1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #define DEBUG_TYPE "legalizer" 28 29 using namespace llvm; 30 using namespace LegalizeActions; 31 32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 33 /// 34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 35 /// with any leftover piece as type \p LeftoverTy 36 /// 37 /// Returns -1 in the first element of the pair if the breakdown is not 38 /// satisfiable. 39 static std::pair<int, int> 40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 41 assert(!LeftoverTy.isValid() && "this is an out argument"); 42 43 unsigned Size = OrigTy.getSizeInBits(); 44 unsigned NarrowSize = NarrowTy.getSizeInBits(); 45 unsigned NumParts = Size / NarrowSize; 46 unsigned LeftoverSize = Size - NumParts * NarrowSize; 47 assert(Size > NarrowSize); 48 49 if (LeftoverSize == 0) 50 return {NumParts, 0}; 51 52 if (NarrowTy.isVector()) { 53 unsigned EltSize = OrigTy.getScalarSizeInBits(); 54 if (LeftoverSize % EltSize != 0) 55 return {-1, -1}; 56 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 57 } else { 58 LeftoverTy = LLT::scalar(LeftoverSize); 59 } 60 61 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 62 return std::make_pair(NumParts, NumLeftover); 63 } 64 65 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 66 GISelChangeObserver &Observer, 67 MachineIRBuilder &Builder) 68 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 69 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 70 MIRBuilder.setMF(MF); 71 MIRBuilder.setChangeObserver(Observer); 72 } 73 74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 75 GISelChangeObserver &Observer, 76 MachineIRBuilder &B) 77 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 78 MIRBuilder.setMF(MF); 79 MIRBuilder.setChangeObserver(Observer); 80 } 81 LegalizerHelper::LegalizeResult 82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 83 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 84 85 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 86 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 87 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized 88 : UnableToLegalize; 89 auto Step = LI.getAction(MI, MRI); 90 switch (Step.Action) { 91 case Legal: 92 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 93 return AlreadyLegal; 94 case Libcall: 95 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 96 return libcall(MI); 97 case NarrowScalar: 98 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 99 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 100 case WidenScalar: 101 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 102 return widenScalar(MI, Step.TypeIdx, Step.NewType); 103 case Lower: 104 LLVM_DEBUG(dbgs() << ".. Lower\n"); 105 return lower(MI, Step.TypeIdx, Step.NewType); 106 case FewerElements: 107 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 108 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 109 case MoreElements: 110 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 111 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 112 case Custom: 113 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 114 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 115 : UnableToLegalize; 116 default: 117 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 118 return UnableToLegalize; 119 } 120 } 121 122 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 123 SmallVectorImpl<Register> &VRegs) { 124 for (int i = 0; i < NumParts; ++i) 125 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 126 MIRBuilder.buildUnmerge(VRegs, Reg); 127 } 128 129 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 130 LLT MainTy, LLT &LeftoverTy, 131 SmallVectorImpl<Register> &VRegs, 132 SmallVectorImpl<Register> &LeftoverRegs) { 133 assert(!LeftoverTy.isValid() && "this is an out argument"); 134 135 unsigned RegSize = RegTy.getSizeInBits(); 136 unsigned MainSize = MainTy.getSizeInBits(); 137 unsigned NumParts = RegSize / MainSize; 138 unsigned LeftoverSize = RegSize - NumParts * MainSize; 139 140 // Use an unmerge when possible. 141 if (LeftoverSize == 0) { 142 for (unsigned I = 0; I < NumParts; ++I) 143 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 144 MIRBuilder.buildUnmerge(VRegs, Reg); 145 return true; 146 } 147 148 if (MainTy.isVector()) { 149 unsigned EltSize = MainTy.getScalarSizeInBits(); 150 if (LeftoverSize % EltSize != 0) 151 return false; 152 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 153 } else { 154 LeftoverTy = LLT::scalar(LeftoverSize); 155 } 156 157 // For irregular sizes, extract the individual parts. 158 for (unsigned I = 0; I != NumParts; ++I) { 159 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 160 VRegs.push_back(NewReg); 161 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 162 } 163 164 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 165 Offset += LeftoverSize) { 166 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 167 LeftoverRegs.push_back(NewReg); 168 MIRBuilder.buildExtract(NewReg, Reg, Offset); 169 } 170 171 return true; 172 } 173 174 void LegalizerHelper::insertParts(Register DstReg, 175 LLT ResultTy, LLT PartTy, 176 ArrayRef<Register> PartRegs, 177 LLT LeftoverTy, 178 ArrayRef<Register> LeftoverRegs) { 179 if (!LeftoverTy.isValid()) { 180 assert(LeftoverRegs.empty()); 181 182 if (!ResultTy.isVector()) { 183 MIRBuilder.buildMerge(DstReg, PartRegs); 184 return; 185 } 186 187 if (PartTy.isVector()) 188 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 189 else 190 MIRBuilder.buildBuildVector(DstReg, PartRegs); 191 return; 192 } 193 194 unsigned PartSize = PartTy.getSizeInBits(); 195 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 196 197 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 198 MIRBuilder.buildUndef(CurResultReg); 199 200 unsigned Offset = 0; 201 for (Register PartReg : PartRegs) { 202 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 203 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 204 CurResultReg = NewResultReg; 205 Offset += PartSize; 206 } 207 208 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 209 // Use the original output register for the final insert to avoid a copy. 210 Register NewResultReg = (I + 1 == E) ? 211 DstReg : MRI.createGenericVirtualRegister(ResultTy); 212 213 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 214 CurResultReg = NewResultReg; 215 Offset += LeftoverPartSize; 216 } 217 } 218 219 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 220 switch (Opcode) { 221 case TargetOpcode::G_SDIV: 222 assert((Size == 32 || Size == 64) && "Unsupported size"); 223 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 224 case TargetOpcode::G_UDIV: 225 assert((Size == 32 || Size == 64) && "Unsupported size"); 226 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 227 case TargetOpcode::G_SREM: 228 assert((Size == 32 || Size == 64) && "Unsupported size"); 229 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 230 case TargetOpcode::G_UREM: 231 assert((Size == 32 || Size == 64) && "Unsupported size"); 232 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 233 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 234 assert(Size == 32 && "Unsupported size"); 235 return RTLIB::CTLZ_I32; 236 case TargetOpcode::G_FADD: 237 assert((Size == 32 || Size == 64) && "Unsupported size"); 238 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 239 case TargetOpcode::G_FSUB: 240 assert((Size == 32 || Size == 64) && "Unsupported size"); 241 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 242 case TargetOpcode::G_FMUL: 243 assert((Size == 32 || Size == 64) && "Unsupported size"); 244 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 245 case TargetOpcode::G_FDIV: 246 assert((Size == 32 || Size == 64) && "Unsupported size"); 247 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 248 case TargetOpcode::G_FEXP: 249 assert((Size == 32 || Size == 64) && "Unsupported size"); 250 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 251 case TargetOpcode::G_FEXP2: 252 assert((Size == 32 || Size == 64) && "Unsupported size"); 253 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 254 case TargetOpcode::G_FREM: 255 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 256 case TargetOpcode::G_FPOW: 257 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 258 case TargetOpcode::G_FMA: 259 assert((Size == 32 || Size == 64) && "Unsupported size"); 260 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 261 case TargetOpcode::G_FSIN: 262 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 263 return Size == 128 ? RTLIB::SIN_F128 264 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 265 case TargetOpcode::G_FCOS: 266 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 267 return Size == 128 ? RTLIB::COS_F128 268 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 269 case TargetOpcode::G_FLOG10: 270 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 271 return Size == 128 ? RTLIB::LOG10_F128 272 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 273 case TargetOpcode::G_FLOG: 274 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 275 return Size == 128 ? RTLIB::LOG_F128 276 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 277 case TargetOpcode::G_FLOG2: 278 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 279 return Size == 128 ? RTLIB::LOG2_F128 280 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 281 case TargetOpcode::G_FCEIL: 282 assert((Size == 32 || Size == 64) && "Unsupported size"); 283 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 284 case TargetOpcode::G_FFLOOR: 285 assert((Size == 32 || Size == 64) && "Unsupported size"); 286 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 287 } 288 llvm_unreachable("Unknown libcall function"); 289 } 290 291 LegalizerHelper::LegalizeResult 292 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 293 const CallLowering::ArgInfo &Result, 294 ArrayRef<CallLowering::ArgInfo> Args) { 295 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 296 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 297 const char *Name = TLI.getLibcallName(Libcall); 298 299 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 300 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 301 MachineOperand::CreateES(Name), Result, Args)) 302 return LegalizerHelper::UnableToLegalize; 303 304 return LegalizerHelper::Legalized; 305 } 306 307 // Useful for libcalls where all operands have the same type. 308 static LegalizerHelper::LegalizeResult 309 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 310 Type *OpType) { 311 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 312 313 SmallVector<CallLowering::ArgInfo, 3> Args; 314 for (unsigned i = 1; i < MI.getNumOperands(); i++) 315 Args.push_back({MI.getOperand(i).getReg(), OpType}); 316 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 317 Args); 318 } 319 320 LegalizerHelper::LegalizeResult 321 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 322 MachineInstr &MI) { 323 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 324 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 325 326 SmallVector<CallLowering::ArgInfo, 3> Args; 327 for (unsigned i = 1; i < MI.getNumOperands(); i++) { 328 Register Reg = MI.getOperand(i).getReg(); 329 330 // Need derive an IR type for call lowering. 331 LLT OpLLT = MRI.getType(Reg); 332 Type *OpTy = nullptr; 333 if (OpLLT.isPointer()) 334 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 335 else 336 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 337 Args.push_back({Reg, OpTy}); 338 } 339 340 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 341 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 342 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 343 RTLIB::Libcall RTLibcall; 344 switch (ID) { 345 case Intrinsic::memcpy: 346 RTLibcall = RTLIB::MEMCPY; 347 break; 348 case Intrinsic::memset: 349 RTLibcall = RTLIB::MEMSET; 350 break; 351 case Intrinsic::memmove: 352 RTLibcall = RTLIB::MEMMOVE; 353 break; 354 default: 355 return LegalizerHelper::UnableToLegalize; 356 } 357 const char *Name = TLI.getLibcallName(RTLibcall); 358 359 MIRBuilder.setInstr(MI); 360 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 361 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(RTLibcall), 362 MachineOperand::CreateES(Name), 363 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)), Args)) 364 return LegalizerHelper::UnableToLegalize; 365 366 return LegalizerHelper::Legalized; 367 } 368 369 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 370 Type *FromType) { 371 auto ToMVT = MVT::getVT(ToType); 372 auto FromMVT = MVT::getVT(FromType); 373 374 switch (Opcode) { 375 case TargetOpcode::G_FPEXT: 376 return RTLIB::getFPEXT(FromMVT, ToMVT); 377 case TargetOpcode::G_FPTRUNC: 378 return RTLIB::getFPROUND(FromMVT, ToMVT); 379 case TargetOpcode::G_FPTOSI: 380 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 381 case TargetOpcode::G_FPTOUI: 382 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 383 case TargetOpcode::G_SITOFP: 384 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 385 case TargetOpcode::G_UITOFP: 386 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 387 } 388 llvm_unreachable("Unsupported libcall function"); 389 } 390 391 static LegalizerHelper::LegalizeResult 392 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 393 Type *FromType) { 394 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 395 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 396 {{MI.getOperand(1).getReg(), FromType}}); 397 } 398 399 LegalizerHelper::LegalizeResult 400 LegalizerHelper::libcall(MachineInstr &MI) { 401 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 402 unsigned Size = LLTy.getSizeInBits(); 403 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 404 405 MIRBuilder.setInstr(MI); 406 407 switch (MI.getOpcode()) { 408 default: 409 return UnableToLegalize; 410 case TargetOpcode::G_SDIV: 411 case TargetOpcode::G_UDIV: 412 case TargetOpcode::G_SREM: 413 case TargetOpcode::G_UREM: 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 415 Type *HLTy = IntegerType::get(Ctx, Size); 416 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 417 if (Status != Legalized) 418 return Status; 419 break; 420 } 421 case TargetOpcode::G_FADD: 422 case TargetOpcode::G_FSUB: 423 case TargetOpcode::G_FMUL: 424 case TargetOpcode::G_FDIV: 425 case TargetOpcode::G_FMA: 426 case TargetOpcode::G_FPOW: 427 case TargetOpcode::G_FREM: 428 case TargetOpcode::G_FCOS: 429 case TargetOpcode::G_FSIN: 430 case TargetOpcode::G_FLOG10: 431 case TargetOpcode::G_FLOG: 432 case TargetOpcode::G_FLOG2: 433 case TargetOpcode::G_FEXP: 434 case TargetOpcode::G_FEXP2: 435 case TargetOpcode::G_FCEIL: 436 case TargetOpcode::G_FFLOOR: { 437 if (Size > 64) { 438 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 439 return UnableToLegalize; 440 } 441 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 442 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 443 if (Status != Legalized) 444 return Status; 445 break; 446 } 447 case TargetOpcode::G_FPEXT: { 448 // FIXME: Support other floating point types (half, fp128 etc) 449 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 450 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 451 if (ToSize != 64 || FromSize != 32) 452 return UnableToLegalize; 453 LegalizeResult Status = conversionLibcall( 454 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 455 if (Status != Legalized) 456 return Status; 457 break; 458 } 459 case TargetOpcode::G_FPTRUNC: { 460 // FIXME: Support other floating point types (half, fp128 etc) 461 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 462 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 463 if (ToSize != 32 || FromSize != 64) 464 return UnableToLegalize; 465 LegalizeResult Status = conversionLibcall( 466 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 467 if (Status != Legalized) 468 return Status; 469 break; 470 } 471 case TargetOpcode::G_FPTOSI: 472 case TargetOpcode::G_FPTOUI: { 473 // FIXME: Support other types 474 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 475 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 476 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 477 return UnableToLegalize; 478 LegalizeResult Status = conversionLibcall( 479 MI, MIRBuilder, 480 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 481 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 482 if (Status != Legalized) 483 return Status; 484 break; 485 } 486 case TargetOpcode::G_SITOFP: 487 case TargetOpcode::G_UITOFP: { 488 // FIXME: Support other types 489 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 490 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 491 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 492 return UnableToLegalize; 493 LegalizeResult Status = conversionLibcall( 494 MI, MIRBuilder, 495 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 496 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 497 if (Status != Legalized) 498 return Status; 499 break; 500 } 501 } 502 503 MI.eraseFromParent(); 504 return Legalized; 505 } 506 507 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 508 unsigned TypeIdx, 509 LLT NarrowTy) { 510 MIRBuilder.setInstr(MI); 511 512 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 513 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 514 515 switch (MI.getOpcode()) { 516 default: 517 return UnableToLegalize; 518 case TargetOpcode::G_IMPLICIT_DEF: { 519 // FIXME: add support for when SizeOp0 isn't an exact multiple of 520 // NarrowSize. 