.changingInstr(MI); 839 if (TypeIdx == 0) { 840 // Perform operation at larger width (any extension is fine here, high 841 // bits don't affect the result) and then truncate the result back to the 842 // original type. 843 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 844 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 845 widenScalarDst(MI, WideTy); 846 } else { 847 // Explicit extension is required here since high bits affect the result. 848 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 849 } 850 Observer.changedInstr(MI); 851 return Legalized; 852 853 case TargetOpcode::G_FPTOSI: 854 case TargetOpcode::G_FPTOUI: 855 if (TypeIdx != 0) 856 return UnableToLegalize; 857 Observer.changingInstr(MI); 858 widenScalarDst(MI, WideTy); 859 Observer.changedInstr(MI); 860 return Legalized; 861 862 case TargetOpcode::G_SITOFP: 863 if (TypeIdx != 1) 864 return UnableToLegalize; 865 Observer.changingInstr(MI); 866 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 867 Observer.changedInstr(MI); 868 return Legalized; 869 870 case TargetOpcode::G_UITOFP: 871 if (TypeIdx != 1) 872 return UnableToLegalize; 873 Observer.changingInstr(MI); 874 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 875 Observer.changedInstr(MI); 876 return Legalized; 877 878 case TargetOpcode::G_INSERT: 879 if (TypeIdx != 0) 880 return UnableToLegalize; 881 Observer.changingInstr(MI); 882 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 883 widenScalarDst(MI, WideTy); 884 Observer.changedInstr(MI); 885 return Legalized; 886 887 case TargetOpcode::G_LOAD: 888 // For some types like i24, we might try to widen to i32. To properly handle 889 // this we should be using a dedicated extending load, until then avoid 890 // trying to legalize. 891 if (alignTo(MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(), 8) != 892 WideTy.getSizeInBits()) 893 return UnableToLegalize; 894 LLVM_FALLTHROUGH; 895 case TargetOpcode::G_SEXTLOAD: 896 case TargetOpcode::G_ZEXTLOAD: 897 Observer.changingInstr(MI); 898 widenScalarDst(MI, WideTy); 899 Observer.changedInstr(MI); 900 return Legalized; 901 902 case TargetOpcode::G_STORE: { 903 if (MRI.getType(MI.getOperand(0).getReg()) != LLT::scalar(1) || 904 WideTy != LLT::scalar(8)) 905 return UnableToLegalize; 906 907 Observer.changingInstr(MI); 908 widenScalarSrc(MI, WideTy, 0, TargetOpcode::G_ZEXT); 909 Observer.changedInstr(MI); 910 return Legalized; 911 } 912 case TargetOpcode::G_CONSTANT: { 913 MachineOperand &SrcMO = MI.getOperand(1); 914 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 915 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 916 Observer.changingInstr(MI); 917 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 918 919 widenScalarDst(MI, WideTy); 920 Observer.changedInstr(MI); 921 return Legalized; 922 } 923 case TargetOpcode::G_FCONSTANT: { 924 MachineOperand &SrcMO = MI.getOperand(1); 925 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 926 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 927 bool LosesInfo; 928 switch (WideTy.getSizeInBits()) { 929 case 32: 930 Val.convert(APFloat::IEEEsingle(), APFloat::rmTowardZero, &LosesInfo); 931 break; 932 case 64: 933 Val.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &LosesInfo); 934 break; 935 default: 936 llvm_unreachable("Unhandled fp widen type"); 937 } 938 Observer.changingInstr(MI); 939 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 940 941 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 942 Observer.changedInstr(MI); 943 return Legalized; 944 } 945 case TargetOpcode::G_IMPLICIT_DEF: { 946 Observer.changingInstr(MI); 947 widenScalarDst(MI, WideTy); 948 Observer.changedInstr(MI); 949 return Legalized; 950 } 951 case TargetOpcode::G_BRCOND: 952 Observer.changingInstr(MI); 953 widenScalarSrc(MI, WideTy, 0, TargetOpcode::G_ANYEXT); 954 Observer.changedInstr(MI); 955 return Legalized; 956 957 case TargetOpcode::G_FCMP: 958 Observer.changingInstr(MI); 959 if (TypeIdx == 0) 960 widenScalarDst(MI, WideTy); 961 else { 962 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 963 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 964 } 965 Observer.changedInstr(MI); 966 return Legalized; 967 968 case TargetOpcode::G_ICMP: 969 Observer.changingInstr(MI); 970 if (TypeIdx == 0) 971 widenScalarDst(MI, WideTy); 972 else { 973 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 974 MI.getOperand(1).getPredicate())) 975 ? TargetOpcode::G_SEXT 976 : TargetOpcode::G_ZEXT; 977 