1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) { }
95 
96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
97                                  GISelChangeObserver &Observer,
98                                  MachineIRBuilder &B)
99   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
100     TLI(*MF.getSubtarget().getTargetLowering()) { }
101 
102 LegalizerHelper::LegalizeResult
103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
104   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
105 
106   MIRBuilder.setInstrAndDebugLoc(MI);
107 
108   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
109       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
110     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
111   auto Step = LI.getAction(MI, MRI);
112   switch (Step.Action) {
113   case Legal:
114     LLVM_DEBUG(dbgs() << ".. Already legal\n");
115     return AlreadyLegal;
116   case Libcall:
117     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
118     return libcall(MI);
119   case NarrowScalar:
120     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
121     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
122   case WidenScalar:
123     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
124     return widenScalar(MI, Step.TypeIdx, Step.NewType);
125   case Bitcast:
126     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
127     return bitcast(MI, Step.TypeIdx, Step.NewType);
128   case Lower:
129     LLVM_DEBUG(dbgs() << ".. Lower\n");
130     return lower(MI, Step.TypeIdx, Step.NewType);
131   case FewerElements:
132     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
133     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case MoreElements:
135     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
136     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case Custom:
138     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
139     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
140   default:
141     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
142     return UnableToLegalize;
143   }
144 }
145 
146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
147                                    SmallVectorImpl<Register> &VRegs) {
148   for (int i = 0; i < NumParts; ++i)
149     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
150   MIRBuilder.buildUnmerge(VRegs, Reg);
151 }
152 
153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
154                                    LLT MainTy, LLT &LeftoverTy,
155                                    SmallVectorImpl<Register> &VRegs,
156                                    SmallVectorImpl<Register> &LeftoverRegs) {
157   assert(!LeftoverTy.isValid() && "this is an out argument");
158 
159   unsigned RegSize = RegTy.getSizeInBits();
160   unsigned MainSize = MainTy.getSizeInBits();
161   unsigned NumParts = RegSize / MainSize;
162   unsigned LeftoverSize = RegSize - NumParts * MainSize;
163 
164   // Use an unmerge when possible.
165   if (LeftoverSize == 0) {
166     for (unsigned I = 0; I < NumParts; ++I)
167       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
168     MIRBuilder.buildUnmerge(VRegs, Reg);
169     return true;
170   }
171 
172   if (MainTy.isVector()) {
173     unsigned EltSize = MainTy.getScalarSizeInBits();
174     if (LeftoverSize % EltSize != 0)
175       return false;
176     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
177   } else {
178     LeftoverTy = LLT::scalar(LeftoverSize);
179   }
180 
181   // For irregular sizes, extract the individual parts.
182   for (unsigned I = 0; I != NumParts; ++I) {
183     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
184     VRegs.push_back(NewReg);
185     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
186   }
187 
188   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
189        Offset += LeftoverSize) {
190     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
191     LeftoverRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, Offset);
193   }
194 
195   return true;
196 }
197 
198 void LegalizerHelper::insertParts(Register DstReg,
199                                   LLT ResultTy, LLT PartTy,
200                                   ArrayRef<Register> PartRegs,
201                                   LLT LeftoverTy,
202                                   ArrayRef<Register> LeftoverRegs) {
203   if (!LeftoverTy.isValid()) {
204     assert(LeftoverRegs.empty());
205 
206     if (!ResultTy.isVector()) {
207       MIRBuilder.buildMerge(DstReg, PartRegs);
208       return;
209     }
210 
211     if (PartTy.isVector())
212       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
213     else
214       MIRBuilder.buildBuildVector(DstReg, PartRegs);
215     return;
216   }
217 
218   unsigned PartSize = PartTy.getSizeInBits();
219   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
220 
221   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
222   MIRBuilder.buildUndef(CurResultReg);
223 
224   unsigned Offset = 0;
225   for (Register PartReg : PartRegs) {
226     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
227     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
228     CurResultReg = NewResultReg;
229     Offset += PartSize;
230   }
231 
232   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
233     // Use the original output register for the final insert to avoid a copy.
234     Register NewResultReg = (I + 1 == E) ?
235       DstReg : MRI.createGenericVirtualRegister(ResultTy);
236 
237     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
238     CurResultReg = NewResultReg;
239     Offset += LeftoverPartSize;
240   }
241 }
242 
243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
245                               const MachineInstr &MI) {
246   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
247 
248   const int StartIdx = Regs.size();
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(Regs.size() + NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[StartIdx + I] = MI.getOperand(I).getReg();
253 }
254 
255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
256                                      LLT GCDTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 }
268 
269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
270                                     LLT NarrowTy, Register SrcReg) {
271   LLT SrcTy = MRI.getType(SrcReg);
272   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
273   extractGCDType(Parts, GCDTy, SrcReg);
274   return GCDTy;
275 }
276 
277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
278                                          SmallVectorImpl<Register> &VRegs,
279                                          unsigned PadStrategy) {
280   LLT LCMTy = getLCMType(DstTy, NarrowTy);
281 
282   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
283   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
284   int NumOrigSrc = VRegs.size();
285 
286   Register PadReg;
287 
288   // Get a value we can use to pad the source value if the sources won't evenly
289   // cover the result type.
290   if (NumOrigSrc < NumParts * NumSubParts) {
291     if (PadStrategy == TargetOpcode::G_ZEXT)
292       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
293     else if (PadStrategy == TargetOpcode::G_ANYEXT)
294       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
295     else {
296       assert(PadStrategy == TargetOpcode::G_SEXT);
297 
298       // Shift the sign bit of the low register through the high register.
299       auto ShiftAmt =
300         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
301       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
302     }
303   }
304 
305   // Registers for the final merge to be produced.
306   SmallVector<Register, 4> Remerge(NumParts);
307 
308   // Registers needed for intermediate merges, which will be merged into a
309   // source for Remerge.
310   SmallVector<Register, 4> SubMerge(NumSubParts);
311 
312   // Once we've fully read off the end of the original source bits, we can reuse
313   // the same high bits for remaining padding elements.
314   Register AllPadReg;
315 
316   // Build merges to the LCM type to cover the original result type.
317   for (int I = 0; I != NumParts; ++I) {
318     bool AllMergePartsArePadding = true;
319 
320     // Build the requested merges to the requested type.
321     for (int J = 0; J != NumSubParts; ++J) {
322       int Idx = I * NumSubParts + J;
323       if (Idx >= NumOrigSrc) {
324         SubMerge[J] = PadReg;
325         continue;
326       }
327 
328       SubMerge[J] = VRegs[Idx];
329 
330       // There are meaningful bits here we can't reuse later.
331       AllMergePartsArePadding = false;
332     }
333 
334     // If we've filled up a complete piece with padding bits, we can directly
335     // emit the natural sized constant if applicable, rather than a merge of
336     // smaller constants.
337     if (AllMergePartsArePadding && !AllPadReg) {
338       if (PadStrategy == TargetOpcode::G_ANYEXT)
339         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
340       else if (PadStrategy == TargetOpcode::G_ZEXT)
341         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
342 
343       // If this is a sign extension, we can't materialize a trivial constant
344       // with the right type and have to produce a merge.
345     }
346 
347     if (AllPadReg) {
348       // Avoid creating additional instructions if we're just adding additional
349       // copies of padding bits.
350       Remerge[I] = AllPadReg;
351       continue;
352     }
353 
354     if (NumSubParts == 1)
355       Remerge[I] = SubMerge[0];
356     else
357       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
358 
359     // In the sign extend padding case, re-use the first all-signbit merge.
360     if (AllMergePartsArePadding && !AllPadReg)
361       AllPadReg = Remerge[I];
362   }
363 
364   VRegs = std::move(Remerge);
365   return LCMTy;
366 }
367 
368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
369                                                ArrayRef<Register> RemergeRegs) {
370   LLT DstTy = MRI.getType(DstReg);
371 
372   // Create the merge to the widened source, and extract the relevant bits into
373   // the result.
374 
375   if (DstTy == LCMTy) {
376     MIRBuilder.buildMerge(DstReg, RemergeRegs);
377     return;
378   }
379 
380   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
381   if (DstTy.isScalar() && LCMTy.isScalar()) {
382     MIRBuilder.buildTrunc(DstReg, Remerge);
383     return;
384   }
385 
386   if (LCMTy.isVector()) {
387     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
388     SmallVector<Register, 8> UnmergeDefs(NumDefs);
389     UnmergeDefs[0] = DstReg;
390     for (unsigned I = 1; I != NumDefs; ++I)
391       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
392 
393     MIRBuilder.buildUnmerge(UnmergeDefs,
394                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
395     return;
396   }
397 
398   llvm_unreachable("unhandled case");
399 }
400 
401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
402 #define RTLIBCASE_INT(LibcallPrefix)                                           \
403   do {                                                                         \
404     switch (Size) {                                                            \
405     case 32:                                                                   \
406       return RTLIB::LibcallPrefix##32;                                         \
407     case 64:                                                                   \
408       return RTLIB::LibcallPrefix##64;                                         \
409     case 128:                                                                  \
410       return RTLIB::LibcallPrefix##128;                                        \
411     default:                                                                   \
412       llvm_unreachable("unexpected size");                                     \
413     }                                                                          \
414   } while (0)
415 
416 #define RTLIBCASE(LibcallPrefix)                                               \
417   do {                                                                         \
418     switch (Size) {                                                            \
419     case 32:                                                                   \
420       return RTLIB::LibcallPrefix##32;                                         \
421     case 64:                                                                   \
422       return RTLIB::LibcallPrefix##64;                                         \
423     case 80:                                                                   \
424       return RTLIB::LibcallPrefix##80;                                         \
425     case 128:                                                                  \
426       return RTLIB::LibcallPrefix##128;                                        \
427     default:                                                                   \
428       llvm_unreachable("unexpected size");                                     \
429     }                                                                          \
430   } while (0)
431 
432   switch (Opcode) {
433   case TargetOpcode::G_SDIV:
434     RTLIBCASE_INT(SDIV_I);
435   case TargetOpcode::G_UDIV:
436     RTLIBCASE_INT(UDIV_I);
437   case TargetOpcode::G_SREM:
438     RTLIBCASE_INT(SREM_I);
439   case TargetOpcode::G_UREM:
440     RTLIBCASE_INT(UREM_I);
441   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
442     RTLIBCASE_INT(CTLZ_I);
443   case TargetOpcode::G_FADD:
444     RTLIBCASE(ADD_F);
445   case TargetOpcode::G_FSUB:
446     RTLIBCASE(SUB_F);
447   case TargetOpcode::G_FMUL:
448     RTLIBCASE(MUL_F);
449   case TargetOpcode::G_FDIV:
450     RTLIBCASE(DIV_F);
451   case TargetOpcode::G_FEXP:
452     RTLIBCASE(EXP_F);
453   case TargetOpcode::G_FEXP2:
454     RTLIBCASE(EXP2_F);
455   case TargetOpcode::G_FREM:
456     RTLIBCASE(REM_F);
457   case TargetOpcode::G_FPOW:
458     RTLIBCASE(POW_F);
459   case TargetOpcode::G_FMA:
460     RTLIBCASE(FMA_F);
461   case TargetOpcode::G_FSIN:
462     RTLIBCASE(SIN_F);
463   case TargetOpcode::G_FCOS:
464     RTLIBCASE(COS_F);
465   case TargetOpcode::G_FLOG10:
466     RTLIBCASE(LOG10_F);
467   case TargetOpcode::G_FLOG:
468     RTLIBCASE(LOG_F);
469   case TargetOpcode::G_FLOG2:
470     RTLIBCASE(LOG2_F);
471   case TargetOpcode::G_FCEIL:
472     RTLIBCASE(CEIL_F);
473   case TargetOpcode::G_FFLOOR:
474     RTLIBCASE(FLOOR_F);
475   case TargetOpcode::G_FMINNUM:
476     RTLIBCASE(FMIN_F);
477   case TargetOpcode::G_FMAXNUM:
478     RTLIBCASE(FMAX_F);
479   case TargetOpcode::G_FSQRT:
480     RTLIBCASE(SQRT_F);
481   case TargetOpcode::G_FRINT:
482     RTLIBCASE(RINT_F);
483   case TargetOpcode::G_FNEARBYINT:
484     RTLIBCASE(NEARBYINT_F);
485   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
486     RTLIBCASE(ROUNDEVEN_F);
487   }
488   llvm_unreachable("Unknown libcall function");
489 }
490 
491 /// True if an instruction is in tail position in its caller. Intended for
492 /// legalizing libcalls as tail calls when possible.
493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
494                                     MachineInstr &MI) {
495   MachineBasicBlock &MBB = *MI.getParent();
496   const Function &F = MBB.getParent()->getFunction();
497 
498   // Conservatively require the attributes of the call to match those of
499   // the return. Ignore NoAlias and NonNull because they don't affect the
500   // call sequence.
501   AttributeList CallerAttrs = F.getAttributes();
502   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
503           .removeAttribute(Attribute::NoAlias)
504           .removeAttribute(Attribute::NonNull)
505           .hasAttributes())
506     return false;
507 
508   // It's not safe to eliminate the sign / zero extension of the return value.
509   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
510       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
511     return false;
512 
513   // Only tail call if the following instruction is a standard return.
514   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
515   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
516     return false;
517 
518   return true;
519 }
520 
521 LegalizerHelper::LegalizeResult
522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
523                     const CallLowering::ArgInfo &Result,
524                     ArrayRef<CallLowering::ArgInfo> Args,
525                     const CallingConv::ID CC) {
526   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
527 
528   CallLowering::CallLoweringInfo Info;
529   Info.CallConv = CC;
530   Info.Callee = MachineOperand::CreateES(Name);
531   Info.OrigRet = Result;
532   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
533   if (!CLI.lowerCall(MIRBuilder, Info))
534     return LegalizerHelper::UnableToLegalize;
535 
536   return LegalizerHelper::Legalized;
537 }
538 
539 LegalizerHelper::LegalizeResult
540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
541                     const CallLowering::ArgInfo &Result,
542                     ArrayRef<CallLowering::ArgInfo> Args) {
543   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
544   const char *Name = TLI.getLibcallName(Libcall);
545   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
546   return createLibcall(MIRBuilder, Name, Result, Args, CC);
547 }
548 
549 // Useful for libcalls where all operands have the same type.
550 static LegalizerHelper::LegalizeResult
551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
552               Type *OpType) {
553   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
554 
555   SmallVector<CallLowering::ArgInfo, 3> Args;
556   for (unsigned i = 1; i < MI.getNumOperands(); i++)
557     Args.push_back({MI.getOperand(i).getReg(), OpType});
558   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
559                        Args);
560 }
561 
562 LegalizerHelper::LegalizeResult
563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
564                        MachineInstr &MI) {
565   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
566 
567   SmallVector<CallLowering::ArgInfo, 3> Args;
568   // Add all the args, except for the last which is an imm denoting 'tail'.
569   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
570     Register Reg = MI.getOperand(i).getReg();
571 
572     // Need derive an IR type for call lowering.
573     LLT OpLLT = MRI.getType(Reg);
574     Type *OpTy = nullptr;
575     if (OpLLT.isPointer())
576       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
577     else
578       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
579     Args.push_back({Reg, OpTy});
580   }
581 
582   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
583   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
584   RTLIB::Libcall RTLibcall;
585   switch (MI.getOpcode()) {
586   case TargetOpcode::G_MEMCPY:
587     RTLibcall = RTLIB::MEMCPY;
588     break;
589   case TargetOpcode::G_MEMMOVE:
590     RTLibcall = RTLIB::MEMMOVE;
591     break;
592   case TargetOpcode::G_MEMSET:
593     RTLibcall = RTLIB::MEMSET;
594     break;
595   default:
596     return LegalizerHelper::UnableToLegalize;
597   }
598   const char *Name = TLI.getLibcallName(RTLibcall);
599 
600   CallLowering::CallLoweringInfo Info;
601   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
602   Info.Callee = MachineOperand::CreateES(Name);
603   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
604   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
605                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
606 
607   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
608   if (!CLI.lowerCall(MIRBuilder, Info))
609     return LegalizerHelper::UnableToLegalize;
610 
611   if (Info.LoweredTailCall) {
612     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
613     // We must have a return following the call (or debug insts) to get past
614     // isLibCallInTailPosition.
615     do {
616       MachineInstr *Next = MI.getNextNode();
617       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
618              "Expected instr following MI to be return or debug inst?");
619       // We lowered a tail call, so the call is now the return from the block.
620       // Delete the old return.
621       Next->eraseFromParent();
622     } while (MI.getNextNode());
623   }
624 
625   return LegalizerHelper::Legalized;
626 }
627 
628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
629                                        Type *FromType) {
630   auto ToMVT = MVT::getVT(ToType);
631   auto FromMVT = MVT::getVT(FromType);
632 
633   switch (Opcode) {
634   case TargetOpcode::G_FPEXT:
635     return RTLIB::getFPEXT(FromMVT, ToMVT);
636   case TargetOpcode::G_FPTRUNC:
637     return RTLIB::getFPROUND(FromMVT, ToMVT);
638   case TargetOpcode::G_FPTOSI:
639     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
640   case TargetOpcode::G_FPTOUI:
641     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
642   case TargetOpcode::G_SITOFP:
643     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
644   case TargetOpcode::G_UITOFP:
645     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
646   }
647   llvm_unreachable("Unsupported libcall function");
648 }
649 
650 static LegalizerHelper::LegalizeResult
651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
652                   Type *FromType) {
653   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
654   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
655                        {{MI.getOperand(1).getReg(), FromType}});
656 }
657 
658 LegalizerHelper::LegalizeResult
659 LegalizerHelper::libcall(MachineInstr &MI) {
660   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
661   unsigned Size = LLTy.getSizeInBits();
662   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
663 
664   switch (MI.getOpcode()) {
665   default:
666     return UnableToLegalize;
667   case TargetOpcode::G_SDIV:
668   case TargetOpcode::G_UDIV:
669   case TargetOpcode::G_SREM:
670   case TargetOpcode::G_UREM:
671   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
672     Type *HLTy = IntegerType::get(Ctx, Size);
673     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
674     if (Status != Legalized)
675       return Status;
676     break;
677   }
678   case TargetOpcode::G_FADD:
679   case TargetOpcode::G_FSUB:
680   case TargetOpcode::G_FMUL:
681   case TargetOpcode::G_FDIV:
682   case TargetOpcode::G_FMA:
683   case TargetOpcode::G_FPOW:
684   case TargetOpcode::G_FREM:
685   case TargetOpcode::G_FCOS:
686   case TargetOpcode::G_FSIN:
687   case TargetOpcode::G_FLOG10:
688   case TargetOpcode::G_FLOG:
689   case TargetOpcode::G_FLOG2:
690   case TargetOpcode::G_FEXP:
691   case TargetOpcode::G_FEXP2:
692   case TargetOpcode::G_FCEIL:
693   case TargetOpcode::G_FFLOOR:
694   case TargetOpcode::G_FMINNUM:
695   case TargetOpcode::G_FMAXNUM:
696   case TargetOpcode::G_FSQRT:
697   case TargetOpcode::G_FRINT:
698   case TargetOpcode::G_FNEARBYINT:
699   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
700     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
701     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
702       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
703       return UnableToLegalize;
704     }
705     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_FPEXT:
711   case TargetOpcode::G_FPTRUNC: {
712     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
713     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
714     if (!FromTy || !ToTy)
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPTOSI:
722   case TargetOpcode::G_FPTOUI: {
723     // FIXME: Support other types
724     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
725     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
726     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(
729         MI, MIRBuilder,
730         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
731         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
732     if (Status != Legalized)
733       return Status;
734     break;
735   }
736   case TargetOpcode::G_SITOFP:
737   case TargetOpcode::G_UITOFP: {
738     // FIXME: Support other types
739     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
740     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
741     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
742       return UnableToLegalize;
743     LegalizeResult Status = conversionLibcall(
744         MI, MIRBuilder,
745         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
746         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
747     if (Status != Legalized)
748       return Status;
749     break;
750   }
751   case TargetOpcode::G_MEMCPY:
752   case TargetOpcode::G_MEMMOVE:
753   case TargetOpcode::G_MEMSET: {
754     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
755     MI.eraseFromParent();
756     return Result;
757   }
758   }
759 
760   MI.eraseFromParent();
761   return Legalized;
762 }
763 
764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
765                                                               unsigned TypeIdx,
766                                                               LLT NarrowTy) {
767   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
768   uint64_t NarrowSize = NarrowTy.getSizeInBits();
769 
770   switch (MI.getOpcode()) {
771   default:
772     return UnableToLegalize;
773   case TargetOpcode::G_IMPLICIT_DEF: {
774     Register DstReg = MI.getOperand(0).getReg();
775     LLT DstTy = MRI.getType(DstReg);
776 
777     // If SizeOp0 is not an exact multiple of NarrowSize, emit
778     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
779     // FIXME: Although this would also be legal for the general case, it causes
780     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
781     //  combines not being hit). This seems to be a problem related to the
782     //  artifact combiner.
783     if (SizeOp0 % NarrowSize != 0) {
784       LLT ImplicitTy = NarrowTy;
785       if (DstTy.isVector())
786         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
787 
788       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
789       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
790 
791       MI.eraseFromParent();
792       return Legalized;
793     }
794 
795     int NumParts = SizeOp0 / NarrowSize;
796 
797     SmallVector<Register, 2> DstRegs;
798     for (int i = 0; i < NumParts; ++i)
799       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
800 
801     if (DstTy.isVector())
802       MIRBuilder.buildBuildVector(DstReg, DstRegs);
803     else
804       MIRBuilder.buildMerge(DstReg, DstRegs);
805     MI.eraseFromParent();
806     return Legalized;
807   }
808   case TargetOpcode::G_CONSTANT: {
809     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
810     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
811     unsigned TotalSize = Ty.getSizeInBits();
812     unsigned NarrowSize = NarrowTy.getSizeInBits();
813     int NumParts = TotalSize / NarrowSize;
814 
815     SmallVector<Register, 4> PartRegs;
816     for (int I = 0; I != NumParts; ++I) {
817       unsigned Offset = I * NarrowSize;
818       auto K = MIRBuilder.buildConstant(NarrowTy,
819                                         Val.lshr(Offset).trunc(NarrowSize));
820       PartRegs.push_back(K.getReg(0));
821     }
822 
823     LLT LeftoverTy;
824     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
825     SmallVector<Register, 1> LeftoverRegs;
826     if (LeftoverBits != 0) {
827       LeftoverTy = LLT::scalar(LeftoverBits);
828       auto K = MIRBuilder.buildConstant(
829         LeftoverTy,
830         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
831       LeftoverRegs.push_back(K.getReg(0));
832     }
833 
834     insertParts(MI.getOperand(0).getReg(),
835                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
836 
837     MI.eraseFromParent();
838     return Legalized;
839   }
840   case TargetOpcode::G_SEXT:
841   case TargetOpcode::G_ZEXT:
842   case TargetOpcode::G_ANYEXT:
843     return narrowScalarExt(MI, TypeIdx, NarrowTy);
844   case TargetOpcode::G_TRUNC: {
845     if (TypeIdx != 1)
846       return UnableToLegalize;
847 
848     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
849     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
850       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
851       return UnableToLegalize;
852     }
853 
854     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
855     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
856     MI.eraseFromParent();
857     return Legalized;
858   }
859 
860   case TargetOpcode::G_FREEZE:
861     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
862   case TargetOpcode::G_ADD:
863   case TargetOpcode::G_SUB:
864   case TargetOpcode::G_SADDO:
865   case TargetOpcode::G_SSUBO:
866   case TargetOpcode::G_SADDE:
867   case TargetOpcode::G_SSUBE:
868   case TargetOpcode::G_UADDO:
869   case TargetOpcode::G_USUBO:
870   case TargetOpcode::G_UADDE:
871   case TargetOpcode::G_USUBE:
872     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
873   case TargetOpcode::G_MUL:
874   case TargetOpcode::G_UMULH:
875     return narrowScalarMul(MI, NarrowTy);
876   case TargetOpcode::G_EXTRACT:
877     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
878   case TargetOpcode::G_INSERT:
879     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
880   case TargetOpcode::G_LOAD: {
881     auto &MMO = **MI.memoperands_begin();
882     Register DstReg = MI.getOperand(0).getReg();
883     LLT DstTy = MRI.getType(DstReg);
884     if (DstTy.isVector())
885       return UnableToLegalize;
886 
887     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
888       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
889       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
890       MIRBuilder.buildAnyExt(DstReg, TmpReg);
891       MI.eraseFromParent();
892       return Legalized;
893     }
894 
895     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
896   }
897   case TargetOpcode::G_ZEXTLOAD:
898   case TargetOpcode::G_SEXTLOAD: {
899     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
900     Register DstReg = MI.getOperand(0).getReg();
901     Register PtrReg = MI.getOperand(1).getReg();
902 
903     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
904     auto &MMO = **MI.memoperands_begin();
905     unsigned MemSize = MMO.getSizeInBits();
906 
907     if (MemSize == NarrowSize) {
908       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
909     } else if (MemSize < NarrowSize) {
910       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
911     } else if (MemSize > NarrowSize) {
912       // FIXME: Need to split the load.