521 if (SizeOp0 % NarrowSize != 0) 522 return UnableToLegalize; 523 int NumParts = SizeOp0 / NarrowSize; 524 525 SmallVector<Register, 2> DstRegs; 526 for (int i = 0; i < NumParts; ++i) 527 DstRegs.push_back( 528 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 529 530 Register DstReg = MI.getOperand(0).getReg(); 531 if(MRI.getType(DstReg).isVector()) 532 MIRBuilder.buildBuildVector(DstReg, DstRegs); 533 else 534 MIRBuilder.buildMerge(DstReg, DstRegs); 535 MI.eraseFromParent(); 536 return Legalized; 537 } 538 case TargetOpcode::G_CONSTANT: { 539 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 540 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 541 unsigned TotalSize = Ty.getSizeInBits(); 542 unsigned NarrowSize = NarrowTy.getSizeInBits(); 543 int NumParts = TotalSize / NarrowSize; 544 545 SmallVector<Register, 4> PartRegs; 546 for (int I = 0; I != NumParts; ++I) { 547 unsigned Offset = I * NarrowSize; 548 auto K = MIRBuilder.buildConstant(NarrowTy, 549 Val.lshr(Offset).trunc(NarrowSize)); 550 PartRegs.push_back(K.getReg(0)); 551 } 552 553 LLT LeftoverTy; 554 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 555 SmallVector<Register, 1> LeftoverRegs; 556 if (LeftoverBits != 0) { 557 LeftoverTy = LLT::scalar(LeftoverBits); 558 auto K = MIRBuilder.buildConstant( 559 LeftoverTy, 560 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 561 LeftoverRegs.push_back(K.getReg(0)); 562 } 563 564 insertParts(MI.getOperand(0).getReg(), 565 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 566 567 MI.eraseFromParent(); 568 return Legalized; 569 } 570 case TargetOpcode::G_SEXT: { 571 if (TypeIdx != 0) 572 return UnableToLegalize; 573 574 if (NarrowTy.getSizeInBits() != SizeOp0 / 2) { 575 LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n"); 576 return UnableToLegalize; 577 } 578 579 Register SrcReg = MI.getOperand(1).getReg(); 580 581 // Shift the sign bit of the low register through the high register. 582 auto ShiftAmt = 583 MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1); 584 auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt); 585 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)}); 586 MI.eraseFromParent(); 587 return Legalized; 588 } 589 590 case TargetOpcode::G_ADD: { 591 // FIXME: add support for when SizeOp0 isn't an exact multiple of 592 // NarrowSize. 593 if (SizeOp0 % NarrowSize != 0) 594 return UnableToLegalize; 595 // Expand in terms of carry-setting/consuming G_ADDE instructions. 596 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 597 598 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 599 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 600 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 601 602 Register CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 603 MIRBuilder.buildConstant(CarryIn, 0); 604 605 for (int i = 0; i < NumParts; ++i) { 606 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 607 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 608 609 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 610 Src2Regs[i], CarryIn); 611 612 DstRegs.push_back(DstReg); 613 CarryIn = CarryOut; 614 } 615 Register DstReg = MI.getOperand(0).getReg(); 616 if(MRI.getType(DstReg).isVector()) 617 MIRBuilder.buildBuildVector(DstReg, DstRegs); 618 else 619 MIRBuilder.buildMerge(DstReg, DstRegs); 620 MI.eraseFromParent(); 621 return Legalized; 622 } 623 case TargetOpcode::G_SUB: { 624 // FIXME: add support for when SizeOp0 isn't an exact multiple of 625 // NarrowSize. 626 if (SizeOp0 % NarrowSize != 0) 627 return UnableToLegalize; 628 629 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 630 631 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 632 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 633 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 634 635 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 636 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 637 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 638 {Src1Regs[0], Src2Regs[0]}); 639 DstRegs.push_back(DstReg); 640 Register BorrowIn = BorrowOut; 641 for (int i = 1; i < NumParts; ++i) { 642 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 643 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 644 645 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 646 {Src1Regs[i], Src2Regs[i], BorrowIn}); 647 648 DstRegs.push_back(DstReg); 649 BorrowIn = BorrowOut; 650 } 651 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 652 MI.eraseFromParent(); 653 return Legalized; 654 } 655 case TargetOpcode::G_MUL: 656 case TargetOpcode::G_UMULH: 657 return narrowScalarMul(MI, NarrowTy); 658 case TargetOpcode::G_EXTRACT: 659 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 660 case TargetOpcode::G_INSERT: 661 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 662 case TargetOpcode::G_LOAD: { 663 const auto &MMO = **MI.memoperands_begin(); 664 Register DstReg = MI.getOperand(0).getReg(); 665 LLT DstTy = MRI.getType(DstReg); 666 if (DstTy.isVector()) 667 return UnableToLegalize; 668 669 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 670 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 671 auto &MMO = **MI.memoperands_begin(); 672 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 673 MIRBuilder.buildAnyExt(DstReg, TmpReg); 674 MI.eraseFromParent(); 675 return Legalized; 676 } 677 678 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 679 } 680 case TargetOpcode::G_ZEXTLOAD: 681 case TargetOpcode::G_SEXTLOAD: { 682 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 683 Register DstReg = MI.getOperand(0).getReg(); 684 Register PtrReg = MI.getOperand(1).getReg(); 685 686 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 687 auto &MMO = **MI.memoperands_begin(); 688 if (MMO.getSizeInBits() == NarrowSize) { 689 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 690 } else { 691 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 692 : TargetOpcode::G_SEXTLOAD; 693 MIRBuilder.buildInstr(ExtLoad) 694 .addDef(TmpReg) 695 .addUse(PtrReg) 696 .addMemOperand(&MMO); 697 } 698 699 if (ZExt) 700 MIRBuilder.buildZExt(DstReg, TmpReg); 701 else 702 MIRBuilder.buildSExt(DstReg, TmpReg); 703 704 MI.eraseFromParent(); 705 return Legalized; 706 } 707 case TargetOpcode::G_STORE: { 708 const auto &MMO = **MI.memoperands_begin(); 709 710 Register SrcReg = MI.getOperand(0).getReg(); 711 LLT SrcTy = MRI.getType(SrcReg); 712 if (SrcTy.isVector()) 713 return UnableToLegalize; 714 715 int NumParts = SizeOp0 / NarrowSize; 716 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 717 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 718 if (SrcTy.isVector() && LeftoverBits != 0) 719 return UnableToLegalize; 720 721 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 722 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 723 auto &MMO = **MI.memoperands_begin(); 724 MIRBuilder.buildTrunc(TmpReg, SrcReg); 725 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 726 MI.eraseFromParent(); 727 return Legalized; 728 } 729 730 return reduceLoadStoreWidth(MI, 0, NarrowTy); 731 } 732 case TargetOpcode::G_SELECT: 733 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 734 case TargetOpcode::G_AND: 735 case TargetOpcode::G_OR: 736 case TargetOpcode::G_XOR: { 737 // Legalize bitwise operation: 738 // A = BinOp<Ty> B, C 739 // into: 740 // B1, ..., BN = G_UNMERGE_VALUES B 741 // C1, ..., CN = G_UNMERGE_VALUES C 742 // A1 = BinOp<Ty/N> B1, C2 743 // ... 744 // AN = BinOp<Ty/N> BN, CN 745 // A = G_MERGE_VALUES A1, ..., AN 746 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 747 } 748 case TargetOpcode::G_SHL: 749 case TargetOpcode::G_LSHR: 750 case TargetOpcode::G_ASHR: 751 return narrowScalarShift(MI, TypeIdx, NarrowTy); 752 case TargetOpcode::G_CTLZ: 753 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 754 case TargetOpcode::G_CTTZ: 755 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 756 case TargetOpcode::G_CTPOP: 757 if (TypeIdx != 0) 758 return UnableToLegalize; // TODO 759 760 Observer.changingInstr(MI); 761 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 762 Observer.changedInstr(MI); 763 return Legalized; 764 case TargetOpcode::G_INTTOPTR: 765 if (TypeIdx != 1) 766 return UnableToLegalize; 767 768 Observer.changingInstr(MI); 769 narrowScalarSrc(MI, NarrowTy, 1); 770 Observer.changedInstr(MI); 771 return Legalized; 772 case TargetOpcode::G_PTRTOINT: 773 if (TypeIdx != 0) 774 return UnableToLegalize; 775 776 Observer.changingInstr(MI); 777 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 778 Observer.changedInstr(MI); 779 return Legalized; 780 case TargetOpcode::G_PHI: { 781 unsigned NumParts = SizeOp0 / NarrowSize; 782 SmallVector<Register, 2> DstRegs; 783 SmallVector<SmallVector<Register, 2>, 2> SrcRegs; 784 DstRegs.resize(NumParts); 785 SrcRegs.resize(MI.getNumOperands() / 2); 786 Observer.changingInstr(MI); 787 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 788 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 789 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 790 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 791 SrcRegs[i / 2]); 792 } 793 MachineBasicBlock &MBB = *MI.getParent(); 794 MIRBuilder.setInsertPt(MBB, MI); 795 for (unsigned i = 0; i < NumParts; ++i) { 796 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 797 MachineInstrBuilder MIB = 798 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 799 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 800 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 801 } 802 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 803 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 804 Observer.changedInstr(MI); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 809 case TargetOpcode::G_INSERT_VECTOR_ELT: { 810 if (TypeIdx != 2) 811 return UnableToLegalize; 812 813 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 814 Observer.changingInstr(MI); 815 narrowScalarSrc(MI, NarrowTy, OpIdx); 816 Observer.changedInstr(MI); 817 return Legalized; 818 } 819 case TargetOpcode::G_ICMP: { 820 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 821 if (NarrowSize * 2 != SrcSize) 822 return UnableToLegalize; 823 824 Observer.changingInstr(MI); 825 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 826 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 827 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg()); 828 829 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 830 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 831 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg()); 832 833 CmpInst::Predicate Pred = 834 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 835 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 836 837 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 838 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 839 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 840 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 841 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 842 MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero); 843 } else { 844 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 845 MachineInstrBuilder CmpHEQ = 846 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 847 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 848 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 849 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH); 850 } 851 Observer.changedInstr(MI); 852 MI.eraseFromParent(); 853 return Legalized; 854 } 855 } 856 } 857 858 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 859 unsigned OpIdx, unsigned ExtOpcode) { 860 MachineOperand &MO = MI.getOperand(OpIdx); 861 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 862 MO.setReg(ExtB->getOperand(0).getReg()); 863 } 864 865 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 866 unsigned OpIdx) { 867 MachineOperand &MO = MI.getOperand(OpIdx); 868 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 869 {MO.getReg()}); 870 MO.setReg(ExtB->getOperand(0).getReg()); 871 } 872 873 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 874 unsigned OpIdx, unsigned TruncOpcode) { 875 MachineOperand &MO = MI.getOperand(OpIdx); 876 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 877 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 878 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 879 MO.setReg(DstExt); 880 } 881 882 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 883 unsigned OpIdx, unsigned ExtOpcode) { 884 MachineOperand &MO = MI.getOperand(OpIdx); 885 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 886 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 887 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 888 MO.setReg(DstTrunc); 889 } 890 891 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 892 unsigned OpIdx) { 893 MachineOperand &MO = MI.getOperand(OpIdx); 894 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 895 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 896 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 897 MO.setReg(DstExt); 898 } 899 900 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 901 unsigned OpIdx) { 902 MachineOperand &MO = MI.getOperand(OpIdx); 903 904 LLT OldTy = MRI.getType(MO.getReg()); 905 unsigned OldElts = OldTy.getNumElements(); 906 unsigned NewElts = MoreTy.getNumElements(); 907 908 unsigned NumParts = NewElts / OldElts; 909 910 // Use concat_vectors if the result is a multiple of the number of elements. 