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 978 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 979 } 980 Observer.changedInstr(MI); 981 return Legalized; 982 983 case TargetOpcode::G_GEP: 984 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 985 Observer.changingInstr(MI); 986 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 987 Observer.changedInstr(MI); 988 return Legalized; 989 990 case TargetOpcode::G_PHI: { 991 assert(TypeIdx == 0 && "Expecting only Idx 0"); 992 993 Observer.changingInstr(MI); 994 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 995 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 996 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 997 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 998 } 999 1000 MachineBasicBlock &MBB = *MI.getParent(); 1001 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1002 widenScalarDst(MI, WideTy); 1003 Observer.changedInstr(MI); 1004 return Legalized; 1005 } 1006 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1007 if (TypeIdx == 0) { 1008 unsigned VecReg = MI.getOperand(1).getReg(); 1009 LLT VecTy = MRI.getType(VecReg); 1010 Observer.changingInstr(MI); 1011 1012 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1013 WideTy.getSizeInBits()), 1014 1, TargetOpcode::G_SEXT); 1015 1016 widenScalarDst(MI, WideTy, 0); 1017 Observer.changedInstr(MI); 1018 return Legalized; 1019 } 1020 1021 if (TypeIdx != 2) 1022 return UnableToLegalize; 1023 Observer.changingInstr(MI); 1024 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1025 Observer.changedInstr(MI); 1026 return Legalized; 1027 } 1028 case TargetOpcode::G_FADD: 1029 case TargetOpcode::G_FMUL: 1030 case TargetOpcode::G_FSUB: 1031 case TargetOpcode::G_FMA: 1032 case TargetOpcode::G_FNEG: 1033 case TargetOpcode::G_FABS: 1034 case TargetOpcode::G_FDIV: 1035 case TargetOpcode::G_FREM: 1036 case TargetOpcode::G_FCEIL: 1037 assert(TypeIdx == 0); 1038 Observer.changingInstr(MI); 1039 1040 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1041 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1042 1043 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1044 Observer.changedInstr(MI); 1045 return Legalized; 1046 } 1047 } 1048 1049 LegalizerHelper::LegalizeResult 1050 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1051 using namespace TargetOpcode; 1052 MIRBuilder.setInstr(MI); 1053 1054 switch(MI.getOpcode()) { 1055 default: 1056 return UnableToLegalize; 1057 case TargetOpcode::G_SREM: 1058 case TargetOpcode::G_UREM: { 1059 unsigned QuotReg = MRI.createGenericVirtualRegister(Ty); 1060 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1061 .addDef(QuotReg) 1062 .addUse(MI.getOperand(1).getReg()) 1063 .addUse(MI.getOperand(2).getReg()); 1064 1065 unsigned ProdReg = MRI.createGenericVirtualRegister(Ty); 1066 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1067 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1068 ProdReg); 1069 MI.eraseFromParent(); 1070 return Legalized; 1071 } 1072 case TargetOpcode::G_SMULO: 1073 case TargetOpcode::G_UMULO: { 1074 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1075 // result. 1076 unsigned Res = MI.getOperand(0).getReg(); 1077 unsigned Overflow = MI.getOperand(1).getReg(); 1078 unsigned LHS = MI.getOperand(2).getReg(); 1079 unsigned RHS = MI.getOperand(3).getReg(); 1080 1081 MIRBuilder.buildMul(Res, LHS, RHS); 1082 1083 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1084 ? TargetOpcode::G_SMULH 1085 : TargetOpcode::G_UMULH; 1086 1087 unsigned HiPart = MRI.createGenericVirtualRegister(Ty); 1088 MIRBuilder.buildInstr(Opcode) 1089 .addDef(HiPart) 1090 .addUse(LHS) 1091 .addUse(RHS); 1092 1093 unsigned Zero = MRI.createGenericVirtualRegister(Ty); 1094 MIRBuilder.buildConstant(Zero, 0); 1095 1096 // For *signed* multiply, overflow is detected by checking: 1097 // (hi != (lo >> bitwidth-1)) 1098 if (Opcode == TargetOpcode::G_SMULH) { 1099 unsigned Shifted = MRI.createGenericVirtualRegister(Ty); 1100 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1101 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1102 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1103 .addDef(Shifted) 1104 .addUse(Res) 1105 .addUse(ShiftAmt); 1106 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1107 } else { 1108 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1109 } 1110 MI.eraseFromParent(); 1111 return Legalized; 1112 } 1113 case TargetOpcode::G_FNEG: { 1114 // TODO: Handle vector types once we are able to 1115 // represent