913       return UnableToLegalize;
914     }
915 
916     if (ZExt)
917       MIRBuilder.buildZExt(DstReg, TmpReg);
918     else
919       MIRBuilder.buildSExt(DstReg, TmpReg);
920 
921     MI.eraseFromParent();
922     return Legalized;
923   }
924   case TargetOpcode::G_STORE: {
925     const auto &MMO = **MI.memoperands_begin();
926 
927     Register SrcReg = MI.getOperand(0).getReg();
928     LLT SrcTy = MRI.getType(SrcReg);
929     if (SrcTy.isVector())
930       return UnableToLegalize;
931 
932     int NumParts = SizeOp0 / NarrowSize;
933     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
934     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
935     if (SrcTy.isVector() && LeftoverBits != 0)
936       return UnableToLegalize;
937 
938     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
939       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
940       auto &MMO = **MI.memoperands_begin();
941       MIRBuilder.buildTrunc(TmpReg, SrcReg);
942       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
943       MI.eraseFromParent();
944       return Legalized;
945     }
946 
947     return reduceLoadStoreWidth(MI, 0, NarrowTy);
948   }
949   case TargetOpcode::G_SELECT:
950     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
951   case TargetOpcode::G_AND:
952   case TargetOpcode::G_OR:
953   case TargetOpcode::G_XOR: {
954     // Legalize bitwise operation:
955     // A = BinOp<Ty> B, C
956     // into:
957     // B1, ..., BN = G_UNMERGE_VALUES B
958     // C1, ..., CN = G_UNMERGE_VALUES C
959     // A1 = BinOp<Ty/N> B1, C2
960     // ...
961     // AN = BinOp<Ty/N> BN, CN
962     // A = G_MERGE_VALUES A1, ..., AN
963     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
964   }
965   case TargetOpcode::G_SHL:
966   case TargetOpcode::G_LSHR:
967   case TargetOpcode::G_ASHR:
968     return narrowScalarShift(MI, TypeIdx, NarrowTy);
969   case TargetOpcode::G_CTLZ:
970   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
971   case TargetOpcode::G_CTTZ:
972   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
973   case TargetOpcode::G_CTPOP:
974     if (TypeIdx == 1)
975       switch (MI.getOpcode()) {
976       case TargetOpcode::G_CTLZ:
977       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
978         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
979       case TargetOpcode::G_CTTZ:
980       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
981         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
982       case TargetOpcode::G_CTPOP:
983         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
984       default:
985         return UnableToLegalize;
986       }
987 
988     Observer.changingInstr(MI);
989     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
990     Observer.changedInstr(MI);
991     return Legalized;
992   case TargetOpcode::G_INTTOPTR:
993     if (TypeIdx != 1)
994       return UnableToLegalize;
995 
996     Observer.changingInstr(MI);
997     narrowScalarSrc(MI, NarrowTy, 1);
998     Observer.changedInstr(MI);
999     return Legalized;
1000   case TargetOpcode::G_PTRTOINT:
1001     if (TypeIdx != 0)
1002       return UnableToLegalize;
1003 
1004     Observer.changingInstr(MI);
1005     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1006     Observer.changedInstr(MI);
1007     return Legalized;
1008   case TargetOpcode::G_PHI: {
1009     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1010     // NarrowSize.
1011     if (SizeOp0 % NarrowSize != 0)
1012       return UnableToLegalize;
1013 
1014     unsigned NumParts = SizeOp0 / NarrowSize;
1015     SmallVector<Register, 2> DstRegs(NumParts);
1016     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1017     Observer.changingInstr(MI);
1018     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1019       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1020       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1021       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1022                    SrcRegs[i / 2]);
1023     }
1024     MachineBasicBlock &MBB = *MI.getParent();
1025     MIRBuilder.setInsertPt(MBB, MI);
1026     for (unsigned i = 0; i < NumParts; ++i) {
1027       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1028       MachineInstrBuilder MIB =
1029           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1030       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1031         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1032     }
1033     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1034     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1035     Observer.changedInstr(MI);
1036     MI.eraseFromParent();
1037     return Legalized;
1038   }
1039   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1040   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1041     if (TypeIdx != 2)
1042       return UnableToLegalize;
1043 
1044     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1045     Observer.changingInstr(MI);
1046     narrowScalarSrc(MI, NarrowTy, OpIdx);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   }
1050   case TargetOpcode::G_ICMP: {
1051     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1052     if (NarrowSize * 2 != SrcSize)
1053       return UnableToLegalize;
1054 
1055     Observer.changingInstr(MI);
1056     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1057     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1058     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1059 
1060     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1061     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1062     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1063 
1064     CmpInst::Predicate Pred =
1065         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1066     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1067 
1068     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1069       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1070       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1071       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1072       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1073       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1074     } else {
1075       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1076       MachineInstrBuilder CmpHEQ =
1077           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1078       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1079           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1080       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1081     }
1082     Observer.changedInstr(MI);
1083     MI.eraseFromParent();
1084     return Legalized;
1085   }
1086   case TargetOpcode::G_SEXT_INREG: {
1087     if (TypeIdx != 0)
1088       return UnableToLegalize;
1089 
1090     int64_t SizeInBits = MI.getOperand(2).getImm();
1091 
1092     // So long as the new type has more bits than the bits we're extending we
1093     // don't need to break it apart.
1094     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1095       Observer.changingInstr(MI);
1096       // We don't lose any non-extension bits by truncating the src and
1097       // sign-extending the dst.
1098       MachineOperand &MO1 = MI.getOperand(1);
1099       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1100       MO1.setReg(TruncMIB.getReg(0));
1101 
1102       MachineOperand &MO2 = MI.getOperand(0);
1103       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1104       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1105       MIRBuilder.buildSExt(MO2, DstExt);
1106       MO2.setReg(DstExt);
1107       Observer.changedInstr(MI);
1108       return Legalized;
1109     }
1110 
1111     // Break it apart. Components below the extension point are unmodified. The
1112     // component containing the extension point becomes a narrower SEXT_INREG.
1113     // Components above it are ashr'd from the component containing the
1114     // extension point.
1115     if (SizeOp0 % NarrowSize != 0)
1116       return UnableToLegalize;
1117     int NumParts = SizeOp0 / NarrowSize;
1118 
1119     // List the registers where the destination will be scattered.
1120     SmallVector<Register, 2> DstRegs;
1121     // List the registers where the source will be split.
1122     SmallVector<Register, 2> SrcRegs;
1123 
1124     // Create all the temporary registers.
1125     for (int i = 0; i < NumParts; ++i) {
1126       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1127 
1128       SrcRegs.push_back(SrcReg);
1129     }
1130 
1131     // Explode the big arguments into smaller chunks.
1132     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1133 
1134     Register AshrCstReg =
1135         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1136             .getReg(0);
1137     Register FullExtensionReg = 0;
1138     Register PartialExtensionReg = 0;
1139 
1140     // Do the operation on each small part.
1141     for (int i = 0; i < NumParts; ++i) {
1142       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1143         DstRegs.push_back(SrcRegs[i]);
1144       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1145         assert(PartialExtensionReg &&
1146                "Expected to visit partial extension before full");
1147         if (FullExtensionReg) {
1148           DstRegs.push_back(FullExtensionReg);
1149           continue;
1150         }
1151         DstRegs.push_back(
1152             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1153                 .getReg(0));
1154         FullExtensionReg = DstRegs.back();
1155       } else {
1156         DstRegs.push_back(
1157             MIRBuilder
1158                 .buildInstr(
1159                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1160                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1161                 .getReg(0));
1162         PartialExtensionReg = DstRegs.back();
1163       }
1164     }
1165 
1166     // Gather the destination registers into the final destination.
1167     Register DstReg = MI.getOperand(0).getReg();
1168     MIRBuilder.buildMerge(DstReg, DstRegs);
1169     MI.eraseFromParent();
1170     return Legalized;
1171   }
1172   case TargetOpcode::G_BSWAP:
1173   case TargetOpcode::G_BITREVERSE: {
1174     if (SizeOp0 % NarrowSize != 0)
1175       return UnableToLegalize;
1176 
1177     Observer.changingInstr(MI);
1178     SmallVector<Register, 2> SrcRegs, DstRegs;
1179     unsigned NumParts = SizeOp0 / NarrowSize;
1180     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1181 
1182     for (unsigned i = 0; i < NumParts; ++i) {
1183       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1184                                            {SrcRegs[NumParts - 1 - i]});
1185       DstRegs.push_back(DstPart.getReg(0));
1186     }
1187 
1188     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1189 
1190     Observer.changedInstr(MI);
1191     MI.eraseFromParent();
1192     return Legalized;
1193   }
1194   case TargetOpcode::G_PTR_ADD:
1195   case TargetOpcode::G_PTRMASK: {
1196     if (TypeIdx != 1)
1197       return UnableToLegalize;
1198     Observer.changingInstr(MI);
1199     narrowScalarSrc(MI, NarrowTy, 2);
1200     Observer.changedInstr(MI);
1201     return Legalized;
1202   }
1203   case TargetOpcode::G_FPTOUI: {
1204     if (TypeIdx != 0)
1205       return UnableToLegalize;
1206     Observer.changingInstr(MI);
1207     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1208     Observer.changedInstr(MI);
1209     return Legalized;
1210   }
1211   case TargetOpcode::G_FPTOSI: {
1212     if (TypeIdx != 0)
1213       return UnableToLegalize;
1214     Observer.changingInstr(MI);
1215     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1216     Observer.changedInstr(MI);
1217     return Legalized;
1218   }
1219   case TargetOpcode::G_FPEXT:
1220     if (TypeIdx != 0)
1221       return UnableToLegalize;
1222     Observer.changingInstr(MI);
1223     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1224     Observer.changedInstr(MI);
1225     return Legalized;
1226   }
1227 }
1228 
1229 Register LegalizerHelper::coerceToScalar(Register Val) {
1230   LLT Ty = MRI.getType(Val);
1231   if (Ty.isScalar())
1232     return Val;
1233 
1234   const DataLayout &DL = MIRBuilder.getDataLayout();
1235   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1236   if (Ty.isPointer()) {
1237     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1238       return Register();
1239     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1240   }
1241 
1242   Register NewVal = Val;
1243 
1244   assert(Ty.isVector());
1245   LLT EltTy = Ty.getElementType();
1246   if (EltTy.isPointer())
1247     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1248   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1249 }
1250 
1251 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1252                                      unsigned OpIdx, unsigned ExtOpcode) {
1253   MachineOperand &MO = MI.getOperand(OpIdx);
1254   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1255   MO.setReg(ExtB.getReg(0));
1256 }
1257 
1258 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1259                                       unsigned OpIdx) {
1260   MachineOperand &MO = MI.getOperand(OpIdx);
1261   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1262   MO.setReg(ExtB.getReg(0));
1263 }
1264 
1265 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1266                                      unsigned OpIdx, unsigned TruncOpcode) {
1267   MachineOperand &MO = MI.getOperand(OpIdx);
1268   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1269   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1270   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1271   MO.setReg(DstExt);
1272 }
1273 
1274 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1275                                       unsigned OpIdx, unsigned ExtOpcode) {
1276   MachineOperand &MO = MI.getOperand(OpIdx);
1277   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1278   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1279   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1280   MO.setReg(DstTrunc);
1281 }
1282 
1283 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1284                                             unsigned OpIdx) {
1285   MachineOperand &MO = MI.getOperand(OpIdx);
1286   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1287   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1288 }
1289 
1290 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1291                                             unsigned OpIdx) {
1292   MachineOperand &MO = MI.getOperand(OpIdx);
1293 
1294   LLT OldTy = MRI.getType(MO.getReg());
1295   unsigned OldElts = OldTy.getNumElements();
1296   unsigned NewElts = MoreTy.getNumElements();
1297 
1298   unsigned NumParts = NewElts / OldElts;
1299 
1300   // Use concat_vectors if the result is a multiple of the number of elements.
1301   if (NumParts * OldElts == NewElts) {
1302     SmallVector<Register, 8> Parts;
1303     Parts.push_back(MO.getReg());
1304 
1305     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1306     for (unsigned I = 1; I != NumParts; ++I)
1307       Parts.push_back(ImpDef);
1308 
1309     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1310     MO.setReg(Concat.getReg(0));
1311     return;
1312   }
1313 
1314   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1315   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1316   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1317   MO.setReg(MoreReg);
1318 }
1319 
1320 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1321   MachineOperand &Op = MI.getOperand(OpIdx);
1322   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1323 }
1324 
1325 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1326   MachineOperand &MO = MI.getOperand(OpIdx);
1327   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1328   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1329   MIRBuilder.buildBitcast(MO, CastDst);
1330   MO.setReg(CastDst);
1331 }
1332 
1333 LegalizerHelper::LegalizeResult
1334 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1335                                         LLT WideTy) {
1336   if (TypeIdx != 1)
1337     return UnableToLegalize;
1338 
1339   Register DstReg = MI.getOperand(0).getReg();
1340   LLT DstTy = MRI.getType(DstReg);
1341   if (DstTy.isVector())
1342     return UnableToLegalize;
1343 
1344   Register Src1 = MI.getOperand(1).getReg();
1345   LLT SrcTy = MRI.getType(Src1);
1346   const int DstSize = DstTy.getSizeInBits();
1347   const int SrcSize = SrcTy.getSizeInBits();
1348   const int WideSize = WideTy.getSizeInBits();
1349   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1350 
1351   unsigned NumOps = MI.getNumOperands();
1352   unsigned NumSrc = MI.getNumOperands() - 1;
1353   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1354 
1355   if (WideSize >= DstSize) {
1356     // Directly pack the bits in the target type.
1357     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1358 
1359     for (unsigned I = 2; I != NumOps; ++I) {
1360       const unsigned Offset = (I - 1) * PartSize;
1361 
1362       Register SrcReg = MI.getOperand(I).getReg();
1363       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1364 
1365       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1366 
1367       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1368         MRI.createGenericVirtualRegister(WideTy);
1369 
1370       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1371       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1372       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1373       ResultReg = NextResult;
1374     }
1375 
1376     if (WideSize > DstSize)
1377       MIRBuilder.buildTrunc(DstReg, ResultReg);
1378     else if (DstTy.isPointer())
1379       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1380 
1381     MI.eraseFromParent();
1382     return Legalized;
1383   }
1384 
1385   // Unmerge the original values to the GCD type, and recombine to the next
1386   // multiple greater than the original type.
1387   //
1388   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1389   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1390   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1391   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1392   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1393   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1394   // %12:_(s12) = G_MERGE_VALUES %10, %11
1395   //
1396   // Padding with undef if necessary:
1397   //
1398   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1399   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1400   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1401   // %7:_(s2) = G_IMPLICIT_DEF
1402   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1403   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1404   // %10:_(s12) = G_MERGE_VALUES %8, %9
1405 
1406   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1407   LLT GCDTy = LLT::scalar(GCD);
1408 
1409   SmallVector<Register, 8> Parts;
1410   SmallVector<Register, 8> NewMergeRegs;
1411   SmallVector<Register, 8> Unmerges;
1412   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1413 
1414   // Decompose the original operands if they don't evenly divide.
1415   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1416     Register SrcReg = MI.getOperand(I).getReg();
1417     if (GCD == SrcSize) {
1418       Unmerges.push_back(SrcReg);
1419     } else {
1420       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1421       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1422         Unmerges.push_back(Unmerge.getReg(J));
1423     }
1424   }
1425 
1426   // Pad with undef to the next size that is a multiple of the requested size.
1427   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1428     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1429     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1430       Unmerges.push_back(UndefReg);
1431   }
1432 
1433   const int PartsPerGCD = WideSize / GCD;
1434 
1435   // Build merges of each piece.
1436   ArrayRef<Register> Slicer(Unmerges);
1437   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1438     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1439     NewMergeRegs.push_back(Merge.getReg(0));
1440   }
1441 
1442   // A truncate may be necessary if the requested type doesn't evenly divide the
1443   // original result type.
1444   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1445     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1446   } else {
1447     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1448     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1449   }
1450 
1451   MI.eraseFromParent();
1452   return Legalized;
1453 }
1454 
1455 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1456   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1457   LLT OrigTy = MRI.getType(OrigReg);
1458   LLT LCMTy = getLCMType(WideTy, OrigTy);
1459 
1460   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1461   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1462 
1463   Register UnmergeSrc = WideReg;
1464 
1465   // Create a merge to the LCM type, padding with undef
1466   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1467   // =>
1468   // %1:_(<4 x s32>) = G_FOO
1469   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1470   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1471   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1472   if (NumMergeParts > 1) {
1473     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1474     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1475     MergeParts[0] = WideReg;
1476     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1477   }
1478 
1479   // Unmerge to the original register and pad with dead defs.
1480   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1481   UnmergeResults[0] = OrigReg;
1482   for (int I = 1; I != NumUnmergeParts; ++I)
1483     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1484 
1485   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1486   return WideReg;
1487 }
1488 
1489 LegalizerHelper::LegalizeResult
1490 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1491                                           LLT WideTy) {
1492   if (TypeIdx != 0)
1493     return UnableToLegalize;
1494 
1495   int NumDst = MI.getNumOperands() - 1;
1496   Register SrcReg = MI.getOperand(NumDst).getReg();
1497   LLT SrcTy = MRI.getType(SrcReg);
1498   if (SrcTy.isVector())
1499     return UnableToLegalize;
1500 
1501   Register Dst0Reg = MI.getOperand(0).getReg();
1502   LLT DstTy = MRI.getType(Dst0Reg);
1503   if (!DstTy.isScalar())
1504     return UnableToLegalize;
1505 
1506   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1507     if (SrcTy.isPointer()) {
1508       const DataLayout &DL = MIRBuilder.getDataLayout();
1509       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1510         LLVM_DEBUG(
1511             dbgs() << "Not casting non-integral address space integer\n");
1512         return UnableToLegalize;
1513       }
1514 
1515       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1516       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1517     }
1518 
1519     // Widen SrcTy to WideTy. This does not affect the result, but since the
1520     // user requested this size, it is probably better handled than SrcTy and
1521     // should reduce the total number of legalization artifacts
1522     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1523       SrcTy = WideTy;
1524       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1525     }
1526 
1527     // Theres no unmerge type to target. Directly extract the bits from the
1528     // source type
1529     unsigned DstSize = DstTy.getSizeInBits();
1530 
1531     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1532     for (int I = 1; I != NumDst; ++I) {
1533       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1534       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1535       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1536     }
1537 
1538     MI.eraseFromParent();
1539     return Legalized;
1540   }
1541 
1542   // Extend the source to a wider type.
1543   LLT LCMTy = getLCMType(SrcTy, WideTy);
1544 
1545   Register WideSrc = SrcReg;
1546   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1547     // TODO: If this is an integral address space, cast to integer and anyext.
1548     if (SrcTy.isPointer()) {
1549       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1550       return UnableToLegalize;
1551     }
1552 
1553     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1554   }
1555 
1556   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1557 
1558   // Create a sequence of unmerges and merges to the original results. Since we
1559   // may have widened the source, we will need to pad the results with dead defs
1560   // to cover the source register.
1561   // e.g. widen s48 to s64:
1562   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1563   //
1564   // =>
1565   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1566   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1567   //  ; unpack to GCD type, with extra dead defs
1568   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1569   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1570   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1571   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1572   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1573   const LLT GCDTy = getGCDType(WideTy, DstTy);
1574   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1575   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1576 
1577   // Directly unmerge to the destination without going through a GCD type
1578   // if possible
1579   if (PartsPerRemerge == 1) {
1580     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1581 
1582     for (int I = 0; I != NumUnmerge; ++I) {
1583       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1584 
1585       for (int J = 0; J != PartsPerUnmerge; ++J) {
1586         int Idx = I * PartsPerUnmerge + J;
1587         if (Idx < NumDst)
1588           MIB.addDef(MI.getOperand(Idx).getReg());
1589         else {
1590           // Create dead def for excess components.
1591           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1592         }
1593       }
1594 
1595       MIB.addUse(Unmerge.getReg(I));
1596     }
1597   } else {
1598     SmallVector<Register, 16> Parts;
1599     for (int J = 0; J != NumUnmerge; ++J)
1600       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1601 
1602     SmallVector<Register, 8> RemergeParts;
1603     for (int I = 0; I != NumDst; ++I) {
1604       for (int J = 0; J < PartsPerRemerge; ++J) {
1605         const int Idx = I * PartsPerRemerge + J;
1606         RemergeParts.emplace_back(Parts[Idx]);
1607       }
1608 
1609       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1610       RemergeParts.clear();
1611     }
1612   }
1613 
1614   MI.eraseFromParent();
1615   return Legalized;
1616 }
1617 
1618 LegalizerHelper::LegalizeResult
1619 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1620                                     LLT WideTy) {
1621   Register DstReg = MI.getOperand(0).getReg();
1622   Register SrcReg = MI.getOperand(1).getReg();
1623   LLT SrcTy = MRI.getType(SrcReg);
1624 
1625   LLT DstTy = MRI.getType(DstReg);
1626   unsigned Offset = MI.getOperand(2).getImm();
1627 
1628   if (TypeIdx == 0) {
1629     if (SrcTy.isVector() || DstTy.isVector())
1630       return UnableToLegalize;
1631 
1632     SrcOp Src(SrcReg);
1633     if (SrcTy.isPointer()) {
1634       // Extracts from pointers can be handled only if they are really just
1635       // simple integers.
1636       const DataLayout &DL = MIRBuilder.getDataLayout();
1637       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1638         return UnableToLegalize;
1639 
1640       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1641       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1642       SrcTy = SrcAsIntTy;
1643     }
1644 
1645     if (DstTy.isPointer())
1646       return UnableToLegalize;
1647 
1648     if (Offset == 0) {
1649       // Avoid a shift in the degenerate case.