911 if (NumParts * OldElts == NewElts) { 912 SmallVector<Register, 8> Parts; 913 Parts.push_back(MO.getReg()); 914 915 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 916 for (unsigned I = 1; I != NumParts; ++I) 917 Parts.push_back(ImpDef); 918 919 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 920 MO.setReg(Concat.getReg(0)); 921 return; 922 } 923 924 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 925 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 926 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 927 MO.setReg(MoreReg); 928 } 929 930 LegalizerHelper::LegalizeResult 931 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 932 LLT WideTy) { 933 if (TypeIdx != 1) 934 return UnableToLegalize; 935 936 Register DstReg = MI.getOperand(0).getReg(); 937 LLT DstTy = MRI.getType(DstReg); 938 if (DstTy.isVector()) 939 return UnableToLegalize; 940 941 Register Src1 = MI.getOperand(1).getReg(); 942 LLT SrcTy = MRI.getType(Src1); 943 const int DstSize = DstTy.getSizeInBits(); 944 const int SrcSize = SrcTy.getSizeInBits(); 945 const int WideSize = WideTy.getSizeInBits(); 946 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 947 948 unsigned NumOps = MI.getNumOperands(); 949 unsigned NumSrc = MI.getNumOperands() - 1; 950 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 951 952 if (WideSize >= DstSize) { 953 // Directly pack the bits in the target type. 954 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 955 956 for (unsigned I = 2; I != NumOps; ++I) { 957 const unsigned Offset = (I - 1) * PartSize; 958 959 Register SrcReg = MI.getOperand(I).getReg(); 960 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 961 962 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 963 964 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 965 MRI.createGenericVirtualRegister(WideTy); 966 967 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 968 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 969 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 970 ResultReg = NextResult; 971 } 972 973 if (WideSize > DstSize) 974 MIRBuilder.buildTrunc(DstReg, ResultReg); 975 else if (DstTy.isPointer()) 976 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 977 978 MI.eraseFromParent(); 979 return Legalized; 980 } 981 982 // Unmerge the original values to the GCD type, and recombine to the next 983 // multiple greater than the original type. 984 // 985 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 986 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 987 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 988 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 989 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 990 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 991 // %12:_(s12) = G_MERGE_VALUES %10, %11 992 // 993 // Padding with undef if necessary: 994 // 995 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 996 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 997 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 998 // %7:_(s2) = G_IMPLICIT_DEF 999 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1000 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1001 // %10:_(s12) = G_MERGE_VALUES %8, %9 1002 1003 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1004 LLT GCDTy = LLT::scalar(GCD); 1005 1006 SmallVector<Register, 8> Parts; 1007 SmallVector<Register, 8> NewMergeRegs; 1008 SmallVector<Register, 8> Unmerges; 1009 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1010 1011 // Decompose the original operands if they don't evenly divide. 1012 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1013 Register SrcReg = MI.getOperand(I).getReg(); 1014 if (GCD == SrcSize) { 1015 Unmerges.push_back(SrcReg); 1016 } else { 1017 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1018 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1019 Unmerges.push_back(Unmerge.getReg(J)); 1020 } 1021 } 1022 1023 // Pad with undef to the next size that is a multiple of the requested size. 1024 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1025 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1026 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1027 Unmerges.push_back(UndefReg); 1028 } 1029 1030 const int PartsPerGCD = WideSize / GCD; 1031 1032 // Build merges of each piece. 1033 ArrayRef<Register> Slicer(Unmerges); 1034 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1035 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1036 NewMergeRegs.push_back(Merge.getReg(0)); 1037 } 1038 1039 // A truncate may be necessary if the requested type doesn't evenly divide the 1040 // original result type. 1041 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1042 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1043 } else { 1044 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1045 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1046 } 1047 1048 MI.eraseFromParent(); 1049 return Legalized; 1050 } 1051 1052 LegalizerHelper::LegalizeResult 1053 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1054 LLT WideTy) { 1055 if (TypeIdx != 0) 1056 return UnableToLegalize; 1057 1058 unsigned NumDst = MI.getNumOperands() - 1; 1059 Register SrcReg = MI.getOperand(NumDst).getReg(); 1060 LLT SrcTy = MRI.getType(SrcReg); 1061 if (!SrcTy.isScalar()) 1062 return UnableToLegalize; 1063 1064 Register Dst0Reg = MI.getOperand(0).getReg(); 1065 LLT DstTy = MRI.getType(Dst0Reg); 1066 if (!DstTy.isScalar()) 1067 return UnableToLegalize; 1068 1069 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 1070 LLT NewSrcTy = LLT::scalar(NewSrcSize); 1071 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 1072 1073 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 1074 1075 for (unsigned I = 1; I != NumDst; ++I) { 1076 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 1077 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 1078 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 1079 } 1080 1081 Observer.changingInstr(MI); 1082 1083 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 1084 for (unsigned I = 0; I != NumDst; ++I) 1085 widenScalarDst(MI, WideTy, I); 1086 1087 Observer.changedInstr(MI); 1088 1089 return Legalized; 1090 } 1091 1092 LegalizerHelper::LegalizeResult 1093 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1094 LLT WideTy) { 1095 Register DstReg = MI.getOperand(0).getReg(); 1096 Register SrcReg = MI.getOperand(1).getReg(); 1097 LLT SrcTy = MRI.getType(SrcReg); 1098 1099 LLT DstTy = MRI.getType(DstReg); 1100 unsigned Offset = MI.getOperand(2).getImm(); 1101 1102 if (TypeIdx == 0) { 1103 if (SrcTy.isVector() || DstTy.isVector()) 1104 return UnableToLegalize; 1105 1106 SrcOp Src(SrcReg); 1107 if (SrcTy.isPointer()) { 1108 // Extracts from pointers can be handled only if they are really just 1109 // simple integers. 1110 const DataLayout &DL = MIRBuilder.getDataLayout(); 1111 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1112 return UnableToLegalize; 1113 1114 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1115 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1116 SrcTy = SrcAsIntTy; 1117 } 1118 1119 if (DstTy.isPointer()) 1120 return UnableToLegalize; 1121 1122 if (Offset == 0) { 1123 // Avoid a shift in the degenerate case. 1124 MIRBuilder.buildTrunc(DstReg, 1125 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1126 MI.eraseFromParent(); 1127 return Legalized; 1128 } 1129 1130 // Do a shift in the source type. 1131 LLT ShiftTy = SrcTy; 1132 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1133 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1134 ShiftTy = WideTy; 1135 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1136 return UnableToLegalize; 1137 1138 auto LShr = MIRBuilder.buildLShr( 1139 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1140 MIRBuilder.buildTrunc(DstReg, LShr); 1141 MI.eraseFromParent(); 1142 return Legalized; 1143 } 1144 1145 if (SrcTy.isScalar()) { 1146 Observer.changingInstr(MI); 1147 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1148 Observer.changedInstr(MI); 1149 return Legalized; 1150 } 1151 1152 if (!SrcTy.isVector()) 1153 return UnableToLegalize; 1154 1155 if (DstTy != SrcTy.getElementType()) 1156 return UnableToLegalize; 1157 1158 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1159 return UnableToLegalize; 1160 1161 Observer.changingInstr(MI); 1162 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1163 1164 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1165 Offset); 1166 widenScalarDst(MI, WideTy.getScalarType(), 0); 1167 Observer.changedInstr(MI); 1168 return Legalized; 1169 } 1170 1171 LegalizerHelper::LegalizeResult 1172 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1173 LLT WideTy) { 1174 if (TypeIdx != 0) 1175 return UnableToLegalize; 1176 Observer.changingInstr(MI); 1177 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1178 widenScalarDst(MI, WideTy); 1179 Observer.changedInstr(MI); 1180 return Legalized; 1181 } 1182 1183 LegalizerHelper::LegalizeResult 1184 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1185 MIRBuilder.setInstr(MI); 1186 1187 switch (MI.getOpcode()) { 1188 default: 1189 return UnableToLegalize; 1190 case TargetOpcode::G_EXTRACT: 1191 return widenScalarExtract(MI, TypeIdx, WideTy); 1192 case TargetOpcode::G_INSERT: 1193 return widenScalarInsert(MI, TypeIdx, WideTy); 1194 case TargetOpcode::G_MERGE_VALUES: 1195 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1196 case TargetOpcode::G_UNMERGE_VALUES: 1197 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1198 case TargetOpcode::G_UADDO: 1199 case TargetOpcode::G_USUBO: { 1200 if (TypeIdx == 1) 1201 return UnableToLegalize; // TODO 1202 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1203 {MI.getOperand(2).getReg()}); 1204 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1205 {MI.getOperand(3).getReg()}); 1206 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1207 ? TargetOpcode::G_ADD 1208 : TargetOpcode::G_SUB; 1209 // Do the arithmetic in the larger type. 1210 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1211 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1212 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 1213 auto AndOp = MIRBuilder.buildInstr( 1214 TargetOpcode::G_AND, {WideTy}, 1215 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 1216 // There is no overflow if the AndOp is the same as NewOp. 1217 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 1218 AndOp); 1219 // Now trunc the NewOp to the original result. 1220 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 1221 MI.eraseFromParent(); 1222 return Legalized; 1223 } 1224 case TargetOpcode::G_CTTZ: 1225 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1226 case TargetOpcode::G_CTLZ: 1227 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1228 case TargetOpcode::G_CTPOP: { 1229 if (TypeIdx == 0) { 1230 Observer.changingInstr(MI); 1231 widenScalarDst(MI, WideTy, 0); 1232 Observer.changedInstr(MI); 1233 return Legalized; 1234 } 1235 1236 Register SrcReg = MI.getOperand(1).getReg(); 1237 1238 // First ZEXT the input. 1239 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1240 LLT CurTy = MRI.getType(SrcReg); 1241 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1242 // The count is the same in the larger type except if the original 1243 // value was zero. This can be handled by setting the bit just off 1244 // the top of the original type. 1245 auto TopBit = 1246 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1247 MIBSrc = MIRBuilder.buildOr( 1248 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1249 } 1250 1251 // Perform the operation at the larger size. 1252 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1253 // This is already the correct result for CTPOP and CTTZs 1254 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1255 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1256 // The correct result is NewOp - (Difference in widety and current ty). 1257 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1258 MIBNewOp = MIRBuilder.buildInstr( 1259 TargetOpcode::G_SUB, {WideTy}, 1260 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1261 } 1262 1263 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1264 MI.eraseFromParent(); 1265 return Legalized; 1266 } 1267 case TargetOpcode::G_BSWAP: { 1268 Observer.changingInstr(MI); 1269 Register DstReg = MI.getOperand(0).getReg(); 1270 1271 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1272 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1273 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1274 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1275 1276 MI.getOperand(0).setReg(DstExt); 1277 1278 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1279 1280 LLT Ty = MRI.getType(DstReg); 1281 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1282 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1283 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1284 .addDef(ShrReg) 1285 .addUse(DstExt) 1286 .addUse(ShiftAmtReg); 1287 1288 MIRBuilder.buildTrunc(DstReg, ShrReg); 1289 Observer.changedInstr(MI); 1290 return Legalized; 1291 } 1292 case TargetOpcode::G_ADD: 1293 case TargetOpcode::G_AND: 1294 case TargetOpcode::G_MUL: 1295 case TargetOpcode::G_OR: 1296 case TargetOpcode::G_XOR: 1297 case TargetOpcode::G_SUB: 1298 // Perform operation at larger width (any extension is fines here, high bits 1299 // don't affect the result) and then truncate the result back to the 1300 // original type. 1301 Observer.changingInstr(MI); 1302 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1303 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1304 widenScalarDst(MI, WideTy); 1305 Observer.changedInstr(MI); 1306 return Legalized; 1307 1308 case TargetOpcode::G_SHL: 1309 Observer.changingInstr(MI); 1310 1311 if (TypeIdx == 0) { 1312 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1313 widenScalarDst(MI, WideTy); 1314 } else { 1315 assert(TypeIdx == 1); 1316 // The "number of bits to shift" operand must preserve its value as an 1317 // unsigned integer: 1318 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1319 } 1320 1321 Observer.changedInstr(MI); 1322 return Legalized; 1323 1324 case TargetOpcode::G_SDIV: 1325 case TargetOpcode::G_SREM: 1326 case TargetOpcode::G_SMIN: 1327 case TargetOpcode::G_SMAX: 1328 Observer.changingInstr(MI); 1329 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1330 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1331 widenScalarDst(MI, WideTy); 1332 Observer.changedInstr(MI); 1333 return Legalized; 1334 1335 case TargetOpcode::G_ASHR: 1336 case TargetOpcode::G_LSHR: 1337 Observer.changingInstr(MI); 1338 1339 if (TypeIdx == 0) { 1340 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1341 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1342 1343 widenScalarSrc(MI, WideTy, 1, CvtOp); 1344 widenScalarDst(MI, WideTy); 1345 } else { 1346 assert(TypeIdx == 1); 1347 // The "number of bits to shift" operand must preserve its value as an 1348 // unsigned integer: 1349 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1350 } 1351 1352 Observer.changedInstr(MI); 1353 return Legalized; 1354 case TargetOpcode::G_UDIV: 1355 case TargetOpcode::G_UREM: 1356 case TargetOpcode::G_UMIN: 1357 case TargetOpcode::G_UMAX: 1358 Observer.changingInstr(MI); 1359 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1360 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1361 widenScalarDst(MI, WideTy); 1362 Observer.changedInstr(MI); 1363 return Legalized; 1364 1365 case TargetOpcode::G_SELECT: 1366 Observer.changingInstr(MI); 1367 if (TypeIdx == 0) { 1368 // Perform operation at larger width (any extension is fine here, high 1369 // bits don't affect the result) and then truncate the result back to the 1370 // original type. 1371 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1372 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1373 widenScalarDst(MI, WideTy); 1374 } else { 1375 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1376 // Explicit extension is required here since high bits affect the result. 