them. 1116 if (Ty.isVector()) 1117 return UnableToLegalize; 1118 unsigned Res = MI.getOperand(0).getReg(); 1119 Type *ZeroTy; 1120 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1121 switch (Ty.getSizeInBits()) { 1122 case 16: 1123 ZeroTy = Type::getHalfTy(Ctx); 1124 break; 1125 case 32: 1126 ZeroTy = Type::getFloatTy(Ctx); 1127 break; 1128 case 64: 1129 ZeroTy = Type::getDoubleTy(Ctx); 1130 break; 1131 case 128: 1132 ZeroTy = Type::getFP128Ty(Ctx); 1133 break; 1134 default: 1135 llvm_unreachable("unexpected floating-point type"); 1136 } 1137 ConstantFP &ZeroForNegation = 1138 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1139 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1140 MIRBuilder.buildInstr(TargetOpcode::G_FSUB) 1141 .addDef(Res) 1142 .addUse(Zero->getOperand(0).getReg()) 1143 .addUse(MI.getOperand(1).getReg()); 1144 MI.eraseFromParent(); 1145 return Legalized; 1146 } 1147 case TargetOpcode::G_FSUB: { 1148 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1149 // First, check if G_FNEG is marked as Lower. If so, we may 1150 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1151 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1152 return UnableToLegalize; 1153 unsigned Res = MI.getOperand(0).getReg(); 1154 unsigned LHS = MI.getOperand(1).getReg(); 1155 unsigned RHS = MI.getOperand(2).getReg(); 1156 unsigned Neg = MRI.createGenericVirtualRegister(Ty); 1157 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1158 MIRBuilder.buildInstr(TargetOpcode::G_FADD) 1159 .addDef(Res) 1160 .addUse(LHS) 1161 .addUse(Neg); 1162 MI.eraseFromParent(); 1163 return Legalized; 1164 } 1165 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1166 unsigned OldValRes = MI.getOperand(0).getReg(); 1167 unsigned SuccessRes = MI.getOperand(1).getReg(); 1168 unsigned Addr = MI.getOperand(2).getReg(); 1169 unsigned CmpVal = MI.getOperand(3).getReg(); 1170 unsigned NewVal = MI.getOperand(4).getReg(); 1171 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1172 **MI.memoperands_begin()); 1173 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1174 MI.eraseFromParent(); 1175 return Legalized; 1176 } 1177 case TargetOpcode::G_LOAD: 1178 case TargetOpcode::G_SEXTLOAD: 1179 case TargetOpcode::G_ZEXTLOAD: { 1180 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1181 unsigned DstReg = MI.getOperand(0).getReg(); 1182 unsigned PtrReg = MI.getOperand(1).getReg(); 1183 LLT DstTy = MRI.getType(DstReg); 1184 auto &MMO = **MI.memoperands_begin(); 1185 1186 if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { 1187 // In the case of G_LOAD, this was a non-extending load already and we're 1188 // about to lower to the same instruction. 1189 if (MI.getOpcode() == TargetOpcode::G_LOAD) 1190 return UnableToLegalize; 1191 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1192 MI.eraseFromParent(); 1193 return Legalized; 1194 } 1195 1196 if (DstTy.isScalar()) { 1197 unsigned TmpReg = MRI.createGenericVirtualRegister( 1198 LLT::scalar(MMO.getSize() /* in bytes */ * 8)); 1199 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1200 switch (MI.getOpcode()) { 1201 default: 1202 llvm_unreachable("Unexpected opcode"); 1203 case TargetOpcode::G_LOAD: 1204 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1205 break; 1206 case TargetOpcode::G_SEXTLOAD: 1207 MIRBuilder.buildSExt(DstReg, TmpReg); 1208 break; 1209 case TargetOpcode::G_ZEXTLOAD: 1210 MIRBuilder.buildZExt(DstReg, TmpReg); 1211 break; 1212 } 1213 MI.eraseFromParent(); 1214 return Legalized; 1215 } 1216 1217 return UnableToLegalize; 1218 } 1219 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1220 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1221 case TargetOpcode::G_CTLZ: 1222 case TargetOpcode::G_CTTZ: 1223 case TargetOpcode::G_CTPOP: 1224 return lowerBitCount(MI, TypeIdx, Ty); 1225 case G_UADDE: { 1226 unsigned Res = MI.getOperand(0).getReg(); 1227 unsigned CarryOut = MI.getOperand(1).getReg(); 1228 unsigned LHS = MI.getOperand(2).getReg(); 1229 unsigned RHS = MI.getOperand(3).getReg(); 1230 unsigned CarryIn = MI.getOperand(4).getReg(); 1231 1232 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1233 unsigned ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1234 1235 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1236 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1237 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1238 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1239 1240 MI.eraseFromParent(); 1241 return