1650       MIRBuilder.buildTrunc(DstReg,
1651                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1652       MI.eraseFromParent();
1653       return Legalized;
1654     }
1655 
1656     // Do a shift in the source type.
1657     LLT ShiftTy = SrcTy;
1658     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1659       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1660       ShiftTy = WideTy;
1661     }
1662 
1663     auto LShr = MIRBuilder.buildLShr(
1664       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1665     MIRBuilder.buildTrunc(DstReg, LShr);
1666     MI.eraseFromParent();
1667     return Legalized;
1668   }
1669 
1670   if (SrcTy.isScalar()) {
1671     Observer.changingInstr(MI);
1672     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1673     Observer.changedInstr(MI);
1674     return Legalized;
1675   }
1676 
1677   if (!SrcTy.isVector())
1678     return UnableToLegalize;
1679 
1680   if (DstTy != SrcTy.getElementType())
1681     return UnableToLegalize;
1682 
1683   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1684     return UnableToLegalize;
1685 
1686   Observer.changingInstr(MI);
1687   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1688 
1689   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1690                           Offset);
1691   widenScalarDst(MI, WideTy.getScalarType(), 0);
1692   Observer.changedInstr(MI);
1693   return Legalized;
1694 }
1695 
1696 LegalizerHelper::LegalizeResult
1697 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1698                                    LLT WideTy) {
1699   if (TypeIdx != 0 || WideTy.isVector())
1700     return UnableToLegalize;
1701   Observer.changingInstr(MI);
1702   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1703   widenScalarDst(MI, WideTy);
1704   Observer.changedInstr(MI);
1705   return Legalized;
1706 }
1707 
1708 LegalizerHelper::LegalizeResult
1709 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1710                                            LLT WideTy) {
1711   if (TypeIdx == 1)
1712     return UnableToLegalize; // TODO
1713 
1714   unsigned Opcode;
1715   unsigned ExtOpcode;
1716   Optional<Register> CarryIn = None;
1717   switch (MI.getOpcode()) {
1718   default:
1719     llvm_unreachable("Unexpected opcode!");
1720   case TargetOpcode::G_SADDO:
1721     Opcode = TargetOpcode::G_ADD;
1722     ExtOpcode = TargetOpcode::G_SEXT;
1723     break;
1724   case TargetOpcode::G_SSUBO:
1725     Opcode = TargetOpcode::G_SUB;
1726     ExtOpcode = TargetOpcode::G_SEXT;
1727     break;
1728   case TargetOpcode::G_UADDO:
1729     Opcode = TargetOpcode::G_ADD;
1730     ExtOpcode = TargetOpcode::G_ZEXT;
1731     break;
1732   case TargetOpcode::G_USUBO:
1733     Opcode = TargetOpcode::G_SUB;
1734     ExtOpcode = TargetOpcode::G_ZEXT;
1735     break;
1736   case TargetOpcode::G_SADDE:
1737     Opcode = TargetOpcode::G_UADDE;
1738     ExtOpcode = TargetOpcode::G_SEXT;
1739     CarryIn = MI.getOperand(4).getReg();
1740     break;
1741   case TargetOpcode::G_SSUBE:
1742     Opcode = TargetOpcode::G_USUBE;
1743     ExtOpcode = TargetOpcode::G_SEXT;
1744     CarryIn = MI.getOperand(4).getReg();
1745     break;
1746   case TargetOpcode::G_UADDE:
1747     Opcode = TargetOpcode::G_UADDE;
1748     ExtOpcode = TargetOpcode::G_ZEXT;
1749     CarryIn = MI.getOperand(4).getReg();
1750     break;
1751   case TargetOpcode::G_USUBE:
1752     Opcode = TargetOpcode::G_USUBE;
1753     ExtOpcode = TargetOpcode::G_ZEXT;
1754     CarryIn = MI.getOperand(4).getReg();
1755     break;
1756   }
1757 
1758   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1759   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1760   // Do the arithmetic in the larger type.
1761   Register NewOp;
1762   if (CarryIn) {
1763     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1764     NewOp = MIRBuilder
1765                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1766                             {LHSExt, RHSExt, *CarryIn})
1767                 .getReg(0);
1768   } else {
1769     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1770   }
1771   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1772   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1773   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1774   // There is no overflow if the ExtOp is the same as NewOp.
1775   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1776   // Now trunc the NewOp to the original result.
1777   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1778   MI.eraseFromParent();
1779   return Legalized;
1780 }
1781 
1782 LegalizerHelper::LegalizeResult
1783 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1784                                          LLT WideTy) {
1785   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1786                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1787                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1788   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1789                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1790   // We can convert this to:
1791   //   1. Any extend iN to iM
1792   //   2. SHL by M-N
1793   //   3. [US][ADD|SUB|SHL]SAT
1794   //   4. L/ASHR by M-N
1795   //
1796   // It may be more efficient to lower this to a min and a max operation in
1797   // the higher precision arithmetic if the promoted operation isn't legal,
1798   // but this decision is up to the target's lowering request.
1799   Register DstReg = MI.getOperand(0).getReg();
1800 
1801   unsigned NewBits = WideTy.getScalarSizeInBits();
1802   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1803 
1804   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1805   // must not left shift the RHS to preserve the shift amount.
1806   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1807   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1808                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1809   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1810   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1811   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1812 
1813   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1814                                         {ShiftL, ShiftR}, MI.getFlags());
1815 
1816   // Use a shift that will preserve the number of sign bits when the trunc is
1817   // folded away.
1818   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1819                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1820 
1821   MIRBuilder.buildTrunc(DstReg, Result);
1822   MI.eraseFromParent();
1823   return Legalized;
1824 }
1825 
1826 LegalizerHelper::LegalizeResult
1827 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1828   switch (MI.getOpcode()) {
1829   default:
1830     return UnableToLegalize;
1831   case TargetOpcode::G_EXTRACT:
1832     return widenScalarExtract(MI, TypeIdx, WideTy);
1833   case TargetOpcode::G_INSERT:
1834     return widenScalarInsert(MI, TypeIdx, WideTy);
1835   case TargetOpcode::G_MERGE_VALUES:
1836     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1837   case TargetOpcode::G_UNMERGE_VALUES:
1838     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1839   case TargetOpcode::G_SADDO:
1840   case TargetOpcode::G_SSUBO:
1841   case TargetOpcode::G_UADDO:
1842   case TargetOpcode::G_USUBO:
1843   case TargetOpcode::G_SADDE:
1844   case TargetOpcode::G_SSUBE:
1845   case TargetOpcode::G_UADDE:
1846   case TargetOpcode::G_USUBE:
1847     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1848   case TargetOpcode::G_SADDSAT:
1849   case TargetOpcode::G_SSUBSAT:
1850   case TargetOpcode::G_SSHLSAT:
1851   case TargetOpcode::G_UADDSAT:
1852   case TargetOpcode::G_USUBSAT:
1853   case TargetOpcode::G_USHLSAT:
1854     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1855   case TargetOpcode::G_CTTZ:
1856   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1857   case TargetOpcode::G_CTLZ:
1858   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1859   case TargetOpcode::G_CTPOP: {
1860     if (TypeIdx == 0) {
1861       Observer.changingInstr(MI);
1862       widenScalarDst(MI, WideTy, 0);
1863       Observer.changedInstr(MI);
1864       return Legalized;
1865     }
1866 
1867     Register SrcReg = MI.getOperand(1).getReg();
1868 
1869     // First ZEXT the input.
1870     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1871     LLT CurTy = MRI.getType(SrcReg);
1872     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1873       // The count is the same in the larger type except if the original
1874       // value was zero.  This can be handled by setting the bit just off
1875       // the top of the original type.
1876       auto TopBit =
1877           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1878       MIBSrc = MIRBuilder.buildOr(
1879         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1880     }
1881 
1882     // Perform the operation at the larger size.
1883     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1884     // This is already the correct result for CTPOP and CTTZs
1885     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1886         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1887       // The correct result is NewOp - (Difference in widety and current ty).
1888       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1889       MIBNewOp = MIRBuilder.buildSub(
1890           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1891     }
1892 
1893     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1894     MI.eraseFromParent();
1895     return Legalized;
1896   }
1897   case TargetOpcode::G_BSWAP: {
1898     Observer.changingInstr(MI);
1899     Register DstReg = MI.getOperand(0).getReg();
1900 
1901     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1902     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1903     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1904     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1905 
1906     MI.getOperand(0).setReg(DstExt);
1907 
1908     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1909 
1910     LLT Ty = MRI.getType(DstReg);
1911     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1912     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1913     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1914 
1915     MIRBuilder.buildTrunc(DstReg, ShrReg);
1916     Observer.changedInstr(MI);
1917     return Legalized;
1918   }
1919   case TargetOpcode::G_BITREVERSE: {
1920     Observer.changingInstr(MI);
1921 
1922     Register DstReg = MI.getOperand(0).getReg();
1923     LLT Ty = MRI.getType(DstReg);
1924     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1925 
1926     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1927     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1928     MI.getOperand(0).setReg(DstExt);
1929     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1930 
1931     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1932     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1933     MIRBuilder.buildTrunc(DstReg, Shift);
1934     Observer.changedInstr(MI);
1935     return Legalized;
1936   }
1937   case TargetOpcode::G_FREEZE:
1938     Observer.changingInstr(MI);
1939     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1940     widenScalarDst(MI, WideTy);
1941     Observer.changedInstr(MI);
1942     return Legalized;
1943 
1944   case TargetOpcode::G_ADD:
1945   case TargetOpcode::G_AND:
1946   case TargetOpcode::G_MUL:
1947   case TargetOpcode::G_OR:
1948   case TargetOpcode::G_XOR:
1949   case TargetOpcode::G_SUB:
1950     // Perform operation at larger width (any extension is fines here, high bits
1951     // don't affect the result) and then truncate the result back to the
1952     // original type.
1953     Observer.changingInstr(MI);
1954     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1955     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1956     widenScalarDst(MI, WideTy);
1957     Observer.changedInstr(MI);
1958     return Legalized;
1959 
1960   case TargetOpcode::G_SHL:
1961     Observer.changingInstr(MI);
1962 
1963     if (TypeIdx == 0) {
1964       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1965       widenScalarDst(MI, WideTy);
1966     } else {
1967       assert(TypeIdx == 1);
1968       // The "number of bits to shift" operand must preserve its value as an
1969       // unsigned integer:
1970       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1971     }
1972 
1973     Observer.changedInstr(MI);
1974     return Legalized;
1975 
1976   case TargetOpcode::G_SDIV:
1977   case TargetOpcode::G_SREM:
1978   case TargetOpcode::G_SMIN:
1979   case TargetOpcode::G_SMAX:
1980     Observer.changingInstr(MI);
1981     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1982     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1983     widenScalarDst(MI, WideTy);
1984     Observer.changedInstr(MI);
1985     return Legalized;
1986 
1987   case TargetOpcode::G_ASHR:
1988   case TargetOpcode::G_LSHR:
1989     Observer.changingInstr(MI);
1990 
1991     if (TypeIdx == 0) {
1992       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1993         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1994 
1995       widenScalarSrc(MI, WideTy, 1, CvtOp);
1996       widenScalarDst(MI, WideTy);
1997     } else {
1998       assert(TypeIdx == 1);
1999       // The "number of bits to shift" operand must preserve its value as an
2000       // unsigned integer:
2001       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2002     }
2003 
2004     Observer.changedInstr(MI);
2005     return Legalized;
2006   case TargetOpcode::G_UDIV:
2007   case TargetOpcode::G_UREM:
2008   case TargetOpcode::G_UMIN:
2009   case TargetOpcode::G_UMAX:
2010     Observer.changingInstr(MI);
2011     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2012     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2013     widenScalarDst(MI, WideTy);
2014     Observer.changedInstr(MI);
2015     return Legalized;
2016 
2017   case TargetOpcode::G_SELECT:
2018     Observer.changingInstr(MI);
2019     if (TypeIdx == 0) {
2020       // Perform operation at larger width (any extension is fine here, high
2021       // bits don't affect the result) and then truncate the result back to the
2022       // original type.
2023       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2024       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2025       widenScalarDst(MI, WideTy);
2026     } else {
2027       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2028       // Explicit extension is required here since high bits affect the result.
2029       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2030     }
2031     Observer.changedInstr(MI);
2032     return Legalized;
2033 
2034   case TargetOpcode::G_FPTOSI:
2035   case TargetOpcode::G_FPTOUI:
2036     Observer.changingInstr(MI);
2037 
2038     if (TypeIdx == 0)
2039       widenScalarDst(MI, WideTy);
2040     else
2041       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2042 
2043     Observer.changedInstr(MI);
2044     return Legalized;
2045   case TargetOpcode::G_SITOFP:
2046     Observer.changingInstr(MI);
2047 
2048     if (TypeIdx == 0)
2049       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2050     else
2051       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2052 
2053     Observer.changedInstr(MI);
2054     return Legalized;
2055   case TargetOpcode::G_UITOFP:
2056     Observer.changingInstr(MI);
2057 
2058     if (TypeIdx == 0)
2059       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2060     else
2061       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2062 
2063     Observer.changedInstr(MI);
2064     return Legalized;
2065   case TargetOpcode::G_LOAD:
2066   case TargetOpcode::G_SEXTLOAD:
2067   case TargetOpcode::G_ZEXTLOAD:
2068     Observer.changingInstr(MI);
2069     widenScalarDst(MI, WideTy);
2070     Observer.changedInstr(MI);
2071     return Legalized;
2072 
2073   case TargetOpcode::G_STORE: {
2074     if (TypeIdx != 0)
2075       return UnableToLegalize;
2076 
2077     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2078     if (!Ty.isScalar())
2079       return UnableToLegalize;
2080 
2081     Observer.changingInstr(MI);
2082 
2083     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2084       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2085     widenScalarSrc(MI, WideTy, 0, ExtType);
2086 
2087     Observer.changedInstr(MI);
2088     return Legalized;
2089   }
2090   case TargetOpcode::G_CONSTANT: {
2091     MachineOperand &SrcMO = MI.getOperand(1);
2092     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2093     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2094         MRI.getType(MI.getOperand(0).getReg()));
2095     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2096             ExtOpc == TargetOpcode::G_ANYEXT) &&
2097            "Illegal Extend");
2098     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2099     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2100                            ? SrcVal.sext(WideTy.getSizeInBits())
2101                            : SrcVal.zext(WideTy.getSizeInBits());
2102     Observer.changingInstr(MI);
2103     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2104 
2105     widenScalarDst(MI, WideTy);
2106     Observer.changedInstr(MI);
2107     return Legalized;
2108   }
2109   case TargetOpcode::G_FCONSTANT: {
2110     MachineOperand &SrcMO = MI.getOperand(1);
2111     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2112     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2113     bool LosesInfo;
2114     switch (WideTy.getSizeInBits()) {
2115     case 32:
2116       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2117                   &LosesInfo);
2118       break;
2119     case 64:
2120       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2121                   &LosesInfo);
2122       break;
2123     default:
2124       return UnableToLegalize;
2125     }
2126 
2127     assert(!LosesInfo && "extend should always be lossless");
2128 
2129     Observer.changingInstr(MI);
2130     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2131 
2132     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2133     Observer.changedInstr(MI);
2134     return Legalized;
2135   }
2136   case TargetOpcode::G_IMPLICIT_DEF: {
2137     Observer.changingInstr(MI);
2138     widenScalarDst(MI, WideTy);
2139     Observer.changedInstr(MI);
2140     return Legalized;
2141   }
2142   case TargetOpcode::G_BRCOND:
2143     Observer.changingInstr(MI);
2144     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2145     Observer.changedInstr(MI);
2146     return Legalized;
2147 
2148   case TargetOpcode::G_FCMP:
2149     Observer.changingInstr(MI);
2150     if (TypeIdx == 0)
2151       widenScalarDst(MI, WideTy);
2152     else {
2153       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2154       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2155     }
2156     Observer.changedInstr(MI);
2157     return Legalized;
2158 
2159   case TargetOpcode::G_ICMP:
2160     Observer.changingInstr(MI);
2161     if (TypeIdx == 0)
2162       widenScalarDst(MI, WideTy);
2163     else {
2164       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2165                                MI.getOperand(1).getPredicate()))
2166                                ? TargetOpcode::G_SEXT
2167                                : TargetOpcode::G_ZEXT;
2168       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2169       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2170     }
2171     Observer.changedInstr(MI);
2172     return Legalized;
2173 
2174   case TargetOpcode::G_PTR_ADD:
2175     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2176     Observer.changingInstr(MI);
2177     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2178     Observer.changedInstr(MI);
2179     return Legalized;
2180 
2181   case TargetOpcode::G_PHI: {
2182     assert(TypeIdx == 0 && "Expecting only Idx 0");
2183 
2184     Observer.changingInstr(MI);
2185     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2186       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2187       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2188       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2189     }
2190 
2191     MachineBasicBlock &MBB = *MI.getParent();
2192     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2193     widenScalarDst(MI, WideTy);
2194     Observer.changedInstr(MI);
2195     return Legalized;
2196   }
2197   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2198     if (TypeIdx == 0) {
2199       Register VecReg = MI.getOperand(1).getReg();
2200       LLT VecTy = MRI.getType(VecReg);
2201       Observer.changingInstr(MI);
2202 
2203       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2204                                      WideTy.getSizeInBits()),
2205                      1, TargetOpcode::G_SEXT);
2206 
2207       widenScalarDst(MI, WideTy, 0);
2208       Observer.changedInstr(MI);
2209       return Legalized;
2210     }
2211 
2212     if (TypeIdx != 2)
2213       return UnableToLegalize;
2214     Observer.changingInstr(MI);
2215     // TODO: Probably should be zext
2216     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2217     Observer.changedInstr(MI);
2218     return Legalized;
2219   }
2220   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2221     if (TypeIdx == 1) {
2222       Observer.changingInstr(MI);
2223 
2224       Register VecReg = MI.getOperand(1).getReg();
2225       LLT VecTy = MRI.getType(VecReg);
2226       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2227 
2228       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2229       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2230       widenScalarDst(MI, WideVecTy, 0);
2231       Observer.changedInstr(MI);
2232       return Legalized;
2233     }
2234 
2235     if (TypeIdx == 2) {
2236       Observer.changingInstr(MI);
2237       // TODO: Probably should be zext
2238       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2239       Observer.changedInstr(MI);
2240       return Legalized;
2241     }
2242 
2243     return UnableToLegalize;
2244   }
2245   case TargetOpcode::G_FADD:
2246   case TargetOpcode::G_FMUL:
2247   case TargetOpcode::G_FSUB:
2248   case TargetOpcode::G_FMA:
2249   case TargetOpcode::G_FMAD:
2250   case TargetOpcode::G_FNEG:
2251   case TargetOpcode::G_FABS:
2252   case TargetOpcode::G_FCANONICALIZE:
2253   case TargetOpcode::G_FMINNUM:
2254   case TargetOpcode::G_FMAXNUM:
2255   case TargetOpcode::G_FMINNUM_IEEE:
2256   case TargetOpcode::G_FMAXNUM_IEEE:
2257   case TargetOpcode::G_FMINIMUM:
2258   case TargetOpcode::G_FMAXIMUM:
2259   case TargetOpcode::G_FDIV:
2260   case TargetOpcode::G_FREM:
2261   case TargetOpcode::G_FCEIL:
2262   case TargetOpcode::G_FFLOOR:
2263   case TargetOpcode::G_FCOS:
2264   case TargetOpcode::G_FSIN:
2265   case TargetOpcode::G_FLOG10:
2266   case TargetOpcode::G_FLOG:
2267   case TargetOpcode::G_FLOG2:
2268   case TargetOpcode::G_FRINT:
2269   case TargetOpcode::G_FNEARBYINT:
2270   case TargetOpcode::G_FSQRT:
2271   case TargetOpcode::G_FEXP:
2272   case TargetOpcode::G_FEXP2:
2273   case TargetOpcode::G_FPOW:
2274   case TargetOpcode::G_INTRINSIC_TRUNC:
2275   case TargetOpcode::G_INTRINSIC_ROUND:
2276   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2277     assert(TypeIdx == 0);
2278     Observer.changingInstr(MI);
2279 
2280     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2281       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2282 
2283     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2284     Observer.changedInstr(MI);
2285     return Legalized;
2286   case TargetOpcode::G_FPOWI: {
2287     if (TypeIdx != 0)
2288       return UnableToLegalize;
2289     Observer.changingInstr(MI);
2290     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2291     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2292     Observer.changedInstr(MI);
2293     return Legalized;
2294   }
2295   case TargetOpcode::G_INTTOPTR:
2296     if (TypeIdx != 1)
2297       return UnableToLegalize;
2298 
2299     Observer.changingInstr(MI);
2300     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2301     Observer.changedInstr(MI);
2302     return Legalized;
2303   case TargetOpcode::G_PTRTOINT:
2304     if (TypeIdx != 0)
2305       return UnableToLegalize;
2306 
2307     Observer.changingInstr(MI);
2308     widenScalarDst(MI, WideTy, 0);
2309     Observer.changedInstr(MI);
2310     return Legalized;
2311   case TargetOpcode::G_BUILD_VECTOR: {
2312     Observer.changingInstr(MI);
2313 
2314     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2315     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2316       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2317 
2318     // Avoid changing the result vector type if the source element type was
2319     // requested.
2320     if (TypeIdx == 1) {
2321       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2322     } else {
2323       widenScalarDst(MI, WideTy, 0);
2324     }
2325 
2326     Observer.changedInstr(MI);
2327     return Legalized;
2328   }
2329   case TargetOpcode::G_SEXT_INREG:
2330     if (TypeIdx != 0)
2331       return UnableToLegalize;
2332 
2333     Observer.changingInstr(MI);
2334     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2335     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2336     Observer.changedInstr(MI);
2337     return Legalized;
2338   case TargetOpcode::G_PTRMASK: {
2339     if (TypeIdx != 1)
2340       return UnableToLegalize;
2341     Observer.changingInstr(MI);
2342     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2343     Observer.changedInstr(MI);
2344     return Legalized;
2345   }
2346   }
2347 }
2348 
2349 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2350                              MachineIRBuilder &B, Register Src, LLT Ty) {
2351   auto Unmerge = B.buildUnmerge(Ty, Src);
2352   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2353     Pieces.push_back(Unmerge.getReg(I));
2354 }
2355 
2356 LegalizerHelper::LegalizeResult
2357 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2358   Register Dst = MI.getOperand(0).getReg();
2359   Register Src = MI.getOperand(1).getReg();
2360   LLT DstTy = MRI.getType(Dst);
2361   LLT SrcTy = MRI.getType(Src);
2362 
2363   if (SrcTy.isVector()) {
2364     LLT SrcEltTy = SrcTy.getElementType();
2365     SmallVector<Register, 8> SrcRegs;
2366 
2367     if (DstTy.isVector()) {
2368       int NumDstElt = DstTy.getNumElements();
2369       int NumSrcElt = SrcTy.getNumElements();
2370 
2371       LLT DstEltTy = DstTy.getElementType();
2372       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2373       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2374 
2375       // If there's an element size mismatch, insert intermediate casts to match
2376       // the result element type.