1377 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1378 } 1379 Observer.changedInstr(MI); 1380 return Legalized; 1381 1382 case TargetOpcode::G_FPTOSI: 1383 case TargetOpcode::G_FPTOUI: 1384 if (TypeIdx != 0) 1385 return UnableToLegalize; 1386 Observer.changingInstr(MI); 1387 widenScalarDst(MI, WideTy); 1388 Observer.changedInstr(MI); 1389 return Legalized; 1390 1391 case TargetOpcode::G_SITOFP: 1392 if (TypeIdx != 1) 1393 return UnableToLegalize; 1394 Observer.changingInstr(MI); 1395 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1396 Observer.changedInstr(MI); 1397 return Legalized; 1398 1399 case TargetOpcode::G_UITOFP: 1400 if (TypeIdx != 1) 1401 return UnableToLegalize; 1402 Observer.changingInstr(MI); 1403 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1404 Observer.changedInstr(MI); 1405 return Legalized; 1406 1407 case TargetOpcode::G_LOAD: 1408 case TargetOpcode::G_SEXTLOAD: 1409 case TargetOpcode::G_ZEXTLOAD: 1410 Observer.changingInstr(MI); 1411 widenScalarDst(MI, WideTy); 1412 Observer.changedInstr(MI); 1413 return Legalized; 1414 1415 case TargetOpcode::G_STORE: { 1416 if (TypeIdx != 0) 1417 return UnableToLegalize; 1418 1419 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1420 if (!isPowerOf2_32(Ty.getSizeInBits())) 1421 return UnableToLegalize; 1422 1423 Observer.changingInstr(MI); 1424 1425 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1426 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1427 widenScalarSrc(MI, WideTy, 0, ExtType); 1428 1429 Observer.changedInstr(MI); 1430 return Legalized; 1431 } 1432 case TargetOpcode::G_CONSTANT: { 1433 MachineOperand &SrcMO = MI.getOperand(1); 1434 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1435 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1436 Observer.changingInstr(MI); 1437 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1438 1439 widenScalarDst(MI, WideTy); 1440 Observer.changedInstr(MI); 1441 return Legalized; 1442 } 1443 case TargetOpcode::G_FCONSTANT: { 1444 MachineOperand &SrcMO = MI.getOperand(1); 1445 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1446 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1447 bool LosesInfo; 1448 switch (WideTy.getSizeInBits()) { 1449 case 32: 1450 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1451 &LosesInfo); 1452 break; 1453 case 64: 1454 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1455 &LosesInfo); 1456 break; 1457 default: 1458 return UnableToLegalize; 1459 } 1460 1461 assert(!LosesInfo && "extend should always be lossless"); 1462 1463 Observer.changingInstr(MI); 1464 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1465 1466 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1467 Observer.changedInstr(MI); 1468 return Legalized; 1469 } 1470 case TargetOpcode::G_IMPLICIT_DEF: { 1471 Observer.changingInstr(MI); 1472 widenScalarDst(MI, WideTy); 1473 Observer.changedInstr(MI); 1474 return Legalized; 1475 } 1476 case TargetOpcode::G_BRCOND: 1477 Observer.changingInstr(MI); 1478 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1479 Observer.changedInstr(MI); 1480 return Legalized; 1481 1482 case TargetOpcode::G_FCMP: 1483 Observer.changingInstr(MI); 1484 if (TypeIdx == 0) 1485 widenScalarDst(MI, WideTy); 1486 else { 1487 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1488 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1489 } 1490 Observer.changedInstr(MI); 1491 return Legalized; 1492 1493 case TargetOpcode::G_ICMP: 1494 Observer.changingInstr(MI); 1495 if (TypeIdx == 0) 1496 widenScalarDst(MI, WideTy); 1497 else { 1498 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1499 MI.getOperand(1).getPredicate())) 1500 ? TargetOpcode::G_SEXT 1501 : TargetOpcode::G_ZEXT; 1502 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1503 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1504 } 1505 Observer.changedInstr(MI); 1506 return Legalized; 1507 1508 case TargetOpcode::G_GEP: 1509 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1510 Observer.changingInstr(MI); 1511 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1512 Observer.changedInstr(MI); 1513 return Legalized; 1514 1515 case TargetOpcode::G_PHI: { 1516 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1517 1518 Observer.changingInstr(MI); 1519 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1520 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1521 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1522 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1523 } 1524 1525 MachineBasicBlock &MBB = *MI.getParent(); 1526 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1527 widenScalarDst(MI, WideTy); 1528 Observer.changedInstr(MI); 1529 return Legalized; 1530 } 1531 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1532 if (TypeIdx == 0) { 1533 Register VecReg = MI.getOperand(1).getReg(); 1534 LLT VecTy = MRI.getType(VecReg); 1535 Observer.changingInstr(MI); 1536 1537 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1538 WideTy.getSizeInBits()), 1539 1, TargetOpcode::G_SEXT); 1540 1541 widenScalarDst(MI, WideTy, 0); 1542 Observer.changedInstr(MI); 1543 return Legalized; 1544 } 1545 1546 if (TypeIdx != 2) 1547 return UnableToLegalize; 1548 Observer.changingInstr(MI); 1549 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1550 Observer.changedInstr(MI); 1551 return Legalized; 1552 } 1553 case TargetOpcode::G_FADD: 1554 case TargetOpcode::G_FMUL: 1555 case TargetOpcode::G_FSUB: 1556 case TargetOpcode::G_FMA: 1557 case TargetOpcode::G_FNEG: 1558 case TargetOpcode::G_FABS: 1559 case TargetOpcode::G_FCANONICALIZE: 1560 case TargetOpcode::G_FMINNUM: 1561 case TargetOpcode::G_FMAXNUM: 1562 case TargetOpcode::G_FMINNUM_IEEE: 1563 case TargetOpcode::G_FMAXNUM_IEEE: 1564 case TargetOpcode::G_FMINIMUM: 1565 case TargetOpcode::G_FMAXIMUM: 1566 case TargetOpcode::G_FDIV: 1567 case TargetOpcode::G_FREM: 1568 case TargetOpcode::G_FCEIL: 1569 case TargetOpcode::G_FFLOOR: 1570 case TargetOpcode::G_FCOS: 1571 case TargetOpcode::G_FSIN: 1572 case TargetOpcode::G_FLOG10: 1573 case TargetOpcode::G_FLOG: 1574 case TargetOpcode::G_FLOG2: 1575 case TargetOpcode::G_FRINT: 1576 case TargetOpcode::G_FNEARBYINT: 1577 case TargetOpcode::G_FSQRT: 1578 case TargetOpcode::G_FEXP: 1579 case TargetOpcode::G_FEXP2: 1580 case TargetOpcode::G_FPOW: 1581 case TargetOpcode::G_INTRINSIC_TRUNC: 1582 case TargetOpcode::G_INTRINSIC_ROUND: 1583 assert(TypeIdx == 0); 1584 Observer.changingInstr(MI); 1585 1586 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1587 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1588 1589 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1590 Observer.changedInstr(MI); 1591 return Legalized; 1592 case TargetOpcode::G_INTTOPTR: 1593 if (TypeIdx != 1) 1594 return UnableToLegalize; 1595 1596 Observer.changingInstr(MI); 1597 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1598 Observer.changedInstr(MI); 1599 return Legalized; 1600 case TargetOpcode::G_PTRTOINT: 1601 if (TypeIdx != 0) 1602 return UnableToLegalize; 1603 1604 Observer.changingInstr(MI); 1605 widenScalarDst(MI, WideTy, 0); 1606 Observer.changedInstr(MI); 1607 return Legalized; 1608 case TargetOpcode::G_BUILD_VECTOR: { 1609 Observer.changingInstr(MI); 1610 1611 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 1612 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 1613 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 1614 1615 // Avoid changing the result vector type if the source element type was 1616 // requested. 1617 if (TypeIdx == 1) { 1618 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 1619 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 1620 } else { 1621 widenScalarDst(MI, WideTy, 0); 1622 } 1623 1624 Observer.changedInstr(MI); 1625 return Legalized; 1626 } 1627 } 1628 } 1629 1630 LegalizerHelper::LegalizeResult 1631 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1632 using namespace TargetOpcode; 1633 MIRBuilder.setInstr(MI); 1634 1635 switch(MI.getOpcode()) { 1636 default: 1637 return UnableToLegalize; 1638 case TargetOpcode::G_SREM: 1639 case TargetOpcode::G_UREM: { 1640 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 1641 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1642 .addDef(QuotReg) 1643 .addUse(MI.getOperand(1).getReg()) 1644 .addUse(MI.getOperand(2).getReg()); 1645 1646 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 1647 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1648 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1649 ProdReg); 1650 MI.eraseFromParent(); 1651 return Legalized; 1652 } 1653 case TargetOpcode::G_SMULO: 1654 case TargetOpcode::G_UMULO: { 1655 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1656 // result. 1657 Register Res = MI.getOperand(0).getReg(); 1658 Register Overflow = MI.getOperand(1).getReg(); 1659 Register LHS = MI.getOperand(2).getReg(); 1660 Register RHS = MI.getOperand(3).getReg(); 1661 1662 MIRBuilder.buildMul(Res, LHS, RHS); 1663 1664 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1665 ? TargetOpcode::G_SMULH 1666 : TargetOpcode::G_UMULH; 1667 1668 Register HiPart = MRI.createGenericVirtualRegister(Ty); 1669 MIRBuilder.buildInstr(Opcode) 1670 .addDef(HiPart) 1671 .addUse(LHS) 1672 .addUse(RHS); 1673 1674 Register Zero = MRI.createGenericVirtualRegister(Ty); 1675 MIRBuilder.buildConstant(Zero, 0); 1676 1677 // For *signed* multiply, overflow is detected by checking: 1678 // (hi != (lo >> bitwidth-1)) 1679 if (Opcode == TargetOpcode::G_SMULH) { 1680 Register Shifted = MRI.createGenericVirtualRegister(Ty); 1681 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1682 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1683 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1684 .addDef(Shifted) 1685 .addUse(Res) 1686 .addUse(ShiftAmt); 1687 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1688 } else { 1689 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1690 } 1691 MI.eraseFromParent(); 1692 return Legalized; 1693 } 1694 case TargetOpcode::G_FNEG: { 1695 // TODO: Handle vector types once we are able to 1696 // represent them. 1697 if (Ty.isVector()) 1698 return UnableToLegalize; 1699 Register Res = MI.getOperand(0).getReg(); 1700 Type *ZeroTy; 1701 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1702 switch (Ty.getSizeInBits()) { 1703 case 16: 1704 ZeroTy = Type::getHalfTy(Ctx); 1705 break; 1706 case 32: 1707 ZeroTy = Type::getFloatTy(Ctx); 1708 break; 1709 case 64: 1710 ZeroTy = Type::getDoubleTy(Ctx); 1711 break; 1712 case 128: 1713 ZeroTy = Type::getFP128Ty(Ctx); 1714 break; 1715 default: 1716 llvm_unreachable("unexpected floating-point type"); 1717 } 1718 ConstantFP &ZeroForNegation = 1719 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1720 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1721 Register SubByReg = MI.getOperand(1).getReg(); 1722 Register ZeroReg = Zero->getOperand(0).getReg(); 1723 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 1724 MI.getFlags()); 1725 MI.eraseFromParent(); 1726 return Legalized; 1727 } 1728 case TargetOpcode::G_FSUB: { 1729 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1730 // First, check if G_FNEG is marked as Lower. If so, we may 1731 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1732 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1733 return UnableToLegalize; 1734 Register Res = MI.getOperand(0).getReg(); 1735 Register LHS = MI.getOperand(1).getReg(); 1736 Register RHS = MI.getOperand(2).getReg(); 1737 Register Neg = MRI.createGenericVirtualRegister(Ty); 1738 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1739 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 1740 MI.eraseFromParent(); 1741 return Legalized; 1742 } 1743 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1744 Register OldValRes = MI.getOperand(0).getReg(); 1745 Register SuccessRes = MI.getOperand(1).getReg(); 1746 Register Addr = MI.getOperand(2).getReg(); 1747 Register CmpVal = MI.getOperand(3).getReg(); 1748 Register NewVal = MI.getOperand(4).getReg(); 1749 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1750 **MI.memoperands_begin()); 1751 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1752 MI.eraseFromParent(); 1753 return Legalized; 1754 } 1755 case TargetOpcode::G_LOAD: 1756 case TargetOpcode::G_SEXTLOAD: 1757 case TargetOpcode::G_ZEXTLOAD: { 1758 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1759 Register DstReg = MI.getOperand(0).getReg(); 1760 Register PtrReg = MI.getOperand(1).getReg(); 1761 LLT DstTy = MRI.getType(DstReg); 1762 auto &MMO = **MI.memoperands_begin(); 1763 1764 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 1765 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 1766 // This load needs splitting into power of 2 sized loads. 1767 if (DstTy.isVector()) 1768 return UnableToLegalize; 1769 if (isPowerOf2_32(DstTy.getSizeInBits())) 1770 return UnableToLegalize; // Don't know what we're being asked to do. 1771 1772 // Our strategy here is to generate anyextending loads for the smaller 1773 // types up to next power-2 result type, and then combine the two larger 1774 // result values together, before truncating back down to the non-pow-2 1775 // type. 1776 // E.g. v1 = i24 load => 1777 // v2 = i32 load (2 byte) 1778 // v3 = i32 load (1 byte) 1779 // v4 = i32 shl v3, 16 1780 // v5 = i32 or v4, v2 1781 // v1 = i24 trunc v5 1782 // By doing this we generate the correct truncate which should get 1783 // combined away as an artifact with a matching extend. 1784 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 1785 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 1786 1787 MachineFunction &MF = MIRBuilder.getMF(); 1788 MachineMemOperand *LargeMMO = 1789 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 1790 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 1791 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 1792 1793 LLT PtrTy = MRI.getType(PtrReg); 1794 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 1795 LLT AnyExtTy = LLT::scalar(AnyExtSize); 1796 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 1797 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 1798 auto LargeLoad = 1799 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); 1800 1801 auto OffsetCst = 1802 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 1803 Register GEPReg = MRI.createGenericVirtualRegister(PtrTy); 1804 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0)); 1805 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 1806 *SmallMMO); 1807 1808 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 1809 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 1810 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 1811 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 1812 MI.eraseFromParent(); 1813 return Legalized; 1814 } 1815 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1816 MI.eraseFromParent(); 1817 return Legalized; 1818 } 1819 1820 if (DstTy.isScalar()) { 1821 Register TmpReg = 1822 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 1823 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1824 switch (MI.getOpcode()) { 1825 default: 1826 llvm_unreachable("Unexpected opcode"); 1827 case TargetOpcode::G_LOAD: 1828 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1829 break; 1830 case TargetOpcode::G_SEXTLOAD: 1831 MIRBuilder.buildSExt(DstReg, TmpReg); 1832 break; 1833 case TargetOpcode::G_ZEXTLOAD: 1834 MIRBuilder.buildZExt(DstReg, TmpReg); 1835 break; 1836 } 1837 MI.eraseFromParent(); 1838 return Legalized; 1839 } 1840 1841 return UnableToLegalize; 1842 } 1843 case TargetOpcode::G_STORE: { 1844 // Lower a non-power of 2 store into multiple pow-2 stores. 