Legalized; 1242 } 1243 } 1244 } 1245 1246 LegalizerHelper::LegalizeResult 1247 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 1248 LLT NarrowTy) { 1249 // FIXME: Don't know how to handle secondary types yet. 1250 if (TypeIdx != 0) 1251 return UnableToLegalize; 1252 1253 MIRBuilder.setInstr(MI); 1254 unsigned Opc = MI.getOpcode(); 1255 switch (Opc) { 1256 default: 1257 return UnableToLegalize; 1258 case TargetOpcode::G_IMPLICIT_DEF: { 1259 SmallVector<unsigned, 2> DstRegs; 1260 1261 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1262 unsigned DstReg = MI.getOperand(0).getReg(); 1263 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1264 int NumParts = Size / NarrowSize; 1265 // FIXME: Don't know how to handle the situation where the small vectors 1266 // aren't all the same size yet. 1267 if (Size % NarrowSize != 0) 1268 return UnableToLegalize; 1269 1270 for (int i = 0; i < NumParts; ++i) { 1271 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1272 MIRBuilder.buildUndef(TmpReg); 1273 DstRegs.push_back(TmpReg); 1274 } 1275 1276 if (NarrowTy.isVector()) 1277 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1278 else 1279 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1280 1281 MI.eraseFromParent(); 1282 return Legalized; 1283 } 1284 case TargetOpcode::G_ADD: 1285 case TargetOpcode::G_FADD: 1286 case TargetOpcode::G_FMUL: 1287 case TargetOpcode::G_FSUB: 1288 case TargetOpcode::G_FNEG: 1289 case TargetOpcode::G_FABS: 1290 case TargetOpcode::G_FDIV: 1291 case TargetOpcode::G_FREM: 1292 case TargetOpcode::G_FMA: { 1293 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1294 unsigned DstReg = MI.getOperand(0).getReg(); 1295 unsigned Flags = MI.getFlags(); 1296 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1297 int NumParts = Size / NarrowSize; 1298 // FIXME: Don't know how to handle the situation where the small vectors 1299 // aren't all the same size yet. 1300 if (Size % NarrowSize != 0) 1301 return UnableToLegalize; 1302 1303 unsigned NumOps = MI.getNumOperands() - 1; 1304 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1305 1306 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 1307 1308 if (NumOps >= 2) 1309 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 1310 1311 if (NumOps >= 3) 1312 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 1313 1314 for (int i = 0; i < NumParts; ++i) { 1315 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 1316 1317 if (NumOps == 1) 1318 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 1319 else if (NumOps == 2) { 1320 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 1321 } else if (NumOps == 3) { 1322 MIRBuilder.buildInstr(Opc, {DstReg}, 1323 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 1324 } 1325 1326 DstRegs.push_back(DstReg); 1327 } 1328 1329 if (NarrowTy.isVector()) 1330 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1331 else 1332 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1333 1334 MI.eraseFromParent(); 1335 return Legalized; 1336 } 1337 case TargetOpcode::G_LOAD: 1338 case TargetOpcode::G_STORE: { 1339 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 1340 unsigned ValReg = MI.getOperand(0).getReg(); 1341 unsigned AddrReg = MI.getOperand(1).getReg(); 1342 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1343 unsigned Size = MRI.getType(ValReg).getSizeInBits(); 1344 unsigned NumParts = Size / NarrowSize; 1345 1346 SmallVector<unsigned, 8> NarrowRegs; 1347 if (!IsLoad) 1348 extractParts(ValReg, NarrowTy, NumParts, NarrowRegs); 1349 1350 const LLT OffsetTy = 1351 LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 1352 MachineFunction &MF = *MI.getMF(); 1353 MachineMemOperand *MMO = *MI.memoperands_begin(); 1354 for (unsigned Idx = 0; Idx < NumParts; ++Idx) { 1355 unsigned Adjustment = Idx * NarrowTy.getSizeInBits() / 8; 1356 unsigned Alignment = MinAlign(MMO->getAlignment(), Adjustment); 1357 unsigned NewAddrReg = 0; 1358 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, Adjustment); 1359 MachineMemOperand &NewMMO = *MF.getMachineMemOperand( 1360 MMO->getPointerInfo().getWithOffset(Adjustment), MMO->getFlags(), 1361 NarrowTy.getSizeInBits() / 8, Alignment); 1362 if (IsLoad) { 1363 unsigned Dst = MRI.createGenericVirtualRegister(NarrowTy); 1364 NarrowRegs.push_back(Dst); 1365 MIRBuilder.buildLoad(Dst, NewAddrReg, NewMMO); 1366 } else { 1367 MIRBuilder.buildStore(NarrowRegs[Idx], NewAddrReg, NewMMO); 1368 } 1369 } 1370 if (IsLoad) { 1371 if (NarrowTy.isVector()) 1372 