2377       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2378         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2379         //
2380         // =>
2381         //
2382         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2383         // %3:_(<2 x s8>) = G_BITCAST %2
2384         // %4:_(<2 x s8>) = G_BITCAST %3
2385         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2386         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2387         SrcPartTy = SrcEltTy;
2388       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2389         //
2390         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2391         //
2392         // =>
2393         //
2394         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2395         // %3:_(s16) = G_BITCAST %2
2396         // %4:_(s16) = G_BITCAST %3
2397         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2398         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2399         DstCastTy = DstEltTy;
2400       }
2401 
2402       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2403       for (Register &SrcReg : SrcRegs)
2404         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2405     } else
2406       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2407 
2408     MIRBuilder.buildMerge(Dst, SrcRegs);
2409     MI.eraseFromParent();
2410     return Legalized;
2411   }
2412 
2413   if (DstTy.isVector()) {
2414     SmallVector<Register, 8> SrcRegs;
2415     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2416     MIRBuilder.buildMerge(Dst, SrcRegs);
2417     MI.eraseFromParent();
2418     return Legalized;
2419   }
2420 
2421   return UnableToLegalize;
2422 }
2423 
2424 /// Figure out the bit offset into a register when coercing a vector index for
2425 /// the wide element type. This is only for the case when promoting vector to
2426 /// one with larger elements.
2427 //
2428 ///
2429 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2430 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2431 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2432                                                    Register Idx,
2433                                                    unsigned NewEltSize,
2434                                                    unsigned OldEltSize) {
2435   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2436   LLT IdxTy = B.getMRI()->getType(Idx);
2437 
2438   // Now figure out the amount we need to shift to get the target bits.
2439   auto OffsetMask = B.buildConstant(
2440     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2441   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2442   return B.buildShl(IdxTy, OffsetIdx,
2443                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2444 }
2445 
2446 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2447 /// is casting to a vector with a smaller element size, perform multiple element
2448 /// extracts and merge the results. If this is coercing to a vector with larger
2449 /// elements, index the bitcasted vector and extract the target element with bit
2450 /// operations. This is intended to force the indexing in the native register
2451 /// size for architectures that can dynamically index the register file.
2452 LegalizerHelper::LegalizeResult
2453 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2454                                          LLT CastTy) {
2455   if (TypeIdx != 1)
2456     return UnableToLegalize;
2457 
2458   Register Dst = MI.getOperand(0).getReg();
2459   Register SrcVec = MI.getOperand(1).getReg();
2460   Register Idx = MI.getOperand(2).getReg();
2461   LLT SrcVecTy = MRI.getType(SrcVec);
2462   LLT IdxTy = MRI.getType(Idx);
2463 
2464   LLT SrcEltTy = SrcVecTy.getElementType();
2465   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2466   unsigned OldNumElts = SrcVecTy.getNumElements();
2467 
2468   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2469   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2470 
2471   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2472   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2473   if (NewNumElts > OldNumElts) {
2474     // Decreasing the vector element size
2475     //
2476     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2477     //  =>
2478     //  v4i32:castx = bitcast x:v2i64
2479     //
2480     // i64 = bitcast
2481     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2482     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2483     //
2484     if (NewNumElts % OldNumElts != 0)
2485       return UnableToLegalize;
2486 
2487     // Type of the intermediate result vector.
2488     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2489     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2490 
2491     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2492 
2493     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2494     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2495 
2496     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2497       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2498       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2499       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2500       NewOps[I] = Elt.getReg(0);
2501     }
2502 
2503     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2504     MIRBuilder.buildBitcast(Dst, NewVec);
2505     MI.eraseFromParent();
2506     return Legalized;
2507   }
2508 
2509   if (NewNumElts < OldNumElts) {
2510     if (NewEltSize % OldEltSize != 0)
2511       return UnableToLegalize;
2512 
2513     // This only depends on powers of 2 because we use bit tricks to figure out
2514     // the bit offset we need to shift to get the target element. A general
2515     // expansion could emit division/multiply.
2516     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2517       return UnableToLegalize;
2518 
2519     // Increasing the vector element size.
2520     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2521     //
2522     //   =>
2523     //
2524     // %cast = G_BITCAST %vec
2525     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2526     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2527     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2528     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2529     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2530     // %elt = G_TRUNC %elt_bits
2531 
2532     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2533     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2534 
2535     // Divide to get the index in the wider element type.
2536     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2537 
2538     Register WideElt = CastVec;
2539     if (CastTy.isVector()) {
2540       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2541                                                      ScaledIdx).getReg(0);
2542     }
2543 
2544     // Compute the bit offset into the register of the target element.
2545     Register OffsetBits = getBitcastWiderVectorElementOffset(
2546       MIRBuilder, Idx, NewEltSize, OldEltSize);
2547 
2548     // Shift the wide element to get the target element.
2549     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2550     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2551     MI.eraseFromParent();
2552     return Legalized;
2553   }
2554 
2555   return UnableToLegalize;
2556 }
2557 
2558 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2559 /// TargetReg, while preserving other bits in \p TargetReg.
2560 ///
2561 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2562 static Register buildBitFieldInsert(MachineIRBuilder &B,
2563                                     Register TargetReg, Register InsertReg,
2564                                     Register OffsetBits) {
2565   LLT TargetTy = B.getMRI()->getType(TargetReg);
2566   LLT InsertTy = B.getMRI()->getType(InsertReg);
2567   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2568   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2569 
2570   // Produce a bitmask of the value to insert
2571   auto EltMask = B.buildConstant(
2572     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2573                                    InsertTy.getSizeInBits()));
2574   // Shift it into position
2575   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2576   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2577 
2578   // Clear out the bits in the wide element
2579   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2580 
2581   // The value to insert has all zeros already, so stick it into the masked
2582   // wide element.
2583   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2584 }
2585 
2586 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2587 /// is increasing the element size, perform the indexing in the target element
2588 /// type, and use bit operations to insert at the element position. This is
2589 /// intended for architectures that can dynamically index the register file and
2590 /// want to force indexing in the native register size.
2591 LegalizerHelper::LegalizeResult
2592 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2593                                         LLT CastTy) {
2594   if (TypeIdx != 0)
2595     return UnableToLegalize;
2596 
2597   Register Dst = MI.getOperand(0).getReg();
2598   Register SrcVec = MI.getOperand(1).getReg();
2599   Register Val = MI.getOperand(2).getReg();
2600   Register Idx = MI.getOperand(3).getReg();
2601 
2602   LLT VecTy = MRI.getType(Dst);
2603   LLT IdxTy = MRI.getType(Idx);
2604 
2605   LLT VecEltTy = VecTy.getElementType();
2606   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2607   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2608   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2609 
2610   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2611   unsigned OldNumElts = VecTy.getNumElements();
2612 
2613   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2614   if (NewNumElts < OldNumElts) {
2615     if (NewEltSize % OldEltSize != 0)
2616       return UnableToLegalize;
2617 
2618     // This only depends on powers of 2 because we use bit tricks to figure out
2619     // the bit offset we need to shift to get the target element. A general
2620     // expansion could emit division/multiply.
2621     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2622       return UnableToLegalize;
2623 
2624     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2625     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2626 
2627     // Divide to get the index in the wider element type.
2628     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2629 
2630     Register ExtractedElt = CastVec;
2631     if (CastTy.isVector()) {
2632       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2633                                                           ScaledIdx).getReg(0);
2634     }
2635 
2636     // Compute the bit offset into the register of the target element.
2637     Register OffsetBits = getBitcastWiderVectorElementOffset(
2638       MIRBuilder, Idx, NewEltSize, OldEltSize);
2639 
2640     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2641                                                Val, OffsetBits);
2642     if (CastTy.isVector()) {
2643       InsertedElt = MIRBuilder.buildInsertVectorElement(
2644         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2645     }
2646 
2647     MIRBuilder.buildBitcast(Dst, InsertedElt);
2648     MI.eraseFromParent();
2649     return Legalized;
2650   }
2651 
2652   return UnableToLegalize;
2653 }
2654 
2655 LegalizerHelper::LegalizeResult
2656 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2657   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2658   Register DstReg = MI.getOperand(0).getReg();
2659   Register PtrReg = MI.getOperand(1).getReg();
2660   LLT DstTy = MRI.getType(DstReg);
2661   auto &MMO = **MI.memoperands_begin();
2662 
2663   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2664     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2665       // This load needs splitting into power of 2 sized loads.
2666       if (DstTy.isVector())
2667         return UnableToLegalize;
2668       if (isPowerOf2_32(DstTy.getSizeInBits()))
2669         return UnableToLegalize; // Don't know what we're being asked to do.
2670 
2671       // Our strategy here is to generate anyextending loads for the smaller
2672       // types up to next power-2 result type, and then combine the two larger
2673       // result values together, before truncating back down to the non-pow-2
2674       // type.
2675       // E.g. v1 = i24 load =>
2676       // v2 = i32 zextload (2 byte)
2677       // v3 = i32 load (1 byte)
2678       // v4 = i32 shl v3, 16
2679       // v5 = i32 or v4, v2
2680       // v1 = i24 trunc v5
2681       // By doing this we generate the correct truncate which should get
2682       // combined away as an artifact with a matching extend.
2683       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2684       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2685 
2686       MachineFunction &MF = MIRBuilder.getMF();
2687       MachineMemOperand *LargeMMO =
2688         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2689       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2690         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2691 
2692       LLT PtrTy = MRI.getType(PtrReg);
2693       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2694       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2695       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2696       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2697       auto LargeLoad = MIRBuilder.buildLoadInstr(
2698         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2699 
2700       auto OffsetCst = MIRBuilder.buildConstant(
2701         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2702       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2703       auto SmallPtr =
2704         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2705       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2706                                             *SmallMMO);
2707 
2708       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2709       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2710       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2711       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2712       MI.eraseFromParent();
2713       return Legalized;
2714     }
2715 
2716     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2717     MI.eraseFromParent();
2718     return Legalized;
2719   }
2720 
2721   if (DstTy.isScalar()) {
2722     Register TmpReg =
2723       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2724     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2725     switch (MI.getOpcode()) {
2726     default:
2727       llvm_unreachable("Unexpected opcode");
2728     case TargetOpcode::G_LOAD:
2729       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2730       break;
2731     case TargetOpcode::G_SEXTLOAD:
2732       MIRBuilder.buildSExt(DstReg, TmpReg);
2733       break;
2734     case TargetOpcode::G_ZEXTLOAD:
2735       MIRBuilder.buildZExt(DstReg, TmpReg);
2736       break;
2737     }
2738 
2739     MI.eraseFromParent();
2740     return Legalized;
2741   }
2742 
2743   return UnableToLegalize;
2744 }
2745 
2746 LegalizerHelper::LegalizeResult
2747 LegalizerHelper::lowerStore(MachineInstr &MI) {
2748   // Lower a non-power of 2 store into multiple pow-2 stores.
2749   // E.g. split an i24 store into an i16 store + i8 store.
2750   // We do this by first extending the stored value to the next largest power
2751   // of 2 type, and then using truncating stores to store the components.
2752   // By doing this, likewise with G_LOAD, generate an extend that can be
2753   // artifact-combined away instead of leaving behind extracts.
2754   Register SrcReg = MI.getOperand(0).getReg();
2755   Register PtrReg = MI.getOperand(1).getReg();
2756   LLT SrcTy = MRI.getType(SrcReg);
2757   MachineMemOperand &MMO = **MI.memoperands_begin();
2758   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2759     return UnableToLegalize;
2760   if (SrcTy.isVector())
2761     return UnableToLegalize;
2762   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2763     return UnableToLegalize; // Don't know what we're being asked to do.
2764 
2765   // Extend to the next pow-2.
2766   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2767   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2768 
2769   // Obtain the smaller value by shifting away the larger value.
2770   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2771   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2772   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2773   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2774 
2775   // Generate the PtrAdd and truncating stores.
2776   LLT PtrTy = MRI.getType(PtrReg);
2777   auto OffsetCst = MIRBuilder.buildConstant(
2778     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2779   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2780   auto SmallPtr =
2781     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2782 
2783   MachineFunction &MF = MIRBuilder.getMF();
2784   MachineMemOperand *LargeMMO =
2785     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2786   MachineMemOperand *SmallMMO =
2787     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2788   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2789   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2790   MI.eraseFromParent();
2791   return Legalized;
2792 }
2793 
2794 LegalizerHelper::LegalizeResult
2795 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2796   switch (MI.getOpcode()) {
2797   case TargetOpcode::G_LOAD: {
2798     if (TypeIdx != 0)
2799       return UnableToLegalize;
2800 
2801     Observer.changingInstr(MI);
2802     bitcastDst(MI, CastTy, 0);
2803     Observer.changedInstr(MI);
2804     return Legalized;
2805   }
2806   case TargetOpcode::G_STORE: {
2807     if (TypeIdx != 0)
2808       return UnableToLegalize;
2809 
2810     Observer.changingInstr(MI);
2811     bitcastSrc(MI, CastTy, 0);
2812     Observer.changedInstr(MI);
2813     return Legalized;
2814   }
2815   case TargetOpcode::G_SELECT: {
2816     if (TypeIdx != 0)
2817       return UnableToLegalize;
2818 
2819     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2820       LLVM_DEBUG(
2821           dbgs() << "bitcast action not implemented for vector select\n");
2822       return UnableToLegalize;
2823     }
2824 
2825     Observer.changingInstr(MI);
2826     bitcastSrc(MI, CastTy, 2);
2827     bitcastSrc(MI, CastTy, 3);
2828     bitcastDst(MI, CastTy, 0);
2829     Observer.changedInstr(MI);
2830     return Legalized;
2831   }
2832   case TargetOpcode::G_AND:
2833   case TargetOpcode::G_OR:
2834   case TargetOpcode::G_XOR: {
2835     Observer.changingInstr(MI);
2836     bitcastSrc(MI, CastTy, 1);
2837     bitcastSrc(MI, CastTy, 2);
2838     bitcastDst(MI, CastTy, 0);
2839     Observer.changedInstr(MI);
2840     return Legalized;
2841   }
2842   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2843     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2844   case TargetOpcode::G_INSERT_VECTOR_ELT:
2845     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2846   default:
2847     return UnableToLegalize;
2848   }
2849 }
2850 
2851 // Legalize an instruction by changing the opcode in place.
2852 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2853     Observer.changingInstr(MI);
2854     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2855     Observer.changedInstr(MI);
2856 }
2857 
2858 LegalizerHelper::LegalizeResult
2859 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2860   using namespace TargetOpcode;
2861 
2862   switch(MI.getOpcode()) {
2863   default:
2864     return UnableToLegalize;
2865   case TargetOpcode::G_BITCAST:
2866     return lowerBitcast(MI);
2867   case TargetOpcode::G_SREM:
2868   case TargetOpcode::G_UREM: {
2869     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2870     auto Quot =
2871         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2872                               {MI.getOperand(1), MI.getOperand(2)});
2873 
2874     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2875     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2876     MI.eraseFromParent();
2877     return Legalized;
2878   }
2879   case TargetOpcode::G_SADDO:
2880   case TargetOpcode::G_SSUBO:
2881     return lowerSADDO_SSUBO(MI);
2882   case TargetOpcode::G_UMULH:
2883   case TargetOpcode::G_SMULH:
2884     return lowerSMULH_UMULH(MI);
2885   case TargetOpcode::G_SMULO:
2886   case TargetOpcode::G_UMULO: {
2887     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2888     // result.
2889     Register Res = MI.getOperand(0).getReg();
2890     Register Overflow = MI.getOperand(1).getReg();
2891     Register LHS = MI.getOperand(2).getReg();
2892     Register RHS = MI.getOperand(3).getReg();
2893     LLT Ty = MRI.getType(Res);
2894 
2895     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2896                           ? TargetOpcode::G_SMULH
2897                           : TargetOpcode::G_UMULH;
2898 
2899     Observer.changingInstr(MI);
2900     const auto &TII = MIRBuilder.getTII();
2901     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2902     MI.RemoveOperand(1);
2903     Observer.changedInstr(MI);
2904 
2905     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2906     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2907 
2908     // Move insert point forward so we can use the Res register if needed.
2909     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2910 
2911     // For *signed* multiply, overflow is detected by checking:
2912     // (hi != (lo >> bitwidth-1))
2913     if (Opcode == TargetOpcode::G_SMULH) {
2914       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2915       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2916       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2917     } else {
2918       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2919     }
2920     return Legalized;
2921   }
2922   case TargetOpcode::G_FNEG: {
2923     Register Res = MI.getOperand(0).getReg();
2924     LLT Ty = MRI.getType(Res);
2925 
2926     // TODO: Handle vector types once we are able to
2927     // represent them.
2928     if (Ty.isVector())
2929       return UnableToLegalize;
2930     auto SignMask =
2931         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2932     Register SubByReg = MI.getOperand(1).getReg();
2933     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2934     MI.eraseFromParent();
2935     return Legalized;
2936   }
2937   case TargetOpcode::G_FSUB: {
2938     Register Res = MI.getOperand(0).getReg();
2939     LLT Ty = MRI.getType(Res);
2940 
2941     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2942     // First, check if G_FNEG is marked as Lower. If so, we may
2943     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2944     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2945       return UnableToLegalize;
2946     Register LHS = MI.getOperand(1).getReg();
2947     Register RHS = MI.getOperand(2).getReg();
2948     Register Neg = MRI.createGenericVirtualRegister(Ty);
2949     MIRBuilder.buildFNeg(Neg, RHS);
2950     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2951     MI.eraseFromParent();
2952     return Legalized;
2953   }
2954   case TargetOpcode::G_FMAD:
2955     return lowerFMad(MI);
2956   case TargetOpcode::G_FFLOOR:
2957     return lowerFFloor(MI);
2958   case TargetOpcode::G_INTRINSIC_ROUND:
2959     return lowerIntrinsicRound(MI);
2960   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2961     // Since round even is the assumed rounding mode for unconstrained FP
2962     // operations, rint and roundeven are the same operation.
2963     changeOpcode(MI, TargetOpcode::G_FRINT);
2964     return Legalized;
2965   }
2966   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2967     Register OldValRes = MI.getOperand(0).getReg();
2968     Register SuccessRes = MI.getOperand(1).getReg();
2969     Register Addr = MI.getOperand(2).getReg();
2970     Register CmpVal = MI.getOperand(3).getReg();
2971     Register NewVal = MI.getOperand(4).getReg();
2972     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2973                                   **MI.memoperands_begin());
2974     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2975     MI.eraseFromParent();
2976     return Legalized;
2977   }
2978   case TargetOpcode::G_LOAD:
2979   case TargetOpcode::G_SEXTLOAD:
2980   case TargetOpcode::G_ZEXTLOAD:
2981     return lowerLoad(MI);
2982   case TargetOpcode::G_STORE:
2983     return lowerStore(MI);
2984   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2985   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2986   case TargetOpcode::G_CTLZ:
2987   case TargetOpcode::G_CTTZ:
2988   case TargetOpcode::G_CTPOP:
2989     return lowerBitCount(MI);
2990   case G_UADDO: {
2991     Register Res = MI.getOperand(0).getReg();
2992     Register CarryOut = MI.getOperand(1).getReg();
2993     Register LHS = MI.getOperand(2).getReg();
2994     Register RHS = MI.getOperand(3).getReg();
2995 
2996     MIRBuilder.buildAdd(Res, LHS, RHS);
2997     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2998 
2999     MI.eraseFromParent();
3000     return Legalized;
3001   }
3002   case G_UADDE: {
3003     Register Res = MI.getOperand(0).getReg();
3004     Register CarryOut = MI.getOperand(1).getReg();
3005     Register LHS = MI.getOperand(2).getReg();
3006     Register RHS = MI.getOperand(3).getReg();
3007     Register CarryIn = MI.getOperand(4).getReg();
3008     LLT Ty = MRI.getType(Res);
3009 
3010     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3011     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3012     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3013     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3014 
3015     MI.eraseFromParent();
3016     return Legalized;
3017   }
3018   case G_USUBO: {
3019     Register Res = MI.getOperand(0).getReg();
3020     Register BorrowOut = MI.getOperand(1).getReg();
3021     Register LHS = MI.getOperand(2).getReg();
3022     Register RHS = MI.getOperand(3).getReg();
3023 
3024     MIRBuilder.buildSub(Res, LHS, RHS);
3025     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3026 
3027     MI.eraseFromParent();
3028     return Legalized;
3029   }
3030   case G_USUBE: {
3031     Register Res = MI.getOperand(0).getReg();
3032     Register BorrowOut = MI.getOperand(1).getReg();
3033     Register LHS = MI.getOperand(2).getReg();
3034     Register RHS = MI.getOperand(3).getReg();
3035     Register BorrowIn = MI.getOperand(4).getReg();
3036     const LLT CondTy = MRI.getType(BorrowOut);
3037     const LLT Ty = MRI.getType(Res);
3038 
3039     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3040     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3041     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3042 
3043     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3044     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3045     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3046 
3047     MI.eraseFromParent();
3048     return Legalized;
3049   }
3050   case G_UITOFP:
3051     return lowerUITOFP(MI);
3052   case G_SITOFP:
3053     return lowerSITOFP(MI);
3054   case G_FPTOUI:
3055     return lowerFPTOUI(MI);
3056   case G_FPTOSI:
3057     return lowerFPTOSI(MI);
3058   case G_FPTRUNC:
3059     return lowerFPTRUNC(MI);
3060   case G_FPOWI:
3061     return lowerFPOWI(MI);
3062   case G_SMIN:
3063   case G_SMAX:
3064   case G_UMIN:
3065   case G_UMAX:
3066     return lowerMinMax(MI);
3067   case G_FCOPYSIGN:
3068     return lowerFCopySign(MI);
3069   case G_FMINNUM:
3070   case G_FMAXNUM:
3071     return lowerFMinNumMaxNum(MI);
3072   case G_MERGE_VALUES:
3073     return lowerMergeValues(MI);
3074   case G_UNMERGE_VALUES:
3075     return lowerUnmergeValues(MI);
3076   case TargetOpcode::G_SEXT_INREG: {
3077     assert(MI.getOperand(2).isImm() && "Expected immediate");
3078     int64_t SizeInBits = MI.getOperand(2).getImm();
3079 
3080     Register DstReg = MI.getOperand(0).getReg();
3081     Register SrcReg = MI.getOperand(1).getReg();
3082     LLT DstTy = MRI.getType(DstReg);
3083     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3084 
3085     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3086     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3087     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3088     MI.eraseFromParent();
3089     return Legalized;
3090   }
3091   case G_EXTRACT_VECTOR_ELT:
3092   case G_INSERT_VECTOR_ELT:
3093     return lowerExtractInsertVectorElt(MI);
3094   case G_SHUFFLE_VECTOR:
3095     return lowerShuffleVector(MI);
3096   case G_DYN_STACKALLOC:
3097     return lowerDynStackAlloc(MI);
3098   case G_EXTRACT:
3099     return lowerExtract(MI);
3100   case G_INSERT:
3101     return lowerInsert(MI);
3102   case G_BSWAP:
3103     return lowerBswap(MI);
3104   case G_BITREVERSE:
3105     return lowerBitreverse(MI);
3106   case G_READ_REGISTER:
3107   case G_WRITE_REGISTER:
3108     return lowerReadWriteRegister(MI);
3109   case G_UADDSAT:
3110   case G_USUBSAT: {
3111     // Try to make a reasonable guess about which lowering strategy to use. The
3112     // target can override this with custom lowering and calling the
3113     // implementation functions.
3114     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3115     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3116       return lowerAddSubSatToMinMax(MI);
3117     return lowerAddSubSatToAddoSubo(MI);
3118   }
3119   case G_SADDSAT:
3120   case G_SSUBSAT: {
3121     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3122 
3123     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3124     // since it's a shorter expansion. However, we would need to figure out the
3125     // preferred boolean type for the carry out for the query.