1845 // E.g. split an i24 store into an i16 store + i8 store. 1846 // We do this by first extending the stored value to the next largest power 1847 // of 2 type, and then using truncating stores to store the components. 1848 // By doing this, likewise with G_LOAD, generate an extend that can be 1849 // artifact-combined away instead of leaving behind extracts. 1850 Register SrcReg = MI.getOperand(0).getReg(); 1851 Register PtrReg = MI.getOperand(1).getReg(); 1852 LLT SrcTy = MRI.getType(SrcReg); 1853 MachineMemOperand &MMO = **MI.memoperands_begin(); 1854 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 1855 return UnableToLegalize; 1856 if (SrcTy.isVector()) 1857 return UnableToLegalize; 1858 if (isPowerOf2_32(SrcTy.getSizeInBits())) 1859 return UnableToLegalize; // Don't know what we're being asked to do. 1860 1861 // Extend to the next pow-2. 1862 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 1863 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 1864 1865 // Obtain the smaller value by shifting away the larger value. 1866 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 1867 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 1868 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 1869 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 1870 1871 // Generate the GEP and truncating stores. 1872 LLT PtrTy = MRI.getType(PtrReg); 1873 auto OffsetCst = 1874 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 1875 Register GEPReg = MRI.createGenericVirtualRegister(PtrTy); 1876 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0)); 1877 1878 MachineFunction &MF = MIRBuilder.getMF(); 1879 MachineMemOperand *LargeMMO = 1880 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 1881 MachineMemOperand *SmallMMO = 1882 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 1883 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 1884 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 1885 MI.eraseFromParent(); 1886 return Legalized; 1887 } 1888 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1889 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1890 case TargetOpcode::G_CTLZ: 1891 case TargetOpcode::G_CTTZ: 1892 case TargetOpcode::G_CTPOP: 1893 return lowerBitCount(MI, TypeIdx, Ty); 1894 case G_UADDO: { 1895 Register Res = MI.getOperand(0).getReg(); 1896 Register CarryOut = MI.getOperand(1).getReg(); 1897 Register LHS = MI.getOperand(2).getReg(); 1898 Register RHS = MI.getOperand(3).getReg(); 1899 1900 MIRBuilder.buildAdd(Res, LHS, RHS); 1901 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 1902 1903 MI.eraseFromParent(); 1904 return Legalized; 1905 } 1906 case G_UADDE: { 1907 Register Res = MI.getOperand(0).getReg(); 1908 Register CarryOut = MI.getOperand(1).getReg(); 1909 Register LHS = MI.getOperand(2).getReg(); 1910 Register RHS = MI.getOperand(3).getReg(); 1911 Register CarryIn = MI.getOperand(4).getReg(); 1912 1913 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 1914 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1915 1916 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1917 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1918 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1919 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1920 1921 MI.eraseFromParent(); 1922 return Legalized; 1923 } 1924 case G_USUBO: { 1925 Register Res = MI.getOperand(0).getReg(); 1926 Register BorrowOut = MI.getOperand(1).getReg(); 1927 Register LHS = MI.getOperand(2).getReg(); 1928 Register RHS = MI.getOperand(3).getReg(); 1929 1930 MIRBuilder.buildSub(Res, LHS, RHS); 1931 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 1932 1933 MI.eraseFromParent(); 1934 return Legalized; 1935 } 1936 case G_USUBE: { 1937 Register Res = MI.getOperand(0).getReg(); 1938 Register BorrowOut = MI.getOperand(1).getReg(); 1939 Register LHS = MI.getOperand(2).getReg(); 1940 Register RHS = MI.getOperand(3).getReg(); 1941 Register BorrowIn = MI.getOperand(4).getReg(); 1942 1943 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 1944 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 1945 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1946 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1947 1948 MIRBuilder.buildSub(TmpRes, LHS, RHS); 1949 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 1950 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 1951 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 1952 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 1953 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 1954 1955 MI.eraseFromParent(); 1956 return Legalized; 1957 } 1958 case G_UITOFP: 1959 return lowerUITOFP(MI, TypeIdx, Ty); 1960 case G_SITOFP: 1961 return lowerSITOFP(MI, TypeIdx, Ty); 1962 case G_SMIN: 1963 case G_SMAX: 1964 case G_UMIN: 1965 case G_UMAX: 1966 return lowerMinMax(MI, TypeIdx, Ty); 1967 case G_FCOPYSIGN: 1968 return lowerFCopySign(MI, TypeIdx, Ty); 1969 case G_FMINNUM: 1970 case G_FMAXNUM: 1971 return lowerFMinNumMaxNum(MI); 1972 case G_UNMERGE_VALUES: 1973 return lowerUnmergeValues(MI); 1974 } 1975 } 1976 1977 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 1978 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 1979 SmallVector<Register, 2> DstRegs; 1980 1981 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1982 Register DstReg = MI.getOperand(0).getReg(); 1983 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1984 int NumParts = Size / NarrowSize; 1985 // FIXME: Don't know how to handle the situation where the small vectors 1986 // aren't all the same size yet. 1987 if (Size % NarrowSize != 0) 1988 return UnableToLegalize; 1989 1990 for (int i = 0; i < NumParts; ++i) { 1991 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1992 MIRBuilder.buildUndef(TmpReg); 1993 DstRegs.push_back(TmpReg); 1994 } 1995 1996 if (NarrowTy.isVector()) 1997 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1998 else 1999 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2000 2001 MI.eraseFromParent(); 2002 return Legalized; 2003 } 2004 2005 LegalizerHelper::LegalizeResult 2006 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2007 LLT NarrowTy) { 2008 const unsigned Opc = MI.getOpcode(); 2009 const unsigned NumOps = MI.getNumOperands() - 1; 2010 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2011 const Register DstReg = MI.getOperand(0).getReg(); 2012 const unsigned Flags = MI.getFlags(); 2013 const LLT DstTy = MRI.getType(DstReg); 2014 const unsigned Size = DstTy.getSizeInBits(); 2015 const int NumParts = Size / NarrowSize; 2016 const LLT EltTy = DstTy.getElementType(); 2017 const unsigned EltSize = EltTy.getSizeInBits(); 2018 const unsigned BitsForNumParts = NarrowSize * NumParts; 2019 2020 // Check if we have any leftovers. If we do, then only handle the case where 2021 // the leftover is one element. 2022 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2023 return UnableToLegalize; 2024 2025 if (BitsForNumParts != Size) { 2026 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2027 MIRBuilder.buildUndef(AccumDstReg); 2028 2029 // Handle the pieces which evenly divide into the requested type with 2030 // extract/op/insert sequence. 2031 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2032 SmallVector<SrcOp, 4> SrcOps; 2033 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2034 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2035 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 2036 SrcOps.push_back(PartOpReg); 2037 } 2038 2039 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2040 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2041 2042 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2043 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2044 AccumDstReg = PartInsertReg; 2045 } 2046 2047 // Handle the remaining element sized leftover piece. 2048 SmallVector<SrcOp, 4> SrcOps; 2049 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2050 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2051 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 2052 BitsForNumParts); 2053 SrcOps.push_back(PartOpReg); 2054 } 2055 2056 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2057 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2058 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2059 MI.eraseFromParent(); 2060 2061 return Legalized; 2062 } 2063 2064 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2065 2066 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2067 2068 if (NumOps >= 2) 2069 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2070 2071 if (NumOps >= 3) 2072 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2073 2074 for (int i = 0; i < NumParts; ++i) { 2075 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2076 2077 if (NumOps == 1) 2078 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2079 else if (NumOps == 2) { 2080 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2081 } else if (NumOps == 3) { 2082 MIRBuilder.buildInstr(Opc, {DstReg}, 2083 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2084 } 2085 2086 DstRegs.push_back(DstReg); 2087 } 2088 2089 if (NarrowTy.isVector()) 2090 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2091 else 2092 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2093 2094 MI.eraseFromParent(); 2095 return Legalized; 2096 } 2097 2098 // Handle splitting vector operations which need to have the same number of 2099 // elements in each type index, but each type index may have a different element 2100 // type. 2101 // 2102 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2103 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2104 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2105 // 2106 // Also handles some irregular breakdown cases, e.g. 2107 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2108 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2109 // s64 = G_SHL s64, s32 2110 LegalizerHelper::LegalizeResult 2111 LegalizerHelper::fewerElementsVectorMultiEltType( 2112 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2113 if (TypeIdx != 0) 2114 return UnableToLegalize; 2115 2116 const LLT NarrowTy0 = NarrowTyArg; 2117 const unsigned NewNumElts = 2118 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2119 2120 const Register DstReg = MI.getOperand(0).getReg(); 2121 LLT DstTy = MRI.getType(DstReg); 2122 LLT LeftoverTy0; 2123 2124 // All of the operands need to have the same number of elements, so if we can 2125 // determine a type breakdown for the result type, we can for all of the 2126 // source types. 2127 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2128 if (NumParts < 0) 2129 return UnableToLegalize; 2130 2131 SmallVector<MachineInstrBuilder, 4> NewInsts; 2132 2133 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2134 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2135 2136 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2137 LLT LeftoverTy; 2138 Register SrcReg = MI.getOperand(I).getReg(); 2139 LLT SrcTyI = MRI.getType(SrcReg); 2140 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2141 LLT LeftoverTyI; 2142 2143 // Split this operand into the requested typed registers, and any leftover 2144 // required to reproduce the original type. 2145 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2146 LeftoverRegs)) 2147 return UnableToLegalize; 2148 2149 if (I == 1) { 2150 // For the first operand, create an instruction for each part and setup 2151 // the result. 2152 for (Register PartReg : PartRegs) { 2153 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2154 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2155 .addDef(PartDstReg) 2156 .addUse(PartReg)); 2157 DstRegs.push_back(PartDstReg); 2158 } 2159 2160 for (Register LeftoverReg : LeftoverRegs) { 2161 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2162 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2163 .addDef(PartDstReg) 2164 .addUse(LeftoverReg)); 2165 LeftoverDstRegs.push_back(PartDstReg); 2166 } 2167 } else { 2168 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2169 2170 // Add the newly created operand splits to the existing instructions. The 2171 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2172 // pieces. 2173 unsigned InstCount = 0; 2174 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2175 NewInsts[InstCount++].addUse(PartRegs[J]); 2176 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2177 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2178 } 2179 2180 PartRegs.clear(); 2181 LeftoverRegs.clear(); 2182 } 2183 2184 // Insert the newly built operations and rebuild the result register. 2185 for (auto &MIB : NewInsts) 2186 MIRBuilder.insertInstr(MIB); 2187 2188 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2189 2190 MI.eraseFromParent(); 2191 return Legalized; 2192 } 2193 2194 LegalizerHelper::LegalizeResult 2195 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2196 LLT NarrowTy) { 2197 if (TypeIdx != 0) 2198 return UnableToLegalize; 2199 2200 Register DstReg = MI.getOperand(0).getReg(); 2201 Register SrcReg = MI.getOperand(1).getReg(); 2202 LLT DstTy = MRI.getType(DstReg); 2203 LLT SrcTy = MRI.getType(SrcReg); 2204 2205 LLT NarrowTy0 = NarrowTy; 2206 LLT NarrowTy1; 2207 unsigned NumParts; 2208 2209 if (NarrowTy.isVector()) { 2210 // Uneven breakdown not handled. 2211 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2212 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2213 return UnableToLegalize; 2214 2215 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2216 } else { 2217 NumParts = DstTy.getNumElements(); 2218 NarrowTy1 = SrcTy.getElementType(); 2219 } 2220 2221 SmallVector<Register, 4> SrcRegs, DstRegs; 2222 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2223 2224 for (unsigned I = 0; I < NumParts; ++I) { 2225 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2226 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 2227 .addDef(DstReg) 2228 .addUse(SrcRegs[I]); 2229 2230 NewInst->setFlags(MI.getFlags()); 2231 DstRegs.push_back(DstReg); 2232 } 2233 2234 if (NarrowTy.isVector()) 2235 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2236 else 2237 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2238 2239 MI.eraseFromParent(); 2240 return Legalized; 2241 } 2242 2243 LegalizerHelper::LegalizeResult 2244 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2245 LLT NarrowTy) { 2246 Register DstReg = MI.getOperand(0).getReg(); 2247 Register Src0Reg = MI.getOperand(2).getReg(); 2248 LLT DstTy = MRI.getType(DstReg); 2249 LLT SrcTy = MRI.getType(Src0Reg); 2250 2251 unsigned NumParts; 2252 LLT NarrowTy0, NarrowTy1; 2253 2254 if (TypeIdx == 0) { 2255 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2256 unsigned OldElts = DstTy.getNumElements(); 2257 2258 NarrowTy0 = NarrowTy; 2259 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2260 NarrowTy1 = NarrowTy.isVector() ? 