MIRBuilder.buildConcatVectors(ValReg, NarrowRegs); 1373 else 1374 MIRBuilder.buildBuildVector(ValReg, NarrowRegs); 1375 } 1376 MI.eraseFromParent(); 1377 return Legalized; 1378 } 1379 } 1380 } 1381 1382 LegalizerHelper::LegalizeResult 1383 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1384 unsigned Opc = MI.getOpcode(); 1385 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 1386 auto isSupported = [this](const LegalityQuery &Q) { 1387 auto QAction = LI.getAction(Q).Action; 1388 return QAction == Legal || QAction == Libcall || QAction == Custom; 1389 }; 1390 switch (Opc) { 1391 default: 1392 return UnableToLegalize; 1393 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 1394 // This trivially expands to CTLZ. 1395 Observer.changingInstr(MI); 1396 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 1397 Observer.changedInstr(MI); 1398 return Legalized; 1399 } 1400 case TargetOpcode::G_CTLZ: { 1401 unsigned SrcReg = MI.getOperand(1).getReg(); 1402 unsigned Len = Ty.getSizeInBits(); 1403 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty}})) { 1404 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 1405 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 1406 {Ty}, {SrcReg}); 1407 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 1408 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 1409 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 1410 SrcReg, MIBZero); 1411 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 1412 MIBCtlzZU); 1413 MI.eraseFromParent(); 1414 return Legalized; 1415 } 1416 // for now, we do this: 1417 // NewLen = NextPowerOf2(Len); 1418 // x = x | (x >> 1); 1419 // x = x | (x >> 2); 1420 // ... 1421 // x = x | (x >>16); 1422 // x = x | (x >>32); // for 64-bit input 1423 // Upto NewLen/2 1424 // return Len - popcount(x); 1425 // 1426 // Ref: "Hacker's Delight" by Henry Warren 1427 unsigned Op = SrcReg; 1428 unsigned NewLen = PowerOf2Ceil(Len); 1429 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 1430 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 1431 auto MIBOp = MIRBuilder.buildInstr( 1432 TargetOpcode::G_OR, {Ty}, 1433 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 1434 {Op, MIBShiftAmt})}); 1435 Op = MIBOp->getOperand(0).getReg(); 1436 } 1437 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 1438 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 1439 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 1440 MI.eraseFromParent(); 1441 return Legalized; 1442 } 1443 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 1444 // This trivially expands to CTTZ. 1445 Observer.changingInstr(MI); 1446 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 1447 Observer.changedInstr(MI); 1448 return Legalized; 1449 } 1450 case TargetOpcode::G_CTTZ: { 1451 unsigned SrcReg = MI.getOperand(1).getReg(); 1452 unsigned Len = Ty.getSizeInBits(); 1453 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty}})) { 1454 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 1455 // zero. 1456 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 1457 {Ty}, {SrcReg}); 1458 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 1459 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 1460 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 1461 SrcReg, MIBZero); 1462 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 1463 MIBCttzZU); 1464 MI.eraseFromParent(); 1465 return Legalized; 1466 } 1467 // for now, we use: { return popcount(~x & (x - 1)); } 1468 // unless the target has ctlz but not ctpop, in which case we use: 1469 // { return 32 - nlz(~x & (x-1)); } 1470 // Ref: "Hacker's Delight" by Henry Warren 1471 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 1472 auto MIBNot = 1473 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 1474 auto MIBTmp = MIRBuilder.buildInstr( 1475 TargetOpcode::G_AND, {Ty}, 1476 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 1477 {SrcReg, MIBCstNeg1})}); 1478 if (!isSupported({TargetOpcode::G_CTPOP, {Ty}}) && 1479 isSupported({TargetOpcode::G_CTLZ, {Ty}})) { 1480 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 1481 MIRBuilder.buildInstr( 1482 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 1483 {MIBCstLen, 1484 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 1485 MI.eraseFromParent(); 1486 return Legalized; 1487 } 1488 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 1489 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 1490 return Legalized; 1491 } 1492 } 1493 } 1494