3126     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3127       return lowerAddSubSatToMinMax(MI);
3128     return lowerAddSubSatToAddoSubo(MI);
3129   }
3130   case G_SSHLSAT:
3131   case G_USHLSAT:
3132     return lowerShlSat(MI);
3133   case G_ABS: {
3134     // Expand %res = G_ABS %a into:
3135     // %v1 = G_ASHR %a, scalar_size-1
3136     // %v2 = G_ADD %a, %v1
3137     // %res = G_XOR %v2, %v1
3138     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3139     Register OpReg = MI.getOperand(1).getReg();
3140     auto ShiftAmt =
3141         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3142     auto Shift =
3143         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3144     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3145     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3146     MI.eraseFromParent();
3147     return Legalized;
3148   }
3149   case G_SELECT:
3150     return lowerSelect(MI);
3151   }
3152 }
3153 
3154 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3155                                                   Align MinAlign) const {
3156   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3157   // datalayout for the preferred alignment. Also there should be a target hook
3158   // for this to allow targets to reduce the alignment and ignore the
3159   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3160   // the type.
3161   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3162 }
3163 
3164 MachineInstrBuilder
3165 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3166                                       MachinePointerInfo &PtrInfo) {
3167   MachineFunction &MF = MIRBuilder.getMF();
3168   const DataLayout &DL = MIRBuilder.getDataLayout();
3169   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3170 
3171   unsigned AddrSpace = DL.getAllocaAddrSpace();
3172   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3173 
3174   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3175   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3176 }
3177 
3178 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3179                                         LLT VecTy) {
3180   int64_t IdxVal;
3181   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3182     return IdxReg;
3183 
3184   LLT IdxTy = B.getMRI()->getType(IdxReg);
3185   unsigned NElts = VecTy.getNumElements();
3186   if (isPowerOf2_32(NElts)) {
3187     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3188     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3189   }
3190 
3191   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3192       .getReg(0);
3193 }
3194 
3195 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3196                                                   Register Index) {
3197   LLT EltTy = VecTy.getElementType();
3198 
3199   // Calculate the element offset and add it to the pointer.
3200   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3201   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3202          "Converting bits to bytes lost precision");
3203 
3204   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3205 
3206   LLT IdxTy = MRI.getType(Index);
3207   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3208                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3209 
3210   LLT PtrTy = MRI.getType(VecPtr);
3211   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3212 }
3213 
3214 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3215     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3216   Register DstReg = MI.getOperand(0).getReg();
3217   LLT DstTy = MRI.getType(DstReg);
3218   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3219 
3220   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3221 
3222   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3223   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3224 
3225   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3226   MI.eraseFromParent();
3227   return Legalized;
3228 }
3229 
3230 // Handle splitting vector operations which need to have the same number of
3231 // elements in each type index, but each type index may have a different element
3232 // type.
3233 //
3234 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3235 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3236 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3237 //
3238 // Also handles some irregular breakdown cases, e.g.
3239 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3240 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3241 //             s64 = G_SHL s64, s32
3242 LegalizerHelper::LegalizeResult
3243 LegalizerHelper::fewerElementsVectorMultiEltType(
3244   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3245   if (TypeIdx != 0)
3246     return UnableToLegalize;
3247 
3248   const LLT NarrowTy0 = NarrowTyArg;
3249   const unsigned NewNumElts =
3250       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3251 
3252   const Register DstReg = MI.getOperand(0).getReg();
3253   LLT DstTy = MRI.getType(DstReg);
3254   LLT LeftoverTy0;
3255 
3256   // All of the operands need to have the same number of elements, so if we can
3257   // determine a type breakdown for the result type, we can for all of the
3258   // source types.
3259   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3260   if (NumParts < 0)
3261     return UnableToLegalize;
3262 
3263   SmallVector<MachineInstrBuilder, 4> NewInsts;
3264 
3265   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3266   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3267 
3268   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3269     Register SrcReg = MI.getOperand(I).getReg();
3270     LLT SrcTyI = MRI.getType(SrcReg);
3271     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3272     LLT LeftoverTyI;
3273 
3274     // Split this operand into the requested typed registers, and any leftover
3275     // required to reproduce the original type.
3276     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3277                       LeftoverRegs))
3278       return UnableToLegalize;
3279 
3280     if (I == 1) {
3281       // For the first operand, create an instruction for each part and setup
3282       // the result.
3283       for (Register PartReg : PartRegs) {
3284         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3285         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3286                                .addDef(PartDstReg)
3287                                .addUse(PartReg));
3288         DstRegs.push_back(PartDstReg);
3289       }
3290 
3291       for (Register LeftoverReg : LeftoverRegs) {
3292         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3293         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3294                                .addDef(PartDstReg)
3295                                .addUse(LeftoverReg));
3296         LeftoverDstRegs.push_back(PartDstReg);
3297       }
3298     } else {
3299       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3300 
3301       // Add the newly created operand splits to the existing instructions. The
3302       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3303       // pieces.
3304       unsigned InstCount = 0;
3305       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3306         NewInsts[InstCount++].addUse(PartRegs[J]);
3307       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3308         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3309     }
3310 
3311     PartRegs.clear();
3312     LeftoverRegs.clear();
3313   }
3314 
3315   // Insert the newly built operations and rebuild the result register.
3316   for (auto &MIB : NewInsts)
3317     MIRBuilder.insertInstr(MIB);
3318 
3319   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3320 
3321   MI.eraseFromParent();
3322   return Legalized;
3323 }
3324 
3325 LegalizerHelper::LegalizeResult
3326 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3327                                           LLT NarrowTy) {
3328   if (TypeIdx != 0)
3329     return UnableToLegalize;
3330 
3331   Register DstReg = MI.getOperand(0).getReg();
3332   Register SrcReg = MI.getOperand(1).getReg();
3333   LLT DstTy = MRI.getType(DstReg);
3334   LLT SrcTy = MRI.getType(SrcReg);
3335 
3336   LLT NarrowTy0 = NarrowTy;
3337   LLT NarrowTy1;
3338   unsigned NumParts;
3339 
3340   if (NarrowTy.isVector()) {
3341     // Uneven breakdown not handled.
3342     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3343     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3344       return UnableToLegalize;
3345 
3346     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3347   } else {
3348     NumParts = DstTy.getNumElements();
3349     NarrowTy1 = SrcTy.getElementType();
3350   }
3351 
3352   SmallVector<Register, 4> SrcRegs, DstRegs;
3353   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3354 
3355   for (unsigned I = 0; I < NumParts; ++I) {
3356     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3357     MachineInstr *NewInst =
3358         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3359 
3360     NewInst->setFlags(MI.getFlags());
3361     DstRegs.push_back(DstReg);
3362   }
3363 
3364   if (NarrowTy.isVector())
3365     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3366   else
3367     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3368 
3369   MI.eraseFromParent();
3370   return Legalized;
3371 }
3372 
3373 LegalizerHelper::LegalizeResult
3374 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3375                                         LLT NarrowTy) {
3376   Register DstReg = MI.getOperand(0).getReg();
3377   Register Src0Reg = MI.getOperand(2).getReg();
3378   LLT DstTy = MRI.getType(DstReg);
3379   LLT SrcTy = MRI.getType(Src0Reg);
3380 
3381   unsigned NumParts;
3382   LLT NarrowTy0, NarrowTy1;
3383 
3384   if (TypeIdx == 0) {
3385     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3386     unsigned OldElts = DstTy.getNumElements();
3387 
3388     NarrowTy0 = NarrowTy;
3389     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3390     NarrowTy1 = NarrowTy.isVector() ?
3391       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3392       SrcTy.getElementType();
3393 
3394   } else {
3395     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3396     unsigned OldElts = SrcTy.getNumElements();
3397 
3398     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3399       NarrowTy.getNumElements();
3400     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3401                             DstTy.getScalarSizeInBits());
3402     NarrowTy1 = NarrowTy;
3403   }
3404 
3405   // FIXME: Don't know how to handle the situation where the small vectors
3406   // aren't all the same size yet.
3407   if (NarrowTy1.isVector() &&
3408       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3409     return UnableToLegalize;
3410 
3411   CmpInst::Predicate Pred
3412     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3413 
3414   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3415   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3416   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3417 
3418   for (unsigned I = 0; I < NumParts; ++I) {
3419     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3420     DstRegs.push_back(DstReg);
3421 
3422     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3423       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3424     else {
3425       MachineInstr *NewCmp
3426         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3427       NewCmp->setFlags(MI.getFlags());
3428     }
3429   }
3430 
3431   if (NarrowTy1.isVector())
3432     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3433   else
3434     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3435 
3436   MI.eraseFromParent();
3437   return Legalized;
3438 }
3439 
3440 LegalizerHelper::LegalizeResult
3441 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3442                                            LLT NarrowTy) {
3443   Register DstReg = MI.getOperand(0).getReg();
3444   Register CondReg = MI.getOperand(1).getReg();
3445 
3446   unsigned NumParts = 0;
3447   LLT NarrowTy0, NarrowTy1;
3448 
3449   LLT DstTy = MRI.getType(DstReg);
3450   LLT CondTy = MRI.getType(CondReg);
3451   unsigned Size = DstTy.getSizeInBits();
3452 
3453   assert(TypeIdx == 0 || CondTy.isVector());
3454 
3455   if (TypeIdx == 0) {
3456     NarrowTy0 = NarrowTy;
3457     NarrowTy1 = CondTy;
3458 
3459     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3460     // FIXME: Don't know how to handle the situation where the small vectors
3461     // aren't all the same size yet.
3462     if (Size % NarrowSize != 0)
3463       return UnableToLegalize;
3464 
3465     NumParts = Size / NarrowSize;
3466 
3467     // Need to break down the condition type
3468     if (CondTy.isVector()) {
3469       if (CondTy.getNumElements() == NumParts)
3470         NarrowTy1 = CondTy.getElementType();
3471       else
3472         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3473                                 CondTy.getScalarSizeInBits());
3474     }
3475   } else {
3476     NumParts = CondTy.getNumElements();
3477     if (NarrowTy.isVector()) {
3478       // TODO: Handle uneven breakdown.
3479       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3480         return UnableToLegalize;
3481 
3482       return UnableToLegalize;
3483     } else {
3484       NarrowTy0 = DstTy.getElementType();
3485       NarrowTy1 = NarrowTy;
3486     }
3487   }
3488 
3489   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3490   if (CondTy.isVector())
3491     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3492 
3493   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3494   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3495 
3496   for (unsigned i = 0; i < NumParts; ++i) {
3497     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3498     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3499                            Src1Regs[i], Src2Regs[i]);
3500     DstRegs.push_back(DstReg);
3501   }
3502 
3503   if (NarrowTy0.isVector())
3504     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3505   else
3506     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3507 
3508   MI.eraseFromParent();
3509   return Legalized;
3510 }
3511 
3512 LegalizerHelper::LegalizeResult
3513 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3514                                         LLT NarrowTy) {
3515   const Register DstReg = MI.getOperand(0).getReg();
3516   LLT PhiTy = MRI.getType(DstReg);
3517   LLT LeftoverTy;
3518 
3519   // All of the operands need to have the same number of elements, so if we can
3520   // determine a type breakdown for the result type, we can for all of the
3521   // source types.
3522   int NumParts, NumLeftover;
3523   std::tie(NumParts, NumLeftover)
3524     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3525   if (NumParts < 0)
3526     return UnableToLegalize;
3527 
3528   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3529   SmallVector<MachineInstrBuilder, 4> NewInsts;
3530 
3531   const int TotalNumParts = NumParts + NumLeftover;
3532 
3533   // Insert the new phis in the result block first.
3534   for (int I = 0; I != TotalNumParts; ++I) {
3535     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3536     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3537     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3538                        .addDef(PartDstReg));
3539     if (I < NumParts)
3540       DstRegs.push_back(PartDstReg);
3541     else
3542       LeftoverDstRegs.push_back(PartDstReg);
3543   }
3544 
3545   MachineBasicBlock *MBB = MI.getParent();
3546   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3547   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3548 
3549   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3550 
3551   // Insert code to extract the incoming values in each predecessor block.
3552   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3553     PartRegs.clear();
3554     LeftoverRegs.clear();
3555 
3556     Register SrcReg = MI.getOperand(I).getReg();
3557     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3558     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3559 
3560     LLT Unused;
3561     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3562                       LeftoverRegs))
3563       return UnableToLegalize;
3564 
3565     // Add the newly created operand splits to the existing instructions. The
3566     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3567     // pieces.
3568     for (int J = 0; J != TotalNumParts; ++J) {
3569       MachineInstrBuilder MIB = NewInsts[J];
3570       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3571       MIB.addMBB(&OpMBB);
3572     }
3573   }
3574 
3575   MI.eraseFromParent();
3576   return Legalized;
3577 }
3578 
3579 LegalizerHelper::LegalizeResult
3580 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3581                                                   unsigned TypeIdx,
3582                                                   LLT NarrowTy) {
3583   if (TypeIdx != 1)
3584     return UnableToLegalize;
3585 
3586   const int NumDst = MI.getNumOperands() - 1;
3587   const Register SrcReg = MI.getOperand(NumDst).getReg();
3588   LLT SrcTy = MRI.getType(SrcReg);
3589 
3590   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3591 
3592   // TODO: Create sequence of extracts.
3593   if (DstTy == NarrowTy)
3594     return UnableToLegalize;
3595 
3596   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3597   if (DstTy == GCDTy) {
3598     // This would just be a copy of the same unmerge.
3599     // TODO: Create extracts, pad with undef and create intermediate merges.
3600     return UnableToLegalize;
3601   }
3602 
3603   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3604   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3605   const int PartsPerUnmerge = NumDst / NumUnmerge;
3606 
3607   for (int I = 0; I != NumUnmerge; ++I) {
3608     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3609 
3610     for (int J = 0; J != PartsPerUnmerge; ++J)
3611       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3612     MIB.addUse(Unmerge.getReg(I));
3613   }
3614 
3615   MI.eraseFromParent();
3616   return Legalized;
3617 }
3618 
3619 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3620 // a vector
3621 //
3622 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3623 // undef as necessary.
3624 //
3625 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3626 //   -> <2 x s16>
3627 //
3628 // %4:_(s16) = G_IMPLICIT_DEF
3629 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3630 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3631 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3632 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3633 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3634 LegalizerHelper::LegalizeResult
3635 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3636                                           LLT NarrowTy) {
3637   Register DstReg = MI.getOperand(0).getReg();
3638   LLT DstTy = MRI.getType(DstReg);
3639   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3640   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3641 
3642   // Break into a common type
3643   SmallVector<Register, 16> Parts;
3644   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3645     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3646 
3647   // Build the requested new merge, padding with undef.
3648   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3649                                   TargetOpcode::G_ANYEXT);
3650 
3651   // Pack into the original result register.
3652   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3653 
3654   MI.eraseFromParent();
3655   return Legalized;
3656 }
3657 
3658 LegalizerHelper::LegalizeResult
3659 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3660                                                            unsigned TypeIdx,
3661                                                            LLT NarrowVecTy) {
3662   Register DstReg = MI.getOperand(0).getReg();
3663   Register SrcVec = MI.getOperand(1).getReg();
3664   Register InsertVal;
3665   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3666 
3667   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3668   if (IsInsert)
3669     InsertVal = MI.getOperand(2).getReg();
3670 
3671   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3672 
3673   // TODO: Handle total scalarization case.
3674   if (!NarrowVecTy.isVector())
3675     return UnableToLegalize;
3676 
3677   LLT VecTy = MRI.getType(SrcVec);
3678 
3679   // If the index is a constant, we can really break this down as you would
3680   // expect, and index into the target size pieces.
3681   int64_t IdxVal;
3682   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3683     // Avoid out of bounds indexing the pieces.
3684     if (IdxVal >= VecTy.getNumElements()) {
3685       MIRBuilder.buildUndef(DstReg);
3686       MI.eraseFromParent();
3687       return Legalized;
3688     }
3689 
3690     SmallVector<Register, 8> VecParts;
3691     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3692 
3693     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3694     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3695                                     TargetOpcode::G_ANYEXT);
3696 
3697     unsigned NewNumElts = NarrowVecTy.getNumElements();
3698 
3699     LLT IdxTy = MRI.getType(Idx);
3700     int64_t PartIdx = IdxVal / NewNumElts;
3701     auto NewIdx =
3702         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3703 
3704     if (IsInsert) {
3705       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3706 
3707       // Use the adjusted index to insert into one of the subvectors.
3708       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3709           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3710       VecParts[PartIdx] = InsertPart.getReg(0);
3711 
3712       // Recombine the inserted subvector with the others to reform the result
3713       // vector.
3714       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3715     } else {
3716       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3717     }
3718 
3719     MI.eraseFromParent();
3720     return Legalized;
3721   }
3722 
3723   // With a variable index, we can't perform the operation in a smaller type, so
3724   // we're forced to expand this.
3725   //
3726   // TODO: We could emit a chain of compare/select to figure out which piece to
3727   // index.
3728   return lowerExtractInsertVectorElt(MI);
3729 }
3730 
3731 LegalizerHelper::LegalizeResult
3732 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3733                                       LLT NarrowTy) {
3734   // FIXME: Don't know how to handle secondary types yet.
3735   if (TypeIdx != 0)
3736     return UnableToLegalize;
3737 
3738   MachineMemOperand *MMO = *MI.memoperands_begin();
3739 
3740   // This implementation doesn't work for atomics. Give up instead of doing
3741   // something invalid.
3742   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3743       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3744     return UnableToLegalize;
3745 
3746   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3747   Register ValReg = MI.getOperand(0).getReg();
3748   Register AddrReg = MI.getOperand(1).getReg();
3749   LLT ValTy = MRI.getType(ValReg);
3750 
3751   // FIXME: Do we need a distinct NarrowMemory legalize action?
3752   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3753     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3754     return UnableToLegalize;
3755   }
3756 
3757   int NumParts = -1;
3758   int NumLeftover = -1;
3759   LLT LeftoverTy;
3760   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3761   if (IsLoad) {
3762     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3763   } else {
3764     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3765                      NarrowLeftoverRegs)) {
3766       NumParts = NarrowRegs.size();
3767       NumLeftover = NarrowLeftoverRegs.size();
3768     }
3769   }
3770 
3771   if (NumParts == -1)
3772     return UnableToLegalize;
3773 
3774   LLT PtrTy = MRI.getType(AddrReg);
3775   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3776 
3777   unsigned TotalSize = ValTy.getSizeInBits();
3778 
3779   // Split the load/store into PartTy sized pieces starting at Offset. If this
3780   // is a load, return the new registers in ValRegs. For a store, each elements
3781   // of ValRegs should be PartTy. Returns the next offset that needs to be
3782   // handled.
3783   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3784                              unsigned Offset) -> unsigned {
3785     MachineFunction &MF = MIRBuilder.getMF();
3786     unsigned PartSize = PartTy.getSizeInBits();
3787     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3788          Offset += PartSize, ++Idx) {
3789       unsigned ByteSize = PartSize / 8;
3790       unsigned ByteOffset = Offset / 8;
3791       Register NewAddrReg;
3792 
3793       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3794 
3795       MachineMemOperand *NewMMO =
3796         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3797 
3798       if (IsLoad) {
3799         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3800         ValRegs.push_back(Dst);
3801         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3802       } else {
3803         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3804       }
3805     }
3806 
3807     return Offset;
3808   };
3809 
3810   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3811 
3812   // Handle the rest of the register if this isn't an even type breakdown.
3813   if (LeftoverTy.isValid())
3814     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3815 
3816   if (IsLoad) {
3817     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3818                 LeftoverTy, NarrowLeftoverRegs);
3819   }
3820 
3821   MI.eraseFromParent();
3822   return Legalized;
3823 }
3824 
3825 LegalizerHelper::LegalizeResult
3826 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3827                                       LLT NarrowTy) {
3828   assert(TypeIdx == 0 && "only one type index expected");
3829 
3830   const unsigned Opc = MI.getOpcode();
3831   const int NumOps = MI.getNumOperands() - 1;
3832   const Register DstReg = MI.getOperand(0).getReg();
3833   const unsigned Flags = MI.getFlags();
3834   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3835   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3836 
3837   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3838 
3839   // First of all check whether we are narrowing (changing the element type)
3840   // or reducing the vector elements
3841   const LLT DstTy = MRI.getType(DstReg);
3842   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3843 
3844   SmallVector<Register, 8> ExtractedRegs[3];
3845   SmallVector<Register, 8> Parts;
3846 
3847   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3848 
3849   // Break down all the sources into NarrowTy pieces we can operate on. This may
3850   // involve creating merges to a wider type, padded with undef.
3851   for (int I = 0; I != NumOps; ++I) {
3852     Register SrcReg = MI.getOperand(I + 1).getReg();
3853     LLT SrcTy = MRI.getType(SrcReg);
3854 
3855     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3856     // For fewerElements, this is a smaller vector with the same element type.
3857     LLT OpNarrowTy;
3858     if (IsNarrow) {
3859       OpNarrowTy = NarrowScalarTy;
3860 
3861       // In case of narrowing, we need to cast vectors to scalars for this to
3862       // work properly
3863       // FIXME: Can we do without the bitcast here if we're narrowing?
3864       if (SrcTy.isVector()) {
3865         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3866         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3867       }
3868     } else {
3869       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3870     }
3871 
3872     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3873 
3874     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3875     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3876                         TargetOpcode::G_ANYEXT);
3877   }
3878 
3879   SmallVector<Register, 8> ResultRegs;
3880 
3881   // Input operands for each sub-instruction.
3882   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3883 
3884   int NumParts = ExtractedRegs[0].size();
3885   const unsigned DstSize = DstTy.getSizeInBits();
3886   const LLT DstScalarTy = LLT::scalar(DstSize);
3887 
3888   // Narrowing needs to use scalar types
3889   LLT DstLCMTy, NarrowDstTy;
3890   if (IsNarrow) {
3891     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3892     NarrowDstTy = NarrowScalarTy;
3893   } else {
3894     DstLCMTy = getLCMType(DstTy, NarrowTy);
3895     NarrowDstTy = NarrowTy;
3896   }
3897 
3898   // We widened the source registers to satisfy merge/unmerge size
3899   // constraints. We'll have some extra fully undef parts.
3900   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3901 
3902   for (int I = 0; I != NumRealParts; ++I) {
3903     // Emit this instruction on each of the split pieces.
3904     for (int J = 0; J != NumOps; ++J)
3905       InputRegs[J] = ExtractedRegs[J][I];
3906 
3907     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3908     ResultRegs.push_back(Inst.getReg(0));
3909   }
3910 
3911   // Fill out the widened result with undef instead of creating instructions
3912   // with undef inputs.
3913   int NumUndefParts = NumParts - NumRealParts;
3914   if (NumUndefParts != 0)
3915     ResultRegs.append(NumUndefParts,
3916                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3917 
3918   // Extract the possibly padded result. Use a scratch register if we need to do
3919   // a final bitcast, otherwise use the original result register.