2261 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2262 SrcTy.getElementType(); 2263 2264 } else { 2265 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2266 unsigned OldElts = SrcTy.getNumElements(); 2267 2268 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2269 NarrowTy.getNumElements(); 2270 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2271 DstTy.getScalarSizeInBits()); 2272 NarrowTy1 = NarrowTy; 2273 } 2274 2275 // FIXME: Don't know how to handle the situation where the small vectors 2276 // aren't all the same size yet. 2277 if (NarrowTy1.isVector() && 2278 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2279 return UnableToLegalize; 2280 2281 CmpInst::Predicate Pred 2282 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2283 2284 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2285 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2286 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2287 2288 for (unsigned I = 0; I < NumParts; ++I) { 2289 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2290 DstRegs.push_back(DstReg); 2291 2292 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2293 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2294 else { 2295 MachineInstr *NewCmp 2296 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2297 NewCmp->setFlags(MI.getFlags()); 2298 } 2299 } 2300 2301 if (NarrowTy1.isVector()) 2302 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2303 else 2304 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2305 2306 MI.eraseFromParent(); 2307 return Legalized; 2308 } 2309 2310 LegalizerHelper::LegalizeResult 2311 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2312 LLT NarrowTy) { 2313 Register DstReg = MI.getOperand(0).getReg(); 2314 Register CondReg = MI.getOperand(1).getReg(); 2315 2316 unsigned NumParts = 0; 2317 LLT NarrowTy0, NarrowTy1; 2318 2319 LLT DstTy = MRI.getType(DstReg); 2320 LLT CondTy = MRI.getType(CondReg); 2321 unsigned Size = DstTy.getSizeInBits(); 2322 2323 assert(TypeIdx == 0 || CondTy.isVector()); 2324 2325 if (TypeIdx == 0) { 2326 NarrowTy0 = NarrowTy; 2327 NarrowTy1 = CondTy; 2328 2329 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2330 // FIXME: Don't know how to handle the situation where the small vectors 2331 // aren't all the same size yet. 2332 if (Size % NarrowSize != 0) 2333 return UnableToLegalize; 2334 2335 NumParts = Size / NarrowSize; 2336 2337 // Need to break down the condition type 2338 if (CondTy.isVector()) { 2339 if (CondTy.getNumElements() == NumParts) 2340 NarrowTy1 = CondTy.getElementType(); 2341 else 2342 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2343 CondTy.getScalarSizeInBits()); 2344 } 2345 } else { 2346 NumParts = CondTy.getNumElements(); 2347 if (NarrowTy.isVector()) { 2348 // TODO: Handle uneven breakdown. 2349 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2350 return UnableToLegalize; 2351 2352 return UnableToLegalize; 2353 } else { 2354 NarrowTy0 = DstTy.getElementType(); 2355 NarrowTy1 = NarrowTy; 2356 } 2357 } 2358 2359 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2360 if (CondTy.isVector()) 2361 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2362 2363 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2364 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2365 2366 for (unsigned i = 0; i < NumParts; ++i) { 2367 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2368 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2369 Src1Regs[i], Src2Regs[i]); 2370 DstRegs.push_back(DstReg); 2371 } 2372 2373 if (NarrowTy0.isVector()) 2374 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2375 else 2376 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2377 2378 MI.eraseFromParent(); 2379 return Legalized; 2380 } 2381 2382 LegalizerHelper::LegalizeResult 2383 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2384 LLT NarrowTy) { 2385 const Register DstReg = MI.getOperand(0).getReg(); 2386 LLT PhiTy = MRI.getType(DstReg); 2387 LLT LeftoverTy; 2388 2389 // All of the operands need to have the same number of elements, so if we can 2390 // determine a type breakdown for the result type, we can for all of the 2391 // source types. 2392 int NumParts, NumLeftover; 2393 std::tie(NumParts, NumLeftover) 2394 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2395 if (NumParts < 0) 2396 return UnableToLegalize; 2397 2398 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2399 SmallVector<MachineInstrBuilder, 4> NewInsts; 2400 2401 const int TotalNumParts = NumParts + NumLeftover; 2402 2403 // Insert the new phis in the result block first. 2404 for (int I = 0; I != TotalNumParts; ++I) { 2405 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2406 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2407 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2408 .addDef(PartDstReg)); 2409 if (I < NumParts) 2410 DstRegs.push_back(PartDstReg); 2411 else 2412 LeftoverDstRegs.push_back(PartDstReg); 2413 } 2414 2415 MachineBasicBlock *MBB = MI.getParent(); 2416 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2417 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2418 2419 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2420 2421 // Insert code to extract the incoming values in each predecessor block. 2422 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2423 PartRegs.clear(); 2424 LeftoverRegs.clear(); 2425 2426 Register SrcReg = MI.getOperand(I).getReg(); 2427 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2428 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2429 2430 LLT Unused; 2431 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2432 LeftoverRegs)) 2433 return UnableToLegalize; 2434 2435 // Add the newly created operand splits to the existing instructions. The 2436 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2437 // pieces. 2438 for (int J = 0; J != TotalNumParts; ++J) { 2439 MachineInstrBuilder MIB = NewInsts[J]; 2440 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2441 MIB.addMBB(&OpMBB); 2442 } 2443 } 2444 2445 MI.eraseFromParent(); 2446 return Legalized; 2447 } 2448 2449 LegalizerHelper::LegalizeResult 2450 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2451 LLT NarrowTy) { 2452 // FIXME: Don't know how to handle secondary types yet. 2453 if (TypeIdx != 0) 2454 return UnableToLegalize; 2455 2456 MachineMemOperand *MMO = *MI.memoperands_begin(); 2457 2458 // This implementation doesn't work for atomics. Give up instead of doing 2459 // something invalid. 2460 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2461 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2462 return UnableToLegalize; 2463 2464 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2465 Register ValReg = MI.getOperand(0).getReg(); 2466 Register AddrReg = MI.getOperand(1).getReg(); 2467 LLT ValTy = MRI.getType(ValReg); 2468 2469 int NumParts = -1; 2470 int NumLeftover = -1; 2471 LLT LeftoverTy; 2472 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 2473 if (IsLoad) { 2474 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2475 } else { 2476 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2477 NarrowLeftoverRegs)) { 2478 NumParts = NarrowRegs.size(); 2479 NumLeftover = NarrowLeftoverRegs.size(); 2480 } 2481 } 2482 2483 if (NumParts == -1) 2484 return UnableToLegalize; 2485 2486 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2487 2488 unsigned TotalSize = ValTy.getSizeInBits(); 2489 2490 // Split the load/store into PartTy sized pieces starting at Offset. If this 2491 // is a load, return the new registers in ValRegs. For a store, each elements 2492 // of ValRegs should be PartTy. Returns the next offset that needs to be 2493 // handled. 2494 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 2495 unsigned Offset) -> unsigned { 2496 MachineFunction &MF = MIRBuilder.getMF(); 2497 unsigned PartSize = PartTy.getSizeInBits(); 2498 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2499 Offset += PartSize, ++Idx) { 2500 unsigned ByteSize = PartSize / 8; 2501 unsigned ByteOffset = Offset / 8; 2502 Register NewAddrReg; 2503 2504 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2505 2506 MachineMemOperand *NewMMO = 2507 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2508 2509 if (IsLoad) { 2510 Register Dst = MRI.createGenericVirtualRegister(PartTy); 2511 ValRegs.push_back(Dst); 2512 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2513 } else { 2514 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2515 } 2516 } 2517 2518 return Offset; 2519 }; 2520 2521 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2522 2523 // Handle the rest of the register if this isn't an even type breakdown. 2524 if (LeftoverTy.isValid()) 2525 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2526 2527 if (IsLoad) { 2528 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2529 LeftoverTy, NarrowLeftoverRegs); 2530 } 2531 2532 MI.eraseFromParent(); 2533 return Legalized; 2534 } 2535 2536 LegalizerHelper::LegalizeResult 2537 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2538 LLT NarrowTy) { 2539 using namespace TargetOpcode; 2540 2541 MIRBuilder.setInstr(MI); 2542 switch (MI.getOpcode()) { 2543 case G_IMPLICIT_DEF: 2544 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2545 case G_AND: 2546 case G_OR: 2547 case G_XOR: 2548 case G_ADD: 2549 case G_SUB: 2550 case G_MUL: 2551 case G_SMULH: 2552 case G_UMULH: 2553 case G_FADD: 2554 case G_FMUL: 2555 case G_FSUB: 2556 case G_FNEG: 2557 case G_FABS: 2558 case G_FCANONICALIZE: 2559 case G_FDIV: 2560 case G_FREM: 2561 case G_FMA: 2562 case G_FPOW: 2563 case G_FEXP: 2564 case G_FEXP2: 2565 case G_FLOG: 2566 case G_FLOG2: 2567 case G_FLOG10: 2568 case G_FNEARBYINT: 2569 case G_FCEIL: 2570 case G_FFLOOR: 2571 case G_FRINT: 2572 case G_INTRINSIC_ROUND: 2573 case G_INTRINSIC_TRUNC: 2574 case G_FCOS: 2575 case G_FSIN: 2576 case G_FSQRT: 2577 case G_BSWAP: 2578 case G_SDIV: 2579 case G_SMIN: 2580 case G_SMAX: 2581 case G_UMIN: 2582 case G_UMAX: 2583 case G_FMINNUM: 2584 case G_FMAXNUM: 2585 case G_FMINNUM_IEEE: 2586 case G_FMAXNUM_IEEE: 2587 case G_FMINIMUM: 2588 case G_FMAXIMUM: 2589 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2590 case G_SHL: 2591 case G_LSHR: 2592 case G_ASHR: 2593 case G_CTLZ: 2594 case G_CTLZ_ZERO_UNDEF: 2595 case G_CTTZ: 2596 case G_CTTZ_ZERO_UNDEF: 2597 case G_CTPOP: 2598 case G_FCOPYSIGN: 2599 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2600 case G_ZEXT: 2601 case G_SEXT: 2602 case G_ANYEXT: 2603 case G_FPEXT: 2604 case G_FPTRUNC: 2605 case G_SITOFP: 2606 case G_UITOFP: 2607 case G_FPTOSI: 2608 case G_FPTOUI: 2609 case G_INTTOPTR: 2610 case G_PTRTOINT: 2611 case G_ADDRSPACE_CAST: 2612 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2613 case G_ICMP: 2614 case G_FCMP: 2615 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2616 case G_SELECT: 2617 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2618 case G_PHI: 2619 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 2620 case G_LOAD: 2621 case G_STORE: 2622 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2623 default: 2624 return UnableToLegalize; 2625 } 2626 } 2627 2628 LegalizerHelper::LegalizeResult 2629 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2630 const LLT HalfTy, const LLT AmtTy) { 2631 2632 Register InL = MRI.createGenericVirtualRegister(HalfTy); 2633 Register InH = MRI.createGenericVirtualRegister(HalfTy); 2634 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2635 2636 if (Amt.isNullValue()) { 2637 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2638 MI.eraseFromParent(); 2639 return Legalized; 2640 } 2641 2642 LLT NVT = HalfTy; 2643 unsigned NVTBits = HalfTy.getSizeInBits(); 2644 unsigned VTBits = 2 * NVTBits; 2645 2646 SrcOp Lo(Register(0)), Hi(Register(0)); 2647 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2648 if (Amt.ugt(VTBits)) { 2649 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2650 } else if (Amt.ugt(NVTBits)) { 2651 Lo = MIRBuilder.buildConstant(NVT, 0); 2652 Hi = MIRBuilder.buildShl(NVT, InL, 2653 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2654 } else if (Amt == NVTBits) { 2655 Lo = MIRBuilder.buildConstant(NVT, 0); 2656 Hi = InL; 2657 } else { 2658 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2659 auto OrLHS = 2660 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2661 auto OrRHS = MIRBuilder.buildLShr( 2662 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2663 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2664 } 2665 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2666 if (Amt.ugt(VTBits)) { 2667 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2668 } else if (Amt.ugt(NVTBits)) { 2669 Lo = MIRBuilder.buildLShr(NVT, InH, 2670 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2671 Hi = MIRBuilder.buildConstant(NVT, 0); 2672 } else if (Amt == NVTBits) { 2673 Lo = InH; 2674 Hi = MIRBuilder.buildConstant(NVT, 0); 2675 } else { 2676 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2677 2678 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2679 auto OrRHS = MIRBuilder.buildShl( 2680 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2681 2682 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2683 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 2684 } 2685 } else { 2686 if (Amt.ugt(VTBits)) { 2687 Hi = Lo = MIRBuilder.buildAShr( 2688 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2689 } else if (Amt.ugt(NVTBits)) { 2690 Lo = MIRBuilder.buildAShr(NVT, InH, 2691 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2692 Hi = MIRBuilder.buildAShr(NVT, InH, 2693 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2694 } else if (Amt == NVTBits) { 2695 Lo = InH; 2696 Hi = MIRBuilder.buildAShr(NVT, InH, 2697 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2698 } else { 2699 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2700 2701 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2702 auto OrRHS = MIRBuilder.buildShl( 2703 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2704 2705 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2706 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 2707 } 2708 } 2709 2710 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 2711 MI.eraseFromParent(); 2712 2713 return Legalized; 2714 } 2715 2716 // TODO: Optimize if constant shift amount. 2717 LegalizerHelper::LegalizeResult 2718 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 2719 LLT RequestedTy) { 2720 if (TypeIdx == 1) { 2721 Observer.changingInstr(MI); 2722 narrowScalarSrc(MI, RequestedTy, 2); 2723 Observer.changedInstr(MI); 2724 return Legalized; 2725 } 2726 2727 Register DstReg = MI.getOperand(0).getReg(); 2728 LLT DstTy = MRI.getType(DstReg); 2729 if (DstTy.isVector()) 2730 return UnableToLegalize; 2731 2732 Register Amt = MI.getOperand(2).getReg(); 2733 LLT ShiftAmtTy = MRI.getType(Amt); 2734 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 2735 if (DstEltSize % 2 != 0) 2736 return UnableToLegalize; 2737 2738 // Ignore the input type. We can only go to exactly half the size of the 2739 // input. If that isn't small enough, the resulting pieces will be further 2740 // legalized. 