3920   Register MergeDstReg;
3921   if (IsNarrow && DstTy.isVector())
3922     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3923   else
3924     MergeDstReg = DstReg;
3925 
3926   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3927 
3928   // Recast to vector if we narrowed a vector
3929   if (IsNarrow && DstTy.isVector())
3930     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3931 
3932   MI.eraseFromParent();
3933   return Legalized;
3934 }
3935 
3936 LegalizerHelper::LegalizeResult
3937 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3938                                               LLT NarrowTy) {
3939   Register DstReg = MI.getOperand(0).getReg();
3940   Register SrcReg = MI.getOperand(1).getReg();
3941   int64_t Imm = MI.getOperand(2).getImm();
3942 
3943   LLT DstTy = MRI.getType(DstReg);
3944 
3945   SmallVector<Register, 8> Parts;
3946   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3947   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3948 
3949   for (Register &R : Parts)
3950     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3951 
3952   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3953 
3954   MI.eraseFromParent();
3955   return Legalized;
3956 }
3957 
3958 LegalizerHelper::LegalizeResult
3959 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3960                                      LLT NarrowTy) {
3961   using namespace TargetOpcode;
3962 
3963   switch (MI.getOpcode()) {
3964   case G_IMPLICIT_DEF:
3965     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3966   case G_TRUNC:
3967   case G_AND:
3968   case G_OR:
3969   case G_XOR:
3970   case G_ADD:
3971   case G_SUB:
3972   case G_MUL:
3973   case G_PTR_ADD:
3974   case G_SMULH:
3975   case G_UMULH:
3976   case G_FADD:
3977   case G_FMUL:
3978   case G_FSUB:
3979   case G_FNEG:
3980   case G_FABS:
3981   case G_FCANONICALIZE:
3982   case G_FDIV:
3983   case G_FREM:
3984   case G_FMA:
3985   case G_FMAD:
3986   case G_FPOW:
3987   case G_FEXP:
3988   case G_FEXP2:
3989   case G_FLOG:
3990   case G_FLOG2:
3991   case G_FLOG10:
3992   case G_FNEARBYINT:
3993   case G_FCEIL:
3994   case G_FFLOOR:
3995   case G_FRINT:
3996   case G_INTRINSIC_ROUND:
3997   case G_INTRINSIC_ROUNDEVEN:
3998   case G_INTRINSIC_TRUNC:
3999   case G_FCOS:
4000   case G_FSIN:
4001   case G_FSQRT:
4002   case G_BSWAP:
4003   case G_BITREVERSE:
4004   case G_SDIV:
4005   case G_UDIV:
4006   case G_SREM:
4007   case G_UREM:
4008   case G_SMIN:
4009   case G_SMAX:
4010   case G_UMIN:
4011   case G_UMAX:
4012   case G_FMINNUM:
4013   case G_FMAXNUM:
4014   case G_FMINNUM_IEEE:
4015   case G_FMAXNUM_IEEE:
4016   case G_FMINIMUM:
4017   case G_FMAXIMUM:
4018   case G_FSHL:
4019   case G_FSHR:
4020   case G_FREEZE:
4021   case G_SADDSAT:
4022   case G_SSUBSAT:
4023   case G_UADDSAT:
4024   case G_USUBSAT:
4025     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4026   case G_SHL:
4027   case G_LSHR:
4028   case G_ASHR:
4029   case G_SSHLSAT:
4030   case G_USHLSAT:
4031   case G_CTLZ:
4032   case G_CTLZ_ZERO_UNDEF:
4033   case G_CTTZ:
4034   case G_CTTZ_ZERO_UNDEF:
4035   case G_CTPOP:
4036   case G_FCOPYSIGN:
4037     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4038   case G_ZEXT:
4039   case G_SEXT:
4040   case G_ANYEXT:
4041   case G_FPEXT:
4042   case G_FPTRUNC:
4043   case G_SITOFP:
4044   case G_UITOFP:
4045   case G_FPTOSI:
4046   case G_FPTOUI:
4047   case G_INTTOPTR:
4048   case G_PTRTOINT:
4049   case G_ADDRSPACE_CAST:
4050     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4051   case G_ICMP:
4052   case G_FCMP:
4053     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4054   case G_SELECT:
4055     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4056   case G_PHI:
4057     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4058   case G_UNMERGE_VALUES:
4059     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4060   case G_BUILD_VECTOR:
4061     assert(TypeIdx == 0 && "not a vector type index");
4062     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4063   case G_CONCAT_VECTORS:
4064     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4065       return UnableToLegalize;
4066     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4067   case G_EXTRACT_VECTOR_ELT:
4068   case G_INSERT_VECTOR_ELT:
4069     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4070   case G_LOAD:
4071   case G_STORE:
4072     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4073   case G_SEXT_INREG:
4074     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4075   default:
4076     return UnableToLegalize;
4077   }
4078 }
4079 
4080 LegalizerHelper::LegalizeResult
4081 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4082                                              const LLT HalfTy, const LLT AmtTy) {
4083 
4084   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4085   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4086   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4087 
4088   if (Amt.isNullValue()) {
4089     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4090     MI.eraseFromParent();
4091     return Legalized;
4092   }
4093 
4094   LLT NVT = HalfTy;
4095   unsigned NVTBits = HalfTy.getSizeInBits();
4096   unsigned VTBits = 2 * NVTBits;
4097 
4098   SrcOp Lo(Register(0)), Hi(Register(0));
4099   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4100     if (Amt.ugt(VTBits)) {
4101       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4102     } else if (Amt.ugt(NVTBits)) {
4103       Lo = MIRBuilder.buildConstant(NVT, 0);
4104       Hi = MIRBuilder.buildShl(NVT, InL,
4105                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4106     } else if (Amt == NVTBits) {
4107       Lo = MIRBuilder.buildConstant(NVT, 0);
4108       Hi = InL;
4109     } else {
4110       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4111       auto OrLHS =
4112           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4113       auto OrRHS = MIRBuilder.buildLShr(
4114           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4115       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4116     }
4117   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4118     if (Amt.ugt(VTBits)) {
4119       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4120     } else if (Amt.ugt(NVTBits)) {
4121       Lo = MIRBuilder.buildLShr(NVT, InH,
4122                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4123       Hi = MIRBuilder.buildConstant(NVT, 0);
4124     } else if (Amt == NVTBits) {
4125       Lo = InH;
4126       Hi = MIRBuilder.buildConstant(NVT, 0);
4127     } else {
4128       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4129 
4130       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4131       auto OrRHS = MIRBuilder.buildShl(
4132           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4133 
4134       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4135       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4136     }
4137   } else {
4138     if (Amt.ugt(VTBits)) {
4139       Hi = Lo = MIRBuilder.buildAShr(
4140           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4141     } else if (Amt.ugt(NVTBits)) {
4142       Lo = MIRBuilder.buildAShr(NVT, InH,
4143                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4144       Hi = MIRBuilder.buildAShr(NVT, InH,
4145                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4146     } else if (Amt == NVTBits) {
4147       Lo = InH;
4148       Hi = MIRBuilder.buildAShr(NVT, InH,
4149                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4150     } else {
4151       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4152 
4153       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4154       auto OrRHS = MIRBuilder.buildShl(
4155           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4156 
4157       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4158       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4159     }
4160   }
4161 
4162   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4163   MI.eraseFromParent();
4164 
4165   return Legalized;
4166 }
4167 
4168 // TODO: Optimize if constant shift amount.
4169 LegalizerHelper::LegalizeResult
4170 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4171                                    LLT RequestedTy) {
4172   if (TypeIdx == 1) {
4173     Observer.changingInstr(MI);
4174     narrowScalarSrc(MI, RequestedTy, 2);
4175     Observer.changedInstr(MI);
4176     return Legalized;
4177   }
4178 
4179   Register DstReg = MI.getOperand(0).getReg();
4180   LLT DstTy = MRI.getType(DstReg);
4181   if (DstTy.isVector())
4182     return UnableToLegalize;
4183 
4184   Register Amt = MI.getOperand(2).getReg();
4185   LLT ShiftAmtTy = MRI.getType(Amt);
4186   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4187   if (DstEltSize % 2 != 0)
4188     return UnableToLegalize;
4189 
4190   // Ignore the input type. We can only go to exactly half the size of the
4191   // input. If that isn't small enough, the resulting pieces will be further
4192   // legalized.
4193   const unsigned NewBitSize = DstEltSize / 2;
4194   const LLT HalfTy = LLT::scalar(NewBitSize);
4195   const LLT CondTy = LLT::scalar(1);
4196 
4197   if (const MachineInstr *KShiftAmt =
4198           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4199     return narrowScalarShiftByConstant(
4200         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4201   }
4202 
4203   // TODO: Expand with known bits.
4204 
4205   // Handle the fully general expansion by an unknown amount.
4206   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4207 
4208   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4209   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4210   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4211 
4212   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4213   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4214 
4215   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4216   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4217   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4218 
4219   Register ResultRegs[2];
4220   switch (MI.getOpcode()) {
4221   case TargetOpcode::G_SHL: {
4222     // Short: ShAmt < NewBitSize
4223     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4224 
4225     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4226     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4227     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4228 
4229     // Long: ShAmt >= NewBitSize
4230     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4231     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4232 
4233     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4234     auto Hi = MIRBuilder.buildSelect(
4235         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4236 
4237     ResultRegs[0] = Lo.getReg(0);
4238     ResultRegs[1] = Hi.getReg(0);
4239     break;
4240   }
4241   case TargetOpcode::G_LSHR:
4242   case TargetOpcode::G_ASHR: {
4243     // Short: ShAmt < NewBitSize
4244     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4245 
4246     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4247     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4248     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4249 
4250     // Long: ShAmt >= NewBitSize
4251     MachineInstrBuilder HiL;
4252     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4253       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4254     } else {
4255       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4256       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4257     }
4258     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4259                                      {InH, AmtExcess});     // Lo from Hi part.
4260 
4261     auto Lo = MIRBuilder.buildSelect(
4262         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4263 
4264     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4265 
4266     ResultRegs[0] = Lo.getReg(0);
4267     ResultRegs[1] = Hi.getReg(0);
4268     break;
4269   }
4270   default:
4271     llvm_unreachable("not a shift");
4272   }
4273 
4274   MIRBuilder.buildMerge(DstReg, ResultRegs);
4275   MI.eraseFromParent();
4276   return Legalized;
4277 }
4278 
4279 LegalizerHelper::LegalizeResult
4280 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4281                                        LLT MoreTy) {
4282   assert(TypeIdx == 0 && "Expecting only Idx 0");
4283 
4284   Observer.changingInstr(MI);
4285   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4286     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4287     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4288     moreElementsVectorSrc(MI, MoreTy, I);
4289   }
4290 
4291   MachineBasicBlock &MBB = *MI.getParent();
4292   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4293   moreElementsVectorDst(MI, MoreTy, 0);
4294   Observer.changedInstr(MI);
4295   return Legalized;
4296 }
4297 
4298 LegalizerHelper::LegalizeResult
4299 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4300                                     LLT MoreTy) {
4301   unsigned Opc = MI.getOpcode();
4302   switch (Opc) {
4303   case TargetOpcode::G_IMPLICIT_DEF:
4304   case TargetOpcode::G_LOAD: {
4305     if (TypeIdx != 0)
4306       return UnableToLegalize;
4307     Observer.changingInstr(MI);
4308     moreElementsVectorDst(MI, MoreTy, 0);
4309     Observer.changedInstr(MI);
4310     return Legalized;
4311   }
4312   case TargetOpcode::G_STORE:
4313     if (TypeIdx != 0)
4314       return UnableToLegalize;
4315     Observer.changingInstr(MI);
4316     moreElementsVectorSrc(MI, MoreTy, 0);
4317     Observer.changedInstr(MI);
4318     return Legalized;
4319   case TargetOpcode::G_AND:
4320   case TargetOpcode::G_OR:
4321   case TargetOpcode::G_XOR:
4322   case TargetOpcode::G_SMIN:
4323   case TargetOpcode::G_SMAX:
4324   case TargetOpcode::G_UMIN:
4325   case TargetOpcode::G_UMAX:
4326   case TargetOpcode::G_FMINNUM:
4327   case TargetOpcode::G_FMAXNUM:
4328   case TargetOpcode::G_FMINNUM_IEEE:
4329   case TargetOpcode::G_FMAXNUM_IEEE:
4330   case TargetOpcode::G_FMINIMUM:
4331   case TargetOpcode::G_FMAXIMUM: {
4332     Observer.changingInstr(MI);
4333     moreElementsVectorSrc(MI, MoreTy, 1);
4334     moreElementsVectorSrc(MI, MoreTy, 2);
4335     moreElementsVectorDst(MI, MoreTy, 0);
4336     Observer.changedInstr(MI);
4337     return Legalized;
4338   }
4339   case TargetOpcode::G_EXTRACT:
4340     if (TypeIdx != 1)
4341       return UnableToLegalize;
4342     Observer.changingInstr(MI);
4343     moreElementsVectorSrc(MI, MoreTy, 1);
4344     Observer.changedInstr(MI);
4345     return Legalized;
4346   case TargetOpcode::G_INSERT:
4347   case TargetOpcode::G_FREEZE:
4348     if (TypeIdx != 0)
4349       return UnableToLegalize;
4350     Observer.changingInstr(MI);
4351     moreElementsVectorSrc(MI, MoreTy, 1);
4352     moreElementsVectorDst(MI, MoreTy, 0);
4353     Observer.changedInstr(MI);
4354     return Legalized;
4355   case TargetOpcode::G_SELECT:
4356     if (TypeIdx != 0)
4357       return UnableToLegalize;
4358     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4359       return UnableToLegalize;
4360 
4361     Observer.changingInstr(MI);
4362     moreElementsVectorSrc(MI, MoreTy, 2);
4363     moreElementsVectorSrc(MI, MoreTy, 3);
4364     moreElementsVectorDst(MI, MoreTy, 0);
4365     Observer.changedInstr(MI);
4366     return Legalized;
4367   case TargetOpcode::G_UNMERGE_VALUES: {
4368     if (TypeIdx != 1)
4369       return UnableToLegalize;
4370 
4371     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4372     int NumDst = MI.getNumOperands() - 1;
4373     moreElementsVectorSrc(MI, MoreTy, NumDst);
4374 
4375     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4376     for (int I = 0; I != NumDst; ++I)
4377       MIB.addDef(MI.getOperand(I).getReg());
4378 
4379     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4380     for (int I = NumDst; I != NewNumDst; ++I)
4381       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4382 
4383     MIB.addUse(MI.getOperand(NumDst).getReg());
4384     MI.eraseFromParent();
4385     return Legalized;
4386   }
4387   case TargetOpcode::G_PHI:
4388     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4389   default:
4390     return UnableToLegalize;
4391   }
4392 }
4393 
4394 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4395                                         ArrayRef<Register> Src1Regs,
4396                                         ArrayRef<Register> Src2Regs,
4397                                         LLT NarrowTy) {
4398   MachineIRBuilder &B = MIRBuilder;
4399   unsigned SrcParts = Src1Regs.size();
4400   unsigned DstParts = DstRegs.size();
4401 
4402   unsigned DstIdx = 0; // Low bits of the result.
4403   Register FactorSum =
4404       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4405   DstRegs[DstIdx] = FactorSum;
4406 
4407   unsigned CarrySumPrevDstIdx;
4408   SmallVector<Register, 4> Factors;
4409 
4410   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4411     // Collect low parts of muls for DstIdx.
4412     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4413          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4414       MachineInstrBuilder Mul =
4415           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4416       Factors.push_back(Mul.getReg(0));
4417     }
4418     // Collect high parts of muls from previous DstIdx.
4419     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4420          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4421       MachineInstrBuilder Umulh =
4422           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4423       Factors.push_back(Umulh.getReg(0));
4424     }
4425     // Add CarrySum from additions calculated for previous DstIdx.
4426     if (DstIdx != 1) {
4427       Factors.push_back(CarrySumPrevDstIdx);
4428     }
4429 
4430     Register CarrySum;
4431     // Add all factors and accumulate all carries into CarrySum.
4432     if (DstIdx != DstParts - 1) {
4433       MachineInstrBuilder Uaddo =
4434           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4435       FactorSum = Uaddo.getReg(0);
4436       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4437       for (unsigned i = 2; i < Factors.size(); ++i) {
4438         MachineInstrBuilder Uaddo =
4439             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4440         FactorSum = Uaddo.getReg(0);
4441         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4442         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4443       }
4444     } else {
4445       // Since value for the next index is not calculated, neither is CarrySum.
4446       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4447       for (unsigned i = 2; i < Factors.size(); ++i)
4448         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4449     }
4450 
4451     CarrySumPrevDstIdx = CarrySum;
4452     DstRegs[DstIdx] = FactorSum;
4453     Factors.clear();
4454   }
4455 }
4456 
4457 LegalizerHelper::LegalizeResult
4458 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4459                                     LLT NarrowTy) {
4460   if (TypeIdx != 0)
4461     return UnableToLegalize;
4462 
4463   Register DstReg = MI.getOperand(0).getReg();
4464   LLT DstType = MRI.getType(DstReg);
4465   // FIXME: add support for vector types
4466   if (DstType.isVector())
4467     return UnableToLegalize;
4468 
4469   uint64_t SizeOp0 = DstType.getSizeInBits();
4470   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4471 
4472   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4473   // NarrowSize.
4474   if (SizeOp0 % NarrowSize != 0)
4475     return UnableToLegalize;
4476 
4477   // Expand in terms of carry-setting/consuming G_<Op>E instructions.
4478   int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
4479 
4480   unsigned Opcode = MI.getOpcode();
4481   unsigned OpO, OpE, OpF;
4482   switch (Opcode) {
4483   case TargetOpcode::G_SADDO:
4484   case TargetOpcode::G_SADDE:
4485   case TargetOpcode::G_UADDO:
4486   case TargetOpcode::G_UADDE:
4487   case TargetOpcode::G_ADD:
4488     OpO = TargetOpcode::G_UADDO;
4489     OpE = TargetOpcode::G_UADDE;
4490     OpF = TargetOpcode::G_UADDE;
4491     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4492       OpF = TargetOpcode::G_SADDE;
4493     break;
4494   case TargetOpcode::G_SSUBO:
4495   case TargetOpcode::G_SSUBE:
4496   case TargetOpcode::G_USUBO:
4497   case TargetOpcode::G_USUBE:
4498   case TargetOpcode::G_SUB:
4499     OpO = TargetOpcode::G_USUBO;
4500     OpE = TargetOpcode::G_USUBE;
4501     OpF = TargetOpcode::G_USUBE;
4502     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4503       OpF = TargetOpcode::G_SSUBE;
4504     break;
4505   default:
4506     llvm_unreachable("Unexpected add/sub opcode!");
4507   }
4508 
4509   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4510   unsigned NumDefs = MI.getNumExplicitDefs();
4511   Register Src1 = MI.getOperand(NumDefs).getReg();
4512   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4513   Register CarryDst;
4514   if (NumDefs == 2)
4515     CarryDst = MI.getOperand(1).getReg();
4516   Register CarryIn;
4517   if (MI.getNumOperands() == NumDefs + 3)
4518     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4519 
4520   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
4521   extractParts(Src1, NarrowTy, NumParts, Src1Regs);
4522   extractParts(Src2, NarrowTy, NumParts, Src2Regs);
4523 
4524   for (int i = 0; i < NumParts; ++i) {
4525     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4526     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4527     // Forward the final carry-out to the destination register
4528     if (i == NumParts - 1 && CarryDst)
4529       CarryOut = CarryDst;
4530 
4531     if (!CarryIn) {
4532       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4533                             {Src1Regs[i], Src2Regs[i]});
4534     } else if (i == NumParts - 1) {
4535       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4536                             {Src1Regs[i], Src2Regs[i], CarryIn});
4537     } else {
4538       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4539                             {Src1Regs[i], Src2Regs[i], CarryIn});
4540     }
4541 
4542     DstRegs.push_back(DstReg);
4543     CarryIn = CarryOut;
4544   }
4545   MIRBuilder.buildMerge(DstReg, DstRegs);
4546   MI.eraseFromParent();
4547   return Legalized;
4548 }
4549 
4550 LegalizerHelper::LegalizeResult
4551 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4552   Register DstReg = MI.getOperand(0).getReg();
4553   Register Src1 = MI.getOperand(1).getReg();
4554   Register Src2 = MI.getOperand(2).getReg();
4555 
4556   LLT Ty = MRI.getType(DstReg);
4557   if (Ty.isVector())
4558     return UnableToLegalize;
4559 
4560   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4561   unsigned DstSize = Ty.getSizeInBits();
4562   unsigned NarrowSize = NarrowTy.getSizeInBits();
4563   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4564     return UnableToLegalize;
4565 
4566   unsigned NumDstParts = DstSize / NarrowSize;
4567   unsigned NumSrcParts = SrcSize / NarrowSize;
4568   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4569   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4570 
4571   SmallVector<Register, 2> Src1Parts, Src2Parts;
4572   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4573   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4574   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4575   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4576 
4577   // Take only high half of registers if this is high mul.
4578   ArrayRef<Register> DstRegs(
4579       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4580   MIRBuilder.buildMerge(DstReg, DstRegs);
4581   MI.eraseFromParent();
4582   return Legalized;
4583 }
4584 
4585 LegalizerHelper::LegalizeResult
4586 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4587                                      LLT NarrowTy) {
4588   if (TypeIdx != 1)
4589     return UnableToLegalize;
4590 
4591   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4592 
4593   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4594   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4595   // NarrowSize.
4596   if (SizeOp1 % NarrowSize != 0)
4597     return UnableToLegalize;
4598   int NumParts = SizeOp1 / NarrowSize;
4599 
4600   SmallVector<Register, 2> SrcRegs, DstRegs;
4601   SmallVector<uint64_t, 2> Indexes;
4602   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4603 
4604   Register OpReg = MI.getOperand(0).getReg();
4605   uint64_t OpStart = MI.getOperand(2).getImm();
4606   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4607   for (int i = 0; i < NumParts; ++i) {
4608     unsigned SrcStart = i * NarrowSize;
4609 
4610     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4611       // No part of the extract uses this subregister, ignore it.
4612       continue;
4613     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4614       // The entire subregister is extracted, forward the value.
4615       DstRegs.push_back(SrcRegs[i]);
4616       continue;
4617     }
4618 
4619     // OpSegStart is where this destination segment would start in OpReg if it
4620     // extended infinitely in both directions.
4621     int64_t ExtractOffset;
4622     uint64_t SegSize;
4623     if (OpStart < SrcStart) {
4624       ExtractOffset = 0;
4625       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4626     } else {
4627       ExtractOffset = OpStart - SrcStart;
4628       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4629     }
4630 
4631     Register SegReg = SrcRegs[i];
4632     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4633       // A genuine extract is needed.
4634       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4635       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4636     }
4637 
4638     DstRegs.push_back(SegReg);
4639   }
4640 
4641   Register DstReg = MI.getOperand(0).getReg();
4642   if (MRI.getType(DstReg).isVector())
4643     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4644   else if (DstRegs.size() > 1)
4645     MIRBuilder.buildMerge(DstReg, DstRegs);
4646   else
4647     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4648   MI.eraseFromParent();
4649   return Legalized;
4650 }
4651 
4652 LegalizerHelper::LegalizeResult
4653 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4654                                     LLT NarrowTy) {
4655   // FIXME: Don't know how to handle secondary types yet.
4656   if (TypeIdx != 0)
4657     return UnableToLegalize;
4658 
4659   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4660   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4661 
4662   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4663   // NarrowSize.
4664   if (SizeOp0 % NarrowSize != 0)
4665     return UnableToLegalize;
4666 
4667   int NumParts = SizeOp0 / NarrowSize;
4668 
4669   SmallVector<Register, 2> SrcRegs, DstRegs;
4670   SmallVector<uint64_t, 2> Indexes;
4671   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4672 
4673   Register OpReg = MI.getOperand(2).getReg();
4674   uint64_t OpStart = MI.getOperand(3).getImm();
4675   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4676   for (int i = 0; i < NumParts; ++i) {
4677     unsigned DstStart = i * NarrowSize;
4678 
4679     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4680       // No part of the insert affects this subregister, forward the original.
4681       DstRegs.push_back(SrcRegs[i]);
4682       continue;
4683     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4684       // The entire subregister is defined by this insert, forward the new
4685       // value.
4686       DstRegs.push_back(OpReg);
4687       continue;
4688     }
4689 
4690     // OpSegStart is where this destination segment would start in OpReg if it
4691     // extended infinitely in both directions.
4692     int64_t ExtractOffset, InsertOffset;
4693     uint64_t SegSize;
4694     if (OpStart < DstStart) {
4695       InsertOffset = 0;
4696       ExtractOffset = DstStart - OpStart;
4697       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4698     } else {
4699       InsertOffset = OpStart - DstStart;
4700       ExtractOffset = 0;
4701       SegSize =
4702         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4703     }
4704 
4705     Register SegReg = OpReg;
4706     if (ExtractOffset != 0 || SegSize != OpSize) {
4707       // A genuine extract is needed.
4708       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4709       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4710     }
4711 
4712     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4713     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4714     DstRegs.push_back(DstReg);
4715   }
4716 
4717   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4718   Register DstReg = MI.getOperand(0).getReg();
4719   if(MRI.getType(DstReg).isVector())
4720     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4721   else
4722     MIRBuilder.buildMerge(DstReg, DstRegs);
4723   MI.eraseFromParent();
4724   return Legalized;
4725 }
4726 
4727 LegalizerHelper::LegalizeResult
4728 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4729                                    LLT NarrowTy) {
4730   Register DstReg = MI.getOperand(0).getReg();
4731   LLT DstTy = MRI.getType(DstReg);
4732 
4733   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4734 
4735   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4736   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4737   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4738   LLT LeftoverTy;
4739   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4740                     Src0Regs, Src0LeftoverRegs))
4741     return UnableToLegalize;
4742 
4743   LLT Unused;
4744   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4745                     Src1Regs, Src1LeftoverRegs))
4746     llvm_unreachable("inconsistent extractParts result");
4747 
4748   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4749     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4750                                         {Src0Regs[I], Src1Regs[I]});
4751     DstRegs.push_back(Inst.getReg(0));
4752   }
4753 
4754   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4755     auto Inst = MIRBuilder.buildInstr(
4756       MI.getOpcode(),
4757       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4758     DstLeftoverRegs.push_back(Inst.getReg(0));
4759   }
4760 
4761   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4762               LeftoverTy, DstLeftoverRegs);
4763 
4764   MI.eraseFromParent();
4765   return Legalized;
4766 }
4767 
4768 LegalizerHelper::LegalizeResult
4769 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4770                                  LLT NarrowTy) {
4771   if (TypeIdx != 0)
4772     return UnableToLegalize;
4773 
4774   Register DstReg = MI.getOperand(0).getReg();
4775   Register SrcReg = MI.getOperand(1).getReg();
4776 
4777   LLT DstTy = MRI.getType(DstReg);
4778   if (DstTy.isVector())
4779     return UnableToLegalize;
4780 
4781   SmallVector<Register, 8> Parts;
4782   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4783   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4784   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4785 
4786   MI.eraseFromParent();
4787   return Legalized;
4788 }
4789 
4790 LegalizerHelper::LegalizeResult
4791 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4792                                     LLT NarrowTy) {
4793   if (TypeIdx != 0)
4794     return UnableToLegalize;
4795 
4796   Register CondReg = MI.getOperand(1).getReg();
4797   LLT CondTy = MRI.getType(CondReg);
4798   if (CondTy.isVector()) // TODO: Handle vselect
4799     return UnableToLegalize;
4800 
4801   Register DstReg = MI.getOperand(0).getReg();
4802   LLT DstTy = MRI.getType(DstReg);
4803 
4804   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4805   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4806   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4807   LLT LeftoverTy;
4808   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4809                     Src1Regs, Src1LeftoverRegs))
4810     return UnableToLegalize;
4811 
4812   LLT Unused;
4813   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4814                     Src2Regs, Src2LeftoverRegs))
4815     llvm_unreachable("inconsistent extractParts result");
4816 
4817   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4818     auto Select = MIRBuilder.buildSelect(NarrowTy,
4819                                          CondReg, Src1Regs[I], Src2Regs[I]);
4820     DstRegs.push_back(Select.getReg(0));
4821   }
4822 
4823   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4824     auto Select = MIRBuilder.buildSelect(
4825       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4826     DstLeftoverRegs.push_back(Select.getReg(0));
4827   }
4828 
4829   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4830               LeftoverTy, DstLeftoverRegs);
4831 
4832   MI.eraseFromParent();
4833   return Legalized;
4834 }
4835 
4836 LegalizerHelper::LegalizeResult
4837 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4838                                   LLT NarrowTy) {
4839   if (TypeIdx != 1)
4840     return UnableToLegalize;
4841 
4842   Register DstReg = MI.getOperand(0).getReg();
4843   Register SrcReg = MI.getOperand(1).getReg();
4844   LLT DstTy = MRI.getType(DstReg);
4845   LLT SrcTy = MRI.getType(SrcReg);
4846   unsigned NarrowSize = NarrowTy.getSizeInBits();
4847 
4848   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4849     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4850 
4851     MachineIRBuilder &B = MIRBuilder;
4852     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4853     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4854     auto C_0 = B.buildConstant(NarrowTy, 0);
4855     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4856                                 UnmergeSrc.getReg(1), C_0);
4857     auto LoCTLZ = IsUndef ?
4858       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4859       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4860     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4861     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4862     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4863     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4864 
4865     MI.eraseFromParent();
4866     return Legalized;
4867   }
4868 
4869   return UnableToLegalize;
4870 }
4871 
4872 LegalizerHelper::LegalizeResult
4873 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4874                                   LLT NarrowTy) {
4875   if (TypeIdx != 1)
4876     return UnableToLegalize;
4877 
4878   Register DstReg = MI.getOperand(0).getReg();
4879   Register SrcReg = MI.getOperand(1).getReg();
4880   LLT DstTy = MRI.getType(DstReg);
4881   LLT SrcTy = MRI.getType(SrcReg);
4882   unsigned NarrowSize = NarrowTy.getSizeInBits();
4883 
4884   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4885     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4886 
4887     MachineIRBuilder &B = MIRBuilder;
4888     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4889     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4890     auto C_0 = B.buildConstant(NarrowTy, 0);
4891     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4892                                 UnmergeSrc.getReg(0), C_0);
4893     auto HiCTTZ = IsUndef ?
4894       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4895       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4896     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4897     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4898     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4899     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4900 
4901     MI.eraseFromParent();
4902     return Legalized;
4903   }
4904 
4905   return UnableToLegalize;
4906 }
4907 
4908 LegalizerHelper::LegalizeResult
4909 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4910                                    LLT NarrowTy) {
4911   if (TypeIdx != 1)
4912     return UnableToLegalize;
4913 
4914   Register DstReg = MI.getOperand(0).getReg();
4915   LLT DstTy = MRI.getType(DstReg);
4916   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4917   unsigned NarrowSize = NarrowTy.getSizeInBits();
4918 
4919   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4920     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4921 
4922     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4923     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4924     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4925 
4926     MI.eraseFromParent();
4927     return Legalized;
4928   }
4929 
4930   return UnableToLegalize;
4931 }
4932 
4933 LegalizerHelper::LegalizeResult
4934 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4935   unsigned Opc = MI.getOpcode();
4936   const auto &TII = MIRBuilder.getTII();
4937   auto isSupported = [this](const LegalityQuery &Q) {
4938     auto QAction = LI.getAction(Q).Action;
4939     return QAction == Legal || QAction == Libcall || QAction == Custom;
4940   };
4941   switch (Opc) {
4942   default:
4943     return UnableToLegalize;
4944   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4945     // This trivially expands to CTLZ.
4946     Observer.changingInstr(MI);
4947     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4948     Observer.changedInstr(MI);
4949     return Legalized;
4950   }
4951   case TargetOpcode::G_CTLZ: {
4952     Register DstReg = MI.getOperand(0).getReg();
4953     Register SrcReg = MI.getOperand(1).getReg();
4954     LLT DstTy = MRI.getType(DstReg);
4955     LLT SrcTy = MRI.getType(SrcReg);
4956     unsigned Len = SrcTy.getSizeInBits();
4957 
4958     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4959       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4960       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4961       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4962       auto ICmp = MIRBuilder.buildICmp(
4963           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4964       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4965       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4966       MI.eraseFromParent();
4967       return Legalized;
4968     }
4969     // for now, we do this:
4970     // NewLen = NextPowerOf2(Len);
4971     // x = x | (x >> 1);
4972     // x = x | (x >> 2);
4973     // ...
4974     // x = x | (x >>16);
4975     // x = x | (x >>32); // for 64-bit input
4976     // Upto NewLen/2
4977     // return Len - popcount(x);
4978     //
4979     // Ref: "Hacker's Delight" by Henry Warren
4980     Register Op = SrcReg;
4981     unsigned NewLen = PowerOf2Ceil(Len);
4982     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4983       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4984       auto MIBOp = MIRBuilder.buildOr(
4985           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4986       Op = MIBOp.getReg(0);
4987     }
4988     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4989     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4990                         MIBPop);
4991     MI.eraseFromParent();
4992     return Legalized;
4993   }
4994   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4995     // This trivially expands to CTTZ.
4996     Observer.changingInstr(MI);
4997     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4998     Observer.changedInstr(MI);
4999     return Legalized;
5000   }
5001   case TargetOpcode::G_CTTZ: {
5002     Register DstReg = MI.getOperand(0).getReg();
5003     Register SrcReg = MI.getOperand(1).getReg();
5004     LLT DstTy = MRI.getType(DstReg);
5005     LLT SrcTy = MRI.getType(SrcReg);
5006 
5007     unsigned Len = SrcTy.getSizeInBits();
5008     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5009       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5010       // zero.
5011       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5012       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5013       auto ICmp = MIRBuilder.buildICmp(
5014           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5015       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5016       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5017       MI.eraseFromParent();
5018       return Legalized;
5019     }
5020     // for now, we use: { return popcount(~x & (x - 1)); }
5021     // unless the target has ctlz but not ctpop, in which case we use:
5022     // { return 32 - nlz(~x & (x-1)); }
5023     // Ref: "Hacker's Delight" by Henry Warren
5024     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5025     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5026     auto MIBTmp = MIRBuilder.buildAnd(
5027         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5028     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5029         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5030       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5031       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5032                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5033       MI.eraseFromParent();
5034       return Legalized;
5035     }
5036     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5037     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5038     return Legalized;
5039   }
5040   case TargetOpcode::G_CTPOP: {
5041     Register SrcReg = MI.getOperand(1).getReg();
5042     LLT Ty = MRI.getType(SrcReg);
5043     unsigned Size = Ty.getSizeInBits();
5044     MachineIRBuilder &B = MIRBuilder;
5045 
5046     // Count set bits in blocks of 2 bits. Default approach would be
5047     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5048     // We use following formula instead:
5049     // B2Count = val - { (val >> 1) & 0x55555555 }
5050     // since it gives same result in blocks of 2 with one instruction less.
5051     auto C_1 = B.buildConstant(Ty, 1);
5052     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5053     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5054     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5055     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5056     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5057 
5058     // In order to get count in blocks of 4 add values from adjacent block of 2.
5059     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5060     auto C_2 = B.buildConstant(Ty, 2);
5061     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5062     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5063     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5064     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5065     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5066     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5067 
5068     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5069     // addition since count value sits in range {0,...,8} and 4 bits are enough
5070     // to hold such binary values. After addition high 4 bits still hold count
5071     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5072     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5073     auto C_4 = B.buildConstant(Ty, 4);
5074     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5075     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5076     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5077     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5078     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5079 
5080     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5081     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5082     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5083     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5084     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5085 
5086     // Shift count result from 8 high bits to low bits.
5087     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5088     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5089 
5090     MI.eraseFromParent();
5091     return Legalized;
5092   }
5093   }
5094 }
5095 
5096 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5097 // representation.
5098 LegalizerHelper::LegalizeResult
5099 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5100   Register Dst = MI.getOperand(0).getReg();
5101   Register Src = MI.getOperand(1).getReg();
5102   const LLT S64 = LLT::scalar(64);
5103   const LLT S32 = LLT::scalar(32);
5104   const LLT S1 = LLT::scalar(1);
5105 
5106   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5107 
5108   // unsigned cul2f(ulong u) {
5109   //   uint lz = clz(u);
5110   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5111   //   u = (u << lz) & 0x7fffffffffffffffUL;
5112   //   ulong t = u & 0xffffffffffUL;
5113   //   uint v = (e << 23) | (uint)(u >> 40);
5114   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5115   //   return as_float(v + r);
5116   // }
5117 
5118   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5119   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5120 
5121   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5122 
5123   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5124   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5125 
5126   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5127   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5128 
5129   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5130   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5131 
5132   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5133 
5134   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5135   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5136 
5137   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5138   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5139   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5140 
5141   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5142   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5143   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5144   auto One = MIRBuilder.buildConstant(S32, 1);
5145 
5146   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5147   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5148   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5149   MIRBuilder.buildAdd(Dst, V, R);
5150 
5151   MI.eraseFromParent();
5152   return Legalized;
5153 }
5154 
5155 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5156   Register Dst = MI.getOperand(0).getReg();
5157   Register Src = MI.getOperand(1).getReg();
5158   LLT DstTy = MRI.getType(Dst);
5159   LLT SrcTy = MRI.getType(Src);
5160 
5161   if (SrcTy == LLT::scalar(1)) {
5162     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5163     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5164     MIRBuilder.buildSelect(Dst, Src, True, False);
5165     MI.eraseFromParent();
5166     return Legalized;
5167   }
5168 
5169   if (SrcTy != LLT::scalar(64))
5170     return UnableToLegalize;
5171 
5172   if (DstTy == LLT::scalar(32)) {
5173     // TODO: SelectionDAG has several alternative expansions to port which may
5174     // be more reasonble depending on the available instructions. If a target
5175     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5176     // intermediate type, this is probably worse.
5177     return lowerU64ToF32BitOps(MI);
5178   }
5179 
5180   return UnableToLegalize;
5181 }
5182 
5183 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5184   Register Dst = MI.getOperand(0).getReg();
5185   Register Src = MI.getOperand(1).getReg();
5186   LLT DstTy = MRI.getType(Dst);
5187   LLT SrcTy = MRI.getType(Src);
5188 
5189   const LLT S64 = LLT::scalar(64);
5190   const LLT S32 = LLT::scalar(32);
5191   const LLT S1 = LLT::scalar(1);
5192 
5193   if (SrcTy == S1) {
5194     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5195     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5196     MIRBuilder.buildSelect(Dst, Src, True, False);
5197     MI.eraseFromParent();
5198     return Legalized;
5199   }
5200 
5201   if (SrcTy != S64)
5202     return UnableToLegalize;
5203 
5204   if (DstTy == S32) {
5205     // signed cl2f(long l) {
5206     //   long s = l >> 63;
5207     //   float r = cul2f((l + s) ^ s);
5208     //   return s ? -r : r;
5209     // }
5210     Register L = Src;
5211     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5212     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5213 
5214     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5215     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5216     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5217 
5218     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5219     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5220                                             MIRBuilder.buildConstant(S64, 0));
5221     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5222     MI.eraseFromParent();
5223     return Legalized;
5224   }
5225 
5226   return UnableToLegalize;
5227 }
5228 
5229 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5230   Register Dst = MI.getOperand(0).getReg();
5231   Register Src = MI.getOperand(1).getReg();
5232   LLT DstTy = MRI.getType(Dst);
5233   LLT SrcTy = MRI.getType(Src);
5234   const LLT S64 = LLT::scalar(64);
5235   const LLT S32 = LLT::scalar(32);
5236 
5237   if (SrcTy != S64 && SrcTy != S32)
5238     return UnableToLegalize;
5239   if (DstTy != S32 && DstTy != S64)
5240     return UnableToLegalize;
5241 
5242   // FPTOSI gives same result as FPTOUI for positive signed integers.
5243   // FPTOUI needs to deal with fp values that convert to unsigned integers
5244   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5245 
5246   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5247   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5248                                                 : APFloat::IEEEdouble(),
5249                     APInt::getNullValue(SrcTy.getSizeInBits()));
5250   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5251 
5252   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5253 
5254   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5255   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5256   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5257   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5258   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5259   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5260   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5261 
5262   const LLT S1 = LLT::scalar(1);
5263 
5264   MachineInstrBuilder FCMP =
5265       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5266   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5267 
5268   MI.eraseFromParent();
5269   return Legalized;
5270 }
5271 
5272 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5273   Register Dst = MI.getOperand(0).getReg();
5274   Register Src = MI.getOperand(1).getReg();
5275   LLT DstTy = MRI.getType(Dst);
5276   LLT SrcTy = MRI.getType(Src);
5277   const LLT S64 = LLT::scalar(64);
5278   const LLT S32 = LLT::scalar(32);
5279 
5280   // FIXME: Only f32 to i64 conversions are supported.
5281   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5282     return UnableToLegalize;
5283 
5284   // Expand f32 -> i64 conversion
5285   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5286   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5287 
5288   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5289 
5290   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5291   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5292 
5293   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5294   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5295 
5296   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5297                                            APInt::getSignMask(SrcEltBits));
5298   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5299   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5300   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5301   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5302 
5303   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5304   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5305   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5306 
5307   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5308   R = MIRBuilder.buildZExt(DstTy, R);
5309 
5310   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5311   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5312   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5313   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5314 
5315   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5316   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5317 
5318   const LLT S1 = LLT::scalar(1);
5319   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5320                                     S1, Exponent, ExponentLoBit);
5321 
5322   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5323 
5324   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5325   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5326 
5327   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5328 
5329   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5330                                           S1, Exponent, ZeroSrcTy);
5331 
5332   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5333   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5334 
5335   MI.eraseFromParent();
5336   return Legalized;
5337 }
5338 
5339 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5340 LegalizerHelper::LegalizeResult
5341 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5342   Register Dst = MI.getOperand(0).getReg();
5343   Register Src = MI.getOperand(1).getReg();
5344 
5345   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5346     return UnableToLegalize;
5347 
5348   const unsigned ExpMask = 0x7ff;
5349   const unsigned ExpBiasf64 = 1023;
5350   const unsigned ExpBiasf16 = 15;
5351   const LLT S32 = LLT::scalar(32);
5352   const LLT S1 = LLT::scalar(1);
5353 
5354   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5355   Register U = Unmerge.getReg(0);
5356   Register UH = Unmerge.getReg(1);
5357 
5358   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5359   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5360 
5361   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5362   // add the f16 bias (15) to get the biased exponent for the f16 format.
5363   E = MIRBuilder.buildAdd(
5364     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5365 
5366   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5367   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5368 
5369   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5370                                        MIRBuilder.buildConstant(S32, 0x1ff));
5371   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5372 
5373   auto Zero = MIRBuilder.buildConstant(S32, 0);
5374   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5375   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5376   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5377 
5378   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5379   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5380   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5381   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5382 
5383   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5384   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5385 
5386   // N = M | (E << 12);
5387   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5388   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5389 
5390   // B = clamp(1-E, 0, 13);
5391   auto One = MIRBuilder.buildConstant(S32, 1);
5392   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5393   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5394   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5395 
5396   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5397                                        MIRBuilder.buildConstant(S32, 0x1000));
5398 
5399   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5400   auto D0 = MIRBuilder.buildShl(S32, D, B);
5401 
5402   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5403                                              D0, SigSetHigh);
5404   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5405   D = MIRBuilder.buildOr(S32, D, D1);
5406 
5407   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5408   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5409 
5410   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5411   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5412 
5413   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5414                                        MIRBuilder.buildConstant(S32, 3));
5415   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5416 
5417   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5418                                        MIRBuilder.buildConstant(S32, 5));
5419   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5420 
5421   V1 = MIRBuilder.buildOr(S32, V0, V1);
5422   V = MIRBuilder.buildAdd(S32, V, V1);
5423 
5424   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5425                                        E, MIRBuilder.buildConstant(S32, 30));
5426   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5427                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5428 
5429   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5430                                          E, MIRBuilder.buildConstant(S32, 1039));
5431   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5432 
5433   // Extract the sign bit.
5434   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5435   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5436 
5437   // Insert the sign bit
5438   V = MIRBuilder.buildOr(S32, Sign, V);
5439 
5440   MIRBuilder.buildTrunc(Dst, V);
5441   MI.eraseFromParent();
5442   return Legalized;
5443 }
5444 
5445 LegalizerHelper::LegalizeResult
5446 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5447   Register Dst = MI.getOperand(0).getReg();
5448   Register Src = MI.getOperand(1).getReg();
5449 
5450   LLT DstTy = MRI.getType(Dst);
5451   LLT SrcTy = MRI.getType(Src);
5452   const LLT S64 = LLT::scalar(64);
5453   const LLT S16 = LLT::scalar(16);
5454 
5455   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5456     return lowerFPTRUNC_F64_TO_F16(MI);
5457 
5458   return UnableToLegalize;
5459 }
5460 
5461 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5462 // multiplication tree.
5463 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5464   Register Dst = MI.getOperand(0).getReg();
5465   Register Src0 = MI.getOperand(1).getReg();
5466   Register Src1 = MI.getOperand(2).getReg();
5467   LLT Ty = MRI.getType(Dst);
5468 
5469   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5470   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5471   MI.eraseFromParent();
5472   return Legalized;
5473 }
5474 
5475 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5476   switch (Opc) {
5477   case TargetOpcode::G_SMIN:
5478     return CmpInst::ICMP_SLT;
5479   case TargetOpcode::G_SMAX:
5480     return CmpInst::ICMP_SGT;
5481   case TargetOpcode::G_UMIN:
5482     return CmpInst::ICMP_ULT;
5483   case TargetOpcode::G_UMAX:
5484     return CmpInst::ICMP_UGT;
5485   default:
5486     llvm_unreachable("not in integer min/max");
5487   }
5488 }
5489 
5490 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5491   Register Dst = MI.getOperand(0).getReg();
5492   Register Src0 = MI.getOperand(1).getReg();
5493   Register Src1 = MI.getOperand(2).getReg();
5494 
5495   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5496   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5497 
5498   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5499   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5500 
5501   MI.eraseFromParent();
5502   return Legalized;
5503 }
5504 
5505 LegalizerHelper::LegalizeResult
5506 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5507   Register Dst = MI.getOperand(0).getReg();
5508   Register Src0 = MI.getOperand(1).getReg();
5509   Register Src1 = MI.getOperand(2).getReg();
5510 
5511   const LLT Src0Ty = MRI.getType(Src0);
5512   const LLT Src1Ty = MRI.getType(Src1);
5513 
5514   const int Src0Size = Src0Ty.getScalarSizeInBits();
5515   const int Src1Size = Src1Ty.getScalarSizeInBits();
5516 
5517   auto SignBitMask = MIRBuilder.buildConstant(
5518     Src0Ty, APInt::getSignMask(Src0Size));
5519 
5520   auto NotSignBitMask = MIRBuilder.buildConstant(
5521     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5522 
5523   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
5524   Register And1;
5525   if (Src0Ty == Src1Ty) {
5526     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
5527   } else if (Src0Size > Src1Size) {
5528     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5529     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5530     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5531     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
5532   } else {
5533     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5534     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5535     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5536     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
5537   }
5538 
5539   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5540   // constants are a nan and -0.0, but the final result should preserve
5541   // everything.