2741 const unsigned NewBitSize = DstEltSize / 2; 2742 const LLT HalfTy = LLT::scalar(NewBitSize); 2743 const LLT CondTy = LLT::scalar(1); 2744 2745 if (const MachineInstr *KShiftAmt = 2746 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 2747 return narrowScalarShiftByConstant( 2748 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 2749 } 2750 2751 // TODO: Expand with known bits. 2752 2753 // Handle the fully general expansion by an unknown amount. 2754 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 2755 2756 Register InL = MRI.createGenericVirtualRegister(HalfTy); 2757 Register InH = MRI.createGenericVirtualRegister(HalfTy); 2758 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2759 2760 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 2761 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 2762 2763 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 2764 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 2765 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 2766 2767 Register ResultRegs[2]; 2768 switch (MI.getOpcode()) { 2769 case TargetOpcode::G_SHL: { 2770 // Short: ShAmt < NewBitSize 2771 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2772 2773 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2774 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 2775 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2776 2777 // Long: ShAmt >= NewBitSize 2778 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 2779 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 2780 2781 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 2782 auto Hi = MIRBuilder.buildSelect( 2783 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 2784 2785 ResultRegs[0] = Lo.getReg(0); 2786 ResultRegs[1] = Hi.getReg(0); 2787 break; 2788 } 2789 case TargetOpcode::G_LSHR: { 2790 // Short: ShAmt < NewBitSize 2791 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt); 2792 2793 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2794 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 2795 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2796 2797 // Long: ShAmt >= NewBitSize 2798 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 2799 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2800 2801 auto Lo = MIRBuilder.buildSelect( 2802 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2803 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2804 2805 ResultRegs[0] = Lo.getReg(0); 2806 ResultRegs[1] = Hi.getReg(0); 2807 break; 2808 } 2809 case TargetOpcode::G_ASHR: { 2810 // Short: ShAmt < NewBitSize 2811 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt); 2812 2813 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2814 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack); 2815 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2816 2817 // Long: ShAmt >= NewBitSize 2818 2819 // Sign of Hi part. 2820 auto HiL = MIRBuilder.buildAShr( 2821 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1)); 2822 2823 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2824 2825 auto Lo = MIRBuilder.buildSelect( 2826 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2827 2828 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2829 2830 ResultRegs[0] = Lo.getReg(0); 2831 ResultRegs[1] = Hi.getReg(0); 2832 break; 2833 } 2834 default: 2835 llvm_unreachable("not a shift"); 2836 } 2837 2838 MIRBuilder.buildMerge(DstReg, ResultRegs); 2839 MI.eraseFromParent(); 2840 return Legalized; 2841 } 2842 2843 LegalizerHelper::LegalizeResult 2844 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2845 LLT MoreTy) { 2846 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2847 2848 Observer.changingInstr(MI); 2849 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2850 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2851 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2852 moreElementsVectorSrc(MI, MoreTy, I); 2853 } 2854 2855 MachineBasicBlock &MBB = *MI.getParent(); 2856 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2857 moreElementsVectorDst(MI, MoreTy, 0); 2858 Observer.changedInstr(MI); 2859 return Legalized; 2860 } 2861 2862 LegalizerHelper::LegalizeResult 2863 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 2864 LLT MoreTy) { 2865 MIRBuilder.setInstr(MI); 2866 unsigned Opc = MI.getOpcode(); 2867 switch (Opc) { 2868 case TargetOpcode::G_IMPLICIT_DEF: 2869 case TargetOpcode::G_LOAD: { 2870 if (TypeIdx != 0) 2871 return UnableToLegalize; 2872 Observer.changingInstr(MI); 2873 moreElementsVectorDst(MI, MoreTy, 0); 2874 Observer.changedInstr(MI); 2875 return Legalized; 2876 } 2877 case TargetOpcode::G_STORE: 2878 if (TypeIdx != 0) 2879 return UnableToLegalize; 2880 Observer.changingInstr(MI); 2881 moreElementsVectorSrc(MI, MoreTy, 0); 2882 Observer.changedInstr(MI); 2883 return Legalized; 2884 case TargetOpcode::G_AND: 2885 case TargetOpcode::G_OR: 2886 case TargetOpcode::G_XOR: 2887 case TargetOpcode::G_SMIN: 2888 case TargetOpcode::G_SMAX: 2889 case TargetOpcode::G_UMIN: 2890 case TargetOpcode::G_UMAX: { 2891 Observer.changingInstr(MI); 2892 moreElementsVectorSrc(MI, MoreTy, 1); 2893 moreElementsVectorSrc(MI, MoreTy, 2); 2894 moreElementsVectorDst(MI, MoreTy, 0); 2895 Observer.changedInstr(MI); 2896 return Legalized; 2897 } 2898 case TargetOpcode::G_EXTRACT: 2899 if (TypeIdx != 1) 2900 return UnableToLegalize; 2901 Observer.changingInstr(MI); 2902 moreElementsVectorSrc(MI, MoreTy, 1); 2903 Observer.changedInstr(MI); 2904 return Legalized; 2905 case TargetOpcode::G_INSERT: 2906 if (TypeIdx != 0) 2907 return UnableToLegalize; 2908 Observer.changingInstr(MI); 2909 moreElementsVectorSrc(MI, MoreTy, 1); 2910 moreElementsVectorDst(MI, MoreTy, 0); 2911 Observer.changedInstr(MI); 2912 return Legalized; 2913 case TargetOpcode::G_SELECT: 2914 if (TypeIdx != 0) 2915 return UnableToLegalize; 2916 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 2917 return UnableToLegalize; 2918 2919 Observer.changingInstr(MI); 2920 moreElementsVectorSrc(MI, MoreTy, 2); 2921 moreElementsVectorSrc(MI, MoreTy, 3); 2922 moreElementsVectorDst(MI, MoreTy, 0); 2923 Observer.changedInstr(MI); 2924 return Legalized; 2925 case TargetOpcode::G_PHI: 2926 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 2927 default: 2928 return UnableToLegalize; 2929 } 2930 } 2931 2932 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 2933 ArrayRef<Register> Src1Regs, 2934 ArrayRef<Register> Src2Regs, 2935 LLT NarrowTy) { 2936 MachineIRBuilder &B = MIRBuilder; 2937 unsigned SrcParts = Src1Regs.size(); 2938 unsigned DstParts = DstRegs.size(); 2939 2940 unsigned DstIdx = 0; // Low bits of the result. 2941 Register FactorSum = 2942 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 2943 DstRegs[DstIdx] = FactorSum; 2944 2945 unsigned CarrySumPrevDstIdx; 2946 SmallVector<Register, 4> Factors; 2947 2948 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 2949 // Collect low parts of muls for DstIdx. 2950 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 2951 i <= std::min(DstIdx, SrcParts - 1); ++i) { 2952 MachineInstrBuilder Mul = 2953 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 2954 Factors.push_back(Mul.getReg(0)); 2955 } 2956 // Collect high parts of muls from previous DstIdx. 2957 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 2958 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 2959 MachineInstrBuilder Umulh = 2960 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 2961 Factors.push_back(Umulh.getReg(0)); 2962 } 2963 // Add CarrySum from additons calculated for previous DstIdx. 2964 if (DstIdx != 1) { 2965 Factors.push_back(CarrySumPrevDstIdx); 2966 } 2967 2968 Register CarrySum; 2969 // Add all factors and accumulate all carries into CarrySum. 2970 if (DstIdx != DstParts - 1) { 2971 MachineInstrBuilder Uaddo = 2972 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 2973 FactorSum = Uaddo.getReg(0); 2974 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 2975 for (unsigned i = 2; i < Factors.size(); ++i) { 2976 MachineInstrBuilder Uaddo = 2977 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 2978 FactorSum = Uaddo.getReg(0); 2979 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 2980 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 2981 } 2982 } else { 2983 // Since value for the next index is not calculated, neither is CarrySum. 2984 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 2985 for (unsigned i = 2; i < Factors.size(); ++i) 2986 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 2987 } 2988 2989 CarrySumPrevDstIdx = CarrySum; 2990 DstRegs[DstIdx] = FactorSum; 2991 Factors.clear(); 2992 } 2993 } 2994 2995 LegalizerHelper::LegalizeResult 2996 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 2997 Register DstReg = MI.getOperand(0).getReg(); 2998 Register Src1 = MI.getOperand(1).getReg(); 2999 Register Src2 = MI.getOperand(2).getReg(); 3000 3001 LLT Ty = MRI.getType(DstReg); 3002 if (Ty.isVector()) 3003 return UnableToLegalize; 3004 3005 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3006 unsigned DstSize = Ty.getSizeInBits(); 3007 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3008 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3009 return UnableToLegalize; 3010 3011 unsigned NumDstParts = DstSize / NarrowSize; 3012 unsigned NumSrcParts = SrcSize / NarrowSize; 3013 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3014 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3015 3016 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; 3017 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3018 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3019 DstTmpRegs.resize(DstTmpParts); 3020 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3021 3022 // Take only high half of registers if this is high mul. 3023 ArrayRef<Register> DstRegs( 3024 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3025 MIRBuilder.buildMerge(DstReg, DstRegs); 3026 MI.eraseFromParent(); 3027 return Legalized; 3028 } 3029 3030 LegalizerHelper::LegalizeResult 3031 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3032 LLT NarrowTy) { 3033 if (TypeIdx != 1) 3034 return UnableToLegalize; 3035 3036 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3037 3038 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3039 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3040 // NarrowSize. 3041 if (SizeOp1 % NarrowSize != 0) 3042 return UnableToLegalize; 3043 int NumParts = SizeOp1 / NarrowSize; 3044 3045 SmallVector<Register, 2> SrcRegs, DstRegs; 3046 SmallVector<uint64_t, 2> Indexes; 3047 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3048 3049 Register OpReg = MI.getOperand(0).getReg(); 3050 uint64_t OpStart = MI.getOperand(2).getImm(); 3051 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3052 for (int i = 0; i < NumParts; ++i) { 3053 unsigned SrcStart = i * NarrowSize; 3054 3055 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3056 // No part of the extract uses this subregister, ignore it. 3057 continue; 3058 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3059 // The entire subregister is extracted, forward the value. 3060 DstRegs.push_back(SrcRegs[i]); 3061 continue; 3062 } 3063 3064 // OpSegStart is where this destination segment would start in OpReg if it 3065 // extended infinitely in both directions. 3066 int64_t ExtractOffset; 3067 uint64_t SegSize; 3068 if (OpStart < SrcStart) { 3069 ExtractOffset = 0; 3070 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3071 } else { 3072 ExtractOffset = OpStart - SrcStart; 3073 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3074 } 3075 3076 Register SegReg = SrcRegs[i]; 3077 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3078 // A genuine extract is needed. 3079 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3080 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3081 } 3082 3083 DstRegs.push_back(SegReg); 3084 } 3085 3086 Register DstReg = MI.getOperand(0).getReg(); 3087 if(MRI.getType(DstReg).isVector()) 3088 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3089 else 3090 MIRBuilder.buildMerge(DstReg, DstRegs); 3091 MI.eraseFromParent(); 3092 return Legalized; 3093 } 3094 3095 LegalizerHelper::LegalizeResult 3096 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3097 LLT NarrowTy) { 3098 // FIXME: Don't know how to handle secondary types yet. 3099 if (TypeIdx != 0) 3100 return UnableToLegalize; 3101 3102 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3103 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3104 3105 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3106 // NarrowSize. 3107 if (SizeOp0 % NarrowSize != 0) 3108 return UnableToLegalize; 3109 3110 int NumParts = SizeOp0 / NarrowSize; 3111 3112 SmallVector<Register, 2> SrcRegs, DstRegs; 3113 SmallVector<uint64_t, 2> Indexes; 3114 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3115 3116 Register OpReg = MI.getOperand(2).getReg(); 3117 uint64_t OpStart = MI.getOperand(3).getImm(); 3118 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3119 for (int i = 0; i < NumParts; ++i) { 3120 unsigned DstStart = i * NarrowSize; 3121 3122 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3123 // No part of the insert affects this subregister, forward the original. 3124 DstRegs.push_back(SrcRegs[i]); 3125 continue; 3126 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3127 // The entire subregister is defined by this insert, forward the new 3128 // value. 3129 DstRegs.push_back(OpReg); 3130 continue; 3131 } 3132 3133 // OpSegStart is where this destination segment would start in OpReg if it 3134 // extended infinitely in both directions. 3135 int64_t ExtractOffset, InsertOffset; 3136 uint64_t SegSize; 3137 if (OpStart < DstStart) { 3138 InsertOffset = 0; 3139 ExtractOffset = DstStart - OpStart; 3140 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3141 } else { 3142 InsertOffset = OpStart - DstStart; 3143 ExtractOffset = 0; 3144 SegSize = 3145 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3146 } 3147 3148 Register SegReg = OpReg; 3149 if (ExtractOffset != 0 || SegSize != OpSize) { 3150 // A genuine extract is needed. 