5542   unsigned Flags = MI.getFlags();
5543   MIRBuilder.buildOr(Dst, And0, And1, Flags);
5544 
5545   MI.eraseFromParent();
5546   return Legalized;
5547 }
5548 
5549 LegalizerHelper::LegalizeResult
5550 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5551   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5552     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5553 
5554   Register Dst = MI.getOperand(0).getReg();
5555   Register Src0 = MI.getOperand(1).getReg();
5556   Register Src1 = MI.getOperand(2).getReg();
5557   LLT Ty = MRI.getType(Dst);
5558 
5559   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5560     // Insert canonicalizes if it's possible we need to quiet to get correct
5561     // sNaN behavior.
5562 
5563     // Note this must be done here, and not as an optimization combine in the
5564     // absence of a dedicate quiet-snan instruction as we're using an
5565     // omni-purpose G_FCANONICALIZE.
5566     if (!isKnownNeverSNaN(Src0, MRI))
5567       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5568 
5569     if (!isKnownNeverSNaN(Src1, MRI))
5570       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5571   }
5572 
5573   // If there are no nans, it's safe to simply replace this with the non-IEEE
5574   // version.
5575   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5576   MI.eraseFromParent();
5577   return Legalized;
5578 }
5579 
5580 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5581   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5582   Register DstReg = MI.getOperand(0).getReg();
5583   LLT Ty = MRI.getType(DstReg);
5584   unsigned Flags = MI.getFlags();
5585 
5586   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5587                                   Flags);
5588   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5589   MI.eraseFromParent();
5590   return Legalized;
5591 }
5592 
5593 LegalizerHelper::LegalizeResult
5594 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5595   Register DstReg = MI.getOperand(0).getReg();
5596   Register X = MI.getOperand(1).getReg();
5597   const unsigned Flags = MI.getFlags();
5598   const LLT Ty = MRI.getType(DstReg);
5599   const LLT CondTy = Ty.changeElementSize(1);
5600 
5601   // round(x) =>
5602   //  t = trunc(x);
5603   //  d = fabs(x - t);
5604   //  o = copysign(1.0f, x);
5605   //  return t + (d >= 0.5 ? o : 0.0);
5606 
5607   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5608 
5609   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5610   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5611   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5612   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5613   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5614   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5615 
5616   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5617                                   Flags);
5618   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5619 
5620   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5621 
5622   MI.eraseFromParent();
5623   return Legalized;
5624 }
5625 
5626 LegalizerHelper::LegalizeResult
5627 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5628   Register DstReg = MI.getOperand(0).getReg();
5629   Register SrcReg = MI.getOperand(1).getReg();
5630   unsigned Flags = MI.getFlags();
5631   LLT Ty = MRI.getType(DstReg);
5632   const LLT CondTy = Ty.changeElementSize(1);
5633 
5634   // result = trunc(src);
5635   // if (src < 0.0 && src != result)
5636   //   result += -1.0.
5637 
5638   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5639   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5640 
5641   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5642                                   SrcReg, Zero, Flags);
5643   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5644                                       SrcReg, Trunc, Flags);
5645   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5646   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5647 
5648   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5649   MI.eraseFromParent();
5650   return Legalized;
5651 }
5652 
5653 LegalizerHelper::LegalizeResult
5654 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5655   const unsigned NumOps = MI.getNumOperands();
5656   Register DstReg = MI.getOperand(0).getReg();
5657   Register Src0Reg = MI.getOperand(1).getReg();
5658   LLT DstTy = MRI.getType(DstReg);
5659   LLT SrcTy = MRI.getType(Src0Reg);
5660   unsigned PartSize = SrcTy.getSizeInBits();
5661 
5662   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5663   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5664 
5665   for (unsigned I = 2; I != NumOps; ++I) {
5666     const unsigned Offset = (I - 1) * PartSize;
5667 
5668     Register SrcReg = MI.getOperand(I).getReg();
5669     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5670 
5671     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5672       MRI.createGenericVirtualRegister(WideTy);
5673 
5674     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5675     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5676     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5677     ResultReg = NextResult;
5678   }
5679 
5680   if (DstTy.isPointer()) {
5681     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5682           DstTy.getAddressSpace())) {
5683       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5684       return UnableToLegalize;
5685     }
5686 
5687     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5688   }
5689 
5690   MI.eraseFromParent();
5691   return Legalized;
5692 }
5693 
5694 LegalizerHelper::LegalizeResult
5695 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5696   const unsigned NumDst = MI.getNumOperands() - 1;
5697   Register SrcReg = MI.getOperand(NumDst).getReg();
5698   Register Dst0Reg = MI.getOperand(0).getReg();
5699   LLT DstTy = MRI.getType(Dst0Reg);
5700   if (DstTy.isPointer())
5701     return UnableToLegalize; // TODO
5702 
5703   SrcReg = coerceToScalar(SrcReg);
5704   if (!SrcReg)
5705     return UnableToLegalize;
5706 
5707   // Expand scalarizing unmerge as bitcast to integer and shift.
5708   LLT IntTy = MRI.getType(SrcReg);
5709 
5710   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5711 
5712   const unsigned DstSize = DstTy.getSizeInBits();
5713   unsigned Offset = DstSize;
5714   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5715     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5716     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5717     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5718   }
5719 
5720   MI.eraseFromParent();
5721   return Legalized;
5722 }
5723 
5724 /// Lower a vector extract or insert by writing the vector to a stack temporary
5725 /// and reloading the element or vector.
5726 ///
5727 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5728 ///  =>
5729 ///  %stack_temp = G_FRAME_INDEX
5730 ///  G_STORE %vec, %stack_temp
5731 ///  %idx = clamp(%idx, %vec.getNumElements())
5732 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5733 ///  %dst = G_LOAD %element_ptr
5734 LegalizerHelper::LegalizeResult
5735 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5736   Register DstReg = MI.getOperand(0).getReg();
5737   Register SrcVec = MI.getOperand(1).getReg();
5738   Register InsertVal;
5739   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5740     InsertVal = MI.getOperand(2).getReg();
5741 
5742   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5743 
5744   LLT VecTy = MRI.getType(SrcVec);
5745   LLT EltTy = VecTy.getElementType();
5746   if (!EltTy.isByteSized()) { // Not implemented.
5747     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5748     return UnableToLegalize;
5749   }
5750 
5751   unsigned EltBytes = EltTy.getSizeInBytes();
5752   Align VecAlign = getStackTemporaryAlignment(VecTy);
5753   Align EltAlign;
5754 
5755   MachinePointerInfo PtrInfo;
5756   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5757                                         VecAlign, PtrInfo);
5758   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5759 
5760   // Get the pointer to the element, and be sure not to hit undefined behavior
5761   // if the index is out of bounds.
5762   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5763 
5764   int64_t IdxVal;
5765   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5766     int64_t Offset = IdxVal * EltBytes;
5767     PtrInfo = PtrInfo.getWithOffset(Offset);
5768     EltAlign = commonAlignment(VecAlign, Offset);
5769   } else {
5770     // We lose information with a variable offset.
5771     EltAlign = getStackTemporaryAlignment(EltTy);
5772     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5773   }
5774 
5775   if (InsertVal) {
5776     // Write the inserted element
5777     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5778 
5779     // Reload the whole vector.
5780     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5781   } else {
5782     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5783   }
5784 
5785   MI.eraseFromParent();
5786   return Legalized;
5787 }
5788 
5789 LegalizerHelper::LegalizeResult
5790 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5791   Register DstReg = MI.getOperand(0).getReg();
5792   Register Src0Reg = MI.getOperand(1).getReg();
5793   Register Src1Reg = MI.getOperand(2).getReg();
5794   LLT Src0Ty = MRI.getType(Src0Reg);
5795   LLT DstTy = MRI.getType(DstReg);
5796   LLT IdxTy = LLT::scalar(32);
5797 
5798   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5799 
5800   if (DstTy.isScalar()) {
5801     if (Src0Ty.isVector())
5802       return UnableToLegalize;
5803 
5804     // This is just a SELECT.
5805     assert(Mask.size() == 1 && "Expected a single mask element");
5806     Register Val;
5807     if (Mask[0] < 0 || Mask[0] > 1)
5808       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5809     else
5810       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5811     MIRBuilder.buildCopy(DstReg, Val);
5812     MI.eraseFromParent();
5813     return Legalized;
5814   }
5815 
5816   Register Undef;
5817   SmallVector<Register, 32> BuildVec;
5818   LLT EltTy = DstTy.getElementType();
5819 
5820   for (int Idx : Mask) {
5821     if (Idx < 0) {
5822       if (!Undef.isValid())
5823         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5824       BuildVec.push_back(Undef);
5825       continue;
5826     }
5827 
5828     if (Src0Ty.isScalar()) {
5829       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5830     } else {
5831       int NumElts = Src0Ty.getNumElements();
5832       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5833       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5834       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5835       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5836       BuildVec.push_back(Extract.getReg(0));
5837     }
5838   }
5839 
5840   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5841   MI.eraseFromParent();
5842   return Legalized;
5843 }
5844 
5845 LegalizerHelper::LegalizeResult
5846 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5847   const auto &MF = *MI.getMF();
5848   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5849   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5850     return UnableToLegalize;
5851 
5852   Register Dst = MI.getOperand(0).getReg();
5853   Register AllocSize = MI.getOperand(1).getReg();
5854   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5855 
5856   LLT PtrTy = MRI.getType(Dst);
5857   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5858 
5859   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5860   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5861   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5862 
5863   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5864   // have to generate an extra instruction to negate the alloc and then use
5865   // G_PTR_ADD to add the negative offset.
5866   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5867   if (Alignment > Align(1)) {
5868     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5869     AlignMask.negate();
5870     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5871     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5872   }
5873 
5874   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5875   MIRBuilder.buildCopy(SPReg, SPTmp);
5876   MIRBuilder.buildCopy(Dst, SPTmp);
5877 
5878   MI.eraseFromParent();
5879   return Legalized;
5880 }
5881 
5882 LegalizerHelper::LegalizeResult
5883 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5884   Register Dst = MI.getOperand(0).getReg();
5885   Register Src = MI.getOperand(1).getReg();
5886   unsigned Offset = MI.getOperand(2).getImm();
5887 
5888   LLT DstTy = MRI.getType(Dst);
5889   LLT SrcTy = MRI.getType(Src);
5890 
5891   if (DstTy.isScalar() &&
5892       (SrcTy.isScalar() ||
5893        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5894     LLT SrcIntTy = SrcTy;
5895     if (!SrcTy.isScalar()) {
5896       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5897       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5898     }
5899 
5900     if (Offset == 0)
5901       MIRBuilder.buildTrunc(Dst, Src);
5902     else {
5903       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5904       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5905       MIRBuilder.buildTrunc(Dst, Shr);
5906     }
5907 
5908     MI.eraseFromParent();
5909     return Legalized;
5910   }
5911 
5912   return UnableToLegalize;
5913 }
5914 
5915 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5916   Register Dst = MI.getOperand(0).getReg();
5917   Register Src = MI.getOperand(1).getReg();
5918   Register InsertSrc = MI.getOperand(2).getReg();
5919   uint64_t Offset = MI.getOperand(3).getImm();
5920 
5921   LLT DstTy = MRI.getType(Src);
5922   LLT InsertTy = MRI.getType(InsertSrc);
5923 
5924   if (InsertTy.isVector() ||
5925       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5926     return UnableToLegalize;
5927 
5928   const DataLayout &DL = MIRBuilder.getDataLayout();
5929   if ((DstTy.isPointer() &&
5930        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5931       (InsertTy.isPointer() &&
5932        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5933     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5934     return UnableToLegalize;
5935   }
5936 
5937   LLT IntDstTy = DstTy;
5938 
5939   if (!DstTy.isScalar()) {
5940     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5941     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5942   }
5943 
5944   if (!InsertTy.isScalar()) {
5945     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5946     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5947   }
5948 
5949   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5950   if (Offset != 0) {
5951     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5952     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5953   }
5954 
5955   APInt MaskVal = APInt::getBitsSetWithWrap(
5956       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5957 
5958   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5959   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5960   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5961 
5962   MIRBuilder.buildCast(Dst, Or);
5963   MI.eraseFromParent();
5964   return Legalized;
5965 }
5966 
5967 LegalizerHelper::LegalizeResult
5968 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5969   Register Dst0 = MI.getOperand(0).getReg();
5970   Register Dst1 = MI.getOperand(1).getReg();
5971   Register LHS = MI.getOperand(2).getReg();
5972   Register RHS = MI.getOperand(3).getReg();
5973   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5974 
5975   LLT Ty = MRI.getType(Dst0);
5976   LLT BoolTy = MRI.getType(Dst1);
5977 
5978   if (IsAdd)
5979     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5980   else
5981     MIRBuilder.buildSub(Dst0, LHS, RHS);
5982 
5983   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5984 
5985   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5986 
5987   // For an addition, the result should be less than one of the operands (LHS)
5988   // if and only if the other operand (RHS) is negative, otherwise there will
5989   // be overflow.
5990   // For a subtraction, the result should be less than one of the operands
5991   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5992   // otherwise there will be overflow.
5993   auto ResultLowerThanLHS =
5994       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5995   auto ConditionRHS = MIRBuilder.buildICmp(
5996       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5997 
5998   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5999   MI.eraseFromParent();
6000   return Legalized;
6001 }
6002 
6003 LegalizerHelper::LegalizeResult
6004 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6005   Register Res = MI.getOperand(0).getReg();
6006   Register LHS = MI.getOperand(1).getReg();
6007   Register RHS = MI.getOperand(2).getReg();
6008   LLT Ty = MRI.getType(Res);
6009   bool IsSigned;
6010   bool IsAdd;
6011   unsigned BaseOp;
6012   switch (MI.getOpcode()) {
6013   default:
6014     llvm_unreachable("unexpected addsat/subsat opcode");
6015   case TargetOpcode::G_UADDSAT:
6016     IsSigned = false;
6017     IsAdd = true;
6018     BaseOp = TargetOpcode::G_ADD;
6019     break;
6020   case TargetOpcode::G_SADDSAT:
6021     IsSigned = true;
6022     IsAdd = true;
6023     BaseOp = TargetOpcode::G_ADD;
6024     break;
6025   case TargetOpcode::G_USUBSAT:
6026     IsSigned = false;
6027     IsAdd = false;
6028     BaseOp = TargetOpcode::G_SUB;
6029     break;
6030   case TargetOpcode::G_SSUBSAT:
6031     IsSigned = true;
6032     IsAdd = false;
6033     BaseOp = TargetOpcode::G_SUB;
6034     break;
6035   }
6036 
6037   if (IsSigned) {
6038     // sadd.sat(a, b) ->
6039     //   hi = 0x7fffffff - smax(a, 0)
6040     //   lo = 0x80000000 - smin(a, 0)
6041     //   a + smin(smax(lo, b), hi)
6042     // ssub.sat(a, b) ->
6043     //   lo = smax(a, -1) - 0x7fffffff
6044     //   hi = smin(a, -1) - 0x80000000
6045     //   a - smin(smax(lo, b), hi)
6046     // TODO: AMDGPU can use a "median of 3" instruction here:
6047     //   a +/- med3(lo, b, hi)
6048     uint64_t NumBits = Ty.getScalarSizeInBits();
6049     auto MaxVal =
6050         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6051     auto MinVal =
6052         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6053     MachineInstrBuilder Hi, Lo;
6054     if (IsAdd) {
6055       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6056       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6057       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6058     } else {
6059       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6060       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6061                                MaxVal);
6062       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6063                                MinVal);
6064     }
6065     auto RHSClamped =
6066         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6067     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6068   } else {
6069     // uadd.sat(a, b) -> a + umin(~a, b)
6070     // usub.sat(a, b) -> a - umin(a, b)
6071     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6072     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6073     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6074   }
6075 
6076   MI.eraseFromParent();
6077   return Legalized;
6078 }
6079 
6080 LegalizerHelper::LegalizeResult
6081 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6082   Register Res = MI.getOperand(0).getReg();
6083   Register LHS = MI.getOperand(1).getReg();
6084   Register RHS = MI.getOperand(2).getReg();
6085   LLT Ty = MRI.getType(Res);
6086   LLT BoolTy = Ty.changeElementSize(1);
6087   bool IsSigned;
6088   bool IsAdd;
6089   unsigned OverflowOp;
6090   switch (MI.getOpcode()) {
6091   default:
6092     llvm_unreachable("unexpected addsat/subsat opcode");
6093   case TargetOpcode::G_UADDSAT:
6094     IsSigned = false;
6095     IsAdd = true;
6096     OverflowOp = TargetOpcode::G_UADDO;
6097     break;
6098   case TargetOpcode::G_SADDSAT:
6099     IsSigned = true;
6100     IsAdd = true;
6101     OverflowOp = TargetOpcode::G_SADDO;
6102     break;
6103   case TargetOpcode::G_USUBSAT:
6104     IsSigned = false;
6105     IsAdd = false;
6106     OverflowOp = TargetOpcode::G_USUBO;
6107     break;
6108   case TargetOpcode::G_SSUBSAT:
6109     IsSigned = true;
6110     IsAdd = false;
6111     OverflowOp = TargetOpcode::G_SSUBO;
6112     break;
6113   }
6114 
6115   auto OverflowRes =
6116       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6117   Register Tmp = OverflowRes.getReg(0);
6118   Register Ov = OverflowRes.getReg(1);
6119   MachineInstrBuilder Clamp;
6120   if (IsSigned) {
6121     // sadd.sat(a, b) ->
6122     //   {tmp, ov} = saddo(a, b)
6123     //   ov ? (tmp >>s 31) + 0x80000000 : r
6124     // ssub.sat(a, b) ->
6125     //   {tmp, ov} = ssubo(a, b)
6126     //   ov ? (tmp >>s 31) + 0x80000000 : r
6127     uint64_t NumBits = Ty.getScalarSizeInBits();
6128     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6129     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6130     auto MinVal =
6131         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6132     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6133   } else {
6134     // uadd.sat(a, b) ->
6135     //   {tmp, ov} = uaddo(a, b)
6136     //   ov ? 0xffffffff : tmp
6137     // usub.sat(a, b) ->
6138     //   {tmp, ov} = usubo(a, b)
6139     //   ov ? 0 : tmp
6140     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6141   }
6142   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6143 
6144   MI.eraseFromParent();
6145   return Legalized;
6146 }
6147 
6148 LegalizerHelper::LegalizeResult
6149 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6150   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6151           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6152          "Expected shlsat opcode!");
6153   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6154   Register Res = MI.getOperand(0).getReg();
6155   Register LHS = MI.getOperand(1).getReg();
6156   Register RHS = MI.getOperand(2).getReg();
6157   LLT Ty = MRI.getType(Res);
6158   LLT BoolTy = Ty.changeElementSize(1);
6159 
6160   unsigned BW = Ty.getScalarSizeInBits();
6161   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6162   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6163                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6164 
6165   MachineInstrBuilder SatVal;
6166   if (IsSigned) {
6167     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6168     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6169     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6170                                     MIRBuilder.buildConstant(Ty, 0));
6171     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6172   } else {
6173     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6174   }
6175   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6176   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6177 
6178   MI.eraseFromParent();
6179   return Legalized;
6180 }
6181 
6182 LegalizerHelper::LegalizeResult
6183 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6184   Register Dst = MI.getOperand(0).getReg();
6185   Register Src = MI.getOperand(1).getReg();
6186   const LLT Ty = MRI.getType(Src);
6187   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6188   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6189 
6190   // Swap most and least significant byte, set remaining bytes in Res to zero.
6191   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6192   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6193   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6194   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6195 
6196   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6197   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6198     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6199     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6200     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6201     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6202     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6203     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6204     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6205     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6206     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6207     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6208     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6209     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6210   }
6211   Res.getInstr()->getOperand(0).setReg(Dst);
6212 
6213   MI.eraseFromParent();
6214   return Legalized;
6215 }
6216 
6217 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6218 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6219                                  MachineInstrBuilder Src, APInt Mask) {
6220   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6221   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6222   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6223   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6224   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6225   return B.buildOr(Dst, LHS, RHS);
6226 }
6227 
6228 LegalizerHelper::LegalizeResult
6229 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6230   Register Dst = MI.getOperand(0).getReg();
6231   Register Src = MI.getOperand(1).getReg();
6232   const LLT Ty = MRI.getType(Src);
6233   unsigned Size = Ty.getSizeInBits();
6234 
6235   MachineInstrBuilder BSWAP =
6236       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6237 
6238   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6239   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6240   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6241   MachineInstrBuilder Swap4 =
6242       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6243 
6244   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6245   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6246   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6247   MachineInstrBuilder Swap2 =
6248       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6249 
6250   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6251   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6252   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6253   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6254 
6255   MI.eraseFromParent();
6256   return Legalized;
6257 }
6258 
6259 LegalizerHelper::LegalizeResult
6260 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6261   MachineFunction &MF = MIRBuilder.getMF();
6262 
6263   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6264   int NameOpIdx = IsRead ? 1 : 0;
6265   int ValRegIndex = IsRead ? 0 : 1;
6266 
6267   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6268   const LLT Ty = MRI.getType(ValReg);
6269   const MDString *RegStr = cast<MDString>(
6270     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6271 
6272   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6273   if (!PhysReg.isValid())
6274     return UnableToLegalize;
6275 
6276   if (IsRead)
6277     MIRBuilder.buildCopy(ValReg, PhysReg);
6278   else
6279     MIRBuilder.buildCopy(PhysReg, ValReg);
6280 
6281   MI.eraseFromParent();
6282   return Legalized;
6283 }
6284 
6285 LegalizerHelper::LegalizeResult
6286 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6287   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6288   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6289   Register Result = MI.getOperand(0).getReg();
6290   LLT OrigTy = MRI.getType(Result);
6291   auto SizeInBits = OrigTy.getScalarSizeInBits();
6292   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6293 
6294   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6295   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6296   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6297   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6298 
6299   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6300   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6301   MIRBuilder.buildTrunc(Result, Shifted);
6302 
6303   MI.eraseFromParent();
6304   return Legalized;
6305 }
6306 
6307 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6308   // Implement vector G_SELECT in terms of XOR, AND, OR.
6309   Register DstReg = MI.getOperand(0).getReg();
6310   Register MaskReg = MI.getOperand(1).getReg();
6311   Register Op1Reg = MI.getOperand(2).getReg();
6312   Register Op2Reg = MI.getOperand(3).getReg();
6313   LLT DstTy = MRI.getType(DstReg);
6314   LLT MaskTy = MRI.getType(MaskReg);
6315   LLT Op1Ty = MRI.getType(Op1Reg);
6316   if (!DstTy.isVector())
6317     return UnableToLegalize;
6318 
6319   // Vector selects can have a scalar predicate. If so, splat into a vector and
6320   // finish for later legalization attempts to try again.
6321   if (MaskTy.isScalar()) {
6322     Register MaskElt = MaskReg;
6323     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6324       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6325     // Generate a vector splat idiom to be pattern matched later.
6326     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6327     Observer.changingInstr(MI);
6328     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6329     Observer.changedInstr(MI);
6330     return Legalized;
6331   }
6332 
6333   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6334     return UnableToLegalize;
6335   }
6336 
6337   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6338   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6339   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6340   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6341   MI.eraseFromParent();
6342   return Legalized;
6343 }
6344