3151 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3152 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3153 } 3154 3155 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3156 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3157 DstRegs.push_back(DstReg); 3158 } 3159 3160 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3161 Register DstReg = MI.getOperand(0).getReg(); 3162 if(MRI.getType(DstReg).isVector()) 3163 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3164 else 3165 MIRBuilder.buildMerge(DstReg, DstRegs); 3166 MI.eraseFromParent(); 3167 return Legalized; 3168 } 3169 3170 LegalizerHelper::LegalizeResult 3171 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3172 LLT NarrowTy) { 3173 Register DstReg = MI.getOperand(0).getReg(); 3174 LLT DstTy = MRI.getType(DstReg); 3175 3176 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3177 3178 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3179 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3180 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3181 LLT LeftoverTy; 3182 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3183 Src0Regs, Src0LeftoverRegs)) 3184 return UnableToLegalize; 3185 3186 LLT Unused; 3187 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3188 Src1Regs, Src1LeftoverRegs)) 3189 llvm_unreachable("inconsistent extractParts result"); 3190 3191 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3192 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3193 {Src0Regs[I], Src1Regs[I]}); 3194 DstRegs.push_back(Inst->getOperand(0).getReg()); 3195 } 3196 3197 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3198 auto Inst = MIRBuilder.buildInstr( 3199 MI.getOpcode(), 3200 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3201 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 3202 } 3203 3204 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3205 LeftoverTy, DstLeftoverRegs); 3206 3207 MI.eraseFromParent(); 3208 return Legalized; 3209 } 3210 3211 LegalizerHelper::LegalizeResult 3212 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3213 LLT NarrowTy) { 3214 if (TypeIdx != 0) 3215 return UnableToLegalize; 3216 3217 Register CondReg = MI.getOperand(1).getReg(); 3218 LLT CondTy = MRI.getType(CondReg); 3219 if (CondTy.isVector()) // TODO: Handle vselect 3220 return UnableToLegalize; 3221 3222 Register DstReg = MI.getOperand(0).getReg(); 3223 LLT DstTy = MRI.getType(DstReg); 3224 3225 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3226 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3227 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3228 LLT LeftoverTy; 3229 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3230 Src1Regs, Src1LeftoverRegs)) 3231 return UnableToLegalize; 3232 3233 LLT Unused; 3234 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3235 Src2Regs, Src2LeftoverRegs)) 3236 llvm_unreachable("inconsistent extractParts result"); 3237 3238 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3239 auto Select = MIRBuilder.buildSelect(NarrowTy, 3240 CondReg, Src1Regs[I], Src2Regs[I]); 3241 DstRegs.push_back(Select->getOperand(0).getReg()); 3242 } 3243 3244 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3245 auto Select = MIRBuilder.buildSelect( 3246 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3247 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 3248 } 3249 3250 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3251 LeftoverTy, DstLeftoverRegs); 3252 3253 MI.eraseFromParent(); 3254 return Legalized; 3255 } 3256 3257 LegalizerHelper::LegalizeResult 3258 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3259 unsigned Opc = MI.getOpcode(); 3260 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 3261 auto isSupported = [this](const LegalityQuery &Q) { 3262 auto QAction = LI.getAction(Q).Action; 3263 return QAction == Legal || QAction == Libcall || QAction == Custom; 3264 }; 3265 switch (Opc) { 3266 default: 3267 return UnableToLegalize; 3268 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 3269 // This trivially expands to CTLZ. 3270 Observer.changingInstr(MI); 3271 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 3272 Observer.changedInstr(MI); 3273 return Legalized; 3274 } 3275 case TargetOpcode::G_CTLZ: { 3276 Register SrcReg = MI.getOperand(1).getReg(); 3277 unsigned Len = Ty.getSizeInBits(); 3278 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 3279 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 3280 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 3281 {Ty}, {SrcReg}); 3282 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3283 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3284 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3285 SrcReg, MIBZero); 3286 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3287 MIBCtlzZU); 3288 MI.eraseFromParent(); 3289 return Legalized; 3290 } 3291 // for now, we do this: 3292 // NewLen = NextPowerOf2(Len); 3293 // x = x | (x >> 1); 3294 // x = x | (x >> 2); 3295 // ... 3296 // x = x | (x >>16); 3297 // x = x | (x >>32); // for 64-bit input 3298 // Upto NewLen/2 3299 // return Len - popcount(x); 3300 // 3301 // Ref: "Hacker's Delight" by Henry Warren 3302 Register Op = SrcReg; 3303 unsigned NewLen = PowerOf2Ceil(Len); 3304 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 3305 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 3306 auto MIBOp = MIRBuilder.buildInstr( 3307 TargetOpcode::G_OR, {Ty}, 3308 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 3309 {Op, MIBShiftAmt})}); 3310 Op = MIBOp->getOperand(0).getReg(); 3311 } 3312 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 3313 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3314 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 3315 MI.eraseFromParent(); 3316 return Legalized; 3317 } 3318 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 3319 // This trivially expands to CTTZ. 3320 Observer.changingInstr(MI); 3321 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 3322 Observer.changedInstr(MI); 3323 return Legalized; 3324 } 3325 case TargetOpcode::G_CTTZ: { 3326 Register SrcReg = MI.getOperand(1).getReg(); 3327 unsigned Len = Ty.getSizeInBits(); 3328 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 3329 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 3330 // zero. 3331 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 3332 {Ty}, {SrcReg}); 3333 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3334 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3335 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3336 SrcReg, MIBZero); 3337 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3338 MIBCttzZU); 3339 MI.eraseFromParent(); 3340 return Legalized; 3341 } 3342 // for now, we use: { return popcount(~x & (x - 1)); } 3343 // unless the target has ctlz but not ctpop, in which case we use: 3344 // { return 32 - nlz(~x & (x-1)); } 3345 // Ref: "Hacker's Delight" by Henry Warren 3346 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 3347 auto MIBNot = 3348 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 3349 auto MIBTmp = MIRBuilder.buildInstr( 3350 TargetOpcode::G_AND, {Ty}, 3351 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 3352 {SrcReg, MIBCstNeg1})}); 3353 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 3354 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 3355 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 3356 MIRBuilder.buildInstr( 3357 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3358 {MIBCstLen, 3359 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 3360 MI.eraseFromParent(); 3361 return Legalized; 3362 } 3363 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 3364 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 3365 return Legalized; 3366 } 3367 } 3368 } 3369 3370 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 3371 // representation. 3372 LegalizerHelper::LegalizeResult 3373 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3374 Register Dst = MI.getOperand(0).getReg(); 3375 Register Src = MI.getOperand(1).getReg(); 3376 const LLT S64 = LLT::scalar(64); 3377 const LLT S32 = LLT::scalar(32); 3378 const LLT S1 = LLT::scalar(1); 3379 3380 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3381 3382 // unsigned cul2f(ulong u) { 3383 // uint lz = clz(u); 3384 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3385 // u = (u << lz) & 0x7fffffffffffffffUL; 3386 // ulong t = u & 0xffffffffffUL; 3387 // uint v = (e << 23) | (uint)(u >> 40); 3388 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3389 // return as_float(v + r); 3390 // } 3391 3392 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3393 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3394 3395 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3396 3397 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3398 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3399 3400 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3401 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3402 3403 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3404 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3405 3406 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3407 3408 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3409 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3410 3411 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3412 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3413 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3414 3415 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 3416 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 3417 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 3418 auto One = MIRBuilder.buildConstant(S32, 1); 3419 3420 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 3421 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 3422 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 3423 MIRBuilder.buildAdd(Dst, V, R); 3424 3425 return Legalized; 3426 } 3427 3428 LegalizerHelper::LegalizeResult 3429 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3430 Register Dst = MI.getOperand(0).getReg(); 3431 Register Src = MI.getOperand(1).getReg(); 3432 LLT DstTy = MRI.getType(Dst); 3433 LLT SrcTy = MRI.getType(Src); 3434 3435 if (SrcTy != LLT::scalar(64)) 3436 return UnableToLegalize; 3437 3438 if (DstTy == LLT::scalar(32)) { 3439 // TODO: SelectionDAG has several alternative expansions to port which may 3440 // be more reasonble depending on the available instructions. If a target 3441 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 3442 // intermediate type, this is probably worse. 3443 return lowerU64ToF32BitOps(MI); 3444 } 3445 3446 return UnableToLegalize; 3447 } 3448 3449 LegalizerHelper::LegalizeResult 3450 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3451 Register Dst = MI.getOperand(0).getReg(); 3452 Register Src = MI.getOperand(1).getReg(); 3453 LLT DstTy = MRI.getType(Dst); 3454 LLT SrcTy = MRI.getType(Src); 3455 3456 const LLT S64 = LLT::scalar(64); 3457 const LLT S32 = LLT::scalar(32); 3458 const LLT S1 = LLT::scalar(1); 3459 3460 if (SrcTy != S64) 3461 return UnableToLegalize; 3462 3463 if (DstTy == S32) { 3464 // signed cl2f(long l) { 3465 // long s = l >> 63; 3466 // float r = cul2f((l + s) ^ s); 3467 // return s ? -r : r; 3468 // } 3469 Register L = Src; 3470 auto SignBit = MIRBuilder.buildConstant(S64, 63); 3471 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 3472 3473 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 3474 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 3475 auto R = MIRBuilder.buildUITOFP(S32, Xor); 3476 3477 auto RNeg = MIRBuilder.buildFNeg(S32, R); 3478 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 3479 MIRBuilder.buildConstant(S64, 0)); 3480 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 3481 return Legalized; 3482 } 3483 3484 return UnableToLegalize; 3485 } 3486 3487 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 3488 switch (Opc) { 3489 case TargetOpcode::G_SMIN: 3490 return CmpInst::ICMP_SLT; 3491 case TargetOpcode::G_SMAX: 3492 return CmpInst::ICMP_SGT; 3493 case TargetOpcode::G_UMIN: 3494 return CmpInst::ICMP_ULT; 3495 case TargetOpcode::G_UMAX: 3496 return CmpInst::ICMP_UGT; 3497 default: 3498 llvm_unreachable("not in integer min/max"); 3499 } 3500 } 3501 3502 LegalizerHelper::LegalizeResult 3503 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3504 Register Dst = MI.getOperand(0).getReg(); 3505 Register Src0 = MI.getOperand(1).getReg(); 3506 Register Src1 = MI.getOperand(2).getReg(); 3507 3508 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 3509 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 3510 3511 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 3512 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 3513 3514 MI.eraseFromParent(); 3515 return Legalized; 3516 } 3517 3518 LegalizerHelper::LegalizeResult 3519 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3520 Register Dst = MI.getOperand(0).getReg(); 3521 Register Src0 = MI.getOperand(1).getReg(); 3522 Register Src1 = MI.getOperand(2).getReg(); 3523 3524 const LLT Src0Ty = MRI.getType(Src0); 3525 const LLT Src1Ty = MRI.getType(Src1); 3526 3527 const int Src0Size = Src0Ty.getScalarSizeInBits(); 3528 const int Src1Size = Src1Ty.getScalarSizeInBits(); 3529 3530 auto SignBitMask = MIRBuilder.buildConstant( 3531 Src0Ty, APInt::getSignMask(Src0Size)); 3532 3533 auto NotSignBitMask = MIRBuilder.buildConstant( 3534 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 3535 3536 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 3537 MachineInstr *Or; 3538 3539 if (Src0Ty == Src1Ty) { 3540 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 3541 Or = MIRBuilder.buildOr(Dst, And0, And1); 3542 } else if (Src0Size > Src1Size) { 3543 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 3544 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 3545 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 3546 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 3547 Or = MIRBuilder.buildOr(Dst, And0, And1); 3548 } else { 3549 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 3550 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 3551 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 3552 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 3553 Or = MIRBuilder.buildOr(Dst, And0, And1); 3554 } 3555 3556 // Be careful about setting nsz/nnan/ninf on every instruction, since the 3557 // constants are a nan and -0.0, but the final result should preserve 3558 // everything. 3559 if (unsigned Flags = MI.getFlags()) 3560 Or->setFlags(Flags); 3561 3562 MI.eraseFromParent(); 3563 return Legalized; 3564 } 3565 3566 LegalizerHelper::LegalizeResult 3567 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 3568 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 3569 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 3570 3571 Register Dst = MI.getOperand(0).getReg(); 3572 Register Src0 = MI.getOperand(1).getReg(); 3573 Register Src1 = MI.getOperand(2).getReg(); 3574 LLT Ty = MRI.getType(Dst); 3575 3576 if (!MI.getFlag(MachineInstr::FmNoNans)) { 3577 // Insert canonicalizes if it's possible we need to quiet to get correct 3578 // sNaN behavior. 3579 3580 // Note this must be done here, and not as an optimization combine in the 3581 // absence of a dedicate quiet-snan instruction as we're using an 3582 // omni-purpose G_FCANONICALIZE. 3583 if (!isKnownNeverSNaN(Src0, MRI)) 3584 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 3585 3586 if (!isKnownNeverSNaN(Src1, MRI)) 3587 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 3588 } 3589 3590 // If there are no nans, it's safe to simply replace this with the non-IEEE 3591 // version. 3592 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 3593 MI.eraseFromParent(); 3594 return Legalized; 3595 } 3596 3597 LegalizerHelper::LegalizeResult 3598 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 3599 const unsigned NumDst = MI.getNumOperands() - 1; 3600 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3601 LLT SrcTy = MRI.getType(SrcReg); 3602 3603 Register Dst0Reg = MI.getOperand(0).getReg(); 3604 LLT DstTy = MRI.getType(Dst0Reg); 3605 3606 3607 // Expand scalarizing unmerge as bitcast to integer and shift. 3608 if (!DstTy.isVector() && SrcTy.isVector() && 3609 SrcTy.getElementType() == DstTy) { 3610 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 3611 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 3612 3613 MIRBuilder.buildTrunc(Dst0Reg, Cast); 3614 3615 const unsigned DstSize = DstTy.getSizeInBits(); 3616 unsigned Offset = DstSize; 3617 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 3618 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 3619 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 3620 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 3621 } 3622 3623 MI.eraseFromParent(); 3624 return Legalized; 3625 } 3626 3627 return UnableToLegalize; 3628 } 3629